source_code
stringlengths 45
7.24k
| function_name
stringlengths 1
111
| messages
list |
---|---|---|
def x(self):
if self._state != 'open':
if self._line is not None:
self._state = 'open'
self._nodes = self.grid.graph.nodes_from_line(self._line)
self.grid.graph.remove_edge(self._nodes[0], self._nodes[1])
else:
raise ValueError('``line`` is not set')
|
open
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if self._state != 'open':\n if self._line is not None:\n self._state = 'open'\n self._nodes = self.grid.graph.nodes_from_line(self._line)\n self.grid.graph.remove_edge(self._nodes[0], self._nodes[1])\n else:\n raise ValueError('``line`` is not set')\n",
"role": "user"
},
{
"content": "open",
"role": "assistant"
}
] |
def x(self):
self._state = 'closed'
self.grid.graph.add_edge(self._nodes[0], self._nodes[1], {'line': self.
_line})
|
close
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n self._state = 'closed'\n self.grid.graph.add_edge(self._nodes[0], self._nodes[1], {'line': self.\n _line})\n",
"role": "user"
},
{
"content": "close",
"role": "assistant"
}
] |
def x(self):
adj_nodes = self._grid._graph.nodes_from_line(self)
return LineString([adj_nodes[0].geom, adj_nodes[1].geom])
|
geom
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n adj_nodes = self._grid._graph.nodes_from_line(self)\n return LineString([adj_nodes[0].geom, adj_nodes[1].geom])\n",
"role": "user"
},
{
"content": "geom",
"role": "assistant"
}
] |
def x(func):
@functools.wraps(func)
def x(self, request, context):
return func(self, request, LogFieldsContext(context))
return wrapper
|
wrap_context
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(func):\n\n @functools.wraps(func)\n def x(self, request, context):\n return func(self, request, LogFieldsContext(context))\n return wrapper\n",
"role": "user"
},
{
"content": "wrap_context",
"role": "assistant"
}
] |
def x(self, fields: Dict[str, Any]):
self._log_fields.add_fields(fields)
|
add_log_fields
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, fields: Dict[str, Any]):\n self._log_fields.add_fields(fields)\n",
"role": "user"
},
{
"content": "add_log_fields",
"role": "assistant"
}
] |
def x(self) ->List[Tuple[str, Any]]:
metadata = [(k, v) for k, v in self._invocation_metadata.items() if k !=
LOG_FIELDS_KEY_META]
metadata.append((LOG_FIELDS_KEY_META, self._log_fields.dumps()))
return metadata
|
pack_metadata
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self) ->List[Tuple[str, Any]]:\n metadata = [(k, v) for k, v in self._invocation_metadata.items() if k !=\n LOG_FIELDS_KEY_META]\n metadata.append((LOG_FIELDS_KEY_META, self._log_fields.dumps()))\n return metadata\n",
"role": "user"
},
{
"content": "pack_metadata",
"role": "assistant"
}
] |
def x(cls, metadata: Dict[str, Any]) ->'LogFields':
return cls(fields=json.loads(metadata.get(LOG_FIELDS_KEY_META, '{}')))
|
from_metadata
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, metadata: Dict[str, Any]) ->'LogFields':\n return cls(fields=json.loads(metadata.get(LOG_FIELDS_KEY_META, '{}')))\n",
"role": "user"
},
{
"content": "from_metadata",
"role": "assistant"
}
] |
def x(self, fields):
for k, v in fields.items():
if k not in self._fields:
self._fields[k] = v
|
add_fields
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, fields):\n for k, v in fields.items():\n if k not in self._fields:\n self._fields[k] = v\n",
"role": "user"
},
{
"content": "add_fields",
"role": "assistant"
}
] |
def x(network, without_generator_import=False):
def x(transformer):
if isinstance(transformer.grid, LVGrid):
return float(network.config['costs_transformers']['lv'])
elif isinstance(transformer.grid, MVGrid):
return float(network.config['costs_transformers']['mv'])
def x(line, quantity):
if isinstance(line.grid, LVGrid):
voltage_level = 'lv'
elif isinstance(line.grid, MVGrid):
voltage_level = 'mv'
else:
raise KeyError('Grid must be LVGrid or MVGrid.')
projection = partial(pyproj.transform, pyproj.Proj(init='epsg:{}'.
format(int(network.config['geo']['srid']))), pyproj.Proj(init=
'epsg:3035'))
sqm2sqkm = 1000000.0
population_density = line.grid.grid_district['population'] / (transform
(projection, line.grid.grid_district['geom']).area / sqm2sqkm)
if population_density <= 500:
population_density = 'rural'
else:
population_density = 'urban'
costs_cable = float(network.config['costs_cables']['{}_cable'.
format(voltage_level)])
costs_cable_earthwork = float(network.config['costs_cables'][
'{}_cable_incl_earthwork_{}'.format(voltage_level,
population_density)])
return costs_cable_earthwork * l.length + costs_cable * l.length * (
quantity - 1)
costs = pd.DataFrame()
if without_generator_import:
equipment_changes = network.results.equipment_changes.loc[network.
results.equipment_changes.iteration_step > 0]
else:
equipment_changes = network.results.equipment_changes
if not equipment_changes.empty:
transformers = equipment_changes[equipment_changes['equipment'].
