source_code
stringlengths 45
7.24k
| function_name
stringlengths 1
111
| messages
list |
---|---|---|
def x(self, node_set, depth=0):
tab = ' '
result = list()
for n in node_set:
repr = (n if self.nodes[n]['type'] == 'variable' else
f"{n}{inspect.signature(self.nodes[n]['lambda_fn'])}")
result.append(f'{tab * depth}{repr}')
result.extend(self.traverse_nodes(self.successors(n), depth=depth + 1))
return result
|
traverse_nodes
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, node_set, depth=0):\n tab = ' '\n result = list()\n for n in node_set:\n repr = (n if self.nodes[n]['type'] == 'variable' else\n f\"{n}{inspect.signature(self.nodes[n]['lambda_fn'])}\")\n result.append(f'{tab * depth}{repr}')\n result.extend(self.traverse_nodes(self.successors(n), depth=depth + 1))\n return result\n",
"role": "user"
},
{
"content": "traverse_nodes",
"role": "assistant"
}
] |
def x(cls, file: str, lambdas):
with open(file, 'r') as f:
data = json.load(f)
return cls.from_dict(data, lambdas)
|
from_json_and_lambdas
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, file: str, lambdas):\n with open(file, 'r') as f:\n data = json.load(f)\n return cls.from_dict(data, lambdas)\n",
"role": "user"
},
{
"content": "from_json_and_lambdas",
"role": "assistant"
}
] |
def x(cls, data: Dict, lambdas):
functions = {d['name']: d for d in data['functions']}
G = nx.DiGraph()
scope_tree = nx.DiGraph()
def x(basename: str, parent: str, index: int, is_loop_index: bool=False):
G.add_node(f'{parent}::{basename}_{index}', type='variable', color=
'maroon', parent=parent, label=f'{basename}_{index}', basename=
basename, is_loop_index=is_loop_index, padding=15, value=None)
def x(cur_scope, var_name):
if cur_scope.parent is None:
return cur_scope.name, -1
new_scope = cur_scope.parent
if var_name in new_scope.variables:
return new_scope.name, new_scope.variables[var_name]
else:
return find_correct_scope(new_scope, var_name)
def x(scope, loop_index_variable: Optional[str]=None):
for stmt in scope.body:
if 'name' in stmt:
stmt_type = functions[stmt['name']]['type']
if stmt_type in ('assign', 'condition', 'decision'):
if stmt_type == 'assign':
if 'body' in functions[stmt['name']]:
stmt_type = 'literal'
output = stmt['output']
scope.variables[output['variable']] = output['index']
add_variable_node(output['variable'], scope.name,
output['index'])
G.add_edge(stmt['name'],
f"{scope.name}::{output['variable']}_{output['index']}"
)
ordered_inputs = list()
for input in stmt.get('input', []):
parent = scope.name
index = input['index']
base_name = input['variable']
if index == -1 and base_name != loop_index_variable:
parent, index = find_correct_scope(scope, base_name
)
add_variable_node(base_name, parent, index,
base_name == loop_index_variable)
node_name = f'{parent}::{base_name}_{index}'
ordered_inputs.append(node_name)
G.add_edge(node_name, stmt['name'])
G.add_node(stmt['name'], type='function', lambda_fn=
getattr(lambdas, stmt['name']), func_inputs=
ordered_inputs, shape='rectangle', parent=scope.
name, label=stmt_type[0].upper(), padding=10)
elif stmt_type == 'loop_plate':
index_variable = functions[stmt['name']]['index_variable']
scope_tree.add_node(stmt['name'], color='blue')
scope_tree.add_edge(scope.name, stmt['name'])
new_scope = ScopeNode(functions[stmt['name']], parent=scope
)
process_container(new_scope, loop_index_variable=
index_variable)
else:
pass
elif 'function' in stmt and stmt['function'] != 'print':
scope_tree.add_node(stmt['function'], color='green')
scope_tree.add_edge(scope.name, stmt['function'])
new_scope = ScopeNode(functions[stmt['function']], parent=scope
)
process_container(new_scope)
root = data['start']
scope_tree.add_node(root, color='green')
cur_scope = ScopeNode(functions[root])
process_container(cur_scope)
return cls(G, scope_tree)
|
from_dict
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, data: Dict, lambdas):\n functions = {d['name']: d for d in data['functions']}\n G = nx.DiGraph()\n scope_tree = nx.DiGraph()\n\n def x(basename: str, parent: str, index: int, is_loop_index: bool=False):\n G.add_node(f'{parent}::{basename}_{index}', type='variable', color=\n 'maroon', parent=parent, label=f'{basename}_{index}', basename=\n basename, is_loop_index=is_loop_index, padding=15, value=None)\n\n def x(cur_scope, var_name):\n if cur_scope.parent is None:\n return cur_scope.name, -1\n new_scope = cur_scope.parent\n if var_name in new_scope.variables:\n return new_scope.name, new_scope.variables[var_name]\n else:\n return find_correct_scope(new_scope, var_name)\n\n def x(scope, loop_index_variable: Optional[str]=None):\n for stmt in scope.body:\n if 'name' in stmt:\n stmt_type = functions[stmt['name']]['type']\n if stmt_type in ('assign', 'condition', 'decision'):\n if stmt_type == 'assign':\n if 'body' in functions[stmt['name']]:\n stmt_type = 'literal'\n output = stmt['output']\n scope.variables[output['variable']] = output['index']\n add_variable_node(output['variable'], scope.name,\n output['index'])\n G.add_edge(stmt['name'],\n f\"{scope.name}::{output['variable']}_{output['index']}\"\n )\n ordered_inputs = list()\n for input in stmt.get('input', []):\n parent = scope.name\n index = input['index']\n base_name = input['variable']\n if index == -1 and base_name != loop_index_variable:\n parent, index = find_correct_scope(scope, base_name\n )\n add_variable_node(base_name, parent, index, \n base_name == loop_index_variable)\n node_name = f'{parent}::{base_name}_{index}'\n ordered_inputs.append(node_name)\n G.add_edge(node_name, stmt['name'])\n G.add_node(stmt['name'], type='function', lambda_fn=\n getattr(lambdas, stmt['name']), func_inputs=\n ordered_inputs, shape='rectangle', parent=scope.\n name, label=stmt_type[0].upper(), padding=10)\n elif stmt_type == 'loop_plate':\n index_variable = functions[stmt['name']]['index_variable']\n scope_tree.add_node(stmt['name'], color='blue')\n scope_tree.add_edge(scope.name, stmt['name'])\n new_scope = ScopeNode(functions[stmt['name']], parent=scope\n )\n process_container(new_scope, loop_index_variable=\n index_variable)\n else:\n pass\n elif 'function' in stmt and stmt['function'] != 'print':\n scope_tree.add_node(stmt['function'], color='green')\n scope_tree.add_edge(scope.name, stmt['function'])\n new_scope = ScopeNode(functions[stmt['function']], parent=scope\n )\n process_container(new_scope)\n root = data['start']\n scope_tree.add_node(root, color='green')\n cur_scope = ScopeNode(functions[root])\n process_container(cur_scope)\n return cls(G, scope_tree)\n",
"role": "user"
},
{
"content": "from_dict",
"role": "assistant"
}
] |
def x(cls, python_file, lambdas_path, json_filename: str, stem: str):
with open(python_file, 'r') as f:
pySrc = f.read()
return cls.from_python_src(pySrc, lambdas_path, json_filename, stem)
|
from_python_file
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, python_file, lambdas_path, json_filename: str, stem: str):\n with open(python_file, 'r') as f:\n pySrc = f.read()\n return cls.from_python_src(pySrc, lambdas_path, json_filename, stem)\n",
"role": "user"
},
{
"content": "from_python_file",
"role": "assistant"
}
] |
def x(cls, pySrc, lambdas_path, json_filename: str, stem: str, save_file:
bool=False):
asts = [ast.parse(pySrc)]
pgm_dict = genPGM.create_pgm_dict(lambdas_path, asts, json_filename, {
'FileName': f'{stem}.py'})
lambdas = importlib.__import__(stem + '_lambdas')
return cls.from_dict(pgm_dict, lambdas)
|
from_python_src
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, pySrc, lambdas_path, json_filename: str, stem: str, save_file:\n bool=False):\n asts = [ast.parse(pySrc)]\n pgm_dict = genPGM.create_pgm_dict(lambdas_path, asts, json_filename, {\n 'FileName': f'{stem}.py'})\n lambdas = importlib.__import__(stem + '_lambdas')\n return cls.from_dict(pgm_dict, lambdas)\n",
"role": "user"
},
{
"content": "from_python_src",
"role": "assistant"
}
] |
def x(cls, fortran_file: str, tmpdir: str='.'):
stem = Path(fortran_file).stem
if tmpdir == '.' and '/' in fortran_file:
tmpdir = Path(fortran_file).parent
preprocessed_fortran_file = f'{tmpdir}/{stem}_preprocessed.f'
lambdas_path = f'{tmpdir}/{stem}_lambdas.py'
json_filename = stem + '.json'
with open(fortran_file, 'r') as f:
inputLines = f.readlines()
with open(preprocessed_fortran_file, 'w') as f:
f.write(preprocessor.process(inputLines))
xml_string = sp.run(['java', 'fortran.ofp.FrontEnd', '--class',
'fortran.ofp.XMLPrinter', '--verbosity', '0',
preprocessed_fortran_file], stdout=sp.PIPE).stdout
trees = [ET.fromstring(xml_string)]
comments = get_comments.get_comments(preprocessed_fortran_file)
os.remove(preprocessed_fortran_file)
xml_to_json_translator = translate.XMLToJSONTranslator()
outputDict = xml_to_json_translator.analyze(trees, comments)
pySrc = pyTranslate.create_python_source_list(outputDict)[0][0]
G = cls.from_python_src(pySrc, lambdas_path, json_filename, stem)
return G
|
from_fortran_file
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, fortran_file: str, tmpdir: str='.'):\n stem = Path(fortran_file).stem\n if tmpdir == '.' and '/' in fortran_file:\n tmpdir = Path(fortran_file).parent\n preprocessed_fortran_file = f'{tmpdir}/{stem}_preprocessed.f'\n lambdas_path = f'{tmpdir}/{stem}_lambdas.py'\n json_filename = stem + '.json'\n with open(fortran_file, 'r') as f:\n inputLines = f.readlines()\n with open(preprocessed_fortran_file, 'w') as f:\n f.write(preprocessor.process(inputLines))\n xml_string = sp.run(['java', 'fortran.ofp.FrontEnd', '--class',\n 'fortran.ofp.XMLPrinter', '--verbosity', '0',\n preprocessed_fortran_file], stdout=sp.PIPE).stdout\n trees = [ET.fromstring(xml_string)]\n comments = get_comments.get_comments(preprocessed_fortran_file)\n os.remove(preprocessed_fortran_file)\n xml_to_json_translator = translate.XMLToJSONTranslator()\n outputDict = xml_to_json_translator.analyze(trees, comments)\n pySrc = pyTranslate.create_python_source_list(outputDict)[0][0]\n G = cls.from_python_src(pySrc, lambdas_path, json_filename, stem)\n return G\n",
"role": "user"
},
{
"content": "from_fortran_file",
"role": "assistant"
}
] |
def x(cls, fortran_src: str, dir: str='.'):
import tempfile
fp = tempfile.NamedTemporaryFile('w+t', delete=False, dir=dir)
fp.writelines(fortran_src)
fp.close()
G = cls.from_fortran_file(fp.name, dir)
os.remove(fp.name)
return G
|
from_fortran_src
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, fortran_src: str, dir: str='.'):\n import tempfile\n fp = tempfile.NamedTemporaryFile('w+t', delete=False, dir=dir)\n fp.writelines(fortran_src)\n fp.close()\n G = cls.from_fortran_file(fp.name, dir)\n os.remove(fp.name)\n return G\n",
"role": "user"
},
{
"content": "from_fortran_src",
"role": "assistant"
}
] |
def x(self):
for n in self.nodes():
if self.nodes[n]['type'] == 'variable':
self.nodes[n]['value'] = None
elif self.nodes[n]['type'] == 'function':
self.nodes[n]['func_visited'] = False
|
clear
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n for n in self.nodes():\n if self.nodes[n]['type'] == 'variable':\n self.nodes[n]['value'] = None\n elif self.nodes[n]['type'] == 'function':\n self.nodes[n]['func_visited'] = False\n",
"role": "user"
},
{
"content": "clear",
"role": "assistant"
}
] |
def x(self, other):
if not isinstance(other, GroundedFunctionNetwork):
raise TypeError(
f'Expected GroundedFunctionNetwork, but got {type(other)}')
def x(var):
return var[var.find('::') + 2:var.rfind('_')]
def x(graph, shortname):
return [v for v in graph.nodes() if shortname in v]
this_var_nodes = [shortname(n) for n, d in self.nodes(data=True) if d[
'type'] == 'variable']
other_var_nodes = [shortname(n) for n, d in other.nodes(data=True) if d
['type'] == 'variable']
shared_vars = set(this_var_nodes).intersection(set(other_var_nodes))
full_shared_vars = {full_var for shared_var in shared_vars for full_var in
shortname_vars(self, shared_var)}
return ForwardInfluenceBlanket(self, full_shared_vars)
|
to_FIB
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, other):\n if not isinstance(other, GroundedFunctionNetwork):\n raise TypeError(\n f'Expected GroundedFunctionNetwork, but got {type(other)}')\n\n def x(var):\n return var[var.find('::') + 2:var.rfind('_')]\n\n def x(graph, shortname):\n return [v for v in graph.nodes() if shortname in v]\n this_var_nodes = [shortname(n) for n, d in self.nodes(data=True) if d[\n 'type'] == 'variable']\n other_var_nodes = [shortname(n) for n, d in other.nodes(data=True) if d\n ['type'] == 'variable']\n shared_vars = set(this_var_nodes).intersection(set(other_var_nodes))\n full_shared_vars = {full_var for shared_var in shared_vars for full_var in\n shortname_vars(self, shared_var)}\n return ForwardInfluenceBlanket(self, full_shared_vars)\n",
"role": "user"
},
{
"content": "to_FIB",
"role": "assistant"
}
] |
def x(self):
A = nx.nx_agraph.to_agraph(self)
A.graph_attr.update({'dpi': 227, 'fontsize': 20, 'fontname': 'Menlo',
'rankdir': 'TB'})
A.node_attr.update({'fontname': 'Menlo'})
def x(cluster_name, root_graph):
subgraph_nodes = [n[0] for n in self.nodes(data=True) if n[1][
'parent'] == cluster_name]
root_graph.add_nodes_from(subgraph_nodes)
subgraph = root_graph.add_subgraph(subgraph_nodes, name=
f'cluster_{cluster_name}', label=cluster_name, style=
'bold, rounded')
for n in self.scope_tree.successors(cluster_name):
build_tree(n, subgraph)
root = [n for n, d in self.scope_tree.in_degree() if d == 0][0]
build_tree(root, A)
return A
|
to_agraph
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n A = nx.nx_agraph.to_agraph(self)\n A.graph_attr.update({'dpi': 227, 'fontsize': 20, 'fontname': 'Menlo',\n 'rankdir': 'TB'})\n A.node_attr.update({'fontname': 'Menlo'})\n\n def x(cluster_name, root_graph):\n subgraph_nodes = [n[0] for n in self.nodes(data=True) if n[1][\n 'parent'] == cluster_name]\n root_graph.add_nodes_from(subgraph_nodes)\n subgraph = root_graph.add_subgraph(subgraph_nodes, name=\n f'cluster_{cluster_name}', label=cluster_name, style=\n 'bold, rounded')\n for n in self.scope_tree.successors(cluster_name):\n build_tree(n, subgraph)\n root = [n for n, d in self.scope_tree.in_degree() if d == 0][0]\n build_tree(root, A)\n return A\n",
"role": "user"
},
{
"content": "to_agraph",
"role": "assistant"
}
] |
def x(self):
CAG = self.to_CAG()
A = nx.nx_agraph.to_agraph(CAG)
A.graph_attr.update({'dpi': 227, 'fontsize': 20, 'fontname': 'Menlo'})
A.node_attr.update({'shape': 'rectangle', 'color': '#650021', 'style':
'rounded', 'fontname': 'Gill Sans'})
A.edge_attr.update({'color': '#650021', 'arrowsize': 0.5})
return A
|
to_CAG_agraph
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n CAG = self.to_CAG()\n A = nx.nx_agraph.to_agraph(CAG)\n A.graph_attr.update({'dpi': 227, 'fontsize': 20, 'fontname': 'Menlo'})\n A.node_attr.update({'shape': 'rectangle', 'color': '#650021', 'style':\n 'rounded', 'fontname': 'Gill Sans'})\n A.edge_attr.update({'color': '#650021', 'arrowsize': 0.5})\n return A\n",
"role": "user"
},
{
"content": "to_CAG_agraph",
"role": "assistant"
}
] |
def x(self):
A = nx.nx_agraph.to_agraph(self.call_graph)
A.graph_attr.update({'dpi': 227, 'fontsize': 20, 'fontname': 'Menlo'})
A.node_attr.update({'shape': 'rectangle', 'color': '#650021', 'style':
'rounded'})
A.edge_attr.update({'color': '#650021', 'arrowsize': 0.5})
return A
|
to_call_agraph
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n A = nx.nx_agraph.to_agraph(self.call_graph)\n A.graph_attr.update({'dpi': 227, 'fontsize': 20, 'fontname': 'Menlo'})\n A.node_attr.update({'shape': 'rectangle', 'color': '#650021', 'style':\n 'rounded'})\n A.edge_attr.update({'color': '#650021', 'arrowsize': 0.5})\n return A\n",
"role": "user"
},
{
"content": "to_call_agraph",
"role": "assistant"
}
] |
def x(self, inputs: Dict[str, Union[float, Iterable]], covers: Dict[str,
Union[float, Iterable]], torch_size: Optional[int]=None) ->Union[float,
Iterable]:
if len(covers) != len(self.cover_nodes):
raise ValueError('Incorrect number of cover values.')
