source_code
stringlengths 45
7.24k
| function_name
stringlengths 1
111
| messages
list |
---|---|---|
def x(self, bounds):
if len(bounds) == 0:
raise For2PyError('Zero-length arrays current not handled!.')
this_dim = bounds[0]
lo, hi = this_dim[0], this_dim[1]
sz = hi - lo + 1
if len(bounds) == 1:
return [None] * sz
sub_array = self._mk_uninit_array(bounds[1:])
this_array = [copy.deepcopy(sub_array) for i in range(sz)]
return this_array
|
mk_uninit_array
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, bounds):\n if len(bounds) == 0:\n raise For2PyError('Zero-length arrays current not handled!.')\n this_dim = bounds[0]\n lo, hi = this_dim[0], this_dim[1]\n sz = hi - lo + 1\n if len(bounds) == 1:\n return [None] * sz\n sub_array = self._mk_uninit_array(bounds[1:])\n this_array = [copy.deepcopy(sub_array) for i in range(sz)]\n return this_array\n",
"role": "user"
},
{
"content": "mk_uninit_array",
"role": "assistant"
}
] |
def x(self, bounds, idx):
lo, hi = bounds[0], bounds[1]
assert idx >= lo and idx <= hi, f'Array index {idx} out of bounds: {bounds}\n'
return idx - lo
|
posn
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, bounds, idx):\n lo, hi = bounds[0], bounds[1]\n assert idx >= lo and idx <= hi, f'Array index {idx} out of bounds: {bounds}\\n'\n return idx - lo\n",
"role": "user"
},
{
"content": "posn",
"role": "assistant"
}
] |
def x(self, subs, acc_type, val):
if isinstance(subs, int):
subs = subs,
if len(subs) == 0:
raise For2PyError('Zero-length arrays currently not handled.')
bounds = self._bounds
sub_arr = self._values
ndims = len(subs)
for i in range(ndims):
this_pos = self._posn(bounds[i], subs[i])
if i == ndims - 1:
if acc_type == _GET_:
return sub_arr[this_pos]
else:
sub_arr[this_pos] = val
else:
sub_arr = sub_arr[this_pos]
|
access
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, subs, acc_type, val):\n if isinstance(subs, int):\n subs = subs,\n if len(subs) == 0:\n raise For2PyError('Zero-length arrays currently not handled.')\n bounds = self._bounds\n sub_arr = self._values\n ndims = len(subs)\n for i in range(ndims):\n this_pos = self._posn(bounds[i], subs[i])\n if i == ndims - 1:\n if acc_type == _GET_:\n return sub_arr[this_pos]\n else:\n sub_arr[this_pos] = val\n else:\n sub_arr = sub_arr[this_pos]\n",
"role": "user"
},
{
"content": "access",
"role": "assistant"
}
] |
def x(self, subs, vals):
if isinstance(vals, (int, float)):
vals = [vals] * len(subs)
for i in range(len(subs)):
self.set_(subs[i], vals[i])
|
set_elems
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, subs, vals):\n if isinstance(vals, (int, float)):\n vals = [vals] * len(subs)\n for i in range(len(subs)):\n self.set_(subs[i], vals[i])\n",
"role": "user"
},
{
"content": "set_elems",
"role": "assistant"
}
] |
def x(d: Dict[str, str], text: str) ->str:
regex = re.compile('|'.join(map(re.escape, d.keys())))
return regex.sub(lambda match: d[match.group(0)], text)
|
multiple_replace
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(d: Dict[str, str], text: str) ->str:\n regex = re.compile('|'.join(map(re.escape, d.keys())))\n return regex.sub(lambda match: d[match.group(0)], text)\n",
"role": "user"
},
{
"content": "multiple_replace",
"role": "assistant"
}
] |
def x(input, output, filename='CAG_with_indicators_and_values.pdf'):
with open(input, 'rb') as f:
G = pickle.load(f)
G.parameterize(year=2017, month=4)
G.get_timeseries_values_for_indicators()
with open(output, 'wb') as f:
pickle.dump(G, f)
|
create_parameterized_CAG
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(input, output, filename='CAG_with_indicators_and_values.pdf'):\n with open(input, 'rb') as f:\n G = pickle.load(f)\n G.parameterize(year=2017, month=4)\n G.get_timeseries_values_for_indicators()\n with open(output, 'wb') as f:\n pickle.dump(G, f)\n",
"role": "user"
},
{
"content": "create_parameterized_CAG",
"role": "assistant"
}
] |
def x(sts: List[Influence]) ->Set[str]:
return set(flatMap(nameTuple, sts))
|
get_concepts
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(sts: List[Influence]) ->Set[str]:\n return set(flatMap(nameTuple, sts))\n",
"role": "user"
},
{
"content": "get_concepts",
"role": "assistant"
}
] |
def x(sts: List[Influence]) ->List[Influence]:
return [s for s in sts if is_grounded_statement(s) and s.subj_delta[
'polarity'] is not None and s.obj_delta['polarity'] is not None]
|
get_valid_statements_for_modeling
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(sts: List[Influence]) ->List[Influence]:\n return [s for s in sts if is_grounded_statement(s) and s.subj_delta[\n 'polarity'] is not None and s.obj_delta['polarity'] is not None]\n",
"role": "user"
},
{
"content": "get_valid_statements_for_modeling",
"role": "assistant"
}
] |
def x(s: Influence) ->bool:
return is_grounded_concept(s.subj) and is_grounded_concept(s.obj)
|
is_grounded_statement
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(s: Influence) ->bool:\n return is_grounded_concept(s.subj) and is_grounded_concept(s.obj)\n",
"role": "user"
},
{
"content": "is_grounded_statement",
"role": "assistant"
}
] |
def x(c: Concept, cutoff: float=0.7) ->bool:
return is_grounded(c) and top_grounding_score(c) >= cutoff
|
is_well_grounded_concept
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(c: Concept, cutoff: float=0.7) ->bool:\n return is_grounded(c) and top_grounding_score(c) >= cutoff\n",
"role": "user"
},
{
"content": "is_well_grounded_concept",
"role": "assistant"
}
] |
def x(s: Influence, cutoff: float=0.7) ->bool:
return all(map(lambda c: is_well_grounded_concept(c, cutoff), s.
agent_list()))
|
is_well_grounded_statement
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(s: Influence, cutoff: float=0.7) ->bool:\n return all(map(lambda c: is_well_grounded_concept(c, cutoff), s.\n agent_list()))\n",
"role": "user"
},
{
"content": "is_well_grounded_statement",
"role": "assistant"
}
] |
def x(c: Concept, name: str, cutoff=0.7) ->bool:
return top_grounding(c) == name if is_well_grounded(c, cutoff) else False
|
is_grounded_to_name
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(c: Concept, name: str, cutoff=0.7) ->bool:\n return top_grounding(c) == name if is_well_grounded(c, cutoff) else False\n",
"role": "user"
},
{
"content": "is_grounded_to_name",
"role": "assistant"
}
] |
def x(s: Influence, relevant_concepts: List[str], cutoff=0.7) ->bool:
return any(map(lambda c: contains_concept(s, c, cutoff=cutoff),
relevant_concepts))
|
contains_relevant_concept
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(s: Influence, relevant_concepts: List[str], cutoff=0.7) ->bool:\n return any(map(lambda c: contains_concept(s, c, cutoff=cutoff),\n relevant_concepts))\n",
"role": "user"
},
{
"content": "contains_relevant_concept",
"role": "assistant"
}
] |
def x(c: Concept) ->str:
return c.db_refs['UN'][0][0] if 'UN' in c.db_refs else c.name
|
top_grounding
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(c: Concept) ->str:\n return c.db_refs['UN'][0][0] if 'UN' in c.db_refs else c.name\n",
"role": "user"
},
{
"content": "top_grounding",
"role": "assistant"
}
] |
def x(s: Influence) ->Tuple[str, str]:
return top_grounding(s.subj), top_grounding(s.obj)
|
nameTuple
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(s: Influence) ->Tuple[str, str]:\n return top_grounding(s.subj), top_grounding(s.obj)\n",
"role": "user"
},
{
"content": "nameTuple",
"role": "assistant"
}
] |
def x():
data = json.loads(request.data)
G = AnalysisGraph.from_uncharted_json_serialized_dict(data)
G.assemble_transition_model_from_gradable_adjectives()
G.sample_from_prior()
G.to_sql(app=current_app)
_metadata = ICMMetadata.query.filter_by(id=G.id).first().deserialize()
del _metadata['model_id']
return jsonify(_metadata)
|
createNewICM
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n data = json.loads(request.data)\n G = AnalysisGraph.from_uncharted_json_serialized_dict(data)\n G.assemble_transition_model_from_gradable_adjectives()\n G.sample_from_prior()\n G.to_sql(app=current_app)\n _metadata = ICMMetadata.query.filter_by(id=G.id).first().deserialize()\n del _metadata['model_id']\n return jsonify(_metadata)\n",
"role": "user"
},
{
"content": "createNewICM",
"role": "assistant"
}
] |
def x(uuid: str):
_metadata = ICMMetadata.query.filter_by(id=uuid).first().deserialize()
del _metadata['model_id']
return jsonify(_metadata)
|
getICMByUUID
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(uuid: str):\n _metadata = ICMMetadata.query.filter_by(id=uuid).first().deserialize()\n del _metadata['model_id']\n return jsonify(_metadata)\n",
"role": "user"
},
{
"content": "getICMByUUID",
"role": "assistant"
}
] |
def x(uuid: str):
_metadata = ICMMetadata.query.filter_by(id=uuid).first()
db.session.delete(_metadata)
db.session.commit()
return '', 204
|
deleteICM
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(uuid: str):\n _metadata = ICMMetadata.query.filter_by(id=uuid).first()\n db.session.delete(_metadata)\n db.session.commit()\n return '', 204\n",
"role": "user"
},
{
"content": "deleteICM",
"role": "assistant"
}
] |
def x(uuid: str):
primitives = [p.deserialize() for p in CausalPrimitive.query.filter_by(
model_id=uuid).all()]
for p in primitives:
del p['model_id']
return jsonify(primitives)
|
getICMPrimitives
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(uuid: str):\n primitives = [p.deserialize() for p in CausalPrimitive.query.filter_by(\n model_id=uuid).all()]\n for p in primitives:\n del p['model_id']\n return jsonify(primitives)\n",
"role": "user"
},
{
"content": "getICMPrimitives",
"role": "assistant"
}
] |
def x(uuid: str, prim_id: str):
evidences = [evidence.deserialize() for evidence in Evidence.query.
