source_code
stringlengths
45
7.24k
function_name
stringlengths
1
111
messages
list
def x(self, bounds): if len(bounds) == 0: raise For2PyError('Zero-length arrays current not handled!.') this_dim = bounds[0] lo, hi = this_dim[0], this_dim[1] sz = hi - lo + 1 if len(bounds) == 1: return [None] * sz sub_array = self._mk_uninit_array(bounds[1:]) this_array = [copy.deepcopy(sub_array) for i in range(sz)] return this_array
mk_uninit_array
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, bounds):\n if len(bounds) == 0:\n raise For2PyError('Zero-length arrays current not handled!.')\n this_dim = bounds[0]\n lo, hi = this_dim[0], this_dim[1]\n sz = hi - lo + 1\n if len(bounds) == 1:\n return [None] * sz\n sub_array = self._mk_uninit_array(bounds[1:])\n this_array = [copy.deepcopy(sub_array) for i in range(sz)]\n return this_array\n", "role": "user" }, { "content": "mk_uninit_array", "role": "assistant" } ]
def x(self, bounds, idx): lo, hi = bounds[0], bounds[1] assert idx >= lo and idx <= hi, f'Array index {idx} out of bounds: {bounds}\n' return idx - lo
posn
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, bounds, idx):\n lo, hi = bounds[0], bounds[1]\n assert idx >= lo and idx <= hi, f'Array index {idx} out of bounds: {bounds}\\n'\n return idx - lo\n", "role": "user" }, { "content": "posn", "role": "assistant" } ]
def x(self, subs, acc_type, val): if isinstance(subs, int): subs = subs, if len(subs) == 0: raise For2PyError('Zero-length arrays currently not handled.') bounds = self._bounds sub_arr = self._values ndims = len(subs) for i in range(ndims): this_pos = self._posn(bounds[i], subs[i]) if i == ndims - 1: if acc_type == _GET_: return sub_arr[this_pos] else: sub_arr[this_pos] = val else: sub_arr = sub_arr[this_pos]
access
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, subs, acc_type, val):\n if isinstance(subs, int):\n subs = subs,\n if len(subs) == 0:\n raise For2PyError('Zero-length arrays currently not handled.')\n bounds = self._bounds\n sub_arr = self._values\n ndims = len(subs)\n for i in range(ndims):\n this_pos = self._posn(bounds[i], subs[i])\n if i == ndims - 1:\n if acc_type == _GET_:\n return sub_arr[this_pos]\n else:\n sub_arr[this_pos] = val\n else:\n sub_arr = sub_arr[this_pos]\n", "role": "user" }, { "content": "access", "role": "assistant" } ]
def x(self, subs, vals): if isinstance(vals, (int, float)): vals = [vals] * len(subs) for i in range(len(subs)): self.set_(subs[i], vals[i])
set_elems
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, subs, vals):\n if isinstance(vals, (int, float)):\n vals = [vals] * len(subs)\n for i in range(len(subs)):\n self.set_(subs[i], vals[i])\n", "role": "user" }, { "content": "set_elems", "role": "assistant" } ]
def x(d: Dict[str, str], text: str) ->str: regex = re.compile('|'.join(map(re.escape, d.keys()))) return regex.sub(lambda match: d[match.group(0)], text)
multiple_replace
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(d: Dict[str, str], text: str) ->str:\n regex = re.compile('|'.join(map(re.escape, d.keys())))\n return regex.sub(lambda match: d[match.group(0)], text)\n", "role": "user" }, { "content": "multiple_replace", "role": "assistant" } ]
def x(input, output, filename='CAG_with_indicators_and_values.pdf'): with open(input, 'rb') as f: G = pickle.load(f) G.parameterize(year=2017, month=4) G.get_timeseries_values_for_indicators() with open(output, 'wb') as f: pickle.dump(G, f)
create_parameterized_CAG
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(input, output, filename='CAG_with_indicators_and_values.pdf'):\n with open(input, 'rb') as f:\n G = pickle.load(f)\n G.parameterize(year=2017, month=4)\n G.get_timeseries_values_for_indicators()\n with open(output, 'wb') as f:\n pickle.dump(G, f)\n", "role": "user" }, { "content": "create_parameterized_CAG", "role": "assistant" } ]
def x(sts: List[Influence]) ->Set[str]: return set(flatMap(nameTuple, sts))
get_concepts
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(sts: List[Influence]) ->Set[str]:\n return set(flatMap(nameTuple, sts))\n", "role": "user" }, { "content": "get_concepts", "role": "assistant" } ]
def x(sts: List[Influence]) ->List[Influence]: return [s for s in sts if is_grounded_statement(s) and s.subj_delta[ 'polarity'] is not None and s.obj_delta['polarity'] is not None]
get_valid_statements_for_modeling
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(sts: List[Influence]) ->List[Influence]:\n return [s for s in sts if is_grounded_statement(s) and s.subj_delta[\n 'polarity'] is not None and s.obj_delta['polarity'] is not None]\n", "role": "user" }, { "content": "get_valid_statements_for_modeling", "role": "assistant" } ]
def x(s: Influence) ->bool: return is_grounded_concept(s.subj) and is_grounded_concept(s.obj)
is_grounded_statement
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(s: Influence) ->bool:\n return is_grounded_concept(s.subj) and is_grounded_concept(s.obj)\n", "role": "user" }, { "content": "is_grounded_statement", "role": "assistant" } ]
def x(c: Concept, cutoff: float=0.7) ->bool: return is_grounded(c) and top_grounding_score(c) >= cutoff
is_well_grounded_concept
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(c: Concept, cutoff: float=0.7) ->bool:\n return is_grounded(c) and top_grounding_score(c) >= cutoff\n", "role": "user" }, { "content": "is_well_grounded_concept", "role": "assistant" } ]
def x(s: Influence, cutoff: float=0.7) ->bool: return all(map(lambda c: is_well_grounded_concept(c, cutoff), s. agent_list()))
is_well_grounded_statement
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(s: Influence, cutoff: float=0.7) ->bool:\n return all(map(lambda c: is_well_grounded_concept(c, cutoff), s.\n agent_list()))\n", "role": "user" }, { "content": "is_well_grounded_statement", "role": "assistant" } ]
def x(c: Concept, name: str, cutoff=0.7) ->bool: return top_grounding(c) == name if is_well_grounded(c, cutoff) else False
is_grounded_to_name
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(c: Concept, name: str, cutoff=0.7) ->bool:\n return top_grounding(c) == name if is_well_grounded(c, cutoff) else False\n", "role": "user" }, { "content": "is_grounded_to_name", "role": "assistant" } ]
def x(s: Influence, relevant_concepts: List[str], cutoff=0.7) ->bool: return any(map(lambda c: contains_concept(s, c, cutoff=cutoff), relevant_concepts))
contains_relevant_concept
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(s: Influence, relevant_concepts: List[str], cutoff=0.7) ->bool:\n return any(map(lambda c: contains_concept(s, c, cutoff=cutoff),\n relevant_concepts))\n", "role": "user" }, { "content": "contains_relevant_concept", "role": "assistant" } ]
def x(c: Concept) ->str: return c.db_refs['UN'][0][0] if 'UN' in c.db_refs else c.name
top_grounding
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(c: Concept) ->str:\n return c.db_refs['UN'][0][0] if 'UN' in c.db_refs else c.name\n", "role": "user" }, { "content": "top_grounding", "role": "assistant" } ]
def x(s: Influence) ->Tuple[str, str]: return top_grounding(s.subj), top_grounding(s.obj)
nameTuple
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(s: Influence) ->Tuple[str, str]:\n return top_grounding(s.subj), top_grounding(s.obj)\n", "role": "user" }, { "content": "nameTuple", "role": "assistant" } ]
def x(): data = json.loads(request.data) G = AnalysisGraph.from_uncharted_json_serialized_dict(data) G.assemble_transition_model_from_gradable_adjectives() G.sample_from_prior() G.to_sql(app=current_app) _metadata = ICMMetadata.query.filter_by(id=G.id).first().deserialize() del _metadata['model_id'] return jsonify(_metadata)
createNewICM
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n data = json.loads(request.data)\n G = AnalysisGraph.from_uncharted_json_serialized_dict(data)\n G.assemble_transition_model_from_gradable_adjectives()\n G.sample_from_prior()\n G.to_sql(app=current_app)\n _metadata = ICMMetadata.query.filter_by(id=G.id).first().deserialize()\n del _metadata['model_id']\n return jsonify(_metadata)\n", "role": "user" }, { "content": "createNewICM", "role": "assistant" } ]
def x(uuid: str): _metadata = ICMMetadata.query.filter_by(id=uuid).first().deserialize() del _metadata['model_id'] return jsonify(_metadata)
getICMByUUID
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(uuid: str):\n _metadata = ICMMetadata.query.filter_by(id=uuid).first().deserialize()\n del _metadata['model_id']\n return jsonify(_metadata)\n", "role": "user" }, { "content": "getICMByUUID", "role": "assistant" } ]
def x(uuid: str): _metadata = ICMMetadata.query.filter_by(id=uuid).first() db.session.delete(_metadata) db.session.commit() return '', 204
deleteICM
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(uuid: str):\n _metadata = ICMMetadata.query.filter_by(id=uuid).first()\n db.session.delete(_metadata)\n db.session.commit()\n return '', 204\n", "role": "user" }, { "content": "deleteICM", "role": "assistant" } ]
def x(uuid: str): primitives = [p.deserialize() for p in CausalPrimitive.query.filter_by( model_id=uuid).all()] for p in primitives: del p['model_id'] return jsonify(primitives)
getICMPrimitives
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(uuid: str):\n primitives = [p.deserialize() for p in CausalPrimitive.query.filter_by(\n model_id=uuid).all()]\n for p in primitives:\n del p['model_id']\n return jsonify(primitives)\n", "role": "user" }, { "content": "getICMPrimitives", "role": "assistant" } ]
def x(uuid: str, prim_id: str): evidences = [evidence.deserialize() for evidence in Evidence.query. filter_by(causalrelationship_id=prim_id).all()] for evidence in evidences: del evidence['causalrelationship_id'] return jsonify(evidences)
getEvidenceForID
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(uuid: str, prim_id: str):\n evidences = [evidence.deserialize() for evidence in Evidence.query.\n filter_by(causalrelationship_id=prim_id).all()]\n for evidence in evidences:\n del evidence['causalrelationship_id']\n return jsonify(evidences)\n", "role": "user" }, { "content": "getEvidenceForID", "role": "assistant" } ]
def x(uuid: str): data = request.get_json() G = DelphiModel.query.filter_by(id=uuid).first().model if os.environ.get('TRAVIS') is not None: config_file = 'bmi_config.txt' else: if not os.path.exists('/tmp/delphi'): os.makedirs('/tmp/delphi', exist_ok=True) config_file = '/tmp/delphi/bmi_config.txt' G.initialize(initialize_indicators=False, config_file=config_file) for n in G.nodes(data=True): rv = n[1]['rv'] rv.partial_t = 0.0 for variable in data['interventions']: if n[1]['id'] == variable['id']: rv.partial_t = variable['values']['value']['value'] - 1 for s0 in G.s0: s0[f'∂({n[0]})/∂t'] = rv.partial_t break id = str(uuid4()) experiment = ForwardProjection(baseType='ForwardProjection', id=id) db.session.add(experiment) db.session.commit() result = ForwardProjectionResult(id=id, baseType='ForwardProjectionResult') db.session.add(result) db.session.commit() d = dateutil.parser.parse(data['projection']['startTime']) n_timesteps = data['projection']['numSteps'] for i in range(n_timesteps): if data['projection']['stepSize'] == 'MONTH': d = d + relativedelta(months=1) elif data['projection']['stepSize'] == 'YEAR': d = d + relativedelta(years=1) for n in G.nodes(data=True): CausalVariable.query.filter_by(id=n[1]['id']).first( ).lastUpdated = d.isoformat() result.results.append({'id': n[1]['id'], 'baseline': {'active': 'ACTIVE', 'time': d.isoformat(), 'value': {'baseType': 'FloatValue', 'value': 1.0}}, 'intervened': {'active': 'ACTIVE', 'time': d.isoformat(), 'value': {'baseType': 'FloatValue', 'value': np.median([s[n[0]] for s in G.s0])}}}) G.update(update_indicators=False) tau = 1.0 for n in G.nodes(data=True): for variable in data['interventions']: if n[1]['id'] == variable['id']: rv = n[1]['rv'] for s0 in G.s0: s0[f'∂({n[0]})/∂t'] = rv.partial_t * exp(-tau * i) db.session.add(result) db.session.commit() return jsonify({'id': experiment.id, 'message': 'Forward projection sent successfully'})
createExperiment
