source_code
stringlengths
45
7.24k
function_name
stringlengths
1
111
messages
list
def x(title, decode=True, max_len=None, use_complete_words=True): if decode: title = unidecode(title) title = title.lower() filtered_title = re.sub('[^a-z0-9- ]+', '', title) normalized_title = '-'.join([word for word in filtered_title.split() if word not in STOP_WORDS]) if max_len and len(normalized_title) > max_len: if use_complete_words: last_word_index = normalized_title.rindex('-', 0, max_len) normalized_title = normalized_title[:last_word_index] else: normalized_title = normalized_title[:max_len] return normalized_title
title_to_name
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(title, decode=True, max_len=None, use_complete_words=True):\n if decode:\n title = unidecode(title)\n title = title.lower()\n filtered_title = re.sub('[^a-z0-9- ]+', '', title)\n normalized_title = '-'.join([word for word in filtered_title.split() if\n word not in STOP_WORDS])\n if max_len and len(normalized_title) > max_len:\n if use_complete_words:\n last_word_index = normalized_title.rindex('-', 0, max_len)\n normalized_title = normalized_title[:last_word_index]\n else:\n normalized_title = normalized_title[:max_len]\n return normalized_title\n", "role": "user" }, { "content": "title_to_name", "role": "assistant" } ]
def x(uri_string): try: result = urlparse(uri_string) has_elements = all([result.scheme, result.netloc, result.path]) is_http = result.scheme == 'http' or result.scheme == 'https' return True if has_elements and is_http else False except Exception: return False
validate_url
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(uri_string):\n try:\n result = urlparse(uri_string)\n has_elements = all([result.scheme, result.netloc, result.path])\n is_http = result.scheme == 'http' or result.scheme == 'https'\n return True if has_elements and is_http else False\n except Exception:\n return False\n", "role": "user" }, { "content": "validate_url", "role": "assistant" } ]
def x(directory): if directory and not os.path.exists(directory): os.makedirs(directory)
ensure_dir_exists
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(directory):\n if directory and not os.path.exists(directory):\n os.makedirs(directory)\n", "role": "user" }, { "content": "ensure_dir_exists", "role": "assistant" } ]
def x(dicc, keys, default_value=None): for key in keys: if isinstance(dicc, dict) and key in dicc: dicc = dicc[key] elif isinstance(dicc, list) and isinstance(key, int) and key < len(dicc ): dicc = dicc[key] else: return default_value return dicc
traverse_dict
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(dicc, keys, default_value=None):\n for key in keys:\n if isinstance(dicc, dict) and key in dicc:\n dicc = dicc[key]\n elif isinstance(dicc, list) and isinstance(key, int) and key < len(dicc\n ):\n dicc = dicc[key]\n else:\n return default_value\n return dicc\n", "role": "user" }, { "content": "traverse_dict", "role": "assistant" } ]
def x(list_of_dicts, expected_keys=None): if isinstance(list_of_dicts, list) and len(list_of_dicts) == 0: return False is_not_list_msg = '\n{} no es una lista. Debe ingresar una lista'.format( list_of_dicts) assert isinstance(list_of_dicts, list), is_not_list_msg not_all_dicts_msg = ( """ No todos los elementos de {} son diccionarios. Ingrese una lista compuesta solo por diccionarios.""" .format(list_of_dicts)) assert all([isinstance(d, dict) for d in list_of_dicts]), not_all_dicts_msg expected_keys = expected_keys or set(list_of_dicts[0].keys()) elements = [(set(d.keys()) == expected_keys) for d in list_of_dicts] return all(elements)
is_list_of_matching_dicts
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(list_of_dicts, expected_keys=None):\n if isinstance(list_of_dicts, list) and len(list_of_dicts) == 0:\n return False\n is_not_list_msg = '\\n{} no es una lista. Debe ingresar una lista'.format(\n list_of_dicts)\n assert isinstance(list_of_dicts, list), is_not_list_msg\n not_all_dicts_msg = (\n \"\"\"\nNo todos los elementos de {} son diccionarios. Ingrese una lista compuesta\nsolo por diccionarios.\"\"\"\n .format(list_of_dicts))\n assert all([isinstance(d, dict) for d in list_of_dicts]), not_all_dicts_msg\n expected_keys = expected_keys or set(list_of_dicts[0].keys())\n elements = [(set(d.keys()) == expected_keys) for d in list_of_dicts]\n return all(elements)\n", "role": "user" }, { "content": "is_list_of_matching_dicts", "role": "assistant" } ]
def x(cell): value = cell.value if isinstance(value, string_types): value = value.strip() if isinstance(value, datetime): value = value.isoformat() return value
parse_value
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cell):\n value = cell.value\n if isinstance(value, string_types):\n value = value.strip()\n if isinstance(value, datetime):\n value = value.isoformat()\n return value\n", "role": "user" }, { "content": "parse_value", "role": "assistant" } ]
def x(worksheet): headers = [] value_rows = [] for row_i, row in enumerate(worksheet.iter_rows()): if row_i == 0: for header_cell in row: if header_cell.value: headers.append(parse_value(header_cell)) else: break continue row_cells = [parse_value(cell) for index, cell in enumerate(row) if index < len(headers)] if any(row_cells): value_rows.append(row_cells) else: break table = [{k: v for k, v in zip(headers, row) if v is not None} for row in value_rows] return table
sheet_to_table
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(worksheet):\n headers = []\n value_rows = []\n for row_i, row in enumerate(worksheet.iter_rows()):\n if row_i == 0:\n for header_cell in row:\n if header_cell.value:\n headers.append(parse_value(header_cell))\n else:\n break\n continue\n row_cells = [parse_value(cell) for index, cell in enumerate(row) if\n index < len(headers)]\n if any(row_cells):\n value_rows.append(row_cells)\n else:\n break\n table = [{k: v for k, v in zip(headers, row) if v is not None} for row in\n value_rows]\n return table\n", "role": "user" }, { "content": "sheet_to_table", "role": "assistant" } ]
def x(string, sep=',', filter_empty=False): return [value.strip() for value in string.split(sep) if not filter_empty or value]
string_to_list
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(string, sep=',', filter_empty=False):\n return [value.strip() for value in string.split(sep) if not\n filter_empty or value]\n", "role": "user" }, { "content": "string_to_list", "role": "assistant" } ]
def x(one_dict, other_dict): result = other_dict.copy() for k, v in one_dict.items(): if v is None: v = 0 if isinstance(v, dict): result[k] = add_dicts(v, other_dict.get(k, {})) else: other_value = result.get(k, 0) if other_value is None: other_value = 0 result[k] = other_value + v return result
add_dicts
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(one_dict, other_dict):\n result = other_dict.copy()\n for k, v in one_dict.items():\n if v is None:\n v = 0\n if isinstance(v, dict):\n result[k] = add_dicts(v, other_dict.get(k, {}))\n else:\n other_value = result.get(k, 0)\n if other_value is None:\n other_value = 0\n result[k] = other_value + v\n return result\n", "role": "user" }, { "content": "add_dicts", "role": "assistant" } ]
def x(date_str): intervals = {'Y': 365, 'M': 30, 'W': 7, 'D': 1, 'H': 0, 'S': 0} if date_str.find('R/P') != 0: return 0 date_str = date_str.strip('R/P') days = 0 index = 0 for interval in intervals: value_end = date_str.find(interval) if value_end < 0: continue try: days += int(float(date_str[index:value_end]) * intervals[interval]) except ValueError: continue index = value_end return max(days, 1)
parse_repeating_time_interval_to_days
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(date_str):\n intervals = {'Y': 365, 'M': 30, 'W': 7, 'D': 1, 'H': 0, 'S': 0}\n if date_str.find('R/P') != 0:\n return 0\n date_str = date_str.strip('R/P')\n days = 0\n index = 0\n for interval in intervals:\n value_end = date_str.find(interval)\n if value_end < 0:\n continue\n try:\n days += int(float(date_str[index:value_end]) * intervals[interval])\n except ValueError:\n continue\n index = value_end\n return max(days, 1)\n", "role": "user" }, { "content": "parse_repeating_time_interval_to_days", "role": "assistant" } ]
def x(date_str): with open(os.path.join(ABSOLUTE_SCHEMA_DIR, 'accrualPeriodicity.json'), 'r' ) as f: freqs_map = {freq['id']: freq['description'] for freq in json.load(f)} return freqs_map[date_str]
parse_repeating_time_interval_to_str
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(date_str):\n with open(os.path.join(ABSOLUTE_SCHEMA_DIR, 'accrualPeriodicity.json'), 'r'\n ) as f:\n freqs_map = {freq['id']: freq['description'] for freq in json.load(f)}\n return freqs_map[date_str]\n", "role": "user" }, { "content": "parse_repeating_time_interval_to_str", "role": "assistant" } ]
def x(wb, name): if isinstance(wb, string_types): wb = load_workbook(wb, read_only=True, data_only=True) for sheetname in wb.sheetnames: if sheetname.lower() == name.lower(): return sheetname raise Exception('No existe la hoja {}'.format(name))
find_ws_name
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(wb, name):\n if isinstance(wb, string_types):\n wb = load_workbook(wb, read_only=True, data_only=True)\n for sheetname in wb.sheetnames:\n if sheetname.lower() == name.lower():\n return sheetname\n raise Exception('No existe la hoja {}'.format(name))\n", "role": "user" }, { "content": "find_ws_name", "role": "assistant" } ]
def x(dataset, other, fields_dataset=None, fields_distribution=None, return_diff=False): dataset_is_equal = True dataset_diff = [] if not fields_dataset: fields_dataset = ['title', ['publisher', 'name']] for field_dataset in fields_dataset: if isinstance(field_dataset, list): value = traverse_dict(dataset, field_dataset) other_value = traverse_dict(other, field_dataset) else: value = dataset.get(field_dataset) other_value = other.get(field_dataset) if value != other_value: dataset_diff.append({'error_location': field_dataset, 'dataset_value': value, 'other_value': other_value}) dataset_is_equal = False if fields_distribution: dataset_distributions = dataset.get('distribution') other_distributions = other.get('distribution') if len(dataset_distributions) != len(other_distributions): logger.info('{} distribuciones en origen y {} en destino'. format(len(dataset_distributions), len(other_distributions))) dataset_is_equal = False distributions_equal = True for dataset_distribution, other_distribution in zip( dataset_distributions, other_distributions): for field_distribution in fields_distribution: if isinstance(field_distribution, list): value = traverse_dict(dataset_distribution, field_distribution) other_value = traverse_dict(other_distribution, field_distribution) else: value = dataset_distribution.get(field_distribution) other_value = other_distribution.get(field_distribution) if value != other_value: dataset_diff.append({'error_location': '{} ({})'.format (field_distribution, dataset_distribution.get( 'title')), 'dataset_value': value, 'other_value': other_value}) distributions_equal = False if not distributions_equal: dataset_is_equal = False if return_diff: return dataset_diff else: return dataset_is_equal
datasets_equal
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(dataset, other, fields_dataset=None, fields_distribution=None,\n return_diff=False):\n dataset_is_equal = True\n dataset_diff = []\n if not fields_dataset:\n fields_dataset = ['title', ['publisher', 'name']]\n for field_dataset in fields_dataset:\n if isinstance(field_dataset, list):\n value = traverse_dict(dataset, field_dataset)\n other_value = traverse_dict(other, field_dataset)\n else:\n value = dataset.get(field_dataset)\n other_value = other.get(field_dataset)\n if value != other_value:\n dataset_diff.append({'error_location': field_dataset,\n 'dataset_value': value, 'other_value': other_value})\n dataset_is_equal = False\n if fields_distribution:\n dataset_distributions = dataset.get('distribution')\n other_distributions = other.get('distribution')\n if len(dataset_distributions) != len(other_distributions):\n logger.info('{} distribuciones en origen y {} en destino'.\n format(len(dataset_distributions), len(other_distributions)))\n dataset_is_equal = False\n distributions_equal = True\n for dataset_distribution, other_distribution in zip(\n dataset_distributions, other_distributions):\n for field_distribution in fields_distribution:\n if isinstance(field_distribution, list):\n value = traverse_dict(dataset_distribution,\n field_distribution)\n other_value = traverse_dict(other_distribution,\n field_distribution)\n else:\n value = dataset_distribution.get(field_distribution)\n other_value = other_distribution.get(field_distribution)\n if value != other_value:\n dataset_diff.append({'error_location': '{} ({})'.format\n (field_distribution, dataset_distribution.get(\n 'title')), 'dataset_value': value, 'other_value':\n other_value})\n distributions_equal = False\n if not distributions_equal:\n dataset_is_equal = False\n if return_diff:\n return dataset_diff\n else:\n return dataset_is_equal\n", "role": "user" }, { "content": "datasets_equal", "role": "assistant" } ]
def x(catalog): for dataset in catalog.get('dataset', []): for distribution_index, distribution in enumerate(dataset.get( 'distribution', [])): if 'identifier' not in distribution: distribution['identifier'] = '{}_{}'.format(dataset[ 'identifier'], distribution_index)
generate_distribution_ids
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(catalog):\n for dataset in catalog.get('dataset', []):\n for distribution_index, distribution in enumerate(dataset.get(\n 'distribution', [])):\n if 'identifier' not in distribution:\n distribution['identifier'] = '{}_{}'.format(dataset[\n 'identifier'], distribution_index)\n", "role": "user" }, { "content": "generate_distribution_ids", "role": "assistant" } ]
def x(catalog, theme): try: label = catalog.get_theme(identifier=theme)['label'] except BaseException: try: label = catalog.get_theme(label=theme)['label'] except BaseException: raise ce.ThemeNonExistentError(theme) label = re.sub('[^\\wá-úÁ-ÚñÑ .-]+', '', label, flags=re.UNICODE) return label
get_theme_label
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(catalog, theme):\n try:\n label = catalog.get_theme(identifier=theme)['label']\n except BaseException:\n try:\n label = catalog.get_theme(label=theme)['label']\n except BaseException:\n raise ce.ThemeNonExistentError(theme)\n label = re.sub('[^\\\\wá-úÁ-ÚñÑ .-]+', '', label, flags=re.UNICODE)\n return label\n", "role": "user" }, { "content": "get_theme_label", "role": "assistant" } ]
def x(catalogs, local_catalogs_dir='', include_metadata=True, include_data= True, include_metadata_xlsx=False, use_short_path=False): if isinstance(catalogs, list): for catalog in catalogs: try: make_catalog_backup(catalog, local_catalogs_dir= local_catalogs_dir, include_metadata=include_metadata, include_metadata_xlsx=include_metadata_xlsx, include_data=include_data, use_short_path=use_short_path) except Exception: logger.exception('ERROR en {}'.format(catalog)) elif isinstance(catalogs, dict): for catalog_id, catalog in catalogs.iteritems(): try: make_catalog_backup(catalog, catalog_id, local_catalogs_dir =local_catalogs_dir, include_metadata=include_metadata, include_metadata_xlsx=include_metadata_xlsx, include_data=include_data, use_short_path=use_short_path) except Exception: logger.exception('ERROR en {} ({})'.format(catalog, catalog_id) )
make_catalogs_backup
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(catalogs, local_catalogs_dir='', include_metadata=True, include_data=\n True, include_metadata_xlsx=False, use_short_path=False):\n if isinstance(catalogs, list):\n for catalog in catalogs:\n try:\n make_catalog_backup(catalog, local_catalogs_dir=\n local_catalogs_dir, include_metadata=include_metadata,\n include_metadata_xlsx=include_metadata_xlsx,\n include_data=include_data, use_short_path=use_short_path)\n except Exception:\n logger.exception('ERROR en {}'.format(catalog))\n elif isinstance(catalogs, dict):\n for catalog_id, catalog in catalogs.iteritems():\n try:\n make_catalog_backup(catalog, catalog_id, local_catalogs_dir\n =local_catalogs_dir, include_metadata=include_metadata,\n include_metadata_xlsx=include_metadata_xlsx,\n include_data=include_data, use_short_path=use_short_path)\n except Exception:\n logger.exception('ERROR en {} ({})'.format(catalog, catalog_id)\n )\n", "role": "user" }, { "content": "make_catalogs_backup", "role": "assistant" } ]