apply(isinstance, args=(Transformer,))]
added_transformers = transformers[transformers['change'] == 'added']
removed_transformers = transformers[transformers['change'] == 'removed'
]
added_removed_transformers = added_transformers.loc[added_transformers
['equipment'].isin(removed_transformers['equipment'])]
added_transformers = added_transformers[~added_transformers[
'equipment'].isin(added_removed_transformers.equipment)]
for t in added_transformers['equipment']:
costs = costs.append(pd.DataFrame({'type': t.type.name,
'total_costs': _get_transformer_costs(t), 'quantity': 1,
'voltage_level': 'mv/lv', 'mv_feeder': t.grid.station.
mv_feeder if isinstance(t.grid, LVGrid) else None}, index=[t]))
lines = equipment_changes.loc[equipment_changes.index[
equipment_changes.reset_index()['index'].apply(isinstance, args
=(Line,))]]
for l in list(lines.index.unique()):
aggr_lines = []
aggr_lines_generator = l.grid.graph.lines_by_attribute('line_aggr')
for aggr_line in aggr_lines_generator:
aggr_lines.append(repr(aggr_line['line']))
if not repr(l) in aggr_lines:
number_lines_added = equipment_changes[(equipment_changes.
index == l) & (equipment_changes.equipment == l.type.name)
]['quantity'].sum()
costs = costs.append(pd.DataFrame({'type': l.type.name,
'total_costs': _get_line_costs(l, number_lines_added),
'length': l.length * number_lines_added, 'quantity':
number_lines_added, 'voltage_level': 'lv' if isinstance
(l.grid, LVGrid) else 'mv', 'mv_feeder':
get_mv_feeder_from_line(l)}, index=[l]))
if costs.empty:
costs = costs.append(pd.DataFrame({'type': ['N/A'], 'total_costs':
[0], 'length': [0], 'quantity': [0], 'voltage_level': '',
'mv_feeder': ''}, index=['No reinforced equipment.']))
return costs
|
grid_expansion_costs
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(network, without_generator_import=False):\n\n def x(transformer):\n if isinstance(transformer.grid, LVGrid):\n return float(network.config['costs_transformers']['lv'])\n elif isinstance(transformer.grid, MVGrid):\n return float(network.config['costs_transformers']['mv'])\n\n def x(line, quantity):\n if isinstance(line.grid, LVGrid):\n voltage_level = 'lv'\n elif isinstance(line.grid, MVGrid):\n voltage_level = 'mv'\n else:\n raise KeyError('Grid must be LVGrid or MVGrid.')\n projection = partial(pyproj.transform, pyproj.Proj(init='epsg:{}'.\n format(int(network.config['geo']['srid']))), pyproj.Proj(init=\n 'epsg:3035'))\n sqm2sqkm = 1000000.0\n population_density = line.grid.grid_district['population'] / (transform\n (projection, line.grid.grid_district['geom']).area / sqm2sqkm)\n if population_density <= 500:\n population_density = 'rural'\n else:\n population_density = 'urban'\n costs_cable = float(network.config['costs_cables']['{}_cable'.\n format(voltage_level)])\n costs_cable_earthwork = float(network.config['costs_cables'][\n '{}_cable_incl_earthwork_{}'.format(voltage_level,\n population_density)])\n return costs_cable_earthwork * l.length + costs_cable * l.length * (\n quantity - 1)\n costs = pd.DataFrame()\n if without_generator_import:\n equipment_changes = network.results.equipment_changes.loc[network.\n results.equipment_changes.iteration_step > 0]\n else:\n equipment_changes = network.results.equipment_changes\n if not equipment_changes.empty:\n transformers = equipment_changes[equipment_changes['equipment'].\n apply(isinstance, args=(Transformer,))]\n added_transformers = transformers[transformers['change'] == 'added']\n removed_transformers = transformers[transformers['change'] == 'removed'\n ]\n added_removed_transformers = added_transformers.loc[added_transformers\n ['equipment'].isin(removed_transformers['equipment'])]\n added_transformers = added_transformers[~added_transformers[\n 'equipment'].isin(added_removed_transformers.equipment)]\n for t in added_transformers['equipment']:\n costs = costs.append(pd.DataFrame({'type': t.type.name,\n 'total_costs': _get_transformer_costs(t), 'quantity': 1,\n 'voltage_level': 'mv/lv', 'mv_feeder': t.grid.station.\n mv_feeder if isinstance(t.grid, LVGrid) else None}, index=[t]))\n lines = equipment_changes.loc[equipment_changes.index[\n equipment_changes.reset_index()['index'].apply(isinstance, args\n =(Line,))]]\n for l in list(lines.index.unique()):\n aggr_lines = []\n aggr_lines_generator = l.grid.graph.lines_by_attribute('line_aggr')\n for aggr_line in aggr_lines_generator:\n aggr_lines.append(repr(aggr_line['line']))\n if not repr(l) in aggr_lines:\n number_lines_added = equipment_changes[(equipment_changes.\n index == l) & (equipment_changes.equipment == l.type.name)\n ]['quantity'].sum()\n costs = costs.append(pd.DataFrame({'type': l.type.name,\n 'total_costs': _get_line_costs(l, number_lines_added),\n 'length': l.length * number_lines_added, 'quantity':\n number_lines_added, 'voltage_level': 'lv' if isinstance\n (l.grid, LVGrid) else 'mv', 'mv_feeder':\n get_mv_feeder_from_line(l)}, index=[l]))\n if costs.empty:\n costs = costs.append(pd.DataFrame({'type': ['N/A'], 'total_costs':\n [0], 'length': [0], 'quantity': [0], 'voltage_level': '',\n 'mv_feeder': ''}, index=['No reinforced equipment.']))\n return costs\n",
"role": "user"
},
{
"content": "grid_expansion_costs",
"role": "assistant"
}
] |
def x(self, technologies=False, **kwargs):
if self.network.pypsa is None:
try:
timesteps = self.network.timeseries.timeindex
self.network.pypsa = pypsa_io.to_pypsa(self.network, mode=None,
timesteps=timesteps)
except:
logging.warning(
'pypsa representation of MV grid needed to plot MV grid topology.'