for node_name, val in covers.items():
self.nodes[node_name]['value'] = val
return super().run(inputs, torch_size)
|
run
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, inputs: Dict[str, Union[float, Iterable]], covers: Dict[str,\n Union[float, Iterable]], torch_size: Optional[int]=None) ->Union[float,\n Iterable]:\n if len(covers) != len(self.cover_nodes):\n raise ValueError('Incorrect number of cover values.')\n for node_name, val in covers.items():\n self.nodes[node_name]['value'] = val\n return super().run(inputs, torch_size)\n",
"role": "user"
},
{
"content": "run",
"role": "assistant"
}
] |
def x(self, sizes, bounds, presets, covers, use_torch=False, num_samples=10):
args = self.inputs
Si = self.sobol_analysis(num_samples, {'num_vars': len(args), 'names':
args, 'bounds': [bounds[arg] for arg in args]}, covers)
S2 = Si['S2']
s2_max, v1, v2 = get_max_s2_sensitivity(S2)
x_var = args[v1]
y_var = args[v2]
search_space = [(x_var, bounds[x_var]), (y_var, bounds[y_var])]
preset_vals = {arg: presets[arg] for i, arg in enumerate(args) if i !=
v1 and i != v2}
X = np.linspace(*search_space[0][1], sizes[0])
Y = np.linspace(*search_space[1][1], sizes[1])
if use_torch:
Xm, Ym = torch.meshgrid(torch.tensor(X), torch.tensor(Y))
inputs = {n: torch.full_like(Xm, v) for n, v in presets.items()}
inputs.update({search_space[0][0]: Xm, search_space[1][0]: Ym})
Z = self.run(inputs, covers).numpy()
else:
Xm, Ym = np.meshgrid(X, Y)
Z = np.zeros((len(X), len(Y)))
for x, y in itertools.product(range(len(X)), range(len(Y))):
inputs = {n: v for n, v in presets.items()}
inputs.update({search_space[0][0]: x, search_space[1][0]: y})
Z[x][y] = self.run(inputs, covers)
return X, Y, Z, x_var, y_var
|
S2_surface
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, sizes, bounds, presets, covers, use_torch=False, num_samples=10):\n args = self.inputs\n Si = self.sobol_analysis(num_samples, {'num_vars': len(args), 'names':\n args, 'bounds': [bounds[arg] for arg in args]}, covers)\n S2 = Si['S2']\n s2_max, v1, v2 = get_max_s2_sensitivity(S2)\n x_var = args[v1]\n y_var = args[v2]\n search_space = [(x_var, bounds[x_var]), (y_var, bounds[y_var])]\n preset_vals = {arg: presets[arg] for i, arg in enumerate(args) if i !=\n v1 and i != v2}\n X = np.linspace(*search_space[0][1], sizes[0])\n Y = np.linspace(*search_space[1][1], sizes[1])\n if use_torch:\n Xm, Ym = torch.meshgrid(torch.tensor(X), torch.tensor(Y))\n inputs = {n: torch.full_like(Xm, v) for n, v in presets.items()}\n inputs.update({search_space[0][0]: Xm, search_space[1][0]: Ym})\n Z = self.run(inputs, covers).numpy()\n else:\n Xm, Ym = np.meshgrid(X, Y)\n Z = np.zeros((len(X), len(Y)))\n for x, y in itertools.product(range(len(X)), range(len(Y))):\n inputs = {n: v for n, v in presets.items()}\n inputs.update({search_space[0][0]: x, search_space[1][0]: y})\n Z[x][y] = self.run(inputs, covers)\n return X, Y, Z, x_var, y_var\n",
"role": "user"
},
{
"content": "S2_surface",
"role": "assistant"
}
] |
def x(self, root, state) ->List[Dict]:
val = {'tag': root.tag, 'args': []}
for node in root:
val['args'] += self.parseTree(node, state)
return [val]
|
process_direct_map
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, root, state) ->List[Dict]:\n val = {'tag': root.tag, 'args': []}\n for node in root:\n val['args'] += self.parseTree(node, state)\n return [val]\n",
"role": "user"
},
{
"content": "process_direct_map",
"role": "assistant"
}
] |
def x(self, root, state: ParseState) ->List[Dict]:
if root.tag in self.AST_TAG_HANDLERS:
return self.AST_TAG_HANDLERS[root.tag](root, state)
elif root.tag in self.libRtns:
return self.process_libRtn(root, state)
else:
prog = []
for node in root:
prog += self.parseTree(node, state)
return prog
|
parseTree
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, root, state: ParseState) ->List[Dict]:\n if root.tag in self.AST_TAG_HANDLERS:\n return self.AST_TAG_HANDLERS[root.tag](root, state)\n elif root.tag in self.libRtns:\n return self.process_libRtn(root, state)\n else:\n prog = []\n for node in root:\n prog += self.parseTree(node, state)\n return prog\n",
"role": "user"
},
{
"content": "parseTree",
"role": "assistant"
}
] |
def x(self, root):
for element in root.iter():
if element.tag == 'function':
self.functionList.append(element.attrib['name'])
|
loadFunction
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, root):\n for element in root.iter():\n if element.tag == 'function':\n self.functionList.append(element.attrib['name'])\n",
"role": "user"
},
{
"content": "loadFunction",
"role": "assistant"
}
] |
def x(self, trees: List[ET.ElementTree], comments: OrderedDict) ->Dict:
outputDict = {}
ast = []
for tree in trees:
self.loadFunction(tree)
for tree in trees:
ast += self.parseTree(tree, ParseState())
"""
Find the entry point for the Fortran file.
The entry point for a conventional Fortran file is always the PROGRAM
section. This 'if' statement checks for the presence of a PROGRAM
segment.
If not found, the entry point can be any of the functions or
subroutines in the file. So, all the functions and subroutines of the
program are listed and included as the possible entry point.
"""
if self.entryPoint:
entry = {'program': self.entryPoint[0]}
else:
entry = {}
if self.functionList:
entry['function'] = self.functionList
if self.subroutineList:
entry['subroutine'] = self.subroutineList
outputDict['ast'] = ast
outputDict['functionList'] = self.functionList
outputDict['comments'] = comments
return outputDict
|
analyze
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, trees: List[ET.ElementTree], comments: OrderedDict) ->Dict:\n outputDict = {}\n ast = []\n for tree in trees:\n self.loadFunction(tree)\n for tree in trees:\n ast += self.parseTree(tree, ParseState())\n \"\"\"\n Find the entry point for the Fortran file.\n The entry point for a conventional Fortran file is always the PROGRAM\n section. This 'if' statement checks for the presence of a PROGRAM\n segment.\n\n If not found, the entry point can be any of the functions or\n subroutines in the file. So, all the functions and subroutines of the\n program are listed and included as the possible entry point.\n \"\"\"\n if self.entryPoint:\n entry = {'program': self.entryPoint[0]}\n else:\n entry = {}\n if self.functionList:\n entry['function'] = self.functionList\n if self.subroutineList:\n entry['subroutine'] = self.subroutineList\n outputDict['ast'] = ast\n outputDict['functionList'] = self.functionList\n outputDict['comments'] = comments\n return outputDict\n",
"role": "user"
},
{
"content": "analyze",
"role": "assistant"
}
] |
def x():
parser = ArgumentParser(description=
'Dynamic Bayes Net Executable Model', formatter_class=
ArgumentDefaultsHelpFormatter)
def x(short_arg: str, long_arg: str, help: str):
parser.add_argument('-' + short_arg, '--' + long_arg, help=help,
action='store_true')
subparsers = parser.add_subparsers()
parser_execute = subparsers.add_parser('execute', help='Model execution')
parser_execute.set_defaults(func=execute)
parser_execute.add_argument('--input_dressed_cag', help=
'Path to the input dressed cag', type=str, default='delphi_model.pkl')
parser_execute.add_argument('--steps', help=
'Number of time steps to take', type=partial(positive_int, 'steps'),
default=5)
parser_execute.add_argument('--samples', help=
'Number of sequences to sample', type=partial(positive_int,
'samples'), default=100)
parser_execute.add_argument('--output_sequences', help=
'Output file containing sampled sequences', type=str, default=
'dbn_sampled_sequences.csv')
parser_execute.add_argument('--input_variables', help=
'Path to the variables of the input dressed cag', type=str, default
='bmi_config.txt')
args = parser.parse_args()
if len(sys.argv) == 1:
parser.print_help()
else:
args.func(args)
|
main
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n parser = ArgumentParser(description=\n 'Dynamic Bayes Net Executable Model', formatter_class=\n ArgumentDefaultsHelpFormatter)\n\n def x(short_arg: str, long_arg: str, help: str):\n parser.add_argument('-' + short_arg, '--' + long_arg, help=help,\n action='store_true')\n subparsers = parser.add_subparsers()\n parser_execute = subparsers.add_parser('execute', help='Model execution')\n parser_execute.set_defaults(func=execute)\n parser_execute.add_argument('--input_dressed_cag', help=\n 'Path to the input dressed cag', type=str, default='delphi_model.pkl')\n parser_execute.add_argument('--steps', help=\n 'Number of time steps to take', type=partial(positive_int, 'steps'),\n default=5)\n parser_execute.add_argument('--samples', help=\n 'Number of sequences to sample', type=partial(positive_int,\n 'samples'), default=100)\n parser_execute.add_argument('--output_sequences', help=\n 'Output file containing sampled sequences', type=str, default=\n 'dbn_sampled_sequences.csv')\n parser_execute.add_argument('--input_variables', help=\n 'Path to the variables of the input dressed cag', type=str, default\n ='bmi_config.txt')\n args = parser.parse_args()\n if len(sys.argv) == 1:\n parser.print_help()\n else:\n args.func(args)\n",
"role": "user"
},
{
"content": "main",
"role": "assistant"
}
] |
def x():
df = pd.read_csv('south_sudan_data_fao.csv')
gb = df.groupby('Element')
d = [{'events': [{k: [{e: [process_variable_name(k, e)]} for e in list(
set(gb.get_group(k)['Item'].tolist()))]} for k in gb.groups.keys()]}]
yaml = YAML()
yaml.default_flow_style = False
with open('fao_variable_ontology.yml', 'w') as f:
yaml.dump(d, f)
|
construct_FAO_ontology
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n df = pd.read_csv('south_sudan_data_fao.csv')\n gb = df.groupby('Element')\n d = [{'events': [{k: [{e: [process_variable_name(k, e)]} for e in list(\n set(gb.get_group(k)['Item'].tolist()))]} for k in gb.groups.keys()]}]\n yaml = YAML()\n yaml.default_flow_style = False\n with open('fao_variable_ontology.yml', 'w') as f:\n yaml.dump(d, f)\n",
"role": "user"
},
{
"content": "construct_FAO_ontology",
"role": "assistant"
}
] |
def x(G: AnalysisGraph, source: str, target: str):
return create_statement_inspection_table(G[source][target][
'InfluenceStatements'])
|
inspect_edge
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(G: AnalysisGraph, source: str, target: str):\n return create_statement_inspection_table(G[source][target][\n 'InfluenceStatements'])\n",
"role": "user"
},
{
"content": "inspect_edge",
"role": "assistant"
}
] |
def x(G: AnalysisGraph, source: str, target: str) ->List[str]:
return chain.from_iterable([[repr(e.text) for e in s.evidence] for s in
G.edges[source, target]['InfluenceStatements']])
|
get_edge_sentences
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(G: AnalysisGraph, source: str, target: str) ->List[str]:\n return chain.from_iterable([[repr(e.text) for e in s.evidence] for s in\n G.edges[source, target]['InfluenceStatements']])\n",
"role": "user"
},
{
"content": "get_edge_sentences",
"role": "assistant"
}
] |
def x(type_str):
if type_str == 'container':
return NodeType.CONTAINER
elif type_str == 'loop_plate':
return NodeType.LOOP
elif type_str == 'assign':
return NodeType.ASSIGN
elif type_str == 'condition':
return NodeType.CONDITION
elif type_str == 'decision':
return NodeType.DECISION
else:
raise ValueError('Unrecognized type string: ', type_str)
|
get_node_type
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(type_str):\n if type_str == 'container':\n return NodeType.CONTAINER\n elif type_str == 'loop_plate':\n return NodeType.LOOP\n elif type_str == 'assign':\n return NodeType.ASSIGN\n elif type_str == 'condition':\n return NodeType.CONDITION\n elif type_str == 'decision':\n return NodeType.DECISION\n else:\n raise ValueError('Unrecognized type string: ', type_str)\n",
"role": "user"
},
{
"content": "get_node_type",
"role": "assistant"
}
] |
def x(type_list):
out_format_list = []
for type_item in type_list:
item_format = default_output_format(type_item)
out_format_list.append(item_format)
return out_format_list
|
list_output_formats
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(type_list):\n out_format_list = []\n for type_item in type_list:\n item_format = default_output_format(type_item)\n out_format_list.append(item_format)\n return out_format_list\n",
"role": "user"
},
{
"content": "list_output_formats",
"role": "assistant"
}
] |
def x(type_list):
data_type = []
for item in type_list:
match = re.match('(\\d+)(.+)', item)
if not match:
reps = 1
if item[0] in 'FfEegG':
data_type.append('REAL')
elif item[0] in 'Ii':
data_type.append('INTEGER')
else:
reps = match.group(1)
fmt = match.group(2)
if '(' in fmt and ',' in fmt:
fmt = fmt[1:-1].split(',')
elif '(' in fmt:
fmt = [fmt[1:-1]]
else:
fmt = [fmt]
for i in range(int(reps)):
for ft in fmt:
if ft[0] in 'FfEegG':
data_type.append('REAL')
elif ft[0] in 'Ii':
data_type.append('INTEGER')
return data_type
|
list_data_type
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(type_list):\n data_type = []\n for item in type_list:\n match = re.match('(\\\\d+)(.+)', item)\n if not match:\n reps = 1\n if item[0] in 'FfEegG':\n data_type.append('REAL')\n elif item[0] in 'Ii':\n data_type.append('INTEGER')\n else:\n reps = match.group(1)\n fmt = match.group(2)\n if '(' in fmt and ',' in fmt:\n fmt = fmt[1:-1].split(',')\n elif '(' in fmt:\n fmt = [fmt[1:-1]]\n else:\n fmt = [fmt]\n for i in range(int(reps)):\n for ft in fmt:\n if ft[0] in 'FfEegG':\n data_type.append('REAL')\n elif ft[0] in 'Ii':\n data_type.append('INTEGER')\n return data_type\n",
"role": "user"
},
{
"content": "list_data_type",
"role": "assistant"
}
] |
def x(self):
format_list = self._format_list
self._re_cvt = self.match_input_fmt(format_list)
regexp0_str = ''.join([subs[0] for subs in self._re_cvt])
self._regexp_str = regexp0_str
self._re = re.compile(regexp0_str)
self._match_exps = [subs[1] for subs in self._re_cvt if subs[1] is not None
]
self._divisors = [subs[2] for subs in self._re_cvt if subs[2] is not None]
self._in_cvt_fns = [subs[3] for subs in self._re_cvt if subs[3] is not None
]
self._read_line_init = True
|
init_read_line
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n format_list = self._format_list\n self._re_cvt = self.match_input_fmt(format_list)\n regexp0_str = ''.join([subs[0] for subs in self._re_cvt])\n self._regexp_str = regexp0_str\n self._re = re.compile(regexp0_str)\n self._match_exps = [subs[1] for subs in self._re_cvt if subs[1] is not None\n ]\n self._divisors = [subs[2] for subs in self._re_cvt if subs[2] is not None]\n self._in_cvt_fns = [subs[3] for subs in self._re_cvt if subs[3] is not None\n ]\n self._read_line_init = True\n",
"role": "user"
},
{
"content": "init_read_line",
"role": "assistant"
}
] |
def x(self):
format_list = self._format_list
output_info = self.gen_output_fmt(format_list)
self._output_fmt = ''.join([sub[0] for sub in output_info])
self._out_gen_fmt = [sub[1] for sub in output_info if sub[1] is not None]
self._out_widths = [sub[2] for sub in output_info if sub[2] is not None]
self._write_line_init = True
|
init_write_line
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n format_list = self._format_list\n output_info = self.gen_output_fmt(format_list)\n self._output_fmt = ''.join([sub[0] for sub in output_info])\n self._out_gen_fmt = [sub[1] for sub in output_info if sub[1] is not None]\n self._out_widths = [sub[2] for sub in output_info if sub[2] is not None]\n self._write_line_init = True\n",
"role": "user"
},
{
"content": "init_write_line",
"role": "assistant"
}
] |
def x(self, line):
if not self._read_line_init:
self.init_read_line()
match = self._re.match(line)
assert match is not None, f'Format mismatch (line = {line})'
matched_values = []
for i in range(self._re.groups):
cvt_re = self._match_exps[i]
cvt_div = self._divisors[i]
cvt_fn = self._in_cvt_fns[i]
match_str = match.group(i + 1)
match0 = re.match(cvt_re, match_str)
if match0 is not None:
if cvt_fn == 'float':
if '.' in match_str:
val = float(match_str)
else:
val = int(match_str) / cvt_div
elif cvt_fn == 'int':
val = int(match_str)
else:
sys.stderr.write(
f'Unrecognized conversion function: {cvt_fn}\n')
else:
sys.stderr.write(f'Format conversion failed: {match_str}\n')
matched_values.append(val)
return tuple(matched_values)
|
read_line
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, line):\n if not self._read_line_init:\n self.init_read_line()\n match = self._re.match(line)\n assert match is not None, f'Format mismatch (line = {line})'\n matched_values = []\n for i in range(self._re.groups):\n cvt_re = self._match_exps[i]\n cvt_div = self._divisors[i]\n cvt_fn = self._in_cvt_fns[i]\n match_str = match.group(i + 1)\n match0 = re.match(cvt_re, match_str)\n if match0 is not None:\n if cvt_fn == 'float':\n if '.' in match_str:\n val = float(match_str)\n else:\n val = int(match_str) / cvt_div\n elif cvt_fn == 'int':\n val = int(match_str)\n else:\n sys.stderr.write(\n f'Unrecognized conversion function: {cvt_fn}\\n')\n else:\n sys.stderr.write(f'Format conversion failed: {match_str}\\n')\n matched_values.append(val)\n return tuple(matched_values)\n",
"role": "user"
},
{
"content": "read_line",
"role": "assistant"
}
] |
def x(self, values):
if not self._write_line_init:
self.init_write_line()
if len(self._out_widths) > len(values):
raise For2PyError(
f'ERROR: too few values for format {self._format_list}\n')
out_strs = []
for i in range(len(self._out_widths)):
out_fmt = self._out_gen_fmt[i]
out_width = self._out_widths[i]
out_val = out_fmt.format(values[i])
if len(out_val) > out_width:
out_val = '*' * out_width
out_strs.append(out_val)
out_str_exp = '"' + self._output_fmt + '".format' + str(tuple(out_strs))
out_str = eval(out_str_exp)
return out_str + '\n'
|
write_line
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, values):\n if not self._write_line_init:\n self.init_write_line()\n if len(self._out_widths) > len(values):\n raise For2PyError(\n f'ERROR: too few values for format {self._format_list}\\n')\n out_strs = []\n for i in range(len(self._out_widths)):\n out_fmt = self._out_gen_fmt[i]\n out_width = self._out_widths[i]\n out_val = out_fmt.format(values[i])\n if len(out_val) > out_width:\n out_val = '*' * out_width\n out_strs.append(out_val)\n out_str_exp = '\"' + self._output_fmt + '\".format' + str(tuple(out_strs))\n out_str = eval(out_str_exp)\n return out_str + '\\n'\n",
"role": "user"
},
{
"content": "write_line",
"role": "assistant"
}
] |
def x(self, fmt_list):
rexp_list = []
for fmt in fmt_list:
rexp_list.extend(self.match_input_fmt_1(fmt))
return rexp_list
|
match_input_fmt
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, fmt_list):\n rexp_list = []\n for fmt in fmt_list:\n rexp_list.extend(self.match_input_fmt_1(fmt))\n return rexp_list\n",
"role": "user"
},
{
"content": "match_input_fmt",
"role": "assistant"
}
] |
def x(self, fmt):
fmt = fmt.strip()
match = re.match('(\\d+)(.+)', fmt)
if match is None:
reps = 1
else:
reps = int(match.group(1))
fmt = match.group(2)
if fmt[0] == '(':
fmt = fmt[1:-1]
fmt_list = fmt.split(',')
rexp = self.match_input_fmt(fmt_list)
elif fmt[0] in 'iI':
sz = fmt[1:]
xtract_rexp = '(.{' + sz + '})'
leading_sp = ' *'
optional_sign = '-?'
rexp0 = '\\d+'
rexp1 = leading_sp + optional_sign + rexp0
divisor = 1
rexp = [(xtract_rexp, rexp1, divisor, 'int')]
elif fmt[0] in 'xX':
xtract_rexp = '.'
rexp = [(xtract_rexp, None, None, None)]
elif fmt[0] in 'fF':
idx0 = fmt.find('.')
