source_code
stringlengths
45
7.24k
function_name
stringlengths
1
111
messages
list
def x(self): if self._state != 'open': if self._line is not None: self._state = 'open' self._nodes = self.grid.graph.nodes_from_line(self._line) self.grid.graph.remove_edge(self._nodes[0], self._nodes[1]) else: raise ValueError('``line`` is not set')
open
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self._state != 'open':\n if self._line is not None:\n self._state = 'open'\n self._nodes = self.grid.graph.nodes_from_line(self._line)\n self.grid.graph.remove_edge(self._nodes[0], self._nodes[1])\n else:\n raise ValueError('``line`` is not set')\n", "role": "user" }, { "content": "open", "role": "assistant" } ]
def x(self): self._state = 'closed' self.grid.graph.add_edge(self._nodes[0], self._nodes[1], {'line': self. _line})
close
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n self._state = 'closed'\n self.grid.graph.add_edge(self._nodes[0], self._nodes[1], {'line': self.\n _line})\n", "role": "user" }, { "content": "close", "role": "assistant" } ]
def x(self): adj_nodes = self._grid._graph.nodes_from_line(self) return LineString([adj_nodes[0].geom, adj_nodes[1].geom])
geom
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n adj_nodes = self._grid._graph.nodes_from_line(self)\n return LineString([adj_nodes[0].geom, adj_nodes[1].geom])\n", "role": "user" }, { "content": "geom", "role": "assistant" } ]
def x(func): @functools.wraps(func) def x(self, request, context): return func(self, request, LogFieldsContext(context)) return wrapper
wrap_context
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(func):\n\n @functools.wraps(func)\n def x(self, request, context):\n return func(self, request, LogFieldsContext(context))\n return wrapper\n", "role": "user" }, { "content": "wrap_context", "role": "assistant" } ]
def x(self, fields: Dict[str, Any]): self._log_fields.add_fields(fields)
add_log_fields
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, fields: Dict[str, Any]):\n self._log_fields.add_fields(fields)\n", "role": "user" }, { "content": "add_log_fields", "role": "assistant" } ]
def x(self) ->List[Tuple[str, Any]]: metadata = [(k, v) for k, v in self._invocation_metadata.items() if k != LOG_FIELDS_KEY_META] metadata.append((LOG_FIELDS_KEY_META, self._log_fields.dumps())) return metadata
pack_metadata
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self) ->List[Tuple[str, Any]]:\n metadata = [(k, v) for k, v in self._invocation_metadata.items() if k !=\n LOG_FIELDS_KEY_META]\n metadata.append((LOG_FIELDS_KEY_META, self._log_fields.dumps()))\n return metadata\n", "role": "user" }, { "content": "pack_metadata", "role": "assistant" } ]
def x(cls, metadata: Dict[str, Any]) ->'LogFields': return cls(fields=json.loads(metadata.get(LOG_FIELDS_KEY_META, '{}')))
from_metadata
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, metadata: Dict[str, Any]) ->'LogFields':\n return cls(fields=json.loads(metadata.get(LOG_FIELDS_KEY_META, '{}')))\n", "role": "user" }, { "content": "from_metadata", "role": "assistant" } ]
def x(self, fields): for k, v in fields.items(): if k not in self._fields: self._fields[k] = v
add_fields
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, fields):\n for k, v in fields.items():\n if k not in self._fields:\n self._fields[k] = v\n", "role": "user" }, { "content": "add_fields", "role": "assistant" } ]
def x(network, without_generator_import=False): def x(transformer): if isinstance(transformer.grid, LVGrid): return float(network.config['costs_transformers']['lv']) elif isinstance(transformer.grid, MVGrid): return float(network.config['costs_transformers']['mv']) def x(line, quantity): if isinstance(line.grid, LVGrid): voltage_level = 'lv' elif isinstance(line.grid, MVGrid): voltage_level = 'mv' else: raise KeyError('Grid must be LVGrid or MVGrid.') projection = partial(pyproj.transform, pyproj.Proj(init='epsg:{}'. format(int(network.config['geo']['srid']))), pyproj.Proj(init= 'epsg:3035')) sqm2sqkm = 1000000.0 population_density = line.grid.grid_district['population'] / (transform (projection, line.grid.grid_district['geom']).area / sqm2sqkm) if population_density <= 500: population_density = 'rural' else: population_density = 'urban' costs_cable = float(network.config['costs_cables']['{}_cable'. format(voltage_level)]) costs_cable_earthwork = float(network.config['costs_cables'][ '{}_cable_incl_earthwork_{}'.format(voltage_level, population_density)]) return costs_cable_earthwork * l.length + costs_cable * l.length * ( quantity - 1) costs = pd.DataFrame() if without_generator_import: equipment_changes = network.results.equipment_changes.loc[network. results.equipment_changes.iteration_step > 0] else: equipment_changes = network.results.equipment_changes if not equipment_changes.empty: transformers = equipment_changes[equipment_changes['equipment']. apply(isinstance, args=(Transformer,))] added_transformers = transformers[transformers['change'] == 'added'] removed_transformers = transformers[transformers['change'] == 'removed' ] added_removed_transformers = added_transformers.loc[added_transformers ['equipment'].isin(removed_transformers['equipment'])] added_transformers = added_transformers[~added_transformers[ 'equipment'].isin(added_removed_transformers.equipment)] for t in added_transformers['equipment']: costs = costs.append(pd.DataFrame({'type': t.type.name, 'total_costs': _get_transformer_costs(t), 'quantity': 1, 'voltage_level': 'mv/lv', 'mv_feeder': t.grid.station. mv_feeder if isinstance(t.grid, LVGrid) else None}, index=[t])) lines = equipment_changes.loc[equipment_changes.index[ equipment_changes.reset_index()['index'].apply(isinstance, args =(Line,))]] for l in list(lines.index.unique()): aggr_lines = [] aggr_lines_generator = l.grid.graph.lines_by_attribute('line_aggr') for aggr_line in aggr_lines_generator: aggr_lines.append(repr(aggr_line['line'])) if not repr(l) in aggr_lines: number_lines_added = equipment_changes[(equipment_changes. index == l) & (equipment_changes.equipment == l.type.name) ]['quantity'].sum() costs = costs.append(pd.DataFrame({'type': l.type.name, 'total_costs': _get_line_costs(l, number_lines_added), 'length': l.length * number_lines_added, 'quantity': number_lines_added, 'voltage_level': 'lv' if isinstance (l.grid, LVGrid) else 'mv', 'mv_feeder': get_mv_feeder_from_line(l)}, index=[l])) if costs.empty: costs = costs.append(pd.DataFrame({'type': ['N/A'], 'total_costs': [0], 'length': [0], 'quantity': [0], 'voltage_level': '', 'mv_feeder': ''}, index=['No reinforced equipment.'])) return costs
grid_expansion_costs
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(network, without_generator_import=False):\n\n def x(transformer):\n if isinstance(transformer.grid, LVGrid):\n return float(network.config['costs_transformers']['lv'])\n elif isinstance(transformer.grid, MVGrid):\n return float(network.config['costs_transformers']['mv'])\n\n def x(line, quantity):\n if isinstance(line.grid, LVGrid):\n voltage_level = 'lv'\n elif isinstance(line.grid, MVGrid):\n voltage_level = 'mv'\n else:\n raise KeyError('Grid must be LVGrid or MVGrid.')\n projection = partial(pyproj.transform, pyproj.Proj(init='epsg:{}'.\n format(int(network.config['geo']['srid']))), pyproj.Proj(init=\n 'epsg:3035'))\n sqm2sqkm = 1000000.0\n population_density = line.grid.grid_district['population'] / (transform\n (projection, line.grid.grid_district['geom']).area / sqm2sqkm)\n if population_density <= 500:\n population_density = 'rural'\n else:\n population_density = 'urban'\n costs_cable = float(network.config['costs_cables']['{}_cable'.\n format(voltage_level)])\n costs_cable_earthwork = float(network.config['costs_cables'][\n '{}_cable_incl_earthwork_{}'.format(voltage_level,\n population_density)])\n return costs_cable_earthwork * l.length + costs_cable * l.length * (\n quantity - 1)\n costs = pd.DataFrame()\n if without_generator_import:\n equipment_changes = network.results.equipment_changes.loc[network.\n results.equipment_changes.iteration_step > 0]\n else:\n equipment_changes = network.results.equipment_changes\n if not equipment_changes.empty:\n transformers = equipment_changes[equipment_changes['equipment'].\n apply(isinstance, args=(Transformer,))]\n added_transformers = transformers[transformers['change'] == 'added']\n removed_transformers = transformers[transformers['change'] == 'removed'\n ]\n added_removed_transformers = added_transformers.loc[added_transformers\n ['equipment'].isin(removed_transformers['equipment'])]\n added_transformers = added_transformers[~added_transformers[\n 'equipment'].isin(added_removed_transformers.equipment)]\n for t in added_transformers['equipment']:\n costs = costs.append(pd.DataFrame({'type': t.type.name,\n 'total_costs': _get_transformer_costs(t), 'quantity': 1,\n 'voltage_level': 'mv/lv', 'mv_feeder': t.grid.station.\n mv_feeder if isinstance(t.grid, LVGrid) else None}, index=[t]))\n lines = equipment_changes.loc[equipment_changes.index[\n equipment_changes.reset_index()['index'].apply(isinstance, args\n =(Line,))]]\n for l in list(lines.index.unique()):\n aggr_lines = []\n aggr_lines_generator = l.grid.graph.lines_by_attribute('line_aggr')\n for aggr_line in aggr_lines_generator:\n aggr_lines.append(repr(aggr_line['line']))\n if not repr(l) in aggr_lines:\n number_lines_added = equipment_changes[(equipment_changes.\n index == l) & (equipment_changes.equipment == l.type.name)\n ]['quantity'].sum()\n costs = costs.append(pd.DataFrame({'type': l.type.name,\n 'total_costs': _get_line_costs(l, number_lines_added),\n 'length': l.length * number_lines_added, 'quantity':\n number_lines_added, 'voltage_level': 'lv' if isinstance\n (l.grid, LVGrid) else 'mv', 'mv_feeder':\n get_mv_feeder_from_line(l)}, index=[l]))\n if costs.empty:\n costs = costs.append(pd.DataFrame({'type': ['N/A'], 'total_costs':\n [0], 'length': [0], 'quantity': [0], 'voltage_level': '',\n 'mv_feeder': ''}, index=['No reinforced equipment.']))\n return costs\n", "role": "user" }, { "content": "grid_expansion_costs", "role": "assistant" } ]
def x(self, technologies=False, **kwargs): if self.network.pypsa is None: try: timesteps = self.network.timeseries.timeindex self.network.pypsa = pypsa_io.to_pypsa(self.network, mode=None, timesteps=timesteps) except: logging.warning( 'pypsa representation of MV grid needed to plot MV grid topology.' ) if self.network.pypsa is not None: plots.mv_grid_topology(self.network.pypsa, self.network.config, node_color='technology' if technologies is True else None, filename=kwargs.get('filename', None), grid_district_geom= kwargs.get('grid_district_geom', True), background_map=kwargs. get('background_map', True), xlim=kwargs.get('xlim', None), ylim=kwargs.get('ylim', None), title=kwargs.get('title', ''))
plot_mv_grid_topology
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, technologies=False, **kwargs):\n if self.network.pypsa is None:\n try:\n timesteps = self.network.timeseries.timeindex\n self.network.pypsa = pypsa_io.to_pypsa(self.network, mode=None,\n timesteps=timesteps)\n except:\n logging.warning(\n 'pypsa representation of MV grid needed to plot MV grid topology.'\n )\n if self.network.pypsa is not None:\n plots.mv_grid_topology(self.network.pypsa, self.network.config,\n node_color='technology' if technologies is True else None,\n filename=kwargs.get('filename', None), grid_district_geom=\n kwargs.get('grid_district_geom', True), background_map=kwargs.\n get('background_map', True), xlim=kwargs.get('xlim', None),\n ylim=kwargs.get('ylim', None), title=kwargs.get('title', ''))\n", "role": "user" }, { "content": "plot_mv_grid_topology", "role": "assistant" } ]
def x(self, **kwargs): if self.network.pypsa is not None: try: v_res = self.network.results.v_res() except: logging.warning( 'Voltages `pfa_v_mag_pu` from power flow analysis must be available to plot them.' ) return plots.mv_grid_topology(self.network.pypsa, self.network.config, timestep=kwargs.get('timestep', None), node_color='voltage', filename=kwargs.get('filename', None), grid_district_geom= kwargs.get('grid_district_geom', True), background_map=kwargs. get('background_map', True), voltage=v_res, limits_cb_nodes= kwargs.get('limits_cb_nodes', None), xlim=kwargs.get('xlim', None), ylim=kwargs.get('ylim', None), title=kwargs.get('title', '') ) else: logging.warning( 'pypsa representation of MV grid needed to plot voltages.')
plot_mv_voltages
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, **kwargs):\n if self.network.pypsa is not None:\n try:\n v_res = self.network.results.v_res()\n except:\n logging.warning(\n 'Voltages `pfa_v_mag_pu` from power flow analysis must be available to plot them.'\n )\n return\n plots.mv_grid_topology(self.network.pypsa, self.network.config,\n timestep=kwargs.get('timestep', None), node_color='voltage',\n filename=kwargs.get('filename', None), grid_district_geom=\n kwargs.get('grid_district_geom', True), background_map=kwargs.\n get('background_map', True), voltage=v_res, limits_cb_nodes=\n kwargs.get('limits_cb_nodes', None), xlim=kwargs.get('xlim',\n None), ylim=kwargs.get('ylim', None), title=kwargs.get('title', '')\n )\n else:\n logging.warning(\n 'pypsa representation of MV grid needed to plot voltages.')\n", "role": "user" }, { "content": "plot_mv_voltages", "role": "assistant" } ]
def x(self, **kwargs): if (self.network.pypsa is not None and self.network.results.i_res is not None): plots.mv_grid_topology(self.network.pypsa, self.network.config, timestep=kwargs.get('timestep', None), line_color='loading', node_color=kwargs.get('node_color', None), line_load=self. network.results.s_res(), filename=kwargs.get('filename', None), arrows=kwargs.get('arrows', None), grid_district_geom=kwargs. get('grid_district_geom', True), background_map=kwargs.get( 'background_map', True), voltage=self.network.results.v_res(), limits_cb_lines=kwargs.get('limits_cb_lines', None), limits_cb_nodes=kwargs.get('limits_cb_nodes', None), xlim= kwargs.get('xlim', None), ylim=kwargs.get('ylim', None), lines_cmap=kwargs.get('lines_cmap', 'inferno_r'), title=kwargs. get('title', ''), scaling_factor_line_width=kwargs.get( 'scaling_factor_line_width', None)) else: if self.network.pypsa is None: logging.warning( 'pypsa representation of MV grid needed to plot line loading.') if self.network.results.i_res is None: logging.warning( 'Currents `i_res` from power flow analysis must be available to plot line loading.' )
plot_mv_line_loading
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, **kwargs):\n if (self.network.pypsa is not None and self.network.results.i_res is not\n None):\n plots.mv_grid_topology(self.network.pypsa, self.network.config,\n timestep=kwargs.get('timestep', None), line_color='loading',\n node_color=kwargs.get('node_color', None), line_load=self.\n network.results.s_res(), filename=kwargs.get('filename', None),\n arrows=kwargs.get('arrows', None), grid_district_geom=kwargs.\n get('grid_district_geom', True), background_map=kwargs.get(\n 'background_map', True), voltage=self.network.results.v_res(),\n limits_cb_lines=kwargs.get('limits_cb_lines', None),\n limits_cb_nodes=kwargs.get('limits_cb_nodes', None), xlim=\n kwargs.get('xlim', None), ylim=kwargs.get('ylim', None),\n lines_cmap=kwargs.get('lines_cmap', 'inferno_r'), title=kwargs.\n get('title', ''), scaling_factor_line_width=kwargs.get(\n 'scaling_factor_line_width', None))\n else:\n if self.network.pypsa is None:\n logging.warning(\n 'pypsa representation of MV grid needed to plot line loading.')\n if self.network.results.i_res is None:\n logging.warning(\n 'Currents `i_res` from power flow analysis must be available to plot line loading.'\n )\n", "role": "user" }, { "content": "plot_mv_line_loading", "role": "assistant" } ]
def x(self, **kwargs): if (self.network.pypsa is not None and self.network.results. grid_expansion_costs is not None): if isinstance(self, EDisGo): grid_expansion_costs = (self.network.results. grid_expansion_costs.reset_index()) grid_expansion_costs['index'] = grid_expansion_costs['index' ].apply(lambda _: repr(_)) grid_expansion_costs.set_index('index', inplace=True) else: grid_expansion_costs = self.network.results.grid_expansion_costs plots.mv_grid_topology(self.network.pypsa, self.network.config, line_color='expansion_costs', grid_expansion_costs= grid_expansion_costs, filename=kwargs.get('filename', None), grid_district_geom=kwargs.get('grid_district_geom', True), background_map=kwargs.get('background_map', True), limits_cb_lines=kwargs.get('limits_cb_lines', None), xlim= kwargs.get('xlim', None), ylim=kwargs.get('ylim', None), lines_cmap=kwargs.get('lines_cmap', 'inferno_r'), title=kwargs. get('title', ''), scaling_factor_line_width=kwargs.get( 'scaling_factor_line_width', None)) else: if self.network.pypsa is None: logging.warning( 'pypsa representation of MV grid needed to plot grid expansion costs.' ) if self.network.results.grid_expansion_costs is None: logging.warning('Grid expansion cost results needed to plot them.')