filter_by(causalrelationship_id=prim_id).all()]
for evidence in evidences:
del evidence['causalrelationship_id']
return jsonify(evidences)
|
getEvidenceForID
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(uuid: str, prim_id: str):\n evidences = [evidence.deserialize() for evidence in Evidence.query.\n filter_by(causalrelationship_id=prim_id).all()]\n for evidence in evidences:\n del evidence['causalrelationship_id']\n return jsonify(evidences)\n",
"role": "user"
},
{
"content": "getEvidenceForID",
"role": "assistant"
}
] |
def x(uuid: str):
data = request.get_json()
G = DelphiModel.query.filter_by(id=uuid).first().model
if os.environ.get('TRAVIS') is not None:
config_file = 'bmi_config.txt'
else:
if not os.path.exists('/tmp/delphi'):
os.makedirs('/tmp/delphi', exist_ok=True)
config_file = '/tmp/delphi/bmi_config.txt'
G.initialize(initialize_indicators=False, config_file=config_file)
for n in G.nodes(data=True):
rv = n[1]['rv']
rv.partial_t = 0.0
for variable in data['interventions']:
if n[1]['id'] == variable['id']:
rv.partial_t = variable['values']['value']['value'] - 1
for s0 in G.s0:
s0[f'∂({n[0]})/∂t'] = rv.partial_t
break
id = str(uuid4())
experiment = ForwardProjection(baseType='ForwardProjection', id=id)
db.session.add(experiment)
db.session.commit()
result = ForwardProjectionResult(id=id, baseType='ForwardProjectionResult')
db.session.add(result)
db.session.commit()
d = dateutil.parser.parse(data['projection']['startTime'])
n_timesteps = data['projection']['numSteps']
for i in range(n_timesteps):
if data['projection']['stepSize'] == 'MONTH':
d = d + relativedelta(months=1)
elif data['projection']['stepSize'] == 'YEAR':
d = d + relativedelta(years=1)
for n in G.nodes(data=True):
CausalVariable.query.filter_by(id=n[1]['id']).first(
).lastUpdated = d.isoformat()
result.results.append({'id': n[1]['id'], 'baseline': {'active':
'ACTIVE', 'time': d.isoformat(), 'value': {'baseType':
'FloatValue', 'value': 1.0}}, 'intervened': {'active':
'ACTIVE', 'time': d.isoformat(), 'value': {'baseType':
'FloatValue', 'value': np.median([s[n[0]] for s in G.s0])}}})
G.update(update_indicators=False)
tau = 1.0
for n in G.nodes(data=True):
for variable in data['interventions']:
if n[1]['id'] == variable['id']:
rv = n[1]['rv']
for s0 in G.s0:
s0[f'∂({n[0]})/∂t'] = rv.partial_t * exp(-tau * i)
db.session.add(result)
db.session.commit()
return jsonify({'id': experiment.id, 'message':
'Forward projection sent successfully'})
|
createExperiment
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(uuid: str):\n data = request.get_json()\n G = DelphiModel.query.filter_by(id=uuid).first().model\n if os.environ.get('TRAVIS') is not None:\n config_file = 'bmi_config.txt'\n else:\n if not os.path.exists('/tmp/delphi'):\n os.makedirs('/tmp/delphi', exist_ok=True)\n config_file = '/tmp/delphi/bmi_config.txt'\n G.initialize(initialize_indicators=False, config_file=config_file)\n for n in G.nodes(data=True):\n rv = n[1]['rv']\n rv.partial_t = 0.0\n for variable in data['interventions']:\n if n[1]['id'] == variable['id']:\n rv.partial_t = variable['values']['value']['value'] - 1\n for s0 in G.s0:\n s0[f'∂({n[0]})/∂t'] = rv.partial_t\n break\n id = str(uuid4())\n experiment = ForwardProjection(baseType='ForwardProjection', id=id)\n db.session.add(experiment)\n db.session.commit()\n result = ForwardProjectionResult(id=id, baseType='ForwardProjectionResult')\n db.session.add(result)\n db.session.commit()\n d = dateutil.parser.parse(data['projection']['startTime'])\n n_timesteps = data['projection']['numSteps']\n for i in range(n_timesteps):\n if data['projection']['stepSize'] == 'MONTH':\n d = d + relativedelta(months=1)\n elif data['projection']['stepSize'] == 'YEAR':\n d = d + relativedelta(years=1)\n for n in G.nodes(data=True):\n CausalVariable.query.filter_by(id=n[1]['id']).first(\n ).lastUpdated = d.isoformat()\n result.results.append({'id': n[1]['id'], 'baseline': {'active':\n 'ACTIVE', 'time': d.isoformat(), 'value': {'baseType':\n 'FloatValue', 'value': 1.0}}, 'intervened': {'active':\n 'ACTIVE', 'time': d.isoformat(), 'value': {'baseType':\n 'FloatValue', 'value': np.median([s[n[0]] for s in G.s0])}}})\n G.update(update_indicators=False)\n tau = 1.0\n for n in G.nodes(data=True):\n for variable in data['interventions']:\n if n[1]['id'] == variable['id']:\n rv = n[1]['rv']\n for s0 in G.s0:\n s0[f'∂({n[0]})/∂t'] = rv.partial_t * exp(-tau * i)\n db.session.add(result)\n db.session.commit()\n return jsonify({'id': experiment.id, 'message':\n 'Forward projection sent successfully'})\n",
"role": "user"
},
{
"content": "createExperiment",
"role": "assistant"
}
] |
def x(uuid: str):
return jsonify([x.deserialize() for x in Experiment.query.all()])
|
getExperiments
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(uuid: str):\n return jsonify([x.deserialize() for x in Experiment.query.all()])\n",
"role": "user"
},
{
"content": "getExperiments",
"role": "assistant"
}
] |
def x(uuid: str, exp_id: str):
experimentResult = ForwardProjectionResult.query.filter_by(id=exp_id
).first()
return jsonify(experimentResult.deserialize())
|
getExperiment
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(uuid: str, exp_id: str):\n experimentResult = ForwardProjectionResult.query.filter_by(id=exp_id\n ).first()\n return jsonify(experimentResult.deserialize())\n",
"role": "user"
},
{
"content": "getExperiment",
"role": "assistant"
}
] |
def x(sts: List[Influence]):
columns = ['un_groundings', 'subj_polarity', 'obj_polarity', 'Sentence',
'Source API']
polarity_to_str = lambda x: '+' if x == 1 else '-' if x == -1 else 'None'
l = []
for s in sts:
subj_un_grounding = s.subj.db_refs['UN'][0][0].split('/')[-1]
obj_un_grounding = s.obj.db_refs['UN'][0][0].split('/')[-1]
subj_polarity = s.subj_delta['polarity']
obj_polarity = s.obj_delta['polarity']
subj_adjectives = s.subj_delta['adjectives']
for e in s.evidence:
l.append(((subj_un_grounding, obj_un_grounding), subj_polarity,
obj_polarity, e.text, e.source_api))
df = pd.DataFrame(l, columns=columns)
df = df.pivot_table(index=['un_groundings', 'Source API', 'Sentence'])
def x(hover_color='#ffff99'):
return dict(selector='tr:hover', props=[('background-color', '%s' %
hover_color)])
styles = [hover(), dict(props=[('font-size', '100%'), ('font-family',
'Gill Sans')])]
return df.style.set_table_styles(styles)
|
create_statement_inspection_table
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(sts: List[Influence]):\n columns = ['un_groundings', 'subj_polarity', 'obj_polarity', 'Sentence',\n 'Source API']\n polarity_to_str = lambda x: '+' if x == 1 else '-' if x == -1 else 'None'\n l = []\n for s in sts:\n subj_un_grounding = s.subj.db_refs['UN'][0][0].split('/')[-1]\n obj_un_grounding = s.obj.db_refs['UN'][0][0].split('/')[-1]\n subj_polarity = s.subj_delta['polarity']\n obj_polarity = s.obj_delta['polarity']\n subj_adjectives = s.subj_delta['adjectives']\n for e in s.evidence:\n l.append(((subj_un_grounding, obj_un_grounding), subj_polarity,\n obj_polarity, e.text, e.source_api))\n df = pd.DataFrame(l, columns=columns)\n df = df.pivot_table(index=['un_groundings', 'Source API', 'Sentence'])\n\n def x(hover_color='#ffff99'):\n return dict(selector='tr:hover', props=[('background-color', '%s' %\n hover_color)])\n styles = [hover(), dict(props=[('font-size', '100%'), ('font-family',\n 'Gill Sans')])]\n return df.style.set_table_styles(styles)\n",
"role": "user"
},
{
"content": "create_statement_inspection_table",
"role": "assistant"
}
] |
def x():
env = os.environ
shell = 'shell'
program = os.path.basename(env['_'])
if 'jupyter-notebook' in program:
shell = 'jupyter-notebook'
elif 'JPY_PARENT_PID' in env or 'ipython' in program:
shell = 'ipython'
if 'JPY_PARENT_PID' in env:
shell = 'ipython-notebook'
return shell
|
get_python_shell
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n env = os.environ\n shell = 'shell'\n program = os.path.basename(env['_'])\n if 'jupyter-notebook' in program:\n shell = 'jupyter-notebook'\n elif 'JPY_PARENT_PID' in env or 'ipython' in program:\n shell = 'ipython'\n if 'JPY_PARENT_PID' in env:\n shell = 'ipython-notebook'\n return shell\n",
"role": "user"
},
{
"content": "get_python_shell",
"role": "assistant"
}
] |
def x(input, output):
with open(input, 'rb') as f:
G = pickle.load(f)
G = G.get_subgraph_for_concept('UN/events/weather/precipitation', depth
=2, reverse=False)
G.prune(cutoff=2)
G.edges['UN/events/weather/precipitation',
'UN/entities/human/infrastructure/transportation/road'][
'InfluenceStatements'][0].obj_delta['polarity'] = -1
with open(output, 'wb') as f:
pickle.dump(G, f)
|
create_precipitation_centered_CAG
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(input, output):\n with open(input, 'rb') as f:\n G = pickle.load(f)\n G = G.get_subgraph_for_concept('UN/events/weather/precipitation', depth\n =2, reverse=False)\n G.prune(cutoff=2)\n G.edges['UN/events/weather/precipitation',\n 'UN/entities/human/infrastructure/transportation/road'][\n 'InfluenceStatements'][0].obj_delta['polarity'] = -1\n with open(output, 'wb') as f:\n pickle.dump(G, f)\n",
"role": "user"
},
{
"content": "create_precipitation_centered_CAG",
"role": "assistant"
}
] |
def x(root) ->Dict:
module_index_dict = {node['name']: (node.get('tag'), index) for index,
node in enumerate(root) if node.get('tag') in ('module', 'program',
'subroutine')}
return module_index_dict
|
index_modules
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(root) ->Dict:\n module_index_dict = {node['name']: (node.get('tag'), index) for index,\n node in enumerate(root) if node.get('tag') in ('module', 'program',\n 'subroutine')}\n return module_index_dict\n",
"role": "user"
},
{
"content": "index_modules",
"role": "assistant"
}
] |
def x(self, node, printState: PrintState):
if self.nameMapper[node['name']
] not in printState.definedVars and self.nameMapper[node['name']
] not in printState.globalVars:
printState.definedVars += [self.nameMapper[node['name']]]
assert int(node['count']) > 0
printState.definedVars += [node['name']]
varType = ''
if node['type'].upper() == 'INTEGER':
varType = 'int'
elif node['type'].upper() in ('DOUBLE', 'REAL'):
varType = 'float'
elif node['type'].upper() == 'CHARACTER':
varType = 'str'
elif node['isDevTypeVar']:
varType = node['type'].lower() + '()'
assert varType != ''
self.pyStrings.append(f"{node['name']} = Array({varType}, [")
for i in range(0, int(node['count'])):
loBound = node['low' + str(i + 1)]
upBound = node['up' + str(i + 1)]
dimensions = f'({loBound}, {upBound})'
if i < int(node['count']) - 1:
self.pyStrings.append(f'{dimensions}, ')
else:
self.pyStrings.append(f'{dimensions}')
self.pyStrings.append('])')
if node['isDevTypeVar']:
self.pyStrings.append(printState.sep)
upBound = node['up1']
self.pyStrings.append(f'for z in range(1, {upBound}+1):' +
printState.sep)
self.pyStrings.append(f" obj = {node['type']}()" +
printState.sep)
self.pyStrings.append(f" {node['name']}.set_(z, obj)" +
printState.sep)
|
printArray
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, node, printState: PrintState):\n if self.nameMapper[node['name']\n ] not in printState.definedVars and self.nameMapper[node['name']\n ] not in printState.globalVars:\n printState.definedVars += [self.nameMapper[node['name']]]\n assert int(node['count']) > 0\n printState.definedVars += [node['name']]\n varType = ''\n if node['type'].upper() == 'INTEGER':\n varType = 'int'\n elif node['type'].upper() in ('DOUBLE', 'REAL'):\n varType = 'float'\n elif node['type'].upper() == 'CHARACTER':\n varType = 'str'\n elif node['isDevTypeVar']:\n varType = node['type'].lower() + '()'\n assert varType != ''\n self.pyStrings.append(f\"{node['name']} = Array({varType}, [\")\n for i in range(0, int(node['count'])):\n loBound = node['low' + str(i + 1)]\n upBound = node['up' + str(i + 1)]\n dimensions = f'({loBound}, {upBound})'\n if i < int(node['count']) - 1:\n self.pyStrings.append(f'{dimensions}, ')\n else:\n self.pyStrings.append(f'{dimensions}')\n self.pyStrings.append('])')\n if node['isDevTypeVar']:\n self.pyStrings.append(printState.sep)\n upBound = node['up1']\n self.pyStrings.append(f'for z in range(1, {upBound}+1):' +\n printState.sep)\n self.pyStrings.append(f\" obj = {node['type']}()\" +\n printState.sep)\n self.pyStrings.append(f\" {node['name']}.set_(z, obj)\" +\n printState.sep)\n",
"role": "user"
},
{
"content": "printArray",
"role": "assistant"
}
] |
def x(G: nx.DiGraph, filename: str):
A = to_agraph(G)
A.graph_attr['rankdir'] = 'LR'
A.draw(filename, prog='dot')
|
draw_graph
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(G: nx.DiGraph, filename: str):\n A = to_agraph(G)\n A.graph_attr['rankdir'] = 'LR'\n A.draw(filename, prog='dot')\n",
"role": "user"
},
{
"content": "draw_graph",
"role": "assistant"
}
] |
def x(G: nx.DiGraph) ->List[str]:
return [n for n, d in G.in_degree() if d == 0]
|
get_input_nodes
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(G: nx.DiGraph) ->List[str]:\n return [n for n, d in G.in_degree() if d == 0]\n",
"role": "user"
},
{
"content": "get_input_nodes",
"role": "assistant"
}
] |
def x(G: nx.DiGraph) ->List[str]:
return [n for n, d in G.out_degree() if d == 0]
|
get_output_nodes
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(G: nx.DiGraph) ->List[str]:\n return [n for n, d in G.out_degree() if d == 0]\n",
"role": "user"
},
{
"content": "get_output_nodes",
"role": "assistant"
}
] |
def x(filename: str) ->nx.DiGraph:
return nx.DiGraph(read_dot(filename).reverse())
|
nx_graph_from_dotfile
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(filename: str) ->nx.DiGraph:\n return nx.DiGraph(read_dot(filename).reverse())\n",
"role": "user"
},
{
"content": "nx_graph_from_dotfile",
"role": "assistant"
}
] |
def x(G: nx.DiGraph, filename: str):
A = to_agraph(G)
A.write(filename)
|
to_dotfile
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(G: nx.DiGraph, filename: str):\n A = to_agraph(G)\n A.write(filename)\n",
"role": "user"
},
{
"content": "to_dotfile",
"role": "assistant"
}
] |
def x(G1: nx.DiGraph, G2: nx.DiGraph) ->List[str]:
return list(set(G1.nodes()).intersection(set(G2.nodes())))
|
get_shared_nodes
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(G1: nx.DiGraph, G2: nx.DiGraph) ->List[str]:\n return list(set(G1.nodes()).intersection(set(G2.nodes())))\n",
"role": "user"
},
{
"content": "get_shared_nodes",
"role": "assistant"
}
] |
def x(line: str) ->bool:
if line[0] in 'cCdD*!':
return True
llstr = line.strip()
if len(llstr) == 0 or llstr[0] == '!':
return True
return False
|
line_is_comment
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(line: str) ->bool:\n if line[0] in 'cCdD*!':\n return True\n llstr = line.strip()\n if len(llstr) == 0 or llstr[0] == '!':\n return True\n return False\n",
"role": "user"
},
{
"content": "line_is_comment",
"role": "assistant"
}
] |
def x(line: str) ->Tuple[bool, Optional[str]]:
match = RE_SUB_START.match(line)
if match != None:
f_name = match.group(1)
return True, f_name
match = RE_FN_START.match(line)
if match != None:
f_name = match.group(1)
return True, f_name
return False, None
|
line_starts_subpgm
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(line: str) ->Tuple[bool, Optional[str]]:\n match = RE_SUB_START.match(line)\n if match != None:\n f_name = match.group(1)\n return True, f_name\n match = RE_FN_START.match(line)\n if match != None:\n f_name = match.group(1)\n return True, f_name\n return False, None\n",