sz = fmt[1:idx0]
divisor = 10 ** int(fmt[idx0 + 1:])
xtract_rexp = '(.{' + sz + '})'
leading_sp = ' *'
optional_sign = '-?'
rexp0 = '\\d+(\\.\\d+)?'
rexp1 = leading_sp + optional_sign + rexp0
rexp = [(xtract_rexp, rexp1, divisor, 'float')]
else:
raise For2PyError(f'ERROR: Unrecognized format specifier {fmt}\n')
rexp *= reps
return rexp
|
match_input_fmt_1
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, fmt):\n fmt = fmt.strip()\n match = re.match('(\\\\d+)(.+)', fmt)\n if match is None:\n reps = 1\n else:\n reps = int(match.group(1))\n fmt = match.group(2)\n if fmt[0] == '(':\n fmt = fmt[1:-1]\n fmt_list = fmt.split(',')\n rexp = self.match_input_fmt(fmt_list)\n elif fmt[0] in 'iI':\n sz = fmt[1:]\n xtract_rexp = '(.{' + sz + '})'\n leading_sp = ' *'\n optional_sign = '-?'\n rexp0 = '\\\\d+'\n rexp1 = leading_sp + optional_sign + rexp0\n divisor = 1\n rexp = [(xtract_rexp, rexp1, divisor, 'int')]\n elif fmt[0] in 'xX':\n xtract_rexp = '.'\n rexp = [(xtract_rexp, None, None, None)]\n elif fmt[0] in 'fF':\n idx0 = fmt.find('.')\n sz = fmt[1:idx0]\n divisor = 10 ** int(fmt[idx0 + 1:])\n xtract_rexp = '(.{' + sz + '})'\n leading_sp = ' *'\n optional_sign = '-?'\n rexp0 = '\\\\d+(\\\\.\\\\d+)?'\n rexp1 = leading_sp + optional_sign + rexp0\n rexp = [(xtract_rexp, rexp1, divisor, 'float')]\n else:\n raise For2PyError(f'ERROR: Unrecognized format specifier {fmt}\\n')\n rexp *= reps\n return rexp\n",
"role": "user"
},
{
"content": "match_input_fmt_1",
"role": "assistant"
}
] |
def x(self, fmt_list):
rexp_list = []
for fmt in fmt_list:
rexp_list.extend(self.gen_output_fmt_1(fmt))
return rexp_list
|
gen_output_fmt
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, fmt_list):\n rexp_list = []\n for fmt in fmt_list:\n rexp_list.extend(self.gen_output_fmt_1(fmt))\n return rexp_list\n",
"role": "user"
},
{
"content": "gen_output_fmt",
"role": "assistant"
}
] |
def x(self, fmt):
fmt = fmt.strip()
match = re.match('(\\d+)(.+)', fmt)
if match is None:
reps = 1
else:
reps = int(match.group(1))
fmt = match.group(2)
if fmt[0] == '(':
fmt = fmt[1:-1]
fmt_list = fmt.split(',')
rexp = self.gen_output_fmt(fmt_list)
elif fmt[0] in 'iI':
sz = fmt[1:]
gen_fmt = '{}'
cvt_fmt = '{:' + str(sz) + 'd}'
rexp = [(gen_fmt, cvt_fmt, int(sz))]
elif fmt[0] in 'xX':
gen_fmt = ' '
rexp = [(gen_fmt, None, None)]
elif fmt[0] in 'eEfFgG':
idx0 = fmt.find('.')
sz = fmt[1:idx0]
suffix = fmt[idx0 + 1:]
m = re.match('(\\d+).*', suffix)
assert m is not None, f"Improper format? '{fmt}'"
prec = m.group(1)
gen_fmt = '{}'
cvt_fmt = '{:' + sz + '.' + prec + fmt[0] + '}'
rexp = [(gen_fmt, cvt_fmt, int(sz))]
elif fmt[0] in 'pP':
rest_of_fmt = fmt[1:]
rexp = self.gen_output_fmt_1(rest_of_fmt)
elif fmt[0] in '\'"':
sz = len(fmt) - 2
gen_fmt = fmt[1:-1]
rexp = [(gen_fmt, None, None)]
elif fmt[0] == '/':
gen_fmt = '\\n' * len(fmt)
rexp = [(gen_fmt, None, None)]
else:
raise For2PyError(f'ERROR: Unrecognized format specifier {fmt}\n')
rexp *= reps
return rexp
|
gen_output_fmt_1
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, fmt):\n fmt = fmt.strip()\n match = re.match('(\\\\d+)(.+)', fmt)\n if match is None:\n reps = 1\n else:\n reps = int(match.group(1))\n fmt = match.group(2)\n if fmt[0] == '(':\n fmt = fmt[1:-1]\n fmt_list = fmt.split(',')\n rexp = self.gen_output_fmt(fmt_list)\n elif fmt[0] in 'iI':\n sz = fmt[1:]\n gen_fmt = '{}'\n cvt_fmt = '{:' + str(sz) + 'd}'\n rexp = [(gen_fmt, cvt_fmt, int(sz))]\n elif fmt[0] in 'xX':\n gen_fmt = ' '\n rexp = [(gen_fmt, None, None)]\n elif fmt[0] in 'eEfFgG':\n idx0 = fmt.find('.')\n sz = fmt[1:idx0]\n suffix = fmt[idx0 + 1:]\n m = re.match('(\\\\d+).*', suffix)\n assert m is not None, f\"Improper format? '{fmt}'\"\n prec = m.group(1)\n gen_fmt = '{}'\n cvt_fmt = '{:' + sz + '.' + prec + fmt[0] + '}'\n rexp = [(gen_fmt, cvt_fmt, int(sz))]\n elif fmt[0] in 'pP':\n rest_of_fmt = fmt[1:]\n rexp = self.gen_output_fmt_1(rest_of_fmt)\n elif fmt[0] in '\\'\"':\n sz = len(fmt) - 2\n gen_fmt = fmt[1:-1]\n rexp = [(gen_fmt, None, None)]\n elif fmt[0] == '/':\n gen_fmt = '\\\\n' * len(fmt)\n rexp = [(gen_fmt, None, None)]\n else:\n raise For2PyError(f'ERROR: Unrecognized format specifier {fmt}\\n')\n rexp *= reps\n return rexp\n",
"role": "user"
},
{
"content": "gen_output_fmt_1",
"role": "assistant"
}
] |
def x(gb, rs: np.ndarray, e: Tuple[str, str, Dict]) ->gaussian_kde:
adjective_response_dict = {}
all_θs = []
σ_X = σ_Y = 0.1
for stmt in e[2]['InfluenceStatements']:
for ev in stmt.evidence:
if ev.annotations.get('subj_adjectives') is not None:
for subj_adjective in ev.annotations['subj_adjectives']:
if (subj_adjective in gb.groups and subj_adjective not in
adjective_response_dict):
adjective_response_dict[subj_adjective] = get_respdevs(
gb.get_group(subj_adjective))
rs_subj = stmt.subj_delta['polarity'
] * adjective_response_dict.get(subj_adjective, rs)
for obj_adjective in ev.annotations['obj_adjectives']:
if (obj_adjective in gb.groups and obj_adjective not in
adjective_response_dict):
adjective_response_dict[obj_adjective
] = get_respdevs(gb.get_group(obj_adjective))
rs_obj = stmt.obj_delta['polarity'
] * adjective_response_dict.get(obj_adjective, rs)
xs1, ys1 = np.meshgrid(rs_subj, rs_obj, indexing='xy')
θs = np.arctan2(σ_Y * ys1.flatten(), xs1.flatten())
all_θs.append(θs)
xs1, ys1 = np.meshgrid(stmt.subj_delta['polarity'] * rs, stmt.
obj_delta['polarity'] * rs, indexing='xy')
θs = np.arctan2(σ_Y * ys1.flatten(), σ_X * xs1.flatten())
if len(all_θs) == 0:
all_θs.append(θs)
return gaussian_kde(all_θs)
else:
return gaussian_kde(np.concatenate(all_θs))
|
constructConditionalPDF
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(gb, rs: np.ndarray, e: Tuple[str, str, Dict]) ->gaussian_kde:\n adjective_response_dict = {}\n all_θs = []\n σ_X = σ_Y = 0.1\n for stmt in e[2]['InfluenceStatements']:\n for ev in stmt.evidence:\n if ev.annotations.get('subj_adjectives') is not None:\n for subj_adjective in ev.annotations['subj_adjectives']:\n if (subj_adjective in gb.groups and subj_adjective not in\n adjective_response_dict):\n adjective_response_dict[subj_adjective] = get_respdevs(\n gb.get_group(subj_adjective))\n rs_subj = stmt.subj_delta['polarity'\n ] * adjective_response_dict.get(subj_adjective, rs)\n for obj_adjective in ev.annotations['obj_adjectives']:\n if (obj_adjective in gb.groups and obj_adjective not in\n adjective_response_dict):\n adjective_response_dict[obj_adjective\n ] = get_respdevs(gb.get_group(obj_adjective))\n rs_obj = stmt.obj_delta['polarity'\n ] * adjective_response_dict.get(obj_adjective, rs)\n xs1, ys1 = np.meshgrid(rs_subj, rs_obj, indexing='xy')\n θs = np.arctan2(σ_Y * ys1.flatten(), xs1.flatten())\n all_θs.append(θs)\n xs1, ys1 = np.meshgrid(stmt.subj_delta['polarity'] * rs, stmt.\n obj_delta['polarity'] * rs, indexing='xy')\n θs = np.arctan2(σ_Y * ys1.flatten(), σ_X * xs1.flatten())\n if len(all_θs) == 0:\n all_θs.append(θs)\n return gaussian_kde(all_θs)\n else:\n return gaussian_kde(np.concatenate(all_θs))\n",
"role": "user"
},
{
"content": "constructConditionalPDF",
"role": "assistant"
}
] |
def x(x: str):
xs = x.replace('\\/', '|').split('/')
xs = [x.replace('|', '/') for x in xs]
if xs[0] == 'FAO':
return ' '.join(xs[2:]), xs[0]
else:
return xs[-1], xs[0]
|
get_variable_and_source
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x: str):\n xs = x.replace('\\\\/', '|').split('/')\n xs = [x.replace('|', '/') for x in xs]\n if xs[0] == 'FAO':\n return ' '.join(xs[2:]), xs[0]\n else:\n return xs[-1], xs[0]\n",
"role": "user"
},
{
"content": "get_variable_and_source",
"role": "assistant"
}
] |
def x(n: int=1) ->Dict[str, List[str]]:
df = pd.read_sql_table('concept_to_indicator_mapping', con=engine)
gb = df.groupby('Concept')
_dict = {k: [get_variable_and_source(x) for x in take(n, v['Indicator']
.values)] for k, v in gb}
return _dict
|
construct_concept_to_indicator_mapping
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(n: int=1) ->Dict[str, List[str]]:\n df = pd.read_sql_table('concept_to_indicator_mapping', con=engine)\n gb = df.groupby('Concept')\n _dict = {k: [get_variable_and_source(x) for x in take(n, v['Indicator']\n .values)] for k, v in gb}\n return _dict\n",
"role": "user"
},
{
"content": "construct_concept_to_indicator_mapping",
"role": "assistant"
}
] |
def x(self, builder: Builder):
self.config = builder.configuration.mortality
self.population_view = builder.population.get_view(['alive'], query=
"alive == 'alive'")
self.randomness = builder.randomness.get_stream('mortality')
self.mortality_rate = builder.value.register_rate_producer('mortality_rate'
, source=self.base_mortality_rate)
builder.event.register_listener('time_step', self.determine_deaths)
|
setup
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, builder: Builder):\n self.config = builder.configuration.mortality\n self.population_view = builder.population.get_view(['alive'], query=\n \"alive == 'alive'\")\n self.randomness = builder.randomness.get_stream('mortality')\n self.mortality_rate = builder.value.register_rate_producer('mortality_rate'\n , source=self.base_mortality_rate)\n builder.event.register_listener('time_step', self.determine_deaths)\n",
"role": "user"
},
{
"content": "setup",
"role": "assistant"
}
] |
def x(self, index: pd.Index) ->pd.Series:
return pd.Series(self.config.mortality_rate, index=index)
|
base_mortality_rate
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, index: pd.Index) ->pd.Series:\n return pd.Series(self.config.mortality_rate, index=index)\n",
"role": "user"
},
{
"content": "base_mortality_rate",
"role": "assistant"
}
] |
def x(self, event: Event):
effective_rate = self.mortality_rate(event.index)
effective_probability = 1 - np.exp(-effective_rate)
draw = self.randomness.get_draw(event.index)
affected_simulants = draw < effective_probability
self.population_view.update(pd.Series('dead', index=event.index[
affected_simulants]))
|
determine_deaths
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, event: Event):\n effective_rate = self.mortality_rate(event.index)\n effective_probability = 1 - np.exp(-effective_rate)\n draw = self.randomness.get_draw(event.index)\n affected_simulants = draw < effective_probability\n self.population_view.update(pd.Series('dead', index=event.index[\n affected_simulants]))\n",
"role": "user"
},
{
"content": "determine_deaths",
"role": "assistant"
}
] |
def x(component_list: Sequence[str]) ->List[Tuple[str, Tuple[str]]]:
components = []
for c in component_list:
path, args_plus = c.split('(')
cleaned_args = _clean_args(args_plus[:-1].split(','), path)
components.append((path, cleaned_args))
return components
|
prep_components
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(component_list: Sequence[str]) ->List[Tuple[str, Tuple[str]]]:\n components = []\n for c in component_list:\n path, args_plus = c.split('(')\n cleaned_args = _clean_args(args_plus[:-1].split(','), path)\n components.append((path, cleaned_args))\n return components\n",
"role": "user"
},
{
"content": "prep_components",
"role": "assistant"
}
] |
def x(self, component_config: Union[ConfigTree, List]) ->List:
if isinstance(component_config, ConfigTree):
component_list = self.parse_component_config(component_config.to_dict()
)
else:
component_list = component_config
component_list = _prep_components(component_list)
return _import_and_instantiate_components(component_list)
|
get_components
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, component_config: Union[ConfigTree, List]) ->List:\n if isinstance(component_config, ConfigTree):\n component_list = self.parse_component_config(component_config.to_dict()\n )\n else:\n component_list = component_config\n component_list = _prep_components(component_list)\n return _import_and_instantiate_components(component_list)\n",
"role": "user"
},
{
"content": "get_components",
"role": "assistant"
}
] |
def x(self, component_config: Dict[str, Union[Dict, List]]) ->List[str]:
return _parse_component_config(component_config)
|
parse_component_config
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, component_config: Dict[str, Union[Dict, List]]) ->List[str]:\n return _parse_component_config(component_config)\n",
"role": "user"
},
{
"content": "parse_component_config",
"role": "assistant"
}
] |
def x(self):
searchunks = self._split_file()
if searchunks:
usage = self._parse_file(searchunks)
if 'CPU' in usage:
return False
self._sarinfo = usage
del usage
return True
else:
return False
|
load_file
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n searchunks = self._split_file()\n if searchunks:\n usage = self._parse_file(searchunks)\n if 'CPU' in usage:\n return False\n self._sarinfo = usage\n del usage\n return True\n else:\n return False\n",
"role": "user"
},
{
"content": "load_file",
"role": "assistant"
}
] |
def x(self):
try:
test = self._sarinfo['CPU']
del test
except KeyError:
file_parsed = self.load_file()
if file_parsed:
return self._sarinfo
else:
return False
except:
traceback.print_exc()
return False
return self._sarinfo
|
get_sar_info
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n try:\n test = self._sarinfo['CPU']\n del test\n except KeyError:\n file_parsed = self.load_file()\n if file_parsed:\n return self._sarinfo\n else:\n return False\n except:\n traceback.print_exc()\n return False\n return self._sarinfo\n",
"role": "user"
},
{
"content": "get_sar_info",
"role": "assistant"
}
] |
def x(self, data=''):
if self.__filename and os.access(self.__filename, os.R_OK) or data != '':
fhandle = None
if data == '':
try:
fhandle = os.open(self.__filename, os.O_RDONLY)
except OSError:
print("Couldn't open file %s" % self.__filename)
fhandle = None
if fhandle or data != '':
datalength = 0
if platform.system() == 'Windows':
dataprot = mmap.ACCESS_READ
else:
dataprot = mmap.PROT_READ
if data != '':
fhandle = -1
datalength = len(data)
if platform.system() == 'Windows':
dataprot = mmap.ACCESS_READ | mmap.ACCESS_WRITE
else:
dataprot = mmap.PROT_READ | mmap.PROT_WRITE
try:
if platform.system() == 'Windows':
sarmap = mmap.mmap(fhandle, length=datalength, access=
dataprot)
else:
sarmap = mmap.mmap(fhandle, length=datalength, prot=
dataprot)
if data != '':
sarmap.write(data)
sarmap.flush()
sarmap.seek(0, os.SEEK_SET)
except (TypeError, IndexError):
if data == '':
os.close(fhandle)
traceback.print_exc()
return False
searchunks = []
oldchunkpos = 0
dlpos = sarmap.find('\n\n', 0)
size = 0
if data == '':
size = sarmap.size()
else:
len(data)
while dlpos > -1:
tempchunk = sarmap.read(dlpos - oldchunkpos)
searchunks.append(tempchunk.strip())
oldchunkpos += dlpos - oldchunkpos + 2
try:
sarmap.seek(2, os.SEEK_CUR)
except ValueError:
print('Out of bounds (%s)!\n' % sarmap.tell())
dlpos = sarmap.find('\n\n')
if oldchunkpos < size:
tempchunk = sarmap[oldchunkpos:]
searchunks.append(tempchunk.strip())
sarmap.close()
if fhandle != -1:
os.close(fhandle)
if searchunks:
return searchunks
else:
return False
return False
|
split_file
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, data=''):\n if self.__filename and os.access(self.__filename, os.R_OK) or data != '':\n fhandle = None\n if data == '':\n try:\n fhandle = os.open(self.__filename, os.O_RDONLY)\n except OSError:\n print(\"Couldn't open file %s\" % self.__filename)\n fhandle = None\n if fhandle or data != '':\n datalength = 0\n if platform.system() == 'Windows':\n dataprot = mmap.ACCESS_READ\n else:\n dataprot = mmap.PROT_READ\n if data != '':\n fhandle = -1\n datalength = len(data)\n if platform.system() == 'Windows':\n dataprot = mmap.ACCESS_READ | mmap.ACCESS_WRITE\n else:\n dataprot = mmap.PROT_READ | mmap.PROT_WRITE\n try:\n if platform.system() == 'Windows':\n sarmap = mmap.mmap(fhandle, length=datalength, access=\n dataprot)\n else:\n sarmap = mmap.mmap(fhandle, length=datalength, prot=\n dataprot)\n if data != '':\n sarmap.write(data)\n sarmap.flush()\n sarmap.seek(0, os.SEEK_SET)\n except (TypeError, IndexError):\n if data == '':\n os.close(fhandle)\n traceback.print_exc()\n return False\n searchunks = []\n oldchunkpos = 0\n dlpos = sarmap.find('\\n\\n', 0)\n size = 0\n if data == '':\n size = sarmap.size()\n else:\n len(data)\n while dlpos > -1:\n tempchunk = sarmap.read(dlpos - oldchunkpos)\n searchunks.append(tempchunk.strip())\n oldchunkpos += dlpos - oldchunkpos + 2\n try:\n sarmap.seek(2, os.SEEK_CUR)\n except ValueError:\n print('Out of bounds (%s)!\\n' % sarmap.tell())\n dlpos = sarmap.find('\\n\\n')\n if oldchunkpos < size:\n tempchunk = sarmap[oldchunkpos:]\n searchunks.append(tempchunk.strip())\n sarmap.close()\n if fhandle != -1:\n os.close(fhandle)\n if searchunks:\n return searchunks\n else:\n return False\n return False\n",
