repo_name
stringlengths
7
92
path
stringlengths
5
149
copies
stringlengths
1
3
size
stringlengths
4
6
content
stringlengths
911
693k
license
stringclasses
15 values
AndKyr/GETELEC
python/JFplot.py
1
1648
#! /usr/bin/python import numpy as np import getelec_mod as gt from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt import matplotlib as mb font = 30 # mb.rcParams["font.family"] = "Serif" mb.rcParams["font.size"] = font mb.rcParams["axes.labelsize"] = font mb.rcParams["xtick.labelsize"] = font mb.rcParams["ytick.labelsize"] = font mb.rcParams["legend.fontsize"] = font mb.rcParams["lines.linewidth"] = 2.5 fsize = (18,10) Npoints = 256 Temps = [1.e-2, 300, 800, 1500] Xfn = np.linspace(0.12, 0.35, 256) F = 1./Xfn Jem = np.copy(F) this = gt.emission_create(W = 4.5, R = 5000., approx = 2) fig1 = plt.figure(figsize=fsize) ax1 = fig1.gca() ax1.set_xlabel(r"$1/F$ [m GV$^{-1}$]") ax1.set_ylabel(r"$J$ [A nm$^{-2}$]") colors = plt.rcParams['axes.prop_cycle'].by_key()['color'] for i in range(len(Temps)): this.Temp = Temps[i] if (this.Temp < 10.): this.approx = -1 else: this.approx = 2 for j in range(len(F)): this.F = F[j] this.cur_dens() Jem[j] = this.Jem ax1.semilogy(Xfn,Jem, label = r'T = %d K'%this.Temp) # for i in range(len(Temps)): # this.Temp = Temps[i] # if (this.Temp < 10.): # this.approx = -1 # else: # this.approx = -1 # for j in range(len(F)): # this.F = F[j] # this.cur_dens() # Jem[j] = this.Jem # ax1.semilogy(Xfn,Jem, '--', color = colors[i], label = r'T = %d K'%this.Temp) # np.savetxt("J-F.dat", np.transpose(np.array([F,Jem])), delimiter = " ") ax1.grid() ax1.legend() plt.savefig("JFplot_Tparam.svg") plt.savefig("JFplot_Tparam.png") plt.show()
gpl-3.0
ipashchenko/emcee-x
document/plots/oned.py
16
2164
import os import sys import time import numpy as np import matplotlib.pyplot as pl import h5py from multiprocessing import Pool sys.path.append(os.path.abspath(os.path.join(__file__, "..", "..", ".."))) import emcee # import acor def lnprobfn(p, icov): return -0.5 * np.dot(p, np.dot(icov, p)) def random_cov(ndim, dof=1): v = np.random.randn(ndim * (ndim + dof)).reshape((ndim + dof, ndim)) return (sum([np.outer(v[i], v[i]) for i in range(ndim + dof)]) / (ndim + dof)) _rngs = {} def _worker(args): i, outfn, nsteps = args pid = os.getpid() _random = _rngs.get(pid, np.random.RandomState(int(int(pid) + time.time()))) _rngs[pid] = _random ndim = int(np.ceil(2 ** (7 * _random.rand()))) nwalkers = 2 * ndim + 2 # nwalkers += nwalkers % 2 print ndim, nwalkers cov = random_cov(ndim) icov = np.linalg.inv(cov) ens_samp = emcee.EnsembleSampler(nwalkers, ndim, lnprobfn, args=[icov]) ens_samp.random_state = _random.get_state() pos, lnprob, state = ens_samp.run_mcmc(np.random.randn(nwalkers * ndim) .reshape([nwalkers, ndim]), nsteps) proposal = np.diag(cov.diagonal()) mh_samp = emcee.MHSampler(proposal, ndim, lnprobfn, args=[icov]) mh_samp.random_state = state mh_samp.run_mcmc(np.random.randn(ndim), nsteps) f = h5py.File(outfn) f["data"][i, :] = np.array([ndim, np.mean(ens_samp.acor), np.mean(mh_samp.acor)]) f.close() def oned(): nsteps = 10000 niter = 10 nthreads = 2 outfn = os.path.join(os.path.split(__file__)[0], "gauss_scaling.h5") print outfn f = h5py.File(outfn, "w") f.create_dataset("data", (niter, 3), "f") f.close() pool = Pool(nthreads) pool.map(_worker, [(i, outfn, nsteps) for i in range(niter)]) f = h5py.File(outfn) data = f["data"][...] f.close() pl.clf() pl.plot(data[:, 0], data[:, 1], "ks", alpha=0.5) pl.plot(data[:, 0], data[:, 2], ".k", alpha=0.5) pl.savefig(os.path.join(os.path.split(__file__)[0], "gauss_scaling.png")) if __name__ == "__main__": oned()
mit
GGoussar/scikit-image
doc/examples/segmentation/plot_marked_watershed.py
9
1988
""" =============================== Markers for watershed transform =============================== The watershed is a classical algorithm used for **segmentation**, that is, for separating different objects in an image. Here a marker image is built from the region of low gradient inside the image. In a gradient image, the areas of high values provide barriers that help to segment the image. Using markers on the lower values will ensure that the segmented objects are found. See Wikipedia_ for more details on the algorithm. .. _Wikipedia: http://en.wikipedia.org/wiki/Watershed_(image_processing) """ from scipy import ndimage as ndi import matplotlib.pyplot as plt from skimage.morphology import watershed, disk from skimage import data from skimage.filters import rank from skimage.util import img_as_ubyte image = img_as_ubyte(data.camera()) # denoise image denoised = rank.median(image, disk(2)) # find continuous region (low gradient - # where less than 10 for this image) --> markers # disk(5) is used here to get a more smooth image markers = rank.gradient(denoised, disk(5)) < 10 markers = ndi.label(markers)[0] # local gradient (disk(2) is used to keep edges thin) gradient = rank.gradient(denoised, disk(2)) # process the watershed labels = watershed(gradient, markers) # display results fig, axes = plt.subplots(nrows=2, ncols=2, figsize=(8, 8), sharex=True, sharey=True, subplot_kw={'adjustable':'box-forced'}) ax = axes.ravel() ax[0].imshow(image, cmap=plt.cm.gray, interpolation='nearest') ax[0].set_title("Original") ax[1].imshow(gradient, cmap=plt.cm.spectral, interpolation='nearest') ax[1].set_title("Local Gradient") ax[2].imshow(markers, cmap=plt.cm.spectral, interpolation='nearest') ax[2].set_title("Markers") ax[3].imshow(image, cmap=plt.cm.gray, interpolation='nearest') ax[3].imshow(labels, cmap=plt.cm.spectral, interpolation='nearest', alpha=.7) ax[3].set_title("Segmented") for a in ax: a.axis('off') fig.tight_layout() plt.show()
bsd-3-clause
karlnapf/kameleon-mcmc
kameleon_mcmc/tools/Visualise.py
1
5656
""" This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Written (W) 2013 Heiko Strathmann Written (W) 2013 Dino Sejdinovic """ from kameleon_mcmc.distribution.Gaussian import Gaussian from matplotlib.patches import Ellipse from matplotlib.pyplot import imshow, ylim, xlim, contour, plot, hold, gca from numpy import linspace from numpy.linalg.linalg import eigh from numpy import zeros, array, exp, arctan2, sqrt import numpy class Visualise(object): def __init__(self): pass @staticmethod def get_plotting_arrays(distribution): bounds = distribution.get_plotting_bounds() assert(len(bounds) == 2) Xs = linspace(bounds[0][0], bounds[0][1]) Ys = linspace(bounds[1][0], bounds[1][1]) return Xs, Ys @staticmethod def visualise_distribution(distribution, Z=None, log_density=False, Xs=None, Ys=None): """ Plots the density of a given Distribution instance and plots some samples on top. """ if Xs is None or Ys is None: Xs, Ys = Visualise.get_plotting_arrays(distribution) Visualise.plot_density(distribution, Xs, Ys) if Z is not None: hold(True) Visualise.plot_data(Z) hold(False) @staticmethod def plot_density(distribution, Xs, Ys, log_domain=False): """ Plots a 2D density density - density - distribution instance to plot Xs - x values the density is evaluated at Ys - y values the density is evaluated at log_domain - if False, density will be put into exponential function """ assert(distribution.dimension == 2) D = zeros((len(Xs), len(Ys))) # compute log-density for i in range(len(Xs)): for j in range(len(Ys)): x = array([[Xs[i], Ys[j]]]) D[j, i] = distribution.log_pdf(x) if log_domain == False: D = exp(D) im = imshow(D, origin='lower') im.set_extent([Xs.min(), Xs.max(), Ys.min(), Ys.max()]) im.set_interpolation('nearest') im.set_cmap('gray') ylim([Ys.min(), Ys.max()]) xlim([Xs.min(), Xs.max()]) @staticmethod def contour_plot_density(distribution, Xs=None, Ys=None, log_domain=False): """ Contour-plots a 2D density. If Gaussian, plots 1.96 interval contour only density - distribution instance to plot Xs - x values the density is evaluated at Ys - y values the density is evaluated at log_domain - if False, density will be put into exponential function """ if isinstance(distribution, Gaussian) and log_domain == False: gca().add_artist(Visualise.get_gaussian_ellipse_artist(distribution)) gca().plot(distribution.mu[0], distribution.mu[1], 'r*', \ markersize=3.0, markeredgewidth=.1) return assert(distribution.dimension == 2) if Xs is None: (xmin, xmax), _ = distribution.get_plotting_bounds() Xs = linspace(xmin, xmax) if Ys is None: _, (ymin, ymax) = distribution.get_plotting_bounds() Ys = linspace(ymin, ymax) D = zeros((len(Ys), len(Xs))) # compute log-density for i in range(len(Xs)): for j in range(len(Ys)): x = array([[Xs[i], Ys[j]]]) D[j, i] = distribution.log_pdf(x) if log_domain == False: D = exp(D) contour(Xs, Ys, D, origin='lower') @staticmethod def plot_array(Xs, Ys, D): """ Plots a 2D array Xs - x values the density is evaluated at Ys - y values the density is evaluated at D - array to plot """ im = imshow(D, origin='lower') im.set_extent([Xs.min(), Xs.max(), Ys.min(), Ys.max()]) im.set_interpolation('nearest') im.set_cmap('gray') ylim([Ys.min(), Ys.max()]) xlim([Xs.min(), Xs.max()]) @staticmethod def plot_data(Z, y=None): """ Plots collection of 2D points and optionally adds a marker to one of them Z - set of row-vectors points to plot y - one point that is marked in red, might be None """ plot(Z[:, 0], Z[:, 1], '*', markersize=3.0, markeredgewidth=.1) if y is not None: plot(y[0, 0], y[0, 1], 'r*', markersize=10.0, markeredgewidth=.1) @staticmethod def get_gaussian_ellipse_artist(gaussian, nstd=1.96, linewidth=1): """ Returns an allipse artist for nstd times the standard deviation of this Gaussian """ assert(isinstance(gaussian, Gaussian)) assert(gaussian.dimension == 2) # compute eigenvalues (ordered) vals, vecs = eigh(gaussian.L.dot(gaussian.L.T)) order = vals.argsort()[::-1] vals, vecs = vals[order], vecs[:, order] theta = numpy.degrees(arctan2(*vecs[:, 0][::-1])) # width and height are "full" widths, not radius width, height = 2 * nstd * sqrt(vals) e = Ellipse(xy=gaussian.mu, width=width, height=height, angle=theta, \ edgecolor="red", fill=False, linewidth=linewidth) return e
bsd-2-clause
antiface/mne-python
examples/decoding/plot_linear_model_patterns.py
13
3098
""" =============================================================== Linear classifier on sensor data with plot patterns and filters =============================================================== Decoding, a.k.a MVPA or supervised machine learning applied to MEG and EEG data in sensor space. Fit a linear classifier with the LinearModel object providing topographical patterns which are more neurophysiologically interpretable [1] than the classifier filters (weight vectors). The patterns explain how the MEG and EEG data were generated from the discriminant neural sources which are extracted by the filters. Note patterns/filters in MEG data are more similar than EEG data because the noise is less spatially correlated in MEG than EEG. [1] Haufe, S., Meinecke, F., Görgen, K., Dähne, S., Haynes, J.-D., Blankertz, B., & Bießmann, F. (2014). On the interpretation of weight vectors of linear models in multivariate neuroimaging. NeuroImage, 87, 96–110. doi:10.1016/j.neuroimage.2013.10.067 """ # Authors: Alexandre Gramfort <[email protected]> # Romain Trachel <[email protected]> # # License: BSD (3-clause) import mne from mne import io from mne.datasets import sample from sklearn.preprocessing import StandardScaler from sklearn.linear_model import LogisticRegression # import a linear classifier from mne.decoding from mne.decoding import LinearModel print(__doc__) data_path = sample.data_path() ############################################################################### # Set parameters raw_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw.fif' event_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw-eve.fif' tmin, tmax = -0.2, 0.5 event_id = dict(aud_l=1, vis_l=3) # Setup for reading the raw data raw = io.Raw(raw_fname, preload=True) raw.filter(2, None, method='iir') # replace baselining with high-pass events = mne.read_events(event_fname) # Read epochs epochs = mne.Epochs(raw, events, event_id, tmin, tmax, proj=True, decim=4, baseline=None, preload=True) labels = epochs.events[:, -1] # get MEG and EEG data meg_epochs = epochs.pick_types(meg=True, eeg=False, copy=True) meg_data = meg_epochs.get_data().reshape(len(labels), -1) eeg_epochs = epochs.pick_types(meg=False, eeg=True, copy=True) eeg_data = eeg_epochs.get_data().reshape(len(labels), -1) ############################################################################### # Decoding in sensor space using a LogisticRegression classifier clf = LogisticRegression() sc = StandardScaler() # create a linear model with LogisticRegression model = LinearModel(clf) # fit the classifier on MEG data X = sc.fit_transform(meg_data) model.fit(X, labels) # plot patterns and filters model.plot_patterns(meg_epochs.info, title='MEG Patterns') model.plot_filters(meg_epochs.info, title='MEG Filters') # fit the classifier on EEG data X = sc.fit_transform(eeg_data) model.fit(X, labels) # plot patterns and filters model.plot_patterns(eeg_epochs.info, title='EEG Patterns') model.plot_filters(eeg_epochs.info, title='EEG Filters')
bsd-3-clause
johankaito/fufuka
microblog/flask/venv/lib/python2.7/site-packages/scipy/stats/_multivariate.py
17
69089
# # Author: Joris Vankerschaver 2013 # from __future__ import division, print_function, absolute_import import numpy as np import scipy.linalg from scipy.misc import doccer from scipy.special import gammaln, psi, multigammaln from scipy._lib._util import check_random_state __all__ = ['multivariate_normal', 'dirichlet', 'wishart', 'invwishart'] _LOG_2PI = np.log(2 * np.pi) _LOG_2 = np.log(2) _LOG_PI = np.log(np.pi) def _process_parameters(dim, mean, cov): """ Infer dimensionality from mean or covariance matrix, ensure that mean and covariance are full vector resp. matrix. """ # Try to infer dimensionality if dim is None: if mean is None: if cov is None: dim = 1 else: cov = np.asarray(cov, dtype=float) if cov.ndim < 2: dim = 1 else: dim = cov.shape[0] else: mean = np.asarray(mean, dtype=float) dim = mean.size else: if not np.isscalar(dim): raise ValueError("Dimension of random variable must be a scalar.") # Check input sizes and return full arrays for mean and cov if necessary if mean is None: mean = np.zeros(dim) mean = np.asarray(mean, dtype=float) if cov is None: cov = 1.0 cov = np.asarray(cov, dtype=float) if dim == 1: mean.shape = (1,) cov.shape = (1, 1) if mean.ndim != 1 or mean.shape[0] != dim: raise ValueError("Array 'mean' must be a vector of length %d." % dim) if cov.ndim == 0: cov = cov * np.eye(dim) elif cov.ndim == 1: cov = np.diag(cov) elif cov.ndim == 2 and cov.shape != (dim, dim): rows, cols = cov.shape if rows != cols: msg = ("Array 'cov' must be square if it is two dimensional," " but cov.shape = %s." % str(cov.shape)) else: msg = ("Dimension mismatch: array 'cov' is of shape %s," " but 'mean' is a vector of length %d.") msg = msg % (str(cov.shape), len(mean)) raise ValueError(msg) elif cov.ndim > 2: raise ValueError("Array 'cov' must be at most two-dimensional," " but cov.ndim = %d" % cov.ndim) return dim, mean, cov def _process_quantiles(x, dim): """ Adjust quantiles array so that last axis labels the components of each data point. """ x = np.asarray(x, dtype=float) if x.ndim == 0: x = x[np.newaxis] elif x.ndim == 1: if dim == 1: x = x[:, np.newaxis] else: x = x[np.newaxis, :] return x def _squeeze_output(out): """ Remove single-dimensional entries from array and convert to scalar, if necessary. """ out = out.squeeze() if out.ndim == 0: out = out[()] return out def _eigvalsh_to_eps(spectrum, cond=None, rcond=None): """ Determine which eigenvalues are "small" given the spectrum. This is for compatibility across various linear algebra functions that should agree about whether or not a Hermitian matrix is numerically singular and what is its numerical matrix rank. This is designed to be compatible with scipy.linalg.pinvh. Parameters ---------- spectrum : 1d ndarray Array of eigenvalues of a Hermitian matrix. cond, rcond : float, optional Cutoff for small eigenvalues. Singular values smaller than rcond * largest_eigenvalue are considered zero. If None or -1, suitable machine precision is used. Returns ------- eps : float Magnitude cutoff for numerical negligibility. """ if rcond is not None: cond = rcond if cond in [None, -1]: t = spectrum.dtype.char.lower() factor = {'f': 1E3, 'd': 1E6} cond = factor[t] * np.finfo(t).eps eps = cond * np.max(abs(spectrum)) return eps def _pinv_1d(v, eps=1e-5): """ A helper function for computing the pseudoinverse. Parameters ---------- v : iterable of numbers This may be thought of as a vector of eigenvalues or singular values. eps : float Values with magnitude no greater than eps are considered negligible. Returns ------- v_pinv : 1d float ndarray A vector of pseudo-inverted numbers. """ return np.array([0 if abs(x) <= eps else 1/x for x in v], dtype=float) class _PSD(object): """ Compute coordinated functions of a symmetric positive semidefinite matrix. This class addresses two issues. Firstly it allows the pseudoinverse, the logarithm of the pseudo-determinant, and the rank of the matrix to be computed using one call to eigh instead of three. Secondly it allows these functions to be computed in a way that gives mutually compatible results. All of the functions are computed with a common understanding as to which of the eigenvalues are to be considered negligibly small. The functions are designed to coordinate with scipy.linalg.pinvh() but not necessarily with np.linalg.det() or with np.linalg.matrix_rank(). Parameters ---------- M : array_like Symmetric positive semidefinite matrix (2-D). cond, rcond : float, optional Cutoff for small eigenvalues. Singular values smaller than rcond * largest_eigenvalue are considered zero. If None or -1, suitable machine precision is used. lower : bool, optional Whether the pertinent array data is taken from the lower or upper triangle of M. (Default: lower) check_finite : bool, optional Whether to check that the input matrices contain only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs. allow_singular : bool, optional Whether to allow a singular matrix. (Default: True) Notes ----- The arguments are similar to those of scipy.linalg.pinvh(). """ def __init__(self, M, cond=None, rcond=None, lower=True, check_finite=True, allow_singular=True): # Compute the symmetric eigendecomposition. # Note that eigh takes care of array conversion, chkfinite, # and assertion that the matrix is square. s, u = scipy.linalg.eigh(M, lower=lower, check_finite=check_finite) eps = _eigvalsh_to_eps(s, cond, rcond) if np.min(s) < -eps: raise ValueError('the input matrix must be positive semidefinite') d = s[s > eps] if len(d) < len(s) and not allow_singular: raise np.linalg.LinAlgError('singular matrix') s_pinv = _pinv_1d(s, eps) U = np.multiply(u, np.sqrt(s_pinv)) # Initialize the eagerly precomputed attributes. self.rank = len(d) self.U = U self.log_pdet = np.sum(np.log(d)) # Initialize an attribute to be lazily computed. self._pinv = None @property def pinv(self): if self._pinv is None: self._pinv = np.dot(self.U, self.U.T) return self._pinv _doc_default_callparams = """\ mean : array_like, optional Mean of the distribution (default zero) cov : array_like, optional Covariance matrix of the distribution (default one) allow_singular : bool, optional Whether to allow a singular covariance matrix. (Default: False) """ _doc_callparams_note = \ """Setting the parameter `mean` to `None` is equivalent to having `mean` be the zero-vector. The parameter `cov` can be a scalar, in which case the covariance matrix is the identity times that value, a vector of diagonal entries for the covariance matrix, or a two-dimensional array_like. """ _doc_random_state = """\ random_state : None or int or np.random.RandomState instance, optional If int or RandomState, use it for drawing the random variates. If None (or np.random), the global np.random state is used. Default is None. """ _doc_frozen_callparams = "" _doc_frozen_callparams_note = \ """See class definition for a detailed description of parameters.""" docdict_params = { '_doc_default_callparams': _doc_default_callparams, '_doc_callparams_note': _doc_callparams_note, '_doc_random_state': _doc_random_state } docdict_noparams = { '_doc_default_callparams': _doc_frozen_callparams, '_doc_callparams_note': _doc_frozen_callparams_note, '_doc_random_state': _doc_random_state } class multi_rv_generic(object): """ Class which encapsulates common functionality between all multivariate distributions. """ def __init__(self, seed=None): super(multi_rv_generic, self).__init__() self._random_state = check_random_state(seed) @property def random_state(self): """ Get or set the RandomState object for generating random variates. This can be either None or an existing RandomState object. If None (or np.random), use the RandomState singleton used by np.random. If already a RandomState instance, use it. If an int, use a new RandomState instance seeded with seed. """ return self._random_state @random_state.setter def random_state(self, seed): self._random_state = check_random_state(seed) def _get_random_state(self, random_state): if random_state is not None: return check_random_state(random_state) else: return self._random_state class multi_rv_frozen(object): """ Class which encapsulates common functionality between all frozen multivariate distributions. """ @property def random_state(self): return self._dist._random_state @random_state.setter def random_state(self, seed): self._dist._random_state = check_random_state(seed) class multivariate_normal_gen(multi_rv_generic): r""" A multivariate normal random variable. The `mean` keyword specifies the mean. The `cov` keyword specifies the covariance matrix. Methods ------- ``pdf(x, mean=None, cov=1, allow_singular=False)`` Probability density function. ``logpdf(x, mean=None, cov=1, allow_singular=False)`` Log of the probability density function. ``rvs(mean=None, cov=1, size=1, random_state=None)`` Draw random samples from a multivariate normal distribution. ``entropy()`` Compute the differential entropy of the multivariate normal. Parameters ---------- x : array_like Quantiles, with the last axis of `x` denoting the components. %(_doc_default_callparams)s %(_doc_random_state)s Alternatively, the object may be called (as a function) to fix the mean and covariance parameters, returning a "frozen" multivariate normal random variable: rv = multivariate_normal(mean=None, cov=1, allow_singular=False) - Frozen object with the same methods but holding the given mean and covariance fixed. Notes ----- %(_doc_callparams_note)s The covariance matrix `cov` must be a (symmetric) positive semi-definite matrix. The determinant and inverse of `cov` are computed as the pseudo-determinant and pseudo-inverse, respectively, so that `cov` does not need to have full rank. The probability density function for `multivariate_normal` is .. math:: f(x) = \frac{1}{\sqrt{(2 \pi)^k \det \Sigma}} \exp\left( -\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu) \right), where :math:`\mu` is the mean, :math:`\Sigma` the covariance matrix, and :math:`k` is the dimension of the space where :math:`x` takes values. .. versionadded:: 0.14.0 Examples -------- >>> import matplotlib.pyplot as plt >>> from scipy.stats import multivariate_normal >>> x = np.linspace(0, 5, 10, endpoint=False) >>> y = multivariate_normal.pdf(x, mean=2.5, cov=0.5); y array([ 0.00108914, 0.01033349, 0.05946514, 0.20755375, 0.43939129, 0.56418958, 0.43939129, 0.20755375, 0.05946514, 0.01033349]) >>> fig1 = plt.figure() >>> ax = fig1.add_subplot(111) >>> ax.plot(x, y) The input quantiles can be any shape of array, as long as the last axis labels the components. This allows us for instance to display the frozen pdf for a non-isotropic random variable in 2D as follows: >>> x, y = np.mgrid[-1:1:.01, -1:1:.01] >>> pos = np.empty(x.shape + (2,)) >>> pos[:, :, 0] = x; pos[:, :, 1] = y >>> rv = multivariate_normal([0.5, -0.2], [[2.0, 0.3], [0.3, 0.5]]) >>> fig2 = plt.figure() >>> ax2 = fig2.add_subplot(111) >>> ax2.contourf(x, y, rv.pdf(pos)) """ def __init__(self, seed=None): super(multivariate_normal_gen, self).__init__(seed) self.__doc__ = doccer.docformat(self.__doc__, docdict_params) def __call__(self, mean=None, cov=1, allow_singular=False, seed=None): """ Create a frozen multivariate normal distribution. See `multivariate_normal_frozen` for more information. """ return multivariate_normal_frozen(mean, cov, allow_singular=allow_singular, seed=seed) def _logpdf(self, x, mean, prec_U, log_det_cov, rank): """ Parameters ---------- x : ndarray Points at which to evaluate the log of the probability density function mean : ndarray Mean of the distribution prec_U : ndarray A decomposition such that np.dot(prec_U, prec_U.T) is the precision matrix, i.e. inverse of the covariance matrix. log_det_cov : float Logarithm of the determinant of the covariance matrix rank : int Rank of the covariance matrix. Notes ----- As this function does no argument checking, it should not be called directly; use 'logpdf' instead. """ dev = x - mean maha = np.sum(np.square(np.dot(dev, prec_U)), axis=-1) return -0.5 * (rank * _LOG_2PI + log_det_cov + maha) def logpdf(self, x, mean, cov, allow_singular=False): """ Log of the multivariate normal probability density function. Parameters ---------- x : array_like Quantiles, with the last axis of `x` denoting the components. %(_doc_default_callparams)s Returns ------- pdf : ndarray Log of the probability density function evaluated at `x` Notes ----- %(_doc_callparams_note)s """ dim, mean, cov = _process_parameters(None, mean, cov) x = _process_quantiles(x, dim) psd = _PSD(cov, allow_singular=allow_singular) out = self._logpdf(x, mean, psd.U, psd.log_pdet, psd.rank) return _squeeze_output(out) def pdf(self, x, mean, cov, allow_singular=False): """ Multivariate normal probability density function. Parameters ---------- x : array_like Quantiles, with the last axis of `x` denoting the components. %(_doc_default_callparams)s Returns ------- pdf : ndarray Probability density function evaluated at `x` Notes ----- %(_doc_callparams_note)s """ dim, mean, cov = _process_parameters(None, mean, cov) x = _process_quantiles(x, dim) psd = _PSD(cov, allow_singular=allow_singular) out = np.exp(self._logpdf(x, mean, psd.U, psd.log_pdet, psd.rank)) return _squeeze_output(out) def rvs(self, mean=None, cov=1, size=1, random_state=None): """ Draw random samples from a multivariate normal distribution. Parameters ---------- %(_doc_default_callparams)s size : integer, optional Number of samples to draw (default 1). %(_doc_random_state)s Returns ------- rvs : ndarray or scalar Random variates of size (`size`, `N`), where `N` is the dimension of the random variable. Notes ----- %(_doc_callparams_note)s """ dim, mean, cov = _process_parameters(None, mean, cov) random_state = self._get_random_state(random_state) out = random_state.multivariate_normal(mean, cov, size) return _squeeze_output(out) def entropy(self, mean=None, cov=1): """ Compute the differential entropy of the multivariate normal. Parameters ---------- %(_doc_default_callparams)s Returns ------- h : scalar Entropy of the multivariate normal distribution Notes ----- %(_doc_callparams_note)s """ dim, mean, cov = _process_parameters(None, mean, cov) _, logdet = np.linalg.slogdet(2 * np.pi * np.e * cov) return 0.5 * logdet multivariate_normal = multivariate_normal_gen() class multivariate_normal_frozen(multi_rv_frozen): def __init__(self, mean=None, cov=1, allow_singular=False, seed=None): """ Create a frozen multivariate normal distribution. Parameters ---------- mean : array_like, optional Mean of the distribution (default zero) cov : array_like, optional Covariance matrix of the distribution (default one) allow_singular : bool, optional If this flag is True then tolerate a singular covariance matrix (default False). seed : None or int or np.random.RandomState instance, optional This parameter defines the RandomState object to use for drawing random variates. If None (or np.random), the global np.random state is used. If integer, it is used to seed the local RandomState instance Default is None. Examples -------- When called with the default parameters, this will create a 1D random variable with mean 0 and covariance 1: >>> from scipy.stats import multivariate_normal >>> r = multivariate_normal() >>> r.mean array([ 0.]) >>> r.cov array([[1.]]) """ self.dim, self.mean, self.cov = _process_parameters(None, mean, cov) self.cov_info = _PSD(self.cov, allow_singular=allow_singular) self._dist = multivariate_normal_gen(seed) def logpdf(self, x): x = _process_quantiles(x, self.dim) out = self._dist._logpdf(x, self.mean, self.cov_info.U, self.cov_info.log_pdet, self.cov_info.rank) return _squeeze_output(out) def pdf(self, x): return np.exp(self.logpdf(x)) def rvs(self, size=1, random_state=None): return self._dist.rvs(self.mean, self.cov, size, random_state) def entropy(self): """ Computes the differential entropy of the multivariate normal. Returns ------- h : scalar Entropy of the multivariate normal distribution """ log_pdet = self.cov_info.log_pdet rank = self.cov_info.rank return 0.5 * (rank * (_LOG_2PI + 1) + log_pdet) # Set frozen generator docstrings from corresponding docstrings in # multivariate_normal_gen and fill in default strings in class docstrings for name in ['logpdf', 'pdf', 'rvs']: method = multivariate_normal_gen.__dict__[name] method_frozen = multivariate_normal_frozen.__dict__[name] method_frozen.__doc__ = doccer.docformat(method.__doc__, docdict_noparams) method.__doc__ = doccer.docformat(method.__doc__, docdict_params) _dirichlet_doc_default_callparams = """\ alpha : array_like The concentration parameters. The number of entries determines the dimensionality of the distribution. """ _dirichlet_doc_frozen_callparams = "" _dirichlet_doc_frozen_callparams_note = \ """See class definition for a detailed description of parameters.""" dirichlet_docdict_params = { '_dirichlet_doc_default_callparams': _dirichlet_doc_default_callparams, '_doc_random_state': _doc_random_state } dirichlet_docdict_noparams = { '_dirichlet_doc_default_callparams': _dirichlet_doc_frozen_callparams, '_doc_random_state': _doc_random_state } def _dirichlet_check_parameters(alpha): alpha = np.asarray(alpha) if np.min(alpha) <= 0: raise ValueError("All parameters must be greater than 0") elif alpha.ndim != 1: raise ValueError("Parameter vector 'a' must be one dimensional, " + "but a.shape = %s." % str(alpha.shape)) return alpha def _dirichlet_check_input(alpha, x): x = np.asarray(x) if x.shape[0] + 1 != alpha.shape[0] and x.shape[0] != alpha.shape[0]: raise ValueError("Vector 'x' must have one entry less then the" + " parameter vector 'a', but alpha.shape = " + "%s and " % alpha.shape + "x.shape = %s." % x.shape) if x.shape[0] != alpha.shape[0]: xk = np.array([1 - np.sum(x, 0)]) if xk.ndim == 1: x = np.append(x, xk) elif xk.ndim == 2: x = np.vstack((x, xk)) else: raise ValueError("The input must be one dimensional or a two " "dimensional matrix containing the entries.") if np.min(x) < 0: raise ValueError("Each entry in 'x' must be greater or equal zero.") if np.max(x) > 1: raise ValueError("Each entry in 'x' must be smaller or equal one.") if (np.abs(np.sum(x, 0) - 1.0) > 10e-10).any(): raise ValueError("The input vector 'x' must lie within the normal " + "simplex. but sum(x)=%f." % np.sum(x, 0)) return x def _lnB(alpha): r""" Internal helper function to compute the log of the useful quotient .. math:: B(\alpha) = \frac{\prod_{i=1}{K}\Gamma(\alpha_i)}{\Gamma\left(\sum_{i=1}^{K}\alpha_i\right)} Parameters ---------- %(_dirichlet_doc_default_callparams)s Returns ------- B : scalar Helper quotient, internal use only """ return np.sum(gammaln(alpha)) - gammaln(np.sum(alpha)) class dirichlet_gen(multi_rv_generic): r""" A Dirichlet random variable. The `alpha` keyword specifies the concentration parameters of the distribution. .. versionadded:: 0.15.0 Methods ------- ``pdf(x, alpha)`` Probability density function. ``logpdf(x, alpha)`` Log of the probability density function. ``rvs(alpha, size=1, random_state=None)`` Draw random samples from a Dirichlet distribution. ``mean(alpha)`` The mean of the Dirichlet distribution ``var(alpha)`` The variance of the Dirichlet distribution ``entropy(alpha)`` Compute the differential entropy of the multivariate normal. Parameters ---------- x : array_like Quantiles, with the last axis of `x` denoting the components. %(_dirichlet_doc_default_callparams)s %(_doc_random_state)s Alternatively, the object may be called (as a function) to fix concentration parameters, returning a "frozen" Dirichlet random variable: rv = dirichlet(alpha) - Frozen object with the same methods but holding the given concentration parameters fixed. Notes ----- Each :math:`\alpha` entry must be positive. The distribution has only support on the simplex defined by .. math:: \sum_{i=1}^{K} x_i \le 1 The probability density function for `dirichlet` is .. math:: f(x) = \frac{1}{\mathrm{B}(\boldsymbol\alpha)} \prod_{i=1}^K x_i^{\alpha_i - 1} where .. math:: \mathrm{B}(\boldsymbol\alpha) = \frac{\prod_{i=1}^K \Gamma(\alpha_i)} {\Gamma\bigl(\sum_{i=1}^K \alpha_i\bigr)} and :math:`\boldsymbol\alpha=(\alpha_1,\ldots,\alpha_K)`, the concentration parameters and :math:`K` is the dimension of the space where :math:`x` takes values. """ def __init__(self, seed=None): super(dirichlet_gen, self).__init__(seed) self.__doc__ = doccer.docformat(self.__doc__, dirichlet_docdict_params) def __call__(self, alpha, seed=None): return dirichlet_frozen(alpha, seed=seed) def _logpdf(self, x, alpha): """ Parameters ---------- x : ndarray Points at which to evaluate the log of the probability density function %(_dirichlet_doc_default_callparams)s Notes ----- As this function does no argument checking, it should not be called directly; use 'logpdf' instead. """ lnB = _lnB(alpha) return - lnB + np.sum((np.log(x.T) * (alpha - 1)).T, 0) def logpdf(self, x, alpha): """ Log of the Dirichlet probability density function. Parameters ---------- x : array_like Quantiles, with the last axis of `x` denoting the components. %(_dirichlet_doc_default_callparams)s Returns ------- pdf : ndarray Log of the probability density function evaluated at `x`. """ alpha = _dirichlet_check_parameters(alpha) x = _dirichlet_check_input(alpha, x) out = self._logpdf(x, alpha) return _squeeze_output(out) def pdf(self, x, alpha): """ The Dirichlet probability density function. Parameters ---------- x : array_like Quantiles, with the last axis of `x` denoting the components. %(_dirichlet_doc_default_callparams)s Returns ------- pdf : ndarray The probability density function evaluated at `x`. """ alpha = _dirichlet_check_parameters(alpha) x = _dirichlet_check_input(alpha, x) out = np.exp(self._logpdf(x, alpha)) return _squeeze_output(out) def mean(self, alpha): """ Compute the mean of the dirichlet distribution. Parameters ---------- %(_dirichlet_doc_default_callparams)s Returns ------- mu : scalar Mean of the Dirichlet distribution """ alpha = _dirichlet_check_parameters(alpha) out = alpha / (np.sum(alpha)) return _squeeze_output(out) def var(self, alpha): """ Compute the variance of the dirichlet distribution. Parameters ---------- %(_dirichlet_doc_default_callparams)s Returns ------- v : scalar Variance of the Dirichlet distribution """ alpha = _dirichlet_check_parameters(alpha) alpha0 = np.sum(alpha) out = (alpha * (alpha0 - alpha)) / ((alpha0 * alpha0) * (alpha0 + 1)) return out def entropy(self, alpha): """ Compute the differential entropy of the dirichlet distribution. Parameters ---------- %(_dirichlet_doc_default_callparams)s Returns ------- h : scalar Entropy of the Dirichlet distribution """ alpha = _dirichlet_check_parameters(alpha) alpha0 = np.sum(alpha) lnB = _lnB(alpha) K = alpha.shape[0] out = lnB + (alpha0 - K) * scipy.special.psi(alpha0) - np.sum( (alpha - 1) * scipy.special.psi(alpha)) return _squeeze_output(out) def rvs(self, alpha, size=1, random_state=None): """ Draw random samples from a Dirichlet distribution. Parameters ---------- %(_dirichlet_doc_default_callparams)s size : int, optional Number of samples to draw (default 1). %(_doc_random_state)s Returns ------- rvs : ndarray or scalar Random variates of size (`size`, `N`), where `N` is the dimension of the random variable. """ alpha = _dirichlet_check_parameters(alpha) random_state = self._get_random_state(random_state) return random_state.dirichlet(alpha, size=size) dirichlet = dirichlet_gen() class dirichlet_frozen(multi_rv_frozen): def __init__(self, alpha, seed=None): self.alpha = _dirichlet_check_parameters(alpha) self._dist = dirichlet_gen(seed) def logpdf(self, x): return self._dist.logpdf(x, self.alpha) def pdf(self, x): return self._dist.pdf(x, self.alpha) def mean(self): return self._dist.mean(self.alpha) def var(self): return self._dist.var(self.alpha) def entropy(self): return self._dist.entropy(self.alpha) def rvs(self, size=1, random_state=None): return self._dist.rvs(self.alpha, size, random_state) # Set frozen generator docstrings from corresponding docstrings in # multivariate_normal_gen and fill in default strings in class docstrings for name in ['logpdf', 'pdf', 'rvs', 'mean', 'var', 'entropy']: method = dirichlet_gen.__dict__[name] method_frozen = dirichlet_frozen.__dict__[name] method_frozen.__doc__ = doccer.docformat( method.__doc__, dirichlet_docdict_noparams) method.__doc__ = doccer.docformat(method.__doc__, dirichlet_docdict_params) _wishart_doc_default_callparams = """\ df : int Degrees of freedom, must be greater than or equal to dimension of the scale matrix scale : array_like Symmetric positive definite scale matrix of the distribution """ _wishart_doc_callparams_note = "" _wishart_doc_frozen_callparams = "" _wishart_doc_frozen_callparams_note = \ """See class definition for a detailed description of parameters.""" wishart_docdict_params = { '_doc_default_callparams': _wishart_doc_default_callparams, '_doc_callparams_note': _wishart_doc_callparams_note, '_doc_random_state': _doc_random_state } wishart_docdict_noparams = { '_doc_default_callparams': _wishart_doc_frozen_callparams, '_doc_callparams_note': _wishart_doc_frozen_callparams_note, '_doc_random_state': _doc_random_state } class wishart_gen(multi_rv_generic): r""" A Wishart random variable. The `df` keyword specifies the degrees of freedom. The `scale` keyword specifies the scale matrix, which must be symmetric and positive definite. In this context, the scale matrix is often interpreted in terms of a multivariate normal precision matrix (the inverse of the covariance matrix). Methods ------- ``pdf(x, df, scale)`` Probability density function. ``logpdf(x, df, scale)`` Log of the probability density function. ``rvs(df, scale, size=1, random_state=None)`` Draw random samples from a Wishart distribution. ``entropy()`` Compute the differential entropy of the Wishart distribution. Parameters ---------- x : array_like Quantiles, with the last axis of `x` denoting the components. %(_doc_default_callparams)s %(_doc_random_state)s Alternatively, the object may be called (as a function) to fix the degrees of freedom and scale parameters, returning a "frozen" Wishart random variable: rv = wishart(df=1, scale=1) - Frozen object with the same methods but holding the given degrees of freedom and scale fixed. See Also -------- invwishart, chi2 Notes ----- %(_doc_callparams_note)s The scale matrix `scale` must be a symmetric positive definite matrix. Singular matrices, including the symmetric positive semi-definite case, are not supported. The Wishart distribution is often denoted .. math:: W_p(\nu, \Sigma) where :math:`\nu` is the degrees of freedom and :math:`\Sigma` is the :math:`p \times p` scale matrix. The probability density function for `wishart` has support over positive definite matrices :math:`S`; if :math:`S \sim W_p(\nu, \Sigma)`, then its PDF is given by: .. math:: f(S) = \frac{|S|^{\frac{\nu - p - 1}{2}}}{2^{ \frac{\nu p}{2} } |\Sigma|^\frac{\nu}{2} \Gamma_p \left ( \frac{\nu}{2} \right )} \exp\left( -tr(\Sigma^{-1} S) / 2 \right) If :math:`S \sim W_p(\nu, \Sigma)` (Wishart) then :math:`S^{-1} \sim W_p^{-1}(\nu, \Sigma^{-1})` (inverse Wishart). If the scale matrix is 1-dimensional and equal to one, then the Wishart distribution :math:`W_1(\nu, 1)` collapses to the :math:`\chi^2(\nu)` distribution. .. versionadded:: 0.16.0 References ---------- .. [1] M.L. Eaton, "Multivariate Statistics: A Vector Space Approach", Wiley, 1983. .. [2] W.B. Smith and R.R. Hocking, "Algorithm AS 53: Wishart Variate Generator", Applied Statistics, vol. 21, pp. 341-345, 1972. Examples -------- >>> import matplotlib.pyplot as plt >>> from scipy.stats import wishart, chi2 >>> x = np.linspace(1e-5, 8, 100) >>> w = wishart.pdf(x, df=3, scale=1); w[:5] array([ 0.00126156, 0.10892176, 0.14793434, 0.17400548, 0.1929669 ]) >>> c = chi2.pdf(x, 3); c[:5] array([ 0.00126156, 0.10892176, 0.14793434, 0.17400548, 0.1929669 ]) >>> plt.plot(x, w) The input quantiles can be any shape of array, as long as the last axis labels the components. """ def __init__(self, seed=None): super(wishart_gen, self).__init__(seed) self.__doc__ = doccer.docformat(self.__doc__, wishart_docdict_params) def __call__(self, df=None, scale=None, seed=None): """ Create a frozen Wishart distribution. See `wishart_frozen` for more information. """ return wishart_frozen(df, scale, seed) def _process_parameters(self, df, scale): if scale is None: scale = 1.0 scale = np.asarray(scale, dtype=float) if scale.ndim == 0: scale = scale[np.newaxis,np.newaxis] elif scale.ndim == 1: scale = np.diag(scale) elif scale.ndim == 2 and not scale.shape[0] == scale.shape[1]: raise ValueError("Array 'scale' must be square if it is two" " dimensional, but scale.scale = %s." % str(scale.shape)) elif scale.ndim > 2: raise ValueError("Array 'scale' must be at most two-dimensional," " but scale.ndim = %d" % scale.ndim) dim = scale.shape[0] if df is None: df = dim elif not np.isscalar(df): raise ValueError("Degrees of freedom must be a scalar.") elif df < dim: raise ValueError("Degrees of freedom cannot be less than dimension" " of scale matrix, but df = %d" % df) return dim, df, scale def _process_quantiles(self, x, dim): """ Adjust quantiles array so that last axis labels the components of each data point. """ x = np.asarray(x, dtype=float) if x.ndim == 0: x = x * np.eye(dim)[:, :, np.newaxis] if x.ndim == 1: if dim == 1: x = x[np.newaxis, np.newaxis, :] else: x = np.diag(x)[:, :, np.newaxis] elif x.ndim == 2: if not x.shape[0] == x.shape[1]: raise ValueError("Quantiles must be square if they are two" " dimensional, but x.shape = %s." % str(x.shape)) x = x[:, :, np.newaxis] elif x.ndim == 3: if not x.shape[0] == x.shape[1]: raise ValueError("Quantiles must be square in the first two" " dimensions if they are three dimensional" ", but x.shape = %s." % str(x.shape)) elif x.ndim > 3: raise ValueError("Quantiles must be at most two-dimensional with" " an additional dimension for multiple" "components, but x.ndim = %d" % x.ndim) # Now we have 3-dim array; should have shape [dim, dim, *] if not x.shape[0:2] == (dim, dim): raise ValueError('Quantiles have incompatible dimensions: should' ' be %s, got %s.' % ((dim, dim), x.shape[0:2])) return x def _process_size(self, size): size = np.asarray(size) if size.ndim == 0: size = size[np.newaxis] elif size.ndim > 1: raise ValueError('Size must be an integer or tuple of integers;' ' thus must have dimension <= 1.' ' Got size.ndim = %s' % str(tuple(size))) n = size.prod() shape = tuple(size) return n, shape def _logpdf(self, x, dim, df, scale, log_det_scale, C): """ Parameters ---------- x : ndarray Points at which to evaluate the log of the probability density function dim : int Dimension of the scale matrix df : int Degrees of freedom scale : ndarray Scale matrix log_det_scale : float Logarithm of the determinant of the scale matrix C : ndarray Cholesky factorization of the scale matrix, lower triagular. Notes ----- As this function does no argument checking, it should not be called directly; use 'logpdf' instead. """ # log determinant of x # Note: x has components along the last axis, so that x.T has # components alone the 0-th axis. Then since det(A) = det(A'), this # gives us a 1-dim vector of determinants # Retrieve tr(scale^{-1} x) log_det_x = np.zeros(x.shape[-1]) scale_inv_x = np.zeros(x.shape) tr_scale_inv_x = np.zeros(x.shape[-1]) for i in range(x.shape[-1]): _, log_det_x[i] = self._cholesky_logdet(x[:,:,i]) scale_inv_x[:,:,i] = scipy.linalg.cho_solve((C, True), x[:,:,i]) tr_scale_inv_x[i] = scale_inv_x[:,:,i].trace() # Log PDF out = ((0.5 * (df - dim - 1) * log_det_x - 0.5 * tr_scale_inv_x) - (0.5 * df * dim * _LOG_2 + 0.5 * df * log_det_scale + multigammaln(0.5*df, dim))) return out def logpdf(self, x, df, scale): """ Log of the Wishart probability density function. Parameters ---------- x : array_like Quantiles, with the last axis of `x` denoting the components. Each quantile must be a symmetric positive definite matrix. %(_doc_default_callparams)s Returns ------- pdf : ndarray Log of the probability density function evaluated at `x` Notes ----- %(_doc_callparams_note)s """ dim, df, scale = self._process_parameters(df, scale) x = self._process_quantiles(x, dim) # Cholesky decomposition of scale, get log(det(scale)) C, log_det_scale = self._cholesky_logdet(scale) out = self._logpdf(x, dim, df, scale, log_det_scale, C) return _squeeze_output(out) def pdf(self, x, df, scale): """ Wishart probability density function. Parameters ---------- x : array_like Quantiles, with the last axis of `x` denoting the components. Each quantile must be a symmetric positive definite matrix. %(_doc_default_callparams)s Returns ------- pdf : ndarray Probability density function evaluated at `x` Notes ----- %(_doc_callparams_note)s """ return np.exp(self.logpdf(x, df, scale)) def _mean(self, dim, df, scale): """ Parameters ---------- dim : int Dimension of the scale matrix %(_doc_default_callparams)s Notes ----- As this function does no argument checking, it should not be called directly; use 'mean' instead. """ return df * scale def mean(self, df, scale): """ Mean of the Wishart distribution Parameters ---------- %(_doc_default_callparams)s Returns ------- mean : float The mean of the distribution """ dim, df, scale = self._process_parameters(df, scale) out = self._mean(dim, df, scale) return _squeeze_output(out) def _mode(self, dim, df, scale): """ Parameters ---------- dim : int Dimension of the scale matrix %(_doc_default_callparams)s Notes ----- As this function does no argument checking, it should not be called directly; use 'mode' instead. """ if df >= dim + 1: out = (df-dim-1) * scale else: out = None return out def mode(self, df, scale): """ Mode of the Wishart distribution Only valid if the degrees of freedom are greater than the dimension of the scale matrix. Parameters ---------- %(_doc_default_callparams)s Returns ------- mode : float or None The Mode of the distribution """ dim, df, scale = self._process_parameters(df, scale) out = self._mode(dim, df, scale) return _squeeze_output(out) if out is not None else out def _var(self, dim, df, scale): """ Parameters ---------- dim : int Dimension of the scale matrix %(_doc_default_callparams)s Notes ----- As this function does no argument checking, it should not be called directly; use 'var' instead. """ var = scale**2 diag = scale.diagonal() # 1 x dim array var += np.outer(diag, diag) var *= df return var def var(self, df, scale): """ Variance of the Wishart distribution Parameters ---------- %(_doc_default_callparams)s Returns ------- var : float The variance of the distribution """ dim, df, scale = self._process_parameters(df, scale) out = self._var(dim, df, scale) return _squeeze_output(out) def _standard_rvs(self, n, shape, dim, df, random_state): """ Parameters ---------- n : integer Number of variates to generate shape : iterable Shape of the variates to generate dim : int Dimension of the scale matrix df : int Degrees of freedom random_state : np.random.RandomState instance RandomState used for drawing the random variates. Notes ----- As this function does no argument checking, it should not be called directly; use 'rvs' instead. """ # Random normal variates for off-diagonal elements n_tril = dim * (dim-1) // 2 covariances = random_state.normal( size=n*n_tril).reshape(shape+(n_tril,)) # Random chi-square variates for diagonal elements variances = np.r_[[random_state.chisquare(df-(i+1)+1, size=n)**0.5 for i in range(dim)]].reshape((dim,) + shape[::-1]).T # Create the A matri(ces) - lower triangular A = np.zeros(shape + (dim, dim)) # Input the covariances size_idx = tuple([slice(None,None,None)]*len(shape)) tril_idx = np.tril_indices(dim, k=-1) A[size_idx + tril_idx] = covariances # Input the variances diag_idx = np.diag_indices(dim) A[size_idx + diag_idx] = variances return A def _rvs(self, n, shape, dim, df, C, random_state): """ Parameters ---------- n : integer Number of variates to generate shape : iterable Shape of the variates to generate dim : int Dimension of the scale matrix df : int Degrees of freedom scale : ndarray Scale matrix C : ndarray Cholesky factorization of the scale matrix, lower triangular. %(_doc_random_state)s Notes ----- As this function does no argument checking, it should not be called directly; use 'rvs' instead. """ random_state = self._get_random_state(random_state) # Calculate the matrices A, which are actually lower triangular # Cholesky factorizations of a matrix B such that B ~ W(df, I) A = self._standard_rvs(n, shape, dim, df, random_state) # Calculate SA = C A A' C', where SA ~ W(df, scale) # Note: this is the product of a (lower) (lower) (lower)' (lower)' # or, denoting B = AA', it is C B C' where C is the lower # triangular Cholesky factorization of the scale matrix. # this appears to conflict with the instructions in [1]_, which # suggest that it should be D' B D where D is the lower # triangular factorization of the scale matrix. However, it is # meant to refer to the Bartlett (1933) representation of a # Wishart random variate as L A A' L' where L is lower triangular # so it appears that understanding D' to be upper triangular # is either a typo in or misreading of [1]_. for index in np.ndindex(shape): CA = np.dot(C, A[index]) A[index] = np.dot(CA, CA.T) return A def rvs(self, df, scale, size=1, random_state=None): """ Draw random samples from a Wishart distribution. Parameters ---------- %(_doc_default_callparams)s size : integer or iterable of integers, optional Number of samples to draw (default 1). %(_doc_random_state)s Returns ------- rvs : ndarray Random variates of shape (`size`) + (`dim`, `dim), where `dim` is the dimension of the scale matrix. Notes ----- %(_doc_callparams_note)s """ n, shape = self._process_size(size) dim, df, scale = self._process_parameters(df, scale) # Cholesky decomposition of scale C = scipy.linalg.cholesky(scale, lower=True) out = self._rvs(n, shape, dim, df, C, random_state) return _squeeze_output(out) def _entropy(self, dim, df, log_det_scale): """ Parameters ---------- dim : int Dimension of the scale matrix df : int Degrees of freedom log_det_scale : float Logarithm of the determinant of the scale matrix Notes ----- As this function does no argument checking, it should not be called directly; use 'entropy' instead. """ return ( 0.5 * (dim+1) * log_det_scale + 0.5 * dim * (dim+1) * _LOG_2 + multigammaln(0.5*df, dim) - 0.5 * (df - dim - 1) * np.sum( [psi(0.5*(df + 1 - (i+1))) for i in range(dim)] ) + 0.5 * df * dim ) def entropy(self, df, scale): """ Compute the differential entropy of the Wishart. Parameters ---------- %(_doc_default_callparams)s Returns ------- h : scalar Entropy of the Wishart distribution Notes ----- %(_doc_callparams_note)s """ dim, df, scale = self._process_parameters(df, scale) _, log_det_scale = self._cholesky_logdet(scale) return self._entropy(dim, df, log_det_scale) def _cholesky_logdet(self, scale): """ Compute Cholesky decomposition and determine (log(det(scale)). Parameters ---------- scale : ndarray Scale matrix. Returns ------- c_decomp : ndarray The Cholesky decomposition of `scale`. logdet : scalar The log of the determinant of `scale`. Notes ----- This computation of ``logdet`` is equivalent to ``np.linalg.slogdet(scale)``. It is ~2x faster though. """ c_decomp = scipy.linalg.cholesky(scale, lower=True) logdet = 2 * np.sum(np.log(c_decomp.diagonal())) return c_decomp, logdet wishart = wishart_gen() class wishart_frozen(multi_rv_frozen): """ Create a frozen Wishart distribution. Parameters ---------- df : array_like Degrees of freedom of the distribution scale : array_like Scale matrix of the distribution seed : None or int or np.random.RandomState instance, optional This parameter defines the RandomState object to use for drawing random variates. If None (or np.random), the global np.random state is used. If integer, it is used to seed the local RandomState instance Default is None. """ def __init__(self, df, scale, seed=None): self._dist = wishart_gen(seed) self.dim, self.df, self.scale = self._dist._process_parameters( df, scale) self.C, self.log_det_scale = self._dist._cholesky_logdet(self.scale) def logpdf(self, x): x = self._dist._process_quantiles(x, self.dim) out = self._dist._logpdf(x, self.dim, self.df, self.scale, self.log_det_scale, self.C) return _squeeze_output(out) def pdf(self, x): return np.exp(self.logpdf(x)) def mean(self): out = self._dist._mean(self.dim, self.df, self.scale) return _squeeze_output(out) def mode(self): out = self._dist._mode(self.dim, self.df, self.scale) return _squeeze_output(out) if out is not None else out def var(self): out = self._dist._var(self.dim, self.df, self.scale) return _squeeze_output(out) def rvs(self, size=1, random_state=None): n, shape = self._dist._process_size(size) out = self._dist._rvs(n, shape, self.dim, self.df, self.C, random_state) return _squeeze_output(out) def entropy(self): return self._dist._entropy(self.dim, self.df, self.log_det_scale) # Set frozen generator docstrings from corresponding docstrings in # Wishart and fill in default strings in class docstrings for name in ['logpdf', 'pdf', 'mean', 'mode', 'var', 'rvs', 'entropy']: method = wishart_gen.__dict__[name] method_frozen = wishart_frozen.__dict__[name] method_frozen.__doc__ = doccer.docformat( method.__doc__, wishart_docdict_noparams) method.__doc__ = doccer.docformat(method.__doc__, wishart_docdict_params) from numpy import asarray_chkfinite, asarray from scipy.linalg.misc import LinAlgError from scipy.linalg.lapack import get_lapack_funcs def _cho_inv_batch(a, check_finite=True): """ Invert the matrices a_i, using a Cholesky factorization of A, where a_i resides in the last two dimensions of a and the other indices describe the index i. Overwrites the data in a. Parameters ---------- a : array Array of matrices to invert, where the matrices themselves are stored in the last two dimensions. check_finite : bool, optional Whether to check that the input matrices contain only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs. Returns ------- x : array Array of inverses of the matrices ``a_i``. See also -------- scipy.linalg.cholesky : Cholesky factorization of a matrix """ if check_finite: a1 = asarray_chkfinite(a) else: a1 = asarray(a) if len(a1.shape) < 2 or a1.shape[-2] != a1.shape[-1]: raise ValueError('expected square matrix in last two dimensions') potrf, potri = get_lapack_funcs(('potrf','potri'), (a1,)) tril_idx = np.tril_indices(a.shape[-2], k=-1) triu_idx = np.triu_indices(a.shape[-2], k=1) for index in np.ndindex(a1.shape[:-2]): # Cholesky decomposition a1[index], info = potrf(a1[index], lower=True, overwrite_a=False, clean=False) if info > 0: raise LinAlgError("%d-th leading minor not positive definite" % info) if info < 0: raise ValueError('illegal value in %d-th argument of internal' ' potrf' % -info) # Inversion a1[index], info = potri(a1[index], lower=True, overwrite_c=False) if info > 0: raise LinAlgError("the inverse could not be computed") if info < 0: raise ValueError('illegal value in %d-th argument of internal' ' potrf' % -info) # Make symmetric (dpotri only fills in the lower triangle) a1[index][triu_idx] = a1[index][tril_idx] return a1 class invwishart_gen(wishart_gen): r""" An inverse Wishart random variable. The `df` keyword specifies the degrees of freedom. The `scale` keyword specifies the scale matrix, which must be symmetric and positive definite. In this context, the scale matrix is often interpreted in terms of a multivariate normal covariance matrix. Methods ------- ``pdf(x, df, scale)`` Probability density function. ``logpdf(x, df, scale)`` Log of the probability density function. ``rvs(df, scale, size=1, random_state=None)`` Draw random samples from an inverse Wishart distribution. Parameters ---------- x : array_like Quantiles, with the last axis of `x` denoting the components. %(_doc_default_callparams)s %(_doc_random_state)s Alternatively, the object may be called (as a function) to fix the degrees of freedom and scale parameters, returning a "frozen" inverse Wishart random variable: rv = invwishart(df=1, scale=1) - Frozen object with the same methods but holding the given degrees of freedom and scale fixed. See Also -------- wishart Notes ----- %(_doc_callparams_note)s The scale matrix `scale` must be a symmetric positive definite matrix. Singular matrices, including the symmetric positive semi-definite case, are not supported. The inverse Wishart distribution is often denoted .. math:: W_p^{-1}(\nu, \Psi) where :math:`\nu` is the degrees of freedom and :math:`\Psi` is the :math:`p \times p` scale matrix. The probability density function for `invwishart` has support over positive definite matrices :math:`S`; if :math:`S \sim W^{-1}_p(\nu, \Sigma)`, then its PDF is given by: .. math:: f(S) = \frac{|\Sigma|^\frac{\nu}{2}}{2^{ \frac{\nu p}{2} } |S|^{\frac{\nu + p + 1}{2}} \Gamma_p \left(\frac{\nu}{2} \right)} \exp\left( -tr(\Sigma S^{-1}) / 2 \right) If :math:`S \sim W_p^{-1}(\nu, \Psi)` (inverse Wishart) then :math:`S^{-1} \sim W_p(\nu, \Psi^{-1})` (Wishart). If the scale matrix is 1-dimensional and equal to one, then the inverse Wishart distribution :math:`W_1(\nu, 1)` collapses to the inverse Gamma distribution with parameters shape = :math:`\frac{\nu}{2}` and scale = :math:`\frac{1}{2}`. .. versionadded:: 0.16.0 References ---------- .. [1] M.L. Eaton, "Multivariate Statistics: A Vector Space Approach", Wiley, 1983. .. [2] M.C. Jones, "Generating Inverse Wishart Matrices", Communications in Statistics - Simulation and Computation, vol. 14.2, pp.511-514, 1985. Examples -------- >>> import matplotlib.pyplot as plt >>> from scipy.stats import invwishart, invgamma >>> x = np.linspace(0.01, 1, 100) >>> iw = invwishart.pdf(x, df=6, scale=1) >>> iw[:3] array([ 1.20546865e-15, 5.42497807e-06, 4.45813929e-03]) >>> ig = invgamma.pdf(x, 6/2., scale=1./2) >>> ig[:3] array([ 1.20546865e-15, 5.42497807e-06, 4.45813929e-03]) >>> plt.plot(x, iw) The input quantiles can be any shape of array, as long as the last axis labels the components. """ def __init__(self, seed=None): super(invwishart_gen, self).__init__(seed) self.__doc__ = doccer.docformat(self.__doc__, wishart_docdict_params) def __call__(self, df=None, scale=None, seed=None): """ Create a frozen inverse Wishart distribution. See `invwishart_frozen` for more information. """ return invwishart_frozen(df, scale, seed) def _logpdf(self, x, dim, df, scale, log_det_scale): """ Parameters ---------- x : ndarray Points at which to evaluate the log of the probability density function. dim : int Dimension of the scale matrix df : int Degrees of freedom scale : ndarray Scale matrix log_det_scale : float Logarithm of the determinant of the scale matrix Notes ----- As this function does no argument checking, it should not be called directly; use 'logpdf' instead. """ log_det_x = np.zeros(x.shape[-1]) #scale_x_inv = np.zeros(x.shape) x_inv = np.copy(x).T if dim > 1: _cho_inv_batch(x_inv) # works in-place else: x_inv = 1./x_inv tr_scale_x_inv = np.zeros(x.shape[-1]) for i in range(x.shape[-1]): C, lower = scipy.linalg.cho_factor(x[:,:,i], lower=True) log_det_x[i] = 2 * np.sum(np.log(C.diagonal())) #scale_x_inv[:,:,i] = scipy.linalg.cho_solve((C, True), scale).T tr_scale_x_inv[i] = np.dot(scale, x_inv[i]).trace() # Log PDF out = ((0.5 * df * log_det_scale - 0.5 * tr_scale_x_inv) - (0.5 * df * dim * _LOG_2 + 0.5 * (df + dim + 1) * log_det_x) - multigammaln(0.5*df, dim)) return out def logpdf(self, x, df, scale): """ Log of the inverse Wishart probability density function. Parameters ---------- x : array_like Quantiles, with the last axis of `x` denoting the components. Each quantile must be a symmetric positive definite matrix. %(_doc_default_callparams)s Returns ------- pdf : ndarray Log of the probability density function evaluated at `x` Notes ----- %(_doc_callparams_note)s """ dim, df, scale = self._process_parameters(df, scale) x = self._process_quantiles(x, dim) _, log_det_scale = self._cholesky_logdet(scale) out = self._logpdf(x, dim, df, scale, log_det_scale) return _squeeze_output(out) def pdf(self, x, df, scale): """ Inverse Wishart probability density function. Parameters ---------- x : array_like Quantiles, with the last axis of `x` denoting the components. Each quantile must be a symmetric positive definite matrix. %(_doc_default_callparams)s Returns ------- pdf : ndarray Probability density function evaluated at `x` Notes ----- %(_doc_callparams_note)s """ return np.exp(self.logpdf(x, df, scale)) def _mean(self, dim, df, scale): """ Parameters ---------- dim : int Dimension of the scale matrix %(_doc_default_callparams)s Notes ----- As this function does no argument checking, it should not be called directly; use 'mean' instead. """ if df > dim + 1: out = scale / (df - dim - 1) else: out = None return out def mean(self, df, scale): """ Mean of the inverse Wishart distribution Only valid if the degrees of freedom are greater than the dimension of the scale matrix plus one. Parameters ---------- %(_doc_default_callparams)s Returns ------- mean : float or None The mean of the distribution """ dim, df, scale = self._process_parameters(df, scale) out = self._mean(dim, df, scale) return _squeeze_output(out) if out is not None else out def _mode(self, dim, df, scale): """ Parameters ---------- dim : int Dimension of the scale matrix %(_doc_default_callparams)s Notes ----- As this function does no argument checking, it should not be called directly; use 'mode' instead. """ return scale / (df + dim + 1) def mode(self, df, scale): """ Mode of the inverse Wishart distribution Parameters ---------- %(_doc_default_callparams)s Returns ------- mode : float The Mode of the distribution """ dim, df, scale = self._process_parameters(df, scale) out = self._mode(dim, df, scale) return _squeeze_output(out) def _var(self, dim, df, scale): """ Parameters ---------- dim : int Dimension of the scale matrix %(_doc_default_callparams)s Notes ----- As this function does no argument checking, it should not be called directly; use 'var' instead. """ if df > dim + 3: var = (df - dim + 1) * scale**2 diag = scale.diagonal() # 1 x dim array var += (df - dim - 1) * np.outer(diag, diag) var /= (df - dim) * (df - dim - 1)**2 * (df - dim - 3) else: var = None return var def var(self, df, scale): """ Variance of the inverse Wishart distribution Only valid if the degrees of freedom are greater than the dimension of the scale matrix plus three. Parameters ---------- %(_doc_default_callparams)s Returns ------- var : float The variance of the distribution """ dim, df, scale = self._process_parameters(df, scale) out = self._var(dim, df, scale) return _squeeze_output(out) if out is not None else out def _rvs(self, n, shape, dim, df, C, random_state): """ Parameters ---------- n : integer Number of variates to generate shape : iterable Shape of the variates to generate dim : int Dimension of the scale matrix df : int Degrees of freedom C : ndarray Cholesky factorization of the scale matrix, lower triagular. %(_doc_random_state)s Notes ----- As this function does no argument checking, it should not be called directly; use 'rvs' instead. """ random_state = self._get_random_state(random_state) # Get random draws A such that A ~ W(df, I) A = super(invwishart_gen, self)._standard_rvs(n, shape, dim, df, random_state) # Calculate SA = (CA)'^{-1} (CA)^{-1} ~ iW(df, scale) eye = np.eye(dim) trtrs = get_lapack_funcs(('trtrs'), (A,)) for index in np.ndindex(A.shape[:-2]): # Calculate CA CA = np.dot(C, A[index]) # Get (C A)^{-1} via triangular solver if dim > 1: CA, info = trtrs(CA, eye, lower=True) if info > 0: raise LinAlgError("Singular matrix.") if info < 0: raise ValueError('Illegal value in %d-th argument of' ' internal trtrs' % -info) else: CA = 1. / CA # Get SA A[index] = np.dot(CA.T, CA) return A def rvs(self, df, scale, size=1, random_state=None): """ Draw random samples from an inverse Wishart distribution. Parameters ---------- %(_doc_default_callparams)s size : integer or iterable of integers, optional Number of samples to draw (default 1). %(_doc_random_state)s Returns ------- rvs : ndarray Random variates of shape (`size`) + (`dim`, `dim), where `dim` is the dimension of the scale matrix. Notes ----- %(_doc_callparams_note)s """ n, shape = self._process_size(size) dim, df, scale = self._process_parameters(df, scale) # Invert the scale eye = np.eye(dim) L, lower = scipy.linalg.cho_factor(scale, lower=True) inv_scale = scipy.linalg.cho_solve((L, lower), eye) # Cholesky decomposition of inverted scale C = scipy.linalg.cholesky(inv_scale, lower=True) out = self._rvs(n, shape, dim, df, C, random_state) return _squeeze_output(out) def entropy(self): # Need to find reference for inverse Wishart entropy raise AttributeError invwishart = invwishart_gen() class invwishart_frozen(multi_rv_frozen): def __init__(self, df, scale, seed=None): """ Create a frozen inverse Wishart distribution. Parameters ---------- df : array_like Degrees of freedom of the distribution scale : array_like Scale matrix of the distribution seed : None or int or np.random.RandomState instance, optional This parameter defines the RandomState object to use for drawing random variates. If None (or np.random), the global np.random state is used. If integer, it is used to seed the local RandomState instance Default is None. """ self._dist = invwishart_gen(seed) self.dim, self.df, self.scale = self._dist._process_parameters( df, scale ) # Get the determinant via Cholesky factorization C, lower = scipy.linalg.cho_factor(self.scale, lower=True) self.log_det_scale = 2 * np.sum(np.log(C.diagonal())) # Get the inverse using the Cholesky factorization eye = np.eye(self.dim) self.inv_scale = scipy.linalg.cho_solve((C, lower), eye) # Get the Cholesky factorization of the inverse scale self.C = scipy.linalg.cholesky(self.inv_scale, lower=True) def logpdf(self, x): x = self._dist._process_quantiles(x, self.dim) out = self._dist._logpdf(x, self.dim, self.df, self.scale, self.log_det_scale) return _squeeze_output(out) def pdf(self, x): return np.exp(self.logpdf(x)) def mean(self): out = self._dist._mean(self.dim, self.df, self.scale) return _squeeze_output(out) if out is not None else out def mode(self): out = self._dist._mode(self.dim, self.df, self.scale) return _squeeze_output(out) def var(self): out = self._dist._var(self.dim, self.df, self.scale) return _squeeze_output(out) if out is not None else out def rvs(self, size=1, random_state=None): n, shape = self._dist._process_size(size) out = self._dist._rvs(n, shape, self.dim, self.df, self.C, random_state) return _squeeze_output(out) def entropy(self): # Need to find reference for inverse Wishart entropy raise AttributeError # Set frozen generator docstrings from corresponding docstrings in # inverse Wishart and fill in default strings in class docstrings for name in ['logpdf', 'pdf', 'mean', 'mode', 'var', 'rvs']: method = invwishart_gen.__dict__[name] method_frozen = wishart_frozen.__dict__[name] method_frozen.__doc__ = doccer.docformat( method.__doc__, wishart_docdict_noparams) method.__doc__ = doccer.docformat(method.__doc__, wishart_docdict_params)
apache-2.0
harshaneelhg/scikit-learn
sklearn/ensemble/tests/test_partial_dependence.py
365
6996
""" Testing for the partial dependence module. """ import numpy as np from numpy.testing import assert_array_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import if_matplotlib from sklearn.ensemble.partial_dependence import partial_dependence from sklearn.ensemble.partial_dependence import plot_partial_dependence from sklearn.ensemble import GradientBoostingClassifier from sklearn.ensemble import GradientBoostingRegressor from sklearn import datasets # toy sample X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]] y = [-1, -1, -1, 1, 1, 1] T = [[-1, -1], [2, 2], [3, 2]] true_result = [-1, 1, 1] # also load the boston dataset boston = datasets.load_boston() # also load the iris dataset iris = datasets.load_iris() def test_partial_dependence_classifier(): # Test partial dependence for classifier clf = GradientBoostingClassifier(n_estimators=10, random_state=1) clf.fit(X, y) pdp, axes = partial_dependence(clf, [0], X=X, grid_resolution=5) # only 4 grid points instead of 5 because only 4 unique X[:,0] vals assert pdp.shape == (1, 4) assert axes[0].shape[0] == 4 # now with our own grid X_ = np.asarray(X) grid = np.unique(X_[:, 0]) pdp_2, axes = partial_dependence(clf, [0], grid=grid) assert axes is None assert_array_equal(pdp, pdp_2) def test_partial_dependence_multiclass(): # Test partial dependence for multi-class classifier clf = GradientBoostingClassifier(n_estimators=10, random_state=1) clf.fit(iris.data, iris.target) grid_resolution = 25 n_classes = clf.n_classes_ pdp, axes = partial_dependence( clf, [0], X=iris.data, grid_resolution=grid_resolution) assert pdp.shape == (n_classes, grid_resolution) assert len(axes) == 1 assert axes[0].shape[0] == grid_resolution def test_partial_dependence_regressor(): # Test partial dependence for regressor clf = GradientBoostingRegressor(n_estimators=10, random_state=1) clf.fit(boston.data, boston.target) grid_resolution = 25 pdp, axes = partial_dependence( clf, [0], X=boston.data, grid_resolution=grid_resolution) assert pdp.shape == (1, grid_resolution) assert axes[0].shape[0] == grid_resolution def test_partial_dependecy_input(): # Test input validation of partial dependence. clf = GradientBoostingClassifier(n_estimators=10, random_state=1) clf.fit(X, y) assert_raises(ValueError, partial_dependence, clf, [0], grid=None, X=None) assert_raises(ValueError, partial_dependence, clf, [0], grid=[0, 1], X=X) # first argument must be an instance of BaseGradientBoosting assert_raises(ValueError, partial_dependence, {}, [0], X=X) # Gradient boosting estimator must be fit assert_raises(ValueError, partial_dependence, GradientBoostingClassifier(), [0], X=X) assert_raises(ValueError, partial_dependence, clf, [-1], X=X) assert_raises(ValueError, partial_dependence, clf, [100], X=X) # wrong ndim for grid grid = np.random.rand(10, 2, 1) assert_raises(ValueError, partial_dependence, clf, [0], grid=grid) @if_matplotlib def test_plot_partial_dependence(): # Test partial dependence plot function. clf = GradientBoostingRegressor(n_estimators=10, random_state=1) clf.fit(boston.data, boston.target) grid_resolution = 25 fig, axs = plot_partial_dependence(clf, boston.data, [0, 1, (0, 1)], grid_resolution=grid_resolution, feature_names=boston.feature_names) assert len(axs) == 3 assert all(ax.has_data for ax in axs) # check with str features and array feature names fig, axs = plot_partial_dependence(clf, boston.data, ['CRIM', 'ZN', ('CRIM', 'ZN')], grid_resolution=grid_resolution, feature_names=boston.feature_names) assert len(axs) == 3 assert all(ax.has_data for ax in axs) # check with list feature_names feature_names = boston.feature_names.tolist() fig, axs = plot_partial_dependence(clf, boston.data, ['CRIM', 'ZN', ('CRIM', 'ZN')], grid_resolution=grid_resolution, feature_names=feature_names) assert len(axs) == 3 assert all(ax.has_data for ax in axs) @if_matplotlib def test_plot_partial_dependence_input(): # Test partial dependence plot function input checks. clf = GradientBoostingClassifier(n_estimators=10, random_state=1) # not fitted yet assert_raises(ValueError, plot_partial_dependence, clf, X, [0]) clf.fit(X, y) assert_raises(ValueError, plot_partial_dependence, clf, np.array(X)[:, :0], [0]) # first argument must be an instance of BaseGradientBoosting assert_raises(ValueError, plot_partial_dependence, {}, X, [0]) # must be larger than -1 assert_raises(ValueError, plot_partial_dependence, clf, X, [-1]) # too large feature value assert_raises(ValueError, plot_partial_dependence, clf, X, [100]) # str feature but no feature_names assert_raises(ValueError, plot_partial_dependence, clf, X, ['foobar']) # not valid features value assert_raises(ValueError, plot_partial_dependence, clf, X, [{'foo': 'bar'}]) @if_matplotlib def test_plot_partial_dependence_multiclass(): # Test partial dependence plot function on multi-class input. clf = GradientBoostingClassifier(n_estimators=10, random_state=1) clf.fit(iris.data, iris.target) grid_resolution = 25 fig, axs = plot_partial_dependence(clf, iris.data, [0, 1], label=0, grid_resolution=grid_resolution) assert len(axs) == 2 assert all(ax.has_data for ax in axs) # now with symbol labels target = iris.target_names[iris.target] clf = GradientBoostingClassifier(n_estimators=10, random_state=1) clf.fit(iris.data, target) grid_resolution = 25 fig, axs = plot_partial_dependence(clf, iris.data, [0, 1], label='setosa', grid_resolution=grid_resolution) assert len(axs) == 2 assert all(ax.has_data for ax in axs) # label not in gbrt.classes_ assert_raises(ValueError, plot_partial_dependence, clf, iris.data, [0, 1], label='foobar', grid_resolution=grid_resolution) # label not provided assert_raises(ValueError, plot_partial_dependence, clf, iris.data, [0, 1], grid_resolution=grid_resolution)
bsd-3-clause
ischwabacher/seaborn
seaborn/algorithms.py
35
6889
"""Algorithms to support fitting routines in seaborn plotting functions.""" from __future__ import division import numpy as np from scipy import stats from .external.six.moves import range def bootstrap(*args, **kwargs): """Resample one or more arrays with replacement and store aggregate values. Positional arguments are a sequence of arrays to bootstrap along the first axis and pass to a summary function. Keyword arguments: n_boot : int, default 10000 Number of iterations axis : int, default None Will pass axis to ``func`` as a keyword argument. units : array, default None Array of sampling unit IDs. When used the bootstrap resamples units and then observations within units instead of individual datapoints. smooth : bool, default False If True, performs a smoothed bootstrap (draws samples from a kernel destiny estimate); only works for one-dimensional inputs and cannot be used `units` is present. func : callable, default np.mean Function to call on the args that are passed in. random_seed : int | None, default None Seed for the random number generator; useful if you want reproducible resamples. Returns ------- boot_dist: array array of bootstrapped statistic values """ # Ensure list of arrays are same length if len(np.unique(list(map(len, args)))) > 1: raise ValueError("All input arrays must have the same length") n = len(args[0]) # Default keyword arguments n_boot = kwargs.get("n_boot", 10000) func = kwargs.get("func", np.mean) axis = kwargs.get("axis", None) units = kwargs.get("units", None) smooth = kwargs.get("smooth", False) random_seed = kwargs.get("random_seed", None) if axis is None: func_kwargs = dict() else: func_kwargs = dict(axis=axis) # Initialize the resampler rs = np.random.RandomState(random_seed) # Coerce to arrays args = list(map(np.asarray, args)) if units is not None: units = np.asarray(units) # Do the bootstrap if smooth: return _smooth_bootstrap(args, n_boot, func, func_kwargs) if units is not None: return _structured_bootstrap(args, n_boot, units, func, func_kwargs, rs) boot_dist = [] for i in range(int(n_boot)): resampler = rs.randint(0, n, n) sample = [a.take(resampler, axis=0) for a in args] boot_dist.append(func(*sample, **func_kwargs)) return np.array(boot_dist) def _structured_bootstrap(args, n_boot, units, func, func_kwargs, rs): """Resample units instead of datapoints.""" unique_units = np.unique(units) n_units = len(unique_units) args = [[a[units == unit] for unit in unique_units] for a in args] boot_dist = [] for i in range(int(n_boot)): resampler = rs.randint(0, n_units, n_units) sample = [np.take(a, resampler, axis=0) for a in args] lengths = map(len, sample[0]) resampler = [rs.randint(0, n, n) for n in lengths] sample = [[c.take(r, axis=0) for c, r in zip(a, resampler)] for a in sample] sample = list(map(np.concatenate, sample)) boot_dist.append(func(*sample, **func_kwargs)) return np.array(boot_dist) def _smooth_bootstrap(args, n_boot, func, func_kwargs): """Bootstrap by resampling from a kernel density estimate.""" n = len(args[0]) boot_dist = [] kde = [stats.gaussian_kde(np.transpose(a)) for a in args] for i in range(int(n_boot)): sample = [a.resample(n).T for a in kde] boot_dist.append(func(*sample, **func_kwargs)) return np.array(boot_dist) def randomize_corrmat(a, tail="both", corrected=True, n_iter=1000, random_seed=None, return_dist=False): """Test the significance of set of correlations with permutations. By default this corrects for multiple comparisons across one side of the matrix. Parameters ---------- a : n_vars x n_obs array array with variables as rows tail : both | upper | lower whether test should be two-tailed, or which tail to integrate over corrected : boolean if True reports p values with respect to the max stat distribution n_iter : int number of permutation iterations random_seed : int or None seed for RNG return_dist : bool if True, return n_vars x n_vars x n_iter Returns ------- p_mat : float array of probabilites for actual correlation from null CDF """ if tail not in ["upper", "lower", "both"]: raise ValueError("'tail' must be 'upper', 'lower', or 'both'") rs = np.random.RandomState(random_seed) a = np.asarray(a, np.float) flat_a = a.ravel() n_vars, n_obs = a.shape # Do the permutations to establish a null distribution null_dist = np.empty((n_vars, n_vars, n_iter)) for i_i in range(n_iter): perm_i = np.concatenate([rs.permutation(n_obs) + (v * n_obs) for v in range(n_vars)]) a_i = flat_a[perm_i].reshape(n_vars, n_obs) null_dist[..., i_i] = np.corrcoef(a_i) # Get the observed correlation values real_corr = np.corrcoef(a) # Figure out p values based on the permutation distribution p_mat = np.zeros((n_vars, n_vars)) upper_tri = np.triu_indices(n_vars, 1) if corrected: if tail == "both": max_dist = np.abs(null_dist[upper_tri]).max(axis=0) elif tail == "lower": max_dist = null_dist[upper_tri].min(axis=0) elif tail == "upper": max_dist = null_dist[upper_tri].max(axis=0) cdf = lambda x: stats.percentileofscore(max_dist, x) / 100. for i, j in zip(*upper_tri): observed = real_corr[i, j] if tail == "both": p_ij = 1 - cdf(abs(observed)) elif tail == "lower": p_ij = cdf(observed) elif tail == "upper": p_ij = 1 - cdf(observed) p_mat[i, j] = p_ij else: for i, j in zip(*upper_tri): null_corrs = null_dist[i, j] cdf = lambda x: stats.percentileofscore(null_corrs, x) / 100. observed = real_corr[i, j] if tail == "both": p_ij = 2 * (1 - cdf(abs(observed))) elif tail == "lower": p_ij = cdf(observed) elif tail == "upper": p_ij = 1 - cdf(observed) p_mat[i, j] = p_ij # Make p matrix symettrical with nans on the diagonal p_mat += p_mat.T p_mat[np.diag_indices(n_vars)] = np.nan if return_dist: return p_mat, null_dist return p_mat
bsd-3-clause
OpenNeuroLab/brainspell-neo
archive/sprite/brainsprite.py
2
7440
# Christian Dansereau 2016 Copyright import os import numpy as np import nibabel as nib from PIL import Image import json from nilearn.image import resample_img import hashlib, time import matplotlib.pyplot as plt from shutil import copyfile def _load_json_template(): data_file = """{ "canvas": "3Dviewer", "sprite": "spriteImg", "flagCoordinates": true, "nbSlice": { "Y": 233, "Z": 189 }, "colorBackground": "#000", "colorFont": "#FFF", "overlay": { "sprite": "overlayImg", "nbSlice": { "Y": 233, "Z": 189 }, "opacity": 0.7 }, "colorMap": { "img": "colorMap", "min": 0.2, "max": 0.66 } } """ data = json.loads(data_file) return data def _load_notebook_html(canvas_id, bkg_path, overlay_path, tmp_path, json_data): html = """ <!DOCTYPE html> <html> <head> </head> <body> <div id="div_viewer"> <canvas id="{0}"> <!-- this is the canvas that will feature the brain slices --> <img id="spriteImg" class="hidden" src="{1}"> <!-- load a hidden version of the sprite image that includes all (sagital) brain slices --> <img id="overlayImg" class="hidden" src="{2}"> <!-- another sprite image, with an overlay--> </div> <script type="text/javascript" src="{3}jquery.min.js"></script> <!-- JQuery is used in this example, line 18, but is not actually used in brainsprite.js --> <script type="text/javascript" src="{3}brainsprite.js"></script> <script> // On load: build all figures $( "{0}" ).ready(function() {{ var brain = brainsprite({4}); }}); </script> </body> </html> """ return html.format(canvas_id, bkg_path, overlay_path, tmp_path, json_data) def _loadVolume(source_file): img = nib.load(source_file) vol = img.get_data() # check if its a nii file ext = _getExt(source_file) if ext == ".nii": vol = np.swapaxes(vol, 0, 2) return vol def _getspec(vol): nx, ny, nz = vol.shape nrows = int(np.ceil(np.sqrt(nz))) ncolumns = int(np.ceil(nz / (1. * nrows))) return nrows, ncolumns, nx, ny, nz def _getExt(source_file): # Getting the extension if os.path.splitext(source_file)[1] == '.gz': extension = os.path.splitext(os.path.splitext(source_file)[0])[1] else: extension = os.path.splitext(source_file)[1] return extension def _montage(vol): nrows, ncolumns, nx, ny, nz = _getspec(vol) mosaic = np.zeros((nrows * nx, ncolumns * ny)) indx, indy = np.where(np.ones((nrows, ncolumns))) for ii in range(vol.shape[2]): # we need to flip the image in the x axis mosaic[(indx[ii] * nx):((indx[ii] + 1) * nx), (indy[ii] * ny):((indy[ii] + 1) * ny)] = vol[::-1, :, ii] return mosaic def _saveMosaic(mosaic, output_path, overlay=False, overlay_threshold=0.1): if overlay: mosaic[mosaic < overlay_threshold] = 0 im = Image.fromarray(np.uint8(plt.cm.hot(mosaic) * 255)) mask = Image.fromarray(np.uint8(mosaic > 0) * 255).convert("L") im.putalpha(mask) else: im = Image.fromarray(mosaic).convert('RGB') # if im.mode != 'RGBA': # im = im.convert('RGBA') im.save(output_path) def transform_package(img_path, output_folder, overlay_path=''): if overlay_path == '': transform(img_path, output_folder + 'bkg_mosaic.jpg', output_folder + 'params.js') else: transform(img_path, output_folder + 'bkg_mosaic.jpg', output_folder + 'params.js', overlay_path, output_folder + 'overlay_mosaic.png') def transform(source_bkg_path, out_bkg_path, out_json, source_overlay_path='', out_overlay_path='', overlay_threshold=0.1, return_json=False, overlay_interpolation='continuous'): # load data bkg_vol = _loadVolume(source_bkg_path) bkg_vol = (bkg_vol / float(bkg_vol.max())) * 255. # populate json params = _load_json_template() params['nbSlice']['Y'] = bkg_vol.shape[1] params['nbSlice']['Z'] = bkg_vol.shape[0] # make bkg montage save mosa_bkg = _montage(bkg_vol) _saveMosaic(mosa_bkg, out_bkg_path) if source_overlay_path != '': # load data bkimg = nib.load(source_bkg_path) overimg = nib.load(source_overlay_path) # transform slice order and resample to fit bkimg # check if its a nii file ext = _getExt(source_overlay_path) ext_bkg = _getExt(source_bkg_path) if ext == ".nii": if ext_bkg == ".mnc": bkimg.affine[:, [0, 2]] = bkimg.affine[:, [2, 0]] overimg = resample_img(overimg, bkimg.affine, bkimg.shape[::-1], interpolation=overlay_interpolation) overlay_vol = np.swapaxes(overimg.get_data(), 0, 2) else: overimg = nib.nifti1.Nifti1Image(overimg.get_data(), overimg.get_affine) overimg = resample_img(overimg, bkimg.affine, bkimg.shape) overlay_vol = overimg.get_data() # populate json params['overlay']['nbSlice']['Y'] = overlay_vol.shape[1] params['overlay']['nbSlice']['Z'] = overlay_vol.shape[0] # make overlay montage and save mosa_overlay = _montage(overlay_vol) _saveMosaic(mosa_overlay, out_overlay_path, overlay=True, overlay_threshold=overlay_threshold) else: del params['overlay'] del params['colorMap'] if out_json[-3:] == '.js': with open(out_json, 'w') as outfile: data = "var jsonParams = '" + json.dumps(params) + "';" outfile.write(data) else: with open(out_json, 'w') as outfile: data = json.dumps(params) outfile.write(data) if return_json: return json.dumps(params) def show_sprite(bkg_img, overlay_img, tmp_path): # make a tmp folder tmp_path = tmp_path + '/brainsprite_tmp/' _make_folder(tmp_path) copyfile('../brainsprite.js', tmp_path+'brainsprite.js') copyfile('../assets/jquery-1.9.1/jquery.min.js', tmp_path + 'jquery.min.js') hash = _gen_file_name() bkgimg_ = tmp_path + hash + '_bkg.jpg' overlayimg_ = tmp_path + hash + '_overlay_mosaic.png' json_data = transform(bkg_img, bkgimg_, tmp_path + hash + '_params.json', overlay_img, overlayimg_, overlay_threshold=0.3, return_json=True) json_data = json_data.replace("3Dviewer", "canvas" + hash) print json_data html_code = _load_notebook_html('canvas' + hash, 'brainsprite_tmp/' + hash + '_bkg.jpg', 'brainsprite_tmp/' + hash + '_overlay_mosaic.png', 'brainsprite_tmp/', json_data) return html_code def _make_folder(path): if not os.path.exists(path): os.makedirs(path) return True return False def _gen_file_name(): hash_ = hashlib.sha1() hash_.update(str(time.time()).encode('utf-8')) return hash_.hexdigest() def test_mosaic(): # custom path background = "test_anat.mnc.gz" overlay = "DMN.nii.gz" output_folder = "/home/cdansereau/virenv/" #background = "t2.nii.gz" #overlay = "t2_seg.nii.gz" #output_folder = "/home/cdansereau/t2/" # transform data transform(output_folder + background, output_folder + 'bkg_mosaic.jpg', output_folder + 'params.json', output_folder + overlay, output_folder + 'overlay_mosaic.png', overlay_threshold=0.3)
mit
djgagne/scikit-learn
examples/svm/plot_svm_anova.py
250
2000
""" ================================================= SVM-Anova: SVM with univariate feature selection ================================================= This example shows how to perform univariate feature before running a SVC (support vector classifier) to improve the classification scores. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import svm, datasets, feature_selection, cross_validation from sklearn.pipeline import Pipeline ############################################################################### # Import some data to play with digits = datasets.load_digits() y = digits.target # Throw away data, to be in the curse of dimension settings y = y[:200] X = digits.data[:200] n_samples = len(y) X = X.reshape((n_samples, -1)) # add 200 non-informative features X = np.hstack((X, 2 * np.random.random((n_samples, 200)))) ############################################################################### # Create a feature-selection transform and an instance of SVM that we # combine together to have an full-blown estimator transform = feature_selection.SelectPercentile(feature_selection.f_classif) clf = Pipeline([('anova', transform), ('svc', svm.SVC(C=1.0))]) ############################################################################### # Plot the cross-validation score as a function of percentile of features score_means = list() score_stds = list() percentiles = (1, 3, 6, 10, 15, 20, 30, 40, 60, 80, 100) for percentile in percentiles: clf.set_params(anova__percentile=percentile) # Compute cross-validation score using all CPUs this_scores = cross_validation.cross_val_score(clf, X, y, n_jobs=1) score_means.append(this_scores.mean()) score_stds.append(this_scores.std()) plt.errorbar(percentiles, score_means, np.array(score_stds)) plt.title( 'Performance of the SVM-Anova varying the percentile of features selected') plt.xlabel('Percentile') plt.ylabel('Prediction rate') plt.axis('tight') plt.show()
bsd-3-clause
WillisXChen/django-oscar
oscar/lib/python2.7/site-packages/IPython/kernel/zmq/eventloops.py
4
8652
# encoding: utf-8 """Event loop integration for the ZeroMQ-based kernels. """ #----------------------------------------------------------------------------- # Copyright (C) 2011 The IPython Development Team # Distributed under the terms of the BSD License. The full license is in # the file COPYING, distributed as part of this software. #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Imports #----------------------------------------------------------------------------- import os import sys # System library imports import zmq # Local imports from IPython.config.application import Application from IPython.utils import io #------------------------------------------------------------------------------ # Eventloops for integrating the Kernel into different GUIs #------------------------------------------------------------------------------ def _on_os_x_10_9(): import platform from distutils.version import LooseVersion as V return sys.platform == 'darwin' and V(platform.mac_ver()[0]) >= V('10.9') def _notify_stream_qt(kernel, stream): from IPython.external.qt_for_kernel import QtCore if _on_os_x_10_9() and kernel._darwin_app_nap: from IPython.external.appnope import nope_scope as context else: from IPython.core.interactiveshell import NoOpContext as context def process_stream_events(): while stream.getsockopt(zmq.EVENTS) & zmq.POLLIN: with context(): kernel.do_one_iteration() fd = stream.getsockopt(zmq.FD) notifier = QtCore.QSocketNotifier(fd, QtCore.QSocketNotifier.Read, kernel.app) notifier.activated.connect(process_stream_events) def loop_qt4(kernel): """Start a kernel with PyQt4 event loop integration.""" from IPython.lib.guisupport import get_app_qt4, start_event_loop_qt4 kernel.app = get_app_qt4([" "]) kernel.app.setQuitOnLastWindowClosed(False) for s in kernel.shell_streams: _notify_stream_qt(kernel, s) start_event_loop_qt4(kernel.app) def loop_qt5(kernel): """Start a kernel with PyQt5 event loop integration""" os.environ['QT_API'] = 'pyqt5' return loop_qt4(kernel) def loop_wx(kernel): """Start a kernel with wx event loop support.""" import wx from IPython.lib.guisupport import start_event_loop_wx if _on_os_x_10_9() and kernel._darwin_app_nap: # we don't hook up App Nap contexts for Wx, # just disable it outright. from IPython.external.appnope import nope nope() doi = kernel.do_one_iteration # Wx uses milliseconds poll_interval = int(1000*kernel._poll_interval) # We have to put the wx.Timer in a wx.Frame for it to fire properly. # We make the Frame hidden when we create it in the main app below. class TimerFrame(wx.Frame): def __init__(self, func): wx.Frame.__init__(self, None, -1) self.timer = wx.Timer(self) # Units for the timer are in milliseconds self.timer.Start(poll_interval) self.Bind(wx.EVT_TIMER, self.on_timer) self.func = func def on_timer(self, event): self.func() # We need a custom wx.App to create our Frame subclass that has the # wx.Timer to drive the ZMQ event loop. class IPWxApp(wx.App): def OnInit(self): self.frame = TimerFrame(doi) self.frame.Show(False) return True # The redirect=False here makes sure that wx doesn't replace # sys.stdout/stderr with its own classes. kernel.app = IPWxApp(redirect=False) # The import of wx on Linux sets the handler for signal.SIGINT # to 0. This is a bug in wx or gtk. We fix by just setting it # back to the Python default. import signal if not callable(signal.getsignal(signal.SIGINT)): signal.signal(signal.SIGINT, signal.default_int_handler) start_event_loop_wx(kernel.app) def loop_tk(kernel): """Start a kernel with the Tk event loop.""" try: from tkinter import Tk # Py 3 except ImportError: from Tkinter import Tk # Py 2 doi = kernel.do_one_iteration # Tk uses milliseconds poll_interval = int(1000*kernel._poll_interval) # For Tkinter, we create a Tk object and call its withdraw method. class Timer(object): def __init__(self, func): self.app = Tk() self.app.withdraw() self.func = func def on_timer(self): self.func() self.app.after(poll_interval, self.on_timer) def start(self): self.on_timer() # Call it once to get things going. self.app.mainloop() kernel.timer = Timer(doi) kernel.timer.start() def loop_gtk(kernel): """Start the kernel, coordinating with the GTK event loop""" from .gui.gtkembed import GTKEmbed gtk_kernel = GTKEmbed(kernel) gtk_kernel.start() def loop_cocoa(kernel): """Start the kernel, coordinating with the Cocoa CFRunLoop event loop via the matplotlib MacOSX backend. """ import matplotlib if matplotlib.__version__ < '1.1.0': kernel.log.warn( "MacOSX backend in matplotlib %s doesn't have a Timer, " "falling back on Tk for CFRunLoop integration. Note that " "even this won't work if Tk is linked against X11 instead of " "Cocoa (e.g. EPD). To use the MacOSX backend in the kernel, " "you must use matplotlib >= 1.1.0, or a native libtk." ) return loop_tk(kernel) from matplotlib.backends.backend_macosx import TimerMac, show # scale interval for sec->ms poll_interval = int(1000*kernel._poll_interval) real_excepthook = sys.excepthook def handle_int(etype, value, tb): """don't let KeyboardInterrupts look like crashes""" if etype is KeyboardInterrupt: io.raw_print("KeyboardInterrupt caught in CFRunLoop") else: real_excepthook(etype, value, tb) # add doi() as a Timer to the CFRunLoop def doi(): # restore excepthook during IPython code sys.excepthook = real_excepthook kernel.do_one_iteration() # and back: sys.excepthook = handle_int t = TimerMac(poll_interval) t.add_callback(doi) t.start() # but still need a Poller for when there are no active windows, # during which time mainloop() returns immediately poller = zmq.Poller() if kernel.control_stream: poller.register(kernel.control_stream.socket, zmq.POLLIN) for stream in kernel.shell_streams: poller.register(stream.socket, zmq.POLLIN) while True: try: # double nested try/except, to properly catch KeyboardInterrupt # due to pyzmq Issue #130 try: # don't let interrupts during mainloop invoke crash_handler: sys.excepthook = handle_int show.mainloop() sys.excepthook = real_excepthook # use poller if mainloop returned (no windows) # scale by extra factor of 10, since it's a real poll poller.poll(10*poll_interval) kernel.do_one_iteration() except: raise except KeyboardInterrupt: # Ctrl-C shouldn't crash the kernel io.raw_print("KeyboardInterrupt caught in kernel") finally: # ensure excepthook is restored sys.excepthook = real_excepthook # mapping of keys to loop functions loop_map = { 'qt' : loop_qt4, 'qt4': loop_qt4, 'qt5': loop_qt5, 'inline': None, 'nbagg': None, 'osx': loop_cocoa, 'wx' : loop_wx, 'tk' : loop_tk, 'gtk': loop_gtk, None : None, } def enable_gui(gui, kernel=None): """Enable integration with a given GUI""" if gui not in loop_map: e = "Invalid GUI request %r, valid ones are:%s" % (gui, loop_map.keys()) raise ValueError(e) if kernel is None: if Application.initialized(): kernel = getattr(Application.instance(), 'kernel', None) if kernel is None: raise RuntimeError("You didn't specify a kernel," " and no IPython Application with a kernel appears to be running." ) loop = loop_map[gui] if loop and kernel.eventloop is not None and kernel.eventloop is not loop: raise RuntimeError("Cannot activate multiple GUI eventloops") kernel.eventloop = loop
bsd-3-clause
iamaziz/simpleai
simpleai/machine_learning/reinforcement_learning.py
5
6345
# -*- coding: utf-8 -*- from collections import defaultdict, Counter import math import random from simpleai.search.utils import argmax import pickle try: import matplotlib.pyplot as plt import numpy except: plt = None # lint:ok numpy = None # lint:ok def make_at_least_n_times(optimistic_reward, min_n): def at_least_n_times_exploration(actions, utilities, temperature, action_counter): utilities = [utilities[x] for x in actions] for i, utility in enumerate(utilities): if action_counter[actions[i]] < min_n: utilities[i] = optimistic_reward d = dict(zip(actions, utilities)) uf = lambda action: d[action] return argmax(actions, uf) return at_least_n_times_exploration def boltzmann_exploration(actions, utilities, temperature, action_counter): '''returns an action with a probability depending on utilities and temperature''' utilities = [utilities[x] for x in actions] temperature = max(temperature, 0.01) _max = max(utilities) _min = min(utilities) if _max == _min: return random.choice(actions) utilities = [math.exp(((u - _min) / (_max - _min)) / temperature) for u in utilities] probs = [u / sum(utilities) for u in utilities] i = 0 tot = probs[i] r = random.random() while i < len(actions) and r >= tot: i += 1 tot += probs[i] return actions[i] def make_exponential_temperature(initial_temperature, alpha): '''returns a function like initial / exp(n * alpha)''' def _function(n): try: return initial_temperature / math.exp(n * alpha) except OverflowError: return 0.01 return _function class PerformanceCounter(object): def __init__(self, learners, names=None): self.learners = learners for i, learner in enumerate(learners): self.update_set_reward(learner) learner.accumulated_rewards = [] learner.known_states = [] learner.temperatures = [] if names is None: learner.name = 'Learner %d' % i else: learner.name = names[i] def update_set_reward(self, learner): def set_reward(reward, terminal=False): if terminal: if len(learner.accumulated_rewards) > 0: learner.accumulated_rewards.append(learner.accumulated_rewards[-1] + reward) else: learner.accumulated_rewards.append(reward) learner.known_states.append(len(learner.Q)) learner.temperatures.append(learner.temperature_function(learner.trials)) learner.old_set_reward(reward, terminal) learner.old_set_reward = learner.set_reward learner.set_reward = set_reward def _make_plot(self, ax, data_name): for learner in self.learners: data = numpy.array(getattr(learner, data_name)) ax.plot(numpy.arange(len(data)), data, label=learner.name) nice_name = data_name.replace('_', ' ').capitalize() ax.set_title(nice_name) ax.legend() def show_statistics(self): f, (ax1, ax2, ax3) = plt.subplots(3, 1, sharex=True) self._make_plot(ax1, 'accumulated_rewards') self._make_plot(ax2, 'known_states') self._make_plot(ax3, 'temperatures') plt.show() class RLProblem(object): def actions(self, state): '''Returns the actions available to perform from `state`. The returned value is an iterable over actions. ''' raise NotImplementedError() def update_state(self, percept, agent): 'Override this method if you need to clean perception to a given agent' return percept def inverse(n): if n == 0: return 1 return 1.0 / n def state_default(): return defaultdict(int) class QLearner(object): def __init__(self, problem, temperature_function=inverse, discount_factor=1, exploration_function=boltzmann_exploration, learning_rate=inverse): self.Q = defaultdict(state_default) self.problem = problem self.discount_factor = discount_factor self.temperature_function = temperature_function self.exploration_function = exploration_function self.learning_rate = learning_rate self.last_state = None self.last_action = None self.last_reward = None self.counter = defaultdict(Counter) self.trials = 0 def set_reward(self, reward, terminal=False): self.last_reward = reward if terminal: self.trials += 1 self.Q[self.last_state][self.last_action] = reward def program(self, percept): s = self.last_state a = self.last_action state = self.problem.update_state(percept, self) actions = self.problem.actions(state) if len(actions) > 0: current_action = self.exploration_function(actions, self.Q[state], self.temperature_function(self.trials), self.counter[state]) else: current_action = None if s is not None and current_action: self.counter[s][a] += 1 self.update_rule(s, a, self.last_reward, state, current_action) self.last_state = state self.last_action = current_action return current_action def update_rule(self, s, a, r, cs, ca): raise NotImplementedError def dump(self, path): self.temperature_function = inverse with open(path, 'wb') as f: pickle.dump(self, f) @classmethod def load(self, path): with open(path, 'rb') as f: return pickle.load(f) class TDQLearner(QLearner): def update_rule(self, s, a, r, cs, ca): lr = self.learning_rate(self.counter[s][a]) self.Q[s][a] += lr * (r + self.discount_factor * max(self.Q[cs].values()) - self.Q[s][a]) class SARSALearner(QLearner): def update_rule(self, s, a, r, cs, ca): lr = self.learning_rate(self.counter[s][a]) self.Q[s][a] += lr * (r + self.discount_factor * self.Q[cs][ca] - self.Q[s][a])
mit
2baOrNot2ba/AntPat
scripts/viewJonespat_dual.py
1
2897
#!/usr/bin/env python """A simple viewer for Jones patterns for dual-polarized representations. """ import argparse import numpy import matplotlib.pyplot as plt from antpat.reps.sphgridfun.pntsonsphere import ZenHemisphGrid from antpat.dualpolelem import DualPolElem, jones2gIXR, IXRJ2IXRM from antpat.reps.hamaker import convLOFARcc2DPE import antpat.io.filetypes as antfiles def plotJonesCanonical(theta, phi, jones, dpelemname): normalize = True dbscale = True polarplt = True IXRTYPE = 'IXR_J' # Can be IXR_J or IXR_M g, IXRJ = jones2gIXR(jones) IXRM = IXRJ2IXRM(IXRJ) if IXRTYPE == 'IXR_J': IXR = IXRJ elif IXRTYPE == 'IXR_J': IXR = IXRM else: raise RuntimeError("""Error: IXR type {} unknown. Known types are IXR_J, IXR_M.""".format(IXRTYPE)) fig = plt.figure() fig.suptitle(dpelemname) plt.subplot(121, polar=polarplt) if normalize: g_max = numpy.max(g) g = g/g_max if dbscale: g = 20*numpy.log10(g) # nrlvls = 5 # g_lvls = numpy.max(g) - 3.0*numpy.arange(nrlvls) plt.pcolormesh(phi, numpy.rad2deg(theta), g) # plt.contour( phi, numpy.rad2deg(theta), g_dress, levels = g_lvls) plt.colorbar() plt.title('Amp gain') plt.subplot(122, polar=polarplt) plt.pcolormesh(phi, numpy.rad2deg(theta), 10*numpy.log10(IXR)) plt.colorbar() plt.title('IXR_J') plt.show() def plotFFpat(): from antpat.reps.sphgridfun import tvecfun for polchan in [0, 1]: E_th = jones[:, :, polchan, 0].squeeze() E_ph = jones[:, :, polchan, 1].squeeze() tvecfun.plotvfonsph(THETA, PHI, E_th, E_ph, args.freq, vcoordlist=['Ludwig3'], projection='orthographic') if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("freq", type=float, help="Frequency in Hertz") parser.add_argument("filename", help=""" Filename of dual-polarization FF, Hamaker-Arts format, or a single-polarization FF (p-channel)""") parser.add_argument("filename_q", nargs='?', help=""" Filename of second (q-channel) single-polarization FF. """) args = parser.parse_args() if args.filename.endswith(antfiles.HamArtsuffix): hp = convLOFARcc2DPE(args.filename, [args.freq]) elif args.filename.endswith(antfiles.FEKOsuffix): hp = DualPolElem() hp.load_ffes(args.filename, args.filename_q) else: raise RuntimeError("dual-pol pattern file type not known") THETA, PHI = ZenHemisphGrid() jones = hp.getJonesAlong([args.freq], (THETA, PHI)) plotFFpat() # plotJonesCanonical(THETA, PHI, jones, os.path.basename(args.filename) # + ' (' + str(args.freq/1e6) + ' MHz)')
isc
metaml/nupic
external/linux32/lib/python2.6/site-packages/matplotlib/lines.py
69
48233
""" This module contains all the 2D line class which can draw with a variety of line styles, markers and colors. """ # TODO: expose cap and join style attrs from __future__ import division import numpy as np from numpy import ma from matplotlib import verbose import artist from artist import Artist from cbook import iterable, is_string_like, is_numlike, ls_mapper, dedent,\ flatten from colors import colorConverter from path import Path from transforms import Affine2D, Bbox, TransformedPath, IdentityTransform from matplotlib import rcParams # special-purpose marker identifiers: (TICKLEFT, TICKRIGHT, TICKUP, TICKDOWN, CARETLEFT, CARETRIGHT, CARETUP, CARETDOWN) = range(8) # COVERAGE NOTE: Never called internally or from examples def unmasked_index_ranges(mask, compressed = True): warnings.warn("Import this directly from matplotlib.cbook", DeprecationWarning) # Warning added 2008/07/22 from matplotlib.cbook import unmasked_index_ranges as _unmasked_index_ranges return _unmasked_index_ranges(mask, compressed=compressed) def segment_hits(cx, cy, x, y, radius): """ Determine if any line segments are within radius of a point. Returns the list of line segments that are within that radius. """ # Process single points specially if len(x) < 2: res, = np.nonzero( (cx - x)**2 + (cy - y)**2 <= radius**2 ) return res # We need to lop the last element off a lot. xr,yr = x[:-1],y[:-1] # Only look at line segments whose nearest point to C on the line # lies within the segment. dx,dy = x[1:]-xr, y[1:]-yr Lnorm_sq = dx**2+dy**2 # Possibly want to eliminate Lnorm==0 u = ( (cx-xr)*dx + (cy-yr)*dy )/Lnorm_sq candidates = (u>=0) & (u<=1) #if any(candidates): print "candidates",xr[candidates] # Note that there is a little area near one side of each point # which will be near neither segment, and another which will # be near both, depending on the angle of the lines. The # following radius test eliminates these ambiguities. point_hits = (cx - x)**2 + (cy - y)**2 <= radius**2 #if any(point_hits): print "points",xr[candidates] candidates = candidates & ~(point_hits[:-1] | point_hits[1:]) # For those candidates which remain, determine how far they lie away # from the line. px,py = xr+u*dx,yr+u*dy line_hits = (cx-px)**2 + (cy-py)**2 <= radius**2 #if any(line_hits): print "lines",xr[candidates] line_hits = line_hits & candidates points, = point_hits.ravel().nonzero() lines, = line_hits.ravel().nonzero() #print points,lines return np.concatenate((points,lines)) class Line2D(Artist): """ A line - the line can have both a solid linestyle connecting all the vertices, and a marker at each vertex. Additionally, the drawing of the solid line is influenced by the drawstyle, eg one can create "stepped" lines in various styles. """ lineStyles = _lineStyles = { # hidden names deprecated '-' : '_draw_solid', '--' : '_draw_dashed', '-.' : '_draw_dash_dot', ':' : '_draw_dotted', 'None' : '_draw_nothing', ' ' : '_draw_nothing', '' : '_draw_nothing', } _drawStyles_l = { 'default' : '_draw_lines', 'steps-mid' : '_draw_steps_mid', 'steps-pre' : '_draw_steps_pre', 'steps-post' : '_draw_steps_post', } _drawStyles_s = { 'steps' : '_draw_steps_pre', } drawStyles = {} drawStyles.update(_drawStyles_l) drawStyles.update(_drawStyles_s) markers = _markers = { # hidden names deprecated '.' : '_draw_point', ',' : '_draw_pixel', 'o' : '_draw_circle', 'v' : '_draw_triangle_down', '^' : '_draw_triangle_up', '<' : '_draw_triangle_left', '>' : '_draw_triangle_right', '1' : '_draw_tri_down', '2' : '_draw_tri_up', '3' : '_draw_tri_left', '4' : '_draw_tri_right', 's' : '_draw_square', 'p' : '_draw_pentagon', '*' : '_draw_star', 'h' : '_draw_hexagon1', 'H' : '_draw_hexagon2', '+' : '_draw_plus', 'x' : '_draw_x', 'D' : '_draw_diamond', 'd' : '_draw_thin_diamond', '|' : '_draw_vline', '_' : '_draw_hline', TICKLEFT : '_draw_tickleft', TICKRIGHT : '_draw_tickright', TICKUP : '_draw_tickup', TICKDOWN : '_draw_tickdown', CARETLEFT : '_draw_caretleft', CARETRIGHT : '_draw_caretright', CARETUP : '_draw_caretup', CARETDOWN : '_draw_caretdown', 'None' : '_draw_nothing', ' ' : '_draw_nothing', '' : '_draw_nothing', } filled_markers = ('o', '^', 'v', '<', '>', 's', 'd', 'D', 'h', 'H', 'p', '*') zorder = 2 validCap = ('butt', 'round', 'projecting') validJoin = ('miter', 'round', 'bevel') def __str__(self): if self._label != "": return "Line2D(%s)"%(self._label) elif hasattr(self, '_x') and len(self._x) > 3: return "Line2D((%g,%g),(%g,%g),...,(%g,%g))"\ %(self._x[0],self._y[0],self._x[0],self._y[0],self._x[-1],self._y[-1]) elif hasattr(self, '_x'): return "Line2D(%s)"\ %(",".join(["(%g,%g)"%(x,y) for x,y in zip(self._x,self._y)])) else: return "Line2D()" def __init__(self, xdata, ydata, linewidth = None, # all Nones default to rc linestyle = None, color = None, marker = None, markersize = None, markeredgewidth = None, markeredgecolor = None, markerfacecolor = None, antialiased = None, dash_capstyle = None, solid_capstyle = None, dash_joinstyle = None, solid_joinstyle = None, pickradius = 5, drawstyle = None, **kwargs ): """ Create a :class:`~matplotlib.lines.Line2D` instance with *x* and *y* data in sequences *xdata*, *ydata*. The kwargs are :class:`~matplotlib.lines.Line2D` properties: %(Line2D)s See :meth:`set_linestyle` for a decription of the line styles, :meth:`set_marker` for a description of the markers, and :meth:`set_drawstyle` for a description of the draw styles. """ Artist.__init__(self) #convert sequences to numpy arrays if not iterable(xdata): raise RuntimeError('xdata must be a sequence') if not iterable(ydata): raise RuntimeError('ydata must be a sequence') if linewidth is None : linewidth=rcParams['lines.linewidth'] if linestyle is None : linestyle=rcParams['lines.linestyle'] if marker is None : marker=rcParams['lines.marker'] if color is None : color=rcParams['lines.color'] if markersize is None : markersize=rcParams['lines.markersize'] if antialiased is None : antialiased=rcParams['lines.antialiased'] if dash_capstyle is None : dash_capstyle=rcParams['lines.dash_capstyle'] if dash_joinstyle is None : dash_joinstyle=rcParams['lines.dash_joinstyle'] if solid_capstyle is None : solid_capstyle=rcParams['lines.solid_capstyle'] if solid_joinstyle is None : solid_joinstyle=rcParams['lines.solid_joinstyle'] if drawstyle is None : drawstyle='default' self.set_dash_capstyle(dash_capstyle) self.set_dash_joinstyle(dash_joinstyle) self.set_solid_capstyle(solid_capstyle) self.set_solid_joinstyle(solid_joinstyle) self.set_linestyle(linestyle) self.set_drawstyle(drawstyle) self.set_linewidth(linewidth) self.set_color(color) self.set_marker(marker) self.set_antialiased(antialiased) self.set_markersize(markersize) self._dashSeq = None self.set_markerfacecolor(markerfacecolor) self.set_markeredgecolor(markeredgecolor) self.set_markeredgewidth(markeredgewidth) self._point_size_reduction = 0.5 self.verticalOffset = None # update kwargs before updating data to give the caller a # chance to init axes (and hence unit support) self.update(kwargs) self.pickradius = pickradius if is_numlike(self._picker): self.pickradius = self._picker self._xorig = np.asarray([]) self._yorig = np.asarray([]) self._invalid = True self.set_data(xdata, ydata) def contains(self, mouseevent): """ Test whether the mouse event occurred on the line. The pick radius determines the precision of the location test (usually within five points of the value). Use :meth:`~matplotlib.lines.Line2D.get_pickradius` or :meth:`~matplotlib.lines.Line2D.set_pickradius` to view or modify it. Returns *True* if any values are within the radius along with ``{'ind': pointlist}``, where *pointlist* is the set of points within the radius. TODO: sort returned indices by distance """ if callable(self._contains): return self._contains(self,mouseevent) if not is_numlike(self.pickradius): raise ValueError,"pick radius should be a distance" # Make sure we have data to plot if self._invalid: self.recache() if len(self._xy)==0: return False,{} # Convert points to pixels path, affine = self._transformed_path.get_transformed_path_and_affine() path = affine.transform_path(path) xy = path.vertices xt = xy[:, 0] yt = xy[:, 1] # Convert pick radius from points to pixels if self.figure == None: warning.warn('no figure set when check if mouse is on line') pixels = self.pickradius else: pixels = self.figure.dpi/72. * self.pickradius # Check for collision if self._linestyle in ['None',None]: # If no line, return the nearby point(s) d = (xt-mouseevent.x)**2 + (yt-mouseevent.y)**2 ind, = np.nonzero(np.less_equal(d, pixels**2)) else: # If line, return the nearby segment(s) ind = segment_hits(mouseevent.x,mouseevent.y,xt,yt,pixels) # Debugging message if False and self._label != u'': print "Checking line",self._label,"at",mouseevent.x,mouseevent.y print 'xt', xt print 'yt', yt #print 'dx,dy', (xt-mouseevent.x)**2., (yt-mouseevent.y)**2. print 'ind',ind # Return the point(s) within radius return len(ind)>0,dict(ind=ind) def get_pickradius(self): 'return the pick radius used for containment tests' return self.pickradius def setpickradius(self,d): """Sets the pick radius used for containment tests ACCEPTS: float distance in points """ self.pickradius = d def set_picker(self,p): """Sets the event picker details for the line. ACCEPTS: float distance in points or callable pick function ``fn(artist, event)`` """ if callable(p): self._contains = p else: self.pickradius = p self._picker = p def get_window_extent(self, renderer): bbox = Bbox.unit() bbox.update_from_data_xy(self.get_transform().transform(self.get_xydata()), ignore=True) # correct for marker size, if any if self._marker is not None: ms = (self._markersize / 72.0 * self.figure.dpi) * 0.5 bbox = bbox.padded(ms) return bbox def set_axes(self, ax): Artist.set_axes(self, ax) if ax.xaxis is not None: self._xcid = ax.xaxis.callbacks.connect('units', self.recache) if ax.yaxis is not None: self._ycid = ax.yaxis.callbacks.connect('units', self.recache) set_axes.__doc__ = Artist.set_axes.__doc__ def set_data(self, *args): """ Set the x and y data ACCEPTS: 2D array """ if len(args)==1: x, y = args[0] else: x, y = args not_masked = 0 if not ma.isMaskedArray(x): x = np.asarray(x) not_masked += 1 if not ma.isMaskedArray(y): y = np.asarray(y) not_masked += 1 if (not_masked < 2 or (x is not self._xorig and (x.shape != self._xorig.shape or np.any(x != self._xorig))) or (y is not self._yorig and (y.shape != self._yorig.shape or np.any(y != self._yorig)))): self._xorig = x self._yorig = y self._invalid = True def recache(self): #if self.axes is None: print 'recache no axes' #else: print 'recache units', self.axes.xaxis.units, self.axes.yaxis.units if ma.isMaskedArray(self._xorig) or ma.isMaskedArray(self._yorig): x = ma.asarray(self.convert_xunits(self._xorig), float) y = ma.asarray(self.convert_yunits(self._yorig), float) x = ma.ravel(x) y = ma.ravel(y) else: x = np.asarray(self.convert_xunits(self._xorig), float) y = np.asarray(self.convert_yunits(self._yorig), float) x = np.ravel(x) y = np.ravel(y) if len(x)==1 and len(y)>1: x = x * np.ones(y.shape, float) if len(y)==1 and len(x)>1: y = y * np.ones(x.shape, float) if len(x) != len(y): raise RuntimeError('xdata and ydata must be the same length') x = x.reshape((len(x), 1)) y = y.reshape((len(y), 1)) if ma.isMaskedArray(x) or ma.isMaskedArray(y): self._xy = ma.concatenate((x, y), 1) else: self._xy = np.concatenate((x, y), 1) self._x = self._xy[:, 0] # just a view self._y = self._xy[:, 1] # just a view # Masked arrays are now handled by the Path class itself self._path = Path(self._xy) self._transformed_path = TransformedPath(self._path, self.get_transform()) self._invalid = False def set_transform(self, t): """ set the Transformation instance used by this artist ACCEPTS: a :class:`matplotlib.transforms.Transform` instance """ Artist.set_transform(self, t) self._invalid = True # self._transformed_path = TransformedPath(self._path, self.get_transform()) def _is_sorted(self, x): "return true if x is sorted" if len(x)<2: return 1 return np.alltrue(x[1:]-x[0:-1]>=0) def draw(self, renderer): if self._invalid: self.recache() renderer.open_group('line2d') if not self._visible: return gc = renderer.new_gc() self._set_gc_clip(gc) gc.set_foreground(self._color) gc.set_antialiased(self._antialiased) gc.set_linewidth(self._linewidth) gc.set_alpha(self._alpha) if self.is_dashed(): cap = self._dashcapstyle join = self._dashjoinstyle else: cap = self._solidcapstyle join = self._solidjoinstyle gc.set_joinstyle(join) gc.set_capstyle(cap) gc.set_snap(self.get_snap()) funcname = self._lineStyles.get(self._linestyle, '_draw_nothing') if funcname != '_draw_nothing': tpath, affine = self._transformed_path.get_transformed_path_and_affine() self._lineFunc = getattr(self, funcname) funcname = self.drawStyles.get(self._drawstyle, '_draw_lines') drawFunc = getattr(self, funcname) drawFunc(renderer, gc, tpath, affine.frozen()) if self._marker is not None: gc = renderer.new_gc() self._set_gc_clip(gc) gc.set_foreground(self.get_markeredgecolor()) gc.set_linewidth(self._markeredgewidth) gc.set_alpha(self._alpha) funcname = self._markers.get(self._marker, '_draw_nothing') if funcname != '_draw_nothing': tpath, affine = self._transformed_path.get_transformed_points_and_affine() markerFunc = getattr(self, funcname) markerFunc(renderer, gc, tpath, affine.frozen()) renderer.close_group('line2d') def get_antialiased(self): return self._antialiased def get_color(self): return self._color def get_drawstyle(self): return self._drawstyle def get_linestyle(self): return self._linestyle def get_linewidth(self): return self._linewidth def get_marker(self): return self._marker def get_markeredgecolor(self): if (is_string_like(self._markeredgecolor) and self._markeredgecolor == 'auto'): if self._marker in self.filled_markers: return 'k' else: return self._color else: return self._markeredgecolor return self._markeredgecolor def get_markeredgewidth(self): return self._markeredgewidth def get_markerfacecolor(self): if (self._markerfacecolor is None or (is_string_like(self._markerfacecolor) and self._markerfacecolor.lower()=='none') ): return self._markerfacecolor elif (is_string_like(self._markerfacecolor) and self._markerfacecolor.lower() == 'auto'): return self._color else: return self._markerfacecolor def get_markersize(self): return self._markersize def get_data(self, orig=True): """ Return the xdata, ydata. If *orig* is *True*, return the original data """ return self.get_xdata(orig=orig), self.get_ydata(orig=orig) def get_xdata(self, orig=True): """ Return the xdata. If *orig* is *True*, return the original data, else the processed data. """ if orig: return self._xorig if self._invalid: self.recache() return self._x def get_ydata(self, orig=True): """ Return the ydata. If *orig* is *True*, return the original data, else the processed data. """ if orig: return self._yorig if self._invalid: self.recache() return self._y def get_path(self): """ Return the :class:`~matplotlib.path.Path` object associated with this line. """ if self._invalid: self.recache() return self._path def get_xydata(self): """ Return the *xy* data as a Nx2 numpy array. """ if self._invalid: self.recache() return self._xy def set_antialiased(self, b): """ True if line should be drawin with antialiased rendering ACCEPTS: [True | False] """ self._antialiased = b def set_color(self, color): """ Set the color of the line ACCEPTS: any matplotlib color """ self._color = color def set_drawstyle(self, drawstyle): """ Set the drawstyle of the plot 'default' connects the points with lines. The steps variants produce step-plots. 'steps' is equivalent to 'steps-pre' and is maintained for backward-compatibility. ACCEPTS: [ 'default' | 'steps' | 'steps-pre' | 'steps-mid' | 'steps-post' ] """ self._drawstyle = drawstyle def set_linewidth(self, w): """ Set the line width in points ACCEPTS: float value in points """ self._linewidth = w def set_linestyle(self, linestyle): """ Set the linestyle of the line (also accepts drawstyles) ================ ================= linestyle description ================ ================= '-' solid '--' dashed '-.' dash_dot ':' dotted 'None' draw nothing ' ' draw nothing '' draw nothing ================ ================= 'steps' is equivalent to 'steps-pre' and is maintained for backward-compatibility. .. seealso:: :meth:`set_drawstyle` ACCEPTS: [ '-' | '--' | '-.' | ':' | 'None' | ' ' | '' ] and any drawstyle in combination with a linestyle, e.g. 'steps--'. """ # handle long drawstyle names before short ones ! for ds in flatten([k.keys() for k in (self._drawStyles_l, self._drawStyles_s)], is_string_like): if linestyle.startswith(ds): self.set_drawstyle(ds) if len(linestyle) > len(ds): linestyle = linestyle[len(ds):] else: linestyle = '-' if linestyle not in self._lineStyles: if linestyle in ls_mapper: linestyle = ls_mapper[linestyle] else: verbose.report('Unrecognized line style %s, %s' % (linestyle, type(linestyle))) if linestyle in [' ','']: linestyle = 'None' self._linestyle = linestyle def set_marker(self, marker): """ Set the line marker ========== ========================== marker description ========== ========================== '.' point ',' pixel 'o' circle 'v' triangle_down '^' triangle_up '<' triangle_left '>' triangle_right '1' tri_down '2' tri_up '3' tri_left '4' tri_right 's' square 'p' pentagon '*' star 'h' hexagon1 'H' hexagon2 '+' plus 'x' x 'D' diamond 'd' thin_diamond '|' vline '_' hline TICKLEFT tickleft TICKRIGHT tickright TICKUP tickup TICKDOWN tickdown CARETLEFT caretleft CARETRIGHT caretright CARETUP caretup CARETDOWN caretdown 'None' nothing ' ' nothing '' nothing ========== ========================== ACCEPTS: [ '+' | '*' | ',' | '.' | '1' | '2' | '3' | '4' | '<' | '>' | 'D' | 'H' | '^' | '_' | 'd' | 'h' | 'o' | 'p' | 's' | 'v' | 'x' | '|' | TICKUP | TICKDOWN | TICKLEFT | TICKRIGHT | 'None' | ' ' | '' ] """ if marker not in self._markers: verbose.report('Unrecognized marker style %s, %s' % (marker, type(marker))) if marker in [' ','']: marker = 'None' self._marker = marker self._markerFunc = self._markers[marker] def set_markeredgecolor(self, ec): """ Set the marker edge color ACCEPTS: any matplotlib color """ if ec is None : ec = 'auto' self._markeredgecolor = ec def set_markeredgewidth(self, ew): """ Set the marker edge width in points ACCEPTS: float value in points """ if ew is None : ew = rcParams['lines.markeredgewidth'] self._markeredgewidth = ew def set_markerfacecolor(self, fc): """ Set the marker face color ACCEPTS: any matplotlib color """ if fc is None : fc = 'auto' self._markerfacecolor = fc def set_markersize(self, sz): """ Set the marker size in points ACCEPTS: float """ self._markersize = sz def set_xdata(self, x): """ Set the data np.array for x ACCEPTS: 1D array """ x = np.asarray(x) self.set_data(x, self._yorig) def set_ydata(self, y): """ Set the data np.array for y ACCEPTS: 1D array """ y = np.asarray(y) self.set_data(self._xorig, y) def set_dashes(self, seq): """ Set the dash sequence, sequence of dashes with on off ink in points. If seq is empty or if seq = (None, None), the linestyle will be set to solid. ACCEPTS: sequence of on/off ink in points """ if seq == (None, None) or len(seq)==0: self.set_linestyle('-') else: self.set_linestyle('--') self._dashSeq = seq # TODO: offset ignored for now def _draw_lines(self, renderer, gc, path, trans): self._lineFunc(renderer, gc, path, trans) def _draw_steps_pre(self, renderer, gc, path, trans): vertices = self._xy steps = ma.zeros((2*len(vertices)-1, 2), np.float_) steps[0::2, 0], steps[1::2, 0] = vertices[:, 0], vertices[:-1, 0] steps[0::2, 1], steps[1:-1:2, 1] = vertices[:, 1], vertices[1:, 1] path = Path(steps) path = path.transformed(self.get_transform()) self._lineFunc(renderer, gc, path, IdentityTransform()) def _draw_steps_post(self, renderer, gc, path, trans): vertices = self._xy steps = ma.zeros((2*len(vertices)-1, 2), np.float_) steps[::2, 0], steps[1:-1:2, 0] = vertices[:, 0], vertices[1:, 0] steps[0::2, 1], steps[1::2, 1] = vertices[:, 1], vertices[:-1, 1] path = Path(steps) path = path.transformed(self.get_transform()) self._lineFunc(renderer, gc, path, IdentityTransform()) def _draw_steps_mid(self, renderer, gc, path, trans): vertices = self._xy steps = ma.zeros((2*len(vertices), 2), np.float_) steps[1:-1:2, 0] = 0.5 * (vertices[:-1, 0] + vertices[1:, 0]) steps[2::2, 0] = 0.5 * (vertices[:-1, 0] + vertices[1:, 0]) steps[0, 0] = vertices[0, 0] steps[-1, 0] = vertices[-1, 0] steps[0::2, 1], steps[1::2, 1] = vertices[:, 1], vertices[:, 1] path = Path(steps) path = path.transformed(self.get_transform()) self._lineFunc(renderer, gc, path, IdentityTransform()) def _draw_nothing(self, *args, **kwargs): pass def _draw_solid(self, renderer, gc, path, trans): gc.set_linestyle('solid') renderer.draw_path(gc, path, trans) def _draw_dashed(self, renderer, gc, path, trans): gc.set_linestyle('dashed') if self._dashSeq is not None: gc.set_dashes(0, self._dashSeq) renderer.draw_path(gc, path, trans) def _draw_dash_dot(self, renderer, gc, path, trans): gc.set_linestyle('dashdot') renderer.draw_path(gc, path, trans) def _draw_dotted(self, renderer, gc, path, trans): gc.set_linestyle('dotted') renderer.draw_path(gc, path, trans) def _draw_point(self, renderer, gc, path, path_trans): w = renderer.points_to_pixels(self._markersize) * \ self._point_size_reduction * 0.5 gc.set_snap(renderer.points_to_pixels(self._markersize) > 3.0) rgbFace = self._get_rgb_face() transform = Affine2D().scale(w) renderer.draw_markers( gc, Path.unit_circle(), transform, path, path_trans, rgbFace) _draw_pixel_transform = Affine2D().translate(-0.5, -0.5) def _draw_pixel(self, renderer, gc, path, path_trans): rgbFace = self._get_rgb_face() gc.set_snap(False) renderer.draw_markers(gc, Path.unit_rectangle(), self._draw_pixel_transform, path, path_trans, rgbFace) def _draw_circle(self, renderer, gc, path, path_trans): w = renderer.points_to_pixels(self._markersize) * 0.5 gc.set_snap(renderer.points_to_pixels(self._markersize) > 3.0) rgbFace = self._get_rgb_face() transform = Affine2D().scale(w, w) renderer.draw_markers( gc, Path.unit_circle(), transform, path, path_trans, rgbFace) _triangle_path = Path([[0.0, 1.0], [-1.0, -1.0], [1.0, -1.0], [0.0, 1.0]]) def _draw_triangle_up(self, renderer, gc, path, path_trans): gc.set_snap(renderer.points_to_pixels(self._markersize) >= 5.0) offset = 0.5*renderer.points_to_pixels(self._markersize) transform = Affine2D().scale(offset, offset) rgbFace = self._get_rgb_face() renderer.draw_markers(gc, self._triangle_path, transform, path, path_trans, rgbFace) def _draw_triangle_down(self, renderer, gc, path, path_trans): gc.set_snap(renderer.points_to_pixels(self._markersize) >= 5.0) offset = 0.5*renderer.points_to_pixels(self._markersize) transform = Affine2D().scale(offset, -offset) rgbFace = self._get_rgb_face() renderer.draw_markers(gc, self._triangle_path, transform, path, path_trans, rgbFace) def _draw_triangle_left(self, renderer, gc, path, path_trans): gc.set_snap(renderer.points_to_pixels(self._markersize) >= 5.0) offset = 0.5*renderer.points_to_pixels(self._markersize) transform = Affine2D().scale(offset, offset).rotate_deg(90) rgbFace = self._get_rgb_face() renderer.draw_markers(gc, self._triangle_path, transform, path, path_trans, rgbFace) def _draw_triangle_right(self, renderer, gc, path, path_trans): gc.set_snap(renderer.points_to_pixels(self._markersize) >= 5.0) offset = 0.5*renderer.points_to_pixels(self._markersize) transform = Affine2D().scale(offset, offset).rotate_deg(-90) rgbFace = self._get_rgb_face() renderer.draw_markers(gc, self._triangle_path, transform, path, path_trans, rgbFace) def _draw_square(self, renderer, gc, path, path_trans): gc.set_snap(renderer.points_to_pixels(self._markersize) >= 2.0) side = renderer.points_to_pixels(self._markersize) transform = Affine2D().translate(-0.5, -0.5).scale(side) rgbFace = self._get_rgb_face() renderer.draw_markers(gc, Path.unit_rectangle(), transform, path, path_trans, rgbFace) def _draw_diamond(self, renderer, gc, path, path_trans): gc.set_snap(renderer.points_to_pixels(self._markersize) >= 5.0) side = renderer.points_to_pixels(self._markersize) transform = Affine2D().translate(-0.5, -0.5).rotate_deg(45).scale(side) rgbFace = self._get_rgb_face() renderer.draw_markers(gc, Path.unit_rectangle(), transform, path, path_trans, rgbFace) def _draw_thin_diamond(self, renderer, gc, path, path_trans): gc.set_snap(renderer.points_to_pixels(self._markersize) >= 3.0) offset = renderer.points_to_pixels(self._markersize) transform = Affine2D().translate(-0.5, -0.5) \ .rotate_deg(45).scale(offset * 0.6, offset) rgbFace = self._get_rgb_face() renderer.draw_markers(gc, Path.unit_rectangle(), transform, path, path_trans, rgbFace) def _draw_pentagon(self, renderer, gc, path, path_trans): gc.set_snap(renderer.points_to_pixels(self._markersize) >= 5.0) offset = 0.5 * renderer.points_to_pixels(self._markersize) transform = Affine2D().scale(offset) rgbFace = self._get_rgb_face() renderer.draw_markers(gc, Path.unit_regular_polygon(5), transform, path, path_trans, rgbFace) def _draw_star(self, renderer, gc, path, path_trans): gc.set_snap(renderer.points_to_pixels(self._markersize) >= 5.0) offset = 0.5 * renderer.points_to_pixels(self._markersize) transform = Affine2D().scale(offset) rgbFace = self._get_rgb_face() _starpath = Path.unit_regular_star(5, innerCircle=0.381966) renderer.draw_markers(gc, _starpath, transform, path, path_trans, rgbFace) def _draw_hexagon1(self, renderer, gc, path, path_trans): gc.set_snap(renderer.points_to_pixels(self._markersize) >= 5.0) offset = 0.5 * renderer.points_to_pixels(self._markersize) transform = Affine2D().scale(offset) rgbFace = self._get_rgb_face() renderer.draw_markers(gc, Path.unit_regular_polygon(6), transform, path, path_trans, rgbFace) def _draw_hexagon2(self, renderer, gc, path, path_trans): gc.set_snap(renderer.points_to_pixels(self._markersize) >= 5.0) offset = 0.5 * renderer.points_to_pixels(self._markersize) transform = Affine2D().scale(offset).rotate_deg(30) rgbFace = self._get_rgb_face() renderer.draw_markers(gc, Path.unit_regular_polygon(6), transform, path, path_trans, rgbFace) _line_marker_path = Path([[0.0, -1.0], [0.0, 1.0]]) def _draw_vline(self, renderer, gc, path, path_trans): gc.set_snap(renderer.points_to_pixels(self._markersize) >= 1.0) offset = 0.5*renderer.points_to_pixels(self._markersize) transform = Affine2D().scale(offset) renderer.draw_markers(gc, self._line_marker_path, transform, path, path_trans) def _draw_hline(self, renderer, gc, path, path_trans): gc.set_snap(renderer.points_to_pixels(self._markersize) >= 1.0) offset = 0.5*renderer.points_to_pixels(self._markersize) transform = Affine2D().scale(offset).rotate_deg(90) renderer.draw_markers(gc, self._line_marker_path, transform, path, path_trans) _tickhoriz_path = Path([[0.0, 0.0], [1.0, 0.0]]) def _draw_tickleft(self, renderer, gc, path, path_trans): gc.set_snap(renderer.points_to_pixels(self._markersize) >= 1.0) offset = renderer.points_to_pixels(self._markersize) marker_transform = Affine2D().scale(-offset, 1.0) renderer.draw_markers(gc, self._tickhoriz_path, marker_transform, path, path_trans) def _draw_tickright(self, renderer, gc, path, path_trans): gc.set_snap(renderer.points_to_pixels(self._markersize) >= 1.0) offset = renderer.points_to_pixels(self._markersize) marker_transform = Affine2D().scale(offset, 1.0) renderer.draw_markers(gc, self._tickhoriz_path, marker_transform, path, path_trans) _tickvert_path = Path([[-0.0, 0.0], [-0.0, 1.0]]) def _draw_tickup(self, renderer, gc, path, path_trans): gc.set_snap(renderer.points_to_pixels(self._markersize) >= 1.0) offset = renderer.points_to_pixels(self._markersize) marker_transform = Affine2D().scale(1.0, offset) renderer.draw_markers(gc, self._tickvert_path, marker_transform, path, path_trans) def _draw_tickdown(self, renderer, gc, path, path_trans): gc.set_snap(renderer.points_to_pixels(self._markersize) >= 1.0) offset = renderer.points_to_pixels(self._markersize) marker_transform = Affine2D().scale(1.0, -offset) renderer.draw_markers(gc, self._tickvert_path, marker_transform, path, path_trans) _plus_path = Path([[-1.0, 0.0], [1.0, 0.0], [0.0, -1.0], [0.0, 1.0]], [Path.MOVETO, Path.LINETO, Path.MOVETO, Path.LINETO]) def _draw_plus(self, renderer, gc, path, path_trans): gc.set_snap(renderer.points_to_pixels(self._markersize) >= 3.0) offset = 0.5*renderer.points_to_pixels(self._markersize) transform = Affine2D().scale(offset) renderer.draw_markers(gc, self._plus_path, transform, path, path_trans) _tri_path = Path([[0.0, 0.0], [0.0, -1.0], [0.0, 0.0], [0.8, 0.5], [0.0, 0.0], [-0.8, 0.5]], [Path.MOVETO, Path.LINETO, Path.MOVETO, Path.LINETO, Path.MOVETO, Path.LINETO]) def _draw_tri_down(self, renderer, gc, path, path_trans): gc.set_snap(renderer.points_to_pixels(self._markersize) >= 5.0) offset = 0.5*renderer.points_to_pixels(self._markersize) transform = Affine2D().scale(offset) renderer.draw_markers(gc, self._tri_path, transform, path, path_trans) def _draw_tri_up(self, renderer, gc, path, path_trans): gc.set_snap(renderer.points_to_pixels(self._markersize) >= 5.0) offset = 0.5*renderer.points_to_pixels(self._markersize) transform = Affine2D().scale(offset).rotate_deg(180) renderer.draw_markers(gc, self._tri_path, transform, path, path_trans) def _draw_tri_left(self, renderer, gc, path, path_trans): gc.set_snap(renderer.points_to_pixels(self._markersize) >= 5.0) offset = 0.5*renderer.points_to_pixels(self._markersize) transform = Affine2D().scale(offset).rotate_deg(90) renderer.draw_markers(gc, self._tri_path, transform, path, path_trans) def _draw_tri_right(self, renderer, gc, path, path_trans): gc.set_snap(renderer.points_to_pixels(self._markersize) >= 5.0) offset = 0.5*renderer.points_to_pixels(self._markersize) transform = Affine2D().scale(offset).rotate_deg(270) renderer.draw_markers(gc, self._tri_path, transform, path, path_trans) _caret_path = Path([[-1.0, 1.5], [0.0, 0.0], [1.0, 1.5]]) def _draw_caretdown(self, renderer, gc, path, path_trans): gc.set_snap(renderer.points_to_pixels(self._markersize) >= 3.0) offset = 0.5*renderer.points_to_pixels(self._markersize) transform = Affine2D().scale(offset) renderer.draw_markers(gc, self._caret_path, transform, path, path_trans) def _draw_caretup(self, renderer, gc, path, path_trans): gc.set_snap(renderer.points_to_pixels(self._markersize) >= 3.0) offset = 0.5*renderer.points_to_pixels(self._markersize) transform = Affine2D().scale(offset).rotate_deg(180) renderer.draw_markers(gc, self._caret_path, transform, path, path_trans) def _draw_caretleft(self, renderer, gc, path, path_trans): gc.set_snap(renderer.points_to_pixels(self._markersize) >= 3.0) offset = 0.5*renderer.points_to_pixels(self._markersize) transform = Affine2D().scale(offset).rotate_deg(270) renderer.draw_markers(gc, self._caret_path, transform, path, path_trans) def _draw_caretright(self, renderer, gc, path, path_trans): gc.set_snap(renderer.points_to_pixels(self._markersize) >= 3.0) offset = 0.5*renderer.points_to_pixels(self._markersize) transform = Affine2D().scale(offset).rotate_deg(90) renderer.draw_markers(gc, self._caret_path, transform, path, path_trans) _x_path = Path([[-1.0, -1.0], [1.0, 1.0], [-1.0, 1.0], [1.0, -1.0]], [Path.MOVETO, Path.LINETO, Path.MOVETO, Path.LINETO]) def _draw_x(self, renderer, gc, path, path_trans): gc.set_snap(renderer.points_to_pixels(self._markersize) >= 3.0) offset = 0.5*renderer.points_to_pixels(self._markersize) transform = Affine2D().scale(offset) renderer.draw_markers(gc, self._x_path, transform, path, path_trans) def update_from(self, other): 'copy properties from other to self' Artist.update_from(self, other) self._linestyle = other._linestyle self._linewidth = other._linewidth self._color = other._color self._markersize = other._markersize self._markerfacecolor = other._markerfacecolor self._markeredgecolor = other._markeredgecolor self._markeredgewidth = other._markeredgewidth self._dashSeq = other._dashSeq self._dashcapstyle = other._dashcapstyle self._dashjoinstyle = other._dashjoinstyle self._solidcapstyle = other._solidcapstyle self._solidjoinstyle = other._solidjoinstyle self._linestyle = other._linestyle self._marker = other._marker self._drawstyle = other._drawstyle def _get_rgb_face(self): facecolor = self.get_markerfacecolor() if is_string_like(facecolor) and facecolor.lower()=='none': rgbFace = None else: rgbFace = colorConverter.to_rgb(facecolor) return rgbFace # some aliases.... def set_aa(self, val): 'alias for set_antialiased' self.set_antialiased(val) def set_c(self, val): 'alias for set_color' self.set_color(val) def set_ls(self, val): 'alias for set_linestyle' self.set_linestyle(val) def set_lw(self, val): 'alias for set_linewidth' self.set_linewidth(val) def set_mec(self, val): 'alias for set_markeredgecolor' self.set_markeredgecolor(val) def set_mew(self, val): 'alias for set_markeredgewidth' self.set_markeredgewidth(val) def set_mfc(self, val): 'alias for set_markerfacecolor' self.set_markerfacecolor(val) def set_ms(self, val): 'alias for set_markersize' self.set_markersize(val) def get_aa(self): 'alias for get_antialiased' return self.get_antialiased() def get_c(self): 'alias for get_color' return self.get_color() def get_ls(self): 'alias for get_linestyle' return self.get_linestyle() def get_lw(self): 'alias for get_linewidth' return self.get_linewidth() def get_mec(self): 'alias for get_markeredgecolor' return self.get_markeredgecolor() def get_mew(self): 'alias for get_markeredgewidth' return self.get_markeredgewidth() def get_mfc(self): 'alias for get_markerfacecolor' return self.get_markerfacecolor() def get_ms(self): 'alias for get_markersize' return self.get_markersize() def set_dash_joinstyle(self, s): """ Set the join style for dashed linestyles ACCEPTS: ['miter' | 'round' | 'bevel'] """ s = s.lower() if s not in self.validJoin: raise ValueError('set_dash_joinstyle passed "%s";\n' % (s,) + 'valid joinstyles are %s' % (self.validJoin,)) self._dashjoinstyle = s def set_solid_joinstyle(self, s): """ Set the join style for solid linestyles ACCEPTS: ['miter' | 'round' | 'bevel'] """ s = s.lower() if s not in self.validJoin: raise ValueError('set_solid_joinstyle passed "%s";\n' % (s,) + 'valid joinstyles are %s' % (self.validJoin,)) self._solidjoinstyle = s def get_dash_joinstyle(self): """ Get the join style for dashed linestyles """ return self._dashjoinstyle def get_solid_joinstyle(self): """ Get the join style for solid linestyles """ return self._solidjoinstyle def set_dash_capstyle(self, s): """ Set the cap style for dashed linestyles ACCEPTS: ['butt' | 'round' | 'projecting'] """ s = s.lower() if s not in self.validCap: raise ValueError('set_dash_capstyle passed "%s";\n' % (s,) + 'valid capstyles are %s' % (self.validCap,)) self._dashcapstyle = s def set_solid_capstyle(self, s): """ Set the cap style for solid linestyles ACCEPTS: ['butt' | 'round' | 'projecting'] """ s = s.lower() if s not in self.validCap: raise ValueError('set_solid_capstyle passed "%s";\n' % (s,) + 'valid capstyles are %s' % (self.validCap,)) self._solidcapstyle = s def get_dash_capstyle(self): """ Get the cap style for dashed linestyles """ return self._dashcapstyle def get_solid_capstyle(self): """ Get the cap style for solid linestyles """ return self._solidcapstyle def is_dashed(self): 'return True if line is dashstyle' return self._linestyle in ('--', '-.', ':') class VertexSelector: """ Manage the callbacks to maintain a list of selected vertices for :class:`matplotlib.lines.Line2D`. Derived classes should override :meth:`~matplotlib.lines.VertexSelector.process_selected` to do something with the picks. Here is an example which highlights the selected verts with red circles:: import numpy as np import matplotlib.pyplot as plt import matplotlib.lines as lines class HighlightSelected(lines.VertexSelector): def __init__(self, line, fmt='ro', **kwargs): lines.VertexSelector.__init__(self, line) self.markers, = self.axes.plot([], [], fmt, **kwargs) def process_selected(self, ind, xs, ys): self.markers.set_data(xs, ys) self.canvas.draw() fig = plt.figure() ax = fig.add_subplot(111) x, y = np.random.rand(2, 30) line, = ax.plot(x, y, 'bs-', picker=5) selector = HighlightSelected(line) plt.show() """ def __init__(self, line): """ Initialize the class with a :class:`matplotlib.lines.Line2D` instance. The line should already be added to some :class:`matplotlib.axes.Axes` instance and should have the picker property set. """ if not hasattr(line, 'axes'): raise RuntimeError('You must first add the line to the Axes') if line.get_picker() is None: raise RuntimeError('You must first set the picker property of the line') self.axes = line.axes self.line = line self.canvas = self.axes.figure.canvas self.cid = self.canvas.mpl_connect('pick_event', self.onpick) self.ind = set() def process_selected(self, ind, xs, ys): """ Default "do nothing" implementation of the :meth:`process_selected` method. *ind* are the indices of the selected vertices. *xs* and *ys* are the coordinates of the selected vertices. """ pass def onpick(self, event): 'When the line is picked, update the set of selected indicies.' if event.artist is not self.line: return for i in event.ind: if i in self.ind: self.ind.remove(i) else: self.ind.add(i) ind = list(self.ind) ind.sort() xdata, ydata = self.line.get_data() self.process_selected(ind, xdata[ind], ydata[ind]) lineStyles = Line2D._lineStyles lineMarkers = Line2D._markers drawStyles = Line2D.drawStyles artist.kwdocd['Line2D'] = artist.kwdoc(Line2D) # You can not set the docstring of an instancemethod, # but you can on the underlying function. Go figure. Line2D.__init__.im_func.__doc__ = dedent(Line2D.__init__.__doc__) % artist.kwdocd