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(uuid: str):\n data = request.get_json()\n G = DelphiModel.query.filter_by(id=uuid).first().model\n if os.environ.get('TRAVIS') is not None:\n config_file = 'bmi_config.txt'\n else:\n if not os.path.exists('/tmp/delphi'):\n os.makedirs('/tmp/delphi', exist_ok=True)\n config_file = '/tmp/delphi/bmi_config.txt'\n G.initialize(initialize_indicators=False, config_file=config_file)\n for n in G.nodes(data=True):\n rv = n[1]['rv']\n rv.partial_t = 0.0\n for variable in data['interventions']:\n if n[1]['id'] == variable['id']:\n rv.partial_t = variable['values']['value']['value'] - 1\n for s0 in G.s0:\n s0[f'∂({n[0]})/∂t'] = rv.partial_t\n break\n id = str(uuid4())\n experiment = ForwardProjection(baseType='ForwardProjection', id=id)\n db.session.add(experiment)\n db.session.commit()\n result = ForwardProjectionResult(id=id, baseType='ForwardProjectionResult')\n db.session.add(result)\n db.session.commit()\n d = dateutil.parser.parse(data['projection']['startTime'])\n n_timesteps = data['projection']['numSteps']\n for i in range(n_timesteps):\n if data['projection']['stepSize'] == 'MONTH':\n d = d + relativedelta(months=1)\n elif data['projection']['stepSize'] == 'YEAR':\n d = d + relativedelta(years=1)\n for n in G.nodes(data=True):\n CausalVariable.query.filter_by(id=n[1]['id']).first(\n ).lastUpdated = d.isoformat()\n result.results.append({'id': n[1]['id'], 'baseline': {'active':\n 'ACTIVE', 'time': d.isoformat(), 'value': {'baseType':\n 'FloatValue', 'value': 1.0}}, 'intervened': {'active':\n 'ACTIVE', 'time': d.isoformat(), 'value': {'baseType':\n 'FloatValue', 'value': np.median([s[n[0]] for s in G.s0])}}})\n G.update(update_indicators=False)\n tau = 1.0\n for n in G.nodes(data=True):\n for variable in data['interventions']:\n if n[1]['id'] == variable['id']:\n rv = n[1]['rv']\n for s0 in G.s0:\n s0[f'∂({n[0]})/∂t'] = rv.partial_t * exp(-tau * i)\n db.session.add(result)\n db.session.commit()\n return jsonify({'id': experiment.id, 'message':\n 'Forward projection sent successfully'})\n", "role": "user" }, { "content": "createExperiment", "role": "assistant" } ]
def x(uuid: str): return jsonify([x.deserialize() for x in Experiment.query.all()])
getExperiments
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(uuid: str):\n return jsonify([x.deserialize() for x in Experiment.query.all()])\n", "role": "user" }, { "content": "getExperiments", "role": "assistant" } ]
def x(uuid: str, exp_id: str): experimentResult = ForwardProjectionResult.query.filter_by(id=exp_id ).first() return jsonify(experimentResult.deserialize())
getExperiment
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(uuid: str, exp_id: str):\n experimentResult = ForwardProjectionResult.query.filter_by(id=exp_id\n ).first()\n return jsonify(experimentResult.deserialize())\n", "role": "user" }, { "content": "getExperiment", "role": "assistant" } ]
def x(sts: List[Influence]): columns = ['un_groundings', 'subj_polarity', 'obj_polarity', 'Sentence', 'Source API'] polarity_to_str = lambda x: '+' if x == 1 else '-' if x == -1 else 'None' l = [] for s in sts: subj_un_grounding = s.subj.db_refs['UN'][0][0].split('/')[-1] obj_un_grounding = s.obj.db_refs['UN'][0][0].split('/')[-1] subj_polarity = s.subj_delta['polarity'] obj_polarity = s.obj_delta['polarity'] subj_adjectives = s.subj_delta['adjectives'] for e in s.evidence: l.append(((subj_un_grounding, obj_un_grounding), subj_polarity, obj_polarity, e.text, e.source_api)) df = pd.DataFrame(l, columns=columns) df = df.pivot_table(index=['un_groundings', 'Source API', 'Sentence']) def x(hover_color='#ffff99'): return dict(selector='tr:hover', props=[('background-color', '%s' % hover_color)]) styles = [hover(), dict(props=[('font-size', '100%'), ('font-family', 'Gill Sans')])] return df.style.set_table_styles(styles)
create_statement_inspection_table
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(sts: List[Influence]):\n columns = ['un_groundings', 'subj_polarity', 'obj_polarity', 'Sentence',\n 'Source API']\n polarity_to_str = lambda x: '+' if x == 1 else '-' if x == -1 else 'None'\n l = []\n for s in sts:\n subj_un_grounding = s.subj.db_refs['UN'][0][0].split('/')[-1]\n obj_un_grounding = s.obj.db_refs['UN'][0][0].split('/')[-1]\n subj_polarity = s.subj_delta['polarity']\n obj_polarity = s.obj_delta['polarity']\n subj_adjectives = s.subj_delta['adjectives']\n for e in s.evidence:\n l.append(((subj_un_grounding, obj_un_grounding), subj_polarity,\n obj_polarity, e.text, e.source_api))\n df = pd.DataFrame(l, columns=columns)\n df = df.pivot_table(index=['un_groundings', 'Source API', 'Sentence'])\n\n def x(hover_color='#ffff99'):\n return dict(selector='tr:hover', props=[('background-color', '%s' %\n hover_color)])\n styles = [hover(), dict(props=[('font-size', '100%'), ('font-family',\n 'Gill Sans')])]\n return df.style.set_table_styles(styles)\n", "role": "user" }, { "content": "create_statement_inspection_table", "role": "assistant" } ]
def x(): env = os.environ shell = 'shell' program = os.path.basename(env['_']) if 'jupyter-notebook' in program: shell = 'jupyter-notebook' elif 'JPY_PARENT_PID' in env or 'ipython' in program: shell = 'ipython' if 'JPY_PARENT_PID' in env: shell = 'ipython-notebook' return shell
get_python_shell
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n env = os.environ\n shell = 'shell'\n program = os.path.basename(env['_'])\n if 'jupyter-notebook' in program:\n shell = 'jupyter-notebook'\n elif 'JPY_PARENT_PID' in env or 'ipython' in program:\n shell = 'ipython'\n if 'JPY_PARENT_PID' in env:\n shell = 'ipython-notebook'\n return shell\n", "role": "user" }, { "content": "get_python_shell", "role": "assistant" } ]
def x(input, output): with open(input, 'rb') as f: G = pickle.load(f) G = G.get_subgraph_for_concept('UN/events/weather/precipitation', depth =2, reverse=False) G.prune(cutoff=2) G.edges['UN/events/weather/precipitation', 'UN/entities/human/infrastructure/transportation/road'][ 'InfluenceStatements'][0].obj_delta['polarity'] = -1 with open(output, 'wb') as f: pickle.dump(G, f)
create_precipitation_centered_CAG
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(input, output):\n with open(input, 'rb') as f:\n G = pickle.load(f)\n G = G.get_subgraph_for_concept('UN/events/weather/precipitation', depth\n =2, reverse=False)\n G.prune(cutoff=2)\n G.edges['UN/events/weather/precipitation',\n 'UN/entities/human/infrastructure/transportation/road'][\n 'InfluenceStatements'][0].obj_delta['polarity'] = -1\n with open(output, 'wb') as f:\n pickle.dump(G, f)\n", "role": "user" }, { "content": "create_precipitation_centered_CAG", "role": "assistant" } ]
def x(root) ->Dict: module_index_dict = {node['name']: (node.get('tag'), index) for index, node in enumerate(root) if node.get('tag') in ('module', 'program', 'subroutine')} return module_index_dict
index_modules
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(root) ->Dict:\n module_index_dict = {node['name']: (node.get('tag'), index) for index,\n node in enumerate(root) if node.get('tag') in ('module', 'program',\n 'subroutine')}\n return module_index_dict\n", "role": "user" }, { "content": "index_modules", "role": "assistant" } ]
def x(self, node, printState: PrintState): if self.nameMapper[node['name'] ] not in printState.definedVars and self.nameMapper[node['name'] ] not in printState.globalVars: printState.definedVars += [self.nameMapper[node['name']]] assert int(node['count']) > 0 printState.definedVars += [node['name']] varType = '' if node['type'].upper() == 'INTEGER': varType = 'int' elif node['type'].upper() in ('DOUBLE', 'REAL'): varType = 'float' elif node['type'].upper() == 'CHARACTER': varType = 'str' elif node['isDevTypeVar']: varType = node['type'].lower() + '()' assert varType != '' self.pyStrings.append(f"{node['name']} = Array({varType}, [") for i in range(0, int(node['count'])): loBound = node['low' + str(i + 1)] upBound = node['up' + str(i + 1)] dimensions = f'({loBound}, {upBound})' if i < int(node['count']) - 1: self.pyStrings.append(f'{dimensions}, ') else: self.pyStrings.append(f'{dimensions}') self.pyStrings.append('])') if node['isDevTypeVar']: self.pyStrings.append(printState.sep) upBound = node['up1'] self.pyStrings.append(f'for z in range(1, {upBound}+1):' + printState.sep) self.pyStrings.append(f" obj = {node['type']}()" + printState.sep) self.pyStrings.append(f" {node['name']}.set_(z, obj)" + printState.sep)
printArray
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, node, printState: PrintState):\n if self.nameMapper[node['name']\n ] not in printState.definedVars and self.nameMapper[node['name']\n ] not in printState.globalVars:\n printState.definedVars += [self.nameMapper[node['name']]]\n assert int(node['count']) > 0\n printState.definedVars += [node['name']]\n varType = ''\n if node['type'].upper() == 'INTEGER':\n varType = 'int'\n elif node['type'].upper() in ('DOUBLE', 'REAL'):\n varType = 'float'\n elif node['type'].upper() == 'CHARACTER':\n varType = 'str'\n elif node['isDevTypeVar']:\n varType = node['type'].lower() + '()'\n assert varType != ''\n self.pyStrings.append(f\"{node['name']} = Array({varType}, [\")\n for i in range(0, int(node['count'])):\n loBound = node['low' + str(i + 1)]\n upBound = node['up' + str(i + 1)]\n dimensions = f'({loBound}, {upBound})'\n if i < int(node['count']) - 1:\n self.pyStrings.append(f'{dimensions}, ')\n else:\n self.pyStrings.append(f'{dimensions}')\n self.pyStrings.append('])')\n if node['isDevTypeVar']:\n self.pyStrings.append(printState.sep)\n upBound = node['up1']\n self.pyStrings.append(f'for z in range(1, {upBound}+1):' +\n printState.sep)\n self.pyStrings.append(f\" obj = {node['type']}()\" +\n printState.sep)\n self.pyStrings.append(f\" {node['name']}.set_(z, obj)\" +\n printState.sep)\n", "role": "user" }, { "content": "printArray", "role": "assistant" } ]
def x(G: nx.DiGraph, filename: str): A = to_agraph(G) A.graph_attr['rankdir'] = 'LR' A.draw(filename, prog='dot')
draw_graph
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(G: nx.DiGraph, filename: str):\n A = to_agraph(G)\n A.graph_attr['rankdir'] = 'LR'\n A.draw(filename, prog='dot')\n", "role": "user" }, { "content": "draw_graph", "role": "assistant" } ]
def x(G: nx.DiGraph) ->List[str]: return [n for n, d in G.in_degree() if d == 0]
get_input_nodes
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(G: nx.DiGraph) ->List[str]:\n return [n for n, d in G.in_degree() if d == 0]\n", "role": "user" }, { "content": "get_input_nodes", "role": "assistant" } ]
def x(G: nx.DiGraph) ->List[str]: return [n for n, d in G.out_degree() if d == 0]
get_output_nodes
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(G: nx.DiGraph) ->List[str]:\n return [n for n, d in G.out_degree() if d == 0]\n", "role": "user" }, { "content": "get_output_nodes", "role": "assistant" } ]
def x(filename: str) ->nx.DiGraph: return nx.DiGraph(read_dot(filename).reverse())
nx_graph_from_dotfile
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(filename: str) ->nx.DiGraph:\n return nx.DiGraph(read_dot(filename).reverse())\n", "role": "user" }, { "content": "nx_graph_from_dotfile", "role": "assistant" } ]
def x(G: nx.DiGraph, filename: str): A = to_agraph(G) A.write(filename)
to_dotfile
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(G: nx.DiGraph, filename: str):\n A = to_agraph(G)\n A.write(filename)\n", "role": "user" }, { "content": "to_dotfile", "role": "assistant" } ]
def x(G1: nx.DiGraph, G2: nx.DiGraph) ->List[str]: return list(set(G1.nodes()).intersection(set(G2.nodes())))
get_shared_nodes
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(G1: nx.DiGraph, G2: nx.DiGraph) ->List[str]:\n return list(set(G1.nodes()).intersection(set(G2.nodes())))\n", "role": "user" }, { "content": "get_shared_nodes", "role": "assistant" } ]
def x(line: str) ->bool: if line[0] in 'cCdD*!': return True llstr = line.strip() if len(llstr) == 0 or llstr[0] == '!': return True return False
line_is_comment
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(line: str) ->bool:\n if line[0] in 'cCdD*!':\n return True\n llstr = line.strip()\n if len(llstr) == 0 or llstr[0] == '!':\n return True\n return False\n", "role": "user" }, { "content": "line_is_comment", "role": "assistant" } ]
def x(line: str) ->Tuple[bool, Optional[str]]: match = RE_SUB_START.match(line) if match != None: f_name = match.group(1) return True, f_name match = RE_FN_START.match(line) if match != None: f_name = match.group(1) return True, f_name return False, None
line_starts_subpgm
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(line: str) ->Tuple[bool, Optional[str]]:\n match = RE_SUB_START.match(line)\n if match != None:\n f_name = match.group(1)\n return True, f_name\n match = RE_FN_START.match(line)\n if match != None:\n f_name = match.group(1)\n return True, f_name\n return False, None\n", "role": "user" }, { "content": "line_starts_subpgm", "role": "assistant" } ]
def x(line: str) ->str: match = RE_PGM_UNIT_START.match(line) assert match != None return match.group(2)
program_unit_name
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(line: str) ->str:\n match = RE_PGM_UNIT_START.match(line)\n assert match != None\n return match.group(2)\n", "role": "user" }, { "content": "program_unit_name", "role": "assistant" } ]
def x(line: str) ->bool: llstr = line.lstrip() return len(llstr) > 0 and llstr[0] == '&'
line_is_continuation
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(line: str) ->bool:\n llstr = line.lstrip()\n return len(llstr) > 0 and llstr[0] == '&'\n", "role": "user" }, { "content": "line_is_continuation", "role": "assistant" } ]
def x(line: str) ->bool: if line_is_comment(line): return False if re.match(RE_TYPE_NAMES, line): return False for exp in EXECUTABLE_CODE_START: if re.match(exp, line) != None: return True return False
line_is_executable