def x(catalog, catalog_id=None, local_catalogs_dir='', include_metadata= True, include_data=True, include_datasets=None, include_distribution_formats=['CSV', 'XLS'], include_metadata_xlsx=True, use_short_path=False): catalog = pydatajson.DataJson(catalog) catalog_identifier = catalog_id if catalog_id else catalog['identifier'] if include_metadata: logger.info('Descargando catálogo {}'.format(catalog_identifier. ljust(30))) catalog_path = get_catalog_path(catalog_identifier, local_catalogs_dir) ensure_dir_exists(os.path.dirname(catalog_path)) catalog.to_json(catalog_path) if include_metadata_xlsx: catalog_path = get_catalog_path(catalog_identifier, local_catalogs_dir, fmt='xlsx') ensure_dir_exists(os.path.dirname(catalog_path)) catalog.to_xlsx(catalog_path) if include_data: distributions = catalog.distributions distributions_num = len(distributions) for index, distribution in enumerate(distributions): logger.info('Descargando distribución {} de {} ({})'.format( index + 1, distributions_num, catalog_identifier)) dataset_id = distribution['dataset_identifier'] if include_datasets and dataset_id not in include_datasets: pass else: distribution_id = distribution['identifier'] distribution_download_url = distribution['downloadURL'] distribution_file_name = distribution.get('fileName', distribution_download_url[distribution_download_url. rfind('/') + 1:]) distribution_format = distribution.get('format', distribution_file_name[distribution_file_name.rfind('.' ) + 1:]) if (include_distribution_formats and distribution_format not in include_distribution_formats): pass else: file_path = get_distribution_path(catalog_identifier, dataset_id, distribution_id, distribution_file_name, local_catalogs_dir, use_short_path=use_short_path) ensure_dir_exists(os.path.dirname(file_path)) download_to_file(distribution_download_url, file_path)
make_catalog_backup
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(catalog, catalog_id=None, local_catalogs_dir='', include_metadata=\n True, include_data=True, include_datasets=None,\n include_distribution_formats=['CSV', 'XLS'], include_metadata_xlsx=True,\n use_short_path=False):\n catalog = pydatajson.DataJson(catalog)\n catalog_identifier = catalog_id if catalog_id else catalog['identifier']\n if include_metadata:\n logger.info('Descargando catálogo {}'.format(catalog_identifier.\n ljust(30)))\n catalog_path = get_catalog_path(catalog_identifier, local_catalogs_dir)\n ensure_dir_exists(os.path.dirname(catalog_path))\n catalog.to_json(catalog_path)\n if include_metadata_xlsx:\n catalog_path = get_catalog_path(catalog_identifier,\n local_catalogs_dir, fmt='xlsx')\n ensure_dir_exists(os.path.dirname(catalog_path))\n catalog.to_xlsx(catalog_path)\n if include_data:\n distributions = catalog.distributions\n distributions_num = len(distributions)\n for index, distribution in enumerate(distributions):\n logger.info('Descargando distribución {} de {} ({})'.format(\n index + 1, distributions_num, catalog_identifier))\n dataset_id = distribution['dataset_identifier']\n if include_datasets and dataset_id not in include_datasets:\n pass\n else:\n distribution_id = distribution['identifier']\n distribution_download_url = distribution['downloadURL']\n distribution_file_name = distribution.get('fileName',\n distribution_download_url[distribution_download_url.\n rfind('/') + 1:])\n distribution_format = distribution.get('format',\n distribution_file_name[distribution_file_name.rfind('.'\n ) + 1:])\n if (include_distribution_formats and distribution_format not in\n include_distribution_formats):\n pass\n else:\n file_path = get_distribution_path(catalog_identifier,\n dataset_id, distribution_id, distribution_file_name,\n local_catalogs_dir, use_short_path=use_short_path)\n ensure_dir_exists(os.path.dirname(file_path))\n download_to_file(distribution_download_url, file_path)\n", "role": "user" }, { "content": "make_catalog_backup", "role": "assistant" } ]
def x(catalog_id, dataset_id, distribution_id, catalogs_dir=CATALOGS_DIR, use_short_path=False): if use_short_path: catalog_path = os.path.join(catalogs_dir, 'catalog', catalog_id) distribution_dir = os.path.join(catalog_path, dataset_id) else: catalog_path = os.path.join(catalogs_dir, 'catalog', catalog_id) dataset_path = os.path.join(catalog_path, 'dataset', dataset_id) distribution_dir = os.path.join(dataset_path, 'distribution', distribution_id) return os.path.abspath(distribution_dir)
get_distribution_dir
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(catalog_id, dataset_id, distribution_id, catalogs_dir=CATALOGS_DIR,\n use_short_path=False):\n if use_short_path:\n catalog_path = os.path.join(catalogs_dir, 'catalog', catalog_id)\n distribution_dir = os.path.join(catalog_path, dataset_id)\n else:\n catalog_path = os.path.join(catalogs_dir, 'catalog', catalog_id)\n dataset_path = os.path.join(catalog_path, 'dataset', dataset_id)\n distribution_dir = os.path.join(dataset_path, 'distribution',\n distribution_id)\n return os.path.abspath(distribution_dir)\n", "role": "user" }, { "content": "get_distribution_dir", "role": "assistant" } ]
def x(catalog_id, dataset_id, distribution_id, distribution_file_name, catalogs_dir=CATALOGS_DIR, use_short_path=False): if use_short_path: distribution_dir = get_distribution_dir(catalog_id, dataset_id, distribution_id, catalogs_dir, use_short_path=True) distribution_file_path = os.path.join(distribution_dir, distribution_file_name) else: distribution_dir = get_distribution_dir(catalog_id, dataset_id, distribution_id, catalogs_dir, use_short_path=False) distribution_file_path = os.path.join(distribution_dir, 'download', distribution_file_name) return os.path.abspath(distribution_file_path)
get_distribution_path
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(catalog_id, dataset_id, distribution_id, distribution_file_name,\n catalogs_dir=CATALOGS_DIR, use_short_path=False):\n if use_short_path:\n distribution_dir = get_distribution_dir(catalog_id, dataset_id,\n distribution_id, catalogs_dir, use_short_path=True)\n distribution_file_path = os.path.join(distribution_dir,\n distribution_file_name)\n else:\n distribution_dir = get_distribution_dir(catalog_id, dataset_id,\n distribution_id, catalogs_dir, use_short_path=False)\n distribution_file_path = os.path.join(distribution_dir, 'download',\n distribution_file_name)\n return os.path.abspath(distribution_file_path)\n", "role": "user" }, { "content": "get_distribution_path", "role": "assistant" } ]
def x(catalog_id, catalogs_dir=CATALOGS_DIR, fmt='json'): base_path = os.path.join(catalogs_dir, 'catalog', catalog_id) if fmt == 'json': return os.path.join(base_path, 'data.json') elif fmt == 'xlsx': return os.path.join(base_path, 'catalog.xlsx') else: raise NotImplementedError('El formato {} no está implementado.'. format(fmt))
get_catalog_path
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(catalog_id, catalogs_dir=CATALOGS_DIR, fmt='json'):\n base_path = os.path.join(catalogs_dir, 'catalog', catalog_id)\n if fmt == 'json':\n return os.path.join(base_path, 'data.json')\n elif fmt == 'xlsx':\n return os.path.join(base_path, 'catalog.xlsx')\n else:\n raise NotImplementedError('El formato {} no está implementado.'.\n format(fmt))\n", "role": "user" }, { "content": "get_catalog_path", "role": "assistant" } ]
def x(catalogs, include_data=True, use_short_path=True): include_data = bool(int(include_data)) make_catalogs_backup(catalogs.split(','), include_data=include_data, use_short_path=use_short_path)
main
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(catalogs, include_data=True, use_short_path=True):\n include_data = bool(int(include_data))\n make_catalogs_backup(catalogs.split(','), include_data=include_data,\n use_short_path=use_short_path)\n", "role": "user" }, { "content": "main", "role": "assistant" } ]
def x(catalog, export_path=None): if isinstance(catalog, string_types): catalog_path_or_url = catalog else: catalog_path_or_url = None catalog = read_catalog(catalog) validation = validate_catalog(catalog) indicators = generate_catalogs_indicators(catalog, CENTRAL_CATALOG)[0][0] with io.open(os.path.join(TEMPLATES_PATH, 'catalog_readme.txt'), 'r', encoding='utf-8') as template_file: readme_template = template_file.read() not_federated_datasets_list = '\n'.join(['- [{}]({})'.format( dataset[0], dataset[1]) for dataset in indicators[ 'datasets_no_federados']]) federated_removed_datasets_list = '\n'.join(['- [{}]({})'.format( dataset[0], dataset[1]) for dataset in indicators[ 'datasets_federados_eliminados']]) federated_datasets_list = '\n'.join(['- [{}]({})'.format(dataset[0], dataset[1]) for dataset in indicators['datasets_federados']]) non_federated_pct = 1.0 - indicators['datasets_federados_pct' ] if indicators['datasets_federados_pct' ] is not None else indicators['datasets_federados_pct'] content = {'title': catalog.get('title'), 'publisher_name': traverse_dict(catalog, ['publisher', 'name']), 'publisher_mbox': traverse_dict(catalog, ['publisher', 'mbox']), 'catalog_path_or_url': catalog_path_or_url, 'description': catalog.get('description'), 'global_status': validation[ 'status'], 'catalog_status': validation['error']['catalog'][ 'status'], 'no_of_datasets': len(catalog['dataset']), 'no_of_distributions': sum([len(dataset['distribution']) for dataset in catalog['dataset']]), 'federated_datasets': indicators['datasets_federados_cant'], 'not_federated_datasets': indicators['datasets_no_federados_cant'], 'not_federated_datasets_pct': non_federated_pct, 'not_federated_datasets_list': not_federated_datasets_list, 'federated_removed_datasets_list': federated_removed_datasets_list, 'federated_datasets_list': federated_datasets_list} catalog_readme = readme_template.format(**content) if export_path: with io.open(export_path, 'w+', encoding='utf-8') as target: target.write(catalog_readme) else: return catalog_readme
generate_readme
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(catalog, export_path=None):\n if isinstance(catalog, string_types):\n catalog_path_or_url = catalog\n else:\n catalog_path_or_url = None\n catalog = read_catalog(catalog)\n validation = validate_catalog(catalog)\n indicators = generate_catalogs_indicators(catalog, CENTRAL_CATALOG)[0][0]\n with io.open(os.path.join(TEMPLATES_PATH, 'catalog_readme.txt'), 'r',\n encoding='utf-8') as template_file:\n readme_template = template_file.read()\n not_federated_datasets_list = '\\n'.join(['- [{}]({})'.format(\n dataset[0], dataset[1]) for dataset in indicators[\n 'datasets_no_federados']])\n federated_removed_datasets_list = '\\n'.join(['- [{}]({})'.format(\n dataset[0], dataset[1]) for dataset in indicators[\n 'datasets_federados_eliminados']])\n federated_datasets_list = '\\n'.join(['- [{}]({})'.format(dataset[0],\n dataset[1]) for dataset in indicators['datasets_federados']])\n non_federated_pct = 1.0 - indicators['datasets_federados_pct'\n ] if indicators['datasets_federados_pct'\n ] is not None else indicators['datasets_federados_pct']\n content = {'title': catalog.get('title'), 'publisher_name':\n traverse_dict(catalog, ['publisher', 'name']), 'publisher_mbox':\n traverse_dict(catalog, ['publisher', 'mbox']),\n 'catalog_path_or_url': catalog_path_or_url, 'description':\n catalog.get('description'), 'global_status': validation[\n 'status'], 'catalog_status': validation['error']['catalog'][\n 'status'], 'no_of_datasets': len(catalog['dataset']),\n 'no_of_distributions': sum([len(dataset['distribution']) for\n dataset in catalog['dataset']]), 'federated_datasets':\n indicators['datasets_federados_cant'], 'not_federated_datasets':\n indicators['datasets_no_federados_cant'],\n 'not_federated_datasets_pct': non_federated_pct,\n 'not_federated_datasets_list': not_federated_datasets_list,\n 'federated_removed_datasets_list':\n federated_removed_datasets_list, 'federated_datasets_list':\n federated_datasets_list}\n catalog_readme = readme_template.format(**content)\n if export_path:\n with io.open(export_path, 'w+', encoding='utf-8') as target:\n target.write(catalog_readme)\n else:\n return catalog_readme\n", "role": "user" }, { "content": "generate_readme", "role": "assistant" } ]
def x(self, builder: Builder): self.config = builder.configuration self.with_common_random_numbers = bool(self.config.randomness.key_columns) self.register = builder.randomness.register_simulants if self.with_common_random_numbers and not ['entrance_time', 'age' ] == self.config.randomness.key_columns: raise ValueError( "If running with CRN, you must specify ['entrance_time', 'age'] asthe randomness key columns." ) self.age_randomness = builder.randomness.get_stream('age_initialization', for_initialization=self.with_common_random_numbers) self.sex_randomness = builder.randomness.get_stream('sex_initialization') columns_created = ['age', 'sex', 'alive', 'entrance_time'] builder.population.initializes_simulants(self.on_initialize_simulants, creates_columns=columns_created) self.population_view = builder.population.get_view(columns_created) builder.event.register_listener('time_step', self.age_simulants)
setup
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, builder: Builder):\n self.config = builder.configuration\n self.with_common_random_numbers = bool(self.config.randomness.key_columns)\n self.register = builder.randomness.register_simulants\n if self.with_common_random_numbers and not ['entrance_time', 'age'\n ] == self.config.randomness.key_columns:\n raise ValueError(\n \"If running with CRN, you must specify ['entrance_time', 'age'] asthe randomness key columns.\"\n )\n self.age_randomness = builder.randomness.get_stream('age_initialization',\n for_initialization=self.with_common_random_numbers)\n self.sex_randomness = builder.randomness.get_stream('sex_initialization')\n columns_created = ['age', 'sex', 'alive', 'entrance_time']\n builder.population.initializes_simulants(self.on_initialize_simulants,\n creates_columns=columns_created)\n self.population_view = builder.population.get_view(columns_created)\n builder.event.register_listener('time_step', self.age_simulants)\n", "role": "user" }, { "content": "setup", "role": "assistant" } ]
def x(self, pop_data: SimulantData): age_start = self.config.population.age_start age_end = self.config.population.age_end if age_start == age_end: age_window = pop_data.creation_window / pd.Timedelta(days=365) else: age_window = age_end - age_start age_draw = self.age_randomness.get_draw(pop_data.index) age = age_start + age_draw * age_window if self.with_common_random_numbers: population = pd.DataFrame({'entrance_time': pop_data.creation_time, 'age': age.values}, index=pop_data.index) self.register(population) population['sex'] = self.sex_randomness.choice(pop_data.index, [ 'Male', 'Female']) population['alive'] = 'alive' else: population = pd.DataFrame({'age': age.values, 'sex': self. sex_randomness.choice(pop_data.index, ['Male', 'Female']), 'alive': pd.Series('alive', index=pop_data.index), 'entrance_time': pop_data.creation_time}, index=pop_data.index) self.population_view.update(population)
on_initialize_simulants
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, pop_data: SimulantData):\n age_start = self.config.population.age_start\n age_end = self.config.population.age_end\n if age_start == age_end:\n age_window = pop_data.creation_window / pd.Timedelta(days=365)\n else:\n age_window = age_end - age_start\n age_draw = self.age_randomness.get_draw(pop_data.index)\n age = age_start + age_draw * age_window\n if self.with_common_random_numbers:\n population = pd.DataFrame({'entrance_time': pop_data.creation_time,\n 'age': age.values}, index=pop_data.index)\n self.register(population)\n population['sex'] = self.sex_randomness.choice(pop_data.index, [\n 'Male', 'Female'])\n population['alive'] = 'alive'\n else:\n population = pd.DataFrame({'age': age.values, 'sex': self.\n sex_randomness.choice(pop_data.index, ['Male', 'Female']),\n 'alive': pd.Series('alive', index=pop_data.index),\n 'entrance_time': pop_data.creation_time}, index=pop_data.index)\n self.population_view.update(population)\n", "role": "user" }, { "content": "on_initialize_simulants", "role": "assistant" } ]