)
if self.network.pypsa is not None:
plots.mv_grid_topology(self.network.pypsa, self.network.config,
node_color='technology' if technologies is True else None,
filename=kwargs.get('filename', None), grid_district_geom=
kwargs.get('grid_district_geom', True), background_map=kwargs.
get('background_map', True), xlim=kwargs.get('xlim', None),
ylim=kwargs.get('ylim', None), title=kwargs.get('title', ''))
|
plot_mv_grid_topology
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, technologies=False, **kwargs):\n if self.network.pypsa is None:\n try:\n timesteps = self.network.timeseries.timeindex\n self.network.pypsa = pypsa_io.to_pypsa(self.network, mode=None,\n timesteps=timesteps)\n except:\n logging.warning(\n 'pypsa representation of MV grid needed to plot MV grid topology.'\n )\n if self.network.pypsa is not None:\n plots.mv_grid_topology(self.network.pypsa, self.network.config,\n node_color='technology' if technologies is True else None,\n filename=kwargs.get('filename', None), grid_district_geom=\n kwargs.get('grid_district_geom', True), background_map=kwargs.\n get('background_map', True), xlim=kwargs.get('xlim', None),\n ylim=kwargs.get('ylim', None), title=kwargs.get('title', ''))\n",
"role": "user"
},
{
"content": "plot_mv_grid_topology",
"role": "assistant"
}
] |
def x(self, **kwargs):
if self.network.pypsa is not None:
try:
v_res = self.network.results.v_res()
except:
logging.warning(
'Voltages `pfa_v_mag_pu` from power flow analysis must be available to plot them.'
)
return
plots.mv_grid_topology(self.network.pypsa, self.network.config,
timestep=kwargs.get('timestep', None), node_color='voltage',
filename=kwargs.get('filename', None), grid_district_geom=
kwargs.get('grid_district_geom', True), background_map=kwargs.
get('background_map', True), voltage=v_res, limits_cb_nodes=
kwargs.get('limits_cb_nodes', None), xlim=kwargs.get('xlim',
None), ylim=kwargs.get('ylim', None), title=kwargs.get('title', '')
)
else:
logging.warning(
'pypsa representation of MV grid needed to plot voltages.')
|
plot_mv_voltages
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, **kwargs):\n if self.network.pypsa is not None:\n try:\n v_res = self.network.results.v_res()\n except:\n logging.warning(\n 'Voltages `pfa_v_mag_pu` from power flow analysis must be available to plot them.'\n )\n return\n plots.mv_grid_topology(self.network.pypsa, self.network.config,\n timestep=kwargs.get('timestep', None), node_color='voltage',\n filename=kwargs.get('filename', None), grid_district_geom=\n kwargs.get('grid_district_geom', True), background_map=kwargs.\n get('background_map', True), voltage=v_res, limits_cb_nodes=\n kwargs.get('limits_cb_nodes', None), xlim=kwargs.get('xlim',\n None), ylim=kwargs.get('ylim', None), title=kwargs.get('title', '')\n )\n else:\n logging.warning(\n 'pypsa representation of MV grid needed to plot voltages.')\n",
"role": "user"
},
{
"content": "plot_mv_voltages",
"role": "assistant"
}
] |
def x(self, **kwargs):
if (self.network.pypsa is not None and self.network.results.i_res is not
None):
plots.mv_grid_topology(self.network.pypsa, self.network.config,
timestep=kwargs.get('timestep', None), line_color='loading',
node_color=kwargs.get('node_color', None), line_load=self.
network.results.s_res(), filename=kwargs.get('filename', None),
arrows=kwargs.get('arrows', None), grid_district_geom=kwargs.
get('grid_district_geom', True), background_map=kwargs.get(
'background_map', True), voltage=self.network.results.v_res(),
limits_cb_lines=kwargs.get('limits_cb_lines', None),
limits_cb_nodes=kwargs.get('limits_cb_nodes', None), xlim=
kwargs.get('xlim', None), ylim=kwargs.get('ylim', None),
lines_cmap=kwargs.get('lines_cmap', 'inferno_r'), title=kwargs.
get('title', ''), scaling_factor_line_width=kwargs.get(
'scaling_factor_line_width', None))
else:
if self.network.pypsa is None:
logging.warning(
'pypsa representation of MV grid needed to plot line loading.')
if self.network.results.i_res is None:
logging.warning(
'Currents `i_res` from power flow analysis must be available to plot line loading.'