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(line: str) ->bool:\n if line_is_comment(line):\n return False\n if re.match(RE_TYPE_NAMES, line):\n return False\n for exp in EXECUTABLE_CODE_START:\n if re.match(exp, line) != None:\n return True\n return False\n", "role": "user" }, { "content": "line_is_executable", "role": "assistant" } ]
def x(x: T, xs: Iterable[T]) ->Iterator[T]: return chain([x], xs)
prepend
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x: T, xs: Iterable[T]) ->Iterator[T]:\n return chain([x], xs)\n", "role": "user" }, { "content": "prepend", "role": "assistant" } ]
def x(x: T, xs: Iterable[T]) ->Iterator[T]: return chain(xs, [x])
append
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x: T, xs: Iterable[T]) ->Iterator[T]:\n return chain(xs, [x])\n", "role": "user" }, { "content": "append", "role": "assistant" } ]
def x(f: Callable[[T, U], T], x: T, xs: Iterable[U]) ->Iterator[T]: return accumulate(prepend(x, xs), f)
scanl
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(f: Callable[[T, U], T], x: T, xs: Iterable[U]) ->Iterator[T]:\n return accumulate(prepend(x, xs), f)\n", "role": "user" }, { "content": "scanl", "role": "assistant" } ]
def x(f: Callable[[T, T], T], xs: Iterable[T]) ->Iterator[T]: return accumulate(xs, f)
scanl1
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(f: Callable[[T, T], T], xs: Iterable[T]) ->Iterator[T]:\n return accumulate(xs, f)\n", "role": "user" }, { "content": "scanl1", "role": "assistant" } ]
def x(f: Callable[[T, U], T], x: T, xs: Iterable[U]) ->T: return reduce(f, xs, x)
foldl
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(f: Callable[[T, U], T], x: T, xs: Iterable[U]) ->T:\n return reduce(f, xs, x)\n", "role": "user" }, { "content": "foldl", "role": "assistant" } ]
def x(f: Callable[[T, T], T], xs: Iterable[T]) ->T: return reduce(f, xs)
foldl1
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(f: Callable[[T, T], T], xs: Iterable[T]) ->T:\n return reduce(f, xs)\n", "role": "user" }, { "content": "foldl1", "role": "assistant" } ]
def x(xs: Union[List, Tuple]) ->List: return sum(map(flatten, xs), []) if isinstance(xs, list) or isinstance(xs, tuple) else [xs]
flatten
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(xs: Union[List, Tuple]) ->List:\n return sum(map(flatten, xs), []) if isinstance(xs, list) or isinstance(xs,\n tuple) else [xs]\n", "role": "user" }, { "content": "flatten", "role": "assistant" } ]
def x(f: Callable[[T], T], x: T) ->Iterator[T]: return scanl(lambda x, _: f(x), x, repeat(None))
iterate
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(f: Callable[[T], T], x: T) ->Iterator[T]:\n return scanl(lambda x, _: f(x), x, repeat(None))\n", "role": "user" }, { "content": "iterate", "role": "assistant" } ]
def x(n: int, xs: Iterable[T]) ->Iterable[T]: return tqdm(take(n, xs), total=n)
ptake
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(n: int, xs: Iterable[T]) ->Iterable[T]:\n return tqdm(take(n, xs), total=n)\n", "role": "user" }, { "content": "ptake", "role": "assistant" } ]
def x(n: int, xs: Iterable[T]) ->List[T]: return list(take(n, xs))
ltake
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(n: int, xs: Iterable[T]) ->List[T]:\n return list(take(n, xs))\n", "role": "user" }, { "content": "ltake", "role": "assistant" } ]
def x(*fs: Any) ->Callable: return foldl1(lambda f, g: lambda *x: f(g(*x)), fs)
compose
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(*fs: Any) ->Callable:\n return foldl1(lambda f, g: lambda *x: f(g(*x)), fs)\n", "role": "user" }, { "content": "compose", "role": "assistant" } ]
def x(*fs: Any) ->Callable: return foldl1(lambda f, g: lambda *x: g(f(*x)), fs)
rcompose
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(*fs: Any) ->Callable:\n return foldl1(lambda f, g: lambda *x: g(f(*x)), fs)\n", "role": "user" }, { "content": "rcompose", "role": "assistant" } ]
def x(f: Callable, xs: Iterable) ->List: return flatten(lmap(f, xs))
flatMap
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(f: Callable, xs: Iterable) ->List:\n return flatten(lmap(f, xs))\n", "role": "user" }, { "content": "flatMap", "role": "assistant" } ]
def x(xs: Iterable, n: int, fillvalue=None): args = [iter(xs)] * n return zip_longest(*args, fillvalue=fillvalue)
grouper
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(xs: Iterable, n: int, fillvalue=None):\n args = [iter(xs)] * n\n return zip_longest(*args, fillvalue=fillvalue)\n", "role": "user" }, { "content": "grouper", "role": "assistant" } ]
def x(data_dir: str): climis_crop_production_csvs = glob( '{data_dir}/Climis South Sudan Crop Production Data/Crops_EstimatedProductionConsumptionBalance*.csv' ) state_county_df = pd.read_csv(f'{data_dir}/ipc_data.csv', skipinitialspace=True) combined_records = [] for f in climis_crop_production_csvs: year = int(f.split('/')[-1].split('_')[2].split('.')[0]) df = pd.read_csv(f).dropna() for i, r in df.iterrows(): record = {'Year': year, 'Month': None, 'Source': 'CliMIS', 'Country': 'South Sudan'} region = r['State/County'].strip() if region.lower() in state_county_df['State'].str.lower().values: record['State'] = region record['County'] = None else: potential_states = state_county_df.loc[state_county_df[ 'County'] == region]['State'] record['State'] = potential_states.iloc[0] if len( potential_states) != 0 else None record['County'] = region for field in r.index: if field != 'State/County': if 'Net Cereal production' in field: record['Variable'] = 'Net Cereal Production' record['Value'] = r[field] if field.split()[-1].startswith('('): record['Unit'] = field.split()[-1][1:-1].lower() else: record['Unit'] = None combined_records.append(record) df = pd.DataFrame(combined_records) return df
process_climis_crop_production_data
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data_dir: str):\n climis_crop_production_csvs = glob(\n '{data_dir}/Climis South Sudan Crop Production Data/Crops_EstimatedProductionConsumptionBalance*.csv'\n )\n state_county_df = pd.read_csv(f'{data_dir}/ipc_data.csv',\n skipinitialspace=True)\n combined_records = []\n for f in climis_crop_production_csvs:\n year = int(f.split('/')[-1].split('_')[2].split('.')[0])\n df = pd.read_csv(f).dropna()\n for i, r in df.iterrows():\n record = {'Year': year, 'Month': None, 'Source': 'CliMIS',\n 'Country': 'South Sudan'}\n region = r['State/County'].strip()\n if region.lower() in state_county_df['State'].str.lower().values:\n record['State'] = region\n record['County'] = None\n else:\n potential_states = state_county_df.loc[state_county_df[\n 'County'] == region]['State']\n record['State'] = potential_states.iloc[0] if len(\n potential_states) != 0 else None\n record['County'] = region\n for field in r.index:\n if field != 'State/County':\n if 'Net Cereal production' in field:\n record['Variable'] = 'Net Cereal Production'\n record['Value'] = r[field]\n if field.split()[-1].startswith('('):\n record['Unit'] = field.split()[-1][1:-1].lower()\n else:\n record['Unit'] = None\n combined_records.append(record)\n df = pd.DataFrame(combined_records)\n return df\n", "role": "user" }, { "content": "process_climis_crop_production_data", "role": "assistant" } ]
def x(data_dir: str): records = [] livestock_data_dir = f'{data_dir}/Climis South Sudan Livestock Data' for filename in glob( f'{livestock_data_dir}/Livestock Body Condition/*2017.csv'): records += process_file_with_single_table(filename, lambda ind: f"Percentage of {filename.split('_')[-3].lower()} with body condition {ind.lower()}" , lambda f: f.split('_')[-2]) for filename in glob(f'{livestock_data_dir}/Livestock Production/*2017.csv' ): records += process_file_with_single_table(filename, lambda ind: 'Percentage of householding at least milking one of their livestocks' , lambda f: f.split('_')[1]) disease_acronym_dict = {'FMD': 'Foot and Mouth Disease (FMD)', 'LSD': 'Lumpy Skin Disease (LSD)', 'CBPP': 'Contagious Bovine Pleuropneumonia (CBPP)', 'CCPP': 'Contagious Caprine Pleuropneumonia (CCPP)', 'NC': 'NC', 'PPR': 'Peste des Petits Ruminants (PPR)', 'Others': 'Other diseases'} func = (lambda k, i: f'Percentage of livestock with {disease_acronym_dict[k]} that are {i.lower().strip()}' ) livestock_disease_header_dict = {k: partial(func, k) for k in disease_acronym_dict} livestock_migration_header_dict = {'Livestock migration': lambda i: f'Percentage of livestock migrating {i.split()[-1].lower()}', 'Distance covered': lambda i: 'Distance covered by migrating livestock', 'Proportion of livestock that migrated': lambda i: 'Percentage of livestock that migrated', 'Migration normal at this time of the year': lambda i: f'Migration normal at this time of year, {i}', 'Duration in months when the migrated animals are expected to be back after' : lambda i: 'Duration in months when the migrated animals are expected to be back after' , 'Reasons for livestock migration': lambda i: f'Percentage of livestock migrating due to {i.lower()}'} def x(dirname, header_dict): return pd.concat([df for df in [process_file_with_multiple_tables(f, header_dict) for f in glob( f'{livestock_data_dir}/{dirname}/*2017.csv')] if df is not None]) func2 = (lambda k, i: f"{k.replace('animals', i.lower()).replace('stock', 'stock of ' + i.lower()).replace('animal', i.lower())}" ) livestock_ownership_headers = ['Average current stock per household', 'Average number of animals born per household during last 4 weeks', 'Average number of animals acquired per household during last 4 weeks (dowry, purchase, gift)' , 'Average number of animals given out as bride price/gift per household during last 4 weeks per household' , 'Average number of animals sold per household during last 4 weeks household' , 'Average price of animal sold (SSP)', 'Average number of animals exchanged for grain per household during last 4 weeks' , 'Average number of animals died/slaughtered/lost per household during last 4 weeks' ] livestock_ownership_header_dict = {k: partial(func2, k) for k in livestock_ownership_headers} ownership_df = process_directory('Livestock Ownership', livestock_ownership_header_dict) disease_df = process_directory('Livestock Diseases', livestock_disease_header_dict) livestock_migration_df = process_directory('Livestock Migration', livestock_migration_header_dict) livestock_pasture_header_dict = {'Pasture condtion': lambda i: f'Percentage of livestock pasture in {i.lower()} condition', 'Pasture condition compared to similar time in a normal year': lambda i: f'Percentage of livestock pasture in {i.lower()} condition compared to a similar time in a normal year' , 'Browse condition': lambda i: f'Percentage of livestock pasture in {i.lower()} browse condition', 'Browse condition compared to similar time in a normal year': lambda i: f'Percentage of livestock pasture in {i.lower()} browse condition compared to a similar time in a normal year' , 'Presence of constraints in accessing forage': lambda i: f"Percentage reporting the {'presence' if i == 'Yes' else 'absence'} of constraints in accessing forage" , 'Main forage constraints': lambda i: f'Percentage reporting {i.lower()} as the main forage constraint'} livestock_pasture_df = process_directory('Livestock Pasture', livestock_pasture_header_dict) livestock_water_sources_header_dict = {'Main water sources': lambda i: f'Percentage of livestock whose main water source is {i.lower()}', 'Number of days livestock have been watered in the last 7 days': lambda i: f'Number of days {i.lower()} have been watered in the last 7 days'} livestock_water_sources_df = process_directory('Livestock Water Sources', livestock_water_sources_header_dict) for filename in glob(f'{livestock_data_dir}/Livestock Loss/*2017.csv'): records += process_file_with_single_table(filename, lambda ind: f"Percentage of {filename.split('_')[-3].lower()} loss accounted for by {ind.lower()}" , lambda f: f.split('_')[-2]) for record in records: if isinstance(record['Value'], str): record['Value'] = record['Value'].replace('%', '') livestock_prices_df = pd.concat([make_livestock_prices_table(f) for f in glob(f'{livestock_data_dir}/Livestock Market Prices/*2017.csv')]) climis_livestock_data_df = pd.concat([pd.DataFrame(records), disease_df, ownership_df, livestock_prices_df, livestock_migration_df, livestock_pasture_df, livestock_water_sources_df]) return climis_livestock_data_df
process_climis_livestock_data
