source_code
stringlengths
45
7.24k
function_name
stringlengths
1
111
messages
list
def x(key_id, skip_priv_key=False): priv_key = None if not FINGERPRINT_RE.match(key_id): if not skip_priv_key: f = io.open(key_id, 'rb') try: priv_key = f.read() finally: f.close() pub_key_path = key_id + '.pub' f = io.open(pub_key_path, 'r') try: pub_key = f.read() finally: f.close() fingerprint = fingerprint_from_ssh_pub_key(pub_key) try: algo = ALGO_FROM_SSH_KEY_TYPE[pub_key.split()[0]] except KeyError: raise MantaError('Unsupported key type for: {}'.format(key_id)) return dict(pub_key_path=pub_key_path, fingerprint=fingerprint, priv_key_path=key_id, priv_key=priv_key, algorithm=algo) fingerprint = key_id pub_key_glob = expanduser('~/.ssh/*.pub') pub_key = None for pub_key_path in glob(pub_key_glob): try: f = io.open(pub_key_path, 'r') except IOError: log.debug("could not open '%s', skip it", pub_key_path) continue try: pub_key = f.read() finally: f.close() md5_fp = fingerprint_from_ssh_pub_key(pub_key) sha256_fp = sha256_fingerprint_from_ssh_pub_key(pub_key) if (sha256_fp == fingerprint or md5_fp == fingerprint or 'MD5:' + md5_fp == fingerprint): fingerprint = md5_fp break else: raise MantaError( "no '~/.ssh/*.pub' key found with fingerprint '%s'" % fingerprint) try: algo = ALGO_FROM_SSH_KEY_TYPE[pub_key.split()[0]] except KeyError: raise MantaError('Unsupported key type for: {}'.format(key_id)) priv_key_path = os.path.splitext(pub_key_path)[0] if not skip_priv_key: f = io.open(priv_key_path, 'rb') try: priv_key = f.read() finally: f.close() return dict(pub_key_path=pub_key_path, fingerprint=fingerprint, priv_key_path=priv_key_path, priv_key=priv_key, algorithm=algo)
load_ssh_key
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(key_id, skip_priv_key=False):\n priv_key = None\n if not FINGERPRINT_RE.match(key_id):\n if not skip_priv_key:\n f = io.open(key_id, 'rb')\n try:\n priv_key = f.read()\n finally:\n f.close()\n pub_key_path = key_id + '.pub'\n f = io.open(pub_key_path, 'r')\n try:\n pub_key = f.read()\n finally:\n f.close()\n fingerprint = fingerprint_from_ssh_pub_key(pub_key)\n try:\n algo = ALGO_FROM_SSH_KEY_TYPE[pub_key.split()[0]]\n except KeyError:\n raise MantaError('Unsupported key type for: {}'.format(key_id))\n return dict(pub_key_path=pub_key_path, fingerprint=fingerprint,\n priv_key_path=key_id, priv_key=priv_key, algorithm=algo)\n fingerprint = key_id\n pub_key_glob = expanduser('~/.ssh/*.pub')\n pub_key = None\n for pub_key_path in glob(pub_key_glob):\n try:\n f = io.open(pub_key_path, 'r')\n except IOError:\n log.debug(\"could not open '%s', skip it\", pub_key_path)\n continue\n try:\n pub_key = f.read()\n finally:\n f.close()\n md5_fp = fingerprint_from_ssh_pub_key(pub_key)\n sha256_fp = sha256_fingerprint_from_ssh_pub_key(pub_key)\n if (sha256_fp == fingerprint or md5_fp == fingerprint or 'MD5:' +\n md5_fp == fingerprint):\n fingerprint = md5_fp\n break\n else:\n raise MantaError(\n \"no '~/.ssh/*.pub' key found with fingerprint '%s'\" % fingerprint)\n try:\n algo = ALGO_FROM_SSH_KEY_TYPE[pub_key.split()[0]]\n except KeyError:\n raise MantaError('Unsupported key type for: {}'.format(key_id))\n priv_key_path = os.path.splitext(pub_key_path)[0]\n if not skip_priv_key:\n f = io.open(priv_key_path, 'rb')\n try:\n priv_key = f.read()\n finally:\n f.close()\n return dict(pub_key_path=pub_key_path, fingerprint=fingerprint,\n priv_key_path=priv_key_path, priv_key=priv_key, algorithm=algo)\n", "role": "user" }, { "content": "load_ssh_key", "role": "assistant" } ]
def x(key_id, priv_key=None): if FINGERPRINT_RE.match(key_id) and priv_key: key_info = {'fingerprint': key_id, 'priv_key': priv_key} else: key_info = load_ssh_key(key_id) key = None try: key = serialization.load_pem_private_key(key_info['priv_key'], password=None, backend=default_backend()) except TypeError as ex: log.debug( 'could not import key without passphrase (will try with passphrase): %s' , ex) if 'priv_key_path' in key_info: prompt = 'Passphrase [%s]: ' % key_info['priv_key_path'] else: prompt = 'Passphrase: ' for i in range(3): passphrase = getpass(prompt) if not passphrase: break try: key = serialization.load_pem_private_key(key_info[ 'priv_key'], password=passphrase, backend=default_backend() ) except ValueError: continue else: break if not key: details = '' if 'priv_key_path' in key_info: details = ' (%s)' % key_info['priv_key_path'] raise MantaError('could not import key' + details) if 'algorithm' not in key_info: if isinstance(key, ec.EllipticCurvePrivateKey): key_info['algorithm'] = ECDSA_ALGO_FROM_KEY_SIZE[str(key.key_size)] elif isinstance(key, rsa.RSAPrivateKey): key_info['algorithm'] = RSA_STR else: raise MantaError('Unsupported key type for: {}'.format(key_id)) key_info['signer'] = key key_info['type'] = 'ssh_key' return key_info
ssh_key_info_from_key_data
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(key_id, priv_key=None):\n if FINGERPRINT_RE.match(key_id) and priv_key:\n key_info = {'fingerprint': key_id, 'priv_key': priv_key}\n else:\n key_info = load_ssh_key(key_id)\n key = None\n try:\n key = serialization.load_pem_private_key(key_info['priv_key'],\n password=None, backend=default_backend())\n except TypeError as ex:\n log.debug(\n 'could not import key without passphrase (will try with passphrase): %s'\n , ex)\n if 'priv_key_path' in key_info:\n prompt = 'Passphrase [%s]: ' % key_info['priv_key_path']\n else:\n prompt = 'Passphrase: '\n for i in range(3):\n passphrase = getpass(prompt)\n if not passphrase:\n break\n try:\n key = serialization.load_pem_private_key(key_info[\n 'priv_key'], password=passphrase, backend=default_backend()\n )\n except ValueError:\n continue\n else:\n break\n if not key:\n details = ''\n if 'priv_key_path' in key_info:\n details = ' (%s)' % key_info['priv_key_path']\n raise MantaError('could not import key' + details)\n if 'algorithm' not in key_info:\n if isinstance(key, ec.EllipticCurvePrivateKey):\n key_info['algorithm'] = ECDSA_ALGO_FROM_KEY_SIZE[str(key.key_size)]\n elif isinstance(key, rsa.RSAPrivateKey):\n key_info['algorithm'] = RSA_STR\n else:\n raise MantaError('Unsupported key type for: {}'.format(key_id))\n key_info['signer'] = key\n key_info['type'] = 'ssh_key'\n return key_info\n", "role": "user" }, { "content": "ssh_key_info_from_key_data", "role": "assistant" } ]
def x(key_id): if not FINGERPRINT_RE.match(key_id): ssh_key = load_ssh_key(key_id, True) fingerprint = ssh_key['fingerprint'] else: fingerprint = key_id keys = Agent().get_keys() for key in keys: raw_key = key.blob md5_fp = fingerprint_from_raw_ssh_pub_key(raw_key) sha_fp = sha256_fingerprint_from_raw_ssh_pub_key(raw_key) if (sha_fp == fingerprint or md5_fp == fingerprint or 'MD5:' + md5_fp == fingerprint): md5_fingerprint = md5_fp break else: raise MantaError('no ssh-agent key with fingerprint "%s"' % fingerprint ) return {'type': 'agent', 'agent_key': key, 'fingerprint': md5_fingerprint, 'algorithm': ALGO_FROM_SSH_KEY_TYPE[key.name]}
agent_key_info_from_key_id
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(key_id):\n if not FINGERPRINT_RE.match(key_id):\n ssh_key = load_ssh_key(key_id, True)\n fingerprint = ssh_key['fingerprint']\n else:\n fingerprint = key_id\n keys = Agent().get_keys()\n for key in keys:\n raw_key = key.blob\n md5_fp = fingerprint_from_raw_ssh_pub_key(raw_key)\n sha_fp = sha256_fingerprint_from_raw_ssh_pub_key(raw_key)\n if (sha_fp == fingerprint or md5_fp == fingerprint or 'MD5:' +\n md5_fp == fingerprint):\n md5_fingerprint = md5_fp\n break\n else:\n raise MantaError('no ssh-agent key with fingerprint \"%s\"' % fingerprint\n )\n return {'type': 'agent', 'agent_key': key, 'fingerprint':\n md5_fingerprint, 'algorithm': ALGO_FROM_SSH_KEY_TYPE[key.name]}\n", "role": "user" }, { "content": "agent_key_info_from_key_id", "role": "assistant" } ]
def x(self): if self._key_info_cache is None: self._key_info_cache = ssh_key_info_from_key_data(self.key_id, self .priv_key) return self._key_info_cache
get_key_info
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self._key_info_cache is None:\n self._key_info_cache = ssh_key_info_from_key_data(self.key_id, self\n .priv_key)\n return self._key_info_cache\n", "role": "user" }, { "content": "get_key_info", "role": "assistant" } ]
def x(self): if self._key_info_cache is None: self._key_info_cache = agent_key_info_from_key_id(self.key_id) return self._key_info_cache
get_key_info
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self._key_info_cache is None:\n self._key_info_cache = agent_key_info_from_key_id(self.key_id)\n return self._key_info_cache\n", "role": "user" }, { "content": "get_key_info", "role": "assistant" } ]
def x(self): if self._key_info_cache is not None: return self._key_info_cache errors = [] try: key_info = agent_key_info_from_key_id(self.key_id) except MantaError: _, ex, _ = sys.exc_info() errors.append(ex) else: self._key_info_cache = key_info return self._key_info_cache try: key_info = ssh_key_info_from_key_data(self.key_id) except MantaError: _, ex, _ = sys.exc_info() errors.append(ex) else: self._key_info_cache = key_info return self._key_info_cache raise MantaError('could not find key info for signing: %s' % '; '.join( map(str, errors)))
get_key_info
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self._key_info_cache is not None:\n return self._key_info_cache\n errors = []\n try:\n key_info = agent_key_info_from_key_id(self.key_id)\n except MantaError:\n _, ex, _ = sys.exc_info()\n errors.append(ex)\n else:\n self._key_info_cache = key_info\n return self._key_info_cache\n try:\n key_info = ssh_key_info_from_key_data(self.key_id)\n except MantaError:\n _, ex, _ = sys.exc_info()\n errors.append(ex)\n else:\n self._key_info_cache = key_info\n return self._key_info_cache\n raise MantaError('could not find key info for signing: %s' % '; '.join(\n map(str, errors)))\n", "role": "user" }, { "content": "get_key_info", "role": "assistant" } ]
def x(target: str, options: Optional[List[Tuple[str, Any]]]=None, interceptors: Optional[List[ClientInterceptor]]=None) ->grpc.Channel: options = (options or []) + [('grpc.max_send_message_length', grpc_max_msg_size), ('grpc.max_receive_message_length', grpc_max_msg_size)] interceptors = interceptors or [] channel = grpc.insecure_channel(target, options) return grpc.intercept_channel(channel, *interceptors)
create_channel
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(target: str, options: Optional[List[Tuple[str, Any]]]=None,\n interceptors: Optional[List[ClientInterceptor]]=None) ->grpc.Channel:\n options = (options or []) + [('grpc.max_send_message_length',\n grpc_max_msg_size), ('grpc.max_receive_message_length',\n grpc_max_msg_size)]\n interceptors = interceptors or []\n channel = grpc.insecure_channel(target, options)\n return grpc.intercept_channel(channel, *interceptors)\n", "role": "user" }, { "content": "create_channel", "role": "assistant" } ]
def x(max_workers: int, options: Optional[List[Tuple[str, Any]]]=None, interceptors: Optional[List[grpc.ServerInterceptor]]=None) ->grpc.Server: options = (options or []) + [('grpc.max_send_message_length', grpc_max_msg_size), ('grpc.max_receive_message_length', grpc_max_msg_size)] interceptors = [base.ServerInterceptorWrapper(i) for i in interceptors or []] server = grpc.server(ThreadPoolExecutor(max_workers=max_workers), options=options, interceptors=interceptors) for i in interceptors: i.bind(server) return server
create_server
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(max_workers: int, options: Optional[List[Tuple[str, Any]]]=None,\n interceptors: Optional[List[grpc.ServerInterceptor]]=None) ->grpc.Server:\n options = (options or []) + [('grpc.max_send_message_length',\n grpc_max_msg_size), ('grpc.max_receive_message_length',\n grpc_max_msg_size)]\n interceptors = [base.ServerInterceptorWrapper(i) for i in interceptors or\n []]\n server = grpc.server(ThreadPoolExecutor(max_workers=max_workers),\n options=options, interceptors=interceptors)\n for i in interceptors:\n i.bind(server)\n return server\n", "role": "user" }, { "content": "create_server", "role": "assistant" } ]
def x(target: str) ->str: u = urlparse(target) if u.scheme == 'dns': raise ValueError('dns:// not supported') if u.scheme == 'unix': return 'unix:' + u.path return u.netloc
to_grpc_address
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(target: str) ->str:\n u = urlparse(target)\n if u.scheme == 'dns':\n raise ValueError('dns:// not supported')\n if u.scheme == 'unix':\n return 'unix:' + u.path\n return u.netloc\n", "role": "user" }, { "content": "to_grpc_address", "role": "assistant" } ]
def x(mv_grid, mode='load', status='open'): def x(node): if isinstance(node, LVStation): node_peak_load = node.grid.peak_load node_peak_gen = node.grid.peak_generation elif isinstance(node, Generator): node_peak_load = 0 node_peak_gen = node.nominal_capacity elif isinstance(node, Load): node_peak_load = node.peak_load.sum() node_peak_gen = 0 elif isinstance(node, BranchTee): node_peak_load = 0 node_peak_gen = 0 return node_peak_load / cos_phi_load, node_peak_gen / cos_phi_gen def x(graph, ring, node): ring_nodes_except_node = [_ for _ in ring if _ is not node] non_ring_nodes = [n for n in [_ for _ in graph.nodes() if _ is not mv_grid.station] if n not in ring_nodes_except_node] subgraph = graph.subgraph(non_ring_nodes) nodes_subtree = nx.dfs_tree(subgraph, source=node) if len(nodes_subtree) > 1: peak_load_subtree = 0 peak_gen_subtree = 0 for n in nodes_subtree.nodes(): peak_load_subtree_tmp, peak_gen_subtree_tmp = ( peak_load_gen_at_node(n)) peak_load_subtree += peak_load_subtree_tmp peak_gen_subtree += peak_gen_subtree_tmp return peak_load_subtree, peak_gen_subtree else: return 0, 0 cos_phi_load = mv_grid.network.config['reactive_power_factor']['mv_load'] cos_phi_gen = mv_grid.network.config['reactive_power_factor']['mv_gen'] rings = nx.algorithms.cycle_basis(mv_grid.graph, root=mv_grid.station) for ring in rings: ring = [_ for _ in ring if _ is not mv_grid.station] node_peak_load = [] node_peak_gen = [] for node in ring: if len(mv_grid.graph.edges(nbunch=node)) > 2: peak_load, peak_gen = load_gen_from_subtree(mv_grid.graph, ring, node) else: peak_load, peak_gen = peak_load_gen_at_node(node) node_peak_load.append(peak_load) node_peak_gen.append(peak_gen) if mode == 'load': node_peak_data = node_peak_load elif mode == 'generation': node_peak_data = node_peak_gen elif mode == 'loadgen': node_peak_data = node_peak_load if sum(node_peak_load) > sum( node_peak_gen) else node_peak_gen else: raise ValueError('Mode {mode} is not known!'.format(mode=mode)) diff_min = 10000000000.0 if any([isinstance(n, LVStation) for n in ring]): has_lv_station = True else: has_lv_station = False logging.debug( 'Ring {} does not have a LV station. Switch disconnecter is installed at arbitrary node.' .format(ring)) for ctr in range(len(node_peak_data)): if isinstance(ring[ctr - 2], LVStation) or not has_lv_station: route_data_part1 = sum(node_peak_data[0:ctr]) route_data_part2 = sum(node_peak_data[ctr:len(node_peak_data)]) diff = abs(route_data_part1 - route_data_part2) if diff <= diff_min: diff_min = diff position = ctr else: break node1 = ring[position - 1] node2 = ring[position] implement_switch_disconnector(mv_grid, node1, node2) if status == 'open': for sd in mv_grid.graph.nodes_by_attribute('mv_disconnecting_point'): sd.open() elif status == 'close': for sd in mv_grid.graph.nodes_by_attribute('mv_disconnecting_point'): sd.close()
position_switch_disconnectors
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(mv_grid, mode='load', status='open'):\n\n def x(node):\n if isinstance(node, LVStation):\n node_peak_load = node.grid.peak_load\n node_peak_gen = node.grid.peak_generation\n elif isinstance(node, Generator):\n node_peak_load = 0\n node_peak_gen = node.nominal_capacity\n elif isinstance(node, Load):\n node_peak_load = node.peak_load.sum()\n node_peak_gen = 0\n elif isinstance(node, BranchTee):\n node_peak_load = 0\n node_peak_gen = 0\n return node_peak_load / cos_phi_load, node_peak_gen / cos_phi_gen\n\n def x(graph, ring, node):\n ring_nodes_except_node = [_ for _ in ring if _ is not node]\n non_ring_nodes = [n for n in [_ for _ in graph.nodes() if _ is not\n mv_grid.station] if n not in ring_nodes_except_node]\n subgraph = graph.subgraph(non_ring_nodes)\n nodes_subtree = nx.dfs_tree(subgraph, source=node)\n if len(nodes_subtree) > 1:\n peak_load_subtree = 0\n peak_gen_subtree = 0\n for n in nodes_subtree.nodes():\n peak_load_subtree_tmp, peak_gen_subtree_tmp = (\n peak_load_gen_at_node(n))\n peak_load_subtree += peak_load_subtree_tmp\n peak_gen_subtree += peak_gen_subtree_tmp\n return peak_load_subtree, peak_gen_subtree\n else:\n return 0, 0\n cos_phi_load = mv_grid.network.config['reactive_power_factor']['mv_load']\n cos_phi_gen = mv_grid.network.config['reactive_power_factor']['mv_gen']\n rings = nx.algorithms.cycle_basis(mv_grid.graph, root=mv_grid.station)\n for ring in rings:\n ring = [_ for _ in ring if _ is not mv_grid.station]\n node_peak_load = []\n node_peak_gen = []\n for node in ring:\n if len(mv_grid.graph.edges(nbunch=node)) > 2:\n peak_load, peak_gen = load_gen_from_subtree(mv_grid.graph,\n ring, node)\n else:\n peak_load, peak_gen = peak_load_gen_at_node(node)\n node_peak_load.append(peak_load)\n node_peak_gen.append(peak_gen)\n if mode == 'load':\n node_peak_data = node_peak_load\n elif mode == 'generation':\n node_peak_data = node_peak_gen\n elif mode == 'loadgen':\n node_peak_data = node_peak_load if sum(node_peak_load) > sum(\n node_peak_gen) else node_peak_gen\n else:\n raise ValueError('Mode {mode} is not known!'.format(mode=mode))\n diff_min = 10000000000.0\n if any([isinstance(n, LVStation) for n in ring]):\n has_lv_station = True\n else:\n has_lv_station = False\n logging.debug(\n 'Ring {} does not have a LV station. Switch disconnecter is installed at arbitrary node.'\n .format(ring))\n for ctr in range(len(node_peak_data)):\n if isinstance(ring[ctr - 2], LVStation) or not has_lv_station:\n route_data_part1 = sum(node_peak_data[0:ctr])\n route_data_part2 = sum(node_peak_data[ctr:len(node_peak_data)])\n diff = abs(route_data_part1 - route_data_part2)\n if diff <= diff_min:\n diff_min = diff\n position = ctr\n else:\n break\n node1 = ring[position - 1]\n node2 = ring[position]\n implement_switch_disconnector(mv_grid, node1, node2)\n if status == 'open':\n for sd in mv_grid.graph.nodes_by_attribute('mv_disconnecting_point'):\n sd.open()\n elif status == 'close':\n for sd in mv_grid.graph.nodes_by_attribute('mv_disconnecting_point'):\n sd.close()\n", "role": "user" }, { "content": "position_switch_disconnectors", "role": "assistant" } ]
def x(mv_grid, node1, node2): line = mv_grid.graph.edge[node1][node2]['line'] length_sd_line = 0.00075 x_sd = node1.geom.x + length_sd_line / line.length * (node1.geom.x - node2.geom.x) y_sd = node1.geom.y + length_sd_line / line.length * (node1.geom.y - node2.geom.y) mv_dp_number = len(mv_grid.graph.nodes_by_attribute( 'mv_disconnecting_point')) disconnecting_point = MVDisconnectingPoint(id=mv_dp_number + 1, geom= Point(x_sd, y_sd), grid=mv_grid) mv_grid.graph.add_node(disconnecting_point, type='mv_disconnecting_point') new_line_attr = {'line': Line(id=line.id, type=line.type, length=line. length - length_sd_line, grid=mv_grid), 'type': 'line'} mv_grid.graph.remove_edge(node1, node2) mv_grid.graph.add_edge(disconnecting_point, node2, new_line_attr) switch_disconnector_line_attr = {'line': Line(id= 'switch_disconnector_line_{}'.format(str(mv_dp_number + 1)), type= line.type, length=length_sd_line, grid=mv_grid), 'type': 'line'} mv_grid.graph.add_edge(node1, disconnecting_point, switch_disconnector_line_attr) disconnecting_point.line = mv_grid.graph.line_from_nodes( disconnecting_point, node1)
implement_switch_disconnector
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(mv_grid, node1, node2):\n line = mv_grid.graph.edge[node1][node2]['line']\n length_sd_line = 0.00075\n x_sd = node1.geom.x + length_sd_line / line.length * (node1.geom.x -\n node2.geom.x)\n y_sd = node1.geom.y + length_sd_line / line.length * (node1.geom.y -\n node2.geom.y)\n mv_dp_number = len(mv_grid.graph.nodes_by_attribute(\n 'mv_disconnecting_point'))\n disconnecting_point = MVDisconnectingPoint(id=mv_dp_number + 1, geom=\n Point(x_sd, y_sd), grid=mv_grid)\n mv_grid.graph.add_node(disconnecting_point, type='mv_disconnecting_point')\n new_line_attr = {'line': Line(id=line.id, type=line.type, length=line.\n length - length_sd_line, grid=mv_grid), 'type': 'line'}\n mv_grid.graph.remove_edge(node1, node2)\n mv_grid.graph.add_edge(disconnecting_point, node2, new_line_attr)\n switch_disconnector_line_attr = {'line': Line(id=\n 'switch_disconnector_line_{}'.format(str(mv_dp_number + 1)), type=\n line.type, length=length_sd_line, grid=mv_grid), 'type': 'line'}\n mv_grid.graph.add_edge(node1, disconnecting_point,\n switch_disconnector_line_attr)\n disconnecting_point.line = mv_grid.graph.line_from_nodes(\n disconnecting_point, node1)\n", "role": "user" }, { "content": "implement_switch_disconnector", "role": "assistant" } ]
def x(network, level, apparent_power): cable_count = 1 if level == 'mv': available_cables = network.equipment_data['mv_cables'][network. equipment_data['mv_cables']['U_n'] == network.mv_grid.voltage_nom] suitable_cables = available_cables[available_cables['I_max_th'] * network.mv_grid.voltage_nom > apparent_power] while suitable_cables.empty and cable_count < 20: cable_count += 1 suitable_cables = available_cables[available_cables['I_max_th'] * network.mv_grid.voltage_nom * cable_count > apparent_power] if suitable_cables.empty and cable_count == 20: raise exceptions.MaximumIterationError( 'Could not find a suitable cable for apparent power of {} kVA.' .format(apparent_power)) cable_type = suitable_cables.ix[suitable_cables['I_max_th'].idxmin()] elif level == 'lv': suitable_cables = network.equipment_data['lv_cables'][network. equipment_data['lv_cables']['I_max_th'] * network. equipment_data['lv_cables']['U_n'] > apparent_power] while suitable_cables.empty and cable_count < 20: cable_count += 1 suitable_cables = network.equipment_data['lv_cables'][network. equipment_data['lv_cables']['I_max_th'] * network. equipment_data['lv_cables']['U_n'] * cable_count > apparent_power] if suitable_cables.empty and cable_count == 20: raise exceptions.MaximumIterationError( 'Could not find a suitable cable for apparent power of {} kVA.' .format(apparent_power)) cable_type = suitable_cables.ix[suitable_cables['I_max_th'].idxmin()] else: raise ValueError("Please supply a level (either 'mv' or 'lv').") return cable_type, cable_count
select_cable
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(network, level, apparent_power):\n cable_count = 1\n if level == 'mv':\n available_cables = network.equipment_data['mv_cables'][network.\n equipment_data['mv_cables']['U_n'] == network.mv_grid.voltage_nom]\n suitable_cables = available_cables[available_cables['I_max_th'] *\n network.mv_grid.voltage_nom > apparent_power]\n while suitable_cables.empty and cable_count < 20:\n cable_count += 1\n suitable_cables = available_cables[available_cables['I_max_th'] *\n network.mv_grid.voltage_nom * cable_count > apparent_power]\n if suitable_cables.empty and cable_count == 20:\n raise exceptions.MaximumIterationError(\n 'Could not find a suitable cable for apparent power of {} kVA.'\n .format(apparent_power))\n cable_type = suitable_cables.ix[suitable_cables['I_max_th'].idxmin()]\n elif level == 'lv':\n suitable_cables = network.equipment_data['lv_cables'][network.\n equipment_data['lv_cables']['I_max_th'] * network.\n equipment_data['lv_cables']['U_n'] > apparent_power]\n while suitable_cables.empty and cable_count < 20:\n cable_count += 1\n suitable_cables = network.equipment_data['lv_cables'][network.\n equipment_data['lv_cables']['I_max_th'] * network.\n equipment_data['lv_cables']['U_n'] * cable_count >\n apparent_power]\n if suitable_cables.empty and cable_count == 20:\n raise exceptions.MaximumIterationError(\n 'Could not find a suitable cable for apparent power of {} kVA.'\n .format(apparent_power))\n cable_type = suitable_cables.ix[suitable_cables['I_max_th'].idxmin()]\n else:\n raise ValueError(\"Please supply a level (either 'mv' or 'lv').\")\n return cable_type, cable_count\n", "role": "user" }, { "content": "select_cable", "role": "assistant" } ]
def x(network, level='mvlv', fluctuating=False): gens_w_id = [] if 'mv' in level: gens = network.mv_grid.generators gens_voltage_level = ['mv'] * len(gens) gens_type = [gen.type for gen in gens] gens_rating = [gen.nominal_capacity for gen in gens] for gen in gens: try: gens_w_id.append(gen.weather_cell_id) except AttributeError: gens_w_id.append(np.nan) gens_grid = [network.mv_grid] * len(gens) else: gens = [] gens_voltage_level = [] gens_type = [] gens_rating = [] gens_grid = [] if 'lv' in level: for lv_grid in network.mv_grid.lv_grids: gens_lv = lv_grid.generators gens.extend(gens_lv) gens_voltage_level.extend(['lv'] * len(gens_lv)) gens_type.extend([gen.type for gen in gens_lv]) gens_rating.extend([gen.nominal_capacity for gen in gens_lv]) for gen in gens_lv: try: gens_w_id.append(gen.weather_cell_id) except AttributeError: gens_w_id.append(np.nan) gens_grid.extend([lv_grid] * len(gens_lv)) gen_df = pd.DataFrame({'gen_repr': list(map(lambda x: repr(x), gens)), 'generator': gens, 'type': gens_type, 'voltage_level': gens_voltage_level, 'nominal_capacity': gens_rating, 'weather_cell_id': gens_w_id, 'grid': gens_grid}) gen_df.set_index('generator', inplace=True, drop=True) if fluctuating: gen_df = gen_df.loc[(gen_df.type == 'solar') | (gen_df.type == 'wind')] return gen_df
get_gen_info
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(network, level='mvlv', fluctuating=False):\n gens_w_id = []\n if 'mv' in level:\n gens = network.mv_grid.generators\n gens_voltage_level = ['mv'] * len(gens)\n gens_type = [gen.type for gen in gens]\n gens_rating = [gen.nominal_capacity for gen in gens]\n for gen in gens:\n try:\n gens_w_id.append(gen.weather_cell_id)\n except AttributeError:\n gens_w_id.append(np.nan)\n gens_grid = [network.mv_grid] * len(gens)\n else:\n gens = []\n gens_voltage_level = []\n gens_type = []\n gens_rating = []\n gens_grid = []\n if 'lv' in level:\n for lv_grid in network.mv_grid.lv_grids:\n gens_lv = lv_grid.generators\n gens.extend(gens_lv)\n gens_voltage_level.extend(['lv'] * len(gens_lv))\n gens_type.extend([gen.type for gen in gens_lv])\n gens_rating.extend([gen.nominal_capacity for gen in gens_lv])\n for gen in gens_lv:\n try:\n gens_w_id.append(gen.weather_cell_id)\n except AttributeError:\n gens_w_id.append(np.nan)\n gens_grid.extend([lv_grid] * len(gens_lv))\n gen_df = pd.DataFrame({'gen_repr': list(map(lambda x: repr(x), gens)),\n 'generator': gens, 'type': gens_type, 'voltage_level':\n gens_voltage_level, 'nominal_capacity': gens_rating,\n 'weather_cell_id': gens_w_id, 'grid': gens_grid})\n gen_df.set_index('generator', inplace=True, drop=True)\n if fluctuating:\n gen_df = gen_df.loc[(gen_df.type == 'solar') | (gen_df.type == 'wind')]\n return gen_df\n", "role": "user" }, { "content": "get_gen_info", "role": "assistant" } ]
def x(mv_grid): mv_station_neighbors = mv_grid.graph.neighbors(mv_grid.station) mv_graph_nodes = mv_grid.graph.nodes() mv_graph_nodes.remove(mv_grid.station) subgraph = mv_grid.graph.subgraph(mv_graph_nodes) for neighbor in mv_station_neighbors: mv_feeder = mv_grid.graph.line_from_nodes(mv_grid.station, neighbor) subgraph_neighbor = nx.dfs_tree(subgraph, source=neighbor) for node in subgraph_neighbor.nodes(): if isinstance(node, LVStation): for lv_node in node.grid.graph.nodes(): lv_node.mv_feeder = mv_feeder else: node.mv_feeder = mv_feeder
assign_mv_feeder_to_nodes
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(mv_grid):\n mv_station_neighbors = mv_grid.graph.neighbors(mv_grid.station)\n mv_graph_nodes = mv_grid.graph.nodes()\n mv_graph_nodes.remove(mv_grid.station)\n subgraph = mv_grid.graph.subgraph(mv_graph_nodes)\n for neighbor in mv_station_neighbors:\n mv_feeder = mv_grid.graph.line_from_nodes(mv_grid.station, neighbor)\n subgraph_neighbor = nx.dfs_tree(subgraph, source=neighbor)\n for node in subgraph_neighbor.nodes():\n if isinstance(node, LVStation):\n for lv_node in node.grid.graph.nodes():\n lv_node.mv_feeder = mv_feeder\n else:\n node.mv_feeder = mv_feeder\n", "role": "user" }, { "content": "assign_mv_feeder_to_nodes", "role": "assistant" } ]