plot_mv_grid_expansion_costs
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, **kwargs):\n if (self.network.pypsa is not None and self.network.results.\n grid_expansion_costs is not None):\n if isinstance(self, EDisGo):\n grid_expansion_costs = (self.network.results.\n grid_expansion_costs.reset_index())\n grid_expansion_costs['index'] = grid_expansion_costs['index'\n ].apply(lambda _: repr(_))\n grid_expansion_costs.set_index('index', inplace=True)\n else:\n grid_expansion_costs = self.network.results.grid_expansion_costs\n plots.mv_grid_topology(self.network.pypsa, self.network.config,\n line_color='expansion_costs', grid_expansion_costs=\n grid_expansion_costs, filename=kwargs.get('filename', None),\n grid_district_geom=kwargs.get('grid_district_geom', True),\n background_map=kwargs.get('background_map', True),\n limits_cb_lines=kwargs.get('limits_cb_lines', None), xlim=\n kwargs.get('xlim', None), ylim=kwargs.get('ylim', None),\n lines_cmap=kwargs.get('lines_cmap', 'inferno_r'), title=kwargs.\n get('title', ''), scaling_factor_line_width=kwargs.get(\n 'scaling_factor_line_width', None))\n else:\n if self.network.pypsa is None:\n logging.warning(\n 'pypsa representation of MV grid needed to plot grid expansion costs.'\n )\n if self.network.results.grid_expansion_costs is None:\n logging.warning('Grid expansion cost results needed to plot them.')\n", "role": "user" }, { "content": "plot_mv_grid_expansion_costs", "role": "assistant" } ]
def x(self, **kwargs): if self.network.pypsa is not None: plots.mv_grid_topology(self.network.pypsa, self.network.config, node_color='storage_integration', filename=kwargs.get( 'filename', None), grid_district_geom=kwargs.get( 'grid_district_geom', True), background_map=kwargs.get( 'background_map', True), xlim=kwargs.get('xlim', None), ylim= kwargs.get('ylim', None), title=kwargs.get('title', '')) elif self.network.pypsa is None: logging.warning( 'pypsa representation of MV grid needed to plot storage integration in MV grid.' )
plot_mv_storage_integration
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, **kwargs):\n if self.network.pypsa is not None:\n plots.mv_grid_topology(self.network.pypsa, self.network.config,\n node_color='storage_integration', filename=kwargs.get(\n 'filename', None), grid_district_geom=kwargs.get(\n 'grid_district_geom', True), background_map=kwargs.get(\n 'background_map', True), xlim=kwargs.get('xlim', None), ylim=\n kwargs.get('ylim', None), title=kwargs.get('title', ''))\n elif self.network.pypsa is None:\n logging.warning(\n 'pypsa representation of MV grid needed to plot storage integration in MV grid.'\n )\n", "role": "user" }, { "content": "plot_mv_storage_integration", "role": "assistant" } ]
def x(self, timestep=None, title=True, **kwargs): data = self.network.results.v_res() if title is True: if timestep is not None: title = 'Voltage histogram for time step {}'.format(timestep) else: title = 'Voltage histogram \nfor time steps {} to {}'.format(data .index[0], data.index[-1]) elif title is False: title = None plots.histogram(data=data, title=title, timeindex=timestep, **kwargs)
histogram_voltage
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, timestep=None, title=True, **kwargs):\n data = self.network.results.v_res()\n if title is True:\n if timestep is not None:\n title = 'Voltage histogram for time step {}'.format(timestep)\n else:\n title = 'Voltage histogram \\nfor time steps {} to {}'.format(data\n .index[0], data.index[-1])\n elif title is False:\n title = None\n plots.histogram(data=data, title=title, timeindex=timestep, **kwargs)\n", "role": "user" }, { "content": "histogram_voltage", "role": "assistant" } ]
def x(self, timestep=None, title=True, voltage_level='mv_lv', **kwargs): residual_load = tools.get_residual_load_from_pypsa_network(self.network .pypsa) case = residual_load.apply(lambda _: 'feedin_case' if _ < 0 else 'load_case') if timestep is not None: timeindex = [timestep] else: timeindex = self.network.results.s_res().index load_factor = pd.DataFrame(data={'s_nom': [float(self.network.config[ 'grid_expansion_load_factors']['mv_{}_line'.format(case.loc[_])]) for _ in timeindex]}, index=timeindex) if voltage_level == 'mv': lines = self.network.pypsa.lines.loc[self.network.pypsa.lines.v_nom > 1 ] elif voltage_level == 'lv': lines = self.network.pypsa.lines.loc[self.network.pypsa.lines.v_nom < 1 ] else: lines = self.network.pypsa.lines s_res = self.network.results.s_res().loc[timeindex, lines.index] s_allowed = load_factor.dot(self.network.pypsa.lines.s_nom.to_frame().T * 1000.0) data = s_res.divide(s_allowed) if title is True: if timestep is not None: title = 'Relative line load histogram for time step {}'.format( timestep) else: title = ('Relative line load histogram \nfor time steps {} to {}' .format(data.index[0], data.index[-1])) elif title is False: title = None plots.histogram(data=data, title=title, **kwargs)
histogram_relative_line_load
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, timestep=None, title=True, voltage_level='mv_lv', **kwargs):\n residual_load = tools.get_residual_load_from_pypsa_network(self.network\n .pypsa)\n case = residual_load.apply(lambda _: 'feedin_case' if _ < 0 else\n 'load_case')\n if timestep is not None:\n timeindex = [timestep]\n else:\n timeindex = self.network.results.s_res().index\n load_factor = pd.DataFrame(data={'s_nom': [float(self.network.config[\n 'grid_expansion_load_factors']['mv_{}_line'.format(case.loc[_])]) for\n _ in timeindex]}, index=timeindex)\n if voltage_level == 'mv':\n lines = self.network.pypsa.lines.loc[self.network.pypsa.lines.v_nom > 1\n ]\n elif voltage_level == 'lv':\n lines = self.network.pypsa.lines.loc[self.network.pypsa.lines.v_nom < 1\n ]\n else:\n lines = self.network.pypsa.lines\n s_res = self.network.results.s_res().loc[timeindex, lines.index]\n s_allowed = load_factor.dot(self.network.pypsa.lines.s_nom.to_frame().T *\n 1000.0)\n data = s_res.divide(s_allowed)\n if title is True:\n if timestep is not None:\n title = 'Relative line load histogram for time step {}'.format(\n timestep)\n else:\n title = ('Relative line load histogram \\nfor time steps {} to {}'\n .format(data.index[0], data.index[-1]))\n elif title is False:\n title = None\n plots.histogram(data=data, title=title, **kwargs)\n", "role": "user" }, { "content": "histogram_relative_line_load", "role": "assistant" } ]
def x(self, methodology, curtailment_timeseries, **kwargs): CurtailmentControl(edisgo=self, methodology=methodology, curtailment_timeseries=curtailment_timeseries, **kwargs)
curtail
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, methodology, curtailment_timeseries, **kwargs):\n CurtailmentControl(edisgo=self, methodology=methodology,\n curtailment_timeseries=curtailment_timeseries, **kwargs)\n", "role": "user" }, { "content": "curtail", "role": "assistant" } ]
def x(self, file, **kwargs): import_from_ding0(file=file, network=self.network)
import_from_ding0
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, file, **kwargs):\n import_from_ding0(file=file, network=self.network)\n", "role": "user" }, { "content": "import_from_ding0", "role": "assistant" } ]
def x(self, generator_scenario=None): if generator_scenario: self.network.generator_scenario = generator_scenario data_source = 'oedb' import_generators(network=self.network, data_source=data_source)
import_generators
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, generator_scenario=None):\n if generator_scenario:\n self.network.generator_scenario = generator_scenario\n data_source = 'oedb'\n import_generators(network=self.network, data_source=data_source)\n", "role": "user" }, { "content": "import_generators", "role": "assistant" } ]
def x(self, mode=None, timesteps=None): if timesteps is None: timesteps = self.network.timeseries.timeindex if not hasattr(timesteps, '__len__'): timesteps = [timesteps] if self.network.pypsa is None: self.network.pypsa = pypsa_io.to_pypsa(self.network, mode, timesteps) elif self.network.pypsa.edisgo_mode is not mode: self.network.pypsa = pypsa_io.to_pypsa(self.network, mode, timesteps) if False in [(True if _ in self.network.pypsa.snapshots else False) for _ in timesteps]: pypsa_io.update_pypsa_timeseries(self.network, timesteps=timesteps) pf_results = self.network.pypsa.pf(timesteps) if all(pf_results['converged']['0'].tolist()): pypsa_io.process_pfa_results(self.network, self.network.pypsa, timesteps) else: raise ValueError('Power flow analysis did not converge.')
analyze
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, mode=None, timesteps=None):\n if timesteps is None:\n timesteps = self.network.timeseries.timeindex\n if not hasattr(timesteps, '__len__'):\n timesteps = [timesteps]\n if self.network.pypsa is None:\n self.network.pypsa = pypsa_io.to_pypsa(self.network, mode, timesteps)\n elif self.network.pypsa.edisgo_mode is not mode:\n self.network.pypsa = pypsa_io.to_pypsa(self.network, mode, timesteps)\n if False in [(True if _ in self.network.pypsa.snapshots else False) for\n _ in timesteps]:\n pypsa_io.update_pypsa_timeseries(self.network, timesteps=timesteps)\n pf_results = self.network.pypsa.pf(timesteps)\n if all(pf_results['converged']['0'].tolist()):\n pypsa_io.process_pfa_results(self.network, self.network.pypsa,\n timesteps)\n else:\n raise ValueError('Power flow analysis did not converge.')\n", "role": "user" }, { "content": "analyze", "role": "assistant" } ]
def x(self, mode=None, timesteps=None, etrago_max_storage_size=None): if timesteps is None: timesteps = self.network.timeseries.timeindex if not hasattr(timesteps, '__len__'): timesteps = [timesteps] logging.debug( 'Translate eDisGo grid topology representation to PyPSA format.') self.network.pypsa_lopf = pypsa_io_lopf.to_pypsa(self.network, mode, timesteps) logging.debug( 'Translating eDisGo grid topology representation to PyPSA format finished.' ) def x(network, snapshots): model = network.model model.storages_p_nom = Constraint(rule=lambda model: sum(model. generator_p_nom[s] for s in self.network.pypsa_lopf.generators[ self.network.pypsa_lopf.generators.type == 'Storage'].index) <= etrago_max_storage_size) self.network.pypsa_lopf.lopf(snapshots=timesteps, solver_name='cbc', keep_files=False, extra_functionality=extra_functionality, solver_options={'tee': True}) print('objective: {}'.format(self.network.pypsa_lopf.objective)) plots.storage_size(self.network.mv_grid, self.network.pypsa_lopf, filename='storage_results_{}.pdf'.format(self.network.id)) storages = self.network.mv_grid.graph.nodes_by_attribute('storage') storages_repr = [repr(_) for _ in storages] print('Installed storage capacity: {} MW'.format(self.network. pypsa_lopf.generators.loc[storages_repr, 'p_nom_opt'].sum())) pypsa_storages_df = self.network.pypsa_lopf.generators.loc[storages_repr, : ].sort_values(by=['p_nom_opt'], ascending=False) storage_repr = [] storage_path = [] for s in storages: storage_repr.append(repr(s)) storage_path.append(nx.shortest_path(self.network.mv_grid.graph, self.network.mv_grid.station, s)) graph_storages_df = pd.DataFrame({'path': storage_path}, index=storage_repr ) pypsa_storages_df.join(graph_storages_df).to_csv('storage_results_{}.csv' .format(self.network.id)) keep_storages = pypsa_storages_df.iloc[:8, :].index remove_storages = pypsa_storages_df.iloc[8:, :].index for s in keep_storages: keep_storage_obj = [_ for _ in storages if repr(_) == s][0] ts = self.network.pypsa_lopf.generators_t.p.loc[:, s] keep_storage_obj.timeseries = pd.DataFrame({'p': ts * 1000, 'q': [0 ] * len(ts)}, index=ts.index) for s in remove_storages: disconnect_storage(self.network, [_ for _ in storages if repr(_) == s][0])
analyze_lopf
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, mode=None, timesteps=None, etrago_max_storage_size=None):\n if timesteps is None:\n timesteps = self.network.timeseries.timeindex\n if not hasattr(timesteps, '__len__'):\n timesteps = [timesteps]\n logging.debug(\n 'Translate eDisGo grid topology representation to PyPSA format.')\n self.network.pypsa_lopf = pypsa_io_lopf.to_pypsa(self.network, mode,\n timesteps)\n logging.debug(\n 'Translating eDisGo grid topology representation to PyPSA format finished.'\n )\n\n def x(network, snapshots):\n model = network.model\n model.storages_p_nom = Constraint(rule=lambda model: sum(model.\n generator_p_nom[s] for s in self.network.pypsa_lopf.generators[\n self.network.pypsa_lopf.generators.type == 'Storage'].index) <=\n etrago_max_storage_size)\n self.network.pypsa_lopf.lopf(snapshots=timesteps, solver_name='cbc',\n keep_files=False, extra_functionality=extra_functionality,\n solver_options={'tee': True})\n print('objective: {}'.format(self.network.pypsa_lopf.objective))\n plots.storage_size(self.network.mv_grid, self.network.pypsa_lopf,\n filename='storage_results_{}.pdf'.format(self.network.id))\n storages = self.network.mv_grid.graph.nodes_by_attribute('storage')\n storages_repr = [repr(_) for _ in storages]\n print('Installed storage capacity: {} MW'.format(self.network.\n pypsa_lopf.generators.loc[storages_repr, 'p_nom_opt'].sum()))\n pypsa_storages_df = self.network.pypsa_lopf.generators.loc[storages_repr, :\n ].sort_values(by=['p_nom_opt'], ascending=False)\n storage_repr = []\n storage_path = []\n for s in storages:\n storage_repr.append(repr(s))\n storage_path.append(nx.shortest_path(self.network.mv_grid.graph,\n self.network.mv_grid.station, s))\n graph_storages_df = pd.DataFrame({'path': storage_path}, index=storage_repr\n )\n pypsa_storages_df.join(graph_storages_df).to_csv('storage_results_{}.csv'\n .format(self.network.id))\n keep_storages = pypsa_storages_df.iloc[:8, :].index\n remove_storages = pypsa_storages_df.iloc[8:, :].index\n for s in keep_storages:\n keep_storage_obj = [_ for _ in storages if repr(_) == s][0]\n ts = self.network.pypsa_lopf.generators_t.p.loc[:, s]\n keep_storage_obj.timeseries = pd.DataFrame({'p': ts * 1000, 'q': [0\n ] * len(ts)}, index=ts.index)\n for s in remove_storages:\n disconnect_storage(self.network, [_ for _ in storages if repr(_) ==\n s][0])\n", "role": "user" }, { "content": "analyze_lopf", "role": "assistant" } ]
def x(self, **kwargs): results = reinforce_grid(self, max_while_iterations=kwargs.get( 'max_while_iterations', 10), copy_graph=kwargs.get('copy_graph', False), timesteps_pfa=kwargs.get('timesteps_pfa', None), combined_analysis=kwargs.get('combined_analysis', False)) if not kwargs.get('copy_graph', False): self.network.results.measures = 'grid_expansion' return results
reinforce
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, **kwargs):\n results = reinforce_grid(self, max_while_iterations=kwargs.get(\n 'max_while_iterations', 10), copy_graph=kwargs.get('copy_graph', \n False), timesteps_pfa=kwargs.get('timesteps_pfa', None),\n combined_analysis=kwargs.get('combined_analysis', False))\n if not kwargs.get('copy_graph', False):\n self.network.results.measures = 'grid_expansion'\n return results\n", "role": "user" }, { "content": "reinforce", "role": "assistant" } ]
def x(self, timeseries, position, **kwargs): StorageControl(edisgo=self, timeseries=timeseries, position=position, **kwargs)
integrate_storage
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, timeseries, position, **kwargs):\n StorageControl(edisgo=self, timeseries=timeseries, position=position,\n **kwargs)\n", "role": "user" }, { "content": "integrate_storage", "role": "assistant" } ]
def x(self): package_path = edisgo.__path__[0] equipment_dir = self.config['system_dirs']['equipment_dir'] data = {} equipment = {'mv': ['trafos', 'lines', 'cables'], 'lv': ['trafos', 'cables']} for voltage_level, eq_list in equipment.items(): for i in eq_list: equipment_parameters = self.config['equipment'][ 'equipment_{}_parameters_{}'.format(voltage_level, i)] data['{}_{}'.format(voltage_level, i)] = pd.read_csv(os.path. join(package_path, equipment_dir, equipment_parameters), comment='#', index_col='name', delimiter=',', decimal='.') return data
load_equipment_data
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n package_path = edisgo.__path__[0]\n equipment_dir = self.config['system_dirs']['equipment_dir']\n data = {}\n equipment = {'mv': ['trafos', 'lines', 'cables'], 'lv': ['trafos',\n 'cables']}\n for voltage_level, eq_list in equipment.items():\n for i in eq_list:\n equipment_parameters = self.config['equipment'][\n 'equipment_{}_parameters_{}'.format(voltage_level, i)]\n data['{}_{}'.format(voltage_level, i)] = pd.read_csv(os.path.\n join(package_path, equipment_dir, equipment_parameters),\n comment='#', index_col='name', delimiter=',', decimal='.')\n return data\n", "role": "user" }, { "content": "load_equipment_data", "role": "assistant" } ]
def x(config_path=None): config_files = ['config_db_tables', 'config_grid', 'config_grid_expansion', 'config_timeseries'] if isinstance(config_path, dict): for conf in config_files: config.load_config(filename='{}.cfg'.format(conf), config_dir= config_path[conf], copy_default_config=False) else: for conf in config_files: config.load_config(filename='{}.cfg'.format(conf), config_dir= config_path) config_dict = config.cfg._sections for sec, subsecs in config_dict.items(): for subsec, val in subsecs.items(): try: config_dict[sec][subsec] = float(val) except: pass config_dict['demandlib']['day_start'] = datetime.datetime.strptime( config_dict['demandlib']['day_start'], '%H:%M') config_dict['demandlib']['day_start'] = datetime.time(config_dict[ 'demandlib']['day_start'].hour, config_dict['demandlib'][ 'day_start'].minute) config_dict['demandlib']['day_end'] = datetime.datetime.strptime( config_dict['demandlib']['day_end'], '%H:%M') config_dict['demandlib']['day_end'] = datetime.time(config_dict[ 'demandlib']['day_end'].hour, config_dict['demandlib']['day_end']. minute) return config_dict