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data_dir: str):\n records = []\n livestock_data_dir = f'{data_dir}/Climis South Sudan Livestock Data'\n for filename in glob(\n f'{livestock_data_dir}/Livestock Body Condition/*2017.csv'):\n records += process_file_with_single_table(filename, lambda ind:\n f\"Percentage of {filename.split('_')[-3].lower()} with body condition {ind.lower()}\"\n , lambda f: f.split('_')[-2])\n for filename in glob(f'{livestock_data_dir}/Livestock Production/*2017.csv'\n ):\n records += process_file_with_single_table(filename, lambda ind:\n 'Percentage of householding at least milking one of their livestocks'\n , lambda f: f.split('_')[1])\n disease_acronym_dict = {'FMD': 'Foot and Mouth Disease (FMD)', 'LSD':\n 'Lumpy Skin Disease (LSD)', 'CBPP':\n 'Contagious Bovine Pleuropneumonia (CBPP)', 'CCPP':\n 'Contagious Caprine Pleuropneumonia (CCPP)', 'NC': 'NC', 'PPR':\n 'Peste des Petits Ruminants (PPR)', 'Others': 'Other diseases'}\n func = (lambda k, i:\n f'Percentage of livestock with {disease_acronym_dict[k]} that are {i.lower().strip()}'\n )\n livestock_disease_header_dict = {k: partial(func, k) for k in\n disease_acronym_dict}\n livestock_migration_header_dict = {'Livestock migration': lambda i:\n f'Percentage of livestock migrating {i.split()[-1].lower()}',\n 'Distance covered': lambda i:\n 'Distance covered by migrating livestock',\n 'Proportion of livestock that migrated': lambda i:\n 'Percentage of livestock that migrated',\n 'Migration normal at this time of the year': lambda i:\n f'Migration normal at this time of year, {i}',\n 'Duration in months when the migrated animals are expected to be back after'\n : lambda i:\n 'Duration in months when the migrated animals are expected to be back after'\n , 'Reasons for livestock migration': lambda i:\n f'Percentage of livestock migrating due to {i.lower()}'}\n\n def x(dirname, header_dict):\n return pd.concat([df for df in [process_file_with_multiple_tables(f,\n header_dict) for f in glob(\n f'{livestock_data_dir}/{dirname}/*2017.csv')] if df is not None])\n func2 = (lambda k, i:\n f\"{k.replace('animals', i.lower()).replace('stock', 'stock of ' + i.lower()).replace('animal', i.lower())}\"\n )\n livestock_ownership_headers = ['Average current stock per household',\n 'Average number of animals born per household during last 4 weeks',\n 'Average number of animals acquired per household during last 4 weeks (dowry, purchase, gift)'\n ,\n 'Average number of animals given out as bride price/gift per household during last 4 weeks per household'\n ,\n 'Average number of animals sold per household during last 4 weeks household'\n , 'Average price of animal sold (SSP)',\n 'Average number of animals exchanged for grain per household during last 4 weeks'\n ,\n 'Average number of animals died/slaughtered/lost per household during last 4 weeks'\n ]\n livestock_ownership_header_dict = {k: partial(func2, k) for k in\n livestock_ownership_headers}\n ownership_df = process_directory('Livestock Ownership',\n livestock_ownership_header_dict)\n disease_df = process_directory('Livestock Diseases',\n livestock_disease_header_dict)\n livestock_migration_df = process_directory('Livestock Migration',\n livestock_migration_header_dict)\n livestock_pasture_header_dict = {'Pasture condtion': lambda i:\n f'Percentage of livestock pasture in {i.lower()} condition',\n 'Pasture condition compared to similar time in a normal year': lambda\n i:\n f'Percentage of livestock pasture in {i.lower()} condition compared to a similar time in a normal year'\n , 'Browse condition': lambda i:\n f'Percentage of livestock pasture in {i.lower()} browse condition',\n 'Browse condition compared to similar time in a normal year': lambda\n i:\n f'Percentage of livestock pasture in {i.lower()} browse condition compared to a similar time in a normal year'\n , 'Presence of constraints in accessing forage': lambda i:\n f\"Percentage reporting the {'presence' if i == 'Yes' else 'absence'} of constraints in accessing forage\"\n , 'Main forage constraints': lambda i:\n f'Percentage reporting {i.lower()} as the main forage constraint'}\n livestock_pasture_df = process_directory('Livestock Pasture',\n livestock_pasture_header_dict)\n livestock_water_sources_header_dict = {'Main water sources': lambda i:\n f'Percentage of livestock whose main water source is {i.lower()}',\n 'Number of days livestock have been watered in the last 7 days': lambda\n i: f'Number of days {i.lower()} have been watered in the last 7 days'}\n livestock_water_sources_df = process_directory('Livestock Water Sources',\n livestock_water_sources_header_dict)\n for filename in glob(f'{livestock_data_dir}/Livestock Loss/*2017.csv'):\n records += process_file_with_single_table(filename, lambda ind:\n f\"Percentage of {filename.split('_')[-3].lower()} loss accounted for by {ind.lower()}\"\n , lambda f: f.split('_')[-2])\n for record in records:\n if isinstance(record['Value'], str):\n record['Value'] = record['Value'].replace('%', '')\n livestock_prices_df = pd.concat([make_livestock_prices_table(f) for f in\n glob(f'{livestock_data_dir}/Livestock Market Prices/*2017.csv')])\n climis_livestock_data_df = pd.concat([pd.DataFrame(records), disease_df,\n ownership_df, livestock_prices_df, livestock_migration_df,\n livestock_pasture_df, livestock_water_sources_df])\n return climis_livestock_data_df\n", "role": "user" }, { "content": "process_climis_livestock_data", "role": "assistant" } ]
def x(lines: List[str]) ->List[Tuple[int, str]]: enumerated_lines = list(enumerate(lines, 1)) i = 0 while i < len(enumerated_lines): n, code_line = enumerated_lines[i] if not line_is_comment(code_line): code_part, comment_part = split_trailing_comment(code_line) if comment_part is not None: enumerated_lines[i] = n, comment_part enumerated_lines.insert(i + 1, (n, code_part)) i += 1 return enumerated_lines
separate_trailing_comments
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(lines: List[str]) ->List[Tuple[int, str]]:\n enumerated_lines = list(enumerate(lines, 1))\n i = 0\n while i < len(enumerated_lines):\n n, code_line = enumerated_lines[i]\n if not line_is_comment(code_line):\n code_part, comment_part = split_trailing_comment(code_line)\n if comment_part is not None:\n enumerated_lines[i] = n, comment_part\n enumerated_lines.insert(i + 1, (n, code_part))\n i += 1\n return enumerated_lines\n", "role": "user" }, { "content": "separate_trailing_comments", "role": "assistant" } ]
def x(lines): chg = True while chg: chg = False i = 0 while i < len(lines) - 1: ln0, ln1 = lines[i], lines[i + 1] if line_is_comment(ln0[1]) and line_is_continuation(ln1[1]): lines[i], lines[i + 1] = (ln0[0], ln1[1]), (ln1[0], ln0[1]) chg = True i += 1 chg = True while chg: chg = False i = 0 while i < len(lines): line = lines[i] if line_is_continuation(line[1]): assert i > 0 prev_linenum, prev_line_code = lines[i - 1] curr_line_code = line[1].lstrip()[1:] merged_code = prev_line_code.rstrip() + curr_line_code.lstrip() lines[i - 1] = prev_linenum, merged_code lines.pop(i) chg = True i += 1 return lines
merge_continued_lines
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(lines):\n chg = True\n while chg:\n chg = False\n i = 0\n while i < len(lines) - 1:\n ln0, ln1 = lines[i], lines[i + 1]\n if line_is_comment(ln0[1]) and line_is_continuation(ln1[1]):\n lines[i], lines[i + 1] = (ln0[0], ln1[1]), (ln1[0], ln0[1])\n chg = True\n i += 1\n chg = True\n while chg:\n chg = False\n i = 0\n while i < len(lines):\n line = lines[i]\n if line_is_continuation(line[1]):\n assert i > 0\n prev_linenum, prev_line_code = lines[i - 1]\n curr_line_code = line[1].lstrip()[1:]\n merged_code = prev_line_code.rstrip() + curr_line_code.lstrip()\n lines[i - 1] = prev_linenum, merged_code\n lines.pop(i)\n chg = True\n i += 1\n return lines\n", "role": "user" }, { "content": "merge_continued_lines", "role": "assistant" } ]
def x(line): if line_is_comment(line): return 'comment' elif line_is_executable(line): return 'exec_stmt' elif line_is_pgm_unit_end(line): return 'pgm_unit_end' elif line_is_pgm_unit_start(line): return 'pgm_unit_start' else: return 'other'
type_of_line
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(line):\n if line_is_comment(line):\n return 'comment'\n elif line_is_executable(line):\n return 'exec_stmt'\n elif line_is_pgm_unit_end(line):\n return 'pgm_unit_end'\n elif line_is_pgm_unit_start(line):\n return 'pgm_unit_start'\n else:\n return 'other'\n", "role": "user" }, { "content": "type_of_line", "role": "assistant" } ]
def x(lines: List[Tuple[int, str]]) ->Tuple[List[Tuple[int, str]], Dict[str, List[str]]]: curr_comment = [] curr_fn, prev_fn, curr_marker = None, None, None comments = OrderedDict() curr_state = 'outside' comments['$file_head'] = [] comments['$file_foot'] = [] for i in range(len(lines)): linenum, line = lines[i] line_type = type_of_line(line) if curr_state == 'outside': assert line_type in ('comment', 'pgm_unit_start'), (line_type, line ) if line_type == 'comment': curr_comment.append(line) lines[i] = linenum, None else: pgm_unit_name = program_unit_name(line) comments['$file_head'] = curr_comment if prev_fn is not None: comments[prev_fn]['foot'] = curr_comment prev_fn = curr_fn curr_fn = pgm_unit_name internal_comments = OrderedDict() comments[curr_fn] = init_comment_map(curr_comment, [], [], internal_comments) curr_comment = [] elif curr_state == 'in_neck': assert line_type in ('comment', 'exec_stmt', 'other') if line_type == 'comment': curr_comment.append(line) lines[i] = linenum, None elif line_type == 'exec_stmt': comments[curr_fn]['neck'] = curr_comment curr_comment = [] else: pass elif curr_state == 'in_body': assert line_type in ('comment', 'exec_stmt', 'pgm_unit_end' ), f'[Line {linenum}]: {line}' if line_type == 'comment': if line != '\n': marker_var = f'{INTERNAL_COMMENT_PREFIX}_{linenum}' marker_stmt = f' {marker_var} = .True.\n' internal_comments[marker_var] = line lines[i] = linenum, marker_stmt else: pass curr_state = TRANSITIONS[curr_state][line_type] if curr_comment != [] and comments.get(curr_fn): comments[curr_fn]['foot'] = curr_comment comments['$file_foot'] = curr_comment return lines, comments
extract_comments
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(lines: List[Tuple[int, str]]) ->Tuple[List[Tuple[int, str]], Dict[str,\n List[str]]]:\n curr_comment = []\n curr_fn, prev_fn, curr_marker = None, None, None\n comments = OrderedDict()\n curr_state = 'outside'\n comments['$file_head'] = []\n comments['$file_foot'] = []\n for i in range(len(lines)):\n linenum, line = lines[i]\n line_type = type_of_line(line)\n if curr_state == 'outside':\n assert line_type in ('comment', 'pgm_unit_start'), (line_type, line\n )\n if line_type == 'comment':\n curr_comment.append(line)\n lines[i] = linenum, None\n else:\n pgm_unit_name = program_unit_name(line)\n comments['$file_head'] = curr_comment\n if prev_fn is not None:\n comments[prev_fn]['foot'] = curr_comment\n prev_fn = curr_fn\n curr_fn = pgm_unit_name\n internal_comments = OrderedDict()\n comments[curr_fn] = init_comment_map(curr_comment, [], [],\n internal_comments)\n curr_comment = []\n elif curr_state == 'in_neck':\n assert line_type in ('comment', 'exec_stmt', 'other')\n if line_type == 'comment':\n curr_comment.append(line)\n lines[i] = linenum, None\n elif line_type == 'exec_stmt':\n comments[curr_fn]['neck'] = curr_comment\n curr_comment = []\n else:\n pass\n elif curr_state == 'in_body':\n assert line_type in ('comment', 'exec_stmt', 'pgm_unit_end'\n ), f'[Line {linenum}]: {line}'\n if line_type == 'comment':\n if line != '\\n':\n marker_var = f'{INTERNAL_COMMENT_PREFIX}_{linenum}'\n marker_stmt = f' {marker_var} = .True.\\n'\n internal_comments[marker_var] = line\n lines[i] = linenum, marker_stmt\n else:\n pass\n curr_state = TRANSITIONS[curr_state][line_type]\n if curr_comment != [] and comments.get(curr_fn):\n comments[curr_fn]['foot'] = curr_comment\n comments['$file_foot'] = curr_comment\n return lines, comments\n", "role": "user" }, { "content": "extract_comments", "role": "assistant" } ]
def x(line: str) ->str: if line.find('!') == -1: return line, None i = 0 while i < len(line): if line[i] == "'": j = line.find("'", i + 1) if j == -1: sys.stderr.write("WEIRD: unbalanced quote ': line = " + line) return line else: i = j + 1 elif line[i] == '"': j = line.find('"', i + 1) if j == -1: sys.stderr.write('WEIRD: unbalanced quote ": line = ' + line) return line else: i = j + 1 elif line[i] == '!': comment_part = line[i:] code_part = line[:i].rstrip() + '\n' return code_part, comment_part else: i += 1 return line, None
split_trailing_comment
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(line: str) ->str:\n if line.find('!') == -1:\n return line, None\n i = 0\n while i < len(line):\n if line[i] == \"'\":\n j = line.find(\"'\", i + 1)\n if j == -1:\n sys.stderr.write(\"WEIRD: unbalanced quote ': line = \" + line)\n return line\n else:\n i = j + 1\n elif line[i] == '\"':\n j = line.find('\"', i + 1)\n if j == -1:\n sys.stderr.write('WEIRD: unbalanced quote \": line = ' + line)\n return line\n else:\n i = j + 1\n elif line[i] == '!':\n comment_part = line[i:]\n code_part = line[:i].rstrip() + '\\n'\n return code_part, comment_part\n else:\n i += 1\n return line, None\n", "role": "user" }, { "content": "split_trailing_comment", "role": "assistant" } ]
def x(inputLines: List[str]) ->str: lines = separate_trailing_comments(inputLines) merge_continued_lines(lines) lines, comments = extract_comments(lines) actual_lines = [line[1] for line in lines if line[1] is not None and 'i_g_n_o_r_e___m_e_' not in line[1]] return ''.join(actual_lines)