agpl-3.0
khkaminska/bokeh
bokeh/_legacy_charts/builder/tests/test_histogram_builder.py
6
4247
""" This is the Bokeh charts testing interface. """ #----------------------------------------------------------------------------- # Copyright (c) 2012 - 2014, Continuum Analytics, Inc. All rights reserved. # # Powered by the Bokeh Development Team. # # The full license is in the file LICENSE.txt, distributed with this software. #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Imports #----------------------------------------------------------------------------- from __future__ import absolute_import from collections import OrderedDict import unittest from mock import patch import numpy as np from numpy.testing import assert_array_equal, assert_array_almost_equal import pandas as pd from bokeh._legacy_charts import Histogram from ._utils import create_chart #----------------------------------------------------------------------------- # Classes and functions #----------------------------------------------------------------------------- class TestHistogram(unittest.TestCase): def test_supported_input(self): normal = [1, 2, 3, 1] lognormal = [5, 4, 4, 1] xyvalues = OrderedDict(normal=normal, lognormal=lognormal) xyvaluesdf = pd.DataFrame(xyvalues) exptected = dict( leftnormal=[1., 1.4, 1.8, 2.2, 2.6], rightnormal=[1.4, 1.8, 2.2, 2.6, 3.], lognormal=[5, 4, 4, 1], edgeslognormal=[1., 1.8, 2.6, 3.4, 4.2, 5.], bottomlognormal=[0, 0, 0, 0, 0], bottomnormal=[0, 0, 0, 0, 0], edgesnormal=[1., 1.4, 1.8, 2.2, 2.6, 3.], histlognormal=[0.3125, 0., 0., 0.625, 0.3125], leftlognormal=[1., 1.8, 2.6, 3.4, 4.2], normal=[1, 2, 3, 1], rightlognormal=[1.8, 2.6, 3.4, 4.2, 5.], histnormal=[1.25, 0., 0.625, 0., 0.625], ) for i, _xy in enumerate([xyvalues, xyvaluesdf]): hm = create_chart(Histogram, _xy, bins=5) builder = hm._builders[0] self.assertEqual(sorted(builder._groups), sorted(list(xyvalues.keys()))) for key, expected_v in exptected.items(): assert_array_almost_equal(builder._data[key], expected_v, decimal=2) lvalues = [[1, 2, 3, 1], [5, 4, 4, 1]] for i, _xy in enumerate([lvalues, np.array(lvalues)]): hm = create_chart(Histogram, _xy, bins=5) builder = hm._builders[0] self.assertEqual(builder._groups, ['0', '1']) for key, expected_v in exptected.items(): # replace the keys because we have 0, 1 instead of normal and lognormal key = key.replace('lognormal', '1').replace('normal', '0') assert_array_almost_equal(builder._data[key], expected_v, decimal=2) @patch('bokeh._legacy_charts.builder.histogram_builder.np.histogram', return_value=([1, 3, 4], [2.4, 4])) def test_histogram_params(self, histogram_mock): inputs = [[5, 0, 0.5, True], [3, 1, 0, False]] normal = [1, 2, 3, 1] lognormal = [5, 4, 4, 1] xyvalues = OrderedDict() xyvalues['normal'] = normal xyvalues['lognormal'] = lognormal for (bins, mu, sigma, dens) in inputs: histogram_mock.reset_mock() kws = dict(bins=bins, mu=mu, sigma=sigma, density=dens) hm = create_chart(Histogram, xyvalues, compute_values=False, **kws) builder = hm._builders[0] # ensure all class attributes have been correctly set for key, value in kws.items(): self.assertEqual(getattr(builder, key), value) builder._process_data() # ensure we are calling numpy.histogram with the right args calls = histogram_mock.call_args_list assert_array_equal(calls[0][0][0], np.array([1, 2, 3, 1])) assert_array_equal(calls[1][0][0], np.array([5, 4, 4, 1])) self.assertEqual(calls[0][1]['bins'], bins) self.assertEqual(calls[1][1]['bins'], bins) self.assertEqual(calls[0][1]['density'], dens) self.assertEqual(calls[1][1]['density'], dens)
bsd-3-clause
arrow-/simQuad
ground_station/gyro_scope.py
2
5471
''' -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= IMPORTANT!! It is suggested you run this script with mpu_level2.ino first to see and understand its operation. Basically this script EXPECTS: Arduino is providing space separated gyro readings @ ~5ms intervals (via MPU Interrupt). * Each serial packet must be ASCII and look like: [x_gyro]<space>[y_gyro]<space>[z_gyro]<newline> + You need to specify correct Serial port + You need to set the Y-limits of the plot axis. + You need to use correct value of "dt". + You need to set the correct conversion factor for Gyro readings. Mode 0 1 2 3 Range +-250 +-500 +-1000 +-2000 Conv. 131 65.5 32.75 16.375 AND it DELIVERS: * 3 axis loss-less Gyro readings plot (almost real time). * 3D visualisation of current orientation based on gyro vals If you want to just plot data in ~real time use {oscilloscope.py}. -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= ''' import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D import numpy as np import serial, time def rotate(v, axis, theta): ''' Rotates "v" vector about "axis" vector by "theta" radians, returns vector ''' c = np.cos(theta) s = np.sin(theta) t = 1-c mat = np.array([ [c+axis[0]*axis[0]*t, axis[0]*axis[1]*t-axis[2]*s, axis[0]*axis[2]*t+axis[1]*s], [axis[0]*axis[1]*t+axis[2]*s, c+axis[1]*axis[1]*t, axis[1]*axis[2]*t-axis[0]*s], [axis[0]*axis[2]*t-axis[1]*s, axis[1]*axis[2]*t+axis[0]*s, c+axis[2]*axis[2]*t] ]) return mat.dot(v.T) def calcPose(omega): ''' Helper function. Finds the "d"-theta, then calls rotate. Omega must be in ** degrees per second ** ''' theta = omega*dt*np.pi/180 #theta is "d-theta" in radians rpy[1] = rotate(rpy[1], rpy[0], theta[0]) rpy[0] = rotate(rpy[0], rpy[1], theta[1]) rpy[2] = np.cross(rpy[0], rpy[1]) rpy[1] = rotate(rpy[1], rpy[2], theta[2]) rpy[0] = rotate(rpy[0], rpy[2], theta[2]) plt.ion() # SET CORRECT PORT NUM HERE arduino = serial.Serial('/dev/ttyACM0', 57600) # dt is found experimentally. Contact Ananya for details. Basically this the time between # 2 MPU(gyro) interrupts. The np.pi/180 converts deg/sec to rad/sec. # SET CORRECT dt HERE. TIME IN SECONDS BETWEEN TWO SENSOR PACKETS AS RECVD. BY ARDUINO. dt = .005 # 5msec # rpy is original orientation. These vectors are updated by calcPose() rpy = np.eye(3) fig = plt.figure(figsize=(16,6)) axes = fig.add_subplot(121) a3d = fig.add_subplot(122, projection='3d') a3d.set_xlim(-1.2,1.2) a3d.set_ylim(-1.2,1.2) a3d.set_zlim(-1.2,1.2) a3d.scatter([0], [0], [0], s=40) r, = a3d.plot([0,1], [0,0], [0,0], lw=2, c='black') p, = a3d.plot([0,0], [0,1], [0,0], lw=2, c='red') a3d.plot([0,2], [0,0], [0,0], c='cyan') a3d.plot([0,0], [0,2], [0,0], c='brown') a3d.plot([0,0], [0,0], [0,2], c='green') a3d.plot([0,-2], [0,0], [0,0], ls='--', c='cyan') a3d.plot([0,0], [0,-2], [0,0], ls='--', c='brown') a3d.plot([0,0], [0,0], [0,-2], ls='--', c='green') num_samples = 0 buff = 0 # "buff" counts till 50. Every time it reaches fifty, plt.draw() is called, since # plt.draw() is a costly operation. Normal list append and pose calculations are fast. # So, do those diligently, for every sample, but update display # rarely (while ensuring smooth animation). gyro_x = [0] gyro_y = [0] # gyro data lists. I use them like queues. gyro_z = [0] t = [0] # scopes is a list of 3 matplotlib.Line_2D objects. scopes = [axes.plot(t, gyro_x, label=r'$\omega_x$')[0], axes.plot(t, gyro_y, label=r'$\omega_y$')[0], axes.plot(t, gyro_z, label=r'$\omega_z$')[0]] axes.legend(prop=dict(size=14)) plt.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3, ncol=3, mode="expand", borderaxespad=0.) axes.set_ylim(-505, 505) # SET CORRECT Y-LIM HERE conversion = 65.5 #Gyro 500 SET CORRECT CONV FACTOR HERE # Refer datasheet. Convert ADC result into a Physical measurement. # If you don't understand this, pls. leave project. print 'Me Ready' time.sleep(2) #Handshake MAY BE REDUNDANT print arduino.inWaiting() arduino.flushInput() arduino.write('e') print 'Sent Request...' data = [0]*6 while True: try: num = arduino.read(12) num = [ord(x) for x in num] except: print 'Serial error!' raise RuntimeError _ind=0 #this var is connected to for loop below!! for i in range(0,12, 2): data[_ind] = (num[i]<<8)|num[i+1] if data[_ind] & 0x8000: data[_ind] = data[_ind] - 0x10000 _ind += 1 #print data[3:] datas = np.array([float(data[3])/conversion, float(data[4])/conversion, float(data[5])/conversion]) gyro_x.append(datas[0]) gyro_y.append(datas[1]) gyro_z.append(datas[2]) num_samples += 1 t.append(num_samples) calcPose(datas) #This function updates the global variable: "rpy" if num_samples>200: del t[0] del gyro_x[0] del gyro_y[0] del gyro_z[0] axes.set_xlim(t[0], num_samples) scopes[0].set_data(t, gyro_x) scopes[1].set_data(t, gyro_y) scopes[2].set_data(t, gyro_z) # pose matrix is just an easier way of giving input to the .set_data() # and .set_3d_properties() methods. You see, line needs 2 (end) points: # the rpy entries AND THE ORIGIN. pose matrix does just that: specifies # BOTH end points. pose = np.array([np.array([np.zeros(3), rpy[0]]).T, np.array([np.zeros(3), rpy[1]]).T, np.array([np.zeros(3), rpy[2]]).T]) r.set_data(pose[0][:2]) r.set_3d_properties(pose[0][2]) p.set_data(pose[1][:2]) p.set_3d_properties(pose[1][2]) if buff>25: buff=0 plt.draw() buff += 1 plt.ioff() plt.show()
gpl-2.0
pulinagrawal/nupic
external/linux32/lib/python2.6/site-packages/matplotlib/projections/__init__.py
69
2179
from geo import AitoffAxes, HammerAxes, LambertAxes from polar import PolarAxes from matplotlib import axes class ProjectionRegistry(object): """ Manages the set of projections available to the system. """ def __init__(self): self._all_projection_types = {} def register(self, *projections): """ Register a new set of projection(s). """ for projection in projections: name = projection.name self._all_projection_types[name] = projection def get_projection_class(self, name): """ Get a projection class from its *name*. """ return self._all_projection_types[name] def get_projection_names(self): """ Get a list of the names of all projections currently registered. """ names = self._all_projection_types.keys() names.sort() return names projection_registry = ProjectionRegistry() projection_registry.register( axes.Axes, PolarAxes, AitoffAxes, HammerAxes, LambertAxes) def register_projection(cls): projection_registry.register(cls) def get_projection_class(projection=None): """ Get a projection class from its name. If *projection* is None, a standard rectilinear projection is returned. """ if projection is None: projection = 'rectilinear' try: return projection_registry.get_projection_class(projection) except KeyError: raise ValueError("Unknown projection '%s'" % projection) def projection_factory(projection, figure, rect, **kwargs): """ Get a new projection instance. *projection* is a projection name. *figure* is a figure to add the axes to. *rect* is a :class:`~matplotlib.transforms.Bbox` object specifying the location of the axes within the figure. Any other kwargs are passed along to the specific projection constructor being used. """ return get_projection_class(projection)(figure, rect, **kwargs) def get_projection_names(): """ Get a list of acceptable projection names. """ return projection_registry.get_projection_names()
agpl-3.0
yarikoptic/pystatsmodels
statsmodels/graphics/tests/test_functional.py
3
2815
import numpy as np from numpy.testing import dec, assert_equal, assert_almost_equal from statsmodels.graphics.functional import \ banddepth, fboxplot, rainbowplot try: import matplotlib.pyplot as plt import matplotlib if matplotlib.__version__ < '1': raise have_matplotlib = True except: have_matplotlib = False def test_banddepth_BD2(): xx = np.arange(500) / 150. y1 = 1 + 0.5 * np.sin(xx) y2 = 0.3 + np.sin(xx + np.pi/6) y3 = -0.5 + np.sin(xx + np.pi/6) y4 = -1 + 0.3 * np.cos(xx + np.pi/6) data = np.asarray([y1, y2, y3, y4]) depth = banddepth(data, method='BD2') expected_depth = [0.5, 5./6, 5./6, 0.5] assert_almost_equal(depth, expected_depth) ## Plot to visualize why we expect this output #fig = plt.figure() #ax = fig.add_subplot(111) #for ii, yy in enumerate([y1, y2, y3, y4]): # ax.plot(xx, yy, label="y%s" % ii) #ax.legend() #plt.show() def test_banddepth_MBD(): xx = np.arange(5001) / 5000. y1 = np.zeros(xx.shape) y2 = 2 * xx - 1 y3 = np.ones(xx.shape) * 0.5 y4 = np.ones(xx.shape) * -0.25 data = np.asarray([y1, y2, y3, y4]) depth = banddepth(data, method='MBD') expected_depth = [5./6, (2*(0.75-3./8)+3)/6, 3.5/6, (2*3./8+3)/6] assert_almost_equal(depth, expected_depth, decimal=4) @dec.skipif(not have_matplotlib) def test_fboxplot_rainbowplot(): """Test fboxplot and rainbowplot together, is much faster.""" def harmfunc(t): """Test function, combination of a few harmonic terms.""" # Constant, 0 with p=0.9, 1 with p=1 - for creating outliers ci = int(np.random.random() > 0.9) a1i = np.random.random() * 0.05 a2i = np.random.random() * 0.05 b1i = (0.15 - 0.1) * np.random.random() + 0.1 b2i = (0.15 - 0.1) * np.random.random() + 0.1 func = (1 - ci) * (a1i * np.sin(t) + a2i * np.cos(t)) + \ ci * (b1i * np.sin(t) + b2i * np.cos(t)) return func np.random.seed(1234567) # Some basic test data, Model 6 from Sun and Genton. t = np.linspace(0, 2 * np.pi, 250) data = [] for ii in range(20): data.append(harmfunc(t)) # fboxplot test fig = plt.figure() ax = fig.add_subplot(111) _, depth, ix_depth, ix_outliers = fboxplot(data, wfactor=2, ax=ax) ix_expected = np.array([13, 4, 15, 19, 8, 6, 3, 16, 9, 7, 1, 5, 2, 12, 17, 11, 14, 10, 0, 18]) assert_equal(ix_depth, ix_expected) ix_expected2 = np.array([2, 11, 17, 18]) assert_equal(ix_outliers, ix_expected2) plt.close(fig) # rainbowplot test (re-uses depth variable) xdata = np.arange(data[0].size) fig = rainbowplot(data, xdata=xdata, depth=depth, cmap=plt.cm.rainbow) plt.close(fig)
bsd-3-clause
ammarkhann/FinalSeniorCode
lib/python2.7/site-packages/pandas/core/reshape/merge.py
3
53839
""" SQL-style merge routines """ import copy import warnings import string import numpy as np from pandas.compat import range, lzip, zip, map, filter import pandas.compat as compat from pandas import (Categorical, Series, DataFrame, Index, MultiIndex, Timedelta) from pandas.core.frame import _merge_doc from pandas.core.dtypes.common import ( is_datetime64tz_dtype, is_datetime64_dtype, needs_i8_conversion, is_int64_dtype, is_categorical_dtype, is_integer_dtype, is_float_dtype, is_numeric_dtype, is_integer, is_int_or_datetime_dtype, is_dtype_equal, is_bool, is_list_like, _ensure_int64, _ensure_float64, _ensure_object, _get_dtype) from pandas.core.dtypes.missing import na_value_for_dtype from pandas.core.internals import (items_overlap_with_suffix, concatenate_block_managers) from pandas.util._decorators import Appender, Substitution from pandas.core.sorting import is_int64_overflow_possible import pandas.core.algorithms as algos import pandas.core.common as com from pandas._libs import hashtable as libhashtable, join as libjoin, lib @Substitution('\nleft : DataFrame') @Appender(_merge_doc, indents=0) def merge(left, right, how='inner', on=None, left_on=None, right_on=None, left_index=False, right_index=False, sort=False, suffixes=('_x', '_y'), copy=True, indicator=False): op = _MergeOperation(left, right, how=how, on=on, left_on=left_on, right_on=right_on, left_index=left_index, right_index=right_index, sort=sort, suffixes=suffixes, copy=copy, indicator=indicator) return op.get_result() if __debug__: merge.__doc__ = _merge_doc % '\nleft : DataFrame' class MergeError(ValueError): pass def _groupby_and_merge(by, on, left, right, _merge_pieces, check_duplicates=True): """ groupby & merge; we are always performing a left-by type operation Parameters ---------- by: field to group on: duplicates field left: left frame right: right frame _merge_pieces: function for merging check_duplicates: boolean, default True should we check & clean duplicates """ pieces = [] if not isinstance(by, (list, tuple)): by = [by] lby = left.groupby(by, sort=False) # if we can groupby the rhs # then we can get vastly better perf try: # we will check & remove duplicates if indicated if check_duplicates: if on is None: on = [] elif not isinstance(on, (list, tuple)): on = [on] if right.duplicated(by + on).any(): right = right.drop_duplicates(by + on, keep='last') rby = right.groupby(by, sort=False) except KeyError: rby = None for key, lhs in lby: if rby is None: rhs = right else: try: rhs = right.take(rby.indices[key]) except KeyError: # key doesn't exist in left lcols = lhs.columns.tolist() cols = lcols + [r for r in right.columns if r not in set(lcols)] merged = lhs.reindex(columns=cols) merged.index = range(len(merged)) pieces.append(merged) continue merged = _merge_pieces(lhs, rhs) # make sure join keys are in the merged # TODO, should _merge_pieces do this? for k in by: try: if k in merged: merged[k] = key except: pass pieces.append(merged) # preserve the original order # if we have a missing piece this can be reset from pandas.core.reshape.concat import concat result = concat(pieces, ignore_index=True) result = result.reindex(columns=pieces[0].columns, copy=False) return result, lby def ordered_merge(left, right, on=None, left_on=None, right_on=None, left_by=None, right_by=None, fill_method=None, suffixes=('_x', '_y')): warnings.warn("ordered_merge is deprecated and replaced by merge_ordered", FutureWarning, stacklevel=2) return merge_ordered(left, right, on=on, left_on=left_on, right_on=right_on, left_by=left_by, right_by=right_by, fill_method=fill_method, suffixes=suffixes) def merge_ordered(left, right, on=None, left_on=None, right_on=None, left_by=None, right_by=None, fill_method=None, suffixes=('_x', '_y'), how='outer'): """Perform merge with optional filling/interpolation designed for ordered data like time series data. Optionally perform group-wise merge (see examples) Parameters ---------- left : DataFrame right : DataFrame on : label or list Field names to join on. Must be found in both DataFrames. left_on : label or list, or array-like Field names to join on in left DataFrame. Can be a vector or list of vectors of the length of the DataFrame to use a particular vector as the join key instead of columns right_on : label or list, or array-like Field names to join on in right DataFrame or vector/list of vectors per left_on docs left_by : column name or list of column names Group left DataFrame by group columns and merge piece by piece with right DataFrame right_by : column name or list of column names Group right DataFrame by group columns and merge piece by piece with left DataFrame fill_method : {'ffill', None}, default None Interpolation method for data suffixes : 2-length sequence (tuple, list, ...) Suffix to apply to overlapping column names in the left and right side, respectively how : {'left', 'right', 'outer', 'inner'}, default 'outer' * left: use only keys from left frame (SQL: left outer join) * right: use only keys from right frame (SQL: right outer join) * outer: use union of keys from both frames (SQL: full outer join) * inner: use intersection of keys from both frames (SQL: inner join) .. versionadded:: 0.19.0 Examples -------- >>> A >>> B key lvalue group key rvalue 0 a 1 a 0 b 1 1 c 2 a 1 c 2 2 e 3 a 2 d 3 3 a 1 b 4 c 2 b 5 e 3 b >>> ordered_merge(A, B, fill_method='ffill', left_by='group') key lvalue group rvalue 0 a 1 a NaN 1 b 1 a 1 2 c 2 a 2 3 d 2 a 3 4 e 3 a 3 5 f 3 a 4 6 a 1 b NaN 7 b 1 b 1 8 c 2 b 2 9 d 2 b 3 10 e 3 b 3 11 f 3 b 4 Returns ------- merged : DataFrame The output type will the be same as 'left', if it is a subclass of DataFrame. See also -------- merge merge_asof """ def _merger(x, y): # perform the ordered merge operation op = _OrderedMerge(x, y, on=on, left_on=left_on, right_on=right_on, suffixes=suffixes, fill_method=fill_method, how=how) return op.get_result() if left_by is not None and right_by is not None: raise ValueError('Can only group either left or right frames') elif left_by is not None: result, _ = _groupby_and_merge(left_by, on, left, right, lambda x, y: _merger(x, y), check_duplicates=False) elif right_by is not None: result, _ = _groupby_and_merge(right_by, on, right, left, lambda x, y: _merger(y, x), check_duplicates=False) else: result = _merger(left, right) return result ordered_merge.__doc__ = merge_ordered.__doc__ def merge_asof(left, right, on=None, left_on=None, right_on=None, left_index=False, right_index=False, by=None, left_by=None, right_by=None, suffixes=('_x', '_y'), tolerance=None, allow_exact_matches=True, direction='backward'): """Perform an asof merge. This is similar to a left-join except that we match on nearest key rather than equal keys. Both DataFrames must be sorted by the key. For each row in the left DataFrame: - A "backward" search selects the last row in the right DataFrame whose 'on' key is less than or equal to the left's key. - A "forward" search selects the first row in the right DataFrame whose 'on' key is greater than or equal to the left's key. - A "nearest" search selects the row in the right DataFrame whose 'on' key is closest in absolute distance to the left's key. The default is "backward" and is compatible in versions below 0.20.0. The direction parameter was added in version 0.20.0 and introduces "forward" and "nearest". Optionally match on equivalent keys with 'by' before searching with 'on'. .. versionadded:: 0.19.0 Parameters ---------- left : DataFrame right : DataFrame on : label Field name to join on. Must be found in both DataFrames. The data MUST be ordered. Furthermore this must be a numeric column, such as datetimelike, integer, or float. On or left_on/right_on must be given. left_on : label Field name to join on in left DataFrame. right_on : label Field name to join on in right DataFrame. left_index : boolean Use the index of the left DataFrame as the join key. .. versionadded:: 0.19.2 right_index : boolean Use the index of the right DataFrame as the join key. .. versionadded:: 0.19.2 by : column name or list of column names Match on these columns before performing merge operation. left_by : column name Field names to match on in the left DataFrame. .. versionadded:: 0.19.2 right_by : column name Field names to match on in the right DataFrame. .. versionadded:: 0.19.2 suffixes : 2-length sequence (tuple, list, ...) Suffix to apply to overlapping column names in the left and right side, respectively. tolerance : integer or Timedelta, optional, default None Select asof tolerance within this range; must be compatible with the merge index. allow_exact_matches : boolean, default True - If True, allow matching with the same 'on' value (i.e. less-than-or-equal-to / greater-than-or-equal-to) - If False, don't match the same 'on' value (i.e., stricly less-than / strictly greater-than) direction : 'backward' (default), 'forward', or 'nearest' Whether to search for prior, subsequent, or closest matches. .. versionadded:: 0.20.0 Returns ------- merged : DataFrame Examples -------- >>> left a left_val 0 1 a 1 5 b 2 10 c >>> right a right_val 0 1 1 1 2 2 2 3 3 3 6 6 4 7 7 >>> pd.merge_asof(left, right, on='a') a left_val right_val 0 1 a 1 1 5 b 3 2 10 c 7 >>> pd.merge_asof(left, right, on='a', allow_exact_matches=False) a left_val right_val 0 1 a NaN 1 5 b 3.0 2 10 c 7.0 >>> pd.merge_asof(left, right, on='a', direction='forward') a left_val right_val 0 1 a 1.0 1 5 b 6.0 2 10 c NaN >>> pd.merge_asof(left, right, on='a', direction='nearest') a left_val right_val 0 1 a 1 1 5 b 6 2 10 c 7 We can use indexed DataFrames as well. >>> left left_val 1 a 5 b 10 c >>> right right_val 1 1 2 2 3 3 6 6 7 7 >>> pd.merge_asof(left, right, left_index=True, right_index=True) left_val right_val 1 a 1 5 b 3 10 c 7 Here is a real-world times-series example >>> quotes time ticker bid ask 0 2016-05-25 13:30:00.023 GOOG 720.50 720.93 1 2016-05-25 13:30:00.023 MSFT 51.95 51.96 2 2016-05-25 13:30:00.030 MSFT 51.97 51.98 3 2016-05-25 13:30:00.041 MSFT 51.99 52.00 4 2016-05-25 13:30:00.048 GOOG 720.50 720.93 5 2016-05-25 13:30:00.049 AAPL 97.99 98.01 6 2016-05-25 13:30:00.072 GOOG 720.50 720.88 7 2016-05-25 13:30:00.075 MSFT 52.01 52.03 >>> trades time ticker price quantity 0 2016-05-25 13:30:00.023 MSFT 51.95 75 1 2016-05-25 13:30:00.038 MSFT 51.95 155 2 2016-05-25 13:30:00.048 GOOG 720.77 100 3 2016-05-25 13:30:00.048 GOOG 720.92 100 4 2016-05-25 13:30:00.048 AAPL 98.00 100 By default we are taking the asof of the quotes >>> pd.merge_asof(trades, quotes, ... on='time', ... by='ticker') time ticker price quantity bid ask 0 2016-05-25 13:30:00.023 MSFT 51.95 75 51.95 51.96 1 2016-05-25 13:30:00.038 MSFT 51.95 155 51.97 51.98 2 2016-05-25 13:30:00.048 GOOG 720.77 100 720.50 720.93 3 2016-05-25 13:30:00.048 GOOG 720.92 100 720.50 720.93 4 2016-05-25 13:30:00.048 AAPL 98.00 100 NaN NaN We only asof within 2ms betwen the quote time and the trade time >>> pd.merge_asof(trades, quotes, ... on='time', ... by='ticker', ... tolerance=pd.Timedelta('2ms')) time ticker price quantity bid ask 0 2016-05-25 13:30:00.023 MSFT 51.95 75 51.95 51.96 1 2016-05-25 13:30:00.038 MSFT 51.95 155 NaN NaN 2 2016-05-25 13:30:00.048 GOOG 720.77 100 720.50 720.93 3 2016-05-25 13:30:00.048 GOOG 720.92 100 720.50 720.93 4 2016-05-25 13:30:00.048 AAPL 98.00 100 NaN NaN We only asof within 10ms betwen the quote time and the trade time and we exclude exact matches on time. However *prior* data will propogate forward >>> pd.merge_asof(trades, quotes, ... on='time', ... by='ticker', ... tolerance=pd.Timedelta('10ms'), ... allow_exact_matches=False) time ticker price quantity bid ask 0 2016-05-25 13:30:00.023 MSFT 51.95 75 NaN NaN 1 2016-05-25 13:30:00.038 MSFT 51.95 155 51.97 51.98 2 2016-05-25 13:30:00.048 GOOG 720.77 100 720.50 720.93 3 2016-05-25 13:30:00.048 GOOG 720.92 100 720.50 720.93 4 2016-05-25 13:30:00.048 AAPL 98.00 100 NaN NaN See also -------- merge merge_ordered """ op = _AsOfMerge(left, right, on=on, left_on=left_on, right_on=right_on, left_index=left_index, right_index=right_index, by=by, left_by=left_by, right_by=right_by, suffixes=suffixes, how='asof', tolerance=tolerance, allow_exact_matches=allow_exact_matches, direction=direction) return op.get_result() # TODO: transformations?? # TODO: only copy DataFrames when modification necessary class _MergeOperation(object): """ Perform a database (SQL) merge operation between two DataFrame objects using either columns as keys or their row indexes """ _merge_type = 'merge' def __init__(self, left, right, how='inner', on=None, left_on=None, right_on=None, axis=1, left_index=False, right_index=False, sort=True, suffixes=('_x', '_y'), copy=True, indicator=False): self.left = self.orig_left = left self.right = self.orig_right = right self.how = how self.axis = axis self.on = com._maybe_make_list(on) self.left_on = com._maybe_make_list(left_on) self.right_on = com._maybe_make_list(right_on) self.copy = copy self.suffixes = suffixes self.sort = sort self.left_index = left_index self.right_index = right_index self.indicator = indicator if isinstance(self.indicator, compat.string_types): self.indicator_name = self.indicator elif isinstance(self.indicator, bool): self.indicator_name = '_merge' if self.indicator else None else: raise ValueError( 'indicator option can only accept boolean or string arguments') if not isinstance(left, DataFrame): raise ValueError( 'can not merge DataFrame with instance of ' 'type {0}'.format(type(left))) if not isinstance(right, DataFrame): raise ValueError( 'can not merge DataFrame with instance of ' 'type {0}'.format(type(right))) if not is_bool(left_index): raise ValueError( 'left_index parameter must be of type bool, not ' '{0}'.format(type(left_index))) if not is_bool(right_index): raise ValueError( 'right_index parameter must be of type bool, not ' '{0}'.format(type(right_index))) # warn user when merging between different levels if left.columns.nlevels != right.columns.nlevels: msg = ('merging between different levels can give an unintended ' 'result ({0} levels on the left, {1} on the right)') msg = msg.format(left.columns.nlevels, right.columns.nlevels) warnings.warn(msg, UserWarning) self._validate_specification() # note this function has side effects (self.left_join_keys, self.right_join_keys, self.join_names) = self._get_merge_keys() # validate the merge keys dtypes. We may need to coerce # to avoid incompat dtypes self._maybe_coerce_merge_keys() def get_result(self): if self.indicator: self.left, self.right = self._indicator_pre_merge( self.left, self.right) join_index, left_indexer, right_indexer = self._get_join_info() ldata, rdata = self.left._data, self.right._data lsuf, rsuf = self.suffixes llabels, rlabels = items_overlap_with_suffix(ldata.items, lsuf, rdata.items, rsuf) lindexers = {1: left_indexer} if left_indexer is not None else {} rindexers = {1: right_indexer} if right_indexer is not None else {} result_data = concatenate_block_managers( [(ldata, lindexers), (rdata, rindexers)], axes=[llabels.append(rlabels), join_index], concat_axis=0, copy=self.copy) typ = self.left._constructor result = typ(result_data).__finalize__(self, method=self._merge_type) if self.indicator: result = self._indicator_post_merge(result) self._maybe_add_join_keys(result, left_indexer, right_indexer) return result def _indicator_pre_merge(self, left, right): columns = left.columns.union(right.columns) for i in ['_left_indicator', '_right_indicator']: if i in columns: raise ValueError("Cannot use `indicator=True` option when " "data contains a column named {}".format(i)) if self.indicator_name in columns: raise ValueError( "Cannot use name of an existing column for indicator column") left = left.copy() right = right.copy() left['_left_indicator'] = 1 left['_left_indicator'] = left['_left_indicator'].astype('int8') right['_right_indicator'] = 2 right['_right_indicator'] = right['_right_indicator'].astype('int8') return left, right def _indicator_post_merge(self, result): result['_left_indicator'] = result['_left_indicator'].fillna(0) result['_right_indicator'] = result['_right_indicator'].fillna(0) result[self.indicator_name] = Categorical((result['_left_indicator'] + result['_right_indicator']), categories=[1, 2, 3]) result[self.indicator_name] = ( result[self.indicator_name] .cat.rename_categories(['left_only', 'right_only', 'both'])) result = result.drop(labels=['_left_indicator', '_right_indicator'], axis=1) return result def _maybe_add_join_keys(self, result, left_indexer, right_indexer): left_has_missing = None right_has_missing = None keys = zip(self.join_names, self.left_on, self.right_on) for i, (name, lname, rname) in enumerate(keys): if not _should_fill(lname, rname): continue take_left, take_right = None, None if name in result: if left_indexer is not None and right_indexer is not None: if name in self.left: if left_has_missing is None: left_has_missing = (left_indexer == -1).any() if left_has_missing: take_right = self.right_join_keys[i] if not is_dtype_equal(result[name].dtype, self.left[name].dtype): take_left = self.left[name]._values elif name in self.right: if right_has_missing is None: right_has_missing = (right_indexer == -1).any() if right_has_missing: take_left = self.left_join_keys[i] if not is_dtype_equal(result[name].dtype, self.right[name].dtype): take_right = self.right[name]._values elif left_indexer is not None \ and isinstance(self.left_join_keys[i], np.ndarray): take_left = self.left_join_keys[i] take_right = self.right_join_keys[i] if take_left is not None or take_right is not None: if take_left is None: lvals = result[name]._values else: lfill = na_value_for_dtype(take_left.dtype) lvals = algos.take_1d(take_left, left_indexer, fill_value=lfill) if take_right is None: rvals = result[name]._values else: rfill = na_value_for_dtype(take_right.dtype) rvals = algos.take_1d(take_right, right_indexer, fill_value=rfill) # if we have an all missing left_indexer # make sure to just use the right values mask = left_indexer == -1 if mask.all(): key_col = rvals else: key_col = Index(lvals).where(~mask, rvals) if name in result: result[name] = key_col else: result.insert(i, name or 'key_%d' % i, key_col) def _get_join_indexers(self): """ return the join indexers """ return _get_join_indexers(self.left_join_keys, self.right_join_keys, sort=self.sort, how=self.how) def _get_join_info(self): left_ax = self.left._data.axes[self.axis] right_ax = self.right._data.axes[self.axis] if self.left_index and self.right_index and self.how != 'asof': join_index, left_indexer, right_indexer = \ left_ax.join(right_ax, how=self.how, return_indexers=True, sort=self.sort) elif self.right_index and self.how == 'left': join_index, left_indexer, right_indexer = \ _left_join_on_index(left_ax, right_ax, self.left_join_keys, sort=self.sort) elif self.left_index and self.how == 'right': join_index, right_indexer, left_indexer = \ _left_join_on_index(right_ax, left_ax, self.right_join_keys, sort=self.sort) else: (left_indexer, right_indexer) = self._get_join_indexers() if self.right_index: if len(self.left) > 0: join_index = self.left.index.take(left_indexer) else: join_index = self.right.index.take(right_indexer) left_indexer = np.array([-1] * len(join_index)) elif self.left_index: if len(self.right) > 0: join_index = self.right.index.take(right_indexer) else: join_index = self.left.index.take(left_indexer) right_indexer = np.array([-1] * len(join_index)) else: join_index = Index(np.arange(len(left_indexer))) if len(join_index) == 0: join_index = join_index.astype(object) return join_index, left_indexer, right_indexer def _get_merge_keys(self): """ Note: has side effects (copy/delete key columns) Parameters ---------- left right on Returns ------- left_keys, right_keys """ left_keys = [] right_keys = [] join_names = [] right_drop = [] left_drop = [] left, right = self.left, self.right is_lkey = lambda x: isinstance( x, (np.ndarray, Series)) and len(x) == len(left) is_rkey = lambda x: isinstance( x, (np.ndarray, Series)) and len(x) == len(right) # Note that pd.merge_asof() has separate 'on' and 'by' parameters. A # user could, for example, request 'left_index' and 'left_by'. In a # regular pd.merge(), users cannot specify both 'left_index' and # 'left_on'. (Instead, users have a MultiIndex). That means the # self.left_on in this function is always empty in a pd.merge(), but # a pd.merge_asof(left_index=True, left_by=...) will result in a # self.left_on array with a None in the middle of it. This requires # a work-around as designated in the code below. # See _validate_specification() for where this happens. # ugh, spaghetti re #733 if _any(self.left_on) and _any(self.right_on): for lk, rk in zip(self.left_on, self.right_on): if is_lkey(lk): left_keys.append(lk) if is_rkey(rk): right_keys.append(rk) join_names.append(None) # what to do? else: if rk is not None: right_keys.append(right[rk]._values) join_names.append(rk) else: # work-around for merge_asof(right_index=True) right_keys.append(right.index) join_names.append(right.index.name) else: if not is_rkey(rk): if rk is not None: right_keys.append(right[rk]._values) else: # work-around for merge_asof(right_index=True) right_keys.append(right.index) if lk is not None and lk == rk: # avoid key upcast in corner case (length-0) if len(left) > 0: right_drop.append(rk) else: left_drop.append(lk) else: right_keys.append(rk) if lk is not None: left_keys.append(left[lk]._values) join_names.append(lk) else: # work-around for merge_asof(left_index=True) left_keys.append(left.index) join_names.append(left.index.name) elif _any(self.left_on): for k in self.left_on: if is_lkey(k): left_keys.append(k) join_names.append(None) else: left_keys.append(left[k]._values) join_names.append(k) if isinstance(self.right.index, MultiIndex): right_keys = [lev._values.take(lab) for lev, lab in zip(self.right.index.levels, self.right.index.labels)] else: right_keys = [self.right.index.values] elif _any(self.right_on): for k in self.right_on: if is_rkey(k): right_keys.append(k) join_names.append(None) else: right_keys.append(right[k]._values) join_names.append(k) if isinstance(self.left.index, MultiIndex): left_keys = [lev._values.take(lab) for lev, lab in zip(self.left.index.levels, self.left.index.labels)] else: left_keys = [self.left.index.values] if left_drop: self.left = self.left.drop(left_drop, axis=1) if right_drop: self.right = self.right.drop(right_drop, axis=1) return left_keys, right_keys, join_names def _maybe_coerce_merge_keys(self): # we have valid mergee's but we may have to further # coerce these if they are originally incompatible types # # for example if these are categorical, but are not dtype_equal # or if we have object and integer dtypes for lk, rk, name in zip(self.left_join_keys, self.right_join_keys, self.join_names): if (len(lk) and not len(rk)) or (not len(lk) and len(rk)): continue # if either left or right is a categorical # then the must match exactly in categories & ordered if is_categorical_dtype(lk) and is_categorical_dtype(rk): if lk.is_dtype_equal(rk): continue elif is_categorical_dtype(lk) or is_categorical_dtype(rk): pass elif is_dtype_equal(lk.dtype, rk.dtype): continue # if we are numeric, then allow differing # kinds to proceed, eg. int64 and int8 # further if we are object, but we infer to # the same, then proceed if (is_numeric_dtype(lk) and is_numeric_dtype(rk)): if lk.dtype.kind == rk.dtype.kind: continue # let's infer and see if we are ok if lib.infer_dtype(lk) == lib.infer_dtype(rk): continue # Houston, we have a problem! # let's coerce to object if name in self.left.columns: self.left = self.left.assign( **{name: self.left[name].astype(object)}) if name in self.right.columns: self.right = self.right.assign( **{name: self.right[name].astype(object)}) def _validate_specification(self): # Hm, any way to make this logic less complicated?? if self.on is None and self.left_on is None and self.right_on is None: if self.left_index and self.right_index: self.left_on, self.right_on = (), () elif self.left_index: if self.right_on is None: raise MergeError('Must pass right_on or right_index=True') elif self.right_index: if self.left_on is None: raise MergeError('Must pass left_on or left_index=True') else: # use the common columns common_cols = self.left.columns.intersection( self.right.columns) if len(common_cols) == 0: raise MergeError('No common columns to perform merge on') if not common_cols.is_unique: raise MergeError("Data columns not unique: %s" % repr(common_cols)) self.left_on = self.right_on = common_cols elif self.on is not None: if self.left_on is not None or self.right_on is not None: raise MergeError('Can only pass argument "on" OR "left_on" ' 'and "right_on", not a combination of both.') self.left_on = self.right_on = self.on elif self.left_on is not None: n = len(self.left_on) if self.right_index: if len(self.left_on) != self.right.index.nlevels: raise ValueError('len(left_on) must equal the number ' 'of levels in the index of "right"') self.right_on = [None] * n elif self.right_on is not None: n = len(self.right_on) if self.left_index: if len(self.right_on) != self.left.index.nlevels: raise ValueError('len(right_on) must equal the number ' 'of levels in the index of "left"') self.left_on = [None] * n if len(self.right_on) != len(self.left_on): raise ValueError("len(right_on) must equal len(left_on)") def _get_join_indexers(left_keys, right_keys, sort=False, how='inner', **kwargs): """ Parameters ---------- left_keys: ndarray, Index, Series right_keys: ndarray, Index, Series sort: boolean, default False how: string {'inner', 'outer', 'left', 'right'}, default 'inner' Returns ------- tuple of (left_indexer, right_indexer) indexers into the left_keys, right_keys """ from functools import partial assert len(left_keys) == len(right_keys), \ 'left_key and right_keys must be the same length' # bind `sort` arg. of _factorize_keys fkeys = partial(_factorize_keys, sort=sort) # get left & right join labels and num. of levels at each location llab, rlab, shape = map(list, zip(* map(fkeys, left_keys, right_keys))) # get flat i8 keys from label lists lkey, rkey = _get_join_keys(llab, rlab, shape, sort) # factorize keys to a dense i8 space # `count` is the num. of unique keys # set(lkey) | set(rkey) == range(count) lkey, rkey, count = fkeys(lkey, rkey) # preserve left frame order if how == 'left' and sort == False kwargs = copy.copy(kwargs) if how == 'left': kwargs['sort'] = sort join_func = _join_functions[how] return join_func(lkey, rkey, count, **kwargs) class _OrderedMerge(_MergeOperation): _merge_type = 'ordered_merge' def __init__(self, left, right, on=None, left_on=None, right_on=None, left_index=False, right_index=False, axis=1, suffixes=('_x', '_y'), copy=True, fill_method=None, how='outer'): self.fill_method = fill_method _MergeOperation.__init__(self, left, right, on=on, left_on=left_on, left_index=left_index, right_index=right_index, right_on=right_on, axis=axis, how=how, suffixes=suffixes, sort=True # factorize sorts ) def get_result(self): join_index, left_indexer, right_indexer = self._get_join_info() # this is a bit kludgy ldata, rdata = self.left._data, self.right._data lsuf, rsuf = self.suffixes llabels, rlabels = items_overlap_with_suffix(ldata.items, lsuf, rdata.items, rsuf) if self.fill_method == 'ffill': left_join_indexer = libjoin.ffill_indexer(left_indexer) right_join_indexer = libjoin.ffill_indexer(right_indexer) else: left_join_indexer = left_indexer right_join_indexer = right_indexer lindexers = { 1: left_join_indexer} if left_join_indexer is not None else {} rindexers = { 1: right_join_indexer} if right_join_indexer is not None else {} result_data = concatenate_block_managers( [(ldata, lindexers), (rdata, rindexers)], axes=[llabels.append(rlabels), join_index], concat_axis=0, copy=self.copy) typ = self.left._constructor result = typ(result_data).__finalize__(self, method=self._merge_type) self._maybe_add_join_keys(result, left_indexer, right_indexer) return result def _asof_function(direction, on_type): return getattr(libjoin, 'asof_join_%s_%s' % (direction, on_type), None) def _asof_by_function(direction, on_type, by_type): return getattr(libjoin, 'asof_join_%s_%s_by_%s' % (direction, on_type, by_type), None) _type_casters = { 'int64_t': _ensure_int64, 'double': _ensure_float64, 'object': _ensure_object, } _cython_types = { 'uint8': 'uint8_t', 'uint32': 'uint32_t', 'uint16': 'uint16_t', 'uint64': 'uint64_t', 'int8': 'int8_t', 'int32': 'int32_t', 'int16': 'int16_t', 'int64': 'int64_t', 'float16': 'error', 'float32': 'float', 'float64': 'double', } def _get_cython_type(dtype): """ Given a dtype, return a C name like 'int64_t' or 'double' """ type_name = _get_dtype(dtype).name ctype = _cython_types.get(type_name, 'object') if ctype == 'error': raise MergeError('unsupported type: ' + type_name) return ctype def _get_cython_type_upcast(dtype): """ Upcast a dtype to 'int64_t', 'double', or 'object' """ if is_integer_dtype(dtype): return 'int64_t' elif is_float_dtype(dtype): return 'double' else: return 'object' class _AsOfMerge(_OrderedMerge): _merge_type = 'asof_merge' def __init__(self, left, right, on=None, left_on=None, right_on=None, left_index=False, right_index=False, by=None, left_by=None, right_by=None, axis=1, suffixes=('_x', '_y'), copy=True, fill_method=None, how='asof', tolerance=None, allow_exact_matches=True, direction='backward'): self.by = by self.left_by = left_by self.right_by = right_by self.tolerance = tolerance self.allow_exact_matches = allow_exact_matches self.direction = direction _OrderedMerge.__init__(self, left, right, on=on, left_on=left_on, right_on=right_on, left_index=left_index, right_index=right_index, axis=axis, how=how, suffixes=suffixes, fill_method=fill_method) def _validate_specification(self): super(_AsOfMerge, self)._validate_specification() # we only allow on to be a single item for on if len(self.left_on) != 1 and not self.left_index: raise MergeError("can only asof on a key for left") if len(self.right_on) != 1 and not self.right_index: raise MergeError("can only asof on a key for right") if self.left_index and isinstance(self.left.index, MultiIndex): raise MergeError("left can only have one index") if self.right_index and isinstance(self.right.index, MultiIndex): raise MergeError("right can only have one index") # set 'by' columns if self.by is not None: if self.left_by is not None or self.right_by is not None: raise MergeError('Can only pass by OR left_by ' 'and right_by') self.left_by = self.right_by = self.by if self.left_by is None and self.right_by is not None: raise MergeError('missing left_by') if self.left_by is not None and self.right_by is None: raise MergeError('missing right_by') # add 'by' to our key-list so we can have it in the # output as a key if self.left_by is not None: if not is_list_like(self.left_by): self.left_by = [self.left_by] if not is_list_like(self.right_by): self.right_by = [self.right_by] if len(self.left_by) != len(self.right_by): raise MergeError('left_by and right_by must be same length') self.left_on = self.left_by + list(self.left_on) self.right_on = self.right_by + list(self.right_on) # check 'direction' is valid if self.direction not in ['backward', 'forward', 'nearest']: raise MergeError('direction invalid: ' + self.direction) @property def _asof_key(self): """ This is our asof key, the 'on' """ return self.left_on[-1] def _get_merge_keys(self): # note this function has side effects (left_join_keys, right_join_keys, join_names) = super(_AsOfMerge, self)._get_merge_keys() # validate index types are the same for lk, rk in zip(left_join_keys, right_join_keys): if not is_dtype_equal(lk.dtype, rk.dtype): raise MergeError("incompatible merge keys, " "must be the same type") # validate tolerance; must be a Timedelta if we have a DTI if self.tolerance is not None: if self.left_index: lt = self.left.index else: lt = left_join_keys[-1] msg = "incompatible tolerance, must be compat " \ "with type {0}".format(type(lt)) if is_datetime64_dtype(lt) or is_datetime64tz_dtype(lt): if not isinstance(self.tolerance, Timedelta): raise MergeError(msg) if self.tolerance < Timedelta(0): raise MergeError("tolerance must be positive") elif is_int64_dtype(lt): if not is_integer(self.tolerance): raise MergeError(msg) if self.tolerance < 0: raise MergeError("tolerance must be positive") else: raise MergeError("key must be integer or timestamp") # validate allow_exact_matches if not is_bool(self.allow_exact_matches): raise MergeError("allow_exact_matches must be boolean, " "passed {0}".format(self.allow_exact_matches)) return left_join_keys, right_join_keys, join_names def _get_join_indexers(self): """ return the join indexers """ def flip(xs): """ unlike np.transpose, this returns an array of tuples """ labels = list(string.ascii_lowercase[:len(xs)]) dtypes = [x.dtype for x in xs] labeled_dtypes = list(zip(labels, dtypes)) return np.array(lzip(*xs), labeled_dtypes) # values to compare left_values = (self.left.index.values if self.left_index else self.left_join_keys[-1]) right_values = (self.right.index.values if self.right_index else self.right_join_keys[-1]) tolerance = self.tolerance # we required sortedness in the join keys msg = " keys must be sorted" if not Index(left_values).is_monotonic: raise ValueError('left' + msg) if not Index(right_values).is_monotonic: raise ValueError('right' + msg) # initial type conversion as needed if needs_i8_conversion(left_values): left_values = left_values.view('i8') right_values = right_values.view('i8') if tolerance is not None: tolerance = tolerance.value # a "by" parameter requires special handling if self.left_by is not None: # remove 'on' parameter from values if one existed if self.left_index and self.right_index: left_by_values = self.left_join_keys right_by_values = self.right_join_keys else: left_by_values = self.left_join_keys[0:-1] right_by_values = self.right_join_keys[0:-1] # get tuple representation of values if more than one if len(left_by_values) == 1: left_by_values = left_by_values[0] right_by_values = right_by_values[0] else: left_by_values = flip(left_by_values) right_by_values = flip(right_by_values) # upcast 'by' parameter because HashTable is limited by_type = _get_cython_type_upcast(left_by_values.dtype) by_type_caster = _type_casters[by_type] left_by_values = by_type_caster(left_by_values) right_by_values = by_type_caster(right_by_values) # choose appropriate function by type on_type = _get_cython_type(left_values.dtype) func = _asof_by_function(self.direction, on_type, by_type) return func(left_values, right_values, left_by_values, right_by_values, self.allow_exact_matches, tolerance) else: # choose appropriate function by type on_type = _get_cython_type(left_values.dtype) func = _asof_function(self.direction, on_type) return func(left_values, right_values, self.allow_exact_matches, tolerance) def _get_multiindex_indexer(join_keys, index, sort): from functools import partial # bind `sort` argument fkeys = partial(_factorize_keys, sort=sort) # left & right join labels and num. of levels at each location rlab, llab, shape = map(list, zip(* map(fkeys, index.levels, join_keys))) if sort: rlab = list(map(np.take, rlab, index.labels)) else: i8copy = lambda a: a.astype('i8', subok=False, copy=True) rlab = list(map(i8copy, index.labels)) # fix right labels if there were any nulls for i in range(len(join_keys)): mask = index.labels[i] == -1 if mask.any(): # check if there already was any nulls at this location # if there was, it is factorized to `shape[i] - 1` a = join_keys[i][llab[i] == shape[i] - 1] if a.size == 0 or not a[0] != a[0]: shape[i] += 1 rlab[i][mask] = shape[i] - 1 # get flat i8 join keys lkey, rkey = _get_join_keys(llab, rlab, shape, sort) # factorize keys to a dense i8 space lkey, rkey, count = fkeys(lkey, rkey) return libjoin.left_outer_join(lkey, rkey, count, sort=sort) def _get_single_indexer(join_key, index, sort=False): left_key, right_key, count = _factorize_keys(join_key, index, sort=sort) left_indexer, right_indexer = libjoin.left_outer_join( _ensure_int64(left_key), _ensure_int64(right_key), count, sort=sort) return left_indexer, right_indexer def _left_join_on_index(left_ax, right_ax, join_keys, sort=False): if len(join_keys) > 1: if not ((isinstance(right_ax, MultiIndex) and len(join_keys) == right_ax.nlevels)): raise AssertionError("If more than one join key is given then " "'right_ax' must be a MultiIndex and the " "number of join keys must be the number of " "levels in right_ax") left_indexer, right_indexer = \ _get_multiindex_indexer(join_keys, right_ax, sort=sort) else: jkey = join_keys[0] left_indexer, right_indexer = \ _get_single_indexer(jkey, right_ax, sort=sort) if sort or len(left_ax) != len(left_indexer): # if asked to sort or there are 1-to-many matches join_index = left_ax.take(left_indexer) return join_index, left_indexer, right_indexer # left frame preserves order & length of its index return left_ax, None, right_indexer def _right_outer_join(x, y, max_groups): right_indexer, left_indexer = libjoin.left_outer_join(y, x, max_groups) return left_indexer, right_indexer _join_functions = { 'inner': libjoin.inner_join, 'left': libjoin.left_outer_join, 'right': _right_outer_join, 'outer': libjoin.full_outer_join, } def _factorize_keys(lk, rk, sort=True): if is_datetime64tz_dtype(lk) and is_datetime64tz_dtype(rk): lk = lk.values rk = rk.values # if we exactly match in categories, allow us to use codes if (is_categorical_dtype(lk) and is_categorical_dtype(rk) and lk.is_dtype_equal(rk)): return lk.codes, rk.codes, len(lk.categories) if is_int_or_datetime_dtype(lk) and is_int_or_datetime_dtype(rk): klass = libhashtable.Int64Factorizer lk = _ensure_int64(com._values_from_object(lk)) rk = _ensure_int64(com._values_from_object(rk)) else: klass = libhashtable.Factorizer lk = _ensure_object(lk) rk = _ensure_object(rk) rizer = klass(max(len(lk), len(rk))) llab = rizer.factorize(lk) rlab = rizer.factorize(rk) count = rizer.get_count() if sort: uniques = rizer.uniques.to_array() llab, rlab = _sort_labels(uniques, llab, rlab) # NA group lmask = llab == -1 lany = lmask.any() rmask = rlab == -1 rany = rmask.any() if lany or rany: if lany: np.putmask(llab, lmask, count) if rany: np.putmask(rlab, rmask, count) count += 1 return llab, rlab, count def _sort_labels(uniques, left, right): if not isinstance(uniques, np.ndarray): # tuplesafe uniques = Index(uniques).values l = len(left) labels = np.concatenate([left, right]) _, new_labels = algos.safe_sort(uniques, labels, na_sentinel=-1) new_labels = _ensure_int64(new_labels) new_left, new_right = new_labels[:l], new_labels[l:] return new_left, new_right def _get_join_keys(llab, rlab, shape, sort): # how many levels can be done without overflow pred = lambda i: not is_int64_overflow_possible(shape[:i]) nlev = next(filter(pred, range(len(shape), 0, -1))) # get keys for the first `nlev` levels stride = np.prod(shape[1:nlev], dtype='i8') lkey = stride * llab[0].astype('i8', subok=False, copy=False) rkey = stride * rlab[0].astype('i8', subok=False, copy=False) for i in range(1, nlev): stride //= shape[i] lkey += llab[i] * stride rkey += rlab[i] * stride if nlev == len(shape): # all done! return lkey, rkey # densify current keys to avoid overflow lkey, rkey, count = _factorize_keys(lkey, rkey, sort=sort) llab = [lkey] + llab[nlev:] rlab = [rkey] + rlab[nlev:] shape = [count] + shape[nlev:] return _get_join_keys(llab, rlab, shape, sort) def _should_fill(lname, rname): if (not isinstance(lname, compat.string_types) or not isinstance(rname, compat.string_types)): return True return lname == rname def _any(x): return x is not None and len(x) > 0 and any([y is not None for y in x])
mit
PawarPawan/h2o-v3
h2o-py/tests/testdir_algos/gbm/pyunit_weightsGBM.py
2
6140
import sys sys.path.insert(1, "../../../") import h2o import random import copy def weights_check(ip,port): def check_same(data1, data2, min_rows_scale): gbm1_regression = h2o.gbm(x=data1[["displacement", "power", "weight", "acceleration", "year"]], y="economy", training_frame=data1, min_rows=5, ntrees=5, max_depth=5) gbm2_regression = h2o.gbm(x=data2[["displacement", "power", "weight", "acceleration", "year", "weights"]], y=data2["economy"], min_rows=5*min_rows_scale, weights_column=data2["weights"], ntrees=5, max_depth=5) gbm1_binomial = h2o.gbm(x=data1[["displacement", "power", "weight", "acceleration", "year"]], y=data1["economy_20mpg"], min_rows=5, distribution="bernoulli", ntrees=5, max_depth=5) gbm2_binomial = h2o.gbm(x=data2[["displacement", "power", "weight", "acceleration", "year", "weights"]], y=data2["economy_20mpg"], weights_column="weights", training_frame=data2, min_rows=5*min_rows_scale, distribution="bernoulli", ntrees=5, max_depth=5) gbm1_multinomial = h2o.gbm(x=data1[["displacement", "power", "weight", "acceleration", "year"]], y=data1["cylinders"], min_rows=5, distribution="multinomial", ntrees=5, max_depth=5) gbm2_multinomial = h2o.gbm(x=data2[["displacement", "power", "weight", "acceleration", "year", "weights"]], y=data2["cylinders"], weights_column="weights", training_frame=data2, min_rows=5*min_rows_scale, distribution="multinomial", ntrees=5, max_depth=5) reg1_mse = gbm1_regression.mse() reg2_mse = gbm2_regression.mse() bin1_auc = gbm1_binomial.auc() bin2_auc = gbm2_binomial.auc() mul1_mse = gbm1_multinomial.mse() mul2_mse = gbm2_multinomial.mse() print "MSE (regresson) no weights vs. weights: {0}, {1}".format(reg1_mse, reg2_mse) print "AUC (binomial) no weights vs. weights: {0}, {1}".format(bin1_auc, bin2_auc) print "MSE (multinomial) no weights vs. weights: {0}, {1}".format(mul1_mse, mul2_mse) assert abs(reg1_mse - reg2_mse) < 1e-6 * reg1_mse, "Expected mse's to be the same, but got {0}, and {1}".format(reg1_mse, reg2_mse) assert abs(bin1_auc - bin2_auc) < 3e-4 * bin1_auc, "Expected auc's to be the same, but got {0}, and {1}".format(bin1_auc, bin2_auc) assert abs(mul1_mse - mul1_mse) < 1e-6 * mul1_mse, "Expected auc's to be the same, but got {0}, and {1}".format(mul1_mse, mul2_mse) h2o_cars_data = h2o.import_file(h2o.locate("smalldata/junit/cars_20mpg.csv")) h2o_cars_data["economy_20mpg"] = h2o_cars_data["economy_20mpg"].asfactor() h2o_cars_data["cylinders"] = h2o_cars_data["cylinders"].asfactor() # uniform weights same as no weights random.seed(2222) weight = random.randint(1,10) uniform_weights = [[weight] for r in range(406)] h2o_uniform_weights = h2o.H2OFrame(python_obj=uniform_weights) h2o_uniform_weights.setNames(["weights"]) h2o_data_uniform_weights = h2o_cars_data.cbind(h2o_uniform_weights) print "Checking that using uniform weights is equivalent to no weights:" print check_same(h2o_cars_data, h2o_data_uniform_weights, weight) # zero weights same as removed observations zero_weights = [[0] if random.randint(0,1) else [1] for r in range(406)] h2o_zero_weights = h2o.H2OFrame(python_obj=zero_weights) h2o_zero_weights.setNames(["weights"]) h2o_data_zero_weights = h2o_cars_data.cbind(h2o_zero_weights) h2o_data_zeros_removed = h2o_cars_data[h2o_zero_weights["weights"] == 1] print "Checking that using some zero weights is equivalent to removing those observations:" print check_same(h2o_data_zeros_removed, h2o_data_zero_weights, 1) # doubled weights same as doubled observations doubled_weights = [[1] if random.randint(0,1) else [2] for r in range(406)] h2o_doubled_weights = h2o.H2OFrame(python_obj=doubled_weights) h2o_doubled_weights.setNames(["weights"]) h2o_data_doubled_weights = h2o_cars_data.cbind(h2o_doubled_weights) doubled_data = h2o.as_list(h2o_cars_data, use_pandas=False) colnames = doubled_data.pop(0) for idx, w in enumerate(doubled_weights): if w[0] == 2: doubled_data.append(doubled_data[idx]) h2o_data_doubled = h2o.H2OFrame(python_obj=doubled_data) h2o_data_doubled.setNames(colnames) h2o_data_doubled["economy_20mpg"] = h2o_data_doubled["economy_20mpg"].asfactor() h2o_data_doubled["cylinders"] = h2o_data_doubled["cylinders"].asfactor() h2o_data_doubled_weights["economy_20mpg"] = h2o_data_doubled_weights["economy_20mpg"].asfactor() h2o_data_doubled_weights["cylinders"] = h2o_data_doubled_weights["cylinders"].asfactor() print "Checking that doubling some weights is equivalent to doubling those observations:" print check_same(h2o_data_doubled, h2o_data_doubled_weights, 1) # TODO: random weights # TODO: all zero weights??? # TODO: negative weights??? if __name__ == "__main__": h2o.run_test(sys.argv, weights_check)
apache-2.0
wkfwkf/statsmodels
statsmodels/tsa/x13.py
7
23281
""" Run x12/x13-arima specs in a subprocess from Python and curry results back into python. Notes ----- Many of the functions are called x12. However, they are also intended to work for x13. If this is not the case, it's a bug. """ from __future__ import print_function import os import subprocess import tempfile import re from warnings import warn import pandas as pd from statsmodels.compat.python import iteritems from statsmodels.tools.tools import Bunch from statsmodels.tools.sm_exceptions import (X13NotFoundError, IOWarning, X13Error, X13Warning) __all__ = ["x13_arima_select_order", "x13_arima_analysis"] _binary_names = ('x13as.exe', 'x13as', 'x12a.exe', 'x12a') class _freq_to_period: def __getitem__(self, key): if key.startswith('M'): return 12 elif key.startswith('Q'): return 4 _freq_to_period = _freq_to_period() _period_to_freq = {12 : 'M', 4 : 'Q'} _log_to_x12 = {True : 'log', False : 'none', None : 'auto'} _bool_to_yes_no = lambda x : 'yes' if x else 'no' def _find_x12(x12path=None, prefer_x13=True): """ If x12path is not given, then either x13as[.exe] or x12a[.exe] must be found on the PATH. Otherwise, the environmental variable X12PATH or X13PATH must be defined. If prefer_x13 is True, only X13PATH is searched for. If it is false, only X12PATH is searched for. """ global _binary_names if x12path is not None and x12path.endswith(_binary_names): # remove binary from path if given x12path = os.path.dirname(x12path) if not prefer_x13: # search for x12 first _binary_names = _binary_names[::-1] if x12path is None: x12path = os.getenv("X12PATH", "") if not x12path: x12path = os.getenv("X13PATH", "") elif x12path is None: x12path = os.getenv("X13PATH", "") if not x12path: x12path = os.getenv("X12PATH", "") for binary in _binary_names: x12 = os.path.join(x12path, binary) try: subprocess.check_call(x12, stdout=subprocess.PIPE, stderr=subprocess.PIPE) return x12 except OSError: pass else: return False def _check_x12(x12path=None): x12path = _find_x12(x12path) if not x12path: raise X13NotFoundError("x12a and x13as not found on path. Give the " "path, put them on PATH, or set the " "X12PATH or X13PATH environmental variable.") return x12path def _clean_order(order): """ Takes something like (1 1 0)(0 1 1) and returns a arma order, sarma order tuple. Also accepts (1 1 0) and return arma order and (0, 0, 0) """ order = re.findall("\([0-9 ]*?\)", order) clean = lambda x : tuple(map(int, re.sub("[()]", "", x).split(" "))) if len(order) > 1: order, sorder = map(clean, order) else: order = clean(order[0]) sorder = (0, 0, 0) return order, sorder def run_spec(x12path, specpath, outname=None, meta=False, datameta=False): if meta and datameta: raise ValueError("Cannot specify both meta and datameta.") if meta: args = [x12path, "-m " + specpath] elif datameta: args = [x12path, "-d " + specpath] else: args = [x12path, specpath] if outname: args += [outname] return subprocess.Popen(args, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) def _make_automdl_options(maxorder, maxdiff, diff): options = "\n" options += "maxorder = ({0} {1})\n".format(maxorder[0], maxorder[1]) if maxdiff is not None: # maxdiff always takes precedence options += "maxdiff = ({0} {1})\n".format(maxdiff[0], maxdiff[1]) else: options += "diff = ({0} {1})\n".format(diff[0], diff[1]) return options def _make_var_names(exog): if hasattr(exog, "name"): var_names = exog.name elif hasattr(exog, "columns"): var_names = exog.columns else: raise ValueError("exog is not a Series or DataFrame or is unnamed.") try: var_names = " ".join(var_names) except TypeError: # cannot have names that are numbers, pandas default from statsmodels.base.data import _make_exog_names if exog.ndim == 1: var_names = "x1" else: var_names = " ".join(_make_exog_names(exog)) return var_names def _make_regression_options(trading, exog): if not trading and exog is None: # start regression spec return "" reg_spec = "regression{\n" if trading: reg_spec += " variables = (td)\n" if exog is not None: var_names = _make_var_names(exog) reg_spec += " user = ({0})\n".format(var_names) reg_spec += " data = ({0})\n".format("\n".join(map(str, exog.values.ravel().tolist()))) reg_spec += "}\n" # close out regression spec return reg_spec def _make_forecast_options(forecast_years): if forecast_years is None: return "" forecast_spec = "forecast{\n" forecast_spec += "maxlead = ({0})\n}}\n".format(forecast_years) return forecast_spec def _check_errors(errors): errors = errors[errors.find("spc:")+4:].strip() if errors and 'ERROR' in errors: raise X13Error(errors) elif errors and 'WARNING' in errors: warn(errors, X13Warning) def _convert_out_to_series(x, dates, name): """ Convert x to a DataFrame where x is a string in the format given by x-13arima-seats output. """ from StringIO import StringIO from pandas import read_table out = read_table(StringIO(x), skiprows=2, header=None) return out.set_index(dates).rename(columns={1 : name})[name] def _open_and_read(fname): # opens a file, reads it, and make sure it's closed with open(fname, 'r') as fin: fout = fin.read() return fout class Spec(object): @property def spec_name(self): return self.__class__.__name__.replace("Spec", "") def create_spec(self, **kwargs): spec = """{name} {{ {options} }} """ return spec.format(name=self.spec_name, options=self.options) def set_options(self, **kwargs): options = "" for key, value in kwargs.iteritems(): options += "{0}={1}\n".format(key, value) self.__dict__.update({key : value}) self.options = options class SeriesSpec(Spec): """ Parameters ---------- data appendbcst : bool appendfcst : bool comptype compwt decimals modelspan name period precision to_print to_save span start title type Notes ----- Rarely used arguments divpower missingcode missingval saveprecision trimzero """ def __init__(self, data, name='Unnamed Series', appendbcst=False, appendfcst=False, comptype=None, compwt=1, decimals=0, modelspan=(), period=12, precision=0, to_print=[], to_save=[], span=(), start=(1, 1), title='', series_type=None, divpower=None, missingcode=-99999, missingval=1000000000): appendbcst, appendfcst = map(_bool_to_yes_no, [appendbcst, appendfcst, ]) series_name = "\"{0}\"".format(name[:64]) # trim to 64 characters title = "\"{0}\"".format(title[:79]) # trim to 79 characters self.set_options(data=data, appendbcst=appendbcst, appendfcst=appendfcst, period=period, start=start, title=title, name=series_name, ) def pandas_to_series_spec(x): # from statsmodels.tools.data import _check_period_index # check_period_index(x) if hasattr(x, 'columns'): # convert to series if len(x.columns) > 1: raise ValueError("Does not handle DataFrame with more than one " "column") x = x[x.columns[0]] data = "({0})".format("\n".join(map(str, x.values.tolist()))) # get periodicity # get start / first data # give it a title try: period = _freq_to_period[x.index.freqstr] except (AttributeError, ValueError): from pandas.tseries.api import infer_freq period = _freq_to_period[infer_freq(x.index)] start_date = x.index[0] if period == 12: year, stperiod = start_date.year, start_date.month elif period == 4: year, stperiod = start_date.year, start_date.quarter else: # pragma: no cover raise ValueError("Only monthly and quarterly periods are supported." " Please report or send a pull request if you want " "this extended.") if hasattr(x, 'name'): name = x.name or "Unnamed Series" else: name = 'Unnamed Series' series_spec = SeriesSpec(data=data, name=name, period=period, title=name, start="{0}.{1}".format(year, stperiod)) return series_spec def x13_arima_analysis(endog, maxorder=(2, 1), maxdiff=(2, 1), diff=None, exog=None, log=None, outlier=True, trading=False, forecast_years=None, retspec=False, speconly=False, start=None, freq=None, print_stdout=False, x12path=None, prefer_x13=True): """ Perform x13-arima analysis for monthly or quarterly data. Parameters ---------- endog : array-like, pandas.Series The series to model. It is best to use a pandas object with a DatetimeIndex or PeriodIndex. However, you can pass an array-like object. If your object does not have a dates index then ``start`` and ``freq`` are not optional. maxorder : tuple The maximum order of the regular and seasonal ARMA polynomials to examine during the model identification. The order for the regular polynomial must be greater than zero and no larger than 4. The order for the seaonal polynomial may be 1 or 2. maxdiff : tuple The maximum orders for regular and seasonal differencing in the automatic differencing procedure. Acceptable inputs for regular differencing are 1 and 2. The maximum order for seasonal differencing is 1. If ``diff`` is specified then ``maxdiff`` should be None. Otherwise, ``diff`` will be ignored. See also ``diff``. diff : tuple Fixes the orders of differencing for the regular and seasonal differencing. Regular differencing may be 0, 1, or 2. Seasonal differencing may be 0 or 1. ``maxdiff`` must be None, otherwise ``diff`` is ignored. exog : array-like Exogenous variables. log : bool or None If None, it is automatically determined whether to log the series or not. If False, logs are not taken. If True, logs are taken. outlier : bool Whether or not outliers are tested for and corrected, if detected. trading : bool Whether or not trading day effects are tested for. forecast_years : int Number of forecasts produced. The default is one year. retspec : bool Whether to return the created specification file. Can be useful for debugging. speconly : bool Whether to create the specification file and then return it without performing the analysis. Can be useful for debugging. start : str, datetime Must be given if ``endog`` does not have date information in its index. Anything accepted by pandas.DatetimeIndex for the start value. freq : str Must be givein if ``endog`` does not have date information in its index. Anything accapted by pandas.DatetimeIndex for the freq value. print_stdout : bool The stdout from X12/X13 is suppressed. To print it out, set this to True. Default is False. x12path : str or None The path to x12 or x13 binary. If None, the program will attempt to find x13as or x12a on the PATH or by looking at X13PATH or X12PATH depending on the value of prefer_x13. prefer_x13 : bool If True, will look for x13as first and will fallback to the X13PATH environmental variable. If False, will look for x12a first and will fallback to the X12PATH environmental variable. If x12path points to the path for the X12/X13 binary, it does nothing. Returns ------- res : Bunch A bunch object with the following attributes: - results : str The full output from the X12/X13 run. - seasadj : pandas.Series The final seasonally adjusted ``endog`` - trend : pandas.Series The trend-cycle component of ``endog`` - irregular : pandas.Series The final irregular component of ``endog`` - stdout : str The captured stdout produced by x12/x13. - spec : str, optional Returned if ``retspec`` is True. The only thing returned if ``speconly`` is True. Notes ----- This works by creating a specification file, writing it to a temporary directory, invoking X12/X13 in a subprocess, and reading the output directory, invoking exog12/X13 in a subprocess, and reading the output back in. """ x12path = _check_x12(x12path) if not isinstance(endog, (pd.DataFrame, pd.Series)): if start is None or freq is None: raise ValueError("start and freq cannot be none if endog is not " "a pandas object") endog = pd.Series(endog, index=pd.DatetimeIndex(start=start, periods=len(endog), freq=freq)) spec_obj = pandas_to_series_spec(endog) spec = spec_obj.create_spec() spec += "transform{{function={0}}}\n".format(_log_to_x12[log]) if outlier: spec += "outlier{}\n" options = _make_automdl_options(maxorder, maxdiff, diff) spec += "automdl{{{0}}}\n".format(options) spec += _make_regression_options(trading, exog) spec += _make_forecast_options(forecast_years) spec += "x11{ save=(d11 d12 d13) }" if speconly: return spec # write it to a tempfile # TODO: make this more robust - give the user some control? ftempin = tempfile.NamedTemporaryFile(delete=False, suffix='.spc') ftempout = tempfile.NamedTemporaryFile(delete=False) try: ftempin.write(spec) ftempin.close() ftempout.close() # call x12 arima p = run_spec(x12path, ftempin.name[:-4], ftempout.name) p.wait() stdout = p.stdout.read() if print_stdout: print(p.stdout.read()) # check for errors errors = _open_and_read(ftempout.name + '.err') _check_errors(errors) # read in results results = _open_and_read(ftempout.name + '.out') seasadj = _open_and_read(ftempout.name + '.d11') trend = _open_and_read(ftempout.name + '.d12') irregular = _open_and_read(ftempout.name + '.d13') finally: try: # sometimes this gives a permission denied error? # not sure why. no process should have these open os.remove(ftempin.name) os.remove(ftempout.name) except: if os.path.exists(ftempin.name): warn("Failed to delete resource {0}".format(ftempin.name), IOWarning) if os.path.exists(ftempout.name): warn("Failed to delete resource {0}".format(ftempout.name), IOWarning) seasadj = _convert_out_to_series(seasadj, endog.index, 'seasadj') trend = _convert_out_to_series(trend, endog.index, 'trend') irregular = _convert_out_to_series(irregular, endog.index, 'irregular') # NOTE: there isn't likely anything in stdout that's not in results # so may be safe to just suppress and remove it if not retspec: res = X13ArimaAnalysisResult(observed=endog, results=results, seasadj=seasadj, trend=trend, irregular=irregular, stdout=stdout) else: res = X13ArimaAnalysisResult(observed=endog, results=results, seasadj=seasadj, trend=trend, irregular=irregular, stdout=stdout, spec=spec) return res def x13_arima_select_order(endog, maxorder=(2, 1), maxdiff=(2, 1), diff=None, exog=None, log=None, outlier=True, trading=False, forecast_years=None, start=None, freq=None, print_stdout=False, x12path=None, prefer_x13=True): """ Perform automatic seaonal ARIMA order identification using x12/x13 ARIMA. Parameters ---------- endog : array-like, pandas.Series The series to model. It is best to use a pandas object with a DatetimeIndex or PeriodIndex. However, you can pass an array-like object. If your object does not have a dates index then ``start`` and ``freq`` are not optional. maxorder : tuple The maximum order of the regular and seasonal ARMA polynomials to examine during the model identification. The order for the regular polynomial must be greater than zero and no larger than 4. The order for the seaonal polynomial may be 1 or 2. maxdiff : tuple The maximum orders for regular and seasonal differencing in the automatic differencing procedure. Acceptable inputs for regular differencing are 1 and 2. The maximum order for seasonal differencing is 1. If ``diff`` is specified then ``maxdiff`` should be None. Otherwise, ``diff`` will be ignored. See also ``diff``. diff : tuple Fixes the orders of differencing for the regular and seasonal differencing. Regular differencing may be 0, 1, or 2. Seasonal differencing may be 0 or 1. ``maxdiff`` must be None, otherwise ``diff`` is ignored. exog : array-like Exogenous variables. log : bool or None If None, it is automatically determined whether to log the series or not. If False, logs are not taken. If True, logs are taken. outlier : bool Whether or not outliers are tested for and corrected, if detected. trading : bool Whether or not trading day effects are tested for. forecast_years : int Number of forecasts produced. The default is one year. start : str, datetime Must be given if ``endog`` does not have date information in its index. Anything accepted by pandas.DatetimeIndex for the start value. freq : str Must be givein if ``endog`` does not have date information in its index. Anything accapted by pandas.DatetimeIndex for the freq value. print_stdout : bool The stdout from X12/X13 is suppressed. To print it out, set this to True. Default is False. x12path : str or None The path to x12 or x13 binary. If None, the program will attempt to find x13as or x12a on the PATH or by looking at X13PATH or X12PATH depending on the value of prefer_x13. prefer_x13 : bool If True, will look for x13as first and will fallback to the X13PATH environmental variable. If False, will look for x12a first and will fallback to the X12PATH environmental variable. If x12path points to the path for the X12/X13 binary, it does nothing. Returns ------- results : Bunch A bunch object that has the following attributes: - order : tuple The regular order - sorder : tuple The seasonal order - include_mean : bool Whether to include a mean or not - results : str The full results from the X12/X13 analysis - stdout : str The captured stdout from the X12/X13 analysis Notes ----- This works by creating a specification file, writing it to a temporary directory, invoking X12/X13 in a subprocess, and reading the output back in. """ results = x13_arima_analysis(endog, x12path=x12path, exog=exog, log=log, outlier=outlier, trading=trading, forecast_years=forecast_years, maxorder=maxorder, maxdiff=maxdiff, diff=diff, start=start, freq=freq, prefer_x13=prefer_x13) model = re.search("(?<=Final automatic model choice : ).*", results.results) order = model.group() if re.search("Mean is not significant", results.results): include_mean = False elif re.search("Constant", results.results): include_mean = True else: include_mean = False order, sorder = _clean_order(order) res = Bunch(order=order, sorder=sorder, include_mean=include_mean, results=results.results, stdout=results.stdout) return res class X13ArimaAnalysisResult(object): def __init__(self, **kwargs): for key, value in iteritems(kwargs): setattr(self, key, value) def plot(self): from statsmodels.graphics.utils import _import_mpl plt = _import_mpl() fig, axes = plt.subplots(4, 1, sharex=True) self.observed.plot(ax=axes[0], legend=False) axes[0].set_ylabel('Observed') self.seasadj.plot(ax=axes[1], legend=False) axes[1].set_ylabel('Seas. Adjusted') self.trend.plot(ax=axes[2], legend=False) axes[2].set_ylabel('Trend') self.irregular.plot(ax=axes[3], legend=False) axes[3].set_ylabel('Irregular') fig.tight_layout() return fig if __name__ == "__main__": import numpy as np from statsmodels.tsa.arima_process import ArmaProcess np.random.seed(123) ar = [1, .35, .8] ma = [1, .8] arma = ArmaProcess(ar, ma, nobs=100) assert arma.isstationary() assert arma.isinvertible() y = arma.generate_sample() dates = pd.date_range("1/1/1990", periods=len(y), freq='M') ts = pd.TimeSeries(y, index=dates) xpath = "/home/skipper/src/x12arima/x12a" try: results = x13_arima_analysis(xpath, ts) except: print("Caught exception") results = x13_arima_analysis(xpath, ts, log=False) # import pandas as pd # seas_y = pd.read_csv("usmelec.csv") # seas_y = pd.TimeSeries(seas_y["usmelec"].values, # index=pd.DatetimeIndex(seas_y["date"], freq="MS")) # results = x13_arima_analysis(xpath, seas_y)
bsd-3-clause
sowravi/sp17-i524
project/S17-IO-3017/code/projectearth/kmeansplot.py
14
3018
import requests import time import dblayer import plotly import plotly.graph_objs as go import pandas as pd import numpy as np import random from sklearn.cluster import KMeans import testfile NUM_CLUSTER = 3 def generate_color(): color = '#{:02x}{:02x}{:02x}'.format(*map(lambda x: random.randint(0, 255), range(NUM_CLUSTER))) return color # Create random colors in list color_list = [] for i in range(NUM_CLUSTER): color_list.append(generate_color()) def showMagnitudesInCluster(data): kmeans = KMeans(n_clusters=NUM_CLUSTER) kmeans.fit(data) labels = kmeans.labels_ centroids = kmeans.cluster_centers_ plot_data = [] for i in range(NUM_CLUSTER): ds = data[np.where(labels == i)] clustername = "Cluster " + str(i+1) trace = go.Scatter(x=ds[:, 0], y=ds[:, 1], mode='markers', showlegend='false', name=clustername, marker=dict(size=5, color=color_list[i])) plot_data.append(trace) # plot the centroids trace = go.Scatter(x=centroids[i, 0], y=centroids[i, 1], mode='markers', marker=dict(size=10, color='black')) plot_data.append(trace) layout = go.Layout(title='Magnitude Vs. Depth - K-Means Clusters', titlefont=dict(family='Courier New, monospace',size=20,color='#7f7f7f'), xaxis=dict(title='Depth of Earthquake', titlefont=dict(family='Courier New, monospace',size=18,color='#7f7f7f')), yaxis=dict(title='Magnitude',titlefont=dict(family='Courier New, monospace',size=18,color='#7f7f7f')) ) fig = go.Figure(data=plot_data, layout=layout) div = plotly.offline.plot(fig, include_plotlyjs=True, output_type='div') return div def mkMag(): #### TME: Get start time start_time = time.time() #### sess = requests.Session() dbobj = dblayer.classDBLayer() projection = [ {"$project": {"_id": 0, "mag": "$properties.mag", "depth": {"$arrayElemAt": ["$geometry.coordinates", 2]}}}] dframe_mag = pd.DataFrame(list(dbobj.doaggregate(projection))) #### TME: Elapsed time taken to read data from MongoDB fileobj = testfile.classFileWrite() elapsed = time.time() - start_time fileobj.writeline() str1 = str(elapsed) + " secs required to read " + str(dframe_mag['depth'].count()) + " records from database." fileobj.writelog("Reading Magnitude and Depth data") fileobj.writelog(str1) #### #### TME: Get start time start_time = time.time() #### div = showMagnitudesInCluster(dframe_mag.values) response = """<html><title></title><head><meta charset=\"utf8\"> </head> <body>""" + div + """</body> </html>""" #### TME: Elapsed time taken to cluster and plot data elapsed = time.time() - start_time fileobj.writeline() str1 = "Applying K-Means clustering and plotting its output \n" + "Time taken: " + str(elapsed) fileobj.writelog(str1) fileobj.writeline() fileobj.closefile() dbobj.closedb() return response
apache-2.0
sternb0t/django-pandas
django_pandas/io.py
1
3578
import pandas as pd from .utils import update_with_verbose import django def to_fields(qs, fieldnames): for fieldname in fieldnames: model = qs.model for fieldname_part in fieldname.split('__'): try: field = model._meta.get_field(fieldname_part) except django.db.models.fields.FieldDoesNotExist: rels = model._meta.get_all_related_objects_with_model() for relobj, _ in rels: if relobj.get_accessor_name() == fieldname_part: field = relobj.field model = field.model break else: if hasattr(field, "one_to_many") and field.one_to_many: model = field.related_model elif field.get_internal_type() in ('ForeignKey', 'OneToOneField', 'ManyToManyField'): model = field.rel.to yield field def read_frame(qs, fieldnames=(), index_col=None, coerce_float=False, verbose=True): """ Returns a dataframe from a QuerySet Optionally specify the field names/columns to utilize and a field as the index Parameters ---------- qs: The Django QuerySet. fieldnames: The model field names to use in creating the frame. You can span a relationship in the usual Django way by using double underscores to specify a related field in another model You can span a relationship in the usual Django way by using double underscores to specify a related field in another model index_col: specify the field to use for the index. If the index field is not in the field list it will be appended coerce_float : boolean, default False Attempt to convert values to non-string, non-numeric data (like decimal.Decimal) to floating point, useful for SQL result sets verbose: boolean If this is ``True`` then populate the DataFrame with the human readable versions of any foreign key fields else use the primary keys values. The human readable version of the foreign key field is defined in the ``__unicode__`` or ``__str__`` methods of the related class definition """ if fieldnames: if index_col is not None and index_col not in fieldnames: # Add it to the field names if not already there fieldnames = tuple(fieldnames) + (index_col,) fields = to_fields(qs, fieldnames) elif isinstance(qs, django.db.models.query.ValuesQuerySet): if django.VERSION < (1, 8): annotation_field_names = qs.aggregate_names else: annotation_field_names = qs.annotation_names fieldnames = qs.field_names + annotation_field_names + qs.extra_names fields = [qs.model._meta.get_field(f) for f in qs.field_names] + \ [None] * (len(annotation_field_names) + len(qs.extra_names)) else: fields = qs.model._meta.fields fieldnames = [f.name for f in fields] if isinstance(qs, django.db.models.query.ValuesQuerySet): recs = list(qs) else: recs = list(qs.values_list(*fieldnames)) df = pd.DataFrame.from_records(recs, columns=fieldnames, coerce_float=coerce_float) if verbose: update_with_verbose(df, fieldnames, fields) if index_col is not None: df.set_index(index_col, inplace=True) return df
bsd-3-clause
HyperloopTeam/FullOpenMDAO
lib/python2.7/site-packages/matplotlib/figure.py
10
58719
""" The figure module provides the top-level :class:`~matplotlib.artist.Artist`, the :class:`Figure`, which contains all the plot elements. The following classes are defined :class:`SubplotParams` control the default spacing of the subplots :class:`Figure` top level container for all plot elements """ from __future__ import (absolute_import, division, print_function, unicode_literals) import six import warnings from operator import itemgetter import numpy as np from matplotlib import rcParams from matplotlib import docstring from matplotlib import __version__ as _mpl_version import matplotlib.artist as martist from matplotlib.artist import Artist, allow_rasterization import matplotlib.cbook as cbook from matplotlib.cbook import Stack, iterable from matplotlib import _image from matplotlib.image import FigureImage import matplotlib.colorbar as cbar from matplotlib.axes import Axes, SubplotBase, subplot_class_factory from matplotlib.blocking_input import BlockingMouseInput, BlockingKeyMouseInput from matplotlib.legend import Legend from matplotlib.patches import Rectangle from matplotlib.projections import (get_projection_names, process_projection_requirements) from matplotlib.text import Text, _process_text_args from matplotlib.transforms import (Affine2D, Bbox, BboxTransformTo, TransformedBbox) from matplotlib.backend_bases import NonGuiException docstring.interpd.update(projection_names=get_projection_names()) class AxesStack(Stack): """ Specialization of the Stack to handle all tracking of Axes in a Figure. This stack stores ``key, (ind, axes)`` pairs, where: * **key** should be a hash of the args and kwargs used in generating the Axes. * **ind** is a serial number for tracking the order in which axes were added. The AxesStack is a callable, where ``ax_stack()`` returns the current axes. Alternatively the :meth:`current_key_axes` will return the current key and associated axes. """ def __init__(self): Stack.__init__(self) self._ind = 0 def as_list(self): """ Return a list of the Axes instances that have been added to the figure """ ia_list = [a for k, a in self._elements] ia_list.sort() return [a for i, a in ia_list] def get(self, key): """ Return the Axes instance that was added with *key*. If it is not present, return None. """ item = dict(self._elements).get(key) if item is None: return None return item[1] def _entry_from_axes(self, e): ind, k = dict([(a, (ind, k)) for (k, (ind, a)) in self._elements])[e] return (k, (ind, e)) def remove(self, a): """Remove the axes from the stack.""" Stack.remove(self, self._entry_from_axes(a)) def bubble(self, a): """ Move the given axes, which must already exist in the stack, to the top. """ return Stack.bubble(self, self._entry_from_axes(a)) def add(self, key, a): """ Add Axes *a*, with key *key*, to the stack, and return the stack. If *a* is already on the stack, don't add it again, but return *None*. """ # All the error checking may be unnecessary; but this method # is called so seldom that the overhead is negligible. if not isinstance(a, Axes): raise ValueError("second argument, %s, is not an Axes" % a) try: hash(key) except TypeError: raise ValueError("first argument, %s, is not a valid key" % key) a_existing = self.get(key) if a_existing is not None: Stack.remove(self, (key, a_existing)) warnings.warn( "key %s already existed; Axes is being replaced" % key) # I don't think the above should ever happen. if a in self: return None self._ind += 1 return Stack.push(self, (key, (self._ind, a))) def current_key_axes(self): """ Return a tuple of ``(key, axes)`` for the active axes. If no axes exists on the stack, then returns ``(None, None)``. """ if not len(self._elements): return self._default, self._default else: key, (index, axes) = self._elements[self._pos] return key, axes def __call__(self): return self.current_key_axes()[1] def __contains__(self, a): return a in self.as_list() class SubplotParams: """ A class to hold the parameters for a subplot """ def __init__(self, left=None, bottom=None, right=None, top=None, wspace=None, hspace=None): """ All dimensions are fraction of the figure width or height. All values default to their rc params The following attributes are available *left* : 0.125 The left side of the subplots of the figure *right* : 0.9 The right side of the subplots of the figure *bottom* : 0.1 The bottom of the subplots of the figure *top* : 0.9 The top of the subplots of the figure *wspace* : 0.2 The amount of width reserved for blank space between subplots *hspace* : 0.2 The amount of height reserved for white space between subplots """ self.validate = True self.update(left, bottom, right, top, wspace, hspace) def update(self, left=None, bottom=None, right=None, top=None, wspace=None, hspace=None): """ Update the current values. If any kwarg is None, default to the current value, if set, otherwise to rc """ thisleft = getattr(self, 'left', None) thisright = getattr(self, 'right', None) thistop = getattr(self, 'top', None) thisbottom = getattr(self, 'bottom', None) thiswspace = getattr(self, 'wspace', None) thishspace = getattr(self, 'hspace', None) self._update_this('left', left) self._update_this('right', right) self._update_this('bottom', bottom) self._update_this('top', top) self._update_this('wspace', wspace) self._update_this('hspace', hspace) def reset(): self.left = thisleft self.right = thisright self.top = thistop self.bottom = thisbottom self.wspace = thiswspace self.hspace = thishspace if self.validate: if self.left >= self.right: reset() raise ValueError('left cannot be >= right') if self.bottom >= self.top: reset() raise ValueError('bottom cannot be >= top') def _update_this(self, s, val): if val is None: val = getattr(self, s, None) if val is None: key = 'figure.subplot.' + s val = rcParams[key] setattr(self, s, val) class Figure(Artist): """ The Figure instance supports callbacks through a *callbacks* attribute which is a :class:`matplotlib.cbook.CallbackRegistry` instance. The events you can connect to are 'dpi_changed', and the callback will be called with ``func(fig)`` where fig is the :class:`Figure` instance. *patch* The figure patch is drawn by a :class:`matplotlib.patches.Rectangle` instance *suppressComposite* For multiple figure images, the figure will make composite images depending on the renderer option_image_nocomposite function. If suppressComposite is True|False, this will override the renderer. """ def __str__(self): return "Figure(%gx%g)" % tuple(self.bbox.size) def __init__(self, figsize=None, # defaults to rc figure.figsize dpi=None, # defaults to rc figure.dpi facecolor=None, # defaults to rc figure.facecolor edgecolor=None, # defaults to rc figure.edgecolor linewidth=0.0, # the default linewidth of the frame frameon=None, # whether or not to draw the figure frame subplotpars=None, # default to rc tight_layout=None, # default to rc figure.autolayout ): """ *figsize* w,h tuple in inches *dpi* Dots per inch *facecolor* The figure patch facecolor; defaults to rc ``figure.facecolor`` *edgecolor* The figure patch edge color; defaults to rc ``figure.edgecolor`` *linewidth* The figure patch edge linewidth; the default linewidth of the frame *frameon* If *False*, suppress drawing the figure frame *subplotpars* A :class:`SubplotParams` instance, defaults to rc *tight_layout* If *False* use *subplotpars*; if *True* adjust subplot parameters using :meth:`tight_layout` with default padding. When providing a dict containing the keys `pad`, `w_pad`, `h_pad` and `rect`, the default :meth:`tight_layout` paddings will be overridden. Defaults to rc ``figure.autolayout``. """ Artist.__init__(self) self.callbacks = cbook.CallbackRegistry() if figsize is None: figsize = rcParams['figure.figsize'] if dpi is None: dpi = rcParams['figure.dpi'] if facecolor is None: facecolor = rcParams['figure.facecolor'] if edgecolor is None: edgecolor = rcParams['figure.edgecolor'] if frameon is None: frameon = rcParams['figure.frameon'] self.dpi_scale_trans = Affine2D() self.dpi = dpi self.bbox_inches = Bbox.from_bounds(0, 0, *figsize) self.bbox = TransformedBbox(self.bbox_inches, self.dpi_scale_trans) self.frameon = frameon self.transFigure = BboxTransformTo(self.bbox) # the figurePatch name is deprecated self.patch = self.figurePatch = Rectangle( xy=(0, 0), width=1, height=1, facecolor=facecolor, edgecolor=edgecolor, linewidth=linewidth) self._set_artist_props(self.patch) self.patch.set_aa(False) self._hold = rcParams['axes.hold'] self.canvas = None self._suptitle = None if subplotpars is None: subplotpars = SubplotParams() self.subplotpars = subplotpars self.set_tight_layout(tight_layout) self._axstack = AxesStack() # track all figure axes and current axes self.clf() self._cachedRenderer = None # TODO: I'd like to dynamically add the _repr_html_ method # to the figure in the right context, but then IPython doesn't # use it, for some reason. def _repr_html_(self): # We can't use "isinstance" here, because then we'd end up importing # webagg unconditiionally. if (self.canvas is not None and 'WebAgg' in self.canvas.__class__.__name__): from matplotlib.backends import backend_webagg return backend_webagg.ipython_inline_display(self) def show(self, warn=True): """ If using a GUI backend with pyplot, display the figure window. If the figure was not created using :func:`~matplotlib.pyplot.figure`, it will lack a :class:`~matplotlib.backend_bases.FigureManagerBase`, and will raise an AttributeError. For non-GUI backends, this does nothing, in which case a warning will be issued if *warn* is True (default). """ try: manager = getattr(self.canvas, 'manager') except AttributeError as err: raise AttributeError("%s\n" "Figure.show works only " "for figures managed by pyplot, normally " "created by pyplot.figure()." % err) if manager is not None: try: manager.show() return except NonGuiException: pass if warn: import warnings warnings.warn( "matplotlib is currently using a non-GUI backend, " "so cannot show the figure") def _get_axes(self): return self._axstack.as_list() axes = property(fget=_get_axes, doc="Read-only: list of axes in Figure") def _get_dpi(self): return self._dpi def _set_dpi(self, dpi): self._dpi = dpi self.dpi_scale_trans.clear().scale(dpi, dpi) self.callbacks.process('dpi_changed', self) dpi = property(_get_dpi, _set_dpi) def get_tight_layout(self): """ Return the Boolean flag, True to use :meth`tight_layout` when drawing. """ return self._tight def set_tight_layout(self, tight): """ Set whether :meth:`tight_layout` is used upon drawing. If None, the rcParams['figure.autolayout'] value will be set. When providing a dict containing the keys `pad`, `w_pad`, `h_pad` and `rect`, the default :meth:`tight_layout` paddings will be overridden. ACCEPTS: [True | False | dict | None ] """ if tight is None: tight = rcParams['figure.autolayout'] self._tight = bool(tight) self._tight_parameters = tight if isinstance(tight, dict) else {} def autofmt_xdate(self, bottom=0.2, rotation=30, ha='right'): """ Date ticklabels often overlap, so it is useful to rotate them and right align them. Also, a common use case is a number of subplots with shared xaxes where the x-axis is date data. The ticklabels are often long, and it helps to rotate them on the bottom subplot and turn them off on other subplots, as well as turn off xlabels. *bottom* The bottom of the subplots for :meth:`subplots_adjust` *rotation* The rotation of the xtick labels *ha* The horizontal alignment of the xticklabels """ allsubplots = np.alltrue([hasattr(ax, 'is_last_row') for ax in self.axes]) if len(self.axes) == 1: for label in self.axes[0].get_xticklabels(): label.set_ha(ha) label.set_rotation(rotation) else: if allsubplots: for ax in self.get_axes(): if ax.is_last_row(): for label in ax.get_xticklabels(): label.set_ha(ha) label.set_rotation(rotation) else: for label in ax.get_xticklabels(): label.set_visible(False) ax.set_xlabel('') if allsubplots: self.subplots_adjust(bottom=bottom) def get_children(self): 'get a list of artists contained in the figure' children = [self.patch] children.extend(self.artists) children.extend(self.axes) children.extend(self.lines) children.extend(self.patches) children.extend(self.texts) children.extend(self.images) children.extend(self.legends) return children def contains(self, mouseevent): """ Test whether the mouse event occurred on the figure. Returns True,{} """ if six.callable(self._contains): return self._contains(self, mouseevent) # inside = mouseevent.x >= 0 and mouseevent.y >= 0 inside = self.bbox.contains(mouseevent.x, mouseevent.y) return inside, {} def get_window_extent(self, *args, **kwargs): 'get the figure bounding box in display space; kwargs are void' return self.bbox def suptitle(self, t, **kwargs): """ Add a centered title to the figure. kwargs are :class:`matplotlib.text.Text` properties. Using figure coordinates, the defaults are: *x* : 0.5 The x location of the text in figure coords *y* : 0.98 The y location of the text in figure coords *horizontalalignment* : 'center' The horizontal alignment of the text *verticalalignment* : 'top' The vertical alignment of the text A :class:`matplotlib.text.Text` instance is returned. Example:: fig.suptitle('this is the figure title', fontsize=12) """ x = kwargs.pop('x', 0.5) y = kwargs.pop('y', 0.98) if ('horizontalalignment' not in kwargs) and ('ha' not in kwargs): kwargs['horizontalalignment'] = 'center' if ('verticalalignment' not in kwargs) and ('va' not in kwargs): kwargs['verticalalignment'] = 'top' sup = self.text(x, y, t, **kwargs) if self._suptitle is not None: self._suptitle.set_text(t) self._suptitle.set_position((x, y)) self._suptitle.update_from(sup) sup.remove() else: self._suptitle = sup return self._suptitle def set_canvas(self, canvas): """ Set the canvas the contains the figure ACCEPTS: a FigureCanvas instance """ self.canvas = canvas def hold(self, b=None): """ Set the hold state. If hold is None (default), toggle the hold state. Else set the hold state to boolean value b. e.g.:: hold() # toggle hold hold(True) # hold is on hold(False) # hold is off """ if b is None: self._hold = not self._hold else: self._hold = b def figimage(self, X, xo=0, yo=0, alpha=None, norm=None, cmap=None, vmin=None, vmax=None, origin=None, **kwargs): """ Adds a non-resampled image to the figure. call signatures:: figimage(X, **kwargs) adds a non-resampled array *X* to the figure. :: figimage(X, xo, yo) with pixel offsets *xo*, *yo*, *X* must be a float array: * If *X* is MxN, assume luminance (grayscale) * If *X* is MxNx3, assume RGB * If *X* is MxNx4, assume RGBA Optional keyword arguments: ========= ========================================================= Keyword Description ========= ========================================================= xo or yo An integer, the *x* and *y* image offset in pixels cmap a :class:`matplotlib.colors.Colormap` instance, e.g., cm.jet. If *None*, default to the rc ``image.cmap`` value norm a :class:`matplotlib.colors.Normalize` instance. The default is normalization(). This scales luminance -> 0-1 vmin|vmax are used to scale a luminance image to 0-1. If either is *None*, the min and max of the luminance values will be used. Note if you pass a norm instance, the settings for *vmin* and *vmax* will be ignored. alpha the alpha blending value, default is *None* origin [ 'upper' | 'lower' ] Indicates where the [0,0] index of the array is in the upper left or lower left corner of the axes. Defaults to the rc image.origin value ========= ========================================================= figimage complements the axes image (:meth:`~matplotlib.axes.Axes.imshow`) which will be resampled to fit the current axes. If you want a resampled image to fill the entire figure, you can define an :class:`~matplotlib.axes.Axes` with size [0,1,0,1]. An :class:`matplotlib.image.FigureImage` instance is returned. .. plot:: mpl_examples/pylab_examples/figimage_demo.py Additional kwargs are Artist kwargs passed on to :class:`~matplotlib.image.FigureImage` """ if not self._hold: self.clf() im = FigureImage(self, cmap, norm, xo, yo, origin, **kwargs) im.set_array(X) im.set_alpha(alpha) if norm is None: im.set_clim(vmin, vmax) self.images.append(im) im._remove_method = lambda h: self.images.remove(h) return im def set_size_inches(self, *args, **kwargs): """ set_size_inches(w,h, forward=False) Set the figure size in inches (1in == 2.54cm) Usage:: fig.set_size_inches(w,h) # OR fig.set_size_inches((w,h) ) optional kwarg *forward=True* will cause the canvas size to be automatically updated; e.g., you can resize the figure window from the shell ACCEPTS: a w,h tuple with w,h in inches See Also -------- matplotlib.Figure.get_size_inches """ forward = kwargs.get('forward', False) if len(args) == 1: w, h = args[0] else: w, h = args dpival = self.dpi self.bbox_inches.p1 = w, h if forward: dpival = self.dpi canvasw = w * dpival canvash = h * dpival manager = getattr(self.canvas, 'manager', None) if manager is not None: manager.resize(int(canvasw), int(canvash)) def get_size_inches(self): """ Returns the current size of the figure in inches (1in == 2.54cm) as an numpy array. Returns ------- size : ndarray The size of the figure in inches See Also -------- matplotlib.Figure.set_size_inches """ return np.array(self.bbox_inches.p1) def get_edgecolor(self): 'Get the edge color of the Figure rectangle' return self.patch.get_edgecolor() def get_facecolor(self): 'Get the face color of the Figure rectangle' return self.patch.get_facecolor() def get_figwidth(self): 'Return the figwidth as a float' return self.bbox_inches.width def get_figheight(self): 'Return the figheight as a float' return self.bbox_inches.height def get_dpi(self): 'Return the dpi as a float' return self.dpi def get_frameon(self): 'get the boolean indicating frameon' return self.frameon def set_edgecolor(self, color): """ Set the edge color of the Figure rectangle ACCEPTS: any matplotlib color - see help(colors) """ self.patch.set_edgecolor(color) def set_facecolor(self, color): """ Set the face color of the Figure rectangle ACCEPTS: any matplotlib color - see help(colors) """ self.patch.set_facecolor(color) def set_dpi(self, val): """ Set the dots-per-inch of the figure ACCEPTS: float """ self.dpi = val def set_figwidth(self, val): """ Set the width of the figure in inches ACCEPTS: float """ self.bbox_inches.x1 = val def set_figheight(self, val): """ Set the height of the figure in inches ACCEPTS: float """ self.bbox_inches.y1 = val def set_frameon(self, b): """ Set whether the figure frame (background) is displayed or invisible ACCEPTS: boolean """ self.frameon = b def delaxes(self, a): 'remove a from the figure and update the current axes' self._axstack.remove(a) for func in self._axobservers: func(self) def _make_key(self, *args, **kwargs): 'make a hashable key out of args and kwargs' def fixitems(items): #items may have arrays and lists in them, so convert them # to tuples for the key ret = [] for k, v in items: # some objects can define __getitem__ without being # iterable and in those cases the conversion to tuples # will fail. So instead of using the iterable(v) function # we simply try and convert to a tuple, and proceed if not. try: v = tuple(v) except Exception: pass ret.append((k, v)) return tuple(ret) def fixlist(args): ret = [] for a in args: if iterable(a): a = tuple(a) ret.append(a) return tuple(ret) key = fixlist(args), fixitems(six.iteritems(kwargs)) return key @docstring.dedent_interpd def add_axes(self, *args, **kwargs): """ Add an axes at position *rect* [*left*, *bottom*, *width*, *height*] where all quantities are in fractions of figure width and height. kwargs are legal :class:`~matplotlib.axes.Axes` kwargs plus *projection* which sets the projection type of the axes. (For backward compatibility, ``polar=True`` may also be provided, which is equivalent to ``projection='polar'``). Valid values for *projection* are: %(projection_names)s. Some of these projections support additional kwargs, which may be provided to :meth:`add_axes`. Typical usage:: rect = l,b,w,h fig.add_axes(rect) fig.add_axes(rect, frameon=False, axisbg='g') fig.add_axes(rect, polar=True) fig.add_axes(rect, projection='polar') fig.add_axes(ax) If the figure already has an axes with the same parameters, then it will simply make that axes current and return it. If you do not want this behavior, e.g., you want to force the creation of a new Axes, you must use a unique set of args and kwargs. The axes :attr:`~matplotlib.axes.Axes.label` attribute has been exposed for this purpose. e.g., if you want two axes that are otherwise identical to be added to the figure, make sure you give them unique labels:: fig.add_axes(rect, label='axes1') fig.add_axes(rect, label='axes2') In rare circumstances, add_axes may be called with a single argument, an Axes instance already created in the present figure but not in the figure's list of axes. For example, if an axes has been removed with :meth:`delaxes`, it can be restored with:: fig.add_axes(ax) In all cases, the :class:`~matplotlib.axes.Axes` instance will be returned. In addition to *projection*, the following kwargs are supported: %(Axes)s """ if not len(args): return # shortcut the projection "key" modifications later on, if an axes # with the exact args/kwargs exists, return it immediately. key = self._make_key(*args, **kwargs) ax = self._axstack.get(key) if ax is not None: self.sca(ax) return ax if isinstance(args[0], Axes): a = args[0] assert(a.get_figure() is self) else: rect = args[0] projection_class, kwargs, key = process_projection_requirements( self, *args, **kwargs) # check that an axes of this type doesn't already exist, if it # does, set it as active and return it ax = self._axstack.get(key) if ax is not None and isinstance(ax, projection_class): self.sca(ax) return ax # create the new axes using the axes class given a = projection_class(self, rect, **kwargs) self._axstack.add(key, a) self.sca(a) return a @docstring.dedent_interpd def add_subplot(self, *args, **kwargs): """ Add a subplot. Examples:: fig.add_subplot(111) # equivalent but more general fig.add_subplot(1,1,1) # add subplot with red background fig.add_subplot(212, axisbg='r') # add a polar subplot fig.add_subplot(111, projection='polar') # add Subplot instance sub fig.add_subplot(sub) *kwargs* are legal :class:`~matplotlib.axes.Axes` kwargs plus *projection*, which chooses a projection type for the axes. (For backward compatibility, *polar=True* may also be provided, which is equivalent to *projection='polar'*). Valid values for *projection* are: %(projection_names)s. Some of these projections support additional *kwargs*, which may be provided to :meth:`add_axes`. The :class:`~matplotlib.axes.Axes` instance will be returned. If the figure already has a subplot with key (*args*, *kwargs*) then it will simply make that subplot current and return it. .. seealso:: :meth:`~matplotlib.pyplot.subplot` for an explanation of the args. The following kwargs are supported: %(Axes)s """ if not len(args): return if len(args) == 1 and isinstance(args[0], int): args = tuple([int(c) for c in str(args[0])]) if len(args) != 3: raise ValueError("Integer subplot specification must " + "be a three digit number. " + "Not {n:d}".format(n=len(args))) if isinstance(args[0], SubplotBase): a = args[0] assert(a.get_figure() is self) # make a key for the subplot (which includes the axes object id # in the hash) key = self._make_key(*args, **kwargs) else: projection_class, kwargs, key = process_projection_requirements( self, *args, **kwargs) # try to find the axes with this key in the stack ax = self._axstack.get(key) if ax is not None: if isinstance(ax, projection_class): # the axes already existed, so set it as active & return self.sca(ax) return ax else: # Undocumented convenience behavior: # subplot(111); subplot(111, projection='polar') # will replace the first with the second. # Without this, add_subplot would be simpler and # more similar to add_axes. self._axstack.remove(ax) a = subplot_class_factory(projection_class)(self, *args, **kwargs) self._axstack.add(key, a) self.sca(a) return a def clf(self, keep_observers=False): """ Clear the figure. Set *keep_observers* to True if, for example, a gui widget is tracking the axes in the figure. """ self.suppressComposite = None self.callbacks = cbook.CallbackRegistry() for ax in tuple(self.axes): # Iterate over the copy. ax.cla() self.delaxes(ax) # removes ax from self._axstack toolbar = getattr(self.canvas, 'toolbar', None) if toolbar is not None: toolbar.update() self._axstack.clear() self.artists = [] self.lines = [] self.patches = [] self.texts = [] self.images = [] self.legends = [] if not keep_observers: self._axobservers = [] self._suptitle = None def clear(self): """ Clear the figure -- synonym for :meth:`clf`. """ self.clf() @allow_rasterization def draw(self, renderer): """ Render the figure using :class:`matplotlib.backend_bases.RendererBase` instance *renderer*. """ # draw the figure bounding box, perhaps none for white figure if not self.get_visible(): return renderer.open_group('figure') if self.get_tight_layout() and self.axes: try: self.tight_layout(renderer, **self._tight_parameters) except ValueError: pass # ValueError can occur when resizing a window. if self.frameon: self.patch.draw(renderer) # a list of (zorder, func_to_call, list_of_args) dsu = [] for a in self.patches: dsu.append((a.get_zorder(), a, a.draw, [renderer])) for a in self.lines: dsu.append((a.get_zorder(), a, a.draw, [renderer])) for a in self.artists: dsu.append((a.get_zorder(), a, a.draw, [renderer])) # override the renderer default if self.suppressComposite # is not None not_composite = renderer.option_image_nocomposite() if self.suppressComposite is not None: not_composite = self.suppressComposite if (len(self.images) <= 1 or not_composite or not cbook.allequal([im.origin for im in self.images])): for a in self.images: dsu.append((a.get_zorder(), a, a.draw, [renderer])) else: # make a composite image blending alpha # list of (_image.Image, ox, oy) mag = renderer.get_image_magnification() ims = [(im.make_image(mag), im.ox, im.oy, im.get_alpha()) for im in self.images] im = _image.from_images(self.bbox.height * mag, self.bbox.width * mag, ims) im.is_grayscale = False l, b, w, h = self.bbox.bounds def draw_composite(): gc = renderer.new_gc() gc.set_clip_rectangle(self.bbox) gc.set_clip_path(self.get_clip_path()) renderer.draw_image(gc, l, b, im) gc.restore() dsu.append((self.images[0].get_zorder(), self.images[0], draw_composite, [])) # render the axes for a in self.axes: dsu.append((a.get_zorder(), a, a.draw, [renderer])) # render the figure text for a in self.texts: dsu.append((a.get_zorder(), a, a.draw, [renderer])) for a in self.legends: dsu.append((a.get_zorder(), a, a.draw, [renderer])) dsu = [row for row in dsu if not row[1].get_animated()] dsu.sort(key=itemgetter(0)) for zorder, a, func, args in dsu: func(*args) renderer.close_group('figure') self._cachedRenderer = renderer self.canvas.draw_event(renderer) def draw_artist(self, a): """ draw :class:`matplotlib.artist.Artist` instance *a* only -- this is available only after the figure is drawn """ assert self._cachedRenderer is not None a.draw(self._cachedRenderer) def get_axes(self): return self.axes def legend(self, handles, labels, *args, **kwargs): """ Place a legend in the figure. Labels are a sequence of strings, handles is a sequence of :class:`~matplotlib.lines.Line2D` or :class:`~matplotlib.patches.Patch` instances, and loc can be a string or an integer specifying the legend location USAGE:: legend( (line1, line2, line3), ('label1', 'label2', 'label3'), 'upper right') The *loc* location codes are:: 'best' : 0, (currently not supported for figure legends) 'upper right' : 1, 'upper left' : 2, 'lower left' : 3, 'lower right' : 4, 'right' : 5, 'center left' : 6, 'center right' : 7, 'lower center' : 8, 'upper center' : 9, 'center' : 10, *loc* can also be an (x,y) tuple in figure coords, which specifies the lower left of the legend box. figure coords are (0,0) is the left, bottom of the figure and 1,1 is the right, top. Keyword arguments: *prop*: [ *None* | FontProperties | dict ] A :class:`matplotlib.font_manager.FontProperties` instance. If *prop* is a dictionary, a new instance will be created with *prop*. If *None*, use rc settings. *numpoints*: integer The number of points in the legend line, default is 4 *scatterpoints*: integer The number of points in the legend line, default is 4 *scatteryoffsets*: list of floats a list of yoffsets for scatter symbols in legend *markerscale*: [ *None* | scalar ] The relative size of legend markers vs. original. If *None*, use rc settings. *fancybox*: [ *None* | *False* | *True* ] if *True*, draw a frame with a round fancybox. If *None*, use rc *shadow*: [ *None* | *False* | *True* ] If *True*, draw a shadow behind legend. If *None*, use rc settings. *ncol* : integer number of columns. default is 1 *mode* : [ "expand" | *None* ] if mode is "expand", the legend will be horizontally expanded to fill the axes area (or *bbox_to_anchor*) *title* : string the legend title Padding and spacing between various elements use following keywords parameters. The dimensions of these values are given as a fraction of the fontsize. Values from rcParams will be used if None. ================ ==================================================== Keyword Description ================ ==================================================== borderpad the fractional whitespace inside the legend border labelspacing the vertical space between the legend entries handlelength the length of the legend handles handletextpad the pad between the legend handle and text borderaxespad the pad between the axes and legend border columnspacing the spacing between columns ================ ==================================================== .. Note:: Not all kinds of artist are supported by the legend. See LINK (FIXME) for details. **Example:** .. plot:: mpl_examples/pylab_examples/figlegend_demo.py """ l = Legend(self, handles, labels, *args, **kwargs) self.legends.append(l) l._remove_method = lambda h: self.legends.remove(h) return l @docstring.dedent_interpd def text(self, x, y, s, *args, **kwargs): """ Add text to figure. Call signature:: text(x, y, s, fontdict=None, **kwargs) Add text to figure at location *x*, *y* (relative 0-1 coords). See :func:`~matplotlib.pyplot.text` for the meaning of the other arguments. kwargs control the :class:`~matplotlib.text.Text` properties: %(Text)s """ override = _process_text_args({}, *args, **kwargs) t = Text(x=x, y=y, text=s) t.update(override) self._set_artist_props(t) self.texts.append(t) t._remove_method = lambda h: self.texts.remove(h) return t def _set_artist_props(self, a): if a != self: a.set_figure(self) a.set_transform(self.transFigure) @docstring.dedent_interpd def gca(self, **kwargs): """ Get the current axes, creating one if necessary The following kwargs are supported for ensuring the returned axes adheres to the given projection etc., and for axes creation if the active axes does not exist: %(Axes)s """ ckey, cax = self._axstack.current_key_axes() # if there exists an axes on the stack see if it maches # the desired axes configuration if cax is not None: # if no kwargs are given just return the current axes # this is a convenience for gca() on axes such as polar etc. if not kwargs: return cax # if the user has specified particular projection detail # then build up a key which can represent this else: # we don't want to modify the original kwargs # so take a copy so that we can do what we like to it kwargs_copy = kwargs.copy() projection_class, _, key = process_projection_requirements( self, **kwargs_copy) # let the returned axes have any gridspec by removing it from # the key ckey = ckey[1:] key = key[1:] # if the cax matches this key then return the axes, otherwise # continue and a new axes will be created if key == ckey and isinstance(cax, projection_class): return cax # no axes found, so create one which spans the figure return self.add_subplot(1, 1, 1, **kwargs) def sca(self, a): 'Set the current axes to be a and return a' self._axstack.bubble(a) for func in self._axobservers: func(self) return a def _gci(self): """ helper for :func:`~matplotlib.pyplot.gci`; do not use elsewhere. """ # Look first for an image in the current Axes: cax = self._axstack.current_key_axes()[1] if cax is None: return None im = cax._gci() if im is not None: return im # If there is no image in the current Axes, search for # one in a previously created Axes. Whether this makes # sense is debatable, but it is the documented behavior. for ax in reversed(self.axes): im = ax._gci() if im is not None: return im return None def __getstate__(self): state = self.__dict__.copy() # the axobservers cannot currently be pickled. # Additionally, the canvas cannot currently be pickled, but this has # the benefit of meaning that a figure can be detached from one canvas, # and re-attached to another. for attr_to_pop in ('_axobservers', 'show', 'canvas', '_cachedRenderer'): state.pop(attr_to_pop, None) # add version information to the state state['__mpl_version__'] = _mpl_version # check to see if the figure has a manager and whether it is registered # with pyplot if getattr(self.canvas, 'manager', None) is not None: manager = self.canvas.manager import matplotlib._pylab_helpers if manager in list(six.itervalues( matplotlib._pylab_helpers.Gcf.figs)): state['_restore_to_pylab'] = True return state def __setstate__(self, state): version = state.pop('__mpl_version__') restore_to_pylab = state.pop('_restore_to_pylab', False) if version != _mpl_version: import warnings warnings.warn("This figure was saved with matplotlib version %s " "and is unlikely to function correctly." % (version, )) self.__dict__ = state # re-initialise some of the unstored state information self._axobservers = [] self.canvas = None if restore_to_pylab: # lazy import to avoid circularity import matplotlib.pyplot as plt import matplotlib._pylab_helpers as pylab_helpers allnums = plt.get_fignums() num = max(allnums) + 1 if allnums else 1 mgr = plt._backend_mod.new_figure_manager_given_figure(num, self) # XXX The following is a copy and paste from pyplot. Consider # factoring to pylab_helpers if self.get_label(): mgr.set_window_title(self.get_label()) # make this figure current on button press event def make_active(event): pylab_helpers.Gcf.set_active(mgr) mgr._cidgcf = mgr.canvas.mpl_connect('button_press_event', make_active) pylab_helpers.Gcf.set_active(mgr) self.number = num plt.draw_if_interactive() def add_axobserver(self, func): 'whenever the axes state change, ``func(self)`` will be called' self._axobservers.append(func) def savefig(self, *args, **kwargs): """ Save the current figure. Call signature:: savefig(fname, dpi=None, facecolor='w', edgecolor='w', orientation='portrait', papertype=None, format=None, transparent=False, bbox_inches=None, pad_inches=0.1, frameon=None) The output formats available depend on the backend being used. Arguments: *fname*: A string containing a path to a filename, or a Python file-like object, or possibly some backend-dependent object such as :class:`~matplotlib.backends.backend_pdf.PdfPages`. If *format* is *None* and *fname* is a string, the output format is deduced from the extension of the filename. If the filename has no extension, the value of the rc parameter ``savefig.format`` is used. If *fname* is not a string, remember to specify *format* to ensure that the correct backend is used. Keyword arguments: *dpi*: [ *None* | ``scalar > 0`` ] The resolution in dots per inch. If *None* it will default to the value ``savefig.dpi`` in the matplotlibrc file. *facecolor*, *edgecolor*: the colors of the figure rectangle *orientation*: [ 'landscape' | 'portrait' ] not supported on all backends; currently only on postscript output *papertype*: One of 'letter', 'legal', 'executive', 'ledger', 'a0' through 'a10', 'b0' through 'b10'. Only supported for postscript output. *format*: One of the file extensions supported by the active backend. Most backends support png, pdf, ps, eps and svg. *transparent*: If *True*, the axes patches will all be transparent; the figure patch will also be transparent unless facecolor and/or edgecolor are specified via kwargs. This is useful, for example, for displaying a plot on top of a colored background on a web page. The transparency of these patches will be restored to their original values upon exit of this function. *frameon*: If *True*, the figure patch will be colored, if *False*, the figure background will be transparent. If not provided, the rcParam 'savefig.frameon' will be used. *bbox_inches*: Bbox in inches. Only the given portion of the figure is saved. If 'tight', try to figure out the tight bbox of the figure. *pad_inches*: Amount of padding around the figure when bbox_inches is 'tight'. *bbox_extra_artists*: A list of extra artists that will be considered when the tight bbox is calculated. """ kwargs.setdefault('dpi', rcParams['savefig.dpi']) frameon = kwargs.pop('frameon', rcParams['savefig.frameon']) transparent = kwargs.pop('transparent', rcParams['savefig.transparent']) if transparent: kwargs.setdefault('facecolor', 'none') kwargs.setdefault('edgecolor', 'none') original_axes_colors = [] for ax in self.axes: patch = ax.patch original_axes_colors.append((patch.get_facecolor(), patch.get_edgecolor())) patch.set_facecolor('none') patch.set_edgecolor('none') else: kwargs.setdefault('facecolor', rcParams['savefig.facecolor']) kwargs.setdefault('edgecolor', rcParams['savefig.edgecolor']) if frameon: original_frameon = self.get_frameon() self.set_frameon(frameon) self.canvas.print_figure(*args, **kwargs) if frameon: self.set_frameon(original_frameon) if transparent: for ax, cc in zip(self.axes, original_axes_colors): ax.patch.set_facecolor(cc[0]) ax.patch.set_edgecolor(cc[1]) @docstring.dedent_interpd def colorbar(self, mappable, cax=None, ax=None, use_gridspec=True, **kw): """ Create a colorbar for a ScalarMappable instance, *mappable*. Documentation for the pylab thin wrapper: %(colorbar_doc)s """ if ax is None: ax = self.gca() # Store the value of gca so that we can set it back later on. current_ax = self.gca() if cax is None: if use_gridspec and isinstance(ax, SubplotBase): cax, kw = cbar.make_axes_gridspec(ax, **kw) else: cax, kw = cbar.make_axes(ax, **kw) cax.hold(True) cb = cbar.colorbar_factory(cax, mappable, **kw) self.sca(current_ax) return cb def subplots_adjust(self, *args, **kwargs): """ Call signature:: subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=None, hspace=None) Update the :class:`SubplotParams` with *kwargs* (defaulting to rc when *None*) and update the subplot locations """ self.subplotpars.update(*args, **kwargs) for ax in self.axes: if not isinstance(ax, SubplotBase): # Check if sharing a subplots axis if (ax._sharex is not None and isinstance(ax._sharex, SubplotBase)): ax._sharex.update_params() ax.set_position(ax._sharex.figbox) elif (ax._sharey is not None and isinstance(ax._sharey, SubplotBase)): ax._sharey.update_params() ax.set_position(ax._sharey.figbox) else: ax.update_params() ax.set_position(ax.figbox) def ginput(self, n=1, timeout=30, show_clicks=True, mouse_add=1, mouse_pop=3, mouse_stop=2): """ Call signature:: ginput(self, n=1, timeout=30, show_clicks=True, mouse_add=1, mouse_pop=3, mouse_stop=2) Blocking call to interact with the figure. This will wait for *n* clicks from the user and return a list of the coordinates of each click. If *timeout* is zero or negative, does not timeout. If *n* is zero or negative, accumulate clicks until a middle click (or potentially both mouse buttons at once) terminates the input. Right clicking cancels last input. The buttons used for the various actions (adding points, removing points, terminating the inputs) can be overriden via the arguments *mouse_add*, *mouse_pop* and *mouse_stop*, that give the associated mouse button: 1 for left, 2 for middle, 3 for right. The keyboard can also be used to select points in case your mouse does not have one or more of the buttons. The delete and backspace keys act like right clicking (i.e., remove last point), the enter key terminates input and any other key (not already used by the window manager) selects a point. """ blocking_mouse_input = BlockingMouseInput(self, mouse_add=mouse_add, mouse_pop=mouse_pop, mouse_stop=mouse_stop) return blocking_mouse_input(n=n, timeout=timeout, show_clicks=show_clicks) def waitforbuttonpress(self, timeout=-1): """ Call signature:: waitforbuttonpress(self, timeout=-1) Blocking call to interact with the figure. This will return True is a key was pressed, False if a mouse button was pressed and None if *timeout* was reached without either being pressed. If *timeout* is negative, does not timeout. """ blocking_input = BlockingKeyMouseInput(self) return blocking_input(timeout=timeout) def get_default_bbox_extra_artists(self): bbox_artists = [artist for artist in self.get_children() if artist.get_visible()] for ax in self.axes: if ax.get_visible(): bbox_artists.extend(ax.get_default_bbox_extra_artists()) # we don't want the figure's patch to influence the bbox calculation bbox_artists.remove(self.patch) return bbox_artists def get_tightbbox(self, renderer): """ Return a (tight) bounding box of the figure in inches. It only accounts axes title, axis labels, and axis ticklabels. Needs improvement. """ bb = [] for ax in self.axes: if ax.get_visible(): bb.append(ax.get_tightbbox(renderer)) if len(bb) == 0: return self.bbox_inches _bbox = Bbox.union([b for b in bb if b.width != 0 or b.height != 0]) bbox_inches = TransformedBbox(_bbox, Affine2D().scale(1. / self.dpi)) return bbox_inches def tight_layout(self, renderer=None, pad=1.08, h_pad=None, w_pad=None, rect=None): """ Adjust subplot parameters to give specified padding. Parameters: *pad* : float padding between the figure edge and the edges of subplots, as a fraction of the font-size. *h_pad*, *w_pad* : float padding (height/width) between edges of adjacent subplots. Defaults to `pad_inches`. *rect* : if rect is given, it is interpreted as a rectangle (left, bottom, right, top) in the normalized figure coordinate that the whole subplots area (including labels) will fit into. Default is (0, 0, 1, 1). """ from .tight_layout import (get_renderer, get_tight_layout_figure, get_subplotspec_list) subplotspec_list = get_subplotspec_list(self.axes) if None in subplotspec_list: warnings.warn("This figure includes Axes that are not " "compatible with tight_layout, so its " "results might be incorrect.") if renderer is None: renderer = get_renderer(self) kwargs = get_tight_layout_figure(self, self.axes, subplotspec_list, renderer, pad=pad, h_pad=h_pad, w_pad=w_pad, rect=rect) self.subplots_adjust(**kwargs) def figaspect(arg): """ Create a figure with specified aspect ratio. If *arg* is a number, use that aspect ratio. If *arg* is an array, figaspect will determine the width and height for a figure that would fit array preserving aspect ratio. The figure width, height in inches are returned. Be sure to create an axes with equal with and height, e.g., Example usage:: # make a figure twice as tall as it is wide w, h = figaspect(2.) fig = Figure(figsize=(w,h)) ax = fig.add_axes([0.1, 0.1, 0.8, 0.8]) ax.imshow(A, **kwargs) # make a figure with the proper aspect for an array A = rand(5,3) w, h = figaspect(A) fig = Figure(figsize=(w,h)) ax = fig.add_axes([0.1, 0.1, 0.8, 0.8]) ax.imshow(A, **kwargs) Thanks to Fernando Perez for this function """ isarray = hasattr(arg, 'shape') # min/max sizes to respect when autoscaling. If John likes the idea, they # could become rc parameters, for now they're hardwired. figsize_min = np.array((4.0, 2.0)) # min length for width/height figsize_max = np.array((16.0, 16.0)) # max length for width/height #figsize_min = rcParams['figure.figsize_min'] #figsize_max = rcParams['figure.figsize_max'] # Extract the aspect ratio of the array if isarray: nr, nc = arg.shape[:2] arr_ratio = float(nr) / nc else: arr_ratio = float(arg) # Height of user figure defaults fig_height = rcParams['figure.figsize'][1] # New size for the figure, keeping the aspect ratio of the caller newsize = np.array((fig_height / arr_ratio, fig_height)) # Sanity checks, don't drop either dimension below figsize_min newsize /= min(1.0, *(newsize / figsize_min)) # Avoid humongous windows as well newsize /= max(1.0, *(newsize / figsize_max)) # Finally, if we have a really funky aspect ratio, break it but respect # the min/max dimensions (we don't want figures 10 feet tall!) newsize = np.clip(newsize, figsize_min, figsize_max) return newsize docstring.interpd.update(Figure=martist.kwdoc(Figure))