"role": "user"
},
{
"content": "split_file",
"role": "assistant"
}
] |
def x(self, sar_parts):
usage = {}
output = {}
if type(sar_parts) is list:
restart_pattern = re.compile(PATTERN_RESTART)
""" !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! """
""" ********** ATTENTION ******* """
""" THERE CAN BE MORE THAN ONE SAME SECTION IN ONE FILE """
""" IF SYSTEM WAS REBOOTED DURING THE DAY """
""" !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! """
for PATTERNSNAME in ALL_PATTERNS:
patterns = ALL_PATTERNS[PATTERNSNAME]
rgxpattern = re.compile(patterns['PATTERN'])
for part in sar_parts:
if rgxpattern.search(part):
if PATTERNSNAME in usage:
usage[PATTERNSNAME] += '\n' + part
else:
usage[PATTERNSNAME] = part
try:
first_line = part.split('\n')[0]
except IndexError:
first_line = part
self.__fields[PATTERNSNAME] = self.__find_column(
patterns['FIELDS'], first_line)
if restart_pattern.search(part):
pieces = part.split()
self.__restart_times.append(pieces[0])
del pieces
del sar_parts
for PATTERNSNAME in ALL_PATTERNS:
patterns = ALL_PATTERNS[PATTERNSNAME]
output[PATTERNSNAME] = self.__split_info(usage[PATTERNSNAME],
PATTERNSNAME, patterns)
del usage
return output
return output
|
parse_file
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, sar_parts):\n usage = {}\n output = {}\n if type(sar_parts) is list:\n restart_pattern = re.compile(PATTERN_RESTART)\n \"\"\" !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! \"\"\"\n \"\"\" ********** ATTENTION ******* \"\"\"\n \"\"\" THERE CAN BE MORE THAN ONE SAME SECTION IN ONE FILE \"\"\"\n \"\"\" IF SYSTEM WAS REBOOTED DURING THE DAY \"\"\"\n \"\"\" !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! \"\"\"\n for PATTERNSNAME in ALL_PATTERNS:\n patterns = ALL_PATTERNS[PATTERNSNAME]\n rgxpattern = re.compile(patterns['PATTERN'])\n for part in sar_parts:\n if rgxpattern.search(part):\n if PATTERNSNAME in usage:\n usage[PATTERNSNAME] += '\\n' + part\n else:\n usage[PATTERNSNAME] = part\n try:\n first_line = part.split('\\n')[0]\n except IndexError:\n first_line = part\n self.__fields[PATTERNSNAME] = self.__find_column(\n patterns['FIELDS'], first_line)\n if restart_pattern.search(part):\n pieces = part.split()\n self.__restart_times.append(pieces[0])\n del pieces\n del sar_parts\n for PATTERNSNAME in ALL_PATTERNS:\n patterns = ALL_PATTERNS[PATTERNSNAME]\n output[PATTERNSNAME] = self.__split_info(usage[PATTERNSNAME],\n PATTERNSNAME, patterns)\n del usage\n return output\n return output\n",
"role": "user"
},
{
"content": "parse_file",
"role": "assistant"
}
] |
def x(self, column_names, part_first_line):
part_parts = part_first_line.split()
return_dict = {}
counter = 0
for piece in part_parts:
for colname in column_names:
pattern_re = re.compile(colname)
if pattern_re.search(piece):
return_dict[colname] = counter
break
counter += 1
for colver in column_names:
try:
tempval = return_dict[colver]
del tempval
except KeyError:
return_dict[colver] = None
return return_dict
|
find_column
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, column_names, part_first_line):\n part_parts = part_first_line.split()\n return_dict = {}\n counter = 0\n for piece in part_parts:\n for colname in column_names:\n pattern_re = re.compile(colname)\n if pattern_re.search(piece):\n return_dict[colname] = counter\n break\n counter += 1\n for colver in column_names:\n try:\n tempval = return_dict[colver]\n del tempval\n except KeyError:\n return_dict[colver] = None\n return return_dict\n",
"role": "user"
},
{
"content": "find_column",
"role": "assistant"
}
] |
def x(self, info_part, patternsname, patterns):
pattern = patterns['PATTERN']
if pattern == '':
return False
return_dict = {}
pattern_re = re.compile(pattern)
for part_line in info_part.split('\n'):
if part_line.strip() != '' and not pattern_re.search(part_line):
is_24hr = True
is_AM = False
if part_line[9:11] == 'AM':
is_24hr = False
is_AM = True
elif part_line[9:11] == 'PM':
is_24hr = False
is_AM = False
if is_24hr is False:
part_line = '%s_%s XX %s' % (part_line[:8], part_line[9:11],
part_line[12:])
elems = part_line.split()
full_time = elems[0].strip()
if full_time != 'Average:':
if is_24hr is False:
full_time = full_time[:-3]
if full_time[:2] == '12':
if is_AM is True:
full_time = '%s:%s' % ('00', full_time[3:])
is_AM = not is_AM
if is_AM is False and full_time[0:2] != '00':
hours = int(full_time[:2]) + 12
hours = '%02d' % (hours,)
full_time = '%s:%s' % (hours, full_time[3:])
try:
blah = return_dict[full_time]
del blah
except KeyError:
return_dict[full_time] = {}
fields = self.__fields[patternsname]
pairs = patterns['PAIRS']
for sectionname in pairs.iterkeys():
value = elems[fields[pairs[sectionname]]]
if (sectionname == 'membuffer' or sectionname ==
'memcache' or sectionname == 'memfree' or
sectionname == 'memused' or sectionname ==
'swapfree' or sectionname == 'swapused'):
value = int(value)
else:
value = float(value)
if patternsname == 'CPU':
cpuid = elems[1 if is_24hr is True else 2]
try:
blah = return_dict[full_time][cpuid]
del blah
except KeyError:
return_dict[full_time][cpuid] = {}
return_dict[full_time][cpuid][sectionname] = value
else:
return_dict[full_time][sectionname] = value
return return_dict
|
split_info
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, info_part, patternsname, patterns):\n pattern = patterns['PATTERN']\n if pattern == '':\n return False\n return_dict = {}\n pattern_re = re.compile(pattern)\n for part_line in info_part.split('\\n'):\n if part_line.strip() != '' and not pattern_re.search(part_line):\n is_24hr = True\n is_AM = False\n if part_line[9:11] == 'AM':\n is_24hr = False\n is_AM = True\n elif part_line[9:11] == 'PM':\n is_24hr = False\n is_AM = False\n if is_24hr is False:\n part_line = '%s_%s XX %s' % (part_line[:8], part_line[9:11],\n part_line[12:])\n elems = part_line.split()\n full_time = elems[0].strip()\n if full_time != 'Average:':\n if is_24hr is False:\n full_time = full_time[:-3]\n if full_time[:2] == '12':\n if is_AM is True:\n full_time = '%s:%s' % ('00', full_time[3:])\n is_AM = not is_AM\n if is_AM is False and full_time[0:2] != '00':\n hours = int(full_time[:2]) + 12\n hours = '%02d' % (hours,)\n full_time = '%s:%s' % (hours, full_time[3:])\n try:\n blah = return_dict[full_time]\n del blah\n except KeyError:\n return_dict[full_time] = {}\n fields = self.__fields[patternsname]\n pairs = patterns['PAIRS']\n for sectionname in pairs.iterkeys():\n value = elems[fields[pairs[sectionname]]]\n if (sectionname == 'membuffer' or sectionname ==\n 'memcache' or sectionname == 'memfree' or \n sectionname == 'memused' or sectionname ==\n 'swapfree' or sectionname == 'swapused'):\n value = int(value)\n else:\n value = float(value)\n if patternsname == 'CPU':\n cpuid = elems[1 if is_24hr is True else 2]\n try:\n blah = return_dict[full_time][cpuid]\n del blah\n except KeyError:\n return_dict[full_time][cpuid] = {}\n return_dict[full_time][cpuid][sectionname] = value\n else:\n return_dict[full_time][sectionname] = value\n return return_dict\n",
"role": "user"
},
{
"content": "split_info",
"role": "assistant"
}
] |
def x(self):
if os.access(self.__filename, os.R_OK):
try:
sar_file = open(self.__filename, 'r')
except OSError:
traceback.print_exc()
return False
except:
traceback.print_exc()
return False
firstline = sar_file.readline()
info = firstline.split()
sar_file.close()
try:
self.__file_date = info[3]
except KeyError:
self.__file_date = ''
return False
except:
traceback.print_exc()
return False
return True
return False
|
get_filedate
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if os.access(self.__filename, os.R_OK):\n try:\n sar_file = open(self.__filename, 'r')\n except OSError:\n traceback.print_exc()\n return False\n except:\n traceback.print_exc()\n return False\n firstline = sar_file.readline()\n info = firstline.split()\n sar_file.close()\n try:\n self.__file_date = info[3]\n except KeyError:\n self.__file_date = ''\n return False\n except:\n traceback.print_exc()\n return False\n return True\n return False\n",
"role": "user"
},
{
"content": "get_filedate",
"role": "assistant"
}
] |
def x(index, event_time, transition_set, population_view):
if len(transition_set) == 0 or index.empty:
return
outputs, decisions = transition_set.choose_new_state(index)
groups = _groupby_new_state(index, outputs, decisions)
if groups:
for output, affected_index in sorted(groups, key=lambda x: str(x[0])):
if output == 'null_transition':
pass
elif isinstance(output, Transient):
if not isinstance(output, State):
raise ValueError('Invalid transition output: {}'.format
(output))
output.transition_effect(affected_index, event_time,
population_view)
output.next_state(affected_index, event_time, population_view)
elif isinstance(output, State):
output.transition_effect(affected_index, event_time,
population_view)
else:
raise ValueError('Invalid transition output: {}'.format(output)
)
|
next_state
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(index, event_time, transition_set, population_view):\n if len(transition_set) == 0 or index.empty:\n return\n outputs, decisions = transition_set.choose_new_state(index)\n groups = _groupby_new_state(index, outputs, decisions)\n if groups:\n for output, affected_index in sorted(groups, key=lambda x: str(x[0])):\n if output == 'null_transition':\n pass\n elif isinstance(output, Transient):\n if not isinstance(output, State):\n raise ValueError('Invalid transition output: {}'.format\n (output))\n output.transition_effect(affected_index, event_time,\n population_view)\n output.next_state(affected_index, event_time, population_view)\n elif isinstance(output, State):\n output.transition_effect(affected_index, event_time,\n population_view)\n else:\n raise ValueError('Invalid transition output: {}'.format(output)\n )\n",
"role": "user"
},
{
"content": "next_state",
"role": "assistant"
}
] |
def x(index, outputs, decisions):
output_map = {o: i for i, o in enumerate(outputs)}
groups = pd.Series(index).groupby([output_map[d] for d in decisions])
results = [(outputs[i], pd.Index(sub_group.values)) for i, sub_group in
groups]
selected_outputs = [o for o, _ in results]
for output in outputs:
if output not in selected_outputs:
results.append((output, pd.Index([])))
return results
|
groupby_new_state
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(index, outputs, decisions):\n output_map = {o: i for i, o in enumerate(outputs)}\n groups = pd.Series(index).groupby([output_map[d] for d in decisions])\n results = [(outputs[i], pd.Index(sub_group.values)) for i, sub_group in\n groups]\n selected_outputs = [o for o, _ in results]\n for output in outputs:\n if output not in selected_outputs:\n results.append((output, pd.Index([])))\n return results\n",
"role": "user"
},
{
"content": "groupby_new_state",
"role": "assistant"
}
] |
def x(self, index, event_time, population_view):
return _next_state(index, event_time, self.transition_set, population_view)
|
next_state
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, index, event_time, population_view):\n return _next_state(index, event_time, self.transition_set, population_view)\n",
"role": "user"
},
{
"content": "next_state",
"role": "assistant"
}
] |
def x(self, index, event_time, population_view):
population_view.update(pd.Series(self.state_id, index=index))
self._transition_side_effect(index, event_time)
|
transition_effect
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, index, event_time, population_view):\n population_view.update(pd.Series(self.state_id, index=index))\n self._transition_side_effect(index, event_time)\n",
"role": "user"
},
{
"content": "transition_effect",
"role": "assistant"
}
] |
def x(self, output, probability_func=lambda index: np.ones(len(index),
dtype=float), triggered=Trigger.NOT_TRIGGERED):
t = Transition(self, output, probability_func=probability_func,
triggered=triggered)
self.transition_set.append(t)
return t
|
add_transition
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, output, probability_func=lambda index: np.ones(len(index),\n dtype=float), triggered=Trigger.NOT_TRIGGERED):\n t = Transition(self, output, probability_func=probability_func,\n triggered=triggered)\n self.transition_set.append(t)\n return t\n",
"role": "user"
},
{
"content": "add_transition",
"role": "assistant"
}
] |
def x(self, builder):
builder.components.add_components(self.transitions)
self.random = builder.randomness.get_stream(self.key)
|
setup
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, builder):\n builder.components.add_components(self.transitions)\n self.random = builder.randomness.get_stream(self.key)\n",
"role": "user"
},
{
"content": "setup",
"role": "assistant"
}
] |
def x(self, index):
outputs, probabilities = zip(*[(transition.output_state, np.array(
transition.probability(index))) for transition in self.transitions])
probabilities = np.transpose(probabilities)
outputs, probabilities = self._normalize_probabilities(outputs,
probabilities)
return outputs, self.random.choice(index, outputs, probabilities)
|
choose_new_state
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, index):\n outputs, probabilities = zip(*[(transition.output_state, np.array(\n transition.probability(index))) for transition in self.transitions])\n probabilities = np.transpose(probabilities)\n outputs, probabilities = self._normalize_probabilities(outputs,\n probabilities)\n return outputs, self.random.choice(index, outputs, probabilities)\n",
"role": "user"
},
{
"content": "choose_new_state",
"role": "assistant"
}
] |
def x(self, outputs, probabilities):
outputs = list(outputs)
total = np.sum(probabilities, axis=1)
if self.allow_null_transition or not np.any(total):
if np.any(total > 1 + 1e-08):
raise ValueError(
'Null transition requested with un-normalized probability weights: {}'
.format(probabilities))
total[total > 1] = 1
probabilities = np.concatenate([probabilities, (1 - total)[:, np.
newaxis]], axis=1)
outputs.append('null_transition')
return outputs, probabilities / np.sum(probabilities, axis=1)[:, np.newaxis
]
|
normalize_probabilities
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, outputs, probabilities):\n outputs = list(outputs)\n total = np.sum(probabilities, axis=1)\n if self.allow_null_transition or not np.any(total):\n if np.any(total > 1 + 1e-08):\n raise ValueError(\n 'Null transition requested with un-normalized probability weights: {}'\n .format(probabilities))\n total[total > 1] = 1\n probabilities = np.concatenate([probabilities, (1 - total)[:, np.\n newaxis]], axis=1)\n outputs.append('null_transition')\n return outputs, probabilities / np.sum(probabilities, axis=1)[:, np.newaxis\n ]\n",
"role": "user"
},
{
"content": "normalize_probabilities",
"role": "assistant"
}
] |
def x(self, builder):
builder.components.add_components(self.states)
self.population_view = builder.population.get_view([self.state_column])
|
setup
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, builder):\n builder.components.add_components(self.states)\n self.population_view = builder.population.get_view([self.state_column])\n",
"role": "user"
},
{
"content": "setup",
"role": "assistant"
}
] |
def x(self, index, event_time):
for state, affected in self._get_state_pops(index):
if not affected.empty:
state.next_state(affected.index, event_time, self.