process
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(inputLines: List[str]) ->str:\n lines = separate_trailing_comments(inputLines)\n merge_continued_lines(lines)\n lines, comments = extract_comments(lines)\n actual_lines = [line[1] for line in lines if line[1] is not None and \n 'i_g_n_o_r_e___m_e_' not in line[1]]\n return ''.join(actual_lines)\n", "role": "user" }, { "content": "process", "role": "assistant" } ]
def x(self): for node in self.nodes(data=True): node[1]['id'] = str(uuid4()) for edge in self.edges(data=True): edge[2]['id'] = str(uuid4())
assign_uuids_to_nodes_and_edges
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n for node in self.nodes(data=True):\n node[1]['id'] = str(uuid4())\n for edge in self.edges(data=True):\n edge[2]['id'] = str(uuid4())\n", "role": "user" }, { "content": "assign_uuids_to_nodes_and_edges", "role": "assistant" } ]
def x(cls, file: str): with open(file, 'rb') as f: sts = pickle.load(f) return cls.from_statements(sts)
from_statements_file
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, file: str):\n with open(file, 'rb') as f:\n sts = pickle.load(f)\n return cls.from_statements(sts)\n", "role": "user" }, { "content": "from_statements_file", "role": "assistant" } ]
def x(cls, sts: List[Influence], assign_default_polarities: bool=True): _dict = {} for s in sts: if assign_default_polarities: for delta in deltas(s): if delta['polarity'] is None: delta['polarity'] = 1 concepts = nameTuple(s) if concepts[0] != concepts[1]: if all(map(exists, (delta['polarity'] for delta in deltas(s)))): if concepts in _dict: _dict[concepts].append(s) else: _dict[concepts] = [s] edges = [(*concepts, {'InfluenceStatements': statements}) for concepts, statements in _dict.items()] return cls(edges)
from_statements
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, sts: List[Influence], assign_default_polarities: bool=True):\n _dict = {}\n for s in sts:\n if assign_default_polarities:\n for delta in deltas(s):\n if delta['polarity'] is None:\n delta['polarity'] = 1\n concepts = nameTuple(s)\n if concepts[0] != concepts[1]:\n if all(map(exists, (delta['polarity'] for delta in deltas(s)))):\n if concepts in _dict:\n _dict[concepts].append(s)\n else:\n _dict[concepts] = [s]\n edges = [(*concepts, {'InfluenceStatements': statements}) for concepts,\n statements in _dict.items()]\n return cls(edges)\n", "role": "user" }, { "content": "from_statements", "role": "assistant" } ]
def x(cls, text: str): eidosProcessor = process_text(text) return cls.from_statements(eidosProcessor.statements)
from_text
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, text: str):\n eidosProcessor = process_text(text)\n return cls.from_statements(eidosProcessor.statements)\n", "role": "user" }, { "content": "from_text", "role": "assistant" } ]
def x(cls, file): with open(file, 'r') as f: _dict = json.load(f) return cls.from_uncharted_json_serialized_dict(_dict)
from_uncharted_json_file
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, file):\n with open(file, 'r') as f:\n _dict = json.load(f)\n return cls.from_uncharted_json_serialized_dict(_dict)\n", "role": "user" }, { "content": "from_uncharted_json_file", "role": "assistant" } ]
def x(cls, _dict, minimum_evidence_pieces_required: int=1): sts = _dict['statements'] G = nx.DiGraph() for s in sts: if len(s['evidence']) >= minimum_evidence_pieces_required: subj, obj = s['subj'], s['obj'] if subj['db_refs']['concept'] is not None and obj['db_refs'][ 'concept'] is not None: subj_name, obj_name = ['/'.join(s[x]['db_refs']['concept']. split('/')[:]) for x in ['subj', 'obj']] G.add_edge(subj_name, obj_name) subj_delta = s['subj_delta'] obj_delta = s['obj_delta'] for delta in (subj_delta, obj_delta): if delta['polarity'] is None: delta['polarity'] = 1 influence_stmt = Influence(Concept(subj_name, db_refs=subj[ 'db_refs']), Concept(obj_name, db_refs=obj['db_refs']), subj_delta=s['subj_delta'], obj_delta=s['obj_delta'], evidence=[INDRAEvidence(source_api=ev['source_api'], annotations=ev['annotations'], text=ev['text'], epistemics=ev.get('epistemics')) for ev in s['evidence']]) influence_sts = G.edges[subj_name, obj_name].get( 'InfluenceStatements', []) influence_sts.append(influence_stmt) G.edges[subj_name, obj_name]['InfluenceStatements' ] = influence_sts for concept, indicator in _dict['concept_to_indicator_mapping'].items(): if indicator is not None: indicator_source, indicator_name = indicator['name'].split('/')[0 ], '/'.join(indicator['name'].split('/')[1:]) if concept in G: if G.nodes[concept].get('indicators') is None: G.nodes[concept]['indicators'] = {} G.nodes[concept]['indicators'][indicator_name] = Indicator( indicator_name, indicator_source) self = cls(G) self.assign_uuids_to_nodes_and_edges() return self
from_uncharted_json_serialized_dict
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, _dict, minimum_evidence_pieces_required: int=1):\n sts = _dict['statements']\n G = nx.DiGraph()\n for s in sts:\n if len(s['evidence']) >= minimum_evidence_pieces_required:\n subj, obj = s['subj'], s['obj']\n if subj['db_refs']['concept'] is not None and obj['db_refs'][\n 'concept'] is not None:\n subj_name, obj_name = ['/'.join(s[x]['db_refs']['concept'].\n split('/')[:]) for x in ['subj', 'obj']]\n G.add_edge(subj_name, obj_name)\n subj_delta = s['subj_delta']\n obj_delta = s['obj_delta']\n for delta in (subj_delta, obj_delta):\n if delta['polarity'] is None:\n delta['polarity'] = 1\n influence_stmt = Influence(Concept(subj_name, db_refs=subj[\n 'db_refs']), Concept(obj_name, db_refs=obj['db_refs']),\n subj_delta=s['subj_delta'], obj_delta=s['obj_delta'],\n evidence=[INDRAEvidence(source_api=ev['source_api'],\n annotations=ev['annotations'], text=ev['text'],\n epistemics=ev.get('epistemics')) for ev in s['evidence']])\n influence_sts = G.edges[subj_name, obj_name].get(\n 'InfluenceStatements', [])\n influence_sts.append(influence_stmt)\n G.edges[subj_name, obj_name]['InfluenceStatements'\n ] = influence_sts\n for concept, indicator in _dict['concept_to_indicator_mapping'].items():\n if indicator is not None:\n indicator_source, indicator_name = indicator['name'].split('/')[0\n ], '/'.join(indicator['name'].split('/')[1:])\n if concept in G:\n if G.nodes[concept].get('indicators') is None:\n G.nodes[concept]['indicators'] = {}\n G.nodes[concept]['indicators'][indicator_name] = Indicator(\n indicator_name, indicator_source)\n self = cls(G)\n self.assign_uuids_to_nodes_and_edges()\n return self\n", "role": "user" }, { "content": "from_uncharted_json_serialized_dict", "role": "assistant" } ]
def x(self): df = pd.read_sql_table('gradableAdjectiveData', con=engine) gb = df.groupby('adjective') rs = gaussian_kde(flatMap(lambda g: gaussian_kde(get_respdevs(g[1])). resample(self.res)[0].tolist(), gb)).resample(self.res)[0] for edge in self.edges(data=True): edge[2]['ConditionalProbability'] = constructConditionalPDF(gb, rs, edge) edge[2]['βs'] = np.tan(edge[2]['ConditionalProbability'].resample( self.res)[0])
assemble_transition_model_from_gradable_adjectives
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n df = pd.read_sql_table('gradableAdjectiveData', con=engine)\n gb = df.groupby('adjective')\n rs = gaussian_kde(flatMap(lambda g: gaussian_kde(get_respdevs(g[1])).\n resample(self.res)[0].tolist(), gb)).resample(self.res)[0]\n for edge in self.edges(data=True):\n edge[2]['ConditionalProbability'] = constructConditionalPDF(gb, rs,\n edge)\n edge[2]['βs'] = np.tan(edge[2]['ConditionalProbability'].resample(\n self.res)[0])\n", "role": "user" }, { "content": "assemble_transition_model_from_gradable_adjectives", "role": "assistant" } ]
def x(self): node_pairs = list(permutations(self.nodes(), 2)) simple_path_dict = {node_pair: [list(pairwise(path)) for path in nx. all_simple_paths(self, *node_pair)] for node_pair in node_pairs} self.transition_matrix_collection = [] elements = self.get_latent_state_components() for i in range(self.res): A = pd.DataFrame(np.identity(2 * len(self)), index=elements, columns=elements) for node in self.nodes: A[f'∂({node})/∂t'][node] = self.Δt for node_pair in node_pairs: A[f'∂({node_pair[0]})/∂t'][node_pair[1]] = sum(np.prod([self. edges[edge[0], edge[1]]['βs'][i] for edge in simple_path_edge_list]) * self.Δt for simple_path_edge_list in simple_path_dict[node_pair]) self.transition_matrix_collection.append(A)
sample_from_prior
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n node_pairs = list(permutations(self.nodes(), 2))\n simple_path_dict = {node_pair: [list(pairwise(path)) for path in nx.\n all_simple_paths(self, *node_pair)] for node_pair in node_pairs}\n self.transition_matrix_collection = []\n elements = self.get_latent_state_components()\n for i in range(self.res):\n A = pd.DataFrame(np.identity(2 * len(self)), index=elements,\n columns=elements)\n for node in self.nodes:\n A[f'∂({node})/∂t'][node] = self.Δt\n for node_pair in node_pairs:\n A[f'∂({node_pair[0]})/∂t'][node_pair[1]] = sum(np.prod([self.\n edges[edge[0], edge[1]]['βs'][i] for edge in\n simple_path_edge_list]) * self.Δt for simple_path_edge_list in\n simple_path_dict[node_pair])\n self.transition_matrix_collection.append(A)\n", "role": "user" }, { "content": "sample_from_prior", "role": "assistant" } ]
def x(self, s: pd.Series) ->Dict: return {n[0]: {i.name: np.random.normal(s[n[0]] * i.mean, i.stdev) for i in n[1]['indicators'].values()} for n in self.nodes(data=True)}
sample_observed_state
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, s: pd.Series) ->Dict:\n return {n[0]: {i.name: np.random.normal(s[n[0]] * i.mean, i.stdev) for\n i in n[1]['indicators'].values()} for n in self.nodes(data=True)}\n", "role": "user" }, { "content": "sample_observed_state", "role": "assistant" } ]
def x(self, n_timesteps=10): self.latent_state_sequences = lmap(lambda A: ltake(n_timesteps, iterate (lambda s: pd.Series(A @ s.values, index=s.index), self.s0)), self. transition_matrix_collection) self.observed_state_sequences = [[self.sample_observed_state(s) for s in latent_state_sequence] for latent_state_sequence in self. latent_state_sequences]
sample_from_likelihood
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, n_timesteps=10):\n self.latent_state_sequences = lmap(lambda A: ltake(n_timesteps, iterate\n (lambda s: pd.Series(A @ s.values, index=s.index), self.s0)), self.\n transition_matrix_collection)\n self.observed_state_sequences = [[self.sample_observed_state(s) for s in\n latent_state_sequence] for latent_state_sequence in self.\n latent_state_sequences]\n", "role": "user" }, { "content": "sample_from_likelihood", "role": "assistant" } ]
def x(self, A: pd.DataFrame) ->None: self.source, self.target, self.edge_dict = random.choice(list(self. edges(data=True))) self.original_value = A[f'∂({self.source})/∂t'][self.target] A[f'∂({self.source})/∂t'][self.target] += np.random.normal(scale=0.001)
sample_from_proposal
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, A: pd.DataFrame) ->None:\n self.source, self.target, self.edge_dict = random.choice(list(self.\n edges(data=True)))\n self.original_value = A[f'∂({self.source})/∂t'][self.target]\n A[f'∂({self.source})/∂t'][self.target] += np.random.normal(scale=0.001)\n", "role": "user" }, { "content": "sample_from_proposal", "role": "assistant" } ]
def x(self, resolution: str='month', months: Iterable[int]=range(6, 9)): if resolution == 'month': funcs = [partial(get_indicator_value, month=month) for month in months] else: raise NotImplementedError( "Currently, only the 'month' resolution is supported.") for n in self.nodes(data=True): for indicator in n[1]['indicators'].values(): indicator.timeseries = [func(indicator, year='2017')[0] for func in funcs] if len(set(indicator.timeseries)) == 1: indicator.timeseries = None
get_timeseries_values_for_indicators
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, resolution: str='month', months: Iterable[int]=range(6, 9)):\n if resolution == 'month':\n funcs = [partial(get_indicator_value, month=month) for month in months]\n else:\n raise NotImplementedError(\n \"Currently, only the 'month' resolution is supported.\")\n for n in self.nodes(data=True):\n for indicator in n[1]['indicators'].values():\n indicator.timeseries = [func(indicator, year='2017')[0] for\n func in funcs]\n if len(set(indicator.timeseries)) == 1:\n indicator.timeseries = None\n", "role": "user" }, { "content": "get_timeseries_values_for_indicators", "role": "assistant" } ]
def x(self, A: pd.DataFrame) ->None: self.sample_from_proposal(A) self.set_latent_state_sequence(A) self.update_log_prior(A) self.update_log_likelihood() candidate_log_joint_probability = self.log_prior + self.log_likelihood delta_log_joint_probability = (candidate_log_joint_probability - self. log_joint_probability) acceptance_probability = min(1, np.exp(delta_log_joint_probability)) if acceptance_probability > np.random.rand(): self.update_log_joint_probability() else: A[f'∂({self.source})/∂t'][self.target] = self.original_value self.set_latent_state_sequence(A) self.update_log_likelihood() self.update_log_prior(A) self.update_log_joint_probability()