load_config
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(config_path=None):\n config_files = ['config_db_tables', 'config_grid',\n 'config_grid_expansion', 'config_timeseries']\n if isinstance(config_path, dict):\n for conf in config_files:\n config.load_config(filename='{}.cfg'.format(conf), config_dir=\n config_path[conf], copy_default_config=False)\n else:\n for conf in config_files:\n config.load_config(filename='{}.cfg'.format(conf), config_dir=\n config_path)\n config_dict = config.cfg._sections\n for sec, subsecs in config_dict.items():\n for subsec, val in subsecs.items():\n try:\n config_dict[sec][subsec] = float(val)\n except:\n pass\n config_dict['demandlib']['day_start'] = datetime.datetime.strptime(\n config_dict['demandlib']['day_start'], '%H:%M')\n config_dict['demandlib']['day_start'] = datetime.time(config_dict[\n 'demandlib']['day_start'].hour, config_dict['demandlib'][\n 'day_start'].minute)\n config_dict['demandlib']['day_end'] = datetime.datetime.strptime(\n config_dict['demandlib']['day_end'], '%H:%M')\n config_dict['demandlib']['day_end'] = datetime.time(config_dict[\n 'demandlib']['day_end'].hour, config_dict['demandlib']['day_end'].\n minute)\n return config_dict\n", "role": "user" }, { "content": "load_config", "role": "assistant" } ]
def x(self): try: self.timeseries.generation_fluctuating self.timeseries.generation_dispatchable self.timeseries.load self.timeseries.generation_reactive_power self.timeseries.load_reactive_power except: message = 'Time index of feed-in and load time series does not match.' logging.error(message) raise KeyError(message)
check_timeindex
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n try:\n self.timeseries.generation_fluctuating\n self.timeseries.generation_dispatchable\n self.timeseries.load\n self.timeseries.generation_reactive_power\n self.timeseries.load_reactive_power\n except:\n message = 'Time index of feed-in and load time series does not match.'\n logging.error(message)\n raise KeyError(message)\n", "role": "user" }, { "content": "check_timeindex", "role": "assistant" } ]
def x(self, worst_case_scale_factors, modes): self.timeseries.generation_fluctuating = pd.DataFrame({'solar': [ worst_case_scale_factors['{}_feedin_pv'.format(mode)] for mode in modes], 'wind': [worst_case_scale_factors['{}_feedin_other'.format( mode)] for mode in modes]}, index=self.timeseries.timeindex) self.timeseries.generation_dispatchable = pd.DataFrame({'other': [ worst_case_scale_factors['{}_feedin_other'.format(mode)] for mode in modes]}, index=self.timeseries.timeindex)
worst_case_generation
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, worst_case_scale_factors, modes):\n self.timeseries.generation_fluctuating = pd.DataFrame({'solar': [\n worst_case_scale_factors['{}_feedin_pv'.format(mode)] for mode in\n modes], 'wind': [worst_case_scale_factors['{}_feedin_other'.format(\n mode)] for mode in modes]}, index=self.timeseries.timeindex)\n self.timeseries.generation_dispatchable = pd.DataFrame({'other': [\n worst_case_scale_factors['{}_feedin_other'.format(mode)] for mode in\n modes]}, index=self.timeseries.timeindex)\n", "role": "user" }, { "content": "worst_case_generation", "role": "assistant" } ]
def x(self, worst_case_scale_factors, peakload_consumption_ratio, modes): sectors = ['residential', 'retail', 'industrial', 'agricultural'] lv_power_scaling = np.array([worst_case_scale_factors['lv_{}_load'. format(mode)] for mode in modes]) mv_power_scaling = np.array([worst_case_scale_factors['mv_{}_load'. format(mode)] for mode in modes]) lv = {(sector, 'lv'): (peakload_consumption_ratio[sector] * lv_power_scaling) for sector in sectors} mv = {(sector, 'mv'): (peakload_consumption_ratio[sector] * mv_power_scaling) for sector in sectors} self.timeseries.load = pd.DataFrame({**lv, **mv}, index=self.timeseries .timeindex)
worst_case_load
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, worst_case_scale_factors, peakload_consumption_ratio, modes):\n sectors = ['residential', 'retail', 'industrial', 'agricultural']\n lv_power_scaling = np.array([worst_case_scale_factors['lv_{}_load'.\n format(mode)] for mode in modes])\n mv_power_scaling = np.array([worst_case_scale_factors['mv_{}_load'.\n format(mode)] for mode in modes])\n lv = {(sector, 'lv'): (peakload_consumption_ratio[sector] *\n lv_power_scaling) for sector in sectors}\n mv = {(sector, 'mv'): (peakload_consumption_ratio[sector] *\n mv_power_scaling) for sector in sectors}\n self.timeseries.load = pd.DataFrame({**lv, **mv}, index=self.timeseries\n .timeindex)\n", "role": "user" }, { "content": "worst_case_load", "role": "assistant" } ]
def x(self, curtailment_timeseries, network): if curtailment_timeseries is None: message = 'No curtailment given.' logging.error(message) raise KeyError(message) try: curtailment_timeseries.loc[network.timeseries.timeindex] except: message = ( 'Time index of curtailment time series does not match with load and feed-in time series.' ) logging.error(message) raise KeyError(message)
check_timeindex
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, curtailment_timeseries, network):\n if curtailment_timeseries is None:\n message = 'No curtailment given.'\n logging.error(message)\n raise KeyError(message)\n try:\n curtailment_timeseries.loc[network.timeseries.timeindex]\n except:\n message = (\n 'Time index of curtailment time series does not match with load and feed-in time series.'\n )\n logging.error(message)\n raise KeyError(message)\n", "role": "user" }, { "content": "check_timeindex", "role": "assistant" } ]
def x(self, curtailment_timeseries, feedin_df, curtailment_key): if not feedin_df.empty: feedin_selected_sum = feedin_df.sum(axis=1) diff = feedin_selected_sum - curtailment_timeseries diff[diff.between(-1, 0)] = 0 if not (diff >= 0).all(): bad_time_steps = [_ for _ in diff.index if diff[_] < 0] message = ( 'Curtailment demand exceeds total feed-in in time steps {}.' .format(bad_time_steps)) logging.error(message) raise ValueError(message) else: bad_time_steps = [_ for _ in curtailment_timeseries.index if curtailment_timeseries[_] > 0] if bad_time_steps: message = ( 'Curtailment given for time steps {} but there are no generators to meet the curtailment target for {}.' .format(bad_time_steps, curtailment_key)) logging.error(message) raise ValueError(message)
precheck
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, curtailment_timeseries, feedin_df, curtailment_key):\n if not feedin_df.empty:\n feedin_selected_sum = feedin_df.sum(axis=1)\n diff = feedin_selected_sum - curtailment_timeseries\n diff[diff.between(-1, 0)] = 0\n if not (diff >= 0).all():\n bad_time_steps = [_ for _ in diff.index if diff[_] < 0]\n message = (\n 'Curtailment demand exceeds total feed-in in time steps {}.'\n .format(bad_time_steps))\n logging.error(message)\n raise ValueError(message)\n else:\n bad_time_steps = [_ for _ in curtailment_timeseries.index if \n curtailment_timeseries[_] > 0]\n if bad_time_steps:\n message = (\n 'Curtailment given for time steps {} but there are no generators to meet the curtailment target for {}.'\n .format(bad_time_steps, curtailment_key))\n logging.error(message)\n raise ValueError(message)\n", "role": "user" }, { "content": "precheck", "role": "assistant" } ]
def x(self, network, feedin): curtailment = network.timeseries.curtailment gen_repr = [repr(_) for _ in curtailment.columns] feedin_repr = feedin.loc[:, gen_repr] curtailment_repr = curtailment curtailment_repr.columns = gen_repr if not (feedin_repr - curtailment_repr > -0.1).all().all(): message = 'Curtailment exceeds feed-in.' logging.error(message) raise TypeError(message)
postcheck
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, network, feedin):\n curtailment = network.timeseries.curtailment\n gen_repr = [repr(_) for _ in curtailment.columns]\n feedin_repr = feedin.loc[:, gen_repr]\n curtailment_repr = curtailment\n curtailment_repr.columns = gen_repr\n if not (feedin_repr - curtailment_repr > -0.1).all().all():\n message = 'Curtailment exceeds feed-in.'\n logging.error(message)\n raise TypeError(message)\n", "role": "user" }, { "content": "postcheck", "role": "assistant" } ]
def x(self, timeseries, position, params, voltage_level, reactive_power_timeseries, **kwargs): params = self._check_nominal_power(params, timeseries) if isinstance(position, Station) or isinstance(position, BranchTee ) or isinstance(position, Generator) or isinstance(position, Load): storage = storage_integration.set_up_storage(node=position, parameters=params, voltage_level=voltage_level) line = storage_integration.connect_storage(storage, position) elif isinstance(position, str) and position == 'hvmv_substation_busbar': storage, line = storage_integration.storage_at_hvmv_substation(self .edisgo.network.mv_grid, params) elif isinstance(position, str) and position == 'distribute_storages_mv': if not isinstance(timeseries, pd.Series): raise ValueError( "Storage time series needs to be a pandas Series if `position` is 'distribute_storages_mv'." ) else: timeseries = pd.DataFrame(data={'p': timeseries}, index= timeseries.index) self._check_timeindex(timeseries) if reactive_power_timeseries is not None: self._check_timeindex(reactive_power_timeseries) timeseries['q'] = reactive_power_timeseries.loc[timeseries.index] else: timeseries['q'] = 0 storage_positioning.one_storage_per_feeder(edisgo=self.edisgo, storage_timeseries=timeseries, storage_nominal_power=params[ 'nominal_power'], **kwargs) return else: message = 'Provided storage position option {} is not valid.'.format( timeseries) logging.error(message) raise KeyError(message) if isinstance(timeseries, pd.Series): timeseries = pd.DataFrame(data={'p': timeseries}, index=timeseries. index) self._check_timeindex(timeseries) storage.timeseries = timeseries elif isinstance(timeseries, str) and timeseries == 'fifty-fifty': storage_operation.fifty_fifty(self.edisgo.network, storage) else: message = 'Provided storage timeseries option {} is not valid.'.format( timeseries) logging.error(message) raise KeyError(message) if reactive_power_timeseries is not None: self._check_timeindex(reactive_power_timeseries) storage.timeseries = pd.DataFrame({'p': storage.timeseries.p, 'q': reactive_power_timeseries.loc[storage.timeseries.index]}, index =storage.timeseries.index) if self.edisgo.network.pypsa is not None: pypsa_io.update_pypsa_storage(self.edisgo.network.pypsa, storages=[ storage], storages_lines=[line])
integrate_storage
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, timeseries, position, params, voltage_level,\n reactive_power_timeseries, **kwargs):\n params = self._check_nominal_power(params, timeseries)\n if isinstance(position, Station) or isinstance(position, BranchTee\n ) or isinstance(position, Generator) or isinstance(position, Load):\n storage = storage_integration.set_up_storage(node=position,\n parameters=params, voltage_level=voltage_level)\n line = storage_integration.connect_storage(storage, position)\n elif isinstance(position, str) and position == 'hvmv_substation_busbar':\n storage, line = storage_integration.storage_at_hvmv_substation(self\n .edisgo.network.mv_grid, params)\n elif isinstance(position, str) and position == 'distribute_storages_mv':\n if not isinstance(timeseries, pd.Series):\n raise ValueError(\n \"Storage time series needs to be a pandas Series if `position` is 'distribute_storages_mv'.\"\n )\n else:\n timeseries = pd.DataFrame(data={'p': timeseries}, index=\n timeseries.index)\n self._check_timeindex(timeseries)\n if reactive_power_timeseries is not None:\n self._check_timeindex(reactive_power_timeseries)\n timeseries['q'] = reactive_power_timeseries.loc[timeseries.index]\n else:\n timeseries['q'] = 0\n storage_positioning.one_storage_per_feeder(edisgo=self.edisgo,\n storage_timeseries=timeseries, storage_nominal_power=params[\n 'nominal_power'], **kwargs)\n return\n else:\n message = 'Provided storage position option {} is not valid.'.format(\n timeseries)\n logging.error(message)\n raise KeyError(message)\n if isinstance(timeseries, pd.Series):\n timeseries = pd.DataFrame(data={'p': timeseries}, index=timeseries.\n index)\n self._check_timeindex(timeseries)\n storage.timeseries = timeseries\n elif isinstance(timeseries, str) and timeseries == 'fifty-fifty':\n storage_operation.fifty_fifty(self.edisgo.network, storage)\n else:\n message = 'Provided storage timeseries option {} is not valid.'.format(\n timeseries)\n logging.error(message)\n raise KeyError(message)\n if reactive_power_timeseries is not None:\n self._check_timeindex(reactive_power_timeseries)\n storage.timeseries = pd.DataFrame({'p': storage.timeseries.p, 'q':\n reactive_power_timeseries.loc[storage.timeseries.index]}, index\n =storage.timeseries.index)\n if self.edisgo.network.pypsa is not None:\n pypsa_io.update_pypsa_storage(self.edisgo.network.pypsa, storages=[\n storage], storages_lines=[line])\n", "role": "user" }, { "content": "integrate_storage", "role": "assistant" } ]
def x(self, storage_parameters, timeseries): if storage_parameters.get('nominal_power', None) is None: try: storage_parameters['nominal_power'] = max(abs(timeseries)) except: raise ValueError( 'Could not assign a nominal power to the storage. Please provide either a nominal power or an active power time series.' ) return storage_parameters
check_nominal_power
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, storage_parameters, timeseries):\n if storage_parameters.get('nominal_power', None) is None:\n try:\n storage_parameters['nominal_power'] = max(abs(timeseries))\n except:\n raise ValueError(\n 'Could not assign a nominal power to the storage. Please provide either a nominal power or an active power time series.'\n )\n return storage_parameters\n", "role": "user" }, { "content": "check_nominal_power", "role": "assistant" } ]
def x(self, timeseries): try: timeseries.loc[self.edisgo.network.timeseries.timeindex] except: message = ( 'Time index of storage time series does not match with load and feed-in time series.' ) logging.error(message) raise KeyError(message)
check_timeindex
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, timeseries):\n try:\n timeseries.loc[self.edisgo.network.timeseries.timeindex]\n except:\n message = (\n 'Time index of storage time series does not match with load and feed-in time series.'\n )\n logging.error(message)\n raise KeyError(message)\n", "role": "user" }, { "content": "check_timeindex", "role": "assistant" } ]
def x(self): try: return self._generation_dispatchable.loc[[self.timeindex], :] except: return self._generation_dispatchable.loc[self.timeindex, :]
generation_dispatchable
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n try:\n return self._generation_dispatchable.loc[[self.timeindex], :]\n except:\n return self._generation_dispatchable.loc[self.timeindex, :]\n", "role": "user" }, { "content": "generation_dispatchable", "role": "assistant" } ]
def x(self): try: return self._generation_fluctuating.loc[[self.timeindex], :] except: return self._generation_fluctuating.loc[self.timeindex, :]
generation_fluctuating
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n try:\n return self._generation_fluctuating.loc[[self.timeindex], :]\n except:\n return self._generation_fluctuating.loc[self.timeindex, :]\n", "role": "user" }, { "content": "generation_fluctuating", "role": "assistant" } ]
def x(self): try: return self._load.loc[[self.timeindex], :] except: return self._load.loc[self.timeindex, :]
load
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n try:\n return self._load.loc[[self.timeindex], :]\n except:\n return self._load.loc[self.timeindex, :]\n", "role": "user" }, { "content": "load", "role": "assistant" } ]
def x(self): if self._curtailment is not None: if isinstance(self._curtailment, pd.DataFrame): try: return self._curtailment.loc[[self.timeindex], :] except: return self._curtailment.loc[self.timeindex, :] elif isinstance(self._curtailment, list): try: curtailment = pd.DataFrame() for gen in self._curtailment: curtailment[gen] = gen.curtailment return curtailment except: raise else: return None
curtailment
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self._curtailment is not None:\n if isinstance(self._curtailment, pd.DataFrame):\n try:\n return self._curtailment.loc[[self.timeindex], :]\n except:\n return self._curtailment.loc[self.timeindex, :]\n elif isinstance(self._curtailment, list):\n try:\n curtailment = pd.DataFrame()\n for gen in self._curtailment:\n curtailment[gen] = gen.curtailment\n return curtailment\n except:\n raise\n else:\n return None\n", "role": "user" }, { "content": "curtailment", "role": "assistant" } ]
def x(self): if self._curtailment is not None: result_dict = {} for key, gen_list in self._curtailment.items(): curtailment_df = pd.DataFrame() for gen in gen_list: curtailment_df[gen] = gen.curtailment result_dict[key] = curtailment_df return result_dict else: return None
curtailment
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self._curtailment is not None:\n result_dict = {}\n for key, gen_list in self._curtailment.items():\n curtailment_df = pd.DataFrame()\n for gen in gen_list:\n curtailment_df[gen] = gen.curtailment\n result_dict[key] = curtailment_df\n return result_dict\n else:\n return None\n", "role": "user" }, { "content": "curtailment", "role": "assistant" } ]