gpl-2.0
dylanGeng/BuildingMachineLearningSystemsWithPython
ch09/fft.py
24
3673
# This code is supporting material for the book # Building Machine Learning Systems with Python # by Willi Richert and Luis Pedro Coelho # published by PACKT Publishing # # It is made available under the MIT License import sys import os import glob import numpy as np import scipy import scipy.io.wavfile from utils import GENRE_DIR, CHART_DIR import matplotlib.pyplot as plt from matplotlib.ticker import EngFormatter def write_fft(fft_features, fn): """ Write the FFT features to separate files to speed up processing. """ base_fn, ext = os.path.splitext(fn) data_fn = base_fn + ".fft" np.save(data_fn, fft_features) print("Written "%data_fn) def create_fft(fn): sample_rate, X = scipy.io.wavfile.read(fn) fft_features = abs(scipy.fft(X)[:1000]) write_fft(fft_features, fn) def read_fft(genre_list, base_dir=GENRE_DIR): X = [] y = [] for label, genre in enumerate(genre_list): genre_dir = os.path.join(base_dir, genre, "*.fft.npy") file_list = glob.glob(genre_dir) assert(file_list), genre_dir for fn in file_list: fft_features = np.load(fn) X.append(fft_features[:2000]) y.append(label) return np.array(X), np.array(y) def plot_wav_fft(wav_filename, desc=None): plt.clf() plt.figure(num=None, figsize=(6, 4)) sample_rate, X = scipy.io.wavfile.read(wav_filename) spectrum = np.fft.fft(X) freq = np.fft.fftfreq(len(X), 1.0 / sample_rate) plt.subplot(211) num_samples = 200.0 plt.xlim(0, num_samples / sample_rate) plt.xlabel("time [s]") plt.title(desc or wav_filename) plt.plot(np.arange(num_samples) / sample_rate, X[:num_samples]) plt.grid(True) plt.subplot(212) plt.xlim(0, 5000) plt.xlabel("frequency [Hz]") plt.xticks(np.arange(5) * 1000) if desc: desc = desc.strip() fft_desc = desc[0].lower() + desc[1:] else: fft_desc = wav_filename plt.title("FFT of %s" % fft_desc) plt.plot(freq, abs(spectrum), linewidth=5) plt.grid(True) plt.tight_layout() rel_filename = os.path.split(wav_filename)[1] plt.savefig("%s_wav_fft.png" % os.path.splitext(rel_filename)[0], bbox_inches='tight') plt.show() def plot_wav_fft_demo(): plot_wav_fft("sine_a.wav", "400Hz sine wave") plot_wav_fft("sine_b.wav", "3,000Hz sine wave") plot_wav_fft("sine_mix.wav", "Mixed sine wave") def plot_specgram(ax, fn): sample_rate, X = scipy.io.wavfile.read(fn) ax.specgram(X, Fs=sample_rate, xextent=(0, 30)) def plot_specgrams(base_dir=CHART_DIR): """ Plot a bunch of spectrograms of wav files in different genres """ plt.clf() genres = ["classical", "jazz", "country", "pop", "rock", "metal"] num_files = 3 f, axes = plt.subplots(len(genres), num_files) for genre_idx, genre in enumerate(genres): for idx, fn in enumerate(glob.glob(os.path.join(GENRE_DIR, genre, "*.wav"))): if idx == num_files: break axis = axes[genre_idx, idx] axis.yaxis.set_major_formatter(EngFormatter()) axis.set_title("%s song %i" % (genre, idx + 1)) plot_specgram(axis, fn) specgram_file = os.path.join(base_dir, "Spectrogram_Genres.png") plt.savefig(specgram_file, bbox_inches="tight") plt.show() if __name__ == "__main__": # for fn in glob.glob(os.path.join(sys.argv[1], "*.wav")): # create_fft(fn) # plot_decomp() if len(sys.argv) > 1: plot_wav_fft(sys.argv[1], desc="some sample song") else: plot_wav_fft_demo() plot_specgrams()
mit
rafafigueroa/compass-gait
hasimpy.py
1
9216
#!/usr/bin/env python # -*- coding: utf-8 -*- """ @author: Rafael Figueroa """ dp = True import numpy as np DEBUG = False class H: """Hybrid Automata Model""" def __init__(self, Q, Init_X, Init_qID, state_names = None): self.q = Q #list of q self.Init_X = Init_X self.Init_qID = Init_qID self.states = state_names self.Ts = None def mode_tracker_guard_check(self, qID, X): # Called by mode_tracker to set the mode q = self.q[qID] g=q.E.G #guard list oe=q.E.OE #out edges list [g_activated, oID_activated_g] = guard_check(g, X) # return new qID when a guard is activated if g_activated: qID_activated_g = oe[oID_activated_g] else: qID_activated_g = qID return qID_activated_g def sim(self, qID, X, u, t0, tlim, haws_flag=False, debug_flag=False, Ts=1e-4): self.Ts = Ts #t0 refers to the initial time of #each continuous dynamic time interval sr = SimResult(self.states) #Initialize class q = self.q[qID] #get a ref to current mode global DEBUG DEBUG = debug_flag #change global DEBUG variable while t0<tlim: #get values from current q object f=q.f #continuous dynamics func # when simulating is requested by haws # with a forced input if not haws_flag: u=q.u g=q.E.G #guard list r=q.E.R #reset map list oe=q.E.OE #out edges list dom=q.Dom #discrete mode domain avoid=q.Avoid #discrete mode avoid if DEBUG: print '\n*** New Discrete State *** \n' print 'f=',f,'\ng=',g,'\nr=',r,'\noe=',oe,'\ndom=',dom print 'Avoid=',avoid print 'qID=',q.qID,'\nX=',X,'\nu=',u print '\n*** domain check *** \n' if not dom(X): errorString = 'Outside domain!' print errorString #raise NameError(errorString) if DEBUG: print '\n*** continuous dynamics *** \n' #simulate continuous dynamics T, Y, oID_activated_g, \ avoid_activated, tlim_activated = \ odeeul(f, u, g, avoid, X, t0, tlim, Ts) # store this time interval # in the simulation results sr.newTimeInterval(T, Y, q) # when inside the avoid set, simulation stops # and the information is stored in the simulation results if avoid_activated: sr.avoid_activated = True sr.timeToAvoid = T[-1] break #while loop if tlim_activated: break #while loop # *** after guard is activated *** # prepare data for the next loop t0=T[-1] #reset initial time to the end of #last time interval last_state = np.array(Y[-1]) if DEBUG: print '\n *** reset map *** \n' print 'last state =',last_state X=r[oID_activated_g](last_state) #reset map qID_activated_g = oe[oID_activated_g] #guard activated print out if DEBUG: print 'sim -- guard activated' print 'sim -- from q =', q.qID, 'to q =', qID_activated_g print 'sim -- State =', X #get new q q = self.q[qID_activated_g] return sr class Q: def __init__(self,qID,f,u,E, Dom = lambda X:True, Avoid = lambda X:False , TC=True): self.qID = qID self.f = f self.u = u self.E = E self.Dom = Dom self.Avoid = Avoid self.TC = TC class E: def __init__(self,OE,G,R): self.OE = OE self.G = G self.R = R def guard_check(g,X): guard_list = [] #evaluate every guard in g #g is the list of guards for this q #store the results in guard_list for guard in g: guard_list.append(guard(X)) oID_activated_g = None g_activated = False #check if any result in guard_list is True #if it is, store the index for oID,guard in enumerate(guard_list): if guard: oID_activated_g = oID #outside q which tripped the guard g_activated = True break return [g_activated, oID_activated_g] def avoid_check(avoid,X): 'avoid returns True when inside the avoid set' return avoid(X) def odeeul(f, u, g, avoid, X0, t0, tlim, Ts): X=np.array(X0) Y=np.array(X0) T=np.array([t0]) if DEBUG: print 'State=',X g_activated, oID_activated_g = guard_check(g,X) avoid_activated = avoid_check(avoid,X) tlim_activated = (t0>=tlim) if g_activated: print 'instant jump' if DEBUG: print 'First checks:' print '\tg_activated:', g_activated print '\tavoid_activated', avoid_activated print '\ttlim_activated', tlim_activated while not (g_activated or avoid_activated or tlim_activated): #Evolve continuously until a #termination condition is activated X=Ts*f(X,u)+X Y=np.vstack((Y,X)) tnew = np.array([T[-1]+Ts]) T=np.concatenate([T,tnew]) #termination checks g_activated, oID_activated_g = guard_check(g,X) avoid_activated = avoid_check(avoid,X) tlim_activated = (tnew>=tlim) if DEBUG: print 'Running checks:' print '\tg_activated:',g_activated print '\tavoid_activated',avoid_activated print '\ttlim_activated',tlim_activated return [T, Y, oID_activated_g, avoid_activated, tlim_activated] class SimResult: """Output from one simulation run""" def __init__(self, states = None): self.I = [] self.j = 0 self.timesteps = 0 self.timeToAvoid = None self.avoid_activated = False self.path = None self.time = None self.mode = None self.states = states for yi in range(0, len(states)): self.states[yi] = "$" + self.states[yi] + "$" self.states[yi] = self.states[yi].encode('string-escape') self.states[yi] = self.states[yi].replace("\\\\", "\\") def newTimeInterval(self, T, Y, qID): """Simulation is broken into continuous chunks Here the chunks are put together""" if self.j == 0: # First interval self.path = Y self.time = T self.mode = np.array([qID]) else: self.path = np.vstack((self.path, Y)) self.time = np.concatenate((self.time, T)) self.mode = np.concatenate((self.mode, np.array([qID]))) self.j = self.j + 1 self.timesteps = self.timesteps + np.size(T) self.I.append(TimeInterval(T, Y, self.j)) def simPlot(self): Y_plot = self.path T_plot = self.time import matplotlib.pyplot as plt # TODO: Configurate at install? # user might not want latex from matplotlib import rc rc('text', usetex=True) nstates = np.size(Y_plot,1) f, axarr = plt.subplots(nstates, sharex=True) if nstates>1: for yi in range(nstates): axarr[yi].plot(T_plot, Y_plot[:,yi]) if self.states is not None: axarr[nstates-1].set_xlabel(r'time(s)') axarr[yi].set_ylabel(self.states[yi], fontsize = 20) axarr[yi].yaxis.set_label_coords(-0.08, 0.5) else: axarr.plot(T_plot,Y_plot) if self.states is not None: axarr.set_xlabel('time(s)') axarr.set_ylabel(self.states[0]) plt.ion() plt.show() def phasePlot(self, plotStates): #TODO:check size of Y,plotStates X1_plot = self.path[:,plotStates[0]] X2_plot = self.path[:,plotStates[1]] import matplotlib.pyplot as plt # figx = plt.figure() f, axarr = plt.subplots(1, sharex=True) axarr.plot(X1_plot,X2_plot) if self.states is not None: axarr.set_xlabel(self.states[plotStates[0]], fontsize = 20) axarr.set_ylabel(self.states[plotStates[1]], fontsize = 20) axarr.yaxis.set_label_coords(-0.08, 0.5) plt.ion() plt.show() class TimeInterval: def __init__(self,T,Y,j): self.T=T self.Y=Y self.j=j def idem(X): return X def tolEqual(a,b,tol=1e-2): return abs(a-b)<tol def last_row(Y): print 'shape', np.shape(Y) rows = np.shape(Y)[0] print 'rows',rows if rows>1: return Y[-1] else: return Y
gpl-2.0
tequa/ammisoft
ammimain/WinPython-64bit-2.7.13.1Zero/python-2.7.13.amd64/Lib/site-packages/matplotlib/offsetbox.py
10
54984
""" The OffsetBox is a simple container artist. The child artist are meant to be drawn at a relative position to its parent. The [VH]Packer, DrawingArea and TextArea are derived from the OffsetBox. The [VH]Packer automatically adjust the relative postisions of their children, which should be instances of the OffsetBox. This is used to align similar artists together, e.g., in legend. The DrawingArea can contain any Artist as a child. The DrawingArea has a fixed width and height. The position of children relative to the parent is fixed. The TextArea is contains a single Text instance. The width and height of the TextArea instance is the width and height of the its child text. """ from __future__ import (absolute_import, division, print_function, unicode_literals) import six from six.moves import xrange, zip import warnings import matplotlib.transforms as mtransforms import matplotlib.artist as martist import matplotlib.text as mtext import matplotlib.path as mpath import numpy as np from matplotlib.transforms import Bbox, BboxBase, TransformedBbox from matplotlib.font_manager import FontProperties from matplotlib.patches import FancyBboxPatch, FancyArrowPatch from matplotlib import rcParams from matplotlib import docstring #from bboximage import BboxImage from matplotlib.image import BboxImage from matplotlib.patches import bbox_artist as mbbox_artist from matplotlib.text import _AnnotationBase DEBUG = False # for debuging use def bbox_artist(*args, **kwargs): if DEBUG: mbbox_artist(*args, **kwargs) # _get_packed_offsets() and _get_aligned_offsets() are coded assuming # that we are packing boxes horizontally. But same function will be # used with vertical packing. def _get_packed_offsets(wd_list, total, sep, mode="fixed"): """ Geiven a list of (width, xdescent) of each boxes, calculate the total width and the x-offset positions of each items according to *mode*. xdescent is analagous to the usual descent, but along the x-direction. xdescent values are currently ignored. *wd_list* : list of (width, xdescent) of boxes to be packed. *sep* : spacing between boxes *total* : Intended total length. None if not used. *mode* : packing mode. 'fixed', 'expand', or 'equal'. """ w_list, d_list = list(zip(*wd_list)) # d_list is currently not used. if mode == "fixed": offsets_ = np.add.accumulate([0] + [w + sep for w in w_list]) offsets = offsets_[:-1] if total is None: total = offsets_[-1] - sep return total, offsets elif mode == "expand": if len(w_list) > 1: sep = (total - sum(w_list)) / (len(w_list) - 1.) else: sep = 0. offsets_ = np.add.accumulate([0] + [w + sep for w in w_list]) offsets = offsets_[:-1] return total, offsets elif mode == "equal": maxh = max(w_list) if total is None: total = (maxh + sep) * len(w_list) else: sep = float(total) / (len(w_list)) - maxh offsets = np.array([(maxh + sep) * i for i in range(len(w_list))]) return total, offsets else: raise ValueError("Unknown mode : %s" % (mode,)) def _get_aligned_offsets(hd_list, height, align="baseline"): """ Given a list of (height, descent) of each boxes, align the boxes with *align* and calculate the y-offsets of each boxes. total width and the offset positions of each items according to *mode*. xdescent is analogous to the usual descent, but along the x-direction. xdescent values are currently ignored. *hd_list* : list of (width, xdescent) of boxes to be aligned. *sep* : spacing between boxes *height* : Intended total length. None if not used. *align* : align mode. 'baseline', 'top', 'bottom', or 'center'. """ if height is None: height = max([h for h, d in hd_list]) if align == "baseline": height_descent = max([h - d for h, d in hd_list]) descent = max([d for h, d in hd_list]) height = height_descent + descent offsets = [0. for h, d in hd_list] elif align in ["left", "top"]: descent = 0. offsets = [d for h, d in hd_list] elif align in ["right", "bottom"]: descent = 0. offsets = [height - h + d for h, d in hd_list] elif align == "center": descent = 0. offsets = [(height - h) * .5 + d for h, d in hd_list] else: raise ValueError("Unknown Align mode : %s" % (align,)) return height, descent, offsets class OffsetBox(martist.Artist): """ The OffsetBox is a simple container artist. The child artist are meant to be drawn at a relative position to its parent. """ def __init__(self, *args, **kwargs): super(OffsetBox, self).__init__(*args, **kwargs) # Clipping has not been implemented in the OffesetBox family, so # disable the clip flag for consistency. It can always be turned back # on to zero effect. self.set_clip_on(False) self._children = [] self._offset = (0, 0) def __getstate__(self): state = martist.Artist.__getstate__(self) # pickle cannot save instancemethods, so handle them here from .cbook import _InstanceMethodPickler import inspect offset = state['_offset'] if inspect.ismethod(offset): state['_offset'] = _InstanceMethodPickler(offset) return state def __setstate__(self, state): self.__dict__ = state from .cbook import _InstanceMethodPickler if isinstance(self._offset, _InstanceMethodPickler): self._offset = self._offset.get_instancemethod() self.stale = True def set_figure(self, fig): """ Set the figure accepts a class:`~matplotlib.figure.Figure` instance """ martist.Artist.set_figure(self, fig) for c in self.get_children(): c.set_figure(fig) @martist.Artist.axes.setter def axes(self, ax): # TODO deal with this better martist.Artist.axes.fset(self, ax) for c in self.get_children(): if c is not None: c.axes = ax def contains(self, mouseevent): for c in self.get_children(): a, b = c.contains(mouseevent) if a: return a, b return False, {} def set_offset(self, xy): """ Set the offset accepts x, y, tuple, or a callable object. """ self._offset = xy self.stale = True def get_offset(self, width, height, xdescent, ydescent, renderer): """ Get the offset accepts extent of the box """ if six.callable(self._offset): return self._offset(width, height, xdescent, ydescent, renderer) else: return self._offset def set_width(self, width): """ Set the width accepts float """ self.width = width self.stale = True def set_height(self, height): """ Set the height accepts float """ self.height = height self.stale = True def get_visible_children(self): """ Return a list of visible artists it contains. """ return [c for c in self._children if c.get_visible()] def get_children(self): """ Return a list of artists it contains. """ return self._children def get_extent_offsets(self, renderer): raise Exception("") def get_extent(self, renderer): """ Return with, height, xdescent, ydescent of box """ w, h, xd, yd, offsets = self.get_extent_offsets(renderer) return w, h, xd, yd def get_window_extent(self, renderer): ''' get the bounding box in display space. ''' w, h, xd, yd, offsets = self.get_extent_offsets(renderer) px, py = self.get_offset(w, h, xd, yd, renderer) return mtransforms.Bbox.from_bounds(px - xd, py - yd, w, h) def draw(self, renderer): """ Update the location of children if necessary and draw them to the given *renderer*. """ width, height, xdescent, ydescent, offsets = self.get_extent_offsets( renderer) px, py = self.get_offset(width, height, xdescent, ydescent, renderer) for c, (ox, oy) in zip(self.get_visible_children(), offsets): c.set_offset((px + ox, py + oy)) c.draw(renderer) bbox_artist(self, renderer, fill=False, props=dict(pad=0.)) self.stale = False class PackerBase(OffsetBox): def __init__(self, pad=None, sep=None, width=None, height=None, align=None, mode=None, children=None): """ Parameters ---------- pad : float, optional Boundary pad. sep : float, optional Spacing between items. width : float, optional height : float, optional Width and height of the container box, calculated if `None`. align : str, optional Alignment of boxes. Can be one of ``top``, ``bottom``, ``left``, ``right``, ``center`` and ``baseline`` mode : str, optional Packing mode. Notes ----- *pad* and *sep* need to given in points and will be scale with the renderer dpi, while *width* and *height* need to be in pixels. """ super(PackerBase, self).__init__() self.height = height self.width = width self.sep = sep self.pad = pad self.mode = mode self.align = align self._children = children class VPacker(PackerBase): """ The VPacker has its children packed vertically. It automatically adjust the relative positions of children in the drawing time. """ def __init__(self, pad=None, sep=None, width=None, height=None, align="baseline", mode="fixed", children=None): """ Parameters ---------- pad : float, optional Boundary pad. sep : float, optional Spacing between items. width : float, optional height : float, optional width and height of the container box, calculated if `None`. align : str, optional Alignment of boxes. mode : str, optional Packing mode. Notes ----- *pad* and *sep* need to given in points and will be scale with the renderer dpi, while *width* and *height* need to be in pixels. """ super(VPacker, self).__init__(pad, sep, width, height, align, mode, children) def get_extent_offsets(self, renderer): """ update offset of childrens and return the extents of the box """ dpicor = renderer.points_to_pixels(1.) pad = self.pad * dpicor sep = self.sep * dpicor if self.width is not None: for c in self.get_visible_children(): if isinstance(c, PackerBase) and c.mode == "expand": c.set_width(self.width) whd_list = [c.get_extent(renderer) for c in self.get_visible_children()] whd_list = [(w, h, xd, (h - yd)) for w, h, xd, yd in whd_list] wd_list = [(w, xd) for w, h, xd, yd in whd_list] width, xdescent, xoffsets = _get_aligned_offsets(wd_list, self.width, self.align) pack_list = [(h, yd) for w, h, xd, yd in whd_list] height, yoffsets_ = _get_packed_offsets(pack_list, self.height, sep, self.mode) yoffsets = yoffsets_ + [yd for w, h, xd, yd in whd_list] ydescent = height - yoffsets[0] yoffsets = height - yoffsets #w, h, xd, h_yd = whd_list[-1] yoffsets = yoffsets - ydescent return width + 2 * pad, height + 2 * pad, \ xdescent + pad, ydescent + pad, \ list(zip(xoffsets, yoffsets)) class HPacker(PackerBase): """ The HPacker has its children packed horizontally. It automatically adjusts the relative positions of children at draw time. """ def __init__(self, pad=None, sep=None, width=None, height=None, align="baseline", mode="fixed", children=None): """ Parameters ---------- pad : float, optional Boundary pad. sep : float, optional Spacing between items. width : float, optional height : float, optional Width and height of the container box, calculated if `None`. align : str Alignment of boxes. mode : str Packing mode. Notes ----- *pad* and *sep* need to given in points and will be scale with the renderer dpi, while *width* and *height* need to be in pixels. """ super(HPacker, self).__init__(pad, sep, width, height, align, mode, children) def get_extent_offsets(self, renderer): """ update offset of children and return the extents of the box """ dpicor = renderer.points_to_pixels(1.) pad = self.pad * dpicor sep = self.sep * dpicor whd_list = [c.get_extent(renderer) for c in self.get_visible_children()] if not whd_list: return 2 * pad, 2 * pad, pad, pad, [] if self.height is None: height_descent = max([h - yd for w, h, xd, yd in whd_list]) ydescent = max([yd for w, h, xd, yd in whd_list]) height = height_descent + ydescent else: height = self.height - 2 * pad # width w/o pad hd_list = [(h, yd) for w, h, xd, yd in whd_list] height, ydescent, yoffsets = _get_aligned_offsets(hd_list, self.height, self.align) pack_list = [(w, xd) for w, h, xd, yd in whd_list] width, xoffsets_ = _get_packed_offsets(pack_list, self.width, sep, self.mode) xoffsets = xoffsets_ + [xd for w, h, xd, yd in whd_list] xdescent = whd_list[0][2] xoffsets = xoffsets - xdescent return width + 2 * pad, height + 2 * pad, \ xdescent + pad, ydescent + pad, \ list(zip(xoffsets, yoffsets)) class PaddedBox(OffsetBox): def __init__(self, child, pad=None, draw_frame=False, patch_attrs=None): """ *pad* : boundary pad .. note:: *pad* need to given in points and will be scale with the renderer dpi, while *width* and *height* need to be in pixels. """ super(PaddedBox, self).__init__() self.pad = pad self._children = [child] self.patch = FancyBboxPatch( xy=(0.0, 0.0), width=1., height=1., facecolor='w', edgecolor='k', mutation_scale=1, # self.prop.get_size_in_points(), snap=True ) self.patch.set_boxstyle("square", pad=0) if patch_attrs is not None: self.patch.update(patch_attrs) self._drawFrame = draw_frame def get_extent_offsets(self, renderer): """ update offset of childrens and return the extents of the box """ dpicor = renderer.points_to_pixels(1.) pad = self.pad * dpicor w, h, xd, yd = self._children[0].get_extent(renderer) return w + 2 * pad, h + 2 * pad, \ xd + pad, yd + pad, \ [(0, 0)] def draw(self, renderer): """ Update the location of children if necessary and draw them to the given *renderer*. """ width, height, xdescent, ydescent, offsets = self.get_extent_offsets( renderer) px, py = self.get_offset(width, height, xdescent, ydescent, renderer) for c, (ox, oy) in zip(self.get_visible_children(), offsets): c.set_offset((px + ox, py + oy)) self.draw_frame(renderer) for c in self.get_visible_children(): c.draw(renderer) #bbox_artist(self, renderer, fill=False, props=dict(pad=0.)) self.stale = False def update_frame(self, bbox, fontsize=None): self.patch.set_bounds(bbox.x0, bbox.y0, bbox.width, bbox.height) if fontsize: self.patch.set_mutation_scale(fontsize) self.stale = True def draw_frame(self, renderer): # update the location and size of the legend bbox = self.get_window_extent(renderer) self.update_frame(bbox) if self._drawFrame: self.patch.draw(renderer) class DrawingArea(OffsetBox): """ The DrawingArea can contain any Artist as a child. The DrawingArea has a fixed width and height. The position of children relative to the parent is fixed. The children can be clipped at the boundaries of the parent. """ def __init__(self, width, height, xdescent=0., ydescent=0., clip=False): """ *width*, *height* : width and height of the container box. *xdescent*, *ydescent* : descent of the box in x- and y-direction. *clip* : Whether to clip the children """ super(DrawingArea, self).__init__() self.width = width self.height = height self.xdescent = xdescent self.ydescent = ydescent self._clip_children = clip self.offset_transform = mtransforms.Affine2D() self.offset_transform.clear() self.offset_transform.translate(0, 0) self.dpi_transform = mtransforms.Affine2D() @property def clip_children(self): """ If the children of this DrawingArea should be clipped by DrawingArea bounding box. """ return self._clip_children @clip_children.setter def clip_children(self, val): self._clip_children = bool(val) self.stale = True def get_transform(self): """ Return the :class:`~matplotlib.transforms.Transform` applied to the children """ return self.dpi_transform + self.offset_transform def set_transform(self, t): """ set_transform is ignored. """ pass def set_offset(self, xy): """ set offset of the container. Accept : tuple of x,y cooridnate in disokay units. """ self._offset = xy self.offset_transform.clear() self.offset_transform.translate(xy[0], xy[1]) self.stale = True def get_offset(self): """ return offset of the container. """ return self._offset def get_window_extent(self, renderer): ''' get the bounding box in display space. ''' w, h, xd, yd = self.get_extent(renderer) ox, oy = self.get_offset() # w, h, xd, yd) return mtransforms.Bbox.from_bounds(ox - xd, oy - yd, w, h) def get_extent(self, renderer): """ Return with, height, xdescent, ydescent of box """ dpi_cor = renderer.points_to_pixels(1.) return self.width * dpi_cor, self.height * dpi_cor, \ self.xdescent * dpi_cor, self.ydescent * dpi_cor def add_artist(self, a): 'Add any :class:`~matplotlib.artist.Artist` to the container box' self._children.append(a) if not a.is_transform_set(): a.set_transform(self.get_transform()) if self.axes is not None: a.axes = self.axes fig = self.figure if fig is not None: a.set_figure(fig) def draw(self, renderer): """ Draw the children """ dpi_cor = renderer.points_to_pixels(1.) self.dpi_transform.clear() self.dpi_transform.scale(dpi_cor, dpi_cor) # At this point the DrawingArea has a transform # to the display space so the path created is # good for clipping children tpath = mtransforms.TransformedPath( mpath.Path([[0, 0], [0, self.height], [self.width, self.height], [self.width, 0]]), self.get_transform()) for c in self._children: if self._clip_children and not (c.clipbox or c._clippath): c.set_clip_path(tpath) c.draw(renderer) bbox_artist(self, renderer, fill=False, props=dict(pad=0.)) self.stale = False class TextArea(OffsetBox): """ The TextArea is contains a single Text instance. The text is placed at (0,0) with baseline+left alignment. The width and height of the TextArea instance is the width and height of the its child text. """ def __init__(self, s, textprops=None, multilinebaseline=None, minimumdescent=True, ): """ Parameters ---------- s : str a string to be displayed. textprops : `~matplotlib.font_manager.FontProperties`, optional multilinebaseline : bool, optional If `True`, baseline for multiline text is adjusted so that it is (approximatedly) center-aligned with singleline text. minimumdescent : bool, optional If `True`, the box has a minimum descent of "p". """ if textprops is None: textprops = {} if "va" not in textprops: textprops["va"] = "baseline" self._text = mtext.Text(0, 0, s, **textprops) OffsetBox.__init__(self) self._children = [self._text] self.offset_transform = mtransforms.Affine2D() self.offset_transform.clear() self.offset_transform.translate(0, 0) self._baseline_transform = mtransforms.Affine2D() self._text.set_transform(self.offset_transform + self._baseline_transform) self._multilinebaseline = multilinebaseline self._minimumdescent = minimumdescent def set_text(self, s): "Set the text of this area as a string." self._text.set_text(s) self.stale = True def get_text(self): "Returns the string representation of this area's text" return self._text.get_text() def set_multilinebaseline(self, t): """ Set multilinebaseline . If True, baseline for multiline text is adjusted so that it is (approximatedly) center-aligned with singleline text. """ self._multilinebaseline = t self.stale = True def get_multilinebaseline(self): """ get multilinebaseline . """ return self._multilinebaseline def set_minimumdescent(self, t): """ Set minimumdescent . If True, extent of the single line text is adjusted so that it has minimum descent of "p" """ self._minimumdescent = t self.stale = True def get_minimumdescent(self): """ get minimumdescent. """ return self._minimumdescent def set_transform(self, t): """ set_transform is ignored. """ pass def set_offset(self, xy): """ set offset of the container. Accept : tuple of x,y coordinates in display units. """ self._offset = xy self.offset_transform.clear() self.offset_transform.translate(xy[0], xy[1]) self.stale = True def get_offset(self): """ return offset of the container. """ return self._offset def get_window_extent(self, renderer): ''' get the bounding box in display space. ''' w, h, xd, yd = self.get_extent(renderer) ox, oy = self.get_offset() # w, h, xd, yd) return mtransforms.Bbox.from_bounds(ox - xd, oy - yd, w, h) def get_extent(self, renderer): clean_line, ismath = self._text.is_math_text(self._text._text) _, h_, d_ = renderer.get_text_width_height_descent( "lp", self._text._fontproperties, ismath=False) bbox, info, d = self._text._get_layout(renderer) w, h = bbox.width, bbox.height line = info[-1][0] # last line self._baseline_transform.clear() if len(info) > 1 and self._multilinebaseline: d_new = 0.5 * h - 0.5 * (h_ - d_) self._baseline_transform.translate(0, d - d_new) d = d_new else: # single line h_d = max(h_ - d_, h - d) if self.get_minimumdescent(): ## to have a minimum descent, #i.e., "l" and "p" have same ## descents. d = max(d, d_) #else: # d = d h = h_d + d return w, h, 0., d def draw(self, renderer): """ Draw the children """ self._text.draw(renderer) bbox_artist(self, renderer, fill=False, props=dict(pad=0.)) self.stale = False class AuxTransformBox(OffsetBox): """ Offset Box with the aux_transform . Its children will be transformed with the aux_transform first then will be offseted. The absolute coordinate of the aux_transform is meaning as it will be automatically adjust so that the left-lower corner of the bounding box of children will be set to (0,0) before the offset transform. It is similar to drawing area, except that the extent of the box is not predetermined but calculated from the window extent of its children. Furthermore, the extent of the children will be calculated in the transformed coordinate. """ def __init__(self, aux_transform): self.aux_transform = aux_transform OffsetBox.__init__(self) self.offset_transform = mtransforms.Affine2D() self.offset_transform.clear() self.offset_transform.translate(0, 0) # ref_offset_transform is used to make the offset_transform is # always reference to the lower-left corner of the bbox of its # children. self.ref_offset_transform = mtransforms.Affine2D() self.ref_offset_transform.clear() def add_artist(self, a): 'Add any :class:`~matplotlib.artist.Artist` to the container box' self._children.append(a) a.set_transform(self.get_transform()) self.stale = True def get_transform(self): """ Return the :class:`~matplotlib.transforms.Transform` applied to the children """ return self.aux_transform + \ self.ref_offset_transform + \ self.offset_transform def set_transform(self, t): """ set_transform is ignored. """ pass def set_offset(self, xy): """ set offset of the container. Accept : tuple of x,y coordinate in disokay units. """ self._offset = xy self.offset_transform.clear() self.offset_transform.translate(xy[0], xy[1]) self.stale = True def get_offset(self): """ return offset of the container. """ return self._offset def get_window_extent(self, renderer): ''' get the bounding box in display space. ''' w, h, xd, yd = self.get_extent(renderer) ox, oy = self.get_offset() # w, h, xd, yd) return mtransforms.Bbox.from_bounds(ox - xd, oy - yd, w, h) def get_extent(self, renderer): # clear the offset transforms _off = self.offset_transform.to_values() # to be restored later self.ref_offset_transform.clear() self.offset_transform.clear() # calculate the extent bboxes = [c.get_window_extent(renderer) for c in self._children] ub = mtransforms.Bbox.union(bboxes) # adjust ref_offset_tansform self.ref_offset_transform.translate(-ub.x0, -ub.y0) # restor offset transform mtx = self.offset_transform.matrix_from_values(*_off) self.offset_transform.set_matrix(mtx) return ub.width, ub.height, 0., 0. def draw(self, renderer): """ Draw the children """ for c in self._children: c.draw(renderer) bbox_artist(self, renderer, fill=False, props=dict(pad=0.)) self.stale = False class AnchoredOffsetbox(OffsetBox): """ An offset box placed according to the legend location loc. AnchoredOffsetbox has a single child. When multiple children is needed, use other OffsetBox class to enclose them. By default, the offset box is anchored against its parent axes. You may explicitly specify the bbox_to_anchor. """ zorder = 5 # zorder of the legend def __init__(self, loc, pad=0.4, borderpad=0.5, child=None, prop=None, frameon=True, bbox_to_anchor=None, bbox_transform=None, **kwargs): """ loc is a string or an integer specifying the legend location. The valid location codes are:: 'upper right' : 1, 'upper left' : 2, 'lower left' : 3, 'lower right' : 4, 'right' : 5, 'center left' : 6, 'center right' : 7, 'lower center' : 8, 'upper center' : 9, 'center' : 10, pad : pad around the child for drawing a frame. given in fraction of fontsize. borderpad : pad between offsetbox frame and the bbox_to_anchor, child : OffsetBox instance that will be anchored. prop : font property. This is only used as a reference for paddings. frameon : draw a frame box if True. bbox_to_anchor : bbox to anchor. Use self.axes.bbox if None. bbox_transform : with which the bbox_to_anchor will be transformed. """ super(AnchoredOffsetbox, self).__init__(**kwargs) self.set_bbox_to_anchor(bbox_to_anchor, bbox_transform) self.set_child(child) self.loc = loc self.borderpad = borderpad self.pad = pad if prop is None: self.prop = FontProperties(size=rcParams["legend.fontsize"]) elif isinstance(prop, dict): self.prop = FontProperties(**prop) if "size" not in prop: self.prop.set_size(rcParams["legend.fontsize"]) else: self.prop = prop self.patch = FancyBboxPatch( xy=(0.0, 0.0), width=1., height=1., facecolor='w', edgecolor='k', mutation_scale=self.prop.get_size_in_points(), snap=True ) self.patch.set_boxstyle("square", pad=0) self._drawFrame = frameon def set_child(self, child): "set the child to be anchored" self._child = child if child is not None: child.axes = self.axes self.stale = True def get_child(self): "return the child" return self._child def get_children(self): "return the list of children" return [self._child] def get_extent(self, renderer): """ return the extent of the artist. The extent of the child added with the pad is returned """ w, h, xd, yd = self.get_child().get_extent(renderer) fontsize = renderer.points_to_pixels(self.prop.get_size_in_points()) pad = self.pad * fontsize return w + 2 * pad, h + 2 * pad, xd + pad, yd + pad def get_bbox_to_anchor(self): """ return the bbox that the legend will be anchored """ if self._bbox_to_anchor is None: return self.axes.bbox else: transform = self._bbox_to_anchor_transform if transform is None: return self._bbox_to_anchor else: return TransformedBbox(self._bbox_to_anchor, transform) def set_bbox_to_anchor(self, bbox, transform=None): """ set the bbox that the child will be anchored. *bbox* can be a Bbox instance, a list of [left, bottom, width, height], or a list of [left, bottom] where the width and height will be assumed to be zero. The bbox will be transformed to display coordinate by the given transform. """ if bbox is None or isinstance(bbox, BboxBase): self._bbox_to_anchor = bbox else: try: l = len(bbox) except TypeError: raise ValueError("Invalid argument for bbox : %s" % str(bbox)) if l == 2: bbox = [bbox[0], bbox[1], 0, 0] self._bbox_to_anchor = Bbox.from_bounds(*bbox) self._bbox_to_anchor_transform = transform self.stale = True def get_window_extent(self, renderer): ''' get the bounding box in display space. ''' self._update_offset_func(renderer) w, h, xd, yd = self.get_extent(renderer) ox, oy = self.get_offset(w, h, xd, yd, renderer) return Bbox.from_bounds(ox - xd, oy - yd, w, h) def _update_offset_func(self, renderer, fontsize=None): """ Update the offset func which depends on the dpi of the renderer (because of the padding). """ if fontsize is None: fontsize = renderer.points_to_pixels( self.prop.get_size_in_points()) def _offset(w, h, xd, yd, renderer, fontsize=fontsize, self=self): bbox = Bbox.from_bounds(0, 0, w, h) borderpad = self.borderpad * fontsize bbox_to_anchor = self.get_bbox_to_anchor() x0, y0 = self._get_anchored_bbox(self.loc, bbox, bbox_to_anchor, borderpad) return x0 + xd, y0 + yd self.set_offset(_offset) def update_frame(self, bbox, fontsize=None): self.patch.set_bounds(bbox.x0, bbox.y0, bbox.width, bbox.height) if fontsize: self.patch.set_mutation_scale(fontsize) def draw(self, renderer): "draw the artist" if not self.get_visible(): return fontsize = renderer.points_to_pixels(self.prop.get_size_in_points()) self._update_offset_func(renderer, fontsize) if self._drawFrame: # update the location and size of the legend bbox = self.get_window_extent(renderer) self.update_frame(bbox, fontsize) self.patch.draw(renderer) width, height, xdescent, ydescent = self.get_extent(renderer) px, py = self.get_offset(width, height, xdescent, ydescent, renderer) self.get_child().set_offset((px, py)) self.get_child().draw(renderer) self.stale = False def _get_anchored_bbox(self, loc, bbox, parentbbox, borderpad): """ return the position of the bbox anchored at the parentbbox with the loc code, with the borderpad. """ assert loc in range(1, 11) # called only internally BEST, UR, UL, LL, LR, R, CL, CR, LC, UC, C = list(xrange(11)) anchor_coefs = {UR: "NE", UL: "NW", LL: "SW", LR: "SE", R: "E", CL: "W", CR: "E", LC: "S", UC: "N", C: "C"} c = anchor_coefs[loc] container = parentbbox.padded(-borderpad) anchored_box = bbox.anchored(c, container=container) return anchored_box.x0, anchored_box.y0 class AnchoredText(AnchoredOffsetbox): """ AnchoredOffsetbox with Text. """ def __init__(self, s, loc, pad=0.4, borderpad=0.5, prop=None, **kwargs): """ Parameters ---------- s : string Text. loc : str Location code. pad : float, optional Pad between the text and the frame as fraction of the font size. borderpad : float, optional Pad between the frame and the axes (or *bbox_to_anchor*). prop : `matplotlib.font_manager.FontProperties` Font properties. Notes ----- Other keyword parameters of `AnchoredOffsetbox` are also allowed. """ if prop is None: prop = {} propkeys = list(six.iterkeys(prop)) badkwargs = ('ha', 'horizontalalignment', 'va', 'verticalalignment') if set(badkwargs) & set(propkeys): warnings.warn("Mixing horizontalalignment or verticalalignment " "with AnchoredText is not supported.") self.txt = TextArea(s, textprops=prop, minimumdescent=False) fp = self.txt._text.get_fontproperties() super(AnchoredText, self).__init__(loc, pad=pad, borderpad=borderpad, child=self.txt, prop=fp, **kwargs) class OffsetImage(OffsetBox): def __init__(self, arr, zoom=1, cmap=None, norm=None, interpolation=None, origin=None, filternorm=1, filterrad=4.0, resample=False, dpi_cor=True, **kwargs ): OffsetBox.__init__(self) self._dpi_cor = dpi_cor self.image = BboxImage(bbox=self.get_window_extent, cmap=cmap, norm=norm, interpolation=interpolation, origin=origin, filternorm=filternorm, filterrad=filterrad, resample=resample, **kwargs ) self._children = [self.image] self.set_zoom(zoom) self.set_data(arr) def set_data(self, arr): self._data = np.asarray(arr) self.image.set_data(self._data) self.stale = True def get_data(self): return self._data def set_zoom(self, zoom): self._zoom = zoom self.stale = True def get_zoom(self): return self._zoom # def set_axes(self, axes): # self.image.set_axes(axes) # martist.Artist.set_axes(self, axes) # def set_offset(self, xy): # """ # set offset of the container. # Accept : tuple of x,y coordinate in disokay units. # """ # self._offset = xy # self.offset_transform.clear() # self.offset_transform.translate(xy[0], xy[1]) def get_offset(self): """ return offset of the container. """ return self._offset def get_children(self): return [self.image] def get_window_extent(self, renderer): ''' get the bounding box in display space. ''' w, h, xd, yd = self.get_extent(renderer) ox, oy = self.get_offset() return mtransforms.Bbox.from_bounds(ox - xd, oy - yd, w, h) def get_extent(self, renderer): if self._dpi_cor: # True, do correction dpi_cor = renderer.points_to_pixels(1.) else: dpi_cor = 1. zoom = self.get_zoom() data = self.get_data() ny, nx = data.shape[:2] w, h = dpi_cor * nx * zoom, dpi_cor * ny * zoom return w, h, 0, 0 def draw(self, renderer): """ Draw the children """ self.image.draw(renderer) # bbox_artist(self, renderer, fill=False, props=dict(pad=0.)) self.stale = False class AnnotationBbox(martist.Artist, _AnnotationBase): """ Annotation-like class, but with offsetbox instead of Text. """ zorder = 3 def __str__(self): return "AnnotationBbox(%g,%g)" % (self.xy[0], self.xy[1]) @docstring.dedent_interpd def __init__(self, offsetbox, xy, xybox=None, xycoords='data', boxcoords=None, frameon=True, pad=0.4, # BboxPatch annotation_clip=None, box_alignment=(0.5, 0.5), bboxprops=None, arrowprops=None, fontsize=None, **kwargs): """ *offsetbox* : OffsetBox instance *xycoords* : same as Annotation but can be a tuple of two strings which are interpreted as x and y coordinates. *boxcoords* : similar to textcoords as Annotation but can be a tuple of two strings which are interpreted as x and y coordinates. *box_alignment* : a tuple of two floats for a vertical and horizontal alignment of the offset box w.r.t. the *boxcoords*. The lower-left corner is (0.0) and upper-right corner is (1.1). other parameters are identical to that of Annotation. """ martist.Artist.__init__(self, **kwargs) _AnnotationBase.__init__(self, xy, xycoords=xycoords, annotation_clip=annotation_clip) self.offsetbox = offsetbox self.arrowprops = arrowprops self.set_fontsize(fontsize) if xybox is None: self.xybox = xy else: self.xybox = xybox if boxcoords is None: self.boxcoords = xycoords else: self.boxcoords = boxcoords if arrowprops is not None: self._arrow_relpos = self.arrowprops.pop("relpos", (0.5, 0.5)) self.arrow_patch = FancyArrowPatch((0, 0), (1, 1), **self.arrowprops) else: self._arrow_relpos = None self.arrow_patch = None #self._fw, self._fh = 0., 0. # for alignment self._box_alignment = box_alignment # frame self.patch = FancyBboxPatch( xy=(0.0, 0.0), width=1., height=1., facecolor='w', edgecolor='k', mutation_scale=self.prop.get_size_in_points(), snap=True ) self.patch.set_boxstyle("square", pad=pad) if bboxprops: self.patch.set(**bboxprops) self._drawFrame = frameon @property def xyann(self): return self.xybox @xyann.setter def xyann(self, xyann): self.xybox = xyann self.stale = True @property def anncoords(self): return self.boxcoords @anncoords.setter def anncoords(self, coords): self.boxcoords = coords self.stale = True def contains(self, event): t, tinfo = self.offsetbox.contains(event) #if self.arrow_patch is not None: # a,ainfo=self.arrow_patch.contains(event) # t = t or a # self.arrow_patch is currently not checked as this can be a line - JJ return t, tinfo def get_children(self): children = [self.offsetbox, self.patch] if self.arrow_patch: children.append(self.arrow_patch) return children def set_figure(self, fig): if self.arrow_patch is not None: self.arrow_patch.set_figure(fig) self.offsetbox.set_figure(fig) martist.Artist.set_figure(self, fig) def set_fontsize(self, s=None): """ set fontsize in points """ if s is None: s = rcParams["legend.fontsize"] self.prop = FontProperties(size=s) self.stale = True def get_fontsize(self, s=None): """ return fontsize in points """ return self.prop.get_size_in_points() def update_positions(self, renderer): """ Update the pixel positions of the annotated point and the text. """ xy_pixel = self._get_position_xy(renderer) self._update_position_xybox(renderer, xy_pixel) mutation_scale = renderer.points_to_pixels(self.get_fontsize()) self.patch.set_mutation_scale(mutation_scale) if self.arrow_patch: self.arrow_patch.set_mutation_scale(mutation_scale) def _update_position_xybox(self, renderer, xy_pixel): """ Update the pixel positions of the annotation text and the arrow patch. """ x, y = self.xybox if isinstance(self.boxcoords, tuple): xcoord, ycoord = self.boxcoords x1, y1 = self._get_xy(renderer, x, y, xcoord) x2, y2 = self._get_xy(renderer, x, y, ycoord) ox0, oy0 = x1, y2 else: ox0, oy0 = self._get_xy(renderer, x, y, self.boxcoords) w, h, xd, yd = self.offsetbox.get_extent(renderer) _fw, _fh = self._box_alignment self.offsetbox.set_offset((ox0 - _fw * w + xd, oy0 - _fh * h + yd)) # update patch position bbox = self.offsetbox.get_window_extent(renderer) #self.offsetbox.set_offset((ox0-_fw*w, oy0-_fh*h)) self.patch.set_bounds(bbox.x0, bbox.y0, bbox.width, bbox.height) x, y = xy_pixel ox1, oy1 = x, y if self.arrowprops: x0, y0 = x, y d = self.arrowprops.copy() # Use FancyArrowPatch if self.arrowprops has "arrowstyle" key. # adjust the starting point of the arrow relative to # the textbox. # TODO : Rotation needs to be accounted. relpos = self._arrow_relpos ox0 = bbox.x0 + bbox.width * relpos[0] oy0 = bbox.y0 + bbox.height * relpos[1] # The arrow will be drawn from (ox0, oy0) to (ox1, # oy1). It will be first clipped by patchA and patchB. # Then it will be shrinked by shirnkA and shrinkB # (in points). If patch A is not set, self.bbox_patch # is used. self.arrow_patch.set_positions((ox0, oy0), (ox1, oy1)) fs = self.prop.get_size_in_points() mutation_scale = d.pop("mutation_scale", fs) mutation_scale = renderer.points_to_pixels(mutation_scale) self.arrow_patch.set_mutation_scale(mutation_scale) patchA = d.pop("patchA", self.patch) self.arrow_patch.set_patchA(patchA) def draw(self, renderer): """ Draw the :class:`Annotation` object to the given *renderer*. """ if renderer is not None: self._renderer = renderer if not self.get_visible(): return xy_pixel = self._get_position_xy(renderer) if not self._check_xy(renderer, xy_pixel): return self.update_positions(renderer) if self.arrow_patch is not None: if self.arrow_patch.figure is None and self.figure is not None: self.arrow_patch.figure = self.figure self.arrow_patch.draw(renderer) if self._drawFrame: self.patch.draw(renderer) self.offsetbox.draw(renderer) self.stale = False class DraggableBase(object): """ helper code for a draggable artist (legend, offsetbox) The derived class must override following two method. def saveoffset(self): pass def update_offset(self, dx, dy): pass *saveoffset* is called when the object is picked for dragging and it is meant to save reference position of the artist. *update_offset* is called during the dragging. dx and dy is the pixel offset from the point where the mouse drag started. Optionally you may override following two methods. def artist_picker(self, artist, evt): return self.ref_artist.contains(evt) def finalize_offset(self): pass *artist_picker* is a picker method that will be used. *finalize_offset* is called when the mouse is released. In current implementaion of DraggableLegend and DraggableAnnotation, *update_offset* places the artists simply in display coordinates. And *finalize_offset* recalculate their position in the normalized axes coordinate and set a relavant attribute. """ def __init__(self, ref_artist, use_blit=False): self.ref_artist = ref_artist self.got_artist = False self.canvas = self.ref_artist.figure.canvas self._use_blit = use_blit and self.canvas.supports_blit c2 = self.canvas.mpl_connect('pick_event', self.on_pick) c3 = self.canvas.mpl_connect('button_release_event', self.on_release) ref_artist.set_picker(self.artist_picker) self.cids = [c2, c3] def on_motion(self, evt): if self.got_artist: dx = evt.x - self.mouse_x dy = evt.y - self.mouse_y self.update_offset(dx, dy) self.canvas.draw() def on_motion_blit(self, evt): if self.got_artist: dx = evt.x - self.mouse_x dy = evt.y - self.mouse_y self.update_offset(dx, dy) self.canvas.restore_region(self.background) self.ref_artist.draw(self.ref_artist.figure._cachedRenderer) self.canvas.blit(self.ref_artist.figure.bbox) def on_pick(self, evt): if evt.artist == self.ref_artist: self.mouse_x = evt.mouseevent.x self.mouse_y = evt.mouseevent.y self.got_artist = True if self._use_blit: self.ref_artist.set_animated(True) self.canvas.draw() self.background = self.canvas.copy_from_bbox( self.ref_artist.figure.bbox) self.ref_artist.draw(self.ref_artist.figure._cachedRenderer) self.canvas.blit(self.ref_artist.figure.bbox) self._c1 = self.canvas.mpl_connect('motion_notify_event', self.on_motion_blit) else: self._c1 = self.canvas.mpl_connect('motion_notify_event', self.on_motion) self.save_offset() def on_release(self, event): if self.got_artist: self.finalize_offset() self.got_artist = False self.canvas.mpl_disconnect(self._c1) if self._use_blit: self.ref_artist.set_animated(False) def disconnect(self): """disconnect the callbacks""" for cid in self.cids: self.canvas.mpl_disconnect(cid) try: c1 = self._c1 except AttributeError: pass else: self.canvas.mpl_disconnect(c1) def artist_picker(self, artist, evt): return self.ref_artist.contains(evt) def save_offset(self): pass def update_offset(self, dx, dy): pass def finalize_offset(self): pass class DraggableOffsetBox(DraggableBase): def __init__(self, ref_artist, offsetbox, use_blit=False): DraggableBase.__init__(self, ref_artist, use_blit=use_blit) self.offsetbox = offsetbox def save_offset(self): offsetbox = self.offsetbox renderer = offsetbox.figure._cachedRenderer w, h, xd, yd = offsetbox.get_extent(renderer) offset = offsetbox.get_offset(w, h, xd, yd, renderer) self.offsetbox_x, self.offsetbox_y = offset self.offsetbox.set_offset(offset) def update_offset(self, dx, dy): loc_in_canvas = self.offsetbox_x + dx, self.offsetbox_y + dy self.offsetbox.set_offset(loc_in_canvas) def get_loc_in_canvas(self): offsetbox = self.offsetbox renderer = offsetbox.figure._cachedRenderer w, h, xd, yd = offsetbox.get_extent(renderer) ox, oy = offsetbox._offset loc_in_canvas = (ox - xd, oy - yd) return loc_in_canvas class DraggableAnnotation(DraggableBase): def __init__(self, annotation, use_blit=False): DraggableBase.__init__(self, annotation, use_blit=use_blit) self.annotation = annotation def save_offset(self): ann = self.annotation self.ox, self.oy = ann.get_transform().transform(ann.xyann) def update_offset(self, dx, dy): ann = self.annotation ann.xyann = ann.get_transform().inverted().transform( (self.ox + dx, self.oy + dy)) if __name__ == "__main__": import matplotlib.pyplot as plt fig = plt.figure(1) fig.clf() ax = plt.subplot(121) #txt = ax.text(0.5, 0.5, "Test", size=30, ha="center", color="w") kwargs = dict() a = np.arange(256).reshape(16, 16) / 256. myimage = OffsetImage(a, zoom=2, norm=None, origin=None, **kwargs ) ax.add_artist(myimage) myimage.set_offset((100, 100)) myimage2 = OffsetImage(a, zoom=2, norm=None, origin=None, **kwargs ) ann = AnnotationBbox(myimage2, (0.5, 0.5), xybox=(30, 30), xycoords='data', boxcoords="offset points", frameon=True, pad=0.4, # BboxPatch bboxprops=dict(boxstyle="round", fc="y"), fontsize=None, arrowprops=dict(arrowstyle="->"), ) ax.add_artist(ann) plt.draw() plt.show()
bsd-3-clause
lucidfrontier45/scikit-learn
examples/manifold/plot_manifold_sphere.py
1
4572
#!/usr/bin/python # -*- coding: utf-8 -*- """ ============================================= Manifold Learning methods on a severed sphere ============================================= An application of the different :ref:`manifold` techniques on a spherical data-set. Here one can see the use of dimensionality reduction in order to gain some intuition regarding the Manifold learning methods. Regarding the dataset, the poles are cut from the sphere, as well as a thin slice down its side. This enables the manifold learning techniques to 'spread it open' whilst projecting it onto two dimensions. For a similiar example, where the methods are applied to the S-curve dataset, see :ref:`example_manifold_plot_compare_methods.py` Note that the purpose of the :ref:`MDS <multidimensional_scaling>` is to find a low-dimensional representation of the data (here 2D) in which the distances respect well the distances in the original high-dimensional space, unlike other manifold-learning algorithms, it does not seeks an isotropic representation of the data in the low-dimensional space. Here the manifold problem matches fairly that of representing a flat map of the Earth, as with `map projection <http://en.wikipedia.org/wiki/Map_projection>`_ """ # Author: Jaques Grobler <[email protected]> # License: BSD print __doc__ from time import time import numpy as np import pylab as pl from mpl_toolkits.mplot3d import Axes3D from matplotlib.ticker import NullFormatter from sklearn import manifold from sklearn.utils import check_random_state # Next line to silence pyflakes. Axes3D # Variables for manifold learning. n_neighbors = 10 n_samples = 1000 # Create our sphere. random_state = check_random_state(0) p = random_state.rand(n_samples) * (2 * np.pi - 0.55) t = random_state.rand(n_samples) * np.pi # Sever the poles from the sphere. indices = ((t < (np.pi - (np.pi / 8))) & (t > ((np.pi / 8)))) colors = p[indices] x, y, z = np.sin(t[indices]) * np.cos(p[indices]), \ np.sin(t[indices]) * np.sin(p[indices]), \ np.cos(t[indices]) # Plot our dataset. fig = pl.figure(figsize=(15, 8)) pl.suptitle("Manifold Learning with %i points, %i neighbors" % (1000, n_neighbors), fontsize=14) ax = fig.add_subplot(241, projection='3d') ax.scatter(x, y, z, c=p[indices], cmap=pl.cm.rainbow) try: # compatibility matplotlib < 1.0 ax.view_init(40, -10) except: pass sphere_data = np.array([x, y, z]).T # Perform Locally Linear Embedding Manifold learning methods = ['standard', 'ltsa', 'hessian', 'modified'] labels = ['LLE', 'LTSA', 'Hessian LLE', 'Modified LLE'] for i, method in enumerate(methods): t0 = time() trans_data = manifold\ .LocallyLinearEmbedding(n_neighbors, 2, method=method).fit_transform(sphere_data).T t1 = time() print "%s: %.2g sec" % (methods[i], t1 - t0) ax = fig.add_subplot(242 + i) pl.scatter(trans_data[0], trans_data[1], c=colors, cmap=pl.cm.rainbow) pl.title("%s (%.2g sec)" % (labels[i], t1 - t0)) ax.xaxis.set_major_formatter(NullFormatter()) ax.yaxis.set_major_formatter(NullFormatter()) pl.axis('tight') # Perform Isomap Manifold learning. t0 = time() trans_data = manifold.Isomap(n_neighbors, n_components=2)\ .fit_transform(sphere_data).T t1 = time() print "%s: %.2g sec" % ('ISO', t1 - t0) ax = fig.add_subplot(246) pl.scatter(trans_data[0], trans_data[1], c=colors, cmap=pl.cm.rainbow) pl.title("%s (%.2g sec)" % ('Isomap', t1 - t0)) ax.xaxis.set_major_formatter(NullFormatter()) ax.yaxis.set_major_formatter(NullFormatter()) pl.axis('tight') # Perform Multi-dimensional scaling. t0 = time() mds = manifold.MDS(2, max_iter=100, n_init=1) trans_data = mds.fit_transform(sphere_data).T t1 = time() print "MDS: %.2g sec" % (t1 - t0) ax = fig.add_subplot(247) pl.scatter(trans_data[0], trans_data[1], c=colors, cmap=pl.cm.rainbow) pl.title("MDS (%.2g sec)" % (t1 - t0)) ax.xaxis.set_major_formatter(NullFormatter()) ax.yaxis.set_major_formatter(NullFormatter()) pl.axis('tight') # Perform Spectral Embedding. t0 = time() se = manifold.SpectralEmbedding(n_components=2, n_neighbors=n_neighbors) trans_data = se.fit_transform(sphere_data).T t1 = time() print "Spectral Embedding: %.2g sec" % (t1 - t0) ax = fig.add_subplot(248) pl.scatter(trans_data[0], trans_data[1], c=colors, cmap=pl.cm.rainbow) pl.title("Spectral Embedding (%.2g sec)" % (t1 - t0)) ax.xaxis.set_major_formatter(NullFormatter()) ax.yaxis.set_major_formatter(NullFormatter()) pl.axis('tight') pl.show()
bsd-3-clause
TomAugspurger/pandas
pandas/tests/series/methods/test_rename_axis.py
4
1503
import pytest from pandas import Index, MultiIndex, Series import pandas._testing as tm class TestSeriesRenameAxis: def test_rename_axis_mapper(self): # GH 19978 mi = MultiIndex.from_product([["a", "b", "c"], [1, 2]], names=["ll", "nn"]) ser = Series(list(range(len(mi))), index=mi) result = ser.rename_axis(index={"ll": "foo"}) assert result.index.names == ["foo", "nn"] result = ser.rename_axis(index=str.upper, axis=0) assert result.index.names == ["LL", "NN"] result = ser.rename_axis(index=["foo", "goo"]) assert result.index.names == ["foo", "goo"] with pytest.raises(TypeError, match="unexpected"): ser.rename_axis(columns="wrong") def test_rename_axis_inplace(self, datetime_series): # GH 15704 expected = datetime_series.rename_axis("foo") result = datetime_series no_return = result.rename_axis("foo", inplace=True) assert no_return is None tm.assert_series_equal(result, expected) @pytest.mark.parametrize("kwargs", [{"mapper": None}, {"index": None}, {}]) def test_rename_axis_none(self, kwargs): # GH 25034 index = Index(list("abc"), name="foo") ser = Series([1, 2, 3], index=index) result = ser.rename_axis(**kwargs) expected_index = index.rename(None) if kwargs else index expected = Series([1, 2, 3], index=expected_index) tm.assert_series_equal(result, expected)
bsd-3-clause
chugunovyar/factoryForBuild
env/lib/python2.7/site-packages/matplotlib/tests/test_mlab.py
5
122196
from __future__ import (absolute_import, division, print_function, unicode_literals) import six import tempfile from numpy.testing import assert_allclose, assert_array_equal import numpy.ma.testutils as matest import numpy as np import datetime as datetime from nose.tools import (assert_equal, assert_almost_equal, assert_not_equal, assert_true, assert_raises) import matplotlib.mlab as mlab import matplotlib.cbook as cbook from matplotlib.testing.decorators import knownfailureif, CleanupTestCase try: from mpl_toolkits.natgrid import _natgrid HAS_NATGRID = True except ImportError: HAS_NATGRID = False class general_testcase(CleanupTestCase): def test_colinear_pca(self): a = mlab.PCA._get_colinear() pca = mlab.PCA(a) assert_allclose(pca.fracs[2:], 0., atol=1e-8) assert_allclose(pca.Y[:, 2:], 0., atol=1e-8) def test_prctile(self): # test odd lengths x = [1, 2, 3] assert_equal(mlab.prctile(x, 50), np.median(x)) # test even lengths x = [1, 2, 3, 4] assert_equal(mlab.prctile(x, 50), np.median(x)) # derived from email sent by jason-sage to MPL-user on 20090914 ob1 = [1, 1, 2, 2, 1, 2, 4, 3, 2, 2, 2, 3, 4, 5, 6, 7, 8, 9, 7, 6, 4, 5, 5] p = [0, 75, 100] expected = [1, 5.5, 9] # test vectorized actual = mlab.prctile(ob1, p) assert_allclose(expected, actual) # test scalar for pi, expectedi in zip(p, expected): actuali = mlab.prctile(ob1, pi) assert_allclose(expectedi, actuali) def test_norm(self): np.random.seed(0) N = 1000 x = np.random.standard_normal(N) targ = np.linalg.norm(x) res = mlab._norm(x) assert_almost_equal(targ, res) class spacing_testcase(CleanupTestCase): def test_logspace_tens(self): xmin = .01 xmax = 1000. N = 6 res = mlab.logspace(xmin, xmax, N) targ = np.logspace(np.log10(xmin), np.log10(xmax), N) assert_allclose(targ, res) def test_logspace_primes(self): xmin = .03 xmax = 1313. N = 7 res = mlab.logspace(xmin, xmax, N) targ = np.logspace(np.log10(xmin), np.log10(xmax), N) assert_allclose(targ, res) def test_logspace_none(self): xmin = .03 xmax = 1313. N = 0 res = mlab.logspace(xmin, xmax, N) targ = np.logspace(np.log10(xmin), np.log10(xmax), N) assert_array_equal(targ, res) assert_equal(res.size, 0) def test_logspace_single(self): xmin = .03 xmax = 1313. N = 1 res = mlab.logspace(xmin, xmax, N) targ = np.logspace(np.log10(xmin), np.log10(xmax), N) assert_array_equal(targ, res) assert_equal(res.size, 1) class stride_testcase(CleanupTestCase): def get_base(self, x): y = x while y.base is not None: y = y.base return y def calc_window_target(self, x, NFFT, noverlap=0): '''This is an adaptation of the original window extraction algorithm. This is here to test to make sure the new implementation has the same result''' step = NFFT - noverlap ind = np.arange(0, len(x) - NFFT + 1, step) n = len(ind) result = np.zeros((NFFT, n)) # do the ffts of the slices for i in range(n): result[:, i] = x[ind[i]:ind[i]+NFFT] return result def test_stride_windows_2D_ValueError(self): x = np.arange(10)[np.newaxis] assert_raises(ValueError, mlab.stride_windows, x, 5) def test_stride_windows_0D_ValueError(self): x = np.array(0) assert_raises(ValueError, mlab.stride_windows, x, 5) def test_stride_windows_noverlap_gt_n_ValueError(self): x = np.arange(10) assert_raises(ValueError, mlab.stride_windows, x, 2, 3) def test_stride_windows_noverlap_eq_n_ValueError(self): x = np.arange(10) assert_raises(ValueError, mlab.stride_windows, x, 2, 2) def test_stride_windows_n_gt_lenx_ValueError(self): x = np.arange(10) assert_raises(ValueError, mlab.stride_windows, x, 11) def test_stride_windows_n_lt_1_ValueError(self): x = np.arange(10) assert_raises(ValueError, mlab.stride_windows, x, 0) def test_stride_repeat_2D_ValueError(self): x = np.arange(10)[np.newaxis] assert_raises(ValueError, mlab.stride_repeat, x, 5) def test_stride_repeat_axis_lt_0_ValueError(self): x = np.array(0) assert_raises(ValueError, mlab.stride_repeat, x, 5, axis=-1) def test_stride_repeat_axis_gt_1_ValueError(self): x = np.array(0) assert_raises(ValueError, mlab.stride_repeat, x, 5, axis=2) def test_stride_repeat_n_lt_1_ValueError(self): x = np.arange(10) assert_raises(ValueError, mlab.stride_repeat, x, 0) def test_stride_repeat_n1_axis0(self): x = np.arange(10) y = mlab.stride_repeat(x, 1) assert_equal((1, ) + x.shape, y.shape) assert_array_equal(x, y.flat) assert_true(self.get_base(y) is x) def test_stride_repeat_n1_axis1(self): x = np.arange(10) y = mlab.stride_repeat(x, 1, axis=1) assert_equal(x.shape + (1, ), y.shape) assert_array_equal(x, y.flat) assert_true(self.get_base(y) is x) def test_stride_repeat_n5_axis0(self): x = np.arange(10) y = mlab.stride_repeat(x, 5) yr = np.repeat(x[np.newaxis], 5, axis=0) assert_equal(yr.shape, y.shape) assert_array_equal(yr, y) assert_equal((5, ) + x.shape, y.shape) assert_true(self.get_base(y) is x) def test_stride_repeat_n5_axis1(self): x = np.arange(10) y = mlab.stride_repeat(x, 5, axis=1) yr = np.repeat(x[np.newaxis], 5, axis=0).T assert_equal(yr.shape, y.shape) assert_array_equal(yr, y) assert_equal(x.shape + (5, ), y.shape) assert_true(self.get_base(y) is x) def test_stride_windows_n1_noverlap0_axis0(self): x = np.arange(10) y = mlab.stride_windows(x, 1) yt = self.calc_window_target(x, 1) assert_equal(yt.shape, y.shape) assert_array_equal(yt, y) assert_equal((1, ) + x.shape, y.shape) assert_true(self.get_base(y) is x) def test_stride_windows_n1_noverlap0_axis1(self): x = np.arange(10) y = mlab.stride_windows(x, 1, axis=1) yt = self.calc_window_target(x, 1).T assert_equal(yt.shape, y.shape) assert_array_equal(yt, y) assert_equal(x.shape + (1, ), y.shape) assert_true(self.get_base(y) is x) def test_stride_windows_n5_noverlap0_axis0(self): x = np.arange(100) y = mlab.stride_windows(x, 5) yt = self.calc_window_target(x, 5) assert_equal(yt.shape, y.shape) assert_array_equal(yt, y) assert_equal((5, 20), y.shape) assert_true(self.get_base(y) is x) def test_stride_windows_n5_noverlap0_axis1(self): x = np.arange(100) y = mlab.stride_windows(x, 5, axis=1) yt = self.calc_window_target(x, 5).T assert_equal(yt.shape, y.shape) assert_array_equal(yt, y) assert_equal((20, 5), y.shape) assert_true(self.get_base(y) is x) def test_stride_windows_n15_noverlap2_axis0(self): x = np.arange(100) y = mlab.stride_windows(x, 15, 2) yt = self.calc_window_target(x, 15, 2) assert_equal(yt.shape, y.shape) assert_array_equal(yt, y) assert_equal((15, 7), y.shape) assert_true(self.get_base(y) is x) def test_stride_windows_n15_noverlap2_axis1(self): x = np.arange(100) y = mlab.stride_windows(x, 15, 2, axis=1) yt = self.calc_window_target(x, 15, 2).T assert_equal(yt.shape, y.shape) assert_array_equal(yt, y) assert_equal((7, 15), y.shape) assert_true(self.get_base(y) is x) def test_stride_windows_n13_noverlapn3_axis0(self): x = np.arange(100) y = mlab.stride_windows(x, 13, -3) yt = self.calc_window_target(x, 13, -3) assert_equal(yt.shape, y.shape) assert_array_equal(yt, y) assert_equal((13, 6), y.shape) assert_true(self.get_base(y) is x) def test_stride_windows_n13_noverlapn3_axis1(self): x = np.arange(100) y = mlab.stride_windows(x, 13, -3, axis=1) yt = self.calc_window_target(x, 13, -3).T assert_equal(yt.shape, y.shape) assert_array_equal(yt, y) assert_equal((6, 13), y.shape) assert_true(self.get_base(y) is x) def test_stride_windows_n32_noverlap0_axis0_unflatten(self): n = 32 x = np.arange(n)[np.newaxis] x1 = np.tile(x, (21, 1)) x2 = x1.flatten() y = mlab.stride_windows(x2, n) assert_equal(y.shape, x1.T.shape) assert_array_equal(y, x1.T) def test_stride_windows_n32_noverlap0_axis1_unflatten(self): n = 32 x = np.arange(n)[np.newaxis] x1 = np.tile(x, (21, 1)) x2 = x1.flatten() y = mlab.stride_windows(x2, n, axis=1) assert_equal(y.shape, x1.shape) assert_array_equal(y, x1) def test_stride_ensure_integer_type(self): N = 100 x = np.empty(N + 20, dtype='>f4') x.fill(np.NaN) y = x[10:-10] y.fill(0.3) # previous to #3845 lead to corrupt access y_strided = mlab.stride_windows(y, n=33, noverlap=0.6) assert_array_equal(y_strided, 0.3) # previous to #3845 lead to corrupt access y_strided = mlab.stride_windows(y, n=33.3, noverlap=0) assert_array_equal(y_strided, 0.3) # even previous to #3845 could not find any problematic # configuration however, let's be sure it's not accidentally # introduced y_strided = mlab.stride_repeat(y, n=33.815) assert_array_equal(y_strided, 0.3) class csv_testcase(CleanupTestCase): def setUp(self): if six.PY3: self.fd = tempfile.TemporaryFile(suffix='csv', mode="w+", newline='') else: self.fd = tempfile.TemporaryFile(suffix='csv', mode="wb+") def tearDown(self): self.fd.close() def test_recarray_csv_roundtrip(self): expected = np.recarray((99,), [(str('x'), np.float), (str('y'), np.float), (str('t'), np.float)]) # initialising all values: uninitialised memory sometimes produces # floats that do not round-trip to string and back. expected['x'][:] = np.linspace(-1e9, -1, 99) expected['y'][:] = np.linspace(1, 1e9, 99) expected['t'][:] = np.linspace(0, 0.01, 99) mlab.rec2csv(expected, self.fd) self.fd.seek(0) actual = mlab.csv2rec(self.fd) assert_allclose(expected['x'], actual['x']) assert_allclose(expected['y'], actual['y']) assert_allclose(expected['t'], actual['t']) def test_rec2csv_bad_shape_ValueError(self): bad = np.recarray((99, 4), [(str('x'), np.float), (str('y'), np.float)]) # the bad recarray should trigger a ValueError for having ndim > 1. assert_raises(ValueError, mlab.rec2csv, bad, self.fd) def test_csv2rec_names_with_comments(self): self.fd.write('# comment\n1,2,3\n4,5,6\n') self.fd.seek(0) array = mlab.csv2rec(self.fd, names='a,b,c') assert len(array) == 2 assert len(array.dtype) == 3 def test_csv2rec_usdate(self): self.fd.write('01/11/14\n' + '03/05/76 12:00:01 AM\n' + '07/09/83 5:17:34 PM\n' + '06/20/2054 2:31:45 PM\n' + '10/31/00 11:50:23 AM\n') expected = [datetime.datetime(2014, 1, 11, 0, 0), datetime.datetime(1976, 3, 5, 0, 0, 1), datetime.datetime(1983, 7, 9, 17, 17, 34), datetime.datetime(2054, 6, 20, 14, 31, 45), datetime.datetime(2000, 10, 31, 11, 50, 23)] self.fd.seek(0) array = mlab.csv2rec(self.fd, names='a') assert_array_equal(array['a'].tolist(), expected) def test_csv2rec_dayfirst(self): self.fd.write('11/01/14\n' + '05/03/76 12:00:01 AM\n' + '09/07/83 5:17:34 PM\n' + '20/06/2054 2:31:45 PM\n' + '31/10/00 11:50:23 AM\n') expected = [datetime.datetime(2014, 1, 11, 0, 0), datetime.datetime(1976, 3, 5, 0, 0, 1), datetime.datetime(1983, 7, 9, 17, 17, 34), datetime.datetime(2054, 6, 20, 14, 31, 45), datetime.datetime(2000, 10, 31, 11, 50, 23)] self.fd.seek(0) array = mlab.csv2rec(self.fd, names='a', dayfirst=True) assert_array_equal(array['a'].tolist(), expected) def test_csv2rec_yearfirst(self): self.fd.write('14/01/11\n' + '76/03/05 12:00:01 AM\n' + '83/07/09 5:17:34 PM\n' + '2054/06/20 2:31:45 PM\n' + '00/10/31 11:50:23 AM\n') expected = [datetime.datetime(2014, 1, 11, 0, 0), datetime.datetime(1976, 3, 5, 0, 0, 1), datetime.datetime(1983, 7, 9, 17, 17, 34), datetime.datetime(2054, 6, 20, 14, 31, 45), datetime.datetime(2000, 10, 31, 11, 50, 23)] self.fd.seek(0) array = mlab.csv2rec(self.fd, names='a', yearfirst=True) assert_array_equal(array['a'].tolist(), expected) class rec2txt_testcase(CleanupTestCase): def test_csv2txt_basic(self): # str() calls around field names necessary b/c as of numpy 1.11 # dtype doesn't like unicode names (caused by unicode_literals import) a = np.array([(1.0, 2, 'foo', 'bing'), (2.0, 3, 'bar', 'blah')], dtype=np.dtype([(str('x'), np.float32), (str('y'), np.int8), (str('s'), str, 3), (str('s2'), str, 4)])) truth = (' x y s s2\n' ' 1.000 2 foo bing \n' ' 2.000 3 bar blah ').splitlines() assert_equal(mlab.rec2txt(a).splitlines(), truth) class window_testcase(CleanupTestCase): def setUp(self): np.random.seed(0) self.n = 1000 self.x = np.arange(0., self.n) self.sig_rand = np.random.standard_normal(self.n) + 100. self.sig_ones = np.ones_like(self.x) self.sig_slope = np.linspace(-10., 90., self.n) def check_window_apply_repeat(self, x, window, NFFT, noverlap): '''This is an adaptation of the original window application algorithm. This is here to test to make sure the new implementation has the same result''' step = NFFT - noverlap ind = np.arange(0, len(x) - NFFT + 1, step) n = len(ind) result = np.zeros((NFFT, n)) if cbook.iterable(window): windowVals = window else: windowVals = window(np.ones((NFFT,), x.dtype)) # do the ffts of the slices for i in range(n): result[:, i] = windowVals * x[ind[i]:ind[i]+NFFT] return result def test_window_none_rand(self): res = mlab.window_none(self.sig_ones) assert_array_equal(res, self.sig_ones) def test_window_none_ones(self): res = mlab.window_none(self.sig_rand) assert_array_equal(res, self.sig_rand) def test_window_hanning_rand(self): targ = np.hanning(len(self.sig_rand)) * self.sig_rand res = mlab.window_hanning(self.sig_rand) assert_allclose(targ, res, atol=1e-06) def test_window_hanning_ones(self): targ = np.hanning(len(self.sig_ones)) res = mlab.window_hanning(self.sig_ones) assert_allclose(targ, res, atol=1e-06) def test_apply_window_1D_axis1_ValueError(self): x = self.sig_rand window = mlab.window_hanning assert_raises(ValueError, mlab.apply_window, x, window, axis=1, return_window=False) def test_apply_window_1D_els_wrongsize_ValueError(self): x = self.sig_rand window = mlab.window_hanning(np.ones(x.shape[0]-1)) assert_raises(ValueError, mlab.apply_window, x, window) def test_apply_window_0D_ValueError(self): x = np.array(0) window = mlab.window_hanning assert_raises(ValueError, mlab.apply_window, x, window, axis=1, return_window=False) def test_apply_window_3D_ValueError(self): x = self.sig_rand[np.newaxis][np.newaxis] window = mlab.window_hanning assert_raises(ValueError, mlab.apply_window, x, window, axis=1, return_window=False) def test_apply_window_hanning_1D(self): x = self.sig_rand window = mlab.window_hanning window1 = mlab.window_hanning(np.ones(x.shape[0])) y, window2 = mlab.apply_window(x, window, return_window=True) yt = window(x) assert_equal(yt.shape, y.shape) assert_equal(x.shape, y.shape) assert_allclose(yt, y, atol=1e-06) assert_array_equal(window1, window2) def test_apply_window_hanning_1D_axis0(self): x = self.sig_rand window = mlab.window_hanning y = mlab.apply_window(x, window, axis=0, return_window=False) yt = window(x) assert_equal(yt.shape, y.shape) assert_equal(x.shape, y.shape) assert_allclose(yt, y, atol=1e-06) def test_apply_window_hanning_els_1D_axis0(self): x = self.sig_rand window = mlab.window_hanning(np.ones(x.shape[0])) window1 = mlab.window_hanning y = mlab.apply_window(x, window, axis=0, return_window=False) yt = window1(x) assert_equal(yt.shape, y.shape) assert_equal(x.shape, y.shape) assert_allclose(yt, y, atol=1e-06) def test_apply_window_hanning_2D_axis0(self): x = np.random.standard_normal([1000, 10]) + 100. window = mlab.window_hanning y = mlab.apply_window(x, window, axis=0, return_window=False) yt = np.zeros_like(x) for i in range(x.shape[1]): yt[:, i] = window(x[:, i]) assert_equal(yt.shape, y.shape) assert_equal(x.shape, y.shape) assert_allclose(yt, y, atol=1e-06) def test_apply_window_hanning_els1_2D_axis0(self): x = np.random.standard_normal([1000, 10]) + 100. window = mlab.window_hanning(np.ones(x.shape[0])) window1 = mlab.window_hanning y = mlab.apply_window(x, window, axis=0, return_window=False) yt = np.zeros_like(x) for i in range(x.shape[1]): yt[:, i] = window1(x[:, i]) assert_equal(yt.shape, y.shape) assert_equal(x.shape, y.shape) assert_allclose(yt, y, atol=1e-06) def test_apply_window_hanning_els2_2D_axis0(self): x = np.random.standard_normal([1000, 10]) + 100. window = mlab.window_hanning window1 = mlab.window_hanning(np.ones(x.shape[0])) y, window2 = mlab.apply_window(x, window, axis=0, return_window=True) yt = np.zeros_like(x) for i in range(x.shape[1]): yt[:, i] = window1*x[:, i] assert_equal(yt.shape, y.shape) assert_equal(x.shape, y.shape) assert_allclose(yt, y, atol=1e-06) assert_array_equal(window1, window2) def test_apply_window_hanning_els3_2D_axis0(self): x = np.random.standard_normal([1000, 10]) + 100. window = mlab.window_hanning window1 = mlab.window_hanning(np.ones(x.shape[0])) y, window2 = mlab.apply_window(x, window, axis=0, return_window=True) yt = mlab.apply_window(x, window1, axis=0, return_window=False) assert_equal(yt.shape, y.shape) assert_equal(x.shape, y.shape) assert_allclose(yt, y, atol=1e-06) assert_array_equal(window1, window2) def test_apply_window_hanning_2D_axis1(self): x = np.random.standard_normal([10, 1000]) + 100. window = mlab.window_hanning y = mlab.apply_window(x, window, axis=1, return_window=False) yt = np.zeros_like(x) for i in range(x.shape[0]): yt[i, :] = window(x[i, :]) assert_equal(yt.shape, y.shape) assert_equal(x.shape, y.shape) assert_allclose(yt, y, atol=1e-06) def test_apply_window_hanning_2D__els1_axis1(self): x = np.random.standard_normal([10, 1000]) + 100. window = mlab.window_hanning(np.ones(x.shape[1])) window1 = mlab.window_hanning y = mlab.apply_window(x, window, axis=1, return_window=False) yt = np.zeros_like(x) for i in range(x.shape[0]): yt[i, :] = window1(x[i, :]) assert_equal(yt.shape, y.shape) assert_equal(x.shape, y.shape) assert_allclose(yt, y, atol=1e-06) def test_apply_window_hanning_2D_els2_axis1(self): x = np.random.standard_normal([10, 1000]) + 100. window = mlab.window_hanning window1 = mlab.window_hanning(np.ones(x.shape[1])) y, window2 = mlab.apply_window(x, window, axis=1, return_window=True) yt = np.zeros_like(x) for i in range(x.shape[0]): yt[i, :] = window1 * x[i, :] assert_equal(yt.shape, y.shape) assert_equal(x.shape, y.shape) assert_allclose(yt, y, atol=1e-06) assert_array_equal(window1, window2) def test_apply_window_hanning_2D_els3_axis1(self): x = np.random.standard_normal([10, 1000]) + 100. window = mlab.window_hanning window1 = mlab.window_hanning(np.ones(x.shape[1])) y = mlab.apply_window(x, window, axis=1, return_window=False) yt = mlab.apply_window(x, window1, axis=1, return_window=False) assert_equal(yt.shape, y.shape) assert_equal(x.shape, y.shape) assert_allclose(yt, y, atol=1e-06) def test_apply_window_stride_windows_hanning_2D_n13_noverlapn3_axis0(self): x = self.sig_rand window = mlab.window_hanning yi = mlab.stride_windows(x, n=13, noverlap=2, axis=0) y = mlab.apply_window(yi, window, axis=0, return_window=False) yt = self.check_window_apply_repeat(x, window, 13, 2) assert_equal(yt.shape, y.shape) assert_not_equal(x.shape, y.shape) assert_allclose(yt, y, atol=1e-06) def test_apply_window_hanning_2D_stack_axis1(self): ydata = np.arange(32) ydata1 = ydata+5 ydata2 = ydata+3.3 ycontrol1 = mlab.apply_window(ydata1, mlab.window_hanning) ycontrol2 = mlab.window_hanning(ydata2) ydata = np.vstack([ydata1, ydata2]) ycontrol = np.vstack([ycontrol1, ycontrol2]) ydata = np.tile(ydata, (20, 1)) ycontrol = np.tile(ycontrol, (20, 1)) result = mlab.apply_window(ydata, mlab.window_hanning, axis=1, return_window=False) assert_allclose(ycontrol, result, atol=1e-08) def test_apply_window_hanning_2D_stack_windows_axis1(self): ydata = np.arange(32) ydata1 = ydata+5 ydata2 = ydata+3.3 ycontrol1 = mlab.apply_window(ydata1, mlab.window_hanning) ycontrol2 = mlab.window_hanning(ydata2) ydata = np.vstack([ydata1, ydata2]) ycontrol = np.vstack([ycontrol1, ycontrol2]) ydata = np.tile(ydata, (20, 1)) ycontrol = np.tile(ycontrol, (20, 1)) result = mlab.apply_window(ydata, mlab.window_hanning, axis=1, return_window=False) assert_allclose(ycontrol, result, atol=1e-08) def test_apply_window_hanning_2D_stack_windows_axis1_unflatten(self): n = 32 ydata = np.arange(n) ydata1 = ydata+5 ydata2 = ydata+3.3 ycontrol1 = mlab.apply_window(ydata1, mlab.window_hanning) ycontrol2 = mlab.window_hanning(ydata2) ydata = np.vstack([ydata1, ydata2]) ycontrol = np.vstack([ycontrol1, ycontrol2]) ydata = np.tile(ydata, (20, 1)) ycontrol = np.tile(ycontrol, (20, 1)) ydata = ydata.flatten() ydata1 = mlab.stride_windows(ydata, 32, noverlap=0, axis=0) result = mlab.apply_window(ydata1, mlab.window_hanning, axis=0, return_window=False) assert_allclose(ycontrol.T, result, atol=1e-08) class detrend_testcase(CleanupTestCase): def setUp(self): np.random.seed(0) n = 1000 x = np.linspace(0., 100, n) self.sig_zeros = np.zeros(n) self.sig_off = self.sig_zeros + 100. self.sig_slope = np.linspace(-10., 90., n) self.sig_slope_mean = x - x.mean() sig_rand = np.random.standard_normal(n) sig_sin = np.sin(x*2*np.pi/(n/100)) sig_rand -= sig_rand.mean() sig_sin -= sig_sin.mean() self.sig_base = sig_rand + sig_sin self.atol = 1e-08 def test_detrend_none_0D_zeros(self): input = 0. targ = input res = mlab.detrend_none(input) assert_equal(input, targ) def test_detrend_none_0D_zeros_axis1(self): input = 0. targ = input res = mlab.detrend_none(input, axis=1) assert_equal(input, targ) def test_detrend_str_none_0D_zeros(self): input = 0. targ = input res = mlab.detrend(input, key='none') assert_equal(input, targ) def test_detrend_detrend_none_0D_zeros(self): input = 0. targ = input res = mlab.detrend(input, key=mlab.detrend_none) assert_equal(input, targ) def test_detrend_none_0D_off(self): input = 5.5 targ = input res = mlab.detrend_none(input) assert_equal(input, targ) def test_detrend_none_1D_off(self): input = self.sig_off targ = input res = mlab.detrend_none(input) assert_array_equal(res, targ) def test_detrend_none_1D_slope(self): input = self.sig_slope targ = input res = mlab.detrend_none(input) assert_array_equal(res, targ) def test_detrend_none_1D_base(self): input = self.sig_base targ = input res = mlab.detrend_none(input) assert_array_equal(res, targ) def test_detrend_none_1D_base_slope_off_list(self): input = self.sig_base + self.sig_slope + self.sig_off targ = input.tolist() res = mlab.detrend_none(input.tolist()) assert_equal(res, targ) def test_detrend_none_2D(self): arri = [self.sig_base, self.sig_base + self.sig_off, self.sig_base + self.sig_slope, self.sig_base + self.sig_off + self.sig_slope] input = np.vstack(arri) targ = input res = mlab.detrend_none(input) assert_array_equal(res, targ) def test_detrend_none_2D_T(self): arri = [self.sig_base, self.sig_base + self.sig_off, self.sig_base + self.sig_slope, self.sig_base + self.sig_off + self.sig_slope] input = np.vstack(arri) targ = input res = mlab.detrend_none(input.T) assert_array_equal(res.T, targ) def test_detrend_mean_0D_zeros(self): input = 0. targ = 0. res = mlab.detrend_mean(input) assert_almost_equal(res, targ) def test_detrend_str_mean_0D_zeros(self): input = 0. targ = 0. res = mlab.detrend(input, key='mean') assert_almost_equal(res, targ) def test_detrend_detrend_mean_0D_zeros(self): input = 0. targ = 0. res = mlab.detrend(input, key=mlab.detrend_mean) assert_almost_equal(res, targ) def test_detrend_mean_0D_off(self): input = 5.5 targ = 0. res = mlab.detrend_mean(input) assert_almost_equal(res, targ) def test_detrend_str_mean_0D_off(self): input = 5.5 targ = 0. res = mlab.detrend(input, key='mean') assert_almost_equal(res, targ) def test_detrend_detrend_mean_0D_off(self): input = 5.5 targ = 0. res = mlab.detrend(input, key=mlab.detrend_mean) assert_almost_equal(res, targ) def test_detrend_mean_1D_zeros(self): input = self.sig_zeros targ = self.sig_zeros res = mlab.detrend_mean(input) assert_allclose(res, targ, atol=self.atol) def test_detrend_mean_1D_base(self): input = self.sig_base targ = self.sig_base res = mlab.detrend_mean(input) assert_allclose(res, targ, atol=self.atol) def test_detrend_mean_1D_base_off(self): input = self.sig_base + self.sig_off targ = self.sig_base res = mlab.detrend_mean(input) assert_allclose(res, targ, atol=self.atol) def test_detrend_mean_1D_base_slope(self): input = self.sig_base + self.sig_slope targ = self.sig_base + self.sig_slope_mean res = mlab.detrend_mean(input) assert_allclose(res, targ, atol=self.atol) def test_detrend_mean_1D_base_slope_off(self): input = self.sig_base + self.sig_slope + self.sig_off targ = self.sig_base + self.sig_slope_mean res = mlab.detrend_mean(input) assert_allclose(res, targ, atol=1e-08) def test_detrend_mean_1D_base_slope_off_axis0(self): input = self.sig_base + self.sig_slope + self.sig_off targ = self.sig_base + self.sig_slope_mean res = mlab.detrend_mean(input, axis=0) assert_allclose(res, targ, atol=1e-08) def test_detrend_mean_1D_base_slope_off_list(self): input = self.sig_base + self.sig_slope + self.sig_off targ = self.sig_base + self.sig_slope_mean res = mlab.detrend_mean(input.tolist()) assert_allclose(res, targ, atol=1e-08) def test_detrend_mean_1D_base_slope_off_list_axis0(self): input = self.sig_base + self.sig_slope + self.sig_off targ = self.sig_base + self.sig_slope_mean res = mlab.detrend_mean(input.tolist(), axis=0) assert_allclose(res, targ, atol=1e-08) def test_demean_0D_off(self): input = 5.5 targ = 0. res = mlab.demean(input, axis=None) assert_almost_equal(res, targ) def test_demean_1D_base_slope_off(self): input = self.sig_base + self.sig_slope + self.sig_off targ = self.sig_base + self.sig_slope_mean res = mlab.demean(input) assert_allclose(res, targ, atol=1e-08) def test_demean_1D_base_slope_off_axis0(self): input = self.sig_base + self.sig_slope + self.sig_off targ = self.sig_base + self.sig_slope_mean res = mlab.demean(input, axis=0) assert_allclose(res, targ, atol=1e-08) def test_demean_1D_base_slope_off_list(self): input = self.sig_base + self.sig_slope + self.sig_off targ = self.sig_base + self.sig_slope_mean res = mlab.demean(input.tolist()) assert_allclose(res, targ, atol=1e-08) def test_detrend_mean_2D_default(self): arri = [self.sig_off, self.sig_base + self.sig_off] arrt = [self.sig_zeros, self.sig_base] input = np.vstack(arri) targ = np.vstack(arrt) res = mlab.detrend_mean(input) assert_allclose(res, targ, atol=1e-08) def test_detrend_mean_2D_none(self): arri = [self.sig_off, self.sig_base + self.sig_off] arrt = [self.sig_zeros, self.sig_base] input = np.vstack(arri) targ = np.vstack(arrt) res = mlab.detrend_mean(input, axis=None) assert_allclose(res, targ, atol=1e-08) def test_detrend_mean_2D_none_T(self): arri = [self.sig_off, self.sig_base + self.sig_off] arrt = [self.sig_zeros, self.sig_base] input = np.vstack(arri).T targ = np.vstack(arrt) res = mlab.detrend_mean(input, axis=None) assert_allclose(res.T, targ, atol=1e-08) def test_detrend_mean_2D_axis0(self): arri = [self.sig_base, self.sig_base + self.sig_off, self.sig_base + self.sig_slope, self.sig_base + self.sig_off + self.sig_slope] arrt = [self.sig_base, self.sig_base, self.sig_base + self.sig_slope_mean, self.sig_base + self.sig_slope_mean] input = np.vstack(arri).T targ = np.vstack(arrt).T res = mlab.detrend_mean(input, axis=0) assert_allclose(res, targ, atol=1e-08) def test_detrend_mean_2D_axis1(self): arri = [self.sig_base, self.sig_base + self.sig_off, self.sig_base + self.sig_slope, self.sig_base + self.sig_off + self.sig_slope] arrt = [self.sig_base, self.sig_base, self.sig_base + self.sig_slope_mean, self.sig_base + self.sig_slope_mean] input = np.vstack(arri) targ = np.vstack(arrt) res = mlab.detrend_mean(input, axis=1) assert_allclose(res, targ, atol=1e-08) def test_detrend_mean_2D_axism1(self): arri = [self.sig_base, self.sig_base + self.sig_off, self.sig_base + self.sig_slope, self.sig_base + self.sig_off + self.sig_slope] arrt = [self.sig_base, self.sig_base, self.sig_base + self.sig_slope_mean, self.sig_base + self.sig_slope_mean] input = np.vstack(arri) targ = np.vstack(arrt) res = mlab.detrend_mean(input, axis=-1) assert_allclose(res, targ, atol=1e-08) def test_detrend_mean_2D_none(self): arri = [self.sig_off, self.sig_base + self.sig_off] arrt = [self.sig_zeros, self.sig_base] input = np.vstack(arri) targ = np.vstack(arrt) res = mlab.detrend_mean(input, axis=None) assert_allclose(res, targ, atol=1e-08) def test_detrend_mean_2D_none_T(self): arri = [self.sig_off, self.sig_base + self.sig_off] arrt = [self.sig_zeros, self.sig_base] input = np.vstack(arri).T targ = np.vstack(arrt) res = mlab.detrend_mean(input, axis=None) assert_allclose(res.T, targ, atol=1e-08) def test_detrend_mean_2D_axis0(self): arri = [self.sig_base, self.sig_base + self.sig_off, self.sig_base + self.sig_slope, self.sig_base + self.sig_off + self.sig_slope] arrt = [self.sig_base, self.sig_base, self.sig_base + self.sig_slope_mean, self.sig_base + self.sig_slope_mean] input = np.vstack(arri).T targ = np.vstack(arrt).T res = mlab.detrend_mean(input, axis=0) assert_allclose(res, targ, atol=1e-08) def test_detrend_mean_2D_axis1(self): arri = [self.sig_base, self.sig_base + self.sig_off, self.sig_base + self.sig_slope, self.sig_base + self.sig_off + self.sig_slope] arrt = [self.sig_base, self.sig_base, self.sig_base + self.sig_slope_mean, self.sig_base + self.sig_slope_mean] input = np.vstack(arri) targ = np.vstack(arrt) res = mlab.detrend_mean(input, axis=1) assert_allclose(res, targ, atol=1e-08) def test_detrend_mean_2D_axism1(self): arri = [self.sig_base, self.sig_base + self.sig_off, self.sig_base + self.sig_slope, self.sig_base + self.sig_off + self.sig_slope] arrt = [self.sig_base, self.sig_base, self.sig_base + self.sig_slope_mean, self.sig_base + self.sig_slope_mean] input = np.vstack(arri) targ = np.vstack(arrt) res = mlab.detrend_mean(input, axis=-1) assert_allclose(res, targ, atol=1e-08) def test_detrend_2D_default(self): arri = [self.sig_off, self.sig_base + self.sig_off] arrt = [self.sig_zeros, self.sig_base] input = np.vstack(arri) targ = np.vstack(arrt) res = mlab.detrend(input) assert_allclose(res, targ, atol=1e-08) def test_detrend_2D_none(self): arri = [self.sig_off, self.sig_base + self.sig_off] arrt = [self.sig_zeros, self.sig_base] input = np.vstack(arri) targ = np.vstack(arrt) res = mlab.detrend(input, axis=None) assert_allclose(res, targ, atol=1e-08) def test_detrend_str_mean_2D_axis0(self): arri = [self.sig_base, self.sig_base + self.sig_off, self.sig_base + self.sig_slope, self.sig_base + self.sig_off + self.sig_slope] arrt = [self.sig_base, self.sig_base, self.sig_base + self.sig_slope_mean, self.sig_base + self.sig_slope_mean] input = np.vstack(arri).T targ = np.vstack(arrt).T res = mlab.detrend(input, key='mean', axis=0) assert_allclose(res, targ, atol=1e-08) def test_detrend_str_constant_2D_none_T(self): arri = [self.sig_off, self.sig_base + self.sig_off] arrt = [self.sig_zeros, self.sig_base] input = np.vstack(arri).T targ = np.vstack(arrt) res = mlab.detrend(input, key='constant', axis=None) assert_allclose(res.T, targ, atol=1e-08) def test_detrend_str_default_2D_axis1(self): arri = [self.sig_base, self.sig_base + self.sig_off, self.sig_base + self.sig_slope, self.sig_base + self.sig_off + self.sig_slope] arrt = [self.sig_base, self.sig_base, self.sig_base + self.sig_slope_mean, self.sig_base + self.sig_slope_mean] input = np.vstack(arri) targ = np.vstack(arrt) res = mlab.detrend(input, key='default', axis=1) assert_allclose(res, targ, atol=1e-08) def test_detrend_detrend_mean_2D_axis0(self): arri = [self.sig_base, self.sig_base + self.sig_off, self.sig_base + self.sig_slope, self.sig_base + self.sig_off + self.sig_slope] arrt = [self.sig_base, self.sig_base, self.sig_base + self.sig_slope_mean, self.sig_base + self.sig_slope_mean] input = np.vstack(arri).T targ = np.vstack(arrt).T res = mlab.detrend(input, key=mlab.detrend_mean, axis=0) assert_allclose(res, targ, atol=1e-08) def test_demean_2D_default(self): arri = [self.sig_base, self.sig_base + self.sig_off, self.sig_base + self.sig_slope, self.sig_base + self.sig_off + self.sig_slope] arrt = [self.sig_base, self.sig_base, self.sig_base + self.sig_slope_mean, self.sig_base + self.sig_slope_mean] input = np.vstack(arri).T targ = np.vstack(arrt).T res = mlab.demean(input) assert_allclose(res, targ, atol=1e-08) def test_demean_2D_none(self): arri = [self.sig_off, self.sig_base + self.sig_off] arrt = [self.sig_zeros, self.sig_base] input = np.vstack(arri) targ = np.vstack(arrt) res = mlab.demean(input, axis=None) assert_allclose(res, targ, atol=1e-08) def test_demean_2D_axis0(self): arri = [self.sig_base, self.sig_base + self.sig_off, self.sig_base + self.sig_slope, self.sig_base + self.sig_off + self.sig_slope] arrt = [self.sig_base, self.sig_base, self.sig_base + self.sig_slope_mean, self.sig_base + self.sig_slope_mean] input = np.vstack(arri).T targ = np.vstack(arrt).T res = mlab.demean(input, axis=0) assert_allclose(res, targ, atol=1e-08) def test_demean_2D_axis1(self): arri = [self.sig_base, self.sig_base + self.sig_off, self.sig_base + self.sig_slope, self.sig_base + self.sig_off + self.sig_slope] arrt = [self.sig_base, self.sig_base, self.sig_base + self.sig_slope_mean, self.sig_base + self.sig_slope_mean] input = np.vstack(arri) targ = np.vstack(arrt) res = mlab.demean(input, axis=1) assert_allclose(res, targ, atol=1e-08) def test_demean_2D_axism1(self): arri = [self.sig_base, self.sig_base + self.sig_off, self.sig_base + self.sig_slope, self.sig_base + self.sig_off + self.sig_slope] arrt = [self.sig_base, self.sig_base, self.sig_base + self.sig_slope_mean, self.sig_base + self.sig_slope_mean] input = np.vstack(arri) targ = np.vstack(arrt) res = mlab.demean(input, axis=-1) assert_allclose(res, targ, atol=1e-08) def test_detrend_bad_key_str_ValueError(self): input = self.sig_slope[np.newaxis] assert_raises(ValueError, mlab.detrend, input, key='spam') def test_detrend_bad_key_var_ValueError(self): input = self.sig_slope[np.newaxis] assert_raises(ValueError, mlab.detrend, input, key=5) def test_detrend_mean_0D_d0_ValueError(self): input = 5.5 assert_raises(ValueError, mlab.detrend_mean, input, axis=0) def test_detrend_0D_d0_ValueError(self): input = 5.5 assert_raises(ValueError, mlab.detrend, input, axis=0) def test_detrend_mean_1D_d1_ValueError(self): input = self.sig_slope assert_raises(ValueError, mlab.detrend_mean, input, axis=1) def test_detrend_1D_d1_ValueError(self): input = self.sig_slope assert_raises(ValueError, mlab.detrend, input, axis=1) def test_demean_1D_d1_ValueError(self): input = self.sig_slope assert_raises(ValueError, mlab.demean, input, axis=1) def test_detrend_mean_2D_d2_ValueError(self): input = self.sig_slope[np.newaxis] assert_raises(ValueError, mlab.detrend_mean, input, axis=2) def test_detrend_2D_d2_ValueError(self): input = self.sig_slope[np.newaxis] assert_raises(ValueError, mlab.detrend, input, axis=2) def test_demean_2D_d2_ValueError(self): input = self.sig_slope[np.newaxis] assert_raises(ValueError, mlab.demean, input, axis=2) def test_detrend_linear_0D_zeros(self): input = 0. targ = 0. res = mlab.detrend_linear(input) assert_almost_equal(res, targ) def test_detrend_linear_0D_off(self): input = 5.5 targ = 0. res = mlab.detrend_linear(input) assert_almost_equal(res, targ) def test_detrend_str_linear_0D_off(self): input = 5.5 targ = 0. res = mlab.detrend(input, key='linear') assert_almost_equal(res, targ) def test_detrend_detrend_linear_0D_off(self): input = 5.5 targ = 0. res = mlab.detrend(input, key=mlab.detrend_linear) assert_almost_equal(res, targ) def test_detrend_linear_1d_off(self): input = self.sig_off targ = self.sig_zeros res = mlab.detrend_linear(input) assert_allclose(res, targ, atol=self.atol) def test_detrend_linear_1d_slope(self): input = self.sig_slope targ = self.sig_zeros res = mlab.detrend_linear(input) assert_allclose(res, targ, atol=self.atol) def test_detrend_linear_1d_slope_off(self): input = self.sig_slope + self.sig_off targ = self.sig_zeros res = mlab.detrend_linear(input) assert_allclose(res, targ, atol=self.atol) def test_detrend_str_linear_1d_slope_off(self): input = self.sig_slope + self.sig_off targ = self.sig_zeros res = mlab.detrend(input, key='linear') assert_allclose(res, targ, atol=self.atol) def test_detrend_detrend_linear_1d_slope_off(self): input = self.sig_slope + self.sig_off targ = self.sig_zeros res = mlab.detrend(input, key=mlab.detrend_linear) assert_allclose(res, targ, atol=self.atol) def test_detrend_linear_1d_slope_off_list(self): input = self.sig_slope + self.sig_off targ = self.sig_zeros res = mlab.detrend_linear(input.tolist()) assert_allclose(res, targ, atol=self.atol) def test_detrend_linear_2D_ValueError(self): input = self.sig_slope[np.newaxis] assert_raises(ValueError, mlab.detrend_linear, input) def test_detrend_str_linear_2d_slope_off_axis0(self): arri = [self.sig_off, self.sig_slope, self.sig_slope + self.sig_off] arrt = [self.sig_zeros, self.sig_zeros, self.sig_zeros] input = np.vstack(arri).T targ = np.vstack(arrt).T res = mlab.detrend(input, key='linear', axis=0) assert_allclose(res, targ, atol=self.atol) def test_detrend_detrend_linear_1d_slope_off_axis1(self): arri = [self.sig_off, self.sig_slope, self.sig_slope + self.sig_off] arrt = [self.sig_zeros, self.sig_zeros, self.sig_zeros] input = np.vstack(arri).T targ = np.vstack(arrt).T res = mlab.detrend(input, key=mlab.detrend_linear, axis=0) assert_allclose(res, targ, atol=self.atol) def test_detrend_str_linear_2d_slope_off_axis0(self): arri = [self.sig_off, self.sig_slope, self.sig_slope + self.sig_off] arrt = [self.sig_zeros, self.sig_zeros, self.sig_zeros] input = np.vstack(arri) targ = np.vstack(arrt) res = mlab.detrend(input, key='linear', axis=1) assert_allclose(res, targ, atol=self.atol) def test_detrend_detrend_linear_1d_slope_off_axis1(self): arri = [self.sig_off, self.sig_slope, self.sig_slope + self.sig_off] arrt = [self.sig_zeros, self.sig_zeros, self.sig_zeros] input = np.vstack(arri) targ = np.vstack(arrt) res = mlab.detrend(input, key=mlab.detrend_linear, axis=1) assert_allclose(res, targ, atol=self.atol) class spectral_testcase_nosig_real_onesided(CleanupTestCase): def setUp(self): self.createStim(fstims=[], iscomplex=False, sides='onesided', nsides=1) def createStim(self, fstims, iscomplex, sides, nsides, len_x=None, NFFT_density=-1, nover_density=-1, pad_to_density=-1, pad_to_spectrum=-1): Fs = 100. x = np.arange(0, 10, 1/Fs) if len_x is not None: x = x[:len_x] # get the stimulus frequencies, defaulting to None fstims = [Fs/fstim for fstim in fstims] # get the constants, default to calculated values if NFFT_density is None: NFFT_density_real = 256 elif NFFT_density < 0: NFFT_density_real = NFFT_density = 100 else: NFFT_density_real = NFFT_density if nover_density is None: nover_density_real = 0 elif nover_density < 0: nover_density_real = nover_density = NFFT_density_real//2 else: nover_density_real = nover_density if pad_to_density is None: pad_to_density_real = NFFT_density_real elif pad_to_density < 0: pad_to_density = int(2**np.ceil(np.log2(NFFT_density_real))) pad_to_density_real = pad_to_density else: pad_to_density_real = pad_to_density if pad_to_spectrum is None: pad_to_spectrum_real = len(x) elif pad_to_spectrum < 0: pad_to_spectrum_real = pad_to_spectrum = len(x) else: pad_to_spectrum_real = pad_to_spectrum if pad_to_spectrum is None: NFFT_spectrum_real = NFFT_spectrum = pad_to_spectrum_real else: NFFT_spectrum_real = NFFT_spectrum = len(x) nover_spectrum_real = nover_spectrum = 0 NFFT_specgram = NFFT_density nover_specgram = nover_density pad_to_specgram = pad_to_density NFFT_specgram_real = NFFT_density_real nover_specgram_real = nover_density_real if nsides == 1: # frequencies for specgram, psd, and csd # need to handle even and odd differently if pad_to_density_real % 2: freqs_density = np.linspace(0, Fs/2, num=pad_to_density_real, endpoint=False)[::2] else: freqs_density = np.linspace(0, Fs/2, num=pad_to_density_real//2+1) # frequencies for complex, magnitude, angle, and phase spectrums # need to handle even and odd differently if pad_to_spectrum_real % 2: freqs_spectrum = np.linspace(0, Fs/2, num=pad_to_spectrum_real, endpoint=False)[::2] else: freqs_spectrum = np.linspace(0, Fs/2, num=pad_to_spectrum_real//2+1) else: # frequencies for specgram, psd, and csd # need to handle even and odd differentl if pad_to_density_real % 2: freqs_density = np.linspace(-Fs/2, Fs/2, num=2*pad_to_density_real, endpoint=False)[1::2] else: freqs_density = np.linspace(-Fs/2, Fs/2, num=pad_to_density_real, endpoint=False) # frequencies for complex, magnitude, angle, and phase spectrums # need to handle even and odd differently if pad_to_spectrum_real % 2: freqs_spectrum = np.linspace(-Fs/2, Fs/2, num=2*pad_to_spectrum_real, endpoint=False)[1::2] else: freqs_spectrum = np.linspace(-Fs/2, Fs/2, num=pad_to_spectrum_real, endpoint=False) freqs_specgram = freqs_density # time points for specgram t_start = NFFT_specgram_real//2 t_stop = len(x) - NFFT_specgram_real//2+1 t_step = NFFT_specgram_real - nover_specgram_real t_specgram = x[t_start:t_stop:t_step] if NFFT_specgram_real % 2: t_specgram += 1/Fs/2 if len(t_specgram) == 0: t_specgram = np.array([NFFT_specgram_real/(2*Fs)]) t_spectrum = np.array([NFFT_spectrum_real/(2*Fs)]) t_density = t_specgram y = np.zeros_like(x) for i, fstim in enumerate(fstims): y += np.sin(fstim * x * np.pi * 2) * 10**i if iscomplex: y = y.astype('complex') self.Fs = Fs self.sides = sides self.fstims = fstims self.NFFT_density = NFFT_density self.nover_density = nover_density self.pad_to_density = pad_to_density self.NFFT_spectrum = NFFT_spectrum self.nover_spectrum = nover_spectrum self.pad_to_spectrum = pad_to_spectrum self.NFFT_specgram = NFFT_specgram self.nover_specgram = nover_specgram self.pad_to_specgram = pad_to_specgram self.t_specgram = t_specgram self.t_density = t_density self.t_spectrum = t_spectrum self.y = y self.freqs_density = freqs_density self.freqs_spectrum = freqs_spectrum self.freqs_specgram = freqs_specgram self.NFFT_density_real = NFFT_density_real def check_freqs(self, vals, targfreqs, resfreqs, fstims): assert_true(resfreqs.argmin() == 0) assert_true(resfreqs.argmax() == len(resfreqs)-1) assert_allclose(resfreqs, targfreqs, atol=1e-06) for fstim in fstims: i = np.abs(resfreqs - fstim).argmin() assert_true(vals[i] > vals[i+2]) assert_true(vals[i] > vals[i-2]) def check_maxfreq(self, spec, fsp, fstims): # skip the test if there are no frequencies if len(fstims) == 0: return # if twosided, do the test for each side if fsp.min() < 0: fspa = np.abs(fsp) zeroind = fspa.argmin() self.check_maxfreq(spec[:zeroind], fspa[:zeroind], fstims) self.check_maxfreq(spec[zeroind:], fspa[zeroind:], fstims) return fstimst = fstims[:] spect = spec.copy() # go through each peak and make sure it is correctly the maximum peak while fstimst: maxind = spect.argmax() maxfreq = fsp[maxind] assert_almost_equal(maxfreq, fstimst[-1]) del fstimst[-1] spect[maxind-5:maxind+5] = 0 def test_spectral_helper_raises_complex_same_data(self): # test that mode 'complex' cannot be used if x is not y assert_raises(ValueError, mlab._spectral_helper, x=self.y, y=self.y+1, mode='complex') def test_spectral_helper_raises_magnitude_same_data(self): # test that mode 'magnitude' cannot be used if x is not y assert_raises(ValueError, mlab._spectral_helper, x=self.y, y=self.y+1, mode='magnitude') def test_spectral_helper_raises_angle_same_data(self): # test that mode 'angle' cannot be used if x is not y assert_raises(ValueError, mlab._spectral_helper, x=self.y, y=self.y+1, mode='angle') def test_spectral_helper_raises_phase_same_data(self): # test that mode 'phase' cannot be used if x is not y assert_raises(ValueError, mlab._spectral_helper, x=self.y, y=self.y+1, mode='phase') def test_spectral_helper_raises_unknown_mode(self): # test that unknown value for mode cannot be used assert_raises(ValueError, mlab._spectral_helper, x=self.y, mode='spam') def test_spectral_helper_raises_unknown_sides(self): # test that unknown value for sides cannot be used assert_raises(ValueError, mlab._spectral_helper, x=self.y, y=self.y, sides='eggs') def test_spectral_helper_raises_noverlap_gt_NFFT(self): # test that noverlap cannot be larger than NFFT assert_raises(ValueError, mlab._spectral_helper, x=self.y, y=self.y, NFFT=10, noverlap=20) def test_spectral_helper_raises_noverlap_eq_NFFT(self): # test that noverlap cannot be equal to NFFT assert_raises(ValueError, mlab._spectral_helper, x=self.y, NFFT=10, noverlap=10) def test_spectral_helper_raises_winlen_ne_NFFT(self): # test that the window length cannot be different from NFFT assert_raises(ValueError, mlab._spectral_helper, x=self.y, y=self.y, NFFT=10, window=np.ones(9)) def test_single_spectrum_helper_raises_mode_default(self): # test that mode 'default' cannot be used with _single_spectrum_helper assert_raises(ValueError, mlab._single_spectrum_helper, x=self.y, mode='default') def test_single_spectrum_helper_raises_mode_psd(self): # test that mode 'psd' cannot be used with _single_spectrum_helper assert_raises(ValueError, mlab._single_spectrum_helper, x=self.y, mode='psd') def test_spectral_helper_psd(self): freqs = self.freqs_density spec, fsp, t = mlab._spectral_helper(x=self.y, y=self.y, NFFT=self.NFFT_density, Fs=self.Fs, noverlap=self.nover_density, pad_to=self.pad_to_density, sides=self.sides, mode='psd') assert_allclose(fsp, freqs, atol=1e-06) assert_allclose(t, self.t_density, atol=1e-06) assert_equal(spec.shape[0], freqs.shape[0]) assert_equal(spec.shape[1], self.t_specgram.shape[0]) def test_spectral_helper_magnitude_specgram(self): freqs = self.freqs_specgram spec, fsp, t = mlab._spectral_helper(x=self.y, y=self.y, NFFT=self.NFFT_specgram, Fs=self.Fs, noverlap=self.nover_specgram, pad_to=self.pad_to_specgram, sides=self.sides, mode='magnitude') assert_allclose(fsp, freqs, atol=1e-06) assert_allclose(t, self.t_specgram, atol=1e-06) assert_equal(spec.shape[0], freqs.shape[0]) assert_equal(spec.shape[1], self.t_specgram.shape[0]) def test_spectral_helper_magnitude_magnitude_spectrum(self): freqs = self.freqs_spectrum spec, fsp, t = mlab._spectral_helper(x=self.y, y=self.y, NFFT=self.NFFT_spectrum, Fs=self.Fs, noverlap=self.nover_spectrum, pad_to=self.pad_to_spectrum, sides=self.sides, mode='magnitude') assert_allclose(fsp, freqs, atol=1e-06) assert_allclose(t, self.t_spectrum, atol=1e-06) assert_equal(spec.shape[0], freqs.shape[0]) assert_equal(spec.shape[1], 1) def test_csd(self): freqs = self.freqs_density spec, fsp = mlab.csd(x=self.y, y=self.y+1, NFFT=self.NFFT_density, Fs=self.Fs, noverlap=self.nover_density, pad_to=self.pad_to_density, sides=self.sides) assert_allclose(fsp, freqs, atol=1e-06) assert_equal(spec.shape, freqs.shape) def test_psd(self): freqs = self.freqs_density spec, fsp = mlab.psd(x=self.y, NFFT=self.NFFT_density, Fs=self.Fs, noverlap=self.nover_density, pad_to=self.pad_to_density, sides=self.sides) assert_equal(spec.shape, freqs.shape) self.check_freqs(spec, freqs, fsp, self.fstims) def test_psd_detrend_mean_func_offset(self): if self.NFFT_density is None: return freqs = self.freqs_density ydata = np.zeros(self.NFFT_density) ydata1 = ydata+5 ydata2 = ydata+3.3 ydata = np.vstack([ydata1, ydata2]) ydata = np.tile(ydata, (20, 1)) ydatab = ydata.T.flatten() ydata = ydata.flatten() ycontrol = np.zeros_like(ydata) spec_g, fsp_g = mlab.psd(x=ydata, NFFT=self.NFFT_density, Fs=self.Fs, noverlap=0, sides=self.sides, detrend=mlab.detrend_mean) spec_b, fsp_b = mlab.psd(x=ydatab, NFFT=self.NFFT_density, Fs=self.Fs, noverlap=0, sides=self.sides, detrend=mlab.detrend_mean) spec_c, fsp_c = mlab.psd(x=ycontrol, NFFT=self.NFFT_density, Fs=self.Fs, noverlap=0, sides=self.sides) assert_array_equal(fsp_g, fsp_c) assert_array_equal(fsp_b, fsp_c) assert_allclose(spec_g, spec_c, atol=1e-08) # these should not be almost equal assert_raises(AssertionError, assert_allclose, spec_b, spec_c, atol=1e-08) def test_psd_detrend_mean_str_offset(self): if self.NFFT_density is None: return freqs = self.freqs_density ydata = np.zeros(self.NFFT_density) ydata1 = ydata+5 ydata2 = ydata+3.3 ydata = np.vstack([ydata1, ydata2]) ydata = np.tile(ydata, (20, 1)) ydatab = ydata.T.flatten() ydata = ydata.flatten() ycontrol = np.zeros_like(ydata) spec_g, fsp_g = mlab.psd(x=ydata, NFFT=self.NFFT_density, Fs=self.Fs, noverlap=0, sides=self.sides, detrend='mean') spec_b, fsp_b = mlab.psd(x=ydatab, NFFT=self.NFFT_density, Fs=self.Fs, noverlap=0, sides=self.sides, detrend='mean') spec_c, fsp_c = mlab.psd(x=ycontrol, NFFT=self.NFFT_density, Fs=self.Fs, noverlap=0, sides=self.sides) assert_array_equal(fsp_g, fsp_c) assert_array_equal(fsp_b, fsp_c) assert_allclose(spec_g, spec_c, atol=1e-08) # these should not be almost equal assert_raises(AssertionError, assert_allclose, spec_b, spec_c, atol=1e-08) def test_psd_detrend_linear_func_trend(self): if self.NFFT_density is None: return freqs = self.freqs_density ydata = np.arange(self.NFFT_density) ydata1 = ydata+5 ydata2 = ydata+3.3 ydata = np.vstack([ydata1, ydata2]) ydata = np.tile(ydata, (20, 1)) ydatab = ydata.T.flatten() ydata = ydata.flatten() ycontrol = np.zeros_like(ydata) spec_g, fsp_g = mlab.psd(x=ydata, NFFT=self.NFFT_density, Fs=self.Fs, noverlap=0, sides=self.sides, detrend=mlab.detrend_linear) spec_b, fsp_b = mlab.psd(x=ydatab, NFFT=self.NFFT_density, Fs=self.Fs, noverlap=0, sides=self.sides, detrend=mlab.detrend_linear) spec_c, fsp_c = mlab.psd(x=ycontrol, NFFT=self.NFFT_density, Fs=self.Fs, noverlap=0, sides=self.sides) assert_array_equal(fsp_g, fsp_c) assert_array_equal(fsp_b, fsp_c) assert_allclose(spec_g, spec_c, atol=1e-08) # these should not be almost equal assert_raises(AssertionError, assert_allclose, spec_b, spec_c, atol=1e-08) def test_psd_detrend_linear_str_trend(self): if self.NFFT_density is None: return freqs = self.freqs_density ydata = np.arange(self.NFFT_density) ydata1 = ydata+5 ydata2 = ydata+3.3 ydata = np.vstack([ydata1, ydata2]) ydata = np.tile(ydata, (20, 1)) ydatab = ydata.T.flatten() ydata = ydata.flatten() ycontrol = np.zeros_like(ydata) spec_g, fsp_g = mlab.psd(x=ydata, NFFT=self.NFFT_density, Fs=self.Fs, noverlap=0, sides=self.sides, detrend='linear') spec_b, fsp_b = mlab.psd(x=ydatab, NFFT=self.NFFT_density, Fs=self.Fs, noverlap=0, sides=self.sides, detrend='linear') spec_c, fsp_c = mlab.psd(x=ycontrol, NFFT=self.NFFT_density, Fs=self.Fs, noverlap=0, sides=self.sides) assert_array_equal(fsp_g, fsp_c) assert_array_equal(fsp_b, fsp_c) assert_allclose(spec_g, spec_c, atol=1e-08) # these should not be almost equal assert_raises(AssertionError, assert_allclose, spec_b, spec_c, atol=1e-08) def test_psd_window_hanning(self): if self.NFFT_density is None: return freqs = self.freqs_density ydata = np.arange(self.NFFT_density) ydata1 = ydata+5 ydata2 = ydata+3.3 ycontrol1, windowVals = mlab.apply_window(ydata1, mlab.window_hanning, return_window=True) ycontrol2 = mlab.window_hanning(ydata2) ydata = np.vstack([ydata1, ydata2]) ycontrol = np.vstack([ycontrol1, ycontrol2]) ydata = np.tile(ydata, (20, 1)) ycontrol = np.tile(ycontrol, (20, 1)) ydatab = ydata.T.flatten() ydataf = ydata.flatten() ycontrol = ycontrol.flatten() spec_g, fsp_g = mlab.psd(x=ydataf, NFFT=self.NFFT_density, Fs=self.Fs, noverlap=0, sides=self.sides, window=mlab.window_hanning) spec_b, fsp_b = mlab.psd(x=ydatab, NFFT=self.NFFT_density, Fs=self.Fs, noverlap=0, sides=self.sides, window=mlab.window_hanning) spec_c, fsp_c = mlab.psd(x=ycontrol, NFFT=self.NFFT_density, Fs=self.Fs, noverlap=0, sides=self.sides, window=mlab.window_none) spec_c *= len(ycontrol1)/(np.abs(windowVals)**2).sum() assert_array_equal(fsp_g, fsp_c) assert_array_equal(fsp_b, fsp_c) assert_allclose(spec_g, spec_c, atol=1e-08) # these should not be almost equal assert_raises(AssertionError, assert_allclose, spec_b, spec_c, atol=1e-08) def test_psd_window_hanning_detrend_linear(self): if self.NFFT_density is None: return freqs = self.freqs_density ydata = np.arange(self.NFFT_density) ycontrol = np.zeros(self.NFFT_density) ydata1 = ydata+5 ydata2 = ydata+3.3 ycontrol1 = ycontrol ycontrol2 = ycontrol ycontrol1, windowVals = mlab.apply_window(ycontrol1, mlab.window_hanning, return_window=True) ycontrol2 = mlab.window_hanning(ycontrol2) ydata = np.vstack([ydata1, ydata2]) ycontrol = np.vstack([ycontrol1, ycontrol2]) ydata = np.tile(ydata, (20, 1)) ycontrol = np.tile(ycontrol, (20, 1)) ydatab = ydata.T.flatten() ydataf = ydata.flatten() ycontrol = ycontrol.flatten() spec_g, fsp_g = mlab.psd(x=ydataf, NFFT=self.NFFT_density, Fs=self.Fs, noverlap=0, sides=self.sides, detrend=mlab.detrend_linear, window=mlab.window_hanning) spec_b, fsp_b = mlab.psd(x=ydatab, NFFT=self.NFFT_density, Fs=self.Fs, noverlap=0, sides=self.sides, detrend=mlab.detrend_linear, window=mlab.window_hanning) spec_c, fsp_c = mlab.psd(x=ycontrol, NFFT=self.NFFT_density, Fs=self.Fs, noverlap=0, sides=self.sides, window=mlab.window_none) spec_c *= len(ycontrol1)/(np.abs(windowVals)**2).sum() assert_array_equal(fsp_g, fsp_c) assert_array_equal(fsp_b, fsp_c) assert_allclose(spec_g, spec_c, atol=1e-08) # these should not be almost equal assert_raises(AssertionError, assert_allclose, spec_b, spec_c, atol=1e-08) def test_psd_windowarray(self): freqs = self.freqs_density spec, fsp = mlab.psd(x=self.y, NFFT=self.NFFT_density, Fs=self.Fs, noverlap=self.nover_density, pad_to=self.pad_to_density, sides=self.sides, window=np.ones(self.NFFT_density_real)) assert_allclose(fsp, freqs, atol=1e-06) assert_equal(spec.shape, freqs.shape) def test_psd_windowarray_scale_by_freq(self): freqs = self.freqs_density win = mlab.window_hanning(np.ones(self.NFFT_density_real)) spec, fsp = mlab.psd(x=self.y, NFFT=self.NFFT_density, Fs=self.Fs, noverlap=self.nover_density, pad_to=self.pad_to_density, sides=self.sides, window=mlab.window_hanning) spec_s, fsp_s = mlab.psd(x=self.y, NFFT=self.NFFT_density, Fs=self.Fs, noverlap=self.nover_density, pad_to=self.pad_to_density, sides=self.sides, window=mlab.window_hanning, scale_by_freq=True) spec_n, fsp_n = mlab.psd(x=self.y, NFFT=self.NFFT_density, Fs=self.Fs, noverlap=self.nover_density, pad_to=self.pad_to_density, sides=self.sides, window=mlab.window_hanning, scale_by_freq=False) assert_array_equal(fsp, fsp_s) assert_array_equal(fsp, fsp_n) assert_array_equal(spec, spec_s) assert_allclose(spec_s*(win**2).sum(), spec_n/self.Fs*win.sum()**2, atol=1e-08) def test_complex_spectrum(self): freqs = self.freqs_spectrum spec, fsp = mlab.complex_spectrum(x=self.y, Fs=self.Fs, sides=self.sides, pad_to=self.pad_to_spectrum) assert_allclose(fsp, freqs, atol=1e-06) assert_equal(spec.shape, freqs.shape) def test_magnitude_spectrum(self): freqs = self.freqs_spectrum spec, fsp = mlab.magnitude_spectrum(x=self.y, Fs=self.Fs, sides=self.sides, pad_to=self.pad_to_spectrum) assert_equal(spec.shape, freqs.shape) self.check_maxfreq(spec, fsp, self.fstims) self.check_freqs(spec, freqs, fsp, self.fstims) def test_angle_spectrum(self): freqs = self.freqs_spectrum spec, fsp = mlab.angle_spectrum(x=self.y, Fs=self.Fs, sides=self.sides, pad_to=self.pad_to_spectrum) assert_allclose(fsp, freqs, atol=1e-06) assert_equal(spec.shape, freqs.shape) def test_phase_spectrum(self): freqs = self.freqs_spectrum spec, fsp = mlab.phase_spectrum(x=self.y, Fs=self.Fs, sides=self.sides, pad_to=self.pad_to_spectrum) assert_allclose(fsp, freqs, atol=1e-06) assert_equal(spec.shape, freqs.shape) def test_specgram_auto(self): freqs = self.freqs_specgram spec, fsp, t = mlab.specgram(x=self.y, NFFT=self.NFFT_specgram, Fs=self.Fs, noverlap=self.nover_specgram, pad_to=self.pad_to_specgram, sides=self.sides) specm = np.mean(spec, axis=1) assert_allclose(fsp, freqs, atol=1e-06) assert_allclose(t, self.t_specgram, atol=1e-06) assert_equal(spec.shape[0], freqs.shape[0]) assert_equal(spec.shape[1], self.t_specgram.shape[0]) # since we are using a single freq, all time slices # should be about the same if np.abs(spec.max()) != 0: assert_allclose(np.diff(spec, axis=1).max()/np.abs(spec.max()), 0, atol=1e-02) self.check_freqs(specm, freqs, fsp, self.fstims) def test_specgram_default(self): freqs = self.freqs_specgram spec, fsp, t = mlab.specgram(x=self.y, NFFT=self.NFFT_specgram, Fs=self.Fs, noverlap=self.nover_specgram, pad_to=self.pad_to_specgram, sides=self.sides, mode='default') specm = np.mean(spec, axis=1) assert_allclose(fsp, freqs, atol=1e-06) assert_allclose(t, self.t_specgram, atol=1e-06) assert_equal(spec.shape[0], freqs.shape[0]) assert_equal(spec.shape[1], self.t_specgram.shape[0]) # since we are using a single freq, all time slices # should be about the same if np.abs(spec.max()) != 0: assert_allclose(np.diff(spec, axis=1).max()/np.abs(spec.max()), 0, atol=1e-02) self.check_freqs(specm, freqs, fsp, self.fstims) def test_specgram_psd(self): freqs = self.freqs_specgram spec, fsp, t = mlab.specgram(x=self.y, NFFT=self.NFFT_specgram, Fs=self.Fs, noverlap=self.nover_specgram, pad_to=self.pad_to_specgram, sides=self.sides, mode='psd') specm = np.mean(spec, axis=1) assert_allclose(fsp, freqs, atol=1e-06) assert_allclose(t, self.t_specgram, atol=1e-06) assert_equal(spec.shape[0], freqs.shape[0]) assert_equal(spec.shape[1], self.t_specgram.shape[0]) # since we are using a single freq, all time slices # should be about the same if np.abs(spec.max()) != 0: assert_allclose(np.diff(spec, axis=1).max()/np.abs(spec.max()), 0, atol=1e-02) self.check_freqs(specm, freqs, fsp, self.fstims) def test_specgram_complex(self): freqs = self.freqs_specgram spec, fsp, t = mlab.specgram(x=self.y, NFFT=self.NFFT_specgram, Fs=self.Fs, noverlap=self.nover_specgram, pad_to=self.pad_to_specgram, sides=self.sides, mode='complex') specm = np.mean(np.abs(spec), axis=1) assert_allclose(fsp, freqs, atol=1e-06) assert_allclose(t, self.t_specgram, atol=1e-06) assert_equal(spec.shape[0], freqs.shape[0]) assert_equal(spec.shape[1], self.t_specgram.shape[0]) self.check_freqs(specm, freqs, fsp, self.fstims) def test_specgram_magnitude(self): freqs = self.freqs_specgram spec, fsp, t = mlab.specgram(x=self.y, NFFT=self.NFFT_specgram, Fs=self.Fs, noverlap=self.nover_specgram, pad_to=self.pad_to_specgram, sides=self.sides, mode='magnitude') specm = np.mean(spec, axis=1) assert_allclose(fsp, freqs, atol=1e-06) assert_allclose(t, self.t_specgram, atol=1e-06) assert_equal(spec.shape[0], freqs.shape[0]) assert_equal(spec.shape[1], self.t_specgram.shape[0]) # since we are using a single freq, all time slices # should be about the same if np.abs(spec.max()) != 0: assert_allclose(np.diff(spec, axis=1).max()/np.abs(spec.max()), 0, atol=1e-02) self.check_freqs(specm, freqs, fsp, self.fstims) def test_specgram_angle(self): freqs = self.freqs_specgram spec, fsp, t = mlab.specgram(x=self.y, NFFT=self.NFFT_specgram, Fs=self.Fs, noverlap=self.nover_specgram, pad_to=self.pad_to_specgram, sides=self.sides, mode='angle') specm = np.mean(spec, axis=1) assert_allclose(fsp, freqs, atol=1e-06) assert_allclose(t, self.t_specgram, atol=1e-06) assert_equal(spec.shape[0], freqs.shape[0]) assert_equal(spec.shape[1], self.t_specgram.shape[0]) def test_specgram_phase(self): freqs = self.freqs_specgram spec, fsp, t = mlab.specgram(x=self.y, NFFT=self.NFFT_specgram, Fs=self.Fs, noverlap=self.nover_specgram, pad_to=self.pad_to_specgram, sides=self.sides, mode='phase') specm = np.mean(spec, axis=1) assert_allclose(fsp, freqs, atol=1e-06) assert_allclose(t, self.t_specgram, atol=1e-06) assert_equal(spec.shape[0], freqs.shape[0]) assert_equal(spec.shape[1], self.t_specgram.shape[0]) def test_psd_csd_equal(self): freqs = self.freqs_density Pxx, freqsxx = mlab.psd(x=self.y, NFFT=self.NFFT_density, Fs=self.Fs, noverlap=self.nover_density, pad_to=self.pad_to_density, sides=self.sides) Pxy, freqsxy = mlab.csd(x=self.y, y=self.y, NFFT=self.NFFT_density, Fs=self.Fs, noverlap=self.nover_density, pad_to=self.pad_to_density, sides=self.sides) assert_array_equal(Pxx, Pxy) assert_array_equal(freqsxx, freqsxy) def test_specgram_auto_default_equal(self): '''test that mlab.specgram without mode and with mode 'default' and 'psd' are all the same''' freqs = self.freqs_specgram speca, freqspeca, ta = mlab.specgram(x=self.y, NFFT=self.NFFT_specgram, Fs=self.Fs, noverlap=self.nover_specgram, pad_to=self.pad_to_specgram, sides=self.sides) specb, freqspecb, tb = mlab.specgram(x=self.y, NFFT=self.NFFT_specgram, Fs=self.Fs, noverlap=self.nover_specgram, pad_to=self.pad_to_specgram, sides=self.sides, mode='default') assert_array_equal(speca, specb) assert_array_equal(freqspeca, freqspecb) assert_array_equal(ta, tb) def test_specgram_auto_psd_equal(self): '''test that mlab.specgram without mode and with mode 'default' and 'psd' are all the same''' freqs = self.freqs_specgram speca, freqspeca, ta = mlab.specgram(x=self.y, NFFT=self.NFFT_specgram, Fs=self.Fs, noverlap=self.nover_specgram, pad_to=self.pad_to_specgram, sides=self.sides) specc, freqspecc, tc = mlab.specgram(x=self.y, NFFT=self.NFFT_specgram, Fs=self.Fs, noverlap=self.nover_specgram, pad_to=self.pad_to_specgram, sides=self.sides, mode='psd') assert_array_equal(speca, specc) assert_array_equal(freqspeca, freqspecc) assert_array_equal(ta, tc) def test_specgram_complex_mag_equivalent(self): freqs = self.freqs_specgram specc, freqspecc, tc = mlab.specgram(x=self.y, NFFT=self.NFFT_specgram, Fs=self.Fs, noverlap=self.nover_specgram, pad_to=self.pad_to_specgram, sides=self.sides, mode='complex') specm, freqspecm, tm = mlab.specgram(x=self.y, NFFT=self.NFFT_specgram, Fs=self.Fs, noverlap=self.nover_specgram, pad_to=self.pad_to_specgram, sides=self.sides, mode='magnitude') assert_array_equal(freqspecc, freqspecm) assert_array_equal(tc, tm) assert_allclose(np.abs(specc), specm, atol=1e-06) def test_specgram_complex_angle_equivalent(self): freqs = self.freqs_specgram specc, freqspecc, tc = mlab.specgram(x=self.y, NFFT=self.NFFT_specgram, Fs=self.Fs, noverlap=self.nover_specgram, pad_to=self.pad_to_specgram, sides=self.sides, mode='complex') speca, freqspeca, ta = mlab.specgram(x=self.y, NFFT=self.NFFT_specgram, Fs=self.Fs, noverlap=self.nover_specgram, pad_to=self.pad_to_specgram, sides=self.sides, mode='angle') assert_array_equal(freqspecc, freqspeca) assert_array_equal(tc, ta) assert_allclose(np.angle(specc), speca, atol=1e-06) def test_specgram_complex_phase_equivalent(self): freqs = self.freqs_specgram specc, freqspecc, tc = mlab.specgram(x=self.y, NFFT=self.NFFT_specgram, Fs=self.Fs, noverlap=self.nover_specgram, pad_to=self.pad_to_specgram, sides=self.sides, mode='complex') specp, freqspecp, tp = mlab.specgram(x=self.y, NFFT=self.NFFT_specgram, Fs=self.Fs, noverlap=self.nover_specgram, pad_to=self.pad_to_specgram, sides=self.sides, mode='phase') assert_array_equal(freqspecc, freqspecp) assert_array_equal(tc, tp) assert_allclose(np.unwrap(np.angle(specc), axis=0), specp, atol=1e-06) def test_specgram_angle_phase_equivalent(self): freqs = self.freqs_specgram speca, freqspeca, ta = mlab.specgram(x=self.y, NFFT=self.NFFT_specgram, Fs=self.Fs, noverlap=self.nover_specgram, pad_to=self.pad_to_specgram, sides=self.sides, mode='angle') specp, freqspecp, tp = mlab.specgram(x=self.y, NFFT=self.NFFT_specgram, Fs=self.Fs, noverlap=self.nover_specgram, pad_to=self.pad_to_specgram, sides=self.sides, mode='phase') assert_array_equal(freqspeca, freqspecp) assert_array_equal(ta, tp) assert_allclose(np.unwrap(speca, axis=0), specp, atol=1e-06) def test_psd_windowarray_equal(self): freqs = self.freqs_density win = mlab.window_hanning(np.ones(self.NFFT_density_real)) speca, fspa = mlab.psd(x=self.y, NFFT=self.NFFT_density, Fs=self.Fs, noverlap=self.nover_density, pad_to=self.pad_to_density, sides=self.sides, window=win) specb, fspb = mlab.psd(x=self.y, NFFT=self.NFFT_density, Fs=self.Fs, noverlap=self.nover_density, pad_to=self.pad_to_density, sides=self.sides) assert_array_equal(fspa, fspb) assert_allclose(speca, specb, atol=1e-08) class spectral_testcase_nosig_real_twosided( spectral_testcase_nosig_real_onesided): def setUp(self): self.createStim(fstims=[], iscomplex=False, sides='twosided', nsides=2) class spectral_testcase_nosig_real_defaultsided( spectral_testcase_nosig_real_onesided): def setUp(self): self.createStim(fstims=[], iscomplex=False, sides='default', nsides=1) class spectral_testcase_nosig_complex_onesided( spectral_testcase_nosig_real_onesided): def setUp(self): self.createStim(fstims=[], iscomplex=True, sides='onesided', nsides=1) class spectral_testcase_nosig_complex_twosided( spectral_testcase_nosig_real_onesided): def setUp(self): self.createStim(fstims=[], iscomplex=True, sides='twosided', nsides=2) class spectral_testcase_nosig_complex_defaultsided( spectral_testcase_nosig_real_onesided): def setUp(self): self.createStim(fstims=[], iscomplex=True, sides='default', nsides=2) class spectral_testcase_Fs4_real_onesided( spectral_testcase_nosig_real_onesided): def setUp(self): self.createStim(fstims=[4], iscomplex=False, sides='onesided', nsides=1) class spectral_testcase_Fs4_real_twosided( spectral_testcase_nosig_real_onesided): def setUp(self): self.createStim(fstims=[4], iscomplex=False, sides='twosided', nsides=2) class spectral_testcase_Fs4_real_defaultsided( spectral_testcase_nosig_real_onesided): def setUp(self): self.createStim(fstims=[4], iscomplex=False, sides='default', nsides=1) class spectral_testcase_Fs4_complex_onesided( spectral_testcase_nosig_real_onesided): def setUp(self): self.createStim(fstims=[4], iscomplex=True, sides='onesided', nsides=1) class spectral_testcase_Fs4_complex_twosided( spectral_testcase_nosig_real_onesided): def setUp(self): self.createStim(fstims=[4], iscomplex=True, sides='twosided', nsides=2) class spectral_testcase_Fs4_complex_defaultsided( spectral_testcase_nosig_real_onesided): def setUp(self): self.createStim(fstims=[4], iscomplex=True, sides='default', nsides=2) class spectral_testcase_FsAll_real_onesided( spectral_testcase_nosig_real_onesided): def setUp(self): self.createStim(fstims=[4, 5, 10], iscomplex=False, sides='onesided', nsides=1) class spectral_testcase_FsAll_real_twosided( spectral_testcase_nosig_real_onesided): def setUp(self): self.createStim(fstims=[4, 5, 10], iscomplex=False, sides='twosided', nsides=2) class spectral_testcase_FsAll_real_defaultsided( spectral_testcase_nosig_real_onesided): def setUp(self): self.createStim(fstims=[4, 5, 10], iscomplex=False, sides='default', nsides=1) class spectral_testcase_FsAll_complex_onesided( spectral_testcase_nosig_real_onesided): def setUp(self): self.createStim(fstims=[4, 5, 10], iscomplex=True, sides='onesided', nsides=1) class spectral_testcase_FsAll_complex_twosided( spectral_testcase_nosig_real_onesided): def setUp(self): self.createStim(fstims=[4, 5, 10], iscomplex=True, sides='twosided', nsides=2) class spectral_testcase_FsAll_complex_defaultsided( spectral_testcase_nosig_real_onesided): def setUp(self): self.createStim(fstims=[4, 5, 10], iscomplex=True, sides='default', nsides=2) class spectral_testcase_nosig_real_onesided_noNFFT( spectral_testcase_nosig_real_onesided): def setUp(self): self.createStim(fstims=[], NFFT_density=None, pad_to_spectrum=None, iscomplex=False, sides='onesided', nsides=1) class spectral_testcase_nosig_real_twosided_noNFFT( spectral_testcase_nosig_real_onesided): def setUp(self): self.createStim(fstims=[], NFFT_density=None, pad_to_spectrum=None, iscomplex=False, sides='twosided', nsides=2) class spectral_testcase_nosig_real_defaultsided_noNFFT( spectral_testcase_nosig_real_onesided): def setUp(self): self.createStim(fstims=[], NFFT_density=None, pad_to_spectrum=None, iscomplex=False, sides='default', nsides=1) class spectral_testcase_nosig_complex_onesided_noNFFT( spectral_testcase_nosig_real_onesided): def setUp(self): self.createStim(fstims=[], NFFT_density=None, pad_to_spectrum=None, iscomplex=True, sides='onesided', nsides=1) class spectral_testcase_nosig_complex_twosided_noNFFT( spectral_testcase_nosig_real_onesided): def setUp(self): self.createStim(fstims=[], NFFT_density=None, pad_to_spectrum=None, iscomplex=True, sides='twosided', nsides=2) class spectral_testcase_nosig_complex_defaultsided_noNFFT( spectral_testcase_nosig_real_onesided): def setUp(self): self.createStim(fstims=[], NFFT_density=None, pad_to_spectrum=None, iscomplex=True, sides='default', nsides=2) class spectral_testcase_nosig_real_onesided_nopad_to( spectral_testcase_nosig_real_onesided): def setUp(self): self.createStim(fstims=[], pad_to_density=None, pad_to_spectrum=None, iscomplex=False, sides='onesided', nsides=1) class spectral_testcase_nosig_real_twosided_nopad_to( spectral_testcase_nosig_real_onesided): def setUp(self): self.createStim(fstims=[], pad_to_density=None, pad_to_spectrum=None, iscomplex=False, sides='twosided', nsides=2) class spectral_testcase_nosig_real_defaultsided_nopad_to( spectral_testcase_nosig_real_onesided): def setUp(self): self.createStim(fstims=[], pad_to_density=None, pad_to_spectrum=None, iscomplex=False, sides='default', nsides=1) class spectral_testcase_nosig_complex_onesided_nopad_to( spectral_testcase_nosig_real_onesided): def setUp(self): self.createStim(fstims=[], pad_to_density=None, pad_to_spectrum=None, iscomplex=True, sides='onesided', nsides=1) class spectral_testcase_nosig_complex_twosided_nopad_to( spectral_testcase_nosig_real_onesided): def setUp(self): self.createStim(fstims=[], NFFT_density=None, pad_to_density=None, pad_to_spectrum=None, iscomplex=True, sides='twosided', nsides=2) class spectral_testcase_nosig_complex_defaultsided_nopad_to( spectral_testcase_nosig_real_onesided): def setUp(self): self.createStim(fstims=[], NFFT_density=None, pad_to_density=None, pad_to_spectrum=None, iscomplex=True, sides='default', nsides=2) class spectral_testcase_nosig_real_onesided_noNFFT_no_pad_to( spectral_testcase_nosig_real_onesided): def setUp(self): self.createStim(fstims=[], NFFT_density=None, pad_to_density=None, pad_to_spectrum=None, iscomplex=False, sides='onesided', nsides=1) class spectral_testcase_nosig_real_twosided_noNFFT_no_pad_to( spectral_testcase_nosig_real_onesided): def setUp(self): self.createStim(fstims=[], NFFT_density=None, pad_to_density=None, pad_to_spectrum=None, iscomplex=False, sides='twosided', nsides=2) class spectral_testcase_nosig_real_defaultsided_noNFFT_no_pad_to( spectral_testcase_nosig_real_onesided): def setUp(self): self.createStim(fstims=[], NFFT_density=None, pad_to_density=None, pad_to_spectrum=None, iscomplex=False, sides='default', nsides=1) class spectral_testcase_nosig_complex_onesided_noNFFT_no_pad_to( spectral_testcase_nosig_real_onesided): def setUp(self): self.createStim(fstims=[], NFFT_density=None, pad_to_density=None, pad_to_spectrum=None, iscomplex=True, sides='onesided', nsides=1) class spectral_testcase_nosig_complex_twosided_noNFFT_no_pad_to( spectral_testcase_nosig_real_onesided): def setUp(self): self.createStim(fstims=[], NFFT_density=None, pad_to_density=None, pad_to_spectrum=None, iscomplex=True, sides='twosided', nsides=2) class spectral_testcase_nosig_complex_defaultsided_noNFFT_no_pad_to( spectral_testcase_nosig_real_onesided): def setUp(self): self.createStim(fstims=[], NFFT_density=None, pad_to_density=None, pad_to_spectrum=None, iscomplex=True, sides='default', nsides=2) class spectral_testcase_nosig_real_onesided_trim( spectral_testcase_nosig_real_onesided): def setUp(self): self.createStim(fstims=[], len_x=256, NFFT_density=512, pad_to_spectrum=128, iscomplex=False, sides='onesided', nsides=1) class spectral_testcase_nosig_real_twosided_trim( spectral_testcase_nosig_real_onesided): def setUp(self): self.createStim(fstims=[], len_x=256, NFFT_density=512, pad_to_spectrum=128, iscomplex=False, sides='twosided', nsides=2) class spectral_testcase_nosig_real_defaultsided_trim( spectral_testcase_nosig_real_onesided): def setUp(self): self.createStim(fstims=[], len_x=256, NFFT_density=512, pad_to_spectrum=128, iscomplex=False, sides='default', nsides=1) class spectral_testcase_nosig_complex_onesided_trim( spectral_testcase_nosig_real_onesided): def setUp(self): self.createStim(fstims=[], len_x=256, NFFT_density=512, pad_to_spectrum=128, iscomplex=True, sides='onesided', nsides=1) class spectral_testcase_nosig_complex_twosided_trim( spectral_testcase_nosig_real_onesided): def setUp(self): self.createStim(fstims=[], len_x=256, NFFT_density=512, pad_to_spectrum=128, iscomplex=True, sides='twosided', nsides=2) class spectral_testcase_nosig_complex_defaultsided_trim( spectral_testcase_nosig_real_onesided): def setUp(self): self.createStim(fstims=[], len_x=256, NFFT_density=128, pad_to_spectrum=128, iscomplex=True, sides='default', nsides=2) class spectral_testcase_nosig_real_onesided_odd( spectral_testcase_nosig_real_onesided): def setUp(self): self.createStim(fstims=[], len_x=256, pad_to_density=33, pad_to_spectrum=257, iscomplex=False, sides='onesided', nsides=1) class spectral_testcase_nosig_real_twosided_odd( spectral_testcase_nosig_real_onesided): def setUp(self): self.createStim(fstims=[], len_x=256, pad_to_density=33, pad_to_spectrum=257, iscomplex=False, sides='twosided', nsides=2) class spectral_testcase_nosig_real_defaultsided_odd( spectral_testcase_nosig_real_onesided): def setUp(self): self.createStim(fstims=[], len_x=256, pad_to_density=33, pad_to_spectrum=257, iscomplex=False, sides='default', nsides=1) class spectral_testcase_nosig_complex_onesided_odd( spectral_testcase_nosig_real_onesided): def setUp(self): self.createStim(fstims=[], len_x=256, pad_to_density=33, pad_to_spectrum=257, iscomplex=True, sides='onesided', nsides=1) class spectral_testcase_nosig_complex_twosided_odd( spectral_testcase_nosig_real_onesided): def setUp(self): self.createStim(fstims=[], len_x=256, pad_to_density=33, pad_to_spectrum=257, iscomplex=True, sides='twosided', nsides=2) class spectral_testcase_nosig_complex_defaultsided_odd( spectral_testcase_nosig_real_onesided): def setUp(self): self.createStim(fstims=[], len_x=256, pad_to_density=33, pad_to_spectrum=257, iscomplex=True, sides='default', nsides=2) class spectral_testcase_nosig_real_onesided_oddlen( spectral_testcase_nosig_real_onesided): def setUp(self): self.createStim(fstims=[], len_x=255, NFFT_density=33, pad_to_spectrum=None, iscomplex=False, sides='onesided', nsides=1) class spectral_testcase_nosig_real_twosided_oddlen( spectral_testcase_nosig_real_onesided): def setUp(self): self.createStim(fstims=[], len_x=255, NFFT_density=33, pad_to_spectrum=None, iscomplex=False, sides='twosided', nsides=2) class spectral_testcase_nosig_real_defaultsided_oddlen( spectral_testcase_nosig_real_onesided): def setUp(self): self.createStim(fstims=[], len_x=255, NFFT_density=33, pad_to_spectrum=None, iscomplex=False, sides='default', nsides=1) class spectral_testcase_nosig_complex_onesided_oddlen( spectral_testcase_nosig_real_onesided): def setUp(self): self.createStim(fstims=[], len_x=255, NFFT_density=33, pad_to_spectrum=None, iscomplex=True, sides='onesided', nsides=1) class spectral_testcase_nosig_complex_twosided_oddlen( spectral_testcase_nosig_real_onesided): def setUp(self): self.createStim(fstims=[], len_x=255, NFFT_density=33, pad_to_spectrum=None, iscomplex=True, sides='twosided', nsides=2) class spectral_testcase_nosig_complex_defaultsided_oddlen( spectral_testcase_nosig_real_onesided): def setUp(self): self.createStim(fstims=[], len_x=255, NFFT_density=128, pad_to_spectrum=None, iscomplex=True, sides='default', nsides=2) class spectral_testcase_nosig_real_onesided_stretch( spectral_testcase_nosig_real_onesided): def setUp(self): self.createStim(fstims=[], len_x=128, NFFT_density=128, pad_to_density=256, pad_to_spectrum=256, iscomplex=False, sides='onesided', nsides=1) class spectral_testcase_nosig_real_twosided_stretch( spectral_testcase_nosig_real_onesided): def setUp(self): self.createStim(fstims=[], len_x=128, NFFT_density=128, pad_to_density=256, pad_to_spectrum=256, iscomplex=False, sides='twosided', nsides=2) class spectral_testcase_nosig_real_defaultsided_stretch( spectral_testcase_nosig_real_onesided): def setUp(self): self.createStim(fstims=[], len_x=128, NFFT_density=128, pad_to_density=256, pad_to_spectrum=256, iscomplex=False, sides='default', nsides=1) class spectral_testcase_nosig_complex_onesided_stretch( spectral_testcase_nosig_real_onesided): def setUp(self): self.createStim(fstims=[], len_x=128, NFFT_density=128, pad_to_density=256, pad_to_spectrum=256, iscomplex=True, sides='onesided', nsides=1) class spectral_testcase_nosig_complex_twosided_stretch( spectral_testcase_nosig_real_onesided): def setUp(self): self.createStim(fstims=[], len_x=128, NFFT_density=128, pad_to_density=256, pad_to_spectrum=256, iscomplex=True, sides='twosided', nsides=2) class spectral_testcase_nosig_complex_defaultsided_stretch( spectral_testcase_nosig_real_onesided): def setUp(self): self.createStim(fstims=[], len_x=128, NFFT_density=128, pad_to_density=256, pad_to_spectrum=256, iscomplex=True, sides='default', nsides=2) class spectral_testcase_nosig_real_onesided_overlap( spectral_testcase_nosig_real_onesided): def setUp(self): self.createStim(fstims=[], nover_density=32, iscomplex=False, sides='onesided', nsides=1) class spectral_testcase_nosig_real_twosided_overlap( spectral_testcase_nosig_real_onesided): def setUp(self): self.createStim(fstims=[], nover_density=32, iscomplex=False, sides='twosided', nsides=2) class spectral_testcase_nosig_real_defaultsided_overlap( spectral_testcase_nosig_real_onesided): def setUp(self): self.createStim(fstims=[], nover_density=32, iscomplex=False, sides='default', nsides=1) class spectral_testcase_nosig_complex_onesided_overlap( spectral_testcase_nosig_real_onesided): def setUp(self): self.createStim(fstims=[], nover_density=32, iscomplex=True, sides='onesided', nsides=1) class spectral_testcase_nosig_complex_twosided_overlap( spectral_testcase_nosig_real_onesided): def setUp(self): self.createStim(fstims=[], nover_density=32, iscomplex=True, sides='twosided', nsides=2) class spectral_testcase_nosig_complex_defaultsided_overlap( spectral_testcase_nosig_real_onesided): def setUp(self): self.createStim(fstims=[], nover_density=32, iscomplex=True, sides='default', nsides=2) def test_griddata_linear(): # z is a linear function of x and y. def get_z(x, y): return 3.0*x - y # Passing 1D xi and yi arrays to griddata. x = np.asarray([0.0, 1.0, 0.0, 1.0, 0.5]) y = np.asarray([0.0, 0.0, 1.0, 1.0, 0.5]) z = get_z(x, y) xi = [0.2, 0.4, 0.6, 0.8] yi = [0.1, 0.3, 0.7, 0.9] zi = mlab.griddata(x, y, z, xi, yi, interp='linear') xi, yi = np.meshgrid(xi, yi) np.testing.assert_array_almost_equal(zi, get_z(xi, yi)) # Passing 2D xi and yi arrays to griddata. zi = mlab.griddata(x, y, z, xi, yi, interp='linear') np.testing.assert_array_almost_equal(zi, get_z(xi, yi)) # Masking z array. z_masked = np.ma.array(z, mask=[False, False, False, True, False]) correct_zi_masked = np.ma.masked_where(xi + yi > 1.0, get_z(xi, yi)) zi = mlab.griddata(x, y, z_masked, xi, yi, interp='linear') matest.assert_array_almost_equal(zi, correct_zi_masked) np.testing.assert_array_equal(np.ma.getmask(zi), np.ma.getmask(correct_zi_masked)) @knownfailureif(not HAS_NATGRID) def test_griddata_nn(): # z is a linear function of x and y. def get_z(x, y): return 3.0*x - y # Passing 1D xi and yi arrays to griddata. x = np.asarray([0.0, 1.0, 0.0, 1.0, 0.5]) y = np.asarray([0.0, 0.0, 1.0, 1.0, 0.5]) z = get_z(x, y) xi = [0.2, 0.4, 0.6, 0.8] yi = [0.1, 0.3, 0.7, 0.9] correct_zi = [[0.49999252, 1.0999978, 1.7000030, 2.3000080], [0.29999208, 0.8999978, 1.5000029, 2.1000059], [-0.1000099, 0.4999943, 1.0999964, 1.6999979], [-0.3000128, 0.2999894, 0.8999913, 1.4999933]] zi = mlab.griddata(x, y, z, xi, yi, interp='nn') np.testing.assert_array_almost_equal(zi, correct_zi, 5) # Decreasing xi or yi should raise ValueError. assert_raises(ValueError, mlab.griddata, x, y, z, xi[::-1], yi, interp='nn') assert_raises(ValueError, mlab.griddata, x, y, z, xi, yi[::-1], interp='nn') # Passing 2D xi and yi arrays to griddata. xi, yi = np.meshgrid(xi, yi) zi = mlab.griddata(x, y, z, xi, yi, interp='nn') np.testing.assert_array_almost_equal(zi, correct_zi, 5) # Masking z array. z_masked = np.ma.array(z, mask=[False, False, False, True, False]) correct_zi_masked = np.ma.masked_where(xi + yi > 1.0, correct_zi) zi = mlab.griddata(x, y, z_masked, xi, yi, interp='nn') np.testing.assert_array_almost_equal(zi, correct_zi_masked, 5) np.testing.assert_array_equal(np.ma.getmask(zi), np.ma.getmask(correct_zi_masked)) #***************************************************************** # These Tests where taken from SCIPY with some minor modifications # this can be retreived from: # https://github.com/scipy/scipy/blob/master/scipy/stats/tests/test_kdeoth.py #***************************************************************** class gaussian_kde_tests(): def test_kde_integer_input(self): """Regression test for #1181.""" x1 = np.arange(5) kde = mlab.GaussianKDE(x1) y_expected = [0.13480721, 0.18222869, 0.19514935, 0.18222869, 0.13480721] np.testing.assert_array_almost_equal(kde(x1), y_expected, decimal=6) def test_gaussian_kde_covariance_caching(self): x1 = np.array([-7, -5, 1, 4, 5], dtype=np.float) xs = np.linspace(-10, 10, num=5) # These expected values are from scipy 0.10, before some changes to # gaussian_kde. They were not compared with any external reference. y_expected = [0.02463386, 0.04689208, 0.05395444, 0.05337754, 0.01664475] # set it to the default bandwidth. kde2 = mlab.GaussianKDE(x1, 'scott') y2 = kde2(xs) np.testing.assert_array_almost_equal(y_expected, y2, decimal=7) def test_kde_bandwidth_method(self): np.random.seed(8765678) n_basesample = 50 xn = np.random.randn(n_basesample) # Default gkde = mlab.GaussianKDE(xn) # Supply a callable gkde2 = mlab.GaussianKDE(xn, 'scott') # Supply a scalar gkde3 = mlab.GaussianKDE(xn, bw_method=gkde.factor) xs = np.linspace(-7, 7, 51) kdepdf = gkde.evaluate(xs) kdepdf2 = gkde2.evaluate(xs) assert_almost_equal(kdepdf.all(), kdepdf2.all()) kdepdf3 = gkde3.evaluate(xs) assert_almost_equal(kdepdf.all(), kdepdf3.all()) class gaussian_kde_custom_tests(object): def test_no_data(self): """Pass no data into the GaussianKDE class.""" assert_raises(ValueError, mlab.GaussianKDE, []) def test_single_dataset_element(self): """Pass a single dataset element into the GaussianKDE class.""" assert_raises(ValueError, mlab.GaussianKDE, [42]) def test_silverman_multidim_dataset(self): """Use a multi-dimensional array as the dataset and test silverman's output""" x1 = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) assert_raises(np.linalg.LinAlgError, mlab.GaussianKDE, x1, "silverman") def test_silverman_singledim_dataset(self): """Use a single dimension list as the dataset and test silverman's output.""" x1 = np.array([-7, -5, 1, 4, 5]) mygauss = mlab.GaussianKDE(x1, "silverman") y_expected = 0.76770389927475502 assert_almost_equal(mygauss.covariance_factor(), y_expected, 7) def test_scott_multidim_dataset(self): """Use a multi-dimensional array as the dataset and test scott's output """ x1 = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) assert_raises(np.linalg.LinAlgError, mlab.GaussianKDE, x1, "scott") def test_scott_singledim_dataset(self): """Use a single-dimensional array as the dataset and test scott's output""" x1 = np.array([-7, -5, 1, 4, 5]) mygauss = mlab.GaussianKDE(x1, "scott") y_expected = 0.72477966367769553 assert_almost_equal(mygauss.covariance_factor(), y_expected, 7) def test_scalar_empty_dataset(self): """Use an empty array as the dataset and test the scalar's cov factor """ assert_raises(ValueError, mlab.GaussianKDE, [], bw_method=5) def test_scalar_covariance_dataset(self): """Use a dataset and test a scalar's cov factor """ np.random.seed(8765678) n_basesample = 50 multidim_data = [np.random.randn(n_basesample) for i in range(5)] kde = mlab.GaussianKDE(multidim_data, bw_method=0.5) assert_equal(kde.covariance_factor(), 0.5) def test_callable_covariance_dataset(self): """Use a multi-dimensional array as the dataset and test the callable's cov factor""" np.random.seed(8765678) n_basesample = 50 multidim_data = [np.random.randn(n_basesample) for i in range(5)] def callable_fun(x): return 0.55 kde = mlab.GaussianKDE(multidim_data, bw_method=callable_fun) assert_equal(kde.covariance_factor(), 0.55) def test_callable_singledim_dataset(self): """Use a single-dimensional array as the dataset and test the callable's cov factor""" np.random.seed(8765678) n_basesample = 50 multidim_data = np.random.randn(n_basesample) kde = mlab.GaussianKDE(multidim_data, bw_method='silverman') y_expected = 0.48438841363348911 assert_almost_equal(kde.covariance_factor(), y_expected, 7) def test_wrong_bw_method(self): """Test the error message that should be called when bw is invalid.""" np.random.seed(8765678) n_basesample = 50 data = np.random.randn(n_basesample) assert_raises(ValueError, mlab.GaussianKDE, data, bw_method="invalid") class gaussian_kde_evaluate_tests(object): def test_evaluate_diff_dim(self): """Test the evaluate method when the dim's of dataset and points are different dimensions""" x1 = np.arange(3, 10, 2) kde = mlab.GaussianKDE(x1) x2 = np.arange(3, 12, 2) y_expected = [ 0.08797252, 0.11774109, 0.11774109, 0.08797252, 0.0370153 ] y = kde.evaluate(x2) np.testing.assert_array_almost_equal(y, y_expected, 7) def test_evaluate_inv_dim(self): """ Invert the dimensions. i.e., Give the dataset a dimension of 1 [3,2,4], and the points will have a dimension of 3 [[3],[2],[4]]. ValueError should be raised""" np.random.seed(8765678) n_basesample = 50 multidim_data = np.random.randn(n_basesample) kde = mlab.GaussianKDE(multidim_data) x2 = [[1], [2], [3]] assert_raises(ValueError, kde.evaluate, x2) def test_evaluate_dim_and_num(self): """ Tests if evaluated against a one by one array""" x1 = np.arange(3, 10, 2) x2 = np.array([3]) kde = mlab.GaussianKDE(x1) y_expected = [0.08797252] y = kde.evaluate(x2) np.testing.assert_array_almost_equal(y, y_expected, 7) def test_evaluate_point_dim_not_one(self): """Test""" x1 = np.arange(3, 10, 2) x2 = [np.arange(3, 10, 2), np.arange(3, 10, 2)] kde = mlab.GaussianKDE(x1) assert_raises(ValueError, kde.evaluate, x2) def test_evaluate_equal_dim_and_num_lt(self): """Test when line 3810 fails""" x1 = np.arange(3, 10, 2) x2 = np.arange(3, 8, 2) kde = mlab.GaussianKDE(x1) y_expected = [0.08797252, 0.11774109, 0.11774109] y = kde.evaluate(x2) np.testing.assert_array_almost_equal(y, y_expected, 7) def test_contiguous_regions(): a, b, c = 3, 4, 5 # Starts and ends with True mask = [True]*a + [False]*b + [True]*c expected = [(0, a), (a+b, a+b+c)] assert_equal(mlab.contiguous_regions(mask), expected) d, e = 6, 7 # Starts with True ends with False mask = mask + [False]*e assert_equal(mlab.contiguous_regions(mask), expected) # Starts with False ends with True mask = [False]*d + mask[:-e] expected = [(d, d+a), (d+a+b, d+a+b+c)] assert_equal(mlab.contiguous_regions(mask), expected) # Starts and ends with False mask = mask + [False]*e assert_equal(mlab.contiguous_regions(mask), expected) # No True in mask assert_equal(mlab.contiguous_regions([False]*5), []) # Empty mask assert_equal(mlab.contiguous_regions([]), []) def test_psd_onesided_norm(): u = np.array([0, 1, 2, 3, 1, 2, 1]) dt = 1.0 Su = np.abs(np.fft.fft(u) * dt)**2 / float(dt * u.size) P, f = mlab.psd(u, NFFT=u.size, Fs=1/dt, window=mlab.window_none, detrend=mlab.detrend_none, noverlap=0, pad_to=None, scale_by_freq=None, sides='onesided') Su_1side = np.append([Su[0]], Su[1:4] + Su[4:][::-1]) assert_allclose(P, Su_1side, atol=1e-06) if __name__ == '__main__': import nose import sys args = ['-s', '--with-doctest'] argv = sys.argv argv = argv[:1] + args + argv[1:] nose.runmodule(argv=argv, exit=False)