sample_from_posterior
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, A: pd.DataFrame) ->None:\n self.sample_from_proposal(A)\n self.set_latent_state_sequence(A)\n self.update_log_prior(A)\n self.update_log_likelihood()\n candidate_log_joint_probability = self.log_prior + self.log_likelihood\n delta_log_joint_probability = (candidate_log_joint_probability - self.\n log_joint_probability)\n acceptance_probability = min(1, np.exp(delta_log_joint_probability))\n if acceptance_probability > np.random.rand():\n self.update_log_joint_probability()\n else:\n A[f'∂({self.source})/∂t'][self.target] = self.original_value\n self.set_latent_state_sequence(A)\n self.update_log_likelihood()\n self.update_log_prior(A)\n self.update_log_joint_probability()\n", "role": "user" }, { "content": "sample_from_posterior", "role": "assistant" } ]
def x(self, source: str, target: str, state: Optional[str]=None, crop: Optional[str]=None): rows = engine.execute( f"select * from dssat where `Crop` like '{crop}' and `State` like '{state}'" ) xs, ys = lzip(*[(r['Rainfall'], r['Production']) for r in rows]) xs_scaled, ys_scaled = xs / np.mean(xs), ys / np.mean(ys) p, V = np.polyfit(xs_scaled, ys_scaled, 1, cov=True) self.edges[source, target]['βs'] = np.random.normal(p[0], np.sqrt(V[0][ 0]), self.res) self.sample_from_prior()
infer_transition_matrix_coefficient_from_data
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, source: str, target: str, state: Optional[str]=None, crop:\n Optional[str]=None):\n rows = engine.execute(\n f\"select * from dssat where `Crop` like '{crop}' and `State` like '{state}'\"\n )\n xs, ys = lzip(*[(r['Rainfall'], r['Production']) for r in rows])\n xs_scaled, ys_scaled = xs / np.mean(xs), ys / np.mean(ys)\n p, V = np.polyfit(xs_scaled, ys_scaled, 1, cov=True)\n self.edges[source, target]['βs'] = np.random.normal(p[0], np.sqrt(V[0][\n 0]), self.res)\n self.sample_from_prior()\n", "role": "user" }, { "content": "infer_transition_matrix_coefficient_from_data", "role": "assistant" } ]
def x(self, filename: str='bmi_config.txt') ->None: s0 = self.construct_default_initial_state() s0.to_csv(filename, index_label='variable')
create_bmi_config_file
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, filename: str='bmi_config.txt') ->None:\n s0 = self.construct_default_initial_state()\n s0.to_csv(filename, index_label='variable')\n", "role": "user" }, { "content": "create_bmi_config_file", "role": "assistant" } ]
def x(self, n: Tuple[str, dict]) ->List[float]: return [(self.transition_matrix_collection[i].loc[n[0]].values @ self. s0[i].values) for i in range(self.res)]
default_update_function
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, n: Tuple[str, dict]) ->List[float]:\n return [(self.transition_matrix_collection[i].loc[n[0]].values @ self.\n s0[i].values) for i in range(self.res)]\n", "role": "user" }, { "content": "default_update_function", "role": "assistant" } ]
def x(self, config_file: str='bmi_config.txt', initialize_indicators=True): self.t = 0.0 if not os.path.isfile(config_file): self.create_bmi_config_file(config_file) self.s0 = [pd.read_csv(config_file, index_col=0, header=None, error_bad_lines=False)[1] for _ in range(self.res)] self.s0_original = self.s0[0].copy(deep=True) self.latent_state_vector = self.construct_default_initial_state() for n in self.nodes(data=True): rv = LatentVar(n[0]) n[1]['rv'] = rv n[1]['update_function'] = self.default_update_function rv.dataset = [(1.0) for _ in range(self.res)] rv.partial_t = self.s0[0][f'∂({n[0]})/∂t'] if initialize_indicators: for indicator in n[1]['indicators'].values(): indicator.samples = np.random.normal(indicator.mean * np. array(n[1]['rv'].dataset), scale=0.01)
initialize
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, config_file: str='bmi_config.txt', initialize_indicators=True):\n self.t = 0.0\n if not os.path.isfile(config_file):\n self.create_bmi_config_file(config_file)\n self.s0 = [pd.read_csv(config_file, index_col=0, header=None,\n error_bad_lines=False)[1] for _ in range(self.res)]\n self.s0_original = self.s0[0].copy(deep=True)\n self.latent_state_vector = self.construct_default_initial_state()\n for n in self.nodes(data=True):\n rv = LatentVar(n[0])\n n[1]['rv'] = rv\n n[1]['update_function'] = self.default_update_function\n rv.dataset = [(1.0) for _ in range(self.res)]\n rv.partial_t = self.s0[0][f'∂({n[0]})/∂t']\n if initialize_indicators:\n for indicator in n[1]['indicators'].values():\n indicator.samples = np.random.normal(indicator.mean * np.\n array(n[1]['rv'].dataset), scale=0.01)\n", "role": "user" }, { "content": "initialize", "role": "assistant" } ]
def x(self, τ: float=1.0, update_indicators=True, dampen=False): for n in self.nodes(data=True): n[1]['next_state'] = n[1]['update_function'](n) for n in self.nodes(data=True): n[1]['rv'].dataset = n[1]['next_state'] for n in self.nodes(data=True): for i in range(self.res): self.s0[i][n[0]] = n[1]['rv'].dataset[i] if dampen: self.s0[i][f'∂({n[0]})/∂t'] = self.s0_original[f'∂({n[0]})/∂t' ] * exp(-τ * self.t) if update_indicators: for indicator in n[1]['indicators'].values(): indicator.samples = np.random.normal(indicator.mean * np. array(n[1]['rv'].dataset), scale=0.01) self.t += self.Δt
update
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, τ: float=1.0, update_indicators=True, dampen=False):\n for n in self.nodes(data=True):\n n[1]['next_state'] = n[1]['update_function'](n)\n for n in self.nodes(data=True):\n n[1]['rv'].dataset = n[1]['next_state']\n for n in self.nodes(data=True):\n for i in range(self.res):\n self.s0[i][n[0]] = n[1]['rv'].dataset[i]\n if dampen:\n self.s0[i][f'∂({n[0]})/∂t'] = self.s0_original[f'∂({n[0]})/∂t'\n ] * exp(-τ * self.t)\n if update_indicators:\n for indicator in n[1]['indicators'].values():\n indicator.samples = np.random.normal(indicator.mean * np.\n array(n[1]['rv'].dataset), scale=0.01)\n self.t += self.Δt\n", "role": "user" }, { "content": "update", "role": "assistant" } ]
def x(self, n) ->Dict[str, Union[str, List[str]]]: node_dict = {'name': n[0], 'units': _get_units(n[0]), 'dtype': _get_dtype(n[0]), 'arguments': list(self.predecessors(n[0]))} if not n[1].get('indicators') is None: for indicator in n[1]['indicators'].values(): if 'dataset' in indicator.__dict__: del indicator.__dict__['dataset'] node_dict['indicators'] = [_process_datetime(indicator.__dict__) for indicator in n[1]['indicators'].values()] else: node_dict['indicators'] = None return node_dict
export_node
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, n) ->Dict[str, Union[str, List[str]]]:\n node_dict = {'name': n[0], 'units': _get_units(n[0]), 'dtype':\n _get_dtype(n[0]), 'arguments': list(self.predecessors(n[0]))}\n if not n[1].get('indicators') is None:\n for indicator in n[1]['indicators'].values():\n if 'dataset' in indicator.__dict__:\n del indicator.__dict__['dataset']\n node_dict['indicators'] = [_process_datetime(indicator.__dict__) for\n indicator in n[1]['indicators'].values()]\n else:\n node_dict['indicators'] = None\n return node_dict\n", "role": "user" }, { "content": "export_node", "role": "assistant" } ]
def x(self) ->Dict: return {'name': self.name, 'dateCreated': str(self.dateCreated), 'variables': lmap(lambda n: self.export_node(n), self.nodes(data= True)), 'timeStep': str(self.Δt), 'edge_data': lmap(export_edge, self.edges(data=True))}
to_dict
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self) ->Dict:\n return {'name': self.name, 'dateCreated': str(self.dateCreated),\n 'variables': lmap(lambda n: self.export_node(n), self.nodes(data=\n True)), 'timeStep': str(self.Δt), 'edge_data': lmap(export_edge,\n self.edges(data=True))}\n", "role": "user" }, { "content": "to_dict", "role": "assistant" } ]
def x(self, n: int=1, min_temporal_res: Optional[str]=None): for node in self.nodes(data=True): query_parts = ['select Indicator from concept_to_indicator_mapping', f"where `Concept` like '{node[0]}'"] query = ' '.join(query_parts) results = engine.execute(query) if min_temporal_res is not None: if min_temporal_res not in ['month']: raise ValueError("min_temporal_res must be 'month'") vars_with_required_temporal_resolution = [r[0] for r in engine. execute( f'select distinct `Variable` from indicator where `{min_temporal_res.capitalize()}` is not null' )] results = [r for r in results if r[0] in vars_with_required_temporal_resolution] node[1]['indicators'] = {x: Indicator(x, 'MITRE12') for x in [r[0] for r in take(n, results)]}
map_concepts_to_indicators
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, n: int=1, min_temporal_res: Optional[str]=None):\n for node in self.nodes(data=True):\n query_parts = ['select Indicator from concept_to_indicator_mapping',\n f\"where `Concept` like '{node[0]}'\"]\n query = ' '.join(query_parts)\n results = engine.execute(query)\n if min_temporal_res is not None:\n if min_temporal_res not in ['month']:\n raise ValueError(\"min_temporal_res must be 'month'\")\n vars_with_required_temporal_resolution = [r[0] for r in engine.\n execute(\n f'select distinct `Variable` from indicator where `{min_temporal_res.capitalize()}` is not null'\n )]\n results = [r for r in results if r[0] in\n vars_with_required_temporal_resolution]\n node[1]['indicators'] = {x: Indicator(x, 'MITRE12') for x in [r[0] for\n r in take(n, results)]}\n", "role": "user" }, { "content": "map_concepts_to_indicators", "role": "assistant" } ]
def x(self, country: Optional[str]='South Sudan', state: Optional[str]=None, year: Optional[int]=None, month: Optional[int]=None, unit: Optional[str ]=None, fallback_aggaxes: List[str]=['year', 'month'], aggfunc: Callable=np.mean): valid_axes = 'country', 'state', 'year', 'month' if any(map(lambda axis: axis not in valid_axes, fallback_aggaxes)): raise ValueError( f'All elements of the fallback_aggaxes set must be one of the following: {valid_axes}' ) for n in self.nodes(data=True): for indicator in n[1]['indicators'].values(): indicator.mean, indicator.unit = get_indicator_value(indicator, country, state, year, month, unit, fallback_aggaxes, aggfunc) indicator.stdev = 0.1 * abs(indicator.mean)
parameterize
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, country: Optional[str]='South Sudan', state: Optional[str]=None,\n year: Optional[int]=None, month: Optional[int]=None, unit: Optional[str\n ]=None, fallback_aggaxes: List[str]=['year', 'month'], aggfunc:\n Callable=np.mean):\n valid_axes = 'country', 'state', 'year', 'month'\n if any(map(lambda axis: axis not in valid_axes, fallback_aggaxes)):\n raise ValueError(\n f'All elements of the fallback_aggaxes set must be one of the following: {valid_axes}'\n )\n for n in self.nodes(data=True):\n for indicator in n[1]['indicators'].values():\n indicator.mean, indicator.unit = get_indicator_value(indicator,\n country, state, year, month, unit, fallback_aggaxes, aggfunc)\n indicator.stdev = 0.1 * abs(indicator.mean)\n", "role": "user" }, { "content": "parameterize", "role": "assistant" } ]
def x(self, nodes: Iterable[str]): for n in nodes: if self.has_node(n): self.remove_node(n)
delete_nodes
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, nodes: Iterable[str]):\n for n in nodes:\n if self.has_node(n):\n self.remove_node(n)\n", "role": "user" }, { "content": "delete_nodes", "role": "assistant" } ]
def x(self, node: str): if self.has_node(node): self.remove_node(node)
delete_node
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, node: str):\n if self.has_node(node):\n self.remove_node(node)\n", "role": "user" }, { "content": "delete_node", "role": "assistant" } ]
def x(self, source: str, target: str): if self.has_edge(source, target): self.remove_edge(source, target)
delete_edge
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, source: str, target: str):\n if self.has_edge(source, target):\n self.remove_edge(source, target)\n", "role": "user" }, { "content": "delete_edge", "role": "assistant" } ]
def x(self, edges: Iterable[Tuple[str, str]]): for edge in edges: if self.has_edge(*edge): self.remove_edge(*edge)
delete_edges
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, edges: Iterable[Tuple[str, str]]):\n for edge in edges:\n if self.has_edge(*edge):\n self.remove_edge(*edge)\n", "role": "user" }, { "content": "delete_edges", "role": "assistant" } ]
def x(self, cutoff: int=2): for node_pair in tqdm(list(permutations(self.nodes(), 2))): paths = [list(pairwise(path)) for path in nx.all_simple_paths(self, *node_pair, cutoff)] if len(paths) > 1: for path in paths: if len(path) == 1: self.delete_edge(*path[0]) if any(self.degree(n) == 0 for n in path[0]): self.add_edge(*path[0]) break
prune