def x(self): grids = [self.network.mv_grid] + list(self.network.mv_grid.lv_grids) storage_results = {} storage_results['storage_id'] = [] storage_results['nominal_power'] = [] storage_results['voltage_level'] = [] storage_results['grid_connection_point'] = [] for grid in grids: for storage in grid.graph.nodes_by_attribute('storage'): storage_results['storage_id'].append(repr(storage)) storage_results['nominal_power'].append(storage.nominal_power) storage_results['voltage_level'].append('mv' if isinstance(grid, MVGrid) else 'lv') storage_results['grid_connection_point'].append(grid.graph. neighbors(storage)[0]) return pd.DataFrame(storage_results).set_index('storage_id')
storages
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n grids = [self.network.mv_grid] + list(self.network.mv_grid.lv_grids)\n storage_results = {}\n storage_results['storage_id'] = []\n storage_results['nominal_power'] = []\n storage_results['voltage_level'] = []\n storage_results['grid_connection_point'] = []\n for grid in grids:\n for storage in grid.graph.nodes_by_attribute('storage'):\n storage_results['storage_id'].append(repr(storage))\n storage_results['nominal_power'].append(storage.nominal_power)\n storage_results['voltage_level'].append('mv' if isinstance(grid,\n MVGrid) else 'lv')\n storage_results['grid_connection_point'].append(grid.graph.\n neighbors(storage)[0])\n return pd.DataFrame(storage_results).set_index('storage_id')\n", "role": "user" }, { "content": "storages", "role": "assistant" } ]
def x(self): storages_p = pd.DataFrame() storages_q = pd.DataFrame() grids = [self.network.mv_grid] + list(self.network.mv_grid.lv_grids) for grid in grids: for storage in grid.graph.nodes_by_attribute('storage'): ts = storage.timeseries storages_p[repr(storage)] = ts.p storages_q[repr(storage)] = ts.q return storages_p, storages_q
storages_timeseries
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n storages_p = pd.DataFrame()\n storages_q = pd.DataFrame()\n grids = [self.network.mv_grid] + list(self.network.mv_grid.lv_grids)\n for grid in grids:\n for storage in grid.graph.nodes_by_attribute('storage'):\n ts = storage.timeseries\n storages_p[repr(storage)] = ts.p\n storages_q[repr(storage)] = ts.q\n return storages_p, storages_q\n", "role": "user" }, { "content": "storages_timeseries", "role": "assistant" } ]
def x(self, components=None): if components is not None: labels_included = [] labels_not_included = [] labels = [repr(l) for l in components] for label in labels: if label in list(self.pfa_p.columns) and label in list(self. pfa_q.columns): labels_included.append(label) else: labels_not_included.append(label) if labels_not_included: logging.warning( 'Apparent power for {lines} are not returned from PFA'. format(lines=labels_not_included)) else: labels_included = self.pfa_p.columns s_res = (self.pfa_p[labels_included] ** 2 + self.pfa_q[labels_included] ** 2).applymap(sqrt) return s_res
s_res
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, components=None):\n if components is not None:\n labels_included = []\n labels_not_included = []\n labels = [repr(l) for l in components]\n for label in labels:\n if label in list(self.pfa_p.columns) and label in list(self.\n pfa_q.columns):\n labels_included.append(label)\n else:\n labels_not_included.append(label)\n if labels_not_included:\n logging.warning(\n 'Apparent power for {lines} are not returned from PFA'.\n format(lines=labels_not_included))\n else:\n labels_included = self.pfa_p.columns\n s_res = (self.pfa_p[labels_included] ** 2 + self.pfa_q[labels_included] **\n 2).applymap(sqrt)\n return s_res\n", "role": "user" }, { "content": "s_res", "role": "assistant" } ]
def x(self, directory, parameters='all'): def x(target_dir): if self.pfa_v_mag_pu is not None: os.makedirs(target_dir, exist_ok=True) self.pfa_v_mag_pu.to_csv(os.path.join(target_dir, 'voltages_pu.csv')) self.i_res.to_csv(os.path.join(target_dir, 'currents.csv')) self.pfa_p.to_csv(os.path.join(target_dir, 'active_powers.csv')) self.pfa_q.to_csv(os.path.join(target_dir, 'reactive_powers.csv')) self.s_res().to_csv(os.path.join(target_dir, 'apparent_powers.csv') ) self.grid_losses.to_csv(os.path.join(target_dir, 'grid_losses.csv') ) self.hv_mv_exchanges.to_csv(os.path.join(target_dir, 'hv_mv_exchanges.csv')) def x(target_dir): if self.network.pypsa: os.makedirs(target_dir, exist_ok=True) self.network.pypsa.export_to_csv_folder(target_dir) def x(target_dir): if self.grid_expansion_costs is not None: os.makedirs(target_dir, exist_ok=True) self.grid_expansion_costs.to_csv(os.path.join(target_dir, 'grid_expansion_costs.csv')) pd.DataFrame(self.unresolved_issues).to_csv(os.path.join( target_dir, 'unresolved_issues.csv')) self.equipment_changes.to_csv(os.path.join(target_dir, 'equipment_changes.csv')) def x(target_dir): if self.curtailment is not None: os.makedirs(target_dir, exist_ok=True) for key, curtailment_df in self.curtailment.items(): if type(key) == tuple: type_prefix = '-'.join([key[0], str(key[1])]) elif type(key) == str: type_prefix = key else: raise KeyError('Unknown key type {} for key {}'.format( type(key), key)) filename = os.path.join(target_dir, '{}.csv'.format( type_prefix)) curtailment_df.to_csv(filename, index_label=type_prefix) def x(target_dir): storages = self.storages if not storages.empty: os.makedirs(target_dir, exist_ok=True) storages.to_csv(os.path.join(target_dir, 'storages.csv')) ts_p, ts_q = self.storages_timeseries() ts_p.to_csv(os.path.join(target_dir, 'storages_active_power.csv')) ts_q.to_csv(os.path.join(target_dir, 'storages_reactive_power.csv') ) if not self.storages_costs_reduction is None: self.storages_costs_reduction.to_csv(os.path.join( target_dir, 'storages_costs_reduction.csv')) func_dict = {'powerflow_results': _save_power_flow_results, 'pypsa_network': _save_pypsa_network, 'grid_expansion_results': _save_grid_expansion_results, 'curtailment_results': _save_curtailment_results, 'storage_integration_results': _save_storage_integration_results} if isinstance(parameters, str): if parameters == 'all': parameters = ['powerflow_results', 'pypsa_network', 'grid_expansion_results', 'curtailment_results', 'storage_integration_results'] else: parameters = [parameters] for parameter in parameters: try: func_dict[parameter](os.path.join(directory, parameter)) except KeyError: message = ( "Invalid input {} for `parameters` when saving results. Must be any or a list of the following: 'pypsa_network', 'powerflow_results', 'grid_expansion_results', 'curtailment_results', 'storage_integration_results'." .format(parameter)) logger.error(message) raise KeyError(message) except: raise pd.DataFrame(data={'measure': self.measures}).to_csv(os.path.join( directory, 'measures.csv')) with open(os.path.join(directory, 'configs.csv'), 'w') as f: writer = csv.writer(f) rows = [(['{}'.format(key)] + [value for item in values.items() for value in item]) for key, values in self.network.config._data. items()] writer.writerows(rows)
save
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, directory, parameters='all'):\n\n def x(target_dir):\n if self.pfa_v_mag_pu is not None:\n os.makedirs(target_dir, exist_ok=True)\n self.pfa_v_mag_pu.to_csv(os.path.join(target_dir,\n 'voltages_pu.csv'))\n self.i_res.to_csv(os.path.join(target_dir, 'currents.csv'))\n self.pfa_p.to_csv(os.path.join(target_dir, 'active_powers.csv'))\n self.pfa_q.to_csv(os.path.join(target_dir, 'reactive_powers.csv'))\n self.s_res().to_csv(os.path.join(target_dir, 'apparent_powers.csv')\n )\n self.grid_losses.to_csv(os.path.join(target_dir, 'grid_losses.csv')\n )\n self.hv_mv_exchanges.to_csv(os.path.join(target_dir,\n 'hv_mv_exchanges.csv'))\n\n def x(target_dir):\n if self.network.pypsa:\n os.makedirs(target_dir, exist_ok=True)\n self.network.pypsa.export_to_csv_folder(target_dir)\n\n def x(target_dir):\n if self.grid_expansion_costs is not None:\n os.makedirs(target_dir, exist_ok=True)\n self.grid_expansion_costs.to_csv(os.path.join(target_dir,\n 'grid_expansion_costs.csv'))\n pd.DataFrame(self.unresolved_issues).to_csv(os.path.join(\n target_dir, 'unresolved_issues.csv'))\n self.equipment_changes.to_csv(os.path.join(target_dir,\n 'equipment_changes.csv'))\n\n def x(target_dir):\n if self.curtailment is not None:\n os.makedirs(target_dir, exist_ok=True)\n for key, curtailment_df in self.curtailment.items():\n if type(key) == tuple:\n type_prefix = '-'.join([key[0], str(key[1])])\n elif type(key) == str:\n type_prefix = key\n else:\n raise KeyError('Unknown key type {} for key {}'.format(\n type(key), key))\n filename = os.path.join(target_dir, '{}.csv'.format(\n type_prefix))\n curtailment_df.to_csv(filename, index_label=type_prefix)\n\n def x(target_dir):\n storages = self.storages\n if not storages.empty:\n os.makedirs(target_dir, exist_ok=True)\n storages.to_csv(os.path.join(target_dir, 'storages.csv'))\n ts_p, ts_q = self.storages_timeseries()\n ts_p.to_csv(os.path.join(target_dir, 'storages_active_power.csv'))\n ts_q.to_csv(os.path.join(target_dir, 'storages_reactive_power.csv')\n )\n if not self.storages_costs_reduction is None:\n self.storages_costs_reduction.to_csv(os.path.join(\n target_dir, 'storages_costs_reduction.csv'))\n func_dict = {'powerflow_results': _save_power_flow_results,\n 'pypsa_network': _save_pypsa_network, 'grid_expansion_results':\n _save_grid_expansion_results, 'curtailment_results':\n _save_curtailment_results, 'storage_integration_results':\n _save_storage_integration_results}\n if isinstance(parameters, str):\n if parameters == 'all':\n parameters = ['powerflow_results', 'pypsa_network',\n 'grid_expansion_results', 'curtailment_results',\n 'storage_integration_results']\n else:\n parameters = [parameters]\n for parameter in parameters:\n try:\n func_dict[parameter](os.path.join(directory, parameter))\n except KeyError:\n message = (\n \"Invalid input {} for `parameters` when saving results. Must be any or a list of the following: 'pypsa_network', 'powerflow_results', 'grid_expansion_results', 'curtailment_results', 'storage_integration_results'.\"\n .format(parameter))\n logger.error(message)\n raise KeyError(message)\n except:\n raise\n pd.DataFrame(data={'measure': self.measures}).to_csv(os.path.join(\n directory, 'measures.csv'))\n with open(os.path.join(directory, 'configs.csv'), 'w') as f:\n writer = csv.writer(f)\n rows = [(['{}'.format(key)] + [value for item in values.items() for\n value in item]) for key, values in self.network.config._data.\n items()]\n writer.writerows(rows)\n", "role": "user" }, { "content": "save", "role": "assistant" } ]
def x(self, nodes=None, level=None): if hasattr(self, 'pfa_v_mag_pu'): self.pfa_v_mag_pu.sort_index(axis=1, inplace=True) else: message = 'No voltage results available.' raise AttributeError(message) if level is None: level = ['mv', 'lv'] if nodes is None: return self.pfa_v_mag_pu.loc[:, (level, slice(None))] else: not_included = [_ for _ in nodes if _ not in list(self.pfa_v_mag_pu [level].columns)] labels_included = [_ for _ in nodes if _ not in not_included] if not_included: logging.warning( 'Voltage levels for {nodes} are not returned from PFA'. format(nodes=not_included)) return self.pfa_v_mag_pu[level][labels_included]
v_res
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, nodes=None, level=None):\n if hasattr(self, 'pfa_v_mag_pu'):\n self.pfa_v_mag_pu.sort_index(axis=1, inplace=True)\n else:\n message = 'No voltage results available.'\n raise AttributeError(message)\n if level is None:\n level = ['mv', 'lv']\n if nodes is None:\n return self.pfa_v_mag_pu.loc[:, (level, slice(None))]\n else:\n not_included = [_ for _ in nodes if _ not in list(self.pfa_v_mag_pu\n [level].columns)]\n labels_included = [_ for _ in nodes if _ not in not_included]\n if not_included:\n logging.warning(\n 'Voltage levels for {nodes} are not returned from PFA'.\n format(nodes=not_included))\n return self.pfa_v_mag_pu[level][labels_included]\n", "role": "user" }, { "content": "v_res", "role": "assistant" } ]
def x(self, components=None): if components is None: return self.apparent_power else: not_included = [_ for _ in components if _ not in self. apparent_power.index] labels_included = [_ for _ in components if _ not in not_included] if not_included: logging.warning('No apparent power results available for: {}'. format(not_included)) return self.apparent_power.loc[:, labels_included]
s_res
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, components=None):\n if components is None:\n return self.apparent_power\n else:\n not_included = [_ for _ in components if _ not in self.\n apparent_power.index]\n labels_included = [_ for _ in components if _ not in not_included]\n if not_included:\n logging.warning('No apparent power results available for: {}'.\n format(not_included))\n return self.apparent_power.loc[:, labels_included]\n", "role": "user" }, { "content": "s_res", "role": "assistant" } ]
def x(mv_grid, parameters, mode=None): storage = set_up_storage(node=mv_grid.station, parameters=parameters, operational_mode=mode) line = connect_storage(storage, mv_grid.station) return storage, line
storage_at_hvmv_substation
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(mv_grid, parameters, mode=None):\n storage = set_up_storage(node=mv_grid.station, parameters=parameters,\n operational_mode=mode)\n line = connect_storage(storage, mv_grid.station)\n return storage, line\n", "role": "user" }, { "content": "storage_at_hvmv_substation", "role": "assistant" } ]
def x(node, parameters, voltage_level=None, operational_mode=None): if isinstance(node, LVStation): if voltage_level == 'lv': grid = node.grid elif voltage_level == 'mv': grid = node.mv_grid else: raise ValueError('{} is not a valid option for voltage_level.'. format(voltage_level)) else: grid = node.grid return Storage(operation=operational_mode, id='{}_storage_{}'.format( grid, len(grid.graph.nodes_by_attribute('storage')) + 1), grid=grid, geom=node.geom, **parameters)
set_up_storage
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(node, parameters, voltage_level=None, operational_mode=None):\n if isinstance(node, LVStation):\n if voltage_level == 'lv':\n grid = node.grid\n elif voltage_level == 'mv':\n grid = node.mv_grid\n else:\n raise ValueError('{} is not a valid option for voltage_level.'.\n format(voltage_level))\n else:\n grid = node.grid\n return Storage(operation=operational_mode, id='{}_storage_{}'.format(\n grid, len(grid.graph.nodes_by_attribute('storage')) + 1), grid=grid,\n geom=node.geom, **parameters)\n", "role": "user" }, { "content": "set_up_storage", "role": "assistant" } ]
def x(storage, node): storage.grid.graph.add_node(storage, type='storage') if isinstance(storage.grid, MVGrid): voltage_level = 'mv' else: voltage_level = 'lv' lf_dict = storage.grid.network.config['grid_expansion_load_factors'] lf = min(lf_dict['{}_feedin_case_line'.format(voltage_level)], lf_dict[ '{}_load_case_line'.format(voltage_level)]) apparent_power_line = sqrt(2) * storage.nominal_power / lf line_type, line_count = select_cable(storage.grid.network, voltage_level, apparent_power_line) line = Line(id=storage.id, type=line_type, kind='cable', length=0.001, grid=storage.grid, quantity=line_count) storage.grid.graph.add_edge(node, storage, line=line, type='line') return line
connect_storage
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(storage, node):\n storage.grid.graph.add_node(storage, type='storage')\n if isinstance(storage.grid, MVGrid):\n voltage_level = 'mv'\n else:\n voltage_level = 'lv'\n lf_dict = storage.grid.network.config['grid_expansion_load_factors']\n lf = min(lf_dict['{}_feedin_case_line'.format(voltage_level)], lf_dict[\n '{}_load_case_line'.format(voltage_level)])\n apparent_power_line = sqrt(2) * storage.nominal_power / lf\n line_type, line_count = select_cable(storage.grid.network,\n voltage_level, apparent_power_line)\n line = Line(id=storage.id, type=line_type, kind='cable', length=0.001,\n grid=storage.grid, quantity=line_count)\n storage.grid.graph.add_edge(node, storage, line=line, type='line')\n return line\n", "role": "user" }, { "content": "connect_storage", "role": "assistant" } ]
def x(self, log_fields: LogFields, call_details: Union[grpc. HandlerCallDetails, grpc.ClientCallDetails]): service, method = call_details.method[1:].split('/') log_fields.add_fields({'system': 'grpc', 'span.kind': self.KIND, 'grpc.service': service, 'grpc.method': method})
add_request_log_fields
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, log_fields: LogFields, call_details: Union[grpc.\n HandlerCallDetails, grpc.ClientCallDetails]):\n service, method = call_details.method[1:].split('/')\n log_fields.add_fields({'system': 'grpc', 'span.kind': self.KIND,\n 'grpc.service': service, 'grpc.method': method})\n", "role": "user" }, { "content": "add_request_log_fields", "role": "assistant" } ]
def x(self, log_fields: LogFields, start_time: datetime, err: Exception): code = 'Unknown' if err is not None else 'OK' duration = (datetime.utcnow() - start_time).total_seconds() * 1000 log_fields.add_fields({'grpc.start_time': start_time.isoformat() + 'Z', 'grpc.code': code, 'duration': '{duration}ms'.format(duration= duration)})
add_response_log_fields
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, log_fields: LogFields, start_time: datetime, err: Exception):\n code = 'Unknown' if err is not None else 'OK'\n duration = (datetime.utcnow() - start_time).total_seconds() * 1000\n log_fields.add_fields({'grpc.start_time': start_time.isoformat() + 'Z',\n 'grpc.code': code, 'duration': '{duration}ms'.format(duration=\n duration)})\n", "role": "user" }, { "content": "add_response_log_fields", "role": "assistant" } ]