)
|
plot_mv_line_loading
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, **kwargs):\n if (self.network.pypsa is not None and self.network.results.i_res is not\n None):\n plots.mv_grid_topology(self.network.pypsa, self.network.config,\n timestep=kwargs.get('timestep', None), line_color='loading',\n node_color=kwargs.get('node_color', None), line_load=self.\n network.results.s_res(), filename=kwargs.get('filename', None),\n arrows=kwargs.get('arrows', None), grid_district_geom=kwargs.\n get('grid_district_geom', True), background_map=kwargs.get(\n 'background_map', True), voltage=self.network.results.v_res(),\n limits_cb_lines=kwargs.get('limits_cb_lines', None),\n limits_cb_nodes=kwargs.get('limits_cb_nodes', None), xlim=\n kwargs.get('xlim', None), ylim=kwargs.get('ylim', None),\n lines_cmap=kwargs.get('lines_cmap', 'inferno_r'), title=kwargs.\n get('title', ''), scaling_factor_line_width=kwargs.get(\n 'scaling_factor_line_width', None))\n else:\n if self.network.pypsa is None:\n logging.warning(\n 'pypsa representation of MV grid needed to plot line loading.')\n if self.network.results.i_res is None:\n logging.warning(\n 'Currents `i_res` from power flow analysis must be available to plot line loading.'\n )\n",
"role": "user"
},
{
"content": "plot_mv_line_loading",
"role": "assistant"
}
] |
def x(self, **kwargs):
if (self.network.pypsa is not None and self.network.results.
grid_expansion_costs is not None):
if isinstance(self, EDisGo):
grid_expansion_costs = (self.network.results.
grid_expansion_costs.reset_index())
grid_expansion_costs['index'] = grid_expansion_costs['index'
].apply(lambda _: repr(_))
grid_expansion_costs.set_index('index', inplace=True)
else:
grid_expansion_costs = self.network.results.grid_expansion_costs
plots.mv_grid_topology(self.network.pypsa, self.network.config,
line_color='expansion_costs', grid_expansion_costs=
grid_expansion_costs, filename=kwargs.get('filename', None),
grid_district_geom=kwargs.get('grid_district_geom', True),
background_map=kwargs.get('background_map', True),
limits_cb_lines=kwargs.get('limits_cb_lines', None), xlim=
kwargs.get('xlim', None), ylim=kwargs.get('ylim', None),
lines_cmap=kwargs.get('lines_cmap', 'inferno_r'), title=kwargs.
get('title', ''), scaling_factor_line_width=kwargs.get(
'scaling_factor_line_width', None))
else:
if self.network.pypsa is None:
logging.warning(
'pypsa representation of MV grid needed to plot grid expansion costs.'
)
if self.network.results.grid_expansion_costs is None:
logging.warning('Grid expansion cost results needed to plot them.')
|
plot_mv_grid_expansion_costs
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, **kwargs):\n if (self.network.pypsa is not None and self.network.results.\n grid_expansion_costs is not None):\n if isinstance(self, EDisGo):\n grid_expansion_costs = (self.network.results.\n grid_expansion_costs.reset_index())\n grid_expansion_costs['index'] = grid_expansion_costs['index'\n ].apply(lambda _: repr(_))\n grid_expansion_costs.set_index('index', inplace=True)\n else:\n grid_expansion_costs = self.network.results.grid_expansion_costs\n plots.mv_grid_topology(self.network.pypsa, self.network.config,\n line_color='expansion_costs', grid_expansion_costs=\n grid_expansion_costs, filename=kwargs.get('filename', None),\n grid_district_geom=kwargs.get('grid_district_geom', True),\n background_map=kwargs.get('background_map', True),\n limits_cb_lines=kwargs.get('limits_cb_lines', None), xlim=\n kwargs.get('xlim', None), ylim=kwargs.get('ylim', None),\n lines_cmap=kwargs.get('lines_cmap', 'inferno_r'), title=kwargs.\n get('title', ''), scaling_factor_line_width=kwargs.get(\n 'scaling_factor_line_width', None))\n else:\n if self.network.pypsa is None:\n logging.warning(\n 'pypsa representation of MV grid needed to plot grid expansion costs.'\n )\n if self.network.results.grid_expansion_costs is None:\n logging.warning('Grid expansion cost results needed to plot them.')\n",
"role": "user"
},
{
"content": "plot_mv_grid_expansion_costs",
"role": "assistant"
}
] |
def x(self, **kwargs):
if self.network.pypsa is not None:
plots.mv_grid_topology(self.network.pypsa, self.network.config,
node_color='storage_integration', filename=kwargs.get(
'filename', None), grid_district_geom=kwargs.get(
'grid_district_geom', True), background_map=kwargs.get(
'background_map', True), xlim=kwargs.get('xlim', None), ylim=
kwargs.get('ylim', None), title=kwargs.get('title', ''))
elif self.network.pypsa is None:
logging.warning(
'pypsa representation of MV grid needed to plot storage integration in MV grid.'