gpl-3.0
dimarkov/seaborn
seaborn/tests/test_axisgrid.py
11
42805
import warnings import numpy as np import pandas as pd from scipy import stats import matplotlib as mpl import matplotlib.pyplot as plt from distutils.version import LooseVersion import nose.tools as nt import numpy.testing as npt from numpy.testing.decorators import skipif import pandas.util.testing as tm from .. import axisgrid as ag from .. import rcmod from ..palettes import color_palette from ..distributions import kdeplot from ..categorical import pointplot from ..linearmodels import pairplot from ..utils import categorical_order rs = np.random.RandomState(0) old_matplotlib = LooseVersion(mpl.__version__) < "1.4" class TestFacetGrid(object): df = pd.DataFrame(dict(x=rs.normal(size=60), y=rs.gamma(4, size=60), a=np.repeat(list("abc"), 20), b=np.tile(list("mn"), 30), c=np.tile(list("tuv"), 20), d=np.tile(list("abcdefghij"), 6))) def test_self_data(self): g = ag.FacetGrid(self.df) nt.assert_is(g.data, self.df) plt.close("all") def test_self_fig(self): g = ag.FacetGrid(self.df) nt.assert_is_instance(g.fig, plt.Figure) plt.close("all") def test_self_axes(self): g = ag.FacetGrid(self.df, row="a", col="b", hue="c") for ax in g.axes.flat: nt.assert_is_instance(ax, plt.Axes) plt.close("all") def test_axes_array_size(self): g1 = ag.FacetGrid(self.df) nt.assert_equal(g1.axes.shape, (1, 1)) g2 = ag.FacetGrid(self.df, row="a") nt.assert_equal(g2.axes.shape, (3, 1)) g3 = ag.FacetGrid(self.df, col="b") nt.assert_equal(g3.axes.shape, (1, 2)) g4 = ag.FacetGrid(self.df, hue="c") nt.assert_equal(g4.axes.shape, (1, 1)) g5 = ag.FacetGrid(self.df, row="a", col="b", hue="c") nt.assert_equal(g5.axes.shape, (3, 2)) for ax in g5.axes.flat: nt.assert_is_instance(ax, plt.Axes) plt.close("all") def test_single_axes(self): g1 = ag.FacetGrid(self.df) nt.assert_is_instance(g1.ax, plt.Axes) g2 = ag.FacetGrid(self.df, row="a") with nt.assert_raises(AttributeError): g2.ax g3 = ag.FacetGrid(self.df, col="a") with nt.assert_raises(AttributeError): g3.ax g4 = ag.FacetGrid(self.df, col="a", row="b") with nt.assert_raises(AttributeError): g4.ax def test_col_wrap(self): g = ag.FacetGrid(self.df, col="d") nt.assert_equal(g.axes.shape, (1, 10)) nt.assert_is(g.facet_axis(0, 8), g.axes[0, 8]) g_wrap = ag.FacetGrid(self.df, col="d", col_wrap=4) nt.assert_equal(g_wrap.axes.shape, (10,)) nt.assert_is(g_wrap.facet_axis(0, 8), g_wrap.axes[8]) nt.assert_equal(g_wrap._ncol, 4) nt.assert_equal(g_wrap._nrow, 3) with nt.assert_raises(ValueError): g = ag.FacetGrid(self.df, row="b", col="d", col_wrap=4) df = self.df.copy() df.loc[df.d == "j"] = np.nan g_missing = ag.FacetGrid(df, col="d") nt.assert_equal(g_missing.axes.shape, (1, 9)) g_missing_wrap = ag.FacetGrid(df, col="d", col_wrap=4) nt.assert_equal(g_missing_wrap.axes.shape, (9,)) plt.close("all") def test_normal_axes(self): null = np.empty(0, object).flat g = ag.FacetGrid(self.df) npt.assert_array_equal(g._bottom_axes, g.axes.flat) npt.assert_array_equal(g._not_bottom_axes, null) npt.assert_array_equal(g._left_axes, g.axes.flat) npt.assert_array_equal(g._not_left_axes, null) npt.assert_array_equal(g._inner_axes, null) g = ag.FacetGrid(self.df, col="c") npt.assert_array_equal(g._bottom_axes, g.axes.flat) npt.assert_array_equal(g._not_bottom_axes, null) npt.assert_array_equal(g._left_axes, g.axes[:, 0].flat) npt.assert_array_equal(g._not_left_axes, g.axes[:, 1:].flat) npt.assert_array_equal(g._inner_axes, null) g = ag.FacetGrid(self.df, row="c") npt.assert_array_equal(g._bottom_axes, g.axes[-1, :].flat) npt.assert_array_equal(g._not_bottom_axes, g.axes[:-1, :].flat) npt.assert_array_equal(g._left_axes, g.axes.flat) npt.assert_array_equal(g._not_left_axes, null) npt.assert_array_equal(g._inner_axes, null) g = ag.FacetGrid(self.df, col="a", row="c") npt.assert_array_equal(g._bottom_axes, g.axes[-1, :].flat) npt.assert_array_equal(g._not_bottom_axes, g.axes[:-1, :].flat) npt.assert_array_equal(g._left_axes, g.axes[:, 0].flat) npt.assert_array_equal(g._not_left_axes, g.axes[:, 1:].flat) npt.assert_array_equal(g._inner_axes, g.axes[:-1, 1:].flat) plt.close("all") def test_wrapped_axes(self): null = np.empty(0, object).flat g = ag.FacetGrid(self.df, col="a", col_wrap=2) npt.assert_array_equal(g._bottom_axes, g.axes[np.array([1, 2])].flat) npt.assert_array_equal(g._not_bottom_axes, g.axes[:1].flat) npt.assert_array_equal(g._left_axes, g.axes[np.array([0, 2])].flat) npt.assert_array_equal(g._not_left_axes, g.axes[np.array([1])].flat) npt.assert_array_equal(g._inner_axes, null) plt.close("all") def test_figure_size(self): g = ag.FacetGrid(self.df, row="a", col="b") npt.assert_array_equal(g.fig.get_size_inches(), (6, 9)) g = ag.FacetGrid(self.df, row="a", col="b", size=6) npt.assert_array_equal(g.fig.get_size_inches(), (12, 18)) g = ag.FacetGrid(self.df, col="c", size=4, aspect=.5) npt.assert_array_equal(g.fig.get_size_inches(), (6, 4)) plt.close("all") def test_figure_size_with_legend(self): g1 = ag.FacetGrid(self.df, col="a", hue="c", size=4, aspect=.5) npt.assert_array_equal(g1.fig.get_size_inches(), (6, 4)) g1.add_legend() nt.assert_greater(g1.fig.get_size_inches()[0], 6) g2 = ag.FacetGrid(self.df, col="a", hue="c", size=4, aspect=.5, legend_out=False) npt.assert_array_equal(g2.fig.get_size_inches(), (6, 4)) g2.add_legend() npt.assert_array_equal(g2.fig.get_size_inches(), (6, 4)) plt.close("all") def test_legend_data(self): g1 = ag.FacetGrid(self.df, hue="a") g1.map(plt.plot, "x", "y") g1.add_legend() palette = color_palette(n_colors=3) nt.assert_equal(g1._legend.get_title().get_text(), "a") a_levels = sorted(self.df.a.unique()) lines = g1._legend.get_lines() nt.assert_equal(len(lines), len(a_levels)) for line, hue in zip(lines, palette): nt.assert_equal(line.get_color(), hue) labels = g1._legend.get_texts() nt.assert_equal(len(labels), len(a_levels)) for label, level in zip(labels, a_levels): nt.assert_equal(label.get_text(), level) plt.close("all") def test_legend_data_missing_level(self): g1 = ag.FacetGrid(self.df, hue="a", hue_order=list("azbc")) g1.map(plt.plot, "x", "y") g1.add_legend() b, g, r, p = color_palette(n_colors=4) palette = [b, r, p] nt.assert_equal(g1._legend.get_title().get_text(), "a") a_levels = sorted(self.df.a.unique()) lines = g1._legend.get_lines() nt.assert_equal(len(lines), len(a_levels)) for line, hue in zip(lines, palette): nt.assert_equal(line.get_color(), hue) labels = g1._legend.get_texts() nt.assert_equal(len(labels), 4) for label, level in zip(labels, list("azbc")): nt.assert_equal(label.get_text(), level) plt.close("all") def test_get_boolean_legend_data(self): self.df["b_bool"] = self.df.b == "m" g1 = ag.FacetGrid(self.df, hue="b_bool") g1.map(plt.plot, "x", "y") g1.add_legend() palette = color_palette(n_colors=2) nt.assert_equal(g1._legend.get_title().get_text(), "b_bool") b_levels = list(map(str, categorical_order(self.df.b_bool))) lines = g1._legend.get_lines() nt.assert_equal(len(lines), len(b_levels)) for line, hue in zip(lines, palette): nt.assert_equal(line.get_color(), hue) labels = g1._legend.get_texts() nt.assert_equal(len(labels), len(b_levels)) for label, level in zip(labels, b_levels): nt.assert_equal(label.get_text(), level) plt.close("all") def test_legend_options(self): g1 = ag.FacetGrid(self.df, hue="b") g1.map(plt.plot, "x", "y") g1.add_legend() def test_legendout_with_colwrap(self): g = ag.FacetGrid(self.df, col="d", hue='b', col_wrap=4, legend_out=False) g.map(plt.plot, "x", "y", linewidth=3) g.add_legend() def test_subplot_kws(self): g = ag.FacetGrid(self.df, subplot_kws=dict(axisbg="blue")) for ax in g.axes.flat: nt.assert_equal(ax.get_axis_bgcolor(), "blue") @skipif(old_matplotlib) def test_gridspec_kws(self): ratios = [3, 1, 2] sizes = [0.46, 0.15, 0.31] gskws = dict(width_ratios=ratios, height_ratios=ratios) g = ag.FacetGrid(self.df, col='c', row='a', gridspec_kws=gskws) # clear out all ticks for ax in g.axes.flat: ax.set_xticks([]) ax.set_yticks([]) g.fig.tight_layout() widths, heights = np.meshgrid(sizes, sizes) for n, ax in enumerate(g.axes.flat): npt.assert_almost_equal( ax.get_position().width, widths.flatten()[n], decimal=2 ) npt.assert_almost_equal( ax.get_position().height, heights.flatten()[n], decimal=2 ) @skipif(old_matplotlib) def test_gridspec_kws_col_wrap(self): ratios = [3, 1, 2, 1, 1] sizes = [0.46, 0.15, 0.31] gskws = dict(width_ratios=ratios) with warnings.catch_warnings(): warnings.resetwarnings() warnings.simplefilter("always") npt.assert_warns(UserWarning, ag.FacetGrid, self.df, col='d', col_wrap=5, gridspec_kws=gskws) @skipif(not old_matplotlib) def test_gridsic_kws_old_mpl(self): ratios = [3, 1, 2] sizes = [0.46, 0.15, 0.31] gskws = dict(width_ratios=ratios, height_ratios=ratios) with warnings.catch_warnings(): warnings.resetwarnings() warnings.simplefilter("always") npt.assert_warns(UserWarning, ag.FacetGrid, self.df, col='c', row='a', gridspec_kws=gskws) def test_data_generator(self): g = ag.FacetGrid(self.df, row="a") d = list(g.facet_data()) nt.assert_equal(len(d), 3) tup, data = d[0] nt.assert_equal(tup, (0, 0, 0)) nt.assert_true((data["a"] == "a").all()) tup, data = d[1] nt.assert_equal(tup, (1, 0, 0)) nt.assert_true((data["a"] == "b").all()) g = ag.FacetGrid(self.df, row="a", col="b") d = list(g.facet_data()) nt.assert_equal(len(d), 6) tup, data = d[0] nt.assert_equal(tup, (0, 0, 0)) nt.assert_true((data["a"] == "a").all()) nt.assert_true((data["b"] == "m").all()) tup, data = d[1] nt.assert_equal(tup, (0, 1, 0)) nt.assert_true((data["a"] == "a").all()) nt.assert_true((data["b"] == "n").all()) tup, data = d[2] nt.assert_equal(tup, (1, 0, 0)) nt.assert_true((data["a"] == "b").all()) nt.assert_true((data["b"] == "m").all()) g = ag.FacetGrid(self.df, hue="c") d = list(g.facet_data()) nt.assert_equal(len(d), 3) tup, data = d[1] nt.assert_equal(tup, (0, 0, 1)) nt.assert_true((data["c"] == "u").all()) plt.close("all") def test_map(self): g = ag.FacetGrid(self.df, row="a", col="b", hue="c") g.map(plt.plot, "x", "y", linewidth=3) lines = g.axes[0, 0].lines nt.assert_equal(len(lines), 3) line1, _, _ = lines nt.assert_equal(line1.get_linewidth(), 3) x, y = line1.get_data() mask = (self.df.a == "a") & (self.df.b == "m") & (self.df.c == "t") npt.assert_array_equal(x, self.df.x[mask]) npt.assert_array_equal(y, self.df.y[mask]) def test_map_dataframe(self): g = ag.FacetGrid(self.df, row="a", col="b", hue="c") plot = lambda x, y, data=None, **kws: plt.plot(data[x], data[y], **kws) g.map_dataframe(plot, "x", "y", linestyle="--") lines = g.axes[0, 0].lines nt.assert_equal(len(lines), 3) line1, _, _ = lines nt.assert_equal(line1.get_linestyle(), "--") x, y = line1.get_data() mask = (self.df.a == "a") & (self.df.b == "m") & (self.df.c == "t") npt.assert_array_equal(x, self.df.x[mask]) npt.assert_array_equal(y, self.df.y[mask]) def test_set(self): g = ag.FacetGrid(self.df, row="a", col="b") xlim = (-2, 5) ylim = (3, 6) xticks = [-2, 0, 3, 5] yticks = [3, 4.5, 6] g.set(xlim=xlim, ylim=ylim, xticks=xticks, yticks=yticks) for ax in g.axes.flat: npt.assert_array_equal(ax.get_xlim(), xlim) npt.assert_array_equal(ax.get_ylim(), ylim) npt.assert_array_equal(ax.get_xticks(), xticks) npt.assert_array_equal(ax.get_yticks(), yticks) plt.close("all") def test_set_titles(self): g = ag.FacetGrid(self.df, row="a", col="b") g.map(plt.plot, "x", "y") # Test the default titles nt.assert_equal(g.axes[0, 0].get_title(), "a = a | b = m") nt.assert_equal(g.axes[0, 1].get_title(), "a = a | b = n") nt.assert_equal(g.axes[1, 0].get_title(), "a = b | b = m") # Test a provided title g.set_titles("{row_var} == {row_name} \/ {col_var} == {col_name}") nt.assert_equal(g.axes[0, 0].get_title(), "a == a \/ b == m") nt.assert_equal(g.axes[0, 1].get_title(), "a == a \/ b == n") nt.assert_equal(g.axes[1, 0].get_title(), "a == b \/ b == m") # Test a single row g = ag.FacetGrid(self.df, col="b") g.map(plt.plot, "x", "y") # Test the default titles nt.assert_equal(g.axes[0, 0].get_title(), "b = m") nt.assert_equal(g.axes[0, 1].get_title(), "b = n") # test with dropna=False g = ag.FacetGrid(self.df, col="b", hue="b", dropna=False) g.map(plt.plot, 'x', 'y') plt.close("all") def test_set_titles_margin_titles(self): g = ag.FacetGrid(self.df, row="a", col="b", margin_titles=True) g.map(plt.plot, "x", "y") # Test the default titles nt.assert_equal(g.axes[0, 0].get_title(), "b = m") nt.assert_equal(g.axes[0, 1].get_title(), "b = n") nt.assert_equal(g.axes[1, 0].get_title(), "") # Test the row "titles" nt.assert_equal(g.axes[0, 1].texts[0].get_text(), "a = a") nt.assert_equal(g.axes[1, 1].texts[0].get_text(), "a = b") # Test a provided title g.set_titles(col_template="{col_var} == {col_name}") nt.assert_equal(g.axes[0, 0].get_title(), "b == m") nt.assert_equal(g.axes[0, 1].get_title(), "b == n") nt.assert_equal(g.axes[1, 0].get_title(), "") plt.close("all") def test_set_ticklabels(self): g = ag.FacetGrid(self.df, row="a", col="b") g.map(plt.plot, "x", "y") xlab = [l.get_text() + "h" for l in g.axes[1, 0].get_xticklabels()] ylab = [l.get_text() for l in g.axes[1, 0].get_yticklabels()] g.set_xticklabels(xlab) g.set_yticklabels(rotation=90) got_x = [l.get_text() + "h" for l in g.axes[1, 1].get_xticklabels()] got_y = [l.get_text() for l in g.axes[0, 0].get_yticklabels()] npt.assert_array_equal(got_x, xlab) npt.assert_array_equal(got_y, ylab) x, y = np.arange(10), np.arange(10) df = pd.DataFrame(np.c_[x, y], columns=["x", "y"]) g = ag.FacetGrid(df).map(pointplot, "x", "y") g.set_xticklabels(step=2) got_x = [int(l.get_text()) for l in g.axes[0, 0].get_xticklabels()] npt.assert_array_equal(x[::2], got_x) g = ag.FacetGrid(self.df, col="d", col_wrap=5) g.map(plt.plot, "x", "y") g.set_xticklabels(rotation=45) g.set_yticklabels(rotation=75) for ax in g._bottom_axes: for l in ax.get_xticklabels(): nt.assert_equal(l.get_rotation(), 45) for ax in g._left_axes: for l in ax.get_yticklabels(): nt.assert_equal(l.get_rotation(), 75) plt.close("all") def test_set_axis_labels(self): g = ag.FacetGrid(self.df, row="a", col="b") g.map(plt.plot, "x", "y") xlab = 'xx' ylab = 'yy' g.set_axis_labels(xlab, ylab) got_x = [ax.get_xlabel() for ax in g.axes[-1, :]] got_y = [ax.get_ylabel() for ax in g.axes[:, 0]] npt.assert_array_equal(got_x, xlab) npt.assert_array_equal(got_y, ylab) plt.close("all") def test_axis_lims(self): g = ag.FacetGrid(self.df, row="a", col="b", xlim=(0, 4), ylim=(-2, 3)) nt.assert_equal(g.axes[0, 0].get_xlim(), (0, 4)) nt.assert_equal(g.axes[0, 0].get_ylim(), (-2, 3)) plt.close("all") def test_data_orders(self): g = ag.FacetGrid(self.df, row="a", col="b", hue="c") nt.assert_equal(g.row_names, list("abc")) nt.assert_equal(g.col_names, list("mn")) nt.assert_equal(g.hue_names, list("tuv")) nt.assert_equal(g.axes.shape, (3, 2)) g = ag.FacetGrid(self.df, row="a", col="b", hue="c", row_order=list("bca"), col_order=list("nm"), hue_order=list("vtu")) nt.assert_equal(g.row_names, list("bca")) nt.assert_equal(g.col_names, list("nm")) nt.assert_equal(g.hue_names, list("vtu")) nt.assert_equal(g.axes.shape, (3, 2)) g = ag.FacetGrid(self.df, row="a", col="b", hue="c", row_order=list("bcda"), col_order=list("nom"), hue_order=list("qvtu")) nt.assert_equal(g.row_names, list("bcda")) nt.assert_equal(g.col_names, list("nom")) nt.assert_equal(g.hue_names, list("qvtu")) nt.assert_equal(g.axes.shape, (4, 3)) plt.close("all") def test_palette(self): rcmod.set() g = ag.FacetGrid(self.df, hue="c") nt.assert_equal(g._colors, color_palette(n_colors=3)) g = ag.FacetGrid(self.df, hue="d") nt.assert_equal(g._colors, color_palette("husl", 10)) g = ag.FacetGrid(self.df, hue="c", palette="Set2") nt.assert_equal(g._colors, color_palette("Set2", 3)) dict_pal = dict(t="red", u="green", v="blue") list_pal = color_palette(["red", "green", "blue"], 3) g = ag.FacetGrid(self.df, hue="c", palette=dict_pal) nt.assert_equal(g._colors, list_pal) list_pal = color_palette(["green", "blue", "red"], 3) g = ag.FacetGrid(self.df, hue="c", hue_order=list("uvt"), palette=dict_pal) nt.assert_equal(g._colors, list_pal) plt.close("all") def test_hue_kws(self): kws = dict(marker=["o", "s", "D"]) g = ag.FacetGrid(self.df, hue="c", hue_kws=kws) g.map(plt.plot, "x", "y") for line, marker in zip(g.axes[0, 0].lines, kws["marker"]): nt.assert_equal(line.get_marker(), marker) def test_dropna(self): df = self.df.copy() hasna = pd.Series(np.tile(np.arange(6), 10), dtype=np.float) hasna[hasna == 5] = np.nan df["hasna"] = hasna g = ag.FacetGrid(df, dropna=False, row="hasna") nt.assert_equal(g._not_na.sum(), 60) g = ag.FacetGrid(df, dropna=True, row="hasna") nt.assert_equal(g._not_na.sum(), 50) plt.close("all") @classmethod def teardown_class(cls): """Ensure that all figures are closed on exit.""" plt.close("all") class TestPairGrid(object): rs = np.random.RandomState(sum(map(ord, "PairGrid"))) df = pd.DataFrame(dict(x=rs.normal(size=80), y=rs.randint(0, 4, size=(80)), z=rs.gamma(3, size=80), a=np.repeat(list("abcd"), 20), b=np.repeat(list("abcdefgh"), 10))) def test_self_data(self): g = ag.PairGrid(self.df) nt.assert_is(g.data, self.df) plt.close("all") def test_ignore_datelike_data(self): df = self.df.copy() df['date'] = pd.date_range('2010-01-01', periods=len(df), freq='d') result = ag.PairGrid(self.df).data expected = df.drop('date', axis=1) tm.assert_frame_equal(result, expected) plt.close("all") def test_self_fig(self): g = ag.PairGrid(self.df) nt.assert_is_instance(g.fig, plt.Figure) plt.close("all") def test_self_axes(self): g = ag.PairGrid(self.df) for ax in g.axes.flat: nt.assert_is_instance(ax, plt.Axes) plt.close("all") def test_default_axes(self): g = ag.PairGrid(self.df) nt.assert_equal(g.axes.shape, (3, 3)) nt.assert_equal(g.x_vars, ["x", "y", "z"]) nt.assert_equal(g.y_vars, ["x", "y", "z"]) nt.assert_true(g.square_grid) plt.close("all") def test_specific_square_axes(self): vars = ["z", "x"] g = ag.PairGrid(self.df, vars=vars) nt.assert_equal(g.axes.shape, (len(vars), len(vars))) nt.assert_equal(g.x_vars, vars) nt.assert_equal(g.y_vars, vars) nt.assert_true(g.square_grid) plt.close("all") def test_specific_nonsquare_axes(self): x_vars = ["x", "y"] y_vars = ["z", "y", "x"] g = ag.PairGrid(self.df, x_vars=x_vars, y_vars=y_vars) nt.assert_equal(g.axes.shape, (len(y_vars), len(x_vars))) nt.assert_equal(g.x_vars, x_vars) nt.assert_equal(g.y_vars, y_vars) nt.assert_true(not g.square_grid) x_vars = ["x", "y"] y_vars = "z" g = ag.PairGrid(self.df, x_vars=x_vars, y_vars=y_vars) nt.assert_equal(g.axes.shape, (len(y_vars), len(x_vars))) nt.assert_equal(g.x_vars, list(x_vars)) nt.assert_equal(g.y_vars, list(y_vars)) nt.assert_true(not g.square_grid) plt.close("all") def test_specific_square_axes_with_array(self): vars = np.array(["z", "x"]) g = ag.PairGrid(self.df, vars=vars) nt.assert_equal(g.axes.shape, (len(vars), len(vars))) nt.assert_equal(g.x_vars, list(vars)) nt.assert_equal(g.y_vars, list(vars)) nt.assert_true(g.square_grid) plt.close("all") def test_specific_nonsquare_axes_with_array(self): x_vars = np.array(["x", "y"]) y_vars = np.array(["z", "y", "x"]) g = ag.PairGrid(self.df, x_vars=x_vars, y_vars=y_vars) nt.assert_equal(g.axes.shape, (len(y_vars), len(x_vars))) nt.assert_equal(g.x_vars, list(x_vars)) nt.assert_equal(g.y_vars, list(y_vars)) nt.assert_true(not g.square_grid) plt.close("all") def test_size(self): g1 = ag.PairGrid(self.df, size=3) npt.assert_array_equal(g1.fig.get_size_inches(), (9, 9)) g2 = ag.PairGrid(self.df, size=4, aspect=.5) npt.assert_array_equal(g2.fig.get_size_inches(), (6, 12)) g3 = ag.PairGrid(self.df, y_vars=["z"], x_vars=["x", "y"], size=2, aspect=2) npt.assert_array_equal(g3.fig.get_size_inches(), (8, 2)) plt.close("all") def test_map(self): vars = ["x", "y", "z"] g1 = ag.PairGrid(self.df) g1.map(plt.scatter) for i, axes_i in enumerate(g1.axes): for j, ax in enumerate(axes_i): x_in = self.df[vars[j]] y_in = self.df[vars[i]] x_out, y_out = ax.collections[0].get_offsets().T npt.assert_array_equal(x_in, x_out) npt.assert_array_equal(y_in, y_out) g2 = ag.PairGrid(self.df, "a") g2.map(plt.scatter) for i, axes_i in enumerate(g2.axes): for j, ax in enumerate(axes_i): x_in = self.df[vars[j]] y_in = self.df[vars[i]] for k, k_level in enumerate("abcd"): x_in_k = x_in[self.df.a == k_level] y_in_k = y_in[self.df.a == k_level] x_out, y_out = ax.collections[k].get_offsets().T npt.assert_array_equal(x_in_k, x_out) npt.assert_array_equal(y_in_k, y_out) plt.close("all") def test_map_nonsquare(self): x_vars = ["x"] y_vars = ["y", "z"] g = ag.PairGrid(self.df, x_vars=x_vars, y_vars=y_vars) g.map(plt.scatter) x_in = self.df.x for i, i_var in enumerate(y_vars): ax = g.axes[i, 0] y_in = self.df[i_var] x_out, y_out = ax.collections[0].get_offsets().T npt.assert_array_equal(x_in, x_out) npt.assert_array_equal(y_in, y_out) plt.close("all") def test_map_lower(self): vars = ["x", "y", "z"] g = ag.PairGrid(self.df) g.map_lower(plt.scatter) for i, j in zip(*np.tril_indices_from(g.axes, -1)): ax = g.axes[i, j] x_in = self.df[vars[j]] y_in = self.df[vars[i]] x_out, y_out = ax.collections[0].get_offsets().T npt.assert_array_equal(x_in, x_out) npt.assert_array_equal(y_in, y_out) for i, j in zip(*np.triu_indices_from(g.axes)): ax = g.axes[i, j] nt.assert_equal(len(ax.collections), 0) plt.close("all") def test_map_upper(self): vars = ["x", "y", "z"] g = ag.PairGrid(self.df) g.map_upper(plt.scatter) for i, j in zip(*np.triu_indices_from(g.axes, 1)): ax = g.axes[i, j] x_in = self.df[vars[j]] y_in = self.df[vars[i]] x_out, y_out = ax.collections[0].get_offsets().T npt.assert_array_equal(x_in, x_out) npt.assert_array_equal(y_in, y_out) for i, j in zip(*np.tril_indices_from(g.axes)): ax = g.axes[i, j] nt.assert_equal(len(ax.collections), 0) plt.close("all") @skipif(old_matplotlib) def test_map_diag(self): g1 = ag.PairGrid(self.df) g1.map_diag(plt.hist) for ax in g1.diag_axes: nt.assert_equal(len(ax.patches), 10) g2 = ag.PairGrid(self.df) g2.map_diag(plt.hist, bins=15) for ax in g2.diag_axes: nt.assert_equal(len(ax.patches), 15) g3 = ag.PairGrid(self.df, hue="a") g3.map_diag(plt.hist) for ax in g3.diag_axes: nt.assert_equal(len(ax.patches), 40) plt.close("all") @skipif(old_matplotlib) def test_map_diag_and_offdiag(self): vars = ["x", "y", "z"] g = ag.PairGrid(self.df) g.map_offdiag(plt.scatter) g.map_diag(plt.hist) for ax in g.diag_axes: nt.assert_equal(len(ax.patches), 10) for i, j in zip(*np.triu_indices_from(g.axes, 1)): ax = g.axes[i, j] x_in = self.df[vars[j]] y_in = self.df[vars[i]] x_out, y_out = ax.collections[0].get_offsets().T npt.assert_array_equal(x_in, x_out) npt.assert_array_equal(y_in, y_out) for i, j in zip(*np.tril_indices_from(g.axes, -1)): ax = g.axes[i, j] x_in = self.df[vars[j]] y_in = self.df[vars[i]] x_out, y_out = ax.collections[0].get_offsets().T npt.assert_array_equal(x_in, x_out) npt.assert_array_equal(y_in, y_out) for i, j in zip(*np.diag_indices_from(g.axes)): ax = g.axes[i, j] nt.assert_equal(len(ax.collections), 0) plt.close("all") def test_palette(self): rcmod.set() g = ag.PairGrid(self.df, hue="a") nt.assert_equal(g.palette, color_palette(n_colors=4)) g = ag.PairGrid(self.df, hue="b") nt.assert_equal(g.palette, color_palette("husl", 8)) g = ag.PairGrid(self.df, hue="a", palette="Set2") nt.assert_equal(g.palette, color_palette("Set2", 4)) dict_pal = dict(a="red", b="green", c="blue", d="purple") list_pal = color_palette(["red", "green", "blue", "purple"], 4) g = ag.PairGrid(self.df, hue="a", palette=dict_pal) nt.assert_equal(g.palette, list_pal) list_pal = color_palette(["purple", "blue", "red", "green"], 4) g = ag.PairGrid(self.df, hue="a", hue_order=list("dcab"), palette=dict_pal) nt.assert_equal(g.palette, list_pal) plt.close("all") def test_hue_kws(self): kws = dict(marker=["o", "s", "d", "+"]) g = ag.PairGrid(self.df, hue="a", hue_kws=kws) g.map(plt.plot) for line, marker in zip(g.axes[0, 0].lines, kws["marker"]): nt.assert_equal(line.get_marker(), marker) g = ag.PairGrid(self.df, hue="a", hue_kws=kws, hue_order=list("dcab")) g.map(plt.plot) for line, marker in zip(g.axes[0, 0].lines, kws["marker"]): nt.assert_equal(line.get_marker(), marker) plt.close("all") @skipif(old_matplotlib) def test_hue_order(self): order = list("dcab") g = ag.PairGrid(self.df, hue="a", hue_order=order) g.map(plt.plot) for line, level in zip(g.axes[1, 0].lines, order): x, y = line.get_xydata().T npt.assert_array_equal(x, self.df.loc[self.df.a == level, "x"]) npt.assert_array_equal(y, self.df.loc[self.df.a == level, "y"]) plt.close("all") g = ag.PairGrid(self.df, hue="a", hue_order=order) g.map_diag(plt.plot) for line, level in zip(g.axes[0, 0].lines, order): x, y = line.get_xydata().T npt.assert_array_equal(x, self.df.loc[self.df.a == level, "x"]) npt.assert_array_equal(y, self.df.loc[self.df.a == level, "x"]) plt.close("all") g = ag.PairGrid(self.df, hue="a", hue_order=order) g.map_lower(plt.plot) for line, level in zip(g.axes[1, 0].lines, order): x, y = line.get_xydata().T npt.assert_array_equal(x, self.df.loc[self.df.a == level, "x"]) npt.assert_array_equal(y, self.df.loc[self.df.a == level, "y"]) plt.close("all") g = ag.PairGrid(self.df, hue="a", hue_order=order) g.map_upper(plt.plot) for line, level in zip(g.axes[0, 1].lines, order): x, y = line.get_xydata().T npt.assert_array_equal(x, self.df.loc[self.df.a == level, "y"]) npt.assert_array_equal(y, self.df.loc[self.df.a == level, "x"]) plt.close("all") @skipif(old_matplotlib) def test_hue_order_missing_level(self): order = list("dcaeb") g = ag.PairGrid(self.df, hue="a", hue_order=order) g.map(plt.plot) for line, level in zip(g.axes[1, 0].lines, order): x, y = line.get_xydata().T npt.assert_array_equal(x, self.df.loc[self.df.a == level, "x"]) npt.assert_array_equal(y, self.df.loc[self.df.a == level, "y"]) plt.close("all") g = ag.PairGrid(self.df, hue="a", hue_order=order) g.map_diag(plt.plot) for line, level in zip(g.axes[0, 0].lines, order): x, y = line.get_xydata().T npt.assert_array_equal(x, self.df.loc[self.df.a == level, "x"]) npt.assert_array_equal(y, self.df.loc[self.df.a == level, "x"]) plt.close("all") g = ag.PairGrid(self.df, hue="a", hue_order=order) g.map_lower(plt.plot) for line, level in zip(g.axes[1, 0].lines, order): x, y = line.get_xydata().T npt.assert_array_equal(x, self.df.loc[self.df.a == level, "x"]) npt.assert_array_equal(y, self.df.loc[self.df.a == level, "y"]) plt.close("all") g = ag.PairGrid(self.df, hue="a", hue_order=order) g.map_upper(plt.plot) for line, level in zip(g.axes[0, 1].lines, order): x, y = line.get_xydata().T npt.assert_array_equal(x, self.df.loc[self.df.a == level, "y"]) npt.assert_array_equal(y, self.df.loc[self.df.a == level, "x"]) plt.close("all") def test_nondefault_index(self): df = self.df.copy().set_index("b") vars = ["x", "y", "z"] g1 = ag.PairGrid(df) g1.map(plt.scatter) for i, axes_i in enumerate(g1.axes): for j, ax in enumerate(axes_i): x_in = self.df[vars[j]] y_in = self.df[vars[i]] x_out, y_out = ax.collections[0].get_offsets().T npt.assert_array_equal(x_in, x_out) npt.assert_array_equal(y_in, y_out) g2 = ag.PairGrid(df, "a") g2.map(plt.scatter) for i, axes_i in enumerate(g2.axes): for j, ax in enumerate(axes_i): x_in = self.df[vars[j]] y_in = self.df[vars[i]] for k, k_level in enumerate("abcd"): x_in_k = x_in[self.df.a == k_level] y_in_k = y_in[self.df.a == k_level] x_out, y_out = ax.collections[k].get_offsets().T npt.assert_array_equal(x_in_k, x_out) npt.assert_array_equal(y_in_k, y_out) plt.close("all") @skipif(old_matplotlib) def test_pairplot(self): vars = ["x", "y", "z"] g = pairplot(self.df) for ax in g.diag_axes: nt.assert_equal(len(ax.patches), 10) for i, j in zip(*np.triu_indices_from(g.axes, 1)): ax = g.axes[i, j] x_in = self.df[vars[j]] y_in = self.df[vars[i]] x_out, y_out = ax.collections[0].get_offsets().T npt.assert_array_equal(x_in, x_out) npt.assert_array_equal(y_in, y_out) for i, j in zip(*np.tril_indices_from(g.axes, -1)): ax = g.axes[i, j] x_in = self.df[vars[j]] y_in = self.df[vars[i]] x_out, y_out = ax.collections[0].get_offsets().T npt.assert_array_equal(x_in, x_out) npt.assert_array_equal(y_in, y_out) for i, j in zip(*np.diag_indices_from(g.axes)): ax = g.axes[i, j] nt.assert_equal(len(ax.collections), 0) plt.close("all") @skipif(old_matplotlib) def test_pairplot_reg(self): vars = ["x", "y", "z"] g = pairplot(self.df, kind="reg") for ax in g.diag_axes: nt.assert_equal(len(ax.patches), 10) for i, j in zip(*np.triu_indices_from(g.axes, 1)): ax = g.axes[i, j] x_in = self.df[vars[j]] y_in = self.df[vars[i]] x_out, y_out = ax.collections[0].get_offsets().T npt.assert_array_equal(x_in, x_out) npt.assert_array_equal(y_in, y_out) nt.assert_equal(len(ax.lines), 1) nt.assert_equal(len(ax.collections), 2) for i, j in zip(*np.tril_indices_from(g.axes, -1)): ax = g.axes[i, j] x_in = self.df[vars[j]] y_in = self.df[vars[i]] x_out, y_out = ax.collections[0].get_offsets().T npt.assert_array_equal(x_in, x_out) npt.assert_array_equal(y_in, y_out) nt.assert_equal(len(ax.lines), 1) nt.assert_equal(len(ax.collections), 2) for i, j in zip(*np.diag_indices_from(g.axes)): ax = g.axes[i, j] nt.assert_equal(len(ax.collections), 0) plt.close("all") @skipif(old_matplotlib) def test_pairplot_kde(self): vars = ["x", "y", "z"] g = pairplot(self.df, diag_kind="kde") for ax in g.diag_axes: nt.assert_equal(len(ax.lines), 1) for i, j in zip(*np.triu_indices_from(g.axes, 1)): ax = g.axes[i, j] x_in = self.df[vars[j]] y_in = self.df[vars[i]] x_out, y_out = ax.collections[0].get_offsets().T npt.assert_array_equal(x_in, x_out) npt.assert_array_equal(y_in, y_out) for i, j in zip(*np.tril_indices_from(g.axes, -1)): ax = g.axes[i, j] x_in = self.df[vars[j]] y_in = self.df[vars[i]] x_out, y_out = ax.collections[0].get_offsets().T npt.assert_array_equal(x_in, x_out) npt.assert_array_equal(y_in, y_out) for i, j in zip(*np.diag_indices_from(g.axes)): ax = g.axes[i, j] nt.assert_equal(len(ax.collections), 0) plt.close("all") @skipif(old_matplotlib) def test_pairplot_markers(self): vars = ["x", "y", "z"] markers = ["o", "x", "s", "d"] g = pairplot(self.df, hue="a", vars=vars, markers=markers) nt.assert_equal(g.hue_kws["marker"], markers) plt.close("all") with nt.assert_raises(ValueError): g = pairplot(self.df, hue="a", vars=vars, markers=markers[:-2]) @classmethod def teardown_class(cls): """Ensure that all figures are closed on exit.""" plt.close("all") class TestJointGrid(object): rs = np.random.RandomState(sum(map(ord, "JointGrid"))) x = rs.randn(100) y = rs.randn(100) x_na = x.copy() x_na[10] = np.nan x_na[20] = np.nan data = pd.DataFrame(dict(x=x, y=y, x_na=x_na)) def test_margin_grid_from_arrays(self): g = ag.JointGrid(self.x, self.y) npt.assert_array_equal(g.x, self.x) npt.assert_array_equal(g.y, self.y) plt.close("all") def test_margin_grid_from_series(self): g = ag.JointGrid(self.data.x, self.data.y) npt.assert_array_equal(g.x, self.x) npt.assert_array_equal(g.y, self.y) plt.close("all") def test_margin_grid_from_dataframe(self): g = ag.JointGrid("x", "y", self.data) npt.assert_array_equal(g.x, self.x) npt.assert_array_equal(g.y, self.y) plt.close("all") def test_margin_grid_axis_labels(self): g = ag.JointGrid("x", "y", self.data) xlabel, ylabel = g.ax_joint.get_xlabel(), g.ax_joint.get_ylabel() nt.assert_equal(xlabel, "x") nt.assert_equal(ylabel, "y") g.set_axis_labels("x variable", "y variable") xlabel, ylabel = g.ax_joint.get_xlabel(), g.ax_joint.get_ylabel() nt.assert_equal(xlabel, "x variable") nt.assert_equal(ylabel, "y variable") plt.close("all") def test_dropna(self): g = ag.JointGrid("x_na", "y", self.data, dropna=False) nt.assert_equal(len(g.x), len(self.x_na)) g = ag.JointGrid("x_na", "y", self.data, dropna=True) nt.assert_equal(len(g.x), pd.notnull(self.x_na).sum()) plt.close("all") def test_axlims(self): lim = (-3, 3) g = ag.JointGrid("x", "y", self.data, xlim=lim, ylim=lim) nt.assert_equal(g.ax_joint.get_xlim(), lim) nt.assert_equal(g.ax_joint.get_ylim(), lim) nt.assert_equal(g.ax_marg_x.get_xlim(), lim) nt.assert_equal(g.ax_marg_y.get_ylim(), lim) def test_marginal_ticks(self): g = ag.JointGrid("x", "y", self.data) nt.assert_true(~len(g.ax_marg_x.get_xticks())) nt.assert_true(~len(g.ax_marg_y.get_yticks())) plt.close("all") def test_bivariate_plot(self): g = ag.JointGrid("x", "y", self.data) g.plot_joint(plt.plot) x, y = g.ax_joint.lines[0].get_xydata().T npt.assert_array_equal(x, self.x) npt.assert_array_equal(y, self.y) plt.close("all") def test_univariate_plot(self): g = ag.JointGrid("x", "x", self.data) g.plot_marginals(kdeplot) _, y1 = g.ax_marg_x.lines[0].get_xydata().T y2, _ = g.ax_marg_y.lines[0].get_xydata().T npt.assert_array_equal(y1, y2) plt.close("all") def test_plot(self): g = ag.JointGrid("x", "x", self.data) g.plot(plt.plot, kdeplot) x, y = g.ax_joint.lines[0].get_xydata().T npt.assert_array_equal(x, self.x) npt.assert_array_equal(y, self.x) _, y1 = g.ax_marg_x.lines[0].get_xydata().T y2, _ = g.ax_marg_y.lines[0].get_xydata().T npt.assert_array_equal(y1, y2) plt.close("all") def test_annotate(self): g = ag.JointGrid("x", "y", self.data) rp = stats.pearsonr(self.x, self.y) g.annotate(stats.pearsonr) annotation = g.ax_joint.legend_.texts[0].get_text() nt.assert_equal(annotation, "pearsonr = %.2g; p = %.2g" % rp) g.annotate(stats.pearsonr, stat="correlation") annotation = g.ax_joint.legend_.texts[0].get_text() nt.assert_equal(annotation, "correlation = %.2g; p = %.2g" % rp) def rsquared(x, y): return stats.pearsonr(x, y)[0] ** 2 r2 = rsquared(self.x, self.y) g.annotate(rsquared) annotation = g.ax_joint.legend_.texts[0].get_text() nt.assert_equal(annotation, "rsquared = %.2g" % r2) template = "{stat} = {val:.3g} (p = {p:.3g})" g.annotate(stats.pearsonr, template=template) annotation = g.ax_joint.legend_.texts[0].get_text() nt.assert_equal(annotation, template.format(stat="pearsonr", val=rp[0], p=rp[1])) plt.close("all") def test_space(self): g = ag.JointGrid("x", "y", self.data, space=0) joint_bounds = g.ax_joint.bbox.bounds marg_x_bounds = g.ax_marg_x.bbox.bounds marg_y_bounds = g.ax_marg_y.bbox.bounds nt.assert_equal(joint_bounds[2], marg_x_bounds[2]) nt.assert_equal(joint_bounds[3], marg_y_bounds[3]) @classmethod def teardown_class(cls): """Ensure that all figures are closed on exit.""" plt.close("all")
bsd-3-clause
ryfeus/lambda-packs
Sklearn_scipy_numpy/source/sklearn/preprocessing/__init__.py
268
1319
""" The :mod:`sklearn.preprocessing` module includes scaling, centering, normalization, binarization and imputation methods. """ from ._function_transformer import FunctionTransformer from .data import Binarizer from .data import KernelCenterer from .data import MinMaxScaler from .data import MaxAbsScaler from .data import Normalizer from .data import RobustScaler from .data import StandardScaler from .data import add_dummy_feature from .data import binarize from .data import normalize from .data import scale from .data import robust_scale from .data import maxabs_scale from .data import minmax_scale from .data import OneHotEncoder from .data import PolynomialFeatures from .label import label_binarize from .label import LabelBinarizer from .label import LabelEncoder from .label import MultiLabelBinarizer from .imputation import Imputer __all__ = [ 'Binarizer', 'FunctionTransformer', 'Imputer', 'KernelCenterer', 'LabelBinarizer', 'LabelEncoder', 'MultiLabelBinarizer', 'MinMaxScaler', 'MaxAbsScaler', 'Normalizer', 'OneHotEncoder', 'RobustScaler', 'StandardScaler', 'add_dummy_feature', 'PolynomialFeatures', 'binarize', 'normalize', 'scale', 'robust_scale', 'maxabs_scale', 'minmax_scale', 'label_binarize', ]
mit
HaoboGu/Structure-Similarity
Drugbank.py
1
6376
import random import numpy as np import time from sklearn.linear_model import LogisticRegression from sklearn.metrics import roc_auc_score def read_drugbank_data(): # read interaction data interaction_file = open('data/interacts.csv') interact_dict = {} line = interaction_file.readline() while line: db_id1, db_id2, interact_level = line[0:-1].split('\t') interact_dict[db_id1, db_id2] = int(interact_level) # use multiple keys line = interaction_file.readline() interaction_file.close() # read similarity data similarity_file = open('data/chemicalsimilarity.csv') similarity_dict = {} line = similarity_file.readline() while line: db_id1, db_id2, similarity = line[0:-1].split('\t') similarity_dict[db_id1, db_id2] = float(similarity) line = similarity_file.readline() similarity_file.close() return interact_dict, similarity_dict class Validation: def __init__(self, interact_dict, similarity_dict): self.interaction = interact_dict self.similarity = similarity_dict self.train_set = {} self.validation_set = {} self.sim_link = {} self.positive_train = {} self.max_sim_with_positive_link = {} self.max_sim_with_positive_link_for_val = {} def divide_data(self): self.train_set = {} self.validation_set = {} index = random.sample(range(0, 9892), 989) # randomly select 1/10 interactions as test_set flag = 0 for i in self.interaction: if flag in index: self.validation_set[i] = self.interaction[i] else: self.train_set[i] = self.interaction[i] flag += 1 # create known ddi dict: for key in self.train_set: if self.train_set[key] == 1: self.positive_train[key] = 1 def compute_link_sim(self, key1, key2): link_sim1 = (self.similarity[key1[0], key2[0]] + self.similarity[key1[1], key2[1]]) / 2.0 link_sim2 = (self.similarity[key1[0], key2[1]] + self.similarity[key1[1], key2[0]]) / 2.0 return max(link_sim1, link_sim2) def create_simlink(self): self.sim_link = {} # num = 1 for inter_key in self.train_set: max_link_sim = 0 for inter_key2 in self.positive_train: if inter_key[0] in inter_key2 and inter_key[1] in inter_key2: continue else: link_sim = self.compute_link_sim(inter_key, inter_key2) if link_sim > max_link_sim: max_link_sim = link_sim self.sim_link[inter_key] = inter_key2 self.max_sim_with_positive_link[inter_key] = max_link_sim # print('iter', num) # num += 1 def create_simlink_for_val(self): self.sim_link = {} # num = 1 for inter_key in self.validation_set: max_link_sim = 0 for inter_key2 in self.positive_train: if inter_key[0] in inter_key2 and inter_key[1] in inter_key2: continue else: link_sim = self.compute_link_sim(inter_key, inter_key2) if link_sim > max_link_sim: max_link_sim = link_sim # self.sim_link[inter_key] = inter_key2 self.max_sim_with_positive_link_for_val[inter_key] = max_link_sim sim_list = [] inter_list = [] for inter_key in self.validation_set: feature = self.max_sim_with_positive_link_for_val[inter_key] sim_list.append(feature) inter_list.append(self.validation_set[inter_key]) return sim_list, inter_list def create_train_array(self): sim_list = [] inter_list = [] num = 0 for inter_key in self.train_set: if self.train_set[inter_key] == 1: feature = self.max_sim_with_positive_link[inter_key] sim_list.append(feature) inter_list.append(self.train_set[inter_key]) num += 1 print('num of positive samples in train set: ', num) num = num * 3 for inter_key in self.train_set: if self.train_set[inter_key] == 0: feature = self.max_sim_with_positive_link[inter_key] sim_list.append(feature) inter_list.append(self.train_set[inter_key]) num = num - 1 if num == 0: break return sim_list, inter_list def lr(self, sim_list, inter_list): lr = LogisticRegression(solver='sag') sim_list = np.array(sim_list) sim_list = sim_list.reshape(sim_list.shape[0], 1) inter_list = np.array(inter_list) inter_list = inter_list.reshape(inter_list.shape[0], 1) lr.fit(sim_list, inter_list) val_sim, val_inter = self.create_simlink_for_val() val_sim = np.array(val_sim) val_sim = val_sim.reshape(val_sim.shape[0], 1) val_inter = np.array(val_inter).reshape(val_inter.__len__(), 1) result = lr.predict(val_sim) prob_re = lr.predict_proba(val_sim) prob_re = prob_re.transpose() auroc = roc_auc_score(val_inter, prob_re[1]) print('roc score:', auroc) return result, prob_re, val_inter start = time.time() interact_dict, sim_dict = read_drugbank_data() v = Validation(interact_dict, sim_dict) v.divide_data() v.create_simlink() sim_list, inter_list = v.create_train_array() result, prob_re, val_inter = v.lr(sim_list, inter_list) TP = 0 # predict 1, actual 1 FP = 0 # predict 1, actual 0 TN = 0 # predict 0, actual 0 FN = 0 # predict 0, actual 1 for i in range(0, 989): if result[i] == 0 and result[i] == 0: TN += 1 elif result[i] == 0 and val_inter[i] == 1: FN += 1 elif result[i] == 1 and val_inter[i] == 0: FP += 1 elif result[i] == 1 and val_inter[i] == 1: TP += 1 print('tp:', TP, ' tn:', TN, ' fp:', FP, ' fn:', FN) precision = TP / (TP + FP) recall = TP / (TP + FN) print('precision:', precision) print('recall:', recall) print('f-score: ', 2 * precision * recall / (precision + recall)) end = time.time() print(end-start)
mit
BadrYoubiIdrissi/TIPE-Algorithme-Genetique
Source/NEAT/test.py
1
2640
# -*- coding: utf-8 -*- """ Created on Wed Oct 12 11:36:14 2016 @author: Badr Youbi Idrissi """ import pygame import pygame.gfxdraw import numpy as np from pygame.locals import * from individu import Individu from phenotype import Phenotype from population import Population from datadisplay import DataDisplay import utilitaires as ut import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D pygame.init() screen = pygame.display.set_mode((860, 600), DOUBLEBUF and RESIZABLE) pygame.display.set_caption("Test") f = pygame.font.SysFont(pygame.font.get_default_font(), 20) clock = pygame.time.Clock() nb_e = 3 nb_s = 1 pop = Population(10, nb_e, nb_s) pop.generer() status = DataDisplay((0,0), padding = 20) status.add("FPS", lambda : clock.get_fps()) status.add("Current generation", lambda : pop.generationCount) status.add("Number of species", lambda : len(pop.especes)) status.add("Best fitness", pop.getBestFitness) status.add("Best shared fitness", pop.getBestSharedFitness) status.add("Average fitness", lambda : pop.averageFitness) evol = False while True: clock.tick() screen.fill((255,255,255)) for event in pygame.event.get(): if event.type == QUIT: pygame.quit() exit() elif event.type == KEYDOWN and event.key == K_UP: nbPoints = 100 X,Y = np.meshgrid(np.linspace(0,1,nbPoints),np.linspace(0,1,nbPoints)) Z = np.zeros((nbPoints,nbPoints)) for i in range(nbPoints): for j in range(nbPoints): pop.best[-1].phenotype.evaluate(ut.entree('1;'+str(X[i,j])+';'+str(Y[i,j]))) Z[i,j] = pop.best[-1].output() fig = plt.figure() ax = fig.gca(projection='3d') surf = ax.plot_surface(X, Y, Z) plt.show() elif event.type == KEYDOWN and event.key == K_DOWN: l = [pop.contenu[i].fitness for i in range(pop.length)] l2 = [pop.contenu[i].sharedFitness for i in range(pop.length)] plt.plot(range(pop.length), l) plt.plot(range(pop.length), l2) plt.show() elif event.type == KEYDOWN and event.key == K_e: evol = not(evol) elif event.type == VIDEORESIZE: pygame.display.set_mode((event.w, event.h), DOUBLEBUF and RESIZABLE) if evol: pop.evoluer() if (pop.generationCount % 10 == 0): pop.updateBest() pop.draw(status.police) status.draw() pygame.display.flip()
gpl-3.0
gef756/scipy
scipy/interpolate/interpolate.py
25
80287
""" Classes for interpolating values. """ from __future__ import division, print_function, absolute_import __all__ = ['interp1d', 'interp2d', 'spline', 'spleval', 'splmake', 'spltopp', 'ppform', 'lagrange', 'PPoly', 'BPoly', 'RegularGridInterpolator', 'interpn'] import itertools from numpy import (shape, sometrue, array, transpose, searchsorted, ones, logical_or, atleast_1d, atleast_2d, ravel, dot, poly1d, asarray, intp) import numpy as np import scipy.linalg import scipy.special as spec from scipy.special import comb import math import warnings import functools import operator from scipy._lib.six import xrange, integer_types from . import fitpack from . import dfitpack from . import _fitpack from .polyint import _Interpolator1D from . import _ppoly from .fitpack2 import RectBivariateSpline from .interpnd import _ndim_coords_from_arrays def reduce_sometrue(a): all = a while len(shape(all)) > 1: all = sometrue(all, axis=0) return all def prod(x): """Product of a list of numbers; ~40x faster vs np.prod for Python tuples""" if len(x) == 0: return 1 return functools.reduce(operator.mul, x) def lagrange(x, w): """ Return a Lagrange interpolating polynomial. Given two 1-D arrays `x` and `w,` returns the Lagrange interpolating polynomial through the points ``(x, w)``. Warning: This implementation is numerically unstable. Do not expect to be able to use more than about 20 points even if they are chosen optimally. Parameters ---------- x : array_like `x` represents the x-coordinates of a set of datapoints. w : array_like `w` represents the y-coordinates of a set of datapoints, i.e. f(`x`). Returns ------- lagrange : numpy.poly1d instance The Lagrange interpolating polynomial. """ M = len(x) p = poly1d(0.0) for j in xrange(M): pt = poly1d(w[j]) for k in xrange(M): if k == j: continue fac = x[j]-x[k] pt *= poly1d([1.0, -x[k]])/fac p += pt return p # !! Need to find argument for keeping initialize. If it isn't # !! found, get rid of it! class interp2d(object): """ interp2d(x, y, z, kind='linear', copy=True, bounds_error=False, fill_value=nan) Interpolate over a 2-D grid. `x`, `y` and `z` are arrays of values used to approximate some function f: ``z = f(x, y)``. This class returns a function whose call method uses spline interpolation to find the value of new points. If `x` and `y` represent a regular grid, consider using RectBivariateSpline. Methods ------- __call__ Parameters ---------- x, y : array_like Arrays defining the data point coordinates. If the points lie on a regular grid, `x` can specify the column coordinates and `y` the row coordinates, for example:: >>> x = [0,1,2]; y = [0,3]; z = [[1,2,3], [4,5,6]] Otherwise, `x` and `y` must specify the full coordinates for each point, for example:: >>> x = [0,1,2,0,1,2]; y = [0,0,0,3,3,3]; z = [1,2,3,4,5,6] If `x` and `y` are multi-dimensional, they are flattened before use. z : array_like The values of the function to interpolate at the data points. If `z` is a multi-dimensional array, it is flattened before use. The length of a flattened `z` array is either len(`x`)*len(`y`) if `x` and `y` specify the column and row coordinates or ``len(z) == len(x) == len(y)`` if `x` and `y` specify coordinates for each point. kind : {'linear', 'cubic', 'quintic'}, optional The kind of spline interpolation to use. Default is 'linear'. copy : bool, optional If True, the class makes internal copies of x, y and z. If False, references may be used. The default is to copy. bounds_error : bool, optional If True, when interpolated values are requested outside of the domain of the input data (x,y), a ValueError is raised. If False, then `fill_value` is used. fill_value : number, optional If provided, the value to use for points outside of the interpolation domain. If omitted (None), values outside the domain are extrapolated. Returns ------- values_x : ndarray, shape xi.shape[:-1] + values.shape[ndim:] Interpolated values at input coordinates. See Also -------- RectBivariateSpline : Much faster 2D interpolation if your input data is on a grid bisplrep, bisplev : Spline interpolation based on FITPACK BivariateSpline : a more recent wrapper of the FITPACK routines interp1d : one dimension version of this function Notes ----- The minimum number of data points required along the interpolation axis is ``(k+1)**2``, with k=1 for linear, k=3 for cubic and k=5 for quintic interpolation. The interpolator is constructed by `bisplrep`, with a smoothing factor of 0. If more control over smoothing is needed, `bisplrep` should be used directly. Examples -------- Construct a 2-D grid and interpolate on it: >>> from scipy import interpolate >>> x = np.arange(-5.01, 5.01, 0.25) >>> y = np.arange(-5.01, 5.01, 0.25) >>> xx, yy = np.meshgrid(x, y) >>> z = np.sin(xx**2+yy**2) >>> f = interpolate.interp2d(x, y, z, kind='cubic') Now use the obtained interpolation function and plot the result: >>> import matplotlib.pyplot as plt >>> xnew = np.arange(-5.01, 5.01, 1e-2) >>> ynew = np.arange(-5.01, 5.01, 1e-2) >>> znew = f(xnew, ynew) >>> plt.plot(x, z[0, :], 'ro-', xnew, znew[0, :], 'b-') >>> plt.show() """ def __init__(self, x, y, z, kind='linear', copy=True, bounds_error=False, fill_value=None): x = ravel(x) y = ravel(y) z = asarray(z) rectangular_grid = (z.size == len(x) * len(y)) if rectangular_grid: if z.ndim == 2: if z.shape != (len(y), len(x)): raise ValueError("When on a regular grid with x.size = m " "and y.size = n, if z.ndim == 2, then z " "must have shape (n, m)") if not np.all(x[1:] >= x[:-1]): j = np.argsort(x) x = x[j] z = z[:, j] if not np.all(y[1:] >= y[:-1]): j = np.argsort(y) y = y[j] z = z[j, :] z = ravel(z.T) else: z = ravel(z) if len(x) != len(y): raise ValueError( "x and y must have equal lengths for non rectangular grid") if len(z) != len(x): raise ValueError( "Invalid length for input z for non rectangular grid") try: kx = ky = {'linear': 1, 'cubic': 3, 'quintic': 5}[kind] except KeyError: raise ValueError("Unsupported interpolation type.") if not rectangular_grid: # TODO: surfit is really not meant for interpolation! self.tck = fitpack.bisplrep(x, y, z, kx=kx, ky=ky, s=0.0) else: nx, tx, ny, ty, c, fp, ier = dfitpack.regrid_smth( x, y, z, None, None, None, None, kx=kx, ky=ky, s=0.0) self.tck = (tx[:nx], ty[:ny], c[:(nx - kx - 1) * (ny - ky - 1)], kx, ky) self.bounds_error = bounds_error self.fill_value = fill_value self.x, self.y, self.z = [array(a, copy=copy) for a in (x, y, z)] self.x_min, self.x_max = np.amin(x), np.amax(x) self.y_min, self.y_max = np.amin(y), np.amax(y) def __call__(self, x, y, dx=0, dy=0, assume_sorted=False): """Interpolate the function. Parameters ---------- x : 1D array x-coordinates of the mesh on which to interpolate. y : 1D array y-coordinates of the mesh on which to interpolate. dx : int >= 0, < kx Order of partial derivatives in x. dy : int >= 0, < ky Order of partial derivatives in y. assume_sorted : bool, optional If False, values of `x` and `y` can be in any order and they are sorted first. If True, `x` and `y` have to be arrays of monotonically increasing values. Returns ------- z : 2D array with shape (len(y), len(x)) The interpolated values. """ x = atleast_1d(x) y = atleast_1d(y) if x.ndim != 1 or y.ndim != 1: raise ValueError("x and y should both be 1-D arrays") if not assume_sorted: x = np.sort(x) y = np.sort(y) if self.bounds_error or self.fill_value is not None: out_of_bounds_x = (x < self.x_min) | (x > self.x_max) out_of_bounds_y = (y < self.y_min) | (y > self.y_max) any_out_of_bounds_x = np.any(out_of_bounds_x) any_out_of_bounds_y = np.any(out_of_bounds_y) if self.bounds_error and (any_out_of_bounds_x or any_out_of_bounds_y): raise ValueError("Values out of range; x must be in %r, y in %r" % ((self.x_min, self.x_max), (self.y_min, self.y_max))) z = fitpack.bisplev(x, y, self.tck, dx, dy) z = atleast_2d(z) z = transpose(z) if self.fill_value is not None: if any_out_of_bounds_x: z[:, out_of_bounds_x] = self.fill_value if any_out_of_bounds_y: z[out_of_bounds_y, :] = self.fill_value if len(z) == 1: z = z[0] return array(z) class interp1d(_Interpolator1D): """ Interpolate a 1-D function. `x` and `y` are arrays of values used to approximate some function f: ``y = f(x)``. This class returns a function whose call method uses interpolation to find the value of new points. Parameters ---------- x : (N,) array_like A 1-D array of real values. y : (...,N,...) array_like A N-D array of real values. The length of `y` along the interpolation axis must be equal to the length of `x`. kind : str or int, optional Specifies the kind of interpolation as a string ('linear', 'nearest', 'zero', 'slinear', 'quadratic, 'cubic' where 'slinear', 'quadratic' and 'cubic' refer to a spline interpolation of first, second or third order) or as an integer specifying the order of the spline interpolator to use. Default is 'linear'. axis : int, optional Specifies the axis of `y` along which to interpolate. Interpolation defaults to the last axis of `y`. copy : bool, optional If True, the class makes internal copies of x and y. If False, references to `x` and `y` are used. The default is to copy. bounds_error : bool, optional If True, a ValueError is raised any time interpolation is attempted on a value outside of the range of x (where extrapolation is necessary). If False, out of bounds values are assigned `fill_value`. By default, an error is raised. fill_value : float, optional If provided, then this value will be used to fill in for requested points outside of the data range. If not provided, then the default is NaN. assume_sorted : bool, optional If False, values of `x` can be in any order and they are sorted first. If True, `x` has to be an array of monotonically increasing values. Methods ------- __call__ See Also -------- splrep, splev Spline interpolation/smoothing based on FITPACK. UnivariateSpline : An object-oriented wrapper of the FITPACK routines. interp2d : 2-D interpolation Examples -------- >>> import matplotlib.pyplot as plt >>> from scipy import interpolate >>> x = np.arange(0, 10) >>> y = np.exp(-x/3.0) >>> f = interpolate.interp1d(x, y) >>> xnew = np.arange(0, 9, 0.1) >>> ynew = f(xnew) # use interpolation function returned by `interp1d` >>> plt.plot(x, y, 'o', xnew, ynew, '-') >>> plt.show() """ def __init__(self, x, y, kind='linear', axis=-1, copy=True, bounds_error=True, fill_value=np.nan, assume_sorted=False): """ Initialize a 1D linear interpolation class.""" _Interpolator1D.__init__(self, x, y, axis=axis) self.copy = copy self.bounds_error = bounds_error self.fill_value = fill_value if kind in ['zero', 'slinear', 'quadratic', 'cubic']: order = {'nearest': 0, 'zero': 0,'slinear': 1, 'quadratic': 2, 'cubic': 3}[kind] kind = 'spline' elif isinstance(kind, int): order = kind kind = 'spline' elif kind not in ('linear', 'nearest'): raise NotImplementedError("%s is unsupported: Use fitpack " "routines for other types." % kind) x = array(x, copy=self.copy) y = array(y, copy=self.copy) if not assume_sorted: ind = np.argsort(x) x = x[ind] y = np.take(y, ind, axis=axis) if x.ndim != 1: raise ValueError("the x array must have exactly one dimension.") if y.ndim == 0: raise ValueError("the y array must have at least one dimension.") # Force-cast y to a floating-point type, if it's not yet one if not issubclass(y.dtype.type, np.inexact): y = y.astype(np.float_) # Backward compatibility self.axis = axis % y.ndim # Interpolation goes internally along the first axis self.y = y y = self._reshape_yi(y) # Adjust to interpolation kind; store reference to *unbound* # interpolation methods, in order to avoid circular references to self # stored in the bound instance methods, and therefore delayed garbage # collection. See: http://docs.python.org/2/reference/datamodel.html if kind in ('linear', 'nearest'): # Make a "view" of the y array that is rotated to the interpolation # axis. minval = 2 if kind == 'nearest': self.x_bds = (x[1:] + x[:-1]) / 2.0 self._call = self.__class__._call_nearest else: self._call = self.__class__._call_linear else: minval = order + 1 self._spline = splmake(x, y, order=order) self._call = self.__class__._call_spline if len(x) < minval: raise ValueError("x and y arrays must have at " "least %d entries" % minval) self._kind = kind self.x = x self._y = y def _call_linear(self, x_new): # 2. Find where in the orignal data, the values to interpolate # would be inserted. # Note: If x_new[n] == x[m], then m is returned by searchsorted. x_new_indices = searchsorted(self.x, x_new) # 3. Clip x_new_indices so that they are within the range of # self.x indices and at least 1. Removes mis-interpolation # of x_new[n] = x[0] x_new_indices = x_new_indices.clip(1, len(self.x)-1).astype(int) # 4. Calculate the slope of regions that each x_new value falls in. lo = x_new_indices - 1 hi = x_new_indices x_lo = self.x[lo] x_hi = self.x[hi] y_lo = self._y[lo] y_hi = self._y[hi] # Note that the following two expressions rely on the specifics of the # broadcasting semantics. slope = (y_hi - y_lo) / (x_hi - x_lo)[:, None] # 5. Calculate the actual value for each entry in x_new. y_new = slope*(x_new - x_lo)[:, None] + y_lo return y_new def _call_nearest(self, x_new): """ Find nearest neighbour interpolated y_new = f(x_new).""" # 2. Find where in the averaged data the values to interpolate # would be inserted. # Note: use side='left' (right) to searchsorted() to define the # halfway point to be nearest to the left (right) neighbour x_new_indices = searchsorted(self.x_bds, x_new, side='left') # 3. Clip x_new_indices so that they are within the range of x indices. x_new_indices = x_new_indices.clip(0, len(self.x)-1).astype(intp) # 4. Calculate the actual value for each entry in x_new. y_new = self._y[x_new_indices] return y_new def _call_spline(self, x_new): return spleval(self._spline, x_new) def _evaluate(self, x_new): # 1. Handle values in x_new that are outside of x. Throw error, # or return a list of mask array indicating the outofbounds values. # The behavior is set by the bounds_error variable. x_new = asarray(x_new) out_of_bounds = self._check_bounds(x_new) y_new = self._call(self, x_new) if len(y_new) > 0: y_new[out_of_bounds] = self.fill_value return y_new def _check_bounds(self, x_new): """Check the inputs for being in the bounds of the interpolated data. Parameters ---------- x_new : array Returns ------- out_of_bounds : bool array The mask on x_new of values that are out of the bounds. """ # If self.bounds_error is True, we raise an error if any x_new values # fall outside the range of x. Otherwise, we return an array indicating # which values are outside the boundary region. below_bounds = x_new < self.x[0] above_bounds = x_new > self.x[-1] # !! Could provide more information about which values are out of bounds if self.bounds_error and below_bounds.any(): raise ValueError("A value in x_new is below the interpolation " "range.") if self.bounds_error and above_bounds.any(): raise ValueError("A value in x_new is above the interpolation " "range.") # !! Should we emit a warning if some values are out of bounds? # !! matlab does not. out_of_bounds = logical_or(below_bounds, above_bounds) return out_of_bounds class _PPolyBase(object): """ Base class for piecewise polynomials. """ __slots__ = ('c', 'x', 'extrapolate', 'axis') def __init__(self, c, x, extrapolate=None, axis=0): self.c = np.asarray(c) self.x = np.ascontiguousarray(x, dtype=np.float64) if extrapolate is None: extrapolate = True self.extrapolate = bool(extrapolate) if not (0 <= axis < self.c.ndim - 1): raise ValueError("%s must be between 0 and %s" % (axis, c.ndim-1)) self.axis = axis if axis != 0: # roll the interpolation axis to be the first one in self.c # More specifically, the target shape for self.c is (k, m, ...), # and axis !=0 means that we have c.shape (..., k, m, ...) # ^ # axis # So we roll two of them. self.c = np.rollaxis(self.c, axis+1) self.c = np.rollaxis(self.c, axis+1) if self.x.ndim != 1: raise ValueError("x must be 1-dimensional") if self.x.size < 2: raise ValueError("at least 2 breakpoints are needed") if self.c.ndim < 2: raise ValueError("c must have at least 2 dimensions") if self.c.shape[0] == 0: raise ValueError("polynomial must be at least of order 0") if self.c.shape[1] != self.x.size-1: raise ValueError("number of coefficients != len(x)-1") if np.any(self.x[1:] - self.x[:-1] < 0): raise ValueError("x-coordinates are not in increasing order") dtype = self._get_dtype(self.c.dtype) self.c = np.ascontiguousarray(self.c, dtype=dtype) def _get_dtype(self, dtype): if np.issubdtype(dtype, np.complexfloating) \ or np.issubdtype(self.c.dtype, np.complexfloating): return np.complex_ else: return np.float_ @classmethod def construct_fast(cls, c, x, extrapolate=None, axis=0): """ Construct the piecewise polynomial without making checks. Takes the same parameters as the constructor. Input arguments `c` and `x` must be arrays of the correct shape and type. The `c` array can only be of dtypes float and complex, and `x` array must have dtype float. """ self = object.__new__(cls) self.c = c self.x = x self.axis = axis if extrapolate is None: extrapolate = True self.extrapolate = extrapolate return self def _ensure_c_contiguous(self): """ c and x may be modified by the user. The Cython code expects that they are C contiguous. """ if not self.x.flags.c_contiguous: self.x = self.x.copy() if not self.c.flags.c_contiguous: self.c = self.c.copy() def extend(self, c, x, right=True): """ Add additional breakpoints and coefficients to the polynomial. Parameters ---------- c : ndarray, size (k, m, ...) Additional coefficients for polynomials in intervals ``self.x[-1] <= x < x_right[0]``, ``x_right[0] <= x < x_right[1]``, ..., ``x_right[m-2] <= x < x_right[m-1]`` x : ndarray, size (m,) Additional breakpoints. Must be sorted and either to the right or to the left of the current breakpoints. right : bool, optional Whether the new intervals are to the right or to the left of the current intervals. """ c = np.asarray(c) x = np.asarray(x) if c.ndim < 2: raise ValueError("invalid dimensions for c") if x.ndim != 1: raise ValueError("invalid dimensions for x") if x.shape[0] != c.shape[1]: raise ValueError("x and c have incompatible sizes") if c.shape[2:] != self.c.shape[2:] or c.ndim != self.c.ndim: raise ValueError("c and self.c have incompatible shapes") if right: if x[0] < self.x[-1]: raise ValueError("new x are not to the right of current ones") else: if x[-1] > self.x[0]: raise ValueError("new x are not to the left of current ones") if c.size == 0: return dtype = self._get_dtype(c.dtype) k2 = max(c.shape[0], self.c.shape[0]) c2 = np.zeros((k2, self.c.shape[1] + c.shape[1]) + self.c.shape[2:], dtype=dtype) if right: c2[k2-self.c.shape[0]:, :self.c.shape[1]] = self.c c2[k2-c.shape[0]:, self.c.shape[1]:] = c self.x = np.r_[self.x, x] else: c2[k2-self.c.shape[0]:, :c.shape[1]] = c c2[k2-c.shape[0]:, c.shape[1]:] = self.c self.x = np.r_[x, self.x] self.c = c2 def __call__(self, x, nu=0, extrapolate=None): """ Evaluate the piecewise polynomial or its derivative Parameters ---------- x : array_like Points to evaluate the interpolant at. nu : int, optional Order of derivative to evaluate. Must be non-negative. extrapolate : bool, optional Whether to extrapolate to ouf-of-bounds points based on first and last intervals, or to return NaNs. Returns ------- y : array_like Interpolated values. Shape is determined by replacing the interpolation axis in the original array with the shape of x. Notes ----- Derivatives are evaluated piecewise for each polynomial segment, even if the polynomial is not differentiable at the breakpoints. The polynomial intervals are considered half-open, ``[a, b)``, except for the last interval which is closed ``[a, b]``. """ if extrapolate is None: extrapolate = self.extrapolate x = np.asarray(x) x_shape, x_ndim = x.shape, x.ndim x = np.ascontiguousarray(x.ravel(), dtype=np.float_) out = np.empty((len(x), prod(self.c.shape[2:])), dtype=self.c.dtype) self._ensure_c_contiguous() self._evaluate(x, nu, extrapolate, out) out = out.reshape(x_shape + self.c.shape[2:]) if self.axis != 0: # transpose to move the calculated values to the interpolation axis l = list(range(out.ndim)) l = l[x_ndim:x_ndim+self.axis] + l[:x_ndim] + l[x_ndim+self.axis:] out = out.transpose(l) return out class PPoly(_PPolyBase): """ Piecewise polynomial in terms of coefficients and breakpoints The polynomial in the ith interval is ``x[i] <= xp < x[i+1]``:: S = sum(c[m, i] * (xp - x[i])**(k-m) for m in range(k+1)) where ``k`` is the degree of the polynomial. This representation is the local power basis. Parameters ---------- c : ndarray, shape (k, m, ...) Polynomial coefficients, order `k` and `m` intervals x : ndarray, shape (m+1,) Polynomial breakpoints. These must be sorted in increasing order. extrapolate : bool, optional Whether to extrapolate to ouf-of-bounds points based on first and last intervals, or to return NaNs. Default: True. axis : int, optional Interpolation axis. Default is zero. Attributes ---------- x : ndarray Breakpoints. c : ndarray Coefficients of the polynomials. They are reshaped to a 3-dimensional array with the last dimension representing the trailing dimensions of the original coefficient array. axis : int Interpolation axis. Methods ------- __call__ derivative antiderivative integrate roots extend from_spline from_bernstein_basis construct_fast See also -------- BPoly : piecewise polynomials in the Bernstein basis Notes ----- High-order polynomials in the power basis can be numerically unstable. Precision problems can start to appear for orders larger than 20-30. """ def _evaluate(self, x, nu, extrapolate, out): _ppoly.evaluate(self.c.reshape(self.c.shape[0], self.c.shape[1], -1), self.x, x, nu, bool(extrapolate), out) def derivative(self, nu=1): """ Construct a new piecewise polynomial representing the derivative. Parameters ---------- nu : int, optional Order of derivative to evaluate. (Default: 1) If negative, the antiderivative is returned. Returns ------- pp : PPoly Piecewise polynomial of order k2 = k - n representing the derivative of this polynomial. Notes ----- Derivatives are evaluated piecewise for each polynomial segment, even if the polynomial is not differentiable at the breakpoints. The polynomial intervals are considered half-open, ``[a, b)``, except for the last interval which is closed ``[a, b]``. """ if nu < 0: return self.antiderivative(-nu) # reduce order if nu == 0: c2 = self.c.copy() else: c2 = self.c[:-nu,:].copy() if c2.shape[0] == 0: # derivative of order 0 is zero c2 = np.zeros((1,) + c2.shape[1:], dtype=c2.dtype) # multiply by the correct rising factorials factor = spec.poch(np.arange(c2.shape[0], 0, -1), nu) c2 *= factor[(slice(None),) + (None,)*(c2.ndim-1)] # construct a compatible polynomial return self.construct_fast(c2, self.x, self.extrapolate, self.axis) def antiderivative(self, nu=1): """ Construct a new piecewise polynomial representing the antiderivative. Antiderivativative is also the indefinite integral of the function, and derivative is its inverse operation. Parameters ---------- nu : int, optional Order of antiderivative to evaluate. (Default: 1) If negative, the derivative is returned. Returns ------- pp : PPoly Piecewise polynomial of order k2 = k + n representing the antiderivative of this polynomial. Notes ----- The antiderivative returned by this function is continuous and continuously differentiable to order n-1, up to floating point rounding error. """ if nu <= 0: return self.derivative(-nu) c = np.zeros((self.c.shape[0] + nu, self.c.shape[1]) + self.c.shape[2:], dtype=self.c.dtype) c[:-nu] = self.c # divide by the correct rising factorials factor = spec.poch(np.arange(self.c.shape[0], 0, -1), nu) c[:-nu] /= factor[(slice(None),) + (None,)*(c.ndim-1)] # fix continuity of added degrees of freedom self._ensure_c_contiguous() _ppoly.fix_continuity(c.reshape(c.shape[0], c.shape[1], -1), self.x, nu - 1) # construct a compatible polynomial return self.construct_fast(c, self.x, self.extrapolate, self.axis) def integrate(self, a, b, extrapolate=None): """ Compute a definite integral over a piecewise polynomial. Parameters ---------- a : float Lower integration bound b : float Upper integration bound extrapolate : bool, optional Whether to extrapolate to ouf-of-bounds points based on first and last intervals, or to return NaNs. Returns ------- ig : array_like Definite integral of the piecewise polynomial over [a, b] """ if extrapolate is None: extrapolate = self.extrapolate # Swap integration bounds if needed sign = 1 if b < a: a, b = b, a sign = -1 # Compute the integral range_int = np.empty((prod(self.c.shape[2:]),), dtype=self.c.dtype) self._ensure_c_contiguous() _ppoly.integrate(self.c.reshape(self.c.shape[0], self.c.shape[1], -1), self.x, a, b, bool(extrapolate), out=range_int) # Return range_int *= sign return range_int.reshape(self.c.shape[2:]) def roots(self, discontinuity=True, extrapolate=None): """ Find real roots of the piecewise polynomial. Parameters ---------- discontinuity : bool, optional Whether to report sign changes across discontinuities at breakpoints as roots. extrapolate : bool, optional Whether to return roots from the polynomial extrapolated based on first and last intervals. Returns ------- roots : ndarray Roots of the polynomial(s). If the PPoly object describes multiple polynomials, the return value is an object array whose each element is an ndarray containing the roots. Notes ----- This routine works only on real-valued polynomials. If the piecewise polynomial contains sections that are identically zero, the root list will contain the start point of the corresponding interval, followed by a ``nan`` value. If the polynomial is discontinuous across a breakpoint, and there is a sign change across the breakpoint, this is reported if the `discont` parameter is True. Examples -------- Finding roots of ``[x**2 - 1, (x - 1)**2]`` defined on intervals ``[-2, 1], [1, 2]``: >>> from scipy.interpolate import PPoly >>> pp = PPoly(np.array([[1, -4, 3], [1, 0, 0]]).T, [-2, 1, 2]) >>> pp.roots() array([-1., 1.]) """ if extrapolate is None: extrapolate = self.extrapolate self._ensure_c_contiguous() if np.issubdtype(self.c.dtype, np.complexfloating): raise ValueError("Root finding is only for " "real-valued polynomials") r = _ppoly.real_roots(self.c.reshape(self.c.shape[0], self.c.shape[1], -1), self.x, bool(discontinuity), bool(extrapolate)) if self.c.ndim == 2: return r[0] else: r2 = np.empty(prod(self.c.shape[2:]), dtype=object) # this for-loop is equivalent to ``r2[...] = r``, but that's broken # in numpy 1.6.0 for ii, root in enumerate(r): r2[ii] = root return r2.reshape(self.c.shape[2:]) @classmethod def from_spline(cls, tck, extrapolate=None): """ Construct a piecewise polynomial from a spline Parameters ---------- tck A spline, as returned by `splrep` extrapolate : bool, optional Whether to extrapolate to ouf-of-bounds points based on first and last intervals, or to return NaNs. Default: True. """ t, c, k = tck cvals = np.empty((k + 1, len(t)-1), dtype=c.dtype) for m in xrange(k, -1, -1): y = fitpack.splev(t[:-1], tck, der=m) cvals[k - m, :] = y/spec.gamma(m+1) return cls.construct_fast(cvals, t, extrapolate) @classmethod def from_bernstein_basis(cls, bp, extrapolate=None): """ Construct a piecewise polynomial in the power basis from a polynomial in Bernstein basis. Parameters ---------- bp : BPoly A Bernstein basis polynomial, as created by BPoly extrapolate : bool, optional Whether to extrapolate to ouf-of-bounds points based on first and last intervals, or to return NaNs. Default: True. """ dx = np.diff(bp.x) k = bp.c.shape[0] - 1 # polynomial order rest = (None,)*(bp.c.ndim-2) c = np.zeros_like(bp.c) for a in range(k+1): factor = (-1)**(a) * comb(k, a) * bp.c[a] for s in range(a, k+1): val = comb(k-a, s-a) * (-1)**s c[k-s] += factor * val / dx[(slice(None),)+rest]**s if extrapolate is None: extrapolate = bp.extrapolate return cls.construct_fast(c, bp.x, extrapolate, bp.axis) class BPoly(_PPolyBase): """ Piecewise polynomial in terms of coefficients and breakpoints The polynomial in the ``i``-th interval ``x[i] <= xp < x[i+1]`` is written in the Bernstein polynomial basis:: S = sum(c[a, i] * b(a, k; x) for a in range(k+1)) where ``k`` is the degree of the polynomial, and:: b(a, k; x) = comb(k, a) * t**k * (1 - t)**(k - a) with ``t = (x - x[i]) / (x[i+1] - x[i])``. Parameters ---------- c : ndarray, shape (k, m, ...) Polynomial coefficients, order `k` and `m` intervals x : ndarray, shape (m+1,) Polynomial breakpoints. These must be sorted in increasing order. extrapolate : bool, optional Whether to extrapolate to ouf-of-bounds points based on first and last intervals, or to return NaNs. Default: True. axis : int, optional Interpolation axis. Default is zero. Attributes ---------- x : ndarray Breakpoints. c : ndarray Coefficients of the polynomials. They are reshaped to a 3-dimensional array with the last dimension representing the trailing dimensions of the original coefficient array. axis : int Interpolation axis. Methods ------- __call__ extend derivative antiderivative integrate construct_fast from_power_basis from_derivatives See also -------- PPoly : piecewise polynomials in the power basis Notes ----- Properties of Bernstein polynomials are well documented in the literature. Here's a non-exhaustive list: .. [1] http://en.wikipedia.org/wiki/Bernstein_polynomial .. [2] Kenneth I. Joy, Bernstein polynomials, http://www.idav.ucdavis.edu/education/CAGDNotes/Bernstein-Polynomials.pdf .. [3] E. H. Doha, A. H. Bhrawy, and M. A. Saker, Boundary Value Problems, vol 2011, article ID 829546, doi:10.1155/2011/829543 Examples -------- >>> from scipy.interpolate import BPoly >>> x = [0, 1] >>> c = [[1], [2], [3]] >>> bp = BPoly(c, x) This creates a 2nd order polynomial .. math:: B(x) = 1 \\times b_{0, 2}(x) + 2 \\times b_{1, 2}(x) + 3 \\times b_{2, 2}(x) \\\\ = 1 \\times (1-x)^2 + 2 \\times 2 x (1 - x) + 3 \\times x^2 """ def _evaluate(self, x, nu, extrapolate, out): _ppoly.evaluate_bernstein( self.c.reshape(self.c.shape[0], self.c.shape[1], -1), self.x, x, nu, bool(extrapolate), out) def derivative(self, nu=1): """ Construct a new piecewise polynomial representing the derivative. Parameters ---------- nu : int, optional Order of derivative to evaluate. (Default: 1) If negative, the antiderivative is returned. Returns ------- bp : BPoly Piecewise polynomial of order k2 = k - nu representing the derivative of this polynomial. """ if nu < 0: return self.antiderivative(-nu) if nu > 1: bp = self for k in range(nu): bp = bp.derivative() return bp # reduce order if nu == 0: c2 = self.c.copy() else: # For a polynomial # B(x) = \sum_{a=0}^{k} c_a b_{a, k}(x), # we use the fact that # b'_{a, k} = k ( b_{a-1, k-1} - b_{a, k-1} ), # which leads to # B'(x) = \sum_{a=0}^{k-1} (c_{a+1} - c_a) b_{a, k-1} # # finally, for an interval [y, y + dy] with dy != 1, # we need to correct for an extra power of dy rest = (None,)*(self.c.ndim-2) k = self.c.shape[0] - 1 dx = np.diff(self.x)[(None, slice(None))+rest] c2 = k * np.diff(self.c, axis=0) / dx if c2.shape[0] == 0: # derivative of order 0 is zero c2 = np.zeros((1,) + c2.shape[1:], dtype=c2.dtype) # construct a compatible polynomial return self.construct_fast(c2, self.x, self.extrapolate, self.axis) def antiderivative(self, nu=1): """ Construct a new piecewise polynomial representing the antiderivative. Parameters ---------- nu : int, optional Order of derivative to evaluate. (Default: 1) If negative, the derivative is returned. Returns ------- bp : BPoly Piecewise polynomial of order k2 = k + nu representing the antiderivative of this polynomial. """ if nu <= 0: return self.derivative(-nu) if nu > 1: bp = self for k in range(nu): bp = bp.antiderivative() return bp # Construct the indefinite integrals on individual intervals c, x = self.c, self.x k = c.shape[0] c2 = np.zeros((k+1,) + c.shape[1:], dtype=c.dtype) c2[1:, ...] = np.cumsum(c, axis=0) / k delta = x[1:] - x[:-1] c2 *= delta[(None, slice(None)) + (None,)*(c.ndim-2)] # Now fix continuity: on the very first interval, take the integration # constant to be zero; on an interval [x_j, x_{j+1}) with j>0, # the integration constant is then equal to the jump of the `bp` at x_j. # The latter is given by the coefficient of B_{n+1, n+1} # *on the previous interval* (other B. polynomials are zero at the breakpoint) # Finally, use the fact that BPs form a partition of unity. c2[:,1:] += np.cumsum(c2[k,:], axis=0)[:-1] return self.construct_fast(c2, x, self.extrapolate, axis=self.axis) def integrate(self, a, b, extrapolate=None): """ Compute a definite integral over a piecewise polynomial. Parameters ---------- a : float Lower integration bound b : float Upper integration bound extrapolate : bool, optional Whether to extrapolate to out-of-bounds points based on first and last intervals, or to return NaNs. Defaults to ``self.extrapolate``. Returns ------- array_like Definite integral of the piecewise polynomial over [a, b] """ # XXX: can probably use instead the fact that # \int_0^{1} B_{j, n}(x) \dx = 1/(n+1) ib = self.antiderivative() if extrapolate is not None: ib.extrapolate = extrapolate return ib(b) - ib(a) def extend(self, c, x, right=True): k = max(self.c.shape[0], c.shape[0]) self.c = self._raise_degree(self.c, k - self.c.shape[0]) c = self._raise_degree(c, k - c.shape[0]) return _PPolyBase.extend(self, c, x, right) extend.__doc__ = _PPolyBase.extend.__doc__ @classmethod def from_power_basis(cls, pp, extrapolate=None): """ Construct a piecewise polynomial in Bernstein basis from a power basis polynomial. Parameters ---------- pp : PPoly A piecewise polynomial in the power basis extrapolate : bool, optional Whether to extrapolate to ouf-of-bounds points based on first and last intervals, or to return NaNs. Default: True. """ dx = np.diff(pp.x) k = pp.c.shape[0] - 1 # polynomial order rest = (None,)*(pp.c.ndim-2) c = np.zeros_like(pp.c) for a in range(k+1): factor = pp.c[a] / comb(k, k-a) * dx[(slice(None),)+rest]**(k-a) for j in range(k-a, k+1): c[j] += factor * comb(j, k-a) if extrapolate is None: extrapolate = pp.extrapolate return cls.construct_fast(c, pp.x, extrapolate, pp.axis) @classmethod def from_derivatives(cls, xi, yi, orders=None, extrapolate=None): """Construct a piecewise polynomial in the Bernstein basis, compatible with the specified values and derivatives at breakpoints. Parameters ---------- xi : array_like sorted 1D array of x-coordinates yi : array_like or list of array_likes ``yi[i][j]`` is the ``j``-th derivative known at ``xi[i]`` orders : None or int or array_like of ints. Default: None. Specifies the degree of local polynomials. If not None, some derivatives are ignored. extrapolate : bool, optional Whether to extrapolate to ouf-of-bounds points based on first and last intervals, or to return NaNs. Default: True. Notes ----- If ``k`` derivatives are specified at a breakpoint ``x``, the constructed polynomial is exactly ``k`` times continuously differentiable at ``x``, unless the ``order`` is provided explicitly. In the latter case, the smoothness of the polynomial at the breakpoint is controlled by the ``order``. Deduces the number of derivatives to match at each end from ``order`` and the number of derivatives available. If possible it uses the same number of derivatives from each end; if the number is odd it tries to take the extra one from y2. In any case if not enough derivatives are available at one end or another it draws enough to make up the total from the other end. If the order is too high and not enough derivatives are available, an exception is raised. Examples -------- >>> from scipy.interpolate import BPoly >>> BPoly.from_derivatives([0, 1], [[1, 2], [3, 4]]) Creates a polynomial `f(x)` of degree 3, defined on `[0, 1]` such that `f(0) = 1, df/dx(0) = 2, f(1) = 3, df/dx(1) = 4` >>> BPoly.from_derivatives([0, 1, 2], [[0, 1], [0], [2]]) Creates a piecewise polynomial `f(x)`, such that `f(0) = f(1) = 0`, `f(2) = 2`, and `df/dx(0) = 1`. Based on the number of derivatives provided, the order of the local polynomials is 2 on `[0, 1]` and 1 on `[1, 2]`. Notice that no restriction is imposed on the derivatives at `x = 1` and `x = 2`. Indeed, the explicit form of the polynomial is:: f(x) = | x * (1 - x), 0 <= x < 1 | 2 * (x - 1), 1 <= x <= 2 So that f'(1-0) = -1 and f'(1+0) = 2 """ xi = np.asarray(xi) if len(xi) != len(yi): raise ValueError("xi and yi need to have the same length") if np.any(xi[1:] - xi[:1] <= 0): raise ValueError("x coordinates are not in increasing order") # number of intervals m = len(xi) - 1 # global poly order is k-1, local orders are <=k and can vary try: k = max(len(yi[i]) + len(yi[i+1]) for i in range(m)) except TypeError: raise ValueError("Using a 1D array for y? Please .reshape(-1, 1).") if orders is None: orders = [None] * m else: if isinstance(orders, integer_types): orders = [orders] * m k = max(k, max(orders)) if any(o <= 0 for o in orders): raise ValueError("Orders must be positive.") c = [] for i in range(m): y1, y2 = yi[i], yi[i+1] if orders[i] is None: n1, n2 = len(y1), len(y2) else: n = orders[i]+1 n1 = min(n//2, len(y1)) n2 = min(n - n1, len(y2)) n1 = min(n - n2, len(y2)) if n1+n2 != n: raise ValueError("Point %g has %d derivatives, point %g" " has %d derivatives, but order %d requested" % (xi[i], len(y1), xi[i+1], len(y2), orders[i])) if not (n1 <= len(y1) and n2 <= len(y2)): raise ValueError("`order` input incompatible with" " length y1 or y2.") b = BPoly._construct_from_derivatives(xi[i], xi[i+1], y1[:n1], y2[:n2]) if len(b) < k: b = BPoly._raise_degree(b, k - len(b)) c.append(b) c = np.asarray(c) return cls(c.swapaxes(0, 1), xi, extrapolate) @staticmethod def _construct_from_derivatives(xa, xb, ya, yb): """Compute the coefficients of a polynomial in the Bernstein basis given the values and derivatives at the edges. Return the coefficients of a polynomial in the Bernstein basis defined on `[xa, xb]` and having the values and derivatives at the endpoints ``xa`` and ``xb`` as specified by ``ya`` and ``yb``. The polynomial constructed is of the minimal possible degree, i.e., if the lengths of ``ya`` and ``yb`` are ``na`` and ``nb``, the degree of the polynomial is ``na + nb - 1``. Parameters ---------- xa : float Left-hand end point of the interval xb : float Right-hand end point of the interval ya : array_like Derivatives at ``xa``. ``ya[0]`` is the value of the function, and ``ya[i]`` for ``i > 0`` is the value of the ``i``-th derivative. yb : array_like Derivatives at ``xb``. Returns ------- array coefficient array of a polynomial having specified derivatives Notes ----- This uses several facts from life of Bernstein basis functions. First of all, .. math:: b'_{a, n} = n (b_{a-1, n-1} - b_{a, n-1}) If B(x) is a linear combination of the form .. math:: B(x) = \sum_{a=0}^{n} c_a b_{a, n}, then :math: B'(x) = n \sum_{a=0}^{n-1} (c_{a+1} - c_{a}) b_{a, n-1}. Iterating the latter one, one finds for the q-th derivative .. math:: B^{q}(x) = n!/(n-q)! \sum_{a=0}^{n-q} Q_a b_{a, n-q}, with .. math:: Q_a = \sum_{j=0}^{q} (-)^{j+q} comb(q, j) c_{j+a} This way, only `a=0` contributes to :math: `B^{q}(x = xa)`, and `c_q` are found one by one by iterating `q = 0, ..., na`. At `x = xb` it's the same with `a = n - q`. """ ya, yb = np.asarray(ya), np.asarray(yb) if ya.shape[1:] != yb.shape[1:]: raise ValueError('ya and yb have incompatible dimensions.') dta, dtb = ya.dtype, yb.dtype if (np.issubdtype(dta, np.complexfloating) or np.issubdtype(dtb, np.complexfloating)): dt = np.complex_ else: dt = np.float_ na, nb = len(ya), len(yb) n = na + nb c = np.empty((na+nb,) + ya.shape[1:], dtype=dt) # compute coefficients of a polynomial degree na+nb-1 # walk left-to-right for q in range(0, na): c[q] = ya[q] / spec.poch(n - q, q) * (xb - xa)**q for j in range(0, q): c[q] -= (-1)**(j+q) * comb(q, j) * c[j] # now walk right-to-left for q in range(0, nb): c[-q-1] = yb[q] / spec.poch(n - q, q) * (-1)**q * (xb - xa)**q for j in range(0, q): c[-q-1] -= (-1)**(j+1) * comb(q, j+1) * c[-q+j] return c @staticmethod def _raise_degree(c, d): """Raise a degree of a polynomial in the Bernstein basis. Given the coefficients of a polynomial degree `k`, return (the coefficients of) the equivalent polynomial of degree `k+d`. Parameters ---------- c : array_like coefficient array, 1D d : integer Returns ------- array coefficient array, 1D array of length `c.shape[0] + d` Notes ----- This uses the fact that a Bernstein polynomial `b_{a, k}` can be identically represented as a linear combination of polynomials of a higher degree `k+d`: .. math:: b_{a, k} = comb(k, a) \sum_{j=0}^{d} b_{a+j, k+d} \ comb(d, j) / comb(k+d, a+j) """ if d == 0: return c k = c.shape[0] - 1 out = np.zeros((c.shape[0] + d,) + c.shape[1:], dtype=c.dtype) for a in range(c.shape[0]): f = c[a] * comb(k, a) for j in range(d+1): out[a+j] += f * comb(d, j) / comb(k+d, a+j) return out class RegularGridInterpolator(object): """ Interpolation on a regular grid in arbitrary dimensions The data must be defined on a regular grid; the grid spacing however may be uneven. Linear and nearest-neighbour interpolation are supported. After setting up the interpolator object, the interpolation method (*linear* or *nearest*) may be chosen at each evaluation. Parameters ---------- points : tuple of ndarray of float, with shapes (m1, ), ..., (mn, ) The points defining the regular grid in n dimensions. values : array_like, shape (m1, ..., mn, ...) The data on the regular grid in n dimensions. method : str, optional The method of interpolation to perform. Supported are "linear" and "nearest". This parameter will become the default for the object's ``__call__`` method. Default is "linear". bounds_error : bool, optional If True, when interpolated values are requested outside of the domain of the input data, a ValueError is raised. If False, then `fill_value` is used. fill_value : number, optional If provided, the value to use for points outside of the interpolation domain. If None, values outside the domain are extrapolated. Methods ------- __call__ Notes ----- Contrary to LinearNDInterpolator and NearestNDInterpolator, this class avoids expensive triangulation of the input data by taking advantage of the regular grid structure. .. versionadded:: 0.14 Examples -------- Evaluate a simple example function on the points of a 3D grid: >>> from scipy.interpolate import RegularGridInterpolator >>> def f(x,y,z): ... return 2 * x**3 + 3 * y**2 - z >>> x = np.linspace(1, 4, 11) >>> y = np.linspace(4, 7, 22) >>> z = np.linspace(7, 9, 33) >>> data = f(*np.meshgrid(x, y, z, indexing='ij', sparse=True)) ``data`` is now a 3D array with ``data[i,j,k] = f(x[i], y[j], z[k])``. Next, define an interpolating function from this data: >>> my_interpolating_function = RegularGridInterpolator((x, y, z), data) Evaluate the interpolating function at the two points ``(x,y,z) = (2.1, 6.2, 8.3)`` and ``(3.3, 5.2, 7.1)``: >>> pts = np.array([[2.1, 6.2, 8.3], [3.3, 5.2, 7.1]]) >>> my_interpolating_function(pts) array([ 125.80469388, 146.30069388]) which is indeed a close approximation to ``[f(2.1, 6.2, 8.3), f(3.3, 5.2, 7.1)]``. See also -------- NearestNDInterpolator : Nearest neighbour interpolation on unstructured data in N dimensions LinearNDInterpolator : Piecewise linear interpolant on unstructured data in N dimensions References ---------- .. [1] Python package *regulargrid* by Johannes Buchner, see https://pypi.python.org/pypi/regulargrid/ .. [2] Trilinear interpolation. (2013, January 17). In Wikipedia, The Free Encyclopedia. Retrieved 27 Feb 2013 01:28. http://en.wikipedia.org/w/index.php?title=Trilinear_interpolation&oldid=533448871 .. [3] Weiser, Alan, and Sergio E. Zarantonello. "A note on piecewise linear and multilinear table interpolation in many dimensions." MATH. COMPUT. 50.181 (1988): 189-196. http://www.ams.org/journals/mcom/1988-50-181/S0025-5718-1988-0917826-0/S0025-5718-1988-0917826-0.pdf """ # this class is based on code originally programmed by Johannes Buchner, # see https://github.com/JohannesBuchner/regulargrid def __init__(self, points, values, method="linear", bounds_error=True, fill_value=np.nan): if method not in ["linear", "nearest"]: raise ValueError("Method '%s' is not defined" % method) self.method = method self.bounds_error = bounds_error if not hasattr(values, 'ndim'): # allow reasonable duck-typed values values = np.asarray(values) if len(points) > values.ndim: raise ValueError("There are %d point arrays, but values has %d " "dimensions" % (len(points), values.ndim)) if hasattr(values, 'dtype') and hasattr(values, 'astype'): if not np.issubdtype(values.dtype, np.inexact): values = values.astype(float) self.fill_value = fill_value if fill_value is not None: fill_value_dtype = np.asarray(fill_value).dtype if (hasattr(values, 'dtype') and not np.can_cast(fill_value_dtype, values.dtype, casting='same_kind')): raise ValueError("fill_value must be either 'None' or " "of a type compatible with values") for i, p in enumerate(points): if not np.all(np.diff(p) > 0.): raise ValueError("The points in dimension %d must be strictly " "ascending" % i) if not np.asarray(p).ndim == 1: raise ValueError("The points in dimension %d must be " "1-dimensional" % i) if not values.shape[i] == len(p): raise ValueError("There are %d points and %d values in " "dimension %d" % (len(p), values.shape[i], i)) self.grid = tuple([np.asarray(p) for p in points]) self.values = values def __call__(self, xi, method=None): """ Interpolation at coordinates Parameters ---------- xi : ndarray of shape (..., ndim) The coordinates to sample the gridded data at method : str The method of interpolation to perform. Supported are "linear" and "nearest". """ method = self.method if method is None else method if method not in ["linear", "nearest"]: raise ValueError("Method '%s' is not defined" % method) ndim = len(self.grid) xi = _ndim_coords_from_arrays(xi, ndim=ndim) if xi.shape[-1] != len(self.grid): raise ValueError("The requested sample points xi have dimension " "%d, but this RegularGridInterpolator has " "dimension %d" % (xi.shape[1], ndim)) xi_shape = xi.shape xi = xi.reshape(-1, xi_shape[-1]) if self.bounds_error: for i, p in enumerate(xi.T): if not np.logical_and(np.all(self.grid[i][0] <= p), np.all(p <= self.grid[i][-1])): raise ValueError("One of the requested xi is out of bounds " "in dimension %d" % i) indices, norm_distances, out_of_bounds = self._find_indices(xi.T) if method == "linear": result = self._evaluate_linear(indices, norm_distances, out_of_bounds) elif method == "nearest": result = self._evaluate_nearest(indices, norm_distances, out_of_bounds) if not self.bounds_error and self.fill_value is not None: result[out_of_bounds] = self.fill_value return result.reshape(xi_shape[:-1] + self.values.shape[ndim:]) def _evaluate_linear(self, indices, norm_distances, out_of_bounds): # slice for broadcasting over trailing dimensions in self.values vslice = (slice(None),) + (None,)*(self.values.ndim - len(indices)) # find relevant values # each i and i+1 represents a edge edges = itertools.product(*[[i, i + 1] for i in indices]) values = 0. for edge_indices in edges: weight = 1. for ei, i, yi in zip(edge_indices, indices, norm_distances): weight *= np.where(ei == i, 1 - yi, yi) values += np.asarray(self.values[edge_indices]) * weight[vslice] return values def _evaluate_nearest(self, indices, norm_distances, out_of_bounds): idx_res = [] for i, yi in zip(indices, norm_distances): idx_res.append(np.where(yi <= .5, i, i + 1)) return self.values[idx_res] def _find_indices(self, xi): # find relevant edges between which xi are situated indices = [] # compute distance to lower edge in unity units norm_distances = [] # check for out of bounds xi out_of_bounds = np.zeros((xi.shape[1]), dtype=bool) # iterate through dimensions for x, grid in zip(xi, self.grid): i = np.searchsorted(grid, x) - 1 i[i < 0] = 0 i[i > grid.size - 2] = grid.size - 2 indices.append(i) norm_distances.append((x - grid[i]) / (grid[i + 1] - grid[i])) if not self.bounds_error: out_of_bounds += x < grid[0] out_of_bounds += x > grid[-1] return indices, norm_distances, out_of_bounds def interpn(points, values, xi, method="linear", bounds_error=True, fill_value=np.nan): """ Multidimensional interpolation on regular grids. Parameters ---------- points : tuple of ndarray of float, with shapes (m1, ), ..., (mn, ) The points defining the regular grid in n dimensions. values : array_like, shape (m1, ..., mn, ...) The data on the regular grid in n dimensions. xi : ndarray of shape (..., ndim) The coordinates to sample the gridded data at method : str, optional The method of interpolation to perform. Supported are "linear" and "nearest", and "splinef2d". "splinef2d" is only supported for 2-dimensional data. bounds_error : bool, optional If True, when interpolated values are requested outside of the domain of the input data, a ValueError is raised. If False, then `fill_value` is used. fill_value : number, optional If provided, the value to use for points outside of the interpolation domain. If None, values outside the domain are extrapolated. Extrapolation is not supported by method "splinef2d". Returns ------- values_x : ndarray, shape xi.shape[:-1] + values.shape[ndim:] Interpolated values at input coordinates. Notes ----- .. versionadded:: 0.14 See also -------- NearestNDInterpolator : Nearest neighbour interpolation on unstructured data in N dimensions LinearNDInterpolator : Piecewise linear interpolant on unstructured data in N dimensions RegularGridInterpolator : Linear and nearest-neighbor Interpolation on a regular grid in arbitrary dimensions RectBivariateSpline : Bivariate spline approximation over a rectangular mesh """ # sanity check 'method' kwarg if method not in ["linear", "nearest", "splinef2d"]: raise ValueError("interpn only understands the methods 'linear', " "'nearest', and 'splinef2d'. You provided %s." % method) if not hasattr(values, 'ndim'): values = np.asarray(values) ndim = values.ndim if ndim > 2 and method == "splinef2d": raise ValueError("The method spline2fd can only be used for " "2-dimensional input data") if not bounds_error and fill_value is None and method == "splinef2d": raise ValueError("The method spline2fd does not support extrapolation.") # sanity check consistency of input dimensions if len(points) > ndim: raise ValueError("There are %d point arrays, but values has %d " "dimensions" % (len(points), ndim)) if len(points) != ndim and method == 'splinef2d': raise ValueError("The method spline2fd can only be used for " "scalar data with one point per coordinate") # sanity check input grid for i, p in enumerate(points): if not np.all(np.diff(p) > 0.): raise ValueError("The points in dimension %d must be strictly " "ascending" % i) if not np.asarray(p).ndim == 1: raise ValueError("The points in dimension %d must be " "1-dimensional" % i) if not values.shape[i] == len(p): raise ValueError("There are %d points and %d values in " "dimension %d" % (len(p), values.shape[i], i)) grid = tuple([np.asarray(p) for p in points]) # sanity check requested xi xi = _ndim_coords_from_arrays(xi, ndim=len(grid)) if xi.shape[-1] != len(grid): raise ValueError("The requested sample points xi have dimension " "%d, but this RegularGridInterpolator has " "dimension %d" % (xi.shape[1], len(grid))) for i, p in enumerate(xi.T): if bounds_error and not np.logical_and(np.all(grid[i][0] <= p), np.all(p <= grid[i][-1])): raise ValueError("One of the requested xi is out of bounds " "in dimension %d" % i) # perform interpolation if method == "linear": interp = RegularGridInterpolator(points, values, method="linear", bounds_error=bounds_error, fill_value=fill_value) return interp(xi) elif method == "nearest": interp = RegularGridInterpolator(points, values, method="nearest", bounds_error=bounds_error, fill_value=fill_value) return interp(xi) elif method == "splinef2d": xi_shape = xi.shape xi = xi.reshape(-1, xi.shape[-1]) # RectBivariateSpline doesn't support fill_value; we need to wrap here idx_valid = np.all((grid[0][0] <= xi[:, 0], xi[:, 0] <= grid[0][-1], grid[1][0] <= xi[:, 1], xi[:, 1] <= grid[1][-1]), axis=0) result = np.empty_like(xi[:, 0]) # make a copy of values for RectBivariateSpline interp = RectBivariateSpline(points[0], points[1], values[:]) result[idx_valid] = interp.ev(xi[idx_valid, 0], xi[idx_valid, 1]) result[np.logical_not(idx_valid)] = fill_value return result.reshape(xi_shape[:-1]) # backward compatibility wrapper class ppform(PPoly): """ Deprecated piecewise polynomial class. New code should use the `PPoly` class instead. """ def __init__(self, coeffs, breaks, fill=0.0, sort=False): warnings.warn("ppform is deprecated -- use PPoly instead", category=DeprecationWarning) if sort: breaks = np.sort(breaks) else: breaks = np.asarray(breaks) PPoly.__init__(self, coeffs, breaks) self.coeffs = self.c self.breaks = self.x self.K = self.coeffs.shape[0] self.fill = fill self.a = self.breaks[0] self.b = self.breaks[-1] def __call__(self, x): return PPoly.__call__(self, x, 0, False) def _evaluate(self, x, nu, extrapolate, out): PPoly._evaluate(self, x, nu, extrapolate, out) out[~((x >= self.a) & (x <= self.b))] = self.fill return out @classmethod def fromspline(cls, xk, cvals, order, fill=0.0): # Note: this spline representation is incompatible with FITPACK N = len(xk)-1 sivals = np.empty((order+1, N), dtype=float) for m in xrange(order, -1, -1): fact = spec.gamma(m+1) res = _fitpack._bspleval(xk[:-1], xk, cvals, order, m) res /= fact sivals[order-m, :] = res return cls(sivals, xk, fill=fill) def _dot0(a, b): """Similar to numpy.dot, but sum over last axis of a and 1st axis of b""" if b.ndim <= 2: return dot(a, b) else: axes = list(range(b.ndim)) axes.insert(-1, 0) axes.pop(0) return dot(a, b.transpose(axes)) def _find_smoothest(xk, yk, order, conds=None, B=None): # construct Bmatrix, and Jmatrix # e = J*c # minimize norm(e,2) given B*c=yk # if desired B can be given # conds is ignored N = len(xk)-1 K = order if B is None: B = _fitpack._bsplmat(order, xk) J = _fitpack._bspldismat(order, xk) u, s, vh = scipy.linalg.svd(B) ind = K-1 V2 = vh[-ind:,:].T V1 = vh[:-ind,:].T A = dot(J.T,J) tmp = dot(V2.T,A) Q = dot(tmp,V2) p = scipy.linalg.solve(Q, tmp) tmp = dot(V2,p) tmp = np.eye(N+K) - tmp tmp = dot(tmp,V1) tmp = dot(tmp,np.diag(1.0/s)) tmp = dot(tmp,u.T) return _dot0(tmp, yk) def _setdiag(a, k, v): if not a.ndim == 2: raise ValueError("Input array should be 2-D.") M,N = a.shape if k > 0: start = k num = N - k else: num = M + k start = abs(k)*N end = start + num*(N+1)-1 a.flat[start:end:(N+1)] = v # Return the spline that minimizes the dis-continuity of the # "order-th" derivative; for order >= 2. def _find_smoothest2(xk, yk): N = len(xk) - 1 Np1 = N + 1 # find pseudo-inverse of B directly. Bd = np.empty((Np1, N)) for k in range(-N,N): if (k < 0): l = np.arange(-k, Np1) v = (l+k+1) if ((k+1) % 2): v = -v else: l = np.arange(k,N) v = N - l if ((k % 2)): v = -v _setdiag(Bd, k, v) Bd /= (Np1) V2 = np.ones((Np1,)) V2[1::2] = -1 V2 /= math.sqrt(Np1) dk = np.diff(xk) b = 2*np.diff(yk, axis=0)/dk J = np.zeros((N-1,N+1)) idk = 1.0/dk _setdiag(J,0,idk[:-1]) _setdiag(J,1,-idk[1:]-idk[:-1]) _setdiag(J,2,idk[1:]) A = dot(J.T,J) val = dot(V2,dot(A,V2)) res1 = dot(np.outer(V2,V2)/val,A) mk = dot(np.eye(Np1)-res1, _dot0(Bd,b)) return mk def _get_spline2_Bb(xk, yk, kind, conds): Np1 = len(xk) dk = xk[1:]-xk[:-1] if kind == 'not-a-knot': # use banded-solver nlu = (1,1) B = ones((3,Np1)) alpha = 2*(yk[1:]-yk[:-1])/dk zrs = np.zeros((1,)+yk.shape[1:]) row = (Np1-1)//2 b = np.concatenate((alpha[:row],zrs,alpha[row:]),axis=0) B[0,row+2:] = 0 B[2,:(row-1)] = 0 B[0,row+1] = dk[row-1] B[1,row] = -dk[row]-dk[row-1] B[2,row-1] = dk[row] return B, b, None, nlu else: raise NotImplementedError("quadratic %s is not available" % kind) def _get_spline3_Bb(xk, yk, kind, conds): # internal function to compute different tri-diagonal system # depending on the kind of spline requested. # conds is only used for 'second' and 'first' Np1 = len(xk) if kind in ['natural', 'second']: if kind == 'natural': m0, mN = 0.0, 0.0 else: m0, mN = conds # the matrix to invert is (N-1,N-1) # use banded solver beta = 2*(xk[2:]-xk[:-2]) alpha = xk[1:]-xk[:-1] nlu = (1,1) B = np.empty((3,Np1-2)) B[0,1:] = alpha[2:] B[1,:] = beta B[2,:-1] = alpha[1:-1] dyk = yk[1:]-yk[:-1] b = (dyk[1:]/alpha[1:] - dyk[:-1]/alpha[:-1]) b *= 6 b[0] -= m0 b[-1] -= mN def append_func(mk): # put m0 and mN into the correct shape for # concatenation ma = array(m0,copy=0,ndmin=yk.ndim) mb = array(mN,copy=0,ndmin=yk.ndim) if ma.shape[1:] != yk.shape[1:]: ma = ma*(ones(yk.shape[1:])[np.newaxis,...]) if mb.shape[1:] != yk.shape[1:]: mb = mb*(ones(yk.shape[1:])[np.newaxis,...]) mk = np.concatenate((ma,mk),axis=0) mk = np.concatenate((mk,mb),axis=0) return mk return B, b, append_func, nlu elif kind in ['clamped', 'endslope', 'first', 'not-a-knot', 'runout', 'parabolic']: if kind == 'endslope': # match slope of lagrange interpolating polynomial of # order 3 at end-points. x0,x1,x2,x3 = xk[:4] sl_0 = (1./(x0-x1)+1./(x0-x2)+1./(x0-x3))*yk[0] sl_0 += (x0-x2)*(x0-x3)/((x1-x0)*(x1-x2)*(x1-x3))*yk[1] sl_0 += (x0-x1)*(x0-x3)/((x2-x0)*(x2-x1)*(x3-x2))*yk[2] sl_0 += (x0-x1)*(x0-x2)/((x3-x0)*(x3-x1)*(x3-x2))*yk[3] xN3,xN2,xN1,xN0 = xk[-4:] sl_N = (1./(xN0-xN1)+1./(xN0-xN2)+1./(xN0-xN3))*yk[-1] sl_N += (xN0-xN2)*(xN0-xN3)/((xN1-xN0)*(xN1-xN2)*(xN1-xN3))*yk[-2] sl_N += (xN0-xN1)*(xN0-xN3)/((xN2-xN0)*(xN2-xN1)*(xN3-xN2))*yk[-3] sl_N += (xN0-xN1)*(xN0-xN2)/((xN3-xN0)*(xN3-xN1)*(xN3-xN2))*yk[-4] elif kind == 'clamped': sl_0, sl_N = 0.0, 0.0 elif kind == 'first': sl_0, sl_N = conds # Now set up the (N+1)x(N+1) system of equations beta = np.r_[0,2*(xk[2:]-xk[:-2]),0] alpha = xk[1:]-xk[:-1] gamma = np.r_[0,alpha[1:]] B = np.diag(alpha,k=-1) + np.diag(beta) + np.diag(gamma,k=1) d1 = alpha[0] dN = alpha[-1] if kind == 'not-a-knot': d2 = alpha[1] dN1 = alpha[-2] B[0,:3] = [d2,-d1-d2,d1] B[-1,-3:] = [dN,-dN1-dN,dN1] elif kind == 'runout': B[0,:3] = [1,-2,1] B[-1,-3:] = [1,-2,1] elif kind == 'parabolic': B[0,:2] = [1,-1] B[-1,-2:] = [-1,1] elif kind == 'periodic': raise NotImplementedError elif kind == 'symmetric': raise NotImplementedError else: B[0,:2] = [2*d1,d1] B[-1,-2:] = [dN,2*dN] # Set up RHS (b) b = np.empty((Np1,)+yk.shape[1:]) dyk = (yk[1:]-yk[:-1])*1.0 if kind in ['not-a-knot', 'runout', 'parabolic']: b[0] = b[-1] = 0.0 elif kind == 'periodic': raise NotImplementedError elif kind == 'symmetric': raise NotImplementedError else: b[0] = (dyk[0]/d1 - sl_0) b[-1] = -(dyk[-1]/dN - sl_N) b[1:-1,...] = (dyk[1:]/alpha[1:]-dyk[:-1]/alpha[:-1]) b *= 6.0 return B, b, None, None else: raise ValueError("%s not supported" % kind) # conds is a tuple of an array and a vector # giving the left-hand and the right-hand side # of the additional equations to add to B def _find_user(xk, yk, order, conds, B): lh = conds[0] rh = conds[1] B = np.concatenate((B, lh), axis=0) w = np.concatenate((yk, rh), axis=0) M, N = B.shape if (M > N): raise ValueError("over-specification of conditions") elif (M < N): return _find_smoothest(xk, yk, order, None, B) else: return scipy.linalg.solve(B, w) # If conds is None, then use the not_a_knot condition # at K-1 farthest separated points in the interval def _find_not_a_knot(xk, yk, order, conds, B): raise NotImplementedError return _find_user(xk, yk, order, conds, B) # If conds is None, then ensure zero-valued second # derivative at K-1 farthest separated points def _find_natural(xk, yk, order, conds, B): raise NotImplementedError return _find_user(xk, yk, order, conds, B) # If conds is None, then ensure zero-valued first # derivative at K-1 farthest separated points def _find_clamped(xk, yk, order, conds, B): raise NotImplementedError return _find_user(xk, yk, order, conds, B) def _find_fixed(xk, yk, order, conds, B): raise NotImplementedError return _find_user(xk, yk, order, conds, B) # If conds is None, then use coefficient periodicity # If conds is 'function' then use function periodicity def _find_periodic(xk, yk, order, conds, B): raise NotImplementedError return _find_user(xk, yk, order, conds, B) # Doesn't use conds def _find_symmetric(xk, yk, order, conds, B): raise NotImplementedError return _find_user(xk, yk, order, conds, B) # conds is a dictionary with multiple values def _find_mixed(xk, yk, order, conds, B): raise NotImplementedError return _find_user(xk, yk, order, conds, B) def splmake(xk, yk, order=3, kind='smoothest', conds=None): """ Return a representation of a spline given data-points at internal knots Parameters ---------- xk : array_like The input array of x values of rank 1 yk : array_like The input array of y values of rank N. `yk` can be an N-d array to represent more than one curve, through the same `xk` points. The first dimension is assumed to be the interpolating dimension and is the same length of `xk`. order : int, optional Order of the spline kind : str, optional Can be 'smoothest', 'not_a_knot', 'fixed', 'clamped', 'natural', 'periodic', 'symmetric', 'user', 'mixed' and it is ignored if order < 2 conds : optional Conds Returns ------- splmake : tuple Return a (`xk`, `cvals`, `k`) representation of a spline given data-points where the (internal) knots are at the data-points. """ yk = np.asanyarray(yk) order = int(order) if order < 0: raise ValueError("order must not be negative") if order == 0: return xk, yk[:-1], order elif order == 1: return xk, yk, order try: func = eval('_find_%s' % kind) except: raise NotImplementedError # the constraint matrix B = _fitpack._bsplmat(order, xk) coefs = func(xk, yk, order, conds, B) return xk, coefs, order def spleval(xck, xnew, deriv=0): """ Evaluate a fixed spline represented by the given tuple at the new x-values The `xj` values are the interior knot points. The approximation region is `xj[0]` to `xj[-1]`. If N+1 is the length of `xj`, then `cvals` should have length N+k where `k` is the order of the spline. Parameters ---------- (xj, cvals, k) : tuple Parameters that define the fixed spline xj : array_like Interior knot points cvals : array_like Curvature k : int Order of the spline xnew : array_like Locations to calculate spline deriv : int Deriv Returns ------- spleval : ndarray If `cvals` represents more than one curve (`cvals.ndim` > 1) and/or `xnew` is N-d, then the result is `xnew.shape` + `cvals.shape[1:]` providing the interpolation of multiple curves. Notes ----- Internally, an additional `k`-1 knot points are added on either side of the spline. """ (xj,cvals,k) = xck oldshape = np.shape(xnew) xx = np.ravel(xnew) sh = cvals.shape[1:] res = np.empty(xx.shape + sh, dtype=cvals.dtype) for index in np.ndindex(*sh): sl = (slice(None),)+index if issubclass(cvals.dtype.type, np.complexfloating): res[sl].real = _fitpack._bspleval(xx,xj,cvals.real[sl],k,deriv) res[sl].imag = _fitpack._bspleval(xx,xj,cvals.imag[sl],k,deriv) else: res[sl] = _fitpack._bspleval(xx,xj,cvals[sl],k,deriv) res.shape = oldshape + sh return res def spltopp(xk, cvals, k): """Return a piece-wise polynomial object from a fixed-spline tuple. """ return ppform.fromspline(xk, cvals, k) def spline(xk, yk, xnew, order=3, kind='smoothest', conds=None): """ Interpolate a curve at new points using a spline fit Parameters ---------- xk, yk : array_like The x and y values that define the curve. xnew : array_like The x values where spline should estimate the y values. order : int Default is 3. kind : string One of {'smoothest'} conds : Don't know Don't know Returns ------- spline : ndarray An array of y values; the spline evaluated at the positions `xnew`. """ return spleval(splmake(xk,yk,order=order,kind=kind,conds=conds),xnew)
bsd-3-clause
McIntyre-Lab/papers
newman_events_2017/python_workflow/programs/build_intron2border_junction_index.py
1
5945
#!/usr/bin/env python3 ####################################################################################################################### # # DATE: 2017-12-15 # NAME: build_Event2Transcript_index.py # AUTHOR: Jeremy R. B. Newman ([email protected]) # # DESCRIPTION: This script creates an intron-to-border junction index file used by Event Analysis to report # the read coverage of introns, their associated border junctions and flanking exonic regions (fusions), to aid # the user in deciding whether there is evidence on intron retention, alternative/novel splice usage, etc. # It takes the annotation CSVs for junctions, exonic regions and introns to assemble a complete intron/border index, # where each border junction and intron are assigned to a single intron event, flanked by its neighboring # exonic regions. Where the exonic regions of intron events can be assigned to multiple genes, then the output of this # intron event is suppressed, to avoid instances of overlapping intron events. # # REQUIRED PACKAGES: pandas (tested with v0.19.2) # argparse (tested with v1.1) # logging (tested with v0.5.1.2) # ####################################################################################################################### # Import required packages import pandas as pd import logging import argparse import sqlite3 def getOptions(): # Parse command line arguments parser = argparse.ArgumentParser(description="Generate an intron-to-border-junction index file for" "interpreting read coverage of intronic regions") parser.add_argument('--intron-annotation-file', dest="inIntrons", required=True, help="Input intron annotation CSV") parser.add_argument("--junction-annotation-file", dest="inJunctions", required=True, help="Input junction annotation CSV") parser.add_argument("--output-intron-index", dest="outCSV", required=True, help="Output event index CSV") args = parser.parse_args() return args def main(): # Connect to SQL database con = sqlite3.connect(":memory:") cur = con.cursor() # Import intron and junction annotations logger.info("Importing intron and junction annotations") intronDF = pd.read_csv(args.inIntrons, usecols=('intron_id','chr','intron_start','intron_stop','gene_id', 'exonic_region_id_5prime','exonic_region_id_3prime')) juncDF = pd.read_csv(args.inJunctions, usecols=('junction_id','chr','donor_stop','acceptor_start','transcript_id', 'gene_id','flag_border_junction')) # Convert to SQL tables intronDF.to_sql("intronInfo", con, if_exists="replace") juncDF.to_sql("juncInfo", con, if_exists="replace") # So border junctions and introns can be merged, donor_stop and acceptor start need to renamed to intron_start # and intron_stop respectively. When the "donor exon" is an intron, donor_stop = intron_stop # When the "acceptor exon" is an intron, acceptor_start = intron_start # I am going to first map 5' border junctions to the 5' end of introns, then 3' # border junctions for the 3' end of the introns. # First, I want to expand concatenated gene IDs. Junctions with multiple gene ID shouldn't be retained in the # final output, but iterate over these for completeness cur.execute("""Select junction_id, chr , donor_stop , acceptor_start , gene_id from juncInfo WHERE flag_border_junction = 1""") allBorders = cur.fetchall() cur.execute("""CREATE TABLE IF NOT EXISTS borderInfo (junction_id TEXT, chr TEXT, donor_stop INT, acceptor_start INT, gene_id TEXT)""") for border in allBorders: genes = border[4].split("|") for gn in genes: cur.execute("INSERT INTO borderInfo VALUES(:junction_id, :chr, :donor_stop, :acceptor_start, :gene_id)", {"junction_id": border[0], "chr": border[1], "donor_stop": border[2], "acceptor_start": border[3], "gene_id":gn}) # Merge INNER with intron table on chromosome, gene, and acceptor_start (as intron_start) cur.execute("CREATE TABLE intronWstart AS SELECT in1.intron_id, in1.chr, in1.intron_start, in1.intron_stop, " "in1.gene_id, in1.exonic_region_id_5prime, in2.junction_id AS border_junction_id_5prime " "FROM intronInfo in1 INNER JOIN borderInfo in2 " "ON in1.chr = in2.chr AND in1.gene_id = in2.gene_id AND in1.intron_start = in2.acceptor_start ;") # Merge INNER with intron table on chromosome, gene, and donor_stop (as intron_stop) cur.execute("CREATE TABLE intronWstop AS SELECT in1.intron_id, in1.chr, in1.gene_id, " "in1.exonic_region_id_3prime, in2.junction_id AS border_junction_id_3prime " "FROM intronInfo in1 INNER JOIN borderInfo in2 " "ON in1.chr = in2.chr AND in1.gene_id = in2.gene_id AND in1.intron_stop = in2.donor_stop ;") cur.execute("CREATE TABLE intronBorderIndex AS SELECT in1.*, in2.exonic_region_id_3prime," "in2.border_junction_id_3prime FROM intronWstart in1 " "INNER JOIN intronWstop in2 ON in1.gene_id = in2.gene_id AND in1.intron_id = in2.intron_id ;") intronBorderIndexDF = pd.read_sql("SELECT * FROM intronBorderIndex ORDER BY chr, intron_start, intron_stop ;", con) # Write output index with open(args.outCSV, 'w') as outIndex: intronBorderIndexDF.to_csv(outIndex, encoding='utf-8', index=False) if __name__ == '__main__': # Parse command line arguments global args args = getOptions() # Setting up logger logger = logging.getLogger() logger.info('Starting script') # Calling main script main() logger.info('Script complete: index created!')