def x(line): try: nodes = line.grid.graph.nodes_from_line(line) feeders = {} for node in nodes: if isinstance(node, MVStation): feeders[repr(node)] = None else: feeders[repr(node)] = node.mv_feeder feeder_1 = feeders[repr(nodes[0])] feeder_2 = feeders[repr(nodes[1])] if not feeder_1 is None and not feeder_2 is None: if feeder_1 == feeder_2: return feeder_1 else: logging.warning('Different feeders for line {}.'.format(line)) return None else: return feeder_1 if feeder_1 is not None else feeder_2 except Exception as e: logging.warning('Failed to get MV feeder: {}.'.format(e)) return None
get_mv_feeder_from_line
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(line):\n try:\n nodes = line.grid.graph.nodes_from_line(line)\n feeders = {}\n for node in nodes:\n if isinstance(node, MVStation):\n feeders[repr(node)] = None\n else:\n feeders[repr(node)] = node.mv_feeder\n feeder_1 = feeders[repr(nodes[0])]\n feeder_2 = feeders[repr(nodes[1])]\n if not feeder_1 is None and not feeder_2 is None:\n if feeder_1 == feeder_2:\n return feeder_1\n else:\n logging.warning('Different feeders for line {}.'.format(line))\n return None\n else:\n return feeder_1 if feeder_1 is not None else feeder_2\n except Exception as e:\n logging.warning('Failed to get MV feeder: {}.'.format(e))\n return None\n", "role": "user" }, { "content": "get_mv_feeder_from_line", "role": "assistant" } ]
def x(network, storage): neighbor = storage.grid.graph.neighbors(storage)[0] if network.pypsa is not None: line = storage.grid.graph.line_from_nodes(storage, neighbor) network.pypsa.storage_units = network.pypsa.storage_units.loc[ network.pypsa.storage_units.index.drop(repr(storage)), :] network.pypsa.storage_units_t.p_set.drop([repr(storage)], axis=1, inplace=True) network.pypsa.storage_units_t.q_set.drop([repr(storage)], axis=1, inplace=True) network.pypsa.buses = network.pypsa.buses.loc[network.pypsa.buses. index.drop('_'.join(['Bus', repr(storage)])), :] network.pypsa.lines = network.pypsa.lines.loc[network.pypsa.lines. index.drop(repr(line)), :] neighbor = storage.grid.graph.neighbors(storage)[0] storage.grid.graph.remove_edge(storage, neighbor) storage.grid.graph.remove_node(storage)
disconnect_storage
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(network, storage):\n neighbor = storage.grid.graph.neighbors(storage)[0]\n if network.pypsa is not None:\n line = storage.grid.graph.line_from_nodes(storage, neighbor)\n network.pypsa.storage_units = network.pypsa.storage_units.loc[\n network.pypsa.storage_units.index.drop(repr(storage)), :]\n network.pypsa.storage_units_t.p_set.drop([repr(storage)], axis=1,\n inplace=True)\n network.pypsa.storage_units_t.q_set.drop([repr(storage)], axis=1,\n inplace=True)\n network.pypsa.buses = network.pypsa.buses.loc[network.pypsa.buses.\n index.drop('_'.join(['Bus', repr(storage)])), :]\n network.pypsa.lines = network.pypsa.lines.loc[network.pypsa.lines.\n index.drop(repr(line)), :]\n neighbor = storage.grid.graph.neighbors(storage)[0]\n storage.grid.graph.remove_edge(storage, neighbor)\n storage.grid.graph.remove_node(storage)\n", "role": "user" }, { "content": "disconnect_storage", "role": "assistant" } ]
def x(self): if not self._weather_cells: self._weather_cells = [] for gen in self.generators: if hasattr(gen, 'weather_cell_id'): self._weather_cells.append(gen.weather_cell_id) self._weather_cells = list(set(self._weather_cells)) return self._weather_cells
weather_cells
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if not self._weather_cells:\n self._weather_cells = []\n for gen in self.generators:\n if hasattr(gen, 'weather_cell_id'):\n self._weather_cells.append(gen.weather_cell_id)\n self._weather_cells = list(set(self._weather_cells))\n return self._weather_cells\n", "role": "user" }, { "content": "weather_cells", "role": "assistant" } ]
def x(self): if self._peak_generation is None: self._peak_generation = sum([gen.nominal_capacity for gen in self. generators]) return self._peak_generation
peak_generation
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self._peak_generation is None:\n self._peak_generation = sum([gen.nominal_capacity for gen in self.\n generators])\n return self._peak_generation\n", "role": "user" }, { "content": "peak_generation", "role": "assistant" } ]
def x(self): peak_generation = defaultdict(float) for gen in self.generators: peak_generation[gen.type] += gen.nominal_capacity return pd.Series(peak_generation)
peak_generation_per_technology
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n peak_generation = defaultdict(float)\n for gen in self.generators:\n peak_generation[gen.type] += gen.nominal_capacity\n return pd.Series(peak_generation)\n", "role": "user" }, { "content": "peak_generation_per_technology", "role": "assistant" } ]
def x(self): peak_generation = defaultdict(float) for gen in self.generators: if hasattr(gen, 'weather_cell_id'): if (gen.type, gen.weather_cell_id) in peak_generation.keys(): peak_generation[gen.type, gen.weather_cell_id ] += gen.nominal_capacity else: peak_generation[gen.type, gen.weather_cell_id ] = gen.nominal_capacity else: message = 'No weather cell ID found for generator {}.'.format(repr (gen)) raise KeyError(message) series_index = pd.MultiIndex.from_tuples(list(peak_generation.keys()), names=['type', 'weather_cell_id']) return pd.Series(peak_generation, index=series_index)
peak_generation_per_technology_and_weather_cell
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n peak_generation = defaultdict(float)\n for gen in self.generators:\n if hasattr(gen, 'weather_cell_id'):\n if (gen.type, gen.weather_cell_id) in peak_generation.keys():\n peak_generation[gen.type, gen.weather_cell_id\n ] += gen.nominal_capacity\n else:\n peak_generation[gen.type, gen.weather_cell_id\n ] = gen.nominal_capacity\n else:\n message = 'No weather cell ID found for generator {}.'.format(repr\n (gen))\n raise KeyError(message)\n series_index = pd.MultiIndex.from_tuples(list(peak_generation.keys()),\n names=['type', 'weather_cell_id'])\n return pd.Series(peak_generation, index=series_index)\n", "role": "user" }, { "content": "peak_generation_per_technology_and_weather_cell", "role": "assistant" } ]
def x(self): if self._peak_load is None: self._peak_load = sum([_.peak_load.sum() for _ in self.graph. nodes_by_attribute('load')]) return self._peak_load
peak_load
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self._peak_load is None:\n self._peak_load = sum([_.peak_load.sum() for _ in self.graph.\n nodes_by_attribute('load')])\n return self._peak_load\n", "role": "user" }, { "content": "peak_load", "role": "assistant" } ]
def x(self): consumption = defaultdict(float) for load in self.graph.nodes_by_attribute('load'): for sector, val in load.consumption.items(): consumption[sector] += val return pd.Series(consumption)
consumption
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n consumption = defaultdict(float)\n for load in self.graph.nodes_by_attribute('load'):\n for sector, val in load.consumption.items():\n consumption[sector] += val\n return pd.Series(consumption)\n", "role": "user" }, { "content": "consumption", "role": "assistant" } ]
def x(self): if not self._generators: generators = list(self.graph.nodes_by_attribute('generator')) generators.extend(list(self.graph.nodes_by_attribute('generator_aggr')) ) return generators else: return self._generators
generators
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if not self._generators:\n generators = list(self.graph.nodes_by_attribute('generator'))\n generators.extend(list(self.graph.nodes_by_attribute('generator_aggr'))\n )\n return generators\n else:\n return self._generators\n", "role": "user" }, { "content": "generators", "role": "assistant" } ]
def x(self): nodes_pos = {} for node in self.graph.nodes(): nodes_pos[node] = node.geom.x, node.geom.y plt.figure() nx.draw_networkx(self.graph, nodes_pos, node_size=16, font_size=8) plt.show()
draw
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n nodes_pos = {}\n for node in self.graph.nodes():\n nodes_pos[node] = node.geom.x, node.geom.y\n plt.figure()\n nx.draw_networkx(self.graph, nodes_pos, node_size=16, font_size=8)\n plt.show()\n", "role": "user" }, { "content": "draw", "role": "assistant" } ]
def x(self, line): return dict([(v, k) for k, v in nx.get_edge_attributes(self, 'line'). items()])[line]
nodes_from_line
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, line):\n return dict([(v, k) for k, v in nx.get_edge_attributes(self, 'line').\n items()])[line]\n", "role": "user" }, { "content": "nodes_from_line", "role": "assistant" } ]
def x(self, u, v): try: line = nx.get_edge_attributes(self, 'line')[u, v] except: try: line = nx.get_edge_attributes(self, 'line')[v, u] except: raise nx.NetworkXError( 'Line between ``u`` and ``v`` not included in the graph.') return line
line_from_nodes
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, u, v):\n try:\n line = nx.get_edge_attributes(self, 'line')[u, v]\n except:\n try:\n line = nx.get_edge_attributes(self, 'line')[v, u]\n except:\n raise nx.NetworkXError(\n 'Line between ``u`` and ``v`` not included in the graph.')\n return line\n", "role": "user" }, { "content": "line_from_nodes", "role": "assistant" } ]
def x(self, attr_val, attr='type'): temp_nodes = getattr(self, 'node') nodes = list(filter(None, map(lambda x: x if temp_nodes[x][attr] == attr_val else None, temp_nodes.keys()))) return nodes
nodes_by_attribute
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, attr_val, attr='type'):\n temp_nodes = getattr(self, 'node')\n nodes = list(filter(None, map(lambda x: x if temp_nodes[x][attr] ==\n attr_val else None, temp_nodes.keys())))\n return nodes\n", "role": "user" }, { "content": "nodes_by_attribute", "role": "assistant" } ]
def x(self, attr_val=None, attr='type'): lines_attributes = nx.get_edge_attributes(self, attr).items() if attr_val: lines_attributes = [(k, self[k[0]][k[1]]['line']) for k, v in lines_attributes if v == attr_val] else: lines_attributes = [(k, self[k[0]][k[1]]['line']) for k, v in lines_attributes] lines_sorted = sorted(list(lines_attributes), key=lambda _: repr(_[1])) for line in lines_sorted: yield {'adj_nodes': line[0], 'line': line[1]}
lines_by_attribute
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, attr_val=None, attr='type'):\n lines_attributes = nx.get_edge_attributes(self, attr).items()\n if attr_val:\n lines_attributes = [(k, self[k[0]][k[1]]['line']) for k, v in\n lines_attributes if v == attr_val]\n else:\n lines_attributes = [(k, self[k[0]][k[1]]['line']) for k, v in\n lines_attributes]\n lines_sorted = sorted(list(lines_attributes), key=lambda _: repr(_[1]))\n for line in lines_sorted:\n yield {'adj_nodes': line[0], 'line': line[1]}\n", "role": "user" }, { "content": "lines_by_attribute", "role": "assistant" } ]
def x(self, continuation, handler_call_details): rpc_method_handler = self._get_rpc_handler(handler_call_details) if rpc_method_handler.response_streaming: if self._wrapped.is_streaming: return self._wrapped.intercept_service(continuation, handler_call_details) elif not self._wrapped.is_streaming: return self._wrapped.intercept_service(continuation, handler_call_details) return continuation(handler_call_details)
intercept_service
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, continuation, handler_call_details):\n rpc_method_handler = self._get_rpc_handler(handler_call_details)\n if rpc_method_handler.response_streaming:\n if self._wrapped.is_streaming:\n return self._wrapped.intercept_service(continuation,\n handler_call_details)\n elif not self._wrapped.is_streaming:\n return self._wrapped.intercept_service(continuation,\n handler_call_details)\n return continuation(handler_call_details)\n", "role": "user" }, { "content": "intercept_service", "role": "assistant" } ]
def x(network, mode, timesteps): if not hasattr(timesteps, '__len__'): timesteps = [timesteps] if mode is None: mv_components = mv_to_pypsa(network) lv_components = lv_to_pypsa(network) components = combine_mv_and_lv(mv_components, lv_components) if list(components['Load'].index.values): timeseries_load_p, timeseries_load_q = _pypsa_load_timeseries( network, mode=mode, timesteps=timesteps) if len(list(components['Generator'].index.values)) > 1: timeseries_gen_p, timeseries_gen_q = _pypsa_generator_timeseries( network, mode=mode, timesteps=timesteps) if list(components['Bus'].index.values): timeseries_bus_v_set = _pypsa_bus_timeseries(network, components['Bus'].index.tolist(), timesteps=timesteps) if len(list(components['StorageUnit'].index.values)) > 0: timeseries_storage_p, timeseries_storage_q = ( _pypsa_storage_timeseries(network, mode=mode, timesteps= timesteps)) elif mode is 'mv': raise NotImplementedError mv_components = mv_to_pypsa(network) components = add_aggregated_lv_components(network, mv_components) if list(components['Load'].index.values): timeseries_load_p, timeseries_load_q = _pypsa_load_timeseries( network, mode=mode, timesteps=timesteps) if len(list(components['Generator'].index.values)) > 1: timeseries_gen_p, timeseries_gen_q = _pypsa_generator_timeseries( network, mode=mode, timesteps=timesteps) if list(components['Bus'].index.values): timeseries_bus_v_set = _pypsa_bus_timeseries(network, components['Bus'].index.tolist(), timesteps=timesteps) if len(list(components['StorageUnit'].index.values)) > 0: timeseries_storage_p, timeseries_storage_q = ( _pypsa_storage_timeseries(network, mode=mode, timesteps= timesteps)) elif mode is 'lv': raise NotImplementedError else: raise ValueError( 'Provide proper mode or leave it empty to export entire grid topology.' ) _check_topology(components) pypsa_network = PyPSANetwork() pypsa_network.edisgo_mode = mode pypsa_network.set_snapshots(timesteps) pypsa_network.import_components_from_dataframe(components['Bus'], 'Bus') for k, comps in components.items(): if k is not 'Bus' and not comps.empty: pypsa_network.import_components_from_dataframe(comps, k) if len(list(components['Generator'].index.values)) > 1: import_series_from_dataframe(pypsa_network, timeseries_gen_p, 'Generator', 'p_set') import_series_from_dataframe(pypsa_network, timeseries_gen_q, 'Generator', 'q_set') if list(components['Load'].index.values): import_series_from_dataframe(pypsa_network, timeseries_load_p, 'Load', 'p_set') import_series_from_dataframe(pypsa_network, timeseries_load_q, 'Load', 'q_set') if list(components['Bus'].index.values): import_series_from_dataframe(pypsa_network, timeseries_bus_v_set, 'Bus', 'v_mag_pu_set') if len(list(components['StorageUnit'].index.values)) > 0: import_series_from_dataframe(pypsa_network, timeseries_storage_p, 'StorageUnit', 'p_set') import_series_from_dataframe(pypsa_network, timeseries_storage_q, 'StorageUnit', 'q_set') _check_integrity_of_pypsa(pypsa_network) return pypsa_network
to_pypsa
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(network, mode, timesteps):\n if not hasattr(timesteps, '__len__'):\n timesteps = [timesteps]\n if mode is None:\n mv_components = mv_to_pypsa(network)\n lv_components = lv_to_pypsa(network)\n components = combine_mv_and_lv(mv_components, lv_components)\n if list(components['Load'].index.values):\n timeseries_load_p, timeseries_load_q = _pypsa_load_timeseries(\n network, mode=mode, timesteps=timesteps)\n if len(list(components['Generator'].index.values)) > 1:\n timeseries_gen_p, timeseries_gen_q = _pypsa_generator_timeseries(\n network, mode=mode, timesteps=timesteps)\n if list(components['Bus'].index.values):\n timeseries_bus_v_set = _pypsa_bus_timeseries(network,\n components['Bus'].index.tolist(), timesteps=timesteps)\n if len(list(components['StorageUnit'].index.values)) > 0:\n timeseries_storage_p, timeseries_storage_q = (\n _pypsa_storage_timeseries(network, mode=mode, timesteps=\n timesteps))\n elif mode is 'mv':\n raise NotImplementedError\n mv_components = mv_to_pypsa(network)\n components = add_aggregated_lv_components(network, mv_components)\n if list(components['Load'].index.values):\n timeseries_load_p, timeseries_load_q = _pypsa_load_timeseries(\n network, mode=mode, timesteps=timesteps)\n if len(list(components['Generator'].index.values)) > 1:\n timeseries_gen_p, timeseries_gen_q = _pypsa_generator_timeseries(\n network, mode=mode, timesteps=timesteps)\n if list(components['Bus'].index.values):\n timeseries_bus_v_set = _pypsa_bus_timeseries(network,\n components['Bus'].index.tolist(), timesteps=timesteps)\n if len(list(components['StorageUnit'].index.values)) > 0:\n timeseries_storage_p, timeseries_storage_q = (\n _pypsa_storage_timeseries(network, mode=mode, timesteps=\n timesteps))\n elif mode is 'lv':\n raise NotImplementedError\n else:\n raise ValueError(\n 'Provide proper mode or leave it empty to export entire grid topology.'\n )\n _check_topology(components)\n pypsa_network = PyPSANetwork()\n pypsa_network.edisgo_mode = mode\n pypsa_network.set_snapshots(timesteps)\n pypsa_network.import_components_from_dataframe(components['Bus'], 'Bus')\n for k, comps in components.items():\n if k is not 'Bus' and not comps.empty:\n pypsa_network.import_components_from_dataframe(comps, k)\n if len(list(components['Generator'].index.values)) > 1:\n import_series_from_dataframe(pypsa_network, timeseries_gen_p,\n 'Generator', 'p_set')\n import_series_from_dataframe(pypsa_network, timeseries_gen_q,\n 'Generator', 'q_set')\n if list(components['Load'].index.values):\n import_series_from_dataframe(pypsa_network, timeseries_load_p,\n 'Load', 'p_set')\n import_series_from_dataframe(pypsa_network, timeseries_load_q,\n 'Load', 'q_set')\n if list(components['Bus'].index.values):\n import_series_from_dataframe(pypsa_network, timeseries_bus_v_set,\n 'Bus', 'v_mag_pu_set')\n if len(list(components['StorageUnit'].index.values)) > 0:\n import_series_from_dataframe(pypsa_network, timeseries_storage_p,\n 'StorageUnit', 'p_set')\n import_series_from_dataframe(pypsa_network, timeseries_storage_q,\n 'StorageUnit', 'q_set')\n _check_integrity_of_pypsa(pypsa_network)\n return pypsa_network\n", "role": "user" }, { "content": "to_pypsa", "role": "assistant" } ]
def x(mv, lv): combined = {c: pd.concat([mv[c], lv[c]], axis=0) for c in list(lv.keys())} combined['Transformer'] = mv['Transformer'] return combined
combine_mv_and_lv
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(mv, lv):\n combined = {c: pd.concat([mv[c], lv[c]], axis=0) for c in list(lv.keys())}\n combined['Transformer'] = mv['Transformer']\n return combined\n", "role": "user" }, { "content": "combine_mv_and_lv", "role": "assistant" } ]
def x(network, components): generators = {} loads = {} for lv_grid in network.mv_grid.lv_grids: generators.setdefault(lv_grid, {}) for gen in lv_grid.generators: generators[lv_grid].setdefault(gen.type, {}) generators[lv_grid][gen.type].setdefault(gen.subtype, {}) generators[lv_grid][gen.type][gen.subtype].setdefault('capacity', 0 ) generators[lv_grid][gen.type][gen.subtype]['capacity' ] += gen.nominal_capacity generators[lv_grid][gen.type][gen.subtype].setdefault('name', '_'.join([gen.type, gen.subtype, 'aggregated', 'LV_grid', str(lv_grid.id)])) loads.setdefault(lv_grid, {}) for lo in lv_grid.graph.nodes_by_attribute('load'): for sector, val in lo.consumption.items(): loads[lv_grid].setdefault(sector, 0) loads[lv_grid][sector] += val generator = {'name': [], 'bus': [], 'control': [], 'p_nom': [], 'type': []} load = {'name': [], 'bus': []} for lv_grid_obj, lv_grid in generators.items(): for _, gen_type in lv_grid.items(): for _, gen_subtype in gen_type.items(): generator['name'].append(gen_subtype['name']) generator['bus'].append('_'.join(['Bus', lv_grid_obj. station.__repr__('lv')])) generator['control'].append('PQ') generator['p_nom'].append(gen_subtype['capacity']) generator['type'].append('') for lv_grid_obj, lv_grid in loads.items(): for sector, val in lv_grid.items(): load['name'].append('_'.join(['Load', sector, repr(lv_grid_obj)])) load['bus'].append('_'.join(['Bus', lv_grid_obj.station. __repr__('lv')])) components['Generator'] = pd.concat([components['Generator'], pd. DataFrame(generator).set_index('name')]) components['Load'] = pd.concat([components['Load'], pd.DataFrame(load). set_index('name')]) return components
add_aggregated_lv_components
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(network, components):\n generators = {}\n loads = {}\n for lv_grid in network.mv_grid.lv_grids:\n generators.setdefault(lv_grid, {})\n for gen in lv_grid.generators:\n generators[lv_grid].setdefault(gen.type, {})\n generators[lv_grid][gen.type].setdefault(gen.subtype, {})\n generators[lv_grid][gen.type][gen.subtype].setdefault('capacity', 0\n )\n generators[lv_grid][gen.type][gen.subtype]['capacity'\n ] += gen.nominal_capacity\n generators[lv_grid][gen.type][gen.subtype].setdefault('name',\n '_'.join([gen.type, gen.subtype, 'aggregated', 'LV_grid',\n str(lv_grid.id)]))\n loads.setdefault(lv_grid, {})\n for lo in lv_grid.graph.nodes_by_attribute('load'):\n for sector, val in lo.consumption.items():\n loads[lv_grid].setdefault(sector, 0)\n loads[lv_grid][sector] += val\n generator = {'name': [], 'bus': [], 'control': [], 'p_nom': [], 'type': []}\n load = {'name': [], 'bus': []}\n for lv_grid_obj, lv_grid in generators.items():\n for _, gen_type in lv_grid.items():\n for _, gen_subtype in gen_type.items():\n generator['name'].append(gen_subtype['name'])\n generator['bus'].append('_'.join(['Bus', lv_grid_obj.\n station.__repr__('lv')]))\n generator['control'].append('PQ')\n generator['p_nom'].append(gen_subtype['capacity'])\n generator['type'].append('')\n for lv_grid_obj, lv_grid in loads.items():\n for sector, val in lv_grid.items():\n load['name'].append('_'.join(['Load', sector, repr(lv_grid_obj)]))\n load['bus'].append('_'.join(['Bus', lv_grid_obj.station.\n __repr__('lv')]))\n components['Generator'] = pd.concat([components['Generator'], pd.\n DataFrame(generator).set_index('name')])\n components['Load'] = pd.concat([components['Load'], pd.DataFrame(load).\n set_index('name')])\n return components\n", "role": "user" }, { "content": "add_aggregated_lv_components", "role": "assistant" } ]
def x(network, timesteps, mode=None): mv_load_timeseries_p = [] mv_load_timeseries_q = [] lv_load_timeseries_p = [] lv_load_timeseries_q = [] if mode is 'mv' or mode is None: for load in network.mv_grid.graph.nodes_by_attribute('load'): mv_load_timeseries_q.append(load.pypsa_timeseries('q').rename( repr(load)).to_frame().loc[timesteps]) mv_load_timeseries_p.append(load.pypsa_timeseries('p').rename( repr(load)).to_frame().loc[timesteps]) if mode is 'mv': lv_load_timeseries_p, lv_load_timeseries_q = ( _pypsa_load_timeseries_aggregated_at_lv_station(network, timesteps)) if mode is 'lv' or mode is None: for lv_grid in network.mv_grid.lv_grids: for load in lv_grid.graph.nodes_by_attribute('load'): lv_load_timeseries_q.append(load.pypsa_timeseries('q'). rename(repr(load)).to_frame().loc[timesteps]) lv_load_timeseries_p.append(load.pypsa_timeseries('p'). rename(repr(load)).to_frame().loc[timesteps]) load_df_p = pd.concat(mv_load_timeseries_p + lv_load_timeseries_p, axis=1) load_df_q = pd.concat(mv_load_timeseries_q + lv_load_timeseries_q, axis=1) return load_df_p, load_df_q
pypsa_load_timeseries
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(network, timesteps, mode=None):\n mv_load_timeseries_p = []\n mv_load_timeseries_q = []\n lv_load_timeseries_p = []\n lv_load_timeseries_q = []\n if mode is 'mv' or mode is None:\n for load in network.mv_grid.graph.nodes_by_attribute('load'):\n mv_load_timeseries_q.append(load.pypsa_timeseries('q').rename(\n repr(load)).to_frame().loc[timesteps])\n mv_load_timeseries_p.append(load.pypsa_timeseries('p').rename(\n repr(load)).to_frame().loc[timesteps])\n if mode is 'mv':\n lv_load_timeseries_p, lv_load_timeseries_q = (\n _pypsa_load_timeseries_aggregated_at_lv_station(network,\n timesteps))\n if mode is 'lv' or mode is None:\n for lv_grid in network.mv_grid.lv_grids:\n for load in lv_grid.graph.nodes_by_attribute('load'):\n lv_load_timeseries_q.append(load.pypsa_timeseries('q').\n rename(repr(load)).to_frame().loc[timesteps])\n lv_load_timeseries_p.append(load.pypsa_timeseries('p').\n rename(repr(load)).to_frame().loc[timesteps])\n load_df_p = pd.concat(mv_load_timeseries_p + lv_load_timeseries_p, axis=1)\n load_df_q = pd.concat(mv_load_timeseries_q + lv_load_timeseries_q, axis=1)\n return load_df_p, load_df_q\n", "role": "user" }, { "content": "pypsa_load_timeseries", "role": "assistant" } ]
def x(network, timesteps, mode=None): mv_gen_timeseries_q = [] mv_gen_timeseries_p = [] lv_gen_timeseries_q = [] lv_gen_timeseries_p = [] if mode is 'mv' or mode is None: for gen in network.mv_grid.generators: mv_gen_timeseries_q.append(gen.pypsa_timeseries('q').rename( repr(gen)).to_frame().loc[timesteps]) mv_gen_timeseries_p.append(gen.pypsa_timeseries('p').rename( repr(gen)).to_frame().loc[timesteps]) if mode is 'mv': lv_gen_timeseries_p, lv_gen_timeseries_q = ( _pypsa_generator_timeseries_aggregated_at_lv_station( network, timesteps)) if mode is 'lv' or mode is None: for lv_grid in network.mv_grid.lv_grids: for gen in lv_grid.generators: lv_gen_timeseries_q.append(gen.pypsa_timeseries('q').rename (repr(gen)).to_frame().loc[timesteps]) lv_gen_timeseries_p.append(gen.pypsa_timeseries('p').rename (repr(gen)).to_frame().loc[timesteps]) gen_df_p = pd.concat(mv_gen_timeseries_p + lv_gen_timeseries_p, axis=1) gen_df_q = pd.concat(mv_gen_timeseries_q + lv_gen_timeseries_q, axis=1) return gen_df_p, gen_df_q
pypsa_generator_timeseries
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(network, timesteps, mode=None):\n mv_gen_timeseries_q = []\n mv_gen_timeseries_p = []\n lv_gen_timeseries_q = []\n lv_gen_timeseries_p = []\n if mode is 'mv' or mode is None:\n for gen in network.mv_grid.generators:\n mv_gen_timeseries_q.append(gen.pypsa_timeseries('q').rename(\n repr(gen)).to_frame().loc[timesteps])\n mv_gen_timeseries_p.append(gen.pypsa_timeseries('p').rename(\n repr(gen)).to_frame().loc[timesteps])\n if mode is 'mv':\n lv_gen_timeseries_p, lv_gen_timeseries_q = (\n _pypsa_generator_timeseries_aggregated_at_lv_station(\n network, timesteps))\n if mode is 'lv' or mode is None:\n for lv_grid in network.mv_grid.lv_grids:\n for gen in lv_grid.generators:\n lv_gen_timeseries_q.append(gen.pypsa_timeseries('q').rename\n (repr(gen)).to_frame().loc[timesteps])\n lv_gen_timeseries_p.append(gen.pypsa_timeseries('p').rename\n (repr(gen)).to_frame().loc[timesteps])\n gen_df_p = pd.concat(mv_gen_timeseries_p + lv_gen_timeseries_p, axis=1)\n gen_df_q = pd.concat(mv_gen_timeseries_q + lv_gen_timeseries_q, axis=1)\n return gen_df_p, gen_df_q\n", "role": "user" }, { "content": "pypsa_generator_timeseries", "role": "assistant" } ]
def x(network, timesteps, mode=None): mv_storage_timeseries_q = [] mv_storage_timeseries_p = [] lv_storage_timeseries_q = [] lv_storage_timeseries_p = [] if mode is 'mv' or mode is None: for storage in network.mv_grid.graph.nodes_by_attribute('storage'): mv_storage_timeseries_q.append(storage.pypsa_timeseries('q'). rename(repr(storage)).to_frame().loc[timesteps]) mv_storage_timeseries_p.append(storage.pypsa_timeseries('p'). rename(repr(storage)).to_frame().loc[timesteps]) if mode is 'lv' or mode is None: for lv_grid in network.mv_grid.lv_grids: for storage in lv_grid.graph.nodes_by_attribute('storage'): lv_storage_timeseries_q.append(storage.pypsa_timeseries('q' ).rename(repr(storage)).to_frame().loc[timesteps]) lv_storage_timeseries_p.append(storage.pypsa_timeseries('p' ).rename(repr(storage)).to_frame().loc[timesteps]) storage_df_p = pd.concat(mv_storage_timeseries_p + lv_storage_timeseries_p, axis=1) storage_df_q = pd.concat(mv_storage_timeseries_q + lv_storage_timeseries_q, axis=1) return storage_df_p, storage_df_q
pypsa_storage_timeseries