population_view.subview([self.state_column]))
|
transition
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, index, event_time):\n for state, affected in self._get_state_pops(index):\n if not affected.empty:\n state.next_state(affected.index, event_time, self.\n population_view.subview([self.state_column]))\n",
"role": "user"
},
{
"content": "transition",
"role": "assistant"
}
] |
def x(self):
from graphviz import Digraph
dot = Digraph(format='png')
for state in self.states:
if isinstance(state, TransientState):
dot.node(state.state_id, style='dashed')
else:
dot.node(state.state_id)
for transition in state.transition_set:
dot.edge(state.state_id, transition.output.state_id, transition
.label())
return dot
|
to_dot
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n from graphviz import Digraph\n dot = Digraph(format='png')\n for state in self.states:\n if isinstance(state, TransientState):\n dot.node(state.state_id, style='dashed')\n else:\n dot.node(state.state_id)\n for transition in state.transition_set:\n dot.edge(state.state_id, transition.output.state_id, transition\n .label())\n return dot\n",
"role": "user"
},
{
"content": "to_dot",
"role": "assistant"
}
] |
def x():
from sar import parser
sysstat_dir = '/var/log/sa'
single_file = '%s/%s' % (sysstat_dir, 'sar21')
insar = parser.Parser(single_file)
print('SAR file date: %s' % insar.get_filedate())
print('Content:\n')
pprint.pprint(insar.get_sar_info())
print('-' * 78)
"""
from sar import multiparser
multi_file = ('./%s' % ('sarcombined'))
inmulti = multiparser.Multiparser(multi_file)
inmulti.load_file()
print("Content:
")
pprint.pprint(inmulti.get_sar_info())
"""
|
main
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n from sar import parser\n sysstat_dir = '/var/log/sa'\n single_file = '%s/%s' % (sysstat_dir, 'sar21')\n insar = parser.Parser(single_file)\n print('SAR file date: %s' % insar.get_filedate())\n print('Content:\\n')\n pprint.pprint(insar.get_sar_info())\n print('-' * 78)\n \"\"\"\n from sar import multiparser\n multi_file = ('./%s' % ('sarcombined'))\n inmulti = multiparser.Multiparser(multi_file)\n inmulti.load_file()\n print(\"Content:\n\")\n pprint.pprint(inmulti.get_sar_info())\n \"\"\"\n",
"role": "user"
},
{
"content": "main",
"role": "assistant"
}
] |
def x(self, builder, configuration):
self._managers = _setup_components(builder, self._managers, configuration)
self._components = _setup_components(builder, self._components,
configuration)
|
setup_components
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, builder, configuration):\n self._managers = _setup_components(builder, self._managers, configuration)\n self._components = _setup_components(builder, self._components,\n configuration)\n",
"role": "user"
},
{
"content": "setup_components",
"role": "assistant"
}
] |
def x(catalog, filter_in=None, filter_out=None, meta_field=None,
exclude_meta_fields=None, only_time_series=False):
filter_in = filter_in or {}
filter_out = filter_out or {}
catalog = read_catalog_obj(catalog)
if filter_in or filter_out:
filtered_datasets = [dataset for dataset in catalog['dataset'] if
_filter_dictionary(dataset, filter_in.get('dataset'),
filter_out.get('dataset'))]
else:
filtered_datasets = catalog['dataset']
if only_time_series:
filtered_datasets = [dataset for dataset in filtered_datasets if
dataset_has_time_series(dataset)]
if meta_field:
return [dataset[meta_field] for dataset in filtered_datasets if
meta_field in dataset]
if exclude_meta_fields:
meta_filtered_datasets = []
for dataset in filtered_datasets:
dataset_meta_filtered = dataset.copy()
for excluded_meta_field in exclude_meta_fields:
dataset_meta_filtered.pop(excluded_meta_field, None)
meta_filtered_datasets.append(dataset_meta_filtered)
return meta_filtered_datasets
else:
return filtered_datasets
|
get_datasets
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(catalog, filter_in=None, filter_out=None, meta_field=None,\n exclude_meta_fields=None, only_time_series=False):\n filter_in = filter_in or {}\n filter_out = filter_out or {}\n catalog = read_catalog_obj(catalog)\n if filter_in or filter_out:\n filtered_datasets = [dataset for dataset in catalog['dataset'] if\n _filter_dictionary(dataset, filter_in.get('dataset'),\n filter_out.get('dataset'))]\n else:\n filtered_datasets = catalog['dataset']\n if only_time_series:\n filtered_datasets = [dataset for dataset in filtered_datasets if\n dataset_has_time_series(dataset)]\n if meta_field:\n return [dataset[meta_field] for dataset in filtered_datasets if \n meta_field in dataset]\n if exclude_meta_fields:\n meta_filtered_datasets = []\n for dataset in filtered_datasets:\n dataset_meta_filtered = dataset.copy()\n for excluded_meta_field in exclude_meta_fields:\n dataset_meta_filtered.pop(excluded_meta_field, None)\n meta_filtered_datasets.append(dataset_meta_filtered)\n return meta_filtered_datasets\n else:\n return filtered_datasets\n",
"role": "user"
},
{
"content": "get_datasets",
"role": "assistant"
}
] |
def x(catalog, filter_in=None, filter_out=None, meta_field=None,
exclude_meta_fields=None, only_time_series=False):
filter_in = filter_in or {}
filter_out = filter_out or {}
catalog = read_catalog_obj(catalog)
distributions = []
for dataset in get_datasets(catalog, filter_in, filter_out):
for distribution in dataset.get('distribution', []):
distribution['dataset_identifier'] = dataset['identifier']
distributions.append(distribution)
filtered_distributions = [distribution for distribution in
distributions if _filter_dictionary(distribution, filter_in.get(
'distribution'), filter_out.get('distribution'))]
if only_time_series:
filtered_distributions = [distribution for distribution in
filtered_distributions if distribution_has_time_index(distribution)
]
if meta_field:
return [distribution[meta_field] for distribution in
filtered_distributions if meta_field in distribution]
if exclude_meta_fields:
meta_filtered_distributions = []
for distribution in filtered_distributions:
distribution_meta_filtered = distribution.copy()
for excluded_meta_field in exclude_meta_fields:
distribution_meta_filtered.pop(excluded_meta_field, None)
meta_filtered_distributions.append(distribution_meta_filtered)
return meta_filtered_distributions
else:
return filtered_distributions
|
get_distributions
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(catalog, filter_in=None, filter_out=None, meta_field=None,\n exclude_meta_fields=None, only_time_series=False):\n filter_in = filter_in or {}\n filter_out = filter_out or {}\n catalog = read_catalog_obj(catalog)\n distributions = []\n for dataset in get_datasets(catalog, filter_in, filter_out):\n for distribution in dataset.get('distribution', []):\n distribution['dataset_identifier'] = dataset['identifier']\n distributions.append(distribution)\n filtered_distributions = [distribution for distribution in\n distributions if _filter_dictionary(distribution, filter_in.get(\n 'distribution'), filter_out.get('distribution'))]\n if only_time_series:\n filtered_distributions = [distribution for distribution in\n filtered_distributions if distribution_has_time_index(distribution)\n ]\n if meta_field:\n return [distribution[meta_field] for distribution in\n filtered_distributions if meta_field in distribution]\n if exclude_meta_fields:\n meta_filtered_distributions = []\n for distribution in filtered_distributions:\n distribution_meta_filtered = distribution.copy()\n for excluded_meta_field in exclude_meta_fields:\n distribution_meta_filtered.pop(excluded_meta_field, None)\n meta_filtered_distributions.append(distribution_meta_filtered)\n return meta_filtered_distributions\n else:\n return filtered_distributions\n",
"role": "user"
},
{
"content": "get_distributions",
"role": "assistant"
}
] |
def x(catalog, filter_in=None, filter_out=None, meta_field=None,
only_time_series=False, distribution_identifier=None):
filter_in = filter_in or {}
filter_out = filter_out or {}
catalog = read_catalog_obj(catalog)
if distribution_identifier:
if 'distribution' not in filter_in:
filter_in['distribution'] = {}
filter_in['distribution']['identifier'] = distribution_identifier
fields = []
for distribution in get_distributions(catalog, filter_in, filter_out,
only_time_series=only_time_series):
distribution_fields = distribution.get('field', [])
if isinstance(distribution_fields, list):
for field in distribution_fields:
if not only_time_series or field_is_time_series(field,
distribution):
field['dataset_identifier'] = distribution[
'dataset_identifier']
field['distribution_identifier'] = distribution.get(
'identifier')
fields.append(field)
filtered_fields = [field for field in fields if _filter_dictionary(
field, filter_in.get('field'), filter_out.get('field'))]
if meta_field:
return [field[meta_field] for field in filtered_fields if
meta_field in field]
else:
return filtered_fields
|
get_fields
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(catalog, filter_in=None, filter_out=None, meta_field=None,\n only_time_series=False, distribution_identifier=None):\n filter_in = filter_in or {}\n filter_out = filter_out or {}\n catalog = read_catalog_obj(catalog)\n if distribution_identifier:\n if 'distribution' not in filter_in:\n filter_in['distribution'] = {}\n filter_in['distribution']['identifier'] = distribution_identifier\n fields = []\n for distribution in get_distributions(catalog, filter_in, filter_out,\n only_time_series=only_time_series):\n distribution_fields = distribution.get('field', [])\n if isinstance(distribution_fields, list):\n for field in distribution_fields:\n if not only_time_series or field_is_time_series(field,\n distribution):\n field['dataset_identifier'] = distribution[\n 'dataset_identifier']\n field['distribution_identifier'] = distribution.get(\n 'identifier')\n fields.append(field)\n filtered_fields = [field for field in fields if _filter_dictionary(\n field, filter_in.get('field'), filter_out.get('field'))]\n if meta_field:\n return [field[meta_field] for field in filtered_fields if \n meta_field in field]\n else:\n return filtered_fields\n",
"role": "user"
},
{
"content": "get_fields",
"role": "assistant"
}
] |
def x(catalog, identifier=None, title=None):
msg = "Se requiere un 'identifier' o 'title' para buscar el dataset."
assert identifier or title, msg
catalog = read_catalog_obj(catalog)
if identifier:
try:
return _get_dataset_by_identifier(catalog, identifier)
except BaseException:
try:
catalog._build_index()
return _get_dataset_by_identifier(catalog, identifier)
except BaseException:
filtered_datasets = get_datasets(catalog, {'dataset': {
'identifier': identifier}})
elif title:
filtered_datasets = get_datasets(catalog, {'dataset': {'title': title}}
)
if len(filtered_datasets) > 1:
if identifier:
raise ce.DatasetIdRepetitionError(identifier, filtered_datasets)
elif title:
raise ce.DatasetTitleRepetitionError(title, filtered_datasets)
elif len(filtered_datasets) == 0:
return None
else:
return filtered_datasets[0]
|
get_dataset
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(catalog, identifier=None, title=None):\n msg = \"Se requiere un 'identifier' o 'title' para buscar el dataset.\"\n assert identifier or title, msg\n catalog = read_catalog_obj(catalog)\n if identifier:\n try:\n return _get_dataset_by_identifier(catalog, identifier)\n except BaseException:\n try:\n catalog._build_index()\n return _get_dataset_by_identifier(catalog, identifier)\n except BaseException:\n filtered_datasets = get_datasets(catalog, {'dataset': {\n 'identifier': identifier}})\n elif title:\n filtered_datasets = get_datasets(catalog, {'dataset': {'title': title}}\n )\n if len(filtered_datasets) > 1:\n if identifier:\n raise ce.DatasetIdRepetitionError(identifier, filtered_datasets)\n elif title:\n raise ce.DatasetTitleRepetitionError(title, filtered_datasets)\n elif len(filtered_datasets) == 0:\n return None\n else:\n return filtered_datasets[0]\n",
"role": "user"
},
{
"content": "get_dataset",
"role": "assistant"
}
] |
def x(catalog, identifier=None, title=None, dataset_identifier=None):
msg = "Se requiere un 'identifier' o 'title' para buscar el distribution."
assert identifier or title, msg
catalog = read_catalog_obj(catalog)
if identifier:
try:
return _get_distribution_by_identifier(catalog, identifier)
except BaseException:
try:
catalog._build_index()
return _get_distribution_by_identifier(catalog, identifier)
except BaseException:
filtered_distributions = get_distributions(catalog, {
'distribution': {'identifier': identifier}})
elif title and dataset_identifier:
filtered_distributions = get_distributions(catalog, {'dataset': {
'identifier': dataset_identifier}, 'distribution': {'title':
title}})
elif title:
filtered_distributions = get_distributions(catalog, {'distribution':
{'title': title}})
if len(filtered_distributions) > 1:
if identifier:
raise ce.DistributionIdRepetitionError(identifier,
filtered_distributions)
elif title and dataset_identifier:
raise ce.DistributionTitleRepetitionError(title,
filtered_distributions)
elif title:
return filtered_distributions
elif len(filtered_distributions) == 0:
return None
else:
return filtered_distributions[0]
|
get_distribution
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(catalog, identifier=None, title=None, dataset_identifier=None):\n msg = \"Se requiere un 'identifier' o 'title' para buscar el distribution.\"\n assert identifier or title, msg\n catalog = read_catalog_obj(catalog)\n if identifier:\n try:\n return _get_distribution_by_identifier(catalog, identifier)\n except BaseException:\n try:\n catalog._build_index()\n return _get_distribution_by_identifier(catalog, identifier)\n except BaseException:\n filtered_distributions = get_distributions(catalog, {\n 'distribution': {'identifier': identifier}})\n elif title and dataset_identifier:\n filtered_distributions = get_distributions(catalog, {'dataset': {\n 'identifier': dataset_identifier}, 'distribution': {'title':\n title}})\n elif title:\n filtered_distributions = get_distributions(catalog, {'distribution':\n {'title': title}})\n if len(filtered_distributions) > 1:\n if identifier:\n raise ce.DistributionIdRepetitionError(identifier,\n filtered_distributions)\n elif title and dataset_identifier:\n raise ce.DistributionTitleRepetitionError(title,\n filtered_distributions)\n elif title:\n return filtered_distributions\n elif len(filtered_distributions) == 0:\n return None\n else:\n return filtered_distributions[0]\n",
"role": "user"
},
{
"content": "get_distribution",
"role": "assistant"
}
] |
def x(catalog, identifier=None, title=None, distribution_identifier=None):
msg = "Se requiere un 'id' o 'title' para buscar el field."
assert identifier or title, msg
if identifier:
try:
return _get_field_by_identifier(catalog, identifier)
except BaseException:
try:
catalog._build_index()
return _get_field_by_identifier(catalog, identifier)
except BaseException:
filtered_fields = get_fields(catalog, {'field': {'id':
identifier}})
elif title and distribution_identifier:
filtered_fields = get_fields(catalog, {'distribution': {
'identifier': distribution_identifier}, 'field': {'title': title}})
elif title:
filtered_fields = get_fields(catalog, {'field': {'title': title}})
if len(filtered_fields) > 1:
if identifier:
raise ce.FieldIdRepetitionError(identifier, filtered_fields)
elif title and distribution_identifier:
raise ce.FieldTitleRepetitionError(title, filtered_fields)
elif title:
return filtered_fields
elif len(filtered_fields) == 0:
return None
else:
return filtered_fields[0]
|
get_field
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(catalog, identifier=None, title=None, distribution_identifier=None):\n msg = \"Se requiere un 'id' o 'title' para buscar el field.\"\n assert identifier or title, msg\n if identifier:\n try:\n return _get_field_by_identifier(catalog, identifier)\n except BaseException:\n try:\n catalog._build_index()\n return _get_field_by_identifier(catalog, identifier)\n except BaseException:\n filtered_fields = get_fields(catalog, {'field': {'id':\n identifier}})\n elif title and distribution_identifier:\n filtered_fields = get_fields(catalog, {'distribution': {\n 'identifier': distribution_identifier}, 'field': {'title': title}})\n elif title:\n filtered_fields = get_fields(catalog, {'field': {'title': title}})\n if len(filtered_fields) > 1:\n if identifier:\n raise ce.FieldIdRepetitionError(identifier, filtered_fields)\n elif title and distribution_identifier:\n raise ce.FieldTitleRepetitionError(title, filtered_fields)\n elif title:\n return filtered_fields\n elif len(filtered_fields) == 0:\n return None\n else:\n return filtered_fields[0]\n",
"role": "user"
},
{
"content": "get_field",
"role": "assistant"
}
] |
def x(catalog, exclude_meta_fields=None):
exclude_meta_fields = exclude_meta_fields or []
catalog_dict_copy = catalog.copy()
del catalog_dict_copy['dataset']
for excluded_meta_field in exclude_meta_fields:
catalog_dict_copy.pop(excluded_meta_field, None)
return catalog_dict_copy
|
get_catalog_metadata
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(catalog, exclude_meta_fields=None):\n exclude_meta_fields = exclude_meta_fields or []\n catalog_dict_copy = catalog.copy()\n del catalog_dict_copy['dataset']\n for excluded_meta_field in exclude_meta_fields:\n catalog_dict_copy.pop(excluded_meta_field, None)\n return catalog_dict_copy\n",
"role": "user"
},
{
"content": "get_catalog_metadata",
"role": "assistant"
}
] |
def x(dataset):
text_template = (
'\n# {title}\n\n{description}\n\n## Recursos del dataset\n\n{distributions}\n'
)
if 'distribution' in dataset:
distributions = ''.join(map(distribution_to_markdown, dataset[
'distribution']))
else:
distributions = ''
text = text_template.format(title=dataset['title'], description=dataset
.get('description', ''), distributions=distributions)
return text
|
dataset_to_markdown
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(dataset):\n text_template = (\n '\\n# {title}\\n\\n{description}\\n\\n## Recursos del dataset\\n\\n{distributions}\\n'\n )\n if 'distribution' in dataset:\n distributions = ''.join(map(distribution_to_markdown, dataset[\n 'distribution']))\n else:\n distributions = ''\n text = text_template.format(title=dataset['title'], description=dataset\n .get('description', ''), distributions=distributions)\n return text\n",
"role": "user"
},
{
"content": "dataset_to_markdown",
"role": "assistant"
}
] |
def x(distribution):
text_template = (
'\n### {title}\n\n{description}\n\n#### Campos del recurso\n\n{fields}\n'
)
if 'field' in distribution:
fields = '- ' + '\n- '.join(map(field_to_markdown, distribution[
'field']))
else:
fields = ''
text = text_template.format(title=distribution['title'], description=
distribution.get('description', ''), fields=fields)
return text
|
distribution_to_markdown
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(distribution):\n text_template = (\n '\\n### {title}\\n\\n{description}\\n\\n#### Campos del recurso\\n\\n{fields}\\n'\n )\n if 'field' in distribution:\n fields = '- ' + '\\n- '.join(map(field_to_markdown, distribution[\n 'field']))\n else:\n fields = ''\n text = text_template.format(title=distribution['title'], description=\n distribution.get('description', ''), fields=fields)\n return text\n",
"role": "user"
},
{
"content": "distribution_to_markdown",
"role": "assistant"
}
] |
def x(field):
if 'title' in field:
field_title = '**{}**'.format(field['title'])
else:
raise Exception('Es necesario un `title` para describir un campo.')
field_type = ' ({})'.format(field['type']) if 'type' in field else ''
field_desc = ': {}'.format(field['description']
) if 'description' in field else ''
text_template = '{title}{type}{description}'
text = text_template.format(title=field_title, type=field_type,
description=field_desc)
return text
|
field_to_markdown
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(field):\n if 'title' in field:\n field_title = '**{}**'.format(field['title'])\n else:\n raise Exception('Es necesario un `title` para describir un campo.')\n field_type = ' ({})'.format(field['type']) if 'type' in field else ''\n field_desc = ': {}'.format(field['description']\n ) if 'description' in field else ''\n text_template = '{title}{type}{description}'\n text = text_template.format(title=field_title, type=field_type,\n description=field_desc)\n return text\n",
"role": "user"
},
{
"content": "field_to_markdown",
"role": "assistant"
}
] |
def x(sequence, every=None, size=None, name='Items'):
from ipywidgets import IntProgress, HTML, VBox
from IPython.display import display
is_iterator = False
if size is None:
try:
size = len(sequence)
except TypeError:
is_iterator = True
if size is not None:
if every is None:
if size <= 200:
every = 1
else:
every = int(size / 200)
else:
assert every is not None, 'sequence is iterator, set every'
if is_iterator:
progress = IntProgress(min=0, max=1, value=1)
progress.bar_style = 'info'
else:
progress = IntProgress(min=0, max=size, value=0)
label = HTML()
box = VBox(children=[label, progress])
display(box)
index = 0
try:
for index, record in enumerate(sequence, 1):
if index == 1 or index % every == 0:
if is_iterator:
label.value = '{name}: {index} / ?'.format(name=name,
index=index)
else:
progress.value = index
label.value = u'{name}: {index} / {size}'.format(name=
name, index=index, size=size)
yield record
except Exception as e:
progress.bar_style = 'danger'
raise
else:
progress.bar_style = 'success'
progress.value = index
label.value = '{name}: {index}'.format(name=name, index=str(index or
'?'))