lgpl-3.0
LooseTerrifyingSpaceMonkey/DecMeg2014
src/benchmark_pooling.py
1
3692
"""DecMeg2014 example code. Simple prediction of the class labels of the test set by: - pooling all the triaining trials of all subjects in one dataset. - Extracting the MEG data in the first 500ms from when the stimulus starts. - Using a linear classifier (logistic regression). """ import numpy as np from sklearn.linear_model import LogisticRegression from scipy.io import loadmat def create_features(XX, tmin, tmax, sfreq, tmin_original=-0.5): """Creation of the feature space: - restricting the time window of MEG data to [tmin, tmax]sec. - Concatenating the 306 timeseries of each trial in one long vector. - Normalizing each feature independently (z-scoring). """ print "Applying the desired time window." beginning = np.round((tmin - tmin_original) * sfreq).astype(np.int) end = np.round((tmax - tmin_original) * sfreq).astype(np.int) XX = XX[:, :, beginning:end].copy() print "2D Reshaping: concatenating all 306 timeseries." XX = XX.reshape(XX.shape[0], XX.shape[1] * XX.shape[2]) print "Features Normalization." XX -= XX.mean(0) XX = np.nan_to_num(XX / XX.std(0)) return XX if __name__ == '__main__': print "DecMeg2014: https://www.kaggle.com/c/decoding-the-human-brain" print subjects_train = range(1, 7) # use range(1, 17) for all subjects print "Training on subjects", subjects_train # We throw away all the MEG data outside the first 0.5sec from when # the visual stimulus start: tmin = 0.0 tmax = 0.500 print "Restricting MEG data to the interval [%s, %s]sec." % (tmin, tmax) X_train = [] y_train = [] X_test = [] ids_test = [] print print "Creating the trainset." for subject in subjects_train: filename = '../data/mat/train_subject%02d.mat' % subject print "Loading", filename data = loadmat(filename, squeeze_me=True) XX = data['X'] yy = data['y'] sfreq = data['sfreq'] tmin_original = data['tmin'] print "Dataset summary:" print "XX:", XX.shape print "yy:", yy.shape print "sfreq:", sfreq XX = create_features(XX, tmin, tmax, sfreq) X_train.append(XX) y_train.append(yy) X_train = np.vstack(X_train) y_train = np.concatenate(y_train) print "Trainset:", X_train.shape print print "Creating the testset." subjects_test = range(17, 24) for subject in subjects_test: filename = '../data/mat/test_subject%02d.mat' % subject print "Loading", filename data = loadmat(filename, squeeze_me=True) XX = data['X'] ids = data['Id'] sfreq = data['sfreq'] tmin_original = data['tmin'] print "Dataset summary:" print "XX:", XX.shape print "ids:", ids.shape print "sfreq:", sfreq XX = create_features(XX, tmin, tmax, sfreq) X_test.append(XX) ids_test.append(ids) X_test = np.vstack(X_test) ids_test = np.concatenate(ids_test) print "Testset:", X_test.shape print clf = LogisticRegression(random_state=0) # Beware! You need 10Gb RAM to train LogisticRegression on all 16 subjects! print "Classifier:" print clf print "Training." clf.fit(X_train, y_train) print "Predicting." y_pred = clf.predict(X_test) print filename_submission = "../output/submissionBenchmarkPooling25s.csv" print "Creating submission file", filename_submission f = open(filename_submission, "w") print >> f, "Id,Prediction" for i in range(len(y_pred)): print >> f, str(ids_test[i]) + "," + str(y_pred[i]) f.close() print "Done."
gpl-2.0
kushalbhola/MyStuff
Practice/PythonApplication/env/Lib/site-packages/pandas/tests/io/parser/test_comment.py
2
3819
""" Tests that comments are properly handled during parsing for all of the parsers defined in parsers.py """ from io import StringIO import numpy as np import pytest from pandas import DataFrame import pandas.util.testing as tm @pytest.mark.parametrize("na_values", [None, ["NaN"]]) def test_comment(all_parsers, na_values): parser = all_parsers data = """A,B,C 1,2.,4.#hello world 5.,NaN,10.0 """ expected = DataFrame( [[1.0, 2.0, 4.0], [5.0, np.nan, 10.0]], columns=["A", "B", "C"] ) result = parser.read_csv(StringIO(data), comment="#", na_values=na_values) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "read_kwargs", [dict(), dict(lineterminator="*"), dict(delim_whitespace=True)] ) def test_line_comment(all_parsers, read_kwargs): parser = all_parsers data = """# empty A,B,C 1,2.,4.#hello world #ignore this line 5.,NaN,10.0 """ if read_kwargs.get("delim_whitespace"): data = data.replace(",", " ") elif read_kwargs.get("lineterminator"): if parser.engine != "c": pytest.skip("Custom terminator not supported with Python engine") data = data.replace("\n", read_kwargs.get("lineterminator")) read_kwargs["comment"] = "#" result = parser.read_csv(StringIO(data), **read_kwargs) expected = DataFrame( [[1.0, 2.0, 4.0], [5.0, np.nan, 10.0]], columns=["A", "B", "C"] ) tm.assert_frame_equal(result, expected) def test_comment_skiprows(all_parsers): parser = all_parsers data = """# empty random line # second empty line 1,2,3 A,B,C 1,2.,4. 5.,NaN,10.0 """ # This should ignore the first four lines (including comments). expected = DataFrame( [[1.0, 2.0, 4.0], [5.0, np.nan, 10.0]], columns=["A", "B", "C"] ) result = parser.read_csv(StringIO(data), comment="#", skiprows=4) tm.assert_frame_equal(result, expected) def test_comment_header(all_parsers): parser = all_parsers data = """# empty # second empty line 1,2,3 A,B,C 1,2.,4. 5.,NaN,10.0 """ # Header should begin at the second non-comment line. expected = DataFrame( [[1.0, 2.0, 4.0], [5.0, np.nan, 10.0]], columns=["A", "B", "C"] ) result = parser.read_csv(StringIO(data), comment="#", header=1) tm.assert_frame_equal(result, expected) def test_comment_skiprows_header(all_parsers): parser = all_parsers data = """# empty # second empty line # third empty line X,Y,Z 1,2,3 A,B,C 1,2.,4. 5.,NaN,10.0 """ # Skiprows should skip the first 4 lines (including comments), # while header should start from the second non-commented line, # starting with line 5. expected = DataFrame( [[1.0, 2.0, 4.0], [5.0, np.nan, 10.0]], columns=["A", "B", "C"] ) result = parser.read_csv(StringIO(data), comment="#", skiprows=4, header=1) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("comment_char", ["#", "~", "&", "^", "*", "@"]) def test_custom_comment_char(all_parsers, comment_char): parser = all_parsers data = "a,b,c\n1,2,3#ignore this!\n4,5,6#ignorethistoo" result = parser.read_csv( StringIO(data.replace("#", comment_char)), comment=comment_char ) expected = DataFrame([[1, 2, 3], [4, 5, 6]], columns=["a", "b", "c"]) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("header", ["infer", None]) def test_comment_first_line(all_parsers, header): # see gh-4623 parser = all_parsers data = "# notes\na,b,c\n# more notes\n1,2,3" if header is None: expected = DataFrame({0: ["a", "1"], 1: ["b", "2"], 2: ["c", "3"]}) else: expected = DataFrame([[1, 2, 3]], columns=["a", "b", "c"]) result = parser.read_csv(StringIO(data), comment="#", header=header) tm.assert_frame_equal(result, expected)
apache-2.0
pnedunuri/scikit-learn
examples/applications/plot_model_complexity_influence.py
323
6372
""" ========================== Model Complexity Influence ========================== Demonstrate how model complexity influences both prediction accuracy and computational performance. The dataset is the Boston Housing dataset (resp. 20 Newsgroups) for regression (resp. classification). For each class of models we make the model complexity vary through the choice of relevant model parameters and measure the influence on both computational performance (latency) and predictive power (MSE or Hamming Loss). """ print(__doc__) # Author: Eustache Diemert <[email protected]> # License: BSD 3 clause import time import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.axes_grid1.parasite_axes import host_subplot from mpl_toolkits.axisartist.axislines import Axes from scipy.sparse.csr import csr_matrix from sklearn import datasets from sklearn.utils import shuffle from sklearn.metrics import mean_squared_error from sklearn.svm.classes import NuSVR from sklearn.ensemble.gradient_boosting import GradientBoostingRegressor from sklearn.linear_model.stochastic_gradient import SGDClassifier from sklearn.metrics import hamming_loss ############################################################################### # Routines # initialize random generator np.random.seed(0) def generate_data(case, sparse=False): """Generate regression/classification data.""" bunch = None if case == 'regression': bunch = datasets.load_boston() elif case == 'classification': bunch = datasets.fetch_20newsgroups_vectorized(subset='all') X, y = shuffle(bunch.data, bunch.target) offset = int(X.shape[0] * 0.8) X_train, y_train = X[:offset], y[:offset] X_test, y_test = X[offset:], y[offset:] if sparse: X_train = csr_matrix(X_train) X_test = csr_matrix(X_test) else: X_train = np.array(X_train) X_test = np.array(X_test) y_test = np.array(y_test) y_train = np.array(y_train) data = {'X_train': X_train, 'X_test': X_test, 'y_train': y_train, 'y_test': y_test} return data def benchmark_influence(conf): """ Benchmark influence of :changing_param: on both MSE and latency. """ prediction_times = [] prediction_powers = [] complexities = [] for param_value in conf['changing_param_values']: conf['tuned_params'][conf['changing_param']] = param_value estimator = conf['estimator'](**conf['tuned_params']) print("Benchmarking %s" % estimator) estimator.fit(conf['data']['X_train'], conf['data']['y_train']) conf['postfit_hook'](estimator) complexity = conf['complexity_computer'](estimator) complexities.append(complexity) start_time = time.time() for _ in range(conf['n_samples']): y_pred = estimator.predict(conf['data']['X_test']) elapsed_time = (time.time() - start_time) / float(conf['n_samples']) prediction_times.append(elapsed_time) pred_score = conf['prediction_performance_computer']( conf['data']['y_test'], y_pred) prediction_powers.append(pred_score) print("Complexity: %d | %s: %.4f | Pred. Time: %fs\n" % ( complexity, conf['prediction_performance_label'], pred_score, elapsed_time)) return prediction_powers, prediction_times, complexities def plot_influence(conf, mse_values, prediction_times, complexities): """ Plot influence of model complexity on both accuracy and latency. """ plt.figure(figsize=(12, 6)) host = host_subplot(111, axes_class=Axes) plt.subplots_adjust(right=0.75) par1 = host.twinx() host.set_xlabel('Model Complexity (%s)' % conf['complexity_label']) y1_label = conf['prediction_performance_label'] y2_label = "Time (s)" host.set_ylabel(y1_label) par1.set_ylabel(y2_label) p1, = host.plot(complexities, mse_values, 'b-', label="prediction error") p2, = par1.plot(complexities, prediction_times, 'r-', label="latency") host.legend(loc='upper right') host.axis["left"].label.set_color(p1.get_color()) par1.axis["right"].label.set_color(p2.get_color()) plt.title('Influence of Model Complexity - %s' % conf['estimator'].__name__) plt.show() def _count_nonzero_coefficients(estimator): a = estimator.coef_.toarray() return np.count_nonzero(a) ############################################################################### # main code regression_data = generate_data('regression') classification_data = generate_data('classification', sparse=True) configurations = [ {'estimator': SGDClassifier, 'tuned_params': {'penalty': 'elasticnet', 'alpha': 0.001, 'loss': 'modified_huber', 'fit_intercept': True}, 'changing_param': 'l1_ratio', 'changing_param_values': [0.25, 0.5, 0.75, 0.9], 'complexity_label': 'non_zero coefficients', 'complexity_computer': _count_nonzero_coefficients, 'prediction_performance_computer': hamming_loss, 'prediction_performance_label': 'Hamming Loss (Misclassification Ratio)', 'postfit_hook': lambda x: x.sparsify(), 'data': classification_data, 'n_samples': 30}, {'estimator': NuSVR, 'tuned_params': {'C': 1e3, 'gamma': 2 ** -15}, 'changing_param': 'nu', 'changing_param_values': [0.1, 0.25, 0.5, 0.75, 0.9], 'complexity_label': 'n_support_vectors', 'complexity_computer': lambda x: len(x.support_vectors_), 'data': regression_data, 'postfit_hook': lambda x: x, 'prediction_performance_computer': mean_squared_error, 'prediction_performance_label': 'MSE', 'n_samples': 30}, {'estimator': GradientBoostingRegressor, 'tuned_params': {'loss': 'ls'}, 'changing_param': 'n_estimators', 'changing_param_values': [10, 50, 100, 200, 500], 'complexity_label': 'n_trees', 'complexity_computer': lambda x: x.n_estimators, 'data': regression_data, 'postfit_hook': lambda x: x, 'prediction_performance_computer': mean_squared_error, 'prediction_performance_label': 'MSE', 'n_samples': 30}, ] for conf in configurations: prediction_performances, prediction_times, complexities = \ benchmark_influence(conf) plot_influence(conf, prediction_performances, prediction_times, complexities)
bsd-3-clause
liu-jc/reinforcement-learning
lib/plotting.py
4
3457
import matplotlib import numpy as np import pandas as pd from collections import namedtuple from matplotlib import pyplot as plt from mpl_toolkits.mplot3d import Axes3D EpisodeStats = namedtuple("Stats",["episode_lengths", "episode_rewards"]) def plot_cost_to_go_mountain_car(env, estimator, num_tiles=20): x = np.linspace(env.observation_space.low[0], env.observation_space.high[0], num=num_tiles) y = np.linspace(env.observation_space.low[1], env.observation_space.high[1], num=num_tiles) X, Y = np.meshgrid(x, y) Z = np.apply_along_axis(lambda _: -np.max(estimator.predict(_)), 2, np.dstack([X, Y])) fig = plt.figure(figsize=(10, 5)) ax = fig.add_subplot(111, projection='3d') surf = ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=matplotlib.cm.coolwarm, vmin=-1.0, vmax=1.0) ax.set_xlabel('Position') ax.set_ylabel('Velocity') ax.set_zlabel('Value') ax.set_title("Mountain \"Cost To Go\" Function") fig.colorbar(surf) plt.show() def plot_value_function(V, title="Value Function"): """ Plots the value function as a surface plot. """ min_x = min(k[0] for k in V.keys()) max_x = max(k[0] for k in V.keys()) min_y = min(k[1] for k in V.keys()) max_y = max(k[1] for k in V.keys()) x_range = np.arange(min_x, max_x + 1) y_range = np.arange(min_y, max_y + 1) X, Y = np.meshgrid(x_range, y_range) # Find value for all (x, y) coordinates Z_noace = np.apply_along_axis(lambda _: V[(_[0], _[1], False)], 2, np.dstack([X, Y])) Z_ace = np.apply_along_axis(lambda _: V[(_[0], _[1], True)], 2, np.dstack([X, Y])) def plot_surface(X, Y, Z, title): fig = plt.figure(figsize=(20, 10)) ax = fig.add_subplot(111, projection='3d') surf = ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=matplotlib.cm.coolwarm, vmin=-1.0, vmax=1.0) ax.set_xlabel('Player Sum') ax.set_ylabel('Dealer Showing') ax.set_zlabel('Value') ax.set_title(title) ax.view_init(ax.elev, -120) fig.colorbar(surf) plt.show() plot_surface(X, Y, Z_noace, "{} (No Usable Ace)".format(title)) plot_surface(X, Y, Z_ace, "{} (Usable Ace)".format(title)) def plot_episode_stats(stats, smoothing_window=10, noshow=False): # Plot the episode length over time fig1 = plt.figure(figsize=(10,5)) plt.plot(stats.episode_lengths) plt.xlabel("Episode") plt.ylabel("Episode Length") plt.title("Episode Length over Time") if noshow: plt.close(fig1) else: plt.show(fig1) # Plot the episode reward over time fig2 = plt.figure(figsize=(10,5)) rewards_smoothed = pd.Series(stats.episode_rewards).rolling(smoothing_window, min_periods=smoothing_window).mean() plt.plot(rewards_smoothed) plt.xlabel("Episode") plt.ylabel("Episode Reward (Smoothed)") plt.title("Episode Reward over Time (Smoothed over window size {})".format(smoothing_window)) if noshow: plt.close(fig2) else: plt.show(fig2) # Plot time steps and episode number fig3 = plt.figure(figsize=(10,5)) plt.plot(np.cumsum(stats.episode_lengths), np.arange(len(stats.episode_lengths))) plt.xlabel("Time Steps") plt.ylabel("Episode") plt.title("Episode per time step") if noshow: plt.close(fig3) else: plt.show(fig3) return fig1, fig2, fig3
mit
r-mart/scikit-learn
sklearn/feature_extraction/text.py
110
50157
# -*- coding: utf-8 -*- # Authors: Olivier Grisel <[email protected]> # Mathieu Blondel <[email protected]> # Lars Buitinck <[email protected]> # Robert Layton <[email protected]> # Jochen Wersdörfer <[email protected]> # Roman Sinayev <[email protected]> # # License: BSD 3 clause """ The :mod:`sklearn.feature_extraction.text` submodule gathers utilities to build feature vectors from text documents. """ from __future__ import unicode_literals import array from collections import Mapping, defaultdict import numbers from operator import itemgetter import re import unicodedata import numpy as np import scipy.sparse as sp from ..base import BaseEstimator, TransformerMixin from ..externals import six from ..externals.six.moves import xrange from ..preprocessing import normalize from .hashing import FeatureHasher from .stop_words import ENGLISH_STOP_WORDS from ..utils import deprecated from ..utils.fixes import frombuffer_empty, bincount from ..utils.validation import check_is_fitted __all__ = ['CountVectorizer', 'ENGLISH_STOP_WORDS', 'TfidfTransformer', 'TfidfVectorizer', 'strip_accents_ascii', 'strip_accents_unicode', 'strip_tags'] def strip_accents_unicode(s): """Transform accentuated unicode symbols into their simple counterpart Warning: the python-level loop and join operations make this implementation 20 times slower than the strip_accents_ascii basic normalization. See also -------- strip_accents_ascii Remove accentuated char for any unicode symbol that has a direct ASCII equivalent. """ return ''.join([c for c in unicodedata.normalize('NFKD', s) if not unicodedata.combining(c)]) def strip_accents_ascii(s): """Transform accentuated unicode symbols into ascii or nothing Warning: this solution is only suited for languages that have a direct transliteration to ASCII symbols. See also -------- strip_accents_unicode Remove accentuated char for any unicode symbol. """ nkfd_form = unicodedata.normalize('NFKD', s) return nkfd_form.encode('ASCII', 'ignore').decode('ASCII') def strip_tags(s): """Basic regexp based HTML / XML tag stripper function For serious HTML/XML preprocessing you should rather use an external library such as lxml or BeautifulSoup. """ return re.compile(r"<([^>]+)>", flags=re.UNICODE).sub(" ", s) def _check_stop_list(stop): if stop == "english": return ENGLISH_STOP_WORDS elif isinstance(stop, six.string_types): raise ValueError("not a built-in stop list: %s" % stop) elif stop is None: return None else: # assume it's a collection return frozenset(stop) class VectorizerMixin(object): """Provides common code for text vectorizers (tokenization logic).""" _white_spaces = re.compile(r"\s\s+") def decode(self, doc): """Decode the input into a string of unicode symbols The decoding strategy depends on the vectorizer parameters. """ if self.input == 'filename': with open(doc, 'rb') as fh: doc = fh.read() elif self.input == 'file': doc = doc.read() if isinstance(doc, bytes): doc = doc.decode(self.encoding, self.decode_error) if doc is np.nan: raise ValueError("np.nan is an invalid document, expected byte or " "unicode string.") return doc def _word_ngrams(self, tokens, stop_words=None): """Turn tokens into a sequence of n-grams after stop words filtering""" # handle stop words if stop_words is not None: tokens = [w for w in tokens if w not in stop_words] # handle token n-grams min_n, max_n = self.ngram_range if max_n != 1: original_tokens = tokens tokens = [] n_original_tokens = len(original_tokens) for n in xrange(min_n, min(max_n + 1, n_original_tokens + 1)): for i in xrange(n_original_tokens - n + 1): tokens.append(" ".join(original_tokens[i: i + n])) return tokens def _char_ngrams(self, text_document): """Tokenize text_document into a sequence of character n-grams""" # normalize white spaces text_document = self._white_spaces.sub(" ", text_document) text_len = len(text_document) ngrams = [] min_n, max_n = self.ngram_range for n in xrange(min_n, min(max_n + 1, text_len + 1)): for i in xrange(text_len - n + 1): ngrams.append(text_document[i: i + n]) return ngrams def _char_wb_ngrams(self, text_document): """Whitespace sensitive char-n-gram tokenization. Tokenize text_document into a sequence of character n-grams excluding any whitespace (operating only inside word boundaries)""" # normalize white spaces text_document = self._white_spaces.sub(" ", text_document) min_n, max_n = self.ngram_range ngrams = [] for w in text_document.split(): w = ' ' + w + ' ' w_len = len(w) for n in xrange(min_n, max_n + 1): offset = 0 ngrams.append(w[offset:offset + n]) while offset + n < w_len: offset += 1 ngrams.append(w[offset:offset + n]) if offset == 0: # count a short word (w_len < n) only once break return ngrams def build_preprocessor(self): """Return a function to preprocess the text before tokenization""" if self.preprocessor is not None: return self.preprocessor # unfortunately python functools package does not have an efficient # `compose` function that would have allowed us to chain a dynamic # number of functions. However the cost of a lambda call is a few # hundreds of nanoseconds which is negligible when compared to the # cost of tokenizing a string of 1000 chars for instance. noop = lambda x: x # accent stripping if not self.strip_accents: strip_accents = noop elif callable(self.strip_accents): strip_accents = self.strip_accents elif self.strip_accents == 'ascii': strip_accents = strip_accents_ascii elif self.strip_accents == 'unicode': strip_accents = strip_accents_unicode else: raise ValueError('Invalid value for "strip_accents": %s' % self.strip_accents) if self.lowercase: return lambda x: strip_accents(x.lower()) else: return strip_accents def build_tokenizer(self): """Return a function that splits a string into a sequence of tokens""" if self.tokenizer is not None: return self.tokenizer token_pattern = re.compile(self.token_pattern) return lambda doc: token_pattern.findall(doc) def get_stop_words(self): """Build or fetch the effective stop words list""" return _check_stop_list(self.stop_words) def build_analyzer(self): """Return a callable that handles preprocessing and tokenization""" if callable(self.analyzer): return self.analyzer preprocess = self.build_preprocessor() if self.analyzer == 'char': return lambda doc: self._char_ngrams(preprocess(self.decode(doc))) elif self.analyzer == 'char_wb': return lambda doc: self._char_wb_ngrams( preprocess(self.decode(doc))) elif self.analyzer == 'word': stop_words = self.get_stop_words() tokenize = self.build_tokenizer() return lambda doc: self._word_ngrams( tokenize(preprocess(self.decode(doc))), stop_words) else: raise ValueError('%s is not a valid tokenization scheme/analyzer' % self.analyzer) def _validate_vocabulary(self): vocabulary = self.vocabulary if vocabulary is not None: if not isinstance(vocabulary, Mapping): vocab = {} for i, t in enumerate(vocabulary): if vocab.setdefault(t, i) != i: msg = "Duplicate term in vocabulary: %r" % t raise ValueError(msg) vocabulary = vocab else: indices = set(six.itervalues(vocabulary)) if len(indices) != len(vocabulary): raise ValueError("Vocabulary contains repeated indices.") for i in xrange(len(vocabulary)): if i not in indices: msg = ("Vocabulary of size %d doesn't contain index " "%d." % (len(vocabulary), i)) raise ValueError(msg) if not vocabulary: raise ValueError("empty vocabulary passed to fit") self.fixed_vocabulary_ = True self.vocabulary_ = dict(vocabulary) else: self.fixed_vocabulary_ = False def _check_vocabulary(self): """Check if vocabulary is empty or missing (not fit-ed)""" msg = "%(name)s - Vocabulary wasn't fitted." check_is_fitted(self, 'vocabulary_', msg=msg), if len(self.vocabulary_) == 0: raise ValueError("Vocabulary is empty") @property @deprecated("The `fixed_vocabulary` attribute is deprecated and will be " "removed in 0.18. Please use `fixed_vocabulary_` instead.") def fixed_vocabulary(self): return self.fixed_vocabulary_ class HashingVectorizer(BaseEstimator, VectorizerMixin): """Convert a collection of text documents to a matrix of token occurrences It turns a collection of text documents into a scipy.sparse matrix holding token occurrence counts (or binary occurrence information), possibly normalized as token frequencies if norm='l1' or projected on the euclidean unit sphere if norm='l2'. This text vectorizer implementation uses the hashing trick to find the token string name to feature integer index mapping. This strategy has several advantages: - it is very low memory scalable to large datasets as there is no need to store a vocabulary dictionary in memory - it is fast to pickle and un-pickle as it holds no state besides the constructor parameters - it can be used in a streaming (partial fit) or parallel pipeline as there is no state computed during fit. There are also a couple of cons (vs using a CountVectorizer with an in-memory vocabulary): - there is no way to compute the inverse transform (from feature indices to string feature names) which can be a problem when trying to introspect which features are most important to a model. - there can be collisions: distinct tokens can be mapped to the same feature index. However in practice this is rarely an issue if n_features is large enough (e.g. 2 ** 18 for text classification problems). - no IDF weighting as this would render the transformer stateful. The hash function employed is the signed 32-bit version of Murmurhash3. Read more in the :ref:`User Guide <text_feature_extraction>`. Parameters ---------- input : string {'filename', 'file', 'content'} If 'filename', the sequence passed as an argument to fit is expected to be a list of filenames that need reading to fetch the raw content to analyze. If 'file', the sequence items must have a 'read' method (file-like object) that is called to fetch the bytes in memory. Otherwise the input is expected to be the sequence strings or bytes items are expected to be analyzed directly. encoding : string, default='utf-8' If bytes or files are given to analyze, this encoding is used to decode. decode_error : {'strict', 'ignore', 'replace'} Instruction on what to do if a byte sequence is given to analyze that contains characters not of the given `encoding`. By default, it is 'strict', meaning that a UnicodeDecodeError will be raised. Other values are 'ignore' and 'replace'. strip_accents : {'ascii', 'unicode', None} Remove accents during the preprocessing step. 'ascii' is a fast method that only works on characters that have an direct ASCII mapping. 'unicode' is a slightly slower method that works on any characters. None (default) does nothing. analyzer : string, {'word', 'char', 'char_wb'} or callable Whether the feature should be made of word or character n-grams. Option 'char_wb' creates character n-grams only from text inside word boundaries. If a callable is passed it is used to extract the sequence of features out of the raw, unprocessed input. preprocessor : callable or None (default) Override the preprocessing (string transformation) stage while preserving the tokenizing and n-grams generation steps. tokenizer : callable or None (default) Override the string tokenization step while preserving the preprocessing and n-grams generation steps. Only applies if ``analyzer == 'word'``. ngram_range : tuple (min_n, max_n), default=(1, 1) The lower and upper boundary of the range of n-values for different n-grams to be extracted. All values of n such that min_n <= n <= max_n will be used. stop_words : string {'english'}, list, or None (default) If 'english', a built-in stop word list for English is used. If a list, that list is assumed to contain stop words, all of which will be removed from the resulting tokens. Only applies if ``analyzer == 'word'``. lowercase : boolean, default=True Convert all characters to lowercase before tokenizing. token_pattern : string Regular expression denoting what constitutes a "token", only used if ``analyzer == 'word'``. The default regexp selects tokens of 2 or more alphanumeric characters (punctuation is completely ignored and always treated as a token separator). n_features : integer, default=(2 ** 20) The number of features (columns) in the output matrices. Small numbers of features are likely to cause hash collisions, but large numbers will cause larger coefficient dimensions in linear learners. norm : 'l1', 'l2' or None, optional Norm used to normalize term vectors. None for no normalization. binary: boolean, default=False. If True, all non zero counts are set to 1. This is useful for discrete probabilistic models that model binary events rather than integer counts. dtype: type, optional Type of the matrix returned by fit_transform() or transform(). non_negative : boolean, default=False Whether output matrices should contain non-negative values only; effectively calls abs on the matrix prior to returning it. When True, output values can be interpreted as frequencies. When False, output values will have expected value zero. See also -------- CountVectorizer, TfidfVectorizer """ def __init__(self, input='content', encoding='utf-8', decode_error='strict', strip_accents=None, lowercase=True, preprocessor=None, tokenizer=None, stop_words=None, token_pattern=r"(?u)\b\w\w+\b", ngram_range=(1, 1), analyzer='word', n_features=(2 ** 20), binary=False, norm='l2', non_negative=False, dtype=np.float64): self.input = input self.encoding = encoding self.decode_error = decode_error self.strip_accents = strip_accents self.preprocessor = preprocessor self.tokenizer = tokenizer self.analyzer = analyzer self.lowercase = lowercase self.token_pattern = token_pattern self.stop_words = stop_words self.n_features = n_features self.ngram_range = ngram_range self.binary = binary self.norm = norm self.non_negative = non_negative self.dtype = dtype def partial_fit(self, X, y=None): """Does nothing: this transformer is stateless. This method is just there to mark the fact that this transformer can work in a streaming setup. """ return self def fit(self, X, y=None): """Does nothing: this transformer is stateless.""" # triggers a parameter validation self._get_hasher().fit(X, y=y) return self def transform(self, X, y=None): """Transform a sequence of documents to a document-term matrix. Parameters ---------- X : iterable over raw text documents, length = n_samples Samples. Each sample must be a text document (either bytes or unicode strings, file name or file object depending on the constructor argument) which will be tokenized and hashed. y : (ignored) Returns ------- X : scipy.sparse matrix, shape = (n_samples, self.n_features) Document-term matrix. """ analyzer = self.build_analyzer() X = self._get_hasher().transform(analyzer(doc) for doc in X) if self.binary: X.data.fill(1) if self.norm is not None: X = normalize(X, norm=self.norm, copy=False) return X # Alias transform to fit_transform for convenience fit_transform = transform def _get_hasher(self): return FeatureHasher(n_features=self.n_features, input_type='string', dtype=self.dtype, non_negative=self.non_negative) def _document_frequency(X): """Count the number of non-zero values for each feature in sparse X.""" if sp.isspmatrix_csr(X): return bincount(X.indices, minlength=X.shape[1]) else: return np.diff(sp.csc_matrix(X, copy=False).indptr) class CountVectorizer(BaseEstimator, VectorizerMixin): """Convert a collection of text documents to a matrix of token counts This implementation produces a sparse representation of the counts using scipy.sparse.coo_matrix. If you do not provide an a-priori dictionary and you do not use an analyzer that does some kind of feature selection then the number of features will be equal to the vocabulary size found by analyzing the data. Read more in the :ref:`User Guide <text_feature_extraction>`. Parameters ---------- input : string {'filename', 'file', 'content'} If 'filename', the sequence passed as an argument to fit is expected to be a list of filenames that need reading to fetch the raw content to analyze. If 'file', the sequence items must have a 'read' method (file-like object) that is called to fetch the bytes in memory. Otherwise the input is expected to be the sequence strings or bytes items are expected to be analyzed directly. encoding : string, 'utf-8' by default. If bytes or files are given to analyze, this encoding is used to decode. decode_error : {'strict', 'ignore', 'replace'} Instruction on what to do if a byte sequence is given to analyze that contains characters not of the given `encoding`. By default, it is 'strict', meaning that a UnicodeDecodeError will be raised. Other values are 'ignore' and 'replace'. strip_accents : {'ascii', 'unicode', None} Remove accents during the preprocessing step. 'ascii' is a fast method that only works on characters that have an direct ASCII mapping. 'unicode' is a slightly slower method that works on any characters. None (default) does nothing. analyzer : string, {'word', 'char', 'char_wb'} or callable Whether the feature should be made of word or character n-grams. Option 'char_wb' creates character n-grams only from text inside word boundaries. If a callable is passed it is used to extract the sequence of features out of the raw, unprocessed input. Only applies if ``analyzer == 'word'``. preprocessor : callable or None (default) Override the preprocessing (string transformation) stage while preserving the tokenizing and n-grams generation steps. tokenizer : callable or None (default) Override the string tokenization step while preserving the preprocessing and n-grams generation steps. Only applies if ``analyzer == 'word'``. ngram_range : tuple (min_n, max_n) The lower and upper boundary of the range of n-values for different n-grams to be extracted. All values of n such that min_n <= n <= max_n will be used. stop_words : string {'english'}, list, or None (default) If 'english', a built-in stop word list for English is used. If a list, that list is assumed to contain stop words, all of which will be removed from the resulting tokens. Only applies if ``analyzer == 'word'``. If None, no stop words will be used. max_df can be set to a value in the range [0.7, 1.0) to automatically detect and filter stop words based on intra corpus document frequency of terms. lowercase : boolean, True by default Convert all characters to lowercase before tokenizing. token_pattern : string Regular expression denoting what constitutes a "token", only used if ``analyzer == 'word'``. The default regexp select tokens of 2 or more alphanumeric characters (punctuation is completely ignored and always treated as a token separator). max_df : float in range [0.0, 1.0] or int, default=1.0 When building the vocabulary ignore terms that have a document frequency strictly higher than the given threshold (corpus-specific stop words). If float, the parameter represents a proportion of documents, integer absolute counts. This parameter is ignored if vocabulary is not None. min_df : float in range [0.0, 1.0] or int, default=1 When building the vocabulary ignore terms that have a document frequency strictly lower than the given threshold. This value is also called cut-off in the literature. If float, the parameter represents a proportion of documents, integer absolute counts. This parameter is ignored if vocabulary is not None. max_features : int or None, default=None If not None, build a vocabulary that only consider the top max_features ordered by term frequency across the corpus. This parameter is ignored if vocabulary is not None. vocabulary : Mapping or iterable, optional Either a Mapping (e.g., a dict) where keys are terms and values are indices in the feature matrix, or an iterable over terms. If not given, a vocabulary is determined from the input documents. Indices in the mapping should not be repeated and should not have any gap between 0 and the largest index. binary : boolean, default=False If True, all non zero counts are set to 1. This is useful for discrete probabilistic models that model binary events rather than integer counts. dtype : type, optional Type of the matrix returned by fit_transform() or transform(). Attributes ---------- vocabulary_ : dict A mapping of terms to feature indices. stop_words_ : set Terms that were ignored because they either: - occurred in too many documents (`max_df`) - occurred in too few documents (`min_df`) - were cut off by feature selection (`max_features`). This is only available if no vocabulary was given. See also -------- HashingVectorizer, TfidfVectorizer Notes ----- The ``stop_words_`` attribute can get large and increase the model size when pickling. This attribute is provided only for introspection and can be safely removed using delattr or set to None before pickling. """ def __init__(self, input='content', encoding='utf-8', decode_error='strict', strip_accents=None, lowercase=True, preprocessor=None, tokenizer=None, stop_words=None, token_pattern=r"(?u)\b\w\w+\b", ngram_range=(1, 1), analyzer='word', max_df=1.0, min_df=1, max_features=None, vocabulary=None, binary=False, dtype=np.int64): self.input = input self.encoding = encoding self.decode_error = decode_error self.strip_accents = strip_accents self.preprocessor = preprocessor self.tokenizer = tokenizer self.analyzer = analyzer self.lowercase = lowercase self.token_pattern = token_pattern self.stop_words = stop_words self.max_df = max_df self.min_df = min_df if max_df < 0 or min_df < 0: raise ValueError("negative value for max_df of min_df") self.max_features = max_features if max_features is not None: if (not isinstance(max_features, numbers.Integral) or max_features <= 0): raise ValueError( "max_features=%r, neither a positive integer nor None" % max_features) self.ngram_range = ngram_range self.vocabulary = vocabulary self.binary = binary self.dtype = dtype def _sort_features(self, X, vocabulary): """Sort features by name Returns a reordered matrix and modifies the vocabulary in place """ sorted_features = sorted(six.iteritems(vocabulary)) map_index = np.empty(len(sorted_features), dtype=np.int32) for new_val, (term, old_val) in enumerate(sorted_features): map_index[new_val] = old_val vocabulary[term] = new_val return X[:, map_index] def _limit_features(self, X, vocabulary, high=None, low=None, limit=None): """Remove too rare or too common features. Prune features that are non zero in more samples than high or less documents than low, modifying the vocabulary, and restricting it to at most the limit most frequent. This does not prune samples with zero features. """ if high is None and low is None and limit is None: return X, set() # Calculate a mask based on document frequencies dfs = _document_frequency(X) tfs = np.asarray(X.sum(axis=0)).ravel() mask = np.ones(len(dfs), dtype=bool) if high is not None: mask &= dfs <= high if low is not None: mask &= dfs >= low if limit is not None and mask.sum() > limit: mask_inds = (-tfs[mask]).argsort()[:limit] new_mask = np.zeros(len(dfs), dtype=bool) new_mask[np.where(mask)[0][mask_inds]] = True mask = new_mask new_indices = np.cumsum(mask) - 1 # maps old indices to new removed_terms = set() for term, old_index in list(six.iteritems(vocabulary)): if mask[old_index]: vocabulary[term] = new_indices[old_index] else: del vocabulary[term] removed_terms.add(term) kept_indices = np.where(mask)[0] if len(kept_indices) == 0: raise ValueError("After pruning, no terms remain. Try a lower" " min_df or a higher max_df.") return X[:, kept_indices], removed_terms def _count_vocab(self, raw_documents, fixed_vocab): """Create sparse feature matrix, and vocabulary where fixed_vocab=False """ if fixed_vocab: vocabulary = self.vocabulary_ else: # Add a new value when a new vocabulary item is seen vocabulary = defaultdict() vocabulary.default_factory = vocabulary.__len__ analyze = self.build_analyzer() j_indices = _make_int_array() indptr = _make_int_array() indptr.append(0) for doc in raw_documents: for feature in analyze(doc): try: j_indices.append(vocabulary[feature]) except KeyError: # Ignore out-of-vocabulary items for fixed_vocab=True continue indptr.append(len(j_indices)) if not fixed_vocab: # disable defaultdict behaviour vocabulary = dict(vocabulary) if not vocabulary: raise ValueError("empty vocabulary; perhaps the documents only" " contain stop words") j_indices = frombuffer_empty(j_indices, dtype=np.intc) indptr = np.frombuffer(indptr, dtype=np.intc) values = np.ones(len(j_indices)) X = sp.csr_matrix((values, j_indices, indptr), shape=(len(indptr) - 1, len(vocabulary)), dtype=self.dtype) X.sum_duplicates() return vocabulary, X def fit(self, raw_documents, y=None): """Learn a vocabulary dictionary of all tokens in the raw documents. Parameters ---------- raw_documents : iterable An iterable which yields either str, unicode or file objects. Returns ------- self """ self.fit_transform(raw_documents) return self def fit_transform(self, raw_documents, y=None): """Learn the vocabulary dictionary and return term-document matrix. This is equivalent to fit followed by transform, but more efficiently implemented. Parameters ---------- raw_documents : iterable An iterable which yields either str, unicode or file objects. Returns ------- X : array, [n_samples, n_features] Document-term matrix. """ # We intentionally don't call the transform method to make # fit_transform overridable without unwanted side effects in # TfidfVectorizer. self._validate_vocabulary() max_df = self.max_df min_df = self.min_df max_features = self.max_features vocabulary, X = self._count_vocab(raw_documents, self.fixed_vocabulary_) if self.binary: X.data.fill(1) if not self.fixed_vocabulary_: X = self._sort_features(X, vocabulary) n_doc = X.shape[0] max_doc_count = (max_df if isinstance(max_df, numbers.Integral) else max_df * n_doc) min_doc_count = (min_df if isinstance(min_df, numbers.Integral) else min_df * n_doc) if max_doc_count < min_doc_count: raise ValueError( "max_df corresponds to < documents than min_df") X, self.stop_words_ = self._limit_features(X, vocabulary, max_doc_count, min_doc_count, max_features) self.vocabulary_ = vocabulary return X def transform(self, raw_documents): """Transform documents to document-term matrix. Extract token counts out of raw text documents using the vocabulary fitted with fit or the one provided to the constructor. Parameters ---------- raw_documents : iterable An iterable which yields either str, unicode or file objects. Returns ------- X : sparse matrix, [n_samples, n_features] Document-term matrix. """ if not hasattr(self, 'vocabulary_'): self._validate_vocabulary() self._check_vocabulary() # use the same matrix-building strategy as fit_transform _, X = self._count_vocab(raw_documents, fixed_vocab=True) if self.binary: X.data.fill(1) return X def inverse_transform(self, X): """Return terms per document with nonzero entries in X. Parameters ---------- X : {array, sparse matrix}, shape = [n_samples, n_features] Returns ------- X_inv : list of arrays, len = n_samples List of arrays of terms. """ self._check_vocabulary() if sp.issparse(X): # We need CSR format for fast row manipulations. X = X.tocsr() else: # We need to convert X to a matrix, so that the indexing # returns 2D objects X = np.asmatrix(X) n_samples = X.shape[0] terms = np.array(list(self.vocabulary_.keys())) indices = np.array(list(self.vocabulary_.values())) inverse_vocabulary = terms[np.argsort(indices)] return [inverse_vocabulary[X[i, :].nonzero()[1]].ravel() for i in range(n_samples)] def get_feature_names(self): """Array mapping from feature integer indices to feature name""" self._check_vocabulary() return [t for t, i in sorted(six.iteritems(self.vocabulary_), key=itemgetter(1))] def _make_int_array(): """Construct an array.array of a type suitable for scipy.sparse indices.""" return array.array(str("i")) class TfidfTransformer(BaseEstimator, TransformerMixin): """Transform a count matrix to a normalized tf or tf-idf representation Tf means term-frequency while tf-idf means term-frequency times inverse document-frequency. This is a common term weighting scheme in information retrieval, that has also found good use in document classification. The goal of using tf-idf instead of the raw frequencies of occurrence of a token in a given document is to scale down the impact of tokens that occur very frequently in a given corpus and that are hence empirically less informative than features that occur in a small fraction of the training corpus. The actual formula used for tf-idf is tf * (idf + 1) = tf + tf * idf, instead of tf * idf. The effect of this is that terms with zero idf, i.e. that occur in all documents of a training set, will not be entirely ignored. The formulas used to compute tf and idf depend on parameter settings that correspond to the SMART notation used in IR, as follows: Tf is "n" (natural) by default, "l" (logarithmic) when sublinear_tf=True. Idf is "t" when use_idf is given, "n" (none) otherwise. Normalization is "c" (cosine) when norm='l2', "n" (none) when norm=None. Read more in the :ref:`User Guide <text_feature_extraction>`. Parameters ---------- norm : 'l1', 'l2' or None, optional Norm used to normalize term vectors. None for no normalization. use_idf : boolean, default=True Enable inverse-document-frequency reweighting. smooth_idf : boolean, default=True Smooth idf weights by adding one to document frequencies, as if an extra document was seen containing every term in the collection exactly once. Prevents zero divisions. sublinear_tf : boolean, default=False Apply sublinear tf scaling, i.e. replace tf with 1 + log(tf). References ---------- .. [Yates2011] `R. Baeza-Yates and B. Ribeiro-Neto (2011). Modern Information Retrieval. Addison Wesley, pp. 68-74.` .. [MRS2008] `C.D. Manning, P. Raghavan and H. Schuetze (2008). Introduction to Information Retrieval. Cambridge University Press, pp. 118-120.` """ def __init__(self, norm='l2', use_idf=True, smooth_idf=True, sublinear_tf=False): self.norm = norm self.use_idf = use_idf self.smooth_idf = smooth_idf self.sublinear_tf = sublinear_tf def fit(self, X, y=None): """Learn the idf vector (global term weights) Parameters ---------- X : sparse matrix, [n_samples, n_features] a matrix of term/token counts """ if not sp.issparse(X): X = sp.csc_matrix(X) if self.use_idf: n_samples, n_features = X.shape df = _document_frequency(X) # perform idf smoothing if required df += int(self.smooth_idf) n_samples += int(self.smooth_idf) # log+1 instead of log makes sure terms with zero idf don't get # suppressed entirely. idf = np.log(float(n_samples) / df) + 1.0 self._idf_diag = sp.spdiags(idf, diags=0, m=n_features, n=n_features) return self def transform(self, X, copy=True): """Transform a count matrix to a tf or tf-idf representation Parameters ---------- X : sparse matrix, [n_samples, n_features] a matrix of term/token counts copy : boolean, default True Whether to copy X and operate on the copy or perform in-place operations. Returns ------- vectors : sparse matrix, [n_samples, n_features] """ if hasattr(X, 'dtype') and np.issubdtype(X.dtype, np.float): # preserve float family dtype X = sp.csr_matrix(X, copy=copy) else: # convert counts or binary occurrences to floats X = sp.csr_matrix(X, dtype=np.float64, copy=copy) n_samples, n_features = X.shape if self.sublinear_tf: np.log(X.data, X.data) X.data += 1 if self.use_idf: check_is_fitted(self, '_idf_diag', 'idf vector is not fitted') expected_n_features = self._idf_diag.shape[0] if n_features != expected_n_features: raise ValueError("Input has n_features=%d while the model" " has been trained with n_features=%d" % ( n_features, expected_n_features)) # *= doesn't work X = X * self._idf_diag if self.norm: X = normalize(X, norm=self.norm, copy=False) return X @property def idf_(self): if hasattr(self, "_idf_diag"): return np.ravel(self._idf_diag.sum(axis=0)) else: return None class TfidfVectorizer(CountVectorizer): """Convert a collection of raw documents to a matrix of TF-IDF features. Equivalent to CountVectorizer followed by TfidfTransformer. Read more in the :ref:`User Guide <text_feature_extraction>`. Parameters ---------- input : string {'filename', 'file', 'content'} If 'filename', the sequence passed as an argument to fit is expected to be a list of filenames that need reading to fetch the raw content to analyze. If 'file', the sequence items must have a 'read' method (file-like object) that is called to fetch the bytes in memory. Otherwise the input is expected to be the sequence strings or bytes items are expected to be analyzed directly. encoding : string, 'utf-8' by default. If bytes or files are given to analyze, this encoding is used to decode. decode_error : {'strict', 'ignore', 'replace'} Instruction on what to do if a byte sequence is given to analyze that contains characters not of the given `encoding`. By default, it is 'strict', meaning that a UnicodeDecodeError will be raised. Other values are 'ignore' and 'replace'. strip_accents : {'ascii', 'unicode', None} Remove accents during the preprocessing step. 'ascii' is a fast method that only works on characters that have an direct ASCII mapping. 'unicode' is a slightly slower method that works on any characters. None (default) does nothing. analyzer : string, {'word', 'char'} or callable Whether the feature should be made of word or character n-grams. If a callable is passed it is used to extract the sequence of features out of the raw, unprocessed input. preprocessor : callable or None (default) Override the preprocessing (string transformation) stage while preserving the tokenizing and n-grams generation steps. tokenizer : callable or None (default) Override the string tokenization step while preserving the preprocessing and n-grams generation steps. Only applies if ``analyzer == 'word'``. ngram_range : tuple (min_n, max_n) The lower and upper boundary of the range of n-values for different n-grams to be extracted. All values of n such that min_n <= n <= max_n will be used. stop_words : string {'english'}, list, or None (default) If a string, it is passed to _check_stop_list and the appropriate stop list is returned. 'english' is currently the only supported string value. If a list, that list is assumed to contain stop words, all of which will be removed from the resulting tokens. Only applies if ``analyzer == 'word'``. If None, no stop words will be used. max_df can be set to a value in the range [0.7, 1.0) to automatically detect and filter stop words based on intra corpus document frequency of terms. lowercase : boolean, default True Convert all characters to lowercase before tokenizing. token_pattern : string Regular expression denoting what constitutes a "token", only used if ``analyzer == 'word'``. The default regexp selects tokens of 2 or more alphanumeric characters (punctuation is completely ignored and always treated as a token separator). max_df : float in range [0.0, 1.0] or int, default=1.0 When building the vocabulary ignore terms that have a document frequency strictly higher than the given threshold (corpus-specific stop words). If float, the parameter represents a proportion of documents, integer absolute counts. This parameter is ignored if vocabulary is not None. min_df : float in range [0.0, 1.0] or int, default=1 When building the vocabulary ignore terms that have a document frequency strictly lower than the given threshold. This value is also called cut-off in the literature. If float, the parameter represents a proportion of documents, integer absolute counts. This parameter is ignored if vocabulary is not None. max_features : int or None, default=None If not None, build a vocabulary that only consider the top max_features ordered by term frequency across the corpus. This parameter is ignored if vocabulary is not None. vocabulary : Mapping or iterable, optional Either a Mapping (e.g., a dict) where keys are terms and values are indices in the feature matrix, or an iterable over terms. If not given, a vocabulary is determined from the input documents. binary : boolean, default=False If True, all non-zero term counts are set to 1. This does not mean outputs will have only 0/1 values, only that the tf term in tf-idf is binary. (Set idf and normalization to False to get 0/1 outputs.) dtype : type, optional Type of the matrix returned by fit_transform() or transform(). norm : 'l1', 'l2' or None, optional Norm used to normalize term vectors. None for no normalization. use_idf : boolean, default=True Enable inverse-document-frequency reweighting. smooth_idf : boolean, default=True Smooth idf weights by adding one to document frequencies, as if an extra document was seen containing every term in the collection exactly once. Prevents zero divisions. sublinear_tf : boolean, default=False Apply sublinear tf scaling, i.e. replace tf with 1 + log(tf). Attributes ---------- idf_ : array, shape = [n_features], or None The learned idf vector (global term weights) when ``use_idf`` is set to True, None otherwise. stop_words_ : set Terms that were ignored because they either: - occurred in too many documents (`max_df`) - occurred in too few documents (`min_df`) - were cut off by feature selection (`max_features`). This is only available if no vocabulary was given. See also -------- CountVectorizer Tokenize the documents and count the occurrences of token and return them as a sparse matrix TfidfTransformer Apply Term Frequency Inverse Document Frequency normalization to a sparse matrix of occurrence counts. Notes ----- The ``stop_words_`` attribute can get large and increase the model size when pickling. This attribute is provided only for introspection and can be safely removed using delattr or set to None before pickling. """ def __init__(self, input='content', encoding='utf-8', decode_error='strict', strip_accents=None, lowercase=True, preprocessor=None, tokenizer=None, analyzer='word', stop_words=None, token_pattern=r"(?u)\b\w\w+\b", ngram_range=(1, 1), max_df=1.0, min_df=1, max_features=None, vocabulary=None, binary=False, dtype=np.int64, norm='l2', use_idf=True, smooth_idf=True, sublinear_tf=False): super(TfidfVectorizer, self).__init__( input=input, encoding=encoding, decode_error=decode_error, strip_accents=strip_accents, lowercase=lowercase, preprocessor=preprocessor, tokenizer=tokenizer, analyzer=analyzer, stop_words=stop_words, token_pattern=token_pattern, ngram_range=ngram_range, max_df=max_df, min_df=min_df, max_features=max_features, vocabulary=vocabulary, binary=binary, dtype=dtype) self._tfidf = TfidfTransformer(norm=norm, use_idf=use_idf, smooth_idf=smooth_idf, sublinear_tf=sublinear_tf) # Broadcast the TF-IDF parameters to the underlying transformer instance # for easy grid search and repr @property def norm(self): return self._tfidf.norm @norm.setter def norm(self, value): self._tfidf.norm = value @property def use_idf(self): return self._tfidf.use_idf @use_idf.setter def use_idf(self, value): self._tfidf.use_idf = value @property def smooth_idf(self): return self._tfidf.smooth_idf @smooth_idf.setter def smooth_idf(self, value): self._tfidf.smooth_idf = value @property def sublinear_tf(self): return self._tfidf.sublinear_tf @sublinear_tf.setter def sublinear_tf(self, value): self._tfidf.sublinear_tf = value @property def idf_(self): return self._tfidf.idf_ def fit(self, raw_documents, y=None): """Learn vocabulary and idf from training set. Parameters ---------- raw_documents : iterable an iterable which yields either str, unicode or file objects Returns ------- self : TfidfVectorizer """ X = super(TfidfVectorizer, self).fit_transform(raw_documents) self._tfidf.fit(X) return self def fit_transform(self, raw_documents, y=None): """Learn vocabulary and idf, return term-document matrix. This is equivalent to fit followed by transform, but more efficiently implemented. Parameters ---------- raw_documents : iterable an iterable which yields either str, unicode or file objects Returns ------- X : sparse matrix, [n_samples, n_features] Tf-idf-weighted document-term matrix. """ X = super(TfidfVectorizer, self).fit_transform(raw_documents) self._tfidf.fit(X) # X is already a transformed view of raw_documents so # we set copy to False return self._tfidf.transform(X, copy=False) def transform(self, raw_documents, copy=True): """Transform documents to document-term matrix. Uses the vocabulary and document frequencies (df) learned by fit (or fit_transform). Parameters ---------- raw_documents : iterable an iterable which yields either str, unicode or file objects copy : boolean, default True Whether to copy X and operate on the copy or perform in-place operations. Returns ------- X : sparse matrix, [n_samples, n_features] Tf-idf-weighted document-term matrix. """ check_is_fitted(self, '_tfidf', 'The tfidf vector is not fitted') X = super(TfidfVectorizer, self).transform(raw_documents) return self._tfidf.transform(X, copy=False)
bsd-3-clause
ifuding/Kaggle
ADDC/Code/BarisKanber.py
3
14070
""" A non-blending lightGBM model that incorporates portions and ideas from various public kernels This kernel gives LB: 0.977 when the parameter 'debug' below is set to 0 but this implementation requires a machine with ~32 GB of memory """ import pandas as pd import time import numpy as np from sklearn.cross_validation import train_test_split import lightgbm as lgb import gc import matplotlib.pyplot as plt import os debug=1 if debug: print('*** debug parameter set: this is a test run for debugging purposes ***') def lgb_modelfit_nocv(params, dtrain, dvalid, predictors, target='target', objective='binary', metrics='auc', feval=None, early_stopping_rounds=20, num_boost_round=3000, verbose_eval=10, categorical_features=None): lgb_params = { 'boosting_type': 'gbdt', 'objective': objective, 'metric':metrics, 'learning_rate': 0.2, #'is_unbalance': 'true', #because training data is unbalance (replaced with scale_pos_weight) 'num_leaves': 31, # we should let it be smaller than 2^(max_depth) 'max_depth': -1, # -1 means no limit 'min_child_samples': 20, # Minimum number of data need in a child(min_data_in_leaf) 'max_bin': 255, # Number of bucketed bin for feature values 'subsample': 0.6, # Subsample ratio of the training instance. 'subsample_freq': 0, # frequence of subsample, <=0 means no enable 'colsample_bytree': 0.3, # Subsample ratio of columns when constructing each tree. 'min_child_weight': 5, # Minimum sum of instance weight(hessian) needed in a child(leaf) 'subsample_for_bin': 200000, # Number of samples for constructing bin 'min_split_gain': 0, # lambda_l1, lambda_l2 and min_gain_to_split to regularization 'reg_alpha': 0, # L1 regularization term on weights 'reg_lambda': 0, # L2 regularization term on weights 'nthread': 4, 'verbose': 0, 'metric':metrics } lgb_params.update(params) print("preparing validation datasets") xgtrain = lgb.Dataset(dtrain[predictors].values, label=dtrain[target].values, feature_name=predictors, categorical_feature=categorical_features ) xgvalid = lgb.Dataset(dvalid[predictors].values, label=dvalid[target].values, feature_name=predictors, categorical_feature=categorical_features ) evals_results = {} bst1 = lgb.train(lgb_params, xgtrain, valid_sets=[xgtrain, xgvalid], valid_names=['train','valid'], evals_result=evals_results, num_boost_round=num_boost_round, early_stopping_rounds=early_stopping_rounds, verbose_eval=10, feval=feval) print("\nModel Report") print("bst1.best_iteration: ", bst1.best_iteration) print(metrics+":", evals_results['valid'][metrics][bst1.best_iteration-1]) return (bst1,bst1.best_iteration) def DO(frm,to,fileno): dtypes = { 'ip' : 'uint32', 'app' : 'uint16', 'device' : 'uint16', 'os' : 'uint16', 'channel' : 'uint16', 'is_attributed' : 'uint8', 'click_id' : 'uint32', } print('loading train data...',frm,to) train_df = pd.read_csv("../input/train.csv", parse_dates=['click_time'], skiprows=range(1,frm), nrows=to-frm, dtype=dtypes, usecols=['ip','app','device','os', 'channel', 'click_time', 'is_attributed']) print('loading test data...') if debug: test_df = pd.read_csv("../input/test.csv", nrows=100000, parse_dates=['click_time'], dtype=dtypes, usecols=['ip','app','device','os', 'channel', 'click_time', 'click_id']) else: test_df = pd.read_csv("../input/test.csv", parse_dates=['click_time'], dtype=dtypes, usecols=['ip','app','device','os', 'channel', 'click_time', 'click_id']) len_train = len(train_df) train_df=train_df.append(test_df) del test_df gc.collect() print('Extracting new features...') train_df['hour'] = pd.to_datetime(train_df.click_time).dt.hour.astype('uint8') train_df['day'] = pd.to_datetime(train_df.click_time).dt.day.astype('uint8') gc.collect() naddfeat=9 for i in range(0,naddfeat): if i==0: selcols=['ip', 'channel']; QQ=4; if i==1: selcols=['ip', 'device', 'os', 'app']; QQ=5; if i==2: selcols=['ip', 'day', 'hour']; QQ=4; if i==3: selcols=['ip', 'app']; QQ=4; if i==4: selcols=['ip', 'app', 'os']; QQ=4; if i==5: selcols=['ip', 'device']; QQ=4; if i==6: selcols=['app', 'channel']; QQ=4; if i==7: selcols=['ip', 'os']; QQ=5; if i==8: selcols=['ip', 'device', 'os', 'app']; QQ=4; print('selcols',selcols,'QQ',QQ) filename='X%d_%d_%d.csv'%(i,frm,to) if os.path.exists(filename): if QQ==5: gp=pd.read_csv(filename,header=None) train_df['X'+str(i)]=gp else: gp=pd.read_csv(filename) train_df = train_df.merge(gp, on=selcols[0:len(selcols)-1], how='left') else: if QQ==0: gp = train_df[selcols].groupby(by=selcols[0:len(selcols)-1])[selcols[len(selcols)-1]].count().reset_index().\ rename(index=str, columns={selcols[len(selcols)-1]: 'X'+str(i)}) train_df = train_df.merge(gp, on=selcols[0:len(selcols)-1], how='left') if QQ==1: gp = train_df[selcols].groupby(by=selcols[0:len(selcols)-1])[selcols[len(selcols)-1]].mean().reset_index().\ rename(index=str, columns={selcols[len(selcols)-1]: 'X'+str(i)}) train_df = train_df.merge(gp, on=selcols[0:len(selcols)-1], how='left') if QQ==2: gp = train_df[selcols].groupby(by=selcols[0:len(selcols)-1])[selcols[len(selcols)-1]].var().reset_index().\ rename(index=str, columns={selcols[len(selcols)-1]: 'X'+str(i)}) train_df = train_df.merge(gp, on=selcols[0:len(selcols)-1], how='left') if QQ==3: gp = train_df[selcols].groupby(by=selcols[0:len(selcols)-1])[selcols[len(selcols)-1]].skew().reset_index().\ rename(index=str, columns={selcols[len(selcols)-1]: 'X'+str(i)}) train_df = train_df.merge(gp, on=selcols[0:len(selcols)-1], how='left') if QQ==4: gp = train_df[selcols].groupby(by=selcols[0:len(selcols)-1])[selcols[len(selcols)-1]].nunique().reset_index().\ rename(index=str, columns={selcols[len(selcols)-1]: 'X'+str(i)}) train_df = train_df.merge(gp, on=selcols[0:len(selcols)-1], how='left') if QQ==5: gp = train_df[selcols].groupby(by=selcols[0:len(selcols)-1])[selcols[len(selcols)-1]].cumcount() train_df['X'+str(i)]=gp.values if not debug: gp.to_csv(filename,index=False) del gp gc.collect() print('doing nextClick') predictors=[] new_feature = 'nextClick' filename='nextClick_%d_%d.csv'%(frm,to) if os.path.exists(filename): print('loading from save file') QQ=pd.read_csv(filename).values else: D=2**26 train_df['category'] = (train_df['ip'].astype(str) + "_" + train_df['app'].astype(str) + "_" + train_df['device'].astype(str) \ + "_" + train_df['os'].astype(str)).apply(hash) % D click_buffer= np.full(D, 3000000000, dtype=np.uint32) train_df['epochtime']= train_df['click_time'].astype(np.int64) // 10 ** 9 next_clicks= [] for category, t in zip(reversed(train_df['category'].values), reversed(train_df['epochtime'].values)): next_clicks.append(click_buffer[category]-t) click_buffer[category]= t del(click_buffer) QQ= list(reversed(next_clicks)) if not debug: print('saving') pd.DataFrame(QQ).to_csv(filename,index=False) train_df[new_feature] = QQ predictors.append(new_feature) train_df[new_feature+'_shift'] = pd.DataFrame(QQ).shift(+1).values predictors.append(new_feature+'_shift') del QQ gc.collect() print('grouping by ip-day-hour combination...') gp = train_df[['ip','day','hour','channel']].groupby(by=['ip','day','hour'])[['channel']].count().reset_index().rename(index=str, columns={'channel': 'ip_tcount'}) train_df = train_df.merge(gp, on=['ip','day','hour'], how='left') del gp gc.collect() print('grouping by ip-app combination...') gp = train_df[['ip', 'app', 'channel']].groupby(by=['ip', 'app'])[['channel']].count().reset_index().rename(index=str, columns={'channel': 'ip_app_count'}) train_df = train_df.merge(gp, on=['ip','app'], how='left') del gp gc.collect() print('grouping by ip-app-os combination...') gp = train_df[['ip','app', 'os', 'channel']].groupby(by=['ip', 'app', 'os'])[['channel']].count().reset_index().rename(index=str, columns={'channel': 'ip_app_os_count'}) train_df = train_df.merge(gp, on=['ip','app', 'os'], how='left') del gp gc.collect() # Adding features with var and mean hour (inspired from nuhsikander's script) print('grouping by : ip_day_chl_var_hour') gp = train_df[['ip','day','hour','channel']].groupby(by=['ip','day','channel'])[['hour']].var().reset_index().rename(index=str, columns={'hour': 'ip_tchan_count'}) train_df = train_df.merge(gp, on=['ip','day','channel'], how='left') del gp gc.collect() print('grouping by : ip_app_os_var_hour') gp = train_df[['ip','app', 'os', 'hour']].groupby(by=['ip', 'app', 'os'])[['hour']].var().reset_index().rename(index=str, columns={'hour': 'ip_app_os_var'}) train_df = train_df.merge(gp, on=['ip','app', 'os'], how='left') del gp gc.collect() print('grouping by : ip_app_channel_var_day') gp = train_df[['ip','app', 'channel', 'day']].groupby(by=['ip', 'app', 'channel'])[['day']].var().reset_index().rename(index=str, columns={'day': 'ip_app_channel_var_day'}) train_df = train_df.merge(gp, on=['ip','app', 'channel'], how='left') del gp gc.collect() print('grouping by : ip_app_chl_mean_hour') gp = train_df[['ip','app', 'channel','hour']].groupby(by=['ip', 'app', 'channel'])[['hour']].mean().reset_index().rename(index=str, columns={'hour': 'ip_app_channel_mean_hour'}) print("merging...") train_df = train_df.merge(gp, on=['ip','app', 'channel'], how='left') del gp gc.collect() print("vars and data type: ") train_df.info() train_df['ip_tcount'] = train_df['ip_tcount'].astype('uint16') train_df['ip_app_count'] = train_df['ip_app_count'].astype('uint16') train_df['ip_app_os_count'] = train_df['ip_app_os_count'].astype('uint16') target = 'is_attributed' predictors.extend(['app','device','os', 'channel', 'hour', 'day', 'ip_tcount', 'ip_tchan_count', 'ip_app_count', 'ip_app_os_count', 'ip_app_os_var', 'ip_app_channel_var_day','ip_app_channel_mean_hour']) categorical = ['app', 'device', 'os', 'channel', 'hour', 'day'] for i in range(0,naddfeat): predictors.append('X'+str(i)) print('predictors',predictors) test_df = train_df[len_train:] val_df = train_df[(len_train-val_size):len_train] train_df = train_df[:(len_train-val_size)] print("train size: ", len(train_df)) print("valid size: ", len(val_df)) print("test size : ", len(test_df)) sub = pd.DataFrame() sub['click_id'] = test_df['click_id'].astype('int') gc.collect() print("Training...") start_time = time.time() params = { 'learning_rate': 0.20, #'is_unbalance': 'true', # replaced with scale_pos_weight argument 'num_leaves': 7, # 2^max_depth - 1 'max_depth': 3, # -1 means no limit 'min_child_samples': 100, # Minimum number of data need in a child(min_data_in_leaf) 'max_bin': 100, # Number of bucketed bin for feature values 'subsample': 0.7, # Subsample ratio of the training instance. 'subsample_freq': 1, # frequence of subsample, <=0 means no enable 'colsample_bytree': 0.9, # Subsample ratio of columns when constructing each tree. 'min_child_weight': 0, # Minimum sum of instance weight(hessian) needed in a child(leaf) 'scale_pos_weight':200 # because training data is extremely unbalanced } (bst,best_iteration) = lgb_modelfit_nocv(params, train_df, val_df, predictors, target, objective='binary', metrics='auc', early_stopping_rounds=30, verbose_eval=True, num_boost_round=1000, categorical_features=categorical) print('[{}]: model training time'.format(time.time() - start_time)) del train_df del val_df gc.collect() print('Plot feature importances...') ax = lgb.plot_importance(bst, max_num_features=100) plt.show() print("Predicting...") sub['is_attributed'] = bst.predict(test_df[predictors],num_iteration=best_iteration) if not debug: print("writing...") sub.to_csv('sub_it%d.csv.gz'%(fileno),index=False,compression='gzip') print("done...") return sub nrows=184903891-1 nchunk=40000000 val_size=2500000 frm=nrows-75000000 if debug: frm=0 nchunk=100000 val_size=10000 to=frm+nchunk sub=DO(frm,to,0)
apache-2.0
henriquegemignani/randovania
randovania/gui/tracker_window.py
1
32424
import collections import functools import json import typing from pathlib import Path from random import Random from typing import Optional, Dict, Set, List, Tuple, Iterator, Union import matplotlib.pyplot as plt import networkx from PySide2 import QtWidgets from PySide2.QtCore import Qt from PySide2.QtWidgets import QMainWindow, QTreeWidgetItem, QCheckBox, QLabel, QGridLayout, QWidget, QMessageBox from matplotlib.axes import Axes from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas from matplotlib.backends.backend_qt5agg import NavigationToolbar2QT as NavigationToolbar from matplotlib.figure import Figure from randovania.game_description.area_location import AreaLocation from randovania.game_description.game_description import GameDescription from randovania.game_description.item.item_category import ItemCategory from randovania.game_description.node import Node, ResourceNode, TranslatorGateNode, TeleporterNode, DockNode from randovania.game_description.resources.item_resource_info import ItemResourceInfo from randovania.game_description.resources.pickup_entry import PickupEntry from randovania.game_description.resources.resource_info import add_resource_gain_to_current_resources from randovania.game_description.resources.translator_gate import TranslatorGate from randovania.game_description.world import World from randovania.games.game import RandovaniaGame from randovania.games.prime import patcher_file from randovania.generator import generator from randovania.gui.generated.tracker_window_ui import Ui_TrackerWindow from randovania.gui.lib.common_qt_lib import set_default_window_icon from randovania.gui.lib.custom_spin_box import CustomSpinBox from randovania.layout import translator_configuration from randovania.layout.echoes_configuration import EchoesConfiguration from randovania.layout.teleporters import TeleporterShuffleMode from randovania.layout.translator_configuration import LayoutTranslatorRequirement from randovania.resolver.bootstrap import logic_bootstrap from randovania.resolver.logic import Logic from randovania.resolver.resolver_reach import ResolverReach from randovania.resolver.state import State, add_pickup_to_state class InvalidLayoutForTracker(Exception): pass def _load_previous_state(persistence_path: Path, layout_configuration: EchoesConfiguration, ) -> Optional[dict]: previous_layout_path = persistence_path.joinpath("layout_configuration.json") try: with previous_layout_path.open() as previous_layout_file: previous_layout = EchoesConfiguration.from_json(json.load(previous_layout_file)) except (FileNotFoundError, TypeError, KeyError, ValueError, json.JSONDecodeError): return None if previous_layout != layout_configuration: return None previous_state_path = persistence_path.joinpath("state.json") try: with previous_state_path.open() as previous_state_file: return json.load(previous_state_file) except (FileNotFoundError, json.JSONDecodeError): return None class MatplotlibWidget(QtWidgets.QWidget): ax: Axes def __init__(self, parent=None): super().__init__(parent) fig = Figure(figsize=(7, 5), dpi=65, facecolor=(1, 1, 1), edgecolor=(0, 0, 0)) self.canvas = FigureCanvas(fig) self.toolbar = NavigationToolbar(self.canvas, self) lay = QtWidgets.QVBoxLayout(self) lay.addWidget(self.toolbar) lay.addWidget(self.canvas) self.ax = fig.add_subplot(111) self.line, *_ = self.ax.plot([]) class TrackerWindow(QMainWindow, Ui_TrackerWindow): # Tracker state _collected_pickups: Dict[PickupEntry, int] _actions: List[Node] # Tracker configuration logic: Logic game_description: GameDescription layout_configuration: EchoesConfiguration persistence_path: Path _initial_state: State _elevator_id_to_combo: Dict[int, QtWidgets.QComboBox] _translator_gate_to_combo: Dict[TranslatorGate, QtWidgets.QComboBox] _starting_nodes: Set[ResourceNode] _undefined_item = ItemResourceInfo(-1, "Undefined", "Undefined", 0, None) # UI tools _asset_id_to_item: Dict[int, QTreeWidgetItem] _node_to_item: Dict[Node, QTreeWidgetItem] _widget_for_pickup: Dict[PickupEntry, Union[QCheckBox, CustomSpinBox]] _during_setup = False def __init__(self, persistence_path: Path, layout_configuration: EchoesConfiguration): super().__init__() self.setupUi(self) set_default_window_icon(self) self._collected_pickups = {} self._widget_for_pickup = {} self._actions = [] self._asset_id_to_item = {} self._node_to_item = {} self.layout_configuration = layout_configuration self.persistence_path = persistence_path player_pool = generator.create_player_pool(Random(0), self.layout_configuration, 0, 1) pool_patches = player_pool.patches self.game_description, self._initial_state = logic_bootstrap(layout_configuration, player_pool.game, pool_patches) self.logic = Logic(self.game_description, layout_configuration) self._initial_state.resources["add_self_as_requirement_to_resources"] = 1 self.menu_reset_action.triggered.connect(self._confirm_reset) self.resource_filter_check.stateChanged.connect(self.update_locations_tree_for_reachable_nodes) self.hide_collected_resources_check.stateChanged.connect(self.update_locations_tree_for_reachable_nodes) self.undo_last_action_button.clicked.connect(self._undo_last_action) self.configuration_label.setText("Trick Level: {}; Starts with:\n{}".format( layout_configuration.trick_level.pretty_description, ", ".join( resource.short_name for resource in pool_patches.starting_items.keys() ) )) self.setup_pickups_box(player_pool.pickups) self.setup_possible_locations_tree() self.setup_elevators() self.setup_translator_gates() self.matplot_widget = MatplotlibWidget(self.tab_graph_map) self.tab_graph_map_layout.addWidget(self.matplot_widget) self._world_to_node_positions = {} self.map_tab_widget.currentChanged.connect(self._on_tab_changed) for world in self.game_description.world_list.worlds: self.graph_map_world_combo.addItem(world.name, world) self.graph_map_world_combo.currentIndexChanged.connect(self.on_graph_map_world_combo) persistence_path.mkdir(parents=True, exist_ok=True) previous_state = _load_previous_state(persistence_path, layout_configuration) if not self.apply_previous_state(previous_state): self.setup_starting_location(None) with persistence_path.joinpath("layout_configuration.json").open("w") as layout_file: json.dump(layout_configuration.as_json, layout_file) self._add_new_action(self._initial_state.node) def apply_previous_state(self, previous_state: Optional[dict]) -> bool: if previous_state is None: return False starting_location = None needs_starting_location = len(self.layout_configuration.starting_location.locations) > 1 resource_db = self.game_description.resource_database translator_gates = {} try: pickup_name_to_pickup = {pickup.name: pickup for pickup in self._collected_pickups.keys()} quantity_to_change = { pickup_name_to_pickup[pickup_name]: quantity for pickup_name, quantity in previous_state["collected_pickups"].items() } previous_actions = [ self.game_description.world_list.all_nodes[index] for index in previous_state["actions"] ] if needs_starting_location: starting_location = AreaLocation.from_json(previous_state["starting_location"]) elevators = { int(elevator_id): AreaLocation.from_json(location) if location is not None else None for elevator_id, location in previous_state["elevators"].items() } if self.layout_configuration.game == RandovaniaGame.PRIME2: translator_gates = { TranslatorGate(int(gate)): (resource_db.get_item(item) if item is not None else self._undefined_item) for gate, item in previous_state["translator_gates"].items() } except KeyError: return False self.setup_starting_location(starting_location) for elevator_id, area_location in elevators.items(): combo = self._elevator_id_to_combo[elevator_id] if area_location is None: combo.setCurrentIndex(0) continue for i in range(combo.count()): if area_location == combo.itemData(i): combo.setCurrentIndex(i) break for gate, item in translator_gates.items(): combo = self._translator_gate_to_combo[gate] for i in range(combo.count()): if item == combo.itemData(i): combo.setCurrentIndex(i) break self.bulk_change_quantity(quantity_to_change) self._add_new_actions(previous_actions) return True def reset(self): self.bulk_change_quantity({ pickup: 0 for pickup in self._collected_pickups.keys() }) while len(self._actions) > 1: self._actions.pop() self.actions_list.takeItem(len(self._actions)) for elevator in self._elevator_id_to_combo.values(): elevator.setCurrentIndex(0) for elevator in self._translator_gate_to_combo.values(): elevator.setCurrentIndex(0) self._refresh_for_new_action() def _confirm_reset(self): reply = QMessageBox.question(self, "Reset Tracker?", "Do you want to reset the tracker progression?", QMessageBox.Yes | QMessageBox.No, QMessageBox.No) if reply == QMessageBox.Yes: self.reset() @property def _show_only_resource_nodes(self) -> bool: return self.resource_filter_check.isChecked() @property def _hide_collected_resources(self) -> bool: return self.hide_collected_resources_check.isChecked() @property def _collected_nodes(self) -> Set[ResourceNode]: return self._starting_nodes | set(action for action in self._actions if action.is_resource_node) def _pretty_node_name(self, node: Node) -> str: world_list = self.game_description.world_list return "{} / {}".format(world_list.area_name(world_list.nodes_to_area(node)), node.name) def _refresh_for_new_action(self): self.undo_last_action_button.setEnabled(len(self._actions) > 1) self.current_location_label.setText("Current location: {}".format(self._pretty_node_name(self._actions[-1]))) self.update_locations_tree_for_reachable_nodes() def _add_new_action(self, node: Node): self._add_new_actions([node]) def _add_new_actions(self, nodes: Iterator[Node]): for node in nodes: self.actions_list.addItem(self._pretty_node_name(node)) self._actions.append(node) self._refresh_for_new_action() def _undo_last_action(self): self._actions.pop() self.actions_list.takeItem(len(self._actions)) self._refresh_for_new_action() def _on_tree_node_double_clicked(self, item: QTreeWidgetItem, _): node: Optional[Node] = getattr(item, "node", None) if not item.isDisabled() and node is not None and node != self._actions[-1]: self._add_new_action(node) def _positions_for_world(self, world: World): g = networkx.DiGraph() world_list = self.game_description.world_list state = self.state_for_current_configuration() for area in world.areas: g.add_node(area) for area in world.areas: nearby_areas = set() for node in area.nodes: if isinstance(node, DockNode): try: target_node = world_list.resolve_dock_node(node, state.patches) nearby_areas.add(world_list.nodes_to_area(target_node)) except IndexError as e: print(f"For {node.name} in {area.name}, received {e}") continue for other_area in nearby_areas: g.add_edge(area, other_area) return networkx.drawing.spring_layout(g) def update_matplot_widget(self, nodes_in_reach: Set[Node]): g = networkx.DiGraph() world_list = self.game_description.world_list state = self.state_for_current_configuration() world = self.graph_map_world_combo.currentData() for area in world.areas: g.add_node(area) for area in world.areas: nearby_areas = set() for node in area.nodes: if node not in nodes_in_reach: continue if isinstance(node, DockNode): # TODO: respect is_blast_shield: if already opened once, no requirement needed. # Includes opening form behind with different criteria try: target_node = world_list.resolve_dock_node(node, state.patches) dock_weakness = state.patches.dock_weakness.get((area.area_asset_id, node.dock_index), node.default_dock_weakness) if dock_weakness.requirement.satisfied(state.resources, state.energy): nearby_areas.add(world_list.nodes_to_area(target_node)) except IndexError as e: print(f"For {node.name} in {area.name}, received {e}") continue for other_area in nearby_areas: g.add_edge(area, other_area) self.matplot_widget.ax.clear() cf = self.matplot_widget.ax.get_figure() cf.set_facecolor("w") if world.world_asset_id not in self._world_to_node_positions: self._world_to_node_positions[world.world_asset_id] = self._positions_for_world(world) pos = self._world_to_node_positions[world.world_asset_id] networkx.draw_networkx_nodes(g, pos, ax=self.matplot_widget.ax) networkx.draw_networkx_edges(g, pos, arrows=True, ax=self.matplot_widget.ax) networkx.draw_networkx_labels(g, pos, ax=self.matplot_widget.ax, labels={area: area.name for area in world.areas}, verticalalignment='top') self.matplot_widget.ax.set_axis_off() plt.draw_if_interactive() self.matplot_widget.canvas.draw() def on_graph_map_world_combo(self): nodes_in_reach = self.current_nodes_in_reach(self.state_for_current_configuration()) self.update_matplot_widget(nodes_in_reach) def current_nodes_in_reach(self, state): if state is None: nodes_in_reach = set() else: reach = ResolverReach.calculate_reach(self.logic, state) nodes_in_reach = set(reach.nodes) nodes_in_reach.add(state.node) return nodes_in_reach def _on_tab_changed(self): if self.map_tab_widget.currentWidget() == self.tab_graph_map: self.on_graph_map_world_combo() def update_locations_tree_for_reachable_nodes(self): state = self.state_for_current_configuration() nodes_in_reach = self.current_nodes_in_reach(state) if self.map_tab_widget.currentWidget() == self.tab_graph_map: self.update_matplot_widget(nodes_in_reach) all_nodes = self.game_description.world_list.all_nodes for world in self.game_description.world_list.worlds: for area in world.areas: area_is_visible = False for node in area.nodes: is_collected = node in self._collected_nodes is_visible = node in nodes_in_reach and not (self._hide_collected_resources and is_collected) if self._show_only_resource_nodes: is_visible = is_visible and node.is_resource_node node_item = self._node_to_item[node] node_item.setHidden(not is_visible) if node.is_resource_node: resource_node = typing.cast(ResourceNode, node) node_item.setDisabled(not resource_node.can_collect(state.patches, state.resources, all_nodes)) node_item.setCheckState(0, Qt.Checked if is_collected else Qt.Unchecked) area_is_visible = area_is_visible or is_visible self._asset_id_to_item[area.area_asset_id].setHidden(not area_is_visible) # Persist the current state self.persist_current_state() def persist_current_state(self): world_list = self.game_description.world_list with self.persistence_path.joinpath("state.json").open("w") as state_file: json.dump( { "actions": [ node.index for node in self._actions ], "collected_pickups": { pickup.name: quantity for pickup, quantity in self._collected_pickups.items() }, "elevators": { str(elevator_id): combo.currentData().as_json if combo.currentIndex() > 0 else None for elevator_id, combo in self._elevator_id_to_combo.items() }, "translator_gates": { str(gate.index): combo.currentData().index if combo.currentIndex() > 0 else None for gate, combo in self._translator_gate_to_combo.items() }, "starting_location": world_list.node_to_area_location(self._initial_state.node).as_json, }, state_file ) def setup_possible_locations_tree(self): """ Creates the possible_locations_tree with all worlds, areas and nodes. """ self.possible_locations_tree.itemDoubleClicked.connect(self._on_tree_node_double_clicked) # TODO: Dark World names for world in self.game_description.world_list.worlds: world_item = QTreeWidgetItem(self.possible_locations_tree) world_item.setText(0, world.name) world_item.setExpanded(True) self._asset_id_to_item[world.world_asset_id] = world_item for area in world.areas: area_item = QTreeWidgetItem(world_item) area_item.area = area area_item.setText(0, area.name) area_item.setHidden(True) self._asset_id_to_item[area.area_asset_id] = area_item for node in area.nodes: node_item = QTreeWidgetItem(area_item) if isinstance(node, TranslatorGateNode): node_item.setText(0, "{} ({})".format(node.name, node.gate)) else: node_item.setText(0, node.name) node_item.node = node if node.is_resource_node: node_item.setFlags(node_item.flags() & ~Qt.ItemIsUserCheckable) self._node_to_item[node] = node_item def setup_elevators(self): world_list = self.game_description.world_list nodes_by_world: Dict[str, List[TeleporterNode]] = collections.defaultdict(list) self._elevator_id_to_combo = {} areas_to_not_change = { 2278776548, # Sky Temple Gateway 2068511343, # Sky Temple Energy Controller 3136899603, # Aerie Transport Station 1564082177, # Aerie } targets = {} for world, area, node in world_list.all_worlds_areas_nodes: if isinstance(node, TeleporterNode) and node.editable and area.area_asset_id not in areas_to_not_change: name = world.correct_name(area.in_dark_aether) nodes_by_world[name].append(node) location = AreaLocation(world.world_asset_id, area.area_asset_id) targets[patcher_file.elevator_area_name(world_list, location, True)] = location if self.layout_configuration.elevators.mode == TeleporterShuffleMode.ONE_WAY_ANYTHING: targets = {} for world in world_list.worlds: for area in world.areas: name = world.correct_name(area.in_dark_aether) targets[f"{name} - {area.name}"] = AreaLocation(world.world_asset_id, area.area_asset_id) combo_targets = sorted(targets.items(), key=lambda it: it[0]) for world_name in sorted(nodes_by_world.keys()): nodes = nodes_by_world[world_name] nodes_locations = [AreaLocation(world_list.nodes_to_world(node).world_asset_id, world_list.nodes_to_area(node).area_asset_id) for node in nodes] nodes_names = [patcher_file.elevator_area_name(world_list, location, True) for location in nodes_locations] nodes = sorted(nodes_by_world[world_name], key=lambda it: world_list.nodes_to_area(it).name) group = QtWidgets.QGroupBox(self.elevators_scroll_contents) group.setTitle(world_name) self.elevators_scroll_layout.addWidget(group) layout = QtWidgets.QGridLayout(group) for i, (node, location, name) in enumerate(sorted(zip(nodes, nodes_locations, nodes_names), key=lambda it: it[2])): node_name = QtWidgets.QLabel(group) node_name.setText(name) layout.addWidget(node_name, i, 0) combo = QtWidgets.QComboBox(group) if self.layout_configuration.elevators.is_vanilla: combo.addItem("Vanilla", node.default_connection) combo.setEnabled(False) else: combo.addItem("Undefined", location) for target_name, connection in combo_targets: combo.addItem(target_name, connection) combo.currentIndexChanged.connect(self.update_locations_tree_for_reachable_nodes) self._elevator_id_to_combo[node.teleporter_instance_id] = combo layout.addWidget(combo, i, 1) def setup_translator_gates(self): world_list = self.game_description.world_list resource_db = self.game_description.resource_database self._translator_gate_to_combo = {} if self.layout_configuration.game != RandovaniaGame.PRIME2: return gates = { f"{area.name} ({node.gate.index})": node.gate for world, area, node in world_list.all_worlds_areas_nodes if isinstance(node, TranslatorGateNode) } translator_requirement = self.layout_configuration.translator_configuration.translator_requirement for i, (gate_name, gate) in enumerate(sorted(gates.items(), key=lambda it: it[0])): node_name = QtWidgets.QLabel(self.translator_gate_scroll_contents) node_name.setText(gate_name) self.translator_gate_scroll_layout.addWidget(node_name, i, 0) combo = QtWidgets.QComboBox(self.translator_gate_scroll_contents) gate_requirement = translator_requirement[gate] if gate_requirement in (LayoutTranslatorRequirement.RANDOM, LayoutTranslatorRequirement.RANDOM_WITH_REMOVED): combo.addItem("Undefined", self._undefined_item) for translator, index in translator_configuration.ITEM_INDICES.items(): combo.addItem(translator.long_name, resource_db.get_item(index)) else: combo.addItem(gate_requirement.long_name, resource_db.get_item(gate_requirement.item_index)) combo.setEnabled(False) combo.currentIndexChanged.connect(self.update_locations_tree_for_reachable_nodes) self._translator_gate_to_combo[gate] = combo self.translator_gate_scroll_layout.addWidget(combo, i, 1) def setup_starting_location(self, area_location: Optional[AreaLocation]): world_list = self.game_description.world_list if len(self.layout_configuration.starting_location.locations) > 1: if area_location is None: area_locations = sorted(self.layout_configuration.starting_location.locations, key=lambda it: world_list.area_name(world_list.area_by_area_location(it))) location_names = [world_list.area_name(world_list.area_by_area_location(it)) for it in area_locations] selected_name = QtWidgets.QInputDialog.getItem(self, "Starting Location", "Select starting location", location_names, 0, False) area_location = area_locations[location_names.index(selected_name[0])] self._initial_state.node = world_list.resolve_teleporter_connection(area_location) self._starting_nodes = { node for node in world_list.all_nodes if node.is_resource_node and node.resource() in self._initial_state.resources } def _change_item_quantity(self, pickup: PickupEntry, use_quantity_as_bool: bool, quantity: int): if use_quantity_as_bool: if bool(quantity): quantity = 1 else: quantity = 0 self._collected_pickups[pickup] = quantity if not self._during_setup: self.update_locations_tree_for_reachable_nodes() def bulk_change_quantity(self, new_quantity: Dict[PickupEntry, int]): self._during_setup = True for pickup, quantity in new_quantity.items(): widget = self._widget_for_pickup[pickup] if isinstance(widget, QCheckBox): widget.setChecked(quantity > 0) else: widget.setValue(quantity) self._during_setup = False def _create_widgets_with_quantity(self, pickup: PickupEntry, parent_widget: QWidget, parent_layout: QGridLayout, row: int, quantity: int, ): label = QLabel(parent_widget) label.setText(pickup.name) parent_layout.addWidget(label, row, 0) spin_bix = CustomSpinBox(parent_widget) spin_bix.setMaximumWidth(50) spin_bix.setMaximum(quantity) spin_bix.valueChanged.connect(functools.partial(self._change_item_quantity, pickup, False)) self._widget_for_pickup[pickup] = spin_bix parent_layout.addWidget(spin_bix, row, 1) def setup_pickups_box(self, item_pool: List[PickupEntry]): parent_widgets: Dict[ItemCategory, Tuple[QWidget, QGridLayout]] = { ItemCategory.EXPANSION: (self.expansions_box, self.expansions_layout), ItemCategory.ENERGY_TANK: (self.expansions_box, self.expansions_layout), ItemCategory.TRANSLATOR: (self.translators_box, self.translators_layout), ItemCategory.TEMPLE_KEY: (self.keys_box, self.keys_layout), ItemCategory.SKY_TEMPLE_KEY: (self.keys_box, self.keys_layout), } major_pickup_parent_widgets = (self.upgrades_box, self.upgrades_layout) row_for_parent = { self.expansions_box: 0, self.translators_box: 0, self.upgrades_box: 0, self.keys_box: 0, } column_for_parent = { self.translators_box: 0, self.upgrades_box: 0, self.keys_box: 0, } k_column_count = 2 pickup_by_name = {} pickup_with_quantity = {} for pickup in item_pool: if pickup.name in pickup_by_name: pickup_with_quantity[pickup_by_name[pickup.name]] += 1 else: pickup_by_name[pickup.name] = pickup pickup_with_quantity[pickup] = 1 non_expansions_with_quantity = [] for pickup, quantity in pickup_with_quantity.items(): self._collected_pickups[pickup] = 0 parent_widget, parent_layout = parent_widgets.get(pickup.item_category, major_pickup_parent_widgets) row = row_for_parent[parent_widget] if parent_widget is self.expansions_box: self._create_widgets_with_quantity(pickup, parent_widget, parent_layout, row, quantity) row_for_parent[parent_widget] += 1 else: if quantity > 1: non_expansions_with_quantity.append((parent_widget, parent_layout, pickup, quantity)) else: check_box = QCheckBox(parent_widget) check_box.setText(pickup.name) check_box.stateChanged.connect(functools.partial(self._change_item_quantity, pickup, True)) self._widget_for_pickup[pickup] = check_box column = column_for_parent[parent_widget] parent_layout.addWidget(check_box, row, column) column += 1 if column >= k_column_count: column = 0 row += 1 row_for_parent[parent_widget] = row column_for_parent[parent_widget] = column for parent_widget, parent_layout, pickup, quantity in non_expansions_with_quantity: if column_for_parent[parent_widget] != 0: column_for_parent[parent_widget] = 0 row_for_parent[parent_widget] += 1 self._create_widgets_with_quantity(pickup, parent_widget, parent_layout, row_for_parent[parent_widget], quantity) row_for_parent[parent_widget] += 1 def state_for_current_configuration(self) -> Optional[State]: all_nodes = self.game_description.world_list.all_nodes state = self._initial_state.copy() if self._actions: state.node = self._actions[-1] for teleporter, combo in self._elevator_id_to_combo.items(): assert combo.currentData() is not None state.patches.elevator_connection[teleporter] = combo.currentData() for gate, item in self._translator_gate_to_combo.items(): state.patches.translator_gates[gate] = item.currentData() for pickup, quantity in self._collected_pickups.items(): for _ in range(quantity): add_pickup_to_state(state, pickup) for node in self._collected_nodes: add_resource_gain_to_current_resources(node.resource_gain_on_collect(state.patches, state.resources, all_nodes), state.resources) return state
gpl-3.0
gplssm/europepstrans
europepstrans/results/__init__.py
1
13654
""" TimeFrameResults steals methods from oemof.outputlib adapted to the structure applied here. Most relevant difference is results data stored in self.data """ from oemof.outputlib import DataFramePlot, ResultsDataFrame import pickle from matplotlib import pyplot as plt import logging import pandas as pd class TimeFrameResults: """ Container for results of one time frame (i.e. one year) Attributes ---------- data : DataFrame Structure multi-indexed result data """ def __init__(self, **kwargs): """ Initializes data object based on oemof results class """ results_file = kwargs.get('results_file', None) self.subset = kwargs.get('subset', None) self.ax = kwargs.get('ax') if results_file is None: # self.data = DataFramePlot(energy_system=kwargs.get('energy_system')) self.data = ResultsDataFrame(energy_system=kwargs.get('energy_system')) else: self.data = pickle.load(open(results_file, 'rb')) self.reformat_data() def preview(self): """ Print short preview of data """ return self.data.head() def reformat_data(self): """ Extract region information from bus label put into separate index label """ # TODO: get regions list from elsewhere regions = ['deu', 'xfra', 'xbnl'] regions_leading_underscore = ['_' + x for x in regions] # put bus_label to column (required to work on) self.data.reset_index(level='bus_label', inplace=True) self.data.reset_index(level='obj_label', inplace=True) # extra region from bus label and write to new column self.data['region'] = self.data['bus_label'].str.extract( r"(?=(" + '|'.join(regions) + r"))", expand=True) self.data['region'].fillna('global', inplace=True) # remove region from bus_label and obj_label self.data['bus_label'] = self.data['bus_label'].str.replace( r"(" + '|'.join(regions_leading_underscore) + r")", '') self.data['obj_label'] = self.data['obj_label'].str.replace( r"(" + '|'.join(regions_leading_underscore) + r")", '') # put bus_label back to index self.data = self.data.set_index(['bus_label', 'region', 'obj_label'], append=True) # reorder and resort levels level_order = ['bus_label', 'type', 'obj_label', 'region', 'datetime'] self.data = self.data.reorder_levels(level_order) def slice_by(self, **kwargs): r""" Method for slicing the ResultsDataFrame. A subset is returned. Parameters ---------- bus_label : string type : string (to_bus/from_bus/other) obj_label: string date_from : string Start date selection e.g. "2016-01-01 00:00:00". If not set, the whole time range will be plotted. date_to : string End date selection e.g. "2016-03-01 00:00:00". If not set, the whole time range will be plotted. """ kwargs.setdefault('bus_label', slice(None)) kwargs.setdefault('type', slice(None)) kwargs.setdefault('obj_label', slice(None)) kwargs.setdefault( 'date_from', self.data.index.get_level_values('datetime')[0]) kwargs.setdefault( 'date_to', self.data.index.get_level_values('datetime')[-1]) # slicing idx = pd.IndexSlice subset = self.data.loc[idx[ kwargs['bus_label'], kwargs['type'], kwargs['obj_label'], slice(pd.Timestamp(kwargs['date_from']), pd.Timestamp(kwargs['date_to']))], :] return subset def slice_unstacked(self, unstacklevel='obj_label', formatted=False, **kwargs): r"""Method for slicing the ResultsDataFrame. An unstacked subset is returned. Parameters ---------- unstacklevel : string (default: 'obj_label') Level to unstack the subset of the DataFrame. formatted : boolean missing... """ subset = self.slice_by(**kwargs) subset = subset.unstack(level=unstacklevel) if formatted is True: subset.reset_index(level=['bus_label', 'type'], drop=True, inplace=True) # user standard insteadt of multi-indexed columns subset.columns = subset.columns.get_level_values(1).unique() # return subset self.subset = subset def plot(self, **kwargs): r""" Passing the data attribute to the pandas plotting method. All parameters will be directly passed to pandas.DataFrame.plot(). See http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.plot.html for more information. Returns ------- self """ self.ax = self.subset.plot(**kwargs) return self def io_plot(self, bus_label, cdict, line_kwa=None, lineorder=None, bar_kwa=None, barorder=None, **kwargs): r""" Plotting a combined bar and line plot to see the fitting of in- and outcomming flows of a bus balance. Parameters ---------- bus_label : string Uid of the bus to plot the balance. cdict : dictionary A dictionary that has all possible components as keys and its colors as items. line_kwa : dictionary Keyword arguments to be passed to the pandas line plot. bar_kwa : dictionary Keyword arguments to be passed to the pandas bar plot. lineorder : list Order of columns to plot the line plot barorder : list Order of columns to plot the bar plot Note ---- Further keyword arguments will be passed to the :class:`slice_unstacked method <DataFramePlot.slice_unstacked>`. Returns ------- handles, labels Manipulated labels to correct the unsual construction of the stack line plot. You can use them for further maipulations. """ self.ax = kwargs.get('ax', self.ax) if bar_kwa is None: bar_kwa = dict() if line_kwa is None: line_kwa = dict() if self.ax is None: fig = plt.figure() self.ax = fig.add_subplot(1, 1, 1) # Create a bar plot for all input flows self.slice_unstacked(bus_label=bus_label, type='to_bus', **kwargs) if barorder is not None: self.rearrange_subset(barorder) self.subset.plot(kind='bar', linewidth=0, stacked=True, width=1, ax=self.ax, color=self.color_from_dict(cdict), **bar_kwa) # Create a line plot for all output flows self.slice_unstacked(bus_label=bus_label, type='from_bus', **kwargs) if lineorder is not None: self.rearrange_subset(lineorder) # The following changes are made to have the bottom line on top layer # of all lines. Normally the bottom line is the first line that is # plotted and will be on the lowest layer. This is difficult to read. new_df = pd.DataFrame(index=self.subset.index) n = 0 tmp = 0 for col in self.subset.columns: if n < 1: new_df[col] = self.subset[col] else: new_df[col] = self.subset[col] + tmp tmp = new_df[col] n += 1 if lineorder is None: new_df.sort_index(axis=1, ascending=False, inplace=True) else: lineorder.reverse() new_df = new_df[lineorder] colorlist = self.color_from_dict(cdict) if isinstance(colorlist, list): colorlist.reverse() separator = len(colorlist) new_df.plot(kind='line', ax=self.ax, color=colorlist, drawstyle='steps-mid', **line_kwa) # Adapt the legend to the new oder handles, labels = self.ax.get_legend_handles_labels() tmp_lab = [x for x in reversed(labels[0:separator])] tmp_hand = [x for x in reversed(handles[0:separator])] handles = tmp_hand + handles[separator:] labels = tmp_lab + labels[separator:] labels.reverse() handles.reverse() self.ax.legend(handles, labels) return handles, labels def rearrange_subset(self, order): r""" Change the order of the subset DataFrame Parameters ---------- order : list New order of columns Returns ------- self """ cols = list(self.subset.columns.values) neworder = [x for x in list(order) if x in set(cols)] missing = [x for x in list(cols) if x not in set(order)] if len(missing) > 0: logging.warning( "Columns that are not part of the order list are removed: " + str(missing)) self.subset = self.subset[neworder] def color_from_dict(self, colordict): r""" Method to convert a dictionary containing the components and its colors to a color list that can be directly useed with the color parameter of the pandas plotting method. Parameters ---------- colordict : dictionary A dictionary that has all possible components as keys and its colors as items. Returns ------- list Containing the colors of all components of the subset attribute """ tmplist = list( map(colordict.get, list(self.subset.columns))) tmplist = ['#00FFFF' if v is None else v for v in tmplist] if len(tmplist) == 1: colorlist = tmplist[0] else: colorlist = tmplist return colorlist def set_datetime_ticks(self, tick_distance=None, number_autoticks=3, date_format='%d-%m-%Y %H:%M'): r""" Set configurable ticks for the time axis. One can choose the number of ticks or the distance between ticks and the format. Parameters ---------- tick_distance : real The disctance between to ticks in hours. If not set autoticks are set (see number_autoticks). number_autoticks : int (default: 3) The number of ticks on the time axis, independent of the time range. The higher the number of ticks is, the shorter should be the date_format string. date_format : string (default: '%d-%m-%Y %H:%M') The string to define the format of the date and time. See https://docs.python.org/3/library/datetime.html#strftime-and-strptime-behavior for more information. """ dates = self.subset.index.get_level_values('datetime').unique() if tick_distance is None: tick_distance = int(len(dates) / number_autoticks) - 1 self.ax.set_xticks(range(0, len(dates), tick_distance), minor=False) self.ax.set_xticklabels( [item.strftime(date_format) for item in dates.tolist()[0::tick_distance]], rotation=0, minor=False) def outside_legend(self, reverse=False, plotshare=0.9, **kwargs): r""" Move the legend outside the plot. Bases on the ideas of Joe Kington. See http://stackoverflow.com/questions/4700614/how-to-put-the-legend-out-of-the-plot for more information. Parameters ---------- reverse : boolean (default: False) Print out the legend in reverse order. This is interesting for stack-plots to have the legend in the same order as the stacks. plotshare : real (default: 0.9) Share of the plot area to create space for the legend (0 to 1). loc : string (default: 'center left') Location of the plot. bbox_to_anchor : tuple (default: (1, 0.5)) Set the anchor for the legend. ncol : integer (default: 1) Number of columns of the legend. handles : list of handles A list of handels if they are already modified by another function or method. Normally these handles will be automatically taken from the artis object. lables : list of labels A list of labels if they are already modified by another function or method. Normally these handles will be automatically taken from the artis object. Note ---- All keyword arguments (kwargs) will be directly passed to the matplotlib legend class. See http://matplotlib.org/api/legend_api.html#matplotlib.legend.Legend for more parameters. """ kwargs.setdefault('loc', 'center left') kwargs.setdefault('bbox_to_anchor', (1, 0.5)) kwargs.setdefault('ncol', 1) handles = kwargs.pop('handles', self.ax.get_legend_handles_labels()[0]) labels = kwargs.pop('labels', self.ax.get_legend_handles_labels()[1]) if reverse: handles.reverse() labels.reverse() box = self.ax.get_position() self.ax.set_position([box.x0, box.y0, box.width * plotshare, box.height]) self.ax.legend(handles, labels, **kwargs) if __name__ == '__main__': pass
gpl-3.0
caisq/tensorflow
tensorflow/python/estimator/canned/dnn_test.py
25
16780
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for dnn.py.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import shutil import tempfile import numpy as np import six from tensorflow.core.example import example_pb2 from tensorflow.core.example import feature_pb2 from tensorflow.python.estimator.canned import dnn from tensorflow.python.estimator.canned import dnn_testing_utils from tensorflow.python.estimator.canned import prediction_keys from tensorflow.python.estimator.export import export from tensorflow.python.estimator.inputs import numpy_io from tensorflow.python.estimator.inputs import pandas_io from tensorflow.python.feature_column import feature_column from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.ops import data_flow_ops from tensorflow.python.ops import parsing_ops from tensorflow.python.platform import gfile from tensorflow.python.platform import test from tensorflow.python.summary.writer import writer_cache from tensorflow.python.training import input as input_lib from tensorflow.python.training import queue_runner try: # pylint: disable=g-import-not-at-top import pandas as pd HAS_PANDAS = True except IOError: # Pandas writes a temporary file during import. If it fails, don't use pandas. HAS_PANDAS = False except ImportError: HAS_PANDAS = False def _dnn_classifier_fn(*args, **kwargs): return dnn.DNNClassifier(*args, **kwargs) class DNNModelFnTest(dnn_testing_utils.BaseDNNModelFnTest, test.TestCase): def __init__(self, methodName='runTest'): # pylint: disable=invalid-name test.TestCase.__init__(self, methodName) dnn_testing_utils.BaseDNNModelFnTest.__init__(self, dnn._dnn_model_fn) class DNNLogitFnTest(dnn_testing_utils.BaseDNNLogitFnTest, test.TestCase): def __init__(self, methodName='runTest'): # pylint: disable=invalid-name test.TestCase.__init__(self, methodName) dnn_testing_utils.BaseDNNLogitFnTest.__init__(self, dnn._dnn_logit_fn_builder) class DNNWarmStartingTest(dnn_testing_utils.BaseDNNWarmStartingTest, test.TestCase): def __init__(self, methodName='runTest'): # pylint: disable=invalid-name test.TestCase.__init__(self, methodName) dnn_testing_utils.BaseDNNWarmStartingTest.__init__(self, _dnn_classifier_fn, _dnn_regressor_fn) class DNNClassifierEvaluateTest( dnn_testing_utils.BaseDNNClassifierEvaluateTest, test.TestCase): def __init__(self, methodName='runTest'): # pylint: disable=invalid-name test.TestCase.__init__(self, methodName) dnn_testing_utils.BaseDNNClassifierEvaluateTest.__init__( self, _dnn_classifier_fn) class DNNClassifierPredictTest( dnn_testing_utils.BaseDNNClassifierPredictTest, test.TestCase): def __init__(self, methodName='runTest'): # pylint: disable=invalid-name test.TestCase.__init__(self, methodName) dnn_testing_utils.BaseDNNClassifierPredictTest.__init__( self, _dnn_classifier_fn) class DNNClassifierTrainTest( dnn_testing_utils.BaseDNNClassifierTrainTest, test.TestCase): def __init__(self, methodName='runTest'): # pylint: disable=invalid-name test.TestCase.__init__(self, methodName) dnn_testing_utils.BaseDNNClassifierTrainTest.__init__( self, _dnn_classifier_fn) def _dnn_regressor_fn(*args, **kwargs): return dnn.DNNRegressor(*args, **kwargs) class DNNRegressorEvaluateTest( dnn_testing_utils.BaseDNNRegressorEvaluateTest, test.TestCase): def __init__(self, methodName='runTest'): # pylint: disable=invalid-name test.TestCase.__init__(self, methodName) dnn_testing_utils.BaseDNNRegressorEvaluateTest.__init__( self, _dnn_regressor_fn) class DNNRegressorPredictTest( dnn_testing_utils.BaseDNNRegressorPredictTest, test.TestCase): def __init__(self, methodName='runTest'): # pylint: disable=invalid-name test.TestCase.__init__(self, methodName) dnn_testing_utils.BaseDNNRegressorPredictTest.__init__( self, _dnn_regressor_fn) class DNNRegressorTrainTest( dnn_testing_utils.BaseDNNRegressorTrainTest, test.TestCase): def __init__(self, methodName='runTest'): # pylint: disable=invalid-name test.TestCase.__init__(self, methodName) dnn_testing_utils.BaseDNNRegressorTrainTest.__init__( self, _dnn_regressor_fn) def _queue_parsed_features(feature_map): tensors_to_enqueue = [] keys = [] for key, tensor in six.iteritems(feature_map): keys.append(key) tensors_to_enqueue.append(tensor) queue_dtypes = [x.dtype for x in tensors_to_enqueue] input_queue = data_flow_ops.FIFOQueue(capacity=100, dtypes=queue_dtypes) queue_runner.add_queue_runner( queue_runner.QueueRunner( input_queue, [input_queue.enqueue(tensors_to_enqueue)])) dequeued_tensors = input_queue.dequeue() return {keys[i]: dequeued_tensors[i] for i in range(len(dequeued_tensors))} class DNNRegressorIntegrationTest(test.TestCase): def setUp(self): self._model_dir = tempfile.mkdtemp() def tearDown(self): if self._model_dir: writer_cache.FileWriterCache.clear() shutil.rmtree(self._model_dir) def _test_complete_flow( self, train_input_fn, eval_input_fn, predict_input_fn, input_dimension, label_dimension, batch_size): feature_columns = [ feature_column.numeric_column('x', shape=(input_dimension,))] est = dnn.DNNRegressor( hidden_units=(2, 2), feature_columns=feature_columns, label_dimension=label_dimension, model_dir=self._model_dir) # TRAIN num_steps = 10 est.train(train_input_fn, steps=num_steps) # EVALUTE scores = est.evaluate(eval_input_fn) self.assertEqual(num_steps, scores[ops.GraphKeys.GLOBAL_STEP]) self.assertIn('loss', six.iterkeys(scores)) # PREDICT predictions = np.array([ x[prediction_keys.PredictionKeys.PREDICTIONS] for x in est.predict(predict_input_fn) ]) self.assertAllEqual((batch_size, label_dimension), predictions.shape) # EXPORT feature_spec = feature_column.make_parse_example_spec(feature_columns) serving_input_receiver_fn = export.build_parsing_serving_input_receiver_fn( feature_spec) export_dir = est.export_savedmodel(tempfile.mkdtemp(), serving_input_receiver_fn) self.assertTrue(gfile.Exists(export_dir)) def test_numpy_input_fn(self): """Tests complete flow with numpy_input_fn.""" label_dimension = 2 batch_size = 10 data = np.linspace(0., 2., batch_size * label_dimension, dtype=np.float32) data = data.reshape(batch_size, label_dimension) # learn y = x train_input_fn = numpy_io.numpy_input_fn( x={'x': data}, y=data, batch_size=batch_size, num_epochs=None, shuffle=True) eval_input_fn = numpy_io.numpy_input_fn( x={'x': data}, y=data, batch_size=batch_size, shuffle=False) predict_input_fn = numpy_io.numpy_input_fn( x={'x': data}, batch_size=batch_size, shuffle=False) self._test_complete_flow( train_input_fn=train_input_fn, eval_input_fn=eval_input_fn, predict_input_fn=predict_input_fn, input_dimension=label_dimension, label_dimension=label_dimension, batch_size=batch_size) def test_pandas_input_fn(self): """Tests complete flow with pandas_input_fn.""" if not HAS_PANDAS: return label_dimension = 1 batch_size = 10 data = np.linspace(0., 2., batch_size, dtype=np.float32) x = pd.DataFrame({'x': data}) y = pd.Series(data) train_input_fn = pandas_io.pandas_input_fn( x=x, y=y, batch_size=batch_size, num_epochs=None, shuffle=True) eval_input_fn = pandas_io.pandas_input_fn( x=x, y=y, batch_size=batch_size, shuffle=False) predict_input_fn = pandas_io.pandas_input_fn( x=x, batch_size=batch_size, shuffle=False) self._test_complete_flow( train_input_fn=train_input_fn, eval_input_fn=eval_input_fn, predict_input_fn=predict_input_fn, input_dimension=label_dimension, label_dimension=label_dimension, batch_size=batch_size) def test_input_fn_from_parse_example(self): """Tests complete flow with input_fn constructed from parse_example.""" label_dimension = 2 batch_size = 10 data = np.linspace(0., 2., batch_size * label_dimension, dtype=np.float32) data = data.reshape(batch_size, label_dimension) serialized_examples = [] for datum in data: example = example_pb2.Example(features=feature_pb2.Features( feature={ 'x': feature_pb2.Feature( float_list=feature_pb2.FloatList(value=datum)), 'y': feature_pb2.Feature( float_list=feature_pb2.FloatList(value=datum)), })) serialized_examples.append(example.SerializeToString()) feature_spec = { 'x': parsing_ops.FixedLenFeature([label_dimension], dtypes.float32), 'y': parsing_ops.FixedLenFeature([label_dimension], dtypes.float32), } def _train_input_fn(): feature_map = parsing_ops.parse_example(serialized_examples, feature_spec) features = _queue_parsed_features(feature_map) labels = features.pop('y') return features, labels def _eval_input_fn(): feature_map = parsing_ops.parse_example( input_lib.limit_epochs(serialized_examples, num_epochs=1), feature_spec) features = _queue_parsed_features(feature_map) labels = features.pop('y') return features, labels def _predict_input_fn(): feature_map = parsing_ops.parse_example( input_lib.limit_epochs(serialized_examples, num_epochs=1), feature_spec) features = _queue_parsed_features(feature_map) features.pop('y') return features, None self._test_complete_flow( train_input_fn=_train_input_fn, eval_input_fn=_eval_input_fn, predict_input_fn=_predict_input_fn, input_dimension=label_dimension, label_dimension=label_dimension, batch_size=batch_size) class DNNClassifierIntegrationTest(test.TestCase): def setUp(self): self._model_dir = tempfile.mkdtemp() def tearDown(self): if self._model_dir: writer_cache.FileWriterCache.clear() shutil.rmtree(self._model_dir) def _as_label(self, data_in_float): return np.rint(data_in_float).astype(np.int64) def _test_complete_flow( self, train_input_fn, eval_input_fn, predict_input_fn, input_dimension, n_classes, batch_size): feature_columns = [ feature_column.numeric_column('x', shape=(input_dimension,))] est = dnn.DNNClassifier( hidden_units=(2, 2), feature_columns=feature_columns, n_classes=n_classes, model_dir=self._model_dir) # TRAIN num_steps = 10 est.train(train_input_fn, steps=num_steps) # EVALUTE scores = est.evaluate(eval_input_fn) self.assertEqual(num_steps, scores[ops.GraphKeys.GLOBAL_STEP]) self.assertIn('loss', six.iterkeys(scores)) # PREDICT predicted_proba = np.array([ x[prediction_keys.PredictionKeys.PROBABILITIES] for x in est.predict(predict_input_fn) ]) self.assertAllEqual((batch_size, n_classes), predicted_proba.shape) # EXPORT feature_spec = feature_column.make_parse_example_spec(feature_columns) serving_input_receiver_fn = export.build_parsing_serving_input_receiver_fn( feature_spec) export_dir = est.export_savedmodel(tempfile.mkdtemp(), serving_input_receiver_fn) self.assertTrue(gfile.Exists(export_dir)) def test_numpy_input_fn(self): """Tests complete flow with numpy_input_fn.""" n_classes = 3 input_dimension = 2 batch_size = 10 data = np.linspace( 0., n_classes - 1., batch_size * input_dimension, dtype=np.float32) x_data = data.reshape(batch_size, input_dimension) y_data = np.reshape(self._as_label(data[:batch_size]), (batch_size, 1)) # learn y = x train_input_fn = numpy_io.numpy_input_fn( x={'x': x_data}, y=y_data, batch_size=batch_size, num_epochs=None, shuffle=True) eval_input_fn = numpy_io.numpy_input_fn( x={'x': x_data}, y=y_data, batch_size=batch_size, shuffle=False) predict_input_fn = numpy_io.numpy_input_fn( x={'x': x_data}, batch_size=batch_size, shuffle=False) self._test_complete_flow( train_input_fn=train_input_fn, eval_input_fn=eval_input_fn, predict_input_fn=predict_input_fn, input_dimension=input_dimension, n_classes=n_classes, batch_size=batch_size) def test_pandas_input_fn(self): """Tests complete flow with pandas_input_fn.""" if not HAS_PANDAS: return input_dimension = 1 n_classes = 3 batch_size = 10 data = np.linspace(0., n_classes - 1., batch_size, dtype=np.float32) x = pd.DataFrame({'x': data}) y = pd.Series(self._as_label(data)) train_input_fn = pandas_io.pandas_input_fn( x=x, y=y, batch_size=batch_size, num_epochs=None, shuffle=True) eval_input_fn = pandas_io.pandas_input_fn( x=x, y=y, batch_size=batch_size, shuffle=False) predict_input_fn = pandas_io.pandas_input_fn( x=x, batch_size=batch_size, shuffle=False) self._test_complete_flow( train_input_fn=train_input_fn, eval_input_fn=eval_input_fn, predict_input_fn=predict_input_fn, input_dimension=input_dimension, n_classes=n_classes, batch_size=batch_size) def test_input_fn_from_parse_example(self): """Tests complete flow with input_fn constructed from parse_example.""" input_dimension = 2 n_classes = 3 batch_size = 10 data = np.linspace( 0., n_classes - 1., batch_size * input_dimension, dtype=np.float32) data = data.reshape(batch_size, input_dimension) serialized_examples = [] for datum in data: example = example_pb2.Example(features=feature_pb2.Features( feature={ 'x': feature_pb2.Feature(float_list=feature_pb2.FloatList( value=datum)), 'y': feature_pb2.Feature(int64_list=feature_pb2.Int64List( value=self._as_label(datum[:1]))), })) serialized_examples.append(example.SerializeToString()) feature_spec = { 'x': parsing_ops.FixedLenFeature([input_dimension], dtypes.float32), 'y': parsing_ops.FixedLenFeature([1], dtypes.int64), } def _train_input_fn(): feature_map = parsing_ops.parse_example(serialized_examples, feature_spec) features = _queue_parsed_features(feature_map) labels = features.pop('y') return features, labels def _eval_input_fn(): feature_map = parsing_ops.parse_example( input_lib.limit_epochs(serialized_examples, num_epochs=1), feature_spec) features = _queue_parsed_features(feature_map) labels = features.pop('y') return features, labels def _predict_input_fn(): feature_map = parsing_ops.parse_example( input_lib.limit_epochs(serialized_examples, num_epochs=1), feature_spec) features = _queue_parsed_features(feature_map) features.pop('y') return features, None self._test_complete_flow( train_input_fn=_train_input_fn, eval_input_fn=_eval_input_fn, predict_input_fn=_predict_input_fn, input_dimension=input_dimension, n_classes=n_classes, batch_size=batch_size) if __name__ == '__main__': test.main()