"role": "user"
},
{
"content": "line_starts_subpgm",
"role": "assistant"
}
] |
def x(line: str) ->str:
match = RE_PGM_UNIT_START.match(line)
assert match != None
return match.group(2)
|
program_unit_name
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(line: str) ->str:\n match = RE_PGM_UNIT_START.match(line)\n assert match != None\n return match.group(2)\n",
"role": "user"
},
{
"content": "program_unit_name",
"role": "assistant"
}
] |
def x(line: str) ->bool:
llstr = line.lstrip()
return len(llstr) > 0 and llstr[0] == '&'
|
line_is_continuation
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(line: str) ->bool:\n llstr = line.lstrip()\n return len(llstr) > 0 and llstr[0] == '&'\n",
"role": "user"
},
{
"content": "line_is_continuation",
"role": "assistant"
}
] |
def x(line: str) ->bool:
if line_is_comment(line):
return False
if re.match(RE_TYPE_NAMES, line):
return False
for exp in EXECUTABLE_CODE_START:
if re.match(exp, line) != None:
return True
return False
|
line_is_executable
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(line: str) ->bool:\n if line_is_comment(line):\n return False\n if re.match(RE_TYPE_NAMES, line):\n return False\n for exp in EXECUTABLE_CODE_START:\n if re.match(exp, line) != None:\n return True\n return False\n",
"role": "user"
},
{
"content": "line_is_executable",
"role": "assistant"
}
] |
def x(x: T, xs: Iterable[T]) ->Iterator[T]:
return chain([x], xs)
|
prepend
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x: T, xs: Iterable[T]) ->Iterator[T]:\n return chain([x], xs)\n",
"role": "user"
},
{
"content": "prepend",
"role": "assistant"
}
] |
def x(x: T, xs: Iterable[T]) ->Iterator[T]:
return chain(xs, [x])
|
append
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x: T, xs: Iterable[T]) ->Iterator[T]:\n return chain(xs, [x])\n",
"role": "user"
},
{
"content": "append",
"role": "assistant"
}
] |
def x(f: Callable[[T, U], T], x: T, xs: Iterable[U]) ->Iterator[T]:
return accumulate(prepend(x, xs), f)
|
scanl
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(f: Callable[[T, U], T], x: T, xs: Iterable[U]) ->Iterator[T]:\n return accumulate(prepend(x, xs), f)\n",
"role": "user"
},
{
"content": "scanl",
"role": "assistant"
}
] |
def x(f: Callable[[T, T], T], xs: Iterable[T]) ->Iterator[T]:
return accumulate(xs, f)
|
scanl1
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(f: Callable[[T, T], T], xs: Iterable[T]) ->Iterator[T]:\n return accumulate(xs, f)\n",
"role": "user"
},
{
"content": "scanl1",
"role": "assistant"
}
] |
def x(f: Callable[[T, U], T], x: T, xs: Iterable[U]) ->T:
return reduce(f, xs, x)
|
foldl
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(f: Callable[[T, U], T], x: T, xs: Iterable[U]) ->T:\n return reduce(f, xs, x)\n",
"role": "user"
},
{
"content": "foldl",
"role": "assistant"
}
] |
def x(f: Callable[[T, T], T], xs: Iterable[T]) ->T:
return reduce(f, xs)
|
foldl1
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(f: Callable[[T, T], T], xs: Iterable[T]) ->T:\n return reduce(f, xs)\n",
"role": "user"
},
{
"content": "foldl1",
"role": "assistant"
}
] |
def x(xs: Union[List, Tuple]) ->List:
return sum(map(flatten, xs), []) if isinstance(xs, list) or isinstance(xs,
tuple) else [xs]
|
flatten
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(xs: Union[List, Tuple]) ->List:\n return sum(map(flatten, xs), []) if isinstance(xs, list) or isinstance(xs,\n tuple) else [xs]\n",
"role": "user"
},
{
"content": "flatten",
"role": "assistant"
}
] |
def x(f: Callable[[T], T], x: T) ->Iterator[T]:
return scanl(lambda x, _: f(x), x, repeat(None))
|
iterate
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(f: Callable[[T], T], x: T) ->Iterator[T]:\n return scanl(lambda x, _: f(x), x, repeat(None))\n",
"role": "user"
},
{
"content": "iterate",
"role": "assistant"
}
] |
def x(n: int, xs: Iterable[T]) ->Iterable[T]:
return tqdm(take(n, xs), total=n)
|
ptake
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(n: int, xs: Iterable[T]) ->Iterable[T]:\n return tqdm(take(n, xs), total=n)\n",
"role": "user"
},
{
"content": "ptake",
"role": "assistant"
}
] |
def x(n: int, xs: Iterable[T]) ->List[T]:
return list(take(n, xs))
|
ltake
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(n: int, xs: Iterable[T]) ->List[T]:\n return list(take(n, xs))\n",
"role": "user"
},
{
"content": "ltake",
"role": "assistant"
}
] |
def x(*fs: Any) ->Callable:
return foldl1(lambda f, g: lambda *x: f(g(*x)), fs)
|
compose
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(*fs: Any) ->Callable:\n return foldl1(lambda f, g: lambda *x: f(g(*x)), fs)\n",
"role": "user"
},
{
"content": "compose",
"role": "assistant"
}
] |
def x(*fs: Any) ->Callable:
return foldl1(lambda f, g: lambda *x: g(f(*x)), fs)
|
rcompose
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(*fs: Any) ->Callable:\n return foldl1(lambda f, g: lambda *x: g(f(*x)), fs)\n",
"role": "user"
},
{
"content": "rcompose",
"role": "assistant"
}
] |
def x(f: Callable, xs: Iterable) ->List:
return flatten(lmap(f, xs))
|
flatMap
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(f: Callable, xs: Iterable) ->List:\n return flatten(lmap(f, xs))\n",
"role": "user"
},
{
"content": "flatMap",
"role": "assistant"
}
] |
def x(xs: Iterable, n: int, fillvalue=None):
args = [iter(xs)] * n
return zip_longest(*args, fillvalue=fillvalue)
|
grouper
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(xs: Iterable, n: int, fillvalue=None):\n args = [iter(xs)] * n\n return zip_longest(*args, fillvalue=fillvalue)\n",
"role": "user"
},
{
"content": "grouper",
"role": "assistant"
}
] |
def x(data_dir: str):
climis_crop_production_csvs = glob(
'{data_dir}/Climis South Sudan Crop Production Data/Crops_EstimatedProductionConsumptionBalance*.csv'
)
state_county_df = pd.read_csv(f'{data_dir}/ipc_data.csv',
skipinitialspace=True)
combined_records = []
for f in climis_crop_production_csvs:
year = int(f.split('/')[-1].split('_')[2].split('.')[0])
df = pd.read_csv(f).dropna()
for i, r in df.iterrows():
record = {'Year': year, 'Month': None, 'Source': 'CliMIS',
'Country': 'South Sudan'}
region = r['State/County'].strip()
if region.lower() in state_county_df['State'].str.lower().values:
record['State'] = region
record['County'] = None
else:
potential_states = state_county_df.loc[state_county_df[
'County'] == region]['State']
record['State'] = potential_states.iloc[0] if len(
potential_states) != 0 else None
record['County'] = region
for field in r.index:
if field != 'State/County':
if 'Net Cereal production' in field:
record['Variable'] = 'Net Cereal Production'
record['Value'] = r[field]
if field.split()[-1].startswith('('):
record['Unit'] = field.split()[-1][1:-1].lower()
else:
record['Unit'] = None
combined_records.append(record)
df = pd.DataFrame(combined_records)
return df
|
process_climis_crop_production_data
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(data_dir: str):\n climis_crop_production_csvs = glob(\n '{data_dir}/Climis South Sudan Crop Production Data/Crops_EstimatedProductionConsumptionBalance*.csv'\n )\n state_county_df = pd.read_csv(f'{data_dir}/ipc_data.csv',\n skipinitialspace=True)\n combined_records = []\n for f in climis_crop_production_csvs:\n year = int(f.split('/')[-1].split('_')[2].split('.')[0])\n df = pd.read_csv(f).dropna()\n for i, r in df.iterrows():\n record = {'Year': year, 'Month': None, 'Source': 'CliMIS',\n 'Country': 'South Sudan'}\n region = r['State/County'].strip()\n if region.lower() in state_county_df['State'].str.lower().values:\n record['State'] = region\n record['County'] = None\n else:\n potential_states = state_county_df.loc[state_county_df[\n 'County'] == region]['State']\n record['State'] = potential_states.iloc[0] if len(\n potential_states) != 0 else None\n record['County'] = region\n for field in r.index:\n if field != 'State/County':\n if 'Net Cereal production' in field:\n record['Variable'] = 'Net Cereal Production'\n record['Value'] = r[field]\n if field.split()[-1].startswith('('):\n record['Unit'] = field.split()[-1][1:-1].lower()\n else:\n record['Unit'] = None\n combined_records.append(record)\n df = pd.DataFrame(combined_records)\n return df\n",
"role": "user"
},
{
"content": "process_climis_crop_production_data",
"role": "assistant"
}
] |
def x(data_dir: str):
records = []
livestock_data_dir = f'{data_dir}/Climis South Sudan Livestock Data'
for filename in glob(
f'{livestock_data_dir}/Livestock Body Condition/*2017.csv'):
records += process_file_with_single_table(filename, lambda ind:
f"Percentage of {filename.split('_')[-3].lower()} with body condition {ind.lower()}"
, lambda f: f.split('_')[-2])
for filename in glob(f'{livestock_data_dir}/Livestock Production/*2017.csv'
):
records += process_file_with_single_table(filename, lambda ind:
'Percentage of householding at least milking one of their livestocks'
, lambda f: f.split('_')[1])
disease_acronym_dict = {'FMD': 'Foot and Mouth Disease (FMD)', 'LSD':
'Lumpy Skin Disease (LSD)', 'CBPP':
'Contagious Bovine Pleuropneumonia (CBPP)', 'CCPP':
'Contagious Caprine Pleuropneumonia (CCPP)', 'NC': 'NC', 'PPR':
'Peste des Petits Ruminants (PPR)', 'Others': 'Other diseases'}
func = (lambda k, i:
f'Percentage of livestock with {disease_acronym_dict[k]} that are {i.lower().strip()}'
)
livestock_disease_header_dict = {k: partial(func, k) for k in
disease_acronym_dict}
livestock_migration_header_dict = {'Livestock migration': lambda i:
f'Percentage of livestock migrating {i.split()[-1].lower()}',
'Distance covered': lambda i:
'Distance covered by migrating livestock',
'Proportion of livestock that migrated': lambda i:
'Percentage of livestock that migrated',
'Migration normal at this time of the year': lambda i:
f'Migration normal at this time of year, {i}',
'Duration in months when the migrated animals are expected to be back after'
: lambda i:
'Duration in months when the migrated animals are expected to be back after'
, 'Reasons for livestock migration': lambda i:
f'Percentage of livestock migrating due to {i.lower()}'}
def x(dirname, header_dict):
return pd.concat([df for df in [process_file_with_multiple_tables(f,
header_dict) for f in glob(
f'{livestock_data_dir}/{dirname}/*2017.csv')] if df is not None])
func2 = (lambda k, i:
f"{k.replace('animals', i.lower()).replace('stock', 'stock of ' + i.lower()).replace('animal', i.lower())}"
)
livestock_ownership_headers = ['Average current stock per household',
'Average number of animals born per household during last 4 weeks',
'Average number of animals acquired per household during last 4 weeks (dowry, purchase, gift)'
,
'Average number of animals given out as bride price/gift per household during last 4 weeks per household'
,
'Average number of animals sold per household during last 4 weeks household'
, 'Average price of animal sold (SSP)',
'Average number of animals exchanged for grain per household during last 4 weeks'
,
'Average number of animals died/slaughtered/lost per household during last 4 weeks'
]
livestock_ownership_header_dict = {k: partial(func2, k) for k in
livestock_ownership_headers}
ownership_df = process_directory('Livestock Ownership',
livestock_ownership_header_dict)
disease_df = process_directory('Livestock Diseases',
livestock_disease_header_dict)
livestock_migration_df = process_directory('Livestock Migration',
livestock_migration_header_dict)
livestock_pasture_header_dict = {'Pasture condtion': lambda i:
f'Percentage of livestock pasture in {i.lower()} condition',
'Pasture condition compared to similar time in a normal year': lambda
i:
f'Percentage of livestock pasture in {i.lower()} condition compared to a similar time in a normal year'
, 'Browse condition': lambda i:
f'Percentage of livestock pasture in {i.lower()} browse condition',
'Browse condition compared to similar time in a normal year': lambda
i:
f'Percentage of livestock pasture in {i.lower()} browse condition compared to a similar time in a normal year'
, 'Presence of constraints in accessing forage': lambda i:
f"Percentage reporting the {'presence' if i == 'Yes' else 'absence'} of constraints in accessing forage"
, 'Main forage constraints': lambda i:
f'Percentage reporting {i.lower()} as the main forage constraint'}
livestock_pasture_df = process_directory('Livestock Pasture',
livestock_pasture_header_dict)
livestock_water_sources_header_dict = {'Main water sources': lambda i:
f'Percentage of livestock whose main water source is {i.lower()}',
'Number of days livestock have been watered in the last 7 days': lambda
i: f'Number of days {i.lower()} have been watered in the last 7 days'}
livestock_water_sources_df = process_directory('Livestock Water Sources',
livestock_water_sources_header_dict)
for filename in glob(f'{livestock_data_dir}/Livestock Loss/*2017.csv'):
records += process_file_with_single_table(filename, lambda ind:
f"Percentage of {filename.split('_')[-3].lower()} loss accounted for by {ind.lower()}"
, lambda f: f.split('_')[-2])
for record in records:
if isinstance(record['Value'], str):
record['Value'] = record['Value'].replace('%', '')
livestock_prices_df = pd.concat([make_livestock_prices_table(f) for f in
glob(f'{livestock_data_dir}/Livestock Market Prices/*2017.csv')])
climis_livestock_data_df = pd.concat([pd.DataFrame(records), disease_df,
ownership_df, livestock_prices_df, livestock_migration_df,
livestock_pasture_df, livestock_water_sources_df])
return climis_livestock_data_df
|
process_climis_livestock_data