def x(self, event: Event): population = self.population_view.get(event.index, query="alive == 'alive'" ) population['age'] += event.step_size / pd.Timedelta(days=365) self.population_view.update(population)
age_simulants
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, event: Event):\n population = self.population_view.get(event.index, query=\"alive == 'alive'\"\n )\n population['age'] += event.step_size / pd.Timedelta(days=365)\n self.population_view.update(population)\n", "role": "user" }, { "content": "age_simulants", "role": "assistant" } ]
def x(catalogs, central_catalog=None, identifier_search=False, validator=None): assert isinstance(catalogs, string_types + (dict, list)) if isinstance(catalogs, string_types + (dict,)): catalogs = [catalogs] indicators_list = [] fields = {} catalogs_cant = 0 for catalog in catalogs: try: catalog = readers.read_catalog(catalog) catalogs_cant += 1 except Exception as e: msg = u'Error leyendo catálogo de la lista: {}'.format(str(e)) logger.error(msg) continue fields_count, result = _generate_indicators(catalog, validator= validator) if central_catalog: result.update(_federation_indicators(catalog, central_catalog, identifier_search=identifier_search)) if not indicators_list: network_indicators = result.copy() else: network_indicators = helpers.add_dicts(network_indicators, result) fields = helpers.add_dicts(fields_count, fields) result['title'] = catalog.get('title', 'no-title') result['identifier'] = catalog.get('identifier', 'no-id') indicators_list.append(result) if not indicators_list: return [], {} network_indicators['catalogos_cant'] = catalogs_cant _network_indicator_percentages(fields, network_indicators) return indicators_list, network_indicators
generate_catalogs_indicators
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(catalogs, central_catalog=None, identifier_search=False, validator=None):\n assert isinstance(catalogs, string_types + (dict, list))\n if isinstance(catalogs, string_types + (dict,)):\n catalogs = [catalogs]\n indicators_list = []\n fields = {}\n catalogs_cant = 0\n for catalog in catalogs:\n try:\n catalog = readers.read_catalog(catalog)\n catalogs_cant += 1\n except Exception as e:\n msg = u'Error leyendo catálogo de la lista: {}'.format(str(e))\n logger.error(msg)\n continue\n fields_count, result = _generate_indicators(catalog, validator=\n validator)\n if central_catalog:\n result.update(_federation_indicators(catalog, central_catalog,\n identifier_search=identifier_search))\n if not indicators_list:\n network_indicators = result.copy()\n else:\n network_indicators = helpers.add_dicts(network_indicators, result)\n fields = helpers.add_dicts(fields_count, fields)\n result['title'] = catalog.get('title', 'no-title')\n result['identifier'] = catalog.get('identifier', 'no-id')\n indicators_list.append(result)\n if not indicators_list:\n return [], {}\n network_indicators['catalogos_cant'] = catalogs_cant\n _network_indicator_percentages(fields, network_indicators)\n return indicators_list, network_indicators\n", "role": "user" }, { "content": "generate_catalogs_indicators", "role": "assistant" } ]
def x(catalog, validator=None, only_numeric=False): result = {} result.update(_generate_status_indicators(catalog, validator=validator)) result.update(_generate_date_indicators(catalog, only_numeric=only_numeric) ) if not only_numeric: if 'dataset' in catalog: format_count = count_fields(get_distributions(catalog), 'format') type_count = count_fields(get_distributions(catalog), 'type') license_count = count_fields(get_datasets(catalog), 'license') else: format_count = type_count = license_count = {} result.update({'distribuciones_formatos_cant': format_count, 'distribuciones_tipos_cant': type_count, 'datasets_licencias_cant': license_count}) fields_count = _count_required_and_optional_fields(catalog) recomendados_pct = float(fields_count['recomendado']) / fields_count[ 'total_recomendado'] optativos_pct = float(fields_count['optativo']) / fields_count[ 'total_optativo'] result.update({'campos_recomendados_pct': round(recomendados_pct, 4), 'campos_optativos_pct': round(optativos_pct, 4)}) return fields_count, result
generate_indicators
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(catalog, validator=None, only_numeric=False):\n result = {}\n result.update(_generate_status_indicators(catalog, validator=validator))\n result.update(_generate_date_indicators(catalog, only_numeric=only_numeric)\n )\n if not only_numeric:\n if 'dataset' in catalog:\n format_count = count_fields(get_distributions(catalog), 'format')\n type_count = count_fields(get_distributions(catalog), 'type')\n license_count = count_fields(get_datasets(catalog), 'license')\n else:\n format_count = type_count = license_count = {}\n result.update({'distribuciones_formatos_cant': format_count,\n 'distribuciones_tipos_cant': type_count,\n 'datasets_licencias_cant': license_count})\n fields_count = _count_required_and_optional_fields(catalog)\n recomendados_pct = float(fields_count['recomendado']) / fields_count[\n 'total_recomendado']\n optativos_pct = float(fields_count['optativo']) / fields_count[\n 'total_optativo']\n result.update({'campos_recomendados_pct': round(recomendados_pct, 4),\n 'campos_optativos_pct': round(optativos_pct, 4)})\n return fields_count, result\n", "role": "user" }, { "content": "generate_indicators", "role": "assistant" } ]
def x(catalog, central_catalog, identifier_search=False): result = {'datasets_federados_cant': None, 'datasets_federados_pct': None, 'datasets_no_federados_cant': None, 'datasets_federados_eliminados_cant': None, 'distribuciones_federadas_cant': None, 'datasets_federados_eliminados': [], 'datasets_no_federados': [], 'datasets_federados': []} try: central_catalog = readers.read_catalog(central_catalog) except Exception as e: msg = u'Error leyendo el catálogo central: {}'.format(str(e)) logger.error(msg) return result generator = FederationIndicatorsGenerator(central_catalog, catalog, id_based=identifier_search) result.update({'datasets_federados_cant': generator. datasets_federados_cant(), 'datasets_no_federados_cant': generator. datasets_no_federados_cant(), 'datasets_federados_eliminados_cant': generator.datasets_federados_eliminados_cant(), 'datasets_federados_eliminados': generator. datasets_federados_eliminados(), 'datasets_no_federados': generator .datasets_no_federados(), 'datasets_federados': generator. datasets_federados(), 'datasets_federados_pct': generator. datasets_federados_pct(), 'distribuciones_federadas_cant': generator.distribuciones_federadas_cant()}) return result
federation_indicators
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(catalog, central_catalog, identifier_search=False):\n result = {'datasets_federados_cant': None, 'datasets_federados_pct':\n None, 'datasets_no_federados_cant': None,\n 'datasets_federados_eliminados_cant': None,\n 'distribuciones_federadas_cant': None,\n 'datasets_federados_eliminados': [], 'datasets_no_federados': [],\n 'datasets_federados': []}\n try:\n central_catalog = readers.read_catalog(central_catalog)\n except Exception as e:\n msg = u'Error leyendo el catálogo central: {}'.format(str(e))\n logger.error(msg)\n return result\n generator = FederationIndicatorsGenerator(central_catalog, catalog,\n id_based=identifier_search)\n result.update({'datasets_federados_cant': generator.\n datasets_federados_cant(), 'datasets_no_federados_cant': generator.\n datasets_no_federados_cant(), 'datasets_federados_eliminados_cant':\n generator.datasets_federados_eliminados_cant(),\n 'datasets_federados_eliminados': generator.\n datasets_federados_eliminados(), 'datasets_no_federados': generator\n .datasets_no_federados(), 'datasets_federados': generator.\n datasets_federados(), 'datasets_federados_pct': generator.\n datasets_federados_pct(), 'distribuciones_federadas_cant':\n generator.distribuciones_federadas_cant()})\n return result\n", "role": "user" }, { "content": "federation_indicators", "role": "assistant" } ]
def x(fields, network_indicators): percentages = {'datasets_meta_ok_pct': (network_indicators.get( 'datasets_meta_ok_cant'), network_indicators.get( 'datasets_meta_error_cant')), 'datasets_actualizados_pct': ( network_indicators.get('datasets_actualizados_cant'), network_indicators.get('datasets_desactualizados_cant')), 'datasets_federados_pct': (network_indicators.get( 'datasets_federados_cant'), network_indicators.get( 'datasets_no_federados_cant')), 'datasets_con_datos_pct': ( network_indicators.get('datasets_con_datos_cant'), network_indicators.get('datasets_sin_datos_cant'))} for indicator in percentages: pct = 0.0 partial = percentages[indicator][0] or 0 total = partial + (percentages[indicator][1] or 0) if total: pct = float(partial) / total network_indicators[indicator] = round(pct, 4) if fields: rec_pct = float(fields['recomendado']) / fields['total_recomendado'] opt_pct = float(fields['optativo']) / fields['total_optativo'] network_indicators.update({'campos_recomendados_pct': round(rec_pct, 4), 'campos_optativos_pct': round(opt_pct, 4)})
network_indicator_percentages
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(fields, network_indicators):\n percentages = {'datasets_meta_ok_pct': (network_indicators.get(\n 'datasets_meta_ok_cant'), network_indicators.get(\n 'datasets_meta_error_cant')), 'datasets_actualizados_pct': (\n network_indicators.get('datasets_actualizados_cant'),\n network_indicators.get('datasets_desactualizados_cant')),\n 'datasets_federados_pct': (network_indicators.get(\n 'datasets_federados_cant'), network_indicators.get(\n 'datasets_no_federados_cant')), 'datasets_con_datos_pct': (\n network_indicators.get('datasets_con_datos_cant'),\n network_indicators.get('datasets_sin_datos_cant'))}\n for indicator in percentages:\n pct = 0.0\n partial = percentages[indicator][0] or 0\n total = partial + (percentages[indicator][1] or 0)\n if total:\n pct = float(partial) / total\n network_indicators[indicator] = round(pct, 4)\n if fields:\n rec_pct = float(fields['recomendado']) / fields['total_recomendado']\n opt_pct = float(fields['optativo']) / fields['total_optativo']\n network_indicators.update({'campos_recomendados_pct': round(rec_pct,\n 4), 'campos_optativos_pct': round(opt_pct, 4)})\n", "role": "user" }, { "content": "network_indicator_percentages", "role": "assistant" } ]
def x(catalog, validator=None): result = {'datasets_cant': None, 'distribuciones_cant': None, 'datasets_meta_ok_cant': None, 'datasets_meta_error_cant': None, 'datasets_meta_ok_pct': None, 'datasets_con_datos_cant': None, 'datasets_sin_datos_cant': None, 'datasets_con_datos_pct': None} try: summary = generate_datasets_summary(catalog, validator=validator) except Exception as e: msg = u'Error generando resumen del catálogo {}: {}'.format(catalog ['title'], str(e)) logger.error(msg) return result cant_ok = 0 cant_error = 0 cant_data = 0 cant_without_data = 0 cant_distribuciones = 0 datasets_total = len(summary) for dataset in summary: cant_distribuciones += dataset['cant_distribuciones'] if dataset['tiene_datos'] == 'SI': cant_data += 1 else: cant_without_data += 1 if dataset['estado_metadatos'] == 'OK': cant_ok += 1 else: cant_error += 1 datasets_ok_pct = 0 datasets_with_data_pct = 0 if datasets_total: datasets_ok_pct = round(float(cant_ok) / datasets_total, 4) datasets_with_data_pct = round(float(cant_data) / datasets_total, 4) result.update({'datasets_cant': datasets_total, 'distribuciones_cant': cant_distribuciones, 'datasets_meta_ok_cant': cant_ok, 'datasets_meta_error_cant': cant_error, 'datasets_meta_ok_pct': datasets_ok_pct, 'datasets_con_datos_cant': cant_data, 'datasets_sin_datos_cant': cant_without_data, 'datasets_con_datos_pct': datasets_with_data_pct}) return result
generate_status_indicators
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(catalog, validator=None):\n result = {'datasets_cant': None, 'distribuciones_cant': None,\n 'datasets_meta_ok_cant': None, 'datasets_meta_error_cant': None,\n 'datasets_meta_ok_pct': None, 'datasets_con_datos_cant': None,\n 'datasets_sin_datos_cant': None, 'datasets_con_datos_pct': None}\n try:\n summary = generate_datasets_summary(catalog, validator=validator)\n except Exception as e:\n msg = u'Error generando resumen del catálogo {}: {}'.format(catalog\n ['title'], str(e))\n logger.error(msg)\n return result\n cant_ok = 0\n cant_error = 0\n cant_data = 0\n cant_without_data = 0\n cant_distribuciones = 0\n datasets_total = len(summary)\n for dataset in summary:\n cant_distribuciones += dataset['cant_distribuciones']\n if dataset['tiene_datos'] == 'SI':\n cant_data += 1\n else:\n cant_without_data += 1\n if dataset['estado_metadatos'] == 'OK':\n cant_ok += 1\n else:\n cant_error += 1\n datasets_ok_pct = 0\n datasets_with_data_pct = 0\n if datasets_total:\n datasets_ok_pct = round(float(cant_ok) / datasets_total, 4)\n datasets_with_data_pct = round(float(cant_data) / datasets_total, 4)\n result.update({'datasets_cant': datasets_total, 'distribuciones_cant':\n cant_distribuciones, 'datasets_meta_ok_cant': cant_ok,\n 'datasets_meta_error_cant': cant_error, 'datasets_meta_ok_pct':\n datasets_ok_pct, 'datasets_con_datos_cant': cant_data,\n 'datasets_sin_datos_cant': cant_without_data,\n 'datasets_con_datos_pct': datasets_with_data_pct})\n return result\n", "role": "user" }, { "content": "generate_status_indicators", "role": "assistant" } ]
def x(catalog, tolerance=0.2, only_numeric=False): result = {'datasets_desactualizados_cant': None, 'datasets_actualizados_cant': None, 'datasets_actualizados_pct': None, 'catalogo_ultima_actualizacion_dias': None} if not only_numeric: result.update({'datasets_frecuencia_cant': {}}) try: dias_ultima_actualizacion = _days_from_last_update(catalog, 'modified') if not dias_ultima_actualizacion: dias_ultima_actualizacion = _days_from_last_update(catalog, 'issued') result['catalogo_ultima_actualizacion_dias' ] = dias_ultima_actualizacion except Exception as e: msg = (u'Error generando indicadores de fecha del catálogo {}: {}'. format(catalog['title'], str(e))) logger.error(msg) return result actualizados = 0 desactualizados = 0 periodicity_amount = {} for dataset in catalog.get('dataset', []): periodicity = dataset.get('accrualPeriodicity') if not periodicity: continue if periodicity == 'eventual': actualizados += 1 prev_periodicity = periodicity_amount.get(periodicity, 0) periodicity_amount[periodicity] = prev_periodicity + 1 continue if 'modified' not in dataset: desactualizados += 1 else: try: date = helpers.parse_date_string(dataset['modified']) days_diff = float((datetime.now() - date).days) interval = helpers.parse_repeating_time_interval(periodicity ) * (1 + tolerance) except Exception as e: msg = ( u'Error generando indicadoresde fecha del dataset {} en {}: {}' ) msg.format(dataset['identifier'], catalog['title'], str(e)) logger.error(msg) desactualizados += 1 continue if days_diff < interval: actualizados += 1 else: desactualizados += 1 prev_periodicity = periodicity_amount.get(periodicity, 0) periodicity_amount[periodicity] = prev_periodicity + 1 datasets_total = len(catalog.get('dataset', [])) actualizados_pct = 0 if datasets_total: actualizados_pct = float(actualizados) / datasets_total result.update({'datasets_desactualizados_cant': desactualizados, 'datasets_actualizados_cant': actualizados, 'datasets_actualizados_pct': round(actualizados_pct, 4)}) if not only_numeric: result.update({'datasets_frecuencia_cant': periodicity_amount}) return result
generate_date_indicators