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, cutoff: int=2):\n for node_pair in tqdm(list(permutations(self.nodes(), 2))):\n paths = [list(pairwise(path)) for path in nx.all_simple_paths(self,\n *node_pair, cutoff)]\n if len(paths) > 1:\n for path in paths:\n if len(path) == 1:\n self.delete_edge(*path[0])\n if any(self.degree(n) == 0 for n in path[0]):\n self.add_edge(*path[0])\n break\n", "role": "user" }, { "content": "prune", "role": "assistant" } ]
def x(self, n1: str, n2: str, same_polarity: bool=True): for p in self.predecessors(n1): for st in self[p][n1]['InfluenceStatements']: if not same_polarity: st.obj_delta['polarity'] = -st.obj_delta['polarity'] st.obj.db_refs['UN'][0] = n2, st.obj.db_refs['UN'][0][1] if not self.has_edge(p, n2): self.add_edge(p, n2) self[p][n2]['InfluenceStatements'] = self[p][n1][ 'InfluenceStatements'] else: self[p][n2]['InfluenceStatements'] += self[p][n1][ 'InfluenceStatements'] for s in self.successors(n1): for st in self.edges[n1, s]['InfluenceStatements']: if not same_polarity: st.subj_delta['polarity'] = -st.subj_delta['polarity'] st.subj.db_refs['UN'][0] = n2, st.subj.db_refs['UN'][0][1] if not self.has_edge(n2, s): self.add_edge(n2, s) self[n2][s]['InfluenceStatements'] = self[n1][s][ 'InfluenceStatements'] else: self[n2][s]['InfluenceStatements'] += self[n1][s][ 'InfluenceStatements'] self.remove_node(n1)
merge_nodes
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, n1: str, n2: str, same_polarity: bool=True):\n for p in self.predecessors(n1):\n for st in self[p][n1]['InfluenceStatements']:\n if not same_polarity:\n st.obj_delta['polarity'] = -st.obj_delta['polarity']\n st.obj.db_refs['UN'][0] = n2, st.obj.db_refs['UN'][0][1]\n if not self.has_edge(p, n2):\n self.add_edge(p, n2)\n self[p][n2]['InfluenceStatements'] = self[p][n1][\n 'InfluenceStatements']\n else:\n self[p][n2]['InfluenceStatements'] += self[p][n1][\n 'InfluenceStatements']\n for s in self.successors(n1):\n for st in self.edges[n1, s]['InfluenceStatements']:\n if not same_polarity:\n st.subj_delta['polarity'] = -st.subj_delta['polarity']\n st.subj.db_refs['UN'][0] = n2, st.subj.db_refs['UN'][0][1]\n if not self.has_edge(n2, s):\n self.add_edge(n2, s)\n self[n2][s]['InfluenceStatements'] = self[n1][s][\n 'InfluenceStatements']\n else:\n self[n2][s]['InfluenceStatements'] += self[n1][s][\n 'InfluenceStatements']\n self.remove_node(n1)\n", "role": "user" }, { "content": "merge_nodes", "role": "assistant" } ]
def x(self, concept: str, depth: int=1, reverse: bool=False): nodeset = {concept} if reverse: func = self.predecessors else: func = self.successors for i in range(depth): nodeset.update(chain.from_iterable([list(func(n)) for n in nodeset])) return AnalysisGraph(self.subgraph(nodeset).copy())
get_subgraph_for_concept
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, concept: str, depth: int=1, reverse: bool=False):\n nodeset = {concept}\n if reverse:\n func = self.predecessors\n else:\n func = self.successors\n for i in range(depth):\n nodeset.update(chain.from_iterable([list(func(n)) for n in nodeset]))\n return AnalysisGraph(self.subgraph(nodeset).copy())\n", "role": "user" }, { "content": "get_subgraph_for_concept", "role": "assistant" } ]
def x(self, source: str, target: str, cutoff: Optional[int]=None): paths = nx.all_simple_paths(self, source, target, cutoff=cutoff) return AnalysisGraph(self.subgraph(set(chain.from_iterable(paths))))
get_subgraph_for_concept_pair
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, source: str, target: str, cutoff: Optional[int]=None):\n paths = nx.all_simple_paths(self, source, target, cutoff=cutoff)\n return AnalysisGraph(self.subgraph(set(chain.from_iterable(paths))))\n", "role": "user" }, { "content": "get_subgraph_for_concept_pair", "role": "assistant" } ]
def x(self, concepts: List[str], cutoff: Optional[int]=None): path_generator = (nx.all_simple_paths(self, source, target, cutoff= cutoff) for source, target in permutations(concepts, 2)) paths = chain.from_iterable(path_generator) return AnalysisGraph(self.subgraph(set(chain.from_iterable(paths))))
get_subgraph_for_concept_pairs
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, concepts: List[str], cutoff: Optional[int]=None):\n path_generator = (nx.all_simple_paths(self, source, target, cutoff=\n cutoff) for source, target in permutations(concepts, 2))\n paths = chain.from_iterable(path_generator)\n return AnalysisGraph(self.subgraph(set(chain.from_iterable(paths))))\n", "role": "user" }, { "content": "get_subgraph_for_concept_pairs", "role": "assistant" } ]
def x(self, app=None, last_known_value_date: Optional[date]=None): from delphi.apps.rest_api import create_app, db self.assign_uuids_to_nodes_and_edges() icm_metadata = ICMMetadata(id=self.id, created=self.dateCreated, estimatedNumberOfPrimitives=len(self.nodes) + len(self.edges), createdByUser_id=1, lastAccessedByUser_id=1, lastUpdatedByUser_id=1) if last_known_value_date is None: today = date.today().isoformat() else: today = last_known_value_date.isoformat() default_latent_var_value = 1.0 causal_primitives = [] nodeset = {n.split('/')[-1] for n in self.nodes} simplified_labels = len(nodeset) == len(self) for n in self.nodes(data=True): n[1]['rv'] = LatentVar(n[0]) n[1]['update_function'] = self.default_update_function rv = n[1]['rv'] rv.dataset = [default_latent_var_value for _ in range(self.res)] causal_variable = CausalVariable(id=n[1]['id'], model_id=self.id, units='', namespaces={}, auxiliaryProperties=[], label=n[0]. split('/')[-1].replace('_', ' ').capitalize() if simplified_labels else n[0], description=n[0], lastUpdated= today, confidence=1.0, lastKnownValue={'active': 'ACTIVE', 'trend': None, 'time': today, 'value': {'baseType': 'FloatValue', 'value': n[1]['rv'].dataset[0]}}, range={ 'baseType': 'FloatRange', 'range': {'min': 0, 'max': 5, 'step': 0.1}}) causal_primitives.append(causal_variable) max_mean_betas = max([abs(np.median(e[2]['βs'])) for e in self.edges( data=True)]) for e in self.edges(data=True): causal_relationship = CausalRelationship(id=e[2]['id'], namespaces= {}, source={'id': self.nodes[e[0]]['id'], 'baseType': 'CausalVariable'}, target={'id': self.nodes[e[1]]['id'], 'baseType': 'CausalVariable'}, model_id=self.id, auxiliaryProperties=[], lastUpdated=today, types=['causal'], description='', confidence=np.mean([s.belief for s in e[2][ 'InfluenceStatements']]), label='', strength=abs(np.median(e[2] ['βs']) / max_mean_betas), reinforcement=True if np.mean([(stmt .subj_delta['polarity'] * stmt.obj_delta['polarity']) for stmt in e[2]['InfluenceStatements']]) > 0 else False) causal_primitives.append(causal_relationship) evidences = [] for edge in self.edges(data=True): for stmt in edge[2]['InfluenceStatements']: for ev in stmt.evidence: evidence = Evidence(id=str(uuid4()), causalrelationship_id= edge[2]['id'], description=ev.text) evidences.append(evidence) if app is None: app = create_app() with app.app_context(): db.drop_all() db.create_all() db.session.add(icm_metadata) db.session.add(DelphiModel(id=self.id, model=self)) for causal_primitive in causal_primitives: db.session.add(causal_primitive) for evidence in evidences: db.session.add(evidence) db.session.commit()
to_sql
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, app=None, last_known_value_date: Optional[date]=None):\n from delphi.apps.rest_api import create_app, db\n self.assign_uuids_to_nodes_and_edges()\n icm_metadata = ICMMetadata(id=self.id, created=self.dateCreated,\n estimatedNumberOfPrimitives=len(self.nodes) + len(self.edges),\n createdByUser_id=1, lastAccessedByUser_id=1, lastUpdatedByUser_id=1)\n if last_known_value_date is None:\n today = date.today().isoformat()\n else:\n today = last_known_value_date.isoformat()\n default_latent_var_value = 1.0\n causal_primitives = []\n nodeset = {n.split('/')[-1] for n in self.nodes}\n simplified_labels = len(nodeset) == len(self)\n for n in self.nodes(data=True):\n n[1]['rv'] = LatentVar(n[0])\n n[1]['update_function'] = self.default_update_function\n rv = n[1]['rv']\n rv.dataset = [default_latent_var_value for _ in range(self.res)]\n causal_variable = CausalVariable(id=n[1]['id'], model_id=self.id,\n units='', namespaces={}, auxiliaryProperties=[], label=n[0].\n split('/')[-1].replace('_', ' ').capitalize() if\n simplified_labels else n[0], description=n[0], lastUpdated=\n today, confidence=1.0, lastKnownValue={'active': 'ACTIVE',\n 'trend': None, 'time': today, 'value': {'baseType':\n 'FloatValue', 'value': n[1]['rv'].dataset[0]}}, range={\n 'baseType': 'FloatRange', 'range': {'min': 0, 'max': 5, 'step':\n 0.1}})\n causal_primitives.append(causal_variable)\n max_mean_betas = max([abs(np.median(e[2]['βs'])) for e in self.edges(\n data=True)])\n for e in self.edges(data=True):\n causal_relationship = CausalRelationship(id=e[2]['id'], namespaces=\n {}, source={'id': self.nodes[e[0]]['id'], 'baseType':\n 'CausalVariable'}, target={'id': self.nodes[e[1]]['id'],\n 'baseType': 'CausalVariable'}, model_id=self.id,\n auxiliaryProperties=[], lastUpdated=today, types=['causal'],\n description='', confidence=np.mean([s.belief for s in e[2][\n 'InfluenceStatements']]), label='', strength=abs(np.median(e[2]\n ['βs']) / max_mean_betas), reinforcement=True if np.mean([(stmt\n .subj_delta['polarity'] * stmt.obj_delta['polarity']) for stmt in\n e[2]['InfluenceStatements']]) > 0 else False)\n causal_primitives.append(causal_relationship)\n evidences = []\n for edge in self.edges(data=True):\n for stmt in edge[2]['InfluenceStatements']:\n for ev in stmt.evidence:\n evidence = Evidence(id=str(uuid4()), causalrelationship_id=\n edge[2]['id'], description=ev.text)\n evidences.append(evidence)\n if app is None:\n app = create_app()\n with app.app_context():\n db.drop_all()\n db.create_all()\n db.session.add(icm_metadata)\n db.session.add(DelphiModel(id=self.id, model=self))\n for causal_primitive in causal_primitives:\n db.session.add(causal_primitive)\n for evidence in evidences:\n db.session.add(evidence)\n db.session.commit()\n", "role": "user" }, { "content": "to_sql", "role": "assistant" } ]
def x(self, indicators: bool=False, indicator_values: bool=False, nodes_to_highlight=None, *args, **kwargs): from delphi.utils.misc import choose_font FONT = choose_font() A = nx.nx_agraph.to_agraph(self) A.graph_attr.update({'dpi': 227, 'fontsize': 20, 'rankdir': kwargs.get( 'rankdir', 'TB'), 'fontname': FONT, 'overlap': 'scale', 'splines': True}) A.node_attr.update({'shape': 'rectangle', 'color': 'black', 'style': 'rounded', 'fontname': FONT}) nodes_with_indicators = [n for n in self.nodes(data=True) if n[1].get( 'indicators') is not None] n_max = max([sum([len(s.evidence) for s in e[2]['InfluenceStatements']] ) for e in self.edges(data=True)]) nodeset = {n.split('/')[-1] for n in self.nodes} simplified_labels = len(nodeset) == len(self) color_str = '#650021' for n in self.nodes(data=True): if kwargs.get('values'): node_label = n[0].capitalize().replace('_', ' ') + ' (' + str(np .mean(n[1]['rv'].dataset)) + ')' else: node_label = n[0].split('/')[-1].replace('_', ' ').capitalize( ) if simplified_labels else n[0] A.add_node(n[0], label=node_label) if list(self.edges(data=True))[0][2].get('βs') is not None: max_median_betas = max([abs(np.median(e[2]['βs'])) for e in self. edges(data=True)]) for e in self.edges(data=True): sts = e[2]['InfluenceStatements'] total_evidence_pieces = sum([len(s.evidence) for s in sts]) reinforcement = sum([(stmt.overall_polarity() * len(stmt.evidence)) for stmt in sts]) / total_evidence_pieces opacity = total_evidence_pieces / n_max h = (opacity * 255).hex() if list(self.edges(data=True))[0][2].get('βs') is not None: penwidth = 3 * abs(np.median(e[2]['βs']) / max_median_betas) cmap = cm.Greens if reinforcement > 0 else cm.Reds c_str = matplotlib.colors.rgb2hex(cmap(abs(reinforcement))) + h[4:6 ] else: penwidth = 1 c_str = 'black' A.add_edge(e[0], e[1], color=c_str, penwidth=penwidth) if indicators: for n in nodes_with_indicators: for indicator_name, ind in n[1]['indicators'].items(): node_label = _insert_line_breaks(ind.name.replace('_', ' '), 30 ) if indicator_values: if ind.unit is not None: units = f' {ind.unit}' else: units = '' if ind.mean is not None: ind_value = '{:.2f}'.format(ind.mean) node_label = f"""{node_label} {ind_value} {ind.unit} Source: {ind.source} Aggregation axes: {ind.aggaxes} Aggregation method: {ind.aggregation_method}""" A.add_node(indicator_name, style='rounded, filled', fillcolor='lightblue', label=node_label) A.add_edge(n[0], indicator_name, color='royalblue4') if nodes_to_highlight is not None: nodes = kwargs.pop('nodes_to_highlight') if isinstance(nodes, list): for n in nodes: if n in A.nodes(): A.add_node(n, fontcolor='royalblue') elif isinstance(nodes, str): if n in A.nodes(): A.add_node(nodes, fontcolor='royalblue') if kwargs.get('graph_label') is not None: A.graph_attr['label'] = kwargs['graph_label'] return A
to_agraph