)
|
plot_mv_storage_integration
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, **kwargs):\n if self.network.pypsa is not None:\n plots.mv_grid_topology(self.network.pypsa, self.network.config,\n node_color='storage_integration', filename=kwargs.get(\n 'filename', None), grid_district_geom=kwargs.get(\n 'grid_district_geom', True), background_map=kwargs.get(\n 'background_map', True), xlim=kwargs.get('xlim', None), ylim=\n kwargs.get('ylim', None), title=kwargs.get('title', ''))\n elif self.network.pypsa is None:\n logging.warning(\n 'pypsa representation of MV grid needed to plot storage integration in MV grid.'\n )\n",
"role": "user"
},
{
"content": "plot_mv_storage_integration",
"role": "assistant"
}
] |
def x(self, timestep=None, title=True, **kwargs):
data = self.network.results.v_res()
if title is True:
if timestep is not None:
title = 'Voltage histogram for time step {}'.format(timestep)
else:
title = 'Voltage histogram \nfor time steps {} to {}'.format(data
.index[0], data.index[-1])
elif title is False:
title = None
plots.histogram(data=data, title=title, timeindex=timestep, **kwargs)
|
histogram_voltage
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, timestep=None, title=True, **kwargs):\n data = self.network.results.v_res()\n if title is True:\n if timestep is not None:\n title = 'Voltage histogram for time step {}'.format(timestep)\n else:\n title = 'Voltage histogram \\nfor time steps {} to {}'.format(data\n .index[0], data.index[-1])\n elif title is False:\n title = None\n plots.histogram(data=data, title=title, timeindex=timestep, **kwargs)\n",
"role": "user"
},
{
"content": "histogram_voltage",
"role": "assistant"
}
] |
def x(self, timestep=None, title=True, voltage_level='mv_lv', **kwargs):
residual_load = tools.get_residual_load_from_pypsa_network(self.network
.pypsa)
case = residual_load.apply(lambda _: 'feedin_case' if _ < 0 else
'load_case')
if timestep is not None:
timeindex = [timestep]
else:
timeindex = self.network.results.s_res().index
load_factor = pd.DataFrame(data={'s_nom': [float(self.network.config[
'grid_expansion_load_factors']['mv_{}_line'.format(case.loc[_])]) for
_ in timeindex]}, index=timeindex)
if voltage_level == 'mv':
lines = self.network.pypsa.lines.loc[self.network.pypsa.lines.v_nom > 1
]
elif voltage_level == 'lv':
lines = self.network.pypsa.lines.loc[self.network.pypsa.lines.v_nom < 1
]
else:
lines = self.network.pypsa.lines
s_res = self.network.results.s_res().loc[timeindex, lines.index]
s_allowed = load_factor.dot(self.network.pypsa.lines.s_nom.to_frame().T *
1000.0)
data = s_res.divide(s_allowed)
if title is True:
if timestep is not None:
title = 'Relative line load histogram for time step {}'.format(
timestep)
else:
title = ('Relative line load histogram \nfor time steps {} to {}'
.format(data.index[0], data.index[-1]))
elif title is False:
title = None
plots.histogram(data=data, title=title, **kwargs)
|
histogram_relative_line_load
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, timestep=None, title=True, voltage_level='mv_lv', **kwargs):\n residual_load = tools.get_residual_load_from_pypsa_network(self.network\n .pypsa)\n case = residual_load.apply(lambda _: 'feedin_case' if _ < 0 else\n 'load_case')\n if timestep is not None:\n timeindex = [timestep]\n else:\n timeindex = self.network.results.s_res().index\n load_factor = pd.DataFrame(data={'s_nom': [float(self.network.config[\n 'grid_expansion_load_factors']['mv_{}_line'.format(case.loc[_])]) for\n _ in timeindex]}, index=timeindex)\n if voltage_level == 'mv':\n lines = self.network.pypsa.lines.loc[self.network.pypsa.lines.v_nom > 1\n ]\n elif voltage_level == 'lv':\n lines = self.network.pypsa.lines.loc[self.network.pypsa.lines.v_nom < 1\n ]\n else:\n lines = self.network.pypsa.lines\n s_res = self.network.results.s_res().loc[timeindex, lines.index]\n s_allowed = load_factor.dot(self.network.pypsa.lines.s_nom.to_frame().T *\n 1000.0)\n data = s_res.divide(s_allowed)\n if title is True:\n if timestep is not None:\n title = 'Relative line load histogram for time step {}'.format(\n timestep)\n else:\n title = ('Relative line load histogram \\nfor time steps {} to {}'\n .format(data.index[0], data.index[-1]))\n elif title is False:\n title = None\n plots.histogram(data=data, title=title, **kwargs)\n",
"role": "user"
},
{
"content": "histogram_relative_line_load",
"role": "assistant"
}
] |
def x(self, methodology, curtailment_timeseries, **kwargs):
CurtailmentControl(edisgo=self, methodology=methodology,
curtailment_timeseries=curtailment_timeseries, **kwargs)
|
curtail
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, methodology, curtailment_timeseries, **kwargs):\n CurtailmentControl(edisgo=self, methodology=methodology,\n curtailment_timeseries=curtailment_timeseries, **kwargs)\n",
"role": "user"
},
{
"content": "curtail",
"role": "assistant"
}
] |
def x(self, file, **kwargs):
import_from_ding0(file=file, network=self.network)
|
import_from_ding0
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, file, **kwargs):\n import_from_ding0(file=file, network=self.network)\n",
"role": "user"
},
{
"content": "import_from_ding0",
"role": "assistant"
}
] |
def x(self, generator_scenario=None):
if generator_scenario:
self.network.generator_scenario = generator_scenario
data_source = 'oedb'
import_generators(network=self.network, data_source=data_source)
|
import_generators
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, generator_scenario=None):\n if generator_scenario:\n self.network.generator_scenario = generator_scenario\n data_source = 'oedb'\n import_generators(network=self.network, data_source=data_source)\n",
"role": "user"
},
{
"content": "import_generators",
"role": "assistant"
}
] |
def x(self, mode=None, timesteps=None):
if timesteps is None:
timesteps = self.network.timeseries.timeindex
if not hasattr(timesteps, '__len__'):
timesteps = [timesteps]
if self.network.pypsa is None:
self.network.pypsa = pypsa_io.to_pypsa(self.network, mode, timesteps)
elif self.network.pypsa.edisgo_mode is not mode:
self.network.pypsa = pypsa_io.to_pypsa(self.network, mode, timesteps)
if False in [(True if _ in self.network.pypsa.snapshots else False) for
_ in timesteps]:
pypsa_io.update_pypsa_timeseries(self.network, timesteps=timesteps)
pf_results = self.network.pypsa.pf(timesteps)
if all(pf_results['converged']['0'].tolist()):
pypsa_io.process_pfa_results(self.network, self.network.pypsa,
timesteps)
else:
raise ValueError('Power flow analysis did not converge.')