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(catalog, tolerance=0.2, only_numeric=False):\n result = {'datasets_desactualizados_cant': None,\n 'datasets_actualizados_cant': None, 'datasets_actualizados_pct':\n None, 'catalogo_ultima_actualizacion_dias': None}\n if not only_numeric:\n result.update({'datasets_frecuencia_cant': {}})\n try:\n dias_ultima_actualizacion = _days_from_last_update(catalog, 'modified')\n if not dias_ultima_actualizacion:\n dias_ultima_actualizacion = _days_from_last_update(catalog,\n 'issued')\n result['catalogo_ultima_actualizacion_dias'\n ] = dias_ultima_actualizacion\n except Exception as e:\n msg = (u'Error generando indicadores de fecha del catálogo {}: {}'.\n format(catalog['title'], str(e)))\n logger.error(msg)\n return result\n actualizados = 0\n desactualizados = 0\n periodicity_amount = {}\n for dataset in catalog.get('dataset', []):\n periodicity = dataset.get('accrualPeriodicity')\n if not periodicity:\n continue\n if periodicity == 'eventual':\n actualizados += 1\n prev_periodicity = periodicity_amount.get(periodicity, 0)\n periodicity_amount[periodicity] = prev_periodicity + 1\n continue\n if 'modified' not in dataset:\n desactualizados += 1\n else:\n try:\n date = helpers.parse_date_string(dataset['modified'])\n days_diff = float((datetime.now() - date).days)\n interval = helpers.parse_repeating_time_interval(periodicity\n ) * (1 + tolerance)\n except Exception as e:\n msg = (\n u'Error generando indicadoresde fecha del dataset {} en {}: {}'\n )\n msg.format(dataset['identifier'], catalog['title'], str(e))\n logger.error(msg)\n desactualizados += 1\n continue\n if days_diff < interval:\n actualizados += 1\n else:\n desactualizados += 1\n prev_periodicity = periodicity_amount.get(periodicity, 0)\n periodicity_amount[periodicity] = prev_periodicity + 1\n datasets_total = len(catalog.get('dataset', []))\n actualizados_pct = 0\n if datasets_total:\n actualizados_pct = float(actualizados) / datasets_total\n result.update({'datasets_desactualizados_cant': desactualizados,\n 'datasets_actualizados_cant': actualizados,\n 'datasets_actualizados_pct': round(actualizados_pct, 4)})\n if not only_numeric:\n result.update({'datasets_frecuencia_cant': periodicity_amount})\n return result\n", "role": "user" }, { "content": "generate_date_indicators", "role": "assistant" } ]
def x(catalog, date_field='modified'): date_modified = catalog.get(date_field, None) dias_ultima_actualizacion = None if isinstance(date_modified, string_types): date = helpers.parse_date_string(date_modified) dias_ultima_actualizacion = (datetime.now() - date ).days if date else None for dataset in catalog.get('dataset', []): date = helpers.parse_date_string(dataset.get(date_field, '')) days_diff = float((datetime.now() - date).days) if date else None if (not dias_ultima_actualizacion or days_diff and days_diff < dias_ultima_actualizacion): dias_ultima_actualizacion = days_diff if dias_ultima_actualizacion: return int(dias_ultima_actualizacion) else: return None
days_from_last_update
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(catalog, date_field='modified'):\n date_modified = catalog.get(date_field, None)\n dias_ultima_actualizacion = None\n if isinstance(date_modified, string_types):\n date = helpers.parse_date_string(date_modified)\n dias_ultima_actualizacion = (datetime.now() - date\n ).days if date else None\n for dataset in catalog.get('dataset', []):\n date = helpers.parse_date_string(dataset.get(date_field, ''))\n days_diff = float((datetime.now() - date).days) if date else None\n if (not dias_ultima_actualizacion or days_diff and days_diff <\n dias_ultima_actualizacion):\n dias_ultima_actualizacion = days_diff\n if dias_ultima_actualizacion:\n return int(dias_ultima_actualizacion)\n else:\n return None\n", "role": "user" }, { "content": "days_from_last_update", "role": "assistant" } ]
def x(catalog): catalog = readers.read_catalog(catalog) catalog_fields_path = os.path.join(CATALOG_FIELDS_PATH, 'fields.json') with open(catalog_fields_path) as f: catalog_fields = json.load(f) return _count_fields_recursive(catalog, catalog_fields)
count_required_and_optional_fields
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(catalog):\n catalog = readers.read_catalog(catalog)\n catalog_fields_path = os.path.join(CATALOG_FIELDS_PATH, 'fields.json')\n with open(catalog_fields_path) as f:\n catalog_fields = json.load(f)\n return _count_fields_recursive(catalog, catalog_fields)\n", "role": "user" }, { "content": "count_required_and_optional_fields", "role": "assistant" } ]
def x(dataset, fields): key_count = {'recomendado': 0, 'optativo': 0, 'requerido': 0, 'total_optativo': 0, 'total_recomendado': 0, 'total_requerido': 0} for k, v in fields.items(): if isinstance(v, dict): elements = dataset.get(k) if not isinstance(elements, (list, dict)): elements = [{}] if isinstance(elements, dict): elements = [dataset[k].copy()] for element in elements: result = _count_fields_recursive(element, v) for key in result: key_count[key] += result[key] else: key_count['total_' + v] += 1 if k in dataset: key_count[v] += 1 return key_count
count_fields_recursive
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(dataset, fields):\n key_count = {'recomendado': 0, 'optativo': 0, 'requerido': 0,\n 'total_optativo': 0, 'total_recomendado': 0, 'total_requerido': 0}\n for k, v in fields.items():\n if isinstance(v, dict):\n elements = dataset.get(k)\n if not isinstance(elements, (list, dict)):\n elements = [{}]\n if isinstance(elements, dict):\n elements = [dataset[k].copy()]\n for element in elements:\n result = _count_fields_recursive(element, v)\n for key in result:\n key_count[key] += result[key]\n else:\n key_count['total_' + v] += 1\n if k in dataset:\n key_count[v] += 1\n return key_count\n", "role": "user" }, { "content": "count_fields_recursive", "role": "assistant" } ]
def x(key: str, index: Index, index_map: IndexMap=None) ->pd.Series: if len(index) > 0: random_state = np.random.RandomState(seed=get_hash(key)) sample_size = (index_map.map_size if index_map is not None else index.max() + 1) try: draw_index = index_map[index] except (IndexError, TypeError): draw_index = index raw_draws = random_state.random_sample(sample_size) return pd.Series(raw_draws[draw_index], index=index) return pd.Series(index=index)
random
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(key: str, index: Index, index_map: IndexMap=None) ->pd.Series:\n if len(index) > 0:\n random_state = np.random.RandomState(seed=get_hash(key))\n sample_size = (index_map.map_size if index_map is not None else \n index.max() + 1)\n try:\n draw_index = index_map[index]\n except (IndexError, TypeError):\n draw_index = index\n raw_draws = random_state.random_sample(sample_size)\n return pd.Series(raw_draws[draw_index], index=index)\n return pd.Series(index=index)\n", "role": "user" }, { "content": "random", "role": "assistant" } ]
def x(key: str) ->int: return int(hashlib.sha1(key.encode('utf8')).hexdigest(), 16) % 4294967295
get_hash
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(key: str) ->int:\n return int(hashlib.sha1(key.encode('utf8')).hexdigest(), 16) % 4294967295\n", "role": "user" }, { "content": "get_hash", "role": "assistant" } ]
def x(key: str, index: Index, choices: Array, p: Array=None, index_map: IndexMap=None) ->pd.Series: p = _set_residual_probability(_normalize_shape(p, index) ) if p is not None else np.ones((len(index), len(choices))) p = p / p.sum(axis=1, keepdims=True) draw = random(key, index, index_map) p_bins = np.cumsum(p, axis=1) choice_index = (draw.values[np.newaxis].T > p_bins).sum(axis=1) return pd.Series(np.array(choices)[choice_index], index=index)
choice
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(key: str, index: Index, choices: Array, p: Array=None, index_map:\n IndexMap=None) ->pd.Series:\n p = _set_residual_probability(_normalize_shape(p, index)\n ) if p is not None else np.ones((len(index), len(choices)))\n p = p / p.sum(axis=1, keepdims=True)\n draw = random(key, index, index_map)\n p_bins = np.cumsum(p, axis=1)\n choice_index = (draw.values[np.newaxis].T > p_bins).sum(axis=1)\n return pd.Series(np.array(choices)[choice_index], index=index)\n", "role": "user" }, { "content": "choice", "role": "assistant" } ]
def x(p: np.ndarray) ->np.ndarray: residual_mask = p == RESIDUAL_CHOICE if residual_mask.any(): if np.any(np.sum(residual_mask, axis=1) - 1): raise RandomnessError( 'More than one residual choice supplied for a single set of weights. Weights: {}.' .format(p)) p[residual_mask] = 0 residual_p = 1 - np.sum(p, axis=1) if np.any(residual_p < 0): raise RandomnessError( 'Residual choice supplied with weights that summed to more than 1. Weights: {}.' .format(p)) p[residual_mask] = residual_p return p
set_residual_probability
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(p: np.ndarray) ->np.ndarray:\n residual_mask = p == RESIDUAL_CHOICE\n if residual_mask.any():\n if np.any(np.sum(residual_mask, axis=1) - 1):\n raise RandomnessError(\n 'More than one residual choice supplied for a single set of weights. Weights: {}.'\n .format(p))\n p[residual_mask] = 0\n residual_p = 1 - np.sum(p, axis=1)\n if np.any(residual_p < 0):\n raise RandomnessError(\n 'Residual choice supplied with weights that summed to more than 1. Weights: {}.'\n .format(p))\n p[residual_mask] = residual_p\n return p\n", "role": "user" }, { "content": "set_residual_probability", "role": "assistant" } ]
def x(key: str, population: Union[pd.DataFrame, pd.Series, Index], probability: Array, index_map: IndexMap=None) ->Union[pd.DataFrame, pd. Series, Index]: if population.empty: return population index = population if isinstance(population, pd.Index ) else population.index draw = random(key, index, index_map) mask = np.array(draw < probability) return population[mask]
filter_for_probability
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(key: str, population: Union[pd.DataFrame, pd.Series, Index],\n probability: Array, index_map: IndexMap=None) ->Union[pd.DataFrame, pd.\n Series, Index]:\n if population.empty:\n return population\n index = population if isinstance(population, pd.Index\n ) else population.index\n draw = random(key, index, index_map)\n mask = np.array(draw < probability)\n return population[mask]\n", "role": "user" }, { "content": "filter_for_probability", "role": "assistant" } ]
def x(self, new_keys: Index): if not self._map.index.intersection(new_keys).empty: raise KeyError('Non-unique keys in index.') mapping_update = self.hash_(new_keys) if self._map.empty: self._map = mapping_update.drop_duplicates() else: self._map = self._map.append(mapping_update).drop_duplicates() collisions = mapping_update.index.difference(self._map.index) salt = 1 while not collisions.empty: mapping_update = self.hash_(collisions, salt) self._map = self._map.append(mapping_update).drop_duplicates() collisions = mapping_update.index.difference(self._map.index) salt += 1
update
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, new_keys: Index):\n if not self._map.index.intersection(new_keys).empty:\n raise KeyError('Non-unique keys in index.')\n mapping_update = self.hash_(new_keys)\n if self._map.empty:\n self._map = mapping_update.drop_duplicates()\n else:\n self._map = self._map.append(mapping_update).drop_duplicates()\n collisions = mapping_update.index.difference(self._map.index)\n salt = 1\n while not collisions.empty:\n mapping_update = self.hash_(collisions, salt)\n self._map = self._map.append(mapping_update).drop_duplicates()\n collisions = mapping_update.index.difference(self._map.index)\n salt += 1\n", "role": "user" }, { "content": "update", "role": "assistant" } ]
def x(self, keys: Index, salt: int=0) ->pd.Series: key_frame = keys.to_frame() new_map = pd.Series(0, index=keys) salt = self.convert_to_ten_digit_int(pd.Series(salt, index=keys)) for i, column_name in enumerate(key_frame.columns): column = self.convert_to_ten_digit_int(key_frame[column_name]) primes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 27] out = pd.Series(1, index=column.index) for idx, p in enumerate(primes): out *= np.power(p, self.digit(column, idx)) new_map += out + salt return new_map % self.map_size
hash_
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, keys: Index, salt: int=0) ->pd.Series:\n key_frame = keys.to_frame()\n new_map = pd.Series(0, index=keys)\n salt = self.convert_to_ten_digit_int(pd.Series(salt, index=keys))\n for i, column_name in enumerate(key_frame.columns):\n column = self.convert_to_ten_digit_int(key_frame[column_name])\n primes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 27]\n out = pd.Series(1, index=column.index)\n for idx, p in enumerate(primes):\n out *= np.power(p, self.digit(column, idx))\n new_map += out + salt\n return new_map % self.map_size\n", "role": "user" }, { "content": "hash_", "role": "assistant" } ]
def x(self, column: pd.Series) ->pd.Series: if isinstance(column.iloc[0], datetime.datetime): column = self.clip_to_seconds(column.astype(int)) elif np.issubdtype(column.iloc[0], np.integer): if not len(column >= 0) == len(column): raise RandomnessError( 'Values in integer columns must be greater than or equal to zero.' ) column = self.spread(column) elif np.issubdtype(column.iloc[0], np.floating): column = self.shift(column) else: raise RandomnessError( f'Unhashable column type {type(column.iloc[0])}. IndexMap accepts datetime like columns and numeric columns.' ) return column
convert_to_ten_digit_int
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, column: pd.Series) ->pd.Series:\n if isinstance(column.iloc[0], datetime.datetime):\n column = self.clip_to_seconds(column.astype(int))\n elif np.issubdtype(column.iloc[0], np.integer):\n if not len(column >= 0) == len(column):\n raise RandomnessError(\n 'Values in integer columns must be greater than or equal to zero.'\n )\n column = self.spread(column)\n elif np.issubdtype(column.iloc[0], np.floating):\n column = self.shift(column)\n else:\n raise RandomnessError(\n f'Unhashable column type {type(column.iloc[0])}. IndexMap accepts datetime like columns and numeric columns.'\n )\n return column\n", "role": "user" }, { "content": "convert_to_ten_digit_int", "role": "assistant" } ]
def x(m: Union[int, pd.Series], n: int) ->Union[int, pd.Series]: return m // 10 ** n % 10
digit
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(m: Union[int, pd.Series], n: int) ->Union[int, pd.Series]:\n return m // 10 ** n % 10\n", "role": "user" }, { "content": "digit", "role": "assistant" } ]
def x(m: Union[int, pd.Series]) ->Union[int, pd.Series]: return m // pd.Timedelta(1, unit='s').value
clip_to_seconds
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(m: Union[int, pd.Series]) ->Union[int, pd.Series]:\n return m // pd.Timedelta(1, unit='s').value\n", "role": "user" }, { "content": "clip_to_seconds", "role": "assistant" } ]
def x(self, m: Union[int, pd.Series]) ->Union[int, pd.Series]: return m * 111111 % self.TEN_DIGIT_MODULUS
spread
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, m: Union[int, pd.Series]) ->Union[int, pd.Series]:\n return m * 111111 % self.TEN_DIGIT_MODULUS\n", "role": "user" }, { "content": "spread", "role": "assistant" } ]
def x(self, m: Union[float, pd.Series]) ->Union[int, pd.Series]: out = m % 1 * self.TEN_DIGIT_MODULUS // 1 if isinstance(out, pd.Series): return out.astype(int) return int(out)
shift
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, m: Union[float, pd.Series]) ->Union[int, pd.Series]:\n out = m % 1 * self.TEN_DIGIT_MODULUS // 1\n if isinstance(out, pd.Series):\n return out.astype(int)\n return int(out)\n", "role": "user" }, { "content": "shift", "role": "assistant" } ]
def x(self, key: Any) ->'RandomnessStream': if self._for_initialization: raise RandomnessError('Initialization streams cannot be copied.') elif self._manager: return self._manager.get_randomness_stream('_'.join([self.key, key])) else: return RandomnessStream(self.key, self.clock, self.seed, self.index_map )
copy_with_additional_key
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, key: Any) ->'RandomnessStream':\n if self._for_initialization:\n raise RandomnessError('Initialization streams cannot be copied.')\n elif self._manager:\n return self._manager.get_randomness_stream('_'.join([self.key, key]))\n else:\n return RandomnessStream(self.key, self.clock, self.seed, self.index_map\n )\n", "role": "user" }, { "content": "copy_with_additional_key", "role": "assistant" } ]