apache-2.0
samzhang111/scikit-learn
examples/calibration/plot_calibration_curve.py
225
5903
""" ============================== Probability Calibration curves ============================== When performing classification one often wants to predict not only the class label, but also the associated probability. This probability gives some kind of confidence on the prediction. This example demonstrates how to display how well calibrated the predicted probabilities are and how to calibrate an uncalibrated classifier. The experiment is performed on an artificial dataset for binary classification with 100.000 samples (1.000 of them are used for model fitting) with 20 features. Of the 20 features, only 2 are informative and 10 are redundant. The first figure shows the estimated probabilities obtained with logistic regression, Gaussian naive Bayes, and Gaussian naive Bayes with both isotonic calibration and sigmoid calibration. The calibration performance is evaluated with Brier score, reported in the legend (the smaller the better). One can observe here that logistic regression is well calibrated while raw Gaussian naive Bayes performs very badly. This is because of the redundant features which violate the assumption of feature-independence and result in an overly confident classifier, which is indicated by the typical transposed-sigmoid curve. Calibration of the probabilities of Gaussian naive Bayes with isotonic regression can fix this issue as can be seen from the nearly diagonal calibration curve. Sigmoid calibration also improves the brier score slightly, albeit not as strongly as the non-parametric isotonic regression. This can be attributed to the fact that we have plenty of calibration data such that the greater flexibility of the non-parametric model can be exploited. The second figure shows the calibration curve of a linear support-vector classifier (LinearSVC). LinearSVC shows the opposite behavior as Gaussian naive Bayes: the calibration curve has a sigmoid curve, which is typical for an under-confident classifier. In the case of LinearSVC, this is caused by the margin property of the hinge loss, which lets the model focus on hard samples that are close to the decision boundary (the support vectors). Both kinds of calibration can fix this issue and yield nearly identical results. This shows that sigmoid calibration can deal with situations where the calibration curve of the base classifier is sigmoid (e.g., for LinearSVC) but not where it is transposed-sigmoid (e.g., Gaussian naive Bayes). """ print(__doc__) # Author: Alexandre Gramfort <[email protected]> # Jan Hendrik Metzen <[email protected]> # License: BSD Style. import matplotlib.pyplot as plt from sklearn import datasets from sklearn.naive_bayes import GaussianNB from sklearn.svm import LinearSVC from sklearn.linear_model import LogisticRegression from sklearn.metrics import (brier_score_loss, precision_score, recall_score, f1_score) from sklearn.calibration import CalibratedClassifierCV, calibration_curve from sklearn.cross_validation import train_test_split # Create dataset of classification task with many redundant and few # informative features X, y = datasets.make_classification(n_samples=100000, n_features=20, n_informative=2, n_redundant=10, random_state=42) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.99, random_state=42) def plot_calibration_curve(est, name, fig_index): """Plot calibration curve for est w/o and with calibration. """ # Calibrated with isotonic calibration isotonic = CalibratedClassifierCV(est, cv=2, method='isotonic') # Calibrated with sigmoid calibration sigmoid = CalibratedClassifierCV(est, cv=2, method='sigmoid') # Logistic regression with no calibration as baseline lr = LogisticRegression(C=1., solver='lbfgs') fig = plt.figure(fig_index, figsize=(10, 10)) ax1 = plt.subplot2grid((3, 1), (0, 0), rowspan=2) ax2 = plt.subplot2grid((3, 1), (2, 0)) ax1.plot([0, 1], [0, 1], "k:", label="Perfectly calibrated") for clf, name in [(lr, 'Logistic'), (est, name), (isotonic, name + ' + Isotonic'), (sigmoid, name + ' + Sigmoid')]: clf.fit(X_train, y_train) y_pred = clf.predict(X_test) if hasattr(clf, "predict_proba"): prob_pos = clf.predict_proba(X_test)[:, 1] else: # use decision function prob_pos = clf.decision_function(X_test) prob_pos = \ (prob_pos - prob_pos.min()) / (prob_pos.max() - prob_pos.min()) clf_score = brier_score_loss(y_test, prob_pos, pos_label=y.max()) print("%s:" % name) print("\tBrier: %1.3f" % (clf_score)) print("\tPrecision: %1.3f" % precision_score(y_test, y_pred)) print("\tRecall: %1.3f" % recall_score(y_test, y_pred)) print("\tF1: %1.3f\n" % f1_score(y_test, y_pred)) fraction_of_positives, mean_predicted_value = \ calibration_curve(y_test, prob_pos, n_bins=10) ax1.plot(mean_predicted_value, fraction_of_positives, "s-", label="%s (%1.3f)" % (name, clf_score)) ax2.hist(prob_pos, range=(0, 1), bins=10, label=name, histtype="step", lw=2) ax1.set_ylabel("Fraction of positives") ax1.set_ylim([-0.05, 1.05]) ax1.legend(loc="lower right") ax1.set_title('Calibration plots (reliability curve)') ax2.set_xlabel("Mean predicted value") ax2.set_ylabel("Count") ax2.legend(loc="upper center", ncol=2) plt.tight_layout() # Plot calibration cuve for Gaussian Naive Bayes plot_calibration_curve(GaussianNB(), "Naive Bayes", 1) # Plot calibration cuve for Linear SVC plot_calibration_curve(LinearSVC(), "SVC", 2) plt.show()
bsd-3-clause
allenxwang/kafka
system_test/utils/metrics.py
28
13903
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. #!/usr/bin/env python # =================================== # file: metrics.py # =================================== import inspect import json import logging import os import signal import subprocess import sys import traceback import csv import time import matplotlib as mpl mpl.use('Agg') import matplotlib.pyplot as plt from collections import namedtuple import numpy from pyh import * import kafka_system_test_utils import system_test_utils logger = logging.getLogger("namedLogger") thisClassName = '(metrics)' d = {'name_of_class': thisClassName} attributeNameToNameInReportedFileMap = { 'Min': 'min', 'Max': 'max', 'Mean': 'mean', '50thPercentile': 'median', 'StdDev': 'stddev', '95thPercentile': '95%', '99thPercentile': '99%', '999thPercentile': '99.9%', 'Count': 'count', 'OneMinuteRate': '1 min rate', 'MeanRate': 'mean rate', 'FiveMinuteRate': '5 min rate', 'FifteenMinuteRate': '15 min rate', 'Value': 'value' } def getCSVFileNameFromMetricsMbeanName(mbeanName): return mbeanName.replace(":type=", ".").replace(",name=", ".") + ".csv" def read_metrics_definition(metricsFile): metricsFileData = open(metricsFile, "r").read() metricsJsonData = json.loads(metricsFileData) allDashboards = metricsJsonData['dashboards'] allGraphs = [] for dashboard in allDashboards: dashboardName = dashboard['name'] graphs = dashboard['graphs'] for graph in graphs: bean = graph['bean_name'] allGraphs.append(graph) attributes = graph['attributes'] #print "Filtering on attributes " + attributes return allGraphs def get_dashboard_definition(metricsFile, role): metricsFileData = open(metricsFile, "r").read() metricsJsonData = json.loads(metricsFileData) allDashboards = metricsJsonData['dashboards'] dashboardsForRole = [] for dashboard in allDashboards: if dashboard['role'] == role: dashboardsForRole.append(dashboard) return dashboardsForRole def ensure_valid_headers(headers, attributes): if headers[0] != "# time": raise Exception("First column should be time") for header in headers: logger.debug(header, extra=d) # there should be exactly one column with a name that matches attributes try: attributeColumnIndex = headers.index(attributes) return attributeColumnIndex except ValueError as ve: #print "#### attributes : ", attributes #print "#### headers : ", headers raise Exception("There should be exactly one column that matches attribute: {0} in".format(attributes) + " headers: {0}".format(",".join(headers))) def plot_graphs(inputCsvFiles, labels, title, xLabel, yLabel, attribute, outputGraphFile): # create empty plot fig=plt.figure() fig.subplots_adjust(bottom=0.2) ax=fig.add_subplot(111) labelx = -0.3 # axes coords ax.set_xlabel(xLabel) ax.set_ylabel(yLabel) ax.grid() #ax.yaxis.set_label_coords(labelx, 0.5) Coordinates = namedtuple("Coordinates", 'x y') plots = [] coordinates = [] # read data for all files, organize by label in a dict for fileAndLabel in zip(inputCsvFiles, labels): inputCsvFile = fileAndLabel[0] label = fileAndLabel[1] csv_reader = list(csv.reader(open(inputCsvFile, "rb"))) x,y = [],[] xticks_labels = [] try: # read first line as the headers headers = csv_reader.pop(0) attributeColumnIndex = ensure_valid_headers(headers, attributeNameToNameInReportedFileMap[attribute]) logger.debug("Column index for attribute {0} is {1}".format(attribute, attributeColumnIndex), extra=d) start_time = (int)(os.path.getctime(inputCsvFile) * 1000) int(csv_reader[0][0]) for line in csv_reader: if(len(line) == 0): continue yVal = float(line[attributeColumnIndex]) xVal = int(line[0]) y.append(yVal) epoch= start_time + int(line[0]) x.append(xVal) xticks_labels.append(time.strftime("%H:%M:%S", time.localtime(epoch))) coordinates.append(Coordinates(xVal, yVal)) p1 = ax.plot(x,y) plots.append(p1) except Exception as e: logger.error("ERROR while plotting data for {0}: {1}".format(inputCsvFile, e), extra=d) traceback.print_exc() # find xmin, xmax, ymin, ymax from all csv files xmin = min(map(lambda coord: coord.x, coordinates)) xmax = max(map(lambda coord: coord.x, coordinates)) ymin = min(map(lambda coord: coord.y, coordinates)) ymax = max(map(lambda coord: coord.y, coordinates)) # set x and y axes limits plt.xlim(xmin, xmax) plt.ylim(ymin, ymax) # set ticks accordingly xticks = numpy.arange(xmin, xmax, 0.2*xmax) # yticks = numpy.arange(ymin, ymax) plt.xticks(xticks,xticks_labels,rotation=17) # plt.yticks(yticks) plt.legend(plots,labels, loc=2) plt.title(title) plt.savefig(outputGraphFile) def draw_all_graphs(metricsDescriptionFile, testcaseEnv, clusterConfig): # go through each role and plot graphs for the role's metrics roles = set(map(lambda config: config['role'], clusterConfig)) for role in roles: dashboards = get_dashboard_definition(metricsDescriptionFile, role) entities = kafka_system_test_utils.get_entities_for_role(clusterConfig, role) for dashboard in dashboards: graphs = dashboard['graphs'] # draw each graph for all entities draw_graph_for_role(graphs, entities, role, testcaseEnv) def draw_graph_for_role(graphs, entities, role, testcaseEnv): for graph in graphs: graphName = graph['graph_name'] yLabel = graph['y_label'] inputCsvFiles = [] graphLegendLabels = [] for entity in entities: entityMetricsDir = kafka_system_test_utils.get_testcase_config_log_dir_pathname(testcaseEnv, role, entity['entity_id'], "metrics") entityMetricCsvFile = entityMetricsDir + "/" + getCSVFileNameFromMetricsMbeanName(graph['bean_name']) if(not os.path.exists(entityMetricCsvFile)): logger.warn("The file {0} does not exist for plotting".format(entityMetricCsvFile), extra=d) else: inputCsvFiles.append(entityMetricCsvFile) graphLegendLabels.append(role + "-" + entity['entity_id']) # print "Plotting graph for metric {0} on entity {1}".format(graph['graph_name'], entity['entity_id']) try: # plot one graph per mbean attribute labels = graph['y_label'].split(',') fullyQualifiedAttributeNames = map(lambda attribute: graph['bean_name'] + ':' + attribute, graph['attributes'].split(',')) attributes = graph['attributes'].split(',') for labelAndAttribute in zip(labels, fullyQualifiedAttributeNames, attributes): outputGraphFile = testcaseEnv.testCaseDashboardsDir + "/" + role + "/" + labelAndAttribute[1] + ".svg" plot_graphs(inputCsvFiles, graphLegendLabels, graph['graph_name'] + '-' + labelAndAttribute[2], "time", labelAndAttribute[0], labelAndAttribute[2], outputGraphFile) # print "Finished plotting graph for metric {0} on entity {1}".format(graph['graph_name'], entity['entity_id']) except Exception as e: logger.error("ERROR while plotting graph {0}: {1}".format(outputGraphFile, e), extra=d) traceback.print_exc() def build_all_dashboards(metricsDefinitionFile, testcaseDashboardsDir, clusterConfig): metricsHtmlFile = testcaseDashboardsDir + "/metrics.html" centralDashboard = PyH('Kafka Metrics Dashboard') centralDashboard << h1('Kafka Metrics Dashboard', cl='center') roles = set(map(lambda config: config['role'], clusterConfig)) for role in roles: entities = kafka_system_test_utils.get_entities_for_role(clusterConfig, role) dashboardPagePath = build_dashboard_for_role(metricsDefinitionFile, role, entities, testcaseDashboardsDir) centralDashboard << a(role, href = dashboardPagePath) centralDashboard << br() centralDashboard.printOut(metricsHtmlFile) def build_dashboard_for_role(metricsDefinitionFile, role, entities, testcaseDashboardsDir): # build all dashboards for the input entity's based on its role. It can be one of kafka, zookeeper, producer # consumer dashboards = get_dashboard_definition(metricsDefinitionFile, role) entityDashboard = PyH('Kafka Metrics Dashboard for ' + role) entityDashboard << h1('Kafka Metrics Dashboard for ' + role, cl='center') entityDashboardHtml = testcaseDashboardsDir + "/" + role + "-dashboards.html" for dashboard in dashboards: # place the graph svg files in this dashboard allGraphs = dashboard['graphs'] for graph in allGraphs: attributes = map(lambda attribute: graph['bean_name'] + ':' + attribute, graph['attributes'].split(',')) for attribute in attributes: graphFileLocation = testcaseDashboardsDir + "/" + role + "/" + attribute + ".svg" entityDashboard << embed(src = graphFileLocation, type = "image/svg+xml") entityDashboard.printOut(entityDashboardHtml) return entityDashboardHtml def start_metrics_collection(jmxHost, jmxPort, role, entityId, systemTestEnv, testcaseEnv): logger.info("starting metrics collection on jmx port : " + jmxPort, extra=d) jmxUrl = "service:jmx:rmi:///jndi/rmi://" + jmxHost + ":" + jmxPort + "/jmxrmi" clusterConfig = systemTestEnv.clusterEntityConfigDictList metricsDefinitionFile = systemTestEnv.METRICS_PATHNAME entityMetricsDir = kafka_system_test_utils.get_testcase_config_log_dir_pathname(testcaseEnv, role, entityId, "metrics") dashboardsForRole = get_dashboard_definition(metricsDefinitionFile, role) mbeansForRole = get_mbeans_for_role(dashboardsForRole) kafkaHome = system_test_utils.get_data_by_lookup_keyval(clusterConfig, "entity_id", entityId, "kafka_home") javaHome = system_test_utils.get_data_by_lookup_keyval(clusterConfig, "entity_id", entityId, "java_home") for mbean in mbeansForRole: outputCsvFile = entityMetricsDir + "/" + mbean + ".csv" startMetricsCmdList = ["ssh " + jmxHost, "'JAVA_HOME=" + javaHome, "JMX_PORT= " + kafkaHome + "/bin/kafka-run-class.sh kafka.tools.JmxTool", "--jmx-url " + jmxUrl, "--object-name " + mbean + " 1> ", outputCsvFile + " & echo pid:$! > ", entityMetricsDir + "/entity_pid'"] startMetricsCommand = " ".join(startMetricsCmdList) logger.debug("executing command: [" + startMetricsCommand + "]", extra=d) system_test_utils.async_sys_call(startMetricsCommand) time.sleep(1) pidCmdStr = "ssh " + jmxHost + " 'cat " + entityMetricsDir + "/entity_pid' 2> /dev/null" logger.debug("executing command: [" + pidCmdStr + "]", extra=d) subproc = system_test_utils.sys_call_return_subproc(pidCmdStr) # keep track of JMX ppid in a dictionary of entity_id to list of JMX ppid # testcaseEnv.entityJmxParentPidDict: # key: entity_id # val: list of JMX ppid associated to that entity_id # { 1: [1234, 1235, 1236], 2: [2234, 2235, 2236], ... } for line in subproc.stdout.readlines(): line = line.rstrip('\n') logger.debug("line: [" + line + "]", extra=d) if line.startswith("pid"): logger.debug("found pid line: [" + line + "]", extra=d) tokens = line.split(':') thisPid = tokens[1] if entityId not in testcaseEnv.entityJmxParentPidDict: testcaseEnv.entityJmxParentPidDict[entityId] = [] testcaseEnv.entityJmxParentPidDict[entityId].append(thisPid) #print "\n#### testcaseEnv.entityJmxParentPidDict ", testcaseEnv.entityJmxParentPidDict, "\n" def stop_metrics_collection(jmxHost, jmxPort): logger.info("stopping metrics collection on " + jmxHost + ":" + jmxPort, extra=d) system_test_utils.sys_call("ps -ef | grep JmxTool | grep -v grep | grep " + jmxPort + " | awk '{print $2}' | xargs kill -9") def get_mbeans_for_role(dashboardsForRole): graphs = reduce(lambda x,y: x+y, map(lambda dashboard: dashboard['graphs'], dashboardsForRole)) return set(map(lambda metric: metric['bean_name'], graphs))
apache-2.0
simon-pepin/scikit-learn
sklearn/tree/tree.py
113
34767
""" This module gathers tree-based methods, including decision, regression and randomized trees. Single and multi-output problems are both handled. """ # Authors: Gilles Louppe <[email protected]> # Peter Prettenhofer <[email protected]> # Brian Holt <[email protected]> # Noel Dawe <[email protected]> # Satrajit Gosh <[email protected]> # Joly Arnaud <[email protected]> # Fares Hedayati <[email protected]> # # Licence: BSD 3 clause from __future__ import division import numbers from abc import ABCMeta, abstractmethod import numpy as np from scipy.sparse import issparse from ..base import BaseEstimator, ClassifierMixin, RegressorMixin from ..externals import six from ..feature_selection.from_model import _LearntSelectorMixin from ..utils import check_array, check_random_state, compute_sample_weight from ..utils.validation import NotFittedError from ._tree import Criterion from ._tree import Splitter from ._tree import DepthFirstTreeBuilder, BestFirstTreeBuilder from ._tree import Tree from . import _tree __all__ = ["DecisionTreeClassifier", "DecisionTreeRegressor", "ExtraTreeClassifier", "ExtraTreeRegressor"] # ============================================================================= # Types and constants # ============================================================================= DTYPE = _tree.DTYPE DOUBLE = _tree.DOUBLE CRITERIA_CLF = {"gini": _tree.Gini, "entropy": _tree.Entropy} CRITERIA_REG = {"mse": _tree.MSE, "friedman_mse": _tree.FriedmanMSE} DENSE_SPLITTERS = {"best": _tree.BestSplitter, "presort-best": _tree.PresortBestSplitter, "random": _tree.RandomSplitter} SPARSE_SPLITTERS = {"best": _tree.BestSparseSplitter, "random": _tree.RandomSparseSplitter} # ============================================================================= # Base decision tree # ============================================================================= class BaseDecisionTree(six.with_metaclass(ABCMeta, BaseEstimator, _LearntSelectorMixin)): """Base class for decision trees. Warning: This class should not be used directly. Use derived classes instead. """ @abstractmethod def __init__(self, criterion, splitter, max_depth, min_samples_split, min_samples_leaf, min_weight_fraction_leaf, max_features, max_leaf_nodes, random_state, class_weight=None): self.criterion = criterion self.splitter = splitter self.max_depth = max_depth self.min_samples_split = min_samples_split self.min_samples_leaf = min_samples_leaf self.min_weight_fraction_leaf = min_weight_fraction_leaf self.max_features = max_features self.random_state = random_state self.max_leaf_nodes = max_leaf_nodes self.class_weight = class_weight self.n_features_ = None self.n_outputs_ = None self.classes_ = None self.n_classes_ = None self.tree_ = None self.max_features_ = None def fit(self, X, y, sample_weight=None, check_input=True): """Build a decision tree from the training set (X, y). Parameters ---------- X : array-like or sparse matrix, shape = [n_samples, n_features] The training input samples. Internally, it will be converted to ``dtype=np.float32`` and if a sparse matrix is provided to a sparse ``csc_matrix``. y : array-like, shape = [n_samples] or [n_samples, n_outputs] The target values (class labels in classification, real numbers in regression). In the regression case, use ``dtype=np.float64`` and ``order='C'`` for maximum efficiency. sample_weight : array-like, shape = [n_samples] or None Sample weights. If None, then samples are equally weighted. Splits that would create child nodes with net zero or negative weight are ignored while searching for a split in each node. In the case of classification, splits are also ignored if they would result in any single class carrying a negative weight in either child node. check_input : boolean, (default=True) Allow to bypass several input checking. Don't use this parameter unless you know what you do. Returns ------- self : object Returns self. """ random_state = check_random_state(self.random_state) if check_input: X = check_array(X, dtype=DTYPE, accept_sparse="csc") if issparse(X): X.sort_indices() if X.indices.dtype != np.intc or X.indptr.dtype != np.intc: raise ValueError("No support for np.int64 index based " "sparse matrices") # Determine output settings n_samples, self.n_features_ = X.shape is_classification = isinstance(self, ClassifierMixin) y = np.atleast_1d(y) expanded_class_weight = None if y.ndim == 1: # reshape is necessary to preserve the data contiguity against vs # [:, np.newaxis] that does not. y = np.reshape(y, (-1, 1)) self.n_outputs_ = y.shape[1] if is_classification: y = np.copy(y) self.classes_ = [] self.n_classes_ = [] if self.class_weight is not None: y_original = np.copy(y) y_store_unique_indices = np.zeros(y.shape, dtype=np.int) for k in range(self.n_outputs_): classes_k, y_store_unique_indices[:, k] = np.unique(y[:, k], return_inverse=True) self.classes_.append(classes_k) self.n_classes_.append(classes_k.shape[0]) y = y_store_unique_indices if self.class_weight is not None: expanded_class_weight = compute_sample_weight( self.class_weight, y_original) else: self.classes_ = [None] * self.n_outputs_ self.n_classes_ = [1] * self.n_outputs_ self.n_classes_ = np.array(self.n_classes_, dtype=np.intp) if getattr(y, "dtype", None) != DOUBLE or not y.flags.contiguous: y = np.ascontiguousarray(y, dtype=DOUBLE) # Check parameters max_depth = ((2 ** 31) - 1 if self.max_depth is None else self.max_depth) max_leaf_nodes = (-1 if self.max_leaf_nodes is None else self.max_leaf_nodes) if isinstance(self.max_features, six.string_types): if self.max_features == "auto": if is_classification: max_features = max(1, int(np.sqrt(self.n_features_))) else: max_features = self.n_features_ elif self.max_features == "sqrt": max_features = max(1, int(np.sqrt(self.n_features_))) elif self.max_features == "log2": max_features = max(1, int(np.log2(self.n_features_))) else: raise ValueError( 'Invalid value for max_features. Allowed string ' 'values are "auto", "sqrt" or "log2".') elif self.max_features is None: max_features = self.n_features_ elif isinstance(self.max_features, (numbers.Integral, np.integer)): max_features = self.max_features else: # float if self.max_features > 0.0: max_features = max(1, int(self.max_features * self.n_features_)) else: max_features = 0 self.max_features_ = max_features if len(y) != n_samples: raise ValueError("Number of labels=%d does not match " "number of samples=%d" % (len(y), n_samples)) if self.min_samples_split <= 0: raise ValueError("min_samples_split must be greater than zero.") if self.min_samples_leaf <= 0: raise ValueError("min_samples_leaf must be greater than zero.") if not 0 <= self.min_weight_fraction_leaf <= 0.5: raise ValueError("min_weight_fraction_leaf must in [0, 0.5]") if max_depth <= 0: raise ValueError("max_depth must be greater than zero. ") if not (0 < max_features <= self.n_features_): raise ValueError("max_features must be in (0, n_features]") if not isinstance(max_leaf_nodes, (numbers.Integral, np.integer)): raise ValueError("max_leaf_nodes must be integral number but was " "%r" % max_leaf_nodes) if -1 < max_leaf_nodes < 2: raise ValueError(("max_leaf_nodes {0} must be either smaller than " "0 or larger than 1").format(max_leaf_nodes)) if sample_weight is not None: if (getattr(sample_weight, "dtype", None) != DOUBLE or not sample_weight.flags.contiguous): sample_weight = np.ascontiguousarray( sample_weight, dtype=DOUBLE) if len(sample_weight.shape) > 1: raise ValueError("Sample weights array has more " "than one dimension: %d" % len(sample_weight.shape)) if len(sample_weight) != n_samples: raise ValueError("Number of weights=%d does not match " "number of samples=%d" % (len(sample_weight), n_samples)) if expanded_class_weight is not None: if sample_weight is not None: sample_weight = sample_weight * expanded_class_weight else: sample_weight = expanded_class_weight # Set min_weight_leaf from min_weight_fraction_leaf if self.min_weight_fraction_leaf != 0. and sample_weight is not None: min_weight_leaf = (self.min_weight_fraction_leaf * np.sum(sample_weight)) else: min_weight_leaf = 0. # Set min_samples_split sensibly min_samples_split = max(self.min_samples_split, 2 * self.min_samples_leaf) # Build tree criterion = self.criterion if not isinstance(criterion, Criterion): if is_classification: criterion = CRITERIA_CLF[self.criterion](self.n_outputs_, self.n_classes_) else: criterion = CRITERIA_REG[self.criterion](self.n_outputs_) SPLITTERS = SPARSE_SPLITTERS if issparse(X) else DENSE_SPLITTERS splitter = self.splitter if not isinstance(self.splitter, Splitter): splitter = SPLITTERS[self.splitter](criterion, self.max_features_, self.min_samples_leaf, min_weight_leaf, random_state) self.tree_ = Tree(self.n_features_, self.n_classes_, self.n_outputs_) # Use BestFirst if max_leaf_nodes given; use DepthFirst otherwise if max_leaf_nodes < 0: builder = DepthFirstTreeBuilder(splitter, min_samples_split, self.min_samples_leaf, min_weight_leaf, max_depth) else: builder = BestFirstTreeBuilder(splitter, min_samples_split, self.min_samples_leaf, min_weight_leaf, max_depth, max_leaf_nodes) builder.build(self.tree_, X, y, sample_weight) if self.n_outputs_ == 1: self.n_classes_ = self.n_classes_[0] self.classes_ = self.classes_[0] return self def _validate_X_predict(self, X, check_input): """Validate X whenever one tries to predict, apply, predict_proba""" if self.tree_ is None: raise NotFittedError("Estimator not fitted, " "call `fit` before exploiting the model.") if check_input: X = check_array(X, dtype=DTYPE, accept_sparse="csr") if issparse(X) and (X.indices.dtype != np.intc or X.indptr.dtype != np.intc): raise ValueError("No support for np.int64 index based " "sparse matrices") n_features = X.shape[1] if self.n_features_ != n_features: raise ValueError("Number of features of the model must " " match the input. Model n_features is %s and " " input n_features is %s " % (self.n_features_, n_features)) return X def predict(self, X, check_input=True): """Predict class or regression value for X. For a classification model, the predicted class for each sample in X is returned. For a regression model, the predicted value based on X is returned. Parameters ---------- X : array-like or sparse matrix of shape = [n_samples, n_features] The input samples. Internally, it will be converted to ``dtype=np.float32`` and if a sparse matrix is provided to a sparse ``csr_matrix``. check_input : boolean, (default=True) Allow to bypass several input checking. Don't use this parameter unless you know what you do. Returns ------- y : array of shape = [n_samples] or [n_samples, n_outputs] The predicted classes, or the predict values. """ X = self._validate_X_predict(X, check_input) proba = self.tree_.predict(X) n_samples = X.shape[0] # Classification if isinstance(self, ClassifierMixin): if self.n_outputs_ == 1: return self.classes_.take(np.argmax(proba, axis=1), axis=0) else: predictions = np.zeros((n_samples, self.n_outputs_)) for k in range(self.n_outputs_): predictions[:, k] = self.classes_[k].take( np.argmax(proba[:, k], axis=1), axis=0) return predictions # Regression else: if self.n_outputs_ == 1: return proba[:, 0] else: return proba[:, :, 0] def apply(self, X, check_input=True): """ Returns the index of the leaf that each sample is predicted as. Parameters ---------- X : array_like or sparse matrix, shape = [n_samples, n_features] The input samples. Internally, it will be converted to ``dtype=np.float32`` and if a sparse matrix is provided to a sparse ``csr_matrix``. check_input : boolean, (default=True) Allow to bypass several input checking. Don't use this parameter unless you know what you do. Returns ------- X_leaves : array_like, shape = [n_samples,] For each datapoint x in X, return the index of the leaf x ends up in. Leaves are numbered within ``[0; self.tree_.node_count)``, possibly with gaps in the numbering. """ X = self._validate_X_predict(X, check_input) return self.tree_.apply(X) @property def feature_importances_(self): """Return the feature importances. The importance of a feature is computed as the (normalized) total reduction of the criterion brought by that feature. It is also known as the Gini importance. Returns ------- feature_importances_ : array, shape = [n_features] """ if self.tree_ is None: raise NotFittedError("Estimator not fitted, call `fit` before" " `feature_importances_`.") return self.tree_.compute_feature_importances() # ============================================================================= # Public estimators # ============================================================================= class DecisionTreeClassifier(BaseDecisionTree, ClassifierMixin): """A decision tree classifier. Read more in the :ref:`User Guide <tree>`. Parameters ---------- criterion : string, optional (default="gini") The function to measure the quality of a split. Supported criteria are "gini" for the Gini impurity and "entropy" for the information gain. splitter : string, optional (default="best") The strategy used to choose the split at each node. Supported strategies are "best" to choose the best split and "random" to choose the best random split. max_features : int, float, string or None, optional (default=None) The number of features to consider when looking for the best split: - If int, then consider `max_features` features at each split. - If float, then `max_features` is a percentage and `int(max_features * n_features)` features are considered at each split. - If "auto", then `max_features=sqrt(n_features)`. - If "sqrt", then `max_features=sqrt(n_features)`. - If "log2", then `max_features=log2(n_features)`. - If None, then `max_features=n_features`. Note: the search for a split does not stop until at least one valid partition of the node samples is found, even if it requires to effectively inspect more than ``max_features`` features. max_depth : int or None, optional (default=None) The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples. Ignored if ``max_leaf_nodes`` is not None. min_samples_split : int, optional (default=2) The minimum number of samples required to split an internal node. min_samples_leaf : int, optional (default=1) The minimum number of samples required to be at a leaf node. min_weight_fraction_leaf : float, optional (default=0.) The minimum weighted fraction of the input samples required to be at a leaf node. max_leaf_nodes : int or None, optional (default=None) Grow a tree with ``max_leaf_nodes`` in best-first fashion. Best nodes are defined as relative reduction in impurity. If None then unlimited number of leaf nodes. If not None then ``max_depth`` will be ignored. class_weight : dict, list of dicts, "balanced" or None, optional (default=None) Weights associated with classes in the form ``{class_label: weight}``. If not given, all classes are supposed to have weight one. For multi-output problems, a list of dicts can be provided in the same order as the columns of y. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))`` For multi-output, the weights of each column of y will be multiplied. Note that these weights will be multiplied with sample_weight (passed through the fit method) if sample_weight is specified. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Attributes ---------- classes_ : array of shape = [n_classes] or a list of such arrays The classes labels (single output problem), or a list of arrays of class labels (multi-output problem). feature_importances_ : array of shape = [n_features] The feature importances. The higher, the more important the feature. The importance of a feature is computed as the (normalized) total reduction of the criterion brought by that feature. It is also known as the Gini importance [4]_. max_features_ : int, The inferred value of max_features. n_classes_ : int or list The number of classes (for single output problems), or a list containing the number of classes for each output (for multi-output problems). n_features_ : int The number of features when ``fit`` is performed. n_outputs_ : int The number of outputs when ``fit`` is performed. tree_ : Tree object The underlying Tree object. See also -------- DecisionTreeRegressor References ---------- .. [1] http://en.wikipedia.org/wiki/Decision_tree_learning .. [2] L. Breiman, J. Friedman, R. Olshen, and C. Stone, "Classification and Regression Trees", Wadsworth, Belmont, CA, 1984. .. [3] T. Hastie, R. Tibshirani and J. Friedman. "Elements of Statistical Learning", Springer, 2009. .. [4] L. Breiman, and A. Cutler, "Random Forests", http://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm Examples -------- >>> from sklearn.datasets import load_iris >>> from sklearn.cross_validation import cross_val_score >>> from sklearn.tree import DecisionTreeClassifier >>> clf = DecisionTreeClassifier(random_state=0) >>> iris = load_iris() >>> cross_val_score(clf, iris.data, iris.target, cv=10) ... # doctest: +SKIP ... array([ 1. , 0.93..., 0.86..., 0.93..., 0.93..., 0.93..., 0.93..., 1. , 0.93..., 1. ]) """ def __init__(self, criterion="gini", splitter="best", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0., max_features=None, random_state=None, max_leaf_nodes=None, class_weight=None): super(DecisionTreeClassifier, self).__init__( criterion=criterion, splitter=splitter, max_depth=max_depth, min_samples_split=min_samples_split, min_samples_leaf=min_samples_leaf, min_weight_fraction_leaf=min_weight_fraction_leaf, max_features=max_features, max_leaf_nodes=max_leaf_nodes, class_weight=class_weight, random_state=random_state) def predict_proba(self, X, check_input=True): """Predict class probabilities of the input samples X. The predicted class probability is the fraction of samples of the same class in a leaf. check_input : boolean, (default=True) Allow to bypass several input checking. Don't use this parameter unless you know what you do. Parameters ---------- X : array-like or sparse matrix of shape = [n_samples, n_features] The input samples. Internally, it will be converted to ``dtype=np.float32`` and if a sparse matrix is provided to a sparse ``csr_matrix``. Returns ------- p : array of shape = [n_samples, n_classes], or a list of n_outputs such arrays if n_outputs > 1. The class probabilities of the input samples. The order of the classes corresponds to that in the attribute `classes_`. """ X = self._validate_X_predict(X, check_input) proba = self.tree_.predict(X) if self.n_outputs_ == 1: proba = proba[:, :self.n_classes_] normalizer = proba.sum(axis=1)[:, np.newaxis] normalizer[normalizer == 0.0] = 1.0 proba /= normalizer return proba else: all_proba = [] for k in range(self.n_outputs_): proba_k = proba[:, k, :self.n_classes_[k]] normalizer = proba_k.sum(axis=1)[:, np.newaxis] normalizer[normalizer == 0.0] = 1.0 proba_k /= normalizer all_proba.append(proba_k) return all_proba def predict_log_proba(self, X): """Predict class log-probabilities of the input samples X. Parameters ---------- X : array-like or sparse matrix of shape = [n_samples, n_features] The input samples. Internally, it will be converted to ``dtype=np.float32`` and if a sparse matrix is provided to a sparse ``csr_matrix``. Returns ------- p : array of shape = [n_samples, n_classes], or a list of n_outputs such arrays if n_outputs > 1. The class log-probabilities of the input samples. The order of the classes corresponds to that in the attribute `classes_`. """ proba = self.predict_proba(X) if self.n_outputs_ == 1: return np.log(proba) else: for k in range(self.n_outputs_): proba[k] = np.log(proba[k]) return proba class DecisionTreeRegressor(BaseDecisionTree, RegressorMixin): """A decision tree regressor. Read more in the :ref:`User Guide <tree>`. Parameters ---------- criterion : string, optional (default="mse") The function to measure the quality of a split. The only supported criterion is "mse" for the mean squared error, which is equal to variance reduction as feature selection criterion. splitter : string, optional (default="best") The strategy used to choose the split at each node. Supported strategies are "best" to choose the best split and "random" to choose the best random split. max_features : int, float, string or None, optional (default=None) The number of features to consider when looking for the best split: - If int, then consider `max_features` features at each split. - If float, then `max_features` is a percentage and `int(max_features * n_features)` features are considered at each split. - If "auto", then `max_features=n_features`. - If "sqrt", then `max_features=sqrt(n_features)`. - If "log2", then `max_features=log2(n_features)`. - If None, then `max_features=n_features`. Note: the search for a split does not stop until at least one valid partition of the node samples is found, even if it requires to effectively inspect more than ``max_features`` features. max_depth : int or None, optional (default=None) The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples. Ignored if ``max_leaf_nodes`` is not None. min_samples_split : int, optional (default=2) The minimum number of samples required to split an internal node. min_samples_leaf : int, optional (default=1) The minimum number of samples required to be at a leaf node. min_weight_fraction_leaf : float, optional (default=0.) The minimum weighted fraction of the input samples required to be at a leaf node. max_leaf_nodes : int or None, optional (default=None) Grow a tree with ``max_leaf_nodes`` in best-first fashion. Best nodes are defined as relative reduction in impurity. If None then unlimited number of leaf nodes. If not None then ``max_depth`` will be ignored. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Attributes ---------- feature_importances_ : array of shape = [n_features] The feature importances. The higher, the more important the feature. The importance of a feature is computed as the (normalized) total reduction of the criterion brought by that feature. It is also known as the Gini importance [4]_. max_features_ : int, The inferred value of max_features. n_features_ : int The number of features when ``fit`` is performed. n_outputs_ : int The number of outputs when ``fit`` is performed. tree_ : Tree object The underlying Tree object. See also -------- DecisionTreeClassifier References ---------- .. [1] http://en.wikipedia.org/wiki/Decision_tree_learning .. [2] L. Breiman, J. Friedman, R. Olshen, and C. Stone, "Classification and Regression Trees", Wadsworth, Belmont, CA, 1984. .. [3] T. Hastie, R. Tibshirani and J. Friedman. "Elements of Statistical Learning", Springer, 2009. .. [4] L. Breiman, and A. Cutler, "Random Forests", http://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm Examples -------- >>> from sklearn.datasets import load_boston >>> from sklearn.cross_validation import cross_val_score >>> from sklearn.tree import DecisionTreeRegressor >>> boston = load_boston() >>> regressor = DecisionTreeRegressor(random_state=0) >>> cross_val_score(regressor, boston.data, boston.target, cv=10) ... # doctest: +SKIP ... array([ 0.61..., 0.57..., -0.34..., 0.41..., 0.75..., 0.07..., 0.29..., 0.33..., -1.42..., -1.77...]) """ def __init__(self, criterion="mse", splitter="best", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0., max_features=None, random_state=None, max_leaf_nodes=None): super(DecisionTreeRegressor, self).__init__( criterion=criterion, splitter=splitter, max_depth=max_depth, min_samples_split=min_samples_split, min_samples_leaf=min_samples_leaf, min_weight_fraction_leaf=min_weight_fraction_leaf, max_features=max_features, max_leaf_nodes=max_leaf_nodes, random_state=random_state) class ExtraTreeClassifier(DecisionTreeClassifier): """An extremely randomized tree classifier. Extra-trees differ from classic decision trees in the way they are built. When looking for the best split to separate the samples of a node into two groups, random splits are drawn for each of the `max_features` randomly selected features and the best split among those is chosen. When `max_features` is set 1, this amounts to building a totally random decision tree. Warning: Extra-trees should only be used within ensemble methods. Read more in the :ref:`User Guide <tree>`. See also -------- ExtraTreeRegressor, ExtraTreesClassifier, ExtraTreesRegressor References ---------- .. [1] P. Geurts, D. Ernst., and L. Wehenkel, "Extremely randomized trees", Machine Learning, 63(1), 3-42, 2006. """ def __init__(self, criterion="gini", splitter="random", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0., max_features="auto", random_state=None, max_leaf_nodes=None, class_weight=None): super(ExtraTreeClassifier, self).__init__( criterion=criterion, splitter=splitter, max_depth=max_depth, min_samples_split=min_samples_split, min_samples_leaf=min_samples_leaf, min_weight_fraction_leaf=min_weight_fraction_leaf, max_features=max_features, max_leaf_nodes=max_leaf_nodes, class_weight=class_weight, random_state=random_state) class ExtraTreeRegressor(DecisionTreeRegressor): """An extremely randomized tree regressor. Extra-trees differ from classic decision trees in the way they are built. When looking for the best split to separate the samples of a node into two groups, random splits are drawn for each of the `max_features` randomly selected features and the best split among those is chosen. When `max_features` is set 1, this amounts to building a totally random decision tree. Warning: Extra-trees should only be used within ensemble methods. Read more in the :ref:`User Guide <tree>`. See also -------- ExtraTreeClassifier, ExtraTreesClassifier, ExtraTreesRegressor References ---------- .. [1] P. Geurts, D. Ernst., and L. Wehenkel, "Extremely randomized trees", Machine Learning, 63(1), 3-42, 2006. """ def __init__(self, criterion="mse", splitter="random", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0., max_features="auto", random_state=None, max_leaf_nodes=None): super(ExtraTreeRegressor, self).__init__( criterion=criterion, splitter=splitter, max_depth=max_depth, min_samples_split=min_samples_split, min_samples_leaf=min_samples_leaf, min_weight_fraction_leaf=min_weight_fraction_leaf, max_features=max_features, max_leaf_nodes=max_leaf_nodes, random_state=random_state)
bsd-3-clause
pyspeckit/pyspeckit
pyspeckit/cubes/mapplot.py
4
16759
""" MapPlot ------- Make plots of the cube and interactively connect them to spectrum plotting. This is really an interactive component of the package; nothing in here is meant for publication-quality plots, but more for user interactive analysis. That said, the plotter makes use of `APLpy <https://github.com/aplpy/aplpy>`_, so it is possible to make publication-quality plots. :author: Adam Ginsburg :date: 03/17/2011 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ """ from __future__ import print_function import matplotlib import matplotlib.figure import numpy as np import copy import itertools import six try: import astropy.wcs as pywcs import astropy.io.fits as pyfits pywcsOK = True except ImportError: try: import pyfits import pywcs pywcsOK = True except ImportError: pywcsOK = False try: import aplpy icanhasaplpy = True except: # aplpy fails with generic exceptions instead of ImportError icanhasaplpy = False from . import cubes class MapPlotter(object): """ Class to plot a spectrum See `mapplot` for use documentation; this docstring is only for initialization. """ def __init__(self, Cube=None, figure=None, doplot=False, **kwargs): """ Create a map figure for future plotting """ import matplotlib.pyplot self._pyplot = matplotlib.pyplot # figure out where to put the plot if isinstance(figure,matplotlib.figure.Figure): self.figure = figure elif type(figure) is int: self.figure = self._pyplot.figure(figure) else: self.figure = None self.axis = None self.FITSFigure = None self._click_marks = [] self._circles = [] self._clickX = None self._clickY = None self.overplot_colorcycle = itertools.cycle(['b', 'g', 'r', 'c', 'm', 'y']) self.overplot_linestyle = '-' self.Cube = Cube if self.Cube is not None: self.header = cubes.flatten_header(self.Cube.header, delete=True) if pywcsOK: self.wcs = pywcs.WCS(self.header) if doplot: self.mapplot(**kwargs) def __call__(self, **kwargs): """ see mapplot """ return self.mapplot(**kwargs) def mapplot(self, convention='calabretta', colorbar=True, useaplpy=True, vmin=None, vmax=None, cmap=None, plotkwargs={}, **kwargs): """ Plot up a map based on an input data cube. The map to be plotted is selected using `makeplane`. The `estimator` keyword argument is passed to that function. The plotted map, once shown, is interactive. You can click on it with any of the three mouse buttons. Button 1 or keyboard '1': Plot the selected pixel's spectrum in another window. Mark the clicked pixel with an 'x' Button 2 or keyboard 'o': Overplot a second (or third, fourth, fifth...) spectrum in the external plot window Button 3: Disconnect the interactive viewer You can also click-and-drag with button 1 to average over a circular region. This same effect can be achieved by using the 'c' key to set the /c/enter of a circle and the 'r' key to set its /r/adius (i.e., hover over the center and press 'c', then hover some distance away and press 'r'). Parameters ---------- convention : 'calabretta' or 'griesen' The default projection to assume for Galactic data when plotting with aplpy. colorbar : bool Whether to show a colorbar plotkwargs : dict, optional A dictionary of keyword arguments to pass to aplpy.show_colorscale or matplotlib.pyplot.imshow useaplpy : bool Use aplpy if a FITS header is available vmin, vmax: float or None Override values for the vmin/vmax values. Will be automatically determined if left as None .. todo: Allow mapplot in subfigure """ if (self.figure is None): self.figure = self._pyplot.figure() elif (not self._pyplot.fignum_exists(self.figure.number)): self.figure = self._pyplot.figure() else: self._disconnect() self.figure.clf() # this is where the map is created; everything below this is just plotting self.makeplane(**kwargs) # have tot pop out estimator so that kwargs can be passed to imshow if 'estimator' in kwargs: kwargs.pop('estimator') # Below here is all plotting stuff if vmin is None: vmin = self.plane[self.plane==self.plane].min() if vmax is None: vmax = self.plane[self.plane==self.plane].max() if icanhasaplpy and useaplpy: self.fitsfile = pyfits.PrimaryHDU(data=self.plane,header=self.header) self.FITSFigure = aplpy.FITSFigure(self.fitsfile,figure=self.figure,convention=convention) self.FITSFigure.show_colorscale(vmin=vmin, vmax=vmax, cmap=cmap, **plotkwargs) if hasattr(self.FITSFigure, '_ax1'): self.axis = self.FITSFigure._ax1 else: self.axis = self.FITSFigure.ax if colorbar: try: self.FITSFigure.add_colorbar() except Exception as ex: print("ERROR: Could not create colorbar! Error was %s" % str(ex)) self._origin = 0 # FITS convention # TODO: set _origin to 1 if using PIXEL units, not real wcs else: self.axis = self.figure.add_subplot(111) if hasattr(self,'colorbar') and self.colorbar is not None: if self.colorbar.ax in self.axis.figure.axes: self.axis.figure.delaxes(self.colorbar.ax) self.axis.imshow(self.plane, vmin=vmin, vmax=vmax, cmap=cmap, **plotkwargs) if colorbar: try: self.colorbar = self._pyplot.colorbar(self.axis.images[0]) except Exception as ex: print("ERROR: Could not create colorbar! Error was %s" % str(ex)) self._origin = 0 # normal convention self.canvas = self.axis.figure.canvas self._connect() def _connect(self): """ Connect click, click up (release click), and key press to events """ self.clickid = self.canvas.callbacks.connect('button_press_event',self.click) self.clickupid = self.canvas.callbacks.connect('button_release_event',self.plot_spectrum) self.keyid = self.canvas.callbacks.connect('key_press_event',self.plot_spectrum) def _disconnect(self): """ Disconnect click, click up (release click), and key press from events """ if hasattr(self,'canvas'): self.canvas.mpl_disconnect(self.clickid) self.canvas.mpl_disconnect(self.clickupid) self.canvas.mpl_disconnect(self.keyid) def makeplane(self, estimator=np.nanmean): """ Create a "plane" view of the cube, either by slicing or projecting it or by showing a slice from the best-fit model parameter cube. Parameters ---------- estimator : [ function | 'max' | 'int' | FITS filename | integer | slice ] A non-pythonic, non-duck-typed variable. If it's a function, apply that function along the cube's spectral axis to obtain an estimate (e.g., mean, min, max, etc.). 'max' will do the same thing as passing np.max 'int' will attempt to integrate the image (which is why I didn't duck-type) (integrate means sum and multiply by dx) a .fits filename will be read using pyfits (so you can make your own cover figure) an integer will get the n'th slice in the parcube if it exists If it's a slice, slice the input data cube along the Z-axis with this slice """ # THIS IS A HACK!!! isinstance(a function, function) must be a thing... FUNCTION = type(np.max) # estimator is NOT duck-typed if type(estimator) is FUNCTION: self.plane = estimator(self.Cube.cube,axis=0) elif isinstance(estimator, six.string_types): if estimator == 'max': self.plane = self.Cube.cube.max(axis=0) elif estimator == 'int': dx = np.abs(self.Cube.xarr[1:] - self.Cube.xarr[:-1]) dx = np.concatenate([dx,[dx[-1]]]) self.plane = (self.Cube.cube * dx[:,np.newaxis,np.newaxis]).sum(axis=0) elif estimator[-5:] == ".fits": self.plane = pyfits.getdata(estimator) elif type(estimator) is slice: self.plane = self.Cube.cube[estimator,:,:] elif type(estimator) is int: if hasattr(self.Cube,'parcube'): self.plane = self.Cube.parcube[estimator,:,:] if self.plane is None: raise ValueError("Invalid estimator %s" % (str(estimator))) if np.sum(np.isfinite(self.plane)) == 0: raise ValueError("Map is all NaNs or infs. Check your estimator or your input cube.") def click(self,event): """ Record location of downclick """ if event.inaxes: self._clickX = np.round(event.xdata) - self._origin self._clickY = np.round(event.ydata) - self._origin def plot_spectrum(self, event, plot_fit=True): """ Connects map cube to Spectrum... """ self.event = event if event.inaxes: clickX = np.round(event.xdata) - self._origin clickY = np.round(event.ydata) - self._origin # grab toolbar info so that we don't do anything if a tool is selected tb = self.canvas.toolbar if tb.mode != '': return elif event.key is not None: if event.key == 'c': self._center = (clickX-1,clickY-1) self._remove_circle() self._add_click_mark(clickX,clickY,clear=True) elif event.key == 'r': x,y = self._center self._add_circle(x,y,clickX,clickY) self.circle(x,y,clickX-1,clickY-1) elif event.key == 'o': clickX,clickY = round(clickX),round(clickY) print("OverPlotting spectrum from point %i,%i" % (clickX-1,clickY-1)) color = next(self.overplot_colorcycle) self._add_click_mark(clickX,clickY,clear=False, color=color) self.Cube.plot_spectrum(clickX-1,clickY-1,clear=False, color=color, linestyle=self.overplot_linestyle) elif event.key in ('1','2'): event.button = int(event.key) event.key = None self.plot_spectrum(event) elif (hasattr(event,'button') and event.button in (1,2) and not (self._clickX == clickX and self._clickY == clickY)): if event.button == 1: self._remove_circle() clear=True color = 'k' linestyle = 'steps-mid' else: color = next(self.overplot_colorcycle) linestyle = self.overplot_linestyle clear=False rad = ( (self._clickX-clickX)**2 + (self._clickY-clickY)**2 )**0.5 print("Plotting circle from point %i,%i to %i,%i (r=%f)" % (self._clickX,self._clickY,clickX,clickY,rad)) self._add_circle(self._clickX,self._clickY,clickX,clickY) self.circle(self._clickX,self._clickY,clickX,clickY,clear=clear,linestyle=linestyle,color=color) elif hasattr(event,'button') and event.button is not None: if event.button==1: clickX,clickY = round(clickX),round(clickY) print("Plotting spectrum from point %i,%i" % (clickX,clickY)) self._remove_circle() self._add_click_mark(clickX,clickY,clear=True) self.Cube.plot_spectrum(clickX,clickY,clear=True) if plot_fit: self.Cube.plot_fit(clickX, clickY, silent=True) elif event.button==2: clickX,clickY = round(clickX),round(clickY) print("OverPlotting spectrum from point %i,%i" % (clickX,clickY)) color = next(self.overplot_colorcycle) self._add_click_mark(clickX,clickY,clear=False, color=color) self.Cube.plot_spectrum(clickX,clickY,clear=False, color=color, linestyle=self.overplot_linestyle) elif event.button==3: print("Disconnecting GAIA-like tool") self._disconnect() else: print("Call failed for some reason: ") print("event: ",event) else: pass # never really needed... warn("Click outside of axes") def _add_click_mark(self,x,y,clear=False,color='k'): """ Add an X at some position """ if clear: self._clear_click_marks() if self.FITSFigure is not None: label = 'xmark%i' % (len(self._click_marks)+1) x,y = self.FITSFigure.pixel2world(x,y) self.FITSFigure.show_markers(x,y,marker='x',c=color,layer=label) self._click_marks.append( label ) else: self._click_marks.append( self.axis.plot(x,y,'kx') ) self.refresh() def _clear_click_marks(self): """ Remove all marks added by previous clicks """ if self.FITSFigure is not None: for mark in self._click_marks: if mark in self.FITSFigure._layers: self.FITSFigure.remove_layer(mark) else: for mark in self._click_marks: self._click_marks.remove(mark) if mark in self.axis.lines: self.axis.lines.remove(mark) self.refresh() def _add_circle(self,x,y,x2,y2,**kwargs): """ """ if self.FITSFigure is not None: x,y = self.FITSFigure.pixel2world(x,y) x2,y2 = self.FITSFigure.pixel2world(x2,y2) r = (np.linalg.norm(np.array([x,y])-np.array([x2,y2]))) #self.FITSFigure.show_markers(x,y,s=r,marker='o',facecolor='none',edgecolor='black',layer='circle') layername = "circle%02i" % len(self._circles) self.FITSFigure.show_circles(x,y,r,edgecolor='black',facecolor='none',layer=layername,**kwargs) self._circles.append(layername) else: r = np.linalg.norm(np.array([x,y])-np.array([x2,y2])) circle = matplotlib.patches.Circle([x,y],radius=r,**kwargs) self._circles.append( circle ) self.axis.patches.append(circle) self.refresh() def _remove_circle(self): """ """ if self.FITSFigure is not None: for layername in self._circles: if layername in self.FITSFigure._layers: self.FITSFigure.remove_layer(layername) else: for circle in self._circles: if circle in self.axis.patches: self.axis.patches.remove(circle) self._circles.remove(circle) self.refresh() def refresh(self): if self.axis is not None: self.axis.figure.canvas.draw() def circle(self,x1,y1,x2,y2,**kwargs): """ Plot the spectrum of a circular aperture """ r = (np.linalg.norm(np.array([x1,y1])-np.array([x2,y2]))) self.Cube.plot_apspec([x1,y1,r],**kwargs) #self.Cube.data = cubes.extract_aperture( self.Cube.cube, [x1,y1,r] , coordsys=None ) #self.Cube.plotter() def copy(self, parent=None): """ Create a copy of the map plotter with blank (uninitialized) axis & figure [ parent ] A spectroscopic axis instance that is the parent of the specfit instance. This needs to be specified at some point, but defaults to None to prevent overwriting a previous plot. """ newmapplot = copy.copy(self) newmapplot.Cube = parent newmapplot.axis = None newmapplot.figure = None return newmapplot
mit
code-sauce/tensorflow
tensorflow/contrib/learn/python/learn/learn_io/data_feeder.py
88
31139
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Implementations of different data feeders to provide data for TF trainer.""" # TODO(ipolosukhin): Replace this module with feed-dict queue runners & queues. from __future__ import absolute_import from __future__ import division from __future__ import print_function import itertools import math import numpy as np import six from six.moves import xrange # pylint: disable=redefined-builtin from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.platform import tf_logging as logging # pylint: disable=g-multiple-import,g-bad-import-order from .pandas_io import HAS_PANDAS, extract_pandas_data, extract_pandas_matrix, extract_pandas_labels from .dask_io import HAS_DASK, extract_dask_data, extract_dask_labels # pylint: enable=g-multiple-import,g-bad-import-order def _get_in_out_shape(x_shape, y_shape, n_classes, batch_size=None): """Returns shape for input and output of the data feeder.""" x_is_dict, y_is_dict = isinstance( x_shape, dict), y_shape is not None and isinstance(y_shape, dict) if y_is_dict and n_classes is not None: assert (isinstance(n_classes, dict)) if batch_size is None: batch_size = list(x_shape.values())[0][0] if x_is_dict else x_shape[0] elif batch_size <= 0: raise ValueError('Invalid batch_size %d.' % batch_size) if x_is_dict: input_shape = {} for k, v in list(x_shape.items()): input_shape[k] = [batch_size] + (list(v[1:]) if len(v) > 1 else [1]) else: x_shape = list(x_shape[1:]) if len(x_shape) > 1 else [1] input_shape = [batch_size] + x_shape if y_shape is None: return input_shape, None, batch_size def out_el_shape(out_shape, num_classes): out_shape = list(out_shape[1:]) if len(out_shape) > 1 else [] # Skip first dimension if it is 1. if out_shape and out_shape[0] == 1: out_shape = out_shape[1:] if num_classes is not None and num_classes > 1: return [batch_size] + out_shape + [num_classes] else: return [batch_size] + out_shape if not y_is_dict: output_shape = out_el_shape(y_shape, n_classes) else: output_shape = dict([ (k, out_el_shape(v, n_classes[k] if n_classes is not None and k in n_classes else None)) for k, v in list(y_shape.items()) ]) return input_shape, output_shape, batch_size def _data_type_filter(x, y): """Filter data types into acceptable format.""" if HAS_DASK: x = extract_dask_data(x) if y is not None: y = extract_dask_labels(y) if HAS_PANDAS: x = extract_pandas_data(x) if y is not None: y = extract_pandas_labels(y) return x, y def _is_iterable(x): return hasattr(x, 'next') or hasattr(x, '__next__') def setup_train_data_feeder(x, y, n_classes, batch_size=None, shuffle=True, epochs=None): """Create data feeder, to sample inputs from dataset. If `x` and `y` are iterators, use `StreamingDataFeeder`. Args: x: numpy, pandas or Dask matrix or dictionary of aforementioned. Also supports iterables. y: numpy, pandas or Dask array or dictionary of aforementioned. Also supports iterables. n_classes: number of classes. Must be None or same type as y. In case, `y` is `dict` (or iterable which returns dict) such that `n_classes[key] = n_classes for y[key]` batch_size: size to split data into parts. Must be >= 1. shuffle: Whether to shuffle the inputs. epochs: Number of epochs to run. Returns: DataFeeder object that returns training data. Raises: ValueError: if one of `x` and `y` is iterable and the other is not. """ x, y = _data_type_filter(x, y) if HAS_DASK: # pylint: disable=g-import-not-at-top import dask.dataframe as dd if (isinstance(x, (dd.Series, dd.DataFrame)) and (y is None or isinstance(y, (dd.Series, dd.DataFrame)))): data_feeder_cls = DaskDataFeeder else: data_feeder_cls = DataFeeder else: data_feeder_cls = DataFeeder if _is_iterable(x): if y is not None and not _is_iterable(y): raise ValueError('Both x and y should be iterators for ' 'streaming learning to work.') return StreamingDataFeeder(x, y, n_classes, batch_size) return data_feeder_cls( x, y, n_classes, batch_size, shuffle=shuffle, epochs=epochs) def _batch_data(x, batch_size=None): if (batch_size is not None) and (batch_size <= 0): raise ValueError('Invalid batch_size %d.' % batch_size) x_first_el = six.next(x) x = itertools.chain([x_first_el], x) chunk = dict([(k, []) for k in list(x_first_el.keys())]) if isinstance( x_first_el, dict) else [] chunk_filled = False for data in x: if isinstance(data, dict): for k, v in list(data.items()): chunk[k].append(v) if (batch_size is not None) and (len(chunk[k]) >= batch_size): chunk[k] = np.matrix(chunk[k]) chunk_filled = True if chunk_filled: yield chunk chunk = dict([(k, []) for k in list(x_first_el.keys())]) if isinstance( x_first_el, dict) else [] chunk_filled = False else: chunk.append(data) if (batch_size is not None) and (len(chunk) >= batch_size): yield np.matrix(chunk) chunk = [] if isinstance(x_first_el, dict): for k, v in list(data.items()): chunk[k] = np.matrix(chunk[k]) yield chunk else: yield np.matrix(chunk) def setup_predict_data_feeder(x, batch_size=None): """Returns an iterable for feeding into predict step. Args: x: numpy, pandas, Dask array or dictionary of aforementioned. Also supports iterable. batch_size: Size of batches to split data into. If `None`, returns one batch of full size. Returns: List or iterator (or dictionary thereof) of parts of data to predict on. Raises: ValueError: if `batch_size` <= 0. """ if HAS_DASK: x = extract_dask_data(x) if HAS_PANDAS: x = extract_pandas_data(x) if _is_iterable(x): return _batch_data(x, batch_size) if len(x.shape) == 1: x = np.reshape(x, (-1, 1)) if batch_size is not None: if batch_size <= 0: raise ValueError('Invalid batch_size %d.' % batch_size) n_batches = int(math.ceil(float(len(x)) / batch_size)) return [x[i * batch_size:(i + 1) * batch_size] for i in xrange(n_batches)] return [x] def setup_processor_data_feeder(x): """Sets up processor iterable. Args: x: numpy, pandas or iterable. Returns: Iterable of data to process. """ if HAS_PANDAS: x = extract_pandas_matrix(x) return x def check_array(array, dtype): """Checks array on dtype and converts it if different. Args: array: Input array. dtype: Expected dtype. Returns: Original array or converted. """ # skip check if array is instance of other classes, e.g. h5py.Dataset # to avoid copying array and loading whole data into memory if isinstance(array, (np.ndarray, list)): array = np.array(array, dtype=dtype, order=None, copy=False) return array def _access(data, iloc): """Accesses an element from collection, using integer location based indexing. Args: data: array-like. The collection to access iloc: `int` or `list` of `int`s. Location(s) to access in `collection` Returns: The element of `a` found at location(s) `iloc`. """ if HAS_PANDAS: import pandas as pd # pylint: disable=g-import-not-at-top if isinstance(data, pd.Series) or isinstance(data, pd.DataFrame): return data.iloc[iloc] return data[iloc] def _check_dtype(dtype): if dtypes.as_dtype(dtype) == dtypes.float64: logging.warn( 'float64 is not supported by many models, consider casting to float32.') return dtype class DataFeeder(object): """Data feeder is an example class to sample data for TF trainer.""" def __init__(self, x, y, n_classes, batch_size=None, shuffle=True, random_state=None, epochs=None): """Initializes a DataFeeder instance. Args: x: One feature sample which can either Nd numpy matrix of shape `[n_samples, n_features, ...]` or dictionary of Nd numpy matrix. y: label vector, either floats for regression or class id for classification. If matrix, will consider as a sequence of labels. Can be `None` for unsupervised setting. Also supports dictionary of labels. n_classes: Number of classes, 0 and 1 are considered regression, `None` will pass through the input labels without one-hot conversion. Also, if `y` is `dict`, then `n_classes` must be `dict` such that `n_classes[key] = n_classes for label y[key]`, `None` otherwise. batch_size: Mini-batch size to accumulate samples in one mini batch. shuffle: Whether to shuffle `x`. random_state: Numpy `RandomState` object to reproduce sampling. epochs: Number of times to iterate over input data before raising `StopIteration` exception. Attributes: x: Input features (ndarray or dictionary of ndarrays). y: Input label (ndarray or dictionary of ndarrays). n_classes: Number of classes (if `None`, pass through indices without one-hot conversion). batch_size: Mini-batch size to accumulate. input_shape: Shape of the input (or dictionary of shapes). output_shape: Shape of the output (or dictionary of shapes). input_dtype: DType of input (or dictionary of shapes). output_dtype: DType of output (or dictionary of shapes. """ x_is_dict, y_is_dict = isinstance(x, dict), y is not None and isinstance( y, dict) if isinstance(y, list): y = np.array(y) self._x = dict([(k, check_array(v, v.dtype)) for k, v in list(x.items()) ]) if x_is_dict else check_array(x, x.dtype) self._y = None if y is None else \ dict([(k, check_array(v, v.dtype)) for k, v in list(y.items())]) if x_is_dict else check_array(y, y.dtype) # self.n_classes is not None means we're converting raw target indices to one-hot. if n_classes is not None: if not y_is_dict: y_dtype = (np.int64 if n_classes is not None and n_classes > 1 else np.float32) self._y = (None if y is None else check_array(y, dtype=y_dtype)) self.n_classes = n_classes self.max_epochs = epochs x_shape = dict([(k, v.shape) for k, v in list(self._x.items()) ]) if x_is_dict else self._x.shape y_shape = dict([(k, v.shape) for k, v in list(self._y.items()) ]) if y_is_dict else None if y is None else self._y.shape self.input_shape, self.output_shape, self._batch_size = _get_in_out_shape( x_shape, y_shape, n_classes, batch_size) # Input dtype matches dtype of x. self._input_dtype = dict([(k, _check_dtype(v.dtype)) for k, v in list(self._x.items())]) if x_is_dict \ else _check_dtype(self._x.dtype) # note: self._output_dtype = np.float32 when y is None self._output_dtype = dict([(k, _check_dtype(v.dtype)) for k, v in list(self._y.items())]) if y_is_dict \ else _check_dtype(self._y.dtype) if y is not None else np.float32 # self.n_classes is None means we're passing in raw target indices if n_classes is not None and y_is_dict: for key in list(n_classes.keys()): if key in self._output_dtype: self._output_dtype[key] = np.float32 self._shuffle = shuffle self.random_state = np.random.RandomState( 42) if random_state is None else random_state num_samples = list(self._x.values())[0].shape[ 0] if x_is_dict else self._x.shape[0] if self._shuffle: self.indices = self.random_state.permutation(num_samples) else: self.indices = np.array(range(num_samples)) self.offset = 0 self.epoch = 0 self._epoch_placeholder = None @property def x(self): return self._x @property def y(self): return self._y @property def shuffle(self): return self._shuffle @property def input_dtype(self): return self._input_dtype @property def output_dtype(self): return self._output_dtype @property def batch_size(self): return self._batch_size def make_epoch_variable(self): """Adds a placeholder variable for the epoch to the graph. Returns: The epoch placeholder. """ self._epoch_placeholder = array_ops.placeholder( dtypes.int32, [1], name='epoch') return self._epoch_placeholder def input_builder(self): """Builds inputs in the graph. Returns: Two placeholders for inputs and outputs. """ def get_placeholder(shape, dtype, name_prepend): if shape is None: return None if isinstance(shape, dict): placeholder = {} for key in list(shape.keys()): placeholder[key] = array_ops.placeholder( dtypes.as_dtype(dtype[key]), [None] + shape[key][1:], name=name_prepend + '_' + key) else: placeholder = array_ops.placeholder( dtypes.as_dtype(dtype), [None] + shape[1:], name=name_prepend) return placeholder self._input_placeholder = get_placeholder(self.input_shape, self._input_dtype, 'input') self._output_placeholder = get_placeholder(self.output_shape, self._output_dtype, 'output') return self._input_placeholder, self._output_placeholder def set_placeholders(self, input_placeholder, output_placeholder): """Sets placeholders for this data feeder. Args: input_placeholder: Placeholder for `x` variable. Should match shape of the examples in the x dataset. output_placeholder: Placeholder for `y` variable. Should match shape of the examples in the y dataset. Can be `None`. """ self._input_placeholder = input_placeholder self._output_placeholder = output_placeholder def get_feed_params(self): """Function returns a `dict` with data feed params while training. Returns: A `dict` with data feed params while training. """ return { 'epoch': self.epoch, 'offset': self.offset, 'batch_size': self._batch_size } def get_feed_dict_fn(self): """Returns a function that samples data into given placeholders. Returns: A function that when called samples a random subset of batch size from `x` and `y`. """ x_is_dict, y_is_dict = isinstance( self._x, dict), self._y is not None and isinstance(self._y, dict) # Assign input features from random indices. def extract(data, indices): return (np.array(_access(data, indices)).reshape((indices.shape[0], 1)) if len(data.shape) == 1 else _access(data, indices)) # assign labels from random indices def assign_label(data, shape, dtype, n_classes, indices): shape[0] = indices.shape[0] out = np.zeros(shape, dtype=dtype) for i in xrange(out.shape[0]): sample = indices[i] # self.n_classes is None means we're passing in raw target indices if n_classes is None: out[i] = _access(data, sample) else: if n_classes > 1: if len(shape) == 2: out.itemset((i, int(_access(data, sample))), 1.0) else: for idx, value in enumerate(_access(data, sample)): out.itemset(tuple([i, idx, value]), 1.0) else: out[i] = _access(data, sample) return out def _feed_dict_fn(): """Function that samples data into given placeholders.""" if self.max_epochs is not None and self.epoch + 1 > self.max_epochs: raise StopIteration assert self._input_placeholder is not None feed_dict = {} if self._epoch_placeholder is not None: feed_dict[self._epoch_placeholder.name] = [self.epoch] # Take next batch of indices. x_len = list(self._x.values())[0].shape[ 0] if x_is_dict else self._x.shape[0] end = min(x_len, self.offset + self._batch_size) batch_indices = self.indices[self.offset:end] # adding input placeholder feed_dict.update( dict([(self._input_placeholder[k].name, extract(v, batch_indices)) for k, v in list(self._x.items())]) if x_is_dict else {self._input_placeholder.name: extract(self._x, batch_indices)}) # move offset and reset it if necessary self.offset += self._batch_size if self.offset >= x_len: self.indices = self.random_state.permutation( x_len) if self._shuffle else np.array(range(x_len)) self.offset = 0 self.epoch += 1 # return early if there are no labels if self._output_placeholder is None: return feed_dict # adding output placeholders if y_is_dict: for k, v in list(self._y.items()): n_classes = (self.n_classes[k] if k in self.n_classes else None) if self.n_classes is not None else None shape, dtype = self.output_shape[k], self._output_dtype[k] feed_dict.update({ self._output_placeholder[k].name: assign_label(v, shape, dtype, n_classes, batch_indices) }) else: shape, dtype, n_classes = self.output_shape, self._output_dtype, self.n_classes feed_dict.update({ self._output_placeholder.name: assign_label(self._y, shape, dtype, n_classes, batch_indices) }) return feed_dict return _feed_dict_fn class StreamingDataFeeder(DataFeeder): """Data feeder for TF trainer that reads data from iterator. Streaming data feeder allows to read data as it comes it from disk or somewhere else. It's custom to have this iterators rotate infinetly over the dataset, to allow control of how much to learn on the trainer side. """ def __init__(self, x, y, n_classes, batch_size): """Initializes a StreamingDataFeeder instance. Args: x: iterator each element of which returns one feature sample. Sample can be a Nd numpy matrix or dictionary of Nd numpy matrices. y: iterator each element of which returns one label sample. Sample can be a Nd numpy matrix or dictionary of Nd numpy matrices with 1 or many classes regression values. n_classes: indicator of how many classes the corresponding label sample has for the purposes of one-hot conversion of label. In case where `y` is a dictionary, `n_classes` must be dictionary (with same keys as `y`) of how many classes there are in each label in `y`. If key is present in `y` and missing in `n_classes`, the value is assumed `None` and no one-hot conversion will be applied to the label with that key. batch_size: Mini batch size to accumulate samples in one batch. If set `None`, then assumes that iterator to return already batched element. Attributes: x: input features (or dictionary of input features). y: input label (or dictionary of output features). n_classes: number of classes. batch_size: mini batch size to accumulate. input_shape: shape of the input (can be dictionary depending on `x`). output_shape: shape of the output (can be dictionary depending on `y`). input_dtype: dtype of input (can be dictionary depending on `x`). output_dtype: dtype of output (can be dictionary depending on `y`). """ # pylint: disable=invalid-name,super-init-not-called x_first_el = six.next(x) self._x = itertools.chain([x_first_el], x) if y is not None: y_first_el = six.next(y) self._y = itertools.chain([y_first_el], y) else: y_first_el = None self._y = None self.n_classes = n_classes x_is_dict = isinstance(x_first_el, dict) y_is_dict = y is not None and isinstance(y_first_el, dict) if y_is_dict and n_classes is not None: assert isinstance(n_classes, dict) # extract shapes for first_elements if x_is_dict: x_first_el_shape = dict( [(k, [1] + list(v.shape)) for k, v in list(x_first_el.items())]) else: x_first_el_shape = [1] + list(x_first_el.shape) if y_is_dict: y_first_el_shape = dict( [(k, [1] + list(v.shape)) for k, v in list(y_first_el.items())]) elif y is None: y_first_el_shape = None else: y_first_el_shape = ([1] + list(y_first_el[0].shape if isinstance( y_first_el, list) else y_first_el.shape)) self.input_shape, self.output_shape, self._batch_size = _get_in_out_shape( x_first_el_shape, y_first_el_shape, n_classes, batch_size) # Input dtype of x_first_el. if x_is_dict: self._input_dtype = dict( [(k, _check_dtype(v.dtype)) for k, v in list(x_first_el.items())]) else: self._input_dtype = _check_dtype(x_first_el.dtype) # Output dtype of y_first_el. def check_y_dtype(el): if isinstance(el, np.ndarray): return el.dtype elif isinstance(el, list): return check_y_dtype(el[0]) else: return _check_dtype(np.dtype(type(el))) # Output types are floats, due to both softmaxes and regression req. if n_classes is not None and (y is None or not y_is_dict) and n_classes > 0: self._output_dtype = np.float32 elif y_is_dict: self._output_dtype = dict( [(k, check_y_dtype(v)) for k, v in list(y_first_el.items())]) elif y is None: self._output_dtype = None else: self._output_dtype = check_y_dtype(y_first_el) def get_feed_params(self): """Function returns a `dict` with data feed params while training. Returns: A `dict` with data feed params while training. """ return {'batch_size': self._batch_size} def get_feed_dict_fn(self): """Returns a function, that will sample data and provide it to placeholders. Returns: A function that when called samples a random subset of batch size from x and y. """ self.stopped = False def _feed_dict_fn(): """Samples data and provides it to placeholders. Returns: `dict` of input and output tensors. """ def init_array(shape, dtype): """Initialize array of given shape or dict of shapes and dtype.""" if shape is None: return None elif isinstance(shape, dict): return dict([(k, np.zeros(shape[k], dtype[k])) for k in list(shape.keys())]) else: return np.zeros(shape, dtype=dtype) def put_data_array(dest, index, source=None, n_classes=None): """Puts data array into container.""" if source is None: dest = dest[:index] elif n_classes is not None and n_classes > 1: if len(self.output_shape) == 2: dest.itemset((index, source), 1.0) else: for idx, value in enumerate(source): dest.itemset(tuple([index, idx, value]), 1.0) else: if len(dest.shape) > 1: dest[index, :] = source else: dest[index] = source[0] if isinstance(source, list) else source return dest def put_data_array_or_dict(holder, index, data=None, n_classes=None): """Puts data array or data dictionary into container.""" if holder is None: return None if isinstance(holder, dict): if data is None: data = {k: None for k in holder.keys()} assert isinstance(data, dict) for k in holder.keys(): num_classes = n_classes[k] if (n_classes is not None and k in n_classes) else None holder[k] = put_data_array(holder[k], index, data[k], num_classes) else: holder = put_data_array(holder, index, data, n_classes) return holder if self.stopped: raise StopIteration inp = init_array(self.input_shape, self._input_dtype) out = init_array(self.output_shape, self._output_dtype) for i in xrange(self._batch_size): # Add handling when queue ends. try: next_inp = six.next(self._x) inp = put_data_array_or_dict(inp, i, next_inp, None) except StopIteration: self.stopped = True if i == 0: raise inp = put_data_array_or_dict(inp, i, None, None) out = put_data_array_or_dict(out, i, None, None) break if self._y is not None: next_out = six.next(self._y) out = put_data_array_or_dict(out, i, next_out, self.n_classes) # creating feed_dict if isinstance(inp, dict): feed_dict = dict([(self._input_placeholder[k].name, inp[k]) for k in list(self._input_placeholder.keys())]) else: feed_dict = {self._input_placeholder.name: inp} if self._y is not None: if isinstance(out, dict): feed_dict.update( dict([(self._output_placeholder[k].name, out[k]) for k in list(self._output_placeholder.keys())])) else: feed_dict.update({self._output_placeholder.name: out}) return feed_dict return _feed_dict_fn class DaskDataFeeder(object): """Data feeder for that reads data from dask.Series and dask.DataFrame. Numpy arrays can be serialized to disk and it's possible to do random seeks into them. DaskDataFeeder will remove requirement to have full dataset in the memory and still do random seeks for sampling of batches. """ def __init__(self, x, y, n_classes, batch_size, shuffle=True, random_state=None, epochs=None): """Initializes a DaskDataFeeder instance. Args: x: iterator that returns for each element, returns features. y: iterator that returns for each element, returns 1 or many classes / regression values. n_classes: indicator of how many classes the label has. batch_size: Mini batch size to accumulate. shuffle: Whether to shuffle the inputs. random_state: random state for RNG. Note that it will mutate so use a int value for this if you want consistent sized batches. epochs: Number of epochs to run. Attributes: x: input features. y: input label. n_classes: number of classes. batch_size: mini batch size to accumulate. input_shape: shape of the input. output_shape: shape of the output. input_dtype: dtype of input. output_dtype: dtype of output. Raises: ValueError: if `x` or `y` are `dict`, as they are not supported currently. """ if isinstance(x, dict) or isinstance(y, dict): raise ValueError( 'DaskDataFeeder does not support dictionaries at the moment.') # pylint: disable=invalid-name,super-init-not-called import dask.dataframe as dd # pylint: disable=g-import-not-at-top # TODO(terrytangyuan): check x and y dtypes in dask_io like pandas self._x = x self._y = y # save column names self._x_columns = list(x.columns) if isinstance(y.columns[0], str): self._y_columns = list(y.columns) else: # deal with cases where two DFs have overlapped default numeric colnames self._y_columns = len(self._x_columns) + 1 self._y = self._y.rename(columns={y.columns[0]: self._y_columns}) # TODO(terrytangyuan): deal with unsupervised cases # combine into a data frame self.df = dd.multi.concat([self._x, self._y], axis=1) self.n_classes = n_classes x_count = x.count().compute()[0] x_shape = (x_count, len(self._x.columns)) y_shape = (x_count, len(self._y.columns)) # TODO(terrytangyuan): Add support for shuffle and epochs. self._shuffle = shuffle self.epochs = epochs self.input_shape, self.output_shape, self._batch_size = _get_in_out_shape( x_shape, y_shape, n_classes, batch_size) self.sample_fraction = self._batch_size / float(x_count) self._input_dtype = _check_dtype(self._x.dtypes[0]) self._output_dtype = _check_dtype(self._y.dtypes[self._y_columns]) if random_state is None: self.random_state = 66 else: self.random_state = random_state def get_feed_params(self): """Function returns a `dict` with data feed params while training. Returns: A `dict` with data feed params while training. """ return {'batch_size': self._batch_size} def get_feed_dict_fn(self, input_placeholder, output_placeholder): """Returns a function, that will sample data and provide it to placeholders. Args: input_placeholder: tf.Placeholder for input features mini batch. output_placeholder: tf.Placeholder for output labels. Returns: A function that when called samples a random subset of batch size from x and y. """ def _feed_dict_fn(): """Samples data and provides it to placeholders.""" # TODO(ipolosukhin): option for with/without replacement (dev version of # dask) sample = self.df.random_split( [self.sample_fraction, 1 - self.sample_fraction], random_state=self.random_state) inp = extract_pandas_matrix(sample[0][self._x_columns].compute()).tolist() out = extract_pandas_matrix(sample[0][self._y_columns].compute()) # convert to correct dtype inp = np.array(inp, dtype=self._input_dtype) # one-hot encode out for each class for cross entropy loss if HAS_PANDAS: import pandas as pd # pylint: disable=g-import-not-at-top if not isinstance(out, pd.Series): out = out.flatten() out_max = self._y.max().compute().values[0] encoded_out = np.zeros((out.size, out_max + 1), dtype=self._output_dtype) encoded_out[np.arange(out.size), out] = 1 return {input_placeholder.name: inp, output_placeholder.name: encoded_out} return _feed_dict_fn
apache-2.0
paulgradie/SeqPyPlot
main_app/seqpyplot/parsers/htseq_parser.py
1
2244
""" Read a directory of expression counts in ht-seq format. Each sample should be an individual file in the directory. File names and sample order are specified in the config file (order is determined by order IN the config.) This class is intended to return the raw dataframe of samples with missing sample columns as NaN. """ import pandas as pd from pathos.multiprocessing import ProcessPool import pathlib try: from functools import reduce # for py3 compatibility except ImportError: pass class HtSeqParser(object): def __init__(self, nodes=2): self.nodes = nodes def parse_data(self, data_paths, sample_names): """ Read the input files from the config file and load in to a pandas dataframe. params data_paths: list of file paths specified in the config. Returned from config parse sample_names: list of sample names specified in the config returned from config parse """ output = self.load_data(data_paths, sample_names) data, ercc_df = (self.merge_dfs(output) .pipe(self.df_cleanup) .pipe(self.split_on_ercc)) return data, ercc_df def load_data(self, data_paths, sample_names): " Multiprocess load of files in to a list of dfs " pool = ProcessPool(nodes=self.nodes) dfs = pool.map(self.load_func, zip(data_paths, sample_names)) return dfs @staticmethod def load_func(data_tuple): path, sample_name = data_tuple return pd.read_csv(path, sep='\t', names=['gene', sample_name]) def merge_dfs(self, dfs): return reduce(lambda x, y: pd.merge(x, y, on='gene', how='outer'), dfs) def df_cleanup(self, df_old): " Clean away unwanted columns, reset index, and fillna " df = df_old.copy() df = df[df['gene'].str.startswith('__') == False] df.set_index('gene', inplace=True) df.fillna(value='Nan', inplace=True) return df def split_on_ercc(self, df): " Extract the ERCC data " ercc_cols = df.index.str.startswith('ERCC-') ercc_df = df[ercc_cols] data = df[~ercc_cols] return data, ercc_df
gpl-3.0
dmlc/xgboost
tests/python/test_with_pandas.py
1
10402
# -*- coding: utf-8 -*- import numpy as np import xgboost as xgb import testing as tm import pytest try: import pandas as pd except ImportError: pass pytestmark = pytest.mark.skipif(**tm.no_pandas()) dpath = 'demo/data/' rng = np.random.RandomState(1994) class TestPandas: def test_pandas(self): df = pd.DataFrame([[1, 2., True], [2, 3., False]], columns=['a', 'b', 'c']) dm = xgb.DMatrix(df, label=pd.Series([1, 2])) assert dm.feature_names == ['a', 'b', 'c'] assert dm.feature_types == ['int', 'float', 'i'] assert dm.num_row() == 2 assert dm.num_col() == 3 np.testing.assert_array_equal(dm.get_label(), np.array([1, 2])) # overwrite feature_names and feature_types dm = xgb.DMatrix(df, label=pd.Series([1, 2]), feature_names=['x', 'y', 'z'], feature_types=['q', 'q', 'q']) assert dm.feature_names == ['x', 'y', 'z'] assert dm.feature_types == ['q', 'q', 'q'] assert dm.num_row() == 2 assert dm.num_col() == 3 # incorrect dtypes df = pd.DataFrame([[1, 2., 'x'], [2, 3., 'y']], columns=['a', 'b', 'c']) with pytest.raises(ValueError): xgb.DMatrix(df) # numeric columns df = pd.DataFrame([[1, 2., True], [2, 3., False]]) dm = xgb.DMatrix(df, label=pd.Series([1, 2])) assert dm.feature_names == ['0', '1', '2'] assert dm.feature_types == ['int', 'float', 'i'] assert dm.num_row() == 2 assert dm.num_col() == 3 np.testing.assert_array_equal(dm.get_label(), np.array([1, 2])) df = pd.DataFrame([[1, 2., 1], [2, 3., 1]], columns=[4, 5, 6]) dm = xgb.DMatrix(df, label=pd.Series([1, 2])) assert dm.feature_names == ['4', '5', '6'] assert dm.feature_types == ['int', 'float', 'int'] assert dm.num_row() == 2 assert dm.num_col() == 3 df = pd.DataFrame({'A': ['X', 'Y', 'Z'], 'B': [1, 2, 3]}) dummies = pd.get_dummies(df) # B A_X A_Y A_Z # 0 1 1 0 0 # 1 2 0 1 0 # 2 3 0 0 1 result, _, _ = xgb.data._transform_pandas_df(dummies, enable_categorical=False) exp = np.array([[1., 1., 0., 0.], [2., 0., 1., 0.], [3., 0., 0., 1.]]) np.testing.assert_array_equal(result, exp) dm = xgb.DMatrix(dummies) assert dm.feature_names == ['B', 'A_X', 'A_Y', 'A_Z'] assert dm.feature_types == ['int', 'int', 'int', 'int'] assert dm.num_row() == 3 assert dm.num_col() == 4 df = pd.DataFrame({'A=1': [1, 2, 3], 'A=2': [4, 5, 6]}) dm = xgb.DMatrix(df) assert dm.feature_names == ['A=1', 'A=2'] assert dm.feature_types == ['int', 'int'] assert dm.num_row() == 3 assert dm.num_col() == 2 df_int = pd.DataFrame([[1, 1.1], [2, 2.2]], columns=[9, 10]) dm_int = xgb.DMatrix(df_int) df_range = pd.DataFrame([[1, 1.1], [2, 2.2]], columns=range(9, 11, 1)) dm_range = xgb.DMatrix(df_range) assert dm_int.feature_names == ['9', '10'] # assert not "9 " assert dm_int.feature_names == dm_range.feature_names # test MultiIndex as columns df = pd.DataFrame( [ (1, 2, 3, 4, 5, 6), (6, 5, 4, 3, 2, 1) ], columns=pd.MultiIndex.from_tuples(( ('a', 1), ('a', 2), ('a', 3), ('b', 1), ('b', 2), ('b', 3), )) ) dm = xgb.DMatrix(df) assert dm.feature_names == ['a 1', 'a 2', 'a 3', 'b 1', 'b 2', 'b 3'] assert dm.feature_types == ['int', 'int', 'int', 'int', 'int', 'int'] assert dm.num_row() == 2 assert dm.num_col() == 6 def test_slice(self): rng = np.random.RandomState(1994) rows = 100 X = rng.randint(3, 7, size=rows) X = pd.DataFrame({'f0': X}) y = rng.randn(rows) ridxs = [1, 2, 3, 4, 5, 6] m = xgb.DMatrix(X, y) sliced = m.slice(ridxs) assert m.feature_types == sliced.feature_types def test_pandas_categorical(self): rng = np.random.RandomState(1994) rows = 100 X = rng.randint(3, 7, size=rows) X = pd.Series(X, dtype="category") X = pd.DataFrame({'f0': X}) y = rng.randn(rows) m = xgb.DMatrix(X, y, enable_categorical=True) assert m.feature_types[0] == 'categorical' def test_pandas_sparse(self): import pandas as pd rows = 100 X = pd.DataFrame( {"A": pd.arrays.SparseArray(np.random.randint(0, 10, size=rows)), "B": pd.arrays.SparseArray(np.random.randn(rows)), "C": pd.arrays.SparseArray(np.random.permutation( [True, False] * (rows // 2)))} ) y = pd.Series(pd.arrays.SparseArray(np.random.randn(rows))) dtrain = xgb.DMatrix(X, y) booster = xgb.train({}, dtrain, num_boost_round=4) predt_sparse = booster.predict(xgb.DMatrix(X)) predt_dense = booster.predict(xgb.DMatrix(X.sparse.to_dense())) np.testing.assert_allclose(predt_sparse, predt_dense) def test_pandas_label(self): # label must be a single column df = pd.DataFrame({'A': ['X', 'Y', 'Z'], 'B': [1, 2, 3]}) with pytest.raises(ValueError): xgb.data._transform_pandas_df(df, False, None, None, 'label', 'float') # label must be supported dtype df = pd.DataFrame({'A': np.array(['a', 'b', 'c'], dtype=object)}) with pytest.raises(ValueError): xgb.data._transform_pandas_df(df, False, None, None, 'label', 'float') df = pd.DataFrame({'A': np.array([1, 2, 3], dtype=int)}) result, _, _ = xgb.data._transform_pandas_df(df, False, None, None, 'label', 'float') np.testing.assert_array_equal(result, np.array([[1.], [2.], [3.]], dtype=float)) dm = xgb.DMatrix(np.random.randn(3, 2), label=df) assert dm.num_row() == 3 assert dm.num_col() == 2 def test_pandas_weight(self): kRows = 32 kCols = 8 X = np.random.randn(kRows, kCols) y = np.random.randn(kRows) w = np.random.uniform(size=kRows).astype(np.float32) w_pd = pd.DataFrame(w) data = xgb.DMatrix(X, y, w_pd) assert data.num_row() == kRows assert data.num_col() == kCols np.testing.assert_array_equal(data.get_weight(), w) def test_cv_as_pandas(self): dm = xgb.DMatrix(dpath + 'agaricus.txt.train') params = {'max_depth': 2, 'eta': 1, 'verbosity': 0, 'objective': 'binary:logistic', 'eval_metric': 'error'} cv = xgb.cv(params, dm, num_boost_round=10, nfold=10) assert isinstance(cv, pd.DataFrame) exp = pd.Index([u'test-error-mean', u'test-error-std', u'train-error-mean', u'train-error-std']) assert len(cv.columns.intersection(exp)) == 4 # show progress log (result is the same as above) cv = xgb.cv(params, dm, num_boost_round=10, nfold=10, verbose_eval=True) assert isinstance(cv, pd.DataFrame) exp = pd.Index([u'test-error-mean', u'test-error-std', u'train-error-mean', u'train-error-std']) assert len(cv.columns.intersection(exp)) == 4 cv = xgb.cv(params, dm, num_boost_round=10, nfold=10, verbose_eval=True, show_stdv=False) assert isinstance(cv, pd.DataFrame) exp = pd.Index([u'test-error-mean', u'test-error-std', u'train-error-mean', u'train-error-std']) assert len(cv.columns.intersection(exp)) == 4 params = {'max_depth': 2, 'eta': 1, 'verbosity': 0, 'objective': 'binary:logistic', 'eval_metric': 'auc'} cv = xgb.cv(params, dm, num_boost_round=10, nfold=10, as_pandas=True) assert 'eval_metric' in params assert 'auc' in cv.columns[0] params = {'max_depth': 2, 'eta': 1, 'verbosity': 0, 'objective': 'binary:logistic', 'eval_metric': ['auc']} cv = xgb.cv(params, dm, num_boost_round=10, nfold=10, as_pandas=True) assert 'eval_metric' in params assert 'auc' in cv.columns[0] params = {'max_depth': 2, 'eta': 1, 'verbosity': 0, 'objective': 'binary:logistic', 'eval_metric': ['auc']} cv = xgb.cv(params, dm, num_boost_round=10, nfold=10, as_pandas=True, early_stopping_rounds=1) assert 'eval_metric' in params assert 'auc' in cv.columns[0] assert cv.shape[0] < 10 params = {'max_depth': 2, 'eta': 1, 'verbosity': 0, 'objective': 'binary:logistic'} cv = xgb.cv(params, dm, num_boost_round=10, nfold=10, as_pandas=True, metrics='auc') assert 'auc' in cv.columns[0] params = {'max_depth': 2, 'eta': 1, 'verbosity': 0, 'objective': 'binary:logistic'} cv = xgb.cv(params, dm, num_boost_round=10, nfold=10, as_pandas=True, metrics=['auc']) assert 'auc' in cv.columns[0] params = {'max_depth': 2, 'eta': 1, 'verbosity': 0, 'objective': 'binary:logistic', 'eval_metric': ['auc']} cv = xgb.cv(params, dm, num_boost_round=10, nfold=10, as_pandas=True, metrics='error') assert 'eval_metric' in params assert 'auc' not in cv.columns[0] assert 'error' in cv.columns[0] cv = xgb.cv(params, dm, num_boost_round=10, nfold=10, as_pandas=True, metrics=['error']) assert 'eval_metric' in params assert 'auc' not in cv.columns[0] assert 'error' in cv.columns[0] params = list(params.items()) cv = xgb.cv(params, dm, num_boost_round=10, nfold=10, as_pandas=True, metrics=['error']) assert isinstance(params, list) assert 'auc' not in cv.columns[0] assert 'error' in cv.columns[0]
apache-2.0
AlfredNeverKog/BrainCarya
src/my/kadenze/lesson3/mnist_autoencoder.py
1
2610
from mnist import MNIST import numpy as np import tensorflow as tf from src.my.lib.utils import montage import matplotlib.pyplot as plt from PIL import Image src = '../../../../data/mnist/' output='./content/1/%s.jpg' mndata = MNIST(src) data = np.array(mndata.load_testing()) X = data[0] Y = data[1] items = 100 imgs = np.array([i for i in np.array(X[:items])]).reshape(items,28,28) n_features = 784 n_input = n_features Y = imgs.reshape(items,n_features).astype(float) current_input = imgs.reshape(items,n_features).astype(float) Ws = [] Bs = [] dimensions = [512,256,128,64] for layer_i,n_ouputs in enumerate(dimensions): with tf.variable_scope("encoder/variable/%s" % layer_i): W = tf.get_variable(name="weight%s" % layer_i, dtype=tf.float64, initializer=tf.contrib.layers.xavier_initializer(), shape=[n_input, n_ouputs]) #B = tf.get_variable(name='bias%s' % layer_i, dtype=tf.float64, # initializer=tf.random_normal_initializer(mean=0.0, stddev=1.1), # shape=[n_ouputs]) #h = tf.nn.bias_add(value=tf.matmul(current_input, W), # bias=B) h = tf.matmul(current_input, W) current_input = h current_input = tf.nn.relu(current_input) n_input = n_ouputs Ws.append(W) #Bs.append() Ws = Ws[::-1]#reverse Bs = Bs[::-1]#reverse #dimensions = dimensions[::1][1:].append(n_features) dimensions = dimensions[::-1][1:] +[n_features] #Build DECODER for layer_i,n_ouputs in enumerate(dimensions): with tf.variable_scope("encoder/variable/%s" % layer_i): ##128x64 -> 64x128 h = value=tf.matmul(current_input,tf.transpose(Ws[layer_i])) if layer_i + 1 < len(Bs): h = tf.nn.bias_add(h,bias=Bs[layer_i + 1]) current_input = h current_input = tf.nn.relu(current_input) n_input = n_ouputs loss_func = tf.reduce_mean(tf.squared_difference(current_input, Y), 1) optimizer = tf.train.AdamOptimizer(learning_rate=0.00001) train = optimizer.minimize(loss_func) counter = 0 with tf.Session() as sess: sess.run(tf.initialize_all_variables()) for i in range(50000): sess.run(train) if i % 15 == 0: Image.fromarray(montage(sess.run(current_input).reshape(items,28,28)).astype(np.uint8)) \ .save(output % ("0"*(5 - len(str(counter))) + str(counter))) print(sess.run(tf.reduce_mean(loss_func))) counter += 1
mit
f3r/scikit-learn
examples/covariance/plot_lw_vs_oas.py
159
2951
""" ============================= Ledoit-Wolf vs OAS estimation ============================= The usual covariance maximum likelihood estimate can be regularized using shrinkage. Ledoit and Wolf proposed a close formula to compute the asymptotically optimal shrinkage parameter (minimizing a MSE criterion), yielding the Ledoit-Wolf covariance estimate. Chen et al. proposed an improvement of the Ledoit-Wolf shrinkage parameter, the OAS coefficient, whose convergence is significantly better under the assumption that the data are Gaussian. This example, inspired from Chen's publication [1], shows a comparison of the estimated MSE of the LW and OAS methods, using Gaussian distributed data. [1] "Shrinkage Algorithms for MMSE Covariance Estimation" Chen et al., IEEE Trans. on Sign. Proc., Volume 58, Issue 10, October 2010. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from scipy.linalg import toeplitz, cholesky from sklearn.covariance import LedoitWolf, OAS np.random.seed(0) ############################################################################### n_features = 100 # simulation covariance matrix (AR(1) process) r = 0.1 real_cov = toeplitz(r ** np.arange(n_features)) coloring_matrix = cholesky(real_cov) n_samples_range = np.arange(6, 31, 1) repeat = 100 lw_mse = np.zeros((n_samples_range.size, repeat)) oa_mse = np.zeros((n_samples_range.size, repeat)) lw_shrinkage = np.zeros((n_samples_range.size, repeat)) oa_shrinkage = np.zeros((n_samples_range.size, repeat)) for i, n_samples in enumerate(n_samples_range): for j in range(repeat): X = np.dot( np.random.normal(size=(n_samples, n_features)), coloring_matrix.T) lw = LedoitWolf(store_precision=False, assume_centered=True) lw.fit(X) lw_mse[i, j] = lw.error_norm(real_cov, scaling=False) lw_shrinkage[i, j] = lw.shrinkage_ oa = OAS(store_precision=False, assume_centered=True) oa.fit(X) oa_mse[i, j] = oa.error_norm(real_cov, scaling=False) oa_shrinkage[i, j] = oa.shrinkage_ # plot MSE plt.subplot(2, 1, 1) plt.errorbar(n_samples_range, lw_mse.mean(1), yerr=lw_mse.std(1), label='Ledoit-Wolf', color='navy', lw=2) plt.errorbar(n_samples_range, oa_mse.mean(1), yerr=oa_mse.std(1), label='OAS', color='darkorange', lw=2) plt.ylabel("Squared error") plt.legend(loc="upper right") plt.title("Comparison of covariance estimators") plt.xlim(5, 31) # plot shrinkage coefficient plt.subplot(2, 1, 2) plt.errorbar(n_samples_range, lw_shrinkage.mean(1), yerr=lw_shrinkage.std(1), label='Ledoit-Wolf', color='navy', lw=2) plt.errorbar(n_samples_range, oa_shrinkage.mean(1), yerr=oa_shrinkage.std(1), label='OAS', color='darkorange', lw=2) plt.xlabel("n_samples") plt.ylabel("Shrinkage") plt.legend(loc="lower right") plt.ylim(plt.ylim()[0], 1. + (plt.ylim()[1] - plt.ylim()[0]) / 10.) plt.xlim(5, 31) plt.show()
bsd-3-clause
phobson/statsmodels
statsmodels/sandbox/examples/example_crossval.py
33
2232
import numpy as np from statsmodels.sandbox.tools import cross_val if __name__ == '__main__': #A: josef-pktd import statsmodels.api as sm from statsmodels.api import OLS #from statsmodels.datasets.longley import load from statsmodels.datasets.stackloss import load from statsmodels.iolib.table import (SimpleTable, default_txt_fmt, default_latex_fmt, default_html_fmt) import numpy as np data = load() data.exog = sm.tools.add_constant(data.exog, prepend=False) resols = sm.OLS(data.endog, data.exog).fit() print('\n OLS leave 1 out') for inidx, outidx in cross_val.LeaveOneOut(len(data.endog)): res = sm.OLS(data.endog[inidx], data.exog[inidx,:]).fit() print(data.endog[outidx], res.model.predict(res.params, data.exog[outidx,:], end=' ')) print(data.endog[outidx] - res.model.predict(res.params, data.exog[outidx,:])) print('\n OLS leave 2 out') resparams = [] for inidx, outidx in cross_val.LeavePOut(len(data.endog), 2): res = sm.OLS(data.endog[inidx], data.exog[inidx,:]).fit() #print data.endog[outidx], res.model.predict(data.exog[outidx,:]), #print ((data.endog[outidx] - res.model.predict(data.exog[outidx,:]))**2).sum() resparams.append(res.params) resparams = np.array(resparams) print(resparams) doplots = 1 if doplots: import matplotlib.pyplot as plt from matplotlib.font_manager import FontProperties plt.figure() figtitle = 'Leave2out parameter estimates' t = plt.gcf().text(0.5, 0.95, figtitle, horizontalalignment='center', fontproperties=FontProperties(size=16)) for i in range(resparams.shape[1]): plt.subplot(4, 2, i+1) plt.hist(resparams[:,i], bins = 10) #plt.title("Leave2out parameter estimates") plt.show() for inidx, outidx in cross_val.KStepAhead(20,2): #note the following were broken because KStepAhead returns now a slice by default print(inidx) print(np.ones(20)[inidx].sum(), np.arange(20)[inidx][-4:]) print(outidx) print(np.nonzero(np.ones(20)[outidx])[0][()])
bsd-3-clause
UltronAI/Deep-Learning
Pattern-Recognition/hw2-Feature-Selection/skfeature/example/test_JMI.py
1
1528
import scipy.io from sklearn.metrics import accuracy_score from sklearn import cross_validation from sklearn import svm from skfeature.function.information_theoretical_based import JMI def main(): # load data mat = scipy.io.loadmat('../data/colon.mat') X = mat['X'] # data X = X.astype(float) y = mat['Y'] # label y = y[:, 0] n_samples, n_features = X.shape # number of samples and number of features # split data into 10 folds ss = cross_validation.KFold(n_samples, n_folds=10, shuffle=True) # perform evaluation on classification task num_fea = 10 # number of selected features clf = svm.LinearSVC() # linear SVM correct = 0 for train, test in ss: # obtain the index of each feature on the training set idx,_,_ = JMI.jmi(X[train], y[train], n_selected_features=num_fea) # obtain the dataset on the selected features features = X[:, idx[0:num_fea]] # train a classification model with the selected features on the training dataset clf.fit(features[train], y[train]) # predict the class labels of test data y_predict = clf.predict(features[test]) # obtain the classification accuracy on the test data acc = accuracy_score(y[test], y_predict) correct = correct + acc # output the average classification accuracy over all 10 folds print 'Accuracy:', float(correct)/10 if __name__ == '__main__': main()
mit
ligovirgo/seismon
RfPrediction/BLRMS_Prediction/condor_seismic_peaks.py
1
1969
import os, sys import glob import optparse import tables import pandas as pd import numpy as np import h5py def parse_commandline(): """ Parse the options given on the command-line. """ parser = optparse.OptionParser() parser.add_option('-i','--ifos', type=str, default='LHO,LLO', help='GW Observatories: LLO,LHO...') opts, args = parser.parse_args() return opts # Parse command line opts = parse_commandline() condorDir = './' logDir = os.path.join(condorDir,'logs') if not os.path.isdir(logDir): os.makedirs(logDir) condordag = os.path.join(condorDir,'condor.dag') fid = open(condordag,'w') condorsh = os.path.join(condorDir,'condor.sh') fid1 = open(condorsh,'w') job_number = 0 ifos = opts.ifos.split(",") for ifo in ifos: x = np.genfromtxt('./masterlists/{}.dat'.format(ifo)) for ii,row in enumerate(x): fid1.write('python fetch_seismic_peaks.py -i %s -ID %d -blrmsBand 30M_100M -saveResult 1 -saveImage 0\n'%(ifo,ii)) fid.write('JOB %d condor.sub\n'%(job_number)) fid.write('RETRY %d 3\n'%(job_number)) fid.write('VARS %d jobNumber="%d" ifo="%s" id="%d"\n'%(job_number,job_number, ifo, ii)) fid.write('\n\n') job_number = job_number + 1 fid1.close() fid.close() fid = open(os.path.join(condorDir,'condor.sub'),'w') fid.write('executable = ./fetch_seismic_peaks.py\n') fid.write('output = logs/out.$(jobNumber)\n'); fid.write('error = logs/err.$(jobNumber)\n'); fid.write('arguments = -IFO $(ifo) -ID $(id) -blrmsBand 30M_100M -saveResult 1 -saveImage 0\n') fid.write('requirements = OpSys == "LINUX"\n'); fid.write('request_memory = 8192\n'); fid.write('request_cpus = 1\n'); fid.write('accounting_group = ligo.dev.o2.burst.allsky.stamp\n'); fid.write('notification = never\n'); fid.write('getenv = true\n'); fid.write('log = /usr1/mcoughlin/seismon.log\n') fid.write('+MaxHours = 24\n'); fid.write('universe = vanilla\n'); fid.write('queue 1\n'); fid.close()
gpl-3.0
raincoatrun/basemap
examples/testgdal.py
4
2655
""" example showing how to plot data from a DEM file and an ESRI shape file using gdal (http://pypi.python.org/pypi/GDAL). """ from osgeo import gdal, ogr from mpl_toolkits.basemap import Basemap, cm import numpy as np import matplotlib.pyplot as plt from numpy import ma # read 2.5 minute U.S. DEM file using gdal. # (http://www.prism.oregonstate.edu/docs/meta/dem_25m.htm) gd = gdal.Open('us_25m.dem') array = gd.ReadAsArray() # get lat/lon coordinates from DEM file. coords = gd.GetGeoTransform() nlons = array.shape[1]; nlats = array.shape[0] delon = coords[1] delat = coords[5] lons = coords[0] + delon*np.arange(nlons) lats = coords[3] + delat*np.arange(nlats)[::-1] # reverse lats # setup figure. fig = plt.figure(figsize=(11,6)) # setup basemap instance. m = Basemap(llcrnrlon=-119,llcrnrlat=22,urcrnrlon=-64,urcrnrlat=49, projection='lcc',lat_1=33,lat_2=45,lon_0=-95) # create masked array, reversing data in latitude direction # (so that data is oriented in increasing latitude, as transform_scalar requires). topoin = ma.masked_values(array[::-1,:],-999.) # transform DEM data to a 4 km native projection grid nx = int((m.xmax-m.xmin)/4000.)+1; ny = int((m.ymax-m.ymin)/4000.)+1 topodat = m.transform_scalar(topoin,lons,lats,nx,ny,masked=True) # plot DEM image on map. im = m.imshow(topodat,cmap=cm.GMT_haxby_r) # draw meridians and parallels. m.drawparallels(np.arange(20,71,10),labels=[1,0,0,0]) m.drawmeridians(np.arange(-120,-40,10),labels=[0,0,0,1]) # plot state boundaries from shapefile using ogr. g = ogr.Open ("st99_d00.shp") L = g.GetLayer(0) # data is in 1st layer. for feat in L: # iterate over features in layer geo = feat.GetGeometryRef() # iterate over geometries. for count in range(geo.GetGeometryCount()): geom = geo.GetGeometryRef(count) if not geom.GetGeometryCount(): # just one geometry. # get lon,lat points lons = [geom.GetX(i) for i in range(geom.GetPointCount())] lats = [geom.GetY(i) for i in range(geom.GetPointCount())] # convert to map projection coords. x, y = m(lons,lats) # plot on map. m.plot(x,y,'k') else: # iterate over nested geometries. for cnt in range( geom.GetGeometryCount()): g = geom.GetGeometryRef( cnt ) lons = [g.GetX(i) for i in range(g.GetPointCount())] lats = [g.GetY(i) for i in range(g.GetPointCount())] x, y = m(lons,lats) m.plot(x,y,'k') # draw colorbar. m.colorbar(im) plt.title(gd.GetDescription()+' with state boundaries from '+g.GetName(),y=1.05) plt.show()
gpl-2.0
shikhar413/openmc
tests/regression_tests/filter_energyfun/test.py
8
1854
import openmc import pytest from tests.testing_harness import PyAPITestHarness @pytest.fixture def model(): model = openmc.model.Model() m = openmc.Material() m.set_density('g/cm3', 10.0) m.add_nuclide('Am241', 1.0) model.materials.append(m) s = openmc.Sphere(r=100.0, boundary_type='vacuum') c = openmc.Cell(fill=m, region=-s) model.geometry = openmc.Geometry([c]) model.settings.batches = 5 model.settings.inactive = 0 model.settings.particles = 1000 # Define Am242m / Am242 branching ratio from ENDF/B-VII.1 data. x = [1e-5, 3.69e-1, 1e3, 1e5, 6e5, 1e6, 2e6, 4e6, 3e7] y = [0.1, 0.1, 0.1333, 0.158, 0.18467, 0.25618, 0.4297, 0.48, 0.48] # Make an EnergyFunctionFilter directly from the x and y lists. filt1 = openmc.EnergyFunctionFilter(x, y) # Also make a filter with the .from_tabulated1d constructor. Make sure # the filters are identical. tab1d = openmc.data.Tabulated1D(x, y) filt2 = openmc.EnergyFunctionFilter.from_tabulated1d(tab1d) assert filt1 == filt2, 'Error with the .from_tabulated1d constructor' # Make tallies tallies = [openmc.Tally(), openmc.Tally()] for t in tallies: t.scores = ['(n,gamma)'] t.nuclides = ['Am241'] tallies[1].filters = [filt1] model.tallies.extend(tallies) return model class FilterEnergyFunHarness(PyAPITestHarness): def _get_results(self): # Read the statepoint file. sp = openmc.StatePoint(self._sp_name) # Use tally arithmetic to compute the branching ratio. br_tally = sp.tallies[2] / sp.tallies[1] # Output the tally in a Pandas DataFrame. return br_tally.get_pandas_dataframe().to_string() + '\n' def test_filter_energyfun(model): harness = FilterEnergyFunHarness('statepoint.5.h5', model) harness.main()
mit
DSLituiev/scikit-learn
sklearn/gaussian_process/tests/test_gaussian_process.py
267
6813
""" Testing for Gaussian Process module (sklearn.gaussian_process) """ # Author: Vincent Dubourg <[email protected]> # Licence: BSD 3 clause from nose.tools import raises from nose.tools import assert_true import numpy as np from sklearn.gaussian_process import GaussianProcess from sklearn.gaussian_process import regression_models as regression from sklearn.gaussian_process import correlation_models as correlation from sklearn.datasets import make_regression from sklearn.utils.testing import assert_greater f = lambda x: x * np.sin(x) X = np.atleast_2d([1., 3., 5., 6., 7., 8.]).T X2 = np.atleast_2d([2., 4., 5.5, 6.5, 7.5]).T y = f(X).ravel() def test_1d(regr=regression.constant, corr=correlation.squared_exponential, random_start=10, beta0=None): # MLE estimation of a one-dimensional Gaussian Process model. # Check random start optimization. # Test the interpolating property. gp = GaussianProcess(regr=regr, corr=corr, beta0=beta0, theta0=1e-2, thetaL=1e-4, thetaU=1e-1, random_start=random_start, verbose=False).fit(X, y) y_pred, MSE = gp.predict(X, eval_MSE=True) y2_pred, MSE2 = gp.predict(X2, eval_MSE=True) assert_true(np.allclose(y_pred, y) and np.allclose(MSE, 0.) and np.allclose(MSE2, 0., atol=10)) def test_2d(regr=regression.constant, corr=correlation.squared_exponential, random_start=10, beta0=None): # MLE estimation of a two-dimensional Gaussian Process model accounting for # anisotropy. Check random start optimization. # Test the interpolating property. b, kappa, e = 5., .5, .1 g = lambda x: b - x[:, 1] - kappa * (x[:, 0] - e) ** 2. X = np.array([[-4.61611719, -6.00099547], [4.10469096, 5.32782448], [0.00000000, -0.50000000], [-6.17289014, -4.6984743], [1.3109306, -6.93271427], [-5.03823144, 3.10584743], [-2.87600388, 6.74310541], [5.21301203, 4.26386883]]) y = g(X).ravel() thetaL = [1e-4] * 2 thetaU = [1e-1] * 2 gp = GaussianProcess(regr=regr, corr=corr, beta0=beta0, theta0=[1e-2] * 2, thetaL=thetaL, thetaU=thetaU, random_start=random_start, verbose=False) gp.fit(X, y) y_pred, MSE = gp.predict(X, eval_MSE=True) assert_true(np.allclose(y_pred, y) and np.allclose(MSE, 0.)) eps = np.finfo(gp.theta_.dtype).eps assert_true(np.all(gp.theta_ >= thetaL - eps)) # Lower bounds of hyperparameters assert_true(np.all(gp.theta_ <= thetaU + eps)) # Upper bounds of hyperparameters def test_2d_2d(regr=regression.constant, corr=correlation.squared_exponential, random_start=10, beta0=None): # MLE estimation of a two-dimensional Gaussian Process model accounting for # anisotropy. Check random start optimization. # Test the GP interpolation for 2D output b, kappa, e = 5., .5, .1 g = lambda x: b - x[:, 1] - kappa * (x[:, 0] - e) ** 2. f = lambda x: np.vstack((g(x), g(x))).T X = np.array([[-4.61611719, -6.00099547], [4.10469096, 5.32782448], [0.00000000, -0.50000000], [-6.17289014, -4.6984743], [1.3109306, -6.93271427], [-5.03823144, 3.10584743], [-2.87600388, 6.74310541], [5.21301203, 4.26386883]]) y = f(X) gp = GaussianProcess(regr=regr, corr=corr, beta0=beta0, theta0=[1e-2] * 2, thetaL=[1e-4] * 2, thetaU=[1e-1] * 2, random_start=random_start, verbose=False) gp.fit(X, y) y_pred, MSE = gp.predict(X, eval_MSE=True) assert_true(np.allclose(y_pred, y) and np.allclose(MSE, 0.)) @raises(ValueError) def test_wrong_number_of_outputs(): gp = GaussianProcess() gp.fit([[1, 2, 3], [4, 5, 6]], [1, 2, 3]) def test_more_builtin_correlation_models(random_start=1): # Repeat test_1d and test_2d for several built-in correlation # models specified as strings. all_corr = ['absolute_exponential', 'squared_exponential', 'cubic', 'linear'] for corr in all_corr: test_1d(regr='constant', corr=corr, random_start=random_start) test_2d(regr='constant', corr=corr, random_start=random_start) test_2d_2d(regr='constant', corr=corr, random_start=random_start) def test_ordinary_kriging(): # Repeat test_1d and test_2d with given regression weights (beta0) for # different regression models (Ordinary Kriging). test_1d(regr='linear', beta0=[0., 0.5]) test_1d(regr='quadratic', beta0=[0., 0.5, 0.5]) test_2d(regr='linear', beta0=[0., 0.5, 0.5]) test_2d(regr='quadratic', beta0=[0., 0.5, 0.5, 0.5, 0.5, 0.5]) test_2d_2d(regr='linear', beta0=[0., 0.5, 0.5]) test_2d_2d(regr='quadratic', beta0=[0., 0.5, 0.5, 0.5, 0.5, 0.5]) def test_no_normalize(): gp = GaussianProcess(normalize=False).fit(X, y) y_pred = gp.predict(X) assert_true(np.allclose(y_pred, y)) def test_random_starts(): # Test that an increasing number of random-starts of GP fitting only # increases the reduced likelihood function of the optimal theta. n_samples, n_features = 50, 3 np.random.seed(0) rng = np.random.RandomState(0) X = rng.randn(n_samples, n_features) * 2 - 1 y = np.sin(X).sum(axis=1) + np.sin(3 * X).sum(axis=1) best_likelihood = -np.inf for random_start in range(1, 5): gp = GaussianProcess(regr="constant", corr="squared_exponential", theta0=[1e-0] * n_features, thetaL=[1e-4] * n_features, thetaU=[1e+1] * n_features, random_start=random_start, random_state=0, verbose=False).fit(X, y) rlf = gp.reduced_likelihood_function()[0] assert_greater(rlf, best_likelihood - np.finfo(np.float32).eps) best_likelihood = rlf def test_mse_solving(): # test the MSE estimate to be sane. # non-regression test for ignoring off-diagonals of feature covariance, # testing with nugget that renders covariance useless, only # using the mean function, with low effective rank of data gp = GaussianProcess(corr='absolute_exponential', theta0=1e-4, thetaL=1e-12, thetaU=1e-2, nugget=1e-2, optimizer='Welch', regr="linear", random_state=0) X, y = make_regression(n_informative=3, n_features=60, noise=50, random_state=0, effective_rank=1) gp.fit(X, y) assert_greater(1000, gp.predict(X, eval_MSE=True)[1].mean())
bsd-3-clause
andeplane/lammps
python/examples/matplotlib_plot.py
22
2270
#!/usr/bin/env python -i # preceding line should have path for Python on your machine # matplotlib_plot.py # Purpose: plot Temp of running LAMMPS simulation via matplotlib # Syntax: plot.py in.lammps Nfreq Nsteps compute-ID # in.lammps = LAMMPS input script # Nfreq = plot data point every this many steps # Nsteps = run for this many steps # compute-ID = ID of compute that calculates temperature # (or any other scalar quantity) from __future__ import print_function import sys sys.path.append("./pizza") import matplotlib matplotlib.use('tkagg') import matplotlib.pyplot as plt # parse command line argv = sys.argv if len(argv) != 5: print("Syntax: plot.py in.lammps Nfreq Nsteps compute-ID") sys.exit() infile = sys.argv[1] nfreq = int(sys.argv[2]) nsteps = int(sys.argv[3]) compute = sys.argv[4] me = 0 # uncomment if running in parallel via Pypar #import pypar #me = pypar.rank() #nprocs = pypar.size() from lammps import lammps lmp = lammps() # run infile all at once # assumed to have no run command in it lmp.file(infile) lmp.command("thermo %d" % nfreq) # initial 0-step run to generate initial 1-point plot lmp.command("run 0 pre yes post no") value = lmp.extract_compute(compute,0,0) ntimestep = 0 xaxis = [ntimestep] yaxis = [value] # create matplotlib plot # just proc 0 handles plotting if me == 0: fig = plt.figure() line, = plt.plot(xaxis, yaxis) plt.xlim([0, nsteps]) plt.title(compute) plt.xlabel("Timestep") plt.ylabel("Temperature") plt.show(block=False) # run nfreq steps at a time w/out pre/post, query compute, refresh plot import time while ntimestep < nsteps: lmp.command("run %d pre no post no" % nfreq) ntimestep += nfreq value = lmp.extract_compute(compute,0,0) xaxis.append(ntimestep) yaxis.append(value) if me == 0: line.set_xdata(xaxis) line.set_ydata(yaxis) ax = plt.gca() ax.relim() ax.autoscale_view(True, True, True) fig.canvas.draw() lmp.command("run 0 pre no post yes") # uncomment if running in parallel via Pypar #print("Proc %d out of %d procs has" % (me,nprocs), lmp) #pypar.finalize() if sys.version_info[0] == 3: input("Press Enter to exit...") else: raw_input("Press Enter to exit...")