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(data_dir: str):\n records = []\n livestock_data_dir = f'{data_dir}/Climis South Sudan Livestock Data'\n for filename in glob(\n f'{livestock_data_dir}/Livestock Body Condition/*2017.csv'):\n records += process_file_with_single_table(filename, lambda ind:\n f\"Percentage of {filename.split('_')[-3].lower()} with body condition {ind.lower()}\"\n , lambda f: f.split('_')[-2])\n for filename in glob(f'{livestock_data_dir}/Livestock Production/*2017.csv'\n ):\n records += process_file_with_single_table(filename, lambda ind:\n 'Percentage of householding at least milking one of their livestocks'\n , lambda f: f.split('_')[1])\n disease_acronym_dict = {'FMD': 'Foot and Mouth Disease (FMD)', 'LSD':\n 'Lumpy Skin Disease (LSD)', 'CBPP':\n 'Contagious Bovine Pleuropneumonia (CBPP)', 'CCPP':\n 'Contagious Caprine Pleuropneumonia (CCPP)', 'NC': 'NC', 'PPR':\n 'Peste des Petits Ruminants (PPR)', 'Others': 'Other diseases'}\n func = (lambda k, i:\n f'Percentage of livestock with {disease_acronym_dict[k]} that are {i.lower().strip()}'\n )\n livestock_disease_header_dict = {k: partial(func, k) for k in\n disease_acronym_dict}\n livestock_migration_header_dict = {'Livestock migration': lambda i:\n f'Percentage of livestock migrating {i.split()[-1].lower()}',\n 'Distance covered': lambda i:\n 'Distance covered by migrating livestock',\n 'Proportion of livestock that migrated': lambda i:\n 'Percentage of livestock that migrated',\n 'Migration normal at this time of the year': lambda i:\n f'Migration normal at this time of year, {i}',\n 'Duration in months when the migrated animals are expected to be back after'\n : lambda i:\n 'Duration in months when the migrated animals are expected to be back after'\n , 'Reasons for livestock migration': lambda i:\n f'Percentage of livestock migrating due to {i.lower()}'}\n\n def x(dirname, header_dict):\n return pd.concat([df for df in [process_file_with_multiple_tables(f,\n header_dict) for f in glob(\n f'{livestock_data_dir}/{dirname}/*2017.csv')] if df is not None])\n func2 = (lambda k, i:\n f\"{k.replace('animals', i.lower()).replace('stock', 'stock of ' + i.lower()).replace('animal', i.lower())}\"\n )\n livestock_ownership_headers = ['Average current stock per household',\n 'Average number of animals born per household during last 4 weeks',\n 'Average number of animals acquired per household during last 4 weeks (dowry, purchase, gift)'\n ,\n 'Average number of animals given out as bride price/gift per household during last 4 weeks per household'\n ,\n 'Average number of animals sold per household during last 4 weeks household'\n , 'Average price of animal sold (SSP)',\n 'Average number of animals exchanged for grain per household during last 4 weeks'\n ,\n 'Average number of animals died/slaughtered/lost per household during last 4 weeks'\n ]\n livestock_ownership_header_dict = {k: partial(func2, k) for k in\n livestock_ownership_headers}\n ownership_df = process_directory('Livestock Ownership',\n livestock_ownership_header_dict)\n disease_df = process_directory('Livestock Diseases',\n livestock_disease_header_dict)\n livestock_migration_df = process_directory('Livestock Migration',\n livestock_migration_header_dict)\n livestock_pasture_header_dict = {'Pasture condtion': lambda i:\n f'Percentage of livestock pasture in {i.lower()} condition',\n 'Pasture condition compared to similar time in a normal year': lambda\n i:\n f'Percentage of livestock pasture in {i.lower()} condition compared to a similar time in a normal year'\n , 'Browse condition': lambda i:\n f'Percentage of livestock pasture in {i.lower()} browse condition',\n 'Browse condition compared to similar time in a normal year': lambda\n i:\n f'Percentage of livestock pasture in {i.lower()} browse condition compared to a similar time in a normal year'\n , 'Presence of constraints in accessing forage': lambda i:\n f\"Percentage reporting the {'presence' if i == 'Yes' else 'absence'} of constraints in accessing forage\"\n , 'Main forage constraints': lambda i:\n f'Percentage reporting {i.lower()} as the main forage constraint'}\n livestock_pasture_df = process_directory('Livestock Pasture',\n livestock_pasture_header_dict)\n livestock_water_sources_header_dict = {'Main water sources': lambda i:\n f'Percentage of livestock whose main water source is {i.lower()}',\n 'Number of days livestock have been watered in the last 7 days': lambda\n i: f'Number of days {i.lower()} have been watered in the last 7 days'}\n livestock_water_sources_df = process_directory('Livestock Water Sources',\n livestock_water_sources_header_dict)\n for filename in glob(f'{livestock_data_dir}/Livestock Loss/*2017.csv'):\n records += process_file_with_single_table(filename, lambda ind:\n f\"Percentage of {filename.split('_')[-3].lower()} loss accounted for by {ind.lower()}\"\n , lambda f: f.split('_')[-2])\n for record in records:\n if isinstance(record['Value'], str):\n record['Value'] = record['Value'].replace('%', '')\n livestock_prices_df = pd.concat([make_livestock_prices_table(f) for f in\n glob(f'{livestock_data_dir}/Livestock Market Prices/*2017.csv')])\n climis_livestock_data_df = pd.concat([pd.DataFrame(records), disease_df,\n ownership_df, livestock_prices_df, livestock_migration_df,\n livestock_pasture_df, livestock_water_sources_df])\n return climis_livestock_data_df\n",
"role": "user"
},
{
"content": "process_climis_livestock_data",
"role": "assistant"
}
] |
def x(lines: List[str]) ->List[Tuple[int, str]]:
enumerated_lines = list(enumerate(lines, 1))
i = 0
while i < len(enumerated_lines):
n, code_line = enumerated_lines[i]
if not line_is_comment(code_line):
code_part, comment_part = split_trailing_comment(code_line)
if comment_part is not None:
enumerated_lines[i] = n, comment_part
enumerated_lines.insert(i + 1, (n, code_part))
i += 1
return enumerated_lines
|
separate_trailing_comments
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(lines: List[str]) ->List[Tuple[int, str]]:\n enumerated_lines = list(enumerate(lines, 1))\n i = 0\n while i < len(enumerated_lines):\n n, code_line = enumerated_lines[i]\n if not line_is_comment(code_line):\n code_part, comment_part = split_trailing_comment(code_line)\n if comment_part is not None:\n enumerated_lines[i] = n, comment_part\n enumerated_lines.insert(i + 1, (n, code_part))\n i += 1\n return enumerated_lines\n",
"role": "user"
},
{
"content": "separate_trailing_comments",
"role": "assistant"
}
] |
def x(lines):
chg = True
while chg:
chg = False
i = 0
while i < len(lines) - 1:
ln0, ln1 = lines[i], lines[i + 1]
if line_is_comment(ln0[1]) and line_is_continuation(ln1[1]):
lines[i], lines[i + 1] = (ln0[0], ln1[1]), (ln1[0], ln0[1])
chg = True
i += 1
chg = True
while chg:
chg = False
i = 0
while i < len(lines):
line = lines[i]
if line_is_continuation(line[1]):
assert i > 0
prev_linenum, prev_line_code = lines[i - 1]
curr_line_code = line[1].lstrip()[1:]
merged_code = prev_line_code.rstrip() + curr_line_code.lstrip()
lines[i - 1] = prev_linenum, merged_code
lines.pop(i)
chg = True
i += 1
return lines
|
merge_continued_lines
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(lines):\n chg = True\n while chg:\n chg = False\n i = 0\n while i < len(lines) - 1:\n ln0, ln1 = lines[i], lines[i + 1]\n if line_is_comment(ln0[1]) and line_is_continuation(ln1[1]):\n lines[i], lines[i + 1] = (ln0[0], ln1[1]), (ln1[0], ln0[1])\n chg = True\n i += 1\n chg = True\n while chg:\n chg = False\n i = 0\n while i < len(lines):\n line = lines[i]\n if line_is_continuation(line[1]):\n assert i > 0\n prev_linenum, prev_line_code = lines[i - 1]\n curr_line_code = line[1].lstrip()[1:]\n merged_code = prev_line_code.rstrip() + curr_line_code.lstrip()\n lines[i - 1] = prev_linenum, merged_code\n lines.pop(i)\n chg = True\n i += 1\n return lines\n",
"role": "user"
},
{
"content": "merge_continued_lines",
"role": "assistant"
}
] |
def x(line):
if line_is_comment(line):
return 'comment'
elif line_is_executable(line):
return 'exec_stmt'
elif line_is_pgm_unit_end(line):
return 'pgm_unit_end'
elif line_is_pgm_unit_start(line):
return 'pgm_unit_start'
else:
return 'other'
|
type_of_line
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(line):\n if line_is_comment(line):\n return 'comment'\n elif line_is_executable(line):\n return 'exec_stmt'\n elif line_is_pgm_unit_end(line):\n return 'pgm_unit_end'\n elif line_is_pgm_unit_start(line):\n return 'pgm_unit_start'\n else:\n return 'other'\n",
"role": "user"
},
{
"content": "type_of_line",
"role": "assistant"
}
] |
def x(lines: List[Tuple[int, str]]) ->Tuple[List[Tuple[int, str]], Dict[str,
List[str]]]:
curr_comment = []
curr_fn, prev_fn, curr_marker = None, None, None
comments = OrderedDict()
curr_state = 'outside'
comments['$file_head'] = []
comments['$file_foot'] = []
for i in range(len(lines)):
linenum, line = lines[i]
line_type = type_of_line(line)
if curr_state == 'outside':
assert line_type in ('comment', 'pgm_unit_start'), (line_type, line
)
if line_type == 'comment':
curr_comment.append(line)
lines[i] = linenum, None
else:
pgm_unit_name = program_unit_name(line)
comments['$file_head'] = curr_comment
if prev_fn is not None:
comments[prev_fn]['foot'] = curr_comment
prev_fn = curr_fn
curr_fn = pgm_unit_name
internal_comments = OrderedDict()
comments[curr_fn] = init_comment_map(curr_comment, [], [],
internal_comments)
curr_comment = []
elif curr_state == 'in_neck':
assert line_type in ('comment', 'exec_stmt', 'other')
if line_type == 'comment':
curr_comment.append(line)
lines[i] = linenum, None
elif line_type == 'exec_stmt':
comments[curr_fn]['neck'] = curr_comment
curr_comment = []
else:
pass
elif curr_state == 'in_body':
assert line_type in ('comment', 'exec_stmt', 'pgm_unit_end'
), f'[Line {linenum}]: {line}'
if line_type == 'comment':
if line != '\n':
marker_var = f'{INTERNAL_COMMENT_PREFIX}_{linenum}'
marker_stmt = f' {marker_var} = .True.\n'
internal_comments[marker_var] = line
lines[i] = linenum, marker_stmt
else:
pass
curr_state = TRANSITIONS[curr_state][line_type]
if curr_comment != [] and comments.get(curr_fn):
comments[curr_fn]['foot'] = curr_comment
comments['$file_foot'] = curr_comment
return lines, comments
|
extract_comments
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(lines: List[Tuple[int, str]]) ->Tuple[List[Tuple[int, str]], Dict[str,\n List[str]]]:\n curr_comment = []\n curr_fn, prev_fn, curr_marker = None, None, None\n comments = OrderedDict()\n curr_state = 'outside'\n comments['$file_head'] = []\n comments['$file_foot'] = []\n for i in range(len(lines)):\n linenum, line = lines[i]\n line_type = type_of_line(line)\n if curr_state == 'outside':\n assert line_type in ('comment', 'pgm_unit_start'), (line_type, line\n )\n if line_type == 'comment':\n curr_comment.append(line)\n lines[i] = linenum, None\n else:\n pgm_unit_name = program_unit_name(line)\n comments['$file_head'] = curr_comment\n if prev_fn is not None:\n comments[prev_fn]['foot'] = curr_comment\n prev_fn = curr_fn\n curr_fn = pgm_unit_name\n internal_comments = OrderedDict()\n comments[curr_fn] = init_comment_map(curr_comment, [], [],\n internal_comments)\n curr_comment = []\n elif curr_state == 'in_neck':\n assert line_type in ('comment', 'exec_stmt', 'other')\n if line_type == 'comment':\n curr_comment.append(line)\n lines[i] = linenum, None\n elif line_type == 'exec_stmt':\n comments[curr_fn]['neck'] = curr_comment\n curr_comment = []\n else:\n pass\n elif curr_state == 'in_body':\n assert line_type in ('comment', 'exec_stmt', 'pgm_unit_end'\n ), f'[Line {linenum}]: {line}'\n if line_type == 'comment':\n if line != '\\n':\n marker_var = f'{INTERNAL_COMMENT_PREFIX}_{linenum}'\n marker_stmt = f' {marker_var} = .True.\\n'\n internal_comments[marker_var] = line\n lines[i] = linenum, marker_stmt\n else:\n pass\n curr_state = TRANSITIONS[curr_state][line_type]\n if curr_comment != [] and comments.get(curr_fn):\n comments[curr_fn]['foot'] = curr_comment\n comments['$file_foot'] = curr_comment\n return lines, comments\n",
"role": "user"
},
{
"content": "extract_comments",
"role": "assistant"
}
] |
def x(line: str) ->str:
if line.find('!') == -1:
return line, None
i = 0
while i < len(line):
if line[i] == "'":
j = line.find("'", i + 1)
if j == -1:
sys.stderr.write("WEIRD: unbalanced quote ': line = " + line)
return line
else:
i = j + 1
elif line[i] == '"':
j = line.find('"', i + 1)
if j == -1:
sys.stderr.write('WEIRD: unbalanced quote ": line = ' + line)
return line
else:
i = j + 1
elif line[i] == '!':
comment_part = line[i:]
code_part = line[:i].rstrip() + '\n'
return code_part, comment_part
else:
i += 1
return line, None
|
split_trailing_comment
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(line: str) ->str:\n if line.find('!') == -1:\n return line, None\n i = 0\n while i < len(line):\n if line[i] == \"'\":\n j = line.find(\"'\", i + 1)\n if j == -1:\n sys.stderr.write(\"WEIRD: unbalanced quote ': line = \" + line)\n return line\n else:\n i = j + 1\n elif line[i] == '\"':\n j = line.find('\"', i + 1)\n if j == -1:\n sys.stderr.write('WEIRD: unbalanced quote \": line = ' + line)\n return line\n else:\n i = j + 1\n elif line[i] == '!':\n comment_part = line[i:]\n code_part = line[:i].rstrip() + '\\n'\n return code_part, comment_part\n else:\n i += 1\n return line, None\n",
"role": "user"
},
{
"content": "split_trailing_comment",
"role": "assistant"
}
] |
def x(inputLines: List[str]) ->str:
lines = separate_trailing_comments(inputLines)
merge_continued_lines(lines)
lines, comments = extract_comments(lines)
actual_lines = [line[1] for line in lines if line[1] is not None and
'i_g_n_o_r_e___m_e_' not in line[1]]
return ''.join(actual_lines)
|
process
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(inputLines: List[str]) ->str:\n lines = separate_trailing_comments(inputLines)\n merge_continued_lines(lines)\n lines, comments = extract_comments(lines)\n actual_lines = [line[1] for line in lines if line[1] is not None and \n 'i_g_n_o_r_e___m_e_' not in line[1]]\n return ''.join(actual_lines)\n",
"role": "user"
},
{
"content": "process",
"role": "assistant"
}
] |
def x(self):
for node in self.nodes(data=True):
node[1]['id'] = str(uuid4())
for edge in self.edges(data=True):
edge[2]['id'] = str(uuid4())
|
assign_uuids_to_nodes_and_edges
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n for node in self.nodes(data=True):\n node[1]['id'] = str(uuid4())\n for edge in self.edges(data=True):\n edge[2]['id'] = str(uuid4())\n",
"role": "user"
},
{
"content": "assign_uuids_to_nodes_and_edges",
"role": "assistant"
}
] |
def x(cls, file: str):
with open(file, 'rb') as f:
sts = pickle.load(f)
return cls.from_statements(sts)
|
from_statements_file
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, file: str):\n with open(file, 'rb') as f:\n sts = pickle.load(f)\n return cls.from_statements(sts)\n",
"role": "user"
},
{
"content": "from_statements_file",
"role": "assistant"
}
] |
def x(cls, sts: List[Influence], assign_default_polarities: bool=True):
_dict = {}
for s in sts:
if assign_default_polarities:
for delta in deltas(s):
if delta['polarity'] is None:
delta['polarity'] = 1
concepts = nameTuple(s)
if concepts[0] != concepts[1]:
if all(map(exists, (delta['polarity'] for delta in deltas(s)))):
if concepts in _dict:
_dict[concepts].append(s)
else:
_dict[concepts] = [s]
edges = [(*concepts, {'InfluenceStatements': statements}) for concepts,
statements in _dict.items()]
return cls(edges)
|
from_statements
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, sts: List[Influence], assign_default_polarities: bool=True):\n _dict = {}\n for s in sts:\n if assign_default_polarities:\n for delta in deltas(s):\n if delta['polarity'] is None:\n delta['polarity'] = 1\n concepts = nameTuple(s)\n if concepts[0] != concepts[1]:\n if all(map(exists, (delta['polarity'] for delta in deltas(s)))):\n if concepts in _dict:\n _dict[concepts].append(s)\n else:\n _dict[concepts] = [s]\n edges = [(*concepts, {'InfluenceStatements': statements}) for concepts,\n statements in _dict.items()]\n return cls(edges)\n",
"role": "user"
},
{
"content": "from_statements",
"role": "assistant"
}
] |
def x(cls, text: str):
eidosProcessor = process_text(text)
return cls.from_statements(eidosProcessor.statements)
|
from_text
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, text: str):\n eidosProcessor = process_text(text)\n return cls.from_statements(eidosProcessor.statements)\n",
"role": "user"
},
{
"content": "from_text",
"role": "assistant"
}
] |
def x(cls, file):
with open(file, 'r') as f:
_dict = json.load(f)
return cls.from_uncharted_json_serialized_dict(_dict)
|
from_uncharted_json_file
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, file):\n with open(file, 'r') as f:\n _dict = json.load(f)\n return cls.from_uncharted_json_serialized_dict(_dict)\n",
"role": "user"
},
{
"content": "from_uncharted_json_file",
"role": "assistant"
}
] |
def x(cls, _dict, minimum_evidence_pieces_required: int=1):
sts = _dict['statements']
G = nx.DiGraph()
for s in sts:
if len(s['evidence']) >= minimum_evidence_pieces_required:
subj, obj = s['subj'], s['obj']
if subj['db_refs']['concept'] is not None and obj['db_refs'][
'concept'] is not None:
subj_name, obj_name = ['/'.join(s[x]['db_refs']['concept'].