def x(self, additional_key: Any=None) ->str: return '_'.join([self.key, str(self.clock()), str(additional_key), str( self.seed)])
key
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, additional_key: Any=None) ->str:\n return '_'.join([self.key, str(self.clock()), str(additional_key), str(\n self.seed)])\n", "role": "user" }, { "content": "key", "role": "assistant" } ]
def x(self, index: Index, additional_key: Any=None) ->pd.Series: if self._for_initialization: draw = random(self._key(additional_key), pd.Index(range(len(index)) ), self.index_map) draw.index = index else: draw = random(self._key(additional_key), index, self.index_map) return draw
get_draw
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, index: Index, additional_key: Any=None) ->pd.Series:\n if self._for_initialization:\n draw = random(self._key(additional_key), pd.Index(range(len(index))\n ), self.index_map)\n draw.index = index\n else:\n draw = random(self._key(additional_key), index, self.index_map)\n return draw\n", "role": "user" }, { "content": "get_draw", "role": "assistant" } ]
def x(self, population: Union[pd.DataFrame, pd.Series, Index], rate: Array, additional_key: Any=None) ->Index: return self.filter_for_probability(population, rate_to_probability(rate ), additional_key)
filter_for_rate
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, population: Union[pd.DataFrame, pd.Series, Index], rate: Array,\n additional_key: Any=None) ->Index:\n return self.filter_for_probability(population, rate_to_probability(rate\n ), additional_key)\n", "role": "user" }, { "content": "filter_for_rate", "role": "assistant" } ]
def x(self, population: Union[pd.DataFrame, pd.Series, Index], probability: Array, additional_key: Any=None) ->Index: return filter_for_probability(self._key(additional_key), population, probability, self.index_map)
filter_for_probability
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, population: Union[pd.DataFrame, pd.Series, Index], probability:\n Array, additional_key: Any=None) ->Index:\n return filter_for_probability(self._key(additional_key), population,\n probability, self.index_map)\n", "role": "user" }, { "content": "filter_for_probability", "role": "assistant" } ]
def x(self, index: Index, choices: Array, p: Array=None, additional_key: Any=None) ->pd.Series: return choice(self._key(additional_key), index, choices, p, self.index_map)
choice
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, index: Index, choices: Array, p: Array=None, additional_key:\n Any=None) ->pd.Series:\n return choice(self._key(additional_key), index, choices, p, self.index_map)\n", "role": "user" }, { "content": "choice", "role": "assistant" } ]
def x(self, decision_point: str, for_initialization: bool=False ) ->RandomnessStream: if decision_point in self._decision_points: raise RandomnessError( f'Two separate places are attempting to create the same randomness stream for {decision_point}' ) stream = RandomnessStream(key=decision_point, clock=self._clock, seed= self._seed, index_map=self._key_mapping, manager=self, for_initialization=for_initialization) self._decision_points[decision_point] = stream return stream
get_randomness_stream
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, decision_point: str, for_initialization: bool=False\n ) ->RandomnessStream:\n if decision_point in self._decision_points:\n raise RandomnessError(\n f'Two separate places are attempting to create the same randomness stream for {decision_point}'\n )\n stream = RandomnessStream(key=decision_point, clock=self._clock, seed=\n self._seed, index_map=self._key_mapping, manager=self,\n for_initialization=for_initialization)\n self._decision_points[decision_point] = stream\n return stream\n", "role": "user" }, { "content": "get_randomness_stream", "role": "assistant" } ]
def x(self, simulants: pd.DataFrame): if not all(k in simulants.columns for k in self._key_columns): raise RandomnessError( 'The simulants dataframe does not have all specified key_columns.') self._key_mapping.update(simulants.set_index(self._key_columns).index)
register_simulants
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, simulants: pd.DataFrame):\n if not all(k in simulants.columns for k in self._key_columns):\n raise RandomnessError(\n 'The simulants dataframe does not have all specified key_columns.')\n self._key_mapping.update(simulants.set_index(self._key_columns).index)\n", "role": "user" }, { "content": "register_simulants", "role": "assistant" } ]
def x(self, decision_point: str, for_initialization: bool=False ) ->RandomnessStream: return self._randomness_manager.get_randomness_stream(decision_point, for_initialization)
get_stream
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, decision_point: str, for_initialization: bool=False\n ) ->RandomnessStream:\n return self._randomness_manager.get_randomness_stream(decision_point,\n for_initialization)\n", "role": "user" }, { "content": "get_stream", "role": "assistant" } ]
def x(self): group_ids = set() for group in Group.objects.all(): if group.properties.student_visible: group_ids.add(group.id) return Group.objects.filter(id__in=group_ids)
student_visible
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n group_ids = set()\n for group in Group.objects.all():\n if group.properties.student_visible:\n group_ids.add(group.id)\n return Group.objects.filter(id__in=group_ids)\n", "role": "user" }, { "content": "student_visible", "role": "assistant" } ]
def x(self, value): if value in self.empty_values: return '' value = force_text(value).strip() return value
to_python
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, value):\n if value in self.empty_values:\n return ''\n value = force_text(value).strip()\n return value\n", "role": "user" }, { "content": "to_python", "role": "assistant" } ]
def x(value): if value is None or isinstance(value, (int, long)): return value if NUMBER_TIME.match(value): return long(value) simple = SIMPLE_TIME.match(value) if SIMPLE_TIME.match(value): multiplier = long(simple.groups()[0]) constant = SIMPLE_TIMES[simple.groups()[1]] return multiplier * constant if value in GREGORIAN_TIMES: return value raise ValueError('Unsupported time format %s' % value)
resolve_time
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(value):\n if value is None or isinstance(value, (int, long)):\n return value\n if NUMBER_TIME.match(value):\n return long(value)\n simple = SIMPLE_TIME.match(value)\n if SIMPLE_TIME.match(value):\n multiplier = long(simple.groups()[0])\n constant = SIMPLE_TIMES[simple.groups()[1]]\n return multiplier * constant\n if value in GREGORIAN_TIMES:\n return value\n raise ValueError('Unsupported time format %s' % value)\n", "role": "user" }, { "content": "resolve_time", "role": "assistant" } ]
def x(self, t0=None, t1=None): if t0 != None and t1 != None: tb0 = self.to_bucket(t0) tb1 = self.to_bucket(t1, steps=1) if tb0 == tb1: return self._step return self.from_bucket(tb1) - self.from_bucket(tb0) return self._step
step_size
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, t0=None, t1=None):\n if t0 != None and t1 != None:\n tb0 = self.to_bucket(t0)\n tb1 = self.to_bucket(t1, steps=1)\n if tb0 == tb1:\n return self._step\n return self.from_bucket(tb1) - self.from_bucket(tb0)\n return self._step\n", "role": "user" }, { "content": "step_size", "role": "assistant" } ]
def x(self, start, end): start_bucket = self.to_bucket(start) end_bucket = self.to_bucket(end) return range(start_bucket, end_bucket + 1)
buckets
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, start, end):\n start_bucket = self.to_bucket(start)\n end_bucket = self.to_bucket(end)\n return range(start_bucket, end_bucket + 1)\n", "role": "user" }, { "content": "buckets", "role": "assistant" } ]
def x(self, steps, relative_time=None): if steps: if relative_time: rtime = self.to_bucket(relative_time) ntime = self.to_bucket(time.time()) if ntime - rtime > steps: return 0 else: return (steps + rtime - ntime) * self._step return steps * self._step return None
ttl
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, steps, relative_time=None):\n if steps:\n if relative_time:\n rtime = self.to_bucket(relative_time)\n ntime = self.to_bucket(time.time())\n if ntime - rtime > steps:\n return 0\n else:\n return (steps + rtime - ntime) * self._step\n return steps * self._step\n return None\n", "role": "user" }, { "content": "ttl", "role": "assistant" } ]
def x(self, t0, t1=None): tb0 = self.to_bucket(t0) if t1: tb1 = self.to_bucket(t1, steps=1) else: tb1 = self.to_bucket(t0, steps=1) days = (self.from_bucket(tb1, native=True) - self.from_bucket(tb0, native=True)).days return days * SIMPLE_TIMES['d']
step_size
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, t0, t1=None):\n tb0 = self.to_bucket(t0)\n if t1:\n tb1 = self.to_bucket(t1, steps=1)\n else:\n tb1 = self.to_bucket(t0, steps=1)\n days = (self.from_bucket(tb1, native=True) - self.from_bucket(tb0,\n native=True)).days\n return days * SIMPLE_TIMES['d']\n", "role": "user" }, { "content": "step_size", "role": "assistant" } ]
def x(self, timestamp, steps=0): dt = datetime.utcfromtimestamp(timestamp) if steps != 0: if self._step == 'daily': dt = dt + timedelta(days=steps) elif self._step == 'weekly': dt = dt + timedelta(weeks=steps) elif self._step == 'monthly': dt = dt + MonthDelta(steps) elif self._step == 'yearly': year = int(dt.strftime(self.FORMATS[self._step])) year += steps dt = datetime(year=year, month=1, day=1) return int(dt.strftime(self.FORMATS[self._step]))
to_bucket
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, timestamp, steps=0):\n dt = datetime.utcfromtimestamp(timestamp)\n if steps != 0:\n if self._step == 'daily':\n dt = dt + timedelta(days=steps)\n elif self._step == 'weekly':\n dt = dt + timedelta(weeks=steps)\n elif self._step == 'monthly':\n dt = dt + MonthDelta(steps)\n elif self._step == 'yearly':\n year = int(dt.strftime(self.FORMATS[self._step]))\n year += steps\n dt = datetime(year=year, month=1, day=1)\n return int(dt.strftime(self.FORMATS[self._step]))\n", "role": "user" }, { "content": "to_bucket", "role": "assistant" } ]
def x(self, bucket, native=False): bucket = str(bucket) if self._step == 'weekly': year, week = bucket[:4], bucket[4:] normal = datetime(year=int(year), month=1, day=1) + timedelta(weeks =int(week)) else: normal = datetime.strptime(bucket, self.FORMATS[self._step]) if native: return normal return long(time.mktime(normal.timetuple()))
from_bucket
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, bucket, native=False):\n bucket = str(bucket)\n if self._step == 'weekly':\n year, week = bucket[:4], bucket[4:]\n normal = datetime(year=int(year), month=1, day=1) + timedelta(weeks\n =int(week))\n else:\n normal = datetime.strptime(bucket, self.FORMATS[self._step])\n if native:\n return normal\n return long(time.mktime(normal.timetuple()))\n", "role": "user" }, { "content": "from_bucket", "role": "assistant" } ]
def x(self, start, end): rval = [self.to_bucket(start)] step = 1 while True: bucket = self.to_bucket(start, step) bucket_time = self.from_bucket(bucket) if bucket_time >= end: if bucket_time == end: rval.append(bucket) break rval.append(bucket) step += 1 return rval
buckets
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, start, end):\n rval = [self.to_bucket(start)]\n step = 1\n while True:\n bucket = self.to_bucket(start, step)\n bucket_time = self.from_bucket(bucket)\n if bucket_time >= end:\n if bucket_time == end:\n rval.append(bucket)\n break\n rval.append(bucket)\n step += 1\n return rval\n", "role": "user" }, { "content": "buckets", "role": "assistant" } ]
def x(self, timestamp, steps=0): return self.from_bucket(self.to_bucket(timestamp, steps))
normalize
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, timestamp, steps=0):\n return self.from_bucket(self.to_bucket(timestamp, steps))\n", "role": "user" }, { "content": "normalize", "role": "assistant" } ]
def x(self, steps, relative_time=None): if steps: if relative_time: rtime = self.to_bucket(relative_time) ntime = self.to_bucket(time.time()) day_diff = (self.from_bucket(ntime, native=True) - self. from_bucket(rtime, native=True)).days step_diff = steps * SIMPLE_TIMES[self._step[0]] / SIMPLE_TIMES['d'] if day_diff > step_diff: return 0 else: return (step_diff - day_diff) * SIMPLE_TIMES['d'] return steps * SIMPLE_TIMES[self._step[0]] return None
ttl
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, steps, relative_time=None):\n if steps:\n if relative_time:\n rtime = self.to_bucket(relative_time)\n ntime = self.to_bucket(time.time())\n day_diff = (self.from_bucket(ntime, native=True) - self.\n from_bucket(rtime, native=True)).days\n step_diff = steps * SIMPLE_TIMES[self._step[0]] / SIMPLE_TIMES['d']\n if day_diff > step_diff:\n return 0\n else:\n return (step_diff - day_diff) * SIMPLE_TIMES['d']\n return steps * SIMPLE_TIMES[self._step[0]]\n return None\n", "role": "user" }, { "content": "ttl", "role": "assistant" } ]
def x(self, inserts, intervals=0, **kwargs): if None in inserts: inserts[time.time()] = inserts.pop(None) if self._write_func: for timestamp, names in inserts.iteritems(): for name, values in names.iteritems(): names[name] = [self._write_func(v) for v in values] self._batch_insert(inserts, intervals, **kwargs)
bulk_insert
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, inserts, intervals=0, **kwargs):\n if None in inserts:\n inserts[time.time()] = inserts.pop(None)\n if self._write_func:\n for timestamp, names in inserts.iteritems():\n for name, values in names.iteritems():\n names[name] = [self._write_func(v) for v in values]\n self._batch_insert(inserts, intervals, **kwargs)\n", "role": "user" }, { "content": "bulk_insert", "role": "assistant" } ]
def x(self, name, value, timestamp=None, intervals=0, **kwargs): if not timestamp: timestamp = time.time() if isinstance(value, (list, tuple, set)): if self._write_func: value = [self._write_func(v) for v in value] return self._batch_insert({timestamp: {name: value}}, intervals, ** kwargs) if self._write_func: value = self._write_func(value) self._insert(name, value, timestamp, intervals, **kwargs)
insert
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, name, value, timestamp=None, intervals=0, **kwargs):\n if not timestamp:\n timestamp = time.time()\n if isinstance(value, (list, tuple, set)):\n if self._write_func:\n value = [self._write_func(v) for v in value]\n return self._batch_insert({timestamp: {name: value}}, intervals, **\n kwargs)\n if self._write_func:\n value = self._write_func(value)\n self._insert(name, value, timestamp, intervals, **kwargs)\n", "role": "user" }, { "content": "insert", "role": "assistant" } ]
def x(self, inserts, intervals, **kwargs): for timestamp, names in inserts.iteritems(): for name, values in names.iteritems(): for value in values: self._insert(name, value, timestamp, intervals, **kwargs)
batch_insert
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, inserts, intervals, **kwargs):\n for timestamp, names in inserts.iteritems():\n for name, values in names.iteritems():\n for value in values:\n self._insert(name, value, timestamp, intervals, **kwargs)\n", "role": "user" }, { "content": "batch_insert", "role": "assistant" } ]
def x(self, timestamp, intervals, config): rval = [timestamp] if intervals < 0: while intervals < 0: rval.append(config['i_calc'].normalize(timestamp, intervals)) intervals += 1 elif intervals > 0: while intervals > 0: rval.append(config['i_calc'].normalize(timestamp, intervals)) intervals -= 1 return rval
normalize_timestamps
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, timestamp, intervals, config):\n rval = [timestamp]\n if intervals < 0:\n while intervals < 0:\n rval.append(config['i_calc'].normalize(timestamp, intervals))\n intervals += 1\n elif intervals > 0:\n while intervals > 0:\n rval.append(config['i_calc'].normalize(timestamp, intervals))\n intervals -= 1\n return rval\n", "role": "user" }, { "content": "normalize_timestamps", "role": "assistant" } ]