def x(network): timeseries_load_feedin_case = network.timeseries.timesteps_load_feedin_case timestamp = {} timestamp['load_case'] = timeseries_load_feedin_case.residual_load.idxmax( ) if max(timeseries_load_feedin_case.residual_load) > 0 else None timestamp['feedin_case' ] = timeseries_load_feedin_case.residual_load.idxmin() if min( timeseries_load_feedin_case.residual_load) < 0 else None return timestamp
select_worstcase_snapshots
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(network):\n timeseries_load_feedin_case = network.timeseries.timesteps_load_feedin_case\n timestamp = {}\n timestamp['load_case'] = timeseries_load_feedin_case.residual_load.idxmax(\n ) if max(timeseries_load_feedin_case.residual_load) > 0 else None\n timestamp['feedin_case'\n ] = timeseries_load_feedin_case.residual_load.idxmin() if min(\n timeseries_load_feedin_case.residual_load) < 0 else None\n return timestamp\n", "role": "user" }, { "content": "select_worstcase_snapshots", "role": "assistant" } ]
def x(pypsa_network): residual_load = pypsa_network.loads_t.p_set.sum(axis=1) - (pypsa_network .generators_t.p_set.loc[:, pypsa_network.generators_t.p_set.columns != 'Generator_slack'].sum(axis=1) + pypsa_network.storage_units_t. p_set.sum(axis=1)) return residual_load
get_residual_load_from_pypsa_network
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(pypsa_network):\n residual_load = pypsa_network.loads_t.p_set.sum(axis=1) - (pypsa_network\n .generators_t.p_set.loc[:, pypsa_network.generators_t.p_set.columns !=\n 'Generator_slack'].sum(axis=1) + pypsa_network.storage_units_t.\n p_set.sum(axis=1))\n return residual_load\n", "role": "user" }, { "content": "get_residual_load_from_pypsa_network", "role": "assistant" } ]
def x(network): if network.pypsa is not None: residual_load = get_residual_load_from_pypsa_network(network.pypsa ) * 1000.0 else: grids = [network.mv_grid] + list(network.mv_grid.lv_grids) gens = [] loads = [] for grid in grids: gens.extend(grid.generators) gens.extend(list(grid.graph.nodes_by_attribute('storage'))) loads.extend(list(grid.graph.nodes_by_attribute('load'))) generation_timeseries = pd.Series(0, index=network.timeseries.timeindex ) for gen in gens: generation_timeseries += gen.timeseries.p load_timeseries = pd.Series(0, index=network.timeseries.timeindex) for load in loads: load_timeseries += load.timeseries.p residual_load = load_timeseries - generation_timeseries timeseries_load_feedin_case = residual_load.rename('residual_load' ).to_frame() timeseries_load_feedin_case['case' ] = timeseries_load_feedin_case.residual_load.apply(lambda _: 'feedin_case' if _ < 0 else 'load_case') return timeseries_load_feedin_case
assign_load_feedin_case
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(network):\n if network.pypsa is not None:\n residual_load = get_residual_load_from_pypsa_network(network.pypsa\n ) * 1000.0\n else:\n grids = [network.mv_grid] + list(network.mv_grid.lv_grids)\n gens = []\n loads = []\n for grid in grids:\n gens.extend(grid.generators)\n gens.extend(list(grid.graph.nodes_by_attribute('storage')))\n loads.extend(list(grid.graph.nodes_by_attribute('load')))\n generation_timeseries = pd.Series(0, index=network.timeseries.timeindex\n )\n for gen in gens:\n generation_timeseries += gen.timeseries.p\n load_timeseries = pd.Series(0, index=network.timeseries.timeindex)\n for load in loads:\n load_timeseries += load.timeseries.p\n residual_load = load_timeseries - generation_timeseries\n timeseries_load_feedin_case = residual_load.rename('residual_load'\n ).to_frame()\n timeseries_load_feedin_case['case'\n ] = timeseries_load_feedin_case.residual_load.apply(lambda _: \n 'feedin_case' if _ < 0 else 'load_case')\n return timeseries_load_feedin_case\n", "role": "user" }, { "content": "assign_load_feedin_case", "role": "assistant" } ]
def x(filename, config_dir=None, copy_default_config=True): if not config_dir: config_file = os.path.join(get_default_config_path(), filename) else: config_file = os.path.join(config_dir, filename) if not os.path.isfile(config_file): if copy_default_config: logger.info( 'Config file {} not found, I will create a default version' .format(config_file)) make_directory(config_dir) shutil.copy(os.path.join(package_path, 'config', filename. replace('.cfg', '_default.cfg')), config_file) else: message = 'Config file {} not found.'.format(config_file) logger.error(message) raise FileNotFoundError(message) if len(cfg.read(config_file)) == 0: message = 'Config file {} not found or empty.'.format(config_file) logger.error(message) raise FileNotFoundError(message) global _loaded _loaded = True
load_config
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(filename, config_dir=None, copy_default_config=True):\n if not config_dir:\n config_file = os.path.join(get_default_config_path(), filename)\n else:\n config_file = os.path.join(config_dir, filename)\n if not os.path.isfile(config_file):\n if copy_default_config:\n logger.info(\n 'Config file {} not found, I will create a default version'\n .format(config_file))\n make_directory(config_dir)\n shutil.copy(os.path.join(package_path, 'config', filename.\n replace('.cfg', '_default.cfg')), config_file)\n else:\n message = 'Config file {} not found.'.format(config_file)\n logger.error(message)\n raise FileNotFoundError(message)\n if len(cfg.read(config_file)) == 0:\n message = 'Config file {} not found or empty.'.format(config_file)\n logger.error(message)\n raise FileNotFoundError(message)\n global _loaded\n _loaded = True\n", "role": "user" }, { "content": "load_config", "role": "assistant" } ]
def x(): config_dir = get('user_dirs', 'config_dir') root_dir = get('user_dirs', 'root_dir') root_path = os.path.join(os.path.expanduser('~'), root_dir) config_path = os.path.join(root_path, config_dir) if not os.path.isdir(root_path): logger.info('eDisGo root path {} not found, I will create it.'. format(root_path)) make_directory(root_path) if not os.path.isdir(config_path): config_path = os.path.join(root_path, config_dir) make_directory(config_path) logger.info('eDisGo config path {} not found, I will create it.'. format(config_path)) internal_config_dir = os.path.join(package_path, 'config') for file in glob(os.path.join(internal_config_dir, '*.cfg')): filename = os.path.join(config_path, os.path.basename(file).replace ('_default', '')) if not os.path.isfile(filename): logger.info('I will create a default config file {} in {}'. format(file, config_path)) shutil.copy(file, filename) return config_path
get_default_config_path
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n config_dir = get('user_dirs', 'config_dir')\n root_dir = get('user_dirs', 'root_dir')\n root_path = os.path.join(os.path.expanduser('~'), root_dir)\n config_path = os.path.join(root_path, config_dir)\n if not os.path.isdir(root_path):\n logger.info('eDisGo root path {} not found, I will create it.'.\n format(root_path))\n make_directory(root_path)\n if not os.path.isdir(config_path):\n config_path = os.path.join(root_path, config_dir)\n make_directory(config_path)\n logger.info('eDisGo config path {} not found, I will create it.'.\n format(config_path))\n internal_config_dir = os.path.join(package_path, 'config')\n for file in glob(os.path.join(internal_config_dir, '*.cfg')):\n filename = os.path.join(config_path, os.path.basename(file).replace\n ('_default', ''))\n if not os.path.isfile(filename):\n logger.info('I will create a default config file {} in {}'.\n format(file, config_path))\n shutil.copy(file, filename)\n return config_path\n", "role": "user" }, { "content": "get_default_config_path", "role": "assistant" } ]
def x(directory): if not os.path.isdir(directory): os.mkdir(directory) logger.info('Path {} not found, I will create it.'.format(directory))
make_directory
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(directory):\n if not os.path.isdir(directory):\n os.mkdir(directory)\n logger.info('Path {} not found, I will create it.'.format(directory))\n", "role": "user" }, { "content": "make_directory", "role": "assistant" } ]
def x(network): crit_lines = pd.DataFrame() crit_lines = _line_load(network, network.mv_grid, crit_lines) if not crit_lines.empty: logger.debug('==> {} line(s) in MV grid has/have load issues.'. format(crit_lines.shape[0])) else: logger.debug('==> No line load issues in MV grid.') return crit_lines
mv_line_load
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(network):\n crit_lines = pd.DataFrame()\n crit_lines = _line_load(network, network.mv_grid, crit_lines)\n if not crit_lines.empty:\n logger.debug('==> {} line(s) in MV grid has/have load issues.'.\n format(crit_lines.shape[0]))\n else:\n logger.debug('==> No line load issues in MV grid.')\n return crit_lines\n", "role": "user" }, { "content": "mv_line_load", "role": "assistant" } ]
def x(network): crit_lines = pd.DataFrame() for lv_grid in network.mv_grid.lv_grids: crit_lines = _line_load(network, lv_grid, crit_lines) if not crit_lines.empty: logger.debug('==> {} line(s) in LV grids has/have load issues.'. format(crit_lines.shape[0])) else: logger.debug('==> No line load issues in LV grids.') return crit_lines
lv_line_load
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(network):\n crit_lines = pd.DataFrame()\n for lv_grid in network.mv_grid.lv_grids:\n crit_lines = _line_load(network, lv_grid, crit_lines)\n if not crit_lines.empty:\n logger.debug('==> {} line(s) in LV grids has/have load issues.'.\n format(crit_lines.shape[0]))\n else:\n logger.debug('==> No line load issues in LV grids.')\n return crit_lines\n", "role": "user" }, { "content": "lv_line_load", "role": "assistant" } ]
def x(network, grid, crit_lines): if isinstance(grid, LVGrid): grid_level = 'lv' else: grid_level = 'mv' for line in list(grid.graph.lines()): i_line_allowed_per_case = {} i_line_allowed_per_case['feedin_case'] = line['line'].type['I_max_th' ] * line['line'].quantity * network.config[ 'grid_expansion_load_factors']['{}_feedin_case_line'.format( grid_level)] i_line_allowed_per_case['load_case'] = line['line'].type['I_max_th' ] * line['line'].quantity * network.config[ 'grid_expansion_load_factors']['{}_load_case_line'.format( grid_level)] i_line_allowed = (network.timeseries.timesteps_load_feedin_case. case.apply(lambda _: i_line_allowed_per_case[_])) try: i_line_pfa = network.results.i_res[repr(line['line'])] if any(i_line_allowed - i_line_pfa < 0): relative_i_res = i_line_pfa / i_line_allowed crit_lines = crit_lines.append(pd.DataFrame({ 'max_rel_overload': relative_i_res.max(), 'time_index': relative_i_res.idxmax()}, index=[line['line']])) except KeyError: logger.debug('No results for line {} '.format(str(line)) + 'to check overloading.') return crit_lines
line_load
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(network, grid, crit_lines):\n if isinstance(grid, LVGrid):\n grid_level = 'lv'\n else:\n grid_level = 'mv'\n for line in list(grid.graph.lines()):\n i_line_allowed_per_case = {}\n i_line_allowed_per_case['feedin_case'] = line['line'].type['I_max_th'\n ] * line['line'].quantity * network.config[\n 'grid_expansion_load_factors']['{}_feedin_case_line'.format(\n grid_level)]\n i_line_allowed_per_case['load_case'] = line['line'].type['I_max_th'\n ] * line['line'].quantity * network.config[\n 'grid_expansion_load_factors']['{}_load_case_line'.format(\n grid_level)]\n i_line_allowed = (network.timeseries.timesteps_load_feedin_case.\n case.apply(lambda _: i_line_allowed_per_case[_]))\n try:\n i_line_pfa = network.results.i_res[repr(line['line'])]\n if any(i_line_allowed - i_line_pfa < 0):\n relative_i_res = i_line_pfa / i_line_allowed\n crit_lines = crit_lines.append(pd.DataFrame({\n 'max_rel_overload': relative_i_res.max(), 'time_index':\n relative_i_res.idxmax()}, index=[line['line']]))\n except KeyError:\n logger.debug('No results for line {} '.format(str(line)) +\n 'to check overloading.')\n return crit_lines\n", "role": "user" }, { "content": "line_load", "role": "assistant" } ]
def x(network): crit_stations = pd.DataFrame() crit_stations = _station_load(network, network.mv_grid.station, crit_stations) if not crit_stations.empty: logger.debug('==> HV/MV station has load issues.') else: logger.debug('==> No HV/MV station load issues.') return crit_stations
hv_mv_station_load
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(network):\n crit_stations = pd.DataFrame()\n crit_stations = _station_load(network, network.mv_grid.station,\n crit_stations)\n if not crit_stations.empty:\n logger.debug('==> HV/MV station has load issues.')\n else:\n logger.debug('==> No HV/MV station load issues.')\n return crit_stations\n", "role": "user" }, { "content": "hv_mv_station_load", "role": "assistant" } ]
def x(network): crit_stations = pd.DataFrame() for lv_grid in network.mv_grid.lv_grids: crit_stations = _station_load(network, lv_grid.station, crit_stations) if not crit_stations.empty: logger.debug('==> {} MV/LV station(s) has/have load issues.'.format (crit_stations.shape[0])) else: logger.debug('==> No MV/LV station load issues.') return crit_stations
mv_lv_station_load
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(network):\n crit_stations = pd.DataFrame()\n for lv_grid in network.mv_grid.lv_grids:\n crit_stations = _station_load(network, lv_grid.station, crit_stations)\n if not crit_stations.empty:\n logger.debug('==> {} MV/LV station(s) has/have load issues.'.format\n (crit_stations.shape[0]))\n else:\n logger.debug('==> No MV/LV station load issues.')\n return crit_stations\n", "role": "user" }, { "content": "mv_lv_station_load", "role": "assistant" } ]
def x(network, station, crit_stations): if isinstance(station, LVStation): grid_level = 'lv' else: grid_level = 'mv' s_station = sum([_.type.S_nom for _ in station.transformers]) s_station_allowed_per_case = {} s_station_allowed_per_case['feedin_case'] = s_station * network.config[ 'grid_expansion_load_factors']['{}_feedin_case_transformer'.format( grid_level)] s_station_allowed_per_case['load_case'] = s_station * network.config[ 'grid_expansion_load_factors']['{}_load_case_transformer'.format( grid_level)] s_station_allowed = (network.timeseries.timesteps_load_feedin_case.case .apply(lambda _: s_station_allowed_per_case[_])) try: if isinstance(station, LVStation): s_station_pfa = network.results.s_res(station.transformers).sum( axis=1) else: s_station_pfa = network.results.s_res([station]).iloc[:, 0] s_res = s_station_allowed - s_station_pfa s_res = s_res[s_res < 0] if not s_res.empty: load_factor = (network.timeseries.timesteps_load_feedin_case. case.apply(lambda _: network.config[ 'grid_expansion_load_factors']['{}_{}_transformer'.format( grid_level, _)])) relative_s_res = load_factor * s_res crit_stations = crit_stations.append(pd.DataFrame({'s_pfa': s_station_pfa.loc[relative_s_res.idxmin()], 'time_index': relative_s_res.idxmin()}, index=[station])) except KeyError: logger.debug('No results for {} station to check overloading.'. format(grid_level.upper())) return crit_stations
station_load
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(network, station, crit_stations):\n if isinstance(station, LVStation):\n grid_level = 'lv'\n else:\n grid_level = 'mv'\n s_station = sum([_.type.S_nom for _ in station.transformers])\n s_station_allowed_per_case = {}\n s_station_allowed_per_case['feedin_case'] = s_station * network.config[\n 'grid_expansion_load_factors']['{}_feedin_case_transformer'.format(\n grid_level)]\n s_station_allowed_per_case['load_case'] = s_station * network.config[\n 'grid_expansion_load_factors']['{}_load_case_transformer'.format(\n grid_level)]\n s_station_allowed = (network.timeseries.timesteps_load_feedin_case.case\n .apply(lambda _: s_station_allowed_per_case[_]))\n try:\n if isinstance(station, LVStation):\n s_station_pfa = network.results.s_res(station.transformers).sum(\n axis=1)\n else:\n s_station_pfa = network.results.s_res([station]).iloc[:, 0]\n s_res = s_station_allowed - s_station_pfa\n s_res = s_res[s_res < 0]\n if not s_res.empty:\n load_factor = (network.timeseries.timesteps_load_feedin_case.\n case.apply(lambda _: network.config[\n 'grid_expansion_load_factors']['{}_{}_transformer'.format(\n grid_level, _)]))\n relative_s_res = load_factor * s_res\n crit_stations = crit_stations.append(pd.DataFrame({'s_pfa':\n s_station_pfa.loc[relative_s_res.idxmin()], 'time_index':\n relative_s_res.idxmin()}, index=[station]))\n except KeyError:\n logger.debug('No results for {} station to check overloading.'.\n format(grid_level.upper()))\n return crit_stations\n", "role": "user" }, { "content": "station_load", "role": "assistant" } ]
def x(network, voltage_levels='mv_lv'): crit_nodes = {} v_dev_allowed_per_case = {} v_dev_allowed_per_case['feedin_case_lower'] = 0.9 v_dev_allowed_per_case['load_case_upper'] = 1.1 offset = network.config['grid_expansion_allowed_voltage_deviations'][ 'hv_mv_trafo_offset'] control_deviation = network.config[ 'grid_expansion_allowed_voltage_deviations'][ 'hv_mv_trafo_control_deviation'] if voltage_levels == 'mv_lv': v_dev_allowed_per_case['feedin_case_upper' ] = 1 + offset + control_deviation + network.config[ 'grid_expansion_allowed_voltage_deviations'][ 'mv_lv_feedin_case_max_v_deviation'] v_dev_allowed_per_case['load_case_lower' ] = 1 + offset - control_deviation - network.config[ 'grid_expansion_allowed_voltage_deviations'][ 'mv_lv_load_case_max_v_deviation'] elif voltage_levels == 'mv': v_dev_allowed_per_case['feedin_case_upper' ] = 1 + offset + control_deviation + network.config[ 'grid_expansion_allowed_voltage_deviations'][ 'mv_feedin_case_max_v_deviation'] v_dev_allowed_per_case['load_case_lower' ] = 1 + offset - control_deviation - network.config[ 'grid_expansion_allowed_voltage_deviations'][ 'mv_load_case_max_v_deviation'] else: raise ValueError('Specified mode {} is not a valid option.'.format( voltage_levels)) v_dev_allowed_upper = (network.timeseries.timesteps_load_feedin_case. case.apply(lambda _: v_dev_allowed_per_case['{}_upper'.format(_)])) v_dev_allowed_lower = (network.timeseries.timesteps_load_feedin_case. case.apply(lambda _: v_dev_allowed_per_case['{}_lower'.format(_)])) nodes = network.mv_grid.graph.nodes() crit_nodes_grid = _voltage_deviation(network, nodes, v_dev_allowed_upper, v_dev_allowed_lower, voltage_level='mv') if not crit_nodes_grid.empty: crit_nodes[network.mv_grid] = crit_nodes_grid.sort_values(by=[ 'v_mag_pu'], ascending=False) logger.debug('==> {} node(s) in MV grid has/have voltage issues.'. format(crit_nodes[network.mv_grid].shape[0])) else: logger.debug('==> No voltage issues in MV grid.') return crit_nodes