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(network, timesteps, mode=None):\n mv_storage_timeseries_q = []\n mv_storage_timeseries_p = []\n lv_storage_timeseries_q = []\n lv_storage_timeseries_p = []\n if mode is 'mv' or mode is None:\n for storage in network.mv_grid.graph.nodes_by_attribute('storage'):\n mv_storage_timeseries_q.append(storage.pypsa_timeseries('q').\n rename(repr(storage)).to_frame().loc[timesteps])\n mv_storage_timeseries_p.append(storage.pypsa_timeseries('p').\n rename(repr(storage)).to_frame().loc[timesteps])\n if mode is 'lv' or mode is None:\n for lv_grid in network.mv_grid.lv_grids:\n for storage in lv_grid.graph.nodes_by_attribute('storage'):\n lv_storage_timeseries_q.append(storage.pypsa_timeseries('q'\n ).rename(repr(storage)).to_frame().loc[timesteps])\n lv_storage_timeseries_p.append(storage.pypsa_timeseries('p'\n ).rename(repr(storage)).to_frame().loc[timesteps])\n storage_df_p = pd.concat(mv_storage_timeseries_p +\n lv_storage_timeseries_p, axis=1)\n storage_df_q = pd.concat(mv_storage_timeseries_q +\n lv_storage_timeseries_q, axis=1)\n return storage_df_p, storage_df_q\n", "role": "user" }, { "content": "pypsa_storage_timeseries", "role": "assistant" } ]
def x(network, buses, timesteps): slack_bus = '_'.join(['Bus', network.mv_grid.station.__repr__(side='mv')]) v_set_dict = {bus: (1) for bus in buses if bus != slack_bus} control_deviation = network.config[ 'grid_expansion_allowed_voltage_deviations'][ 'hv_mv_trafo_control_deviation'] if control_deviation != 0: control_deviation_ts = (network.timeseries. timesteps_load_feedin_case.case.apply(lambda _: control_deviation if _ == 'feedin_case' else -control_deviation)) else: control_deviation_ts = 0 slack_voltage_pu = control_deviation_ts + 1 + network.config[ 'grid_expansion_allowed_voltage_deviations']['hv_mv_trafo_offset'] v_set_dict.update({slack_bus: slack_voltage_pu}) v_set_df = pd.DataFrame(v_set_dict, index=timesteps) return v_set_df
pypsa_bus_timeseries
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(network, buses, timesteps):\n slack_bus = '_'.join(['Bus', network.mv_grid.station.__repr__(side='mv')])\n v_set_dict = {bus: (1) for bus in buses if bus != slack_bus}\n control_deviation = network.config[\n 'grid_expansion_allowed_voltage_deviations'][\n 'hv_mv_trafo_control_deviation']\n if control_deviation != 0:\n control_deviation_ts = (network.timeseries.\n timesteps_load_feedin_case.case.apply(lambda _: \n control_deviation if _ == 'feedin_case' else -control_deviation))\n else:\n control_deviation_ts = 0\n slack_voltage_pu = control_deviation_ts + 1 + network.config[\n 'grid_expansion_allowed_voltage_deviations']['hv_mv_trafo_offset']\n v_set_dict.update({slack_bus: slack_voltage_pu})\n v_set_df = pd.DataFrame(v_set_dict, index=timesteps)\n return v_set_df\n", "role": "user" }, { "content": "pypsa_bus_timeseries", "role": "assistant" } ]
def x(network, timesteps): generation_p = [] generation_q = [] for lv_grid in network.mv_grid.lv_grids: generation = {} for gen in lv_grid.generators: gen_name = '_'.join([gen.type, gen.subtype, 'aggregated', 'LV_grid', str(lv_grid.id)]) generation.setdefault(gen.type, {}) generation[gen.type].setdefault(gen.subtype, {}) generation[gen.type][gen.subtype].setdefault('timeseries_p', []) generation[gen.type][gen.subtype].setdefault('timeseries_q', []) generation[gen.type][gen.subtype]['timeseries_p'].append(gen. pypsa_timeseries('p').rename(gen_name).to_frame().loc[ timesteps]) generation[gen.type][gen.subtype]['timeseries_q'].append(gen. pypsa_timeseries('q').rename(gen_name).to_frame().loc[ timesteps]) for k_type, v_type in generation.items(): for k_type, v_subtype in v_type.items(): col_name = v_subtype['timeseries_p'][0].columns[0] generation_p.append(pd.concat(v_subtype['timeseries_p'], axis=1).sum(axis=1).rename(col_name).to_frame()) generation_q.append(pd.concat(v_subtype['timeseries_q'], axis=1).sum(axis=1).rename(col_name).to_frame()) return generation_p, generation_q
pypsa_generator_timeseries_aggregated_at_lv_station
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(network, timesteps):\n generation_p = []\n generation_q = []\n for lv_grid in network.mv_grid.lv_grids:\n generation = {}\n for gen in lv_grid.generators:\n gen_name = '_'.join([gen.type, gen.subtype, 'aggregated',\n 'LV_grid', str(lv_grid.id)])\n generation.setdefault(gen.type, {})\n generation[gen.type].setdefault(gen.subtype, {})\n generation[gen.type][gen.subtype].setdefault('timeseries_p', [])\n generation[gen.type][gen.subtype].setdefault('timeseries_q', [])\n generation[gen.type][gen.subtype]['timeseries_p'].append(gen.\n pypsa_timeseries('p').rename(gen_name).to_frame().loc[\n timesteps])\n generation[gen.type][gen.subtype]['timeseries_q'].append(gen.\n pypsa_timeseries('q').rename(gen_name).to_frame().loc[\n timesteps])\n for k_type, v_type in generation.items():\n for k_type, v_subtype in v_type.items():\n col_name = v_subtype['timeseries_p'][0].columns[0]\n generation_p.append(pd.concat(v_subtype['timeseries_p'],\n axis=1).sum(axis=1).rename(col_name).to_frame())\n generation_q.append(pd.concat(v_subtype['timeseries_q'],\n axis=1).sum(axis=1).rename(col_name).to_frame())\n return generation_p, generation_q\n", "role": "user" }, { "content": "pypsa_generator_timeseries_aggregated_at_lv_station", "role": "assistant" } ]
def x(network, timesteps): load_p = [] load_q = [] for lv_grid in network.mv_grid.lv_grids: load = {} for lo in lv_grid.graph.nodes_by_attribute('load'): for sector, val in lo.consumption.items(): load.setdefault(sector, {}) load[sector].setdefault('timeseries_p', []) load[sector].setdefault('timeseries_q', []) load[sector]['timeseries_p'].append(lo.pypsa_timeseries('p' ).rename(repr(lo)).to_frame().loc[timesteps]) load[sector]['timeseries_q'].append(lo.pypsa_timeseries('q' ).rename(repr(lo)).to_frame().loc[timesteps]) for sector, val in load.items(): load_p.append(pd.concat(val['timeseries_p'], axis=1).sum(axis=1 ).rename('_'.join(['Load', sector, repr(lv_grid)])).to_frame()) load_q.append(pd.concat(val['timeseries_q'], axis=1).sum(axis=1 ).rename('_'.join(['Load', sector, repr(lv_grid)])).to_frame()) return load_p, load_q
pypsa_load_timeseries_aggregated_at_lv_station
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(network, timesteps):\n load_p = []\n load_q = []\n for lv_grid in network.mv_grid.lv_grids:\n load = {}\n for lo in lv_grid.graph.nodes_by_attribute('load'):\n for sector, val in lo.consumption.items():\n load.setdefault(sector, {})\n load[sector].setdefault('timeseries_p', [])\n load[sector].setdefault('timeseries_q', [])\n load[sector]['timeseries_p'].append(lo.pypsa_timeseries('p'\n ).rename(repr(lo)).to_frame().loc[timesteps])\n load[sector]['timeseries_q'].append(lo.pypsa_timeseries('q'\n ).rename(repr(lo)).to_frame().loc[timesteps])\n for sector, val in load.items():\n load_p.append(pd.concat(val['timeseries_p'], axis=1).sum(axis=1\n ).rename('_'.join(['Load', sector, repr(lv_grid)])).to_frame())\n load_q.append(pd.concat(val['timeseries_q'], axis=1).sum(axis=1\n ).rename('_'.join(['Load', sector, repr(lv_grid)])).to_frame())\n return load_p, load_q\n", "role": "user" }, { "content": "pypsa_load_timeseries_aggregated_at_lv_station", "role": "assistant" } ]
def x(network): if network.pypsa.edisgo_mode is None: mv_components = mv_to_pypsa(network) lv_components = lv_to_pypsa(network) components = combine_mv_and_lv(mv_components, lv_components) elif network.pypsa.edisgo_mode is 'mv': raise NotImplementedError elif network.pypsa.edisgo_mode is 'lv': raise NotImplementedError else: raise ValueError( 'Provide proper mode or leave it empty to export entire grid topology.' ) _check_topology(components) pypsa_network = PyPSANetwork() pypsa_network.edisgo_mode = network.pypsa.edisgo_mode pypsa_network.set_snapshots(network.pypsa.snapshots) pypsa_network.import_components_from_dataframe(components['Bus'], 'Bus') for k, comps in components.items(): if k is not 'Bus' and not comps.empty: pypsa_network.import_components_from_dataframe(comps, k) pypsa_network.generators_t.p_set = network.pypsa.generators_t.p_set pypsa_network.generators_t.q_set = network.pypsa.generators_t.q_set pypsa_network.loads_t.p_set = network.pypsa.loads_t.p_set pypsa_network.loads_t.q_set = network.pypsa.loads_t.q_set pypsa_network.storage_units_t.p_set = network.pypsa.storage_units_t.p_set pypsa_network.storage_units_t.q_set = network.pypsa.storage_units_t.q_set pypsa_network.buses_t.v_mag_pu_set = network.pypsa.buses_t.v_mag_pu_set network.pypsa = pypsa_network if len(list(components['Generator'].index.values)) > 1: update_pypsa_generator_timeseries(network) if list(components['Bus'].index.values): update_pypsa_bus_timeseries(network) if len(list(components['StorageUnit'].index.values)) > 0: update_pypsa_storage_timeseries(network) _check_integrity_of_pypsa(pypsa_network)
update_pypsa_generator_import
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(network):\n if network.pypsa.edisgo_mode is None:\n mv_components = mv_to_pypsa(network)\n lv_components = lv_to_pypsa(network)\n components = combine_mv_and_lv(mv_components, lv_components)\n elif network.pypsa.edisgo_mode is 'mv':\n raise NotImplementedError\n elif network.pypsa.edisgo_mode is 'lv':\n raise NotImplementedError\n else:\n raise ValueError(\n 'Provide proper mode or leave it empty to export entire grid topology.'\n )\n _check_topology(components)\n pypsa_network = PyPSANetwork()\n pypsa_network.edisgo_mode = network.pypsa.edisgo_mode\n pypsa_network.set_snapshots(network.pypsa.snapshots)\n pypsa_network.import_components_from_dataframe(components['Bus'], 'Bus')\n for k, comps in components.items():\n if k is not 'Bus' and not comps.empty:\n pypsa_network.import_components_from_dataframe(comps, k)\n pypsa_network.generators_t.p_set = network.pypsa.generators_t.p_set\n pypsa_network.generators_t.q_set = network.pypsa.generators_t.q_set\n pypsa_network.loads_t.p_set = network.pypsa.loads_t.p_set\n pypsa_network.loads_t.q_set = network.pypsa.loads_t.q_set\n pypsa_network.storage_units_t.p_set = network.pypsa.storage_units_t.p_set\n pypsa_network.storage_units_t.q_set = network.pypsa.storage_units_t.q_set\n pypsa_network.buses_t.v_mag_pu_set = network.pypsa.buses_t.v_mag_pu_set\n network.pypsa = pypsa_network\n if len(list(components['Generator'].index.values)) > 1:\n update_pypsa_generator_timeseries(network)\n if list(components['Bus'].index.values):\n update_pypsa_bus_timeseries(network)\n if len(list(components['StorageUnit'].index.values)) > 0:\n update_pypsa_storage_timeseries(network)\n _check_integrity_of_pypsa(pypsa_network)\n", "role": "user" }, { "content": "update_pypsa_generator_import", "role": "assistant" } ]
def x(network, equipment_changes): transformers = equipment_changes[equipment_changes['equipment'].apply( isinstance, args=(Transformer,))] removed_transformers = [repr(_) for _ in transformers[transformers[ 'change'] == 'removed']['equipment'].tolist() if _.voltage_op < 10] added_transformers = transformers[transformers['change'] == 'added'] transformer = {'name': [], 'bus0': [], 'bus1': [], 'type': [], 'model': [], 'x': [], 'r': [], 's_nom': [], 'tap_ratio': []} for idx, row in added_transformers.iterrows(): if isinstance(idx, LVStation): v_base = idx.mv_grid.voltage_nom z_base = v_base ** 2 / row['equipment'].type.S_nom transformer['bus0'].append('_'.join(['Bus', idx.__repr__(side= 'mv')])) transformer['bus1'].append('_'.join(['Bus', idx.__repr__(side= 'lv')])) transformer['name'].append(repr(row['equipment'])) transformer['type'].append('') transformer['model'].append('pi') transformer['r'].append(row['equipment'].type.R / z_base) transformer['x'].append(row['equipment'].type.X / z_base) transformer['s_nom'].append(row['equipment'].type.S_nom / 1000.0) transformer['tap_ratio'].append(1) network.pypsa.transformers.drop(removed_transformers, inplace=True) if transformer['name']: network.pypsa.import_components_from_dataframe(pd.DataFrame( transformer).set_index('name'), 'Transformer') lines = equipment_changes.loc[equipment_changes.index[equipment_changes .reset_index()['index'].apply(isinstance, args=(Line,))]] changed_lines = lines[lines['change'] == 'changed'] lv_stations = network.mv_grid.graph.nodes_by_attribute('lv_station') omega = 2 * pi * 50 for idx, row in changed_lines.iterrows(): network.pypsa.lines.loc[repr(idx), 'r'] = idx.type['R' ] / idx.quantity * idx.length network.pypsa.lines.loc[repr(idx), 'x'] = idx.type['L' ] / 1000.0 * omega / idx.quantity * idx.length network.pypsa.lines.loc[repr(idx), 's_nom'] = sqrt(3) * idx.type[ 'I_max_th'] * idx.type['U_n'] * idx.quantity / 1000.0 network.pypsa.lines.loc[repr(idx), 'length'] = idx.length adj_nodes = idx.grid.graph.nodes_from_line(idx) if adj_nodes[0] in lv_stations: side = 'lv' if isinstance(idx.grid, LVGrid) else 'mv' bus0 = '_'.join(['Bus', adj_nodes[0].__repr__(side=side)]) else: bus0 = '_'.join(['Bus', repr(adj_nodes[0])]) if adj_nodes[1] in lv_stations: side = 'lv' if isinstance(idx.grid, LVGrid) else 'mv' bus1 = '_'.join(['Bus', adj_nodes[1].__repr__(side=side)]) else: bus1 = '_'.join(['Bus', repr(adj_nodes[1])]) network.pypsa.lines.loc[repr(idx), 'bus0'] = bus0 network.pypsa.lines.loc[repr(idx), 'bus1'] = bus1
update_pypsa_grid_reinforcement
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(network, equipment_changes):\n transformers = equipment_changes[equipment_changes['equipment'].apply(\n isinstance, args=(Transformer,))]\n removed_transformers = [repr(_) for _ in transformers[transformers[\n 'change'] == 'removed']['equipment'].tolist() if _.voltage_op < 10]\n added_transformers = transformers[transformers['change'] == 'added']\n transformer = {'name': [], 'bus0': [], 'bus1': [], 'type': [], 'model':\n [], 'x': [], 'r': [], 's_nom': [], 'tap_ratio': []}\n for idx, row in added_transformers.iterrows():\n if isinstance(idx, LVStation):\n v_base = idx.mv_grid.voltage_nom\n z_base = v_base ** 2 / row['equipment'].type.S_nom\n transformer['bus0'].append('_'.join(['Bus', idx.__repr__(side=\n 'mv')]))\n transformer['bus1'].append('_'.join(['Bus', idx.__repr__(side=\n 'lv')]))\n transformer['name'].append(repr(row['equipment']))\n transformer['type'].append('')\n transformer['model'].append('pi')\n transformer['r'].append(row['equipment'].type.R / z_base)\n transformer['x'].append(row['equipment'].type.X / z_base)\n transformer['s_nom'].append(row['equipment'].type.S_nom / 1000.0)\n transformer['tap_ratio'].append(1)\n network.pypsa.transformers.drop(removed_transformers, inplace=True)\n if transformer['name']:\n network.pypsa.import_components_from_dataframe(pd.DataFrame(\n transformer).set_index('name'), 'Transformer')\n lines = equipment_changes.loc[equipment_changes.index[equipment_changes\n .reset_index()['index'].apply(isinstance, args=(Line,))]]\n changed_lines = lines[lines['change'] == 'changed']\n lv_stations = network.mv_grid.graph.nodes_by_attribute('lv_station')\n omega = 2 * pi * 50\n for idx, row in changed_lines.iterrows():\n network.pypsa.lines.loc[repr(idx), 'r'] = idx.type['R'\n ] / idx.quantity * idx.length\n network.pypsa.lines.loc[repr(idx), 'x'] = idx.type['L'\n ] / 1000.0 * omega / idx.quantity * idx.length\n network.pypsa.lines.loc[repr(idx), 's_nom'] = sqrt(3) * idx.type[\n 'I_max_th'] * idx.type['U_n'] * idx.quantity / 1000.0\n network.pypsa.lines.loc[repr(idx), 'length'] = idx.length\n adj_nodes = idx.grid.graph.nodes_from_line(idx)\n if adj_nodes[0] in lv_stations:\n side = 'lv' if isinstance(idx.grid, LVGrid) else 'mv'\n bus0 = '_'.join(['Bus', adj_nodes[0].__repr__(side=side)])\n else:\n bus0 = '_'.join(['Bus', repr(adj_nodes[0])])\n if adj_nodes[1] in lv_stations:\n side = 'lv' if isinstance(idx.grid, LVGrid) else 'mv'\n bus1 = '_'.join(['Bus', adj_nodes[1].__repr__(side=side)])\n else:\n bus1 = '_'.join(['Bus', repr(adj_nodes[1])])\n network.pypsa.lines.loc[repr(idx), 'bus0'] = bus0\n network.pypsa.lines.loc[repr(idx), 'bus1'] = bus1\n", "role": "user" }, { "content": "update_pypsa_grid_reinforcement", "role": "assistant" } ]
def x(pypsa, storages, storages_lines): bus = {'name': [], 'v_nom': [], 'x': [], 'y': []} line = {'name': [], 'bus0': [], 'bus1': [], 'type': [], 'x': [], 'r': [ ], 's_nom': [], 'length': []} storage = {'name': [], 'bus': [], 'p_nom': [], 'state_of_charge_initial': [], 'efficiency_store': [], 'efficiency_dispatch': [], 'standing_loss': []} for s in storages: bus_name = '_'.join(['Bus', repr(s)]) storage['name'].append(repr(s)) storage['bus'].append(bus_name) storage['p_nom'].append(s.nominal_power / 1000.0) storage['state_of_charge_initial'].append(s.soc_initial) storage['efficiency_store'].append(s.efficiency_in) storage['efficiency_dispatch'].append(s.efficiency_out) storage['standing_loss'].append(s.standing_loss) bus['name'].append(bus_name) bus['v_nom'].append(s.grid.voltage_nom) bus['x'].append(s.geom.x) bus['y'].append(s.geom.y) omega = 2 * pi * 50 for l in storages_lines: line['name'].append(repr(l)) adj_nodes = l.grid.graph.nodes_from_line(l) if isinstance(l.grid, LVGrid): if isinstance(adj_nodes[0], LVStation): line['bus0'].append('_'.join(['Bus', adj_nodes[0].__repr__( side='lv')])) else: line['bus0'].append('_'.join(['Bus', repr(adj_nodes[0])])) if isinstance(adj_nodes[1], LVStation): line['bus1'].append('_'.join(['Bus', adj_nodes[1].__repr__( side='lv')])) else: line['bus1'].append('_'.join(['Bus', repr(adj_nodes[1])])) else: if isinstance(adj_nodes[0], LVStation): line['bus0'].append('_'.join(['Bus', adj_nodes[0].__repr__( side='mv')])) elif isinstance(adj_nodes[0], MVStation): line['bus0'].append('_'.join(['Bus', adj_nodes[0].__repr__( side='lv')])) else: line['bus0'].append('_'.join(['Bus', repr(adj_nodes[0])])) if isinstance(adj_nodes[1], LVStation): line['bus1'].append('_'.join(['Bus', adj_nodes[1].__repr__( side='mv')])) elif isinstance(adj_nodes[1], MVStation): line['bus1'].append('_'.join(['Bus', adj_nodes[1].__repr__( side='lv')])) else: line['bus1'].append('_'.join(['Bus', repr(adj_nodes[1])])) line['type'].append('') line['x'].append(l.type['L'] * omega / 1000.0 * l.length) line['r'].append(l.type['R'] * l.length) line['s_nom'].append(sqrt(3) * l.type['I_max_th'] * l.type['U_n'] / 1000.0) line['length'].append(l.length) pypsa.import_components_from_dataframe(pd.DataFrame(bus).set_index( 'name'), 'Bus') pypsa.import_components_from_dataframe(pd.DataFrame(storage).set_index( 'name'), 'StorageUnit') pypsa.import_components_from_dataframe(pd.DataFrame(line).set_index( 'name'), 'Line') timeseries_storage_p = pd.DataFrame() timeseries_storage_q = pd.DataFrame() for s in storages: timeseries_storage_p[repr(s)] = s.pypsa_timeseries('p').loc[pypsa. storage_units_t.p_set.index] timeseries_storage_q[repr(s)] = s.pypsa_timeseries('q').loc[pypsa. storage_units_t.q_set.index] import_series_from_dataframe(pypsa, timeseries_storage_p, 'StorageUnit', 'p_set') import_series_from_dataframe(pypsa, timeseries_storage_q, 'StorageUnit', 'q_set')
update_pypsa_storage
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(pypsa, storages, storages_lines):\n bus = {'name': [], 'v_nom': [], 'x': [], 'y': []}\n line = {'name': [], 'bus0': [], 'bus1': [], 'type': [], 'x': [], 'r': [\n ], 's_nom': [], 'length': []}\n storage = {'name': [], 'bus': [], 'p_nom': [],\n 'state_of_charge_initial': [], 'efficiency_store': [],\n 'efficiency_dispatch': [], 'standing_loss': []}\n for s in storages:\n bus_name = '_'.join(['Bus', repr(s)])\n storage['name'].append(repr(s))\n storage['bus'].append(bus_name)\n storage['p_nom'].append(s.nominal_power / 1000.0)\n storage['state_of_charge_initial'].append(s.soc_initial)\n storage['efficiency_store'].append(s.efficiency_in)\n storage['efficiency_dispatch'].append(s.efficiency_out)\n storage['standing_loss'].append(s.standing_loss)\n bus['name'].append(bus_name)\n bus['v_nom'].append(s.grid.voltage_nom)\n bus['x'].append(s.geom.x)\n bus['y'].append(s.geom.y)\n omega = 2 * pi * 50\n for l in storages_lines:\n line['name'].append(repr(l))\n adj_nodes = l.grid.graph.nodes_from_line(l)\n if isinstance(l.grid, LVGrid):\n if isinstance(adj_nodes[0], LVStation):\n line['bus0'].append('_'.join(['Bus', adj_nodes[0].__repr__(\n side='lv')]))\n else:\n line['bus0'].append('_'.join(['Bus', repr(adj_nodes[0])]))\n if isinstance(adj_nodes[1], LVStation):\n line['bus1'].append('_'.join(['Bus', adj_nodes[1].__repr__(\n side='lv')]))\n else:\n line['bus1'].append('_'.join(['Bus', repr(adj_nodes[1])]))\n else:\n if isinstance(adj_nodes[0], LVStation):\n line['bus0'].append('_'.join(['Bus', adj_nodes[0].__repr__(\n side='mv')]))\n elif isinstance(adj_nodes[0], MVStation):\n line['bus0'].append('_'.join(['Bus', adj_nodes[0].__repr__(\n side='lv')]))\n else:\n line['bus0'].append('_'.join(['Bus', repr(adj_nodes[0])]))\n if isinstance(adj_nodes[1], LVStation):\n line['bus1'].append('_'.join(['Bus', adj_nodes[1].__repr__(\n side='mv')]))\n elif isinstance(adj_nodes[1], MVStation):\n line['bus1'].append('_'.join(['Bus', adj_nodes[1].__repr__(\n side='lv')]))\n else:\n line['bus1'].append('_'.join(['Bus', repr(adj_nodes[1])]))\n line['type'].append('')\n line['x'].append(l.type['L'] * omega / 1000.0 * l.length)\n line['r'].append(l.type['R'] * l.length)\n line['s_nom'].append(sqrt(3) * l.type['I_max_th'] * l.type['U_n'] /\n 1000.0)\n line['length'].append(l.length)\n pypsa.import_components_from_dataframe(pd.DataFrame(bus).set_index(\n 'name'), 'Bus')\n pypsa.import_components_from_dataframe(pd.DataFrame(storage).set_index(\n 'name'), 'StorageUnit')\n pypsa.import_components_from_dataframe(pd.DataFrame(line).set_index(\n 'name'), 'Line')\n timeseries_storage_p = pd.DataFrame()\n timeseries_storage_q = pd.DataFrame()\n for s in storages:\n timeseries_storage_p[repr(s)] = s.pypsa_timeseries('p').loc[pypsa.\n storage_units_t.p_set.index]\n timeseries_storage_q[repr(s)] = s.pypsa_timeseries('q').loc[pypsa.\n storage_units_t.q_set.index]\n import_series_from_dataframe(pypsa, timeseries_storage_p, 'StorageUnit',\n 'p_set')\n import_series_from_dataframe(pypsa, timeseries_storage_q, 'StorageUnit',\n 'q_set')\n", "role": "user" }, { "content": "update_pypsa_storage", "role": "assistant" } ]
def x(network, loads_to_update=None, generators_to_update=None, storages_to_update=None, timesteps=None): update_pypsa_load_timeseries(network, loads_to_update=loads_to_update, timesteps=timesteps) update_pypsa_generator_timeseries(network, generators_to_update= generators_to_update, timesteps=timesteps) update_pypsa_storage_timeseries(network, storages_to_update= storages_to_update, timesteps=timesteps) update_pypsa_bus_timeseries(network, timesteps=timesteps) if timesteps is None: timesteps = network.pypsa.buses_t.v_mag_pu_set.index network.pypsa.set_snapshots(timesteps)
update_pypsa_timeseries
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(network, loads_to_update=None, generators_to_update=None,\n storages_to_update=None, timesteps=None):\n update_pypsa_load_timeseries(network, loads_to_update=loads_to_update,\n timesteps=timesteps)\n update_pypsa_generator_timeseries(network, generators_to_update=\n generators_to_update, timesteps=timesteps)\n update_pypsa_storage_timeseries(network, storages_to_update=\n storages_to_update, timesteps=timesteps)\n update_pypsa_bus_timeseries(network, timesteps=timesteps)\n if timesteps is None:\n timesteps = network.pypsa.buses_t.v_mag_pu_set.index\n network.pypsa.set_snapshots(timesteps)\n", "role": "user" }, { "content": "update_pypsa_timeseries", "role": "assistant" } ]
def x(network, loads_to_update=None, timesteps=None): _update_pypsa_timeseries_by_type(network, type='load', components_to_update=loads_to_update, timesteps=timesteps)
update_pypsa_load_timeseries
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(network, loads_to_update=None, timesteps=None):\n _update_pypsa_timeseries_by_type(network, type='load',\n components_to_update=loads_to_update, timesteps=timesteps)\n", "role": "user" }, { "content": "update_pypsa_load_timeseries", "role": "assistant" } ]
def x(network, generators_to_update=None, timesteps=None): _update_pypsa_timeseries_by_type(network, type='generator', components_to_update=generators_to_update, timesteps=timesteps)
update_pypsa_generator_timeseries
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(network, generators_to_update=None, timesteps=None):\n _update_pypsa_timeseries_by_type(network, type='generator',\n components_to_update=generators_to_update, timesteps=timesteps)\n", "role": "user" }, { "content": "update_pypsa_generator_timeseries", "role": "assistant" } ]
def x(network, storages_to_update=None, timesteps=None): _update_pypsa_timeseries_by_type(network, type='storage', components_to_update=storages_to_update, timesteps=timesteps)
update_pypsa_storage_timeseries
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(network, storages_to_update=None, timesteps=None):\n _update_pypsa_timeseries_by_type(network, type='storage',\n components_to_update=storages_to_update, timesteps=timesteps)\n", "role": "user" }, { "content": "update_pypsa_storage_timeseries", "role": "assistant" } ]
def x(network, timesteps=None): if timesteps is None: timesteps = network.pypsa.buses_t.v_mag_pu_set.index if not hasattr(timesteps, '__len__'): timesteps = [timesteps] buses = network.pypsa.buses.index v_mag_pu_set = _pypsa_bus_timeseries(network, buses, timesteps) network.pypsa.buses_t.v_mag_pu_set = v_mag_pu_set
update_pypsa_bus_timeseries
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(network, timesteps=None):\n if timesteps is None:\n timesteps = network.pypsa.buses_t.v_mag_pu_set.index\n if not hasattr(timesteps, '__len__'):\n timesteps = [timesteps]\n buses = network.pypsa.buses.index\n v_mag_pu_set = _pypsa_bus_timeseries(network, buses, timesteps)\n network.pypsa.buses_t.v_mag_pu_set = v_mag_pu_set\n", "role": "user" }, { "content": "update_pypsa_bus_timeseries", "role": "assistant" } ]
def x(network, type, components_to_update=None, timesteps=None): if type == 'load': pypsa_ts = network.pypsa.loads_t components_in_pypsa = network.pypsa.loads.index elif type == 'generator': pypsa_ts = network.pypsa.generators_t components_in_pypsa = network.pypsa.generators.index elif type == 'storage': pypsa_ts = network.pypsa.storage_units_t components_in_pypsa = network.pypsa.storage_units.index else: raise ValueError('{} is not a valid type.'.format(type)) if network.pypsa.edisgo_mode is None: if components_to_update is None: grids = [network.mv_grid] + list(network.mv_grid.lv_grids) if type == 'generator': components_to_update = list(itertools.chain(*[grid. generators for grid in grids])) else: components_to_update = list(itertools.chain(*[grid.graph. nodes_by_attribute(type) for grid in grids])) if timesteps is None: timesteps = pypsa_ts.p_set.index if not hasattr(timesteps, '__len__'): timesteps = [timesteps] p_set = pd.DataFrame() q_set = pd.DataFrame() for comp in components_to_update: if repr(comp) in components_in_pypsa: p_set[repr(comp)] = comp.pypsa_timeseries('p').loc[timesteps] q_set[repr(comp)] = comp.pypsa_timeseries('q').loc[timesteps] else: raise KeyError( 'Tried to update component {} but could not find it in pypsa network.' .format(comp)) pypsa_ts.p_set = p_set pypsa_ts.q_set = q_set elif network.pypsa.edisgo_mode is 'mv': raise NotImplementedError elif network.pypsa.edisgo_mode is 'lv': raise NotImplementedError
update_pypsa_timeseries_by_type
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(network, type, components_to_update=None, timesteps=None):\n if type == 'load':\n pypsa_ts = network.pypsa.loads_t\n components_in_pypsa = network.pypsa.loads.index\n elif type == 'generator':\n pypsa_ts = network.pypsa.generators_t\n components_in_pypsa = network.pypsa.generators.index\n elif type == 'storage':\n pypsa_ts = network.pypsa.storage_units_t\n components_in_pypsa = network.pypsa.storage_units.index\n else:\n raise ValueError('{} is not a valid type.'.format(type))\n if network.pypsa.edisgo_mode is None:\n if components_to_update is None:\n grids = [network.mv_grid] + list(network.mv_grid.lv_grids)\n if type == 'generator':\n components_to_update = list(itertools.chain(*[grid.\n generators for grid in grids]))\n else:\n components_to_update = list(itertools.chain(*[grid.graph.\n nodes_by_attribute(type) for grid in grids]))\n if timesteps is None:\n timesteps = pypsa_ts.p_set.index\n if not hasattr(timesteps, '__len__'):\n timesteps = [timesteps]\n p_set = pd.DataFrame()\n q_set = pd.DataFrame()\n for comp in components_to_update:\n if repr(comp) in components_in_pypsa:\n p_set[repr(comp)] = comp.pypsa_timeseries('p').loc[timesteps]\n q_set[repr(comp)] = comp.pypsa_timeseries('q').loc[timesteps]\n else:\n raise KeyError(\n 'Tried to update component {} but could not find it in pypsa network.'\n .format(comp))\n pypsa_ts.p_set = p_set\n pypsa_ts.q_set = q_set\n elif network.pypsa.edisgo_mode is 'mv':\n raise NotImplementedError\n elif network.pypsa.edisgo_mode is 'lv':\n raise NotImplementedError\n", "role": "user" }, { "content": "update_pypsa_timeseries_by_type", "role": "assistant" } ]