split('/')[:]) for x in ['subj', 'obj']]
G.add_edge(subj_name, obj_name)
subj_delta = s['subj_delta']
obj_delta = s['obj_delta']
for delta in (subj_delta, obj_delta):
if delta['polarity'] is None:
delta['polarity'] = 1
influence_stmt = Influence(Concept(subj_name, db_refs=subj[
'db_refs']), Concept(obj_name, db_refs=obj['db_refs']),
subj_delta=s['subj_delta'], obj_delta=s['obj_delta'],
evidence=[INDRAEvidence(source_api=ev['source_api'],
annotations=ev['annotations'], text=ev['text'],
epistemics=ev.get('epistemics')) for ev in s['evidence']])
influence_sts = G.edges[subj_name, obj_name].get(
'InfluenceStatements', [])
influence_sts.append(influence_stmt)
G.edges[subj_name, obj_name]['InfluenceStatements'
] = influence_sts
for concept, indicator in _dict['concept_to_indicator_mapping'].items():
if indicator is not None:
indicator_source, indicator_name = indicator['name'].split('/')[0
], '/'.join(indicator['name'].split('/')[1:])
if concept in G:
if G.nodes[concept].get('indicators') is None:
G.nodes[concept]['indicators'] = {}
G.nodes[concept]['indicators'][indicator_name] = Indicator(
indicator_name, indicator_source)
self = cls(G)
self.assign_uuids_to_nodes_and_edges()
return self
|
from_uncharted_json_serialized_dict
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, _dict, minimum_evidence_pieces_required: int=1):\n sts = _dict['statements']\n G = nx.DiGraph()\n for s in sts:\n if len(s['evidence']) >= minimum_evidence_pieces_required:\n subj, obj = s['subj'], s['obj']\n if subj['db_refs']['concept'] is not None and obj['db_refs'][\n 'concept'] is not None:\n subj_name, obj_name = ['/'.join(s[x]['db_refs']['concept'].\n split('/')[:]) for x in ['subj', 'obj']]\n G.add_edge(subj_name, obj_name)\n subj_delta = s['subj_delta']\n obj_delta = s['obj_delta']\n for delta in (subj_delta, obj_delta):\n if delta['polarity'] is None:\n delta['polarity'] = 1\n influence_stmt = Influence(Concept(subj_name, db_refs=subj[\n 'db_refs']), Concept(obj_name, db_refs=obj['db_refs']),\n subj_delta=s['subj_delta'], obj_delta=s['obj_delta'],\n evidence=[INDRAEvidence(source_api=ev['source_api'],\n annotations=ev['annotations'], text=ev['text'],\n epistemics=ev.get('epistemics')) for ev in s['evidence']])\n influence_sts = G.edges[subj_name, obj_name].get(\n 'InfluenceStatements', [])\n influence_sts.append(influence_stmt)\n G.edges[subj_name, obj_name]['InfluenceStatements'\n ] = influence_sts\n for concept, indicator in _dict['concept_to_indicator_mapping'].items():\n if indicator is not None:\n indicator_source, indicator_name = indicator['name'].split('/')[0\n ], '/'.join(indicator['name'].split('/')[1:])\n if concept in G:\n if G.nodes[concept].get('indicators') is None:\n G.nodes[concept]['indicators'] = {}\n G.nodes[concept]['indicators'][indicator_name] = Indicator(\n indicator_name, indicator_source)\n self = cls(G)\n self.assign_uuids_to_nodes_and_edges()\n return self\n",
"role": "user"
},
{
"content": "from_uncharted_json_serialized_dict",
"role": "assistant"
}
] |
def x(self):
df = pd.read_sql_table('gradableAdjectiveData', con=engine)
gb = df.groupby('adjective')
rs = gaussian_kde(flatMap(lambda g: gaussian_kde(get_respdevs(g[1])).
resample(self.res)[0].tolist(), gb)).resample(self.res)[0]
for edge in self.edges(data=True):
edge[2]['ConditionalProbability'] = constructConditionalPDF(gb, rs,
edge)
edge[2]['βs'] = np.tan(edge[2]['ConditionalProbability'].resample(
self.res)[0])
|
assemble_transition_model_from_gradable_adjectives
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n df = pd.read_sql_table('gradableAdjectiveData', con=engine)\n gb = df.groupby('adjective')\n rs = gaussian_kde(flatMap(lambda g: gaussian_kde(get_respdevs(g[1])).\n resample(self.res)[0].tolist(), gb)).resample(self.res)[0]\n for edge in self.edges(data=True):\n edge[2]['ConditionalProbability'] = constructConditionalPDF(gb, rs,\n edge)\n edge[2]['βs'] = np.tan(edge[2]['ConditionalProbability'].resample(\n self.res)[0])\n",
"role": "user"
},
{
"content": "assemble_transition_model_from_gradable_adjectives",
"role": "assistant"
}
] |
def x(self):
node_pairs = list(permutations(self.nodes(), 2))
simple_path_dict = {node_pair: [list(pairwise(path)) for path in nx.
all_simple_paths(self, *node_pair)] for node_pair in node_pairs}
self.transition_matrix_collection = []
elements = self.get_latent_state_components()
for i in range(self.res):
A = pd.DataFrame(np.identity(2 * len(self)), index=elements,
columns=elements)
for node in self.nodes:
A[f'∂({node})/∂t'][node] = self.Δt
for node_pair in node_pairs:
A[f'∂({node_pair[0]})/∂t'][node_pair[1]] = sum(np.prod([self.
edges[edge[0], edge[1]]['βs'][i] for edge in
simple_path_edge_list]) * self.Δt for simple_path_edge_list in
simple_path_dict[node_pair])
self.transition_matrix_collection.append(A)
|
sample_from_prior
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n node_pairs = list(permutations(self.nodes(), 2))\n simple_path_dict = {node_pair: [list(pairwise(path)) for path in nx.\n all_simple_paths(self, *node_pair)] for node_pair in node_pairs}\n self.transition_matrix_collection = []\n elements = self.get_latent_state_components()\n for i in range(self.res):\n A = pd.DataFrame(np.identity(2 * len(self)), index=elements,\n columns=elements)\n for node in self.nodes:\n A[f'∂({node})/∂t'][node] = self.Δt\n for node_pair in node_pairs:\n A[f'∂({node_pair[0]})/∂t'][node_pair[1]] = sum(np.prod([self.\n edges[edge[0], edge[1]]['βs'][i] for edge in\n simple_path_edge_list]) * self.Δt for simple_path_edge_list in\n simple_path_dict[node_pair])\n self.transition_matrix_collection.append(A)\n",
"role": "user"
},
{
"content": "sample_from_prior",
"role": "assistant"
}
] |
def x(self, s: pd.Series) ->Dict:
return {n[0]: {i.name: np.random.normal(s[n[0]] * i.mean, i.stdev) for
i in n[1]['indicators'].values()} for n in self.nodes(data=True)}
|
sample_observed_state
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, s: pd.Series) ->Dict:\n return {n[0]: {i.name: np.random.normal(s[n[0]] * i.mean, i.stdev) for\n i in n[1]['indicators'].values()} for n in self.nodes(data=True)}\n",
"role": "user"
},
{
"content": "sample_observed_state",
"role": "assistant"
}
] |
def x(self, n_timesteps=10):
self.latent_state_sequences = lmap(lambda A: ltake(n_timesteps, iterate
(lambda s: pd.Series(A @ s.values, index=s.index), self.s0)), self.
transition_matrix_collection)
self.observed_state_sequences = [[self.sample_observed_state(s) for s in
latent_state_sequence] for latent_state_sequence in self.
latent_state_sequences]
|
sample_from_likelihood
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, n_timesteps=10):\n self.latent_state_sequences = lmap(lambda A: ltake(n_timesteps, iterate\n (lambda s: pd.Series(A @ s.values, index=s.index), self.s0)), self.\n transition_matrix_collection)\n self.observed_state_sequences = [[self.sample_observed_state(s) for s in\n latent_state_sequence] for latent_state_sequence in self.\n latent_state_sequences]\n",
"role": "user"
},
{
"content": "sample_from_likelihood",
"role": "assistant"
}
] |
def x(self, A: pd.DataFrame) ->None:
self.source, self.target, self.edge_dict = random.choice(list(self.
edges(data=True)))
self.original_value = A[f'∂({self.source})/∂t'][self.target]
A[f'∂({self.source})/∂t'][self.target] += np.random.normal(scale=0.001)
|
sample_from_proposal
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, A: pd.DataFrame) ->None:\n self.source, self.target, self.edge_dict = random.choice(list(self.\n edges(data=True)))\n self.original_value = A[f'∂({self.source})/∂t'][self.target]\n A[f'∂({self.source})/∂t'][self.target] += np.random.normal(scale=0.001)\n",
"role": "user"
},
{
"content": "sample_from_proposal",
"role": "assistant"
}
] |
def x(self, resolution: str='month', months: Iterable[int]=range(6, 9)):
if resolution == 'month':
funcs = [partial(get_indicator_value, month=month) for month in months]
else:
raise NotImplementedError(
"Currently, only the 'month' resolution is supported.")
for n in self.nodes(data=True):
for indicator in n[1]['indicators'].values():
indicator.timeseries = [func(indicator, year='2017')[0] for
func in funcs]
if len(set(indicator.timeseries)) == 1:
indicator.timeseries = None
|
get_timeseries_values_for_indicators
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, resolution: str='month', months: Iterable[int]=range(6, 9)):\n if resolution == 'month':\n funcs = [partial(get_indicator_value, month=month) for month in months]\n else:\n raise NotImplementedError(\n \"Currently, only the 'month' resolution is supported.\")\n for n in self.nodes(data=True):\n for indicator in n[1]['indicators'].values():\n indicator.timeseries = [func(indicator, year='2017')[0] for\n func in funcs]\n if len(set(indicator.timeseries)) == 1:\n indicator.timeseries = None\n",
"role": "user"
},
{
"content": "get_timeseries_values_for_indicators",
"role": "assistant"
}
] |
def x(self, A: pd.DataFrame) ->None:
self.sample_from_proposal(A)
self.set_latent_state_sequence(A)
self.update_log_prior(A)
self.update_log_likelihood()
candidate_log_joint_probability = self.log_prior + self.log_likelihood
delta_log_joint_probability = (candidate_log_joint_probability - self.