|
analyze
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, mode=None, timesteps=None):\n if timesteps is None:\n timesteps = self.network.timeseries.timeindex\n if not hasattr(timesteps, '__len__'):\n timesteps = [timesteps]\n if self.network.pypsa is None:\n self.network.pypsa = pypsa_io.to_pypsa(self.network, mode, timesteps)\n elif self.network.pypsa.edisgo_mode is not mode:\n self.network.pypsa = pypsa_io.to_pypsa(self.network, mode, timesteps)\n if False in [(True if _ in self.network.pypsa.snapshots else False) for\n _ in timesteps]:\n pypsa_io.update_pypsa_timeseries(self.network, timesteps=timesteps)\n pf_results = self.network.pypsa.pf(timesteps)\n if all(pf_results['converged']['0'].tolist()):\n pypsa_io.process_pfa_results(self.network, self.network.pypsa,\n timesteps)\n else:\n raise ValueError('Power flow analysis did not converge.')\n",
"role": "user"
},
{
"content": "analyze",
"role": "assistant"
}
] |
def x(self, mode=None, timesteps=None, etrago_max_storage_size=None):
if timesteps is None:
timesteps = self.network.timeseries.timeindex
if not hasattr(timesteps, '__len__'):
timesteps = [timesteps]
logging.debug(
'Translate eDisGo grid topology representation to PyPSA format.')
self.network.pypsa_lopf = pypsa_io_lopf.to_pypsa(self.network, mode,
timesteps)
logging.debug(
'Translating eDisGo grid topology representation to PyPSA format finished.'
)
def x(network, snapshots):
model = network.model
model.storages_p_nom = Constraint(rule=lambda model: sum(model.
generator_p_nom[s] for s in self.network.pypsa_lopf.generators[
self.network.pypsa_lopf.generators.type == 'Storage'].index) <=
etrago_max_storage_size)
self.network.pypsa_lopf.lopf(snapshots=timesteps, solver_name='cbc',
keep_files=False, extra_functionality=extra_functionality,
solver_options={'tee': True})
print('objective: {}'.format(self.network.pypsa_lopf.objective))
plots.storage_size(self.network.mv_grid, self.network.pypsa_lopf,
filename='storage_results_{}.pdf'.format(self.network.id))
storages = self.network.mv_grid.graph.nodes_by_attribute('storage')
storages_repr = [repr(_) for _ in storages]
print('Installed storage capacity: {} MW'.format(self.network.
pypsa_lopf.generators.loc[storages_repr, 'p_nom_opt'].sum()))
pypsa_storages_df = self.network.pypsa_lopf.generators.loc[storages_repr, :
].sort_values(by=['p_nom_opt'], ascending=False)
storage_repr = []
storage_path = []
for s in storages:
storage_repr.append(repr(s))
storage_path.append(nx.shortest_path(self.network.mv_grid.graph,
self.network.mv_grid.station, s))
graph_storages_df = pd.DataFrame({'path': storage_path}, index=storage_repr
)
pypsa_storages_df.join(graph_storages_df).to_csv('storage_results_{}.csv'
.format(self.network.id))
keep_storages = pypsa_storages_df.iloc[:8, :].index
remove_storages = pypsa_storages_df.iloc[8:, :].index
for s in keep_storages:
keep_storage_obj = [_ for _ in storages if repr(_) == s][0]
ts = self.network.pypsa_lopf.generators_t.p.loc[:, s]
keep_storage_obj.timeseries = pd.DataFrame({'p': ts * 1000, 'q': [0
] * len(ts)}, index=ts.index)
for s in remove_storages:
disconnect_storage(self.network, [_ for _ in storages if repr(_) ==
s][0])
|
analyze_lopf
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, mode=None, timesteps=None, etrago_max_storage_size=None):\n if timesteps is None:\n timesteps = self.network.timeseries.timeindex\n if not hasattr(timesteps, '__len__'):\n timesteps = [timesteps]\n logging.debug(\n 'Translate eDisGo grid topology representation to PyPSA format.')\n self.network.pypsa_lopf = pypsa_io_lopf.to_pypsa(self.network, mode,\n timesteps)\n logging.debug(\n 'Translating eDisGo grid topology representation to PyPSA format finished.'\n )\n\n def x(network, snapshots):\n model = network.model\n model.storages_p_nom = Constraint(rule=lambda model: sum(model.\n generator_p_nom[s] for s in self.network.pypsa_lopf.generators[\n self.network.pypsa_lopf.generators.type == 'Storage'].index) <=\n etrago_max_storage_size)\n self.network.pypsa_lopf.lopf(snapshots=timesteps, solver_name='cbc',\n keep_files=False, extra_functionality=extra_functionality,\n solver_options={'tee': True})\n print('objective: {}'.format(self.network.pypsa_lopf.objective))\n plots.storage_size(self.network.mv_grid, self.network.pypsa_lopf,\n filename='storage_results_{}.pdf'.format(self.network.id))\n storages = self.network.mv_grid.graph.nodes_by_attribute('storage')\n storages_repr = [repr(_) for _ in storages]\n print('Installed storage capacity: {} MW'.format(self.network.