def x(self, name, interval, **kwargs): config = self._intervals.get(interval) if not config: raise UnknownInterval(interval) properties = self.properties(name)[interval] i_buckets = config['i_calc'].buckets(properties['first'], properties[ 'last']) for i_bucket in i_buckets: data = self.get(name, interval, timestamp=config['i_calc']. from_bucket(i_bucket), **kwargs) for timestamp, row in data.items(): yield timestamp, row
iterate
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, name, interval, **kwargs):\n config = self._intervals.get(interval)\n if not config:\n raise UnknownInterval(interval)\n properties = self.properties(name)[interval]\n i_buckets = config['i_calc'].buckets(properties['first'], properties[\n 'last'])\n for i_bucket in i_buckets:\n data = self.get(name, interval, timestamp=config['i_calc'].\n from_bucket(i_bucket), **kwargs)\n for timestamp, row in data.items():\n yield timestamp, row\n", "role": "user" }, { "content": "iterate", "role": "assistant" } ]
def x(self, name, interval, **kwargs): config = self._intervals.get(interval) if not config: raise UnknownInterval(interval) timestamp = kwargs.get('timestamp', time.time()) fetch = kwargs.get('fetch') process_row = kwargs.get('process_row') or self._process_row condense = kwargs.get('condense', False) join_rows = kwargs.get('join_rows') or self._join transform = kwargs.get('transform') condense = kwargs.get('condensed', condense) if isinstance(name, (list, tuple, set)): results = [self._get(x, interval, config, timestamp, fetch=fetch, process_row=process_row) for x in name] rval = self._join_results(results, True, join_rows) else: rval = self._get(name, interval, config, timestamp, fetch=fetch, process_row=process_row) if config['coarse']: step_size = config['i_calc'].step_size(timestamp) else: step_size = config['r_calc'].step_size(timestamp) if condense and not config['coarse']: condense = condense if callable(condense) else self._condense rval = {config['i_calc'].normalize(timestamp): condense(rval)} step_size = config['i_calc'].step_size(timestamp) if transform: for k, v in rval.items(): rval[k] = self._process_transform(v, transform, step_size) return rval
get
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, name, interval, **kwargs):\n config = self._intervals.get(interval)\n if not config:\n raise UnknownInterval(interval)\n timestamp = kwargs.get('timestamp', time.time())\n fetch = kwargs.get('fetch')\n process_row = kwargs.get('process_row') or self._process_row\n condense = kwargs.get('condense', False)\n join_rows = kwargs.get('join_rows') or self._join\n transform = kwargs.get('transform')\n condense = kwargs.get('condensed', condense)\n if isinstance(name, (list, tuple, set)):\n results = [self._get(x, interval, config, timestamp, fetch=fetch,\n process_row=process_row) for x in name]\n rval = self._join_results(results, True, join_rows)\n else:\n rval = self._get(name, interval, config, timestamp, fetch=fetch,\n process_row=process_row)\n if config['coarse']:\n step_size = config['i_calc'].step_size(timestamp)\n else:\n step_size = config['r_calc'].step_size(timestamp)\n if condense and not config['coarse']:\n condense = condense if callable(condense) else self._condense\n rval = {config['i_calc'].normalize(timestamp): condense(rval)}\n step_size = config['i_calc'].step_size(timestamp)\n if transform:\n for k, v in rval.items():\n rval[k] = self._process_transform(v, transform, step_size)\n return rval\n", "role": "user" }, { "content": "get", "role": "assistant" } ]
def x(self, name, interval, **kwargs): config = self._intervals.get(interval) if not config: raise UnknownInterval(interval) start = kwargs.get('start') end = kwargs.get('end') steps = kwargs.get('steps') or config.get('steps', 1) fetch = kwargs.get('fetch') process_row = kwargs.get('process_row') or self._process_row condense = kwargs.get('condense', False) join_rows = kwargs.get('join_rows') or self._join collapse = kwargs.get('collapse', False) transform = kwargs.get('transform') condense = kwargs.get('condensed', condense) if collapse: condense = condense or True if end is None: if start is None: end = time.time() end_bucket = config['i_calc'].to_bucket(end) start_bucket = config['i_calc'].to_bucket(end, -steps + 1) else: start_bucket = config['i_calc'].to_bucket(start) end_bucket = config['i_calc'].to_bucket(start, steps - 1) else: end_bucket = config['i_calc'].to_bucket(end) if start is None: start_bucket = config['i_calc'].to_bucket(end, -steps + 1) else: start_bucket = config['i_calc'].to_bucket(start) start = config['i_calc'].from_bucket(start_bucket) end = config['i_calc'].from_bucket(end_bucket) if start > end: end = start interval_buckets = config['i_calc'].buckets(start, end) if isinstance(name, (list, tuple, set)): results = [self._series(x, interval, config, interval_buckets, fetch=fetch, process_row=process_row) for x in name] rval = self._join_results(results, config['coarse'], join_rows) else: rval = self._series(name, interval, config, interval_buckets, fetch =fetch, process_row=process_row) if not config['coarse']: if condense: condense = condense if callable(condense) else self._condense for key in rval.iterkeys(): data = condense(rval[key]) if transform and not collapse: data = self._process_transform(data, transform, config[ 'i_calc'].step_size(key)) rval[key] = data elif transform: for interval, resolutions in rval.items(): for key in resolutions.iterkeys(): resolutions[key] = self._process_transform(resolutions[ key], transform, config['r_calc'].step_size(key)) if config['coarse'] or collapse: if collapse: collapse = collapse if callable(collapse ) else condense if callable(condense) else self._condense data = collapse(rval) if transform: rval = {rval.keys()[0]: self._process_transform(data, transform, config['i_calc'].step_size(rval.keys()[0], rval.keys()[-1]))} else: rval = {rval.keys()[0]: data} elif transform: for key, data in rval.items(): rval[key] = self._process_transform(data, transform, config ['i_calc'].step_size(key)) return rval
series
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, name, interval, **kwargs):\n config = self._intervals.get(interval)\n if not config:\n raise UnknownInterval(interval)\n start = kwargs.get('start')\n end = kwargs.get('end')\n steps = kwargs.get('steps') or config.get('steps', 1)\n fetch = kwargs.get('fetch')\n process_row = kwargs.get('process_row') or self._process_row\n condense = kwargs.get('condense', False)\n join_rows = kwargs.get('join_rows') or self._join\n collapse = kwargs.get('collapse', False)\n transform = kwargs.get('transform')\n condense = kwargs.get('condensed', condense)\n if collapse:\n condense = condense or True\n if end is None:\n if start is None:\n end = time.time()\n end_bucket = config['i_calc'].to_bucket(end)\n start_bucket = config['i_calc'].to_bucket(end, -steps + 1)\n else:\n start_bucket = config['i_calc'].to_bucket(start)\n end_bucket = config['i_calc'].to_bucket(start, steps - 1)\n else:\n end_bucket = config['i_calc'].to_bucket(end)\n if start is None:\n start_bucket = config['i_calc'].to_bucket(end, -steps + 1)\n else:\n start_bucket = config['i_calc'].to_bucket(start)\n start = config['i_calc'].from_bucket(start_bucket)\n end = config['i_calc'].from_bucket(end_bucket)\n if start > end:\n end = start\n interval_buckets = config['i_calc'].buckets(start, end)\n if isinstance(name, (list, tuple, set)):\n results = [self._series(x, interval, config, interval_buckets,\n fetch=fetch, process_row=process_row) for x in name]\n rval = self._join_results(results, config['coarse'], join_rows)\n else:\n rval = self._series(name, interval, config, interval_buckets, fetch\n =fetch, process_row=process_row)\n if not config['coarse']:\n if condense:\n condense = condense if callable(condense) else self._condense\n for key in rval.iterkeys():\n data = condense(rval[key])\n if transform and not collapse:\n data = self._process_transform(data, transform, config[\n 'i_calc'].step_size(key))\n rval[key] = data\n elif transform:\n for interval, resolutions in rval.items():\n for key in resolutions.iterkeys():\n resolutions[key] = self._process_transform(resolutions[\n key], transform, config['r_calc'].step_size(key))\n if config['coarse'] or collapse:\n if collapse:\n collapse = collapse if callable(collapse\n ) else condense if callable(condense) else self._condense\n data = collapse(rval)\n if transform:\n rval = {rval.keys()[0]: self._process_transform(data,\n transform, config['i_calc'].step_size(rval.keys()[0],\n rval.keys()[-1]))}\n else:\n rval = {rval.keys()[0]: data}\n elif transform:\n for key, data in rval.items():\n rval[key] = self._process_transform(data, transform, config\n ['i_calc'].step_size(key))\n return rval\n", "role": "user" }, { "content": "series", "role": "assistant" } ]
def x(self, results, coarse, join): rval = OrderedDict() i_keys = set() for res in results: i_keys.update(res.keys()) for i_key in sorted(i_keys): if coarse: rval[i_key] = join([res.get(i_key) for res in results]) else: rval[i_key] = OrderedDict() r_keys = set() for res in results: r_keys.update(res.get(i_key, {}).keys()) for r_key in sorted(r_keys): rval[i_key][r_key] = join([res.get(i_key, {}).get(r_key) for res in results]) return rval
join_results
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, results, coarse, join):\n rval = OrderedDict()\n i_keys = set()\n for res in results:\n i_keys.update(res.keys())\n for i_key in sorted(i_keys):\n if coarse:\n rval[i_key] = join([res.get(i_key) for res in results])\n else:\n rval[i_key] = OrderedDict()\n r_keys = set()\n for res in results:\n r_keys.update(res.get(i_key, {}).keys())\n for r_key in sorted(r_keys):\n rval[i_key][r_key] = join([res.get(i_key, {}).get(r_key) for\n res in results])\n return rval\n", "role": "user" }, { "content": "join_results", "role": "assistant" } ]
def x(self, data, transform, step_size): if isinstance(transform, (list, tuple, set)): return {t: self._transform(data, t, step_size) for t in transform} elif isinstance(transform, dict): return {tn: self._transform(data, tf, step_size) for tn, tf in transform.items()} return self._transform(data, transform, step_size)
process_transform
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, data, transform, step_size):\n if isinstance(transform, (list, tuple, set)):\n return {t: self._transform(data, t, step_size) for t in transform}\n elif isinstance(transform, dict):\n return {tn: self._transform(data, tf, step_size) for tn, tf in\n transform.items()}\n return self._transform(data, transform, step_size)\n", "role": "user" }, { "content": "process_transform", "role": "assistant" } ]
def x(self, data, transform, step_size): if transform == 'mean': total = sum(k * v for k, v in data.items()) count = sum(data.values()) data = float(total) / float(count) if count > 0 else 0 elif transform == 'count': data = sum(data.values()) elif transform == 'min': data = min(data.keys() or [0]) elif transform == 'max': data = max(data.keys() or [0]) elif transform == 'sum': data = sum(k * v for k, v in data.items()) elif transform == 'rate': data = {k: (v / float(step_size)) for k, v in data.items()} elif callable(transform): data = transform(data, step_size) return data
transform
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, data, transform, step_size):\n if transform == 'mean':\n total = sum(k * v for k, v in data.items())\n count = sum(data.values())\n data = float(total) / float(count) if count > 0 else 0\n elif transform == 'count':\n data = sum(data.values())\n elif transform == 'min':\n data = min(data.keys() or [0])\n elif transform == 'max':\n data = max(data.keys() or [0])\n elif transform == 'sum':\n data = sum(k * v for k, v in data.items())\n elif transform == 'rate':\n data = {k: (v / float(step_size)) for k, v in data.items()}\n elif callable(transform):\n data = transform(data, step_size)\n return data\n", "role": "user" }, { "content": "transform", "role": "assistant" } ]
def x(self, data): rval = {} for resolution, histogram in data.items(): for value, count in histogram.items(): rval[value] = count + rval.get(value, 0) return rval
condense
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, data):\n rval = {}\n for resolution, histogram in data.items():\n for value, count in histogram.items():\n rval[value] = count + rval.get(value, 0)\n return rval\n", "role": "user" }, { "content": "condense", "role": "assistant" } ]
def x(self, rows): rval = {} for row in rows: if row: for value, count in row.items(): rval[value] = count + rval.get(value, 0) return rval
join
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, rows):\n rval = {}\n for row in rows:\n if row:\n for value, count in row.items():\n rval[value] = count + rval.get(value, 0)\n return rval\n", "role": "user" }, { "content": "join", "role": "assistant" } ]
def x(self, rows): rval = 0 for row in rows: if row: rval += row return rval
join
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, rows):\n rval = 0\n for row in rows:\n if row:\n rval += row\n return rval\n", "role": "user" }, { "content": "join", "role": "assistant" } ]
def x(self, data, transform, step_size): if callable(transform): data = transform(data, step_size) return data
transform
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, data, transform, step_size):\n if callable(transform):\n data = transform(data, step_size)\n return data\n", "role": "user" }, { "content": "transform", "role": "assistant" } ]
def x(self, data): if data: data = filter(None, data.values()) if data: return data[-1] return None
condense
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, data):\n if data:\n data = filter(None, data.values())\n if data:\n return data[-1]\n return None\n", "role": "user" }, { "content": "condense", "role": "assistant" } ]
def x(self, data, transform, step_size): if transform == 'mean': total = sum(data) count = len(data) data = float(total) / float(count) if count > 0 else 0 elif transform == 'count': data = len(data) elif transform == 'min': data = min(data or [0]) elif transform == 'max': data = max(data or [0]) elif transform == 'sum': data = sum(data) elif transform == 'rate': data = len(data) / float(step_size) elif callable(transform): data = transform(data) return data
transform
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, data, transform, step_size):\n if transform == 'mean':\n total = sum(data)\n count = len(data)\n data = float(total) / float(count) if count > 0 else 0\n elif transform == 'count':\n data = len(data)\n elif transform == 'min':\n data = min(data or [0])\n elif transform == 'max':\n data = max(data or [0])\n elif transform == 'sum':\n data = sum(data)\n elif transform == 'rate':\n data = len(data) / float(step_size)\n elif callable(transform):\n data = transform(data)\n return data\n", "role": "user" }, { "content": "transform", "role": "assistant" } ]
def x(self, data): if data: return reduce(operator.ior, data.values()) return set()
condense
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, data):\n if data:\n return reduce(operator.ior, data.values())\n return set()\n", "role": "user" }, { "content": "condense", "role": "assistant" } ]
def x(x): from math import sqrt n = len(x) mean = sum(x) / float(n) std = sqrt(sum((a - mean) ** 2 for a in x) / float(n - 1)) return std
stdev
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x):\n from math import sqrt\n n = len(x)\n mean = sum(x) / float(n)\n std = sqrt(sum((a - mean) ** 2 for a in x) / float(n - 1))\n return std\n", "role": "user" }, { "content": "stdev", "role": "assistant" } ]
def x(self, **options): students_grp, _ = Group.objects.get_or_create(name='Students') sg_prop = students_grp.properties sg_prop.student_visible = True sg_prop.save() students_grp.save() for gr in [(settings.SENIOR_GRADUATION_YEAR + y) for y in range(0, 4)]: users = User.objects.users_in_year(gr) grp, _ = Group.objects.get_or_create(name='Class of {}'.format(gr)) grp_prop = grp.properties grp_prop.student_visible = True grp_prop.save() grp.save() self.stdout.write('{}: {} users'.format(gr, len(users))) for u in users: u.groups.add(grp) u.groups.add(students_grp) u.save() self.stdout.write('{}: Processed'.format(gr)) self.stdout.write('Done.')