def x(network, storage, feedin_threshold=0.5): generators = network.mv_grid.generators + [generators for lv_grid in network.mv_grid.lv_grids for generators in lv_grid.generators] generators_p = pd.concat([_.timeseries['p'] for _ in generators], axis=1 ).sum(axis=1).rename('p') generators_q = pd.concat([_.timeseries['q'] for _ in generators], axis=1 ).sum(axis=1).rename('q') generation = pd.concat([generators_p, generators_q], axis=1) generation['s'] = generation.apply(lambda x: sqrt(x['p'] ** 2 + x['q'] ** 2), axis=1) generators_nom_capacity = sum([_.nominal_capacity for _ in generators]) feedin_bool = generation['s'] > feedin_threshold * generators_nom_capacity feedin = feedin_bool.apply(lambda x: storage.nominal_power if x else - storage.nominal_power).rename('p').to_frame() storage.timeseries = feedin
fifty_fifty
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(network, storage, feedin_threshold=0.5):\n generators = network.mv_grid.generators + [generators for lv_grid in\n network.mv_grid.lv_grids for generators in lv_grid.generators]\n generators_p = pd.concat([_.timeseries['p'] for _ in generators], axis=1\n ).sum(axis=1).rename('p')\n generators_q = pd.concat([_.timeseries['q'] for _ in generators], axis=1\n ).sum(axis=1).rename('q')\n generation = pd.concat([generators_p, generators_q], axis=1)\n generation['s'] = generation.apply(lambda x: sqrt(x['p'] ** 2 + x['q'] **\n 2), axis=1)\n generators_nom_capacity = sum([_.nominal_capacity for _ in generators])\n feedin_bool = generation['s'] > feedin_threshold * generators_nom_capacity\n feedin = feedin_bool.apply(lambda x: storage.nominal_power if x else -\n storage.nominal_power).rename('p').to_frame()\n storage.timeseries = feedin\n", "role": "user" }, { "content": "fifty_fifty", "role": "assistant" } ]
def x(network): buffer_radius = int(network.config['grid_connection']['conn_buffer_radius'] ) buffer_radius_inc = int(network.config['grid_connection'][ 'conn_buffer_radius_inc']) std_line_type = network.equipment_data['mv_cables'].loc[network.config[ 'grid_expansion_standard_equipment']['mv_line']] for geno in sorted(network.mv_grid.graph.nodes_by_attribute('generator' ), key=lambda _: repr(_)): if nx.is_isolate(network.mv_grid.graph, geno): if geno.v_level == 4: line_length = calc_geo_dist_vincenty(network=network, node_source=geno, node_target=network.mv_grid.station) line = Line(id=random.randint(10 ** 8, 10 ** 9), type= std_line_type, kind='cable', quantity=1, length= line_length / 1000.0, grid=network.mv_grid) network.mv_grid.graph.add_edge(network.mv_grid.station, geno, line=line, type='line') _add_cable_to_equipment_changes(network=network, line=line) elif geno.v_level == 5: branches = calc_geo_lines_in_buffer(network=network, node= geno, grid=network.mv_grid, radius=buffer_radius, radius_inc=buffer_radius_inc) conn_objects_min_stack = _find_nearest_conn_objects(network =network, node=geno, branches=branches) generator_connected = False for dist_min_obj in conn_objects_min_stack: target_obj_result = _connect_mv_node(network=network, node=geno, target_obj=dist_min_obj) if target_obj_result is not None: generator_connected = True break if not generator_connected: logger.debug( 'Generator {0} could not be connected, try to increase the parameter `conn_buffer_radius` in config file `config_grid.cfg` to gain more possible connection points.' .format(geno))
connect_mv_generators
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(network):\n buffer_radius = int(network.config['grid_connection']['conn_buffer_radius']\n )\n buffer_radius_inc = int(network.config['grid_connection'][\n 'conn_buffer_radius_inc'])\n std_line_type = network.equipment_data['mv_cables'].loc[network.config[\n 'grid_expansion_standard_equipment']['mv_line']]\n for geno in sorted(network.mv_grid.graph.nodes_by_attribute('generator'\n ), key=lambda _: repr(_)):\n if nx.is_isolate(network.mv_grid.graph, geno):\n if geno.v_level == 4:\n line_length = calc_geo_dist_vincenty(network=network,\n node_source=geno, node_target=network.mv_grid.station)\n line = Line(id=random.randint(10 ** 8, 10 ** 9), type=\n std_line_type, kind='cable', quantity=1, length=\n line_length / 1000.0, grid=network.mv_grid)\n network.mv_grid.graph.add_edge(network.mv_grid.station,\n geno, line=line, type='line')\n _add_cable_to_equipment_changes(network=network, line=line)\n elif geno.v_level == 5:\n branches = calc_geo_lines_in_buffer(network=network, node=\n geno, grid=network.mv_grid, radius=buffer_radius,\n radius_inc=buffer_radius_inc)\n conn_objects_min_stack = _find_nearest_conn_objects(network\n =network, node=geno, branches=branches)\n generator_connected = False\n for dist_min_obj in conn_objects_min_stack:\n target_obj_result = _connect_mv_node(network=network,\n node=geno, target_obj=dist_min_obj)\n if target_obj_result is not None:\n generator_connected = True\n break\n if not generator_connected:\n logger.debug(\n 'Generator {0} could not be connected, try to increase the parameter `conn_buffer_radius` in config file `config_grid.cfg` to gain more possible connection points.'\n .format(geno))\n", "role": "user" }, { "content": "connect_mv_generators", "role": "assistant" } ]
def x(network, allow_multiple_genos_per_load=True): seed = int(network.config['grid_connection']['random_seed']) random.seed(a=1234) std_line_type = network.equipment_data['lv_cables'].loc[network.config[ 'grid_expansion_standard_equipment']['lv_line']] std_line_kind = 'cable' for lv_grid in network.mv_grid.lv_grids: lv_loads = lv_grid.graph.nodes_by_attribute('load') log_geno_count_vlevel7 = 0 lv_loads_res = sorted([lv_load for lv_load in lv_loads if 'residential' in list(lv_load.consumption.keys())], key=lambda _: repr(_)) if len(lv_loads_res) > 0: lv_loads_res_rnd = set(random.sample(lv_loads_res, len( lv_loads_res))) else: lv_loads_res_rnd = None lv_loads_ria = sorted([lv_load for lv_load in lv_loads if any([(_ in list(lv_load.consumption.keys())) for _ in ['retail', 'industrial', 'agricultural']])], key=lambda _: repr(_)) if len(lv_loads_ria) > 0: lv_loads_ria_rnd = set(random.sample(lv_loads_ria, len( lv_loads_ria))) else: lv_loads_ria_rnd = None for geno in sorted(lv_grid.graph.nodes_by_attribute('generator'), key=lambda x: repr(x)): if nx.is_isolate(lv_grid.graph, geno): lv_station = lv_grid.station if geno.v_level == 6: line_length = calc_geo_dist_vincenty(network=network, node_source=geno, node_target=lv_station) line = Line(id=random.randint(10 ** 8, 10 ** 9), length =line_length / 1000.0, quantity=1, kind= std_line_kind, type=std_line_type, grid=lv_grid) lv_grid.graph.add_edge(geno, lv_station, line=line, type='line') _add_cable_to_equipment_changes(network=network, line=line) elif geno.v_level == 7: log_geno_count_vlevel7 += 1 if (geno.nominal_capacity <= 30 and lv_loads_res_rnd is not None): if len(lv_loads_res_rnd) > 0: lv_load = lv_loads_res_rnd.pop() else: lv_loads_res_rnd = set(random.sample( lv_loads_res, len(lv_loads_res))) lv_load = lv_loads_res_rnd.pop() lv_conn_target = lv_grid.graph.neighbors(lv_load)[0] if not allow_multiple_genos_per_load: while any([isinstance(_, Generator) for _ in lv_grid.graph.neighbors(lv_grid.graph. neighbors(lv_load)[0])]): if len(lv_loads_res_rnd) > 0: lv_load = lv_loads_res_rnd.pop() lv_conn_target = lv_grid.graph.neighbors( lv_load)[0] else: lv_conn_target = lv_grid.station logger.debug( 'No valid conn. target found for {}. Connected to {}.' .format(repr(geno), repr( lv_conn_target))) break elif geno.nominal_capacity > 30 and lv_loads_ria_rnd is not None: if len(lv_loads_ria_rnd) > 0: lv_load = lv_loads_ria_rnd.pop() else: lv_loads_ria_rnd = set(random.sample( lv_loads_ria, len(lv_loads_ria))) lv_load = lv_loads_ria_rnd.pop() lv_conn_target = lv_grid.graph.neighbors(lv_load)[0] if not allow_multiple_genos_per_load: while any([isinstance(_, Generator) for _ in lv_grid.graph.neighbors(lv_grid.graph. neighbors(lv_load)[0])]): if len(lv_loads_ria_rnd) > 0: lv_load = lv_loads_ria_rnd.pop() lv_conn_target = lv_grid.graph.neighbors( lv_load)[0] else: lv_conn_target = lv_grid.station logger.debug( 'No valid conn. target found for {}. Connected to {}.' .format(repr(geno), repr( lv_conn_target))) break else: lv_conn_target = lv_grid.station logger.debug( 'No valid conn. target found for {}. Connected to {}.' .format(repr(geno), repr(lv_conn_target))) line = Line(id=random.randint(10 ** 8, 10 ** 9), length =0.001, quantity=1, kind=std_line_kind, type= std_line_type, grid=lv_grid) lv_grid.graph.add_edge(geno, lv_station, line=line, type='line') _add_cable_to_equipment_changes(network=network, line=line) if log_geno_count_vlevel7 > len(lv_loads): logger.debug( 'The count of newly connected generators in voltage level 7 ({}) exceeds the count of loads ({}) in LV grid {}.' .format(str(log_geno_count_vlevel7), str(len(lv_loads)), repr(lv_grid)))
connect_lv_generators
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(network, allow_multiple_genos_per_load=True):\n seed = int(network.config['grid_connection']['random_seed'])\n random.seed(a=1234)\n std_line_type = network.equipment_data['lv_cables'].loc[network.config[\n 'grid_expansion_standard_equipment']['lv_line']]\n std_line_kind = 'cable'\n for lv_grid in network.mv_grid.lv_grids:\n lv_loads = lv_grid.graph.nodes_by_attribute('load')\n log_geno_count_vlevel7 = 0\n lv_loads_res = sorted([lv_load for lv_load in lv_loads if \n 'residential' in list(lv_load.consumption.keys())], key=lambda\n _: repr(_))\n if len(lv_loads_res) > 0:\n lv_loads_res_rnd = set(random.sample(lv_loads_res, len(\n lv_loads_res)))\n else:\n lv_loads_res_rnd = None\n lv_loads_ria = sorted([lv_load for lv_load in lv_loads if any([(_ in\n list(lv_load.consumption.keys())) for _ in ['retail',\n 'industrial', 'agricultural']])], key=lambda _: repr(_))\n if len(lv_loads_ria) > 0:\n lv_loads_ria_rnd = set(random.sample(lv_loads_ria, len(\n lv_loads_ria)))\n else:\n lv_loads_ria_rnd = None\n for geno in sorted(lv_grid.graph.nodes_by_attribute('generator'),\n key=lambda x: repr(x)):\n if nx.is_isolate(lv_grid.graph, geno):\n lv_station = lv_grid.station\n if geno.v_level == 6:\n line_length = calc_geo_dist_vincenty(network=network,\n node_source=geno, node_target=lv_station)\n line = Line(id=random.randint(10 ** 8, 10 ** 9), length\n =line_length / 1000.0, quantity=1, kind=\n std_line_kind, type=std_line_type, grid=lv_grid)\n lv_grid.graph.add_edge(geno, lv_station, line=line,\n type='line')\n _add_cable_to_equipment_changes(network=network, line=line)\n elif geno.v_level == 7:\n log_geno_count_vlevel7 += 1\n if (geno.nominal_capacity <= 30 and lv_loads_res_rnd is not\n None):\n if len(lv_loads_res_rnd) > 0:\n lv_load = lv_loads_res_rnd.pop()\n else:\n lv_loads_res_rnd = set(random.sample(\n lv_loads_res, len(lv_loads_res)))\n lv_load = lv_loads_res_rnd.pop()\n lv_conn_target = lv_grid.graph.neighbors(lv_load)[0]\n if not allow_multiple_genos_per_load:\n while any([isinstance(_, Generator) for _ in\n lv_grid.graph.neighbors(lv_grid.graph.\n neighbors(lv_load)[0])]):\n if len(lv_loads_res_rnd) > 0:\n lv_load = lv_loads_res_rnd.pop()\n lv_conn_target = lv_grid.graph.neighbors(\n lv_load)[0]\n else:\n lv_conn_target = lv_grid.station\n logger.debug(\n 'No valid conn. target found for {}. Connected to {}.'\n .format(repr(geno), repr(\n lv_conn_target)))\n break\n elif geno.nominal_capacity > 30 and lv_loads_ria_rnd is not None:\n if len(lv_loads_ria_rnd) > 0:\n lv_load = lv_loads_ria_rnd.pop()\n else:\n lv_loads_ria_rnd = set(random.sample(\n lv_loads_ria, len(lv_loads_ria)))\n lv_load = lv_loads_ria_rnd.pop()\n lv_conn_target = lv_grid.graph.neighbors(lv_load)[0]\n if not allow_multiple_genos_per_load:\n while any([isinstance(_, Generator) for _ in\n lv_grid.graph.neighbors(lv_grid.graph.\n neighbors(lv_load)[0])]):\n if len(lv_loads_ria_rnd) > 0:\n lv_load = lv_loads_ria_rnd.pop()\n lv_conn_target = lv_grid.graph.neighbors(\n lv_load)[0]\n else:\n lv_conn_target = lv_grid.station\n logger.debug(\n 'No valid conn. target found for {}. Connected to {}.'\n .format(repr(geno), repr(\n lv_conn_target)))\n break\n else:\n lv_conn_target = lv_grid.station\n logger.debug(\n 'No valid conn. target found for {}. Connected to {}.'\n .format(repr(geno), repr(lv_conn_target)))\n line = Line(id=random.randint(10 ** 8, 10 ** 9), length\n =0.001, quantity=1, kind=std_line_kind, type=\n std_line_type, grid=lv_grid)\n lv_grid.graph.add_edge(geno, lv_station, line=line,\n type='line')\n _add_cable_to_equipment_changes(network=network, line=line)\n if log_geno_count_vlevel7 > len(lv_loads):\n logger.debug(\n 'The count of newly connected generators in voltage level 7 ({}) exceeds the count of loads ({}) in LV grid {}.'\n .format(str(log_geno_count_vlevel7), str(len(lv_loads)),\n repr(lv_grid)))\n", "role": "user" }, { "content": "connect_lv_generators", "role": "assistant" } ]
def x(network, line): network.results.equipment_changes = (network.results.equipment_changes. append(pd.DataFrame({'iteration_step': [0], 'change': ['added'], 'equipment': [line.type.name], 'quantity': [1]}, index=[line])))
add_cable_to_equipment_changes
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(network, line):\n network.results.equipment_changes = (network.results.equipment_changes.\n append(pd.DataFrame({'iteration_step': [0], 'change': ['added'],\n 'equipment': [line.type.name], 'quantity': [1]}, index=[line])))\n", "role": "user" }, { "content": "add_cable_to_equipment_changes", "role": "assistant" } ]
def x(network, line): if line in network.results.equipment_changes.index: network.results.equipment_changes = (network.results. equipment_changes.drop(line))
del_cable_from_equipment_changes
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(network, line):\n if line in network.results.equipment_changes.index:\n network.results.equipment_changes = (network.results.\n equipment_changes.drop(line))\n", "role": "user" }, { "content": "del_cable_from_equipment_changes", "role": "assistant" } ]
def x(network, node, branches): conn_diff_tolerance = network.config['grid_connection'][ 'conn_diff_tolerance'] conn_objects_min_stack = [] node_shp = transform(proj2equidistant(network), node.geom) for branch in branches: stations = branch['adj_nodes'] station1_shp = transform(proj2equidistant(network), stations[0].geom) station2_shp = transform(proj2equidistant(network), stations[1].geom) line_shp = LineString([station1_shp, station2_shp]) conn_objects = {'s1': {'obj': stations[0], 'shp': station1_shp, 'dist': node_shp.distance(station1_shp) * 0.999}, 's2': {'obj': stations[1], 'shp': station2_shp, 'dist': node_shp.distance( station2_shp) * 0.999}, 'b': {'obj': branch, 'shp': line_shp, 'dist': node_shp.distance(line_shp)}} if abs(conn_objects['s1']['dist'] - conn_objects['b']['dist'] ) < conn_diff_tolerance or abs(conn_objects['s2']['dist'] - conn_objects['b']['dist']) < conn_diff_tolerance: del conn_objects['b'] if isinstance(conn_objects['s1']['obj'], MVStation): del conn_objects['s1'] elif isinstance(conn_objects['s2']['obj'], MVStation): del conn_objects['s2'] conn_objects_min = min(conn_objects.values(), key=lambda v: v['dist']) conn_objects_min_stack.append(conn_objects_min) conn_objects_min_stack = [_ for _ in sorted(conn_objects_min_stack, key =lambda x: x['dist'])] return conn_objects_min_stack
find_nearest_conn_objects
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(network, node, branches):\n conn_diff_tolerance = network.config['grid_connection'][\n 'conn_diff_tolerance']\n conn_objects_min_stack = []\n node_shp = transform(proj2equidistant(network), node.geom)\n for branch in branches:\n stations = branch['adj_nodes']\n station1_shp = transform(proj2equidistant(network), stations[0].geom)\n station2_shp = transform(proj2equidistant(network), stations[1].geom)\n line_shp = LineString([station1_shp, station2_shp])\n conn_objects = {'s1': {'obj': stations[0], 'shp': station1_shp,\n 'dist': node_shp.distance(station1_shp) * 0.999}, 's2': {'obj':\n stations[1], 'shp': station2_shp, 'dist': node_shp.distance(\n station2_shp) * 0.999}, 'b': {'obj': branch, 'shp': line_shp,\n 'dist': node_shp.distance(line_shp)}}\n if abs(conn_objects['s1']['dist'] - conn_objects['b']['dist']\n ) < conn_diff_tolerance or abs(conn_objects['s2']['dist'] -\n conn_objects['b']['dist']) < conn_diff_tolerance:\n del conn_objects['b']\n if isinstance(conn_objects['s1']['obj'], MVStation):\n del conn_objects['s1']\n elif isinstance(conn_objects['s2']['obj'], MVStation):\n del conn_objects['s2']\n conn_objects_min = min(conn_objects.values(), key=lambda v: v['dist'])\n conn_objects_min_stack.append(conn_objects_min)\n conn_objects_min_stack = [_ for _ in sorted(conn_objects_min_stack, key\n =lambda x: x['dist'])]\n return conn_objects_min_stack\n", "role": "user" }, { "content": "find_nearest_conn_objects", "role": "assistant" } ]
def x(network, node, target_obj): std_line_type = network.equipment_data['mv_cables'].loc[network.config[ 'grid_expansion_standard_equipment']['mv_line']] std_line_kind = 'cable' target_obj_result = None node_shp = transform(proj2equidistant(network), node.geom) if isinstance(target_obj['shp'], LineString): adj_node1 = target_obj['obj']['adj_nodes'][0] adj_node2 = target_obj['obj']['adj_nodes'][1] conn_point_shp = target_obj['shp'].interpolate(target_obj['shp']. project(node_shp)) conn_point_shp = transform(proj2conformal(network), conn_point_shp) line = network.mv_grid.graph.edge[adj_node1][adj_node2] if not line['type'] == 'line_aggr': branch_tee = BranchTee(geom=conn_point_shp, grid=network. mv_grid, in_building=False) network.mv_grid.graph.add_node(branch_tee, type='branch_tee') line_kind = line['line'].kind line_type = line['line'].type network.mv_grid.graph.remove_edge(adj_node1, adj_node2) _del_cable_from_equipment_changes(network=network, line=line[ 'line']) line_length = calc_geo_dist_vincenty(network=network, node_source=adj_node1, node_target=branch_tee) line = Line(id=random.randint(10 ** 8, 10 ** 9), length= line_length / 1000.0, quantity=1, kind=line_kind, type= line_type, grid=network.mv_grid) network.mv_grid.graph.add_edge(adj_node1, branch_tee, line=line, type='line') _add_cable_to_equipment_changes(network=network, line=line) line_length = calc_geo_dist_vincenty(network=network, node_source=adj_node2, node_target=branch_tee) line = Line(id=random.randint(10 ** 8, 10 ** 9), length= line_length / 1000.0, quantity=1, kind=line_kind, type= line_type, grid=network.mv_grid) network.mv_grid.graph.add_edge(adj_node2, branch_tee, line=line, type='line') _add_cable_to_equipment_changes(network=network, line=line) line_length = calc_geo_dist_vincenty(network=network, node_source=node, node_target=branch_tee) line = Line(id=random.randint(10 ** 8, 10 ** 9), length= line_length / 1000.0, quantity=1, kind=std_line_kind, type= std_line_type, grid=network.mv_grid) network.mv_grid.graph.add_edge(node, branch_tee, line=line, type='line') _add_cable_to_equipment_changes(network=network, line=line) target_obj_result = branch_tee else: if isinstance(node, LVStation): valid_conn_objects = LVStation, BranchTee elif isinstance(node, Generator): valid_conn_objects = LVStation, BranchTee, Generator else: raise ValueError( 'Oops, the node you are trying to connect is not a valid connection object' ) if isinstance(target_obj['obj'], (Generator, Load)): target_is_aggregated = any([_ for _ in network.mv_grid.graph. edge[target_obj['obj']].values() if _['type'] == 'line_aggr']) else: target_is_aggregated = False if isinstance(target_obj['obj'], valid_conn_objects ) and not target_is_aggregated: line_length = calc_geo_dist_vincenty(network=network, node_source=node, node_target=target_obj['obj']) line = Line(id=random.randint(10 ** 8, 10 ** 9), type= std_line_type, kind=std_line_kind, quantity=1, length= line_length / 1000.0, grid=network.mv_grid) network.mv_grid.graph.add_edge(node, target_obj['obj'], line= line, type='line') _add_cable_to_equipment_changes(network=network, line=line) target_obj_result = target_obj['obj'] return target_obj_result
connect_mv_node
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(network, node, target_obj):\n std_line_type = network.equipment_data['mv_cables'].loc[network.config[\n 'grid_expansion_standard_equipment']['mv_line']]\n std_line_kind = 'cable'\n target_obj_result = None\n node_shp = transform(proj2equidistant(network), node.geom)\n if isinstance(target_obj['shp'], LineString):\n adj_node1 = target_obj['obj']['adj_nodes'][0]\n adj_node2 = target_obj['obj']['adj_nodes'][1]\n conn_point_shp = target_obj['shp'].interpolate(target_obj['shp'].\n project(node_shp))\n conn_point_shp = transform(proj2conformal(network), conn_point_shp)\n line = network.mv_grid.graph.edge[adj_node1][adj_node2]\n if not line['type'] == 'line_aggr':\n branch_tee = BranchTee(geom=conn_point_shp, grid=network.\n mv_grid, in_building=False)\n network.mv_grid.graph.add_node(branch_tee, type='branch_tee')\n line_kind = line['line'].kind\n line_type = line['line'].type\n network.mv_grid.graph.remove_edge(adj_node1, adj_node2)\n _del_cable_from_equipment_changes(network=network, line=line[\n 'line'])\n line_length = calc_geo_dist_vincenty(network=network,\n node_source=adj_node1, node_target=branch_tee)\n line = Line(id=random.randint(10 ** 8, 10 ** 9), length=\n line_length / 1000.0, quantity=1, kind=line_kind, type=\n line_type, grid=network.mv_grid)\n network.mv_grid.graph.add_edge(adj_node1, branch_tee, line=line,\n type='line')\n _add_cable_to_equipment_changes(network=network, line=line)\n line_length = calc_geo_dist_vincenty(network=network,\n node_source=adj_node2, node_target=branch_tee)\n line = Line(id=random.randint(10 ** 8, 10 ** 9), length=\n line_length / 1000.0, quantity=1, kind=line_kind, type=\n line_type, grid=network.mv_grid)\n network.mv_grid.graph.add_edge(adj_node2, branch_tee, line=line,\n type='line')\n _add_cable_to_equipment_changes(network=network, line=line)\n line_length = calc_geo_dist_vincenty(network=network,\n node_source=node, node_target=branch_tee)\n line = Line(id=random.randint(10 ** 8, 10 ** 9), length=\n line_length / 1000.0, quantity=1, kind=std_line_kind, type=\n std_line_type, grid=network.mv_grid)\n network.mv_grid.graph.add_edge(node, branch_tee, line=line,\n type='line')\n _add_cable_to_equipment_changes(network=network, line=line)\n target_obj_result = branch_tee\n else:\n if isinstance(node, LVStation):\n valid_conn_objects = LVStation, BranchTee\n elif isinstance(node, Generator):\n valid_conn_objects = LVStation, BranchTee, Generator\n else:\n raise ValueError(\n 'Oops, the node you are trying to connect is not a valid connection object'\n )\n if isinstance(target_obj['obj'], (Generator, Load)):\n target_is_aggregated = any([_ for _ in network.mv_grid.graph.\n edge[target_obj['obj']].values() if _['type'] == 'line_aggr'])\n else:\n target_is_aggregated = False\n if isinstance(target_obj['obj'], valid_conn_objects\n ) and not target_is_aggregated:\n line_length = calc_geo_dist_vincenty(network=network,\n node_source=node, node_target=target_obj['obj'])\n line = Line(id=random.randint(10 ** 8, 10 ** 9), type=\n std_line_type, kind=std_line_kind, quantity=1, length=\n line_length / 1000.0, grid=network.mv_grid)\n network.mv_grid.graph.add_edge(node, target_obj['obj'], line=\n line, type='line')\n _add_cable_to_equipment_changes(network=network, line=line)\n target_obj_result = target_obj['obj']\n return target_obj_result\n", "role": "user" }, { "content": "connect_mv_node", "role": "assistant" } ]
def x(ding0_filepath): grid_district = os.path.basename(ding0_filepath) grid_district_search = re.search('[_]+\\d+', grid_district) if grid_district_search: grid_district = int(grid_district_search.group(0)[2:]) return grid_district else: raise KeyError('Grid District not found in '.format(grid_district))
get_griddistrict
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ding0_filepath):\n grid_district = os.path.basename(ding0_filepath)\n grid_district_search = re.search('[_]+\\\\d+', grid_district)\n if grid_district_search:\n grid_district = int(grid_district_search.group(0)[2:])\n return grid_district\n else:\n raise KeyError('Grid District not found in '.format(grid_district))\n", "role": "user" }, { "content": "get_griddistrict", "role": "assistant" } ]
def x(ding0_filepath, generator_scenario=None, analysis='worst-case', * edisgo_grid): grid_district = _get_griddistrict(ding0_filepath) grid_issues = {} logging.info('Grid expansion for MV grid district {}'.format(grid_district) ) if edisgo_grid: edisgo_grid = edisgo_grid[0] else: try: if 'worst-case' in analysis: edisgo_grid = EDisGo(ding0_grid=ding0_filepath, worst_case_analysis=analysis) elif 'timeseries' in analysis: edisgo_grid = EDisGo(ding0_grid=ding0_filepath, timeseries_generation_fluctuating='oedb', timeseries_load='demandlib') except FileNotFoundError as e: return None, pd.DataFrame(), {'grid': grid_district, 'msg': str(e)} if generator_scenario: logging.info("Grid expansion for scenario '{}'.".format( generator_scenario)) edisgo_grid.import_generators(generator_scenario=generator_scenario) else: logging.info( 'Grid expansion with no generator imports based on scenario') try: edisgo_grid.reinforce() costs_grouped = (edisgo_grid.network.results.grid_expansion_costs. groupby(['type']).sum()) costs = pd.DataFrame(costs_grouped.values, columns=costs_grouped. columns, index=[[edisgo_grid.network.id] * len(costs_grouped), costs_grouped.index]).reset_index() costs.rename(columns={'level_0': 'grid'}, inplace=True) grid_issues['grid'] = None grid_issues['msg'] = None logging.info('SUCCESS!') except MaximumIterationError: grid_issues['grid'] = edisgo_grid.network.id grid_issues['msg'] = str(edisgo_grid.network.results.unresolved_issues) costs = pd.DataFrame() logging.warning('Unresolved issues left after grid expansion.') except Exception as e: grid_issues['grid'] = edisgo_grid.network.id grid_issues['msg'] = repr(e) costs = pd.DataFrame() logging.exception() return edisgo_grid, costs, grid_issues
run_edisgo_basic
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ding0_filepath, generator_scenario=None, analysis='worst-case', *\n edisgo_grid):\n grid_district = _get_griddistrict(ding0_filepath)\n grid_issues = {}\n logging.info('Grid expansion for MV grid district {}'.format(grid_district)\n )\n if edisgo_grid:\n edisgo_grid = edisgo_grid[0]\n else:\n try:\n if 'worst-case' in analysis:\n edisgo_grid = EDisGo(ding0_grid=ding0_filepath,\n worst_case_analysis=analysis)\n elif 'timeseries' in analysis:\n edisgo_grid = EDisGo(ding0_grid=ding0_filepath,\n timeseries_generation_fluctuating='oedb',\n timeseries_load='demandlib')\n except FileNotFoundError as e:\n return None, pd.DataFrame(), {'grid': grid_district, 'msg': str(e)}\n if generator_scenario:\n logging.info(\"Grid expansion for scenario '{}'.\".format(\n generator_scenario))\n edisgo_grid.import_generators(generator_scenario=generator_scenario)\n else:\n logging.info(\n 'Grid expansion with no generator imports based on scenario')\n try:\n edisgo_grid.reinforce()\n costs_grouped = (edisgo_grid.network.results.grid_expansion_costs.\n groupby(['type']).sum())\n costs = pd.DataFrame(costs_grouped.values, columns=costs_grouped.\n columns, index=[[edisgo_grid.network.id] * len(costs_grouped),\n costs_grouped.index]).reset_index()\n costs.rename(columns={'level_0': 'grid'}, inplace=True)\n grid_issues['grid'] = None\n grid_issues['msg'] = None\n logging.info('SUCCESS!')\n except MaximumIterationError:\n grid_issues['grid'] = edisgo_grid.network.id\n grid_issues['msg'] = str(edisgo_grid.network.results.unresolved_issues)\n costs = pd.DataFrame()\n logging.warning('Unresolved issues left after grid expansion.')\n except Exception as e:\n grid_issues['grid'] = edisgo_grid.network.id\n grid_issues['msg'] = repr(e)\n costs = pd.DataFrame()\n logging.exception()\n return edisgo_grid, costs, grid_issues\n", "role": "user" }, { "content": "run_edisgo_basic", "role": "assistant" } ]