mv_voltage_deviation
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(network, voltage_levels='mv_lv'):\n crit_nodes = {}\n v_dev_allowed_per_case = {}\n v_dev_allowed_per_case['feedin_case_lower'] = 0.9\n v_dev_allowed_per_case['load_case_upper'] = 1.1\n offset = network.config['grid_expansion_allowed_voltage_deviations'][\n 'hv_mv_trafo_offset']\n control_deviation = network.config[\n 'grid_expansion_allowed_voltage_deviations'][\n 'hv_mv_trafo_control_deviation']\n if voltage_levels == 'mv_lv':\n v_dev_allowed_per_case['feedin_case_upper'\n ] = 1 + offset + control_deviation + network.config[\n 'grid_expansion_allowed_voltage_deviations'][\n 'mv_lv_feedin_case_max_v_deviation']\n v_dev_allowed_per_case['load_case_lower'\n ] = 1 + offset - control_deviation - network.config[\n 'grid_expansion_allowed_voltage_deviations'][\n 'mv_lv_load_case_max_v_deviation']\n elif voltage_levels == 'mv':\n v_dev_allowed_per_case['feedin_case_upper'\n ] = 1 + offset + control_deviation + network.config[\n 'grid_expansion_allowed_voltage_deviations'][\n 'mv_feedin_case_max_v_deviation']\n v_dev_allowed_per_case['load_case_lower'\n ] = 1 + offset - control_deviation - network.config[\n 'grid_expansion_allowed_voltage_deviations'][\n 'mv_load_case_max_v_deviation']\n else:\n raise ValueError('Specified mode {} is not a valid option.'.format(\n voltage_levels))\n v_dev_allowed_upper = (network.timeseries.timesteps_load_feedin_case.\n case.apply(lambda _: v_dev_allowed_per_case['{}_upper'.format(_)]))\n v_dev_allowed_lower = (network.timeseries.timesteps_load_feedin_case.\n case.apply(lambda _: v_dev_allowed_per_case['{}_lower'.format(_)]))\n nodes = network.mv_grid.graph.nodes()\n crit_nodes_grid = _voltage_deviation(network, nodes,\n v_dev_allowed_upper, v_dev_allowed_lower, voltage_level='mv')\n if not crit_nodes_grid.empty:\n crit_nodes[network.mv_grid] = crit_nodes_grid.sort_values(by=[\n 'v_mag_pu'], ascending=False)\n logger.debug('==> {} node(s) in MV grid has/have voltage issues.'.\n format(crit_nodes[network.mv_grid].shape[0]))\n else:\n logger.debug('==> No voltage issues in MV grid.')\n return crit_nodes\n", "role": "user" }, { "content": "mv_voltage_deviation", "role": "assistant" } ]
def x(network, mode=None, voltage_levels='mv_lv'): crit_nodes = {} v_dev_allowed_per_case = {} if voltage_levels == 'mv_lv': offset = network.config['grid_expansion_allowed_voltage_deviations'][ 'hv_mv_trafo_offset'] control_deviation = network.config[ 'grid_expansion_allowed_voltage_deviations'][ 'hv_mv_trafo_control_deviation'] v_dev_allowed_per_case['feedin_case_upper' ] = 1 + offset + control_deviation + network.config[ 'grid_expansion_allowed_voltage_deviations'][ 'mv_lv_feedin_case_max_v_deviation'] v_dev_allowed_per_case['load_case_lower' ] = 1 + offset - control_deviation - network.config[ 'grid_expansion_allowed_voltage_deviations'][ 'mv_lv_load_case_max_v_deviation'] v_dev_allowed_per_case['feedin_case_lower'] = 0.9 v_dev_allowed_per_case['load_case_upper'] = 1.1 v_dev_allowed_upper = (network.timeseries. timesteps_load_feedin_case.case.apply(lambda _: v_dev_allowed_per_case['{}_upper'.format(_)])) v_dev_allowed_lower = (network.timeseries. timesteps_load_feedin_case.case.apply(lambda _: v_dev_allowed_per_case['{}_lower'.format(_)])) elif voltage_levels == 'lv': pass else: raise ValueError('Specified mode {} is not a valid option.'.format( voltage_levels)) for lv_grid in network.mv_grid.lv_grids: if mode: if mode == 'stations': nodes = [lv_grid.station] else: raise ValueError( "{} is not a valid option for input variable 'mode' in function lv_voltage_deviation. Try 'stations' or None" .format(mode)) else: nodes = lv_grid.graph.nodes() if voltage_levels == 'lv': if mode == 'stations': v_lv_station_primary = network.results.v_res(nodes=[lv_grid .station], level='mv').iloc[:, 0] timeindex = v_lv_station_primary.index v_dev_allowed_per_case['feedin_case_upper' ] = v_lv_station_primary + network.config[ 'grid_expansion_allowed_voltage_deviations'][ 'mv_lv_station_feedin_case_max_v_deviation'] v_dev_allowed_per_case['load_case_lower' ] = v_lv_station_primary - network.config[ 'grid_expansion_allowed_voltage_deviations'][ 'mv_lv_station_load_case_max_v_deviation'] else: v_lv_station_secondary = network.results.v_res(nodes=[ lv_grid.station], level='lv').iloc[:, 0] timeindex = v_lv_station_secondary.index v_dev_allowed_per_case['feedin_case_upper' ] = v_lv_station_secondary + network.config[ 'grid_expansion_allowed_voltage_deviations'][ 'lv_feedin_case_max_v_deviation'] v_dev_allowed_per_case['load_case_lower' ] = v_lv_station_secondary - network.config[ 'grid_expansion_allowed_voltage_deviations'][ 'lv_load_case_max_v_deviation'] v_dev_allowed_per_case['feedin_case_lower'] = pd.Series(0.9, index=timeindex) v_dev_allowed_per_case['load_case_upper'] = pd.Series(1.1, index=timeindex) v_dev_allowed_upper = [] v_dev_allowed_lower = [] for t in timeindex: case = network.timeseries.timesteps_load_feedin_case.loc[t, 'case'] v_dev_allowed_upper.append(v_dev_allowed_per_case[ '{}_upper'.format(case)].loc[t]) v_dev_allowed_lower.append(v_dev_allowed_per_case[ '{}_lower'.format(case)].loc[t]) v_dev_allowed_upper = pd.Series(v_dev_allowed_upper, index= timeindex) v_dev_allowed_lower = pd.Series(v_dev_allowed_lower, index= timeindex) crit_nodes_grid = _voltage_deviation(network, nodes, v_dev_allowed_upper, v_dev_allowed_lower, voltage_level='lv') if not crit_nodes_grid.empty: crit_nodes[lv_grid] = crit_nodes_grid.sort_values(by=[ 'v_mag_pu'], ascending=False) if crit_nodes: if mode == 'stations': logger.debug('==> {} LV station(s) has/have voltage issues.'. format(len(crit_nodes))) else: logger.debug('==> {} LV grid(s) has/have voltage issues.'. format(len(crit_nodes))) elif mode == 'stations': logger.debug('==> No voltage issues in LV stations.') else: logger.debug('==> No voltage issues in LV grids.') return crit_nodes
lv_voltage_deviation
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(network, mode=None, voltage_levels='mv_lv'):\n crit_nodes = {}\n v_dev_allowed_per_case = {}\n if voltage_levels == 'mv_lv':\n offset = network.config['grid_expansion_allowed_voltage_deviations'][\n 'hv_mv_trafo_offset']\n control_deviation = network.config[\n 'grid_expansion_allowed_voltage_deviations'][\n 'hv_mv_trafo_control_deviation']\n v_dev_allowed_per_case['feedin_case_upper'\n ] = 1 + offset + control_deviation + network.config[\n 'grid_expansion_allowed_voltage_deviations'][\n 'mv_lv_feedin_case_max_v_deviation']\n v_dev_allowed_per_case['load_case_lower'\n ] = 1 + offset - control_deviation - network.config[\n 'grid_expansion_allowed_voltage_deviations'][\n 'mv_lv_load_case_max_v_deviation']\n v_dev_allowed_per_case['feedin_case_lower'] = 0.9\n v_dev_allowed_per_case['load_case_upper'] = 1.1\n v_dev_allowed_upper = (network.timeseries.\n timesteps_load_feedin_case.case.apply(lambda _:\n v_dev_allowed_per_case['{}_upper'.format(_)]))\n v_dev_allowed_lower = (network.timeseries.\n timesteps_load_feedin_case.case.apply(lambda _:\n v_dev_allowed_per_case['{}_lower'.format(_)]))\n elif voltage_levels == 'lv':\n pass\n else:\n raise ValueError('Specified mode {} is not a valid option.'.format(\n voltage_levels))\n for lv_grid in network.mv_grid.lv_grids:\n if mode:\n if mode == 'stations':\n nodes = [lv_grid.station]\n else:\n raise ValueError(\n \"{} is not a valid option for input variable 'mode' in function lv_voltage_deviation. Try 'stations' or None\"\n .format(mode))\n else:\n nodes = lv_grid.graph.nodes()\n if voltage_levels == 'lv':\n if mode == 'stations':\n v_lv_station_primary = network.results.v_res(nodes=[lv_grid\n .station], level='mv').iloc[:, 0]\n timeindex = v_lv_station_primary.index\n v_dev_allowed_per_case['feedin_case_upper'\n ] = v_lv_station_primary + network.config[\n 'grid_expansion_allowed_voltage_deviations'][\n 'mv_lv_station_feedin_case_max_v_deviation']\n v_dev_allowed_per_case['load_case_lower'\n ] = v_lv_station_primary - network.config[\n 'grid_expansion_allowed_voltage_deviations'][\n 'mv_lv_station_load_case_max_v_deviation']\n else:\n v_lv_station_secondary = network.results.v_res(nodes=[\n lv_grid.station], level='lv').iloc[:, 0]\n timeindex = v_lv_station_secondary.index\n v_dev_allowed_per_case['feedin_case_upper'\n ] = v_lv_station_secondary + network.config[\n 'grid_expansion_allowed_voltage_deviations'][\n 'lv_feedin_case_max_v_deviation']\n v_dev_allowed_per_case['load_case_lower'\n ] = v_lv_station_secondary - network.config[\n 'grid_expansion_allowed_voltage_deviations'][\n 'lv_load_case_max_v_deviation']\n v_dev_allowed_per_case['feedin_case_lower'] = pd.Series(0.9,\n index=timeindex)\n v_dev_allowed_per_case['load_case_upper'] = pd.Series(1.1,\n index=timeindex)\n v_dev_allowed_upper = []\n v_dev_allowed_lower = []\n for t in timeindex:\n case = network.timeseries.timesteps_load_feedin_case.loc[t,\n 'case']\n v_dev_allowed_upper.append(v_dev_allowed_per_case[\n '{}_upper'.format(case)].loc[t])\n v_dev_allowed_lower.append(v_dev_allowed_per_case[\n '{}_lower'.format(case)].loc[t])\n v_dev_allowed_upper = pd.Series(v_dev_allowed_upper, index=\n timeindex)\n v_dev_allowed_lower = pd.Series(v_dev_allowed_lower, index=\n timeindex)\n crit_nodes_grid = _voltage_deviation(network, nodes,\n v_dev_allowed_upper, v_dev_allowed_lower, voltage_level='lv')\n if not crit_nodes_grid.empty:\n crit_nodes[lv_grid] = crit_nodes_grid.sort_values(by=[\n 'v_mag_pu'], ascending=False)\n if crit_nodes:\n if mode == 'stations':\n logger.debug('==> {} LV station(s) has/have voltage issues.'.\n format(len(crit_nodes)))\n else:\n logger.debug('==> {} LV grid(s) has/have voltage issues.'.\n format(len(crit_nodes)))\n elif mode == 'stations':\n logger.debug('==> No voltage issues in LV stations.')\n else:\n logger.debug('==> No voltage issues in LV grids.')\n return crit_nodes\n", "role": "user" }, { "content": "lv_voltage_deviation", "role": "assistant" } ]
def x(network, nodes, v_dev_allowed_upper, v_dev_allowed_lower, voltage_level): def x(series): return pd.DataFrame({'v_mag_pu': series.max(), 'time_index': series .idxmax()}, index=[node]) crit_nodes_grid = pd.DataFrame() v_mag_pu_pfa = network.results.v_res(nodes=nodes, level=voltage_level) for node in nodes: overvoltage = v_mag_pu_pfa[repr(node)][v_mag_pu_pfa[repr(node)] > v_dev_allowed_upper.loc[v_mag_pu_pfa.index]] undervoltage = v_mag_pu_pfa[repr(node)][v_mag_pu_pfa[repr(node)] < v_dev_allowed_lower.loc[v_mag_pu_pfa.index]] if not overvoltage.empty: overvoltage_diff = overvoltage - v_dev_allowed_upper.loc[ overvoltage.index] if not undervoltage.empty: undervoltage_diff = v_dev_allowed_lower.loc[undervoltage.index ] - undervoltage if overvoltage_diff.max() > undervoltage_diff.max(): crit_nodes_grid = crit_nodes_grid.append(_append_crit_node (overvoltage_diff)) else: crit_nodes_grid = crit_nodes_grid.append(_append_crit_node (undervoltage_diff)) else: crit_nodes_grid = crit_nodes_grid.append(_append_crit_node( overvoltage_diff)) elif not undervoltage.empty: undervoltage_diff = v_dev_allowed_lower.loc[undervoltage.index ] - undervoltage crit_nodes_grid = crit_nodes_grid.append(_append_crit_node( undervoltage_diff)) return crit_nodes_grid
voltage_deviation
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(network, nodes, v_dev_allowed_upper, v_dev_allowed_lower, voltage_level):\n\n def x(series):\n return pd.DataFrame({'v_mag_pu': series.max(), 'time_index': series\n .idxmax()}, index=[node])\n crit_nodes_grid = pd.DataFrame()\n v_mag_pu_pfa = network.results.v_res(nodes=nodes, level=voltage_level)\n for node in nodes:\n overvoltage = v_mag_pu_pfa[repr(node)][v_mag_pu_pfa[repr(node)] >\n v_dev_allowed_upper.loc[v_mag_pu_pfa.index]]\n undervoltage = v_mag_pu_pfa[repr(node)][v_mag_pu_pfa[repr(node)] <\n v_dev_allowed_lower.loc[v_mag_pu_pfa.index]]\n if not overvoltage.empty:\n overvoltage_diff = overvoltage - v_dev_allowed_upper.loc[\n overvoltage.index]\n if not undervoltage.empty:\n undervoltage_diff = v_dev_allowed_lower.loc[undervoltage.index\n ] - undervoltage\n if overvoltage_diff.max() > undervoltage_diff.max():\n crit_nodes_grid = crit_nodes_grid.append(_append_crit_node\n (overvoltage_diff))\n else:\n crit_nodes_grid = crit_nodes_grid.append(_append_crit_node\n (undervoltage_diff))\n else:\n crit_nodes_grid = crit_nodes_grid.append(_append_crit_node(\n overvoltage_diff))\n elif not undervoltage.empty:\n undervoltage_diff = v_dev_allowed_lower.loc[undervoltage.index\n ] - undervoltage\n crit_nodes_grid = crit_nodes_grid.append(_append_crit_node(\n undervoltage_diff))\n return crit_nodes_grid\n", "role": "user" }, { "content": "voltage_deviation", "role": "assistant" } ]
def x(network): v_mag_pu_pfa = network.results.v_res() if (v_mag_pu_pfa > 1.1).any().any() or (v_mag_pu_pfa < 0.9).any().any(): message = 'Maximum allowed voltage deviation of 10% exceeded.' raise ValueError(message)
check_ten_percent_voltage_deviation
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(network):\n v_mag_pu_pfa = network.results.v_res()\n if (v_mag_pu_pfa > 1.1).any().any() or (v_mag_pu_pfa < 0.9).any().any():\n message = 'Maximum allowed voltage deviation of 10% exceeded.'\n raise ValueError(message)\n", "role": "user" }, { "content": "check_ten_percent_voltage_deviation", "role": "assistant" } ]
def x(network): srid = int(network.config['geo']['srid']) return partial(pyproj.transform, pyproj.Proj(init='epsg:{}'.format(str( srid))), pyproj.Proj(init='epsg:3035'))
proj2equidistant
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(network):\n srid = int(network.config['geo']['srid'])\n return partial(pyproj.transform, pyproj.Proj(init='epsg:{}'.format(str(\n srid))), pyproj.Proj(init='epsg:3035'))\n", "role": "user" }, { "content": "proj2equidistant", "role": "assistant" } ]
def x(network, node, grid, radius, radius_inc): lines = [] while not lines: node_shp = transform(proj2equidistant(network), node.geom) buffer_zone_shp = node_shp.buffer(radius) for line in grid.graph.lines(): nodes = line['adj_nodes'] branch_shp = transform(proj2equidistant(network), LineString([ nodes[0].geom, nodes[1].geom])) if buffer_zone_shp.intersects(branch_shp): lines.append(line) radius += radius_inc return sorted(lines, key=lambda _: repr(_))
calc_geo_lines_in_buffer
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(network, node, grid, radius, radius_inc):\n lines = []\n while not lines:\n node_shp = transform(proj2equidistant(network), node.geom)\n buffer_zone_shp = node_shp.buffer(radius)\n for line in grid.graph.lines():\n nodes = line['adj_nodes']\n branch_shp = transform(proj2equidistant(network), LineString([\n nodes[0].geom, nodes[1].geom]))\n if buffer_zone_shp.intersects(branch_shp):\n lines.append(line)\n radius += radius_inc\n return sorted(lines, key=lambda _: repr(_))\n", "role": "user" }, { "content": "calc_geo_lines_in_buffer", "role": "assistant" } ]
def x(network, node_source, node_target): branch_detour_factor = network.config['grid_connection'][ 'branch_detour_factor'] branch_length = branch_detour_factor * vincenty((node_source.geom.y, node_source.geom.x), (node_target.geom.y, node_target.geom.x)).m if branch_length == 0: branch_length = 1 logger.debug( "Geo distance is zero, check objects' positions. Distance is set to 1m" ) return branch_length
calc_geo_dist_vincenty
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(network, node_source, node_target):\n branch_detour_factor = network.config['grid_connection'][\n 'branch_detour_factor']\n branch_length = branch_detour_factor * vincenty((node_source.geom.y,\n node_source.geom.x), (node_target.geom.y, node_target.geom.x)).m\n if branch_length == 0:\n branch_length = 1\n logger.debug(\n \"Geo distance is zero, check objects' positions. Distance is set to 1m\"\n )\n return branch_length\n", "role": "user" }, { "content": "calc_geo_dist_vincenty", "role": "assistant" } ]
def x(details, backend, response, *args, **kwargs): user = details.get('user') if not user: user_uuid = kwargs.get('uid') if not user_uuid: return username = uuid_to_username(user_uuid) else: username = user.username return {'username': username}
get_username
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(details, backend, response, *args, **kwargs):\n user = details.get('user')\n if not user:\n user_uuid = kwargs.get('uid')\n if not user_uuid:\n return\n username = uuid_to_username(user_uuid)\n else:\n username = user.username\n return {'username': username}\n", "role": "user" }, { "content": "get_username", "role": "assistant" } ]
def x(self, request, sociallogin): user = sociallogin.user if not user.pk: return data = sociallogin.account.extra_data oidc = sociallogin.account.provider == 'helsinki_oidc' update_user(user, data, oidc)
pre_social_login