handle
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, **options):\n students_grp, _ = Group.objects.get_or_create(name='Students')\n sg_prop = students_grp.properties\n sg_prop.student_visible = True\n sg_prop.save()\n students_grp.save()\n for gr in [(settings.SENIOR_GRADUATION_YEAR + y) for y in range(0, 4)]:\n users = User.objects.users_in_year(gr)\n grp, _ = Group.objects.get_or_create(name='Class of {}'.format(gr))\n grp_prop = grp.properties\n grp_prop.student_visible = True\n grp_prop.save()\n grp.save()\n self.stdout.write('{}: {} users'.format(gr, len(users)))\n for u in users:\n u.groups.add(grp)\n u.groups.add(students_grp)\n u.save()\n self.stdout.write('{}: Processed'.format(gr))\n self.stdout.write('Done.')\n", "role": "user" }, { "content": "handle", "role": "assistant" } ]
def x(self, *args, **options): do_run = options['run'] if do_run: if not options['confirm']: self.ask( """===== WARNING! ===== This script will DESTROY data! Ensure that you have a properly backed-up copy of your database before proceeding. ===== WARNING! ===== Continue?""" ) else: self.stdout.write('In pretend mode.') current_year = timezone.now().year new_senior_year = current_year + 1 turnover_date = datetime.datetime(current_year, 7, 1) self.stdout.write('Turnover date set to: {}'.format(turnover_date. strftime('%c'))) if not self.chk('SENIOR_GRADUATION_YEAR = {} in settings/__init__.py'. format(new_senior_year), settings.SENIOR_GRADUATION_YEAR == new_senior_year): return """ EIGHTH: EighthBlock: filtered EighthSignup: absences removed EighthActivity: keep ANNOUNCEMENTS: AnnouncementRequest: filtered USERS: User: graduated students deleted """ self.stdout.write('Resolving absences') if do_run: self.clear_absences() self.stdout.write('Updating welcome state') if do_run: self.update_welcome() self.stdout.write('Deleting graduated users') if do_run: self.handle_delete() self.stdout.write('Archiving admin comments') if do_run: self.archive_admin_comments()
handle
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, *args, **options):\n do_run = options['run']\n if do_run:\n if not options['confirm']:\n self.ask(\n \"\"\"===== WARNING! =====\n\nThis script will DESTROY data! Ensure that you have a properly backed-up copy of your database before proceeding.\n\n===== WARNING! =====\n\nContinue?\"\"\"\n )\n else:\n self.stdout.write('In pretend mode.')\n current_year = timezone.now().year\n new_senior_year = current_year + 1\n turnover_date = datetime.datetime(current_year, 7, 1)\n self.stdout.write('Turnover date set to: {}'.format(turnover_date.\n strftime('%c')))\n if not self.chk('SENIOR_GRADUATION_YEAR = {} in settings/__init__.py'.\n format(new_senior_year), settings.SENIOR_GRADUATION_YEAR ==\n new_senior_year):\n return\n \"\"\"\n EIGHTH:\n EighthBlock: filtered\n EighthSignup: absences removed\n EighthActivity: keep\n\n ANNOUNCEMENTS:\n AnnouncementRequest: filtered\n\n USERS:\n User: graduated students deleted\n \"\"\"\n self.stdout.write('Resolving absences')\n if do_run:\n self.clear_absences()\n self.stdout.write('Updating welcome state')\n if do_run:\n self.update_welcome()\n self.stdout.write('Deleting graduated users')\n if do_run:\n self.handle_delete()\n self.stdout.write('Archiving admin comments')\n if do_run:\n self.archive_admin_comments()\n", "role": "user" }, { "content": "handle", "role": "assistant" } ]
def x(self, userid, password, request=None): user = auth.authenticate(username=userid, password=password) if user is None or user and not user.is_active: raise exceptions.AuthenticationFailed('Invalid username/password.') return user, None
authenticate_credentials
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, userid, password, request=None):\n user = auth.authenticate(username=userid, password=password)\n if user is None or user and not user.is_active:\n raise exceptions.AuthenticationFailed('Invalid username/password.')\n return user, None\n", "role": "user" }, { "content": "authenticate_credentials", "role": "assistant" } ]
def x(request): remote_addr = request.META['HTTP_X_FORWARDED_FOR' ] if 'HTTP_X_FORWARDED_FOR' in request.META else request.META.get( 'REMOTE_ADDR', '') return remote_addr in settings.INTERNAL_IPS
check_internal_ip
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(request):\n remote_addr = request.META['HTTP_X_FORWARDED_FOR'\n ] if 'HTTP_X_FORWARDED_FOR' in request.META else request.META.get(\n 'REMOTE_ADDR', '')\n return remote_addr in settings.INTERNAL_IPS\n", "role": "user" }, { "content": "check_internal_ip", "role": "assistant" } ]
def x(q): question_votes = votes = Answer.objects.filter(question=q) users = q.get_users_voted() num_users_votes = {u.id: votes.filter(user=u).count() for u in users} user_scale = {u.id: (1 / num_users_votes[u.id]) for u in users} choices = [] for c in q.choice_set.all().order_by('num'): votes = question_votes.filter(choice=c) vote_users = set([v.user for v in votes]) choice = {'choice': c, 'votes': {'total': {'all': len(vote_users), 'all_percent': perc(len(vote_users), users.count()), 'male': fmt(sum([(v.user.is_male * user_scale[v.user.id]) for v in votes])), 'female': fmt(sum([(v.user.is_female * user_scale[v. user.id]) for v in votes]))}}, 'users': [v.user for v in votes]} for yr in range(9, 14): yr_votes = [(v.user if v.user.grade and v.user.grade.number == yr else None) for v in votes] yr_votes = list(filter(None, yr_votes)) choice['votes'][yr] = {'all': len(set(yr_votes)), 'male': fmt( sum([(u.is_male * user_scale[u.id]) for u in yr_votes])), 'female': fmt(sum([(u.is_female * user_scale[u.id]) for u in yr_votes]))} choices.append(choice) """ Clear vote """ votes = question_votes.filter(clear_vote=True) clr_users = set([v.user for v in votes]) choice = {'choice': 'Clear vote', 'votes': {'total': {'all': len( clr_users), 'all_percent': perc(len(clr_users), users.count()), 'male': fmt(sum([(v.user.is_male * user_scale[v.user.id]) for v in votes])), 'female': fmt(sum([(v.user.is_female * user_scale[v.user. id]) for v in votes]))}}, 'users': clr_users} for yr in range(9, 14): yr_votes = [(v.user if v.user.grade and v.user.grade.number == yr else None) for v in votes] yr_votes = list(filter(None, yr_votes)) choice['votes'][yr] = {'all': len(yr_votes), 'male': fmt(sum([(u. is_male * user_scale[u.id]) for u in yr_votes])), 'female': fmt (sum([(u.is_female * user_scale[u.id]) for u in yr_votes]))} choices.append(choice) choice = {'choice': 'Total', 'votes': {'total': {'all': users.count(), 'votes_all': question_votes.count(), 'all_percent': perc(users. count(), users.count()), 'male': users.filter(gender=True).count(), 'female': users.filter(gender__isnull=False, gender=False).count()}}} for yr in range(9, 14): yr_votes = [(u if u.grade and u.grade.number == yr else None) for u in users] yr_votes = list(filter(None, yr_votes)) choice['votes'][yr] = {'all': len(set(yr_votes)), 'male': fmt(sum([ (u.is_male * user_scale[u.id]) for u in yr_votes])), 'female': fmt(sum([(u.is_female * user_scale[u.id]) for u in yr_votes]))} choices.append(choice) return {'question': q, 'choices': choices, 'user_scale': user_scale}
handle_sap
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(q):\n question_votes = votes = Answer.objects.filter(question=q)\n users = q.get_users_voted()\n num_users_votes = {u.id: votes.filter(user=u).count() for u in users}\n user_scale = {u.id: (1 / num_users_votes[u.id]) for u in users}\n choices = []\n for c in q.choice_set.all().order_by('num'):\n votes = question_votes.filter(choice=c)\n vote_users = set([v.user for v in votes])\n choice = {'choice': c, 'votes': {'total': {'all': len(vote_users),\n 'all_percent': perc(len(vote_users), users.count()), 'male':\n fmt(sum([(v.user.is_male * user_scale[v.user.id]) for v in\n votes])), 'female': fmt(sum([(v.user.is_female * user_scale[v.\n user.id]) for v in votes]))}}, 'users': [v.user for v in votes]}\n for yr in range(9, 14):\n yr_votes = [(v.user if v.user.grade and v.user.grade.number ==\n yr else None) for v in votes]\n yr_votes = list(filter(None, yr_votes))\n choice['votes'][yr] = {'all': len(set(yr_votes)), 'male': fmt(\n sum([(u.is_male * user_scale[u.id]) for u in yr_votes])),\n 'female': fmt(sum([(u.is_female * user_scale[u.id]) for u in\n yr_votes]))}\n choices.append(choice)\n \"\"\" Clear vote \"\"\"\n votes = question_votes.filter(clear_vote=True)\n clr_users = set([v.user for v in votes])\n choice = {'choice': 'Clear vote', 'votes': {'total': {'all': len(\n clr_users), 'all_percent': perc(len(clr_users), users.count()),\n 'male': fmt(sum([(v.user.is_male * user_scale[v.user.id]) for v in\n votes])), 'female': fmt(sum([(v.user.is_female * user_scale[v.user.\n id]) for v in votes]))}}, 'users': clr_users}\n for yr in range(9, 14):\n yr_votes = [(v.user if v.user.grade and v.user.grade.number == yr else\n None) for v in votes]\n yr_votes = list(filter(None, yr_votes))\n choice['votes'][yr] = {'all': len(yr_votes), 'male': fmt(sum([(u.\n is_male * user_scale[u.id]) for u in yr_votes])), 'female': fmt\n (sum([(u.is_female * user_scale[u.id]) for u in yr_votes]))}\n choices.append(choice)\n choice = {'choice': 'Total', 'votes': {'total': {'all': users.count(),\n 'votes_all': question_votes.count(), 'all_percent': perc(users.\n count(), users.count()), 'male': users.filter(gender=True).count(),\n 'female': users.filter(gender__isnull=False, gender=False).count()}}}\n for yr in range(9, 14):\n yr_votes = [(u if u.grade and u.grade.number == yr else None) for u in\n users]\n yr_votes = list(filter(None, yr_votes))\n choice['votes'][yr] = {'all': len(set(yr_votes)), 'male': fmt(sum([\n (u.is_male * user_scale[u.id]) for u in yr_votes])), 'female':\n fmt(sum([(u.is_female * user_scale[u.id]) for u in yr_votes]))}\n choices.append(choice)\n return {'question': q, 'choices': choices, 'user_scale': user_scale}\n", "role": "user" }, { "content": "handle_sap", "role": "assistant" } ]
def x(request): is_events_admin = request.user.has_admin_permission('events') if request.method == 'POST': if 'approve' in request.POST and is_events_admin: event_id = request.POST.get('approve') event = get_object_or_404(Event, id=event_id) event.rejected = False event.approved = True event.approved_by = request.user event.save() messages.success(request, 'Approved event {}'.format(event)) if 'reject' in request.POST and is_events_admin: event_id = request.POST.get('reject') event = get_object_or_404(Event, id=event_id) event.approved = False event.rejected = True event.rejected_by = request.user event.save() messages.success(request, 'Rejected event {}'.format(event)) if is_events_admin and 'show_all' in request.GET: viewable_events = Event.objects.all().this_year().prefetch_related( 'groups') else: viewable_events = Event.objects.visible_to_user(request.user ).this_year().prefetch_related('groups') today = datetime.date.today() delta = today - datetime.timedelta(days=today.weekday()) this_week = delta, delta + datetime.timedelta(days=7) this_month = this_week[1], this_week[1] + datetime.timedelta(days=31) events_categories = [{'title': 'This week', 'events': viewable_events. filter(time__gte=this_week[0], time__lt=this_week[1])}, {'title': 'This month', 'events': viewable_events.filter(time__gte=this_month [0], time__lt=this_month[1])}, {'title': 'Future', 'events': viewable_events.filter(time__gte=this_month[1])}] if is_events_admin: unapproved_events = Event.objects.filter(approved=False, rejected=False ).prefetch_related('groups') events_categories = [{'title': 'Awaiting Approval', 'events': unapproved_events}] + events_categories if is_events_admin and 'show_all' in request.GET: events_categories.append({'title': 'Past', 'events': viewable_events.filter(time__lt=this_week[0])}) context = {'events': events_categories, 'num_events': sum([x['events']. count() for x in events_categories]), 'is_events_admin': is_events_admin, 'events_admin': is_events_admin, 'show_attend': True, 'show_icon': True} return render(request, 'events/home.html', context)
events_view
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(request):\n is_events_admin = request.user.has_admin_permission('events')\n if request.method == 'POST':\n if 'approve' in request.POST and is_events_admin:\n event_id = request.POST.get('approve')\n event = get_object_or_404(Event, id=event_id)\n event.rejected = False\n event.approved = True\n event.approved_by = request.user\n event.save()\n messages.success(request, 'Approved event {}'.format(event))\n if 'reject' in request.POST and is_events_admin:\n event_id = request.POST.get('reject')\n event = get_object_or_404(Event, id=event_id)\n event.approved = False\n event.rejected = True\n event.rejected_by = request.user\n event.save()\n messages.success(request, 'Rejected event {}'.format(event))\n if is_events_admin and 'show_all' in request.GET:\n viewable_events = Event.objects.all().this_year().prefetch_related(\n 'groups')\n else:\n viewable_events = Event.objects.visible_to_user(request.user\n ).this_year().prefetch_related('groups')\n today = datetime.date.today()\n delta = today - datetime.timedelta(days=today.weekday())\n this_week = delta, delta + datetime.timedelta(days=7)\n this_month = this_week[1], this_week[1] + datetime.timedelta(days=31)\n events_categories = [{'title': 'This week', 'events': viewable_events.\n filter(time__gte=this_week[0], time__lt=this_week[1])}, {'title':\n 'This month', 'events': viewable_events.filter(time__gte=this_month\n [0], time__lt=this_month[1])}, {'title': 'Future', 'events':\n viewable_events.filter(time__gte=this_month[1])}]\n if is_events_admin:\n unapproved_events = Event.objects.filter(approved=False, rejected=False\n ).prefetch_related('groups')\n events_categories = [{'title': 'Awaiting Approval', 'events':\n unapproved_events}] + events_categories\n if is_events_admin and 'show_all' in request.GET:\n events_categories.append({'title': 'Past', 'events':\n viewable_events.filter(time__lt=this_week[0])})\n context = {'events': events_categories, 'num_events': sum([x['events'].\n count() for x in events_categories]), 'is_events_admin':\n is_events_admin, 'events_admin': is_events_admin, 'show_attend': \n True, 'show_icon': True}\n return render(request, 'events/home.html', context)\n", "role": "user" }, { "content": "events_view", "role": "assistant" } ]