def x(run_args): (edisgo_grid, costs_before_geno_import, grid_issues_before_geno_import ) = run_edisgo_basic(*run_args) if edisgo_grid: edisgo_grid.network.results = Results(edisgo_grid.network) edisgo_grid.network.pypsa = None run_args.append(edisgo_grid) _, costs, grid_issues = run_edisgo_basic(*run_args) return (costs_before_geno_import, grid_issues_before_geno_import, costs, grid_issues) else: return (costs_before_geno_import, grid_issues_before_geno_import, costs_before_geno_import, grid_issues_before_geno_import)
run_edisgo_twice
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(run_args):\n (edisgo_grid, costs_before_geno_import, grid_issues_before_geno_import\n ) = run_edisgo_basic(*run_args)\n if edisgo_grid:\n edisgo_grid.network.results = Results(edisgo_grid.network)\n edisgo_grid.network.pypsa = None\n run_args.append(edisgo_grid)\n _, costs, grid_issues = run_edisgo_basic(*run_args)\n return (costs_before_geno_import, grid_issues_before_geno_import,\n costs, grid_issues)\n else:\n return (costs_before_geno_import, grid_issues_before_geno_import,\n costs_before_geno_import, grid_issues_before_geno_import)\n", "role": "user" }, { "content": "run_edisgo_twice", "role": "assistant" } ]
def x(ding0_file_list, run_args_opt, workers=mp.cpu_count(), worker_lifetime=1 ): def x(result): results.append(result) results = [] pool = mp.Pool(workers, maxtasksperchild=worker_lifetime) for file in ding0_file_list: edisgo_args = [file] + run_args_opt pool.apply_async(func=run_edisgo_twice, args=(edisgo_args,), callback=collect_pool_results) pool.close() pool.join() all_costs_before_geno_import = [r[0] for r in results] all_grid_issues_before_geno_import = [r[1] for r in results] all_costs = [r[2] for r in results] all_grid_issues = [r[3] for r in results] return (all_costs_before_geno_import, all_grid_issues_before_geno_import, all_costs, all_grid_issues)
run_edisgo_pool
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ding0_file_list, run_args_opt, workers=mp.cpu_count(), worker_lifetime=1\n ):\n\n def x(result):\n results.append(result)\n results = []\n pool = mp.Pool(workers, maxtasksperchild=worker_lifetime)\n for file in ding0_file_list:\n edisgo_args = [file] + run_args_opt\n pool.apply_async(func=run_edisgo_twice, args=(edisgo_args,),\n callback=collect_pool_results)\n pool.close()\n pool.join()\n all_costs_before_geno_import = [r[0] for r in results]\n all_grid_issues_before_geno_import = [r[1] for r in results]\n all_costs = [r[2] for r in results]\n all_grid_issues = [r[3] for r in results]\n return (all_costs_before_geno_import,\n all_grid_issues_before_geno_import, all_costs, all_grid_issues)\n", "role": "user" }, { "content": "run_edisgo_pool", "role": "assistant" } ]
def x(ding0_id_list, func, func_arguments, workers=mp2.cpu_count(), worker_lifetime=1): def x(result): results.update({result.network.id: result}) results = {} pool = mp2.Pool(workers, maxtasksperchild=worker_lifetime) def x(key): return lambda o: results.update({key: o}) for ding0_id in ding0_id_list: edisgo_args = ding0_id, *func_arguments pool.apply_async(func=func, args=edisgo_args, callback= collect_pool_results, error_callback=error_callback(ding0_id)) pool.close() pool.join() return results
run_edisgo_pool_flexible
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ding0_id_list, func, func_arguments, workers=mp2.cpu_count(),\n worker_lifetime=1):\n\n def x(result):\n results.update({result.network.id: result})\n results = {}\n pool = mp2.Pool(workers, maxtasksperchild=worker_lifetime)\n\n def x(key):\n return lambda o: results.update({key: o})\n for ding0_id in ding0_id_list:\n edisgo_args = ding0_id, *func_arguments\n pool.apply_async(func=func, args=edisgo_args, callback=\n collect_pool_results, error_callback=error_callback(ding0_id))\n pool.close()\n pool.join()\n return results\n", "role": "user" }, { "content": "run_edisgo_pool_flexible", "role": "assistant" } ]
def x(file, network): if isinstance(file, str): ding0_nd = load_nd_from_pickle(filename=file) else: ding0_nd = file ding0_mv_grid = ding0_nd._mv_grid_districts[0].mv_grid ding0_mv_grid.close_circuit_breakers() network.mv_grid = _build_mv_grid(ding0_mv_grid, network) lv_grids, lv_station_mapping, lv_grid_mapping = _build_lv_grid( ding0_mv_grid, network) network.mv_grid.lv_grids = lv_grids position_switch_disconnectors(network.mv_grid, mode=network.config[ 'disconnecting_point']['position']) _validate_ding0_grid_import(network.mv_grid, ding0_mv_grid, lv_grid_mapping ) network.set_data_source('grid', 'dingo') network._id = network.mv_grid.id mv_weather_cell_id = network.mv_grid.weather_cells for lvg in lv_grids: if lvg.weather_cells: for lv_w_id in lvg._weather_cells: if not lv_w_id in mv_weather_cell_id: network.mv_grid._weather_cells.append(lv_w_id)
import_from_ding0
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(file, network):\n if isinstance(file, str):\n ding0_nd = load_nd_from_pickle(filename=file)\n else:\n ding0_nd = file\n ding0_mv_grid = ding0_nd._mv_grid_districts[0].mv_grid\n ding0_mv_grid.close_circuit_breakers()\n network.mv_grid = _build_mv_grid(ding0_mv_grid, network)\n lv_grids, lv_station_mapping, lv_grid_mapping = _build_lv_grid(\n ding0_mv_grid, network)\n network.mv_grid.lv_grids = lv_grids\n position_switch_disconnectors(network.mv_grid, mode=network.config[\n 'disconnecting_point']['position'])\n _validate_ding0_grid_import(network.mv_grid, ding0_mv_grid, lv_grid_mapping\n )\n network.set_data_source('grid', 'dingo')\n network._id = network.mv_grid.id\n mv_weather_cell_id = network.mv_grid.weather_cells\n for lvg in lv_grids:\n if lvg.weather_cells:\n for lv_w_id in lvg._weather_cells:\n if not lv_w_id in mv_weather_cell_id:\n network.mv_grid._weather_cells.append(lv_w_id)\n", "role": "user" }, { "content": "import_from_ding0", "role": "assistant" } ]
def x(ding0_grid, network): lv_station_mapping = {} lv_grids = [] lv_grid_mapping = {} for la in ding0_grid.grid_district._lv_load_areas: for lvgd in la._lv_grid_districts: ding0_lv_grid = lvgd.lv_grid if not ding0_lv_grid.grid_district.lv_load_area.is_aggregated: lv_grid = LVGrid(id=ding0_lv_grid.id_db, geom=ding0_lv_grid .grid_district.geo_data, grid_district={'geom': ding0_lv_grid.grid_district.geo_data, 'population': ding0_lv_grid.grid_district.population}, voltage_nom= ding0_lv_grid.v_level / 1000.0, network=network) station = {repr(_): _ for _ in network.mv_grid.graph. nodes_by_attribute('lv_station')}['LVStation_' + str( ding0_lv_grid._station.id_db)] station.grid = lv_grid for t in station.transformers: t.grid = lv_grid lv_grid.graph.add_node(station, type='lv_station') lv_station_mapping.update({ding0_lv_grid._station: station}) loads = {_: Load(id=_.id_db, geom=_.geo_data, grid=lv_grid, consumption=_.consumption) for _ in ding0_lv_grid.loads()} lv_grid.graph.add_nodes_from(loads.values(), type='load') generators = {_: (GeneratorFluctuating(id=_.id_db, geom=_. geo_data, nominal_capacity=_.capacity, type=_.type, subtype=_.subtype, grid=lv_grid, weather_cell_id=_. weather_cell_id, v_level=_.v_level) if _.type in [ 'wind', 'solar'] else Generator(id=_.id_db, geom=_. geo_data, nominal_capacity=_.capacity, type=_.type, subtype=_.subtype, grid=lv_grid, v_level=_.v_level)) for _ in ding0_lv_grid.generators()} lv_grid.graph.add_nodes_from(generators.values(), type= 'generator') branch_tees = {_: BranchTee(id=_.id_db, geom=_.geo_data, grid=lv_grid, in_building=_.in_building) for _ in ding0_lv_grid._cable_distributors} lv_grid.graph.add_nodes_from(branch_tees.values(), type= 'branch_tee') nodes = {**loads, **generators, **branch_tees, **{ ding0_lv_grid._station: station}} edges = [] edges_raw = list(nx.get_edge_attributes(ding0_lv_grid. _graph, 'branch').items()) for edge in edges_raw: edges.append({'adj_nodes': edge[0], 'branch': edge[1]}) lines = [(nodes[_['adj_nodes'][0]], nodes[_['adj_nodes'][1] ], {'line': Line(id=_['branch'].id_db, type=_['branch'] .type, length=_['branch'].length / 1000.0, kind=_[ 'branch'].kind, grid=lv_grid)}) for _ in edges] for line in lines: if line[2]['line'].type['U_n'] >= 400: line[2]['line'].type['U_n'] = line[2]['line'].type[ 'U_n'] / 1000.0 lv_grid.graph.add_edges_from(lines, type='line') lv_grid._station = station lv_grid_mapping.update({lv_grid: ding0_lv_grid}) lv_grids.append(lv_grid) return lv_grids, lv_station_mapping, lv_grid_mapping
build_lv_grid
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ding0_grid, network):\n lv_station_mapping = {}\n lv_grids = []\n lv_grid_mapping = {}\n for la in ding0_grid.grid_district._lv_load_areas:\n for lvgd in la._lv_grid_districts:\n ding0_lv_grid = lvgd.lv_grid\n if not ding0_lv_grid.grid_district.lv_load_area.is_aggregated:\n lv_grid = LVGrid(id=ding0_lv_grid.id_db, geom=ding0_lv_grid\n .grid_district.geo_data, grid_district={'geom':\n ding0_lv_grid.grid_district.geo_data, 'population':\n ding0_lv_grid.grid_district.population}, voltage_nom=\n ding0_lv_grid.v_level / 1000.0, network=network)\n station = {repr(_): _ for _ in network.mv_grid.graph.\n nodes_by_attribute('lv_station')}['LVStation_' + str(\n ding0_lv_grid._station.id_db)]\n station.grid = lv_grid\n for t in station.transformers:\n t.grid = lv_grid\n lv_grid.graph.add_node(station, type='lv_station')\n lv_station_mapping.update({ding0_lv_grid._station: station})\n loads = {_: Load(id=_.id_db, geom=_.geo_data, grid=lv_grid,\n consumption=_.consumption) for _ in ding0_lv_grid.loads()}\n lv_grid.graph.add_nodes_from(loads.values(), type='load')\n generators = {_: (GeneratorFluctuating(id=_.id_db, geom=_.\n geo_data, nominal_capacity=_.capacity, type=_.type,\n subtype=_.subtype, grid=lv_grid, weather_cell_id=_.\n weather_cell_id, v_level=_.v_level) if _.type in [\n 'wind', 'solar'] else Generator(id=_.id_db, geom=_.\n geo_data, nominal_capacity=_.capacity, type=_.type,\n subtype=_.subtype, grid=lv_grid, v_level=_.v_level)) for\n _ in ding0_lv_grid.generators()}\n lv_grid.graph.add_nodes_from(generators.values(), type=\n 'generator')\n branch_tees = {_: BranchTee(id=_.id_db, geom=_.geo_data,\n grid=lv_grid, in_building=_.in_building) for _ in\n ding0_lv_grid._cable_distributors}\n lv_grid.graph.add_nodes_from(branch_tees.values(), type=\n 'branch_tee')\n nodes = {**loads, **generators, **branch_tees, **{\n ding0_lv_grid._station: station}}\n edges = []\n edges_raw = list(nx.get_edge_attributes(ding0_lv_grid.\n _graph, 'branch').items())\n for edge in edges_raw:\n edges.append({'adj_nodes': edge[0], 'branch': edge[1]})\n lines = [(nodes[_['adj_nodes'][0]], nodes[_['adj_nodes'][1]\n ], {'line': Line(id=_['branch'].id_db, type=_['branch']\n .type, length=_['branch'].length / 1000.0, kind=_[\n 'branch'].kind, grid=lv_grid)}) for _ in edges]\n for line in lines:\n if line[2]['line'].type['U_n'] >= 400:\n line[2]['line'].type['U_n'] = line[2]['line'].type[\n 'U_n'] / 1000.0\n lv_grid.graph.add_edges_from(lines, type='line')\n lv_grid._station = station\n lv_grid_mapping.update({lv_grid: ding0_lv_grid})\n lv_grids.append(lv_grid)\n return lv_grids, lv_station_mapping, lv_grid_mapping\n", "role": "user" }, { "content": "build_lv_grid", "role": "assistant" } ]
def x(la_centers): def x(gen, aggr): if gen.v_level not in aggr['generation']: aggr['generation'][gen.v_level] = {} if gen.type not in aggr['generation'][gen.v_level]: aggr['generation'][gen.v_level][gen.type] = {} if gen.subtype not in aggr['generation'][gen.v_level][gen.type]: aggr['generation'][gen.v_level][gen.type].update({gen.subtype: {'ids': [gen.id_db], 'capacity': gen.capacity}}) else: aggr['generation'][gen.v_level][gen.type][gen.subtype]['ids' ].append(gen.id_db) aggr['generation'][gen.v_level][gen.type][gen.subtype]['capacity' ] += gen.capacity return aggr def x(la_center, aggr): for s in ['retail', 'industrial', 'agricultural', 'residential']: if s not in aggr['load']: aggr['load'][s] = 0 aggr['load']['retail'] += sum([_.sector_consumption_retail for _ in la_center.lv_load_area._lv_grid_districts]) aggr['load']['industrial'] += sum([_.sector_consumption_industrial for _ in la_center.lv_load_area._lv_grid_districts]) aggr['load']['agricultural'] += sum([_. sector_consumption_agricultural for _ in la_center.lv_load_area ._lv_grid_districts]) aggr['load']['residential'] += sum([_. sector_consumption_residential for _ in la_center.lv_load_area. _lv_grid_districts]) return aggr aggregated = {} aggr_stations = [] generation_aggr = {} for la in la_centers[0].grid.grid_district._lv_load_areas: for lvgd in la._lv_grid_districts: for gen in lvgd.lv_grid.generators(): if la.is_aggregated: generation_aggr.setdefault(gen.type, {}) generation_aggr[gen.type].setdefault(gen.subtype, { 'ding0': 0}) generation_aggr[gen.type][gen.subtype].setdefault('ding0', 0) generation_aggr[gen.type][gen.subtype]['ding0' ] += gen.capacity dingo_import_data = pd.DataFrame(columns=('id', 'capacity', 'agg_geno')) for la_center in la_centers: aggr = {'generation': {}, 'load': {}, 'aggregates': []} for lvgd in la_center.lv_load_area._lv_grid_districts: weather_cell_ids = {} for gen in lvgd.lv_grid.generators(): aggr = aggregate_generators(gen, aggr) if isinstance(gen, GeneratorFluctuatingDing0): if gen.weather_cell_id not in weather_cell_ids.keys(): weather_cell_ids[gen.weather_cell_id] = 1 else: weather_cell_ids[gen.weather_cell_id] += 1 dingo_import_data.loc[len(dingo_import_data)] = [int(gen. id_db), gen.capacity, None] if not list(lvgd.lv_grid.generators()): weather_cell_id = None elif weather_cell_ids: weather_cell_id = list(weather_cell_ids.keys())[list( weather_cell_ids.values()).index(max(weather_cell_ids. values()))] else: weather_cell_id = None for v_level in aggr['generation']: for type in aggr['generation'][v_level]: for subtype in aggr['generation'][v_level][type]: if not list(lvgd.lv_grid.generators()): pass else: aggr['generation'][v_level][type][subtype][ 'weather_cell_id'] = weather_cell_id aggr = aggregate_loads(la_center, aggr) aggr['aggregates'] = {'population': la_center.lv_load_area. zensus_sum, 'geom': la_center.lv_load_area.geo_area} for _ in la_center.lv_load_area._lv_grid_districts: aggr_stations.append(_.lv_grid.station()) aggregated.update({la_center.id_db: aggr}) return aggregated, aggr_stations, dingo_import_data
determine_aggregated_nodes
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(la_centers):\n\n def x(gen, aggr):\n if gen.v_level not in aggr['generation']:\n aggr['generation'][gen.v_level] = {}\n if gen.type not in aggr['generation'][gen.v_level]:\n aggr['generation'][gen.v_level][gen.type] = {}\n if gen.subtype not in aggr['generation'][gen.v_level][gen.type]:\n aggr['generation'][gen.v_level][gen.type].update({gen.subtype:\n {'ids': [gen.id_db], 'capacity': gen.capacity}})\n else:\n aggr['generation'][gen.v_level][gen.type][gen.subtype]['ids'\n ].append(gen.id_db)\n aggr['generation'][gen.v_level][gen.type][gen.subtype]['capacity'\n ] += gen.capacity\n return aggr\n\n def x(la_center, aggr):\n for s in ['retail', 'industrial', 'agricultural', 'residential']:\n if s not in aggr['load']:\n aggr['load'][s] = 0\n aggr['load']['retail'] += sum([_.sector_consumption_retail for _ in\n la_center.lv_load_area._lv_grid_districts])\n aggr['load']['industrial'] += sum([_.sector_consumption_industrial for\n _ in la_center.lv_load_area._lv_grid_districts])\n aggr['load']['agricultural'] += sum([_.\n sector_consumption_agricultural for _ in la_center.lv_load_area\n ._lv_grid_districts])\n aggr['load']['residential'] += sum([_.\n sector_consumption_residential for _ in la_center.lv_load_area.\n _lv_grid_districts])\n return aggr\n aggregated = {}\n aggr_stations = []\n generation_aggr = {}\n for la in la_centers[0].grid.grid_district._lv_load_areas:\n for lvgd in la._lv_grid_districts:\n for gen in lvgd.lv_grid.generators():\n if la.is_aggregated:\n generation_aggr.setdefault(gen.type, {})\n generation_aggr[gen.type].setdefault(gen.subtype, {\n 'ding0': 0})\n generation_aggr[gen.type][gen.subtype].setdefault('ding0',\n 0)\n generation_aggr[gen.type][gen.subtype]['ding0'\n ] += gen.capacity\n dingo_import_data = pd.DataFrame(columns=('id', 'capacity', 'agg_geno'))\n for la_center in la_centers:\n aggr = {'generation': {}, 'load': {}, 'aggregates': []}\n for lvgd in la_center.lv_load_area._lv_grid_districts:\n weather_cell_ids = {}\n for gen in lvgd.lv_grid.generators():\n aggr = aggregate_generators(gen, aggr)\n if isinstance(gen, GeneratorFluctuatingDing0):\n if gen.weather_cell_id not in weather_cell_ids.keys():\n weather_cell_ids[gen.weather_cell_id] = 1\n else:\n weather_cell_ids[gen.weather_cell_id] += 1\n dingo_import_data.loc[len(dingo_import_data)] = [int(gen.\n id_db), gen.capacity, None]\n if not list(lvgd.lv_grid.generators()):\n weather_cell_id = None\n elif weather_cell_ids:\n weather_cell_id = list(weather_cell_ids.keys())[list(\n weather_cell_ids.values()).index(max(weather_cell_ids.\n values()))]\n else:\n weather_cell_id = None\n for v_level in aggr['generation']:\n for type in aggr['generation'][v_level]:\n for subtype in aggr['generation'][v_level][type]:\n if not list(lvgd.lv_grid.generators()):\n pass\n else:\n aggr['generation'][v_level][type][subtype][\n 'weather_cell_id'] = weather_cell_id\n aggr = aggregate_loads(la_center, aggr)\n aggr['aggregates'] = {'population': la_center.lv_load_area.\n zensus_sum, 'geom': la_center.lv_load_area.geo_area}\n for _ in la_center.lv_load_area._lv_grid_districts:\n aggr_stations.append(_.lv_grid.station())\n aggregated.update({la_center.id_db: aggr})\n return aggregated, aggr_stations, dingo_import_data\n", "role": "user" }, { "content": "determine_aggregated_nodes", "role": "assistant" } ]
def x(network, grid, aggregated, ding0_grid): aggr_line_type = ding0_grid.network._static_data['MV_cables'].iloc[ ding0_grid.network._static_data['MV_cables']['I_max_th'].idxmax()] for la_id, la in aggregated.items(): for v_level, val in la['generation'].items(): for type, val2 in val.items(): for subtype, val3 in val2.items(): if type in ['solar', 'wind']: gen = GeneratorFluctuating(id='agg-' + str(la_id) + '-' + '_'.join([str(_) for _ in val3['ids']]), nominal_capacity=val3['capacity'], weather_cell_id=val3['weather_cell_id'], type= type, subtype=subtype, geom=grid.station.geom, grid=grid, v_level=4) else: gen = Generator(id='agg-' + str(la_id) + '-' + '_'. join([str(_) for _ in val3['ids']]), nominal_capacity=val3['capacity'], type=type, subtype=subtype, geom=grid.station.geom, grid= grid, v_level=4) grid.graph.add_node(gen, type='generator_aggr') network.dingo_import_data.set_value(network. dingo_import_data['id'].isin(val3['ids']), 'agg_geno', gen) line = Line(id='line_aggr_generator_la_' + str(la_id) + '_vlevel_{v_level}_{subtype}'.format(v_level= v_level, subtype=subtype), type=aggr_line_type, kind='cable', length=0.001, grid=grid) grid.graph.add_edge(grid.station, gen, line=line, type= 'line_aggr') for sector, sectoral_load in la['load'].items(): load = Load(geom=grid.station.geom, consumption={sector: sectoral_load}, grid=grid, id='_'.join(['Load_aggregated', sector, repr(grid), str(la_id)])) grid.graph.add_node(load, type='load') line = Line(id='_'.join(['line_aggr_load_la_' + str(la_id), sector, str(la_id)]), type=aggr_line_type, kind='cable', length=0.001, grid=grid) grid.graph.add_edge(grid.station, load, line=line, type='line_aggr' )
attach_aggregated
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(network, grid, aggregated, ding0_grid):\n aggr_line_type = ding0_grid.network._static_data['MV_cables'].iloc[\n ding0_grid.network._static_data['MV_cables']['I_max_th'].idxmax()]\n for la_id, la in aggregated.items():\n for v_level, val in la['generation'].items():\n for type, val2 in val.items():\n for subtype, val3 in val2.items():\n if type in ['solar', 'wind']:\n gen = GeneratorFluctuating(id='agg-' + str(la_id) +\n '-' + '_'.join([str(_) for _ in val3['ids']]),\n nominal_capacity=val3['capacity'],\n weather_cell_id=val3['weather_cell_id'], type=\n type, subtype=subtype, geom=grid.station.geom,\n grid=grid, v_level=4)\n else:\n gen = Generator(id='agg-' + str(la_id) + '-' + '_'.\n join([str(_) for _ in val3['ids']]),\n nominal_capacity=val3['capacity'], type=type,\n subtype=subtype, geom=grid.station.geom, grid=\n grid, v_level=4)\n grid.graph.add_node(gen, type='generator_aggr')\n network.dingo_import_data.set_value(network.\n dingo_import_data['id'].isin(val3['ids']),\n 'agg_geno', gen)\n line = Line(id='line_aggr_generator_la_' + str(la_id) +\n '_vlevel_{v_level}_{subtype}'.format(v_level=\n v_level, subtype=subtype), type=aggr_line_type,\n kind='cable', length=0.001, grid=grid)\n grid.graph.add_edge(grid.station, gen, line=line, type=\n 'line_aggr')\n for sector, sectoral_load in la['load'].items():\n load = Load(geom=grid.station.geom, consumption={sector:\n sectoral_load}, grid=grid, id='_'.join(['Load_aggregated',\n sector, repr(grid), str(la_id)]))\n grid.graph.add_node(load, type='load')\n line = Line(id='_'.join(['line_aggr_load_la_' + str(la_id),\n sector, str(la_id)]), type=aggr_line_type, kind='cable',\n length=0.001, grid=grid)\n grid.graph.add_edge(grid.station, load, line=line, type='line_aggr'\n )\n", "role": "user" }, { "content": "attach_aggregated", "role": "assistant" } ]
def x(mv_grid, ding0_mv_grid, lv_grid_mapping): _validate_ding0_mv_grid_import(mv_grid, ding0_mv_grid) _validate_ding0_lv_grid_import(mv_grid.lv_grids, ding0_mv_grid, lv_grid_mapping) _validate_load_generation(mv_grid, ding0_mv_grid)
validate_ding0_grid_import
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(mv_grid, ding0_mv_grid, lv_grid_mapping):\n _validate_ding0_mv_grid_import(mv_grid, ding0_mv_grid)\n _validate_ding0_lv_grid_import(mv_grid.lv_grids, ding0_mv_grid,\n lv_grid_mapping)\n _validate_load_generation(mv_grid, ding0_mv_grid)\n", "role": "user" }, { "content": "validate_ding0_grid_import", "role": "assistant" } ]
def x(grid, ding0_grid): integrity_checks = ['branch_tee', 'disconnection_point', 'mv_transformer', 'lv_station'] data_integrity = {} data_integrity.update({_: {'ding0': None, 'edisgo': None, 'msg': None} for _ in integrity_checks}) data_integrity['branch_tee']['ding0'] = len(ding0_grid._cable_distributors) data_integrity['branch_tee']['edisgo'] = len(grid.graph. nodes_by_attribute('branch_tee')) data_integrity['disconnection_point']['ding0'] = len(ding0_grid. _circuit_breakers) data_integrity['disconnection_point']['edisgo'] = len(grid.graph. nodes_by_attribute('mv_disconnecting_point')) data_integrity['mv_transformer']['ding0'] = len(list(ding0_grid.station ().transformers())) data_integrity['mv_transformer']['edisgo'] = len(grid.station.transformers) data_integrity['lv_station']['edisgo'] = len(grid.graph. nodes_by_attribute('lv_station')) data_integrity['lv_station']['ding0'] = len([_ for _ in ding0_grid. _graph.nodes() if isinstance(_, LVStationDing0) and not _.grid. grid_district.lv_load_area.is_aggregated]) for c in integrity_checks: if data_integrity[c]['edisgo'] != data_integrity[c]['ding0']: raise ValueError( """Unequal number of objects for {c}. Ding0: {ding0_no} eDisGo: {edisgo_no}""" .format(c=c, ding0_no=data_integrity[c]['ding0'], edisgo_no =data_integrity[c]['edisgo'])) return data_integrity
validate_ding0_mv_grid_import
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(grid, ding0_grid):\n integrity_checks = ['branch_tee', 'disconnection_point',\n 'mv_transformer', 'lv_station']\n data_integrity = {}\n data_integrity.update({_: {'ding0': None, 'edisgo': None, 'msg': None} for\n _ in integrity_checks})\n data_integrity['branch_tee']['ding0'] = len(ding0_grid._cable_distributors)\n data_integrity['branch_tee']['edisgo'] = len(grid.graph.\n nodes_by_attribute('branch_tee'))\n data_integrity['disconnection_point']['ding0'] = len(ding0_grid.\n _circuit_breakers)\n data_integrity['disconnection_point']['edisgo'] = len(grid.graph.\n nodes_by_attribute('mv_disconnecting_point'))\n data_integrity['mv_transformer']['ding0'] = len(list(ding0_grid.station\n ().transformers()))\n data_integrity['mv_transformer']['edisgo'] = len(grid.station.transformers)\n data_integrity['lv_station']['edisgo'] = len(grid.graph.\n nodes_by_attribute('lv_station'))\n data_integrity['lv_station']['ding0'] = len([_ for _ in ding0_grid.\n _graph.nodes() if isinstance(_, LVStationDing0) and not _.grid.\n grid_district.lv_load_area.is_aggregated])\n for c in integrity_checks:\n if data_integrity[c]['edisgo'] != data_integrity[c]['ding0']:\n raise ValueError(\n \"\"\"Unequal number of objects for {c}. \n\tDing0:\t{ding0_no}\n\teDisGo:\t{edisgo_no}\"\"\"\n .format(c=c, ding0_no=data_integrity[c]['ding0'], edisgo_no\n =data_integrity[c]['edisgo']))\n return data_integrity\n", "role": "user" }, { "content": "validate_ding0_mv_grid_import", "role": "assistant" } ]
def x(grids, ding0_grid, lv_grid_mapping): integrity_checks = ['branch_tee', 'lv_transformer', 'generator', 'load', 'line'] data_integrity = {} for grid in grids: data_integrity.update({grid: {_: {'ding0': None, 'edisgo': None, 'msg': None} for _ in integrity_checks}}) data_integrity[grid]['branch_tee']['ding0'] = len(lv_grid_mapping[ grid]._cable_distributors) data_integrity[grid]['branch_tee']['edisgo'] = len(grid.graph. nodes_by_attribute('branch_tee')) data_integrity[grid]['lv_transformer']['ding0'] = len(list( lv_grid_mapping[grid].station().transformers())) data_integrity[grid]['lv_transformer']['edisgo'] = len(grid.station .transformers) data_integrity[grid]['generator']['edisgo'] = len(grid.generators) data_integrity[grid]['generator']['ding0'] = len(list( lv_grid_mapping[grid].generators())) data_integrity[grid]['load']['edisgo'] = len(grid.graph. nodes_by_attribute('load')) data_integrity[grid]['load']['ding0'] = len(list(lv_grid_mapping[ grid].loads())) data_integrity[grid]['line']['edisgo'] = len(list(grid.graph.lines())) data_integrity[grid]['line']['ding0'] = len([_ for _ in lv_grid_mapping[grid].graph_edges() if not _['branch']. connects_aggregated]) for grid in grids: for c in integrity_checks: if data_integrity[grid][c]['edisgo'] != data_integrity[grid][c][ 'ding0']: raise ValueError( """Unequal number of objects in grid {grid} for {c}. Ding0: {ding0_no} eDisGo: {edisgo_no}""" .format(grid=grid, c=c, ding0_no=data_integrity[grid][c ]['ding0'], edisgo_no=data_integrity[grid][c]['edisgo']))
validate_ding0_lv_grid_import
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(grids, ding0_grid, lv_grid_mapping):\n integrity_checks = ['branch_tee', 'lv_transformer', 'generator', 'load',\n 'line']\n data_integrity = {}\n for grid in grids:\n data_integrity.update({grid: {_: {'ding0': None, 'edisgo': None,\n 'msg': None} for _ in integrity_checks}})\n data_integrity[grid]['branch_tee']['ding0'] = len(lv_grid_mapping[\n grid]._cable_distributors)\n data_integrity[grid]['branch_tee']['edisgo'] = len(grid.graph.\n nodes_by_attribute('branch_tee'))\n data_integrity[grid]['lv_transformer']['ding0'] = len(list(\n lv_grid_mapping[grid].station().transformers()))\n data_integrity[grid]['lv_transformer']['edisgo'] = len(grid.station\n .transformers)\n data_integrity[grid]['generator']['edisgo'] = len(grid.generators)\n data_integrity[grid]['generator']['ding0'] = len(list(\n lv_grid_mapping[grid].generators()))\n data_integrity[grid]['load']['edisgo'] = len(grid.graph.\n nodes_by_attribute('load'))\n data_integrity[grid]['load']['ding0'] = len(list(lv_grid_mapping[\n grid].loads()))\n data_integrity[grid]['line']['edisgo'] = len(list(grid.graph.lines()))\n data_integrity[grid]['line']['ding0'] = len([_ for _ in\n lv_grid_mapping[grid].graph_edges() if not _['branch'].\n connects_aggregated])\n for grid in grids:\n for c in integrity_checks:\n if data_integrity[grid][c]['edisgo'] != data_integrity[grid][c][\n 'ding0']:\n raise ValueError(\n \"\"\"Unequal number of objects in grid {grid} for {c}. \n\tDing0:\t{ding0_no}\n\teDisGo:\t{edisgo_no}\"\"\"\n .format(grid=grid, c=c, ding0_no=data_integrity[grid][c\n ]['ding0'], edisgo_no=data_integrity[grid][c]['edisgo']))\n", "role": "user" }, { "content": "validate_ding0_lv_grid_import", "role": "assistant" } ]
def x(network, data_source=None, file=None): if data_source == 'oedb': logging.warning( 'Right now only solar and wind generators can be imported from the oedb.' ) _import_genos_from_oedb(network=network) network.mv_grid._weather_cells = None if network.pypsa is not None: pypsa_io.update_pypsa_generator_import(network) elif data_source == 'pypsa': _import_genos_from_pypsa(network=network, file=file) else: logger.error( "Invalid option {} for generator import. Must either be 'oedb' or 'pypsa'." .format(data_source)) raise ValueError('The option you specified is not supported.')