\n pypsa_lopf.generators.loc[storages_repr, 'p_nom_opt'].sum()))\n pypsa_storages_df = self.network.pypsa_lopf.generators.loc[storages_repr, :\n ].sort_values(by=['p_nom_opt'], ascending=False)\n storage_repr = []\n storage_path = []\n for s in storages:\n storage_repr.append(repr(s))\n storage_path.append(nx.shortest_path(self.network.mv_grid.graph,\n self.network.mv_grid.station, s))\n graph_storages_df = pd.DataFrame({'path': storage_path}, index=storage_repr\n )\n pypsa_storages_df.join(graph_storages_df).to_csv('storage_results_{}.csv'\n .format(self.network.id))\n keep_storages = pypsa_storages_df.iloc[:8, :].index\n remove_storages = pypsa_storages_df.iloc[8:, :].index\n for s in keep_storages:\n keep_storage_obj = [_ for _ in storages if repr(_) == s][0]\n ts = self.network.pypsa_lopf.generators_t.p.loc[:, s]\n keep_storage_obj.timeseries = pd.DataFrame({'p': ts * 1000, 'q': [0\n ] * len(ts)}, index=ts.index)\n for s in remove_storages:\n disconnect_storage(self.network, [_ for _ in storages if repr(_) ==\n s][0])\n",
"role": "user"
},
{
"content": "analyze_lopf",
"role": "assistant"
}
] |
def x(self, **kwargs):
results = reinforce_grid(self, max_while_iterations=kwargs.get(
'max_while_iterations', 10), copy_graph=kwargs.get('copy_graph',
False), timesteps_pfa=kwargs.get('timesteps_pfa', None),
combined_analysis=kwargs.get('combined_analysis', False))
if not kwargs.get('copy_graph', False):
self.network.results.measures = 'grid_expansion'
return results
|
reinforce
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, **kwargs):\n results = reinforce_grid(self, max_while_iterations=kwargs.get(\n 'max_while_iterations', 10), copy_graph=kwargs.get('copy_graph', \n False), timesteps_pfa=kwargs.get('timesteps_pfa', None),\n combined_analysis=kwargs.get('combined_analysis', False))\n if not kwargs.get('copy_graph', False):\n self.network.results.measures = 'grid_expansion'\n return results\n",
"role": "user"
},
{
"content": "reinforce",
"role": "assistant"
}
] |
def x(self, timeseries, position, **kwargs):
StorageControl(edisgo=self, timeseries=timeseries, position=position,
**kwargs)
|
integrate_storage
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, timeseries, position, **kwargs):\n StorageControl(edisgo=self, timeseries=timeseries, position=position,\n **kwargs)\n",
"role": "user"
},
{
"content": "integrate_storage",
"role": "assistant"
}
] |
def x(self):
package_path = edisgo.__path__[0]
equipment_dir = self.config['system_dirs']['equipment_dir']
data = {}
equipment = {'mv': ['trafos', 'lines', 'cables'], 'lv': ['trafos',
'cables']}
for voltage_level, eq_list in equipment.items():
for i in eq_list:
equipment_parameters = self.config['equipment'][
'equipment_{}_parameters_{}'.format(voltage_level, i)]
data['{}_{}'.format(voltage_level, i)] = pd.read_csv(os.path.
join(package_path, equipment_dir, equipment_parameters),
comment='#', index_col='name', delimiter=',', decimal='.')
return data
|
load_equipment_data
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n package_path = edisgo.__path__[0]\n equipment_dir = self.config['system_dirs']['equipment_dir']\n data = {}\n equipment = {'mv': ['trafos', 'lines', 'cables'], 'lv': ['trafos',\n 'cables']}\n for voltage_level, eq_list in equipment.items():\n for i in eq_list:\n equipment_parameters = self.config['equipment'][\n 'equipment_{}_parameters_{}'.format(voltage_level, i)]\n data['{}_{}'.format(voltage_level, i)] = pd.read_csv(os.path.\n join(package_path, equipment_dir, equipment_parameters),\n comment='#', index_col='name', delimiter=',', decimal='.')\n return data\n",
"role": "user"
},
{
"content": "load_equipment_data",
"role": "assistant"
}
] |
def x(config_path=None):
config_files = ['config_db_tables', 'config_grid',
'config_grid_expansion', 'config_timeseries']
if isinstance(config_path, dict):
for conf in config_files:
config.load_config(filename='{}.cfg'.format(conf), config_dir=
config_path[conf], copy_default_config=False)
else:
for conf in config_files:
config.load_config(filename='{}.cfg'.format(conf), config_dir=
config_path)
config_dict = config.cfg._sections
for sec, subsecs in config_dict.items():
for subsec, val in subsecs.items():
try:
config_dict[sec][subsec] = float(val)
except:
pass
config_dict['demandlib']['day_start'] = datetime.datetime.strptime(
config_dict['demandlib']['day_start'], '%H:%M')
config_dict['demandlib']['day_start'] = datetime.time(config_dict[
'demandlib']['day_start'].hour, config_dict['demandlib'][
'day_start'].minute)
config_dict['demandlib']['day_end'] = datetime.datetime.strptime(
config_dict['demandlib']['day_end'], '%H:%M')
config_dict['demandlib']['day_end'] = datetime.time(config_dict[
'demandlib']['day_end'].hour, config_dict['demandlib']['day_end'].