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, request, sociallogin):\n user = sociallogin.user\n if not user.pk:\n return\n data = sociallogin.account.extra_data\n oidc = sociallogin.account.provider == 'helsinki_oidc'\n update_user(user, data, oidc)\n", "role": "user" }, { "content": "pre_social_login", "role": "assistant" } ]
def x(self): ad_list = ADGroupMapping.objects.values_list('ad_group', 'group') mappings = {ad_group: group for ad_group, group in ad_list} user_ad_groups = set(self.ad_groups.filter(groups__isnull=False). values_list(flat=True)) all_mapped_groups = set(mappings.values()) old_groups = set(self.groups.filter(id__in=all_mapped_groups). values_list(flat=True)) new_groups = set([mappings[x] for x in user_ad_groups]) groups_to_delete = old_groups - new_groups if groups_to_delete: self.groups.remove(*groups_to_delete) groups_to_add = new_groups - old_groups if groups_to_add: self.groups.add(*groups_to_add)
sync_groups_from_ad
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n ad_list = ADGroupMapping.objects.values_list('ad_group', 'group')\n mappings = {ad_group: group for ad_group, group in ad_list}\n user_ad_groups = set(self.ad_groups.filter(groups__isnull=False).\n values_list(flat=True))\n all_mapped_groups = set(mappings.values())\n old_groups = set(self.groups.filter(id__in=all_mapped_groups).\n values_list(flat=True))\n new_groups = set([mappings[x] for x in user_ad_groups])\n groups_to_delete = old_groups - new_groups\n if groups_to_delete:\n self.groups.remove(*groups_to_delete)\n groups_to_add = new_groups - old_groups\n if groups_to_add:\n self.groups.add(*groups_to_add)\n", "role": "user" }, { "content": "sync_groups_from_ad", "role": "assistant" } ]
def x(): defaults = api_settings.defaults defaults['JWT_PAYLOAD_GET_USER_ID_HANDLER' ] = __name__ + '.get_user_id_from_payload_handler' if 'allauth.socialaccount' not in settings.INSTALLED_APPS: return from allauth.socialaccount.models import SocialApp try: app = SocialApp.objects.get(provider='helsinki') except SocialApp.DoesNotExist: return defaults['JWT_SECRET_KEY'] = app.secret defaults['JWT_AUDIENCE'] = app.client_id
patch_jwt_settings
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n defaults = api_settings.defaults\n defaults['JWT_PAYLOAD_GET_USER_ID_HANDLER'\n ] = __name__ + '.get_user_id_from_payload_handler'\n if 'allauth.socialaccount' not in settings.INSTALLED_APPS:\n return\n from allauth.socialaccount.models import SocialApp\n try:\n app = SocialApp.objects.get(provider='helsinki')\n except SocialApp.DoesNotExist:\n return\n defaults['JWT_SECRET_KEY'] = app.secret\n defaults['JWT_AUDIENCE'] = app.client_id\n", "role": "user" }, { "content": "patch_jwt_settings", "role": "assistant" } ]
def x(uuid): uuid_data = getattr(uuid, 'bytes', None) or UUID(uuid).bytes b32coded = base64.b32encode(uuid_data) return 'u-' + b32coded.decode('ascii').replace('=', '').lower()
uuid_to_username
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(uuid):\n uuid_data = getattr(uuid, 'bytes', None) or UUID(uuid).bytes\n b32coded = base64.b32encode(uuid_data)\n return 'u-' + b32coded.decode('ascii').replace('=', '').lower()\n", "role": "user" }, { "content": "uuid_to_username", "role": "assistant" } ]
def x(username): if not username.startswith('u-') or len(username) != 28: raise ValueError('Not an UUID based username: %r' % (username,)) decoded = base64.b32decode(username[2:].upper() + '======') return UUID(bytes=decoded)
username_to_uuid
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(username):\n if not username.startswith('u-') or len(username) != 28:\n raise ValueError('Not an UUID based username: %r' % (username,))\n decoded = base64.b32decode(username[2:].upper() + '======')\n return UUID(bytes=decoded)\n", "role": "user" }, { "content": "username_to_uuid", "role": "assistant" } ]
def x(payload): payload = payload.copy() field_map = {'given_name': 'first_name', 'family_name': 'last_name', 'email': 'email'} ret = {} for token_attr, user_attr in field_map.items(): if token_attr not in payload: continue ret[user_attr] = payload.pop(token_attr) ret.update(payload) return ret
oidc_to_user_data
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(payload):\n payload = payload.copy()\n field_map = {'given_name': 'first_name', 'family_name': 'last_name',\n 'email': 'email'}\n ret = {}\n for token_attr, user_attr in field_map.items():\n if token_attr not in payload:\n continue\n ret[user_attr] = payload.pop(token_attr)\n ret.update(payload)\n return ret\n", "role": "user" }, { "content": "oidc_to_user_data", "role": "assistant" } ]
def x(self, *api_scopes): if self._authorized_api_scopes is None: return None return all(x in self._authorized_api_scopes for x in api_scopes)
has_api_scopes
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, *api_scopes):\n if self._authorized_api_scopes is None:\n return None\n return all(x in self._authorized_api_scopes for x in api_scopes)\n", "role": "user" }, { "content": "has_api_scopes", "role": "assistant" } ]
def x(self, prefix): if self._authorized_api_scopes is None: return None return any(x == prefix or x.startswith(prefix + '.') for x in self. _authorized_api_scopes)
has_api_scope_with_prefix
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, prefix):\n if self._authorized_api_scopes is None:\n return None\n return any(x == prefix or x.startswith(prefix + '.') for x in self.\n _authorized_api_scopes)\n", "role": "user" }, { "content": "has_api_scope_with_prefix", "role": "assistant" } ]
def x(dotted_function_module_path): module_path, function_name = tuple(dotted_function_module_path.rsplit( '.', 1)) module = import_module(module_path) return getattr(module, function_name)
get_function_by_path
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(dotted_function_module_path):\n module_path, function_name = tuple(dotted_function_module_path.rsplit(\n '.', 1))\n module = import_module(module_path)\n return getattr(module, function_name)\n", "role": "user" }, { "content": "get_function_by_path", "role": "assistant" } ]
def x(self, name, shortname, country, latitude, longitude, elevation=u'', style=WaypointStyle.NORMAL, runway_direction=u'', runway_length=u'', frequency=u'', description=u''): if self.in_task_section: raise RuntimeError(u'Waypoints must be written before any tasks') if not name: raise ValueError(u'Waypoint name must not be empty') fields = [self.escape(name), self.escape(shortname), country, self. format_latitude(latitude), self.format_longitude(longitude), self. format_distance(elevation), str(style), str(runway_direction), self .format_distance(runway_length), self.escape(frequency), self. escape(description)] self.write_fields(fields) self.wps.add(name)
write_waypoint
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, name, shortname, country, latitude, longitude, elevation=u'',\n style=WaypointStyle.NORMAL, runway_direction=u'', runway_length=u'',\n frequency=u'', description=u''):\n if self.in_task_section:\n raise RuntimeError(u'Waypoints must be written before any tasks')\n if not name:\n raise ValueError(u'Waypoint name must not be empty')\n fields = [self.escape(name), self.escape(shortname), country, self.\n format_latitude(latitude), self.format_longitude(longitude), self.\n format_distance(elevation), str(style), str(runway_direction), self\n .format_distance(runway_length), self.escape(frequency), self.\n escape(description)]\n self.write_fields(fields)\n self.wps.add(name)\n", "role": "user" }, { "content": "write_waypoint", "role": "assistant" } ]
def x(self, description, waypoints): if not self.in_task_section: self.write_line() self.write_line(self.DIVIDER) self.in_task_section = True fields = [self.escape(description)] for waypoint in waypoints: if waypoint not in self.wps: raise ValueError(u'Waypoint "%s" was not found' % waypoint) fields.append(self.escape(waypoint)) self.write_fields(fields)
write_task
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, description, waypoints):\n if not self.in_task_section:\n self.write_line()\n self.write_line(self.DIVIDER)\n self.in_task_section = True\n fields = [self.escape(description)]\n for waypoint in waypoints:\n if waypoint not in self.wps:\n raise ValueError(u'Waypoint \"%s\" was not found' % waypoint)\n fields.append(self.escape(waypoint))\n self.write_fields(fields)\n", "role": "user" }, { "content": "write_task", "role": "assistant" } ]
def x(self, **kw): if not self.in_task_section: raise RuntimeError(u'Task options have to be written in task section') fields = ['Options'] if 'start_time' in kw: fields.append(u'NoStart=' + self.format_time(kw['start_time'])) if 'task_time' in kw: fields.append(u'TaskTime=' + self.format_timedelta(kw['task_time'])) if 'waypoint_distance' in kw: fields.append(u'WpDis=%s' % kw['waypoint_distance']) if 'distance_tolerance' in kw: fields.append(u'NearDis=' + self.format_distance(kw[ 'distance_tolerance'])) if 'altitude_tolerance' in kw: fields.append(u'NearAlt=' + self.format_distance(kw[ 'altitude_tolerance'])) if 'min_distance' in kw: fields.append(u'MinDis=%s' % kw['min_distance']) if 'random_order' in kw: fields.append(u'RandomOrder=%s' % kw['random_order']) if 'max_points' in kw: fields.append(u'MaxPts=%d' % kw['max_points']) if 'before_points' in kw: fields.append(u'BeforePts=%d' % kw['before_points']) if 'after_points' in kw: fields.append(u'AfterPts=%d' % kw['after_points']) if 'bonus' in kw: fields.append(u'Bonus=%d' % kw['bonus']) self.write_fields(fields)
write_task_options
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, **kw):\n if not self.in_task_section:\n raise RuntimeError(u'Task options have to be written in task section')\n fields = ['Options']\n if 'start_time' in kw:\n fields.append(u'NoStart=' + self.format_time(kw['start_time']))\n if 'task_time' in kw:\n fields.append(u'TaskTime=' + self.format_timedelta(kw['task_time']))\n if 'waypoint_distance' in kw:\n fields.append(u'WpDis=%s' % kw['waypoint_distance'])\n if 'distance_tolerance' in kw:\n fields.append(u'NearDis=' + self.format_distance(kw[\n 'distance_tolerance']))\n if 'altitude_tolerance' in kw:\n fields.append(u'NearAlt=' + self.format_distance(kw[\n 'altitude_tolerance']))\n if 'min_distance' in kw:\n fields.append(u'MinDis=%s' % kw['min_distance'])\n if 'random_order' in kw:\n fields.append(u'RandomOrder=%s' % kw['random_order'])\n if 'max_points' in kw:\n fields.append(u'MaxPts=%d' % kw['max_points'])\n if 'before_points' in kw:\n fields.append(u'BeforePts=%d' % kw['before_points'])\n if 'after_points' in kw:\n fields.append(u'AfterPts=%d' % kw['after_points'])\n if 'bonus' in kw:\n fields.append(u'Bonus=%d' % kw['bonus'])\n self.write_fields(fields)\n", "role": "user" }, { "content": "write_task_options", "role": "assistant" } ]
def x(self, num, **kw): if not self.in_task_section: raise RuntimeError( u'Observation zones have to be written in task section') fields = [u'ObsZone=%d' % num] if 'style' in kw: fields.append(u'Style=%d' % kw['style']) if 'radius' in kw: fields.append(u'R1=' + self.format_distance(kw['radius'])) if 'angle' in kw: fields.append(u'A1=' + self.format_angle(kw['angle'])) if 'radius2' in kw: fields.append(u'R2=' + self.format_distance(kw['radius2'])) if 'angle2' in kw: fields.append(u'A2=' + self.format_angle(kw['angle2'])) if 'angle12' in kw: fields.append(u'A12=' + self.format_angle(kw['angle12'])) if 'line' in kw: fields.append(u'Line=' + ('1' if kw['line'] else '0')) self.write_fields(fields)
write_observation_zone
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, num, **kw):\n if not self.in_task_section:\n raise RuntimeError(\n u'Observation zones have to be written in task section')\n fields = [u'ObsZone=%d' % num]\n if 'style' in kw:\n fields.append(u'Style=%d' % kw['style'])\n if 'radius' in kw:\n fields.append(u'R1=' + self.format_distance(kw['radius']))\n if 'angle' in kw:\n fields.append(u'A1=' + self.format_angle(kw['angle']))\n if 'radius2' in kw:\n fields.append(u'R2=' + self.format_distance(kw['radius2']))\n if 'angle2' in kw:\n fields.append(u'A2=' + self.format_angle(kw['angle2']))\n if 'angle12' in kw:\n fields.append(u'A12=' + self.format_angle(kw['angle12']))\n if 'line' in kw:\n fields.append(u'Line=' + ('1' if kw['line'] else '0'))\n self.write_fields(fields)\n", "role": "user" }, { "content": "write_observation_zone", "role": "assistant" } ]
def x(self): if self.oxd_id: logger.info('Client is already registered. ID: %s', self.oxd_id) return self.oxd_id params = {'authorization_redirect_uri': self.authorization_redirect_uri, 'oxd_rp_programming_language': 'python'} for op in self.opt_params: if self.config.get('client', op): params[op] = self.config.get('client', op) for olp in self.opt_list_params: if self.config.get('client', olp): params[olp] = self.config.get('client', olp).split(',') logger.debug('Sending command `register_site` with params %s', params) response = self.msgr.request('register_site', **params) logger.debug('Received response: %s', response) if response['status'] == 'error': raise OxdServerError(response['data']) self.oxd_id = response['data']['oxd_id'] self.config.set('oxd', 'id', self.oxd_id) logger.info('Site registration successful. Oxd ID: %s', self.oxd_id) return self.oxd_id
register_site
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self.oxd_id:\n logger.info('Client is already registered. ID: %s', self.oxd_id)\n return self.oxd_id\n params = {'authorization_redirect_uri': self.authorization_redirect_uri,\n 'oxd_rp_programming_language': 'python'}\n for op in self.opt_params:\n if self.config.get('client', op):\n params[op] = self.config.get('client', op)\n for olp in self.opt_list_params:\n if self.config.get('client', olp):\n params[olp] = self.config.get('client', olp).split(',')\n logger.debug('Sending command `register_site` with params %s', params)\n response = self.msgr.request('register_site', **params)\n logger.debug('Received response: %s', response)\n if response['status'] == 'error':\n raise OxdServerError(response['data'])\n self.oxd_id = response['data']['oxd_id']\n self.config.set('oxd', 'id', self.oxd_id)\n logger.info('Site registration successful. Oxd ID: %s', self.oxd_id)\n return self.oxd_id\n", "role": "user" }, { "content": "register_site", "role": "assistant" } ]
def x(self, acr_values=None, prompt=None, scope=None, custom_params=None): params = {'oxd_id': self.oxd_id} if scope and isinstance(scope, list): params['scope'] = scope if acr_values and isinstance(acr_values, list): params['acr_values'] = acr_values if prompt and isinstance(prompt, str): params['prompt'] = prompt if custom_params: params['custom_parameters'] = custom_params logger.debug('Sending command `get_authorization_url` with params %s', params) response = self.msgr.request('get_authorization_url', **params) logger.debug('Received response: %s', response) if response['status'] == 'error': raise OxdServerError(response['data']) return response['data']['authorization_url']
get_authorization_url
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, acr_values=None, prompt=None, scope=None, custom_params=None):\n params = {'oxd_id': self.oxd_id}\n if scope and isinstance(scope, list):\n params['scope'] = scope\n if acr_values and isinstance(acr_values, list):\n params['acr_values'] = acr_values\n if prompt and isinstance(prompt, str):\n params['prompt'] = prompt\n if custom_params:\n params['custom_parameters'] = custom_params\n logger.debug('Sending command `get_authorization_url` with params %s',\n params)\n response = self.msgr.request('get_authorization_url', **params)\n logger.debug('Received response: %s', response)\n if response['status'] == 'error':\n raise OxdServerError(response['data'])\n return response['data']['authorization_url']\n", "role": "user" }, { "content": "get_authorization_url", "role": "assistant" } ]
def x(self, code, state): params = dict(oxd_id=self.oxd_id, code=code, state=state) logger.debug('Sending command `get_tokens_by_code` with params %s', params) response = self.msgr.request('get_tokens_by_code', **params) logger.debug('Received response: %s', response) if response['status'] == 'error': raise OxdServerError(response['data']) return response['data']
get_tokens_by_code
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, code, state):\n params = dict(oxd_id=self.oxd_id, code=code, state=state)\n logger.debug('Sending command `get_tokens_by_code` with params %s', params)\n response = self.msgr.request('get_tokens_by_code', **params)\n logger.debug('Received response: %s', response)\n if response['status'] == 'error':\n raise OxdServerError(response['data'])\n return response['data']\n", "role": "user" }, { "content": "get_tokens_by_code", "role": "assistant" } ]
def x(self, refresh_token, scope=None): params = {'oxd_id': self.oxd_id, 'refresh_token': refresh_token} if scope: params['scope'] = scope logger.debug( 'Sending command `get_access_token_by_refresh_token` with params %s', params) response = self.msgr.request('get_access_token_by_refresh_token', **params) logger.debug('Received response: %s', response) if response['status'] == 'error': raise OxdServerError(response['data']) return response['data']
get_access_token_by_refresh_token
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, refresh_token, scope=None):\n params = {'oxd_id': self.oxd_id, 'refresh_token': refresh_token}\n if scope:\n params['scope'] = scope\n logger.debug(\n 'Sending command `get_access_token_by_refresh_token` with params %s',\n params)\n response = self.msgr.request('get_access_token_by_refresh_token', **params)\n logger.debug('Received response: %s', response)\n if response['status'] == 'error':\n raise OxdServerError(response['data'])\n return response['data']\n", "role": "user" }, { "content": "get_access_token_by_refresh_token", "role": "assistant" } ]