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, indicators: bool=False, indicator_values: bool=False,\n nodes_to_highlight=None, *args, **kwargs):\n from delphi.utils.misc import choose_font\n FONT = choose_font()\n A = nx.nx_agraph.to_agraph(self)\n A.graph_attr.update({'dpi': 227, 'fontsize': 20, 'rankdir': kwargs.get(\n 'rankdir', 'TB'), 'fontname': FONT, 'overlap': 'scale', 'splines': \n True})\n A.node_attr.update({'shape': 'rectangle', 'color': 'black', 'style':\n 'rounded', 'fontname': FONT})\n nodes_with_indicators = [n for n in self.nodes(data=True) if n[1].get(\n 'indicators') is not None]\n n_max = max([sum([len(s.evidence) for s in e[2]['InfluenceStatements']]\n ) for e in self.edges(data=True)])\n nodeset = {n.split('/')[-1] for n in self.nodes}\n simplified_labels = len(nodeset) == len(self)\n color_str = '#650021'\n for n in self.nodes(data=True):\n if kwargs.get('values'):\n node_label = n[0].capitalize().replace('_', ' ') + ' (' + str(np\n .mean(n[1]['rv'].dataset)) + ')'\n else:\n node_label = n[0].split('/')[-1].replace('_', ' ').capitalize(\n ) if simplified_labels else n[0]\n A.add_node(n[0], label=node_label)\n if list(self.edges(data=True))[0][2].get('βs') is not None:\n max_median_betas = max([abs(np.median(e[2]['βs'])) for e in self.\n edges(data=True)])\n for e in self.edges(data=True):\n sts = e[2]['InfluenceStatements']\n total_evidence_pieces = sum([len(s.evidence) for s in sts])\n reinforcement = sum([(stmt.overall_polarity() * len(stmt.evidence)) for\n stmt in sts]) / total_evidence_pieces\n opacity = total_evidence_pieces / n_max\n h = (opacity * 255).hex()\n if list(self.edges(data=True))[0][2].get('βs') is not None:\n penwidth = 3 * abs(np.median(e[2]['βs']) / max_median_betas)\n cmap = cm.Greens if reinforcement > 0 else cm.Reds\n c_str = matplotlib.colors.rgb2hex(cmap(abs(reinforcement))) + h[4:6\n ]\n else:\n penwidth = 1\n c_str = 'black'\n A.add_edge(e[0], e[1], color=c_str, penwidth=penwidth)\n if indicators:\n for n in nodes_with_indicators:\n for indicator_name, ind in n[1]['indicators'].items():\n node_label = _insert_line_breaks(ind.name.replace('_', ' '), 30\n )\n if indicator_values:\n if ind.unit is not None:\n units = f' {ind.unit}'\n else:\n units = ''\n if ind.mean is not None:\n ind_value = '{:.2f}'.format(ind.mean)\n node_label = f\"\"\"{node_label}\n{ind_value} {ind.unit}\nSource: {ind.source}\nAggregation axes: {ind.aggaxes}\nAggregation method: {ind.aggregation_method}\"\"\"\n A.add_node(indicator_name, style='rounded, filled',\n fillcolor='lightblue', label=node_label)\n A.add_edge(n[0], indicator_name, color='royalblue4')\n if nodes_to_highlight is not None:\n nodes = kwargs.pop('nodes_to_highlight')\n if isinstance(nodes, list):\n for n in nodes:\n if n in A.nodes():\n A.add_node(n, fontcolor='royalblue')\n elif isinstance(nodes, str):\n if n in A.nodes():\n A.add_node(nodes, fontcolor='royalblue')\n if kwargs.get('graph_label') is not None:\n A.graph_attr['label'] = kwargs['graph_label']\n return A\n", "role": "user" }, { "content": "to_agraph", "role": "assistant" } ]
def x(node, annotate_fields=True, include_attributes=False, indent=' '): def x(node, level=0): if isinstance(node, ast.AST): fields = [(a, _format(b, level)) for a, b in ast.iter_fields(node)] if include_attributes and node._attributes: fields.extend([(a, _format(getattr(node, a), level)) for a in node._attributes]) return ''.join([node.__class__.__name__, '(', ', '.join(( '%s=%s' % field for field in fields) if annotate_fields else (b for a, b in fields)), ')']) elif isinstance(node, list): lines = ['['] lines.extend(indent * (level + 2) + _format(x, level + 2) + ',' for x in node) if len(lines) > 1: lines.append(indent * (level + 1) + ']') else: lines[-1] += ']' return '\n'.join(lines) return repr(node) if not isinstance(node, ast.AST): raise TypeError('expected AST, got %r' % node.__class__.__name__) return _format(node)
dump
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(node, annotate_fields=True, include_attributes=False, indent=' '):\n\n def x(node, level=0):\n if isinstance(node, ast.AST):\n fields = [(a, _format(b, level)) for a, b in ast.iter_fields(node)]\n if include_attributes and node._attributes:\n fields.extend([(a, _format(getattr(node, a), level)) for a in\n node._attributes])\n return ''.join([node.__class__.__name__, '(', ', '.join((\n '%s=%s' % field for field in fields) if annotate_fields else\n (b for a, b in fields)), ')'])\n elif isinstance(node, list):\n lines = ['[']\n lines.extend(indent * (level + 2) + _format(x, level + 2) + ',' for\n x in node)\n if len(lines) > 1:\n lines.append(indent * (level + 1) + ']')\n else:\n lines[-1] += ']'\n return '\\n'.join(lines)\n return repr(node)\n if not isinstance(node, ast.AST):\n raise TypeError('expected AST, got %r' % node.__class__.__name__)\n return _format(node)\n", "role": "user" }, { "content": "dump", "role": "assistant" } ]
def x(lambdaFile: str, asts: List, file_name: str, mode_mapper_dict: dict, save_file=False) ->Dict: lambdaStrings = ['import math\n\n'] state = PGMState(lambdaStrings) generator = GrFNGenerator() generator.mode_mapper = mode_mapper_dict pgm = generator.genPgm(asts, state, {}, '')[0] if pgm.get('start'): pgm['start'] = pgm['start'][0] else: pgm['start'] = generator.function_defs[-1] pgm['source'] = [[get_path(file_name, 'source')]] pgm['dateCreated'] = f"{datetime.today().strftime('%Y%m%d')}" with open(lambdaFile, 'w') as f: f.write(''.join(lambdaStrings)) if save_file: json.dump(pgm, open(file_name[:file_name.rfind('.')] + '.json', 'w')) return pgm
create_pgm_dict
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(lambdaFile: str, asts: List, file_name: str, mode_mapper_dict: dict,\n save_file=False) ->Dict:\n lambdaStrings = ['import math\\n\\n']\n state = PGMState(lambdaStrings)\n generator = GrFNGenerator()\n generator.mode_mapper = mode_mapper_dict\n pgm = generator.genPgm(asts, state, {}, '')[0]\n if pgm.get('start'):\n pgm['start'] = pgm['start'][0]\n else:\n pgm['start'] = generator.function_defs[-1]\n pgm['source'] = [[get_path(file_name, 'source')]]\n pgm['dateCreated'] = f\"{datetime.today().strftime('%Y%m%d')}\"\n with open(lambdaFile, 'w') as f:\n f.write(''.join(lambdaStrings))\n if save_file:\n json.dump(pgm, open(file_name[:file_name.rfind('.')] + '.json', 'w'))\n return pgm\n", "role": "user" }, { "content": "create_pgm_dict", "role": "assistant" } ]
def x(sts, grounding_score_cutoff: float=0.8, belief_score_cutoff: float= 0.85, concepts_of_interest: List[str]=[]): filtered_sts = [] counters = {} def x(counter_name): if counter_name in counters: counters[counter_name] += 1 else: counters[counter_name] = 1 for s in tqdm(sts): update_counter('Original number of statements') if not s.belief > belief_score_cutoff: continue update_counter(f'Statements with belief score > {belief_score_cutoff}') if s.subj.db_refs.get('UN') is None or s.obj.db_refs.get('UN') is None: continue update_counter('Statements with UN groundings') if not all(x[1] > grounding_score_cutoff for x in (y.db_refs['UN'][ 0] for y in (s.subj, s.obj))): continue update_counter( f'Statements with subj and obj grounding scores > {grounding_score_cutoff}' ) if s.subj_delta['polarity'] is None: s.subj_delta['polarity'] = 1 if s.obj_delta['polarity'] is None: s.obj_delta['polarity'] = 1 filtered_sts.append(s) for k, v in counters.items(): print(f'{k}: {v}') return filtered_sts
filter_and_process_statements
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(sts, grounding_score_cutoff: float=0.8, belief_score_cutoff: float=\n 0.85, concepts_of_interest: List[str]=[]):\n filtered_sts = []\n counters = {}\n\n def x(counter_name):\n if counter_name in counters:\n counters[counter_name] += 1\n else:\n counters[counter_name] = 1\n for s in tqdm(sts):\n update_counter('Original number of statements')\n if not s.belief > belief_score_cutoff:\n continue\n update_counter(f'Statements with belief score > {belief_score_cutoff}')\n if s.subj.db_refs.get('UN') is None or s.obj.db_refs.get('UN') is None:\n continue\n update_counter('Statements with UN groundings')\n if not all(x[1] > grounding_score_cutoff for x in (y.db_refs['UN'][\n 0] for y in (s.subj, s.obj))):\n continue\n update_counter(\n f'Statements with subj and obj grounding scores > {grounding_score_cutoff}'\n )\n if s.subj_delta['polarity'] is None:\n s.subj_delta['polarity'] = 1\n if s.obj_delta['polarity'] is None:\n s.obj_delta['polarity'] = 1\n filtered_sts.append(s)\n for k, v in counters.items():\n print(f'{k}: {v}')\n return filtered_sts\n", "role": "user" }, { "content": "filter_and_process_statements", "role": "assistant" } ]
def x(input, output, filename='CAG_with_indicators.pdf'): with open(input, 'rb') as f: G = pickle.load(f) G.map_concepts_to_indicators(min_temporal_res='month') G.set_indicator('UN/events/weather/precipitation', 'Historical Average Total Daily Rainfall (Maize)', 'DSSAT') G.set_indicator('UN/events/human/agriculture/food_production', 'Historical Production (Maize)', 'DSSAT') G.set_indicator('UN/entities/human/food/food_security', 'IPC Phase Classification', 'FEWSNET') G.set_indicator('UN/entities/food_availability', 'Production, Meat indigenous, total', 'FAO') G.set_indicator('UN/entities/human/financial/economic/market', 'Inflation Rate', 'ieconomics.com') G.set_indicator('UN/events/human/death', 'Battle-related deaths', 'WDI') with open(output, 'wb') as f: pickle.dump(G, f)
create_CAG_with_indicators
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(input, output, filename='CAG_with_indicators.pdf'):\n with open(input, 'rb') as f:\n G = pickle.load(f)\n G.map_concepts_to_indicators(min_temporal_res='month')\n G.set_indicator('UN/events/weather/precipitation',\n 'Historical Average Total Daily Rainfall (Maize)', 'DSSAT')\n G.set_indicator('UN/events/human/agriculture/food_production',\n 'Historical Production (Maize)', 'DSSAT')\n G.set_indicator('UN/entities/human/food/food_security',\n 'IPC Phase Classification', 'FEWSNET')\n G.set_indicator('UN/entities/food_availability',\n 'Production, Meat indigenous, total', 'FAO')\n G.set_indicator('UN/entities/human/financial/economic/market',\n 'Inflation Rate', 'ieconomics.com')\n G.set_indicator('UN/events/human/death', 'Battle-related deaths', 'WDI')\n with open(output, 'wb') as f:\n pickle.dump(G, f)\n", "role": "user" }, { "content": "create_CAG_with_indicators", "role": "assistant" } ]
def x(self, inputs: Dict[str, Union[float, Iterable]], torch_size: Optional [int]=None) ->Union[float, Iterable]: for i in self.inputs: self.nodes[i]['value'] = inputs[i] for func_set in self.function_sets: for func_name in func_set: lambda_fn = self.nodes[func_name]['lambda_fn'] output_node = list(self.successors(func_name))[0] signature = self.nodes[func_name]['func_inputs'] input_values = [self.nodes[n]['value'] for n in signature] res = lambda_fn(*input_values) if torch_size is not None and len(signature) == 0: self.nodes[output_node]['value'] = torch.tensor([res] * torch_size, dtype=torch.double) else: self.nodes[output_node]['value'] = res return self.nodes[self.output_node]['value']
run
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, inputs: Dict[str, Union[float, Iterable]], torch_size: Optional\n [int]=None) ->Union[float, Iterable]:\n for i in self.inputs:\n self.nodes[i]['value'] = inputs[i]\n for func_set in self.function_sets:\n for func_name in func_set:\n lambda_fn = self.nodes[func_name]['lambda_fn']\n output_node = list(self.successors(func_name))[0]\n signature = self.nodes[func_name]['func_inputs']\n input_values = [self.nodes[n]['value'] for n in signature]\n res = lambda_fn(*input_values)\n if torch_size is not None and len(signature) == 0:\n self.nodes[output_node]['value'] = torch.tensor([res] *\n torch_size, dtype=torch.double)\n else:\n self.nodes[output_node]['value'] = res\n return self.nodes[self.output_node]['value']\n", "role": "user" }, { "content": "run", "role": "assistant" } ]
def x(self): G = nx.DiGraph() for name, attrs in self.nodes(data=True): if attrs['type'] == 'variable': for pred_fn in self.predecessors(name): if not any(fn_type in pred_fn for fn_type in ('condition', 'decision')): for pred_var in self.predecessors(pred_fn): G.add_node(self.nodes[pred_var]['basename'], **self .nodes[pred_var]) G.add_node(attrs['basename'], **attrs) G.add_edge(self.nodes[pred_var]['basename'], attrs[ 'basename']) if attrs['is_loop_index']: G.add_edge(attrs['basename'], attrs['basename']) return G
to_CAG
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n G = nx.DiGraph()\n for name, attrs in self.nodes(data=True):\n if attrs['type'] == 'variable':\n for pred_fn in self.predecessors(name):\n if not any(fn_type in pred_fn for fn_type in ('condition',\n 'decision')):\n for pred_var in self.predecessors(pred_fn):\n G.add_node(self.nodes[pred_var]['basename'], **self\n .nodes[pred_var])\n G.add_node(attrs['basename'], **attrs)\n G.add_edge(self.nodes[pred_var]['basename'], attrs[\n 'basename'])\n if attrs['is_loop_index']:\n G.add_edge(attrs['basename'], attrs['basename'])\n return G\n", "role": "user" }, { "content": "to_CAG", "role": "assistant" } ]