import_generators
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(network, data_source=None, file=None):\n if data_source == 'oedb':\n logging.warning(\n 'Right now only solar and wind generators can be imported from the oedb.'\n )\n _import_genos_from_oedb(network=network)\n network.mv_grid._weather_cells = None\n if network.pypsa is not None:\n pypsa_io.update_pypsa_generator_import(network)\n elif data_source == 'pypsa':\n _import_genos_from_pypsa(network=network, file=file)\n else:\n logger.error(\n \"Invalid option {} for generator import. Must either be 'oedb' or 'pypsa'.\"\n .format(data_source))\n raise ValueError('The option you specified is not supported.')\n", "role": "user" }, { "content": "import_generators", "role": "assistant" } ]
def x(network): genos_mv = pd.DataFrame(columns=('id', 'obj')) genos_lv = pd.DataFrame(columns=('id', 'obj')) genos_lv_agg = pd.DataFrame(columns=('la_id', 'id', 'obj')) for geno in network.mv_grid.graph.nodes_by_attribute('generator'): genos_mv.loc[len(genos_mv)] = [int(geno.id), geno] for geno in network.mv_grid.graph.nodes_by_attribute('generator_aggr'): la_id = int(geno.id.split('-')[1].split('_')[-1]) genos_lv_agg.loc[len(genos_lv_agg)] = [la_id, geno.id, geno] for lv_grid in network.mv_grid.lv_grids: for geno in lv_grid.generators: genos_lv.loc[len(genos_lv)] = [int(geno.id), geno] return genos_mv, genos_lv, genos_lv_agg
build_generator_list
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(network):\n genos_mv = pd.DataFrame(columns=('id', 'obj'))\n genos_lv = pd.DataFrame(columns=('id', 'obj'))\n genos_lv_agg = pd.DataFrame(columns=('la_id', 'id', 'obj'))\n for geno in network.mv_grid.graph.nodes_by_attribute('generator'):\n genos_mv.loc[len(genos_mv)] = [int(geno.id), geno]\n for geno in network.mv_grid.graph.nodes_by_attribute('generator_aggr'):\n la_id = int(geno.id.split('-')[1].split('_')[-1])\n genos_lv_agg.loc[len(genos_lv_agg)] = [la_id, geno.id, geno]\n for lv_grid in network.mv_grid.lv_grids:\n for geno in lv_grid.generators:\n genos_lv.loc[len(genos_lv)] = [int(geno.id), geno]\n return genos_mv, genos_lv, genos_lv_agg\n", "role": "user" }, { "content": "build_generator_list", "role": "assistant" } ]
def x(network): lv_grid_dict = {} for lv_grid in network.mv_grid.lv_grids: lv_grid_dict[lv_grid.id] = lv_grid return lv_grid_dict
build_lv_grid_dict
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(network):\n lv_grid_dict = {}\n for lv_grid in network.mv_grid.lv_grids:\n lv_grid_dict[lv_grid.id] = lv_grid\n return lv_grid_dict\n", "role": "user" }, { "content": "build_lv_grid_dict", "role": "assistant" } ]
def x(config_data, weather_cell_ids): def x(config_data, weather_cell_ids): if config_data['data_source']['oedb_data_source'] == 'model_draft': orm_feedin_name = config_data['model_draft']['res_feedin_data'] orm_feedin = model_draft.__getattribute__(orm_feedin_name) orm_feedin_version = 1 == 1 else: orm_feedin_name = config_data['versioned']['res_feedin_data'] orm_feedin = supply.__getattribute__(orm_feedin_name) orm_feedin_version = orm_feedin.version == config_data['versioned' ]['version'] conn = connection(section=config_data['db_connection']['section']) Session = sessionmaker(bind=conn) session = Session() feedin_sqla = session.query(orm_feedin.w_id, orm_feedin.source, orm_feedin.feedin).filter(orm_feedin.w_id.in_(weather_cell_ids) ).filter(orm_feedin.power_class.in_([0, 4])).filter( orm_feedin_version) feedin = pd.read_sql_query(feedin_sqla.statement, session.bind, index_col=['source', 'w_id']) feedin.sort_index(axis=0, inplace=True) timeindex = pd.date_range('1/1/2011', periods=8760, freq='H') recasted_feedin_dict = {} for type_w_id in feedin.index: recasted_feedin_dict[type_w_id] = feedin.loc[type_w_id, :].values[0 ] feedin = pd.DataFrame(recasted_feedin_dict, index=timeindex) new_level = [(_ if _ not in ['wind_onshore'] else 'wind') for _ in feedin.columns.levels[0]] feedin.columns.set_levels(new_level, level=0, inplace=True) feedin.columns.rename('type', level=0, inplace=True) feedin.columns.rename('weather_cell_id', level=1, inplace=True) return feedin feedin = _retrieve_timeseries_from_oedb(config_data, weather_cell_ids) return feedin
import_feedin_timeseries
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(config_data, weather_cell_ids):\n\n def x(config_data, weather_cell_ids):\n if config_data['data_source']['oedb_data_source'] == 'model_draft':\n orm_feedin_name = config_data['model_draft']['res_feedin_data']\n orm_feedin = model_draft.__getattribute__(orm_feedin_name)\n orm_feedin_version = 1 == 1\n else:\n orm_feedin_name = config_data['versioned']['res_feedin_data']\n orm_feedin = supply.__getattribute__(orm_feedin_name)\n orm_feedin_version = orm_feedin.version == config_data['versioned'\n ]['version']\n conn = connection(section=config_data['db_connection']['section'])\n Session = sessionmaker(bind=conn)\n session = Session()\n feedin_sqla = session.query(orm_feedin.w_id, orm_feedin.source,\n orm_feedin.feedin).filter(orm_feedin.w_id.in_(weather_cell_ids)\n ).filter(orm_feedin.power_class.in_([0, 4])).filter(\n orm_feedin_version)\n feedin = pd.read_sql_query(feedin_sqla.statement, session.bind,\n index_col=['source', 'w_id'])\n feedin.sort_index(axis=0, inplace=True)\n timeindex = pd.date_range('1/1/2011', periods=8760, freq='H')\n recasted_feedin_dict = {}\n for type_w_id in feedin.index:\n recasted_feedin_dict[type_w_id] = feedin.loc[type_w_id, :].values[0\n ]\n feedin = pd.DataFrame(recasted_feedin_dict, index=timeindex)\n new_level = [(_ if _ not in ['wind_onshore'] else 'wind') for _ in\n feedin.columns.levels[0]]\n feedin.columns.set_levels(new_level, level=0, inplace=True)\n feedin.columns.rename('type', level=0, inplace=True)\n feedin.columns.rename('weather_cell_id', level=1, inplace=True)\n return feedin\n feedin = _retrieve_timeseries_from_oedb(config_data, weather_cell_ids)\n return feedin\n", "role": "user" }, { "content": "import_feedin_timeseries", "role": "assistant" } ]
def x(config_data, data_source, mv_grid_id=None, year=None): def x(config_data, mv_grid_id): if config_data['versioned']['version'] == 'model_draft': orm_load_name = config_data['model_draft']['load_data'] orm_load = model_draft.__getattribute__(orm_load_name) orm_load_areas_name = config_data['model_draft']['load_areas'] orm_load_areas = model_draft.__getattribute__(orm_load_areas_name) orm_load_version = 1 == 1 else: orm_load_name = config_data['versioned']['load_data'] orm_load = model_draft.__getattribute__(orm_load_name) orm_load_areas_name = config_data['versioned']['load_areas'] orm_load_areas = model_draft.__getattribute__(orm_load_areas_name) orm_load_version = 1 == 1 conn = connection(section=config_data['db_connection']['section']) Session = sessionmaker(bind=conn) session = Session() load_sqla = session.query(orm_load.p_set, orm_load.q_set, orm_load_areas.subst_id).join(orm_load_areas, orm_load.id == orm_load_areas.otg_id).filter(orm_load_areas.subst_id == mv_grid_id ).filter(orm_load_version).distinct() load = pd.read_sql_query(load_sqla.statement, session.bind, index_col='subst_id') return load def x(config_data, year): sectoral_consumption = {'h0': 1, 'g0': 1, 'i0': 1, 'l0': 1} cal = Germany() holidays = dict(cal.holidays(year)) e_slp = bdew.ElecSlp(year, holidays=holidays) elec_demand = e_slp.get_profile(sectoral_consumption) ilp = profiles.IndustrialLoadProfile(e_slp.date_time_index, holidays=holidays) elec_demand['i0'] = ilp.simple_profile(sectoral_consumption['i0'], am=datetime.time(config_data['demandlib']['day_start'].hour, config_data['demandlib']['day_start'].minute, 0), pm=datetime. time(config_data['demandlib']['day_end'].hour, config_data[ 'demandlib']['day_end'].minute, 0), profile_factors={'week': { 'day': config_data['demandlib']['week_day'], 'night': config_data['demandlib']['week_night']}, 'weekend': {'day': config_data['demandlib']['weekend_day'], 'night': config_data[ 'demandlib']['weekend_night']}}) elec_demand = elec_demand.resample('H').mean() return elec_demand if data_source == 'oedb': load = _import_load_timeseries_from_oedb(config_data, mv_grid_id) elif data_source == 'demandlib': load = _load_timeseries_demandlib(config_data, year) load.rename(columns={'g0': 'retail', 'h0': 'residential', 'l0': 'agricultural', 'i0': 'industrial'}, inplace=True) return load
import_load_timeseries
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(config_data, data_source, mv_grid_id=None, year=None):\n\n def x(config_data, mv_grid_id):\n if config_data['versioned']['version'] == 'model_draft':\n orm_load_name = config_data['model_draft']['load_data']\n orm_load = model_draft.__getattribute__(orm_load_name)\n orm_load_areas_name = config_data['model_draft']['load_areas']\n orm_load_areas = model_draft.__getattribute__(orm_load_areas_name)\n orm_load_version = 1 == 1\n else:\n orm_load_name = config_data['versioned']['load_data']\n orm_load = model_draft.__getattribute__(orm_load_name)\n orm_load_areas_name = config_data['versioned']['load_areas']\n orm_load_areas = model_draft.__getattribute__(orm_load_areas_name)\n orm_load_version = 1 == 1\n conn = connection(section=config_data['db_connection']['section'])\n Session = sessionmaker(bind=conn)\n session = Session()\n load_sqla = session.query(orm_load.p_set, orm_load.q_set,\n orm_load_areas.subst_id).join(orm_load_areas, orm_load.id ==\n orm_load_areas.otg_id).filter(orm_load_areas.subst_id == mv_grid_id\n ).filter(orm_load_version).distinct()\n load = pd.read_sql_query(load_sqla.statement, session.bind,\n index_col='subst_id')\n return load\n\n def x(config_data, year):\n sectoral_consumption = {'h0': 1, 'g0': 1, 'i0': 1, 'l0': 1}\n cal = Germany()\n holidays = dict(cal.holidays(year))\n e_slp = bdew.ElecSlp(year, holidays=holidays)\n elec_demand = e_slp.get_profile(sectoral_consumption)\n ilp = profiles.IndustrialLoadProfile(e_slp.date_time_index,\n holidays=holidays)\n elec_demand['i0'] = ilp.simple_profile(sectoral_consumption['i0'],\n am=datetime.time(config_data['demandlib']['day_start'].hour,\n config_data['demandlib']['day_start'].minute, 0), pm=datetime.\n time(config_data['demandlib']['day_end'].hour, config_data[\n 'demandlib']['day_end'].minute, 0), profile_factors={'week': {\n 'day': config_data['demandlib']['week_day'], 'night':\n config_data['demandlib']['week_night']}, 'weekend': {'day':\n config_data['demandlib']['weekend_day'], 'night': config_data[\n 'demandlib']['weekend_night']}})\n elec_demand = elec_demand.resample('H').mean()\n return elec_demand\n if data_source == 'oedb':\n load = _import_load_timeseries_from_oedb(config_data, mv_grid_id)\n elif data_source == 'demandlib':\n load = _load_timeseries_demandlib(config_data, year)\n load.rename(columns={'g0': 'retail', 'h0': 'residential', 'l0':\n 'agricultural', 'i0': 'industrial'}, inplace=True)\n return load\n", "role": "user" }, { "content": "import_load_timeseries", "role": "assistant" } ]
def x(feedin, generators, curtailment_timeseries, edisgo, curtailment_key, **kwargs): voltage_threshold = pd.Series(kwargs.get('voltage_threshold', 0.0), index=curtailment_timeseries.index) solver = kwargs.get('solver', 'cbc') combined_analysis = kwargs.get('combined_analysis', False) voltages_lv_gens = edisgo.network.results.v_res(nodes=generators.loc[ generators.voltage_level == 'lv'].index, level='lv') voltages_mv_gens = edisgo.network.results.v_res(nodes=generators.loc[ generators.voltage_level == 'mv'].index, level='mv') voltages_gens = voltages_lv_gens.join(voltages_mv_gens) grids = list(set(generators.grid)) lv_stations = [_.station for _ in grids if 'LVStation' in repr(_.station)] voltage_lv_stations = edisgo.network.results.v_res(nodes=lv_stations, level='lv') voltages_mv_station = edisgo.network.results.v_res(nodes=[edisgo. network.mv_grid.station], level='mv') voltages_stations = voltage_lv_stations.join(voltages_mv_station) if not combined_analysis: allowed_voltage_dev_mv = edisgo.network.config[ 'grid_expansion_allowed_voltage_deviations'][ 'mv_feedin_case_max_v_deviation'] allowed_voltage_diff_lv = edisgo.network.config[ 'grid_expansion_allowed_voltage_deviations'][ 'lv_feedin_case_max_v_deviation'] else: allowed_voltage_dev_mv = edisgo.network.config[ 'grid_expansion_allowed_voltage_deviations'][ 'mv_lv_feedin_case_max_v_deviation'] allowed_voltage_diff_lv = edisgo.network.config[ 'grid_expansion_allowed_voltage_deviations'][ 'mv_lv_feedin_case_max_v_deviation'] generators['allowed_voltage_dev'] = generators.voltage_level.apply(lambda _: allowed_voltage_diff_lv if _ == 'lv' else allowed_voltage_dev_mv) voltage_gens_diff = pd.DataFrame() for gen in voltages_gens.columns: station = generators[generators.gen_repr == gen].grid.values[0].station voltage_gens_diff[gen] = voltages_gens.loc[:, gen ] - voltages_stations.loc[:, repr(station)] - generators[ generators.gen_repr == gen].allowed_voltage_dev.iloc[0] for ts in curtailment_timeseries.index: gen_pool = voltage_gens_diff.loc[ts, voltage_gens_diff.loc[ts, :] > voltage_threshold.loc[ts]].index while sum(feedin.loc[ts, gen_pool]) < curtailment_timeseries.loc[ts]: voltage_threshold.loc[ts] = voltage_threshold.loc[ts] - 0.01 gen_pool = voltage_gens_diff.loc[ts, voltage_gens_diff.loc[ts, :] > voltage_threshold.loc[ts]].index gen_pool_out = voltage_gens_diff.loc[ts, voltage_gens_diff.loc[ts, :] <= voltage_threshold.loc[ts]].index feedin.loc[ts, gen_pool_out] = 0 timeindex = curtailment_timeseries[curtailment_timeseries > 0].index if not timeindex.empty: curtailment = _optimize_voltage_based_curtailment(feedin, voltage_gens_diff, curtailment_timeseries, voltage_threshold, timeindex, solver) else: curtailment = pd.DataFrame() curtailment = curtailment.append(pd.DataFrame(0, columns=feedin.columns, index=curtailment_timeseries[curtailment_timeseries <= 0].index)) _check_curtailment_target(curtailment, curtailment_timeseries, curtailment_key) _assign_curtailment(curtailment, edisgo, generators, curtailment_key)
voltage_based
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(feedin, generators, curtailment_timeseries, edisgo, curtailment_key,\n **kwargs):\n voltage_threshold = pd.Series(kwargs.get('voltage_threshold', 0.0),\n index=curtailment_timeseries.index)\n solver = kwargs.get('solver', 'cbc')\n combined_analysis = kwargs.get('combined_analysis', False)\n voltages_lv_gens = edisgo.network.results.v_res(nodes=generators.loc[\n generators.voltage_level == 'lv'].index, level='lv')\n voltages_mv_gens = edisgo.network.results.v_res(nodes=generators.loc[\n generators.voltage_level == 'mv'].index, level='mv')\n voltages_gens = voltages_lv_gens.join(voltages_mv_gens)\n grids = list(set(generators.grid))\n lv_stations = [_.station for _ in grids if 'LVStation' in repr(_.station)]\n voltage_lv_stations = edisgo.network.results.v_res(nodes=lv_stations,\n level='lv')\n voltages_mv_station = edisgo.network.results.v_res(nodes=[edisgo.\n network.mv_grid.station], level='mv')\n voltages_stations = voltage_lv_stations.join(voltages_mv_station)\n if not combined_analysis:\n allowed_voltage_dev_mv = edisgo.network.config[\n 'grid_expansion_allowed_voltage_deviations'][\n 'mv_feedin_case_max_v_deviation']\n allowed_voltage_diff_lv = edisgo.network.config[\n 'grid_expansion_allowed_voltage_deviations'][\n 'lv_feedin_case_max_v_deviation']\n else:\n allowed_voltage_dev_mv = edisgo.network.config[\n 'grid_expansion_allowed_voltage_deviations'][\n 'mv_lv_feedin_case_max_v_deviation']\n allowed_voltage_diff_lv = edisgo.network.config[\n 'grid_expansion_allowed_voltage_deviations'][\n 'mv_lv_feedin_case_max_v_deviation']\n generators['allowed_voltage_dev'] = generators.voltage_level.apply(lambda\n _: allowed_voltage_diff_lv if _ == 'lv' else allowed_voltage_dev_mv)\n voltage_gens_diff = pd.DataFrame()\n for gen in voltages_gens.columns:\n station = generators[generators.gen_repr == gen].grid.values[0].station\n voltage_gens_diff[gen] = voltages_gens.loc[:, gen\n ] - voltages_stations.loc[:, repr(station)] - generators[\n generators.gen_repr == gen].allowed_voltage_dev.iloc[0]\n for ts in curtailment_timeseries.index:\n gen_pool = voltage_gens_diff.loc[ts, voltage_gens_diff.loc[ts, :] >\n voltage_threshold.loc[ts]].index\n while sum(feedin.loc[ts, gen_pool]) < curtailment_timeseries.loc[ts]:\n voltage_threshold.loc[ts] = voltage_threshold.loc[ts] - 0.01\n gen_pool = voltage_gens_diff.loc[ts, voltage_gens_diff.loc[ts,\n :] > voltage_threshold.loc[ts]].index\n gen_pool_out = voltage_gens_diff.loc[ts, voltage_gens_diff.loc[ts,\n :] <= voltage_threshold.loc[ts]].index\n feedin.loc[ts, gen_pool_out] = 0\n timeindex = curtailment_timeseries[curtailment_timeseries > 0].index\n if not timeindex.empty:\n curtailment = _optimize_voltage_based_curtailment(feedin,\n voltage_gens_diff, curtailment_timeseries, voltage_threshold,\n timeindex, solver)\n else:\n curtailment = pd.DataFrame()\n curtailment = curtailment.append(pd.DataFrame(0, columns=feedin.columns,\n index=curtailment_timeseries[curtailment_timeseries <= 0].index))\n _check_curtailment_target(curtailment, curtailment_timeseries,\n curtailment_key)\n _assign_curtailment(curtailment, edisgo, generators, curtailment_key)\n", "role": "user" }, { "content": "voltage_based", "role": "assistant" } ]
def x(feedin, voltage_pu, total_curtailment, voltage_threshold, timeindex, solver): logging.debug('Start curtailment optimization.') v_max = voltage_pu.max(axis=1) generators = feedin.columns cf_add = pd.DataFrame(index=timeindex) for gen in generators: cf_add[gen] = abs((voltage_pu.loc[timeindex, gen] - v_max[timeindex ]) / (voltage_threshold[timeindex] - v_max[timeindex])) cf = pd.DataFrame(index=timeindex) for gen in generators: cf[gen] = abs((voltage_pu.loc[timeindex, gen] - voltage_threshold[ timeindex]) / (v_max[timeindex] - voltage_threshold[timeindex])) model = ConcreteModel() model.T = Set(initialize=timeindex) model.G = Set(initialize=generators) def x(model, t, g): return feedin.loc[t, g] model.feedin = Param(model.T, model.G, initialize=feedin_init) def x(model, t, g): return voltage_pu.loc[t, g] model.voltage_pu = Param(model.T, model.G, initialize=voltage_pu_init) def x(model, t, g): return cf_add.loc[t, g] model.cf_add = Param(model.T, model.G, initialize=cf_add_init) def x(model, t, g): return cf.loc[t, g] model.cf = Param(model.T, model.G, initialize=cf_init) def x(model, t): return total_curtailment.loc[t] model.total_curtailment = Param(model.T, initialize=total_curtailment_init) model.offset = Var(model.T, bounds=(0, 1)) model.cf_max = Var(model.T, bounds=(0, 1)) def x(model, t, g): return 0, feedin.loc[t, g] model.c = Var(model.T, model.G, bounds=curtailment_init) def x(model): expr = sum(model.offset[t] * 100 for t in model.T) return expr model.obj = Objective(rule=obj_rule, sense=minimize) def x(model, t, g): return model.cf[t, g] * model.cf_max[t] * model.feedin[t, g ] + model.cf_add[t, g] * model.offset[t] * model.feedin[t, g ] - model.c[t, g] == 0 model.curtailment = Constraint(model.T, model.G, rule=curtail) def x(model, t): return sum(model.c[t, g] for g in model.G) == model.total_curtailment[t ] model.sum_curtailment = Constraint(model.T, rule=total_curtailment) solver = SolverFactory(solver) results = solver.solve(model, tee=False) model.solutions.load_from(results) return pd.DataFrame({g: [model.c[t, g].value for t in model.T] for g in model.G}, index=model.T.value)
optimize_voltage_based_curtailment
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(feedin, voltage_pu, total_curtailment, voltage_threshold, timeindex,\n solver):\n logging.debug('Start curtailment optimization.')\n v_max = voltage_pu.max(axis=1)\n generators = feedin.columns\n cf_add = pd.DataFrame(index=timeindex)\n for gen in generators:\n cf_add[gen] = abs((voltage_pu.loc[timeindex, gen] - v_max[timeindex\n ]) / (voltage_threshold[timeindex] - v_max[timeindex]))\n cf = pd.DataFrame(index=timeindex)\n for gen in generators:\n cf[gen] = abs((voltage_pu.loc[timeindex, gen] - voltage_threshold[\n timeindex]) / (v_max[timeindex] - voltage_threshold[timeindex]))\n model = ConcreteModel()\n model.T = Set(initialize=timeindex)\n model.G = Set(initialize=generators)\n\n def x(model, t, g):\n return feedin.loc[t, g]\n model.feedin = Param(model.T, model.G, initialize=feedin_init)\n\n def x(model, t, g):\n return voltage_pu.loc[t, g]\n model.voltage_pu = Param(model.T, model.G, initialize=voltage_pu_init)\n\n def x(model, t, g):\n return cf_add.loc[t, g]\n model.cf_add = Param(model.T, model.G, initialize=cf_add_init)\n\n def x(model, t, g):\n return cf.loc[t, g]\n model.cf = Param(model.T, model.G, initialize=cf_init)\n\n def x(model, t):\n return total_curtailment.loc[t]\n model.total_curtailment = Param(model.T, initialize=total_curtailment_init)\n model.offset = Var(model.T, bounds=(0, 1))\n model.cf_max = Var(model.T, bounds=(0, 1))\n\n def x(model, t, g):\n return 0, feedin.loc[t, g]\n model.c = Var(model.T, model.G, bounds=curtailment_init)\n\n def x(model):\n expr = sum(model.offset[t] * 100 for t in model.T)\n return expr\n model.obj = Objective(rule=obj_rule, sense=minimize)\n\n def x(model, t, g):\n return model.cf[t, g] * model.cf_max[t] * model.feedin[t, g\n ] + model.cf_add[t, g] * model.offset[t] * model.feedin[t, g\n ] - model.c[t, g] == 0\n model.curtailment = Constraint(model.T, model.G, rule=curtail)\n\n def x(model, t):\n return sum(model.c[t, g] for g in model.G) == model.total_curtailment[t\n ]\n model.sum_curtailment = Constraint(model.T, rule=total_curtailment)\n solver = SolverFactory(solver)\n results = solver.solve(model, tee=False)\n model.solutions.load_from(results)\n return pd.DataFrame({g: [model.c[t, g].value for t in model.T] for g in\n model.G}, index=model.T.value)\n", "role": "user" }, { "content": "optimize_voltage_based_curtailment", "role": "assistant" } ]
def x(feedin, generators, curtailment_timeseries, edisgo, curtailment_key, **kwargs): curtailment = feedin.divide(feedin.sum(axis=1), axis=0).multiply( curtailment_timeseries, axis=0) curtailment.fillna(0, inplace=True) _check_curtailment_target(curtailment, curtailment_timeseries, curtailment_key) _assign_curtailment(curtailment, edisgo, generators, curtailment_key)
feedin_proportional
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(feedin, generators, curtailment_timeseries, edisgo, curtailment_key,\n **kwargs):\n curtailment = feedin.divide(feedin.sum(axis=1), axis=0).multiply(\n curtailment_timeseries, axis=0)\n curtailment.fillna(0, inplace=True)\n _check_curtailment_target(curtailment, curtailment_timeseries,\n curtailment_key)\n _assign_curtailment(curtailment, edisgo, generators, curtailment_key)\n", "role": "user" }, { "content": "feedin_proportional", "role": "assistant" } ]
def x(curtailment, curtailment_target, curtailment_key): if not (abs(curtailment.sum(axis=1) - curtailment_target) < 0.1).all(): message = 'Curtailment target not met for {}.'.format(curtailment_key) logging.error(message) raise TypeError(message)
check_curtailment_target
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(curtailment, curtailment_target, curtailment_key):\n if not (abs(curtailment.sum(axis=1) - curtailment_target) < 0.1).all():\n message = 'Curtailment target not met for {}.'.format(curtailment_key)\n logging.error(message)\n raise TypeError(message)\n", "role": "user" }, { "content": "check_curtailment_target", "role": "assistant" } ]
def x(curtailment, edisgo, generators, curtailment_key): gen_object_list = [] for gen in curtailment.columns: gen_object = generators.loc[generators.gen_repr == gen].index[0] gen_object.curtailment = curtailment.loc[:, gen] gen_object_list.append(gen_object) if edisgo.network.timeseries._curtailment: edisgo.network.timeseries._curtailment.extend(gen_object_list) edisgo.network.results._curtailment[curtailment_key] = gen_object_list else: edisgo.network.timeseries._curtailment = gen_object_list edisgo.network.results._curtailment = {curtailment_key: gen_object_list.copy()}
assign_curtailment
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(curtailment, edisgo, generators, curtailment_key):\n gen_object_list = []\n for gen in curtailment.columns:\n gen_object = generators.loc[generators.gen_repr == gen].index[0]\n gen_object.curtailment = curtailment.loc[:, gen]\n gen_object_list.append(gen_object)\n if edisgo.network.timeseries._curtailment:\n edisgo.network.timeseries._curtailment.extend(gen_object_list)\n edisgo.network.results._curtailment[curtailment_key] = gen_object_list\n else:\n edisgo.network.timeseries._curtailment = gen_object_list\n edisgo.network.results._curtailment = {curtailment_key:\n gen_object_list.copy()}\n", "role": "user" }, { "content": "assign_curtailment", "role": "assistant" } ]
def x(network, critical_stations): try: standard_transformer = network.equipment_data['lv_trafos'].loc[network .config['grid_expansion_standard_equipment']['mv_lv_transformer']] except KeyError: print('Standard MV/LV transformer is not in equipment list.') transformers_changes = {'added': {}, 'removed': {}} for station in critical_stations.index: s_max_per_trafo = [_.type.S_nom for _ in station.transformers] s_station_pfa = critical_stations.s_pfa[station] case = network.timeseries.timesteps_load_feedin_case.case[ critical_stations.time_index[station]] load_factor = network.config['grid_expansion_load_factors'][ 'lv_{}_transformer'.format(case)] s_trafo_missing = s_station_pfa - sum(s_max_per_trafo) * load_factor if max(s_max_per_trafo) >= s_trafo_missing: duplicated_transformer = min([_ for _ in station.transformers if _.type.S_nom > s_trafo_missing], key=lambda j: j.type.S_nom - s_trafo_missing) new_transformer = Transformer(id='LVStation_{}_transformer_{}'. format(str(station.id), str(len(station.transformers) + 1)), geom=duplicated_transformer.geom, mv_grid= duplicated_transformer.mv_grid, grid=duplicated_transformer .grid, voltage_op=duplicated_transformer.voltage_op, type= copy.deepcopy(duplicated_transformer.type)) station.add_transformer(new_transformer) transformers_changes['added'][station] = [new_transformer] else: station_transformer = station.transformers[0] number_transformers = math.ceil(s_station_pfa / standard_transformer.S_nom) new_transformers = [] for i in range(number_transformers): new_transformer = Transformer(id= 'LVStation_{}_transformer_{}'.format(str(station.id), str(i + 1)), geom=station_transformer.geom, mv_grid= station_transformer.mv_grid, grid=station_transformer. grid, voltage_op=station_transformer.voltage_op, type= copy.deepcopy(standard_transformer)) new_transformers.append(new_transformer) transformers_changes['added'][station] = new_transformers transformers_changes['removed'][station] = station.transformers station.transformers = new_transformers return transformers_changes
extend_distribution_substation_overloading