def x(self, access_token): params = dict(oxd_id=self.oxd_id, access_token=access_token) params['access_token'] = access_token logger.debug('Sending command `get_user_info` with params %s', params) response = self.msgr.request('get_user_info', **params) logger.debug('Received response: %s', response) if response['status'] == 'error': raise OxdServerError(response['data']) return response['data']['claims']
get_user_info
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, access_token):\n params = dict(oxd_id=self.oxd_id, access_token=access_token)\n params['access_token'] = access_token\n logger.debug('Sending command `get_user_info` with params %s', params)\n response = self.msgr.request('get_user_info', **params)\n logger.debug('Received response: %s', response)\n if response['status'] == 'error':\n raise OxdServerError(response['data'])\n return response['data']['claims']\n", "role": "user" }, { "content": "get_user_info", "role": "assistant" } ]
def x(self, id_token_hint=None, post_logout_redirect_uri=None, state=None, session_state=None): params = {'oxd_id': self.oxd_id} if id_token_hint: params['id_token_hint'] = id_token_hint if post_logout_redirect_uri: params['post_logout_redirect_uri'] = post_logout_redirect_uri if state: params['state'] = state if session_state: params['session_state'] = session_state logger.debug('Sending command `get_logout_uri` with params %s', params) response = self.msgr.request('get_logout_uri', **params) logger.debug('Received response: %s', response) if response['status'] == 'error': raise OxdServerError(response['data']) return response['data']['uri']
get_logout_uri
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, id_token_hint=None, post_logout_redirect_uri=None, state=None,\n session_state=None):\n params = {'oxd_id': self.oxd_id}\n if id_token_hint:\n params['id_token_hint'] = id_token_hint\n if post_logout_redirect_uri:\n params['post_logout_redirect_uri'] = post_logout_redirect_uri\n if state:\n params['state'] = state\n if session_state:\n params['session_state'] = session_state\n logger.debug('Sending command `get_logout_uri` with params %s', params)\n response = self.msgr.request('get_logout_uri', **params)\n logger.debug('Received response: %s', response)\n if response['status'] == 'error':\n raise OxdServerError(response['data'])\n return response['data']['uri']\n", "role": "user" }, { "content": "get_logout_uri", "role": "assistant" } ]
def x(self, client_secret_expires_at=None): params = {'oxd_id': self.oxd_id, 'authorization_redirect_uri': self. authorization_redirect_uri} if client_secret_expires_at: params['client_secret_expires_at'] = client_secret_expires_at for param in self.opt_params: if self.config.get('client', param): value = self.config.get('client', param) params[param] = value for param in self.opt_list_params: if self.config.get('client', param): value = self.config.get('client', param).split(',') params[param] = value logger.debug('Sending `update_site` with params %s', params) response = self.msgr.request('update_site', **params) logger.debug('Received response: %s', response) if response['status'] == 'error': raise OxdServerError(response['data']) return True
update_site
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, client_secret_expires_at=None):\n params = {'oxd_id': self.oxd_id, 'authorization_redirect_uri': self.\n authorization_redirect_uri}\n if client_secret_expires_at:\n params['client_secret_expires_at'] = client_secret_expires_at\n for param in self.opt_params:\n if self.config.get('client', param):\n value = self.config.get('client', param)\n params[param] = value\n for param in self.opt_list_params:\n if self.config.get('client', param):\n value = self.config.get('client', param).split(',')\n params[param] = value\n logger.debug('Sending `update_site` with params %s', params)\n response = self.msgr.request('update_site', **params)\n logger.debug('Received response: %s', response)\n if response['status'] == 'error':\n raise OxdServerError(response['data'])\n return True\n", "role": "user" }, { "content": "update_site", "role": "assistant" } ]
def x(self, resources, overwrite=None): params = dict(oxd_id=self.oxd_id, resources=resources) if overwrite: params['overwrite'] = overwrite logger.debug('Sending `uma_rs_protect` with params %s', params) response = self.msgr.request('uma_rs_protect', **params) logger.debug('Received response: %s', response) if response['status'] == 'error': raise OxdServerError(response['data']) return True
uma_rs_protect
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, resources, overwrite=None):\n params = dict(oxd_id=self.oxd_id, resources=resources)\n if overwrite:\n params['overwrite'] = overwrite\n logger.debug('Sending `uma_rs_protect` with params %s', params)\n response = self.msgr.request('uma_rs_protect', **params)\n logger.debug('Received response: %s', response)\n if response['status'] == 'error':\n raise OxdServerError(response['data'])\n return True\n", "role": "user" }, { "content": "uma_rs_protect", "role": "assistant" } ]
def x(self, rpt, path, http_method): params = {'oxd_id': self.oxd_id, 'rpt': rpt, 'path': path, 'http_method': http_method} logger.debug('Sending command `uma_rs_check_access` with params %s', params ) response = self.msgr.request('uma_rs_check_access', **params) logger.debug('Received response: %s', response) if response['status'] == 'error': if response['data']['error'] == 'invalid_request': raise InvalidRequestError(response['data']) else: raise OxdServerError(response['data']) return response['data']
uma_rs_check_access
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, rpt, path, http_method):\n params = {'oxd_id': self.oxd_id, 'rpt': rpt, 'path': path,\n 'http_method': http_method}\n logger.debug('Sending command `uma_rs_check_access` with params %s', params\n )\n response = self.msgr.request('uma_rs_check_access', **params)\n logger.debug('Received response: %s', response)\n if response['status'] == 'error':\n if response['data']['error'] == 'invalid_request':\n raise InvalidRequestError(response['data'])\n else:\n raise OxdServerError(response['data'])\n return response['data']\n", "role": "user" }, { "content": "uma_rs_check_access", "role": "assistant" } ]
def x(self, ticket, claim_token=None, claim_token_format=None, pct=None, rpt=None, scope=None, state=None): params = {'oxd_id': self.oxd_id, 'ticket': ticket} if claim_token: params['claim_token'] = claim_token if claim_token_format: params['claim_token_format'] = claim_token_format if pct: params['pct'] = pct if rpt: params['rpt'] = rpt if scope: params['scope'] = scope if state: params['state'] = state logger.debug('Sending command `uma_rp_get_rpt` with params %s', params) response = self.msgr.request('uma_rp_get_rpt', **params) logger.debug('Received response: %s', response) if response['status'] == 'ok': return response['data'] if response['data']['error'] == 'internal_error': raise OxdServerError(response['data']) if response['data']['error'] == 'need_info': return response['data'] if response['data']['error'] == 'invalid_ticket': raise InvalidTicketError(response['data'])
uma_rp_get_rpt
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, ticket, claim_token=None, claim_token_format=None, pct=None,\n rpt=None, scope=None, state=None):\n params = {'oxd_id': self.oxd_id, 'ticket': ticket}\n if claim_token:\n params['claim_token'] = claim_token\n if claim_token_format:\n params['claim_token_format'] = claim_token_format\n if pct:\n params['pct'] = pct\n if rpt:\n params['rpt'] = rpt\n if scope:\n params['scope'] = scope\n if state:\n params['state'] = state\n logger.debug('Sending command `uma_rp_get_rpt` with params %s', params)\n response = self.msgr.request('uma_rp_get_rpt', **params)\n logger.debug('Received response: %s', response)\n if response['status'] == 'ok':\n return response['data']\n if response['data']['error'] == 'internal_error':\n raise OxdServerError(response['data'])\n if response['data']['error'] == 'need_info':\n return response['data']\n if response['data']['error'] == 'invalid_ticket':\n raise InvalidTicketError(response['data'])\n", "role": "user" }, { "content": "uma_rp_get_rpt", "role": "assistant" } ]
def x(self, ticket): params = {'oxd_id': self.oxd_id, 'claims_redirect_uri': self.config.get ('client', 'claims_redirect_uri'), 'ticket': ticket} logger.debug( 'Sending command `uma_rp_get_claims_gathering_url` with params %s', params) response = self.msgr.request('uma_rp_get_claims_gathering_url', **params) logger.debug('Received response: %s', response) if response['status'] == 'error': raise OxdServerError(response['data']) return response['data']['url']
uma_rp_get_claims_gathering_url
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, ticket):\n params = {'oxd_id': self.oxd_id, 'claims_redirect_uri': self.config.get\n ('client', 'claims_redirect_uri'), 'ticket': ticket}\n logger.debug(\n 'Sending command `uma_rp_get_claims_gathering_url` with params %s',\n params)\n response = self.msgr.request('uma_rp_get_claims_gathering_url', **params)\n logger.debug('Received response: %s', response)\n if response['status'] == 'error':\n raise OxdServerError(response['data'])\n return response['data']['url']\n", "role": "user" }, { "content": "uma_rp_get_claims_gathering_url", "role": "assistant" } ]
def x(self): params = {'authorization_redirect_uri': self.authorization_redirect_uri, 'oxd_rp_programming_language': 'python'} for op in self.opt_params: if self.config.get('client', op): params[op] = self.config.get('client', op) for olp in self.opt_list_params: if self.config.get('client', olp): params[olp] = self.config.get('client', olp).split(',') logger.debug('Sending command `setup_client` with params %s', params) response = self.msgr.request('setup_client', **params) logger.debug('Received response: %s', response) if response['status'] == 'error': raise OxdServerError(response['data']) data = response['data'] self.oxd_id = data['oxd_id'] self.config.set('oxd', 'id', data['oxd_id']) self.config.set('client', 'client_id', data['client_id']) self.config.set('client', 'client_secret', data['client_secret']) if data['client_registration_access_token']: self.config.set('client', 'client_registration_access_token', data[ 'client_registration_access_token']) if data['client_registration_client_uri']: self.config.set('client', 'client_registration_client_uri', data[ 'client_registration_client_uri']) self.config.set('client', 'client_id_issued_at', str(data[ 'client_id_issued_at'])) return data
setup_client
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n params = {'authorization_redirect_uri': self.authorization_redirect_uri,\n 'oxd_rp_programming_language': 'python'}\n for op in self.opt_params:\n if self.config.get('client', op):\n params[op] = self.config.get('client', op)\n for olp in self.opt_list_params:\n if self.config.get('client', olp):\n params[olp] = self.config.get('client', olp).split(',')\n logger.debug('Sending command `setup_client` with params %s', params)\n response = self.msgr.request('setup_client', **params)\n logger.debug('Received response: %s', response)\n if response['status'] == 'error':\n raise OxdServerError(response['data'])\n data = response['data']\n self.oxd_id = data['oxd_id']\n self.config.set('oxd', 'id', data['oxd_id'])\n self.config.set('client', 'client_id', data['client_id'])\n self.config.set('client', 'client_secret', data['client_secret'])\n if data['client_registration_access_token']:\n self.config.set('client', 'client_registration_access_token', data[\n 'client_registration_access_token'])\n if data['client_registration_client_uri']:\n self.config.set('client', 'client_registration_client_uri', data[\n 'client_registration_client_uri'])\n self.config.set('client', 'client_id_issued_at', str(data[\n 'client_id_issued_at']))\n return data\n", "role": "user" }, { "content": "setup_client", "role": "assistant" } ]
def x(self, client_id=None, client_secret=None, op_host=None, op_discovery_path=None, scope=None, auto_update=True): params = dict(client_id=client_id, client_secret=client_secret, op_host =op_host) if op_discovery_path: params['op_discovery_path'] = op_discovery_path if scope and isinstance(scope, list): params['scope'] = scope if not client_id: params['client_id'] = self.config.get('client', 'client_id') if not client_secret: params['client_secret'] = self.config.get('client', 'client_secret') if not op_host: params['op_host'] = self.config.get('client', 'op_host') logger.debug('Sending command `get_client_token` with params %s', params) response = self.msgr.request('get_client_token', **params) logger.debug('Received response: %s', response) if response['status'] == 'error': raise OxdServerError(response['data']) self.config.set('client', 'protection_access_token', response['data'][ 'access_token']) self.msgr.access_token = response['data']['access_token'] if auto_update: interval = int(response['data']['expires_in']) args = [client_id, client_secret, op_host, op_discovery_path, scope, auto_update] logger.info( 'Setting up a threading.Timer to get_client_token in %s seconds', interval) t = Timer(interval, self.get_client_token, args) t.start() return response['data']
get_client_token
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, client_id=None, client_secret=None, op_host=None,\n op_discovery_path=None, scope=None, auto_update=True):\n params = dict(client_id=client_id, client_secret=client_secret, op_host\n =op_host)\n if op_discovery_path:\n params['op_discovery_path'] = op_discovery_path\n if scope and isinstance(scope, list):\n params['scope'] = scope\n if not client_id:\n params['client_id'] = self.config.get('client', 'client_id')\n if not client_secret:\n params['client_secret'] = self.config.get('client', 'client_secret')\n if not op_host:\n params['op_host'] = self.config.get('client', 'op_host')\n logger.debug('Sending command `get_client_token` with params %s', params)\n response = self.msgr.request('get_client_token', **params)\n logger.debug('Received response: %s', response)\n if response['status'] == 'error':\n raise OxdServerError(response['data'])\n self.config.set('client', 'protection_access_token', response['data'][\n 'access_token'])\n self.msgr.access_token = response['data']['access_token']\n if auto_update:\n interval = int(response['data']['expires_in'])\n args = [client_id, client_secret, op_host, op_discovery_path, scope,\n auto_update]\n logger.info(\n 'Setting up a threading.Timer to get_client_token in %s seconds',\n interval)\n t = Timer(interval, self.get_client_token, args)\n t.start()\n return response['data']\n", "role": "user" }, { "content": "get_client_token", "role": "assistant" } ]
def x(self): params = dict(oxd_id=self.oxd_id) logger.debug('Sending command `remove_site` with params %s', params) response = self.msgr.request('remove_site', **params) logger.debug('Received response: %s', response) if response['status'] == 'error': raise OxdServerError(response['data']) return response['data']['oxd_id']
remove_site
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n params = dict(oxd_id=self.oxd_id)\n logger.debug('Sending command `remove_site` with params %s', params)\n response = self.msgr.request('remove_site', **params)\n logger.debug('Received response: %s', response)\n if response['status'] == 'error':\n raise OxdServerError(response['data'])\n return response['data']['oxd_id']\n", "role": "user" }, { "content": "remove_site", "role": "assistant" } ]
def x(self, rpt): params = dict(oxd_id=self.oxd_id) params['rpt'] = rpt logger.debug('Sending command `introspect_rpt` with params %s', params) response = self.msgr.request('introspect_rpt', **params) logger.debug('Received response: %s', response) if response['status'] == 'error': raise OxdServerError(response['data']) return response['data']
introspect_rpt
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, rpt):\n params = dict(oxd_id=self.oxd_id)\n params['rpt'] = rpt\n logger.debug('Sending command `introspect_rpt` with params %s', params)\n response = self.msgr.request('introspect_rpt', **params)\n logger.debug('Received response: %s', response)\n if response['status'] == 'error':\n raise OxdServerError(response['data'])\n return response['data']\n", "role": "user" }, { "content": "introspect_rpt", "role": "assistant" } ]
def x(self, **kw): self.convert_timedelta(kw, 'aat_min_time') self.convert_time(kw, 'start_open_time') self.convert_time(kw, 'start_close_time') self.convert_bool(kw, 'fai_finish') self.convert_bool(kw, 'start_requires_arm') return self.write_tag_with_content('Task', **kw)
write_task
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, **kw):\n self.convert_timedelta(kw, 'aat_min_time')\n self.convert_time(kw, 'start_open_time')\n self.convert_time(kw, 'start_close_time')\n self.convert_bool(kw, 'fai_finish')\n self.convert_bool(kw, 'start_requires_arm')\n return self.write_tag_with_content('Task', **kw)\n", "role": "user" }, { "content": "write_task", "role": "assistant" } ]
def x(self, **kw): assert 'type' in kw self.convert_bool(kw, 'score_exit') return self.write_tag_with_content('Point', **kw)
write_point
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, **kw):\n assert 'type' in kw\n self.convert_bool(kw, 'score_exit')\n return self.write_tag_with_content('Point', **kw)\n", "role": "user" }, { "content": "write_point", "role": "assistant" } ]