log_joint_probability)
acceptance_probability = min(1, np.exp(delta_log_joint_probability))
if acceptance_probability > np.random.rand():
self.update_log_joint_probability()
else:
A[f'∂({self.source})/∂t'][self.target] = self.original_value
self.set_latent_state_sequence(A)
self.update_log_likelihood()
self.update_log_prior(A)
self.update_log_joint_probability()
|
sample_from_posterior
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, A: pd.DataFrame) ->None:\n self.sample_from_proposal(A)\n self.set_latent_state_sequence(A)\n self.update_log_prior(A)\n self.update_log_likelihood()\n candidate_log_joint_probability = self.log_prior + self.log_likelihood\n delta_log_joint_probability = (candidate_log_joint_probability - self.\n log_joint_probability)\n acceptance_probability = min(1, np.exp(delta_log_joint_probability))\n if acceptance_probability > np.random.rand():\n self.update_log_joint_probability()\n else:\n A[f'∂({self.source})/∂t'][self.target] = self.original_value\n self.set_latent_state_sequence(A)\n self.update_log_likelihood()\n self.update_log_prior(A)\n self.update_log_joint_probability()\n",
"role": "user"
},
{
"content": "sample_from_posterior",
"role": "assistant"
}
] |
def x(self, source: str, target: str, state: Optional[str]=None, crop:
Optional[str]=None):
rows = engine.execute(
f"select * from dssat where `Crop` like '{crop}' and `State` like '{state}'"
)
xs, ys = lzip(*[(r['Rainfall'], r['Production']) for r in rows])
xs_scaled, ys_scaled = xs / np.mean(xs), ys / np.mean(ys)
p, V = np.polyfit(xs_scaled, ys_scaled, 1, cov=True)
self.edges[source, target]['βs'] = np.random.normal(p[0], np.sqrt(V[0][
0]), self.res)
self.sample_from_prior()
|
infer_transition_matrix_coefficient_from_data
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, source: str, target: str, state: Optional[str]=None, crop:\n Optional[str]=None):\n rows = engine.execute(\n f\"select * from dssat where `Crop` like '{crop}' and `State` like '{state}'\"\n )\n xs, ys = lzip(*[(r['Rainfall'], r['Production']) for r in rows])\n xs_scaled, ys_scaled = xs / np.mean(xs), ys / np.mean(ys)\n p, V = np.polyfit(xs_scaled, ys_scaled, 1, cov=True)\n self.edges[source, target]['βs'] = np.random.normal(p[0], np.sqrt(V[0][\n 0]), self.res)\n self.sample_from_prior()\n",
"role": "user"
},
{
"content": "infer_transition_matrix_coefficient_from_data",
"role": "assistant"
}
] |
def x(self, filename: str='bmi_config.txt') ->None:
s0 = self.construct_default_initial_state()
s0.to_csv(filename, index_label='variable')
|
create_bmi_config_file
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, filename: str='bmi_config.txt') ->None:\n s0 = self.construct_default_initial_state()\n s0.to_csv(filename, index_label='variable')\n",
"role": "user"
},
{
"content": "create_bmi_config_file",
"role": "assistant"
}
] |
def x(self, n: Tuple[str, dict]) ->List[float]:
return [(self.transition_matrix_collection[i].loc[n[0]].values @ self.
s0[i].values) for i in range(self.res)]
|
default_update_function
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, n: Tuple[str, dict]) ->List[float]:\n return [(self.transition_matrix_collection[i].loc[n[0]].values @ self.\n s0[i].values) for i in range(self.res)]\n",
"role": "user"
},
{
"content": "default_update_function",
"role": "assistant"
}
] |
def x(self, config_file: str='bmi_config.txt', initialize_indicators=True):
self.t = 0.0
if not os.path.isfile(config_file):
self.create_bmi_config_file(config_file)
self.s0 = [pd.read_csv(config_file, index_col=0, header=None,
error_bad_lines=False)[1] for _ in range(self.res)]
self.s0_original = self.s0[0].copy(deep=True)
self.latent_state_vector = self.construct_default_initial_state()
for n in self.nodes(data=True):
rv = LatentVar(n[0])
n[1]['rv'] = rv
n[1]['update_function'] = self.default_update_function
rv.dataset = [(1.0) for _ in range(self.res)]
rv.partial_t = self.s0[0][f'∂({n[0]})/∂t']
if initialize_indicators:
for indicator in n[1]['indicators'].values():
indicator.samples = np.random.normal(indicator.mean * np.
array(n[1]['rv'].dataset), scale=0.01)
|
initialize
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, config_file: str='bmi_config.txt', initialize_indicators=True):\n self.t = 0.0\n if not os.path.isfile(config_file):\n self.create_bmi_config_file(config_file)\n self.s0 = [pd.read_csv(config_file, index_col=0, header=None,\n error_bad_lines=False)[1] for _ in range(self.res)]\n self.s0_original = self.s0[0].copy(deep=True)\n self.latent_state_vector = self.construct_default_initial_state()\n for n in self.nodes(data=True):\n rv = LatentVar(n[0])\n n[1]['rv'] = rv\n n[1]['update_function'] = self.default_update_function\n rv.dataset = [(1.0) for _ in range(self.res)]\n rv.partial_t = self.s0[0][f'∂({n[0]})/∂t']\n if initialize_indicators:\n for indicator in n[1]['indicators'].values():\n indicator.samples = np.random.normal(indicator.mean * np.\n array(n[1]['rv'].dataset), scale=0.01)\n",
"role": "user"
},
{
"content": "initialize",
"role": "assistant"
}
] |
def x(self, τ: float=1.0, update_indicators=True, dampen=False):
for n in self.nodes(data=True):
n[1]['next_state'] = n[1]['update_function'](n)
for n in self.nodes(data=True):
n[1]['rv'].dataset = n[1]['next_state']
for n in self.nodes(data=True):
for i in range(self.res):
self.s0[i][n[0]] = n[1]['rv'].dataset[i]
if dampen:
self.s0[i][f'∂({n[0]})/∂t'] = self.s0_original[f'∂({n[0]})/∂t'
] * exp(-τ * self.t)
if update_indicators:
for indicator in n[1]['indicators'].values():
indicator.samples = np.random.normal(indicator.mean * np.
array(n[1]['rv'].dataset), scale=0.01)
self.t += self.Δt
|
update
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, τ: float=1.0, update_indicators=True, dampen=False):\n for n in self.nodes(data=True):\n n[1]['next_state'] = n[1]['update_function'](n)\n for n in self.nodes(data=True):\n n[1]['rv'].dataset = n[1]['next_state']\n for n in self.nodes(data=True):\n for i in range(self.res):\n self.s0[i][n[0]] = n[1]['rv'].dataset[i]\n if dampen:\n self.s0[i][f'∂({n[0]})/∂t'] = self.s0_original[f'∂({n[0]})/∂t'\n ] * exp(-τ * self.t)\n if update_indicators:\n for indicator in n[1]['indicators'].values():\n indicator.samples = np.random.normal(indicator.mean * np.\n array(n[1]['rv'].dataset), scale=0.01)\n self.t += self.Δt\n",
"role": "user"
},
{
"content": "update",
"role": "assistant"
}
] |
def x(self, n) ->Dict[str, Union[str, List[str]]]:
node_dict = {'name': n[0], 'units': _get_units(n[0]), 'dtype':
_get_dtype(n[0]), 'arguments': list(self.predecessors(n[0]))}
if not n[1].get('indicators') is None:
for indicator in n[1]['indicators'].values():
if 'dataset' in indicator.__dict__:
del indicator.__dict__['dataset']
node_dict['indicators'] = [_process_datetime(indicator.__dict__) for
indicator in n[1]['indicators'].values()]
else:
node_dict['indicators'] = None
return node_dict
|
export_node
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, n) ->Dict[str, Union[str, List[str]]]:\n node_dict = {'name': n[0], 'units': _get_units(n[0]), 'dtype':\n _get_dtype(n[0]), 'arguments': list(self.predecessors(n[0]))}\n if not n[1].get('indicators') is None:\n for indicator in n[1]['indicators'].values():\n if 'dataset' in indicator.__dict__:\n del indicator.__dict__['dataset']\n node_dict['indicators'] = [_process_datetime(indicator.__dict__) for\n indicator in n[1]['indicators'].values()]\n else:\n node_dict['indicators'] = None\n return node_dict\n",
"role": "user"
},
{
"content": "export_node",
"role": "assistant"
}
] |
def x(self) ->Dict:
return {'name': self.name, 'dateCreated': str(self.dateCreated),
'variables': lmap(lambda n: self.export_node(n), self.nodes(data=
True)), 'timeStep': str(self.Δt), 'edge_data': lmap(export_edge,
self.edges(data=True))}
|
to_dict
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self) ->Dict:\n return {'name': self.name, 'dateCreated': str(self.dateCreated),\n 'variables': lmap(lambda n: self.export_node(n), self.nodes(data=\n True)), 'timeStep': str(self.Δt), 'edge_data': lmap(export_edge,\n self.edges(data=True))}\n",
"role": "user"
},
{
"content": "to_dict",
"role": "assistant"
}
] |
def x(self, n: int=1, min_temporal_res: Optional[str]=None):
for node in self.nodes(data=True):
query_parts = ['select Indicator from concept_to_indicator_mapping',
f"where `Concept` like '{node[0]}'"]
query = ' '.join(query_parts)
results = engine.execute(query)
if min_temporal_res is not None:
if min_temporal_res not in ['month']:
raise ValueError("min_temporal_res must be 'month'")
vars_with_required_temporal_resolution = [r[0] for r in engine.
execute(
f'select distinct `Variable` from indicator where `{min_temporal_res.capitalize()}` is not null'
)]
results = [r for r in results if r[0] in
vars_with_required_temporal_resolution]
node[1]['indicators'] = {x: Indicator(x, 'MITRE12') for x in [r[0] for
r in take(n, results)]}
|
map_concepts_to_indicators
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, n: int=1, min_temporal_res: Optional[str]=None):\n for node in self.nodes(data=True):\n query_parts = ['select Indicator from concept_to_indicator_mapping',\n f\"where `Concept` like '{node[0]}'\"]\n query = ' '.join(query_parts)\n results = engine.execute(query)\n if min_temporal_res is not None:\n if min_temporal_res not in ['month']:\n raise ValueError(\"min_temporal_res must be 'month'\")\n vars_with_required_temporal_resolution = [r[0] for r in engine.\n execute(\n f'select distinct `Variable` from indicator where `{min_temporal_res.capitalize()}` is not null'\n )]\n results = [r for r in results if r[0] in\n vars_with_required_temporal_resolution]\n node[1]['indicators'] = {x: Indicator(x, 'MITRE12') for x in [r[0] for\n r in take(n, results)]}\n",
"role": "user"
},
{
"content": "map_concepts_to_indicators",
"role": "assistant"
}
] |
def x(self, country: Optional[str]='South Sudan', state: Optional[str]=None,
year: Optional[int]=None, month: Optional[int]=None, unit: Optional[str
]=None, fallback_aggaxes: List[str]=['year', 'month'], aggfunc:
Callable=np.mean):
valid_axes = 'country', 'state', 'year', 'month'
if any(map(lambda axis: axis not in valid_axes, fallback_aggaxes)):
raise ValueError(
f'All elements of the fallback_aggaxes set must be one of the following: {valid_axes}'
)
for n in self.nodes(data=True):
for indicator in n[1]['indicators'].values():
indicator.mean, indicator.unit = get_indicator_value(indicator,
country, state, year, month, unit, fallback_aggaxes, aggfunc)
indicator.stdev = 0.1 * abs(indicator.mean)
|
parameterize
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, country: Optional[str]='South Sudan', state: Optional[str]=None,\n year: Optional[int]=None, month: Optional[int]=None, unit: Optional[str\n ]=None, fallback_aggaxes: List[str]=['year', 'month'], aggfunc:\n Callable=np.mean):\n valid_axes = 'country', 'state', 'year', 'month'\n if any(map(lambda axis: axis not in valid_axes, fallback_aggaxes)):\n raise ValueError(\n f'All elements of the fallback_aggaxes set must be one of the following: {valid_axes}'\n )\n for n in self.nodes(data=True):\n for indicator in n[1]['indicators'].values():\n indicator.mean, indicator.unit = get_indicator_value(indicator,\n country, state, year, month, unit, fallback_aggaxes, aggfunc)\n indicator.stdev = 0.1 * abs(indicator.mean)\n",
"role": "user"
},
{
"content": "parameterize",
"role": "assistant"
}
] |
def x(self, nodes: Iterable[str]):
for n in nodes:
if self.has_node(n):
self.remove_node(n)
|
delete_nodes
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, nodes: Iterable[str]):\n for n in nodes:\n if self.has_node(n):\n self.remove_node(n)\n",
"role": "user"
},
{
"content": "delete_nodes",
"role": "assistant"
}
] |
def x(self, node: str):
if self.has_node(node):
self.remove_node(node)
|
delete_node
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, node: str):\n if self.has_node(node):\n self.remove_node(node)\n",
"role": "user"
},
{
"content": "delete_node",
"role": "assistant"
}
] |
def x(self, source: str, target: str):
if self.has_edge(source, target):
self.remove_edge(source, target)
|
delete_edge