|
log_progress
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(sequence, every=None, size=None, name='Items'):\n from ipywidgets import IntProgress, HTML, VBox\n from IPython.display import display\n is_iterator = False\n if size is None:\n try:\n size = len(sequence)\n except TypeError:\n is_iterator = True\n if size is not None:\n if every is None:\n if size <= 200:\n every = 1\n else:\n every = int(size / 200)\n else:\n assert every is not None, 'sequence is iterator, set every'\n if is_iterator:\n progress = IntProgress(min=0, max=1, value=1)\n progress.bar_style = 'info'\n else:\n progress = IntProgress(min=0, max=size, value=0)\n label = HTML()\n box = VBox(children=[label, progress])\n display(box)\n index = 0\n try:\n for index, record in enumerate(sequence, 1):\n if index == 1 or index % every == 0:\n if is_iterator:\n label.value = '{name}: {index} / ?'.format(name=name,\n index=index)\n else:\n progress.value = index\n label.value = u'{name}: {index} / {size}'.format(name=\n name, index=index, size=size)\n yield record\n except Exception as e:\n progress.bar_style = 'danger'\n raise\n else:\n progress.bar_style = 'success'\n progress.value = index\n label.value = '{name}: {index}'.format(name=name, index=str(index or\n '?'))\n",
"role": "user"
},
{
"content": "log_progress",
"role": "assistant"
}
] |
def x():
try:
datajson_file = sys.argv[1]
dj_instance = DataJson()
bool_res = dj_instance.is_valid_catalog(datajson_file)
full_res = dj_instance.validate_catalog(datajson_file)
pretty_full_res = json.dumps(full_res, indent=4, separators=(',', ': ')
)
logger.info(bool_res)
logger.info(pretty_full_res)
except IndexError as errmsg:
format_str = (
'\n{}: pydatajson.py fue ejecutado como script sin proveer un argumento\n'
)
logger.error(format_str.format(errmsg))
|
main
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n try:\n datajson_file = sys.argv[1]\n dj_instance = DataJson()\n bool_res = dj_instance.is_valid_catalog(datajson_file)\n full_res = dj_instance.validate_catalog(datajson_file)\n pretty_full_res = json.dumps(full_res, indent=4, separators=(',', ': ')\n )\n logger.info(bool_res)\n logger.info(pretty_full_res)\n except IndexError as errmsg:\n format_str = (\n '\\n{}: pydatajson.py fue ejecutado como script sin proveer un argumento\\n'\n )\n logger.error(format_str.format(errmsg))\n",
"role": "user"
},
{
"content": "main",
"role": "assistant"
}
] |
def x(self):
datasets_index = {}
distributions_index = {}
fields_index = {}
for dataset_index, dataset in enumerate(self.datasets):
if 'identifier' in dataset:
datasets_index[dataset['identifier']] = {'dataset_index':
dataset_index}
for distribution_index, distribution in enumerate(dataset.get(
'distribution', [])):
if 'identifier' in distribution:
distributions_index[distribution['identifier']] = {
'distribution_index': distribution_index,
'dataset_identifier': dataset['identifier']}
for field_index, field in enumerate(distribution.get(
'field', [])):
if 'id' in field:
fields_index[field['id']] = {'field_index':
field_index, 'dataset_identifier': dataset[
'identifier'], 'distribution_identifier':
distribution['identifier']}
setattr(self, '_distributions_index', distributions_index)
setattr(self, '_datasets_index', datasets_index)
setattr(self, '_fields_index', fields_index)
|
build_index
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n datasets_index = {}\n distributions_index = {}\n fields_index = {}\n for dataset_index, dataset in enumerate(self.datasets):\n if 'identifier' in dataset:\n datasets_index[dataset['identifier']] = {'dataset_index':\n dataset_index}\n for distribution_index, distribution in enumerate(dataset.get(\n 'distribution', [])):\n if 'identifier' in distribution:\n distributions_index[distribution['identifier']] = {\n 'distribution_index': distribution_index,\n 'dataset_identifier': dataset['identifier']}\n for field_index, field in enumerate(distribution.get(\n 'field', [])):\n if 'id' in field:\n fields_index[field['id']] = {'field_index':\n field_index, 'dataset_identifier': dataset[\n 'identifier'], 'distribution_identifier':\n distribution['identifier']}\n setattr(self, '_distributions_index', distributions_index)\n setattr(self, '_datasets_index', datasets_index)\n setattr(self, '_fields_index', fields_index)\n",
"role": "user"
},
{
"content": "build_index",
"role": "assistant"
}
] |
def x(self, catalog=None):
catalog = catalog or self
return validation.is_valid_catalog(catalog, validator=self.validator)
|
is_valid_catalog
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, catalog=None):\n catalog = catalog or self\n return validation.is_valid_catalog(catalog, validator=self.validator)\n",
"role": "user"
},
{
"content": "is_valid_catalog",
"role": "assistant"
}
] |
def x(error, response):
new_response = response.copy()
new_response['status'] = 'ERROR'
error_info = {'error_code': 1 if error.validator == 'required' else 2,
'message': error.message, 'validator': error.validator,
'validator_value': error.validator_value, 'path': list(error.path),
'instance': None if error.validator == 'required' else error.instance}
if len(error.path) >= 2 and error.path[0] == 'dataset':
position = new_response['error']['dataset'][error.path[1]]
else:
position = new_response['error']['catalog']
position['status'] = 'ERROR'
position['errors'].append(error_info)
return new_response
|
update_validation_response
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(error, response):\n new_response = response.copy()\n new_response['status'] = 'ERROR'\n error_info = {'error_code': 1 if error.validator == 'required' else 2,\n 'message': error.message, 'validator': error.validator,\n 'validator_value': error.validator_value, 'path': list(error.path),\n 'instance': None if error.validator == 'required' else error.instance}\n if len(error.path) >= 2 and error.path[0] == 'dataset':\n position = new_response['error']['dataset'][error.path[1]]\n else:\n position = new_response['error']['catalog']\n position['status'] = 'ERROR'\n position['errors'].append(error_info)\n return new_response\n",
"role": "user"
},
{
"content": "update_validation_response",
"role": "assistant"
}
] |
def x(self, catalog=None, only_errors=False, fmt='dict', export_path=None):
catalog = catalog or self
return validation.validate_catalog(catalog, only_errors, fmt,
export_path, validator=self.validator)
|
validate_catalog
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, catalog=None, only_errors=False, fmt='dict', export_path=None):\n catalog = catalog or self\n return validation.validate_catalog(catalog, only_errors, fmt,\n export_path, validator=self.validator)\n",
"role": "user"
},
{
"content": "validate_catalog",
"role": "assistant"
}
] |
def x(cls, dataset, catalog_homepage=None):
publisher_name = helpers.traverse_dict(dataset, ['publisher', 'name'])
languages = cls._stringify_list(dataset.get('language'))
super_themes = cls._stringify_list(dataset.get('superTheme'))
themes = cls._stringify_list(dataset.get('theme'))
def x(distribution):
title = distribution.get('title')
url = distribution.get('downloadURL')
return '"{}": {}'.format(title, url)
distributions = [d for d in dataset['distribution'] if isinstance(d, dict)]
distributions_list = None
if isinstance(distributions, list):
distributions_strings = [_stringify_distribution(d) for d in
distributions]
distributions_list = '\n\n'.join(distributions_strings)
distributions_formats = json.dumps(helpers.
count_distribution_formats_dataset(dataset))
fields = OrderedDict()
fields['dataset_identifier'] = dataset.get('identifier')
fields['dataset_title'] = dataset.get('title')
fields['dataset_accrualPeriodicity'] = dataset.get('accrualPeriodicity')
fields['dataset_description'] = dataset.get('description')
fields['dataset_publisher_name'] = publisher_name
fields['dataset_superTheme'] = super_themes
fields['dataset_theme'] = themes
fields['dataset_landingPage'] = dataset.get('landingPage')
fields['dataset_landingPage_generated'] = cls._generate_landingPage(
catalog_homepage, dataset.get('identifier'))
fields['dataset_issued'] = dataset.get('issued')
fields['dataset_modified'] = dataset.get('modified')
fields['distributions_formats'] = distributions_formats
fields['distributions_list'] = distributions_list
fields['dataset_license'] = dataset.get('license')
fields['dataset_language'] = languages
fields['dataset_spatial'] = dataset.get('spatial')
fields['dataset_temporal'] = dataset.get('temporal')
return fields
|
dataset_report_helper
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, dataset, catalog_homepage=None):\n publisher_name = helpers.traverse_dict(dataset, ['publisher', 'name'])\n languages = cls._stringify_list(dataset.get('language'))\n super_themes = cls._stringify_list(dataset.get('superTheme'))\n themes = cls._stringify_list(dataset.get('theme'))\n\n def x(distribution):\n title = distribution.get('title')\n url = distribution.get('downloadURL')\n return '\"{}\": {}'.format(title, url)\n distributions = [d for d in dataset['distribution'] if isinstance(d, dict)]\n distributions_list = None\n if isinstance(distributions, list):\n distributions_strings = [_stringify_distribution(d) for d in\n distributions]\n distributions_list = '\\n\\n'.join(distributions_strings)\n distributions_formats = json.dumps(helpers.\n count_distribution_formats_dataset(dataset))\n fields = OrderedDict()\n fields['dataset_identifier'] = dataset.get('identifier')\n fields['dataset_title'] = dataset.get('title')\n fields['dataset_accrualPeriodicity'] = dataset.get('accrualPeriodicity')\n fields['dataset_description'] = dataset.get('description')\n fields['dataset_publisher_name'] = publisher_name\n fields['dataset_superTheme'] = super_themes\n fields['dataset_theme'] = themes\n fields['dataset_landingPage'] = dataset.get('landingPage')\n fields['dataset_landingPage_generated'] = cls._generate_landingPage(\n catalog_homepage, dataset.get('identifier'))\n fields['dataset_issued'] = dataset.get('issued')\n fields['dataset_modified'] = dataset.get('modified')\n fields['distributions_formats'] = distributions_formats\n fields['distributions_list'] = distributions_list\n fields['dataset_license'] = dataset.get('license')\n fields['dataset_language'] = languages\n fields['dataset_spatial'] = dataset.get('spatial')\n fields['dataset_temporal'] = dataset.get('temporal')\n return fields\n",
"role": "user"
},
{
"content": "dataset_report_helper",
"role": "assistant"
}
] |
def x(catalog, catalog_validation, url, catalog_id, catalog_org):
fields = OrderedDict()
fields['catalog_metadata_url'] = url
fields['catalog_federation_id'] = catalog_id
fields['catalog_federation_org'] = catalog_org
fields['catalog_title'] = catalog.get('title')
fields['catalog_description'] = catalog.get('description')
fields['valid_catalog_metadata'] = 1 if catalog_validation['status'
] == 'OK' else 0
return fields
|
catalog_report_helper
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(catalog, catalog_validation, url, catalog_id, catalog_org):\n fields = OrderedDict()\n fields['catalog_metadata_url'] = url\n fields['catalog_federation_id'] = catalog_id\n fields['catalog_federation_org'] = catalog_org\n fields['catalog_title'] = catalog.get('title')\n fields['catalog_description'] = catalog.get('description')\n fields['valid_catalog_metadata'] = 1 if catalog_validation['status'\n ] == 'OK' else 0\n return fields\n",
"role": "user"
},
{
"content": "catalog_report_helper",
"role": "assistant"
}
] |
def x(self, dataset, dataset_validation, dataset_index, catalog_fields,
harvest='none', report=None, catalog_homepage=None):
good_qa, notes = self._dataset_qa(dataset)
dataset_report = OrderedDict(catalog_fields)
dataset_report['valid_dataset_metadata'] = 1 if dataset_validation['status'
] == 'OK' else 0
dataset_report['dataset_index'] = dataset_index
if isinstance(harvest, list):
dataset_report['harvest'] = 1 if dataset['title'] in harvest else 0
elif harvest == 'all':
dataset_report['harvest'] = 1
elif harvest == 'none':
dataset_report['harvest'] = 0
elif harvest == 'valid':
dataset_report['harvest'] = int(dataset_report[
'valid_dataset_metadata'])
elif harvest == 'good':
valid_metadata = int(dataset_report['valid_dataset_metadata']) == 1
dataset_report['harvest'] = 1 if valid_metadata and good_qa else 0
elif harvest == 'report':
if not report:
raise ValueError(
"""
Usted eligio 'report' como criterio de harvest, pero no proveyo un valor para
el argumento 'report'. Por favor, intentelo nuevamente."""
)
datasets_to_harvest = self._extract_datasets_to_harvest(report)
dataset_report['harvest'] = 1 if (dataset_report[
'catalog_metadata_url'], dataset.get('title')
) in datasets_to_harvest else 0
else:
raise ValueError(
"""
{} no es un criterio de harvest reconocido. Pruebe con 'all', 'none', 'valid' o
'report'."""
.format(harvest))
dataset_report.update(self._dataset_report_helper(dataset,
catalog_homepage=catalog_homepage))
dataset_report['notas'] = '\n\n'.join(notes)
return dataset_report.copy()
|
dataset_report
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, dataset, dataset_validation, dataset_index, catalog_fields,\n harvest='none', report=None, catalog_homepage=None):\n good_qa, notes = self._dataset_qa(dataset)\n dataset_report = OrderedDict(catalog_fields)\n dataset_report['valid_dataset_metadata'] = 1 if dataset_validation['status'\n ] == 'OK' else 0\n dataset_report['dataset_index'] = dataset_index\n if isinstance(harvest, list):\n dataset_report['harvest'] = 1 if dataset['title'] in harvest else 0\n elif harvest == 'all':\n dataset_report['harvest'] = 1\n elif harvest == 'none':\n dataset_report['harvest'] = 0\n elif harvest == 'valid':\n dataset_report['harvest'] = int(dataset_report[\n 'valid_dataset_metadata'])\n elif harvest == 'good':\n valid_metadata = int(dataset_report['valid_dataset_metadata']) == 1\n dataset_report['harvest'] = 1 if valid_metadata and good_qa else 0\n elif harvest == 'report':\n if not report:\n raise ValueError(\n \"\"\"\nUsted eligio 'report' como criterio de harvest, pero no proveyo un valor para\nel argumento 'report'. Por favor, intentelo nuevamente.\"\"\"\n )\n datasets_to_harvest = self._extract_datasets_to_harvest(report)\n dataset_report['harvest'] = 1 if (dataset_report[\n 'catalog_metadata_url'], dataset.get('title')\n ) in datasets_to_harvest else 0\n else:\n raise ValueError(\n \"\"\"\n{} no es un criterio de harvest reconocido. Pruebe con 'all', 'none', 'valid' o\n'report'.\"\"\"\n .format(harvest))\n dataset_report.update(self._dataset_report_helper(dataset,\n catalog_homepage=catalog_homepage))\n dataset_report['notas'] = '\\n\\n'.join(notes)\n return dataset_report.copy()\n",
"role": "user"
},
{
"content": "dataset_report",
"role": "assistant"
}
] |
def x(self, dataset):
has_data_format = helpers.dataset_has_data_distributions(dataset)
has_title = 'title' in dataset
has_description = 'description' in dataset
if has_title:
has_min_title = len(dataset['title']) >= MIN_DATASET_TITLE
else:
has_min_title = False
if has_description:
has_min_desc = len(dataset['description']) >= MIN_DATASET_DESCRIPTION
else:
has_min_desc = False
harvest = (has_title and has_description and has_data_format and
has_min_title and has_min_desc)
notes = []
if not has_data_format:
notes.append('No tiene distribuciones con datos.')
if not has_title:
notes.append('Dataset sin titulo {}'.format(dataset))
elif not has_min_title:
notes.append('Titulo tiene menos de {} caracteres'.format(
MIN_DATASET_TITLE))
if not has_description:
notes.append('Dataset sin descripcion {}'.format(dataset))
elif not has_min_desc:
notes.append('Descripcion tiene menos de {} caracteres'.format(
MIN_DATASET_DESCRIPTION))
return harvest, notes
|
dataset_qa
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, dataset):\n has_data_format = helpers.dataset_has_data_distributions(dataset)\n has_title = 'title' in dataset\n has_description = 'description' in dataset\n if has_title:\n has_min_title = len(dataset['title']) >= MIN_DATASET_TITLE\n else:\n has_min_title = False\n if has_description:\n has_min_desc = len(dataset['description']) >= MIN_DATASET_DESCRIPTION\n else:\n has_min_desc = False\n harvest = (has_title and has_description and has_data_format and\n has_min_title and has_min_desc)\n notes = []\n if not has_data_format:\n notes.append('No tiene distribuciones con datos.')\n if not has_title:\n notes.append('Dataset sin titulo {}'.format(dataset))\n elif not has_min_title:\n notes.append('Titulo tiene menos de {} caracteres'.format(\n MIN_DATASET_TITLE))\n if not has_description:\n notes.append('Dataset sin descripcion {}'.format(dataset))\n elif not has_min_desc:\n notes.append('Descripcion tiene menos de {} caracteres'.format(\n MIN_DATASET_DESCRIPTION))\n return harvest, notes\n",
"role": "user"
},
{
"content": "dataset_qa",
"role": "assistant"
}
] |
def x(self, catalog, harvest='none', report=None, catalog_id=None,
catalog_homepage=None, catalog_org=None):
url = catalog if isinstance(catalog, string_types) else None
catalog = readers.read_catalog(catalog)
validation = self.validate_catalog(catalog)
catalog_validation = validation['error']['catalog']
datasets_validations = validation['error']['dataset']
catalog_fields = self._catalog_report_helper(catalog,
catalog_validation, url, catalog_id, catalog_org)
if 'dataset' in catalog and isinstance(catalog['dataset'], list):
datasets = [(d if isinstance(d, dict) else {}) for d in catalog[
'dataset']]
else:
datasets = []
catalog_report = [self._dataset_report(dataset, datasets_validations[
index], index, catalog_fields, harvest, report=report,
catalog_homepage=catalog_homepage) for index, dataset in enumerate(
datasets)]
return catalog_report
|
catalog_report
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, catalog, harvest='none', report=None, catalog_id=None,\n catalog_homepage=None, catalog_org=None):\n url = catalog if isinstance(catalog, string_types) else None\n catalog = readers.read_catalog(catalog)\n validation = self.validate_catalog(catalog)\n catalog_validation = validation['error']['catalog']\n datasets_validations = validation['error']['dataset']\n catalog_fields = self._catalog_report_helper(catalog,\n catalog_validation, url, catalog_id, catalog_org)\n if 'dataset' in catalog and isinstance(catalog['dataset'], list):\n datasets = [(d if isinstance(d, dict) else {}) for d in catalog[\n 'dataset']]\n else:\n datasets = []\n catalog_report = [self._dataset_report(dataset, datasets_validations[\n index], index, catalog_fields, harvest, report=report,\n catalog_homepage=catalog_homepage) for index, dataset in enumerate(\n datasets)]\n return catalog_report\n",
"role": "user"
},
{
"content": "catalog_report",
"role": "assistant"
}
] |
def x(self, catalogs, harvest='valid', report=None, export_path=None,
catalog_ids=None, catalog_homepages=None, catalog_orgs=None):
assert isinstance(catalogs, string_types + (dict, list))
if isinstance(catalogs, list):
assert not catalog_ids or len(catalogs) == len(catalog_ids)
assert not catalog_orgs or len(catalogs) == len(catalog_orgs)
assert not catalog_homepages or len(catalogs) == len(catalog_homepages)
if isinstance(catalogs, string_types + (dict,)):
catalogs = [catalogs]
catalogs = list(map(readers.read_catalog_obj, catalogs))
if not catalog_ids:
catalog_ids = []
for catalog in catalogs:
catalog_ids.append(catalog.get('identifier', ''))
if isinstance(catalog_ids, string_types + (dict,)):
catalog_ids = [catalog_ids] * len(catalogs)
if not catalog_orgs or isinstance(catalog_orgs, string_types + (dict,)):
catalog_orgs = [catalog_orgs] * len(catalogs)
if not catalog_homepages or isinstance(catalog_homepages, string_types +
(dict,)):
catalog_homepages = [catalog_homepages] * len(catalogs)
catalogs_reports = [self.catalog_report(catalog, harvest, report,
catalog_id=catalog_id, catalog_homepage=catalog_homepage,
catalog_org=catalog_org) for catalog, catalog_id, catalog_org,
catalog_homepage in zip(catalogs, catalog_ids, catalog_orgs,
catalog_homepages)]
full_report = []
for report in catalogs_reports:
full_report.extend(report)
if export_path:
alignment = Alignment(wrap_text=True, shrink_to_fit=True, vertical=
'center')
column_styles = {'dataset_title': {'width': 35},
'dataset_description': {'width': 35}, 'dataset_publisher_name':
{'width': 35}, 'dataset_issued': {'width': 20},
'dataset_modified': {'width': 20}, 'distributions_formats': {
'width': 15}, 'distributions_list': {'width': 90}, 'notas': {
'width': 50}}
cell_styles = [{'alignment': Alignment(vertical='center')}, {'row':
1, 'font': Font(bold=True)}, {'col': 'dataset_title',
'alignment': alignment}, {'col': 'dataset_description',
'alignment': alignment}, {'col': 'dataset_publisher_name',
'alignment': alignment}, {'col': 'distributions_formats',
'alignment': alignment}, {'col': 'distributions_list',
'alignment': alignment}, {'col': 'notas', 'alignment': alignment}]
writers.write_table(table=full_report, path=export_path,
column_styles=column_styles, cell_styles=cell_styles)
else:
return full_report
|
generate_datasets_report
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, catalogs, harvest='valid', report=None, export_path=None,\n catalog_ids=None, catalog_homepages=None, catalog_orgs=None):\n assert isinstance(catalogs, string_types + (dict, list))\n if isinstance(catalogs, list):\n assert not catalog_ids or len(catalogs) == len(catalog_ids)\n assert not catalog_orgs or len(catalogs) == len(catalog_orgs)\n assert not catalog_homepages or len(catalogs) == len(catalog_homepages)\n if isinstance(catalogs, string_types + (dict,)):\n catalogs = [catalogs]\n catalogs = list(map(readers.read_catalog_obj, catalogs))\n if not catalog_ids:\n catalog_ids = []\n for catalog in catalogs:\n catalog_ids.append(catalog.get('identifier', ''))\n if isinstance(catalog_ids, string_types + (dict,)):\n catalog_ids = [catalog_ids] * len(catalogs)\n if not catalog_orgs or isinstance(catalog_orgs, string_types + (dict,)):\n catalog_orgs = [catalog_orgs] * len(catalogs)\n if not catalog_homepages or isinstance(catalog_homepages, string_types +\n (dict,)):\n catalog_homepages = [catalog_homepages] * len(catalogs)\n catalogs_reports = [self.catalog_report(catalog, harvest, report,\n catalog_id=catalog_id, catalog_homepage=catalog_homepage,\n catalog_org=catalog_org) for catalog, catalog_id, catalog_org,\n catalog_homepage in zip(catalogs, catalog_ids, catalog_orgs,\n catalog_homepages)]\n full_report = []\n for report in catalogs_reports:\n full_report.extend(report)\n if export_path:\n alignment = Alignment(wrap_text=True, shrink_to_fit=True, vertical=\n 'center')\n column_styles = {'dataset_title': {'width': 35},\n 'dataset_description': {'width': 35}, 'dataset_publisher_name':\n {'width': 35}, 'dataset_issued': {'width': 20},\n 'dataset_modified': {'width': 20}, 'distributions_formats': {\n 'width': 15}, 'distributions_list': {'width': 90}, 'notas': {\n 'width': 50}}\n cell_styles = [{'alignment': Alignment(vertical='center')}, {'row':\n 1, 'font': Font(bold=True)}, {'col': 'dataset_title',\n 'alignment': alignment}, {'col': 'dataset_description',\n 'alignment': alignment}, {'col': 'dataset_publisher_name',\n 'alignment': alignment}, {'col': 'distributions_formats',\n 'alignment': alignment}, {'col': 'distributions_list',\n 'alignment': alignment}, {'col': 'notas', 'alignment': alignment}]\n writers.write_table(table=full_report, path=export_path,\n column_styles=column_styles, cell_styles=cell_styles)\n else:\n return full_report\n",
"role": "user"
},
{
"content": "generate_datasets_report",
"role": "assistant"
}
] |
def x(self, catalogs=None, harvest='valid', report=None, export_path=None):
if isinstance(catalogs, string_types + (dict,)):
catalogs = [catalogs]
if harvest == 'report':
if not report:
raise ValueError(
"""
Usted eligio 'report' como criterio de harvest, pero no proveyo un valor para
el argumento 'report'. Por favor, intentelo nuevamente."""