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(network, critical_stations):\n try:\n standard_transformer = network.equipment_data['lv_trafos'].loc[network\n .config['grid_expansion_standard_equipment']['mv_lv_transformer']]\n except KeyError:\n print('Standard MV/LV transformer is not in equipment list.')\n transformers_changes = {'added': {}, 'removed': {}}\n for station in critical_stations.index:\n s_max_per_trafo = [_.type.S_nom for _ in station.transformers]\n s_station_pfa = critical_stations.s_pfa[station]\n case = network.timeseries.timesteps_load_feedin_case.case[\n critical_stations.time_index[station]]\n load_factor = network.config['grid_expansion_load_factors'][\n 'lv_{}_transformer'.format(case)]\n s_trafo_missing = s_station_pfa - sum(s_max_per_trafo) * load_factor\n if max(s_max_per_trafo) >= s_trafo_missing:\n duplicated_transformer = min([_ for _ in station.transformers if\n _.type.S_nom > s_trafo_missing], key=lambda j: j.type.S_nom -\n s_trafo_missing)\n new_transformer = Transformer(id='LVStation_{}_transformer_{}'.\n format(str(station.id), str(len(station.transformers) + 1)),\n geom=duplicated_transformer.geom, mv_grid=\n duplicated_transformer.mv_grid, grid=duplicated_transformer\n .grid, voltage_op=duplicated_transformer.voltage_op, type=\n copy.deepcopy(duplicated_transformer.type))\n station.add_transformer(new_transformer)\n transformers_changes['added'][station] = [new_transformer]\n else:\n station_transformer = station.transformers[0]\n number_transformers = math.ceil(s_station_pfa /\n standard_transformer.S_nom)\n new_transformers = []\n for i in range(number_transformers):\n new_transformer = Transformer(id=\n 'LVStation_{}_transformer_{}'.format(str(station.id),\n str(i + 1)), geom=station_transformer.geom, mv_grid=\n station_transformer.mv_grid, grid=station_transformer.\n grid, voltage_op=station_transformer.voltage_op, type=\n copy.deepcopy(standard_transformer))\n new_transformers.append(new_transformer)\n transformers_changes['added'][station] = new_transformers\n transformers_changes['removed'][station] = station.transformers\n station.transformers = new_transformers\n return transformers_changes\n", "role": "user" }, { "content": "extend_distribution_substation_overloading", "role": "assistant" } ]
def x(network, critical_stations): try: standard_transformer = network.equipment_data['lv_trafos'].loc[network .config['grid_expansion_standard_equipment']['mv_lv_transformer']] except KeyError: print('Standard MV/LV transformer is not in equipment list.') transformers_changes = {'added': {}} for grid in critical_stations.keys(): station_transformer = grid.station.transformers[0] new_transformer = Transformer(id='LVStation_{}_transformer_{}'. format(str(grid.station.id), str(len(grid.station.transformers) + 1)), geom=station_transformer.geom, mv_grid=station_transformer .mv_grid, grid=station_transformer.grid, voltage_op= station_transformer.voltage_op, type=copy.deepcopy( standard_transformer)) grid.station.add_transformer(new_transformer) transformers_changes['added'][grid.station] = [new_transformer] if transformers_changes['added']: logger.debug('==> {} LV station(s) has/have been reinforced '. format(str(len(transformers_changes['added']))) + 'due to overloading issues.') return transformers_changes
extend_distribution_substation_overvoltage
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(network, critical_stations):\n try:\n standard_transformer = network.equipment_data['lv_trafos'].loc[network\n .config['grid_expansion_standard_equipment']['mv_lv_transformer']]\n except KeyError:\n print('Standard MV/LV transformer is not in equipment list.')\n transformers_changes = {'added': {}}\n for grid in critical_stations.keys():\n station_transformer = grid.station.transformers[0]\n new_transformer = Transformer(id='LVStation_{}_transformer_{}'.\n format(str(grid.station.id), str(len(grid.station.transformers) +\n 1)), geom=station_transformer.geom, mv_grid=station_transformer\n .mv_grid, grid=station_transformer.grid, voltage_op=\n station_transformer.voltage_op, type=copy.deepcopy(\n standard_transformer))\n grid.station.add_transformer(new_transformer)\n transformers_changes['added'][grid.station] = [new_transformer]\n if transformers_changes['added']:\n logger.debug('==> {} LV station(s) has/have been reinforced '.\n format(str(len(transformers_changes['added']))) +\n 'due to overloading issues.')\n return transformers_changes\n", "role": "user" }, { "content": "extend_distribution_substation_overvoltage", "role": "assistant" } ]
def x(network, grid, crit_nodes): if isinstance(grid, LVGrid): try: standard_line = network.equipment_data['lv_cables'].loc[network .config['grid_expansion_standard_equipment']['lv_line']] except KeyError: print('Chosen standard LV line is not in equipment list.') else: try: standard_line = network.equipment_data['mv_cables'].loc[network .config['grid_expansion_standard_equipment']['mv_line']] except KeyError: print('Chosen standard MV line is not in equipment list.') rep_main_line = list(nx.predecessor(grid.graph, grid.station, cutoff=1) .keys()) main_line_reinforced = [] lines_changes = {} for node in crit_nodes.index: path = nx.shortest_path(grid.graph, grid.station, node) if len(path) == 1: logging.error( 'Voltage issues at busbar in LV grid {} should have been solved in previous steps.' .format(grid)) elif not path[1] in main_line_reinforced: main_line_reinforced.append(path[1]) get_weight = lambda u, v, data: data['line'].length path_length = dijkstra_shortest_path_length(grid.graph, grid. station, get_weight, target=node) node_2_3 = next(j for j in path if path_length[j] >= path_length[node] * 2 / 3) if isinstance(grid, LVGrid): if isinstance(node_2_3, BranchTee): if node_2_3.in_building: try: node_2_3 = path[path.index(node_2_3) - 1] except IndexError: print('BranchTee outside of building is not ' + 'in path.') elif isinstance(node_2_3, Generator) or isinstance(node_2_3, Load): pred_node = path[path.index(node_2_3) - 1] if isinstance(pred_node, BranchTee): if pred_node.in_building: try: node_2_3 = path[path.index(node_2_3) - 2] except IndexError: print('BranchTee outside of building is ' + 'not in path.') else: logging.error('Not implemented for {}.'.format(str(type (node_2_3)))) elif not isinstance(node_2_3, LVStation): next_index = path.index(node_2_3) + 1 try: while not isinstance(node_2_3, LVStation): node_2_3 = path[next_index] next_index += 1 except IndexError: node_2_3 = node if node_2_3 in rep_main_line: crit_line = grid.graph.get_edge_data(grid.station, node_2_3)[ 'line'] if crit_line.type.name == standard_line.name: crit_line.quantity += 1 lines_changes[crit_line] = 1 else: crit_line.type = standard_line.copy() crit_line.quantity = 1 crit_line.kind = 'cable' lines_changes[crit_line] = 1 else: pred_node = path[path.index(node_2_3) - 1] crit_line = grid.graph.get_edge_data(node_2_3, pred_node)[ 'line'] new_line_data = {'line': crit_line, 'type': 'line'} grid.graph.add_edge(grid.station, node_2_3, new_line_data) grid.graph.remove_edge(pred_node, node_2_3) crit_line.length = path_length[node_2_3] crit_line.type = standard_line.copy() crit_line.kind = 'cable' crit_line.quantity = 1 lines_changes[crit_line] = 1 rep_main_line.append(node_2_3) main_line_reinforced.append(node_2_3) else: logger.debug('==> Main line of node {} in grid {} '.format(repr (node), str(grid)) + 'has already been reinforced.') if main_line_reinforced: logger.debug('==> {} branche(s) was/were reinforced '.format(str( len(lines_changes))) + 'due to over-voltage issues.') return lines_changes
reinforce_branches_overvoltage
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(network, grid, crit_nodes):\n if isinstance(grid, LVGrid):\n try:\n standard_line = network.equipment_data['lv_cables'].loc[network\n .config['grid_expansion_standard_equipment']['lv_line']]\n except KeyError:\n print('Chosen standard LV line is not in equipment list.')\n else:\n try:\n standard_line = network.equipment_data['mv_cables'].loc[network\n .config['grid_expansion_standard_equipment']['mv_line']]\n except KeyError:\n print('Chosen standard MV line is not in equipment list.')\n rep_main_line = list(nx.predecessor(grid.graph, grid.station, cutoff=1)\n .keys())\n main_line_reinforced = []\n lines_changes = {}\n for node in crit_nodes.index:\n path = nx.shortest_path(grid.graph, grid.station, node)\n if len(path) == 1:\n logging.error(\n 'Voltage issues at busbar in LV grid {} should have been solved in previous steps.'\n .format(grid))\n elif not path[1] in main_line_reinforced:\n main_line_reinforced.append(path[1])\n get_weight = lambda u, v, data: data['line'].length\n path_length = dijkstra_shortest_path_length(grid.graph, grid.\n station, get_weight, target=node)\n node_2_3 = next(j for j in path if path_length[j] >= \n path_length[node] * 2 / 3)\n if isinstance(grid, LVGrid):\n if isinstance(node_2_3, BranchTee):\n if node_2_3.in_building:\n try:\n node_2_3 = path[path.index(node_2_3) - 1]\n except IndexError:\n print('BranchTee outside of building is not ' +\n 'in path.')\n elif isinstance(node_2_3, Generator) or isinstance(node_2_3,\n Load):\n pred_node = path[path.index(node_2_3) - 1]\n if isinstance(pred_node, BranchTee):\n if pred_node.in_building:\n try:\n node_2_3 = path[path.index(node_2_3) - 2]\n except IndexError:\n print('BranchTee outside of building is ' +\n 'not in path.')\n else:\n logging.error('Not implemented for {}.'.format(str(type\n (node_2_3))))\n elif not isinstance(node_2_3, LVStation):\n next_index = path.index(node_2_3) + 1\n try:\n while not isinstance(node_2_3, LVStation):\n node_2_3 = path[next_index]\n next_index += 1\n except IndexError:\n node_2_3 = node\n if node_2_3 in rep_main_line:\n crit_line = grid.graph.get_edge_data(grid.station, node_2_3)[\n 'line']\n if crit_line.type.name == standard_line.name:\n crit_line.quantity += 1\n lines_changes[crit_line] = 1\n else:\n crit_line.type = standard_line.copy()\n crit_line.quantity = 1\n crit_line.kind = 'cable'\n lines_changes[crit_line] = 1\n else:\n pred_node = path[path.index(node_2_3) - 1]\n crit_line = grid.graph.get_edge_data(node_2_3, pred_node)[\n 'line']\n new_line_data = {'line': crit_line, 'type': 'line'}\n grid.graph.add_edge(grid.station, node_2_3, new_line_data)\n grid.graph.remove_edge(pred_node, node_2_3)\n crit_line.length = path_length[node_2_3]\n crit_line.type = standard_line.copy()\n crit_line.kind = 'cable'\n crit_line.quantity = 1\n lines_changes[crit_line] = 1\n rep_main_line.append(node_2_3)\n main_line_reinforced.append(node_2_3)\n else:\n logger.debug('==> Main line of node {} in grid {} '.format(repr\n (node), str(grid)) + 'has already been reinforced.')\n if main_line_reinforced:\n logger.debug('==> {} branche(s) was/were reinforced '.format(str(\n len(lines_changes))) + 'due to over-voltage issues.')\n return lines_changes\n", "role": "user" }, { "content": "reinforce_branches_overvoltage", "role": "assistant" } ]
def x(network, crit_lines): try: standard_line_lv = network.equipment_data['lv_cables'].loc[network. config['grid_expansion_standard_equipment']['lv_line']] except KeyError: print('Chosen standard LV line is not in equipment list.') try: standard_line_mv = network.equipment_data['mv_cables'].loc[network. config['grid_expansion_standard_equipment']['mv_line']] except KeyError: print('Chosen standard MV line is not in equipment list.') lines_changes = {} for crit_line in crit_lines.index: rel_overload = crit_lines.max_rel_overload[crit_line] if isinstance(crit_line.grid, LVGrid): standard_line = standard_line_lv else: standard_line = standard_line_mv if crit_line.type.name == standard_line.name: number_parallel_lines = math.ceil(rel_overload * crit_line.quantity ) lines_changes[crit_line ] = number_parallel_lines - crit_line.quantity crit_line.quantity = number_parallel_lines elif crit_line.quantity == 1 and rel_overload <= 2 and crit_line.kind == 'cable': crit_line.quantity = 2 lines_changes[crit_line] = 1 else: number_parallel_lines = math.ceil(crit_line.type['I_max_th'] * rel_overload / standard_line['I_max_th']) lines_changes[crit_line] = number_parallel_lines crit_line.type = standard_line.copy() crit_line.quantity = number_parallel_lines crit_line.kind = 'cable' if not crit_lines.empty: logger.debug('==> {} branche(s) was/were reinforced '.format( crit_lines.shape[0]) + 'due to over-loading issues.') return lines_changes
reinforce_branches_overloading
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(network, crit_lines):\n try:\n standard_line_lv = network.equipment_data['lv_cables'].loc[network.\n config['grid_expansion_standard_equipment']['lv_line']]\n except KeyError:\n print('Chosen standard LV line is not in equipment list.')\n try:\n standard_line_mv = network.equipment_data['mv_cables'].loc[network.\n config['grid_expansion_standard_equipment']['mv_line']]\n except KeyError:\n print('Chosen standard MV line is not in equipment list.')\n lines_changes = {}\n for crit_line in crit_lines.index:\n rel_overload = crit_lines.max_rel_overload[crit_line]\n if isinstance(crit_line.grid, LVGrid):\n standard_line = standard_line_lv\n else:\n standard_line = standard_line_mv\n if crit_line.type.name == standard_line.name:\n number_parallel_lines = math.ceil(rel_overload * crit_line.quantity\n )\n lines_changes[crit_line\n ] = number_parallel_lines - crit_line.quantity\n crit_line.quantity = number_parallel_lines\n elif crit_line.quantity == 1 and rel_overload <= 2 and crit_line.kind == 'cable':\n crit_line.quantity = 2\n lines_changes[crit_line] = 1\n else:\n number_parallel_lines = math.ceil(crit_line.type['I_max_th'] *\n rel_overload / standard_line['I_max_th'])\n lines_changes[crit_line] = number_parallel_lines\n crit_line.type = standard_line.copy()\n crit_line.quantity = number_parallel_lines\n crit_line.kind = 'cable'\n if not crit_lines.empty:\n logger.debug('==> {} branche(s) was/were reinforced '.format(\n crit_lines.shape[0]) + 'due to over-loading issues.')\n return lines_changes\n", "role": "user" }, { "content": "reinforce_branches_overloading", "role": "assistant" } ]
def x(data, **kwargs): timeindex = kwargs.get('timeindex', None) directory = kwargs.get('directory', None) filename = kwargs.get('filename', None) title = kwargs.get('title', '') x_label = kwargs.get('x_label', '') y_label = kwargs.get('y_label', '') color = kwargs.get('color', None) alpha = kwargs.get('alpha', 1) normed = kwargs.get('normed', False) x_limits = kwargs.get('x_limits', None) y_limits = kwargs.get('y_limits', None) binwidth = kwargs.get('binwidth', None) fig_size = kwargs.get('fig_size', 'a5landscape') standard_sizes = {'a4portrait': (8.27, 11.69), 'a4landscape': (11.69, 8.27), 'a5portrait': (5.8, 8.3), 'a5landscape': (8.3, 5.8)} try: fig_size = standard_sizes[fig_size] except: fig_size = standard_sizes['a5landscape'] if timeindex is not None: plot_data = data.loc[timeindex, :] else: plot_data = data.T.stack() if binwidth is not None: if x_limits is not None: lowerlimit = x_limits[0] - binwidth / 2 upperlimit = x_limits[1] + binwidth / 2 else: lowerlimit = plot_data.min() - binwidth / 2 upperlimit = plot_data.max() + binwidth / 2 bins = np.arange(lowerlimit, upperlimit, binwidth) else: bins = 10 plt.figure(figsize=fig_size) ax = plot_data.hist(normed=normed, color=color, alpha=alpha, bins=bins, grid=True) plt.minorticks_on() if x_limits is not None: ax.set_xlim(x_limits[0], x_limits[1]) if y_limits is not None: ax.set_ylim(y_limits[0], y_limits[1]) if title is not None: plt.title(title) plt.xlabel(x_label) plt.ylabel(y_label) if filename is None: plt.show() else: if directory is not None: os.makedirs(directory, exist_ok=True) filename = os.path.join(directory, filename) plt.savefig(filename) plt.close()
histogram
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data, **kwargs):\n timeindex = kwargs.get('timeindex', None)\n directory = kwargs.get('directory', None)\n filename = kwargs.get('filename', None)\n title = kwargs.get('title', '')\n x_label = kwargs.get('x_label', '')\n y_label = kwargs.get('y_label', '')\n color = kwargs.get('color', None)\n alpha = kwargs.get('alpha', 1)\n normed = kwargs.get('normed', False)\n x_limits = kwargs.get('x_limits', None)\n y_limits = kwargs.get('y_limits', None)\n binwidth = kwargs.get('binwidth', None)\n fig_size = kwargs.get('fig_size', 'a5landscape')\n standard_sizes = {'a4portrait': (8.27, 11.69), 'a4landscape': (11.69, \n 8.27), 'a5portrait': (5.8, 8.3), 'a5landscape': (8.3, 5.8)}\n try:\n fig_size = standard_sizes[fig_size]\n except:\n fig_size = standard_sizes['a5landscape']\n if timeindex is not None:\n plot_data = data.loc[timeindex, :]\n else:\n plot_data = data.T.stack()\n if binwidth is not None:\n if x_limits is not None:\n lowerlimit = x_limits[0] - binwidth / 2\n upperlimit = x_limits[1] + binwidth / 2\n else:\n lowerlimit = plot_data.min() - binwidth / 2\n upperlimit = plot_data.max() + binwidth / 2\n bins = np.arange(lowerlimit, upperlimit, binwidth)\n else:\n bins = 10\n plt.figure(figsize=fig_size)\n ax = plot_data.hist(normed=normed, color=color, alpha=alpha, bins=bins,\n grid=True)\n plt.minorticks_on()\n if x_limits is not None:\n ax.set_xlim(x_limits[0], x_limits[1])\n if y_limits is not None:\n ax.set_ylim(y_limits[0], y_limits[1])\n if title is not None:\n plt.title(title)\n plt.xlabel(x_label)\n plt.ylabel(y_label)\n if filename is None:\n plt.show()\n else:\n if directory is not None:\n os.makedirs(directory, exist_ok=True)\n filename = os.path.join(directory, filename)\n plt.savefig(filename)\n plt.close()\n", "role": "user" }, { "content": "histogram", "role": "assistant" } ]
def x(ax, zoom=12): url = ctx.sources.ST_TONER_LITE xmin, xmax, ymin, ymax = ax.axis() basemap, extent = ctx.bounds2img(xmin, ymin, xmax, ymax, zoom=zoom, url=url ) ax.imshow(basemap, extent=extent, interpolation='bilinear') ax.axis((xmin, xmax, ymin, ymax))
add_basemap
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ax, zoom=12):\n url = ctx.sources.ST_TONER_LITE\n xmin, xmax, ymin, ymax = ax.axis()\n basemap, extent = ctx.bounds2img(xmin, ymin, xmax, ymax, zoom=zoom, url=url\n )\n ax.imshow(basemap, extent=extent, interpolation='bilinear')\n ax.axis((xmin, xmax, ymin, ymax))\n", "role": "user" }, { "content": "add_basemap", "role": "assistant" } ]
def x(config, subst_id=None, projection=4326): conn = connection(section=config['db_connection']['section']) Session = sessionmaker(bind=conn) session = Session() if config['data_source']['oedb_data_source'] == 'versioned': version = config['versioned']['version'] query = session.query(EgoDpMvGriddistrict.subst_id, EgoDpMvGriddistrict.geom) Regions = [(subst_id, shape.to_shape(geom)) for subst_id, geom in query.filter(EgoDpMvGriddistrict.version == version, EgoDpMvGriddistrict.subst_id == subst_id).all()] else: query = session.query(EgoGridMvGriddistrict.subst_id, EgoGridMvGriddistrict.geom) Regions = [(subst_id, shape.to_shape(geom)) for subst_id, geom in query.filter(EgoGridMvGriddistrict.subst_id.in_(subst_id)).all()] crs = {'init': 'epsg:3035'} region = gpd.GeoDataFrame(Regions, columns=['subst_id', 'geometry'], crs=crs) region = region.to_crs(epsg=projection) return region
get_grid_district_polygon
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(config, subst_id=None, projection=4326):\n conn = connection(section=config['db_connection']['section'])\n Session = sessionmaker(bind=conn)\n session = Session()\n if config['data_source']['oedb_data_source'] == 'versioned':\n version = config['versioned']['version']\n query = session.query(EgoDpMvGriddistrict.subst_id,\n EgoDpMvGriddistrict.geom)\n Regions = [(subst_id, shape.to_shape(geom)) for subst_id, geom in\n query.filter(EgoDpMvGriddistrict.version == version, \n EgoDpMvGriddistrict.subst_id == subst_id).all()]\n else:\n query = session.query(EgoGridMvGriddistrict.subst_id,\n EgoGridMvGriddistrict.geom)\n Regions = [(subst_id, shape.to_shape(geom)) for subst_id, geom in\n query.filter(EgoGridMvGriddistrict.subst_id.in_(subst_id)).all()]\n crs = {'init': 'epsg:3035'}\n region = gpd.GeoDataFrame(Regions, columns=['subst_id', 'geometry'],\n crs=crs)\n region = region.to_crs(epsg=projection)\n return region\n", "role": "user" }, { "content": "get_grid_district_polygon", "role": "assistant" } ]
def x(network, mode, timesteps): if not hasattr(timesteps, '__len__'): timesteps = [timesteps] if mode is None: mv_components = mv_to_pypsa(network) lv_components = lv_to_pypsa(network) components = combine_mv_and_lv(mv_components, lv_components) if list(components['Load'].index.values): timeseries_load_p_set = _pypsa_load_timeseries(network, mode= mode, timesteps=timesteps) if len(list(components['Generator'].index.values)) > 1: timeseries_gen_p_min, timeseries_gen_p_max = ( _pypsa_generator_timeseries(network, mode=mode, timesteps= timesteps)) timeseries_storage_p_min, timeseries_storage_p_max = ( _pypsa_storage_timeseries(network, mode=mode, timesteps= timesteps)) if list(components['Bus'].index.values): timeseries_bus_v_set = _pypsa_bus_timeseries(network, components['Bus'].index.tolist(), timesteps=timesteps) else: raise ValueError( 'Provide proper mode or leave it empty to export entire grid topology.' ) _check_topology(components) pypsa_network = PyPSANetwork() pypsa_network.edisgo_mode = mode pypsa_network.set_snapshots(timesteps) pypsa_network.import_components_from_dataframe(components['Bus'], 'Bus') for k, comps in components.items(): if k is not 'Bus' and not comps.empty: pypsa_network.import_components_from_dataframe(comps, k) if len(list(components['Generator'].index.values)) > 1: import_series_from_dataframe(pypsa_network, timeseries_gen_p_min, 'Generator', 'p_min_pu') import_series_from_dataframe(pypsa_network, timeseries_gen_p_max, 'Generator', 'p_max_pu') import_series_from_dataframe(pypsa_network, timeseries_storage_p_min, 'Generator', 'p_min_pu') import_series_from_dataframe(pypsa_network, timeseries_storage_p_max, 'Generator', 'p_max_pu') if list(components['Load'].index.values): import_series_from_dataframe(pypsa_network, timeseries_load_p_set, 'Load', 'p_set') if list(components['Bus'].index.values): import_series_from_dataframe(pypsa_network, timeseries_bus_v_set, 'Bus', 'v_mag_pu_set') _check_integrity_of_pypsa(pypsa_network) return pypsa_network
to_pypsa
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(network, mode, timesteps):\n if not hasattr(timesteps, '__len__'):\n timesteps = [timesteps]\n if mode is None:\n mv_components = mv_to_pypsa(network)\n lv_components = lv_to_pypsa(network)\n components = combine_mv_and_lv(mv_components, lv_components)\n if list(components['Load'].index.values):\n timeseries_load_p_set = _pypsa_load_timeseries(network, mode=\n mode, timesteps=timesteps)\n if len(list(components['Generator'].index.values)) > 1:\n timeseries_gen_p_min, timeseries_gen_p_max = (\n _pypsa_generator_timeseries(network, mode=mode, timesteps=\n timesteps))\n timeseries_storage_p_min, timeseries_storage_p_max = (\n _pypsa_storage_timeseries(network, mode=mode, timesteps=\n timesteps))\n if list(components['Bus'].index.values):\n timeseries_bus_v_set = _pypsa_bus_timeseries(network,\n components['Bus'].index.tolist(), timesteps=timesteps)\n else:\n raise ValueError(\n 'Provide proper mode or leave it empty to export entire grid topology.'\n )\n _check_topology(components)\n pypsa_network = PyPSANetwork()\n pypsa_network.edisgo_mode = mode\n pypsa_network.set_snapshots(timesteps)\n pypsa_network.import_components_from_dataframe(components['Bus'], 'Bus')\n for k, comps in components.items():\n if k is not 'Bus' and not comps.empty:\n pypsa_network.import_components_from_dataframe(comps, k)\n if len(list(components['Generator'].index.values)) > 1:\n import_series_from_dataframe(pypsa_network, timeseries_gen_p_min,\n 'Generator', 'p_min_pu')\n import_series_from_dataframe(pypsa_network, timeseries_gen_p_max,\n 'Generator', 'p_max_pu')\n import_series_from_dataframe(pypsa_network,\n timeseries_storage_p_min, 'Generator', 'p_min_pu')\n import_series_from_dataframe(pypsa_network,\n timeseries_storage_p_max, 'Generator', 'p_max_pu')\n if list(components['Load'].index.values):\n import_series_from_dataframe(pypsa_network, timeseries_load_p_set,\n 'Load', 'p_set')\n if list(components['Bus'].index.values):\n import_series_from_dataframe(pypsa_network, timeseries_bus_v_set,\n 'Bus', 'v_mag_pu_set')\n _check_integrity_of_pypsa(pypsa_network)\n return pypsa_network\n", "role": "user" }, { "content": "to_pypsa", "role": "assistant" } ]
def x(network): generators = [] loads = [] branch_tees = [] lines = [] lv_stations = [] storages = [] for lv_grid in network.mv_grid.lv_grids: generators.extend(lv_grid.graph.nodes_by_attribute('generator')) loads.extend(lv_grid.graph.nodes_by_attribute('load')) branch_tees.extend(lv_grid.graph.nodes_by_attribute('branch_tee')) lines.extend(lv_grid.graph.lines()) lv_stations.extend(lv_grid.graph.nodes_by_attribute('lv_station')) storages.extend(lv_grid.graph.nodes_by_attribute('storage')) omega = 2 * pi * 50 generator = {'name': [], 'bus': [], 'control': [], 'p_nom': [], 'type': [], 'p_nom_extendable': [], 'p_nom_min': [], 'p_nom_max': [], 'capital_cost': []} bus = {'name': [], 'v_nom': [], 'x': [], 'y': []} load = {'name': [], 'bus': []} line = {'name': [], 'bus0': [], 'bus1': [], 'type': [], 'x': [], 'r': [ ], 's_nom': [], 's_nom_min': [], 's_max_pu': [], 's_nom_extendable': [], 'capital_cost': [], 'length': []} storage = {'name': [], 'bus': [], 'p_nom': [], 'p_nom_extendable': [], 'p_nom_min': [], 'p_nom_max': [], 'capital_cost': [], 'max_hours': []} for gen in generators: bus_name = '_'.join(['Bus', repr(gen)]) generator['name'].append(repr(gen)) generator['bus'].append(bus_name) generator['control'].append('PQ') generator['p_nom'].append(gen.nominal_capacity / 1000.0) generator['type'].append('_'.join([gen.type, gen.subtype])) generator['p_nom_extendable'].append(False) generator['p_nom_min'].append(0) generator['p_nom_max'].append(0) generator['capital_cost'].append(0) bus['name'].append(bus_name) bus['v_nom'].append(gen.grid.voltage_nom) bus['x'].append(None) bus['y'].append(None) for bt in branch_tees: bus['name'].append('_'.join(['Bus', repr(bt)])) bus['v_nom'].append(bt.grid.voltage_nom) bus['x'].append(None) bus['y'].append(None) for lo in loads: bus_name = '_'.join(['Bus', repr(lo)]) load['name'].append(repr(lo)) load['bus'].append(bus_name) bus['name'].append(bus_name) bus['v_nom'].append(lo.grid.voltage_nom) bus['x'].append(None) bus['y'].append(None) for l in lines: line['name'].append(repr(l['line'])) if l['adj_nodes'][0] in lv_stations: line['bus0'].append('_'.join(['Bus', l['adj_nodes'][0].__repr__ (side='lv')])) else: line['bus0'].append('_'.join(['Bus', repr(l['adj_nodes'][0])])) if l['adj_nodes'][1] in lv_stations: line['bus1'].append('_'.join(['Bus', l['adj_nodes'][1].__repr__ (side='lv')])) else: line['bus1'].append('_'.join(['Bus', repr(l['adj_nodes'][1])])) line['type'].append('') line['x'].append(l['line'].type['L'] * omega / 1000.0 * l['line']. length) line['r'].append(l['line'].type['R'] * l['line'].length) s_nom = sqrt(3) * l['line'].type['I_max_th'] * l['line'].type['U_n' ] / 1000.0 line['s_nom'].append(s_nom) line['s_nom_min'].append(s_nom) line['s_max_pu'].append(0.6) line['s_nom_extendable'].append(True) line['capital_cost'].append(100) line['length'].append(l['line'].length) lv_components = {'Generator': pd.DataFrame(generator).set_index('name'), 'Bus': pd.DataFrame(bus).set_index('name'), 'Load': pd.DataFrame( load).set_index('name'), 'Line': pd.DataFrame(line).set_index( 'name'), 'StorageUnit': pd.DataFrame(storage).set_index('name')} return lv_components