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, source: str, target: str):\n if self.has_edge(source, target):\n self.remove_edge(source, target)\n",
"role": "user"
},
{
"content": "delete_edge",
"role": "assistant"
}
] |
def x(self, edges: Iterable[Tuple[str, str]]):
for edge in edges:
if self.has_edge(*edge):
self.remove_edge(*edge)
|
delete_edges
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, edges: Iterable[Tuple[str, str]]):\n for edge in edges:\n if self.has_edge(*edge):\n self.remove_edge(*edge)\n",
"role": "user"
},
{
"content": "delete_edges",
"role": "assistant"
}
] |
def x(self, cutoff: int=2):
for node_pair in tqdm(list(permutations(self.nodes(), 2))):
paths = [list(pairwise(path)) for path in nx.all_simple_paths(self,
*node_pair, cutoff)]
if len(paths) > 1:
for path in paths:
if len(path) == 1:
self.delete_edge(*path[0])
if any(self.degree(n) == 0 for n in path[0]):
self.add_edge(*path[0])
break
|
prune
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, cutoff: int=2):\n for node_pair in tqdm(list(permutations(self.nodes(), 2))):\n paths = [list(pairwise(path)) for path in nx.all_simple_paths(self,\n *node_pair, cutoff)]\n if len(paths) > 1:\n for path in paths:\n if len(path) == 1:\n self.delete_edge(*path[0])\n if any(self.degree(n) == 0 for n in path[0]):\n self.add_edge(*path[0])\n break\n",
"role": "user"
},
{
"content": "prune",
"role": "assistant"
}
] |
def x(self, n1: str, n2: str, same_polarity: bool=True):
for p in self.predecessors(n1):
for st in self[p][n1]['InfluenceStatements']:
if not same_polarity:
st.obj_delta['polarity'] = -st.obj_delta['polarity']
st.obj.db_refs['UN'][0] = n2, st.obj.db_refs['UN'][0][1]
if not self.has_edge(p, n2):
self.add_edge(p, n2)
self[p][n2]['InfluenceStatements'] = self[p][n1][
'InfluenceStatements']
else:
self[p][n2]['InfluenceStatements'] += self[p][n1][
'InfluenceStatements']
for s in self.successors(n1):
for st in self.edges[n1, s]['InfluenceStatements']:
if not same_polarity:
st.subj_delta['polarity'] = -st.subj_delta['polarity']
st.subj.db_refs['UN'][0] = n2, st.subj.db_refs['UN'][0][1]
if not self.has_edge(n2, s):
self.add_edge(n2, s)
self[n2][s]['InfluenceStatements'] = self[n1][s][
'InfluenceStatements']
else:
self[n2][s]['InfluenceStatements'] += self[n1][s][
'InfluenceStatements']
self.remove_node(n1)
|
merge_nodes
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, n1: str, n2: str, same_polarity: bool=True):\n for p in self.predecessors(n1):\n for st in self[p][n1]['InfluenceStatements']:\n if not same_polarity:\n st.obj_delta['polarity'] = -st.obj_delta['polarity']\n st.obj.db_refs['UN'][0] = n2, st.obj.db_refs['UN'][0][1]\n if not self.has_edge(p, n2):\n self.add_edge(p, n2)\n self[p][n2]['InfluenceStatements'] = self[p][n1][\n 'InfluenceStatements']\n else:\n self[p][n2]['InfluenceStatements'] += self[p][n1][\n 'InfluenceStatements']\n for s in self.successors(n1):\n for st in self.edges[n1, s]['InfluenceStatements']:\n if not same_polarity:\n st.subj_delta['polarity'] = -st.subj_delta['polarity']\n st.subj.db_refs['UN'][0] = n2, st.subj.db_refs['UN'][0][1]\n if not self.has_edge(n2, s):\n self.add_edge(n2, s)\n self[n2][s]['InfluenceStatements'] = self[n1][s][\n 'InfluenceStatements']\n else:\n self[n2][s]['InfluenceStatements'] += self[n1][s][\n 'InfluenceStatements']\n self.remove_node(n1)\n",
"role": "user"
},
{
"content": "merge_nodes",
"role": "assistant"
}
] |
def x(self, concept: str, depth: int=1, reverse: bool=False):
nodeset = {concept}
if reverse:
func = self.predecessors
else:
func = self.successors
for i in range(depth):
nodeset.update(chain.from_iterable([list(func(n)) for n in nodeset]))
return AnalysisGraph(self.subgraph(nodeset).copy())
|
get_subgraph_for_concept
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, concept: str, depth: int=1, reverse: bool=False):\n nodeset = {concept}\n if reverse:\n func = self.predecessors\n else:\n func = self.successors\n for i in range(depth):\n nodeset.update(chain.from_iterable([list(func(n)) for n in nodeset]))\n return AnalysisGraph(self.subgraph(nodeset).copy())\n",
"role": "user"
},
{
"content": "get_subgraph_for_concept",
"role": "assistant"
}
] |
def x(self, source: str, target: str, cutoff: Optional[int]=None):
paths = nx.all_simple_paths(self, source, target, cutoff=cutoff)
return AnalysisGraph(self.subgraph(set(chain.from_iterable(paths))))
|
get_subgraph_for_concept_pair
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, source: str, target: str, cutoff: Optional[int]=None):\n paths = nx.all_simple_paths(self, source, target, cutoff=cutoff)\n return AnalysisGraph(self.subgraph(set(chain.from_iterable(paths))))\n",
"role": "user"
},
{
"content": "get_subgraph_for_concept_pair",
"role": "assistant"
}
] |
def x(self, concepts: List[str], cutoff: Optional[int]=None):
path_generator = (nx.all_simple_paths(self, source, target, cutoff=
cutoff) for source, target in permutations(concepts, 2))
paths = chain.from_iterable(path_generator)
return AnalysisGraph(self.subgraph(set(chain.from_iterable(paths))))
|
get_subgraph_for_concept_pairs
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, concepts: List[str], cutoff: Optional[int]=None):\n path_generator = (nx.all_simple_paths(self, source, target, cutoff=\n cutoff) for source, target in permutations(concepts, 2))\n paths = chain.from_iterable(path_generator)\n return AnalysisGraph(self.subgraph(set(chain.from_iterable(paths))))\n",
"role": "user"
},
{
"content": "get_subgraph_for_concept_pairs",
"role": "assistant"
}
] |
def x(self, app=None, last_known_value_date: Optional[date]=None):
from delphi.apps.rest_api import create_app, db
self.assign_uuids_to_nodes_and_edges()
icm_metadata = ICMMetadata(id=self.id, created=self.dateCreated,
estimatedNumberOfPrimitives=len(self.nodes) + len(self.edges),
createdByUser_id=1, lastAccessedByUser_id=1, lastUpdatedByUser_id=1)
if last_known_value_date is None:
today = date.today().isoformat()
else:
today = last_known_value_date.isoformat()
default_latent_var_value = 1.0
causal_primitives = []
nodeset = {n.split('/')[-1] for n in self.nodes}
simplified_labels = len(nodeset) == len(self)
for n in self.nodes(data=True):
n[1]['rv'] = LatentVar(n[0])
n[1]['update_function'] = self.default_update_function
rv = n[1]['rv']
rv.dataset = [default_latent_var_value for _ in range(self.res)]
causal_variable = CausalVariable(id=n[1]['id'], model_id=self.id,
units='', namespaces={}, auxiliaryProperties=[], label=n[0].
split('/')[-1].replace('_', ' ').capitalize() if
simplified_labels else n[0], description=n[0], lastUpdated=
today, confidence=1.0, lastKnownValue={'active': 'ACTIVE',
'trend': None, 'time': today, 'value': {'baseType':
'FloatValue', 'value': n[1]['rv'].dataset[0]}}, range={
'baseType': 'FloatRange', 'range': {'min': 0, 'max': 5, 'step':
0.1}})
causal_primitives.append(causal_variable)
max_mean_betas = max([abs(np.median(e[2]['βs'])) for e in self.edges(
data=True)])
for e in self.edges(data=True):
causal_relationship = CausalRelationship(id=e[2]['id'], namespaces=
{}, source={'id': self.nodes[e[0]]['id'], 'baseType':
'CausalVariable'}, target={'id': self.nodes[e[1]]['id'],
'baseType': 'CausalVariable'}, model_id=self.id,
auxiliaryProperties=[], lastUpdated=today, types=['causal'],
description='', confidence=np.mean([s.belief for s in e[2][
'InfluenceStatements']]), label='', strength=abs(np.median(e[2]
['βs']) / max_mean_betas), reinforcement=True if np.mean([(stmt
.subj_delta['polarity'] * stmt.obj_delta['polarity']) for stmt in
e[2]['InfluenceStatements']]) > 0 else False)
causal_primitives.append(causal_relationship)
evidences = []
for edge in self.edges(data=True):
for stmt in edge[2]['InfluenceStatements']:
for ev in stmt.evidence:
evidence = Evidence(id=str(uuid4()), causalrelationship_id=
edge[2]['id'], description=ev.text)
evidences.append(evidence)
if app is None:
app = create_app()
with app.app_context():
db.drop_all()
db.create_all()
db.session.add(icm_metadata)
db.session.add(DelphiModel(id=self.id, model=self))
for causal_primitive in causal_primitives:
db.session.add(causal_primitive)
for evidence in evidences:
db.session.add(evidence)
db.session.commit()
|
to_sql
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, app=None, last_known_value_date: Optional[date]=None):\n from delphi.apps.rest_api import create_app, db\n self.assign_uuids_to_nodes_and_edges()\n icm_metadata = ICMMetadata(id=self.id, created=self.dateCreated,\n estimatedNumberOfPrimitives=len(self.nodes) + len(self.edges),\n createdByUser_id=1, lastAccessedByUser_id=1, lastUpdatedByUser_id=1)\n if last_known_value_date is None:\n today = date.today().isoformat()\n else:\n today = last_known_value_date.isoformat()\n default_latent_var_value = 1.0\n causal_primitives = []\n nodeset = {n.split('/')[-1] for n in self.nodes}\n simplified_labels = len(nodeset) == len(self)\n for n in self.nodes(data=True):\n n[1]['rv'] = LatentVar(n[0])\n n[1]['update_function'] = self.default_update_function\n rv = n[1]['rv']\n rv.dataset = [default_latent_var_value for _ in range(self.res)]\n causal_variable = CausalVariable(id=n[1]['id'], model_id=self.id,\n units='', namespaces={}, auxiliaryProperties=[], label=n[0].\n split('/')[-1].replace('_', ' ').capitalize() if\n simplified_labels else n[0], description=n[0], lastUpdated=\n today, confidence=1.0, lastKnownValue={'active': 'ACTIVE',\n 'trend': None, 'time': today, 'value': {'baseType':\n 'FloatValue', 'value': n[1]['rv'].dataset[0]}}, range={\n 'baseType': 'FloatRange', 'range': {'min': 0, 'max': 5, 'step':\n 0.1}})\n causal_primitives.append(causal_variable)\n max_mean_betas = max([abs(np.median(e[2]['βs'])) for e in self.edges(\n data=True)])\n for e in self.edges(data=True):\n causal_relationship = CausalRelationship(id=e[2]['id'], namespaces=\n {}, source={'id': self.nodes[e[0]]['id'], 'baseType':\n 'CausalVariable'}, target={'id': self.nodes[e[1]]['id'],\n 'baseType': 'CausalVariable'}, model_id=self.id,\n auxiliaryProperties=[], lastUpdated=today, types=['causal'],\n description='', confidence=np.mean([s.belief for s in e[2][\n 'InfluenceStatements']]), label='', strength=abs(np.median(e[2]\n ['βs']) / max_mean_betas), reinforcement=True if np.mean([(stmt\n .subj_delta['polarity'] * stmt.obj_delta['polarity']) for stmt in\n e[2]['InfluenceStatements']]) > 0 else False)\n causal_primitives.append(causal_relationship)\n evidences = []\n for edge in self.edges(data=True):\n for stmt in edge[2]['InfluenceStatements']:\n for ev in stmt.evidence:\n evidence = Evidence(id=str(uuid4()), causalrelationship_id=\n edge[2]['id'], description=ev.text)\n evidences.append(evidence)\n if app is None:\n app = create_app()\n with app.app_context():\n db.drop_all()\n db.create_all()\n db.session.add(icm_metadata)\n db.session.add(DelphiModel(id=self.id, model=self))\n for causal_primitive in causal_primitives:\n db.session.add(causal_primitive)\n for evidence in evidences:\n db.session.add(evidence)\n db.session.commit()\n",
"role": "user"
},
{
"content": "to_sql",
"role": "assistant"
}
] |
def x(self, indicators: bool=False, indicator_values: bool=False,
nodes_to_highlight=None, *args, **kwargs):
from delphi.utils.misc import choose_font
FONT = choose_font()
A = nx.nx_agraph.to_agraph(self)
A.graph_attr.update({'dpi': 227, 'fontsize': 20, 'rankdir': kwargs.get(
'rankdir', 'TB'), 'fontname': FONT, 'overlap': 'scale', 'splines':
True})
A.node_attr.update({'shape': 'rectangle', 'color': 'black', 'style':
'rounded', 'fontname': FONT})
nodes_with_indicators = [n for n in self.nodes(data=True) if n[1].get(
'indicators') is not None]
n_max = max([sum([len(s.evidence) for s in e[2]['InfluenceStatements']]
) for e in self.edges(data=True)])
nodeset = {n.split('/')[-1] for n in self.nodes}
simplified_labels = len(nodeset) == len(self)
color_str = '#650021'
for n in self.nodes(data=True):
if kwargs.get('values'):
node_label = n[0].capitalize().replace('_', ' ') + ' (' + str(np
.mean(n[1]['rv'].dataset)) + ')'
else:
node_label = n[0].split('/')[-1].replace('_', ' ').capitalize(
) if simplified_labels else n[0]
A.add_node(n[0], label=node_label)
if list(self.edges(data=True))[0][2].get('βs') is not None:
max_median_betas = max([abs(np.median(e[2]['βs'])) for e in self.