)
datasets_report = readers.read_table(report)
elif harvest in ['valid', 'none', 'all']:
assert isinstance(catalogs, string_types + (dict, list))
datasets_report = self.generate_datasets_report(catalogs, harvest)
else:
raise ValueError(
"""
{} no es un criterio de harvest reconocido. Pruebe con 'all', 'none', 'valid' o
'report'."""
.format(harvest))
config_keys = ['catalog_federation_id', 'catalog_federation_org',
'dataset_identifier']
config_translator = {'catalog_federation_id': 'catalog_id',
'catalog_federation_org': 'dataset_organization'}
translated_keys = [config_translator.get(k, k) for k in config_keys]
harvester_config = [OrderedDict([(config_translator.get(k, k), v) for k,
v in dataset.items() if k in config_keys]) for dataset in
datasets_report if bool(int(dataset['harvest']))]
required_keys = set(translated_keys)
for row in harvester_config:
row_keys = set(row.keys())
msg = 'Hay una fila con claves {} y debe tener claves {}'.format(
row_keys, required_keys)
assert row_keys == required_keys, msg
if export_path:
writers.write_table(harvester_config, export_path)
else:
return harvester_config
|
generate_harvester_config
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, catalogs=None, harvest='valid', report=None, export_path=None):\n if isinstance(catalogs, string_types + (dict,)):\n catalogs = [catalogs]\n if harvest == 'report':\n if not report:\n raise ValueError(\n \"\"\"\nUsted eligio 'report' como criterio de harvest, pero no proveyo un valor para\nel argumento 'report'. Por favor, intentelo nuevamente.\"\"\"\n )\n datasets_report = readers.read_table(report)\n elif harvest in ['valid', 'none', 'all']:\n assert isinstance(catalogs, string_types + (dict, list))\n datasets_report = self.generate_datasets_report(catalogs, harvest)\n else:\n raise ValueError(\n \"\"\"\n{} no es un criterio de harvest reconocido. Pruebe con 'all', 'none', 'valid' o\n'report'.\"\"\"\n .format(harvest))\n config_keys = ['catalog_federation_id', 'catalog_federation_org',\n 'dataset_identifier']\n config_translator = {'catalog_federation_id': 'catalog_id',\n 'catalog_federation_org': 'dataset_organization'}\n translated_keys = [config_translator.get(k, k) for k in config_keys]\n harvester_config = [OrderedDict([(config_translator.get(k, k), v) for k,\n v in dataset.items() if k in config_keys]) for dataset in\n datasets_report if bool(int(dataset['harvest']))]\n required_keys = set(translated_keys)\n for row in harvester_config:\n row_keys = set(row.keys())\n msg = 'Hay una fila con claves {} y debe tener claves {}'.format(\n row_keys, required_keys)\n assert row_keys == required_keys, msg\n if export_path:\n writers.write_table(harvester_config, export_path)\n else:\n return harvester_config\n",
"role": "user"
},
{
"content": "generate_harvester_config",
"role": "assistant"
}
] |
def x(self, catalogs, harvest='all', report=None, export_path=None):
assert isinstance(catalogs, string_types + (dict, list))
if isinstance(catalogs, string_types + (dict,)):
catalogs = [catalogs]
harvestable_catalogs = [readers.read_catalog(c) for c in catalogs]
catalogs_urls = [(catalog if isinstance(catalog, string_types) else
None) for catalog in catalogs]
if harvest == 'all':
pass
elif harvest == 'none':
for catalog in harvestable_catalogs:
catalog['dataset'] = []
elif harvest == 'valid':
report = self.generate_datasets_report(catalogs, harvest)
return self.generate_harvestable_catalogs(catalogs=catalogs,
harvest='report', report=report, export_path=export_path)
elif harvest == 'report':
if not report:
raise ValueError(
"""
Usted eligio 'report' como criterio de harvest, pero no proveyo un valor para
el argumento 'report'. Por favor, intentelo nuevamente."""
)
datasets_to_harvest = self._extract_datasets_to_harvest(report)
for idx_cat, catalog in enumerate(harvestable_catalogs):
catalog_url = catalogs_urls[idx_cat]
if 'dataset' in catalog and isinstance(catalog['dataset'], list):
catalog['dataset'] = [dataset for dataset in catalog[
'dataset'] if (catalog_url, dataset.get('title')) in
datasets_to_harvest]
else:
catalog['dataset'] = []
else:
raise ValueError(
"""
{} no es un criterio de harvest reconocido. Pruebe con 'all', 'none', 'valid' o
'report'."""
.format(harvest))
if export_path and os.path.isdir(export_path):
for idx, catalog in enumerate(harvestable_catalogs):
filename = os.path.join(export_path, 'catalog_{}'.format(idx))
writers.write_json(catalog, filename)
elif export_path:
writers.write_json(harvestable_catalogs, export_path)
else:
return harvestable_catalogs
|
generate_harvestable_catalogs
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, catalogs, harvest='all', report=None, export_path=None):\n assert isinstance(catalogs, string_types + (dict, list))\n if isinstance(catalogs, string_types + (dict,)):\n catalogs = [catalogs]\n harvestable_catalogs = [readers.read_catalog(c) for c in catalogs]\n catalogs_urls = [(catalog if isinstance(catalog, string_types) else\n None) for catalog in catalogs]\n if harvest == 'all':\n pass\n elif harvest == 'none':\n for catalog in harvestable_catalogs:\n catalog['dataset'] = []\n elif harvest == 'valid':\n report = self.generate_datasets_report(catalogs, harvest)\n return self.generate_harvestable_catalogs(catalogs=catalogs,\n harvest='report', report=report, export_path=export_path)\n elif harvest == 'report':\n if not report:\n raise ValueError(\n \"\"\"\nUsted eligio 'report' como criterio de harvest, pero no proveyo un valor para\nel argumento 'report'. Por favor, intentelo nuevamente.\"\"\"\n )\n datasets_to_harvest = self._extract_datasets_to_harvest(report)\n for idx_cat, catalog in enumerate(harvestable_catalogs):\n catalog_url = catalogs_urls[idx_cat]\n if 'dataset' in catalog and isinstance(catalog['dataset'], list):\n catalog['dataset'] = [dataset for dataset in catalog[\n 'dataset'] if (catalog_url, dataset.get('title')) in\n datasets_to_harvest]\n else:\n catalog['dataset'] = []\n else:\n raise ValueError(\n \"\"\"\n{} no es un criterio de harvest reconocido. Pruebe con 'all', 'none', 'valid' o\n'report'.\"\"\"\n .format(harvest))\n if export_path and os.path.isdir(export_path):\n for idx, catalog in enumerate(harvestable_catalogs):\n filename = os.path.join(export_path, 'catalog_{}'.format(idx))\n writers.write_json(catalog, filename)\n elif export_path:\n writers.write_json(harvestable_catalogs, export_path)\n else:\n return harvestable_catalogs\n",
"role": "user"
},
{
"content": "generate_harvestable_catalogs",
"role": "assistant"
}
] |
def x(self, catalog, export_path=None):
catalog = readers.read_catalog(catalog)
if 'dataset' in catalog and isinstance(catalog['dataset'], list):
datasets = [(d if isinstance(d, dict) else {}) for d in catalog[
'dataset']]
else:
datasets = []
validation = self.validate_catalog(catalog)['error']['dataset']
def x(index, dataset):
info = OrderedDict()
info['indice'] = index
info['titulo'] = dataset.get('title')
info['identificador'] = dataset.get('identifier')
info['estado_metadatos'] = validation[index]['status']
info['cant_errores'] = len(validation[index]['errors'])
info['cant_distribuciones'] = len(dataset['distribution'])
return info
summary = [info_dataset(i, ds) for i, ds in enumerate(datasets)]
if export_path:
writers.write_table(summary, export_path)
else:
return summary
|
generate_datasets_summary
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, catalog, export_path=None):\n catalog = readers.read_catalog(catalog)\n if 'dataset' in catalog and isinstance(catalog['dataset'], list):\n datasets = [(d if isinstance(d, dict) else {}) for d in catalog[\n 'dataset']]\n else:\n datasets = []\n validation = self.validate_catalog(catalog)['error']['dataset']\n\n def x(index, dataset):\n info = OrderedDict()\n info['indice'] = index\n info['titulo'] = dataset.get('title')\n info['identificador'] = dataset.get('identifier')\n info['estado_metadatos'] = validation[index]['status']\n info['cant_errores'] = len(validation[index]['errors'])\n info['cant_distribuciones'] = len(dataset['distribution'])\n return info\n summary = [info_dataset(i, ds) for i, ds in enumerate(datasets)]\n if export_path:\n writers.write_table(summary, export_path)\n else:\n return summary\n",
"role": "user"
},
{
"content": "generate_datasets_summary",
"role": "assistant"
}
] |
def x(cls, report):
assert isinstance(report, string_types + (list,))
if isinstance(report, list) and all([(isinstance(x, tuple) and len(x) ==
2) for x in report]):
return report
table = readers.read_table(report)
table_keys = table[0].keys()
expected_keys = ['catalog_metadata_url', 'dataset_title',
'dataset_accrualPeriodicity']
for key in expected_keys:
if key not in table_keys:
raise KeyError(
"""
El reporte no contiene la clave obligatoria {}. Pruebe con otro archivo.
"""
.format(key))
if 'harvest' in table_keys:
datasets_to_harvest = [(row['catalog_metadata_url'], row[
'dataset_title']) for row in table if int(row['harvest'])]
else:
datasets_to_harvest = [(row['catalog_metadata_url'], row[
'dataset_title']) for row in table]
return datasets_to_harvest
|
extract_datasets_to_harvest
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, report):\n assert isinstance(report, string_types + (list,))\n if isinstance(report, list) and all([(isinstance(x, tuple) and len(x) ==\n 2) for x in report]):\n return report\n table = readers.read_table(report)\n table_keys = table[0].keys()\n expected_keys = ['catalog_metadata_url', 'dataset_title',\n 'dataset_accrualPeriodicity']\n for key in expected_keys:\n if key not in table_keys:\n raise KeyError(\n \"\"\"\nEl reporte no contiene la clave obligatoria {}. Pruebe con otro archivo.\n\"\"\"\n .format(key))\n if 'harvest' in table_keys:\n datasets_to_harvest = [(row['catalog_metadata_url'], row[\n 'dataset_title']) for row in table if int(row['harvest'])]\n else:\n datasets_to_harvest = [(row['catalog_metadata_url'], row[\n 'dataset_title']) for row in table]\n return datasets_to_harvest\n",
"role": "user"
},
{
"content": "extract_datasets_to_harvest",
"role": "assistant"
}
] |
def x(self, dataset_identifier, export_path=None, catalog=None):
catalog = DataJson(catalog) or self
dataset = catalog.get_dataset(dataset_identifier)
text = documentation.dataset_to_markdown(dataset)
if export_path:
with open(export_path, 'wb') as f:
f.write(text.encode('utf-8'))
else:
return text
|
generate_dataset_documentation
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, dataset_identifier, export_path=None, catalog=None):\n catalog = DataJson(catalog) or self\n dataset = catalog.get_dataset(dataset_identifier)\n text = documentation.dataset_to_markdown(dataset)\n if export_path:\n with open(export_path, 'wb') as f:\n f.write(text.encode('utf-8'))\n else:\n return text\n",
"role": "user"
},
{
"content": "generate_dataset_documentation",
"role": "assistant"
}
] |
def x(path: str) ->Callable:
module_path, _, class_name = path.rpartition('.')
return getattr(import_module(module_path), class_name)
|
import_by_path
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(path: str) ->Callable:\n module_path, _, class_name = path.rpartition('.')\n return getattr(import_module(module_path), class_name)\n",
"role": "user"
},
{
"content": "import_by_path",
"role": "assistant"
}
] |
def x(catalog, default_values=None, catalog_format=None):
unknown_catalog_repr_msg = (
"""No se pudo inferir una representación válida de un catálogo del
parámetro provisto: {}."""
.format(catalog))
assert isinstance(catalog, string_types + (dict,)
), unknown_catalog_repr_msg
if isinstance(catalog, dict):
catalog_dict = catalog
else:
suffix = catalog.split('.')[-1].strip('/')
if suffix in ('json', 'xlsx'):
catalog_format = catalog_format or suffix
if catalog_format == 'xlsx':
try:
catalog_dict = read_xlsx_catalog(catalog)
except (openpyxl_exceptions + (ValueError, AssertionError,
IOError, BadZipfile)) as e:
raise ce.NonParseableCatalog(catalog, str(e))
elif catalog_format == 'json':
try:
catalog_dict = read_json(catalog)
except (ValueError, TypeError, IOError) as e:
raise ce.NonParseableCatalog(catalog, str(e))
elif catalog_format == 'ckan':
catalog_dict = read_ckan_catalog(catalog)
else:
catalog_dict = read_suffixless_catalog(catalog)
if default_values:
_apply_default_values(catalog_dict, default_values)
return catalog_dict
|
read_catalog
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(catalog, default_values=None, catalog_format=None):\n unknown_catalog_repr_msg = (\n \"\"\"No se pudo inferir una representación válida de un catálogo del\n parámetro provisto: {}.\"\"\"\n .format(catalog))\n assert isinstance(catalog, string_types + (dict,)\n ), unknown_catalog_repr_msg\n if isinstance(catalog, dict):\n catalog_dict = catalog\n else:\n suffix = catalog.split('.')[-1].strip('/')\n if suffix in ('json', 'xlsx'):\n catalog_format = catalog_format or suffix\n if catalog_format == 'xlsx':\n try:\n catalog_dict = read_xlsx_catalog(catalog)\n except (openpyxl_exceptions + (ValueError, AssertionError,\n IOError, BadZipfile)) as e:\n raise ce.NonParseableCatalog(catalog, str(e))\n elif catalog_format == 'json':\n try:\n catalog_dict = read_json(catalog)\n except (ValueError, TypeError, IOError) as e:\n raise ce.NonParseableCatalog(catalog, str(e))\n elif catalog_format == 'ckan':\n catalog_dict = read_ckan_catalog(catalog)\n else:\n catalog_dict = read_suffixless_catalog(catalog)\n if default_values:\n _apply_default_values(catalog_dict, default_values)\n return catalog_dict\n",
"role": "user"
},
{
"content": "read_catalog",
"role": "assistant"
}
] |
def x(catalog, default_values):
for field, default_value in iteritems(default_values):
class_metadata = field.split('_')[0]
field_json_path = field.split('_')[1:]
if class_metadata == 'catalog':
_set_default_value(catalog, field_json_path, default_value)
elif class_metadata == 'dataset':
for dataset in catalog['dataset']:
_set_default_value(dataset, field_json_path, default_value)
elif class_metadata == 'distribution':
for dataset in catalog['dataset']:
for distribution in dataset['distribution']:
_set_default_value(distribution, field_json_path,
default_value)
elif class_metadata == 'field':
for dataset in catalog['dataset']:
for distribution in dataset['distribution']:
if distribution.get('field'):
for field in distribution['field']:
_set_default_value(field, field_json_path,
default_value)
|
apply_default_values
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(catalog, default_values):\n for field, default_value in iteritems(default_values):\n class_metadata = field.split('_')[0]\n field_json_path = field.split('_')[1:]\n if class_metadata == 'catalog':\n _set_default_value(catalog, field_json_path, default_value)\n elif class_metadata == 'dataset':\n for dataset in catalog['dataset']:\n _set_default_value(dataset, field_json_path, default_value)\n elif class_metadata == 'distribution':\n for dataset in catalog['dataset']:\n for distribution in dataset['distribution']:\n _set_default_value(distribution, field_json_path,\n default_value)\n elif class_metadata == 'field':\n for dataset in catalog['dataset']:\n for distribution in dataset['distribution']:\n if distribution.get('field'):\n for field in distribution['field']:\n _set_default_value(field, field_json_path,\n default_value)\n",
"role": "user"
},
{
"content": "apply_default_values",
"role": "assistant"
}
] |
def x(dict_obj, keys, value):
variable = dict_obj
if len(keys) == 1:
if not variable.get(keys[0]):
variable[keys[0]] = value
else:
for idx, field in enumerate(keys):
if idx < len(keys) - 1:
variable = variable[field]
if not variable.get(keys[-1]):
variable[keys[-1]] = value
|
set_default_value
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(dict_obj, keys, value):\n variable = dict_obj\n if len(keys) == 1:\n if not variable.get(keys[0]):\n variable[keys[0]] = value\n else:\n for idx, field in enumerate(keys):\n if idx < len(keys) - 1:\n variable = variable[field]\n if not variable.get(keys[-1]):\n variable[keys[-1]] = value\n",
"role": "user"
},
{
"content": "set_default_value",
"role": "assistant"
}
] |
def x(json_path_or_url):
assert isinstance(json_path_or_url, string_types)
parsed_url = urlparse(json_path_or_url)
if parsed_url.scheme in ['http', 'https']:
res = requests.get(json_path_or_url, verify=False)
json_dict = json.loads(res.content, encoding='utf-8')
else:
path_start = parsed_url.path.split('.')[0]
if path_start == 'www' or path_start.isdigit():
warnings.warn(
"""
La dirección del archivo JSON ingresada parece una URL, pero no comienza
con 'http' o 'https' así que será tratada como una dirección local. ¿Tal vez
quiso decir 'http://{}'?"""