gpl-2.0
YinongLong/scikit-learn
examples/missing_values.py
71
3055
""" ====================================================== Imputing missing values before building an estimator ====================================================== This example shows that imputing the missing values can give better results than discarding the samples containing any missing value. Imputing does not always improve the predictions, so please check via cross-validation. Sometimes dropping rows or using marker values is more effective. Missing values can be replaced by the mean, the median or the most frequent value using the ``strategy`` hyper-parameter. The median is a more robust estimator for data with high magnitude variables which could dominate results (otherwise known as a 'long tail'). Script output:: Score with the entire dataset = 0.56 Score without the samples containing missing values = 0.48 Score after imputation of the missing values = 0.55 In this case, imputing helps the classifier get close to the original score. """ import numpy as np from sklearn.datasets import load_boston from sklearn.ensemble import RandomForestRegressor from sklearn.pipeline import Pipeline from sklearn.preprocessing import Imputer from sklearn.model_selection import cross_val_score rng = np.random.RandomState(0) dataset = load_boston() X_full, y_full = dataset.data, dataset.target n_samples = X_full.shape[0] n_features = X_full.shape[1] # Estimate the score on the entire dataset, with no missing values estimator = RandomForestRegressor(random_state=0, n_estimators=100) score = cross_val_score(estimator, X_full, y_full).mean() print("Score with the entire dataset = %.2f" % score) # Add missing values in 75% of the lines missing_rate = 0.75 n_missing_samples = np.floor(n_samples * missing_rate) missing_samples = np.hstack((np.zeros(n_samples - n_missing_samples, dtype=np.bool), np.ones(n_missing_samples, dtype=np.bool))) rng.shuffle(missing_samples) missing_features = rng.randint(0, n_features, n_missing_samples) # Estimate the score without the lines containing missing values X_filtered = X_full[~missing_samples, :] y_filtered = y_full[~missing_samples] estimator = RandomForestRegressor(random_state=0, n_estimators=100) score = cross_val_score(estimator, X_filtered, y_filtered).mean() print("Score without the samples containing missing values = %.2f" % score) # Estimate the score after imputation of the missing values X_missing = X_full.copy() X_missing[np.where(missing_samples)[0], missing_features] = 0 y_missing = y_full.copy() estimator = Pipeline([("imputer", Imputer(missing_values=0, strategy="mean", axis=0)), ("forest", RandomForestRegressor(random_state=0, n_estimators=100))]) score = cross_val_score(estimator, X_missing, y_missing).mean() print("Score after imputation of the missing values = %.2f" % score)
bsd-3-clause
evanbiederstedt/CMBintheLikeHoodz
source_code/CAMB_vary_OmegaB_lmax1100_Feb2016.py
1
137613
# coding: utf-8 # In[1]: # # # hundred_samples = np.linspace(0.05, 0.5, num=100) # # Planck found \Omega_CDM # GAVO simulated map set at \Omega_CDM = 0.122 # CAMB default below at omch2=0.122 # # In[2]: # # First output 200 CAMB scalar outputs # # 0.005 to 0.05 # # In[3]: from matplotlib import pyplot as plt import numpy as np import camb from camb import model, initialpower # In[4]: """ #Set up a new set of parameters for CAMB pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.022, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(2000, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) for name in powers: print(name) # In[5]: # plot the total lensed CMB power spectra versus unlensed, and fractional difference totCL=powers['total'] unlensedCL=powers['unlensed_scalar'] print(totCL.shape) # Python CL arrays are all zero based (starting at L=0), Note L=0,1 entries will be zero by default. # The differenent CL are always in the order TT, EE, BB, TE (with BB=0 for unlensed scalar results). ls = np.arange(totCL.shape[0]) print(ls) #print(totCL[:30]) # print first 30 totCL fig, ax = plt.subplots(2,2, figsize = (12,12)) ax[0,0].plot(ls,totCL[:,0], color='k') ax[0,0].plot(ls,unlensedCL[:,0], color='r') ax[0,0].set_title('TT') ax[0,1].plot(ls[2:], 1-unlensedCL[2:,0]/totCL[2:,0]); ax[0,1].set_title(r'$\Delta TT$') ax[1,0].plot(ls,totCL[:,1], color='k') ax[1,0].plot(ls,unlensedCL[:,1], color='r') ax[1,0].set_title(r'$EE$') ax[1,1].plot(ls,totCL[:,3], color='k') ax[1,1].plot(ls,unlensedCL[:,3], color='r') ax[1,1].set_title(r'$TE$'); for ax in ax.reshape(-1): ax.set_xlim([2,2500]) """ # In[6]: twohundred_samples = np.linspace(0.005, 0.05, num=200) #print(twohundred_samples) #Set up a new set of parameters for CAMB pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.022, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) pars.set_for_lmax(2500, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers =results.get_cmb_power_spectra(pars) for name in powers: print(name) """ array([ 0.005 , 0.00522613, 0.00545226, 0.00567839, 0.00590452, 0.00613065, 0.00635678, 0.00658291, 0.00680905, 0.00703518, 0.00726131, 0.00748744, 0.00771357, 0.0079397 , 0.00816583, 0.00839196, 0.00861809, 0.00884422, 0.00907035, 0.00929648, 0.00952261, 0.00974874, 0.00997487, 0.01020101, 0.01042714, 0.01065327, 0.0108794 , 0.01110553, 0.01133166, 0.01155779, 0.01178392, 0.01201005, 0.01223618, 0.01246231, 0.01268844, 0.01291457, 0.0131407 , 0.01336683, 0.01359296, 0.0138191 , 0.01404523, 0.01427136, 0.01449749, 0.01472362, 0.01494975, 0.01517588, 0.01540201, 0.01562814, 0.01585427, 0.0160804 , 0.01630653, 0.01653266, 0.01675879, 0.01698492, 0.01721106, 0.01743719, 0.01766332, 0.01788945, 0.01811558, 0.01834171, 0.01856784, 0.01879397, 0.0190201 , 0.01924623, 0.01947236, 0.01969849, 0.01992462, 0.02015075, 0.02037688, 0.02060302, 0.02082915, 0.02105528, 0.02128141, 0.02150754, 0.02173367, 0.0219598 , 0.02218593, 0.02241206, 0.02263819, 0.02286432, 0.02309045, 0.02331658, 0.02354271, 0.02376884, 0.02399497, 0.02422111, 0.02444724, 0.02467337, 0.0248995 , 0.02512563, 0.02535176, 0.02557789, 0.02580402, 0.02603015, 0.02625628, 0.02648241, 0.02670854, 0.02693467, 0.0271608 , 0.02738693, 0.02761307, 0.0278392 , 0.02806533, 0.02829146, 0.02851759, 0.02874372, 0.02896985, 0.02919598, 0.02942211, 0.02964824, 0.02987437, 0.0301005 , 0.03032663, 0.03055276, 0.03077889, 0.03100503, 0.03123116, 0.03145729, 0.03168342, 0.03190955, 0.03213568, 0.03236181, 0.03258794, 0.03281407, 0.0330402 , 0.03326633, 0.03349246, 0.03371859, 0.03394472, 0.03417085, 0.03439698, 0.03462312, 0.03484925, 0.03507538, 0.03530151, 0.03552764, 0.03575377, 0.0359799 , 0.03620603, 0.03643216, 0.03665829, 0.03688442, 0.03711055, 0.03733668, 0.03756281, 0.03778894, 0.03801508, 0.03824121, 0.03846734, 0.03869347, 0.0389196 , 0.03914573, 0.03937186, 0.03959799, 0.03982412, 0.04005025, 0.04027638, 0.04050251, 0.04072864, 0.04095477, 0.0411809 , 0.04140704, 0.04163317, 0.0418593 , 0.04208543, 0.04231156, 0.04253769, 0.04276382, 0.04298995, 0.04321608, 0.04344221, 0.04366834, 0.04389447, 0.0441206 , 0.04434673, 0.04457286, 0.04479899, 0.04502513, 0.04525126, 0.04547739, 0.04570352, 0.04592965, 0.04615578, 0.04638191, 0.04660804, 0.04683417, 0.0470603 , 0.04728643, 0.04751256, 0.04773869, 0.04796482, 0.04819095, 0.04841709, 0.04864322, 0.04886935, 0.04909548, 0.04932161, 0.04954774, 0.04977387, 0.05 ]) """ pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls0 = unlencl[:,0][2:1101] print(len(cls0)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls1 = unlencl[:,0][2:1101] print(len(cls1)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls2 = unlencl[:,0][2:1101] print(len(cls2)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls3 = unlencl[:,0][2:1101] print(len(cls3)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls4 = unlencl[:,0][2:1101] print(len(cls4)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls5 = unlencl[:,0][2:1101] print(len(cls5)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls6 = unlencl[:,0][2:1101] print(len(cls6)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls7 = unlencl[:,0][2:1101] print(len(cls7)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls8 = unlencl[:,0][2:1101] print(len(cls8)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls9 = unlencl[:,0][2:1101] print(len(cls9)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls10 = unlencl[:,0][2:1101] print(len(cls10)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls11 = unlencl[:,0][2:1101] print(len(cls11)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls12 = unlencl[:,0][2:1101] print(len(cls12)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls13 = unlencl[:,0][2:1101] print(len(cls13)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls14 = unlencl[:,0][2:1101] print(len(cls14)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls15 = unlencl[:,0][2:1101] print(len(cls15)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls16 = unlencl[:,0][2:1101] print(len(cls16)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls17 = unlencl[:,0][2:1101] print(len(cls17)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls18 = unlencl[:,0][2:1101] print(len(cls18)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls19 = unlencl[:,0][2:1101] print(len(cls19)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls20 = unlencl[:,0][2:1101] print(len(cls20)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls21 = unlencl[:,0][2:1101] print(len(cls21)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls22 = unlencl[:,0][2:1101] print(len(cls22)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls23 = unlencl[:,0][2:1101] print(len(cls23)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls24 = unlencl[:,0][2:1101] print(len(cls24)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls25 = unlencl[:,0][2:1101] print(len(cls25)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls26 = unlencl[:,0][2:1101] print(len(cls26)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls27 = unlencl[:,0][2:1101] print(len(cls27)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls28 = unlencl[:,0][2:1101] print(len(cls28)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls29 = unlencl[:,0][2:1101] print(len(cls29)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls30 = unlencl[:,0][2:1101] print(len(cls30)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls31 = unlencl[:,0][2:1101] print(len(cls31)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls32 = unlencl[:,0][2:1101] print(len(cls32)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls33 = unlencl[:,0][2:1101] print(len(cls33)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls34 = unlencl[:,0][2:1101] print(len(cls34)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls35 = unlencl[:,0][2:1101] print(len(cls35)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls36 = unlencl[:,0][2:1101] print(len(cls36)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls37 = unlencl[:,0][2:1101] print(len(cls37)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls38 = unlencl[:,0][2:1101] print(len(cls38)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls39 = unlencl[:,0][2:1101] print(len(cls39)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls40 = unlencl[:,0][2:1101] print(len(cls40)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls41 = unlencl[:,0][2:1101] print(len(cls41)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls42 = unlencl[:,0][2:1101] print(len(cls42)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls43 = unlencl[:,0][2:1101] print(len(cls43)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls44 = unlencl[:,0][2:1101] print(len(cls44)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls45 = unlencl[:,0][2:1101] print(len(cls45)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls46 = unlencl[:,0][2:1101] print(len(cls46)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls47 = unlencl[:,0][2:1101] print(len(cls47)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls48 = unlencl[:,0][2:1101] print(len(cls48)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls49 = unlencl[:,0][2:1101] print(len(cls49)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls50 = unlencl[:,0][2:1101] print(len(cls50)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls51 = unlencl[:,0][2:1101] print(len(cls51)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls52 = unlencl[:,0][2:1101] print(len(cls52)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls53 = unlencl[:,0][2:1101] print(len(cls53)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls54 = unlencl[:,0][2:1101] print(len(cls54)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls55 = unlencl[:,0][2:1101] print(len(cls55)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls56 = unlencl[:,0][2:1101] print(len(cls56)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls57 = unlencl[:,0][2:1101] print(len(cls57)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls58 = unlencl[:,0][2:1101] print(len(cls58)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls59 = unlencl[:,0][2:1101] print(len(cls59)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls60 = unlencl[:,0][2:1101] print(len(cls60)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls61 = unlencl[:,0][2:1101] print(len(cls61)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls62 = unlencl[:,0][2:1101] print(len(cls62)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls63 = unlencl[:,0][2:1101] print(len(cls63)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls64 = unlencl[:,0][2:1101] print(len(cls64)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls65 = unlencl[:,0][2:1101] print(len(cls65)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls66 = unlencl[:,0][2:1101] print(len(cls66)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls67 = unlencl[:,0][2:1101] print(len(cls67)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls68 = unlencl[:,0][2:1101] print(len(cls68)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls69 = unlencl[:,0][2:1101] print(len(cls69)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls70 = unlencl[:,0][2:1101] print(len(cls70)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls71 = unlencl[:,0][2:1101] print(len(cls71)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls72 = unlencl[:,0][2:1101] print(len(cls72)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls73 = unlencl[:,0][2:1101] print(len(cls73)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls74 = unlencl[:,0][2:1101] print(len(cls74)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls75 = unlencl[:,0][2:1101] print(len(cls75)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls76 = unlencl[:,0][2:1101] print(len(cls76)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls77 = unlencl[:,0][2:1101] print(len(cls77)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls78 = unlencl[:,0][2:1101] print(len(cls78)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls79 = unlencl[:,0][2:1101] print(len(cls79)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls80 = unlencl[:,0][2:1101] print(len(cls80)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls81 = unlencl[:,0][2:1101] print(len(cls81)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls82 = unlencl[:,0][2:1101] print(len(cls82)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls83 = unlencl[:,0][2:1101] print(len(cls83)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls84 = unlencl[:,0][2:1101] print(len(cls84)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls85 = unlencl[:,0][2:1101] print(len(cls85)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls86 = unlencl[:,0][2:1101] print(len(cls86)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls87 = unlencl[:,0][2:1101] print(len(cls87)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls88 = unlencl[:,0][2:1101] print(len(cls88)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls89 = unlencl[:,0][2:1101] print(len(cls89)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls90 = unlencl[:,0][2:1101] print(len(cls90)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls91 = unlencl[:,0][2:1101] print(len(cls91)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls92 = unlencl[:,0][2:1101] print(len(cls92)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls93 = unlencl[:,0][2:1101] print(len(cls93)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls94 = unlencl[:,0][2:1101] print(len(cls94)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls95 = unlencl[:,0][2:1101] print(len(cls95)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls96 = unlencl[:,0][2:1101] print(len(cls96)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls97 = unlencl[:,0][2:1101] print(len(cls97)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls98 = unlencl[:,0][2:1101] print(len(cls98)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls99 = unlencl[:,0][2:1101] print(len(cls99)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls100 = unlencl[:,0][2:1101] print(len(cls100)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls101 = unlencl[:,0][2:1101] print(len(cls101)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls102 = unlencl[:,0][2:1101] print(len(cls102)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls103 = unlencl[:,0][2:1101] print(len(cls103)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls104 = unlencl[:,0][2:1101] print(len(cls104)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls105 = unlencl[:,0][2:1101] print(len(cls105)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls106 = unlencl[:,0][2:1101] print(len(cls106)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls107 = unlencl[:,0][2:1101] print(len(cls107)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls108 = unlencl[:,0][2:1101] print(len(cls108)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls109 = unlencl[:,0][2:1101] print(len(cls109)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls110 = unlencl[:,0][2:1101] print(len(cls110)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls111 = unlencl[:,0][2:1101] print(len(cls111)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls112 = unlencl[:,0][2:1101] print(len(cls112)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls113 = unlencl[:,0][2:1101] print(len(cls113)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls114 = unlencl[:,0][2:1101] print(len(cls114)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls115 = unlencl[:,0][2:1101] print(len(cls115)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls116 = unlencl[:,0][2:1101] print(len(cls116)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls117 = unlencl[:,0][2:1101] print(len(cls117)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls118 = unlencl[:,0][2:1101] print(len(cls118)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls119 = unlencl[:,0][2:1101] print(len(cls119)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls120 = unlencl[:,0][2:1101] print(len(cls120)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls121 = unlencl[:,0][2:1101] print(len(cls121)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls122 = unlencl[:,0][2:1101] print(len(cls122)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls123 = unlencl[:,0][2:1101] print(len(cls123)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls124 = unlencl[:,0][2:1101] print(len(cls124)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls125 = unlencl[:,0][2:1101] print(len(cls125)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls126 = unlencl[:,0][2:1101] print(len(cls126)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls127 = unlencl[:,0][2:1101] print(len(cls127)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls128 = unlencl[:,0][2:1101] print(len(cls128)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls129 = unlencl[:,0][2:1101] print(len(cls129)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls130 = unlencl[:,0][2:1101] print(len(cls130)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls131 = unlencl[:,0][2:1101] print(len(cls131)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls132 = unlencl[:,0][2:1101] print(len(cls132)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls133 = unlencl[:,0][2:1101] print(len(cls133)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls134 = unlencl[:,0][2:1101] print(len(cls134)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls135 = unlencl[:,0][2:1101] print(len(cls135)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls136 = unlencl[:,0][2:1101] print(len(cls136)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls137 = unlencl[:,0][2:1101] print(len(cls137)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls138 = unlencl[:,0][2:1101] print(len(cls138)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls139 = unlencl[:,0][2:1101] print(len(cls139)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls140 = unlencl[:,0][2:1101] print(len(cls140)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls141 = unlencl[:,0][2:1101] print(len(cls141)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls142 = unlencl[:,0][2:1101] print(len(cls142)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls143 = unlencl[:,0][2:1101] print(len(cls143)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls144 = unlencl[:,0][2:1101] print(len(cls144)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls145 = unlencl[:,0][2:1101] print(len(cls145)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls146 = unlencl[:,0][2:1101] print(len(cls146)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls147 = unlencl[:,0][2:1101] print(len(cls147)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls148 = unlencl[:,0][2:1101] print(len(cls148)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls149 = unlencl[:,0][2:1101] print(len(cls149)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls150 = unlencl[:,0][2:1101] print(len(cls150)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls151 = unlencl[:,0][2:1101] print(len(cls151)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls152 = unlencl[:,0][2:1101] print(len(cls152)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls153 = unlencl[:,0][2:1101] print(len(cls153)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls154 = unlencl[:,0][2:1101] print(len(cls154)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls155 = unlencl[:,0][2:1101] print(len(cls155)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls156 = unlencl[:,0][2:1101] print(len(cls156)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls157 = unlencl[:,0][2:1101] print(len(cls157)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls158 = unlencl[:,0][2:1101] print(len(cls158)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls159 = unlencl[:,0][2:1101] print(len(cls159)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls160 = unlencl[:,0][2:1101] print(len(cls160)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls161 = unlencl[:,0][2:1101] print(len(cls161)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls162 = unlencl[:,0][2:1101] print(len(cls162)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls163 = unlencl[:,0][2:1101] print(len(cls163)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls164 = unlencl[:,0][2:1101] print(len(cls164)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls165 = unlencl[:,0][2:1101] print(len(cls165)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls166 = unlencl[:,0][2:1101] print(len(cls166)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls167 = unlencl[:,0][2:1101] print(len(cls167)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls168 = unlencl[:,0][2:1101] print(len(cls168)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls169 = unlencl[:,0][2:1101] print(len(cls169)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls170 = unlencl[:,0][2:1101] print(len(cls170)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls171 = unlencl[:,0][2:1101] print(len(cls171)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls172 = unlencl[:,0][2:1101] print(len(cls172)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls173 = unlencl[:,0][2:1101] print(len(cls173)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls174 = unlencl[:,0][2:1101] print(len(cls174)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls175 = unlencl[:,0][2:1101] print(len(cls175)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls176 = unlencl[:,0][2:1101] print(len(cls176)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls177 = unlencl[:,0][2:1101] print(len(cls177)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls178 = unlencl[:,0][2:1101] print(len(cls178)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls179 = unlencl[:,0][2:1101] print(len(cls179)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls180 = unlencl[:,0][2:1101] print(len(cls180)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls181 = unlencl[:,0][2:1101] print(len(cls181)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls182 = unlencl[:,0][2:1101] print(len(cls182)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls183 = unlencl[:,0][2:1101] print(len(cls183)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls184 = unlencl[:,0][2:1101] print(len(cls184)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls185 = unlencl[:,0][2:1101] print(len(cls185)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls186 = unlencl[:,0][2:1101] print(len(cls186)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls187 = unlencl[:,0][2:1101] print(len(cls187)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls188 = unlencl[:,0][2:1101] print(len(cls188)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls189 = unlencl[:,0][2:1101] print(len(cls189)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls190 = unlencl[:,0][2:1101] print(len(cls190)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls191 = unlencl[:,0][2:1101] print(len(cls191)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls192 = unlencl[:,0][2:1101] print(len(cls192)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls193 = unlencl[:,0][2:1101] print(len(cls193)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls194 = unlencl[:,0][2:1101] print(len(cls194)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls195 = unlencl[:,0][2:1101] print(len(cls195)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls196 = unlencl[:,0][2:1101] print(len(cls196)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls197 = unlencl[:,0][2:1101] print(len(cls197)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls198 = unlencl[:,0][2:1101] print(len(cls198)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls199 = unlencl[:,0][2:1101] print(len(cls199)) pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.005, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(ns=0.965, r=0) #pars.set_for_lmax(514, lens_potential_accuracy=0) #calculate results for these parameters results = camb.get_results(pars) #get dictionary of CAMB power spectra powers = results.get_cmb_power_spectra(pars) unlencl = powers['unlensed_scalar'] ls = np.arange(unlencl.shape[0]) print(ls) print(len(ls)) # # plot of spectrum cls200 = unlencl[:,0][2:1101] print(len(cls200)) """ 0.005 0.00522613065327 0.00545226130653 0.0056783919598 0.00590452261307 0.00613065326633 0.0063567839196 0.00658291457286 0.00680904522613 0.0070351758794 0.00726130653266 0.00748743718593 0.0077135678392 0.00793969849246 0.00816582914573 0.00839195979899 0.00861809045226 0.00884422110553 0.00907035175879 0.00929648241206 0.00952261306533 0.00974874371859 0.00997487437186 0.0102010050251 0.0104271356784 0.0106532663317 0.0108793969849 0.0111055276382 0.0113316582915 0.0115577889447 0.011783919598 0.0120100502513 0.0122361809045 0.0124623115578 0.0126884422111 0.0129145728643 0.0131407035176 0.0133668341709 0.0135929648241 0.0138190954774 0.0140452261307 0.0142713567839 0.0144974874372 0.0147236180905 0.0149497487437 0.015175879397 0.0154020100503 0.0156281407035 0.0158542713568 0.0160804020101 0.0163065326633 0.0165326633166 0.0167587939698 0.0169849246231 0.0172110552764 0.0174371859296 0.0176633165829 0.0178894472362 0.0181155778894 0.0183417085427 0.018567839196 0.0187939698492 0.0190201005025 0.0192462311558 0.019472361809 0.0196984924623 0.0199246231156 0.0201507537688 0.0203768844221 0.0206030150754 0.0208291457286 0.0210552763819 0.0212814070352 0.0215075376884 0.0217336683417 0.021959798995 0.0221859296482 0.0224120603015 0.0226381909548 0.022864321608 0.0230904522613 0.0233165829146 0.0235427135678 0.0237688442211 0.0239949748744 0.0242211055276 0.0244472361809 0.0246733668342 0.0248994974874 0.0251256281407 0.025351758794 0.0255778894472 0.0258040201005 0.0260301507538 0.026256281407 0.0264824120603 0.0267085427136 0.0269346733668 0.0271608040201 0.0273869346734 0.0276130653266 0.0278391959799 0.0280653266332 0.0282914572864 0.0285175879397 0.028743718593 0.0289698492462 0.0291959798995 0.0294221105528 0.029648241206 0.0298743718593 0.0301005025126 0.0303266331658 0.0305527638191 0.0307788944724 0.0310050251256 0.0312311557789 0.0314572864322 0.0316834170854 0.0319095477387 0.032135678392 0.0323618090452 0.0325879396985 0.0328140703518 0.033040201005 0.0332663316583 0.0334924623116 0.0337185929648 0.0339447236181 0.0341708542714 0.0343969849246 0.0346231155779 0.0348492462312 0.0350753768844 0.0353015075377 0.035527638191 0.0357537688442 0.0359798994975 0.0362060301508 0.036432160804 0.0366582914573 0.0368844221106 0.0371105527638 0.0373366834171 0.0375628140704 0.0377889447236 0.0380150753769 0.0382412060302 0.0384673366834 0.0386934673367 0.0389195979899 0.0391457286432 0.0393718592965 0.0395979899497 0.039824120603 0.0400502512563 0.0402763819095 0.0405025125628 0.0407286432161 0.0409547738693 0.0411809045226 0.0414070351759 0.0416331658291 0.0418592964824 0.0420854271357 0.0423115577889 0.0425376884422 0.0427638190955 0.0429899497487 0.043216080402 0.0434422110553 0.0436683417085 0.0438944723618 0.0441206030151 0.0443467336683 0.0445728643216 0.0447989949749 0.0450251256281 0.0452512562814 0.0454773869347 0.0457035175879 0.0459296482412 0.0461557788945 0.0463819095477 0.046608040201 0.0468341708543 0.0470603015075 0.0472864321608 0.0475125628141 0.0477386934673 0.0479648241206 0.0481909547739 0.0484170854271 0.0486432160804 0.0488693467337 0.0490954773869 0.0493216080402 0.0495477386935 0.0497738693467 0.05 """ # In[50]: cl_array = np.array([cls0, cls1, cls2, cls3, cls4, cls5, cls6, cls7, cls8, cls9, cls10, cls11, cls12, cls13, cls14, cls15, cls16, cls17, cls18, cls19, cls20, cls21, cls22, cls23, cls24, cls25, cls26, cls27, cls28, cls29, cls30, cls31, cls32, cls33, cls34, cls35, cls36, cls37, cls38, cls39, cls40, cls41, cls42, cls43, cls44, cls45, cls46, cls47, cls48, cls49, cls50, cls51, cls52, cls53, cls54, cls55, cls56, cls57, cls58, cls59, cls60, cls61, cls62, cls63, cls64, cls65, cls66, cls67, cls68, cls69, cls70, cls71, cls72, cls73, cls74, cls75, cls76, cls77, cls78, cls79, cls80, cls81, cls82, cls83, cls84, cls85, cls86, cls87, cls88, cls89, cls90, cls91, cls92, cls93, cls94, cls95, cls96, cls97, cls98, cls99, cls100, cls101, cls102, cls103, cls104, cls105, cls106, cls107, cls108, cls109, cls110, cls111, cls112, cls113, cls114, cls115, cls116, cls117, cls118, cls119, cls120, cls121, cls122, cls123, cls124, cls125, cls126, cls127, cls128, cls129, cls130, cls131, cls132, cls133, cls134, cls135, cls136, cls137, cls138, cls139, cls140, cls141, cls142, cls143, cls144, cls145, cls146, cls147, cls148, cls149, cls150, cls151, cls152, cls153, cls154, cls155, cls156, cls157, cls158, cls159, cls160, cls161, cls162, cls163, cls164, cls165, cls166, cls167, cls168, cls169, cls170, cls171, cls172, cls173, cls174, cls175, cls176, cls177, cls178, cls179, cls180, cls181, cls182, cls183, cls184, cls185, cls186, cls187, cls188, cls189, cls190, cls191, cls192, cls193, cls194, cls195, cls196, cls197, cls198, cls199, cls200]) # In[51]: print(cl_array.shape) # In[52]: f = "CAMB_cl_varyBaryon_lmax1100varyFeb2016.npy" np.save(f, cl_array)
mit
Upward-Spiral-Science/team1
code/test_assumptions.py
1
1525
import numpy as np import matplotlib.pyplot as plt import urllib2 #%matplotlib inline sample_size = 1000 np.random.seed(1) url = ('https://raw.githubusercontent.com/Upward-Spiral-Science' '/data/master/syn-density/output.csv') data = urllib2.urlopen(url) csv = np.genfromtxt(data, delimiter=",")[1:] csv_rand = None for i in range (1, sample_size): #Randomly sample from dataset a = np.random.permutation(np.arange(csv.shape[0]))[:100] csv_rand_sample = csv[a] # Normalize mean_unmask = np.mean(csv_rand_sample[:,3]) std_unmask = np.std(csv_rand_sample[:,3]) csv_rand_sample[:,3] = (csv_rand_sample[:,3]-mean_unmask)/std_unmask #Stack matrix if i == 1: csv_rand = csv_rand_sample else: csv_rand = np.dstack((csv_rand,csv_rand_sample)) #Average across random samples csv_rand = np.mean(csv_rand,axis=2) #Independence Assumption covar = np.cov(csv_rand_sample) plt.figure(figsize=(7,7)) plt.imshow(covar) plt.title('Covariance of Synapse Density dataset') plt.colorbar() plt.show() diag = covar.diagonal()*np.eye(covar.shape[0]) hollow = covar-diag d_det = np.linalg.slogdet(diag)[1] h_det = np.linalg.slogdet(hollow)[1] print d_det print h_det plt.figure(figsize=(11,8)) plt.subplot(121) plt.imshow(diag) plt.clim([0, np.max(covar)]) plt.title('Determinant of on-diagonal: ' + str(d_det)) plt.subplot(122) plt.imshow(hollow) plt.clim([0, np.max(covar)]) plt.title('Determinant of off-diagonal: ' + str(h_det)) plt.show() print "Ratio of on and off-diagonal determinants: " + str(d_det/h_det)
apache-2.0
rahuldhote/scikit-learn
examples/gaussian_process/gp_diabetes_dataset.py
223
1976
#!/usr/bin/python # -*- coding: utf-8 -*- """ ======================================================================== Gaussian Processes regression: goodness-of-fit on the 'diabetes' dataset ======================================================================== In this example, we fit a Gaussian Process model onto the diabetes dataset. We determine the correlation parameters with maximum likelihood estimation (MLE). We use an anisotropic squared exponential correlation model with a constant regression model. We also use a nugget of 1e-2 to account for the (strong) noise in the targets. We compute a cross-validation estimate of the coefficient of determination (R2) without reperforming MLE, using the set of correlation parameters found on the whole dataset. """ print(__doc__) # Author: Vincent Dubourg <[email protected]> # Licence: BSD 3 clause from sklearn import datasets from sklearn.gaussian_process import GaussianProcess from sklearn.cross_validation import cross_val_score, KFold # Load the dataset from scikit's data sets diabetes = datasets.load_diabetes() X, y = diabetes.data, diabetes.target # Instanciate a GP model gp = GaussianProcess(regr='constant', corr='absolute_exponential', theta0=[1e-4] * 10, thetaL=[1e-12] * 10, thetaU=[1e-2] * 10, nugget=1e-2, optimizer='Welch') # Fit the GP model to the data performing maximum likelihood estimation gp.fit(X, y) # Deactivate maximum likelihood estimation for the cross-validation loop gp.theta0 = gp.theta_ # Given correlation parameter = MLE gp.thetaL, gp.thetaU = None, None # None bounds deactivate MLE # Perform a cross-validation estimate of the coefficient of determination using # the cross_validation module using all CPUs available on the machine K = 20 # folds R2 = cross_val_score(gp, X, y=y, cv=KFold(y.size, K), n_jobs=1).mean() print("The %d-Folds estimate of the coefficient of determination is R2 = %s" % (K, R2))
bsd-3-clause
pcm17/tensorflow
tensorflow/contrib/learn/python/learn/tests/dataframe/dataframe_test.py
62
3753
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests of the DataFrame class.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.learn.python import learn from tensorflow.contrib.learn.python.learn.tests.dataframe import mocks from tensorflow.python.framework import dtypes from tensorflow.python.platform import test def setup_test_df(): """Create a dataframe populated with some test columns.""" df = learn.DataFrame() df["a"] = learn.TransformedSeries( [mocks.MockSeries("foobar", mocks.MockTensor("Tensor a", dtypes.int32))], mocks.MockTwoOutputTransform("iue", "eui", "snt"), "out1") df["b"] = learn.TransformedSeries( [mocks.MockSeries("foobar", mocks.MockTensor("Tensor b", dtypes.int32))], mocks.MockTwoOutputTransform("iue", "eui", "snt"), "out2") df["c"] = learn.TransformedSeries( [mocks.MockSeries("foobar", mocks.MockTensor("Tensor c", dtypes.int32))], mocks.MockTwoOutputTransform("iue", "eui", "snt"), "out1") return df class DataFrameTest(test.TestCase): """Test of `DataFrame`.""" def test_create(self): df = setup_test_df() self.assertEqual(df.columns(), frozenset(["a", "b", "c"])) def test_select_columns(self): df = setup_test_df() df2 = df.select_columns(["a", "c"]) self.assertEqual(df2.columns(), frozenset(["a", "c"])) def test_exclude_columns(self): df = setup_test_df() df2 = df.exclude_columns(["a", "c"]) self.assertEqual(df2.columns(), frozenset(["b"])) def test_get_item(self): df = setup_test_df() c1 = df["b"] self.assertEqual( mocks.MockTensor("Mock Tensor 2", dtypes.int32), c1.build()) def test_del_item_column(self): df = setup_test_df() self.assertEqual(3, len(df)) del df["b"] self.assertEqual(2, len(df)) self.assertEqual(df.columns(), frozenset(["a", "c"])) def test_set_item_column(self): df = setup_test_df() self.assertEqual(3, len(df)) col1 = mocks.MockSeries("QuackColumn", mocks.MockTensor("Tensor ", dtypes.int32)) df["quack"] = col1 self.assertEqual(4, len(df)) col2 = df["quack"] self.assertEqual(col1, col2) def test_set_item_column_multi(self): df = setup_test_df() self.assertEqual(3, len(df)) col1 = mocks.MockSeries("QuackColumn", []) col2 = mocks.MockSeries("MooColumn", []) df["quack", "moo"] = [col1, col2] self.assertEqual(5, len(df)) col3 = df["quack"] self.assertEqual(col1, col3) col4 = df["moo"] self.assertEqual(col2, col4) def test_set_item_pandas(self): # TODO(jamieas) pass def test_set_item_numpy(self): # TODO(jamieas) pass def test_build(self): df = setup_test_df() result = df.build() expected = { "a": mocks.MockTensor("Mock Tensor 1", dtypes.int32), "b": mocks.MockTensor("Mock Tensor 2", dtypes.int32), "c": mocks.MockTensor("Mock Tensor 1", dtypes.int32) } self.assertEqual(expected, result) if __name__ == "__main__": test.main()
apache-2.0
agdestine/machine-learning
code/abaloneUtils.py
5
4299
# utils # Utility functions for handling data # # Author: Benjamin Bengfort <[email protected]> # Created: Thu Feb 26 17:47:35 2015 -0500 # # Copyright (C) 2015 District Data Labs # For license information, see LICENSE.txt # # ID: utils.py [] [email protected] $ """ Utility functions for handling data """ ########################################################################## ## Imports ########################################################################## import os import csv import time import json import numpy as np from sklearn.datasets.base import Bunch ########################################################################## ## Module Constants ########################################################################## SKL_DATA = "SCIKIT_LEARN_DATA" BASE_DIR = os.path.normpath(os.path.join(os.path.dirname(__file__), "..")) DATA_DIR = os.path.join(BASE_DIR, "data") CODE_DIR = os.path.join(BASE_DIR, "code") ########################################################################## ## Helper Functions ########################################################################## def timeit(func): """ Returns how long a function took to execute, along with the output """ def wrapper(*args, **kwargs): start = time.time() result = func(*args, **kwargs) return result, time.time() - start return timeit ########################################################################## ## Dataset Loading ########################################################################## def get_data_home(data_home=None): """ Returns the path of the data directory """ if data_home is None: data_home = os.environ.get(SKL_DATA, DATA_DIR) data_home = os.path.expanduser(data_home) if not os.path.exists(data_home): os.makedirs(data_home) return data_home def load_data(path, descr=None, target_index=-1): """ Returns a scklearn dataset Bunch which includes several important attributes that are used in modeling: data: array of shape n_samples * n_features target: array of length n_samples feature_names: names of the features target_names: names of the targets filenames: names of the files that were loaded DESCR: contents of the readme This data therefore has the look and feel of the toy datasets. Pass in a path usually just the name of the location in the data dir. It will be joined with the result of `get_data_home`. The contents are: path - abalone.names # The file to load into DESCR - meta.json # A file containing metadata to load - dataset.txt # The numpy loadtxt file - dataset.csv # The pandas read_csv file You can specify another descr, another feature_names, and whether or not the dataset has a header row. You can also specify the index of the target, which by default is the last item in the row (-1) """ root = os.path.join(get_data_home(), path) filenames = { 'meta': os.path.join(root, 'meta.json'), 'rdme': os.path.join(root, 'abalone.names'), 'data': os.path.join(root, 'dataset.csv'), } target_names = None feature_names = None DESCR = None with open(filenames['meta'], 'r') as f: meta = json.load(f) target_names = meta['target_names'] feature_names = meta['feature_names'] with open(filenames['rdme'], 'r') as f: DESCR = f.read() # skip header from csv, load data dataset = np.loadtxt(filenames['data'], delimiter=',', skiprows=1) data = None target = None # Target assumed to be either last or first row if target_index == -1: data = dataset[:,0:-1] target = dataset[:,-1] elif target_index == 0: data = dataset[:,1:] target = dataset[:,0] else: raise ValueError("Target index must be either -1 or 0") return Bunch(data=data, target=target, filenames=filenames, target_names=target_names, feature_names=feature_names, DESCR=DESCR) def load_abalone(): return load_data('abalone')
mit
bottydim/detect-credit-card-fraud
ccfd_dnn/model_weight.py
1
20628
import os os.environ['CUDA_LAUNCH_BLOCKING'] = '1' import pandas as pd import matplotlib import numpy as np import math import matplotlib.pyplot as plt from sklearn.preprocessing import Imputer from sklearn.cross_validation import train_test_split from sklearn import preprocessing import plotly.tools as tls import pandas as pd from sqlalchemy import create_engine # database connection import datetime as dt import io import logging import plotly.plotly as py # interactive graphing from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot from plotly.graph_objs import Bar, Scatter, Marker, Layout from heraspy.model import HeraModel np.random.seed(1337) import theano import keras from keras.preprocessing.sequence import pad_sequences from keras.models import Model,model_from_yaml from keras.layers import Input, Dense, GRU, LSTM, TimeDistributed, Masking,merge from model import * import argparse import sys if __name__ == "__main__": t_start = dt.datetime.now() parser = argparse.ArgumentParser(prog='Weighted Model') parser.add_argument('-t','--table',required=True) args = parser.parse_args() ####################################DATA SOURCE################################ table = vars(args)['table'] # table = 'data_trim' # rsl_file = './data/gs_results_trim.csv' # rsl_file = './data/psql_data_trim.csv' # table = 'data_little_enc' # rsl_file = './data/gs_results_little.csv' # table = 'data_more' # rsl_file = './data/gs_results_more.csv' # table = 'auth' # rsl_file = './data/auth.csv' events_tbl = 'event' events_tbl = None rsl_file = './data/psql_{table}.csv'.format(table=table) ################################################################################ print "Commencing..." data_dir = './data/' evt_name = 'Featurespace_events_output.csv' auth_name = 'Featurespace_auths_output.csv' db_name = 'c1_agg.db' address = "postgresql+pg8000://script@localhost:5432/ccfd" # disk_engine = create_engine('sqlite:///'+data_dir+db_name,convert_unicode=True) # disk_engine.raw_connection().connection.text_factory = str disk_engine = create_engine(address) #######################Settings############################################# samples_per_epoch = trans_num_table(table,disk_engine,mode='train',trans_mode='train') # epoch_limit = 10000 # samples_per_epoch = epoch_limit # user_sample_size = 8000 epoch_limit = samples_per_epoch user_sample_size = None nb_epoch = 300 fraud_w_list = [1000.] ##########ENCODERS CONF tbl_src = 'auth' # tbl_src = table tbl_evnt = 'event' ################################## batch_size = 300 batch_size_val = 1000 print "SAMPLES per epoch:",samples_per_epoch print "User sample size:",user_sample_size print 'sequence length size',batch_size # samples_per_epoch = 1959 # table = 'data_trim' # samples_per_epoch = 485 lbl_pad_val = 2 pad_val = 0 # dropout_W_list = [0.3] dropout_W_list = [0.4,0.5,0.6,0.7] # dropout_W_list = [0.15,0.3,0.4,0.8] input_dim = 44 hid_dims = [320] num_l = [7] lr_s = [2.5e-4] # lr_s = [1.25e-4,6e-5] # lr_s = [1e-2,1e-3,1e-4] # lr_s = [1e-1,1e-2,1e-3] num_opt = 1 opts = lambda x,lr:[keras.optimizers.RMSprop(lr=lr, rho=0.9, epsilon=1e-08), # keras.optimizers.Adam(lr=lr, beta_1=0.9, beta_2=0.999, epsilon=1e-08), # keras.optimizers.Nadam(lr=lr, beta_1=0.9, beta_2=0.999, epsilon=1e-08, schedule_decay=0.004) ][x] # add_info = str(int(seq_len_param))+'_class_w_'+str(fraud_w) print 'Populating encoders' path_encoders ='./data/encoders/{tbl_src}+{tbl_evnt}'.format(tbl_src=tbl_src,tbl_evnt=tbl_evnt) if os.path.exists(path_encoders): encoders = load_encoders(path_encoders) else: encoders = populate_encoders_scale(tbl_src,disk_engine,tbl_evnt) with open(path_encoders, 'wb') as output: pickle.dump(encoders, output, pickle.HIGHEST_PROTOCOL) print 'ENCODERS SAVED to {path}!'.format(path=path_encoders) # sys.exit() gru_dict = {} lstm_dict = {} for fraud_w in fraud_w_list: add_info = 'Mask=pad_class_w_'+str(fraud_w)+'ES-OFF' class_weight = {0 : 1., 1: fraud_w, 2: 0.} for dropout_W in dropout_W_list: for hidden_dim in hid_dims: # gru for opt_id in range(num_opt): for lr in lr_s: optimizer = opts(opt_id,lr) for num_layers in num_l: for rnn in ['gru']: short_title = 'bi_'+rnn.upper()+'_'+str(hidden_dim)+'_'+str(num_layers)+'_DO-'+str(dropout_W)+'_w'+str(class_weight[1]) title = 'Bidirectional_Class'+str(class_weight[1])+'_'+rnn.upper()+'_'+str(hidden_dim)+'_'+str(num_layers)+'_'+str(type(optimizer).__name__)+'_'+str(lr)+'_epochs_'+str(nb_epoch)+'_DO-'+str(dropout_W) print title input_layer = Input(shape=(int(seq_len_param), input_dim),name='main_input') mask = Masking(mask_value=pad_val)(input_layer) x = mask for i in range(num_layers): if rnn == 'gru': prev_frw = GRU(hidden_dim,#input_length=50, return_sequences=True,go_backwards=False,stateful=False, unroll=False,consume_less='gpu', init='glorot_uniform', inner_init='orthogonal', activation='tanh', inner_activation='hard_sigmoid', W_regularizer=None, U_regularizer=None, b_regularizer=None, dropout_W=dropout_W, dropout_U=0.0)(x) prev_bck = GRU(hidden_dim,#input_length=50, return_sequences=True,go_backwards=True,stateful=False, unroll=False,consume_less='gpu', init='glorot_uniform', inner_init='orthogonal', activation='tanh', inner_activation='hard_sigmoid', W_regularizer=None, U_regularizer=None, b_regularizer=None, dropout_W=dropout_W, dropout_U=0.0)(x) else: prev_frw = LSTM(hidden_dim, return_sequences=True,go_backwards=False,stateful=False, init='glorot_uniform', inner_init='orthogonal', forget_bias_init='one', activation='tanh', inner_activation='hard_sigmoid', W_regularizer=None, U_regularizer=None, b_regularizer=None, dropout_W=dropout_W, dropout_U=0.0)(x) prev_bck = LSTM(hidden_dim, return_sequences=True,go_backwards=True,stateful=False, init='glorot_uniform', inner_init='orthogonal', forget_bias_init='one', activation='tanh', inner_activation='hard_sigmoid', W_regularizer=None, U_regularizer=None, b_regularizer=None, dropout_W=dropout_W, dropout_U=0.0)(x) x = merge([prev_frw, prev_bck], mode='concat') output_layer = TimeDistributed(Dense(3,activation='softmax'))(x) model = Model(input=[input_layer],output=[output_layer]) model.compile(optimizer=optimizer, loss='sparse_categorical_crossentropy', metrics=['accuracy'], sample_weight_mode="temporal") ########save architecture ###### arch_dir = './data/models/archs/'+short_title+'.yml' yaml_string = model.to_yaml() with open(arch_dir, 'wb') as output: pickle.dump(yaml_string, output, pickle.HIGHEST_PROTOCOL) print 'model saved!' ############## user_mode = 'train' trans_mode = 'train' data_gen = data_generator(user_mode,trans_mode,disk_engine,encoders,table=table, batch_size=batch_size,usr_ratio=80,class_weight=class_weight,lbl_pad_val = lbl_pad_val, pad_val = pad_val, sub_sample=user_sample_size,epoch_size=epoch_limit,events_tbl=events_tbl) # sub_sample=user_sample_size,epoch_size=samples_per_epoch) ########validation data print 'Generating Validation set!' user_mode = 'test' trans_mode = 'test' val_gen = data_generator(user_mode,trans_mode,disk_engine,encoders,table=table, batch_size=batch_size_val,usr_ratio=80,class_weight=class_weight,lbl_pad_val = lbl_pad_val, pad_val = pad_val, sub_sample=None,epoch_size=None,events_tbl=events_tbl) validation_data = next(val_gen) print '################GENERATED#######################' ###############CALLBACKS patience = 30 early_Stop = keras.callbacks.EarlyStopping(monitor='val_loss', patience=patience, verbose=0, mode='auto') save_path = './data/models/'+table+'/' var_name = '.{epoch:02d}-{val_loss:.5f}.hdf5' checkpoint = keras.callbacks.ModelCheckpoint(save_path+short_title+var_name, monitor='val_loss', verbose=1, save_best_only=True, mode='auto') root_url = 'http://localhost:9000' remote_log = keras.callbacks.RemoteMonitor(root=root_url) # callbacks = [early_Stop,checkpoint] callbacks = [early_Stop,checkpoint,remote_log] callbacks = [] history = model.fit_generator(data_gen, samples_per_epoch, nb_epoch, verbose=1, callbacks=callbacks,validation_data=validation_data, nb_val_samples=None, class_weight=None, max_q_size=10000) py.sign_in('bottydim', 'o1kuyms9zv') auc_list = [] print '#########################TRAIN STATS################' user_mode = 'train' trans_mode = 'train' val_samples = trans_num_table(table,disk_engine,mode=user_mode,trans_mode=trans_mode) print '# samples',val_samples plt_filename = './figures/GS/'+table+'/'+'ROC_'+user_mode+'_'+trans_mode+'_'+title+'_'+add_info+".png" data_gen = data_generator(user_mode,trans_mode,disk_engine,encoders,table=table, batch_size=batch_size,usr_ratio=80,class_weight=None,lbl_pad_val = lbl_pad_val, pad_val = pad_val,events_tbl=events_tbl) eval_list = eval_auc_generator(model, data_gen, val_samples, max_q_size=10000,plt_filename=plt_filename) auc_val = eval_list[0] clc_report = eval_list[1] acc = eval_list[2] print "AUC:",auc_val print 'CLassification report' print clc_report print 'Accuracy' print acc auc_list.append(str(auc_val)) print '##################EVALUATION USERS#########################' user_mode = 'test' trans_mode = 'train' val_samples = trans_num_table(table,disk_engine,mode=user_mode,trans_mode=trans_mode) print '# samples',val_samples plt_filename = './figures/GS/'+table+'/'+'ROC_'+user_mode+'_'+trans_mode+'_'+title+'_'+add_info+".png" eval_gen = data_generator(user_mode,trans_mode,disk_engine,encoders,table=table, batch_size=batch_size,usr_ratio=80,class_weight=None,lbl_pad_val = lbl_pad_val, pad_val = pad_val,events_tbl=events_tbl) eval_list = eval_auc_generator(model, eval_gen, val_samples, max_q_size=10000,plt_filename=plt_filename) auc_val = eval_list[0] clc_report = eval_list[1] acc = eval_list[2] print "AUC:",auc_val print 'CLassification report' print clc_report print 'Accuracy' print acc auc_list.append(str(auc_val)) print '#####################################################' print '##################EVALUATION Transactions#########################' user_mode = 'train' trans_mode = 'test' val_samples = trans_num_table(table,disk_engine,mode=user_mode,trans_mode=trans_mode) print '# samples',val_samples plt_filename = './figures/GS/'+table+'/'+'ROC_'+user_mode+'_'+trans_mode+'_'+title+'_'+add_info+".png" eval_gen = data_generator(user_mode,trans_mode,disk_engine,encoders,table=table, batch_size=batch_size,usr_ratio=80,class_weight=None,lbl_pad_val = lbl_pad_val, pad_val = pad_val,events_tbl=events_tbl) eval_list = eval_auc_generator(model, eval_gen, val_samples, max_q_size=10000,plt_filename=plt_filename) auc_val = eval_list[0] clc_report = eval_list[1] acc = eval_list[2] print "AUC:",auc_val print 'CLassification report' print clc_report print 'Accuracy' print acc auc_list.append(str(auc_val)) print '#####################################################' print '##################EVALUATION Pure#########################' user_mode = 'test' trans_mode = 'test' val_samples = trans_num_table(table,disk_engine,mode=user_mode,trans_mode=trans_mode) print '# samples',val_samples plt_filename = './figures/GS/'+table+'/'+'ROC_'+user_mode+'_'+trans_mode+'_'+title+'_'+add_info+".png" eval_gen = data_generator(user_mode,trans_mode,disk_engine,encoders,table=table, batch_size=batch_size,usr_ratio=80,class_weight=None,lbl_pad_val = lbl_pad_val, pad_val = pad_val,events_tbl=events_tbl) eval_list = eval_auc_generator(model, eval_gen, val_samples, max_q_size=10000,plt_filename=plt_filename) auc_val = eval_list[0] clc_report = eval_list[1] acc = eval_list[2] print "AUC:",auc_val print 'CLassification report' print clc_report print 'Accuracy' print acc auc_list.append(str(auc_val)) print '#####################################################' with io.open(rsl_file, 'a', encoding='utf-8') as file: auc_string = ','.join(auc_list) title_csv = title.replace('_',',')+','+str(history.history['acc'][-1])+','+str(history.history['loss'][-1])+','+str(auc_val)+','+str(acc)+','+auc_string+'\n' file.write(unicode(title_csv)) print 'logged @ {file}'.format(file=rsl_file) trim_point = -15 fig = { 'data': [Scatter( x=history.epoch[trim_point:], y=history.history['loss'][trim_point:])], 'layout': {'title': title} } py.image.save_as(fig,filename='./results/figures/'+table+'/'+short_title+'_'+'LOSS'+'_'+add_info+".png") trim_point = 0 fig = { 'data': [Scatter( x=history.epoch[trim_point:], y=history.history['loss'][trim_point:])], 'layout': {'title': title} } py.image.save_as(fig,filename='./results/figures/'+table+'/'+short_title+'_'+'LOSS'+'_'+'FULL'+".png") # iplot(fig,filename='figures/'+title,image='png') # title = title.replace('Loss','Acc') fig = { 'data': [Scatter( x=history.epoch[trim_point:], y=history.history['acc'][trim_point:])], 'layout': {'title': title} } filename_val='./results/figures/'+table+'/'+short_title+'_'+'ACC'+'_'+add_info+".png" py.image.save_as(fig,filename=filename_val) print 'exported @',filename_val fig = { 'data': [Scatter( x=history.epoch[trim_point:], y=history.history['val_loss'][trim_point:])], 'layout': {'title': title} } py.image.save_as(fig,filename='./results/figures/'+table+'/'+short_title+'_'+'VAL LOSS'+'_'+add_info+".png") print 'time taken: {time}'.format(time=days_hours_minutes_seconds(dt.datetime.now()-t_start))
mit
zhenv5/scikit-learn
examples/classification/plot_lda.py
70
2413
""" ==================================================================== Normal and Shrinkage Linear Discriminant Analysis for classification ==================================================================== Shows how shrinkage improves classification. """ from __future__ import division import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import make_blobs from sklearn.discriminant_analysis import LinearDiscriminantAnalysis n_train = 20 # samples for training n_test = 200 # samples for testing n_averages = 50 # how often to repeat classification n_features_max = 75 # maximum number of features step = 4 # step size for the calculation def generate_data(n_samples, n_features): """Generate random blob-ish data with noisy features. This returns an array of input data with shape `(n_samples, n_features)` and an array of `n_samples` target labels. Only one feature contains discriminative information, the other features contain only noise. """ X, y = make_blobs(n_samples=n_samples, n_features=1, centers=[[-2], [2]]) # add non-discriminative features if n_features > 1: X = np.hstack([X, np.random.randn(n_samples, n_features - 1)]) return X, y acc_clf1, acc_clf2 = [], [] n_features_range = range(1, n_features_max + 1, step) for n_features in n_features_range: score_clf1, score_clf2 = 0, 0 for _ in range(n_averages): X, y = generate_data(n_train, n_features) clf1 = LinearDiscriminantAnalysis(solver='lsqr', shrinkage='auto').fit(X, y) clf2 = LinearDiscriminantAnalysis(solver='lsqr', shrinkage=None).fit(X, y) X, y = generate_data(n_test, n_features) score_clf1 += clf1.score(X, y) score_clf2 += clf2.score(X, y) acc_clf1.append(score_clf1 / n_averages) acc_clf2.append(score_clf2 / n_averages) features_samples_ratio = np.array(n_features_range) / n_train plt.plot(features_samples_ratio, acc_clf1, linewidth=2, label="Linear Discriminant Analysis with shrinkage", color='r') plt.plot(features_samples_ratio, acc_clf2, linewidth=2, label="Linear Discriminant Analysis", color='g') plt.xlabel('n_features / n_samples') plt.ylabel('Classification accuracy') plt.legend(loc=1, prop={'size': 12}) plt.suptitle('Linear Discriminant Analysis vs. \ shrinkage Linear Discriminant Analysis (1 discriminative feature)') plt.show()
bsd-3-clause
pinkavaj/gnuradio
gr-fec/python/fec/polar/channel_construction_bec.py
22
8068
#!/usr/bin/env python # # Copyright 2015 Free Software Foundation, Inc. # # GNU Radio is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3, or (at your option) # any later version. # # GNU Radio is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with GNU Radio; see the file COPYING. If not, write to # the Free Software Foundation, Inc., 51 Franklin Street, # Boston, MA 02110-1301, USA. # import numpy as np import helper_functions as hf def bec_channel(eta): ''' binary erasure channel (BEC) for each y e Y W(y|0) * W(y|1) = 0 or W(y|0) = W(y|1) transistions are 1 -> 1 or 0 -> 0 or {0, 1} -> ? (erased symbol) ''' # looks like BSC but should be interpreted differently. w = np.array((1 - eta, eta, 1 - eta), dtype=float) return w def odd_rec(iwn): return iwn ** 2 def even_rec(iwn): return 2 * iwn - iwn ** 2 def calc_one_recursion(iw0): iw1 = np.zeros(2 * len(iw0)) # double values for i in range(len(iw0)): # careful indices screw you because paper is '1' based :( iw1[2 * i] = odd_rec(iw0[i]) iw1[2 * i + 1] = even_rec(iw0[i]) return iw1 def calculate_bec_channel_capacities_loop(initial_channel, block_power): # compare [0, Arikan] eq. 6 iw = np.array([initial_channel, ], dtype=float) for i in range(block_power): iw = calc_one_recursion(iw) return iw def calc_vector_capacities_one_recursion(iw0): degraded = odd_rec(iw0) upgraded = even_rec(iw0) iw1 = np.empty(2 * len(iw0), dtype=degraded.dtype) iw1[0::2] = degraded iw1[1::2] = upgraded return iw1 def calculate_bec_channel_capacities_vector(initial_channel, block_power): # compare [0, Arikan] eq. 6 # this version is ~ 180 times faster than the loop version with 2**22 synthetic channels iw = np.array([initial_channel, ], dtype=float) for i in range(block_power): iw = calc_vector_capacities_one_recursion(iw) return iw def calculate_bec_channel_capacities(eta, block_size): # compare [0, Arikan] eq. 6 iw = 1 - eta # holds for BEC as stated in paper lw = hf.power_of_2_int(block_size) return calculate_bec_channel_capacities_vector(iw, lw) def calculate_z_parameters_one_recursion(z_params): z_next = np.empty(2 * z_params.size, dtype=z_params.dtype) z_sq = z_params ** 2 z_low = 2 * z_params - z_sq z_next[0::2] = z_low z_next[1::2] = z_sq return z_next def calculate_bec_channel_z_parameters(eta, block_size): # compare [0, Arikan] eq. 38 block_power = hf.power_of_2_int(block_size) z_params = np.array([eta, ], dtype=float) for block_size in range(block_power): z_params = calculate_z_parameters_one_recursion(z_params) return z_params def design_snr_to_bec_eta(design_snr): # minimum design snr = -1.5917 corresponds to BER = 0.5 s = 10. ** (design_snr / 10.) return np.exp(-s) def bhattacharyya_bounds(design_snr, block_size): ''' Harish Vangala, Emanuele Viterbo, Yi Hong: 'A Comparative Study of Polar Code Constructions for the AWGN Channel', 2015 In this paper it is called Bhattacharyya bounds channel construction and is abbreviated PCC-0 Best design SNR for block_size = 2048, R = 0.5, is 0dB. Compare with Arikan: 'Channel Polarization: A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels. Proposition 5. inequalities turn into equalities for BEC channel. Otherwise they represent an upper bound. Also compare [0, Arikan] eq. 6 and 38 For BEC that translates to capacity(i) = 1 - bhattacharyya(i) :return Z-parameters in natural bit-order. Choose according to desired rate. ''' eta = design_snr_to_bec_eta(design_snr) return calculate_bec_channel_z_parameters(eta, block_size) def plot_channel_capacities(capacity, save_file=None): block_size = len(capacity) try: import matplotlib.pyplot as plt # FUN with matplotlib LaTeX fonts! http://matplotlib.org/users/usetex.html plt.rc('text', usetex=True) plt.rc('font', family='serif') plt.rc('figure', autolayout=True) plt.plot(capacity) plt.xlim([0, block_size]) plt.ylim([-0.01, 1.01]) plt.xlabel('synthetic channel number') plt.ylabel('channel capacity') # plt.title('BEC channel construction') plt.grid() plt.gcf().set_size_inches(plt.gcf().get_size_inches() * .5) if save_file: plt.savefig(save_file) plt.show() except ImportError: pass # only plot in case matplotlib is installed def plot_average_channel_distance(save_file=None): eta = 0.5 # design_snr_to_bec_eta(-1.5917) powers = np.arange(4, 26) try: import matplotlib.pyplot as plt import matplotlib # FUN with matplotlib LaTeX fonts! http://matplotlib.org/users/usetex.html plt.rc('text', usetex=True) plt.rc('font', family='serif') plt.rc('figure', autolayout=True) dist = [] medians = [] initial_channel = 1 - eta for p in powers: bs = int(2 ** p) capacities = calculate_bec_channel_capacities(eta, bs) avg_capacity = np.repeat(initial_channel, len(capacities)) averages = np.abs(capacities - avg_capacity) avg_distance = np.sum(averages) / float(len(capacities)) dist.append(avg_distance) variance = np.std(averages) medians.append(variance) plt.errorbar(powers, dist, yerr=medians) plt.grid() plt.xlabel(r'block size $N$') plt.ylabel(r'$\frac{1}{N} \sum_i |I(W_N^{(i)}) - 0.5|$') axes = plt.axes() tick_values = np.array(axes.get_xticks().tolist()) tick_labels = np.array(tick_values, dtype=int) tick_labels = ['$2^{' + str(i) + '}$' for i in tick_labels] plt.xticks(tick_values, tick_labels) plt.xlim((powers[0], powers[-1])) plt.ylim((0.2, 0.5001)) plt.gcf().set_size_inches(plt.gcf().get_size_inches() * .5) if save_file: plt.savefig(save_file) plt.show() except ImportError: pass def plot_capacity_histogram(design_snr, save_file=None): eta = design_snr_to_bec_eta(design_snr) # capacities = calculate_bec_channel_capacities(eta, block_size) try: import matplotlib.pyplot as plt # FUN with matplotlib LaTeX fonts! http://matplotlib.org/users/usetex.html plt.rc('text', usetex=True) plt.rc('font', family='serif') plt.rc('figure', autolayout=True) block_sizes = [32, 128, 512] for b in block_sizes: capacities = calculate_bec_channel_capacities(eta, b) w = 1. / float(len(capacities)) weights = [w, ] * b plt.hist(capacities, bins=b, weights=weights, range=(0.95, 1.0)) plt.grid() plt.xlabel('synthetic channel capacity') plt.ylabel('normalized item count') print(plt.gcf().get_size_inches()) plt.gcf().set_size_inches(plt.gcf().get_size_inches() * .5) if save_file: plt.savefig(save_file) plt.show() except ImportError: pass def main(): print 'channel construction main' n = 11 block_size = int(2 ** n) design_snr = -1.59 eta = design_snr_to_bec_eta(design_snr) # print(calculate_bec_channel_z_parameters(eta, block_size)) # capacity = calculate_bec_channel_capacities(eta, block_size) # plot_average_channel_distance() calculate_bec_channel_z_parameters(eta, block_size) if __name__ == '__main__': main()
gpl-3.0
marshallmcdonnell/interactive_plotting
matplotlib/draggable_legend_code.py
1
3140
#!/usr/bin/env python import numpy as np import matplotlib.pyplot as _plt class DraggableLegend: def __init__(self, legend): self.legend = legend self.gotLegend = False legend.figure.canvas.mpl_connect('motion_notify_event', self.on_motion) legend.figure.canvas.mpl_connect('pick_event', self.on_picker) legend.figure.canvas.mpl_connect('button_release_event', self.on_release) legend.set_picker(self.my_legend_picker) #----------------------------------------------------# # Connected event handlers def on_motion(self, event): if self.gotLegend: dx = event.x - self.mouse_x dy = event.y - self.mouse_y loc_in_canvas = self.legend_x + dx, self.legend_y + dy loc_in_norm_axes = self.legend.parent.transAxes.inverted().transform_point(loc_in_canvas) self.legend._loc = tuple(loc_in_norm_axes) self.legend.figure.canvas.draw() def my_legend_picker(self, legend, event): return self.legend.legendPatch.contains(event) def on_picker(self, event): if event.artist == self.legend: # left-click if event.mouseevent.button == 1: self._move_legend(event) # mouse button pressed if event.mouseevent.button == 2: pass # right-click if event.mouseevent.button == 3: self._hideLegend() # mouse up if event.mouseevent.button == 'up': self._scaleUpLegendFont() # mouse down if event.mouseevent.button == 'down': self._scaleDownLegendFont() def on_release(self, event): if self.gotLegend: self.gotLegend = False #----------------------------------------------------# # Utility functions def _move_legend(self,event): bbox = self.legend.get_window_extent() self.mouse_x = event.mouseevent.x self.mouse_y = event.mouseevent.y self.legend_x = bbox.xmin self.legend_y = bbox.ymin self.gotLegend = 1 def _scaleUpLegendFont(self,size_step=4): size = self.legend.get_texts()[0].get_fontsize() size += size_step _plt.setp(self.legend.get_texts(), fontsize=size) #legend 'list' fontsize self.legend.figure.canvas.draw() def _scaleDownLegendFont(self,size_step=4): size = self.legend.get_texts()[0].get_fontsize() size -= size_step _plt.setp(self.legend.get_texts(), fontsize=size) #legend 'list' fontsize self.legend.figure.canvas.draw() def _hideLegend(self): if self.legend.get_visible(): self.legend.set_visible(False) else: self.legend.set_visible(True) self.legend.figure.canvas.draw() figure = _plt.figure() ax = figure.add_subplot(111) scatter = ax.scatter(np.random.randn(100), np.random.randn(100), label='hi') legend = ax.legend() legend = DraggableLegend(legend) _plt.show()
mit
wesm/statsmodels
scikits/statsmodels/sandbox/tsa/examples/ex_mle_garch.py
1
10649
# -*- coding: utf-8 -*- """ Created on Fri Feb 12 01:01:50 2010 Author: josef-pktd latest result ------------- all are very close garch0 has different parameterization of constant ordering of parameters is different seed 2780185 h.shape (2000,) Optimization terminated successfully. Current function value: 2093.813397 Iterations: 387 Function evaluations: 676 ggres.params [-0.6146253 0.1914537 0.01039355 0.78802188] Optimization terminated successfully. Current function value: 2093.972953 Iterations: 201 Function evaluations: 372 ggres0.params [-0.61537527 0.19635128 4.00706058] Warning: Desired error not necessarily achieveddue to precision loss Current function value: 2093.972953 Iterations: 51 Function evaluations: 551 Gradient evaluations: 110 ggres0.params [-0.61537855 0.19635265 4.00694669] Optimization terminated successfully. Current function value: 2093.751420 Iterations: 103 Function evaluations: 187 [ 0.78671519 0.19692222 0.61457171] -2093.75141963 Final Estimate: LLH: 2093.750 norm LLH: 2.093750 omega alpha1 beta1 0.7867438 0.1970437 0.6145467 long run variance comparison ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ R >>> 0.7867438/(1- 0.1970437- 0.6145467) 4.1757097302897526 Garch (gjr) asymetric, longrun var ? >>> 1/(1-0.6146253 - 0.1914537 - 0.01039355) * 0.78802188 4.2937548579245242 >>> 1/(1-0.6146253 - 0.1914537 + 0.01039355) * 0.78802188 3.8569053452140345 Garch0 >>> (1-0.61537855 - 0.19635265) * 4.00694669 0.7543830449902722 >>> errgjr4.var() #for different random seed 4.0924199964716106 todo: add code and verify, check for longer lagpolys """ import numpy as np from numpy.testing import assert_almost_equal import matplotlib.pyplot as plt import numdifftools as ndt import scikits.statsmodels.api as sm from scikits.statsmodels.sandbox import tsa from scikits.statsmodels.sandbox.tsa.garch import * # local import nobs = 1000 examples = ['garch', 'rpyfit'] if 'garch' in examples: err,h = generate_kindofgarch(nobs, [1.0, -0.95], [1.0, 0.1], mu=0.5) plt.figure() plt.subplot(211) plt.plot(err) plt.subplot(212) plt.plot(h) #plt.show() seed = 3842774 #91234 #8837708 seed = np.random.randint(9999999) print 'seed', seed np.random.seed(seed) ar1 = -0.9 err,h = generate_garch(nobs, [1.0, ar1], [1.0, 0.50], mu=0.0,scale=0.1) # plt.figure() # plt.subplot(211) # plt.plot(err) # plt.subplot(212) # plt.plot(h) # plt.figure() # plt.subplot(211) # plt.plot(err[-400:]) # plt.subplot(212) # plt.plot(h[-400:]) #plt.show() garchplot(err, h) garchplot(err[-400:], h[-400:]) np.random.seed(seed) errgjr,hgjr, etax = generate_gjrgarch(nobs, [1.0, ar1], [[1,0],[0.5,0]], mu=0.0,scale=0.1) garchplot(errgjr[:nobs], hgjr[:nobs], 'GJR-GARCH(1,1) Simulation - symmetric') garchplot(errgjr[-400:nobs], hgjr[-400:nobs], 'GJR-GARCH(1,1) Simulation - symmetric') np.random.seed(seed) errgjr2,hgjr2, etax = generate_gjrgarch(nobs, [1.0, ar1], [[1,0],[0.1,0.9]], mu=0.0,scale=0.1) garchplot(errgjr2[:nobs], hgjr2[:nobs], 'GJR-GARCH(1,1) Simulation') garchplot(errgjr2[-400:nobs], hgjr2[-400:nobs], 'GJR-GARCH(1,1) Simulation') np.random.seed(seed) errgjr3,hgjr3, etax3 = generate_gjrgarch(nobs, [1.0, ar1], [[1,0],[0.1,0.9],[0.1,0.9],[0.1,0.9]], mu=0.0,scale=0.1) garchplot(errgjr3[:nobs], hgjr3[:nobs], 'GJR-GARCH(1,3) Simulation') garchplot(errgjr3[-400:nobs], hgjr3[-400:nobs], 'GJR-GARCH(1,3) Simulation') np.random.seed(seed) errgjr4,hgjr4, etax4 = generate_gjrgarch(nobs, [1.0, ar1], [[1., 1,0],[0, 0.1,0.9],[0, 0.1,0.9],[0, 0.1,0.9]], mu=0.0,scale=0.1) garchplot(errgjr4[:nobs], hgjr4[:nobs], 'GJR-GARCH(1,3) Simulation') garchplot(errgjr4[-400:nobs], hgjr4[-400:nobs], 'GJR-GARCH(1,3) Simulation') varinno = np.zeros(100) varinno[0] = 1. errgjr5,hgjr5, etax5 = generate_gjrgarch(100, [1.0, -0.], [[1., 1,0],[0, 0.1,0.8],[0, 0.05,0.7],[0, 0.01,0.6]], mu=0.0,scale=0.1, varinnovation=varinno) garchplot(errgjr5[:20], hgjr5[:20], 'GJR-GARCH(1,3) Simulation') #garchplot(errgjr4[-400:nobs], hgjr4[-400:nobs], 'GJR-GARCH(1,3) Simulation') #plt.show() seed = np.random.randint(9999999) # 9188410 print 'seed', seed x = np.arange(20).reshape(10,2) x3 = np.column_stack((np.ones((x.shape[0],1)),x)) y, inp = miso_lfilter([1., 0],np.array([[-2.0,3,1],[0.0,0.0,0]]),x3) nobs = 1000 warmup = 1000 np.random.seed(seed) ar = [1.0, -0.7]#7, -0.16, -0.1] #ma = [[1., 1, 0],[0, 0.6,0.1],[0, 0.1,0.1],[0, 0.1,0.1]] ma = [[1., 0, 0],[0, 0.8,0.0]] #,[0, 0.9,0.0]] # errgjr4,hgjr4, etax4 = generate_gjrgarch(warmup+nobs, [1.0, -0.99], # [[1., 1, 0],[0, 0.6,0.1],[0, 0.1,0.1],[0, 0.1,0.1]], # mu=0.2, scale=0.25) errgjr4,hgjr4, etax4 = generate_gjrgarch(warmup+nobs, ar, ma, mu=0.4, scale=1.01) errgjr4,hgjr4, etax4 = errgjr4[warmup:], hgjr4[warmup:], etax4[warmup:] garchplot(errgjr4[:nobs], hgjr4[:nobs], 'GJR-GARCH(1,3) Simulation - DGP') ggmod = Garch(errgjr4-errgjr4.mean())#hgjr4[:nobs])#-hgjr4.mean()) #errgjr4) ggmod.nar = 1 ggmod.nma = 1 ggmod._start_params = np.array([-0.6, 0.1, 0.2, 0.0]) ggres = ggmod.fit(start_params=np.array([-0.6, 0.1, 0.2, 0.0]), maxiter=1000) print 'ggres.params', ggres.params garchplot(ggmod.errorsest, ggmod.h, title='Garch estimated') ggmod0 = Garch0(errgjr4-errgjr4.mean())#hgjr4[:nobs])#-hgjr4.mean()) #errgjr4) ggmod0.nar = 1 ggmod.nma = 1 start_params = np.array([-0.6, 0.2, 0.1]) ggmod0._start_params = start_params #np.array([-0.6, 0.1, 0.2, 0.0]) ggres0 = ggmod0.fit(start_params=start_params, maxiter=2000) print 'ggres0.params', ggres0.params ggmod0 = Garch0(errgjr4-errgjr4.mean())#hgjr4[:nobs])#-hgjr4.mean()) #errgjr4) ggmod0.nar = 1 ggmod.nma = 1 start_params = np.array([-0.6, 0.2, 0.1]) ggmod0._start_params = start_params #np.array([-0.6, 0.1, 0.2, 0.0]) ggres0 = ggmod0.fit(start_params=start_params, method='bfgs', maxiter=2000) print 'ggres0.params', ggres0.params g11res = optimize.fmin(lambda params: -loglike_GARCH11(params, errgjr4-errgjr4.mean())[0], [0.93, 0.9, 0.2]) print g11res llf = loglike_GARCH11(g11res, errgjr4-errgjr4.mean()) print llf[0] if 'rpyfit' in examples: from rpy import r r.library('fGarch') f = r.formula('~garch(1, 1)') fit = r.garchFit(f, data = errgjr4-errgjr4.mean(), include_mean=False) if 'rpysim' in examples: from rpy import r f = r.formula('~garch(1, 1)') #fit = r.garchFit(f, data = errgjr4) x = r.garchSim( n = 500) print 'R acf', tsa.acf(np.power(x,2))[:15] arma3 = Arma(np.power(x,2)) arma3res = arma3.fit(start_params=[-0.2,0.1,0.5],maxiter=5000) print arma3res.params arma3b = Arma(np.power(x,2)) arma3bres = arma3b.fit(start_params=[-0.2,0.1,0.5],maxiter=5000, method='bfgs') print arma3bres.params xr = r.garchSim( n = 100) x = np.asarray(xr) ggmod = Garch(x-x.mean()) ggmod.nar = 1 ggmod.nma = 1 ggmod._start_params = np.array([-0.6, 0.1, 0.2, 0.0]) ggres = ggmod.fit(start_params=np.array([-0.6, 0.1, 0.2, 0.0]), maxiter=1000) print 'ggres.params', ggres.params g11res = optimize.fmin(lambda params: -loglike_GARCH11(params, x-x.mean())[0], [0.6, 0.6, 0.2]) print g11res llf = loglike_GARCH11(g11res, x-x.mean()) print llf[0] garchplot(ggmod.errorsest, ggmod.h, title='Garch estimated') fit = r.garchFit(f, data = x-x.mean(), include_mean=False, trace=False) print r.summary(fit) '''based on R default simulation model = list(omega = 1e-06, alpha = 0.1, beta = 0.8) nobs = 1000 (with nobs=500, gjrgarch doesn't do well >>> ggres = ggmod.fit(start_params=np.array([-0.6, 0.1, 0.2, 0.0]), maxiter=1000) Optimization terminated successfully. Current function value: -448.861335 Iterations: 385 Function evaluations: 690 >>> print 'ggres.params', ggres.params ggres.params [ -7.75090330e-01 1.57714749e-01 -9.60223930e-02 8.76021411e-07] rearranged 8.76021411e-07 1.57714749e-01(-9.60223930e-02) 7.75090330e-01 >>> print g11res [ 2.97459808e-06 7.83128600e-01 2.41110860e-01] >>> llf = loglike_GARCH11(g11res, x-x.mean()) >>> print llf[0] 442.603541936 Log Likelihood: -448.9376 normalized: -4.489376 omega alpha1 beta1 1.01632e-06 1.02802e-01 7.57537e-01 ''' ''' the following is for errgjr4-errgjr4.mean() ggres.params [-0.54510407 0.22723132 0.06482633 0.82325803] Final Estimate: LLH: 2065.56 norm LLH: 2.06556 mu omega alpha1 beta1 0.07229732 0.83069480 0.26313883 0.53986167 ggres.params [-0.50779163 0.2236606 0.00700036 1.154832 Final Estimate: LLH: 2116.084 norm LLH: 2.116084 mu omega alpha1 beta1 -4.759227e-17 1.145404e+00 2.288348e-01 5.085949e-01 run3 DGP 0.4/?? 0.8 0.7 gjrgarch: ggres.params [-0.45196579 0.2569641 0.02201904 1.11942636] rearranged const/omega ma1/alpha1 ar1/beta1 1.11942636 0.2569641(+0.02201904) 0.45196579 g11: [ 1.10262688 0.26680468 0.45724957] -2055.73912687 R: Final Estimate: LLH: 2055.738 norm LLH: 2.055738 mu omega alpha1 beta1 -1.665226e-17 1.102396e+00 2.668712e-01 4.573224e-01 fit = r.garchFit(f, data = errgjr4-errgjr4.mean()) rpy.RPy_RException: Error in solve.default(fit$hessian) : Lapack routine dgesv: system is exactly singular run4 DGP: mu=0.4, scale=1.01 ma = [[1., 0, 0],[0, 0.8,0.0]], ar = [1.0, -0.7] maybe something wrong with simulation gjrgarch ggres.params [-0.50554663 0.24449867 -0.00521004 1.00796791] rearranged 1.00796791 0.24449867(-0.00521004) 0.50554663 garch11: [ 1.01258264 0.24149155 0.50479994] -2056.3877404 R include_constant=False Final Estimate: LLH: 2056.397 norm LLH: 2.056397 omega alpha1 beta1 1.0123560 0.2409589 0.5049154 ''' erro,ho, etaxo = generate_gjrgarch(20, ar, ma, mu=0.04, scale=0.01, varinnovation = np.ones(20)) if 'sp500' in examples: import tabular as tb import scikits.timeseries as ts a = tb.loadSV(r'C:\Josef\work-oth\gspc_table.csv') s = ts.time_series(a[0]['Close'][::-1], dates=ts.date_array(a[0]['Date'][::-1],freq="D")) sp500 = a[0]['Close'][::-1] sp500r = np.diff(np.log(sp500)) #plt.show()
bsd-3-clause
JCardenasRdz/Machine-Learning-4-MRI
Infection_vs_Inflammation/Code/Process_Data.py
1
2713
# Import Modules as needed import numpy as np #import seaborn as sn import pandas as pd from pylab import * from mylocal_functions import * # ======== T2 MSME============= # # Make list of all T2.txt files T2_list = get_ipython().getoutput('ls ../Study_03_CBA/*T2.txt') # Allocate variables needed for analysis T2DF=pd.DataFrame() TR=np.linspace(.012,.012*12,12) # Fit T2 and construct dataframe for names in T2_list: #Convert txt file to array YDataMatrix=txt_2_array(names) #Estimate T2 T2time=fitT2(TR,YDataMatrix) #convert to data frame df_T2=pd.DataFrame(T2time.T,columns=["Infected","Healthy_R","St_Inf","Healthy_L"]) #df_T2=pd.DataFrame(T2time.T,columns=["ROI-1","ROI-2","ROI-3","ROI-4"]) df_info=name_2_df(names) df_final=pd.concat([df_T2,df_info], axis=1) T2DF=T2DF.append(df_final,ignore_index=True) # Plot T2 Density ROIs 1 and 2 #T2DF[T2DF.Slice==1].iloc[:,:4].plot.density(); title("Slice 01"); xlim((0.025,.15)) #T2DF[T2DF.Slice==2].iloc[:,:4].plot.density(); title("Slice 02"); xlim((0.025,.15)) #T2DF[T2DF.Slice==3].iloc[:,:4].plot.density(); title("Slice 03"); xlim((0.025,.15)) #T2DF[T2DF.Slice==4].iloc[:,:4].plot.density(); title("Slice 04"); xlim((0.025,.15)) #T2DF[T2DF.Slice==5].iloc[:,:4].plot.density(); title("Slice 05"); xlim((0.025,.15)) # ======== CEST============= # # Make list of all T2.txt files CEST_list=get_ipython().getoutput('ls ../Study_03_CBA/*CEST.txt') CEST_DF=pd.DataFrame() Z=np.zeros((4,110)) def normalize_data(DataMatrix): rows,cols = DataMatrix.shape newData = np.zeros_like(DataMatrix) for row in range(rows): newData[row,:]=DataMatrix[row,:]/DataMatrix[row,8] return newData for names in CEST_list: #Convert txt file to array D=txt_2_array(names); Zn=normalize_data(D.T) Z=np.concatenate((Z,Zn)) Z=Z[4::,9::] # define offsets in ppm a1=np.linspace(-55,-50,9) ppm=np.linspace(-8,8,101) full_ppm = np.concatenate((a1, ppm)) # fit CEST data. y=Z[12,:] p=fit_L2_scale(ppm,y) Yhat=Lscale(ppm,p[0],p[1],p[2],p[3],p[4],p[5],p[6]); plt.figure(figsize=(10,6)) plt.plot(ppm,y,'o',label='Signal'); plt.plot(ppm,1-Yhat,'-',label='Fit'); plt.legend() ## ====== BUILD CEST Predictors ======== ##### CEST_predictors=np.zeros_like(Z) rows,cols = CEST_predictors.shape Tissue_Class=np.zeros((4,rows)) for i in range(rows): p=fit_L2_scale(ppm,Z[i,:]) CEST_predictors[i,:]=Lscale(ppm,p[0],p[1],p[2],p[3],p[4],p[5],p[6]); Tissue_Class=np.zeros((64,1)) for i in range(4): Tissue_Class[i::4]=i CEST_Dataframe=pd.DataFrame(CEST_predictors) CEST_Dataframe["Tissue_Class"]=Tissue_Class pd.DataFrame.to_csv(CEST_Dataframe,"CEST_infections.csv",header=True,index=False)
mit
sanketloke/scikit-learn
sklearn/gaussian_process/gpr.py
43
18642
"""Gaussian processes regression. """ # Authors: Jan Hendrik Metzen <[email protected]> # # License: BSD 3 clause import warnings from operator import itemgetter import numpy as np from scipy.linalg import cholesky, cho_solve, solve_triangular from scipy.optimize import fmin_l_bfgs_b from sklearn.base import BaseEstimator, RegressorMixin, clone from sklearn.gaussian_process.kernels import RBF, ConstantKernel as C from sklearn.utils import check_random_state from sklearn.utils.validation import check_X_y, check_array class GaussianProcessRegressor(BaseEstimator, RegressorMixin): """Gaussian process regression (GPR). The implementation is based on Algorithm 2.1 of Gaussian Processes for Machine Learning (GPML) by Rasmussen and Williams. In addition to standard sklearn estimator API, GaussianProcessRegressor: * allows prediction without prior fitting (based on the GP prior) * provides an additional method sample_y(X), which evaluates samples drawn from the GPR (prior or posterior) at given inputs * exposes a method log_marginal_likelihood(theta), which can be used externally for other ways of selecting hyperparameters, e.g., via Markov chain Monte Carlo. Parameters ---------- kernel : kernel object The kernel specifying the covariance function of the GP. If None is passed, the kernel "1.0 * RBF(1.0)" is used as default. Note that the kernel's hyperparameters are optimized during fitting. alpha : float or array-like, optional (default: 1e-10) Value added to the diagonal of the kernel matrix during fitting. Larger values correspond to increased noise level in the observations and reduce potential numerical issue during fitting. If an array is passed, it must have the same number of entries as the data used for fitting and is used as datapoint-dependent noise level. Note that this is equivalent to adding a WhiteKernel with c=alpha. Allowing to specify the noise level directly as a parameter is mainly for convenience and for consistency with Ridge. optimizer : string or callable, optional (default: "fmin_l_bfgs_b") Can either be one of the internally supported optimizers for optimizing the kernel's parameters, specified by a string, or an externally defined optimizer passed as a callable. If a callable is passed, it must have the signature:: def optimizer(obj_func, initial_theta, bounds): # * 'obj_func' is the objective function to be maximized, which # takes the hyperparameters theta as parameter and an # optional flag eval_gradient, which determines if the # gradient is returned additionally to the function value # * 'initial_theta': the initial value for theta, which can be # used by local optimizers # * 'bounds': the bounds on the values of theta .... # Returned are the best found hyperparameters theta and # the corresponding value of the target function. return theta_opt, func_min Per default, the 'fmin_l_bfgs_b' algorithm from scipy.optimize is used. If None is passed, the kernel's parameters are kept fixed. Available internal optimizers are:: 'fmin_l_bfgs_b' n_restarts_optimizer: int, optional (default: 0) The number of restarts of the optimizer for finding the kernel's parameters which maximize the log-marginal likelihood. The first run of the optimizer is performed from the kernel's initial parameters, the remaining ones (if any) from thetas sampled log-uniform randomly from the space of allowed theta-values. If greater than 0, all bounds must be finite. Note that n_restarts_optimizer == 0 implies that one run is performed. normalize_y: boolean, optional (default: False) Whether the target values y are normalized, i.e., the mean of the observed target values become zero. This parameter should be set to True if the target values' mean is expected to differ considerable from zero. When enabled, the normalization effectively modifies the GP's prior based on the data, which contradicts the likelihood principle; normalization is thus disabled per default. copy_X_train : bool, optional (default: True) If True, a persistent copy of the training data is stored in the object. Otherwise, just a reference to the training data is stored, which might cause predictions to change if the data is modified externally. random_state : integer or numpy.RandomState, optional The generator used to initialize the centers. If an integer is given, it fixes the seed. Defaults to the global numpy random number generator. Attributes ---------- X_train_ : array-like, shape = (n_samples, n_features) Feature values in training data (also required for prediction) y_train_: array-like, shape = (n_samples, [n_output_dims]) Target values in training data (also required for prediction) kernel_: kernel object The kernel used for prediction. The structure of the kernel is the same as the one passed as parameter but with optimized hyperparameters L_: array-like, shape = (n_samples, n_samples) Lower-triangular Cholesky decomposition of the kernel in ``X_train_`` alpha_: array-like, shape = (n_samples,) Dual coefficients of training data points in kernel space log_marginal_likelihood_value_: float The log-marginal-likelihood of ``self.kernel_.theta`` """ def __init__(self, kernel=None, alpha=1e-10, optimizer="fmin_l_bfgs_b", n_restarts_optimizer=0, normalize_y=False, copy_X_train=True, random_state=None): self.kernel = kernel self.alpha = alpha self.optimizer = optimizer self.n_restarts_optimizer = n_restarts_optimizer self.normalize_y = normalize_y self.copy_X_train = copy_X_train self.random_state = random_state def fit(self, X, y): """Fit Gaussian process regression model Parameters ---------- X : array-like, shape = (n_samples, n_features) Training data y : array-like, shape = (n_samples, [n_output_dims]) Target values Returns ------- self : returns an instance of self. """ if self.kernel is None: # Use an RBF kernel as default self.kernel_ = C(1.0, constant_value_bounds="fixed") \ * RBF(1.0, length_scale_bounds="fixed") else: self.kernel_ = clone(self.kernel) self.rng = check_random_state(self.random_state) X, y = check_X_y(X, y, multi_output=True, y_numeric=True) # Normalize target value if self.normalize_y: self.y_train_mean = np.mean(y, axis=0) # demean y y = y - self.y_train_mean else: self.y_train_mean = np.zeros(1) if np.iterable(self.alpha) \ and self.alpha.shape[0] != y.shape[0]: if self.alpha.shape[0] == 1: self.alpha = self.alpha[0] else: raise ValueError("alpha must be a scalar or an array" " with same number of entries as y.(%d != %d)" % (self.alpha.shape[0], y.shape[0])) self.X_train_ = np.copy(X) if self.copy_X_train else X self.y_train_ = np.copy(y) if self.copy_X_train else y if self.optimizer is not None and self.kernel_.n_dims > 0: # Choose hyperparameters based on maximizing the log-marginal # likelihood (potentially starting from several initial values) def obj_func(theta, eval_gradient=True): if eval_gradient: lml, grad = self.log_marginal_likelihood( theta, eval_gradient=True) return -lml, -grad else: return -self.log_marginal_likelihood(theta) # First optimize starting from theta specified in kernel optima = [(self._constrained_optimization(obj_func, self.kernel_.theta, self.kernel_.bounds))] # Additional runs are performed from log-uniform chosen initial # theta if self.n_restarts_optimizer > 0: if not np.isfinite(self.kernel_.bounds).all(): raise ValueError( "Multiple optimizer restarts (n_restarts_optimizer>0) " "requires that all bounds are finite.") bounds = self.kernel_.bounds for iteration in range(self.n_restarts_optimizer): theta_initial = \ self.rng.uniform(bounds[:, 0], bounds[:, 1]) optima.append( self._constrained_optimization(obj_func, theta_initial, bounds)) # Select result from run with minimal (negative) log-marginal # likelihood lml_values = list(map(itemgetter(1), optima)) self.kernel_.theta = optima[np.argmin(lml_values)][0] self.log_marginal_likelihood_value_ = -np.min(lml_values) else: self.log_marginal_likelihood_value_ = \ self.log_marginal_likelihood(self.kernel_.theta) # Precompute quantities required for predictions which are independent # of actual query points K = self.kernel_(self.X_train_) K[np.diag_indices_from(K)] += self.alpha self.L_ = cholesky(K, lower=True) # Line 2 self.alpha_ = cho_solve((self.L_, True), self.y_train_) # Line 3 return self def predict(self, X, return_std=False, return_cov=False): """Predict using the Gaussian process regression model We can also predict based on an unfitted model by using the GP prior. In addition to the mean of the predictive distribution, also its standard deviation (return_std=True) or covariance (return_cov=True). Note that at most one of the two can be requested. Parameters ---------- X : array-like, shape = (n_samples, n_features) Query points where the GP is evaluated return_std : bool, default: False If True, the standard-deviation of the predictive distribution at the query points is returned along with the mean. return_cov : bool, default: False If True, the covariance of the joint predictive distribution at the query points is returned along with the mean Returns ------- y_mean : array, shape = (n_samples, [n_output_dims]) Mean of predictive distribution a query points y_std : array, shape = (n_samples,), optional Standard deviation of predictive distribution at query points. Only returned when return_std is True. y_cov : array, shape = (n_samples, n_samples), optional Covariance of joint predictive distribution a query points. Only returned when return_cov is True. """ if return_std and return_cov: raise RuntimeError( "Not returning standard deviation of predictions when " "returning full covariance.") X = check_array(X) if not hasattr(self, "X_train_"): # Unfitted;predict based on GP prior y_mean = np.zeros(X.shape[0]) if return_cov: y_cov = self.kernel(X) return y_mean, y_cov elif return_std: y_var = self.kernel.diag(X) return y_mean, np.sqrt(y_var) else: return y_mean else: # Predict based on GP posterior K_trans = self.kernel_(X, self.X_train_) y_mean = K_trans.dot(self.alpha_) # Line 4 (y_mean = f_star) y_mean = self.y_train_mean + y_mean # undo normal. if return_cov: v = cho_solve((self.L_, True), K_trans.T) # Line 5 y_cov = self.kernel_(X) - K_trans.dot(v) # Line 6 return y_mean, y_cov elif return_std: # compute inverse K_inv of K based on its Cholesky # decomposition L and its inverse L_inv L_inv = solve_triangular(self.L_.T, np.eye(self.L_.shape[0])) K_inv = L_inv.dot(L_inv.T) # Compute variance of predictive distribution y_var = self.kernel_.diag(X) y_var -= np.einsum("ki,kj,ij->k", K_trans, K_trans, K_inv) # Check if any of the variances is negative because of # numerical issues. If yes: set the variance to 0. y_var_negative = y_var < 0 if np.any(y_var_negative): warnings.warn("Predicted variances smaller than 0. " "Setting those variances to 0.") y_var[y_var_negative] = 0.0 return y_mean, np.sqrt(y_var) else: return y_mean def sample_y(self, X, n_samples=1, random_state=0): """Draw samples from Gaussian process and evaluate at X. Parameters ---------- X : array-like, shape = (n_samples_X, n_features) Query points where the GP samples are evaluated n_samples : int, default: 1 The number of samples drawn from the Gaussian process random_state: RandomState or an int seed (0 by default) A random number generator instance Returns ------- y_samples : array, shape = (n_samples_X, [n_output_dims], n_samples) Values of n_samples samples drawn from Gaussian process and evaluated at query points. """ rng = check_random_state(random_state) y_mean, y_cov = self.predict(X, return_cov=True) if y_mean.ndim == 1: y_samples = rng.multivariate_normal(y_mean, y_cov, n_samples).T else: y_samples = \ [rng.multivariate_normal(y_mean[:, i], y_cov, n_samples).T[:, np.newaxis] for i in range(y_mean.shape[1])] y_samples = np.hstack(y_samples) return y_samples def log_marginal_likelihood(self, theta=None, eval_gradient=False): """Returns log-marginal likelihood of theta for training data. Parameters ---------- theta : array-like, shape = (n_kernel_params,) or None Kernel hyperparameters for which the log-marginal likelihood is evaluated. If None, the precomputed log_marginal_likelihood of ``self.kernel_.theta`` is returned. eval_gradient : bool, default: False If True, the gradient of the log-marginal likelihood with respect to the kernel hyperparameters at position theta is returned additionally. If True, theta must not be None. Returns ------- log_likelihood : float Log-marginal likelihood of theta for training data. log_likelihood_gradient : array, shape = (n_kernel_params,), optional Gradient of the log-marginal likelihood with respect to the kernel hyperparameters at position theta. Only returned when eval_gradient is True. """ if theta is None: if eval_gradient: raise ValueError( "Gradient can only be evaluated for theta!=None") return self.log_marginal_likelihood_value_ kernel = self.kernel_.clone_with_theta(theta) if eval_gradient: K, K_gradient = kernel(self.X_train_, eval_gradient=True) else: K = kernel(self.X_train_) K[np.diag_indices_from(K)] += self.alpha try: L = cholesky(K, lower=True) # Line 2 except np.linalg.LinAlgError: return (-np.inf, np.zeros_like(theta)) \ if eval_gradient else -np.inf # Support multi-dimensional output of self.y_train_ y_train = self.y_train_ if y_train.ndim == 1: y_train = y_train[:, np.newaxis] alpha = cho_solve((L, True), y_train) # Line 3 # Compute log-likelihood (compare line 7) log_likelihood_dims = -0.5 * np.einsum("ik,ik->k", y_train, alpha) log_likelihood_dims -= np.log(np.diag(L)).sum() log_likelihood_dims -= K.shape[0] / 2 * np.log(2 * np.pi) log_likelihood = log_likelihood_dims.sum(-1) # sum over dimensions if eval_gradient: # compare Equation 5.9 from GPML tmp = np.einsum("ik,jk->ijk", alpha, alpha) # k: output-dimension tmp -= cho_solve((L, True), np.eye(K.shape[0]))[:, :, np.newaxis] # Compute "0.5 * trace(tmp.dot(K_gradient))" without # constructing the full matrix tmp.dot(K_gradient) since only # its diagonal is required log_likelihood_gradient_dims = \ 0.5 * np.einsum("ijl,ijk->kl", tmp, K_gradient) log_likelihood_gradient = log_likelihood_gradient_dims.sum(-1) if eval_gradient: return log_likelihood, log_likelihood_gradient else: return log_likelihood def _constrained_optimization(self, obj_func, initial_theta, bounds): if self.optimizer == "fmin_l_bfgs_b": theta_opt, func_min, convergence_dict = \ fmin_l_bfgs_b(obj_func, initial_theta, bounds=bounds) if convergence_dict["warnflag"] != 0: warnings.warn("fmin_l_bfgs_b terminated abnormally with the " " state: %s" % convergence_dict) elif callable(self.optimizer): theta_opt, func_min = \ self.optimizer(obj_func, initial_theta, bounds=bounds) else: raise ValueError("Unknown optimizer %s." % self.optimizer) return theta_opt, func_min
bsd-3-clause
zymsys/sms-tools
lectures/07-Sinusoidal-plus-residual-model/plots-code/hprModelAnal-flute.py
21
2771
import numpy as np import matplotlib.pyplot as plt from scipy.signal import hamming, hanning, triang, blackmanharris, resample import math import sys, os, time sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), '../../../software/models/')) import stft as STFT import utilFunctions as UF import harmonicModel as HM (fs, x) = UF.wavread(os.path.join(os.path.dirname(os.path.realpath(__file__)), '../../../sounds/flute-A4.wav')) w = np.blackman(551) N = 1024 t = -100 nH = 40 minf0 = 420 maxf0 = 460 f0et = 5 maxnpeaksTwm = 5 minSineDur = .1 harmDevSlope = 0.01 Ns = 512 H = Ns/4 mX, pX = STFT.stftAnal(x, fs, w, N, H) hfreq, hmag, hphase = HM.harmonicModelAnal(x, fs, w, N, H, t, nH, minf0, maxf0, f0et, harmDevSlope, minSineDur) xr = UF.sineSubtraction(x, Ns, H, hfreq, hmag, hphase, fs) mXr, pXr = STFT.stftAnal(xr, fs, hamming(Ns), Ns, H) maxplotfreq = 5000.0 plt.figure(1, figsize=(9, 7)) plt.subplot(221) numFrames = int(mX[:,0].size) frmTime = H*np.arange(numFrames)/float(fs) binFreq = fs*np.arange(N*maxplotfreq/fs)/N plt.pcolormesh(frmTime, binFreq, np.transpose(mX[:,:N*maxplotfreq/fs+1])) plt.autoscale(tight=True) harms = hfreq*np.less(hfreq,maxplotfreq) harms[harms==0] = np.nan numFrames = int(harms[:,0].size) frmTime = H*np.arange(numFrames)/float(fs) plt.plot(frmTime, harms, color='k', ms=3, alpha=1) plt.autoscale(tight=True) plt.title('mX + harmonics (flute-A4.wav)') plt.subplot(222) numFrames = int(mX[:,0].size) frmTime = H*np.arange(numFrames)/float(fs) binFreq = fs*np.arange(N*maxplotfreq/fs)/N plt.pcolormesh(frmTime, binFreq, np.transpose(np.diff(pX[:,:N*maxplotfreq/fs+1],axis=1))) plt.autoscale(tight=True) harms = hfreq*np.less(hfreq,maxplotfreq) harms[harms==0] = np.nan numFrames = int(harms[:,0].size) frmTime = H*np.arange(numFrames)/float(fs) plt.plot(frmTime, harms, color='k', ms=3, alpha=1) plt.autoscale(tight=True) plt.title('pX + harmonics') plt.subplot(223) numFrames = int(mXr[:,0].size) frmTime = H*np.arange(numFrames)/float(fs) binFreq = fs*np.arange(Ns*maxplotfreq/fs)/Ns plt.pcolormesh(frmTime, binFreq, np.transpose(mXr[:,:Ns*maxplotfreq/fs+1])) plt.autoscale(tight=True) plt.title('mXr') plt.subplot(224) numFrames = int(pXr[:,0].size) frmTime = H*np.arange(numFrames)/float(fs) binFreq = fs*np.arange(Ns*maxplotfreq/fs)/Ns plt.pcolormesh(frmTime, binFreq, np.transpose(np.diff(pXr[:,:Ns*maxplotfreq/fs+1],axis=1))) plt.autoscale(tight=True) plt.title('pXr') plt.tight_layout() plt.savefig('hprModelAnal-flute.png') UF.wavwrite(5*xr, fs, 'flute-residual.wav') plt.show()
agpl-3.0
joernhees/scikit-learn
examples/datasets/plot_random_multilabel_dataset.py
278
3402
""" ============================================== Plot randomly generated multilabel dataset ============================================== This illustrates the `datasets.make_multilabel_classification` dataset generator. Each sample consists of counts of two features (up to 50 in total), which are differently distributed in each of two classes. Points are labeled as follows, where Y means the class is present: ===== ===== ===== ====== 1 2 3 Color ===== ===== ===== ====== Y N N Red N Y N Blue N N Y Yellow Y Y N Purple Y N Y Orange Y Y N Green Y Y Y Brown ===== ===== ===== ====== A star marks the expected sample for each class; its size reflects the probability of selecting that class label. The left and right examples highlight the ``n_labels`` parameter: more of the samples in the right plot have 2 or 3 labels. Note that this two-dimensional example is very degenerate: generally the number of features would be much greater than the "document length", while here we have much larger documents than vocabulary. Similarly, with ``n_classes > n_features``, it is much less likely that a feature distinguishes a particular class. """ from __future__ import print_function import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import make_multilabel_classification as make_ml_clf print(__doc__) COLORS = np.array(['!', '#FF3333', # red '#0198E1', # blue '#BF5FFF', # purple '#FCD116', # yellow '#FF7216', # orange '#4DBD33', # green '#87421F' # brown ]) # Use same random seed for multiple calls to make_multilabel_classification to # ensure same distributions RANDOM_SEED = np.random.randint(2 ** 10) def plot_2d(ax, n_labels=1, n_classes=3, length=50): X, Y, p_c, p_w_c = make_ml_clf(n_samples=150, n_features=2, n_classes=n_classes, n_labels=n_labels, length=length, allow_unlabeled=False, return_distributions=True, random_state=RANDOM_SEED) ax.scatter(X[:, 0], X[:, 1], color=COLORS.take((Y * [1, 2, 4] ).sum(axis=1)), marker='.') ax.scatter(p_w_c[0] * length, p_w_c[1] * length, marker='*', linewidth=.5, edgecolor='black', s=20 + 1500 * p_c ** 2, color=COLORS.take([1, 2, 4])) ax.set_xlabel('Feature 0 count') return p_c, p_w_c _, (ax1, ax2) = plt.subplots(1, 2, sharex='row', sharey='row', figsize=(8, 4)) plt.subplots_adjust(bottom=.15) p_c, p_w_c = plot_2d(ax1, n_labels=1) ax1.set_title('n_labels=1, length=50') ax1.set_ylabel('Feature 1 count') plot_2d(ax2, n_labels=3) ax2.set_title('n_labels=3, length=50') ax2.set_xlim(left=0, auto=True) ax2.set_ylim(bottom=0, auto=True) plt.show() print('The data was generated from (random_state=%d):' % RANDOM_SEED) print('Class', 'P(C)', 'P(w0|C)', 'P(w1|C)', sep='\t') for k, p, p_w in zip(['red', 'blue', 'yellow'], p_c, p_w_c.T): print('%s\t%0.2f\t%0.2f\t%0.2f' % (k, p, p_w[0], p_w[1]))
bsd-3-clause
kenshay/ImageScript
ProgramData/SystemFiles/Python/Lib/site-packages/pandas/io/tests/parser/test_textreader.py
7
12917
# -*- coding: utf-8 -*- """ Tests the TextReader class in parsers.pyx, which is integral to the C engine in parsers.py """ from pandas.compat import StringIO, BytesIO, map from pandas import compat import os import sys import nose from numpy import nan import numpy as np from pandas import DataFrame from pandas.io.parsers import (read_csv, TextFileReader) from pandas.util.testing import assert_frame_equal import pandas.util.testing as tm from pandas.parser import TextReader import pandas.parser as parser class TestTextReader(tm.TestCase): def setUp(self): self.dirpath = tm.get_data_path() self.csv1 = os.path.join(self.dirpath, 'test1.csv') self.csv2 = os.path.join(self.dirpath, 'test2.csv') self.xls1 = os.path.join(self.dirpath, 'test.xls') def test_file_handle(self): try: f = open(self.csv1, 'rb') reader = TextReader(f) result = reader.read() # noqa finally: f.close() def test_string_filename(self): reader = TextReader(self.csv1, header=None) reader.read() def test_file_handle_mmap(self): try: f = open(self.csv1, 'rb') reader = TextReader(f, memory_map=True, header=None) reader.read() finally: f.close() def test_StringIO(self): with open(self.csv1, 'rb') as f: text = f.read() src = BytesIO(text) reader = TextReader(src, header=None) reader.read() def test_string_factorize(self): # should this be optional? data = 'a\nb\na\nb\na' reader = TextReader(StringIO(data), header=None) result = reader.read() self.assertEqual(len(set(map(id, result[0]))), 2) def test_skipinitialspace(self): data = ('a, b\n' 'a, b\n' 'a, b\n' 'a, b') reader = TextReader(StringIO(data), skipinitialspace=True, header=None) result = reader.read() self.assert_numpy_array_equal(result[0], np.array(['a', 'a', 'a', 'a'], dtype=np.object_)) self.assert_numpy_array_equal(result[1], np.array(['b', 'b', 'b', 'b'], dtype=np.object_)) def test_parse_booleans(self): data = 'True\nFalse\nTrue\nTrue' reader = TextReader(StringIO(data), header=None) result = reader.read() self.assertEqual(result[0].dtype, np.bool_) def test_delimit_whitespace(self): data = 'a b\na\t\t "b"\n"a"\t \t b' reader = TextReader(StringIO(data), delim_whitespace=True, header=None) result = reader.read() self.assert_numpy_array_equal(result[0], np.array(['a', 'a', 'a'], dtype=np.object_)) self.assert_numpy_array_equal(result[1], np.array(['b', 'b', 'b'], dtype=np.object_)) def test_embedded_newline(self): data = 'a\n"hello\nthere"\nthis' reader = TextReader(StringIO(data), header=None) result = reader.read() expected = np.array(['a', 'hello\nthere', 'this'], dtype=np.object_) self.assert_numpy_array_equal(result[0], expected) def test_euro_decimal(self): data = '12345,67\n345,678' reader = TextReader(StringIO(data), delimiter=':', decimal=',', header=None) result = reader.read() expected = np.array([12345.67, 345.678]) tm.assert_almost_equal(result[0], expected) def test_integer_thousands(self): data = '123,456\n12,500' reader = TextReader(StringIO(data), delimiter=':', thousands=',', header=None) result = reader.read() expected = np.array([123456, 12500], dtype=np.int64) tm.assert_almost_equal(result[0], expected) def test_integer_thousands_alt(self): data = '123.456\n12.500' reader = TextFileReader(StringIO(data), delimiter=':', thousands='.', header=None) result = reader.read() expected = DataFrame([123456, 12500]) tm.assert_frame_equal(result, expected) def test_skip_bad_lines(self): # too many lines, see #2430 for why data = ('a:b:c\n' 'd:e:f\n' 'g:h:i\n' 'j:k:l:m\n' 'l:m:n\n' 'o:p:q:r') reader = TextReader(StringIO(data), delimiter=':', header=None) self.assertRaises(parser.CParserError, reader.read) reader = TextReader(StringIO(data), delimiter=':', header=None, error_bad_lines=False, warn_bad_lines=False) result = reader.read() expected = {0: ['a', 'd', 'g', 'l'], 1: ['b', 'e', 'h', 'm'], 2: ['c', 'f', 'i', 'n']} assert_array_dicts_equal(result, expected) stderr = sys.stderr sys.stderr = StringIO() try: reader = TextReader(StringIO(data), delimiter=':', header=None, error_bad_lines=False, warn_bad_lines=True) reader.read() val = sys.stderr.getvalue() self.assertTrue('Skipping line 4' in val) self.assertTrue('Skipping line 6' in val) finally: sys.stderr = stderr def test_header_not_enough_lines(self): data = ('skip this\n' 'skip this\n' 'a,b,c\n' '1,2,3\n' '4,5,6') reader = TextReader(StringIO(data), delimiter=',', header=2) header = reader.header expected = [['a', 'b', 'c']] self.assertEqual(header, expected) recs = reader.read() expected = {0: [1, 4], 1: [2, 5], 2: [3, 6]} assert_array_dicts_equal(expected, recs) # not enough rows self.assertRaises(parser.CParserError, TextReader, StringIO(data), delimiter=',', header=5, as_recarray=True) def test_header_not_enough_lines_as_recarray(self): data = ('skip this\n' 'skip this\n' 'a,b,c\n' '1,2,3\n' '4,5,6') reader = TextReader(StringIO(data), delimiter=',', header=2, as_recarray=True) header = reader.header expected = [['a', 'b', 'c']] self.assertEqual(header, expected) recs = reader.read() expected = {'a': [1, 4], 'b': [2, 5], 'c': [3, 6]} assert_array_dicts_equal(expected, recs) # not enough rows self.assertRaises(parser.CParserError, TextReader, StringIO(data), delimiter=',', header=5, as_recarray=True) def test_escapechar(self): data = ('\\"hello world\"\n' '\\"hello world\"\n' '\\"hello world\"') reader = TextReader(StringIO(data), delimiter=',', header=None, escapechar='\\') result = reader.read() expected = {0: ['"hello world"'] * 3} assert_array_dicts_equal(result, expected) def test_eof_has_eol(self): # handling of new line at EOF pass def test_na_substitution(self): pass def test_numpy_string_dtype(self): data = """\ a,1 aa,2 aaa,3 aaaa,4 aaaaa,5""" def _make_reader(**kwds): return TextReader(StringIO(data), delimiter=',', header=None, **kwds) reader = _make_reader(dtype='S5,i4') result = reader.read() self.assertEqual(result[0].dtype, 'S5') ex_values = np.array(['a', 'aa', 'aaa', 'aaaa', 'aaaaa'], dtype='S5') self.assertTrue((result[0] == ex_values).all()) self.assertEqual(result[1].dtype, 'i4') reader = _make_reader(dtype='S4') result = reader.read() self.assertEqual(result[0].dtype, 'S4') ex_values = np.array(['a', 'aa', 'aaa', 'aaaa', 'aaaa'], dtype='S4') self.assertTrue((result[0] == ex_values).all()) self.assertEqual(result[1].dtype, 'S4') def test_numpy_string_dtype_as_recarray(self): data = """\ a,1 aa,2 aaa,3 aaaa,4 aaaaa,5""" def _make_reader(**kwds): return TextReader(StringIO(data), delimiter=',', header=None, **kwds) reader = _make_reader(dtype='S4', as_recarray=True) result = reader.read() self.assertEqual(result['0'].dtype, 'S4') ex_values = np.array(['a', 'aa', 'aaa', 'aaaa', 'aaaa'], dtype='S4') self.assertTrue((result['0'] == ex_values).all()) self.assertEqual(result['1'].dtype, 'S4') def test_pass_dtype(self): data = """\ one,two 1,a 2,b 3,c 4,d""" def _make_reader(**kwds): return TextReader(StringIO(data), delimiter=',', **kwds) reader = _make_reader(dtype={'one': 'u1', 1: 'S1'}) result = reader.read() self.assertEqual(result[0].dtype, 'u1') self.assertEqual(result[1].dtype, 'S1') reader = _make_reader(dtype={'one': np.uint8, 1: object}) result = reader.read() self.assertEqual(result[0].dtype, 'u1') self.assertEqual(result[1].dtype, 'O') reader = _make_reader(dtype={'one': np.dtype('u1'), 1: np.dtype('O')}) result = reader.read() self.assertEqual(result[0].dtype, 'u1') self.assertEqual(result[1].dtype, 'O') def test_usecols(self): data = """\ a,b,c 1,2,3 4,5,6 7,8,9 10,11,12""" def _make_reader(**kwds): return TextReader(StringIO(data), delimiter=',', **kwds) reader = _make_reader(usecols=(1, 2)) result = reader.read() exp = _make_reader().read() self.assertEqual(len(result), 2) self.assertTrue((result[1] == exp[1]).all()) self.assertTrue((result[2] == exp[2]).all()) def test_cr_delimited(self): def _test(text, **kwargs): nice_text = text.replace('\r', '\r\n') result = TextReader(StringIO(text), **kwargs).read() expected = TextReader(StringIO(nice_text), **kwargs).read() assert_array_dicts_equal(result, expected) data = 'a,b,c\r1,2,3\r4,5,6\r7,8,9\r10,11,12' _test(data, delimiter=',') data = 'a b c\r1 2 3\r4 5 6\r7 8 9\r10 11 12' _test(data, delim_whitespace=True) data = 'a,b,c\r1,2,3\r4,5,6\r,88,9\r10,11,12' _test(data, delimiter=',') sample = ('A,B,C,D,E,F,G,H,I,J,K,L,M,N,O\r' 'AAAAA,BBBBB,0,0,0,0,0,0,0,0,0,0,0,0,0\r' ',BBBBB,0,0,0,0,0,0,0,0,0,0,0,0,0') _test(sample, delimiter=',') data = 'A B C\r 2 3\r4 5 6' _test(data, delim_whitespace=True) data = 'A B C\r2 3\r4 5 6' _test(data, delim_whitespace=True) def test_empty_field_eof(self): data = 'a,b,c\n1,2,3\n4,,' result = TextReader(StringIO(data), delimiter=',').read() expected = {0: np.array([1, 4]), 1: np.array(['2', ''], dtype=object), 2: np.array(['3', ''], dtype=object)} assert_array_dicts_equal(result, expected) # GH5664 a = DataFrame([['b'], [nan]], columns=['a'], index=['a', 'c']) b = DataFrame([[1, 1, 1, 0], [1, 1, 1, 0]], columns=list('abcd'), index=[1, 1]) c = DataFrame([[1, 2, 3, 4], [6, nan, nan, nan], [8, 9, 10, 11], [13, 14, nan, nan]], columns=list('abcd'), index=[0, 5, 7, 12]) for _ in range(100): df = read_csv(StringIO('a,b\nc\n'), skiprows=0, names=['a'], engine='c') assert_frame_equal(df, a) df = read_csv(StringIO('1,1,1,1,0\n' * 2 + '\n' * 2), names=list("abcd"), engine='c') assert_frame_equal(df, b) df = read_csv(StringIO('0,1,2,3,4\n5,6\n7,8,9,10,11\n12,13,14'), names=list('abcd'), engine='c') assert_frame_equal(df, c) def assert_array_dicts_equal(left, right): for k, v in compat.iteritems(left): assert(np.array_equal(v, right[k])) if __name__ == '__main__': nose.runmodule(argv=[__file__, '-vvs', '-x', '--pdb', '--pdb-failure'], exit=False)
gpl-3.0
jmmease/pandas
asv_bench/benchmarks/reindex.py
7
6523
from .pandas_vb_common import * from random import shuffle class Reindexing(object): goal_time = 0.2 def setup(self): self.rng = DatetimeIndex(start='1/1/1970', periods=10000, freq='1min') self.df = DataFrame(np.random.rand(10000, 10), index=self.rng, columns=range(10)) self.df['foo'] = 'bar' self.rng2 = Index(self.rng[::2]) self.df2 = DataFrame(index=range(10000), data=np.random.rand(10000, 30), columns=range(30)) # multi-index N = 5000 K = 200 level1 = tm.makeStringIndex(N).values.repeat(K) level2 = np.tile(tm.makeStringIndex(K).values, N) index = MultiIndex.from_arrays([level1, level2]) self.s1 = Series(np.random.randn((N * K)), index=index) self.s2 = self.s1[::2] def time_reindex_dates(self): self.df.reindex(self.rng2) def time_reindex_columns(self): self.df2.reindex(columns=self.df.columns[1:5]) def time_reindex_multiindex(self): self.s1.reindex(self.s2.index) #---------------------------------------------------------------------- # Pad / backfill class FillMethod(object): goal_time = 0.2 def setup(self): self.rng = date_range('1/1/2000', periods=100000, freq='1min') self.ts = Series(np.random.randn(len(self.rng)), index=self.rng) self.ts2 = self.ts[::2] self.ts3 = self.ts2.reindex(self.ts.index) self.ts4 = self.ts3.astype('float32') def pad(self, source_series, target_index): try: source_series.reindex(target_index, method='pad') except: source_series.reindex(target_index, fillMethod='pad') def backfill(self, source_series, target_index): try: source_series.reindex(target_index, method='backfill') except: source_series.reindex(target_index, fillMethod='backfill') def time_backfill_dates(self): self.backfill(self.ts2, self.ts.index) def time_pad_daterange(self): self.pad(self.ts2, self.ts.index) def time_backfill(self): self.ts3.fillna(method='backfill') def time_backfill_float32(self): self.ts4.fillna(method='backfill') def time_pad(self): self.ts3.fillna(method='pad') def time_pad_float32(self): self.ts4.fillna(method='pad') #---------------------------------------------------------------------- # align on level class LevelAlign(object): goal_time = 0.2 def setup(self): self.index = MultiIndex( levels=[np.arange(10), np.arange(100), np.arange(100)], labels=[np.arange(10).repeat(10000), np.tile(np.arange(100).repeat(100), 10), np.tile(np.tile(np.arange(100), 100), 10)]) random.shuffle(self.index.values) self.df = DataFrame(np.random.randn(len(self.index), 4), index=self.index) self.df_level = DataFrame(np.random.randn(100, 4), index=self.index.levels[1]) def time_align_level(self): self.df.align(self.df_level, level=1, copy=False) def time_reindex_level(self): self.df_level.reindex(self.df.index, level=1) #---------------------------------------------------------------------- # drop_duplicates class Duplicates(object): goal_time = 0.2 def setup(self): self.N = 10000 self.K = 10 self.key1 = tm.makeStringIndex(self.N).values.repeat(self.K) self.key2 = tm.makeStringIndex(self.N).values.repeat(self.K) self.df = DataFrame({'key1': self.key1, 'key2': self.key2, 'value': np.random.randn((self.N * self.K)),}) self.col_array_list = list(self.df.values.T) self.df2 = self.df.copy() self.df2.ix[:10000, :] = np.nan self.s = Series(np.random.randint(0, 1000, size=10000)) self.s2 = Series(np.tile(tm.makeStringIndex(1000).values, 10)) np.random.seed(1234) self.N = 1000000 self.K = 10000 self.key1 = np.random.randint(0, self.K, size=self.N) self.df_int = DataFrame({'key1': self.key1}) self.df_bool = DataFrame({i: np.random.randint(0, 2, size=self.K, dtype=bool) for i in range(10)}) def time_frame_drop_dups(self): self.df.drop_duplicates(['key1', 'key2']) def time_frame_drop_dups_inplace(self): self.df.drop_duplicates(['key1', 'key2'], inplace=True) def time_frame_drop_dups_na(self): self.df2.drop_duplicates(['key1', 'key2']) def time_frame_drop_dups_na_inplace(self): self.df2.drop_duplicates(['key1', 'key2'], inplace=True) def time_series_drop_dups_int(self): self.s.drop_duplicates() def time_series_drop_dups_string(self): self.s2.drop_duplicates() def time_frame_drop_dups_int(self): self.df_int.drop_duplicates() def time_frame_drop_dups_bool(self): self.df_bool.drop_duplicates() #---------------------------------------------------------------------- # blog "pandas escaped the zoo" class Align(object): goal_time = 0.2 def setup(self): n = 50000 indices = tm.makeStringIndex(n) subsample_size = 40000 def sample(values, k): sampler = np.arange(len(values)) shuffle(sampler) return values.take(sampler[:k]) self.x = Series(np.random.randn(50000), indices) self.y = Series(np.random.randn(subsample_size), index=sample(indices, subsample_size)) def time_align_series_irregular_string(self): (self.x + self.y) class LibFastZip(object): goal_time = 0.2 def setup(self): self.N = 10000 self.K = 10 self.key1 = tm.makeStringIndex(self.N).values.repeat(self.K) self.key2 = tm.makeStringIndex(self.N).values.repeat(self.K) self.df = DataFrame({'key1': self.key1, 'key2': self.key2, 'value': np.random.randn((self.N * self.K)), }) self.col_array_list = list(self.df.values.T) self.df2 = self.df.copy() self.df2.ix[:10000, :] = np.nan self.col_array_list2 = list(self.df2.values.T) def time_lib_fast_zip(self): lib.fast_zip(self.col_array_list) def time_lib_fast_zip_fillna(self): lib.fast_zip_fillna(self.col_array_list2)
bsd-3-clause
tensorflow/estimator
tensorflow_estimator/python/estimator/canned/dnn_test_fc_v2.py
1
19054
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for dnn.py with feature_column_v2.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import shutil import tempfile from unittest.mock import patch from absl.testing import parameterized import numpy as np import six import tensorflow as tf from tensorflow.core.example import example_pb2 from tensorflow.core.example import feature_pb2 from tensorflow.python.feature_column import feature_column_v2 from tensorflow_estimator.python.estimator.canned import dnn from tensorflow_estimator.python.estimator.canned import dnn_testing_utils from tensorflow_estimator.python.estimator.canned import prediction_keys from tensorflow_estimator.python.estimator.export import export from tensorflow_estimator.python.estimator.inputs import numpy_io from tensorflow_estimator.python.estimator.inputs import pandas_io try: # pylint: disable=g-import-not-at-top import pandas as pd HAS_PANDAS = True except IOError: # Pandas writes a temporary file during import. If it fails, don't use pandas. HAS_PANDAS = False except ImportError: HAS_PANDAS = False def _dnn_classifier_fn(*args, **kwargs): return dnn.DNNClassifierV2(*args, **kwargs) class DNNModelFnV2Test(dnn_testing_utils.BaseDNNModelFnTest, tf.test.TestCase): def __init__(self, methodName='runTest'): # pylint: disable=invalid-name tf.test.TestCase.__init__(self, methodName) dnn_testing_utils.BaseDNNModelFnTest.__init__( self, dnn.dnn_model_fn_v2, fc_impl=feature_column_v2) class DNNLogitFnV2Test(dnn_testing_utils.BaseDNNLogitFnTest, tf.test.TestCase): def __init__(self, methodName='runTest'): # pylint: disable=invalid-name tf.test.TestCase.__init__(self, methodName) dnn_testing_utils.BaseDNNLogitFnTest.__init__( self, dnn.dnn_logit_fn_builder_v2, fc_impl=feature_column_v2) class DNNWarmStartingV2Test(dnn_testing_utils.BaseDNNWarmStartingTest, tf.test.TestCase): def __init__(self, methodName='runTest'): # pylint: disable=invalid-name tf.test.TestCase.__init__(self, methodName) dnn_testing_utils.BaseDNNWarmStartingTest.__init__( self, _dnn_classifier_fn, _dnn_regressor_fn, fc_impl=feature_column_v2) class DNNClassifierEvaluateV2Test( dnn_testing_utils.BaseDNNClassifierEvaluateTest, tf.test.TestCase): def __init__(self, methodName='runTest'): # pylint: disable=invalid-name tf.test.TestCase.__init__(self, methodName) dnn_testing_utils.BaseDNNClassifierEvaluateTest.__init__( self, _dnn_classifier_fn, fc_impl=feature_column_v2) class DNNClassifierPredictV2Test(dnn_testing_utils.BaseDNNClassifierPredictTest, tf.test.TestCase): def __init__(self, methodName='runTest'): # pylint: disable=invalid-name tf.test.TestCase.__init__(self, methodName) dnn_testing_utils.BaseDNNClassifierPredictTest.__init__( self, _dnn_classifier_fn, fc_impl=feature_column_v2) class DNNClassifierTrainV2Test(dnn_testing_utils.BaseDNNClassifierTrainTest, tf.test.TestCase): def __init__(self, methodName='runTest'): # pylint: disable=invalid-name tf.test.TestCase.__init__(self, methodName) dnn_testing_utils.BaseDNNClassifierTrainTest.__init__( self, _dnn_classifier_fn, fc_impl=feature_column_v2) def _dnn_regressor_fn(*args, **kwargs): return dnn.DNNRegressorV2(*args, **kwargs) class DNNRegressorEvaluateV2Test(dnn_testing_utils.BaseDNNRegressorEvaluateTest, tf.test.TestCase): def __init__(self, methodName='runTest'): # pylint: disable=invalid-name tf.test.TestCase.__init__(self, methodName) dnn_testing_utils.BaseDNNRegressorEvaluateTest.__init__( self, _dnn_regressor_fn, fc_impl=feature_column_v2) class DNNRegressorPredictV2Test(dnn_testing_utils.BaseDNNRegressorPredictTest, tf.test.TestCase): def __init__(self, methodName='runTest'): # pylint: disable=invalid-name tf.test.TestCase.__init__(self, methodName) dnn_testing_utils.BaseDNNRegressorPredictTest.__init__( self, _dnn_regressor_fn, fc_impl=feature_column_v2) class DNNRegressorTrainV2Test(dnn_testing_utils.BaseDNNRegressorTrainTest, tf.test.TestCase): def __init__(self, methodName='runTest'): # pylint: disable=invalid-name tf.test.TestCase.__init__(self, methodName) dnn_testing_utils.BaseDNNRegressorTrainTest.__init__( self, _dnn_regressor_fn, fc_impl=feature_column_v2) def _queue_parsed_features(feature_map): tensors_to_enqueue = [] keys = [] for key, tensor in six.iteritems(feature_map): keys.append(key) tensors_to_enqueue.append(tensor) queue_dtypes = [x.dtype for x in tensors_to_enqueue] input_queue = tf.queue.FIFOQueue(capacity=100, dtypes=queue_dtypes) tf.compat.v1.train.queue_runner.add_queue_runner( tf.compat.v1.train.queue_runner.QueueRunner( input_queue, [input_queue.enqueue(tensors_to_enqueue)])) dequeued_tensors = input_queue.dequeue() return {keys[i]: dequeued_tensors[i] for i in range(len(dequeued_tensors))} class DNNRegressorIntegrationTest(tf.test.TestCase, parameterized.TestCase): def setUp(self): self._model_dir = tempfile.mkdtemp() def tearDown(self): if self._model_dir: tf.compat.v1.summary.FileWriterCache.clear() shutil.rmtree(self._model_dir) def _test_complete_flow(self, train_input_fn, eval_input_fn, predict_input_fn, input_dimension, label_dimension, batch_size): feature_columns = [ tf.feature_column.numeric_column('x', shape=(input_dimension,)) ] est = dnn.DNNRegressorV2( hidden_units=(2, 2), feature_columns=feature_columns, label_dimension=label_dimension, model_dir=self._model_dir) # TRAIN num_steps = 10 est.train(train_input_fn, steps=num_steps) # EVALUATE scores = est.evaluate(eval_input_fn) self.assertEqual(num_steps, scores[tf.compat.v1.GraphKeys.GLOBAL_STEP]) self.assertIn('loss', six.iterkeys(scores)) # PREDICT predictions = np.array([ x[prediction_keys.PredictionKeys.PREDICTIONS] for x in est.predict(predict_input_fn) ]) self.assertAllEqual((batch_size, label_dimension), predictions.shape) # EXPORT feature_spec = tf.feature_column.make_parse_example_spec(feature_columns) serving_input_receiver_fn = export.build_parsing_serving_input_receiver_fn( feature_spec) export_dir = est.export_saved_model(tempfile.mkdtemp(), serving_input_receiver_fn) self.assertTrue(tf.compat.v1.gfile.Exists(export_dir)) def test_numpy_input_fn(self): """Tests complete flow with numpy_input_fn.""" label_dimension = 2 batch_size = 10 data = np.linspace(0., 2., batch_size * label_dimension, dtype=np.float32) data = data.reshape(batch_size, label_dimension) # learn y = x train_input_fn = numpy_io.numpy_input_fn( x={'x': data}, y=data, batch_size=batch_size, num_epochs=None, shuffle=True) eval_input_fn = numpy_io.numpy_input_fn( x={'x': data}, y=data, batch_size=batch_size, shuffle=False) predict_input_fn = numpy_io.numpy_input_fn( x={'x': data}, batch_size=batch_size, shuffle=False) self._test_complete_flow( train_input_fn=train_input_fn, eval_input_fn=eval_input_fn, predict_input_fn=predict_input_fn, input_dimension=label_dimension, label_dimension=label_dimension, batch_size=batch_size) def test_pandas_input_fn(self): """Tests complete flow with pandas_input_fn.""" if not HAS_PANDAS: return label_dimension = 1 batch_size = 10 data = np.linspace(0., 2., batch_size, dtype=np.float32) x = pd.DataFrame({'x': data}) y = pd.Series(data) train_input_fn = pandas_io.pandas_input_fn( x=x, y=y, batch_size=batch_size, num_epochs=None, shuffle=True) eval_input_fn = pandas_io.pandas_input_fn( x=x, y=y, batch_size=batch_size, shuffle=False) predict_input_fn = pandas_io.pandas_input_fn( x=x, batch_size=batch_size, shuffle=False) self._test_complete_flow( train_input_fn=train_input_fn, eval_input_fn=eval_input_fn, predict_input_fn=predict_input_fn, input_dimension=label_dimension, label_dimension=label_dimension, batch_size=batch_size) def test_input_fn_from_parse_example(self): """Tests complete flow with input_fn constructed from parse_example.""" label_dimension = 2 batch_size = 10 data = np.linspace(0., 2., batch_size * label_dimension, dtype=np.float32) data = data.reshape(batch_size, label_dimension) serialized_examples = [] for datum in data: example = example_pb2.Example( features=feature_pb2.Features( feature={ 'x': feature_pb2.Feature( float_list=feature_pb2.FloatList(value=datum)), 'y': feature_pb2.Feature( float_list=feature_pb2.FloatList(value=datum)), })) serialized_examples.append(example.SerializeToString()) feature_spec = { 'x': tf.io.FixedLenFeature([label_dimension], tf.dtypes.float32), 'y': tf.io.FixedLenFeature([label_dimension], tf.dtypes.float32), } def _train_input_fn(): feature_map = tf.compat.v1.io.parse_example(serialized_examples, feature_spec) features = _queue_parsed_features(feature_map) labels = features.pop('y') return features, labels def _eval_input_fn(): feature_map = tf.compat.v1.io.parse_example( tf.compat.v1.train.limit_epochs(serialized_examples, num_epochs=1), feature_spec) features = _queue_parsed_features(feature_map) labels = features.pop('y') return features, labels def _predict_input_fn(): feature_map = tf.compat.v1.io.parse_example( tf.compat.v1.train.limit_epochs(serialized_examples, num_epochs=1), feature_spec) features = _queue_parsed_features(feature_map) features.pop('y') return features, None self._test_complete_flow( train_input_fn=_train_input_fn, eval_input_fn=_eval_input_fn, predict_input_fn=_predict_input_fn, input_dimension=label_dimension, label_dimension=label_dimension, batch_size=batch_size) class DNNClassifierIntegrationTest(tf.test.TestCase): def setUp(self): self._model_dir = tempfile.mkdtemp() def tearDown(self): if self._model_dir: tf.compat.v1.summary.FileWriterCache.clear() shutil.rmtree(self._model_dir) def _as_label(self, data_in_float): return np.rint(data_in_float).astype(np.int64) def _test_complete_flow(self, train_input_fn, eval_input_fn, predict_input_fn, input_dimension, n_classes, batch_size): feature_columns = [ tf.feature_column.numeric_column('x', shape=(input_dimension,)) ] est = dnn.DNNClassifierV2( hidden_units=(2, 2), feature_columns=feature_columns, n_classes=n_classes, model_dir=self._model_dir) # TRAIN num_steps = 10 est.train(train_input_fn, steps=num_steps) # EVALUATE scores = est.evaluate(eval_input_fn) self.assertEqual(num_steps, scores[tf.compat.v1.GraphKeys.GLOBAL_STEP]) self.assertIn('loss', six.iterkeys(scores)) # PREDICT predicted_proba = np.array([ x[prediction_keys.PredictionKeys.PROBABILITIES] for x in est.predict(predict_input_fn) ]) self.assertAllEqual((batch_size, n_classes), predicted_proba.shape) # EXPORT feature_spec = tf.feature_column.make_parse_example_spec(feature_columns) serving_input_receiver_fn = export.build_parsing_serving_input_receiver_fn( feature_spec) export_dir = est.export_saved_model(tempfile.mkdtemp(), serving_input_receiver_fn) self.assertTrue(tf.compat.v1.gfile.Exists(export_dir)) def test_numpy_input_fn(self): """Tests complete flow with numpy_input_fn.""" n_classes = 3 input_dimension = 2 batch_size = 10 data = np.linspace( 0., n_classes - 1., batch_size * input_dimension, dtype=np.float32) x_data = data.reshape(batch_size, input_dimension) y_data = np.reshape(self._as_label(data[:batch_size]), (batch_size, 1)) # learn y = x train_input_fn = numpy_io.numpy_input_fn( x={'x': x_data}, y=y_data, batch_size=batch_size, num_epochs=None, shuffle=True) eval_input_fn = numpy_io.numpy_input_fn( x={'x': x_data}, y=y_data, batch_size=batch_size, shuffle=False) predict_input_fn = numpy_io.numpy_input_fn( x={'x': x_data}, batch_size=batch_size, shuffle=False) self._test_complete_flow( train_input_fn=train_input_fn, eval_input_fn=eval_input_fn, predict_input_fn=predict_input_fn, input_dimension=input_dimension, n_classes=n_classes, batch_size=batch_size) def test_pandas_input_fn(self): """Tests complete flow with pandas_input_fn.""" if not HAS_PANDAS: return input_dimension = 1 n_classes = 3 batch_size = 10 data = np.linspace(0., n_classes - 1., batch_size, dtype=np.float32) x = pd.DataFrame({'x': data}) y = pd.Series(self._as_label(data)) train_input_fn = pandas_io.pandas_input_fn( x=x, y=y, batch_size=batch_size, num_epochs=None, shuffle=True) eval_input_fn = pandas_io.pandas_input_fn( x=x, y=y, batch_size=batch_size, shuffle=False) predict_input_fn = pandas_io.pandas_input_fn( x=x, batch_size=batch_size, shuffle=False) self._test_complete_flow( train_input_fn=train_input_fn, eval_input_fn=eval_input_fn, predict_input_fn=predict_input_fn, input_dimension=input_dimension, n_classes=n_classes, batch_size=batch_size) def test_input_fn_from_parse_example(self): """Tests complete flow with input_fn constructed from parse_example.""" input_dimension = 2 n_classes = 3 batch_size = 10 data = np.linspace( 0., n_classes - 1., batch_size * input_dimension, dtype=np.float32) data = data.reshape(batch_size, input_dimension) serialized_examples = [] for datum in data: example = example_pb2.Example( features=feature_pb2.Features( feature={ 'x': feature_pb2.Feature( float_list=feature_pb2.FloatList(value=datum)), 'y': feature_pb2.Feature( int64_list=feature_pb2.Int64List( value=self._as_label(datum[:1]))), })) serialized_examples.append(example.SerializeToString()) feature_spec = { 'x': tf.io.FixedLenFeature([input_dimension], tf.dtypes.float32), 'y': tf.io.FixedLenFeature([1], tf.dtypes.int64), } def _train_input_fn(): feature_map = tf.compat.v1.io.parse_example(serialized_examples, feature_spec) features = _queue_parsed_features(feature_map) labels = features.pop('y') return features, labels def _eval_input_fn(): feature_map = tf.compat.v1.io.parse_example( tf.compat.v1.train.limit_epochs(serialized_examples, num_epochs=1), feature_spec) features = _queue_parsed_features(feature_map) labels = features.pop('y') return features, labels def _predict_input_fn(): feature_map = tf.compat.v1.io.parse_example( tf.compat.v1.train.limit_epochs(serialized_examples, num_epochs=1), feature_spec) features = _queue_parsed_features(feature_map) features.pop('y') return features, None self._test_complete_flow( train_input_fn=_train_input_fn, eval_input_fn=_eval_input_fn, predict_input_fn=_predict_input_fn, input_dimension=input_dimension, n_classes=n_classes, batch_size=batch_size) class DNNTrainingMode(tf.test.TestCase): """Tests that training mode propagates to feature columns correctly.""" def setUp(self): self._model_dir = tempfile.mkdtemp() self._label_dimension = 1 self._batch_size = 10 def tearDown(self): if self._model_dir: tf.compat.v1.summary.FileWriterCache.clear() shutil.rmtree(self._model_dir) def _create_data(self): data = np.linspace( 0., 2., self._batch_size * self._label_dimension, dtype=np.float32) return data.reshape(self._batch_size, self._label_dimension) def _get_estimator(self): feature_columns = [ tf.feature_column.numeric_column('x', shape=(self._label_dimension,)) ] return dnn.DNNRegressorV2( hidden_units=(2, 2), feature_columns=feature_columns, label_dimension=self._label_dimension, model_dir=self._model_dir) def test_train_vs_eval_mode(self): data = self._create_data() train_input_fn = numpy_io.numpy_input_fn( x={'x': data}, y=data, batch_size=self._batch_size, num_epochs=None, shuffle=True) eval_input_fn = numpy_io.numpy_input_fn( x={'x': data}, y=data, batch_size=self._batch_size, shuffle=False) est = self._get_estimator() with patch.object( tf.compat.v2.keras.layers.DenseFeatures, 'call', return_value=data) as mock_dense_features_call: est.train(train_input_fn, steps=10) est.evaluate(eval_input_fn) train_args, eval_args = mock_dense_features_call.call_args_list # DenseFeature should have been called with training = True in train. _, train_training_kwarg = train_args self.assertTrue(train_training_kwarg['training']) # DenseFeature should have been called with training = False in eval. _, eval_training_kwarg = eval_args self.assertFalse(eval_training_kwarg['training']) if __name__ == '__main__': tf.test.main()
apache-2.0
ryanpstauffer/market-vis
marketvis/quotes.py
1
5030
# -*- coding: utf-8 -*- """ [Python 2.7 (Mayavi is not yet compatible with Python 3+)] Created on Wed Dec 16 22:44:15 2015 @author: Ryan Stauffer https://github.com/ryanpstauffer/market-vis [This module referenced http://www.theodor.io/scraping-google-finance-data-using-pandas/] Market Visualization Prototype Quotes Module """ from datetime import datetime, date import pandas as pd import json import urllib import urllib2 import os def getIntradayData(ticker, interval_seconds=61, num_days=10): # Specify URL string based on function inputs. urlString = 'http://www.google.com/finance/getprices?q={0}'.format(ticker.upper()) urlString += "&i={0}&p={1}d&f=d,c".format(interval_seconds,num_days) # Request the text, and split by each line r = urllib2.urlopen(urllib2.Request(urlString)).read() r = r.splitlines() # Split each line by a comma, starting at the 8th line r = [line.split(',') for line in r[7:]] # Save data in Pandas DataFrame df = pd.DataFrame(r, columns=['Datetime',ticker]) # Convert UNIX to Datetime format df['Datetime'] = df['Datetime'].apply(lambda x: datetime.fromtimestamp(int(x[1:]))) df.index = df['Datetime'] return df[ticker] def getDailyData(ticker, startDate, endDate=date.today()): ''' Daily quotes from Google Finance API. Date format='yyyy-mm-dd' ''' ticker = ticker.upper() urlString = "http://www.google.com/finance/historical?q={0}".format(ticker) urlString += "&startdate={0}&enddate={1}&output=csv".format( startDate.strftime('%b %d, %Y'),endDate.strftime('%b %d, %Y')) #Convert URL output to dataframe df = pd.read_csv(urllib.urlopen(urlString)) # Convert strings to Datetime format df[df.columns[0]] = df[df.columns[0]].apply(lambda x: datetime.strptime(x, '%d-%b-%y')) #Index by date df.index = df[df.columns[0]] df.drop(df.columns[0], axis=1, inplace=True) return df def getLastPrice(ticker): '''Returns last price and date time of a given ticker (from Google Finance API)''' # Specify URL string based on function inputs. urlString = 'http://www.google.com/finance/info?client=ig&q={0}'.format(ticker.upper()) # Request the text, and split by each line r = urllib2.urlopen(urllib2.Request(urlString)).read() obj = json.loads(r[3:]) print(obj) price = float(obj[0]['l']) return price def buildDailyPriceData(tickerList, startDate, endDate): print('Pulling Market Data for S&P 500 from {0} to {1}'.format(startDate.strftime('%Y%m%d'), endDate.strftime('%Y%m%d'))) #Build SP500 daily price data (for saving) firstTicker = tickerList[0] print(firstTicker) firstTickerData = getDailyData(firstTicker, startDate, endDate) firstTickerData.rename(columns={'Close' : firstTicker}, inplace = True) df = firstTickerData[firstTicker] for ticker in tickerList[1:]: print(ticker) newTicker = getDailyData(ticker, startDate, endDate) if not newTicker.empty: newTicker.rename(columns={'Close' : ticker}, inplace = True) df = pd.concat([df, newTicker[ticker]], axis=1, join='outer') #Google returns data w/ most recent at the top, this puts data in chrono order stockPrices = df.sort_index() print('Pulled data for {0} stocks from {1} to {2}'.format(len(stockPrices.columns), startDate.strftime('%Y%m%d'), endDate.strftime('%Y%m%d'))) return stockPrices def buildDummyData(): '''Builds Daily Price Data from a backup .csv file Used for offline testing purposes ''' #Select Dates startDate = datetime.strptime('20120101', '%Y%m%d') endDate = datetime.strptime('20130101', '%Y%m%d') #Load dataset from .csv print("Pulling Market Data from .csv") dataLoc = os.path.join(os.path.dirname(__file__),"Resources/SP500_daily_price_data.csv") df = pd.read_csv(dataLoc) #Convert strings to Datetime format df[df.columns[0]] = df[df.columns[0]].apply(lambda x: datetime.strptime(x, '%Y-%m-%d')) df.index = df[df.columns[0]] df.drop(df.columns[0], axis=1, inplace=True) #Build Price Table stockPrices = df[startDate:endDate] print('Pulled data for {0} stocks from {1} to {2}'.format(len(stockPrices.columns), startDate.strftime('%Y%m%d'), endDate.strftime('%Y%m%d'))) return stockPrices def createIndexedPricing(stockPrices, startingIndexValue): '''Takes a stock prices tables and converts to indexed pricing (i.e. all prices are relative based on a common starting index value) Inputs: stockPrices => a panda DataFrame startingIndexValue => the value that all prices will start at ''' #Build Returns Table stockReturns = stockPrices.pct_change(1) #Build Indexed Price Table (indexed to 100) indexedPrices = stockReturns + 1 indexedPrices.iloc[0] = startingIndexValue indexedPrices = indexedPrices.cumprod(axis=0) return indexedPrices
mit
aleju/self-driving-truck
lib/plotting.py
1
13772
"""Classes to handle plotting during the training.""" from __future__ import print_function, division import math import cPickle as pickle from collections import OrderedDict import numpy as np import matplotlib.pyplot as plt import time GROWTH_BY = 500 class History(object): def __init__(self): self.line_groups = OrderedDict() @staticmethod def from_string(s): return pickle.loads(s) def to_string(self): return pickle.dumps(self, protocol=-1) @staticmethod def load_from_filepath(fp): #return json.loads(open(, "r").read()) with open(fp, "r") as f: history = pickle.load(f) return history def save_to_filepath(self, fp): with open(fp, "w") as f: pickle.dump(self, f, protocol=-1) def add_group(self, group_name, line_names, increasing=True): self.line_groups[group_name] = LineGroup(group_name, line_names, increasing=increasing) def add_value(self, group_name, line_name, x, y, average=False): self.line_groups[group_name].lines[line_name].append(x, y, average=average) def get_group_names(self): return list(self.line_groups.iterkeys()) def get_groups_increasing(self): return [group.increasing for group in self.line_groups.itervalues()] def get_max_x(self): return max([group.get_max_x() for group in self.line_groups.itervalues()]) def get_recent_average(self, group_name, line_name, nb_points): ys = self.line_groups[group_name].lines[line_name].ys[-nb_points:] return np.average(ys) class LineGroup(object): def __init__(self, group_name, line_names, increasing=True): self.group_name = group_name self.lines = OrderedDict([(name, Line()) for name in line_names]) self.increasing = increasing self.xlim = (None, None) def get_line_names(self): return list(self.lines.iterkeys()) def get_line_xs(self): #return [line.xs for line in self.lines.itervalues()] """ for key, line in self.lines.items(): if not hasattr(line, "last_index"): print(self.group_name, key, "no last index") else: print(self.group_name, key, "OK") print(type(line.xs), type(line.ys), type(line.counts), type(line.datetimes)) """ return [line.get_xs() for line in self.lines.itervalues()] def get_line_ys(self): #return [line.ys for line in self.lines.itervalues()] return [line.get_ys() for line in self.lines.itervalues()] def get_max_x(self): #return max([max(line.xs) if len(line.xs) > 0 else 0 for line in self.lines.itervalues()]) return max([np.maximum(line.get_xs()) if line.last_index > -1 else 0 for line in self.lines.itervalues()]) """ class Line(object): def __init__(self, xs=None, ys=None, counts=None, datetimes=None): self.xs = xs if xs is not None else [] self.ys = ys if ys is not None else [] self.counts = counts if counts is not None else [] self.datetimes = datetimes if datetimes is not None else [] self.last_index = -1 def append(self, x, y, average=False): # legacy (for loading from pickle) #if not hasattr(self, "counts"): # self.counts = [1] * len(self.xs) # --- if not average or len(self.xs) == 0 or self.xs[-1] != x: self.xs.append(x) self.ys.append(float(y)) # float to get rid of numpy self.counts.append(1) self.datetimes.append(time.time()) else: count = self.counts[-1] self.ys[-1] = ((self.ys[-1] * count) + y) / (count+1) self.counts[-1] += 1 self.datetimes[-1] = time.time() """ class Line(object): def __init__(self, xs=None, ys=None, counts=None, datetimes=None): zeros = np.tile(np.array([0], dtype=np.int32), GROWTH_BY) self.xs = xs if xs is not None else np.copy(zeros) self.ys = ys if ys is not None else zeros.astype(np.float32) self.counts = counts if counts is not None else zeros.astype(np.uint16) self.datetimes = datetimes if datetimes is not None else zeros.astype(np.uint64) self.last_index = -1 # for legacy as functions, replace with properties def get_xs(self): # legacy if isinstance(self.xs, list): self._legacy_convert_from_list_to_np() return self.xs[0:self.last_index+1] def get_ys(self): return self.ys[0:self.last_index+1] def get_counts(self): return self.counts[0:self.last_index+1] def get_datetimes(self): return self.datetimes[0:self.last_index+1] def _legacy_convert_from_list_to_np(self): #print("is list!") print("[plotting] Converting from list to numpy...") self.last_index = len(self.xs) - 1 self.xs = np.array(self.xs, dtype=np.int32) self.ys = np.array(self.ys, dtype=np.float32) self.counts = np.array(self.counts, dtype=np.uint16) self.datetimes = np.array([int(dt*1000) for dt in self.datetimes], dtype=np.uint64) def append(self, x, y, average=False): # legacy (for loading from pickle) #if not hasattr(self, "counts"): # self.counts = [1] * len(self.xs) # --- #legacy if isinstance(self.xs, list): self._legacy_convert_from_list_to_np() if (self.last_index+1) == self.xs.shape[0]: #print("growing from %d by %d..." % (self.xs.shape[0], GROWTH_BY), self.xs.shape, self.ys.shape, self.counts.shape, self.datetimes.shape) zeros = np.tile(np.array([0], dtype=np.int32), GROWTH_BY) self.xs = np.append(self.xs, np.copy(zeros)) self.ys = np.append(self.ys, zeros.astype(np.float32)) self.counts = np.append(self.counts, zeros.astype(np.uint16)) self.datetimes = np.append(self.datetimes, zeros.astype(np.uint64)) #print("growing done", self.xs.shape, self.ys.shape, self.counts.shape, self.datetimes.shape) first_entry = (self.last_index == -1) if not average or first_entry or self.xs[self.last_index] != x: idx = self.last_index + 1 self.xs[idx] = x self.ys[idx] = y self.counts[idx] = 1 self.datetimes[idx] = int(time.time()*1000) self.last_index = idx else: idx = self.last_index count = self.counts[idx] self.ys[idx] = ((self.ys[idx] * count) + y) / (count+1) self.counts[idx] = count + 1 self.datetimes[idx] = int(time.time()*1000) #print("added", x, y, average) #print(self.xs[self.last_index-10:self.last_index+10+1]) #print(self.ys[self.last_index-10:self.last_index+10+1]) #print(self.counts[self.last_index-10:self.last_index+10+1]) #print(self.datetimes[self.last_index-10:self.last_index+10+1]) class LossPlotter(object): def __init__(self, titles, increasing, save_to_fp): assert len(titles) == len(increasing) n_plots = len(titles) self.titles = titles self.increasing = dict([(title, incr) for title, incr in zip(titles, increasing)]) self.xlim = dict([(title, (None, None)) for title in titles]) self.colors = ["red", "blue", "cyan", "magenta", "orange", "black"] self.nb_points_max = 500 self.save_to_fp = save_to_fp self.start_batch_idx = 0 self.autolimit_y = False self.autolimit_y_multiplier = 5 #self.fig, self.axes = plt.subplots(nrows=2, ncols=2, figsize=(20, 20)) nrows = max(1, int(math.sqrt(n_plots))) ncols = int(math.ceil(n_plots / nrows)) width = ncols * 10 height = nrows * 10 self.fig, self.axes = plt.subplots(nrows=nrows, ncols=ncols, figsize=(width, height)) if nrows == 1 and ncols == 1: self.axes = [self.axes] else: self.axes = self.axes.flat title_to_ax = dict() for idx, (title, ax) in enumerate(zip(self.titles, self.axes)): title_to_ax[title] = ax self.title_to_ax = title_to_ax self.fig.tight_layout() self.fig.subplots_adjust(left=0.05) def plot(self, history): for plot_idx, title in enumerate(self.titles): ax = self.title_to_ax[title] group_name = title group_increasing = self.increasing[title] group = history.line_groups[title] line_names = group.get_line_names() #print("getting line x/y...", time.time()) line_xs = group.get_line_xs() line_ys = group.get_line_ys() #print("getting line x/y FIN", time.time()) """ print("title", title) print("line_names", line_names) for i, xx in enumerate(line_xs): print("line_xs i: ", xx) for i, yy in enumerate(line_ys): print("line_ys i: ", yy) """ if any([len(xx) > 0 for xx in line_xs]): xs_min = min([min(xx) for xx in line_xs if len(xx) > 0]) xs_max = max([max(xx) for xx in line_xs if len(xx) > 0]) xlim = self.xlim[title] xlim = [ max(xs_min, self.start_batch_idx) if xlim[0] is None else min(xlim[0], xs_max-1), xs_max+1 if xlim[1] is None else xlim[1] ] if xlim[0] < 0: xlim[0] = max(xs_max - abs(xlim[0]), 0) if xlim[1] < 0: xlim[1] = max(xs_max - abs(xlim[1]), 1) else: # none of the lines has any value, so just use dummy values # to avoid min/max of empty sequence errors xlim = [ 0 if self.xlim[title][0] is None else self.xlim[title][0], 1 if self.xlim[title][1] is None else self.xlim[title][1] ] self._plot_group(ax, group_name, group_increasing, line_names, line_xs, line_ys, xlim) self.fig.savefig(self.save_to_fp) # this seems to be slow sometimes def _line_to_xy(self, line_x, line_y, xlim, limit_y_min=None, limit_y_max=None): def _add_point(points_x, points_y, curr_sum, counter): points_x.append(batch_idx) y = curr_sum / counter if limit_y_min is not None and limit_y_max is not None: y = np.clip(y, limit_y_min, limit_y_max) elif limit_y_min is not None: y = max(y, limit_y_min) elif limit_y_max is not None: y = min(y, limit_y_max) points_y.append(y) nb_points = 0 for i in range(len(line_x)): batch_idx = line_x[i] if xlim[0] <= batch_idx < xlim[1]: nb_points += 1 point_every = max(1, int(nb_points / self.nb_points_max)) points_x = [] points_y = [] curr_sum = 0 counter = 0 for i in range(len(line_x)): batch_idx = line_x[i] if xlim[0] <= batch_idx < xlim[1]: curr_sum += line_y[i] counter += 1 if counter >= point_every: _add_point(points_x, points_y, curr_sum, counter) counter = 0 curr_sum = 0 if counter > 0: _add_point(points_x, points_y, curr_sum, counter) return points_x, points_y def _plot_group(self, ax, group_name, group_increasing, line_names, line_xs, line_ys, xlim): ax.cla() ax.grid() if self.autolimit_y and any([len(line_xs) > 0 for line_xs in line_xs]): min_x = min([np.min(line_x) for line_x in line_xs]) max_x = max([np.max(line_x) for line_x in line_xs]) min_y = min([np.min(line_y) for line_y in line_ys]) max_y = max([np.max(line_y) for line_y in line_ys]) if group_increasing: if max_y > 0: limit_y_max = None limit_y_min = max_y / self.autolimit_y_multiplier if min_y > limit_y_min: limit_y_min = None else: if min_y > 0: limit_y_max = min_y * self.autolimit_y_multiplier limit_y_min = None if max_y < limit_y_max: limit_y_max = None if limit_y_min is not None: ax.plot((min_x, max_x), (limit_y_min, limit_y_min), c="purple") if limit_y_max is not None: ax.plot((min_x, max_x), (limit_y_max, limit_y_max), c="purple") # y achse range begrenzen yaxmin = min_y if limit_y_min is None else limit_y_min yaxmax = max_y if limit_y_max is None else limit_y_max yrange = yaxmax - yaxmin yaxmin = yaxmin - (0.05 * yrange) yaxmax = yaxmax + (0.05 * yrange) ax.set_ylim([yaxmin, yaxmax]) else: limit_y_min = None limit_y_max = None for line_name, line_x, line_y, line_col in zip(line_names, line_xs, line_ys, self.colors): #print("line to xy...", time.time()) x, y = self._line_to_xy(line_x, line_y, xlim, limit_y_min=limit_y_min, limit_y_max=limit_y_max) #print("line to xy FIN", time.time()) #print("plotting ax...", time.time()) ax.plot(x, y, color=line_col, linewidth=1.0) #print("plotting ax FIN", time.time()) ax.set_title(group_name)