def x(request, id): event = get_object_or_404(Event, id=id) if request.method == 'POST': if not event.show_attending: return redirect('events') if 'attending' in request.POST: attending = request.POST.get('attending') attending = attending == 'true' if attending: event.attending.add(request.user) else: event.attending.remove(request.user) return redirect('events') context = {'event': event, 'is_events_admin': request.user. has_admin_permission('events')} return render(request, 'events/join_event.html', context)
join_event_view
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(request, id):\n event = get_object_or_404(Event, id=id)\n if request.method == 'POST':\n if not event.show_attending:\n return redirect('events')\n if 'attending' in request.POST:\n attending = request.POST.get('attending')\n attending = attending == 'true'\n if attending:\n event.attending.add(request.user)\n else:\n event.attending.remove(request.user)\n return redirect('events')\n context = {'event': event, 'is_events_admin': request.user.\n has_admin_permission('events')}\n return render(request, 'events/join_event.html', context)\n", "role": "user" }, { "content": "join_event_view", "role": "assistant" } ]
def x(request, id): event = get_object_or_404(Event, id=id) full_roster = list(event.attending.all()) viewable_roster = [] num_hidden_members = 0 for p in full_roster: if p.can_view_eighth: viewable_roster.append(p) else: num_hidden_members += 1 context = {'event': event, 'viewable_roster': viewable_roster, 'full_roster': full_roster, 'num_hidden_members': num_hidden_members, 'is_events_admin': request.user. has_admin_permission('events')} return render(request, 'events/roster.html', context)
event_roster_view
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(request, id):\n event = get_object_or_404(Event, id=id)\n full_roster = list(event.attending.all())\n viewable_roster = []\n num_hidden_members = 0\n for p in full_roster:\n if p.can_view_eighth:\n viewable_roster.append(p)\n else:\n num_hidden_members += 1\n context = {'event': event, 'viewable_roster': viewable_roster,\n 'full_roster': full_roster, 'num_hidden_members':\n num_hidden_members, 'is_events_admin': request.user.\n has_admin_permission('events')}\n return render(request, 'events/roster.html', context)\n", "role": "user" }, { "content": "event_roster_view", "role": "assistant" } ]
def x(request): is_events_admin = request.user.has_admin_permission('events') if not is_events_admin: return redirect('request_event') if request.method == 'POST': form = EventForm(data=request.POST, all_groups=request.user. has_admin_permission('groups')) logger.debug(form) if form.is_valid(): obj = form.save() obj.user = request.user obj.description = safe_html(obj.description) obj.approved = True obj.approved_by = request.user messages.success(request, 'Because you are an administrator, this event was auto-approved.' ) obj.created_hook(request) obj.save() return redirect('events') else: messages.error(request, 'Error adding event.') else: form = EventForm(all_groups=request.user.has_admin_permission('groups') ) context = {'form': form, 'action': 'add', 'action_title': 'Add' if is_events_admin else 'Submit', 'is_events_admin': is_events_admin} return render(request, 'events/add_modify.html', context)
add_event_view
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(request):\n is_events_admin = request.user.has_admin_permission('events')\n if not is_events_admin:\n return redirect('request_event')\n if request.method == 'POST':\n form = EventForm(data=request.POST, all_groups=request.user.\n has_admin_permission('groups'))\n logger.debug(form)\n if form.is_valid():\n obj = form.save()\n obj.user = request.user\n obj.description = safe_html(obj.description)\n obj.approved = True\n obj.approved_by = request.user\n messages.success(request,\n 'Because you are an administrator, this event was auto-approved.'\n )\n obj.created_hook(request)\n obj.save()\n return redirect('events')\n else:\n messages.error(request, 'Error adding event.')\n else:\n form = EventForm(all_groups=request.user.has_admin_permission('groups')\n )\n context = {'form': form, 'action': 'add', 'action_title': 'Add' if\n is_events_admin else 'Submit', 'is_events_admin': is_events_admin}\n return render(request, 'events/add_modify.html', context)\n", "role": "user" }, { "content": "add_event_view", "role": "assistant" } ]
def x(request, id=None): event = get_object_or_404(Event, id=id) is_events_admin = request.user.has_admin_permission('events') if not is_events_admin: raise exceptions.PermissionDenied if request.method == 'POST': if is_events_admin: form = AdminEventForm(data=request.POST, instance=event, all_groups=request.user.has_admin_permission('groups')) else: form = EventForm(data=request.POST, instance=event, all_groups= request.user.has_admin_permission('groups')) logger.debug(form) if form.is_valid(): obj = form.save() obj.description = safe_html(obj.description) obj.save() messages.success(request, 'Successfully modified event.') else: messages.error(request, 'Error modifying event.') elif is_events_admin: form = AdminEventForm(instance=event, all_groups=request.user. has_admin_permission('groups')) else: form = EventForm(instance=event, all_groups=request.user. has_admin_permission('groups')) context = {'form': form, 'action': 'modify', 'action_title': 'Modify', 'id': id, 'is_events_admin': is_events_admin} return render(request, 'events/add_modify.html', context)
modify_event_view
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(request, id=None):\n event = get_object_or_404(Event, id=id)\n is_events_admin = request.user.has_admin_permission('events')\n if not is_events_admin:\n raise exceptions.PermissionDenied\n if request.method == 'POST':\n if is_events_admin:\n form = AdminEventForm(data=request.POST, instance=event,\n all_groups=request.user.has_admin_permission('groups'))\n else:\n form = EventForm(data=request.POST, instance=event, all_groups=\n request.user.has_admin_permission('groups'))\n logger.debug(form)\n if form.is_valid():\n obj = form.save()\n obj.description = safe_html(obj.description)\n obj.save()\n messages.success(request, 'Successfully modified event.')\n else:\n messages.error(request, 'Error modifying event.')\n elif is_events_admin:\n form = AdminEventForm(instance=event, all_groups=request.user.\n has_admin_permission('groups'))\n else:\n form = EventForm(instance=event, all_groups=request.user.\n has_admin_permission('groups'))\n context = {'form': form, 'action': 'modify', 'action_title': 'Modify',\n 'id': id, 'is_events_admin': is_events_admin}\n return render(request, 'events/add_modify.html', context)\n", "role": "user" }, { "content": "modify_event_view", "role": "assistant" } ]
def x(request, id): event = get_object_or_404(Event, id=id) if not request.user.has_admin_permission('events'): raise exceptions.PermissionDenied if request.method == 'POST': try: event.delete() messages.success(request, 'Successfully deleted event.') except Event.DoesNotExist: pass return redirect('events') else: return render(request, 'events/delete.html', {'event': event})
delete_event_view
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(request, id):\n event = get_object_or_404(Event, id=id)\n if not request.user.has_admin_permission('events'):\n raise exceptions.PermissionDenied\n if request.method == 'POST':\n try:\n event.delete()\n messages.success(request, 'Successfully deleted event.')\n except Event.DoesNotExist:\n pass\n return redirect('events')\n else:\n return render(request, 'events/delete.html', {'event': event})\n", "role": "user" }, { "content": "delete_event_view", "role": "assistant" } ]
def x(request): if request.method == 'POST': event_id = request.POST.get('event_id') if event_id: event = Event.objects.get(id=event_id) event.user_map.users_hidden.remove(request.user) event.user_map.save() return http.HttpResponse('Unhidden') raise http.Http404 else: return http.HttpResponseNotAllowed(['POST'], 'HTTP 405: METHOD NOT ALLOWED')
show_event_view
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(request):\n if request.method == 'POST':\n event_id = request.POST.get('event_id')\n if event_id:\n event = Event.objects.get(id=event_id)\n event.user_map.users_hidden.remove(request.user)\n event.user_map.save()\n return http.HttpResponse('Unhidden')\n raise http.Http404\n else:\n return http.HttpResponseNotAllowed(['POST'],\n 'HTTP 405: METHOD NOT ALLOWED')\n", "role": "user" }, { "content": "show_event_view", "role": "assistant" } ]
def x(request): logger.debug(request.POST) if request.method == 'POST': if 'user_token' in request.POST and 'gcm_token' in request.POST: user_token = request.POST.get('user_token') gcm_token = request.POST.get('gcm_token') logger.debug(user_token) logger.debug(gcm_token) try: ncfg = NotificationConfig.objects.get(android_gcm_rand= user_token) except NotificationConfig.DoesNotExist: logger.debug('No pair') return HttpResponse('{"error":"Invalid data."}', content_type='text/json') ncfg.gcm_token = gcm_token ncfg.android_gcm_rand = None ncfg.android_gcm_date = None ncfg.save() return HttpResponse('{"success":"Now registered."}', content_type='text/json') return HttpResponse('{"error":"Invalid arguments."}', content_type= 'text/json')
android_setup_view
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(request):\n logger.debug(request.POST)\n if request.method == 'POST':\n if 'user_token' in request.POST and 'gcm_token' in request.POST:\n user_token = request.POST.get('user_token')\n gcm_token = request.POST.get('gcm_token')\n logger.debug(user_token)\n logger.debug(gcm_token)\n try:\n ncfg = NotificationConfig.objects.get(android_gcm_rand=\n user_token)\n except NotificationConfig.DoesNotExist:\n logger.debug('No pair')\n return HttpResponse('{\"error\":\"Invalid data.\"}',\n content_type='text/json')\n ncfg.gcm_token = gcm_token\n ncfg.android_gcm_rand = None\n ncfg.android_gcm_date = None\n ncfg.save()\n return HttpResponse('{\"success\":\"Now registered.\"}',\n content_type='text/json')\n return HttpResponse('{\"error\":\"Invalid arguments.\"}', content_type=\n 'text/json')\n", "role": "user" }, { "content": "android_setup_view", "role": "assistant" } ]
def x(request): data = {} if request.user.is_authenticated: notifs = GCMNotification.objects.filter(sent_to__user=request.user ).order_by('-time') if notifs.count() > 0: notif = notifs.first() ndata = notif.data if 'title' in ndata and 'text' in ndata: data = {'title': ndata['title'] if 'title' in ndata else '', 'text': ndata['text'] if 'text' in ndata else '', 'url': ndata['url'] if 'url' in ndata else ''} else: schedule_chk = chrome_getdata_check(request) if schedule_chk: data = schedule_chk else: schedule_chk = chrome_getdata_check(request) if schedule_chk: data = schedule_chk else: return HttpResponse('null', content_type='text/json') else: schedule_chk = chrome_getdata_check(request) if schedule_chk: data = schedule_chk else: data = {'title': 'Check Intranet', 'text': "You have a new notification that couldn't be loaded right now." } j = json.dumps(data) return HttpResponse(j, content_type='text/json')
chrome_getdata_view
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(request):\n data = {}\n if request.user.is_authenticated:\n notifs = GCMNotification.objects.filter(sent_to__user=request.user\n ).order_by('-time')\n if notifs.count() > 0:\n notif = notifs.first()\n ndata = notif.data\n if 'title' in ndata and 'text' in ndata:\n data = {'title': ndata['title'] if 'title' in ndata else '',\n 'text': ndata['text'] if 'text' in ndata else '', 'url':\n ndata['url'] if 'url' in ndata else ''}\n else:\n schedule_chk = chrome_getdata_check(request)\n if schedule_chk:\n data = schedule_chk\n else:\n schedule_chk = chrome_getdata_check(request)\n if schedule_chk:\n data = schedule_chk\n else:\n return HttpResponse('null', content_type='text/json')\n else:\n schedule_chk = chrome_getdata_check(request)\n if schedule_chk:\n data = schedule_chk\n else:\n data = {'title': 'Check Intranet', 'text':\n \"You have a new notification that couldn't be loaded right now.\"\n }\n j = json.dumps(data)\n return HttpResponse(j, content_type='text/json')\n", "role": "user" }, { "content": "chrome_getdata_view", "role": "assistant" } ]
def x(request): logger.debug(request.POST) token = None if request.method == 'POST': if 'token' in request.POST: token = request.POST.get('token') if not token: return HttpResponse('{"error":"Invalid data."}', content_type= 'text/json') ncfg, _ = NotificationConfig.objects.get_or_create(user=request.user) ncfg.gcm_token = token ncfg.save() return HttpResponse('{"success":"Now registered."}', content_type= 'text/json')
chrome_setup_view
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(request):\n logger.debug(request.POST)\n token = None\n if request.method == 'POST':\n if 'token' in request.POST:\n token = request.POST.get('token')\n if not token:\n return HttpResponse('{\"error\":\"Invalid data.\"}', content_type=\n 'text/json')\n ncfg, _ = NotificationConfig.objects.get_or_create(user=request.user)\n ncfg.gcm_token = token\n ncfg.save()\n return HttpResponse('{\"success\":\"Now registered.\"}', content_type=\n 'text/json')\n", "role": "user" }, { "content": "chrome_setup_view", "role": "assistant" } ]