.format(json_path_or_url).encode('utf-8'))
with io.open(json_path_or_url, encoding='utf-8') as json_file:
json_dict = json.load(json_file)
return json_dict
|
read_json
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(json_path_or_url):\n assert isinstance(json_path_or_url, string_types)\n parsed_url = urlparse(json_path_or_url)\n if parsed_url.scheme in ['http', 'https']:\n res = requests.get(json_path_or_url, verify=False)\n json_dict = json.loads(res.content, encoding='utf-8')\n else:\n path_start = parsed_url.path.split('.')[0]\n if path_start == 'www' or path_start.isdigit():\n warnings.warn(\n \"\"\"\nLa dirección del archivo JSON ingresada parece una URL, pero no comienza\ncon 'http' o 'https' así que será tratada como una dirección local. ¿Tal vez\nquiso decir 'http://{}'?\"\"\"\n .format(json_path_or_url).encode('utf-8'))\n with io.open(json_path_or_url, encoding='utf-8') as json_file:\n json_dict = json.load(json_file)\n return json_dict\n",
"role": "user"
},
{
"content": "read_json",
"role": "assistant"
}
] |
def x(xlsx_path_or_url, logger=None):
logger = logger or pydj_logger
assert isinstance(xlsx_path_or_url, string_types)
parsed_url = urlparse(xlsx_path_or_url)
if parsed_url.scheme in ['http', 'https']:
res = requests.get(xlsx_path_or_url, verify=False)
tmpfilename = '.tmpfile.xlsx'
with io.open(tmpfilename, 'wb') as tmpfile:
tmpfile.write(res.content)
catalog_dict = read_local_xlsx_catalog(tmpfilename, logger)
os.remove(tmpfilename)
else:
path_start = parsed_url.path.split('.')[0]
if path_start == 'www' or path_start.isdigit():
warnings.warn(
"""
La dirección del archivo JSON ingresada parece una URL, pero no comienza
con 'http' o 'https' así que será tratada como una dirección local. ¿Tal vez
quiso decir 'http://{}'?
"""
.format(xlsx_path_or_url).encode('utf8'))
catalog_dict = read_local_xlsx_catalog(xlsx_path_or_url)
return catalog_dict
|
read_xlsx_catalog
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(xlsx_path_or_url, logger=None):\n logger = logger or pydj_logger\n assert isinstance(xlsx_path_or_url, string_types)\n parsed_url = urlparse(xlsx_path_or_url)\n if parsed_url.scheme in ['http', 'https']:\n res = requests.get(xlsx_path_or_url, verify=False)\n tmpfilename = '.tmpfile.xlsx'\n with io.open(tmpfilename, 'wb') as tmpfile:\n tmpfile.write(res.content)\n catalog_dict = read_local_xlsx_catalog(tmpfilename, logger)\n os.remove(tmpfilename)\n else:\n path_start = parsed_url.path.split('.')[0]\n if path_start == 'www' or path_start.isdigit():\n warnings.warn(\n \"\"\"\nLa dirección del archivo JSON ingresada parece una URL, pero no comienza\ncon 'http' o 'https' así que será tratada como una dirección local. ¿Tal vez\nquiso decir 'http://{}'?\n \"\"\"\n .format(xlsx_path_or_url).encode('utf8'))\n catalog_dict = read_local_xlsx_catalog(xlsx_path_or_url)\n return catalog_dict\n",
"role": "user"
},
{
"content": "read_xlsx_catalog",
"role": "assistant"
}
] |
def x(catalog_or_dataset):
level = catalog_or_dataset
keys = [k for k in ['publisher_name', 'publisher_mbox'] if k in level]
if keys:
level['publisher'] = {key.replace('publisher_', ''): level.pop(key) for
key in keys}
return level
|
make_publisher
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(catalog_or_dataset):\n level = catalog_or_dataset\n keys = [k for k in ['publisher_name', 'publisher_mbox'] if k in level]\n if keys:\n level['publisher'] = {key.replace('publisher_', ''): level.pop(key) for\n key in keys}\n return level\n",
"role": "user"
},
{
"content": "make_publisher",
"role": "assistant"
}
] |
def x(dataset):
keys = [k for k in ['contactPoint_fn', 'contactPoint_hasEmail'] if k in
dataset]
if keys:
dataset['contactPoint'] = {key.replace('contactPoint_', ''):
dataset.pop(key) for key in keys}
return dataset
|
make_contact_point
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(dataset):\n keys = [k for k in ['contactPoint_fn', 'contactPoint_hasEmail'] if k in\n dataset]\n if keys:\n dataset['contactPoint'] = {key.replace('contactPoint_', ''):\n dataset.pop(key) for key in keys}\n return dataset\n",
"role": "user"
},
{
"content": "make_contact_point",
"role": "assistant"
}
] |
def x(catalog, dataset_identifier, dataset_title, logger=None):
logger = logger or pydj_logger
matching_datasets = []
for idx, dataset in enumerate(catalog['catalog_dataset']):
if dataset['dataset_identifier'] == dataset_identifier:
if dataset['dataset_title'] == dataset_title:
matching_datasets.append(idx)
else:
logger.warning(ce.DatasetUnexpectedTitle(dataset_identifier,
dataset['dataset_title'], dataset_title))
no_dsets_msg = 'No hay ningun dataset con el identifier {}'.format(
dataset_identifier)
many_dsets_msg = 'Hay mas de un dataset con el identifier {}: {}'.format(
dataset_identifier, matching_datasets)
if len(matching_datasets) == 0:
logger.error(no_dsets_msg)
return None
elif len(matching_datasets) > 1:
logger.error(many_dsets_msg)
return None
else:
return matching_datasets[0]
|
get_dataset_index
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(catalog, dataset_identifier, dataset_title, logger=None):\n logger = logger or pydj_logger\n matching_datasets = []\n for idx, dataset in enumerate(catalog['catalog_dataset']):\n if dataset['dataset_identifier'] == dataset_identifier:\n if dataset['dataset_title'] == dataset_title:\n matching_datasets.append(idx)\n else:\n logger.warning(ce.DatasetUnexpectedTitle(dataset_identifier,\n dataset['dataset_title'], dataset_title))\n no_dsets_msg = 'No hay ningun dataset con el identifier {}'.format(\n dataset_identifier)\n many_dsets_msg = 'Hay mas de un dataset con el identifier {}: {}'.format(\n dataset_identifier, matching_datasets)\n if len(matching_datasets) == 0:\n logger.error(no_dsets_msg)\n return None\n elif len(matching_datasets) > 1:\n logger.error(many_dsets_msg)\n return None\n else:\n return matching_datasets[0]\n",
"role": "user"
},
{
"content": "get_dataset_index",
"role": "assistant"
}
] |
def x(catalog, dataset_identifier, dataset_title, distribution_identifier,
distribution_title, logger=None):
logger = logger or pydj_logger
dataset_index = _get_dataset_index(catalog, dataset_identifier,
dataset_title)
if dataset_index is None:
return None, None
else:
dataset = catalog['catalog_dataset'][dataset_index]
matching_distributions = []
for idx, distribution in enumerate(dataset['dataset_distribution']):
if distribution['distribution_identifier'] == distribution_identifier:
if distribution['distribution_title'] == distribution_title:
matching_distributions.append(idx)
else:
logger.warning(ce.DistributionUnexpectedTitle(
distribution_identifier, distribution[
'distribution_title'], distribution_title))
if len(matching_distributions) == 0:
logger.warning(ce.DistributionTitleNonExistentError(
distribution_title, dataset_identifier))
return dataset_index, None
elif len(matching_distributions) > 1:
logger.warning(ce.DistributionTitleRepetitionError(
distribution_title, dataset_identifier, matching_distributions))
return dataset_index, None
else:
distribution_index = matching_distributions[0]
return dataset_index, distribution_index
|
get_distribution_indexes
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(catalog, dataset_identifier, dataset_title, distribution_identifier,\n distribution_title, logger=None):\n logger = logger or pydj_logger\n dataset_index = _get_dataset_index(catalog, dataset_identifier,\n dataset_title)\n if dataset_index is None:\n return None, None\n else:\n dataset = catalog['catalog_dataset'][dataset_index]\n matching_distributions = []\n for idx, distribution in enumerate(dataset['dataset_distribution']):\n if distribution['distribution_identifier'] == distribution_identifier:\n if distribution['distribution_title'] == distribution_title:\n matching_distributions.append(idx)\n else:\n logger.warning(ce.DistributionUnexpectedTitle(\n distribution_identifier, distribution[\n 'distribution_title'], distribution_title))\n if len(matching_distributions) == 0:\n logger.warning(ce.DistributionTitleNonExistentError(\n distribution_title, dataset_identifier))\n return dataset_index, None\n elif len(matching_distributions) > 1:\n logger.warning(ce.DistributionTitleRepetitionError(\n distribution_title, dataset_identifier, matching_distributions))\n return dataset_index, None\n else:\n distribution_index = matching_distributions[0]\n return dataset_index, distribution_index\n",
"role": "user"
},
{
"content": "get_distribution_indexes",
"role": "assistant"
}
] |
def x(xlsx_path, logger=None):
logger = logger or pydj_logger
wb = pyxl.load_workbook(open(xlsx_path, 'rb'), data_only=True,
read_only=True)
ws_catalog = helpers.get_ws_case_insensitive(wb, 'catalog')
ws_dataset = helpers.get_ws_case_insensitive(wb, 'dataset')
ws_distribution = helpers.get_ws_case_insensitive(wb, 'distribution')
ws_theme = helpers.get_ws_case_insensitive(wb, 'theme')
ws_field = helpers.get_ws_case_insensitive(wb, 'field')
catalogs = helpers.sheet_to_table(ws_catalog)
assert len(catalogs) != 0, "No hay ningun catálogo en la hoja 'Catalog'"
assert len(catalogs) < 2, "Hay mas de un catálogo en la hoja 'Catalog'"
catalog = catalogs[0]
catalog['catalog_dataset'] = helpers.sheet_to_table(ws_dataset)
for dataset in catalog['catalog_dataset']:
dataset['dataset_identifier'] = text_type(dataset['dataset_identifier']
)
catalog['catalog_themeTaxonomy'] = helpers.sheet_to_table(ws_theme)
for dataset in catalog['catalog_dataset']:
dataset['dataset_distribution'] = []
distributions = helpers.sheet_to_table(ws_distribution)
for distribution in distributions:
distribution['dataset_identifier'] = text_type(distribution[
'dataset_identifier'])
distribution['distribution_identifier'] = text_type(distribution[
'distribution_identifier'])
dataset_index = _get_dataset_index(catalog, distribution[
'dataset_identifier'], distribution['dataset_title'], logger)
if dataset_index is None:
logger.error(
"""La distribucion con ID '{}' y titulo '{}' no se
pudo asignar a un dataset, y no figurara en el data.json de salida."""
.format(distribution['distribution_identifier'],
distribution['distribution_title']))
else:
dataset = catalog['catalog_dataset'][dataset_index]
dataset['dataset_distribution'].append(distribution)
fields = helpers.sheet_to_table(ws_field)
for idx, field in enumerate(fields):
field['dataset_identifier'] = text_type(field['dataset_identifier'])
field['distribution_identifier'] = text_type(field[
'distribution_identifier'])
dataset_index, distribution_index = _get_distribution_indexes(catalog,
field['dataset_identifier'], field['dataset_title'], field[
'distribution_identifier'], field['distribution_title'], logger)
if dataset_index is None:
logger.error(
"""No se encontro el dataset '{}' especificado para el campo
'{}' (fila #{} de la hoja "Field"). Este campo no figurara en
el data.json de salida."""
.format(unidecode(field['dataset_title']), unidecode(field[
'field_title']), idx + 2))
elif distribution_index is None:
logger.error(
"""No se encontro la distribucion '{}' especificada para el
campo'{}' (fila #{} de la hoja "Field"). Este campo no figurara
en el data.json de salida."""
.format(unidecode(field['distribution_title']), unidecode(
field['field_title']), idx + 2))
else:
dataset = catalog['catalog_dataset'][dataset_index]
distribution = dataset['dataset_distribution'][distribution_index]
if 'distribution_field' in distribution:
distribution['distribution_field'].append(field)
else:
distribution['distribution_field'] = [field]
if 'catalog_language' in catalog:
catalog['catalog_language'] = helpers.string_to_list(catalog[
'catalog_language'], filter_empty=True)
for dataset in catalog['catalog_dataset']:
array_fields = ['dataset_superTheme', 'dataset_theme',
'dataset_tags', 'dataset_keyword', 'dataset_language']
for field in array_fields:
if field in dataset:
dataset[field] = helpers.string_to_list(dataset[field],
filter_empty=True)
_remove_prefixes_and_unprefixed_fields(catalog, 'catalog_')
for theme in catalog['themeTaxonomy']:
_remove_prefixes_and_unprefixed_fields(theme, 'theme_')
for dataset in catalog['dataset']:
_remove_prefixes_and_unprefixed_fields(dataset, 'dataset_')
for dataset in catalog['dataset']:
for distribution in dataset['distribution']:
_remove_prefixes_and_unprefixed_fields(distribution,
'distribution_')
for dataset in catalog['dataset']:
for distribution in dataset['distribution']:
if 'field' in distribution:
for field in distribution['field']:
_remove_prefixes_and_unprefixed_fields(field, 'field_')
catalog = _make_publisher(catalog)
for dataset in catalog['dataset']:
dataset = _make_publisher(dataset)
dataset = _make_contact_point(dataset)
return catalog
|
read_local_xlsx_catalog
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(xlsx_path, logger=None):\n logger = logger or pydj_logger\n wb = pyxl.load_workbook(open(xlsx_path, 'rb'), data_only=True,\n read_only=True)\n ws_catalog = helpers.get_ws_case_insensitive(wb, 'catalog')\n ws_dataset = helpers.get_ws_case_insensitive(wb, 'dataset')\n ws_distribution = helpers.get_ws_case_insensitive(wb, 'distribution')\n ws_theme = helpers.get_ws_case_insensitive(wb, 'theme')\n ws_field = helpers.get_ws_case_insensitive(wb, 'field')\n catalogs = helpers.sheet_to_table(ws_catalog)\n assert len(catalogs) != 0, \"No hay ningun catálogo en la hoja 'Catalog'\"\n assert len(catalogs) < 2, \"Hay mas de un catálogo en la hoja 'Catalog'\"\n catalog = catalogs[0]\n catalog['catalog_dataset'] = helpers.sheet_to_table(ws_dataset)\n for dataset in catalog['catalog_dataset']:\n dataset['dataset_identifier'] = text_type(dataset['dataset_identifier']\n )\n catalog['catalog_themeTaxonomy'] = helpers.sheet_to_table(ws_theme)\n for dataset in catalog['catalog_dataset']:\n dataset['dataset_distribution'] = []\n distributions = helpers.sheet_to_table(ws_distribution)\n for distribution in distributions:\n distribution['dataset_identifier'] = text_type(distribution[\n 'dataset_identifier'])\n distribution['distribution_identifier'] = text_type(distribution[\n 'distribution_identifier'])\n dataset_index = _get_dataset_index(catalog, distribution[\n 'dataset_identifier'], distribution['dataset_title'], logger)\n if dataset_index is None:\n logger.error(\n \"\"\"La distribucion con ID '{}' y titulo '{}' no se\npudo asignar a un dataset, y no figurara en el data.json de salida.\"\"\"\n .format(distribution['distribution_identifier'],\n distribution['distribution_title']))\n else:\n dataset = catalog['catalog_dataset'][dataset_index]\n dataset['dataset_distribution'].append(distribution)\n fields = helpers.sheet_to_table(ws_field)\n for idx, field in enumerate(fields):\n field['dataset_identifier'] = text_type(field['dataset_identifier'])\n field['distribution_identifier'] = text_type(field[\n 'distribution_identifier'])\n dataset_index, distribution_index = _get_distribution_indexes(catalog,\n field['dataset_identifier'], field['dataset_title'], field[\n 'distribution_identifier'], field['distribution_title'], logger)\n if dataset_index is None:\n logger.error(\n \"\"\"No se encontro el dataset '{}' especificado para el campo\n '{}' (fila #{} de la hoja \"Field\"). Este campo no figurara en\n el data.json de salida.\"\"\"\n .format(unidecode(field['dataset_title']), unidecode(field[\n 'field_title']), idx + 2))\n elif distribution_index is None:\n logger.error(\n \"\"\"No se encontro la distribucion '{}' especificada para el\n campo'{}' (fila #{} de la hoja \"Field\"). Este campo no figurara\n en el data.json de salida.\"\"\"\n .format(unidecode(field['distribution_title']), unidecode(\n field['field_title']), idx + 2))\n else:\n dataset = catalog['catalog_dataset'][dataset_index]\n distribution = dataset['dataset_distribution'][distribution_index]\n if 'distribution_field' in distribution:\n distribution['distribution_field'].append(field)\n else:\n distribution['distribution_field'] = [field]\n if 'catalog_language' in catalog:\n catalog['catalog_language'] = helpers.string_to_list(catalog[\n 'catalog_language'], filter_empty=True)\n for dataset in catalog['catalog_dataset']:\n array_fields = ['dataset_superTheme', 'dataset_theme',\n 'dataset_tags', 'dataset_keyword', 'dataset_language']\n for field in array_fields:\n if field in dataset:\n dataset[field] = helpers.string_to_list(dataset[field],\n filter_empty=True)\n _remove_prefixes_and_unprefixed_fields(catalog, 'catalog_')\n for theme in catalog['themeTaxonomy']:\n _remove_prefixes_and_unprefixed_fields(theme, 'theme_')\n for dataset in catalog['dataset']:\n _remove_prefixes_and_unprefixed_fields(dataset, 'dataset_')\n for dataset in catalog['dataset']:\n for distribution in dataset['distribution']:\n _remove_prefixes_and_unprefixed_fields(distribution,\n 'distribution_')\n for dataset in catalog['dataset']:\n for distribution in dataset['distribution']:\n if 'field' in distribution:\n for field in distribution['field']:\n _remove_prefixes_and_unprefixed_fields(field, 'field_')\n catalog = _make_publisher(catalog)\n for dataset in catalog['dataset']:\n dataset = _make_publisher(dataset)\n dataset = _make_contact_point(dataset)\n return catalog\n",
"role": "user"
},
{
"content": "read_local_xlsx_catalog",
"role": "assistant"
}
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.