mit
valsson/MD-MC-Codes-2016
HarmonicOscillator-MD/HarmonicOscillator-MD-Verlet.py
1
4262
#! /usr/bin/env python import numpy as np import matplotlib.pyplot as plt from DataTools import writeDataToFile import argparse parser = argparse.ArgumentParser() parser.add_argument('--time-step',dest='time_step',required=False) parser.add_argument('--output-file',dest='fn_out',required=False) args = parser.parse_args() # Parameters of potential m = 1.0 k = (2.0*np.pi)**2 angular_freq = np.sqrt(k/m) freq = angular_freq/(2.0*np.pi) period = 1.0/freq # MD Parameters if(args.time_step): time_step = np.float64(args.time_step) else: time_step = 0.01*period if(args.fn_out): fn_out = args.fn_out else: fn_out = 'results.data' showPlots = False #num_periods = 20 #num_steps = np.int(np.rint( (num_periods*period)/time_step )) num_steps = 10000 # initial postion and velocity at t=0 initial_position = 2.0 initial_velocity = 0.0 def getPotentialEnergy(x): potential_ener = 0.5*k*x**2 return potential_ener #------------------------------- def getForce(x): force = -k*x return force #------------------------------- def getAccleration(x): return getForce(x)/m #------------------------------- def getPotentialAndForce(x): return ( getPotentialEnergy(x), getForce(x) ) #------------------------------- def getKineticEnergy(v): kinetic_ener = 0.5*m*v**2 return kinetic_ener #------------------------------- def getTotalEnergy(x,v): return getPotentialEnergy(x)+getKineticEnergy(v) #------------------------------- # analytical solution: phi = np.arctan(-initial_velocity/(initial_position*angular_freq)) amplitude = initial_position/np.cos(phi) conserved_energy = getPotentialEnergy(amplitude) # ---------------------- times = [] positions = [] velocites = [] pot_energies = [] kin_energies = [] tot_energies = [] time = 0.0 curr_position = initial_position prev_position = curr_position-initial_velocity*time_step + 0.5*getAccleration(curr_position)*time_step**2 curr_velocity = initial_velocity for i in range(num_steps): if (i+1) % (num_steps/10) == 0: print 'MD step {0:6d} of {1:6d}'.format(i+1,num_steps) # get force at t accleration = getAccleration(curr_position) # get new position at t+dt new_position = 2.0*curr_position - prev_position + accleration*time_step**2 # get velocity at t curr_velocity = (new_position - prev_position) / (2.0*time_step) # get energies at t curr_pot_ener = getPotentialEnergy(curr_position) curr_kin_ener = getKineticEnergy(curr_velocity) curr_tot_ener = curr_pot_ener + curr_kin_ener # times.append( time ) positions.append( curr_position ) velocites.append( curr_velocity ) pot_energies.append( curr_pot_ener ) kin_energies.append( curr_kin_ener ) tot_energies.append( curr_tot_ener ) # prev_position = curr_position curr_position = new_position time += time_step # #---------------------------------------- times = np.array(times) positions = np.array(positions) velocites = np.array(velocites) pot_energies = np.array(pot_energies) kin_energies = np.array(kin_energies) tot_energies = np.array(tot_energies) positions_analytical = amplitude*np.cos(angular_freq*times+phi) velocites_analytical = -angular_freq*amplitude*np.sin(angular_freq*times+phi) writeDataToFile(fn_out, [times,positions,velocites,pot_energies,kin_energies,tot_energies,positions_analytical,velocites_analytical], ['time','pos','vel','pot_ene','kin_ene','tot_ene','pos_an','vel_an'], constantsNames=['time_step','period','amplitude','k','m','phi','conserved_energy'], constantsValues=[time_step,period,amplitude,k,m,phi,conserved_energy], dataFormat='%15.8f') if showPlots: plt.figure(1) plt.plot(times,tot_energies) plt.plot(times,pot_energies) plt.plot(times,kin_energies) plt.show() plt.figure(2) plt.plot(times,pot_energies) plt.show() plt.figure(3) plt.plot(times,kin_energies) plt.show() plt.figure(4) plt.plot(times,velocites) plt.show() plt.figure(5) plt.plot(times,positions) plt.plot(times,positions_analytical) plt.show() plt.figure(6) plt.plot(times,positions-positions_analytical) plt.show() #
mit
QuLogic/specfem1d
Python_version/grid.py
2
2988
# -*- coding: utf-8 -*- ''' Definitions of the grid. ''' from __future__ import (absolute_import, division, print_function) import numpy as np import functions import gll class OneDimensionalGrid(object): """Contains the grid properties""" def __init__(self, param): """Init""" self.param = param self.z = np.zeros(param.nGlob) self.rho = np.zeros((param.nSpec, param.nGLL)) self.mu = np.zeros((param.nSpec, param.nGLL)) self.ticks = np.zeros(param.nSpec + 1) if param.gridType == 'homogeneous': self.ticks = np.linspace(0, param.length, param.nSpec + 1) self.rho.fill(param.meanRho) self.mu.fill(param.meanMu) self.z[1:param.nGLJ] = functions.project_inverse( param.ksiGLJ[1:param.nGLJ], 0, self.ticks) ksiGLL = param.ksiGLL[1:] for i in range(param.nGLL, param.nGlob, param.N): self.z[i:i + param.N] = functions.project_inverse(ksiGLL, i // param.N, self.ticks) self.z[-1] = self.ticks[-1] elif param.gridType == 'gradient': msg = "typeOfGrid == 'gradient' has not been implemented yet" raise NotImplementedError(msg) elif param.gridType == 'miscellaneous': msg = "typeOfGrid == 'miscellaneous' has not been implemented yet" raise NotImplementedError(msg) elif param.gridType == 'file': self.z, self.rho, self.mu = np.loadtxt(param.gridFile, unpack=True) self.ticks = np.loadtxt(param.ticksFile) else: raise ValueError('Unknown grid type: %s' % (param.gridType, )) # Jacobians at the GLL (and GLJ for the first element in axisym) # points (arrays nSpec*(N+1) elements) self.dXdKsi = gll.jacobian(self.ticks, param) self.dKsiDx = gll.jacobian_inverse(self.ticks, param) def plot(self): """Plot the grid my_ticks gives the abscissa of the borders TODO I should test : _the types of the parameters _their sizes""" import matplotlib.pyplot as plt from matplotlib.ticker import FixedLocator fig, ax = plt.subplots(2, 1, sharex=True) ax[0].plot(self.z[self.param.ibool].flat, self.rho.flat, 'b+') ax[0].set_title(r'$\rho(z)$') ax[0].xaxis.set_minor_locator(FixedLocator(self.ticks)) ax[0].xaxis.grid(True, which='minor', alpha=0.5) ax[0].yaxis.grid(True) ax[1].plot(self.z[self.param.ibool].flat, self.mu.flat, 'r+') ax[1].set_title(r'$\mu(z)$') ax[1].xaxis.set_minor_locator(FixedLocator(self.ticks)) ax[1].xaxis.grid(True, which='minor', alpha=0.5) ax[1].yaxis.grid(True) plt.suptitle('Grid') plt.show()
gpl-2.0
tawsifkhan/scikit-learn
sklearn/datasets/tests/test_lfw.py
230
7880
"""This test for the LFW require medium-size data dowloading and processing If the data has not been already downloaded by running the examples, the tests won't run (skipped). If the test are run, the first execution will be long (typically a bit more than a couple of minutes) but as the dataset loader is leveraging joblib, successive runs will be fast (less than 200ms). """ import random import os import shutil import tempfile import numpy as np from sklearn.externals import six try: try: from scipy.misc import imsave except ImportError: from scipy.misc.pilutil import imsave except ImportError: imsave = None from sklearn.datasets import load_lfw_pairs from sklearn.datasets import load_lfw_people from sklearn.datasets import fetch_lfw_pairs from sklearn.datasets import fetch_lfw_people from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_warns_message from sklearn.utils.testing import SkipTest from sklearn.utils.testing import raises SCIKIT_LEARN_DATA = tempfile.mkdtemp(prefix="scikit_learn_lfw_test_") SCIKIT_LEARN_EMPTY_DATA = tempfile.mkdtemp(prefix="scikit_learn_empty_test_") LFW_HOME = os.path.join(SCIKIT_LEARN_DATA, 'lfw_home') FAKE_NAMES = [ 'Abdelatif_Smith', 'Abhati_Kepler', 'Camara_Alvaro', 'Chen_Dupont', 'John_Lee', 'Lin_Bauman', 'Onur_Lopez', ] def setup_module(): """Test fixture run once and common to all tests of this module""" if imsave is None: raise SkipTest("PIL not installed.") if not os.path.exists(LFW_HOME): os.makedirs(LFW_HOME) random_state = random.Random(42) np_rng = np.random.RandomState(42) # generate some random jpeg files for each person counts = {} for name in FAKE_NAMES: folder_name = os.path.join(LFW_HOME, 'lfw_funneled', name) if not os.path.exists(folder_name): os.makedirs(folder_name) n_faces = np_rng.randint(1, 5) counts[name] = n_faces for i in range(n_faces): file_path = os.path.join(folder_name, name + '_%04d.jpg' % i) uniface = np_rng.randint(0, 255, size=(250, 250, 3)) try: imsave(file_path, uniface) except ImportError: raise SkipTest("PIL not installed") # add some random file pollution to test robustness with open(os.path.join(LFW_HOME, 'lfw_funneled', '.test.swp'), 'wb') as f: f.write(six.b('Text file to be ignored by the dataset loader.')) # generate some pairing metadata files using the same format as LFW with open(os.path.join(LFW_HOME, 'pairsDevTrain.txt'), 'wb') as f: f.write(six.b("10\n")) more_than_two = [name for name, count in six.iteritems(counts) if count >= 2] for i in range(5): name = random_state.choice(more_than_two) first, second = random_state.sample(range(counts[name]), 2) f.write(six.b('%s\t%d\t%d\n' % (name, first, second))) for i in range(5): first_name, second_name = random_state.sample(FAKE_NAMES, 2) first_index = random_state.choice(np.arange(counts[first_name])) second_index = random_state.choice(np.arange(counts[second_name])) f.write(six.b('%s\t%d\t%s\t%d\n' % (first_name, first_index, second_name, second_index))) with open(os.path.join(LFW_HOME, 'pairsDevTest.txt'), 'wb') as f: f.write(six.b("Fake place holder that won't be tested")) with open(os.path.join(LFW_HOME, 'pairs.txt'), 'wb') as f: f.write(six.b("Fake place holder that won't be tested")) def teardown_module(): """Test fixture (clean up) run once after all tests of this module""" if os.path.isdir(SCIKIT_LEARN_DATA): shutil.rmtree(SCIKIT_LEARN_DATA) if os.path.isdir(SCIKIT_LEARN_EMPTY_DATA): shutil.rmtree(SCIKIT_LEARN_EMPTY_DATA) @raises(IOError) def test_load_empty_lfw_people(): fetch_lfw_people(data_home=SCIKIT_LEARN_EMPTY_DATA, download_if_missing=False) def test_load_lfw_people_deprecation(): msg = ("Function 'load_lfw_people' has been deprecated in 0.17 and will be " "removed in 0.19." "Use fetch_lfw_people(download_if_missing=False) instead.") assert_warns_message(DeprecationWarning, msg, load_lfw_people, data_home=SCIKIT_LEARN_DATA) def test_load_fake_lfw_people(): lfw_people = fetch_lfw_people(data_home=SCIKIT_LEARN_DATA, min_faces_per_person=3, download_if_missing=False) # The data is croped around the center as a rectangular bounding box # arounthe the face. Colors are converted to gray levels: assert_equal(lfw_people.images.shape, (10, 62, 47)) assert_equal(lfw_people.data.shape, (10, 2914)) # the target is array of person integer ids assert_array_equal(lfw_people.target, [2, 0, 1, 0, 2, 0, 2, 1, 1, 2]) # names of the persons can be found using the target_names array expected_classes = ['Abdelatif Smith', 'Abhati Kepler', 'Onur Lopez'] assert_array_equal(lfw_people.target_names, expected_classes) # It is possible to ask for the original data without any croping or color # conversion and not limit on the number of picture per person lfw_people = fetch_lfw_people(data_home=SCIKIT_LEARN_DATA, resize=None, slice_=None, color=True, download_if_missing=False) assert_equal(lfw_people.images.shape, (17, 250, 250, 3)) # the ids and class names are the same as previously assert_array_equal(lfw_people.target, [0, 0, 1, 6, 5, 6, 3, 6, 0, 3, 6, 1, 2, 4, 5, 1, 2]) assert_array_equal(lfw_people.target_names, ['Abdelatif Smith', 'Abhati Kepler', 'Camara Alvaro', 'Chen Dupont', 'John Lee', 'Lin Bauman', 'Onur Lopez']) @raises(ValueError) def test_load_fake_lfw_people_too_restrictive(): fetch_lfw_people(data_home=SCIKIT_LEARN_DATA, min_faces_per_person=100, download_if_missing=False) @raises(IOError) def test_load_empty_lfw_pairs(): fetch_lfw_pairs(data_home=SCIKIT_LEARN_EMPTY_DATA, download_if_missing=False) def test_load_lfw_pairs_deprecation(): msg = ("Function 'load_lfw_pairs' has been deprecated in 0.17 and will be " "removed in 0.19." "Use fetch_lfw_pairs(download_if_missing=False) instead.") assert_warns_message(DeprecationWarning, msg, load_lfw_pairs, data_home=SCIKIT_LEARN_DATA) def test_load_fake_lfw_pairs(): lfw_pairs_train = fetch_lfw_pairs(data_home=SCIKIT_LEARN_DATA, download_if_missing=False) # The data is croped around the center as a rectangular bounding box # arounthe the face. Colors are converted to gray levels: assert_equal(lfw_pairs_train.pairs.shape, (10, 2, 62, 47)) # the target is whether the person is the same or not assert_array_equal(lfw_pairs_train.target, [1, 1, 1, 1, 1, 0, 0, 0, 0, 0]) # names of the persons can be found using the target_names array expected_classes = ['Different persons', 'Same person'] assert_array_equal(lfw_pairs_train.target_names, expected_classes) # It is possible to ask for the original data without any croping or color # conversion lfw_pairs_train = fetch_lfw_pairs(data_home=SCIKIT_LEARN_DATA, resize=None, slice_=None, color=True, download_if_missing=False) assert_equal(lfw_pairs_train.pairs.shape, (10, 2, 250, 250, 3)) # the ids and class names are the same as previously assert_array_equal(lfw_pairs_train.target, [1, 1, 1, 1, 1, 0, 0, 0, 0, 0]) assert_array_equal(lfw_pairs_train.target_names, expected_classes)
bsd-3-clause
anntzer/scikit-learn
examples/model_selection/plot_confusion_matrix.py
8
2074
""" ================ Confusion matrix ================ Example of confusion matrix usage to evaluate the quality of the output of a classifier on the iris data set. The diagonal elements represent the number of points for which the predicted label is equal to the true label, while off-diagonal elements are those that are mislabeled by the classifier. The higher the diagonal values of the confusion matrix the better, indicating many correct predictions. The figures show the confusion matrix with and without normalization by class support size (number of elements in each class). This kind of normalization can be interesting in case of class imbalance to have a more visual interpretation of which class is being misclassified. Here the results are not as good as they could be as our choice for the regularization parameter C was not the best. In real life applications this parameter is usually chosen using :ref:`grid_search`. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import svm, datasets from sklearn.model_selection import train_test_split from sklearn.metrics import ConfusionMatrixDisplay # import some data to play with iris = datasets.load_iris() X = iris.data y = iris.target class_names = iris.target_names # Split the data into a training set and a test set X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) # Run classifier, using a model that is too regularized (C too low) to see # the impact on the results classifier = svm.SVC(kernel='linear', C=0.01).fit(X_train, y_train) np.set_printoptions(precision=2) # Plot non-normalized confusion matrix titles_options = [("Confusion matrix, without normalization", None), ("Normalized confusion matrix", 'true')] for title, normalize in titles_options: disp = ConfusionMatrixDisplay.from_estimator( classifier, X_test, y_test, display_labels=class_names, cmap=plt.cm.Blues, normalize=normalize ) disp.ax_.set_title(title) print(title) print(disp.confusion_matrix) plt.show()
bsd-3-clause
cleesmith/sentdex_scikit_machine_learning_tutorial_for_investing
p06.py
2
1516
import pandas as pd import os import time from datetime import datetime # path = "X:/Backups/intraQuarter" # for Windows with X files :) # if git clone'ed then use relative path, # assuming you extracted the downloaded zip into this project's folder: path = "intraQuarter" def Key_Stats(gather="Total Debt/Equity (mrq)"): statspath = path+'/_KeyStats' stock_list = [x[0] for x in os.walk(statspath)] df = pd.DataFrame(columns = ['Date','Unix','Ticker','DE Ratio']) for each_dir in stock_list[1:]: each_file = os.listdir(each_dir) # ticker = each_dir.split("\\")[1] # Windows only # ticker = each_dir.split("/")[1] # this didn't work so do this: ticker = os.path.basename(os.path.normpath(each_dir)) # print(ticker) # uncomment to verify if len(each_file) > 0: for file in each_file: date_stamp = datetime.strptime(file, '%Y%m%d%H%M%S.html') unix_time = time.mktime(date_stamp.timetuple()) full_file_path = each_dir+'/'+file source = open(full_file_path,'r').read() try: value = float(source.split(gather+':</td><td class="yfnc_tabledata1">')[1].split('</td>')[0]) # print("value=%s"%value) # uncomment to see what's up df = df.append({'Date':date_stamp,'Unix':unix_time,'Ticker':ticker,'DE Ratio':value,}, ignore_index = True) except Exception as e: pass save = gather.replace(' ','').replace(')','').replace('(','').replace('/','')+('.csv') print(save) df.to_csv(save) Key_Stats()
mit
CroatianMeteorNetwork/RMS
RMS/Astrometry/CheckFit.py
1
25717
""" Automatic refining of astrometry calibration. The initial astrometric calibration is needed, which will be refined by using all stars from a given night. """ from __future__ import print_function, division, absolute_import import os import sys import copy import shutil import random import argparse import numpy as np import scipy.optimize import matplotlib.pyplot as plt import RMS.ConfigReader as cr from RMS.Formats import Platepar from RMS.Formats import CALSTARS from RMS.Formats import StarCatalog from RMS.Formats import FFfile from RMS.Astrometry.ApplyAstrometry import raDecToXYPP, xyToRaDecPP, rotationWrtHorizon, getFOVSelectionRadius from RMS.Astrometry.Conversions import date2JD, jd2Date, raDec2AltAz from RMS.Astrometry.FFTalign import alignPlatepar from RMS.Math import angularSeparation # Import Cython functions import pyximport pyximport.install(setup_args={'include_dirs':[np.get_include()]}) from RMS.Astrometry.CyFunctions import matchStars, subsetCatalog def computeMinimizationTolerances(config, platepar, star_dict_len): """ Compute tolerances for minimization. """ # Calculate the function tolerance, so the desired precision can be reached (the number is calculated # in the same regard as the cost function) fatol = (config.dist_check_threshold**2)/np.sqrt(star_dict_len*config.min_matched_stars + 1) # Parameter estimation tolerance for angular values fov_w = platepar.X_res/platepar.F_scale xatol_ang = config.dist_check_threshold*fov_w/platepar.X_res return fatol, xatol_ang def matchStarsResiduals(config, platepar, catalog_stars, star_dict, match_radius, ret_nmatch=False, \ sky_coords=False, lim_mag=None, verbose=False): """ Match the image and catalog stars with the given astrometry solution and estimate the residuals between them. Arguments: config: [Config structure] platepar: [Platepar structure] Astrometry parameters. catalog_stars: [ndarray] An array of catalog stars (ra, dec, mag). star_dict: [ndarray] A dictionary where the keys are JDs when the stars were recorded and values are 2D list of stars, each entry is (X, Y, bg_level, level, fwhm). match_radius: [float] Maximum radius for star matching (pixels). min_matched_stars: [int] Minimum number of matched stars on the image for the image to be accepted. Keyword arguments: ret_nmatch: [bool] If True, the function returns the number of matched stars and the average deviation. False by default. sky_coords: [bool] If True, sky coordinate residuals in RA, dec will be used to compute the cost, function, not image coordinates. lim_mag: [float] Override the limiting magnitude from config. None by default. verbose: [bool] Print results. True by default. Return: cost: [float] The cost function which weights the number of matched stars and the average deviation. """ if lim_mag is None: lim_mag = config.catalog_mag_limit # Estimate the FOV radius fov_radius = getFOVSelectionRadius(platepar) # Dictionary containing the matched stars, the keys are JDs of every image matched_stars = {} # Go through every FF image and its stars for jd in star_dict: # Estimate RA,dec of the centre of the FOV _, RA_c, dec_c, _ = xyToRaDecPP([jd2Date(jd)], [platepar.X_res/2], [platepar.Y_res/2], [1], \ platepar, extinction_correction=False) RA_c = RA_c[0] dec_c = dec_c[0] # Get stars from the catalog around the defined center in a given radius _, extracted_catalog = subsetCatalog(catalog_stars, RA_c, dec_c, jd, platepar.lat, platepar.lon, \ fov_radius, lim_mag) ra_catalog, dec_catalog, mag_catalog = extracted_catalog.T # Extract stars for the given Julian date stars_list = star_dict[jd] stars_list = np.array(stars_list) # Convert all catalog stars to image coordinates cat_x_array, cat_y_array = raDecToXYPP(ra_catalog, dec_catalog, jd, platepar) # Take only those stars which are within the FOV x_indices = np.argwhere((cat_x_array >= 0) & (cat_x_array < platepar.X_res)) y_indices = np.argwhere((cat_y_array >= 0) & (cat_y_array < platepar.Y_res)) cat_good_indices = np.intersect1d(x_indices, y_indices).astype(np.uint32) # cat_x_array = cat_x_array[good_indices] # cat_y_array = cat_y_array[good_indices] # # Plot image stars # im_y, im_x, _, _ = stars_list.T # plt.scatter(im_y, im_x, facecolors='none', edgecolor='g') # # Plot catalog stars # plt.scatter(cat_y_array[cat_good_indices], cat_x_array[cat_good_indices], c='r', s=20, marker='+') # plt.show() # Match image and catalog stars matched_indices = matchStars(stars_list, cat_x_array, cat_y_array, cat_good_indices, match_radius) # Skip this image is no stars were matched if len(matched_indices) < config.min_matched_stars: continue matched_indices = np.array(matched_indices) matched_img_inds, matched_cat_inds, dist_list = matched_indices.T # Extract data from matched stars matched_img_stars = stars_list[matched_img_inds.astype(np.int)] matched_cat_stars = extracted_catalog[matched_cat_inds.astype(np.int)] # Put the matched stars to a dictionary matched_stars[jd] = [matched_img_stars, matched_cat_stars, dist_list] # # Plot matched stars # im_y, im_x, _, _ = matched_img_stars.T # cat_y = cat_y_array[matched_cat_inds.astype(np.int)] # cat_x = cat_x_array[matched_cat_inds.astype(np.int)] # plt.scatter(im_x, im_y, c='r', s=5) # plt.scatter(cat_x, cat_y, facecolors='none', edgecolor='g') # plt.xlim([0, platepar.X_res]) # plt.ylim([platepar.Y_res, 0]) # plt.show() # If residuals on the image should be computed if not sky_coords: unit_label = 'px' # Extract all distances global_dist_list = [] # level_list = [] # mag_list = [] for jd in matched_stars: # matched_img_stars, matched_cat_stars, dist_list = matched_stars[jd] _, _, dist_list = matched_stars[jd] global_dist_list += dist_list.tolist() # # TEST # level_list += matched_img_stars[:, 3].tolist() # mag_list += matched_cat_stars[:, 2].tolist() # # Plot levels vs. magnitudes # plt.scatter(mag_list, np.log10(level_list)) # plt.xlabel('Magnitude') # plt.ylabel('Log10 level') # plt.show() # Compute the residuals on the sky else: unit_label = 'arcmin' global_dist_list = [] # Go through all matched stars for jd in matched_stars: matched_img_stars, matched_cat_stars, dist_list = matched_stars[jd] # Go through all stars on the image for img_star_entry, cat_star_entry in zip(matched_img_stars, matched_cat_stars): # Extract star coords star_y = img_star_entry[0] star_x = img_star_entry[1] cat_ra = cat_star_entry[0] cat_dec = cat_star_entry[1] # Convert image coordinates to RA/Dec _, star_ra, star_dec, _ = xyToRaDecPP([jd2Date(jd)], [star_x], [star_y], [1], \ platepar, extinction_correction=False) # Compute angular distance between the predicted and the catalog position ang_dist = np.degrees(angularSeparation(np.radians(cat_ra), np.radians(cat_dec), \ np.radians(star_ra[0]), np.radians(star_dec[0]))) # Store the angular separation in arc minutes global_dist_list.append(ang_dist*60) # Number of matched stars n_matched = len(global_dist_list) if n_matched == 0: if verbose: print('No matched stars with radius {:.1f} px!'.format(match_radius)) if ret_nmatch: return 0, 9999.0, 9999.0, {} else: return 9999.0 # Calculate the average distance avg_dist = np.median(global_dist_list) cost = (avg_dist**2)*(1.0/np.sqrt(n_matched + 1)) if verbose: print() print("Matched {:d} stars with radius of {:.1f} px".format(n_matched, match_radius)) print(" Average distance = {:.3f} {:s}".format(avg_dist, unit_label)) print(" Cost function = {:.5f}".format(cost)) if ret_nmatch: return n_matched, avg_dist, cost, matched_stars else: return cost def checkFitGoodness(config, platepar, catalog_stars, star_dict, match_radius, verbose=False): """ Checks if the platepar is 'good enough', given the extracted star positions. Returns True if the fit is deemed good, False otherwise. The goodness of fit is determined by 2 criteria: the average star residual (in pixels) has to be below a certain threshold, and an average number of matched stars per image has to be above a predefined threshold as well. Arguments: config: [Config structure] platepar: [Platepar structure] Initial astrometry parameters. catalog_stars: [ndarray] An array of catalog stars (ra, dec, mag). star_dict: [ndarray] A dictionary where the keys are JDs when the stars were recorded and values are 2D list of stars, each entry is (X, Y, bg_level, level). match_radius: [float] Maximum radius for star matching (pixels). Keyword arguments: verbose: [bool] If True, fit status will be printed on the screen. False by default. Return: [bool] True if the platepar is good, False otherwise. """ if verbose: print() print("CHECK FIT GOODNESS:") # Match the stars and calculate the residuals n_matched, avg_dist, cost, matched_stars = matchStarsResiduals(config, platepar, catalog_stars, \ star_dict, match_radius, ret_nmatch=True, verbose=verbose) # ### Plot zenith distance vs. residual # # Go through all images # for jd in matched_stars: # _, cat_stars, dists = matched_stars[jd] # # Extract RA/Dec # ra, dec, _ = cat_stars.T # zangle_list = [] # for ra_t, dec_t in zip(ra, dec): # # Compute zenith distance # azim, elev = raDec2AltAz(ra_t, dec_t, jd, platepar.lat, platepar.lon) # zangle = 90 - elev # zangle_list.append(zangle) # # Plot zangle vs. distance # plt.scatter(zangle_list, dists, c='k', s=0.1) # plt.xlabel('Zenith angle') # plt.ylabel('Residual (px)') # plt.show() # ### # Check that the average distance is within the threshold if avg_dist <= config.dist_check_threshold: if verbose: print() print('The minimum residual is satisfied!') # Check that the minimum number of stars is matched per every image if n_matched >= len(star_dict)*1: return True else: if verbose: print('But there are not enough stars on every image, recalibrating...') return False def _calcImageResidualsAstro(params, config, platepar, catalog_stars, star_dict, match_radius): """ Calculates the differences between the stars on the image and catalog stars in image coordinates with the given astrometrical solution. Arguments: params: [list] Fit parameters - reference RA, Dec, position angle, and scale. config: [Config] platepar: [Platepar] catalog_stars: [list] List of (ra, dec, mag) entries (angles in degrees). star_dict: [dict] Dictionary which contains the JD, and a list of (X, Y, bg_intens, intens) of the stars on the image. match_radius: [float] Star match radius (px). Return: [float] The average pixel residual (difference between image and catalog positions) normalized by the square root of the total number of matched stars. """ # Make a copy of the platepar pp = copy.deepcopy(platepar) # Extract fitting parameters ra_ref, dec_ref, pos_angle_ref, F_scale = params # Set the fitting parameters to the platepar clone pp.RA_d = ra_ref pp.dec_d = dec_ref pp.pos_angle_ref = pos_angle_ref pp.F_scale = F_scale # Match stars and calculate image residuals return matchStarsResiduals(config, pp, catalog_stars, star_dict, match_radius, verbose=False) def starListToDict(config, calstars_list, max_ffs=None): """ Converts the list of calstars into dictionary where the keys are FF file JD and the values is a list of (X, Y, bg_intens, intens) of stars. """ # Convert the list to a dictionary calstars = {ff_file: star_data for ff_file, star_data in calstars_list} # Dictionary which will contain the JD, and a list of (X, Y, bg_intens, intens) of the stars star_dict = {} # Take only those files with enough stars on them for ff_name in calstars: stars_list = calstars[ff_name] # Check if there are enough stars on the image if len(stars_list) >= config.ff_min_stars: # Calculate the JD time of the FF file dt = FFfile.getMiddleTimeFF(ff_name, config.fps, ret_milliseconds=True) jd = date2JD(*dt) # Add the time and the stars to the dict star_dict[jd] = stars_list if max_ffs is not None: # Limit the number of FF files used if len(star_dict) > max_ffs: # Randomly choose calstars_files_N image files from the whole list rand_keys = random.sample(list(star_dict), max_ffs) star_dict = {key: star_dict[key] for key in rand_keys} return star_dict def autoCheckFit(config, platepar, calstars_list, _fft_refinement=False): """ Attempts to refine the astrometry fit with the given stars and and initial astrometry parameters. Arguments: config: [Config structure] platepar: [Platepar structure] Initial astrometry parameters. calstars_list: [list] A list containing stars extracted from FF files. See RMS.Formats.CALSTARS for more details. Keyword arguments: _fft_refinement: [bool] Internal flag indicating that autoCF is running the second time recursively after FFT platepar adjustment. Return: (platepar, fit_status): platepar: [Platepar structure] Estimated/refined platepar. fit_status: [bool] True if fit was successfuly, False if not. """ def _handleFailure(config, platepar, calstars_list, catalog_stars, _fft_refinement): """ Run FFT alignment before giving up on ACF. """ if not _fft_refinement: print() print("-------------------------------------------------------------------------------") print('The initial platepar is bad, trying to refine it using FFT phase correlation...') print() # Prepare data for FFT image registration calstars_dict = {ff_file: star_data for ff_file, star_data in calstars_list} # Extract star list from CALSTARS file from FF file with most stars max_len_ff = max(calstars_dict, key=lambda k: len(calstars_dict[k])) # Take only X, Y (change order so X is first) calstars_coords = np.array(calstars_dict[max_len_ff])[:, :2] calstars_coords[:, [0, 1]] = calstars_coords[:, [1, 0]] # Get the time of the FF file calstars_time = FFfile.getMiddleTimeFF(max_len_ff, config.fps, ret_milliseconds=True) # Try aligning the platepar using FFT image registration platepar_refined = alignPlatepar(config, platepar, calstars_time, calstars_coords) print() ### If there are still not enough stars matched, try FFT again ### min_radius = 10 # Prepare star dictionary to check the match dt = FFfile.getMiddleTimeFF(max_len_ff, config.fps, ret_milliseconds=True) jd = date2JD(*dt) star_dict_temp = {} star_dict_temp[jd] = calstars_dict[max_len_ff] # Check the number of matched stars n_matched, _, _, _ = matchStarsResiduals(config, platepar_refined, catalog_stars, \ star_dict_temp, min_radius, ret_nmatch=True, verbose=True) # Realign again if necessary if n_matched < config.min_matched_stars: print() print("-------------------------------------------------------------------------------") print('Doing a second FFT pass as the number of matched stars was too small...') print() platepar_refined = alignPlatepar(config, platepar_refined, calstars_time, calstars_coords) print() ### ### # Redo autoCF return autoCheckFit(config, platepar_refined, calstars_list, _fft_refinement=True) else: print('Auto Check Fit failed completely, please redo the plate manually!') return platepar, False if _fft_refinement: print('Second ACF run with an updated platepar via FFT phase correlation...') # Load catalog stars (overwrite the mag band ratios if specific catalog is used) catalog_stars, _, config.star_catalog_band_ratios = StarCatalog.readStarCatalog(config.star_catalog_path, \ config.star_catalog_file, lim_mag=config.catalog_mag_limit, \ mag_band_ratios=config.star_catalog_band_ratios) # Dictionary which will contain the JD, and a list of (X, Y, bg_intens, intens) of the stars star_dict = starListToDict(config, calstars_list, max_ffs=config.calstars_files_N) # There has to be a minimum of 200 FF files for star fitting if len(star_dict) < config.calstars_files_N: print('Not enough FF files in CALSTARS for ACF!') return platepar, False # Calculate the total number of calibration stars used total_calstars = sum([len(star_dict[key]) for key in star_dict]) print('Total calstars:', total_calstars) if total_calstars < config.calstars_min_stars: print('Not enough calibration stars, need at least', config.calstars_min_stars) return platepar, False print() # A list of matching radiuses to try min_radius = 0.5 radius_list = [10, 5, 3, 1.5, min_radius] # Calculate the function tolerance, so the desired precision can be reached (the number is calculated # in the same regard as the cost function) fatol, xatol_ang = computeMinimizationTolerances(config, platepar, len(star_dict)) ### If the initial match is good enough, do only quick recalibratoin ### # Match the stars and calculate the residuals n_matched, avg_dist, cost, _ = matchStarsResiduals(config, platepar, catalog_stars, star_dict, \ min_radius, ret_nmatch=True) if n_matched >= config.calstars_files_N: # Check if the average distance with the tightest radius is close if avg_dist < config.dist_check_quick_threshold: print("Using quick fit with smaller radiia...") # Use a reduced set of initial radius values radius_list = [1.5, min_radius] ########## # Match increasingly smaller search radiia around image stars for i, match_radius in enumerate(radius_list): # Match the stars and calculate the residuals n_matched, avg_dist, cost, _ = matchStarsResiduals(config, platepar, catalog_stars, star_dict, \ match_radius, ret_nmatch=True) print() print("-------------------------------------------------------------") print("Refining camera pointing with max pixel deviation = {:.1f} px".format(match_radius)) print("Initial values:") print(" Matched stars = {:>6d}".format(n_matched)) print(" Average deviation = {:>6.2f} px".format(avg_dist)) # The initial number of matched stars has to be at least the number of FF imaages, otherwise it means # that the initial platepar is no good if n_matched < config.calstars_files_N: print("The total number of initially matched stars is too small! Please manually redo the plate or make sure there are enough calibration stars.") # Try to refine the platepar with FFT phase correlation and redo the ACF return _handleFailure(config, platepar, calstars_list, catalog_stars, _fft_refinement) # Check if the platepar is good enough and do not estimate further parameters if checkFitGoodness(config, platepar, catalog_stars, star_dict, min_radius, verbose=True): # Print out notice only if the platepar is good right away if i == 0: print("Initial platepar is good enough!") return platepar, True # Initial parameters for the astrometric fit p0 = [platepar.RA_d, platepar.dec_d, platepar.pos_angle_ref, platepar.F_scale] # Fit the astrometric parameters res = scipy.optimize.minimize(_calcImageResidualsAstro, p0, args=(config, platepar, catalog_stars, \ star_dict, match_radius), method='Nelder-Mead', \ options={'fatol': fatol, 'xatol': xatol_ang}) print(res) # If the fit was not successful, stop further fitting if not res.success: # Try to refine the platepar with FFT phase correlation and redo the ACF return _handleFailure(config, platepar, calstars_list, catalog_stars, _fft_refinement) else: # If the fit was successful, use the new parameters from now on ra_ref, dec_ref, pos_angle_ref, F_scale = res.x platepar.RA_d = ra_ref platepar.dec_d = dec_ref platepar.pos_angle_ref = pos_angle_ref platepar.F_scale = F_scale # Check if the platepar is good enough and do not estimate further parameters if checkFitGoodness(config, platepar, catalog_stars, star_dict, min_radius, verbose=True): return platepar, True # Match the stars and calculate the residuals n_matched, avg_dist, cost, matched_stars = matchStarsResiduals(config, platepar, catalog_stars, \ star_dict, min_radius, ret_nmatch=True) print("FINAL SOLUTION with radius {:.1} px:".format(min_radius)) print(" Matched stars = {:>6d}".format(n_matched)) print(" Average deviation = {:>6.2f} px".format(avg_dist)) # Mark the platepar to indicate that it was automatically refined with CheckFit platepar.auto_check_fit_refined = True # Recompute alt/az of the FOV centre platepar.az_centre, platepar.alt_centre = raDec2AltAz(platepar.RA_d, platepar.dec_d, platepar.JD, \ platepar.lat, platepar.lon) # Recompute the rotation wrt horizon platepar.rotation_from_horiz = rotationWrtHorizon(platepar) return platepar, True if __name__ == "__main__": ### COMMAND LINE ARGUMENTS # Init the command line arguments parser arg_parser = argparse.ArgumentParser(description="Check if the calibration file matches the stars, and improve it.") arg_parser.add_argument('dir_path', nargs=1, metavar='DIR_PATH', type=str, \ help='Path to the folder with FF or image files. This folder also has to contain the platepar file.') arg_parser.add_argument('-c', '--config', nargs=1, metavar='CONFIG_PATH', type=str, \ help="Path to a config file which will be used instead of the default one.") # Parse the command line arguments cml_args = arg_parser.parse_args() ######################### dir_path = cml_args.dir_path[0] # Check if the given directory is OK if not os.path.exists(dir_path): print('No such directory:', dir_path) sys.exit() # Load the config file config = cr.loadConfigFromDirectory(cml_args.config, dir_path) # Get a list of files in the night folder file_list = os.listdir(dir_path) # Find and load the platepar file if config.platepar_name in file_list: # Load the platepar platepar = Platepar.Platepar() platepar.read(os.path.join(dir_path, config.platepar_name), use_flat=config.use_flat) else: print('Cannot find the platepar file in the night directory: ', config.platepar_name) sys.exit() # Find the CALSTARS file in the given folder calstars_file = None for calstars_file in file_list: if ('CALSTARS' in calstars_file) and ('.txt' in calstars_file): break if calstars_file is None: print('CALSTARS file could not be found in the given directory!') sys.exit() # Load the calstars file calstars_list = CALSTARS.readCALSTARS(dir_path, calstars_file) print('CALSTARS file: ' + calstars_file + ' loaded!') # Run the automatic astrometry fit pp, fit_status = autoCheckFit(config, platepar, calstars_list) # If the fit suceeded, save the platepar if fit_status: print('ACF sucessful!') # Save the old platepar shutil.move(os.path.join(dir_path, config.platepar_name), os.path.join(dir_path, config.platepar_name + '.old')) # Save the new platepar pp.write(os.path.join(dir_path, config.platepar_name))
gpl-3.0
mehdidc/scikit-learn
examples/gaussian_process/plot_gp_regression.py
253
4054
#!/usr/bin/python # -*- coding: utf-8 -*- r""" ========================================================= Gaussian Processes regression: basic introductory example ========================================================= A simple one-dimensional regression exercise computed in two different ways: 1. A noise-free case with a cubic correlation model 2. A noisy case with a squared Euclidean correlation model In both cases, the model parameters are estimated using the maximum likelihood principle. The figures illustrate the interpolating property of the Gaussian Process model as well as its probabilistic nature in the form of a pointwise 95% confidence interval. Note that the parameter ``nugget`` is applied as a Tikhonov regularization of the assumed covariance between the training points. In the special case of the squared euclidean correlation model, nugget is mathematically equivalent to a normalized variance: That is .. math:: \mathrm{nugget}_i = \left[\frac{\sigma_i}{y_i}\right]^2 """ print(__doc__) # Author: Vincent Dubourg <[email protected]> # Jake Vanderplas <[email protected]> # Licence: BSD 3 clause import numpy as np from sklearn.gaussian_process import GaussianProcess from matplotlib import pyplot as pl np.random.seed(1) def f(x): """The function to predict.""" return x * np.sin(x) #---------------------------------------------------------------------- # First the noiseless case X = np.atleast_2d([1., 3., 5., 6., 7., 8.]).T # Observations y = f(X).ravel() # Mesh the input space for evaluations of the real function, the prediction and # its MSE x = np.atleast_2d(np.linspace(0, 10, 1000)).T # Instanciate a Gaussian Process model gp = GaussianProcess(corr='cubic', theta0=1e-2, thetaL=1e-4, thetaU=1e-1, random_start=100) # Fit to data using Maximum Likelihood Estimation of the parameters gp.fit(X, y) # Make the prediction on the meshed x-axis (ask for MSE as well) y_pred, MSE = gp.predict(x, eval_MSE=True) sigma = np.sqrt(MSE) # Plot the function, the prediction and the 95% confidence interval based on # the MSE fig = pl.figure() pl.plot(x, f(x), 'r:', label=u'$f(x) = x\,\sin(x)$') pl.plot(X, y, 'r.', markersize=10, label=u'Observations') pl.plot(x, y_pred, 'b-', label=u'Prediction') pl.fill(np.concatenate([x, x[::-1]]), np.concatenate([y_pred - 1.9600 * sigma, (y_pred + 1.9600 * sigma)[::-1]]), alpha=.5, fc='b', ec='None', label='95% confidence interval') pl.xlabel('$x$') pl.ylabel('$f(x)$') pl.ylim(-10, 20) pl.legend(loc='upper left') #---------------------------------------------------------------------- # now the noisy case X = np.linspace(0.1, 9.9, 20) X = np.atleast_2d(X).T # Observations and noise y = f(X).ravel() dy = 0.5 + 1.0 * np.random.random(y.shape) noise = np.random.normal(0, dy) y += noise # Mesh the input space for evaluations of the real function, the prediction and # its MSE x = np.atleast_2d(np.linspace(0, 10, 1000)).T # Instanciate a Gaussian Process model gp = GaussianProcess(corr='squared_exponential', theta0=1e-1, thetaL=1e-3, thetaU=1, nugget=(dy / y) ** 2, random_start=100) # Fit to data using Maximum Likelihood Estimation of the parameters gp.fit(X, y) # Make the prediction on the meshed x-axis (ask for MSE as well) y_pred, MSE = gp.predict(x, eval_MSE=True) sigma = np.sqrt(MSE) # Plot the function, the prediction and the 95% confidence interval based on # the MSE fig = pl.figure() pl.plot(x, f(x), 'r:', label=u'$f(x) = x\,\sin(x)$') pl.errorbar(X.ravel(), y, dy, fmt='r.', markersize=10, label=u'Observations') pl.plot(x, y_pred, 'b-', label=u'Prediction') pl.fill(np.concatenate([x, x[::-1]]), np.concatenate([y_pred - 1.9600 * sigma, (y_pred + 1.9600 * sigma)[::-1]]), alpha=.5, fc='b', ec='None', label='95% confidence interval') pl.xlabel('$x$') pl.ylabel('$f(x)$') pl.ylim(-10, 20) pl.legend(loc='upper left') pl.show()
bsd-3-clause
cscorley/doc2vec-feature-location
scripts/boxplots.py
2
1180
# coding: utf-8 # In[1]: import numpy as np import matplotlib.pyplot as plt import gensim import src.main # In[2]: def get_all_ranks(project): r_lda = [x for x,y,z in src.main.read_ranks(project, 'release_lda')] r_lsi = [x for x,y,z in src.main.read_ranks(project, 'release_lsi')] c_lda = [x for x,y,z in src.main.read_ranks(project, 'changeset_lda')] c_lsi = [x for x,y,z in src.main.read_ranks(project, 'changeset_lsi')] try: t_lda = [x for x,y,z in src.main.read_ranks(project, 'temporal_lda')] t_lsi = [x for x,y,z in src.main.read_ranks(project, 'temporal_lsi')] except: t_lda = [] t_lsi = [] return r_lda, c_lda, t_lda, r_lsi, c_lsi, t_lsi # In[3]: projects = src.main.load_projects() # In[8]: for project in projects: ranks = get_all_ranks(project) fig = plt.figure(dpi=300) fig.gca().boxplot(ranks, labels=['S-LDA', 'C-LDA', 'T-LDA', 'S-LSI', 'C-LSI', 'T-LSI']) fig.gca().set_title(' '.join([project.name, project.version, project.level])) plt.savefig('paper/figures/' + project.name + project.version + project.level + '.png') plt.close() # In[ ]:
bsd-3-clause
jmetzen/scikit-learn
examples/svm/plot_iris.py
225
3252
""" ================================================== Plot different SVM classifiers in the iris dataset ================================================== Comparison of different linear SVM classifiers on a 2D projection of the iris dataset. We only consider the first 2 features of this dataset: - Sepal length - Sepal width This example shows how to plot the decision surface for four SVM classifiers with different kernels. The linear models ``LinearSVC()`` and ``SVC(kernel='linear')`` yield slightly different decision boundaries. This can be a consequence of the following differences: - ``LinearSVC`` minimizes the squared hinge loss while ``SVC`` minimizes the regular hinge loss. - ``LinearSVC`` uses the One-vs-All (also known as One-vs-Rest) multiclass reduction while ``SVC`` uses the One-vs-One multiclass reduction. Both linear models have linear decision boundaries (intersecting hyperplanes) while the non-linear kernel models (polynomial or Gaussian RBF) have more flexible non-linear decision boundaries with shapes that depend on the kind of kernel and its parameters. .. NOTE:: while plotting the decision function of classifiers for toy 2D datasets can help get an intuitive understanding of their respective expressive power, be aware that those intuitions don't always generalize to more realistic high-dimensional problems. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import svm, datasets # import some data to play with iris = datasets.load_iris() X = iris.data[:, :2] # we only take the first two features. We could # avoid this ugly slicing by using a two-dim dataset y = iris.target h = .02 # step size in the mesh # we create an instance of SVM and fit out data. We do not scale our # data since we want to plot the support vectors C = 1.0 # SVM regularization parameter svc = svm.SVC(kernel='linear', C=C).fit(X, y) rbf_svc = svm.SVC(kernel='rbf', gamma=0.7, C=C).fit(X, y) poly_svc = svm.SVC(kernel='poly', degree=3, C=C).fit(X, y) lin_svc = svm.LinearSVC(C=C).fit(X, y) # create a mesh to plot in x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) # title for the plots titles = ['SVC with linear kernel', 'LinearSVC (linear kernel)', 'SVC with RBF kernel', 'SVC with polynomial (degree 3) kernel'] for i, clf in enumerate((svc, lin_svc, rbf_svc, poly_svc)): # Plot the decision boundary. For that, we will assign a color to each # point in the mesh [x_min, m_max]x[y_min, y_max]. plt.subplot(2, 2, i + 1) plt.subplots_adjust(wspace=0.4, hspace=0.4) Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) plt.contourf(xx, yy, Z, cmap=plt.cm.Paired, alpha=0.8) # Plot also the training points plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Paired) plt.xlabel('Sepal length') plt.ylabel('Sepal width') plt.xlim(xx.min(), xx.max()) plt.ylim(yy.min(), yy.max()) plt.xticks(()) plt.yticks(()) plt.title(titles[i]) plt.show()
bsd-3-clause
mayblue9/scikit-learn
sklearn/decomposition/tests/test_online_lda.py
21
13171
import numpy as np from scipy.linalg import block_diag from scipy.sparse import csr_matrix from scipy.special import psi from sklearn.decomposition import LatentDirichletAllocation from sklearn.decomposition._online_lda import (_dirichlet_expectation_1d, _dirichlet_expectation_2d) from sklearn.utils.testing import assert_allclose from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_greater_equal from sklearn.utils.testing import assert_raises_regexp from sklearn.utils.testing import if_safe_multiprocessing_with_blas from sklearn.utils.validation import NotFittedError from sklearn.externals.six.moves import xrange def _build_sparse_mtx(): # Create 3 topics and each topic has 3 disticnt words. # (Each word only belongs to a single topic.) n_topics = 3 block = n_topics * np.ones((3, 3)) blocks = [block] * n_topics X = block_diag(*blocks) X = csr_matrix(X) return (n_topics, X) def test_lda_default_prior_params(): # default prior parameter should be `1 / topics` # and verbose params should not affect result n_topics, X = _build_sparse_mtx() prior = 1. / n_topics lda_1 = LatentDirichletAllocation(n_topics=n_topics, doc_topic_prior=prior, topic_word_prior=prior, random_state=0) lda_2 = LatentDirichletAllocation(n_topics=n_topics, random_state=0) topic_distr_1 = lda_1.fit_transform(X) topic_distr_2 = lda_2.fit_transform(X) assert_almost_equal(topic_distr_1, topic_distr_2) def test_lda_fit_batch(): # Test LDA batch learning_offset (`fit` method with 'batch' learning) rng = np.random.RandomState(0) n_topics, X = _build_sparse_mtx() lda = LatentDirichletAllocation(n_topics=n_topics, evaluate_every=1, learning_method='batch', random_state=rng) lda.fit(X) correct_idx_grps = [(0, 1, 2), (3, 4, 5), (6, 7, 8)] for component in lda.components_: # Find top 3 words in each LDA component top_idx = set(component.argsort()[-3:][::-1]) assert_true(tuple(sorted(top_idx)) in correct_idx_grps) def test_lda_fit_online(): # Test LDA online learning (`fit` method with 'online' learning) rng = np.random.RandomState(0) n_topics, X = _build_sparse_mtx() lda = LatentDirichletAllocation(n_topics=n_topics, learning_offset=10., evaluate_every=1, learning_method='online', random_state=rng) lda.fit(X) correct_idx_grps = [(0, 1, 2), (3, 4, 5), (6, 7, 8)] for component in lda.components_: # Find top 3 words in each LDA component top_idx = set(component.argsort()[-3:][::-1]) assert_true(tuple(sorted(top_idx)) in correct_idx_grps) def test_lda_partial_fit(): # Test LDA online learning (`partial_fit` method) # (same as test_lda_batch) rng = np.random.RandomState(0) n_topics, X = _build_sparse_mtx() lda = LatentDirichletAllocation(n_topics=n_topics, learning_offset=10., total_samples=100, random_state=rng) for i in xrange(3): lda.partial_fit(X) correct_idx_grps = [(0, 1, 2), (3, 4, 5), (6, 7, 8)] for c in lda.components_: top_idx = set(c.argsort()[-3:][::-1]) assert_true(tuple(sorted(top_idx)) in correct_idx_grps) def test_lda_dense_input(): # Test LDA with dense input. rng = np.random.RandomState(0) n_topics, X = _build_sparse_mtx() lda = LatentDirichletAllocation(n_topics=n_topics, learning_method='batch', random_state=rng) lda.fit(X.toarray()) correct_idx_grps = [(0, 1, 2), (3, 4, 5), (6, 7, 8)] for component in lda.components_: # Find top 3 words in each LDA component top_idx = set(component.argsort()[-3:][::-1]) assert_true(tuple(sorted(top_idx)) in correct_idx_grps) def test_lda_transform(): # Test LDA transform. # Transform result cannot be negative rng = np.random.RandomState(0) X = rng.randint(5, size=(20, 10)) n_topics = 3 lda = LatentDirichletAllocation(n_topics=n_topics, random_state=rng) X_trans = lda.fit_transform(X) assert_true((X_trans > 0.0).any()) def test_lda_fit_transform(): # Test LDA fit_transform & transform # fit_transform and transform result should be the same for method in ('online', 'batch'): rng = np.random.RandomState(0) X = rng.randint(10, size=(50, 20)) lda = LatentDirichletAllocation(n_topics=5, learning_method=method, random_state=rng) X_fit = lda.fit_transform(X) X_trans = lda.transform(X) assert_array_almost_equal(X_fit, X_trans, 4) def test_lda_partial_fit_dim_mismatch(): # test `n_features` mismatch in `partial_fit` rng = np.random.RandomState(0) n_topics = rng.randint(3, 6) n_col = rng.randint(6, 10) X_1 = np.random.randint(4, size=(10, n_col)) X_2 = np.random.randint(4, size=(10, n_col + 1)) lda = LatentDirichletAllocation(n_topics=n_topics, learning_offset=5., total_samples=20, random_state=rng) lda.partial_fit(X_1) assert_raises_regexp(ValueError, r"^The provided data has", lda.partial_fit, X_2) def test_invalid_params(): # test `_check_params` method X = np.ones((5, 10)) invalid_models = ( ('n_topics', LatentDirichletAllocation(n_topics=0)), ('learning_method', LatentDirichletAllocation(learning_method='unknown')), ('total_samples', LatentDirichletAllocation(total_samples=0)), ('learning_offset', LatentDirichletAllocation(learning_offset=-1)), ) for param, model in invalid_models: regex = r"^Invalid %r parameter" % param assert_raises_regexp(ValueError, regex, model.fit, X) def test_lda_negative_input(): # test pass dense matrix with sparse negative input. X = -np.ones((5, 10)) lda = LatentDirichletAllocation() regex = r"^Negative values in data passed" assert_raises_regexp(ValueError, regex, lda.fit, X) def test_lda_no_component_error(): # test `transform` and `perplexity` before `fit` rng = np.random.RandomState(0) X = rng.randint(4, size=(20, 10)) lda = LatentDirichletAllocation() regex = r"^no 'components_' attribute" assert_raises_regexp(NotFittedError, regex, lda.transform, X) assert_raises_regexp(NotFittedError, regex, lda.perplexity, X) def test_lda_transform_mismatch(): # test `n_features` mismatch in partial_fit and transform rng = np.random.RandomState(0) X = rng.randint(4, size=(20, 10)) X_2 = rng.randint(4, size=(10, 8)) n_topics = rng.randint(3, 6) lda = LatentDirichletAllocation(n_topics=n_topics, random_state=rng) lda.partial_fit(X) assert_raises_regexp(ValueError, r"^The provided data has", lda.partial_fit, X_2) @if_safe_multiprocessing_with_blas def test_lda_multi_jobs(): n_topics, X = _build_sparse_mtx() # Test LDA batch training with multi CPU for method in ('online', 'batch'): rng = np.random.RandomState(0) lda = LatentDirichletAllocation(n_topics=n_topics, n_jobs=2, learning_method=method, random_state=rng) lda.fit(X) correct_idx_grps = [(0, 1, 2), (3, 4, 5), (6, 7, 8)] for c in lda.components_: top_idx = set(c.argsort()[-3:][::-1]) assert_true(tuple(sorted(top_idx)) in correct_idx_grps) @if_safe_multiprocessing_with_blas def test_lda_partial_fit_multi_jobs(): # Test LDA online training with multi CPU rng = np.random.RandomState(0) n_topics, X = _build_sparse_mtx() lda = LatentDirichletAllocation(n_topics=n_topics, n_jobs=2, learning_offset=5., total_samples=30, random_state=rng) for i in range(2): lda.partial_fit(X) correct_idx_grps = [(0, 1, 2), (3, 4, 5), (6, 7, 8)] for c in lda.components_: top_idx = set(c.argsort()[-3:][::-1]) assert_true(tuple(sorted(top_idx)) in correct_idx_grps) def test_lda_preplexity_mismatch(): # test dimension mismatch in `perplexity` method rng = np.random.RandomState(0) n_topics = rng.randint(3, 6) n_samples = rng.randint(6, 10) X = np.random.randint(4, size=(n_samples, 10)) lda = LatentDirichletAllocation(n_topics=n_topics, learning_offset=5., total_samples=20, random_state=rng) lda.fit(X) # invalid samples invalid_n_samples = rng.randint(4, size=(n_samples + 1, n_topics)) assert_raises_regexp(ValueError, r'Number of samples', lda.perplexity, X, invalid_n_samples) # invalid topic number invalid_n_topics = rng.randint(4, size=(n_samples, n_topics + 1)) assert_raises_regexp(ValueError, r'Number of topics', lda.perplexity, X, invalid_n_topics) def test_lda_perplexity(): # Test LDA perplexity for batch training # perplexity should be lower after each iteration n_topics, X = _build_sparse_mtx() for method in ('online', 'batch'): lda_1 = LatentDirichletAllocation(n_topics=n_topics, max_iter=1, learning_method=method, total_samples=100, random_state=0) lda_2 = LatentDirichletAllocation(n_topics=n_topics, max_iter=10, learning_method=method, total_samples=100, random_state=0) distr_1 = lda_1.fit_transform(X) perp_1 = lda_1.perplexity(X, distr_1, sub_sampling=False) distr_2 = lda_2.fit_transform(X) perp_2 = lda_2.perplexity(X, distr_2, sub_sampling=False) assert_greater_equal(perp_1, perp_2) perp_1_subsampling = lda_1.perplexity(X, distr_1, sub_sampling=True) perp_2_subsampling = lda_2.perplexity(X, distr_2, sub_sampling=True) assert_greater_equal(perp_1_subsampling, perp_2_subsampling) def test_lda_score(): # Test LDA score for batch training # score should be higher after each iteration n_topics, X = _build_sparse_mtx() for method in ('online', 'batch'): lda_1 = LatentDirichletAllocation(n_topics=n_topics, max_iter=1, learning_method=method, total_samples=100, random_state=0) lda_2 = LatentDirichletAllocation(n_topics=n_topics, max_iter=10, learning_method=method, total_samples=100, random_state=0) lda_1.fit_transform(X) score_1 = lda_1.score(X) lda_2.fit_transform(X) score_2 = lda_2.score(X) assert_greater_equal(score_2, score_1) def test_perplexity_input_format(): # Test LDA perplexity for sparse and dense input # score should be the same for both dense and sparse input n_topics, X = _build_sparse_mtx() lda = LatentDirichletAllocation(n_topics=n_topics, max_iter=1, learning_method='batch', total_samples=100, random_state=0) distr = lda.fit_transform(X) perp_1 = lda.perplexity(X) perp_2 = lda.perplexity(X, distr) perp_3 = lda.perplexity(X.toarray(), distr) assert_almost_equal(perp_1, perp_2) assert_almost_equal(perp_1, perp_3) def test_lda_score_perplexity(): # Test the relationship between LDA score and perplexity n_topics, X = _build_sparse_mtx() lda = LatentDirichletAllocation(n_topics=n_topics, max_iter=10, random_state=0) distr = lda.fit_transform(X) perplexity_1 = lda.perplexity(X, distr, sub_sampling=False) score = lda.score(X) perplexity_2 = np.exp(-1. * (score / np.sum(X.data))) assert_almost_equal(perplexity_1, perplexity_2) def test_lda_empty_docs(): """Test LDA on empty document (all-zero rows).""" Z = np.zeros((5, 4)) for X in [Z, csr_matrix(Z)]: lda = LatentDirichletAllocation(max_iter=750).fit(X) assert_almost_equal(lda.components_.sum(axis=0), np.ones(lda.components_.shape[1])) def test_dirichlet_expectation(): """Test Cython version of Dirichlet expectation calculation.""" x = np.logspace(-100, 10, 10000) expectation = np.empty_like(x) _dirichlet_expectation_1d(x, 0, expectation) assert_allclose(expectation, np.exp(psi(x) - psi(np.sum(x))), atol=1e-19) x = x.reshape(100, 100) assert_allclose(_dirichlet_expectation_2d(x), psi(x) - psi(np.sum(x, axis=1)[:, np.newaxis]), rtol=1e-11, atol=3e-9)
bsd-3-clause
joshbohde/scikit-learn
sklearn/linear_model/sparse/logistic.py
2
3922
""" Sparse Logistic Regression module This module has the same API as sklearn.linear_model.logistic, but is designed to handle efficiently data in sparse matrix format. """ import numpy as np import scipy.sparse as sp from ...base import ClassifierMixin from ...svm.sparse.base import SparseBaseLibLinear from ...linear_model.sparse.base import CoefSelectTransformerMixin from ...svm.liblinear import csr_predict_prob class LogisticRegression(SparseBaseLibLinear, ClassifierMixin, CoefSelectTransformerMixin): """ Logistic Regression. Implements L1 and L2 regularized logistic regression. Parameters ---------- penalty : string, 'l1' or 'l2' Used to specify the norm used in the penalization dual : boolean Dual or primal formulation. Dual formulation is only implemented for l2 penalty. C : float Specifies the strength of the regularization. The smaller it is the bigger in the regularization. fit_intercept : bool, default: True Specifies if a constant (a.k.a. bias or intercept) should be added the decision function intercept_scaling : float, default: 1 when self.fit_intercept is True, instance vector x becomes [x, self.intercept_scaling], i.e. a "synthetic" feature with constant value equals to intercept_scaling is appended to the instance vector. The intercept becomes intercept_scaling * synthetic feature weight Note! the synthetic feature weight is subject to l1/l2 regularization as all other features. To lessen the effect of regularization on synthetic feature weight (and therefore on the intercept) intercept_scaling has to be increased tol: float, optional tolerance for stopping criteria Attributes ---------- `coef_` : array, shape = [n_classes-1, n_features] Coefficient of the features in the decision function. `intercept_` : array, shape = [n_classes-1] intercept (a.k.a. bias) added to the decision function. It is available only when parameter intercept is set to True See also -------- LinearSVC Notes ----- The underlying C implementation uses a random number generator to select features when fitting the model. It is thus not uncommon, to have slightly different results for the same input data. If that happens, try with a smaller tol parameter. References ---------- LIBLINEAR -- A Library for Large Linear Classification http://www.csie.ntu.edu.tw/~cjlin/liblinear/ """ def __init__(self, penalty='l2', dual=False, tol=1e-4, C=1.0, fit_intercept=True, intercept_scaling=1): super(LogisticRegression, self).__init__ (penalty=penalty, dual=dual, loss='lr', tol=tol, C=C, fit_intercept=fit_intercept, intercept_scaling=intercept_scaling) def predict_proba(self, X): """ Probability estimates. The returned estimates for all classes are ordered by the label of classes. """ X = sp.csr_matrix(X) X.data = np.asanyarray(X.data, dtype=np.float64, order='C') probas = csr_predict_prob(X.shape[1], X.data, X.indices, X.indptr, self.raw_coef_, self._get_solver_type(), self.tol, self.C, self.class_weight_label, self.class_weight, self.label_, self._get_bias()) return probas[:,np.argsort(self.label_)] def predict_log_proba(self, T): """ Log of Probability estimates. The returned estimates for all classes are ordered by the label of classes. """ return np.log(self.predict_proba(T))
bsd-3-clause
cogstat/cogstat
cogstat/test/test_stat.py
1
22429
# -*- coding: utf-8 -*- import unittest import os import sys sys.path.insert(0, os.path.abspath('../..')) print(sys.path) from pathlib import Path import numpy as np import pandas as pd from cogstat import cogstat as cs print(cs.__file__) print(cs.__version__) print(os.path.abspath(cs.__file__)) """ - All statistical value should be tested at least once. - All leafs of the decision tree should be tested once. - Tests shouldn't give p<0.001 results, because exact values cannot be tested. - No need to test the details of the statistical methods imported from other modules, because that is the job of that specific module. - All variables should be used with 3 digits decimal precision, to ensure that copying the data for validation no additional rounding happens. """ #cs.output_type = 'do not format' np.random.seed(555) # https://docs.scipy.org/doc/numpy/reference/routines.random.html # Make sure to use round function to have the same precision of the data when copied to other software data_np = np.vstack(( np.round(np.random.normal(loc=3, scale=3, size=30), 3), np.round(np.random.lognormal(mean=3, sigma=3, size=30), 3), np.random.randint(3, size=30), np.random.randint(3, size=30), np.round(np.random.normal(loc=3, scale=3, size=30), 3), np.round(np.random.lognormal(mean=1.4, sigma=0.6, size=30), 3), np.round(np.random.normal(loc=6, scale=3, size=30), 3), np.round(np.random.normal(loc=7, scale=6, size=30), 3), np.random.randint(2, size=30), np.random.randint(2, size=30), np.random.randint(2, size=30), np.concatenate((np.round(np.random.normal(loc=3, scale=3, size=15), 3), np.round(np.random.normal(loc=4, scale=3, size=15), 3))), np.array([1]*15+[2]*15), np.array([1]+[2]*29), np.concatenate((np.round(np.random.normal(loc=3, scale=3, size=15), 3), np.round(np.random.lognormal(mean=1.5, sigma=2.0, size=15), 3))), np.concatenate((np.round(np.random.normal(loc=3, scale=3, size=15), 3), np.round(np.random.normal(loc=3, scale=7, size=15), 3))), np.array([1]*10+[2]*8+[3]*12), np.concatenate((np.round(np.random.normal(loc=3, scale=3, size=10), 3), np.round(np.random.normal(loc=3, scale=3, size=8), 3), np.round(np.random.normal(loc=6, scale=3, size=12), 3))) )) data_pd = pd.DataFrame(data_np.T, columns= ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r']) data = cs.CogStatData(data=data_pd, measurement_levels=['int', 'int', 'nom', 'nom', 'int', 'int', 'int', 'int', 'nom', 'nom', 'nom', 'int', 'nom', 'nom', 'int', 'int', 'int', 'int']) #pd.set_option('display.expand_frame_repr', False) #print (data_pd) class CogStatTestCase(unittest.TestCase): """Unit tests for CogStat.""" def test_explore_variables(self): """Test explore variables""" # Int variable result = data.explore_variable('a', 1, 2.0) #for i, res in enumerate(result): print(i, res) self.assertTrue('N of valid cases: 30' in result[2]) self.assertTrue('N of missing cases: 0' in result[2]) self.assertTrue('<td>Mean</td> <td>3.1438</td>' in result[4]) self.assertTrue('<td>Standard deviation</td> <td>3.2152</td>' in result[4]) self.assertTrue('<td>Skewness</td> <td>0.3586</td>' in result[4]) self.assertTrue('<td>Kurtosis</td> <td>0.0446</td>' in result[4]) self.assertTrue('<td>Range</td> <td>12.7840</td>' in result[4]) self.assertTrue('<td>Maximum</td> <td>9.9810</td>' in result[4]) self.assertTrue('<td>Upper quartile</td> <td>4.3875</td>' in result[4]) self.assertTrue('<td>Median</td> <td>2.8545</td>' in result[4]) self.assertTrue('<td>Lower quartile</td> <td>1.4190</td>' in result[4]) self.assertTrue('<td>Minimum</td> <td>-2.8030</td>' in result[4]) # Shapiro–Wilk normality self.assertTrue('<i>W</i> = 0.96' in result[6]) # <i>W</i> = 0.959 self.assertTrue('<i>p</i> = .287' in result[6]) # Population estimation and one sample t-test self.assertTrue('<td>Mean</td> <td>3.1438</td> <td>1.9227</td> <td>4.3649</td>' in result[9]) self.assertTrue('<td>Standard deviation</td> <td>3.2702</td> <td>2.6044</td> <td>4.3961</td>' in result[9]) # Sensitivity power analysis # G*Power 3.1.9.6: 0.6811825 # jamovi v1.2.19.0, jpower 0.1.2: 0.681 self.assertTrue('(effect size is in d): 0.68' in result[11]) self.assertTrue('t</i>(29) = 1.92' in result[11]) self.assertTrue('p</i> = .065' in result[11]) # Wilcoxon signed-rank test for non-normal interval variable result = data.explore_variable('b', 0, 20.0) self.assertTrue('T</i> = 203' in result[11]) self.assertTrue('p</i> = .551' in result[11]) # Ord variable data.data_measlevs['a'] = 'ord' result = data.explore_variable('a', 1, 2.0) self.assertTrue('N of valid cases: 30' in result[2]) self.assertTrue('N of missing cases: 0' in result[2]) self.assertTrue('<td>Maximum</td> <td>9.9810</td>' in result[4]) self.assertTrue('<td>Upper quartile</td> <td>4.3875</td>' in result[4]) self.assertTrue('<td>Median</td> <td>2.8545</td>' in result[4]) self.assertTrue('<td>Lower quartile</td> <td>1.4190</td>' in result[4]) self.assertTrue('<td>Minimum</td> <td>-2.8030</td>' in result[4]) # TODO median CI # Wilcoxon signed-rank test self.assertTrue('T</i> = 145' in result[9]) self.assertTrue('p</i> = .074' in result[9]) data.data_measlevs['a'] = 'int' # Nominal variable #result = data.explore_variable('c') # TODO variation ratio # TODO multinomial proportion CI def test_explore_variable_pairs(self): """Test explore variable pairs""" # Int variables result = data.explore_variable_pair('a', 'b') self.assertTrue('N of valid pairs: 30' in result[1]) self.assertTrue('N of missing pairs: 0' in result[1]) self.assertTrue('-0.141' in result[4]) self.assertTrue('[-0.477, 0.231]' in result[6]) self.assertTrue("Pearson's correlation: <i>r</i>(28) = -0.14, <i>p</i> = .456" in result[7]) # <i>r</i>(28) = -0.141 self.assertTrue('y = -21.811x + 300.505' in result[3]) self.assertTrue('-0.363' in result[4]) self.assertTrue('[-0.640, -0.003]' in result[6]) self.assertTrue("Spearman's rank-order correlation: <i>r<sub>s</sub></i>(28) = -0.36, <i>p</i> = .048" in result[7]) # <i>r<sub>s</sub></i>(28) = -0.363 # Ord variables data.data_measlevs['a'] = 'ord' data.data_measlevs['b'] = 'ord' result = data.explore_variable_pair('a', 'b') self.assertTrue('-0.363' in result[4]) self.assertTrue('[-0.640, -0.003]' in result[5]) self.assertTrue("Spearman's rank-order correlation: <i>r<sub>s</sub></i>(28) = -0.36, <i>p</i> = .048" in result[6]) # <i>r<sub>s</sub></i>(28) = -0.363 data.data_measlevs['a'] = 'int' data.data_measlevs['b'] = 'int' # Nom variables result = data.explore_variable_pair('c', 'd') self.assertTrue('N of valid pairs: 30' in result[1]) self.assertTrue('N of missing pairs: 0' in result[1]) # Cramer's V self.assertTrue('<sub>c</sub></i> = 0.372' in result[4]) # Sensitivity power analysis # G*Power 3.1.9.6, Goodness of fit test, df=4: Contingency tables: 0.7868005 # TODO GPower gives 0.8707028 with df of 8; Seems like statsmodels GofChisquarePower calculates power # with df=8; should we use 4 or 8 df? https://github.com/cogstat/cogstat/issues/134 self.assertTrue('(effect size is in w): 0.87' in result[6]) # Chi-squared # jamovi v1.2.19.0: X2, df, p, N: 8.31, 4, 0.081, 30 self.assertTrue('(4, <i>N</i> = 30) = 8.31' in result[6]) # (4, <i>N</i> = 30) = 8.312 self.assertTrue('<i>p</i> = .081' in result[6]) def test_diffusion(self): """Test diffusion analysis""" data_diffusion = cs.CogStatData(data=str(Path('data/diffusion.csv'))) result = data_diffusion.diffusion(error_name=['Error'], RT_name=['RT_sec'], participant_name=['Name'], condition_names=['Num1', 'Num2']) # Drift rate self.assertTrue('<td>zsiraf</td> <td>0.190</td> <td>0.276</td> <td>0.197</td> <td>0.235</td> <td>0.213</td>' in result[1]) # Threshold self.assertTrue('<td>zsiraf</td> <td>0.178</td> <td>0.096</td> <td>0.171</td> <td>0.112</td> <td>0.088</td>' in result[1]) # Nondecision time self.assertTrue('<td>zsiraf</td> <td>0.481</td> <td>0.590</td> <td>0.483</td> <td>0.561</td> <td>0.522</td>' in result[1]) def test_compare_variables(self): """Test compare variables""" # 2 Int variables result = data.compare_variables(['a', 'e']) self.assertTrue('N of valid cases: 30' in result[1]) self.assertTrue('N of missing cases: 0' in result[1]) # Cohen's d # CS formula: https://pingouin-stats.org/generated/pingouin.compute_effsize.html # Based on the formula, calculated in LO Calc 6.4: 0.030004573510063 # jamovi v1.2.19.0: 0.0202; formula: https://github.com/jamovi/jmv/blob/master/R/ttestps.b.R#L54-L66 self.assertTrue("<td>Cohen's d</td> <td>0.030</td>" in result[3]) # eta-squared # CS formula: https://pingouin-stats.org/generated/pingouin.convert_effsize.html # Based on the formula, calculated in LO Calc 6.4: 0.0002250179634 # jamovi v1.2.19.0: 0.000 self.assertTrue('<td>Eta-squared</td> <td>0.000</td>' in result[3]) # Sample means self.assertTrue('<td>3.1438</td> <td>3.0502</td>' in result[3]) # Hedges'g (with CI) # CS formula: https://pingouin-stats.org/generated/pingouin.compute_effsize.html # https://pingouin-stats.org/generated/pingouin.compute_esci.html # Note that the latter (CI) method has changed in v0.3.5 https://pingouin-stats.org/changelog.html # Based on the formula, calculated in LO Calc 7.0: 0.029614903724218, -0.34445335392457, 0.403683161373007 # Note that the last value is 0.404 in LO, not .403 as in pingouin self.assertTrue("<td>Hedges' g</td> <td>0.030</td> <td>-0.344</td> <td>0.403</td>" in result[5]) self.assertTrue('<i>W</i> = 0.95, <i>p</i> = .215' in result[7]) # <i>W</i> = 0.954 # Sensitivity power analysis # G*Power 3.1.9.6: 0.6811825 # jamovi v1.2.19.0, jpower 0.1.2: 0.681 self.assertTrue('(effect size is in d): 0.68' in result[7]) # Paired samples t-test # jamovi v1.2.19.0: t, df, p: 0.110, 29.0, 0.913 self.assertTrue('<i>t</i>(29) = 0.11, <i>p</i> = .913' in result[7]) # 2 Int variables - non-normal result = data.compare_variables(['e', 'f']) self.assertTrue('<i>W</i> = 0.91, <i>p</i> = .019' in result[7]) # <i>W</i> = 0.915 self.assertTrue('<i>T</i> = 110.00, <i>p</i> = .012' in result[7]) # 3 Int variables result = data.compare_variables(['a', 'e', 'g']) self.assertTrue('<td>3.1438</td> <td>3.0502</td> <td>5.7295</td>' in result[3]) self.assertTrue('a: <i>W</i> = 0.96, <i>p</i> = .287' in result[7]) # <i>W</i> = 0.959 self.assertTrue('e: <i>W</i> = 0.97, <i>p</i> = .435' in result[7]) # <i>W</i> = 0.966 self.assertTrue('g: <i>W</i> = 0.95, <i>p</i> = .133' in result[7]) #x <i>W</i> = 0.946 self.assertTrue('sphericity: <i>W</i> = 0.98, <i>p</i> = .703' in result[7]) # <i>W</i> = 0.975 self.assertTrue('<i>F</i>(2, 58) = 6.17, <i>p</i> = .004' in result[7]) self.assertTrue('0.11, <i>p</i> = .913' in result[7]) # TODO keep the order of the variables, and have a fixed sign self.assertTrue('3.17, <i>p</i> = .011' in result[7]) self.assertTrue('2.88, <i>p</i> = .015' in result[7]) # 3 Int variables, sphericity violated result = data.compare_variables(['a', 'e', 'h']) self.assertTrue('<td>3.1438</td> <td>3.0502</td> <td>6.5786</td>' in result[3]) self.assertTrue('a: <i>W</i> = 0.96, <i>p</i> = .287' in result[7]) # <i>W</i> = 0.959 self.assertTrue('e: <i>W</i> = 0.97, <i>p</i> = .435' in result[7]) # <i>W</i> = 0.966 self.assertTrue('h: <i>W</i> = 0.98, <i>p</i> = .824' in result[7]) self.assertTrue('sphericity: <i>W</i> = 0.79, <i>p</i> = .039' in result[7]) # <i>W</i> = 0.793 self.assertTrue('<i>F</i>(1.66, 48) = 6.16, <i>p</i> = .007' in result[7]) self.assertTrue('0.11, <i>p</i> = .913' in result[7]) # TODO keep the order of the variables, and have a fixed sign self.assertTrue('2.68, <i>p</i> = .024' in result[7]) self.assertTrue('2.81, <i>p</i> = .026' in result[7]) # 3 Int variables, non-normal result = data.compare_variables(['a', 'e', 'f']) self.assertTrue('<td>3.1438</td> <td>3.0502</td> <td>5.3681</td>' in result[3]) self.assertTrue('a: <i>W</i> = 0.96, <i>p</i> = .287' in result[7]) # <i>W</i> = 0.959 self.assertTrue('e: <i>W</i> = 0.97, <i>p</i> = .435' in result[7]) # <i>W</i> = 0.966 self.assertTrue('f: <i>W</i> = 0.82, <i>p</i> &lt; .001' in result[7]) # <i>W</i> = 0.818 self.assertTrue('&chi;<sup>2</sup>(2, <i>N</i> = 30) = 6.47, <i>p</i> = .039' in result[7]) # 2 × 2 Int variables result = data.compare_variables(['a', 'b', 'e', 'f'], factors=[['first', 2], ['second', 2]]) self.assertTrue('Main effect of first: <i>F</i>(1, 29) = 6.06, <i>p</i> = .020' in result[7]) self.assertTrue('Main effect of second: <i>F</i>(1, 29) = 6.29, <i>p</i> = .018' in result[7]) self.assertTrue('Interaction of factors first, second: <i>F</i>(1, 29) = 6.04, <i>p</i> = .020' in result[7]) # 2 Ord variables data.data_measlevs['a'] = 'ord' data.data_measlevs['e'] = 'ord' data.data_measlevs['f'] = 'ord' result = data.compare_variables(['e', 'f']) self.assertTrue('<td>2.3895</td> <td>4.2275</td>' in result[3]) self.assertTrue('<i>T</i> = 110.00, <i>p</i> = .012' in result[6]) # 3 Ord variables result = data.compare_variables(['a', 'e', 'f']) self.assertTrue('<td>2.8545</td> <td>2.3895</td> <td>4.2275</td>' in result[3]) self.assertTrue('&chi;<sup>2</sup>(2, <i>N</i> = 30) = 6.47, <i>p</i> = .039' in result[6]) data.data_measlevs['a'] = 'int' data.data_measlevs['e'] = 'int' data.data_measlevs['f'] = 'int' # 2 Nom variables result = data.compare_variables(['i', 'j']) # TODO on Linux the row labels are 0.0 and 1.0 instead of 0 and 1 self.assertTrue('<td>0.0</td> <td>4</td> <td>9</td> <td>13</td> </tr> <tr> <td>1.0</td> <td>9</td>' in result[3]) self.assertTrue('&chi;<sup>2</sup>(1, <i>N</i> = 30) = 0.06, <i>p</i> = .814' in result[5]) # &chi;<sup>2</sup>(1, <i>N</i> = 30) = 0.0556 # 3 Nom variables result = data.compare_variables(['i', 'j', 'k']) self.assertTrue('<i>Q</i>(2, <i>N</i> = 30) = 0.78, <i>p</i> = .676' in result[7]) # <i>Q</i>(2, <i>N</i> = 30) = 0.783 def test_compare_groups(self): """Test compare groups""" # 2 Int groups result = data.compare_groups('l', ['m']) self.assertTrue('<td>2.5316</td> <td>4.5759</td>' in result[3]) # Cohen's d # CS formula: https://pingouin-stats.org/generated/pingouin.compute_effsize.html # Based on the formula, calculated in LO Calc 6.4: -0.704171924382848 # jamovi v1.2.19.0: 0.0704 self.assertTrue("<td>Cohen's d</td> <td>-0.704</td>" in result[3]) # eta-squared # CS formula: https://pingouin-stats.org/generated/pingouin.convert_effsize.html # Based on the formula, calculated in LO Calc 6.4: 0.110292204104377 # jamovi v1.2.19.0: 0.117 # TODO why the difference? self.assertTrue('<td>Eta-squared</td> <td>0.110</td>' in result[3]) # Hedges'g (with CI) # CS formula: https://pingouin-stats.org/generated/pingouin.compute_effsize.html # https://pingouin-stats.org/generated/pingouin.compute_esci.html # Note that the latter (CI) method has changed in v0.3.5 https://pingouin-stats.org/changelog.html # Based on the formula, calculated in LO Calc 7.0: -0.685140250750879, -1.45474443187683, 0.084463930375068 self.assertTrue('<td>Difference between the two groups:</td> <td>-2.0443</td> <td>-4.2157</td> <td>0.1272</td>' in result[5]) self.assertTrue("<td>Hedges' g</td> <td>-0.685</td> <td>-1.455</td> <td>0.084</td>" in result[6]) self.assertTrue('(m: 1.0): <i>W</i> = 0.96, <i>p</i> = .683' in result[8]) # <i>W</i> = 0.959 self.assertTrue('(m: 2.0): <i>W</i> = 0.98, <i>p</i> = .991' in result[8]) # <i>W</i> = 0.984 self.assertTrue('<i>W</i> = 0.30, <i>p</i> = .585' in result[8]) # <i>W</i> = 0.305 # Sensitivity power analysis # G*Power 3.1.9.6: 1.3641059 # jamovi v1.2.19.0, jpower 0.1.2: 1.36 self.assertTrue('(effect size is in d): 1.36' in result[8]) # independent samples t-test # jamovi v1.2.19.0: t, df, p: -1.93, 28.0, 0.064 self.assertTrue('<i>t</i>(28) = -1.93, <i>p</i> = .064' in result[8]) # Non-normal group result = data.compare_groups('o', ['m']) self.assertTrue('(m: 2.0): <i>W</i> = 0.81, <i>p</i> = .005' in result[8]) # <i>W</i> = 0.808 self.assertTrue('<i>U</i> = 51.00, <i>p</i> = .011' in result[8]) # Heteroscedastic groups result = data.compare_groups('p', ['m']) self.assertTrue('<i>t</i>(25.3) = 0.12, <i>p</i> = .907' in result[8]) # <i>t</i>(25.3) = 0.119 # TODO single case vs. group # 3 Int groups result = data.compare_groups('r', ['q']) self.assertTrue('<td>3.2869</td> <td>5.0400</td> <td>7.2412</td>' in result[3]) self.assertTrue('<i>W</i> = 0.68, <i>p</i> = .517' in result[8]) # TODO this might be incorrect # <i>W</i> = 0.675 # Sensitivity power analysis # G*Power 3.1.9.6: 0.7597473 self.assertTrue('(effect size is in f): 0.76' in result[8]) self.assertTrue('<i>F</i>(2, 27) = 4.00, <i>p</i> = .030' in result[8]) self.assertTrue('&omega;<sup>2</sup> = 0.167' in result[6]) # TODO post-hoc # 3 Int groups with assumption violation result = data.compare_groups('o', ['q']) self.assertTrue('&chi;<sup>2</sup>(2, <i>N</i> = 30) = 8.37, <i>p</i> = .015' in result[8]) # 2 Ord groups data.data_measlevs['o'] = 'ord' result = data.compare_groups('o', ['m']) self.assertTrue('<i>U</i> = 51.00, <i>p</i> = .011' in result[6]) # 3 Ord groups data.data_measlevs['o'] = 'ord' result = data.compare_groups('o', ['q']) self.assertTrue('&chi;<sup>2</sup>(2, <i>N</i> = 30) = 8.37, <i>p</i> = .015' in result[6]) data.data_measlevs['o'] = 'int' # 2 Nom groups result = data.compare_groups('i', ['j']) self.assertTrue('&phi;<i><sub>c</sub></i> = 0.154' in result[3]) # TODO validate self.assertTrue('&chi;<sup>2</sup></i>(1, <i>N</i> = 30) = 0.71, <i>p</i> = .399' in result[5]) # TODO validate # &chi;<sup>2</sup></i>(1, <i>N</i> = 30) = 0.710 # 3 Nom groups result = data.compare_groups('i', ['c']) self.assertTrue('&phi;<i><sub>c</sub></i> = 0.009' in result[3]) # TODO validate self.assertTrue('&chi;<sup>2</sup></i>(2, <i>N</i> = 30) = 0.00, <i>p</i> = .999' in result[5]) # TODO validate # &chi;<sup>2</sup></i>(2, <i>N</i> = 30) = 0.002 # 3 × 3 Int groups result = data.compare_groups('a', ['c', 'd']) self.assertTrue('<td>Mean</td> <td>1.0695</td> <td>1.8439</td> <td>2.3693</td>' in result[3]) self.assertTrue('<td>Standard deviation</td> <td>2.7005</td> <td>2.0891</td> <td>4.2610</td>' in result[3]) self.assertTrue('<td>Maximum</td> <td>4.4130</td> <td>4.7890</td> <td>9.1600</td>' in result[3]) self.assertTrue('<td>Upper quartile</td> <td>3.0000</td> <td>3.0213</td> <td>4.4028</td>' in result[3]) self.assertTrue('<td>Median</td> <td>1.3340</td> <td>2.4590</td> <td>0.9015</td>' in result[3]) self.assertTrue('<td>Lower quartile</td> <td>-0.5965</td> <td>0.8870</td> <td>-1.1320</td>' in result[3]) self.assertTrue('<td>Minimum</td> <td>-2.8030</td> <td>-2.2890</td> <td>-1.4860</td>' in result[3]) # TODO the two main effects differ from the SPSS result, see issue #91 self.assertTrue('<i>F</i>(2, 21) = 2.35, <i>p</i> = .120' in result[7]) self.assertTrue('<i>F</i>(2, 21) = 0.19, <i>p</i> = .832' in result[7]) # <i>F</i>(2, 21) = 0.185 self.assertTrue('<i>F</i>(4, 21) = 1.15, <i>p</i> = .363' in result[7]) def test_single_case(self): # Test for the slope stat data = cs.CogStatData(data='''group slope slope_SE Patient 0.247 0.069 Control 0.492 0.106 Control 0.559 0.108 Control 0.63 0.116 Control 0.627 0.065 Control 0.674 0.105 Control 0.538 0.107''') result = data.compare_groups('slope', ['group'], 'slope_SE', 25) self.assertTrue('Test d.2: <i>t</i>(42.1) = -4.21, <i>p</i> &lt; .001' in result[8]) result = data.compare_groups('slope', ['group']) self.assertTrue('<i>t</i>(5) = -5.05, <i>p</i> = .004' in result[8]) if __name__ == '__main__': unittest.main()
gpl-3.0
okuraoy/mywork
mtlearn/datasets.py
1
2037
#!/usr/bin/python # -*- coding: utf-8 -*- import numpy as np import pandas as pd from sklearn.datasets.base import Bunch from os.path import join PATH = "d:\\data" # class Bunch(dict): # """Container object for datasets # Dictionary-like object that exposes its keys as attributes. # # See: sklearn.datasets.base.py Bunch # """ # # def __init__(self, **kwargs): # super(Bunch, self).__init__(kwargs) # # def __setattr__(self, key, value): # self[key] = value # # def __dir__(self): # return self.keys() # # def __getattr__(self, key): # try: # return self[key] # except KeyError: # raise AttributeError(key) # # def __setstate__(self, state): # # Bunch pickles generated with scikit-learn 0.16.* have an non # # empty __dict__. This causes a surprising behaviour when # # loading these pickles scikit-learn 0.17: reading bunch.key # # uses __dict__ but assigning to bunch.key use __setattr__ and # # only changes bunch['key']. More details can be found at: # # https://github.com/scikit-learn/scikit-learn/issues/6196. # # Overriding __setstate__ to be a noop has the effect of # # ignoring the pickled __dict__ # pass def parse_date(x): return pd.datetime.strptime(x, '%Y-%m-%d') def load_pcs_data(): # column: date,pcs,f1,f2,... # sep='\001', df = pd.read_csv(join(PATH, 'spu_pcs_20170721.csv'), sep='\001', parse_dates=['date'], date_parser=parse_date) df.sort_values(by='date') columns = np.array(df.columns.values) feature_name = columns[2:] tmp_data = np.array(df) inx_data = tmp_data[:, 0] target = tmp_data[:, 1] data = tmp_data[:, 2:] # print shape print data.shape print feature_name return Bunch(data=data, target=target, feature_names=feature_name, inx=inx_data) if __name__ == '__main__': load_pcs_data()
apache-2.0
Ziqi-Li/bknqgis
pandas/pandas/tests/plotting/test_series.py
2
32812
# coding: utf-8 """ Test cases for Series.plot """ import itertools import pytest from datetime import datetime import pandas as pd from pandas import Series, DataFrame, date_range from pandas.compat import range, lrange import pandas.util.testing as tm import numpy as np from numpy.random import randn import pandas.plotting as plotting from pandas.tests.plotting.common import (TestPlotBase, _check_plot_works, _skip_if_no_scipy_gaussian_kde, _ok_for_gaussian_kde) tm._skip_if_no_mpl() class TestSeriesPlots(TestPlotBase): def setup_method(self, method): TestPlotBase.setup_method(self, method) import matplotlib as mpl mpl.rcdefaults() self.ts = tm.makeTimeSeries() self.ts.name = 'ts' self.series = tm.makeStringSeries() self.series.name = 'series' self.iseries = tm.makePeriodSeries() self.iseries.name = 'iseries' @pytest.mark.slow def test_plot(self): _check_plot_works(self.ts.plot, label='foo') _check_plot_works(self.ts.plot, use_index=False) axes = _check_plot_works(self.ts.plot, rot=0) self._check_ticks_props(axes, xrot=0) ax = _check_plot_works(self.ts.plot, style='.', logy=True) self._check_ax_scales(ax, yaxis='log') ax = _check_plot_works(self.ts.plot, style='.', logx=True) self._check_ax_scales(ax, xaxis='log') ax = _check_plot_works(self.ts.plot, style='.', loglog=True) self._check_ax_scales(ax, xaxis='log', yaxis='log') _check_plot_works(self.ts[:10].plot.bar) _check_plot_works(self.ts.plot.area, stacked=False) _check_plot_works(self.iseries.plot) for kind in ['line', 'bar', 'barh', 'kde', 'hist', 'box']: if not _ok_for_gaussian_kde(kind): continue _check_plot_works(self.series[:5].plot, kind=kind) _check_plot_works(self.series[:10].plot.barh) ax = _check_plot_works(Series(randn(10)).plot.bar, color='black') self._check_colors([ax.patches[0]], facecolors=['black']) # GH 6951 ax = _check_plot_works(self.ts.plot, subplots=True) self._check_axes_shape(ax, axes_num=1, layout=(1, 1)) ax = _check_plot_works(self.ts.plot, subplots=True, layout=(-1, 1)) self._check_axes_shape(ax, axes_num=1, layout=(1, 1)) ax = _check_plot_works(self.ts.plot, subplots=True, layout=(1, -1)) self._check_axes_shape(ax, axes_num=1, layout=(1, 1)) @pytest.mark.slow def test_plot_figsize_and_title(self): # figsize and title _, ax = self.plt.subplots() ax = self.series.plot(title='Test', figsize=(16, 8), ax=ax) self._check_text_labels(ax.title, 'Test') self._check_axes_shape(ax, axes_num=1, layout=(1, 1), figsize=(16, 8)) def test_dont_modify_rcParams(self): # GH 8242 if self.mpl_ge_1_5_0: key = 'axes.prop_cycle' else: key = 'axes.color_cycle' colors = self.plt.rcParams[key] _, ax = self.plt.subplots() Series([1, 2, 3]).plot(ax=ax) assert colors == self.plt.rcParams[key] def test_ts_line_lim(self): fig, ax = self.plt.subplots() ax = self.ts.plot(ax=ax) xmin, xmax = ax.get_xlim() lines = ax.get_lines() assert xmin == lines[0].get_data(orig=False)[0][0] assert xmax == lines[0].get_data(orig=False)[0][-1] tm.close() ax = self.ts.plot(secondary_y=True, ax=ax) xmin, xmax = ax.get_xlim() lines = ax.get_lines() assert xmin == lines[0].get_data(orig=False)[0][0] assert xmax == lines[0].get_data(orig=False)[0][-1] def test_ts_area_lim(self): _, ax = self.plt.subplots() ax = self.ts.plot.area(stacked=False, ax=ax) xmin, xmax = ax.get_xlim() line = ax.get_lines()[0].get_data(orig=False)[0] assert xmin == line[0] assert xmax == line[-1] tm.close() # GH 7471 _, ax = self.plt.subplots() ax = self.ts.plot.area(stacked=False, x_compat=True, ax=ax) xmin, xmax = ax.get_xlim() line = ax.get_lines()[0].get_data(orig=False)[0] assert xmin == line[0] assert xmax == line[-1] tm.close() tz_ts = self.ts.copy() tz_ts.index = tz_ts.tz_localize('GMT').tz_convert('CET') _, ax = self.plt.subplots() ax = tz_ts.plot.area(stacked=False, x_compat=True, ax=ax) xmin, xmax = ax.get_xlim() line = ax.get_lines()[0].get_data(orig=False)[0] assert xmin == line[0] assert xmax == line[-1] tm.close() _, ax = self.plt.subplots() ax = tz_ts.plot.area(stacked=False, secondary_y=True, ax=ax) xmin, xmax = ax.get_xlim() line = ax.get_lines()[0].get_data(orig=False)[0] assert xmin == line[0] assert xmax == line[-1] def test_label(self): s = Series([1, 2]) _, ax = self.plt.subplots() ax = s.plot(label='LABEL', legend=True, ax=ax) self._check_legend_labels(ax, labels=['LABEL']) self.plt.close() _, ax = self.plt.subplots() ax = s.plot(legend=True, ax=ax) self._check_legend_labels(ax, labels=['None']) self.plt.close() # get name from index s.name = 'NAME' _, ax = self.plt.subplots() ax = s.plot(legend=True, ax=ax) self._check_legend_labels(ax, labels=['NAME']) self.plt.close() # override the default _, ax = self.plt.subplots() ax = s.plot(legend=True, label='LABEL', ax=ax) self._check_legend_labels(ax, labels=['LABEL']) self.plt.close() # Add lebel info, but don't draw _, ax = self.plt.subplots() ax = s.plot(legend=False, label='LABEL', ax=ax) assert ax.get_legend() is None # Hasn't been drawn ax.legend() # draw it self._check_legend_labels(ax, labels=['LABEL']) def test_line_area_nan_series(self): values = [1, 2, np.nan, 3] s = Series(values) ts = Series(values, index=tm.makeDateIndex(k=4)) for d in [s, ts]: ax = _check_plot_works(d.plot) masked = ax.lines[0].get_ydata() # remove nan for comparison purpose exp = np.array([1, 2, 3], dtype=np.float64) tm.assert_numpy_array_equal(np.delete(masked.data, 2), exp) tm.assert_numpy_array_equal( masked.mask, np.array([False, False, True, False])) expected = np.array([1, 2, 0, 3], dtype=np.float64) ax = _check_plot_works(d.plot, stacked=True) tm.assert_numpy_array_equal(ax.lines[0].get_ydata(), expected) ax = _check_plot_works(d.plot.area) tm.assert_numpy_array_equal(ax.lines[0].get_ydata(), expected) ax = _check_plot_works(d.plot.area, stacked=False) tm.assert_numpy_array_equal(ax.lines[0].get_ydata(), expected) def test_line_use_index_false(self): s = Series([1, 2, 3], index=['a', 'b', 'c']) s.index.name = 'The Index' _, ax = self.plt.subplots() ax = s.plot(use_index=False, ax=ax) label = ax.get_xlabel() assert label == '' _, ax = self.plt.subplots() ax2 = s.plot.bar(use_index=False, ax=ax) label2 = ax2.get_xlabel() assert label2 == '' @pytest.mark.slow def test_bar_log(self): expected = np.array([1., 10., 100., 1000.]) if not self.mpl_le_1_2_1: expected = np.hstack((.1, expected, 1e4)) _, ax = self.plt.subplots() ax = Series([200, 500]).plot.bar(log=True, ax=ax) tm.assert_numpy_array_equal(ax.yaxis.get_ticklocs(), expected) tm.close() _, ax = self.plt.subplots() ax = Series([200, 500]).plot.barh(log=True, ax=ax) tm.assert_numpy_array_equal(ax.xaxis.get_ticklocs(), expected) tm.close() # GH 9905 expected = np.array([1.0e-03, 1.0e-02, 1.0e-01, 1.0e+00]) if not self.mpl_le_1_2_1: expected = np.hstack((1.0e-04, expected, 1.0e+01)) if self.mpl_ge_2_0_0: expected = np.hstack((1.0e-05, expected)) _, ax = self.plt.subplots() ax = Series([0.1, 0.01, 0.001]).plot(log=True, kind='bar', ax=ax) ymin = 0.0007943282347242822 if self.mpl_ge_2_0_0 else 0.001 ymax = 0.12589254117941673 if self.mpl_ge_2_0_0 else .10000000000000001 res = ax.get_ylim() tm.assert_almost_equal(res[0], ymin) tm.assert_almost_equal(res[1], ymax) tm.assert_numpy_array_equal(ax.yaxis.get_ticklocs(), expected) tm.close() _, ax = self.plt.subplots() ax = Series([0.1, 0.01, 0.001]).plot(log=True, kind='barh', ax=ax) res = ax.get_xlim() tm.assert_almost_equal(res[0], ymin) tm.assert_almost_equal(res[1], ymax) tm.assert_numpy_array_equal(ax.xaxis.get_ticklocs(), expected) @pytest.mark.slow def test_bar_ignore_index(self): df = Series([1, 2, 3, 4], index=['a', 'b', 'c', 'd']) _, ax = self.plt.subplots() ax = df.plot.bar(use_index=False, ax=ax) self._check_text_labels(ax.get_xticklabels(), ['0', '1', '2', '3']) def test_rotation(self): df = DataFrame(randn(5, 5)) # Default rot 0 _, ax = self.plt.subplots() axes = df.plot(ax=ax) self._check_ticks_props(axes, xrot=0) _, ax = self.plt.subplots() axes = df.plot(rot=30, ax=ax) self._check_ticks_props(axes, xrot=30) def test_irregular_datetime(self): rng = date_range('1/1/2000', '3/1/2000') rng = rng[[0, 1, 2, 3, 5, 9, 10, 11, 12]] ser = Series(randn(len(rng)), rng) _, ax = self.plt.subplots() ax = ser.plot(ax=ax) xp = datetime(1999, 1, 1).toordinal() ax.set_xlim('1/1/1999', '1/1/2001') assert xp == ax.get_xlim()[0] @pytest.mark.slow def test_pie_series(self): # if sum of values is less than 1.0, pie handle them as rate and draw # semicircle. series = Series(np.random.randint(1, 5), index=['a', 'b', 'c', 'd', 'e'], name='YLABEL') ax = _check_plot_works(series.plot.pie) self._check_text_labels(ax.texts, series.index) assert ax.get_ylabel() == 'YLABEL' # without wedge labels ax = _check_plot_works(series.plot.pie, labels=None) self._check_text_labels(ax.texts, [''] * 5) # with less colors than elements color_args = ['r', 'g', 'b'] ax = _check_plot_works(series.plot.pie, colors=color_args) color_expected = ['r', 'g', 'b', 'r', 'g'] self._check_colors(ax.patches, facecolors=color_expected) # with labels and colors labels = ['A', 'B', 'C', 'D', 'E'] color_args = ['r', 'g', 'b', 'c', 'm'] ax = _check_plot_works(series.plot.pie, labels=labels, colors=color_args) self._check_text_labels(ax.texts, labels) self._check_colors(ax.patches, facecolors=color_args) # with autopct and fontsize ax = _check_plot_works(series.plot.pie, colors=color_args, autopct='%.2f', fontsize=7) pcts = ['{0:.2f}'.format(s * 100) for s in series.values / float(series.sum())] iters = [iter(series.index), iter(pcts)] expected_texts = list(next(it) for it in itertools.cycle(iters)) self._check_text_labels(ax.texts, expected_texts) for t in ax.texts: assert t.get_fontsize() == 7 # includes negative value with pytest.raises(ValueError): series = Series([1, 2, 0, 4, -1], index=['a', 'b', 'c', 'd', 'e']) series.plot.pie() # includes nan series = Series([1, 2, np.nan, 4], index=['a', 'b', 'c', 'd'], name='YLABEL') ax = _check_plot_works(series.plot.pie) self._check_text_labels(ax.texts, ['a', 'b', '', 'd']) def test_pie_nan(self): s = Series([1, np.nan, 1, 1]) _, ax = self.plt.subplots() ax = s.plot.pie(legend=True, ax=ax) expected = ['0', '', '2', '3'] result = [x.get_text() for x in ax.texts] assert result == expected @pytest.mark.slow def test_hist_df_kwargs(self): df = DataFrame(np.random.randn(10, 2)) _, ax = self.plt.subplots() ax = df.plot.hist(bins=5, ax=ax) assert len(ax.patches) == 10 @pytest.mark.slow def test_hist_df_with_nonnumerics(self): # GH 9853 with tm.RNGContext(1): df = DataFrame( np.random.randn(10, 4), columns=['A', 'B', 'C', 'D']) df['E'] = ['x', 'y'] * 5 _, ax = self.plt.subplots() ax = df.plot.hist(bins=5, ax=ax) assert len(ax.patches) == 20 _, ax = self.plt.subplots() ax = df.plot.hist(ax=ax) # bins=10 assert len(ax.patches) == 40 @pytest.mark.slow def test_hist_legacy(self): _check_plot_works(self.ts.hist) _check_plot_works(self.ts.hist, grid=False) _check_plot_works(self.ts.hist, figsize=(8, 10)) # _check_plot_works adds an ax so catch warning. see GH #13188 with tm.assert_produces_warning(UserWarning): _check_plot_works(self.ts.hist, by=self.ts.index.month) with tm.assert_produces_warning(UserWarning): _check_plot_works(self.ts.hist, by=self.ts.index.month, bins=5) fig, ax = self.plt.subplots(1, 1) _check_plot_works(self.ts.hist, ax=ax) _check_plot_works(self.ts.hist, ax=ax, figure=fig) _check_plot_works(self.ts.hist, figure=fig) tm.close() fig, (ax1, ax2) = self.plt.subplots(1, 2) _check_plot_works(self.ts.hist, figure=fig, ax=ax1) _check_plot_works(self.ts.hist, figure=fig, ax=ax2) with pytest.raises(ValueError): self.ts.hist(by=self.ts.index, figure=fig) @pytest.mark.slow def test_hist_bins_legacy(self): df = DataFrame(np.random.randn(10, 2)) ax = df.hist(bins=2)[0][0] assert len(ax.patches) == 2 @pytest.mark.slow def test_hist_layout(self): df = self.hist_df with pytest.raises(ValueError): df.height.hist(layout=(1, 1)) with pytest.raises(ValueError): df.height.hist(layout=[1, 1]) @pytest.mark.slow def test_hist_layout_with_by(self): df = self.hist_df # _check_plot_works adds an ax so catch warning. see GH #13188 with tm.assert_produces_warning(UserWarning): axes = _check_plot_works(df.height.hist, by=df.gender, layout=(2, 1)) self._check_axes_shape(axes, axes_num=2, layout=(2, 1)) with tm.assert_produces_warning(UserWarning): axes = _check_plot_works(df.height.hist, by=df.gender, layout=(3, -1)) self._check_axes_shape(axes, axes_num=2, layout=(3, 1)) with tm.assert_produces_warning(UserWarning): axes = _check_plot_works(df.height.hist, by=df.category, layout=(4, 1)) self._check_axes_shape(axes, axes_num=4, layout=(4, 1)) with tm.assert_produces_warning(UserWarning): axes = _check_plot_works(df.height.hist, by=df.category, layout=(2, -1)) self._check_axes_shape(axes, axes_num=4, layout=(2, 2)) with tm.assert_produces_warning(UserWarning): axes = _check_plot_works(df.height.hist, by=df.category, layout=(3, -1)) self._check_axes_shape(axes, axes_num=4, layout=(3, 2)) with tm.assert_produces_warning(UserWarning): axes = _check_plot_works(df.height.hist, by=df.category, layout=(-1, 4)) self._check_axes_shape(axes, axes_num=4, layout=(1, 4)) with tm.assert_produces_warning(UserWarning): axes = _check_plot_works(df.height.hist, by=df.classroom, layout=(2, 2)) self._check_axes_shape(axes, axes_num=3, layout=(2, 2)) axes = df.height.hist(by=df.category, layout=(4, 2), figsize=(12, 7)) self._check_axes_shape(axes, axes_num=4, layout=(4, 2), figsize=(12, 7)) @pytest.mark.slow def test_hist_no_overlap(self): from matplotlib.pyplot import subplot, gcf x = Series(randn(2)) y = Series(randn(2)) subplot(121) x.hist() subplot(122) y.hist() fig = gcf() axes = fig.axes if self.mpl_ge_1_5_0 else fig.get_axes() assert len(axes) == 2 @pytest.mark.slow def test_hist_secondary_legend(self): # GH 9610 df = DataFrame(np.random.randn(30, 4), columns=list('abcd')) # primary -> secondary _, ax = self.plt.subplots() ax = df['a'].plot.hist(legend=True, ax=ax) df['b'].plot.hist(ax=ax, legend=True, secondary_y=True) # both legends are dran on left ax # left and right axis must be visible self._check_legend_labels(ax, labels=['a', 'b (right)']) assert ax.get_yaxis().get_visible() assert ax.right_ax.get_yaxis().get_visible() tm.close() # secondary -> secondary _, ax = self.plt.subplots() ax = df['a'].plot.hist(legend=True, secondary_y=True, ax=ax) df['b'].plot.hist(ax=ax, legend=True, secondary_y=True) # both legends are draw on left ax # left axis must be invisible, right axis must be visible self._check_legend_labels(ax.left_ax, labels=['a (right)', 'b (right)']) assert not ax.left_ax.get_yaxis().get_visible() assert ax.get_yaxis().get_visible() tm.close() # secondary -> primary _, ax = self.plt.subplots() ax = df['a'].plot.hist(legend=True, secondary_y=True, ax=ax) # right axes is returned df['b'].plot.hist(ax=ax, legend=True) # both legends are draw on left ax # left and right axis must be visible self._check_legend_labels(ax.left_ax, labels=['a (right)', 'b']) assert ax.left_ax.get_yaxis().get_visible() assert ax.get_yaxis().get_visible() tm.close() @pytest.mark.slow def test_df_series_secondary_legend(self): # GH 9779 df = DataFrame(np.random.randn(30, 3), columns=list('abc')) s = Series(np.random.randn(30), name='x') # primary -> secondary (without passing ax) _, ax = self.plt.subplots() ax = df.plot(ax=ax) s.plot(legend=True, secondary_y=True, ax=ax) # both legends are dran on left ax # left and right axis must be visible self._check_legend_labels(ax, labels=['a', 'b', 'c', 'x (right)']) assert ax.get_yaxis().get_visible() assert ax.right_ax.get_yaxis().get_visible() tm.close() # primary -> secondary (with passing ax) _, ax = self.plt.subplots() ax = df.plot(ax=ax) s.plot(ax=ax, legend=True, secondary_y=True) # both legends are dran on left ax # left and right axis must be visible self._check_legend_labels(ax, labels=['a', 'b', 'c', 'x (right)']) assert ax.get_yaxis().get_visible() assert ax.right_ax.get_yaxis().get_visible() tm.close() # seconcary -> secondary (without passing ax) _, ax = self.plt.subplots() ax = df.plot(secondary_y=True, ax=ax) s.plot(legend=True, secondary_y=True, ax=ax) # both legends are dran on left ax # left axis must be invisible and right axis must be visible expected = ['a (right)', 'b (right)', 'c (right)', 'x (right)'] self._check_legend_labels(ax.left_ax, labels=expected) assert not ax.left_ax.get_yaxis().get_visible() assert ax.get_yaxis().get_visible() tm.close() # secondary -> secondary (with passing ax) _, ax = self.plt.subplots() ax = df.plot(secondary_y=True, ax=ax) s.plot(ax=ax, legend=True, secondary_y=True) # both legends are dran on left ax # left axis must be invisible and right axis must be visible expected = ['a (right)', 'b (right)', 'c (right)', 'x (right)'] self._check_legend_labels(ax.left_ax, expected) assert not ax.left_ax.get_yaxis().get_visible() assert ax.get_yaxis().get_visible() tm.close() # secondary -> secondary (with passing ax) _, ax = self.plt.subplots() ax = df.plot(secondary_y=True, mark_right=False, ax=ax) s.plot(ax=ax, legend=True, secondary_y=True) # both legends are dran on left ax # left axis must be invisible and right axis must be visible expected = ['a', 'b', 'c', 'x (right)'] self._check_legend_labels(ax.left_ax, expected) assert not ax.left_ax.get_yaxis().get_visible() assert ax.get_yaxis().get_visible() tm.close() @pytest.mark.slow def test_plot_fails_with_dupe_color_and_style(self): x = Series(randn(2)) with pytest.raises(ValueError): _, ax = self.plt.subplots() x.plot(style='k--', color='k', ax=ax) @pytest.mark.slow def test_hist_kde(self): _, ax = self.plt.subplots() ax = self.ts.plot.hist(logy=True, ax=ax) self._check_ax_scales(ax, yaxis='log') xlabels = ax.get_xticklabels() # ticks are values, thus ticklabels are blank self._check_text_labels(xlabels, [''] * len(xlabels)) ylabels = ax.get_yticklabels() self._check_text_labels(ylabels, [''] * len(ylabels)) tm._skip_if_no_scipy() _skip_if_no_scipy_gaussian_kde() _check_plot_works(self.ts.plot.kde) _check_plot_works(self.ts.plot.density) _, ax = self.plt.subplots() ax = self.ts.plot.kde(logy=True, ax=ax) self._check_ax_scales(ax, yaxis='log') xlabels = ax.get_xticklabels() self._check_text_labels(xlabels, [''] * len(xlabels)) ylabels = ax.get_yticklabels() self._check_text_labels(ylabels, [''] * len(ylabels)) @pytest.mark.slow def test_kde_kwargs(self): tm._skip_if_no_scipy() _skip_if_no_scipy_gaussian_kde() from numpy import linspace _check_plot_works(self.ts.plot.kde, bw_method=.5, ind=linspace(-100, 100, 20)) _check_plot_works(self.ts.plot.density, bw_method=.5, ind=linspace(-100, 100, 20)) _, ax = self.plt.subplots() ax = self.ts.plot.kde(logy=True, bw_method=.5, ind=linspace(-100, 100, 20), ax=ax) self._check_ax_scales(ax, yaxis='log') self._check_text_labels(ax.yaxis.get_label(), 'Density') @pytest.mark.slow def test_kde_missing_vals(self): tm._skip_if_no_scipy() _skip_if_no_scipy_gaussian_kde() s = Series(np.random.uniform(size=50)) s[0] = np.nan axes = _check_plot_works(s.plot.kde) # gh-14821: check if the values have any missing values assert any(~np.isnan(axes.lines[0].get_xdata())) @pytest.mark.slow def test_hist_kwargs(self): _, ax = self.plt.subplots() ax = self.ts.plot.hist(bins=5, ax=ax) assert len(ax.patches) == 5 self._check_text_labels(ax.yaxis.get_label(), 'Frequency') tm.close() if self.mpl_ge_1_3_1: _, ax = self.plt.subplots() ax = self.ts.plot.hist(orientation='horizontal', ax=ax) self._check_text_labels(ax.xaxis.get_label(), 'Frequency') tm.close() _, ax = self.plt.subplots() ax = self.ts.plot.hist(align='left', stacked=True, ax=ax) tm.close() @pytest.mark.slow def test_hist_kde_color(self): _, ax = self.plt.subplots() ax = self.ts.plot.hist(logy=True, bins=10, color='b', ax=ax) self._check_ax_scales(ax, yaxis='log') assert len(ax.patches) == 10 self._check_colors(ax.patches, facecolors=['b'] * 10) tm._skip_if_no_scipy() _skip_if_no_scipy_gaussian_kde() _, ax = self.plt.subplots() ax = self.ts.plot.kde(logy=True, color='r', ax=ax) self._check_ax_scales(ax, yaxis='log') lines = ax.get_lines() assert len(lines) == 1 self._check_colors(lines, ['r']) @pytest.mark.slow def test_boxplot_series(self): _, ax = self.plt.subplots() ax = self.ts.plot.box(logy=True, ax=ax) self._check_ax_scales(ax, yaxis='log') xlabels = ax.get_xticklabels() self._check_text_labels(xlabels, [self.ts.name]) ylabels = ax.get_yticklabels() self._check_text_labels(ylabels, [''] * len(ylabels)) @pytest.mark.slow def test_kind_both_ways(self): s = Series(range(3)) kinds = (plotting._core._common_kinds + plotting._core._series_kinds) _, ax = self.plt.subplots() for kind in kinds: if not _ok_for_gaussian_kde(kind): continue s.plot(kind=kind, ax=ax) getattr(s.plot, kind)() @pytest.mark.slow def test_invalid_plot_data(self): s = Series(list('abcd')) _, ax = self.plt.subplots() for kind in plotting._core._common_kinds: if not _ok_for_gaussian_kde(kind): continue with pytest.raises(TypeError): s.plot(kind=kind, ax=ax) @pytest.mark.slow def test_valid_object_plot(self): s = Series(lrange(10), dtype=object) for kind in plotting._core._common_kinds: if not _ok_for_gaussian_kde(kind): continue _check_plot_works(s.plot, kind=kind) def test_partially_invalid_plot_data(self): s = Series(['a', 'b', 1.0, 2]) _, ax = self.plt.subplots() for kind in plotting._core._common_kinds: if not _ok_for_gaussian_kde(kind): continue with pytest.raises(TypeError): s.plot(kind=kind, ax=ax) def test_invalid_kind(self): s = Series([1, 2]) with pytest.raises(ValueError): s.plot(kind='aasdf') @pytest.mark.slow def test_dup_datetime_index_plot(self): dr1 = date_range('1/1/2009', periods=4) dr2 = date_range('1/2/2009', periods=4) index = dr1.append(dr2) values = randn(index.size) s = Series(values, index=index) _check_plot_works(s.plot) @pytest.mark.slow def test_errorbar_plot(self): s = Series(np.arange(10), name='x') s_err = np.random.randn(10) d_err = DataFrame(randn(10, 2), index=s.index, columns=['x', 'y']) # test line and bar plots kinds = ['line', 'bar'] for kind in kinds: ax = _check_plot_works(s.plot, yerr=Series(s_err), kind=kind) self._check_has_errorbars(ax, xerr=0, yerr=1) ax = _check_plot_works(s.plot, yerr=s_err, kind=kind) self._check_has_errorbars(ax, xerr=0, yerr=1) ax = _check_plot_works(s.plot, yerr=s_err.tolist(), kind=kind) self._check_has_errorbars(ax, xerr=0, yerr=1) ax = _check_plot_works(s.plot, yerr=d_err, kind=kind) self._check_has_errorbars(ax, xerr=0, yerr=1) ax = _check_plot_works(s.plot, xerr=0.2, yerr=0.2, kind=kind) self._check_has_errorbars(ax, xerr=1, yerr=1) ax = _check_plot_works(s.plot, xerr=s_err) self._check_has_errorbars(ax, xerr=1, yerr=0) # test time series plotting ix = date_range('1/1/2000', '1/1/2001', freq='M') ts = Series(np.arange(12), index=ix, name='x') ts_err = Series(np.random.randn(12), index=ix) td_err = DataFrame(randn(12, 2), index=ix, columns=['x', 'y']) ax = _check_plot_works(ts.plot, yerr=ts_err) self._check_has_errorbars(ax, xerr=0, yerr=1) ax = _check_plot_works(ts.plot, yerr=td_err) self._check_has_errorbars(ax, xerr=0, yerr=1) # check incorrect lengths and types with pytest.raises(ValueError): s.plot(yerr=np.arange(11)) s_err = ['zzz'] * 10 # in mpl 1.5+ this is a TypeError with pytest.raises((ValueError, TypeError)): s.plot(yerr=s_err) def test_table(self): _check_plot_works(self.series.plot, table=True) _check_plot_works(self.series.plot, table=self.series) @pytest.mark.slow def test_series_grid_settings(self): # Make sure plot defaults to rcParams['axes.grid'] setting, GH 9792 self._check_grid_settings(Series([1, 2, 3]), plotting._core._series_kinds + plotting._core._common_kinds) @pytest.mark.slow def test_standard_colors(self): from pandas.plotting._style import _get_standard_colors for c in ['r', 'red', 'green', '#FF0000']: result = _get_standard_colors(1, color=c) assert result == [c] result = _get_standard_colors(1, color=[c]) assert result == [c] result = _get_standard_colors(3, color=c) assert result == [c] * 3 result = _get_standard_colors(3, color=[c]) assert result == [c] * 3 @pytest.mark.slow def test_standard_colors_all(self): import matplotlib.colors as colors from pandas.plotting._style import _get_standard_colors # multiple colors like mediumaquamarine for c in colors.cnames: result = _get_standard_colors(num_colors=1, color=c) assert result == [c] result = _get_standard_colors(num_colors=1, color=[c]) assert result == [c] result = _get_standard_colors(num_colors=3, color=c) assert result == [c] * 3 result = _get_standard_colors(num_colors=3, color=[c]) assert result == [c] * 3 # single letter colors like k for c in colors.ColorConverter.colors: result = _get_standard_colors(num_colors=1, color=c) assert result == [c] result = _get_standard_colors(num_colors=1, color=[c]) assert result == [c] result = _get_standard_colors(num_colors=3, color=c) assert result == [c] * 3 result = _get_standard_colors(num_colors=3, color=[c]) assert result == [c] * 3 def test_series_plot_color_kwargs(self): # GH1890 _, ax = self.plt.subplots() ax = Series(np.arange(12) + 1).plot(color='green', ax=ax) self._check_colors(ax.get_lines(), linecolors=['green']) def test_time_series_plot_color_kwargs(self): # #1890 _, ax = self.plt.subplots() ax = Series(np.arange(12) + 1, index=date_range( '1/1/2000', periods=12)).plot(color='green', ax=ax) self._check_colors(ax.get_lines(), linecolors=['green']) def test_time_series_plot_color_with_empty_kwargs(self): import matplotlib as mpl if self.mpl_ge_1_5_0: def_colors = self._maybe_unpack_cycler(mpl.rcParams) else: def_colors = mpl.rcParams['axes.color_cycle'] index = date_range('1/1/2000', periods=12) s = Series(np.arange(1, 13), index=index) ncolors = 3 _, ax = self.plt.subplots() for i in range(ncolors): ax = s.plot(ax=ax) self._check_colors(ax.get_lines(), linecolors=def_colors[:ncolors]) def test_xticklabels(self): # GH11529 s = Series(np.arange(10), index=['P%02d' % i for i in range(10)]) _, ax = self.plt.subplots() ax = s.plot(xticks=[0, 3, 5, 9], ax=ax) exp = ['P%02d' % i for i in [0, 3, 5, 9]] self._check_text_labels(ax.get_xticklabels(), exp) def test_custom_business_day_freq(self): # GH7222 from pandas.tseries.offsets import CustomBusinessDay s = Series(range(100, 121), index=pd.bdate_range( start='2014-05-01', end='2014-06-01', freq=CustomBusinessDay(holidays=['2014-05-26']))) _check_plot_works(s.plot)
gpl-2.0
cdr-stats/cdr-stats
cdr_stats/voip_billing/views.py
2
10687
# # CDR-Stats License # http://www.cdr-stats.org # # This Source Code Form is subject to the terms of the Mozilla Public # License, v. 2.0. If a copy of the MPL was not distributed with this file, # You can obtain one at http://mozilla.org/MPL/2.0/. # # Copyright (C) 2011-2015 Star2Billing S.L. # # The Initial Developer of the Original Code is # Arezqui Belaid <[email protected]> # from django.contrib.auth.decorators import login_required, permission_required from django.http import HttpResponse from django.shortcuts import render_to_response from django.template.context import RequestContext from voip_billing.models import VoIPRetailRate from voip_billing.forms import PrefixRetailRateForm, SimulatorForm, BillingReportForm from voip_billing.function_def import prefix_allowed_to_call from voip_billing.rate_engine import rate_engine from voip_billing.constants import RATE_COLUMN_NAME from aggregator.pandas_cdr import get_report_cdr_per_switch from aggregator.aggregate_cdr import custom_sql_aggr_top_country from cdr.decorators import check_user_detail from cdr.functions_def import get_switch_ip_addr, calculate_act_acd from cdr.constants import Export_choice from common.helpers import trunc_date_start, trunc_date_end from django_lets_go.common_functions import getvar, get_pagination_vars from datetime import datetime import logging import requests import ast import tablib from apirest.view_voip_rate import find_rates def rest_api_call(request, api_url): final_rate_list = [] response = False try: response = requests.get(api_url, auth=(request.user, request.user), timeout=1.0) logging.debug('API requests.get response: ' + response) except requests.exceptions.Timeout: # Todo: we may want to deal with error nicely logging.debug('API Timeout Error : ' + api_url) except: logging.debug('API Error : ' + api_url) if response and response.status_code == 200: # due to string response of API, we need to convert response in to array rate_list = response.content.replace('[', '').replace(']', '').replace('}, {', '}|{').split('|') for i in rate_list: if i: # convert string into dict final_rate_list.append(ast.literal_eval(i)) return final_rate_list @permission_required('user_profile.call_rate', login_url='/') @login_required @check_user_detail('voipplan') def voip_rates(request): """List voip call rates according to country prefix **Attributes**: * ``template`` - voip_billing/rates.html * ``form`` - PrefixRetailRateForm **Logic Description**: get all call rates from voip rate API and list them in template with pagination & sorting column """ form = PrefixRetailRateForm(request.POST or None) final_rate_list = [] # Get pagination data sort_col_field_list = ['prefix', 'retail_rate', 'destination'] page_data = get_pagination_vars(request, sort_col_field_list, default_sort_field='prefix') sort_order = page_data['sort_order'] order = 'ASC' if "-" in sort_order: order = 'DESC' sort_order = sort_order[1:] dialcode = '' if form.is_valid(): dialcode = request.POST.get('prefix') request.session['dialcode'] = dialcode else: # pagination with prefix code if (request.session.get('dialcode') and (request.GET.get('page') or request.GET.get('sort_by'))): dialcode = request.session.get('dialcode') form = PrefixRetailRateForm(initial={'prefix': dialcode}) else: # Reset variables request.session['dialcode'] = '' dialcode = '' if hasattr(request.user, 'userprofile'): voipplan_id = request.user.userprofile.voipplan_id if dialcode: final_rate_list = find_rates(voipplan_id, dialcode=dialcode, sort_field=sort_order, order=order) else: final_rate_list = find_rates(voipplan_id, dialcode=None, sort_field=sort_order, order=order) else: final_rate_list = [] variables = { 'form': form, 'rate_list': final_rate_list, 'rate_list_count': len(final_rate_list), 'col_name_with_order': page_data['col_name_with_order'], 'RATE_COLUMN_NAME': RATE_COLUMN_NAME, 'sort_order': sort_order, 'up_icon': '<i class="glyphicon glyphicon-chevron-up"></i>', 'down_icon': '<i class="glyphicon glyphicon-chevron-down"></i>' } return render_to_response('voip_billing/rates.html', variables, context_instance=RequestContext(request)) @permission_required('user_profile.export_call_rate', login_url='/') @login_required def export_rate(request): """ **Logic Description**: get the prifix rates from voip rate API according to search parameters & store into csv file """ format_type = request.GET['format'] response = HttpResponse(content_type='text/%s' % format_type) response['Content-Disposition'] = 'attachment;filename=call_rate.%s' % format_type headers = ('prefix', 'destination', 'retail_rate') final_result = [] if request.session.get('session_api_url'): api_url = request.session['session_api_url'] final_result = rest_api_call(request, api_url) list_val = [] for row in final_result: list_val.append((row['prefix'], row['prefix__destination'], row['retail_rate'])) data = tablib.Dataset(*list_val, headers=headers) if format_type == Export_choice.XLS: response.write(data.xls) elif format_type == Export_choice.CSV: response.write(data.csv) elif format_type == Export_choice.JSON: response.write(data.json) return response @permission_required('user_profile.simulator', login_url='/') @check_user_detail('voipplan') @login_required def simulator(request): """Client Simulator To view rate according to VoIP Plan & Destination No. **Attributes**: * ``template`` - voip_billing/simulator.html * ``form`` - SimulatorForm **Logic Description**: get min call rates for destination from rate_engine and display them in template """ data = [] form = SimulatorForm(request.user, request.POST or None) # Get Voip Plan ID according to USER if form.is_valid(): # IS recipient_phone_no/destination no is valid prefix # (Not banned Prefix) ? destination_no = request.POST.get("destination_no") if hasattr(request.user, 'userprofile'): voipplan_id = request.user.userprofile.voipplan_id allowed = prefix_allowed_to_call(destination_no, voipplan_id) if allowed: rates = rate_engine(voipplan_id=voipplan_id, dest_number=destination_no) for rate in rates: r_r_plan = VoIPRetailRate.objects.get(id=rate.rrid) data.append((voipplan_id, r_r_plan.voip_retail_plan_id.name, rate.retail_rate)) data = { 'form': form, 'data': data, } return render_to_response('voip_billing/simulator.html', data, context_instance=RequestContext(request)) @permission_required('user_profile.billing_report', login_url='/') @check_user_detail('accountcode,voipplan') @login_required def billing_report(request): """CDR billing graph by daily basis **Attributes**: * ``template`` - voip_billing/billing_report.html * ``form`` - BillingReportForm **Logic Description**: Retrieve call records from PostgreSQL and build the daily billing analytics for given date range """ switch_id = 0 tday = datetime.today() total_data = [] charttype = "lineWithFocusChart" hourly_chartdata = {"x": []} form = BillingReportForm(request.POST or None, initial={'from_date': tday.strftime('%Y-%m-%d 00:00'), 'to_date': tday.strftime('%Y-%m-%d 23:55'), 'switch_id': switch_id}) start_date = trunc_date_start(tday) end_date = trunc_date_end(tday) if form.is_valid(): from_date = getvar(request, 'from_date') to_date = getvar(request, 'to_date') start_date = trunc_date_start(from_date) end_date = trunc_date_end(to_date) switch_id = getvar(request, 'switch_id') metrics = ['buy_cost', 'sell_cost'] hourly_data = get_report_cdr_per_switch(request.user, 'hour', start_date, end_date, switch_id) hourly_chartdata['x'] = hourly_data["nbcalls"]["x_timestamp"] i = 0 for metric in metrics: extra_serie = { "tooltip": {"y_start": "", "y_end": " " + metric}, "date_format": "%d %b %y %H:%M%p" } for switch in hourly_data[metric]["columns"]: i = i + 1 hourly_chartdata['name' + str(i)] = get_switch_ip_addr(switch) + "_" + metric hourly_chartdata['y' + str(i)] = hourly_data[metric]["values"][str(switch)] hourly_chartdata['extra' + str(i)] = extra_serie total_calls = hourly_data["nbcalls"]["total"] total_duration = hourly_data["duration"]["total"] total_billsec = hourly_data["billsec"]["total"] total_buy_cost = hourly_data["buy_cost"]["total"] total_sell_cost = hourly_data["sell_cost"]["total"] # Calculate the Average Time of Call metric_aggr = calculate_act_acd(total_calls, total_duration) # Get top 10 of country calls country_data = custom_sql_aggr_top_country(request.user, switch_id, 10, start_date, end_date) data = { 'form': form, 'total_data': total_data, 'start_date': start_date, 'end_date': end_date, 'charttype': charttype, 'chartdata': hourly_chartdata, 'chartcontainer': 'chart_container', 'extra': { 'x_is_date': True, 'x_axis_format': '%d %b %Y', 'tag_script_js': True, 'jquery_on_ready': True, }, 'total_calls': total_calls, 'total_duration': total_duration, 'total_billsec': total_billsec, 'total_buy_cost': total_buy_cost, 'total_sell_cost': total_sell_cost, 'metric_aggr': metric_aggr, 'country_data': country_data, } return render_to_response('voip_billing/billing_report.html', data, context_instance=RequestContext(request))
mpl-2.0
classicboyir/BuildingMachineLearningSystemsWithPython
ch09/01_fft_based_classifier.py
24
3740
# This code is supporting material for the book # Building Machine Learning Systems with Python # by Willi Richert and Luis Pedro Coelho # published by PACKT Publishing # # It is made available under the MIT License import numpy as np from collections import defaultdict from sklearn.metrics import precision_recall_curve, roc_curve from sklearn.metrics import auc from sklearn.cross_validation import ShuffleSplit from sklearn.metrics import confusion_matrix from utils import plot_pr, plot_roc, plot_confusion_matrix, GENRE_LIST from fft import read_fft genre_list = GENRE_LIST def train_model(clf_factory, X, Y, name, plot=False): labels = np.unique(Y) cv = ShuffleSplit( n=len(X), n_iter=1, test_size=0.3, indices=True, random_state=0) train_errors = [] test_errors = [] scores = [] pr_scores = defaultdict(list) precisions, recalls, thresholds = defaultdict( list), defaultdict(list), defaultdict(list) roc_scores = defaultdict(list) tprs = defaultdict(list) fprs = defaultdict(list) clfs = [] # just to later get the median cms = [] for train, test in cv: X_train, y_train = X[train], Y[train] X_test, y_test = X[test], Y[test] clf = clf_factory() clf.fit(X_train, y_train) clfs.append(clf) train_score = clf.score(X_train, y_train) test_score = clf.score(X_test, y_test) scores.append(test_score) train_errors.append(1 - train_score) test_errors.append(1 - test_score) y_pred = clf.predict(X_test) cm = confusion_matrix(y_test, y_pred) cms.append(cm) for label in labels: y_label_test = np.asarray(y_test == label, dtype=int) proba = clf.predict_proba(X_test) proba_label = proba[:, label] precision, recall, pr_thresholds = precision_recall_curve( y_label_test, proba_label) pr_scores[label].append(auc(recall, precision)) precisions[label].append(precision) recalls[label].append(recall) thresholds[label].append(pr_thresholds) fpr, tpr, roc_thresholds = roc_curve(y_label_test, proba_label) roc_scores[label].append(auc(fpr, tpr)) tprs[label].append(tpr) fprs[label].append(fpr) if plot: for label in labels: print("Plotting %s" % genre_list[label]) scores_to_sort = roc_scores[label] median = np.argsort(scores_to_sort)[len(scores_to_sort) / 2] desc = "%s %s" % (name, genre_list[label]) plot_pr(pr_scores[label][median], desc, precisions[label][median], recalls[label][median], label='%s vs rest' % genre_list[label]) plot_roc(roc_scores[label][median], desc, tprs[label][median], fprs[label][median], label='%s vs rest' % genre_list[label]) all_pr_scores = np.asarray(pr_scores.values()).flatten() summary = (np.mean(scores), np.std(scores), np.mean(all_pr_scores), np.std(all_pr_scores)) print("%.3f\t%.3f\t%.3f\t%.3f\t" % summary) return np.mean(train_errors), np.mean(test_errors), np.asarray(cms) def create_model(): from sklearn.linear_model.logistic import LogisticRegression clf = LogisticRegression() return clf if __name__ == "__main__": X, y = read_fft(genre_list) train_avg, test_avg, cms = train_model( create_model, X, y, "Log Reg FFT", plot=True) cm_avg = np.mean(cms, axis=0) cm_norm = cm_avg / np.sum(cm_avg, axis=0) plot_confusion_matrix(cm_norm, genre_list, "fft", "Confusion matrix of an FFT based classifier")
mit
Lab603/PicEncyclopedias
jni-build/jni-build/jni/include/tensorflow/contrib/learn/__init__.py
8
1912
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== # TODO(ptucker,ipolosukhin): Improve descriptions. """High level API for learning with TensorFlow. ## Estimators Train and evaluate TensorFlow models. @@BaseEstimator @@Estimator @@ModeKeys @@TensorFlowClassifier @@DNNClassifier @@DNNRegressor @@TensorFlowDNNClassifier @@TensorFlowDNNRegressor @@TensorFlowEstimator @@LinearClassifier @@LinearRegressor @@TensorFlowLinearClassifier @@TensorFlowLinearRegressor @@TensorFlowRNNClassifier @@TensorFlowRNNRegressor @@TensorFlowRegressor ## Graph actions Perform various training, evaluation, and inference actions on a graph. @@NanLossDuringTrainingError @@RunConfig @@evaluate @@infer @@run_feeds @@run_n @@train ## Input processing Queue and read batched input data. @@extract_dask_data @@extract_dask_labels @@extract_pandas_data @@extract_pandas_labels @@extract_pandas_matrix @@read_batch_examples @@read_batch_features @@read_batch_record_features """ from __future__ import absolute_import from __future__ import division from __future__ import print_function # pylint: disable=wildcard-import from tensorflow.contrib.learn.python.learn import * from tensorflow.python.util.all_util import make_all __all__ = make_all(__name__) __all__.append('datasets')
mit
asnorkin/sentiment_analysis
site/lib/python2.7/site-packages/sklearn/neighbors/tests/test_dist_metrics.py
36
6957
import itertools import pickle import numpy as np from numpy.testing import assert_array_almost_equal import scipy from scipy.spatial.distance import cdist from sklearn.neighbors.dist_metrics import DistanceMetric from sklearn.neighbors import BallTree from sklearn.utils.testing import SkipTest, assert_raises_regex def dist_func(x1, x2, p): return np.sum((x1 - x2) ** p) ** (1. / p) def cmp_version(version1, version2): version1 = tuple(map(int, version1.split('.')[:2])) version2 = tuple(map(int, version2.split('.')[:2])) if version1 < version2: return -1 elif version1 > version2: return 1 else: return 0 class TestMetrics: def __init__(self, n1=20, n2=25, d=4, zero_frac=0.5, rseed=0, dtype=np.float64): np.random.seed(rseed) self.X1 = np.random.random((n1, d)).astype(dtype) self.X2 = np.random.random((n2, d)).astype(dtype) # make boolean arrays: ones and zeros self.X1_bool = self.X1.round(0) self.X2_bool = self.X2.round(0) V = np.random.random((d, d)) VI = np.dot(V, V.T) self.metrics = {'euclidean': {}, 'cityblock': {}, 'minkowski': dict(p=(1, 1.5, 2, 3)), 'chebyshev': {}, 'seuclidean': dict(V=(np.random.random(d),)), 'wminkowski': dict(p=(1, 1.5, 3), w=(np.random.random(d),)), 'mahalanobis': dict(VI=(VI,)), 'hamming': {}, 'canberra': {}, 'braycurtis': {}} self.bool_metrics = ['matching', 'jaccard', 'dice', 'kulsinski', 'rogerstanimoto', 'russellrao', 'sokalmichener', 'sokalsneath'] def test_cdist(self): for metric, argdict in self.metrics.items(): keys = argdict.keys() for vals in itertools.product(*argdict.values()): kwargs = dict(zip(keys, vals)) D_true = cdist(self.X1, self.X2, metric, **kwargs) yield self.check_cdist, metric, kwargs, D_true for metric in self.bool_metrics: D_true = cdist(self.X1_bool, self.X2_bool, metric) yield self.check_cdist_bool, metric, D_true def check_cdist(self, metric, kwargs, D_true): if metric == 'canberra' and cmp_version(scipy.__version__, '0.9') <= 0: raise SkipTest("Canberra distance incorrect in scipy < 0.9") dm = DistanceMetric.get_metric(metric, **kwargs) D12 = dm.pairwise(self.X1, self.X2) assert_array_almost_equal(D12, D_true) def check_cdist_bool(self, metric, D_true): dm = DistanceMetric.get_metric(metric) D12 = dm.pairwise(self.X1_bool, self.X2_bool) assert_array_almost_equal(D12, D_true) def test_pdist(self): for metric, argdict in self.metrics.items(): keys = argdict.keys() for vals in itertools.product(*argdict.values()): kwargs = dict(zip(keys, vals)) D_true = cdist(self.X1, self.X1, metric, **kwargs) yield self.check_pdist, metric, kwargs, D_true for metric in self.bool_metrics: D_true = cdist(self.X1_bool, self.X1_bool, metric) yield self.check_pdist_bool, metric, D_true def check_pdist(self, metric, kwargs, D_true): if metric == 'canberra' and cmp_version(scipy.__version__, '0.9') <= 0: raise SkipTest("Canberra distance incorrect in scipy < 0.9") dm = DistanceMetric.get_metric(metric, **kwargs) D12 = dm.pairwise(self.X1) assert_array_almost_equal(D12, D_true) def check_pdist_bool(self, metric, D_true): dm = DistanceMetric.get_metric(metric) D12 = dm.pairwise(self.X1_bool) assert_array_almost_equal(D12, D_true) def test_pickle(self): for metric, argdict in self.metrics.items(): keys = argdict.keys() for vals in itertools.product(*argdict.values()): kwargs = dict(zip(keys, vals)) yield self.check_pickle, metric, kwargs for metric in self.bool_metrics: yield self.check_pickle_bool, metric def check_pickle_bool(self, metric): dm = DistanceMetric.get_metric(metric) D1 = dm.pairwise(self.X1_bool) dm2 = pickle.loads(pickle.dumps(dm)) D2 = dm2.pairwise(self.X1_bool) assert_array_almost_equal(D1, D2) def check_pickle(self, metric, kwargs): dm = DistanceMetric.get_metric(metric, **kwargs) D1 = dm.pairwise(self.X1) dm2 = pickle.loads(pickle.dumps(dm)) D2 = dm2.pairwise(self.X1) assert_array_almost_equal(D1, D2) def test_haversine_metric(): def haversine_slow(x1, x2): return 2 * np.arcsin(np.sqrt(np.sin(0.5 * (x1[0] - x2[0])) ** 2 + np.cos(x1[0]) * np.cos(x2[0]) * np.sin(0.5 * (x1[1] - x2[1])) ** 2)) X = np.random.random((10, 2)) haversine = DistanceMetric.get_metric("haversine") D1 = haversine.pairwise(X) D2 = np.zeros_like(D1) for i, x1 in enumerate(X): for j, x2 in enumerate(X): D2[i, j] = haversine_slow(x1, x2) assert_array_almost_equal(D1, D2) assert_array_almost_equal(haversine.dist_to_rdist(D1), np.sin(0.5 * D2) ** 2) def test_pyfunc_metric(): X = np.random.random((10, 3)) euclidean = DistanceMetric.get_metric("euclidean") pyfunc = DistanceMetric.get_metric("pyfunc", func=dist_func, p=2) # Check if both callable metric and predefined metric initialized # DistanceMetric object is picklable euclidean_pkl = pickle.loads(pickle.dumps(euclidean)) pyfunc_pkl = pickle.loads(pickle.dumps(pyfunc)) D1 = euclidean.pairwise(X) D2 = pyfunc.pairwise(X) D1_pkl = euclidean_pkl.pairwise(X) D2_pkl = pyfunc_pkl.pairwise(X) assert_array_almost_equal(D1, D2) assert_array_almost_equal(D1_pkl, D2_pkl) def test_bad_pyfunc_metric(): def wrong_distance(x, y): return "1" X = np.ones((5, 2)) assert_raises_regex(TypeError, "Custom distance function must accept two vectors", BallTree, X, metric=wrong_distance) def test_input_data_size(): # Regression test for #6288 # Previoulsly, a metric requiring a particular input dimension would fail def custom_metric(x, y): assert x.shape[0] == 3 return np.sum((x - y) ** 2) rng = np.random.RandomState(0) X = rng.rand(10, 3) pyfunc = DistanceMetric.get_metric("pyfunc", func=dist_func, p=2) eucl = DistanceMetric.get_metric("euclidean") assert_array_almost_equal(pyfunc.pairwise(X), eucl.pairwise(X))
mit
terrycojones/dark-matter
dark/mutations.py
1
16454
import os from collections import defaultdict import numpy as np try: import matplotlib if not os.environ.get('DISPLAY'): # Use non-interactive Agg backend matplotlib.use('Agg') import matplotlib.pyplot as plt except ImportError: import platform if platform.python_implementation() == 'PyPy': # PyPy doesn't have a version of matplotlib. Make a fake # class that raises if it is used. This allows us to use other # 'dark' code that happens to import dark.mutations but not use the # functions that rely on matplotlib. class plt(object): def __getattr__(self, _): raise NotImplementedError( 'matplotlib is not supported under pypy') else: raise from random import choice, uniform from dark import ncbidb def basePlotter(blastHits, title): """ Plot the reads and the subject, so that bases in the reads which are different from the subject are shown. Else a '.' is shown. like so: subject_gi ATGCGTACGTACGACACC read_1 A......TTC..T @param blastHits: A L{dark.blast.BlastHits} instance. @param title: A C{str} sequence title that was matched by BLAST. We plot the reads that matched this title. """ result = [] params = blastHits.plotParams assert params is not None, ('Oops, it looks like you forgot to run ' 'computePlotInfo.') sequence = ncbidb.getSequence(title, blastHits.records.blastDb) subject = sequence.seq gi = title.split('|')[1] sub = '%s\t \t \t%s' % (gi, subject) result.append(sub) plotInfo = blastHits.titles[title]['plotInfo'] assert plotInfo is not None, ('Oops, it looks like you forgot to run ' 'computePlotInfo.') items = plotInfo['items'] count = 0 for item in items: count += 1 hsp = item['hsp'] queryTitle = blastHits.fasta[item['readNum']].id # If the product of the subject and query frame values is +ve, # then they're either both +ve or both -ve, so we just use the # query as is. Otherwise, we need to reverse complement it. if item['frame']['subject'] * item['frame']['query'] > 0: query = blastHits.fasta[item['readNum']].seq reverse = False else: # One of the subject or query has negative sense. query = blastHits.fasta[ item['readNum']].reverse_complement().seq reverse = True query = query.upper() queryStart = hsp['queryStart'] subjectStart = hsp['subjectStart'] queryEnd = hsp['queryEnd'] subjectEnd = hsp['subjectEnd'] # Before comparing the read to the subject, make a string of the # same length as the subject, which contains the read and # has ' ' where the read does not match. # 3 parts need to be taken into account: # 1) the left offset (if the query doesn't stick out to the left) # 2) the query. if the frame is -1, it has to be reversed. # The query consists of 3 parts: left, middle (control for gaps) # 3) the right offset # Do part 1) and 2). if queryStart < 0: # The query is sticking out to the left. leftQuery = '' if subjectStart == 0: # The match starts at the first base of the subject. middleLeftQuery = '' else: # The match starts into the subject. # Determine the length of the not matching query # part to the left. leftOffset = -1 * queryStart rightOffset = subjectStart + leftOffset middleLeftQuery = query[leftOffset:rightOffset] else: # The query is not sticking out to the left # make the left offset. leftQuery = queryStart * ' ' leftQueryOffset = subjectStart - queryStart middleLeftQuery = query[:leftQueryOffset] # Do part 3). # Disregard gaps in subject while adding. matchQuery = item['origHsp'].query matchSubject = item['origHsp'].sbjct index = 0 mid = '' for item in range(len(matchQuery)): if matchSubject[index] != ' ': mid += matchQuery[index] index += 1 # if the query has been reversed, turn the matched part around if reverse: rev = '' toReverse = mid reverseDict = {' ': ' ', '-': '-', 'A': 'T', 'T': 'A', 'C': 'G', 'G': 'C', '.': '.', 'N': 'N'} for item in toReverse: newItem = reverseDict[item] rev += newItem mid = rev[::-1] middleQuery = middleLeftQuery + mid # add right not-matching part of the query rightQueryOffset = queryEnd - subjectEnd rightQuery = query[-rightQueryOffset:] middleQuery += rightQuery read = leftQuery + middleQuery # do part 3) offset = len(subject) - len(read) # if the read is sticking out to the right # chop it off if offset < 0: read = read[:offset] # if it's not sticking out, fill the space with ' ' elif offset > 0: read += offset * ' ' # compare the subject and the read, make a string # called 'comparison', which contains a '.' if the bases # are equal and the letter of the read if they are not. comparison = '' for readBase, subjectBase in zip(read, subject): if readBase == ' ': comparison += ' ' elif readBase == subjectBase: comparison += '.' elif readBase != subjectBase: comparison += readBase index += 1 que = '%s \t %s' % (queryTitle, comparison) result.append(que) # sanity checks assert (len(comparison) == len(subject)), ( '%d != %d' % (len(comparison), len(subject))) index = 0 if comparison[index] == ' ': index += 1 else: start = index - 1 assert (start == queryStart or start == -1), ( '%s != %s or %s != -1' % (start, queryStart, start)) return result def getAPOBECFrequencies(dotAlignment, orig, new, pattern): """ Gets mutation frequencies if they are in a certain pattern. @param dotAlignment: result from calling basePlotter @param orig: A C{str}, naming the original base @param new: A C{str}, what orig was mutated to @param pattern: A C{str}m which pattern we're looking for (must be one of 'cPattern', 'tPattern') """ cPattern = ['ACA', 'ACC', 'ACG', 'ACT', 'CCA', 'CCC', 'CCG', 'CCT', 'GCA', 'GCC', 'GCG', 'GCT', 'TCA', 'TCC', 'TCG', 'TCT'] tPattern = ['ATA', 'ATC', 'ATG', 'ATT', 'CTA', 'CTC', 'CTG', 'CTT', 'GTA', 'GTC', 'GTG', 'GTT', 'TTA', 'TTC', 'TTG', 'TTT'] # choose the right pattern if pattern == 'cPattern': patterns = cPattern middleBase = 'C' else: patterns = tPattern middleBase = 'T' # generate the freqs dict with the right pattern freqs = defaultdict(int) for pattern in patterns: freqs[pattern] = 0 # get the subject sequence from dotAlignment subject = dotAlignment[0].split('\t')[3] # exclude the subject from the dotAlignment, so just the queries # are left over queries = dotAlignment[1:] for item in queries: query = item.split('\t')[1] index = 0 for queryBase in query: qBase = query[index] sBase = subject[index] if qBase == new and sBase == orig: try: plusSb = subject[index + 1] minusSb = subject[index - 1] except IndexError: plusSb = 'end' motif = '%s%s%s' % (minusSb, middleBase, plusSb) if motif in freqs: freqs[motif] += 1 index += 1 return freqs def getCompleteFreqs(blastHits): """ Make a dictionary which collects all mutation frequencies from all reads. Calls basePlotter to get dotAlignment, which is passed to getAPOBECFrequencies with the respective parameter, to collect the frequencies. @param blastHits: A L{dark.blast.BlastHits} instance. """ allFreqs = {} for title in blastHits.titles: allFreqs[title] = { 'C>A': {}, 'C>G': {}, 'C>T': {}, 'T>A': {}, 'T>C': {}, 'T>G': {}, } basesPlotted = basePlotter(blastHits, title) for mutation in allFreqs[title]: orig = mutation[0] new = mutation[2] if orig == 'C': pattern = 'cPattern' else: pattern = 'tPattern' freqs = getAPOBECFrequencies(basesPlotted, orig, new, pattern) allFreqs[title][mutation] = freqs numberOfReads = len(blastHits.titles[title]['plotInfo']['items']) allFreqs[title]['numberOfReads'] = numberOfReads allFreqs[title]['bitScoreMax'] = blastHits.titles[ title]['plotInfo']['bitScoreMax'] return allFreqs def makeFrequencyGraph(allFreqs, title, substitution, pattern, color='blue', createFigure=True, showFigure=True, readsAx=False): """ For a title, make a graph showing the frequencies. @param allFreqs: result from getCompleteFreqs @param title: A C{str}, title of virus of which frequencies should be plotted. @param substitution: A C{str}, which substitution should be plotted; must be one of 'C>A', 'C>G', 'C>T', 'T>A', 'T>C', 'T>G'. @param pattern: A C{str}, which pattern we're looking for ( must be one of 'cPattern', 'tPattern') @param color: A C{str}, color of bars. @param createFigure: If C{True}, create a figure. @param showFigure: If C{True}, show the created figure. @param readsAx: If not None, use this as the subplot for displaying reads. """ cPattern = ['ACA', 'ACC', 'ACG', 'ACT', 'CCA', 'CCC', 'CCG', 'CCT', 'GCA', 'GCC', 'GCG', 'GCT', 'TCA', 'TCC', 'TCG', 'TCT'] tPattern = ['ATA', 'ATC', 'ATG', 'ATT', 'CTA', 'CTC', 'CTG', 'CTT', 'GTA', 'GTC', 'GTG', 'GTT', 'TTA', 'TTC', 'TTG', 'TTT'] # choose the right pattern if pattern == 'cPattern': patterns = cPattern else: patterns = tPattern fig = plt.figure(figsize=(10, 10)) ax = readsAx or fig.add_subplot(111) # how many bars N = 16 ind = np.arange(N) width = 0.4 # make a list in the right order, so that it can be plotted easily divisor = allFreqs[title]['numberOfReads'] toPlot = allFreqs[title][substitution] index = 0 data = [] for item in patterns: newData = toPlot[patterns[index]] / divisor data.append(newData) index += 1 # create the bars ax.bar(ind, data, width, color=color) maxY = np.max(data) + 5 # axes and labels if createFigure: title = title.split('|')[4][:50] ax.set_title('%s \n %s' % (title, substitution), fontsize=20) ax.set_ylim(0, maxY) ax.set_ylabel('Absolute Number of Mutations', fontsize=16) ax.set_xticks(ind + width) ax.set_xticklabels(patterns, rotation=45, fontsize=8) if createFigure is False: ax.set_xticks(ind + width) ax.set_xticklabels(patterns, rotation=45, fontsize=0) else: if showFigure: plt.show() return maxY def makeFrequencyPanel(allFreqs, patientName): """ For a title, make a graph showing the frequencies. @param allFreqs: result from getCompleteFreqs @param patientName: A C{str}, title for the panel """ titles = sorted( iter(allFreqs.keys()), key=lambda title: (allFreqs[title]['bitScoreMax'], title)) origMaxY = 0 cols = 6 rows = len(allFreqs) figure, ax = plt.subplots(rows, cols, squeeze=False) substitutions = ['C>A', 'C>G', 'C>T', 'T>A', 'T>C', 'T>G'] colors = ['blue', 'black', 'red', 'yellow', 'green', 'orange'] for i, title in enumerate(titles): for index in range(6): for subst in allFreqs[str(title)]: substitution = substitutions[index] print(i, index, title, 'substitution', substitutions[index]) if substitution[0] == 'C': pattern = 'cPattern' else: pattern = 'tPattern' maxY = makeFrequencyGraph(allFreqs, title, substitution, pattern, color=colors[index], createFigure=False, showFigure=False, readsAx=ax[i][index]) if maxY > origMaxY: origMaxY = maxY # add title for individual plot. # if used for other viruses, this will have to be adapted. if index == 0: gi = title.split('|')[1] titles = title.split(' ') try: typeIndex = titles.index('type') except ValueError: typeNumber = 'gi: %s' % gi else: typeNumber = titles[typeIndex + 1] ax[i][index].set_ylabel(('Type %s \n maxBitScore: %s' % ( typeNumber, allFreqs[title]['bitScoreMax'])), fontsize=10) # add xAxis tick labels if i == 0: ax[i][index].set_title(substitution, fontsize=13) if i == len(allFreqs) - 1 or i == (len(allFreqs) - 1) / 2: if index < 3: pat = ['ACA', 'ACC', 'ACG', 'ACT', 'CCA', 'CCC', 'CCG', 'CCT', 'GCA', 'GCC', 'GCG', 'GCT', 'TCA', 'TCC', 'TCG', 'TCT'] else: pat = ['ATA', 'ATC', 'ATG', 'ATT', 'CTA', 'CTC', 'CTG', 'CTT', 'GTA', 'GTC', 'GTG', 'GTT', 'TTA', 'TTC', 'TTG', 'TTT'] ax[i][index].set_xticklabels(pat, rotation=45, fontsize=8) # make Y-axis equal for i, title in enumerate(allFreqs): for index in range(6): a = ax[i][index] a.set_ylim([0, origMaxY]) # add title of whole panel figure.suptitle('Mutation Signatures in %s' % patientName, fontsize=20) figure.set_size_inches(5 * cols, 3 * rows, forward=True) figure.show() return allFreqs def mutateString(original, n, replacements='acgt'): """ Mutate C{original} in C{n} places with chars chosen from C{replacements}. @param original: The original C{str} to mutate. @param n: The C{int} number of locations to mutate. @param replacements: The C{str} of replacement letters. @return: A new C{str} with C{n} places of C{original} mutated. @raises ValueError: if C{n} is too high, or C{replacement} contains duplicates, or if no replacement can be made at a certain locus because C{replacements} is of length one, or if C{original} is of zero length. """ if not original: raise ValueError('Empty original string passed.') if n > len(original): raise ValueError('Cannot make %d mutations in a string of length %d' % (n, len(original))) if len(replacements) != len(set(replacements)): raise ValueError('Replacement string contains duplicates') if len(replacements) == 1 and original.find(replacements) != -1: raise ValueError('Impossible replacement') result = list(original) length = len(original) for offset in range(length): if uniform(0.0, 1.0) < float(n) / (length - offset): # Mutate. while True: new = choice(replacements) if new != result[offset]: result[offset] = new break n -= 1 if n == 0: break return ''.join(result)
mit