lv_to_pypsa
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(network):\n generators = []\n loads = []\n branch_tees = []\n lines = []\n lv_stations = []\n storages = []\n for lv_grid in network.mv_grid.lv_grids:\n generators.extend(lv_grid.graph.nodes_by_attribute('generator'))\n loads.extend(lv_grid.graph.nodes_by_attribute('load'))\n branch_tees.extend(lv_grid.graph.nodes_by_attribute('branch_tee'))\n lines.extend(lv_grid.graph.lines())\n lv_stations.extend(lv_grid.graph.nodes_by_attribute('lv_station'))\n storages.extend(lv_grid.graph.nodes_by_attribute('storage'))\n omega = 2 * pi * 50\n generator = {'name': [], 'bus': [], 'control': [], 'p_nom': [], 'type':\n [], 'p_nom_extendable': [], 'p_nom_min': [], 'p_nom_max': [],\n 'capital_cost': []}\n bus = {'name': [], 'v_nom': [], 'x': [], 'y': []}\n load = {'name': [], 'bus': []}\n line = {'name': [], 'bus0': [], 'bus1': [], 'type': [], 'x': [], 'r': [\n ], 's_nom': [], 's_nom_min': [], 's_max_pu': [], 's_nom_extendable':\n [], 'capital_cost': [], 'length': []}\n storage = {'name': [], 'bus': [], 'p_nom': [], 'p_nom_extendable': [],\n 'p_nom_min': [], 'p_nom_max': [], 'capital_cost': [], 'max_hours': []}\n for gen in generators:\n bus_name = '_'.join(['Bus', repr(gen)])\n generator['name'].append(repr(gen))\n generator['bus'].append(bus_name)\n generator['control'].append('PQ')\n generator['p_nom'].append(gen.nominal_capacity / 1000.0)\n generator['type'].append('_'.join([gen.type, gen.subtype]))\n generator['p_nom_extendable'].append(False)\n generator['p_nom_min'].append(0)\n generator['p_nom_max'].append(0)\n generator['capital_cost'].append(0)\n bus['name'].append(bus_name)\n bus['v_nom'].append(gen.grid.voltage_nom)\n bus['x'].append(None)\n bus['y'].append(None)\n for bt in branch_tees:\n bus['name'].append('_'.join(['Bus', repr(bt)]))\n bus['v_nom'].append(bt.grid.voltage_nom)\n bus['x'].append(None)\n bus['y'].append(None)\n for lo in loads:\n bus_name = '_'.join(['Bus', repr(lo)])\n load['name'].append(repr(lo))\n load['bus'].append(bus_name)\n bus['name'].append(bus_name)\n bus['v_nom'].append(lo.grid.voltage_nom)\n bus['x'].append(None)\n bus['y'].append(None)\n for l in lines:\n line['name'].append(repr(l['line']))\n if l['adj_nodes'][0] in lv_stations:\n line['bus0'].append('_'.join(['Bus', l['adj_nodes'][0].__repr__\n (side='lv')]))\n else:\n line['bus0'].append('_'.join(['Bus', repr(l['adj_nodes'][0])]))\n if l['adj_nodes'][1] in lv_stations:\n line['bus1'].append('_'.join(['Bus', l['adj_nodes'][1].__repr__\n (side='lv')]))\n else:\n line['bus1'].append('_'.join(['Bus', repr(l['adj_nodes'][1])]))\n line['type'].append('')\n line['x'].append(l['line'].type['L'] * omega / 1000.0 * l['line'].\n length)\n line['r'].append(l['line'].type['R'] * l['line'].length)\n s_nom = sqrt(3) * l['line'].type['I_max_th'] * l['line'].type['U_n'\n ] / 1000.0\n line['s_nom'].append(s_nom)\n line['s_nom_min'].append(s_nom)\n line['s_max_pu'].append(0.6)\n line['s_nom_extendable'].append(True)\n line['capital_cost'].append(100)\n line['length'].append(l['line'].length)\n lv_components = {'Generator': pd.DataFrame(generator).set_index('name'),\n 'Bus': pd.DataFrame(bus).set_index('name'), 'Load': pd.DataFrame(\n load).set_index('name'), 'Line': pd.DataFrame(line).set_index(\n 'name'), 'StorageUnit': pd.DataFrame(storage).set_index('name')}\n return lv_components\n", "role": "user" }, { "content": "lv_to_pypsa", "role": "assistant" } ]
def x(network, timesteps, mode=None): mv_load_timeseries_p = [] lv_load_timeseries_p = [] if mode is 'mv' or mode is None: for load in network.mv_grid.graph.nodes_by_attribute('load'): mv_load_timeseries_p.append(load.pypsa_timeseries('p').rename( repr(load)).to_frame().loc[timesteps]) if mode is 'lv' or mode is None: for lv_grid in network.mv_grid.lv_grids: for load in lv_grid.graph.nodes_by_attribute('load'): for sector in list(load.consumption.keys()): if sector != 'retail': lv_load_timeseries_p.append(load.pypsa_timeseries( 'p').rename(repr(load)).to_frame().loc[timesteps]) load_df_p = pd.concat(mv_load_timeseries_p + lv_load_timeseries_p, axis=1) return load_df_p
pypsa_load_timeseries
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(network, timesteps, mode=None):\n mv_load_timeseries_p = []\n lv_load_timeseries_p = []\n if mode is 'mv' or mode is None:\n for load in network.mv_grid.graph.nodes_by_attribute('load'):\n mv_load_timeseries_p.append(load.pypsa_timeseries('p').rename(\n repr(load)).to_frame().loc[timesteps])\n if mode is 'lv' or mode is None:\n for lv_grid in network.mv_grid.lv_grids:\n for load in lv_grid.graph.nodes_by_attribute('load'):\n for sector in list(load.consumption.keys()):\n if sector != 'retail':\n lv_load_timeseries_p.append(load.pypsa_timeseries(\n 'p').rename(repr(load)).to_frame().loc[timesteps])\n load_df_p = pd.concat(mv_load_timeseries_p + lv_load_timeseries_p, axis=1)\n return load_df_p\n", "role": "user" }, { "content": "pypsa_load_timeseries", "role": "assistant" } ]
def x(network, timesteps, mode=None): mv_gen_timeseries_p_min = [] mv_gen_timeseries_p_max = [] lv_gen_timeseries_p_min = [] lv_gen_timeseries_p_max = [] if mode is 'mv' or mode is None: for gen in (network.mv_grid.graph.nodes_by_attribute('generator') + network.mv_grid.graph.nodes_by_attribute('generator_aggr')): mv_gen_timeseries_p_min.append(gen.pypsa_timeseries('p').rename (repr(gen)).to_frame().loc[timesteps] / gen.nominal_capacity) mv_gen_timeseries_p_max.append(gen.pypsa_timeseries('p').rename (repr(gen)).to_frame().loc[timesteps] / gen.nominal_capacity) if mode is 'lv' or mode is None: for lv_grid in network.mv_grid.lv_grids: for gen in lv_grid.graph.nodes_by_attribute('generator'): lv_gen_timeseries_p_min.append(gen.pypsa_timeseries('p'). rename(repr(gen)).to_frame().loc[timesteps] / gen. nominal_capacity) lv_gen_timeseries_p_max.append(gen.pypsa_timeseries('p'). rename(repr(gen)).to_frame().loc[timesteps] / gen. nominal_capacity) lv_gen_timeseries_p_min.append(pd.Series([-1] * len(timesteps), index= timesteps).rename('Generator_slack').to_frame()) lv_gen_timeseries_p_max.append(pd.Series([1] * len(timesteps), index= timesteps).rename('Generator_slack').to_frame()) gen_df_p_max = pd.concat(mv_gen_timeseries_p_max + lv_gen_timeseries_p_max, axis=1) gen_df_p_min = pd.concat(mv_gen_timeseries_p_min + lv_gen_timeseries_p_min, axis=1) return gen_df_p_min, gen_df_p_max
pypsa_generator_timeseries
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(network, timesteps, mode=None):\n mv_gen_timeseries_p_min = []\n mv_gen_timeseries_p_max = []\n lv_gen_timeseries_p_min = []\n lv_gen_timeseries_p_max = []\n if mode is 'mv' or mode is None:\n for gen in (network.mv_grid.graph.nodes_by_attribute('generator') +\n network.mv_grid.graph.nodes_by_attribute('generator_aggr')):\n mv_gen_timeseries_p_min.append(gen.pypsa_timeseries('p').rename\n (repr(gen)).to_frame().loc[timesteps] / gen.nominal_capacity)\n mv_gen_timeseries_p_max.append(gen.pypsa_timeseries('p').rename\n (repr(gen)).to_frame().loc[timesteps] / gen.nominal_capacity)\n if mode is 'lv' or mode is None:\n for lv_grid in network.mv_grid.lv_grids:\n for gen in lv_grid.graph.nodes_by_attribute('generator'):\n lv_gen_timeseries_p_min.append(gen.pypsa_timeseries('p').\n rename(repr(gen)).to_frame().loc[timesteps] / gen.\n nominal_capacity)\n lv_gen_timeseries_p_max.append(gen.pypsa_timeseries('p').\n rename(repr(gen)).to_frame().loc[timesteps] / gen.\n nominal_capacity)\n lv_gen_timeseries_p_min.append(pd.Series([-1] * len(timesteps), index=\n timesteps).rename('Generator_slack').to_frame())\n lv_gen_timeseries_p_max.append(pd.Series([1] * len(timesteps), index=\n timesteps).rename('Generator_slack').to_frame())\n gen_df_p_max = pd.concat(mv_gen_timeseries_p_max +\n lv_gen_timeseries_p_max, axis=1)\n gen_df_p_min = pd.concat(mv_gen_timeseries_p_min +\n lv_gen_timeseries_p_min, axis=1)\n return gen_df_p_min, gen_df_p_max\n", "role": "user" }, { "content": "pypsa_generator_timeseries", "role": "assistant" } ]
def x(network, timesteps, mode=None): mv_storage_timeseries_p_min = [] mv_storage_timeseries_p_max = [] if mode is 'mv' or mode is None: for storage in network.mv_grid.graph.nodes_by_attribute('storage'): mv_storage_timeseries_p_min.append(storage.timeseries.p.rename( repr(storage)).to_frame().loc[timesteps]) mv_storage_timeseries_p_max.append(storage.timeseries.p.rename( repr(storage)).to_frame().loc[timesteps]) storage_df_p_min = pd.concat(mv_storage_timeseries_p_min, axis=1) storage_df_p_max = pd.concat(mv_storage_timeseries_p_max, axis=1) return storage_df_p_min, storage_df_p_max
pypsa_storage_timeseries
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(network, timesteps, mode=None):\n mv_storage_timeseries_p_min = []\n mv_storage_timeseries_p_max = []\n if mode is 'mv' or mode is None:\n for storage in network.mv_grid.graph.nodes_by_attribute('storage'):\n mv_storage_timeseries_p_min.append(storage.timeseries.p.rename(\n repr(storage)).to_frame().loc[timesteps])\n mv_storage_timeseries_p_max.append(storage.timeseries.p.rename(\n repr(storage)).to_frame().loc[timesteps])\n storage_df_p_min = pd.concat(mv_storage_timeseries_p_min, axis=1)\n storage_df_p_max = pd.concat(mv_storage_timeseries_p_max, axis=1)\n return storage_df_p_min, storage_df_p_max\n", "role": "user" }, { "content": "pypsa_storage_timeseries", "role": "assistant" } ]
def x(self): if self._timeseries is None: if isinstance(self.grid, MVGrid): voltage_level = 'mv' elif isinstance(self.grid, LVGrid): voltage_level = 'lv' ts_total = None for sector in self.consumption.keys(): consumption = self.consumption[sector] try: ts = self.grid.network.timeseries.load[sector, voltage_level ].to_frame('p') except KeyError: try: ts = self.grid.network.timeseries.load[sector].to_frame('p' ) except KeyError: logger.exception('No timeseries for load of type {} given.' .format(sector)) raise ts = ts * consumption ts_q = self.timeseries_reactive if ts_q is not None: ts['q'] = ts_q.q else: ts['q'] = ts['p'] * self.q_sign * tan(acos(self.power_factor)) if ts_total is None: ts_total = ts else: ts_total.p += ts.p ts_total.q += ts.q return ts_total else: return self._timeseries
timeseries
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self._timeseries is None:\n if isinstance(self.grid, MVGrid):\n voltage_level = 'mv'\n elif isinstance(self.grid, LVGrid):\n voltage_level = 'lv'\n ts_total = None\n for sector in self.consumption.keys():\n consumption = self.consumption[sector]\n try:\n ts = self.grid.network.timeseries.load[sector, voltage_level\n ].to_frame('p')\n except KeyError:\n try:\n ts = self.grid.network.timeseries.load[sector].to_frame('p'\n )\n except KeyError:\n logger.exception('No timeseries for load of type {} given.'\n .format(sector))\n raise\n ts = ts * consumption\n ts_q = self.timeseries_reactive\n if ts_q is not None:\n ts['q'] = ts_q.q\n else:\n ts['q'] = ts['p'] * self.q_sign * tan(acos(self.power_factor))\n if ts_total is None:\n ts_total = ts\n else:\n ts_total.p += ts.p\n ts_total.q += ts.q\n return ts_total\n else:\n return self._timeseries\n", "role": "user" }, { "content": "timeseries", "role": "assistant" } ]
def x(self): if self._timeseries_reactive is None: if self.grid.network.timeseries.load_reactive_power is not None: self.power_factor = 'not_applicable' self.reactive_power_mode = 'not_applicable' ts_total = None for sector in self.consumption.keys(): consumption = self.consumption[sector] try: ts = self.grid.network.timeseries.load_reactive_power[ sector].to_frame('q') except KeyError: logger.exception('No timeseries for load of type {} given.' .format(sector)) raise ts = ts * consumption if ts_total is None: ts_total = ts else: ts_total.q += ts.q return ts_total else: return None else: return self._timeseries_reactive
timeseries_reactive
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self._timeseries_reactive is None:\n if self.grid.network.timeseries.load_reactive_power is not None:\n self.power_factor = 'not_applicable'\n self.reactive_power_mode = 'not_applicable'\n ts_total = None\n for sector in self.consumption.keys():\n consumption = self.consumption[sector]\n try:\n ts = self.grid.network.timeseries.load_reactive_power[\n sector].to_frame('q')\n except KeyError:\n logger.exception('No timeseries for load of type {} given.'\n .format(sector))\n raise\n ts = ts * consumption\n if ts_total is None:\n ts_total = ts\n else:\n ts_total.q += ts.q\n return ts_total\n else:\n return None\n else:\n return self._timeseries_reactive\n", "role": "user" }, { "content": "timeseries_reactive", "role": "assistant" } ]
def x(self): peak_load = pd.Series(self.consumption).mul(pd.Series(self.grid.network .config['peakload_consumption_ratio']).astype(float), fill_value=0) return peak_load
peak_load
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n peak_load = pd.Series(self.consumption).mul(pd.Series(self.grid.network\n .config['peakload_consumption_ratio']).astype(float), fill_value=0)\n return peak_load\n", "role": "user" }, { "content": "peak_load", "role": "assistant" } ]
def x(self): if self._power_factor is None: if isinstance(self.grid, MVGrid): self._power_factor = self.grid.network.config[ 'reactive_power_factor']['mv_load'] elif isinstance(self.grid, LVGrid): self._power_factor = self.grid.network.config[ 'reactive_power_factor']['lv_load'] return self._power_factor
power_factor
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self._power_factor is None:\n if isinstance(self.grid, MVGrid):\n self._power_factor = self.grid.network.config[\n 'reactive_power_factor']['mv_load']\n elif isinstance(self.grid, LVGrid):\n self._power_factor = self.grid.network.config[\n 'reactive_power_factor']['lv_load']\n return self._power_factor\n", "role": "user" }, { "content": "power_factor", "role": "assistant" } ]
def x(self): if self._reactive_power_mode is None: if isinstance(self.grid, MVGrid): self._reactive_power_mode = self.grid.network.config[ 'reactive_power_mode']['mv_load'] elif isinstance(self.grid, LVGrid): self._reactive_power_mode = self.grid.network.config[ 'reactive_power_mode']['lv_load'] return self._reactive_power_mode
reactive_power_mode
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self._reactive_power_mode is None:\n if isinstance(self.grid, MVGrid):\n self._reactive_power_mode = self.grid.network.config[\n 'reactive_power_mode']['mv_load']\n elif isinstance(self.grid, LVGrid):\n self._reactive_power_mode = self.grid.network.config[\n 'reactive_power_mode']['lv_load']\n return self._reactive_power_mode\n", "role": "user" }, { "content": "reactive_power_mode", "role": "assistant" } ]
def x(self): if self._timeseries is None: try: timeseries = self.grid.network.timeseries.generation_dispatchable[ self.type].to_frame('p') except KeyError: try: timeseries = (self.grid.network.timeseries. generation_dispatchable['other'].to_frame('p')) except KeyError: logger.exception('No time series for type {} given.'.format (self.type)) raise timeseries = timeseries * self.nominal_capacity if self.timeseries_reactive is not None: timeseries['q'] = self.timeseries_reactive else: timeseries['q'] = timeseries['p'] * self.q_sign * tan(acos(self .power_factor)) return timeseries else: return self._timeseries.loc[self.grid.network.timeseries.timeindex, :]
timeseries
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self._timeseries is None:\n try:\n timeseries = self.grid.network.timeseries.generation_dispatchable[\n self.type].to_frame('p')\n except KeyError:\n try:\n timeseries = (self.grid.network.timeseries.\n generation_dispatchable['other'].to_frame('p'))\n except KeyError:\n logger.exception('No time series for type {} given.'.format\n (self.type))\n raise\n timeseries = timeseries * self.nominal_capacity\n if self.timeseries_reactive is not None:\n timeseries['q'] = self.timeseries_reactive\n else:\n timeseries['q'] = timeseries['p'] * self.q_sign * tan(acos(self\n .power_factor))\n return timeseries\n else:\n return self._timeseries.loc[self.grid.network.timeseries.timeindex, :]\n", "role": "user" }, { "content": "timeseries", "role": "assistant" } ]
def x(self): if self._timeseries_reactive is None: if self.grid.network.timeseries.generation_reactive_power is not None: try: timeseries = (self.grid.network.timeseries. generation_reactive_power[self.type].to_frame('q')) except (KeyError, TypeError): try: timeseries = (self.grid.network.timeseries. generation_reactive_power['other'].to_frame('q')) except: logger.warning( 'No reactive power time series for type {} given. Reactive power time series will be calculated from assumptions in config files and active power timeseries.' .format(self.type)) return None self.power_factor = 'not_applicable' self.reactive_power_mode = 'not_applicable' return timeseries * self.nominal_capacity else: return None else: return self._timeseries_reactive.loc[self.grid.network.timeseries. timeindex, :]
timeseries_reactive
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self._timeseries_reactive is None:\n if self.grid.network.timeseries.generation_reactive_power is not None:\n try:\n timeseries = (self.grid.network.timeseries.\n generation_reactive_power[self.type].to_frame('q'))\n except (KeyError, TypeError):\n try:\n timeseries = (self.grid.network.timeseries.\n generation_reactive_power['other'].to_frame('q'))\n except:\n logger.warning(\n 'No reactive power time series for type {} given. Reactive power time series will be calculated from assumptions in config files and active power timeseries.'\n .format(self.type))\n return None\n self.power_factor = 'not_applicable'\n self.reactive_power_mode = 'not_applicable'\n return timeseries * self.nominal_capacity\n else:\n return None\n else:\n return self._timeseries_reactive.loc[self.grid.network.timeseries.\n timeindex, :]\n", "role": "user" }, { "content": "timeseries_reactive", "role": "assistant" } ]
def x(self): if self._timeseries is None: if isinstance(self.grid.network.timeseries.generation_fluctuating. columns, pd.MultiIndex): if self.weather_cell_id: try: timeseries = (self.grid.network.timeseries. generation_fluctuating[self.type, self. weather_cell_id].to_frame('p')) except KeyError: logger.exception( 'No time series for type {} and weather cell ID {} given.' .format(self.type, self.weather_cell_id)) raise else: logger.exception( 'No weather cell ID provided for fluctuating generator {}.' .format(repr(self))) raise KeyError else: try: timeseries = (self.grid.network.timeseries. generation_fluctuating[self.type].to_frame('p')) except KeyError: logger.exception('No time series for type {} given.'.format (self.type)) raise timeseries = timeseries * self.nominal_capacity if self.curtailment is not None: timeseries = timeseries.join(self.curtailment.to_frame( 'curtailment'), how='left') timeseries.p = timeseries.p - timeseries.curtailment.fillna(0) if self.timeseries_reactive is not None: timeseries['q'] = self.timeseries_reactive else: timeseries['q'] = timeseries['p'] * self.q_sign * tan(acos(self .power_factor)) return timeseries else: return self._timeseries.loc[self.grid.network.timeseries.timeindex, :]
timeseries
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self._timeseries is None:\n if isinstance(self.grid.network.timeseries.generation_fluctuating.\n columns, pd.MultiIndex):\n if self.weather_cell_id:\n try:\n timeseries = (self.grid.network.timeseries.\n generation_fluctuating[self.type, self.\n weather_cell_id].to_frame('p'))\n except KeyError:\n logger.exception(\n 'No time series for type {} and weather cell ID {} given.'\n .format(self.type, self.weather_cell_id))\n raise\n else:\n logger.exception(\n 'No weather cell ID provided for fluctuating generator {}.'\n .format(repr(self)))\n raise KeyError\n else:\n try:\n timeseries = (self.grid.network.timeseries.\n generation_fluctuating[self.type].to_frame('p'))\n except KeyError:\n logger.exception('No time series for type {} given.'.format\n (self.type))\n raise\n timeseries = timeseries * self.nominal_capacity\n if self.curtailment is not None:\n timeseries = timeseries.join(self.curtailment.to_frame(\n 'curtailment'), how='left')\n timeseries.p = timeseries.p - timeseries.curtailment.fillna(0)\n if self.timeseries_reactive is not None:\n timeseries['q'] = self.timeseries_reactive\n else:\n timeseries['q'] = timeseries['p'] * self.q_sign * tan(acos(self\n .power_factor))\n return timeseries\n else:\n return self._timeseries.loc[self.grid.network.timeseries.timeindex, :]\n", "role": "user" }, { "content": "timeseries", "role": "assistant" } ]
def x(self): if self._timeseries_reactive is None: if self.grid.network.timeseries.generation_reactive_power is not None: if isinstance(self.grid.network.timeseries. generation_reactive_power.columns, pd.MultiIndex): if self.weather_cell_id: try: timeseries = (self.grid.network.timeseries. generation_reactive_power[self.type, self. weather_cell_id].to_frame('q')) return timeseries * self.nominal_capacity except (KeyError, TypeError): logger.warning( 'No time series for type {} and weather cell ID {} given. Reactive power time series will be calculated from assumptions in config files and active power timeseries.' .format(self.type, self.weather_cell_id)) return None else: raise ValueError( 'No weather cell ID provided for fluctuating generator {}, but reactive power is given as a MultiIndex suggesting that it is differentiated by weather cell ID.' .format(repr(self))) else: try: timeseries = (self.grid.network.timeseries. generation_reactive_power[self.type].to_frame('q')) return timeseries * self.nominal_capacity except (KeyError, TypeError): logger.warning( 'No reactive power time series for type {} given. Reactive power time series will be calculated from assumptions in config files and active power timeseries.' .format(self.type)) return None else: return None else: return self._timeseries_reactive.loc[self.grid.network.timeseries. timeindex, :]
timeseries_reactive
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self._timeseries_reactive is None:\n if self.grid.network.timeseries.generation_reactive_power is not None:\n if isinstance(self.grid.network.timeseries.\n generation_reactive_power.columns, pd.MultiIndex):\n if self.weather_cell_id:\n try:\n timeseries = (self.grid.network.timeseries.\n generation_reactive_power[self.type, self.\n weather_cell_id].to_frame('q'))\n return timeseries * self.nominal_capacity\n except (KeyError, TypeError):\n logger.warning(\n 'No time series for type {} and weather cell ID {} given. Reactive power time series will be calculated from assumptions in config files and active power timeseries.'\n .format(self.type, self.weather_cell_id))\n return None\n else:\n raise ValueError(\n 'No weather cell ID provided for fluctuating generator {}, but reactive power is given as a MultiIndex suggesting that it is differentiated by weather cell ID.'\n .format(repr(self)))\n else:\n try:\n timeseries = (self.grid.network.timeseries.\n generation_reactive_power[self.type].to_frame('q'))\n return timeseries * self.nominal_capacity\n except (KeyError, TypeError):\n logger.warning(\n 'No reactive power time series for type {} given. Reactive power time series will be calculated from assumptions in config files and active power timeseries.'\n .format(self.type))\n return None\n else:\n return None\n else:\n return self._timeseries_reactive.loc[self.grid.network.timeseries.\n timeindex, :]\n", "role": "user" }, { "content": "timeseries_reactive", "role": "assistant" } ]
def x(self): if self._curtailment is not None: return self._curtailment elif isinstance(self.grid.network.timeseries._curtailment, pd.DataFrame): if isinstance(self.grid.network.timeseries.curtailment.columns, pd. MultiIndex): if self.weather_cell_id: try: return self.grid.network.timeseries.curtailment[self. type, self.weather_cell_id] except KeyError: logger.exception( 'No curtailment time series for type {} and weather cell ID {} given.' .format(self.type, self.weather_cell_id)) raise else: logger.exception( 'No weather cell ID provided for fluctuating generator {}.' .format(repr(self))) raise KeyError else: try: return self.grid.network.timeseries.curtailment[self.type] except KeyError: logger.exception( 'No curtailment time series for type {} given.'.format( self.type)) raise else: return None
curtailment
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self._curtailment is not None:\n return self._curtailment\n elif isinstance(self.grid.network.timeseries._curtailment, pd.DataFrame):\n if isinstance(self.grid.network.timeseries.curtailment.columns, pd.\n MultiIndex):\n if self.weather_cell_id:\n try:\n return self.grid.network.timeseries.curtailment[self.\n type, self.weather_cell_id]\n except KeyError:\n logger.exception(\n 'No curtailment time series for type {} and weather cell ID {} given.'\n .format(self.type, self.weather_cell_id))\n raise\n else:\n logger.exception(\n 'No weather cell ID provided for fluctuating generator {}.'\n .format(repr(self)))\n raise KeyError\n else:\n try:\n return self.grid.network.timeseries.curtailment[self.type]\n except KeyError:\n logger.exception(\n 'No curtailment time series for type {} given.'.format(\n self.type))\n raise\n else:\n return None\n", "role": "user" }, { "content": "curtailment", "role": "assistant" } ]
def x(self): if 'q' in self._timeseries.columns: return self._timeseries else: self._timeseries['q'] = abs(self._timeseries.p) * self.q_sign * tan( acos(self.power_factor)) return self._timeseries.loc[self.grid.network.timeseries.timeindex, :]
timeseries
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if 'q' in self._timeseries.columns:\n return self._timeseries\n else:\n self._timeseries['q'] = abs(self._timeseries.p) * self.q_sign * tan(\n acos(self.power_factor))\n return self._timeseries.loc[self.grid.network.timeseries.timeindex, :]\n", "role": "user" }, { "content": "timeseries", "role": "assistant" } ]
def x(self): if self.reactive_power_mode.lower() == 'inductive': return -1 elif self.reactive_power_mode.lower() == 'capacitive': return 1 else: raise ValueError('Unknown value {} in reactive_power_mode'.format( self.reactive_power_mode))
q_sign
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self.reactive_power_mode.lower() == 'inductive':\n return -1\n elif self.reactive_power_mode.lower() == 'capacitive':\n return 1\n else:\n raise ValueError('Unknown value {} in reactive_power_mode'.format(\n self.reactive_power_mode))\n", "role": "user" }, { "content": "q_sign", "role": "assistant" } ]