edges(data=True)])
for e in self.edges(data=True):
sts = e[2]['InfluenceStatements']
total_evidence_pieces = sum([len(s.evidence) for s in sts])
reinforcement = sum([(stmt.overall_polarity() * len(stmt.evidence)) for
stmt in sts]) / total_evidence_pieces
opacity = total_evidence_pieces / n_max
h = (opacity * 255).hex()
if list(self.edges(data=True))[0][2].get('βs') is not None:
penwidth = 3 * abs(np.median(e[2]['βs']) / max_median_betas)
cmap = cm.Greens if reinforcement > 0 else cm.Reds
c_str = matplotlib.colors.rgb2hex(cmap(abs(reinforcement))) + h[4:6
]
else:
penwidth = 1
c_str = 'black'
A.add_edge(e[0], e[1], color=c_str, penwidth=penwidth)
if indicators:
for n in nodes_with_indicators:
for indicator_name, ind in n[1]['indicators'].items():
node_label = _insert_line_breaks(ind.name.replace('_', ' '), 30
)
if indicator_values:
if ind.unit is not None:
units = f' {ind.unit}'
else:
units = ''
if ind.mean is not None:
ind_value = '{:.2f}'.format(ind.mean)
node_label = f"""{node_label}
{ind_value} {ind.unit}
Source: {ind.source}
Aggregation axes: {ind.aggaxes}
Aggregation method: {ind.aggregation_method}"""
A.add_node(indicator_name, style='rounded, filled',
fillcolor='lightblue', label=node_label)
A.add_edge(n[0], indicator_name, color='royalblue4')
if nodes_to_highlight is not None:
nodes = kwargs.pop('nodes_to_highlight')
if isinstance(nodes, list):
for n in nodes:
if n in A.nodes():
A.add_node(n, fontcolor='royalblue')
elif isinstance(nodes, str):
if n in A.nodes():
A.add_node(nodes, fontcolor='royalblue')
if kwargs.get('graph_label') is not None:
A.graph_attr['label'] = kwargs['graph_label']
return A
|
to_agraph
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, indicators: bool=False, indicator_values: bool=False,\n nodes_to_highlight=None, *args, **kwargs):\n from delphi.utils.misc import choose_font\n FONT = choose_font()\n A = nx.nx_agraph.to_agraph(self)\n A.graph_attr.update({'dpi': 227, 'fontsize': 20, 'rankdir': kwargs.get(\n 'rankdir', 'TB'), 'fontname': FONT, 'overlap': 'scale', 'splines': \n True})\n A.node_attr.update({'shape': 'rectangle', 'color': 'black', 'style':\n 'rounded', 'fontname': FONT})\n nodes_with_indicators = [n for n in self.nodes(data=True) if n[1].get(\n 'indicators') is not None]\n n_max = max([sum([len(s.evidence) for s in e[2]['InfluenceStatements']]\n ) for e in self.edges(data=True)])\n nodeset = {n.split('/')[-1] for n in self.nodes}\n simplified_labels = len(nodeset) == len(self)\n color_str = '#650021'\n for n in self.nodes(data=True):\n if kwargs.get('values'):\n node_label = n[0].capitalize().replace('_', ' ') + ' (' + str(np\n .mean(n[1]['rv'].dataset)) + ')'\n else:\n node_label = n[0].split('/')[-1].replace('_', ' ').capitalize(\n ) if simplified_labels else n[0]\n A.add_node(n[0], label=node_label)\n if list(self.edges(data=True))[0][2].get('βs') is not None:\n max_median_betas = max([abs(np.median(e[2]['βs'])) for e in self.\n edges(data=True)])\n for e in self.edges(data=True):\n sts = e[2]['InfluenceStatements']\n total_evidence_pieces = sum([len(s.evidence) for s in sts])\n reinforcement = sum([(stmt.overall_polarity() * len(stmt.evidence)) for\n stmt in sts]) / total_evidence_pieces\n opacity = total_evidence_pieces / n_max\n h = (opacity * 255).hex()\n if list(self.edges(data=True))[0][2].get('βs') is not None:\n penwidth = 3 * abs(np.median(e[2]['βs']) / max_median_betas)\n cmap = cm.Greens if reinforcement > 0 else cm.Reds\n c_str = matplotlib.colors.rgb2hex(cmap(abs(reinforcement))) + h[4:6\n ]\n else:\n penwidth = 1\n c_str = 'black'\n A.add_edge(e[0], e[1], color=c_str, penwidth=penwidth)\n if indicators:\n for n in nodes_with_indicators:\n for indicator_name, ind in n[1]['indicators'].items():\n node_label = _insert_line_breaks(ind.name.replace('_', ' '), 30\n )\n if indicator_values:\n if ind.unit is not None:\n units = f' {ind.unit}'\n else:\n units = ''\n if ind.mean is not None:\n ind_value = '{:.2f}'.format(ind.mean)\n node_label = f\"\"\"{node_label}\n{ind_value} {ind.unit}\nSource: {ind.source}\nAggregation axes: {ind.aggaxes}\nAggregation method: {ind.aggregation_method}\"\"\"\n A.add_node(indicator_name, style='rounded, filled',\n fillcolor='lightblue', label=node_label)\n A.add_edge(n[0], indicator_name, color='royalblue4')\n if nodes_to_highlight is not None:\n nodes = kwargs.pop('nodes_to_highlight')\n if isinstance(nodes, list):\n for n in nodes:\n if n in A.nodes():\n A.add_node(n, fontcolor='royalblue')\n elif isinstance(nodes, str):\n if n in A.nodes():\n A.add_node(nodes, fontcolor='royalblue')\n if kwargs.get('graph_label') is not None:\n A.graph_attr['label'] = kwargs['graph_label']\n return A\n",
"role": "user"
},
{
"content": "to_agraph",
"role": "assistant"
}
] |
def x(node, annotate_fields=True, include_attributes=False, indent=' '):
def x(node, level=0):
if isinstance(node, ast.AST):
fields = [(a, _format(b, level)) for a, b in ast.iter_fields(node)]
if include_attributes and node._attributes:
fields.extend([(a, _format(getattr(node, a), level)) for a in
node._attributes])
return ''.join([node.__class__.__name__, '(', ', '.join((
'%s=%s' % field for field in fields) if annotate_fields else
(b for a, b in fields)), ')'])
elif isinstance(node, list):
lines = ['[']
lines.extend(indent * (level + 2) + _format(x, level + 2) + ',' for
x in node)
if len(lines) > 1:
lines.append(indent * (level + 1) + ']')
else:
lines[-1] += ']'
return '\n'.join(lines)
return repr(node)
if not isinstance(node, ast.AST):
raise TypeError('expected AST, got %r' % node.__class__.__name__)
return _format(node)
|
dump
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(node, annotate_fields=True, include_attributes=False, indent=' '):\n\n def x(node, level=0):\n if isinstance(node, ast.AST):\n fields = [(a, _format(b, level)) for a, b in ast.iter_fields(node)]\n if include_attributes and node._attributes:\n fields.extend([(a, _format(getattr(node, a), level)) for a in\n node._attributes])\n return ''.join([node.__class__.__name__, '(', ', '.join((\n '%s=%s' % field for field in fields) if annotate_fields else\n (b for a, b in fields)), ')'])\n elif isinstance(node, list):\n lines = ['[']\n lines.extend(indent * (level + 2) + _format(x, level + 2) + ',' for\n x in node)\n if len(lines) > 1:\n lines.append(indent * (level + 1) + ']')\n else:\n lines[-1] += ']'\n return '\\n'.join(lines)\n return repr(node)\n if not isinstance(node, ast.AST):\n raise TypeError('expected AST, got %r' % node.__class__.__name__)\n return _format(node)\n",
"role": "user"
},
{
"content": "dump",
"role": "assistant"
}
] |
def x(lambdaFile: str, asts: List, file_name: str, mode_mapper_dict: dict,
save_file=False) ->Dict:
lambdaStrings = ['import math\n\n']
state = PGMState(lambdaStrings)
generator = GrFNGenerator()
generator.mode_mapper = mode_mapper_dict
pgm = generator.genPgm(asts, state, {}, '')[0]
if pgm.get('start'):
pgm['start'] = pgm['start'][0]
else:
pgm['start'] = generator.function_defs[-1]
pgm['source'] = [[get_path(file_name, 'source')]]
pgm['dateCreated'] = f"{datetime.today().strftime('%Y%m%d')}"
with open(lambdaFile, 'w') as f:
f.write(''.join(lambdaStrings))
if save_file:
json.dump(pgm, open(file_name[:file_name.rfind('.')] + '.json', 'w'))
return pgm
|
create_pgm_dict
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(lambdaFile: str, asts: List, file_name: str, mode_mapper_dict: dict,\n save_file=False) ->Dict:\n lambdaStrings = ['import math\\n\\n']\n state = PGMState(lambdaStrings)\n generator = GrFNGenerator()\n generator.mode_mapper = mode_mapper_dict\n pgm = generator.genPgm(asts, state, {}, '')[0]\n if pgm.get('start'):\n pgm['start'] = pgm['start'][0]\n else:\n pgm['start'] = generator.function_defs[-1]\n pgm['source'] = [[get_path(file_name, 'source')]]\n pgm['dateCreated'] = f\"{datetime.today().strftime('%Y%m%d')}\"\n with open(lambdaFile, 'w') as f:\n f.write(''.join(lambdaStrings))\n if save_file:\n json.dump(pgm, open(file_name[:file_name.rfind('.')] + '.json', 'w'))\n return pgm\n",
"role": "user"
},
{
"content": "create_pgm_dict",
"role": "assistant"
}
] |
def x(sts, grounding_score_cutoff: float=0.8, belief_score_cutoff: float=
0.85, concepts_of_interest: List[str]=[]):
filtered_sts = []
counters = {}
def x(counter_name):
if counter_name in counters:
counters[counter_name] += 1
else:
counters[counter_name] = 1
for s in tqdm(sts):
update_counter('Original number of statements')
if not s.belief > belief_score_cutoff:
continue
update_counter(f'Statements with belief score > {belief_score_cutoff}')
if s.subj.db_refs.get('UN') is None or s.obj.db_refs.get('UN') is None:
continue
update_counter('Statements with UN groundings')
if not all(x[1] > grounding_score_cutoff for x in (y.db_refs['UN'][
0] for y in (s.subj, s.obj))):
continue
update_counter(
f'Statements with subj and obj grounding scores > {grounding_score_cutoff}'
)
if s.subj_delta['polarity'] is None:
s.subj_delta['polarity'] = 1
if s.obj_delta['polarity'] is None:
s.obj_delta['polarity'] = 1
filtered_sts.append(s)
for k, v in counters.items():
print(f'{k}: {v}')
return filtered_sts
|
filter_and_process_statements
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(sts, grounding_score_cutoff: float=0.8, belief_score_cutoff: float=\n 0.85, concepts_of_interest: List[str]=[]):\n filtered_sts = []\n counters = {}\n\n def x(counter_name):\n if counter_name in counters:\n counters[counter_name] += 1\n else:\n counters[counter_name] = 1\n for s in tqdm(sts):\n update_counter('Original number of statements')\n if not s.belief > belief_score_cutoff:\n continue\n update_counter(f'Statements with belief score > {belief_score_cutoff}')\n if s.subj.db_refs.get('UN') is None or s.obj.db_refs.get('UN') is None:\n continue\n update_counter('Statements with UN groundings')\n if not all(x[1] > grounding_score_cutoff for x in (y.db_refs['UN'][\n 0] for y in (s.subj, s.obj))):\n continue\n update_counter(\n f'Statements with subj and obj grounding scores > {grounding_score_cutoff}'\n )\n if s.subj_delta['polarity'] is None:\n s.subj_delta['polarity'] = 1\n if s.obj_delta['polarity'] is None:\n s.obj_delta['polarity'] = 1\n filtered_sts.append(s)\n for k, v in counters.items():\n print(f'{k}: {v}')\n return filtered_sts\n",
"role": "user"
},
{
"content": "filter_and_process_statements",
"role": "assistant"
}
] |
def x(input, output, filename='CAG_with_indicators.pdf'):
with open(input, 'rb') as f:
G = pickle.load(f)
G.map_concepts_to_indicators(min_temporal_res='month')
G.set_indicator('UN/events/weather/precipitation',
'Historical Average Total Daily Rainfall (Maize)', 'DSSAT')
G.set_indicator('UN/events/human/agriculture/food_production',
'Historical Production (Maize)', 'DSSAT')
G.set_indicator('UN/entities/human/food/food_security',
'IPC Phase Classification', 'FEWSNET')
G.set_indicator('UN/entities/food_availability',
'Production, Meat indigenous, total', 'FAO')
G.set_indicator('UN/entities/human/financial/economic/market',
'Inflation Rate', 'ieconomics.com')
G.set_indicator('UN/events/human/death', 'Battle-related deaths', 'WDI')
with open(output, 'wb') as f:
pickle.dump(G, f)
|
create_CAG_with_indicators
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(input, output, filename='CAG_with_indicators.pdf'):\n with open(input, 'rb') as f:\n G = pickle.load(f)\n G.map_concepts_to_indicators(min_temporal_res='month')\n G.set_indicator('UN/events/weather/precipitation',\n 'Historical Average Total Daily Rainfall (Maize)', 'DSSAT')\n G.set_indicator('UN/events/human/agriculture/food_production',\n 'Historical Production (Maize)', 'DSSAT')\n G.set_indicator('UN/entities/human/food/food_security',\n 'IPC Phase Classification', 'FEWSNET')\n G.set_indicator('UN/entities/food_availability',\n 'Production, Meat indigenous, total', 'FAO')\n G.set_indicator('UN/entities/human/financial/economic/market',\n 'Inflation Rate', 'ieconomics.com')\n G.set_indicator('UN/events/human/death', 'Battle-related deaths', 'WDI')\n with open(output, 'wb') as f:\n pickle.dump(G, f)\n",
"role": "user"
},
{
"content": "create_CAG_with_indicators",
"role": "assistant"
}
] |
def x(self, inputs: Dict[str, Union[float, Iterable]], torch_size: Optional
[int]=None) ->Union[float, Iterable]:
for i in self.inputs:
self.nodes[i]['value'] = inputs[i]
for func_set in self.function_sets:
for func_name in func_set:
lambda_fn = self.nodes[func_name]['lambda_fn']
output_node = list(self.successors(func_name))[0]
signature = self.nodes[func_name]['func_inputs']
input_values = [self.nodes[n]['value'] for n in signature]
res = lambda_fn(*input_values)
if torch_size is not None and len(signature) == 0:
self.nodes[output_node]['value'] = torch.tensor([res] *
torch_size, dtype=torch.double)
else:
self.nodes[output_node]['value'] = res
return self.nodes[self.output_node]['value']
|
run
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, inputs: Dict[str, Union[float, Iterable]], torch_size: Optional\n [int]=None) ->Union[float, Iterable]:\n for i in self.inputs:\n self.nodes[i]['value'] = inputs[i]\n for func_set in self.function_sets:\n for func_name in func_set:\n lambda_fn = self.nodes[func_name]['lambda_fn']\n output_node = list(self.successors(func_name))[0]\n signature = self.nodes[func_name]['func_inputs']\n input_values = [self.nodes[n]['value'] for n in signature]\n res = lambda_fn(*input_values)\n if torch_size is not None and len(signature) == 0:\n self.nodes[output_node]['value'] = torch.tensor([res] *\n torch_size, dtype=torch.double)\n else:\n self.nodes[output_node]['value'] = res\n return self.nodes[self.output_node]['value']\n",
"role": "user"
},
{
"content": "run",
"role": "assistant"
}
] |
def x(self):
G = nx.DiGraph()
for name, attrs in self.nodes(data=True):
if attrs['type'] == 'variable':
for pred_fn in self.predecessors(name):
if not any(fn_type in pred_fn for fn_type in ('condition',
'decision')):
for pred_var in self.predecessors(pred_fn):
G.add_node(self.nodes[pred_var]['basename'], **self
.nodes[pred_var])
G.add_node(attrs['basename'], **attrs)
G.add_edge(self.nodes[pred_var]['basename'], attrs[
'basename'])
if attrs['is_loop_index']:
G.add_edge(attrs['basename'], attrs['basename'])
return G
|
to_CAG
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n G = nx.DiGraph()\n for name, attrs in self.nodes(data=True):\n if attrs['type'] == 'variable':\n for pred_fn in self.predecessors(name):\n if not any(fn_type in pred_fn for fn_type in ('condition',\n 'decision')):\n for pred_var in self.predecessors(pred_fn):\n G.add_node(self.nodes[pred_var]['basename'], **self\n .nodes[pred_var])\n G.add_node(attrs['basename'], **attrs)\n G.add_edge(self.nodes[pred_var]['basename'], attrs[\n 'basename'])\n if attrs['is_loop_index']:\n G.add_edge(attrs['basename'], attrs['basename'])\n return G\n",
"role": "user"
},
{
"content": "to_CAG",
"role": "assistant"
}
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.