minute)
return config_dict
|
load_config
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(config_path=None):\n config_files = ['config_db_tables', 'config_grid',\n 'config_grid_expansion', 'config_timeseries']\n if isinstance(config_path, dict):\n for conf in config_files:\n config.load_config(filename='{}.cfg'.format(conf), config_dir=\n config_path[conf], copy_default_config=False)\n else:\n for conf in config_files:\n config.load_config(filename='{}.cfg'.format(conf), config_dir=\n config_path)\n config_dict = config.cfg._sections\n for sec, subsecs in config_dict.items():\n for subsec, val in subsecs.items():\n try:\n config_dict[sec][subsec] = float(val)\n except:\n pass\n config_dict['demandlib']['day_start'] = datetime.datetime.strptime(\n config_dict['demandlib']['day_start'], '%H:%M')\n config_dict['demandlib']['day_start'] = datetime.time(config_dict[\n 'demandlib']['day_start'].hour, config_dict['demandlib'][\n 'day_start'].minute)\n config_dict['demandlib']['day_end'] = datetime.datetime.strptime(\n config_dict['demandlib']['day_end'], '%H:%M')\n config_dict['demandlib']['day_end'] = datetime.time(config_dict[\n 'demandlib']['day_end'].hour, config_dict['demandlib']['day_end'].\n minute)\n return config_dict\n",
"role": "user"
},
{
"content": "load_config",
"role": "assistant"
}
] |
def x(self):
try:
self.timeseries.generation_fluctuating
self.timeseries.generation_dispatchable
self.timeseries.load
self.timeseries.generation_reactive_power
self.timeseries.load_reactive_power
except:
message = 'Time index of feed-in and load time series does not match.'
logging.error(message)
raise KeyError(message)
|
check_timeindex
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n try:\n self.timeseries.generation_fluctuating\n self.timeseries.generation_dispatchable\n self.timeseries.load\n self.timeseries.generation_reactive_power\n self.timeseries.load_reactive_power\n except:\n message = 'Time index of feed-in and load time series does not match.'\n logging.error(message)\n raise KeyError(message)\n",
"role": "user"
},
{
"content": "check_timeindex",
"role": "assistant"
}
] |
def x(self, worst_case_scale_factors, modes):
self.timeseries.generation_fluctuating = pd.DataFrame({'solar': [
worst_case_scale_factors['{}_feedin_pv'.format(mode)] for mode in
modes], 'wind': [worst_case_scale_factors['{}_feedin_other'.format(
mode)] for mode in modes]}, index=self.timeseries.timeindex)
self.timeseries.generation_dispatchable = pd.DataFrame({'other': [
worst_case_scale_factors['{}_feedin_other'.format(mode)] for mode in
modes]}, index=self.timeseries.timeindex)
|
worst_case_generation
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, worst_case_scale_factors, modes):\n self.timeseries.generation_fluctuating = pd.DataFrame({'solar': [\n worst_case_scale_factors['{}_feedin_pv'.format(mode)] for mode in\n modes], 'wind': [worst_case_scale_factors['{}_feedin_other'.format(\n mode)] for mode in modes]}, index=self.timeseries.timeindex)\n self.timeseries.generation_dispatchable = pd.DataFrame({'other': [\n worst_case_scale_factors['{}_feedin_other'.format(mode)] for mode in\n modes]}, index=self.timeseries.timeindex)\n",
"role": "user"
},
{
"content": "worst_case_generation",
"role": "assistant"
}
] |
def x(self, worst_case_scale_factors, peakload_consumption_ratio, modes):
sectors = ['residential', 'retail', 'industrial', 'agricultural']
lv_power_scaling = np.array([worst_case_scale_factors['lv_{}_load'.
format(mode)] for mode in modes])
mv_power_scaling = np.array([worst_case_scale_factors['mv_{}_load'.
format(mode)] for mode in modes])
lv = {(sector, 'lv'): (peakload_consumption_ratio[sector] *
lv_power_scaling) for sector in sectors}
mv = {(sector, 'mv'): (peakload_consumption_ratio[sector] *
mv_power_scaling) for sector in sectors}
self.timeseries.load = pd.DataFrame({**lv, **mv}, index=self.timeseries
.timeindex)
|
worst_case_load
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, worst_case_scale_factors, peakload_consumption_ratio, modes):\n sectors = ['residential', 'retail', 'industrial', 'agricultural']\n lv_power_scaling = np.array([worst_case_scale_factors['lv_{}_load'.\n format(mode)] for mode in modes])\n mv_power_scaling = np.array([worst_case_scale_factors['mv_{}_load'.\n format(mode)] for mode in modes])\n lv = {(sector, 'lv'): (peakload_consumption_ratio[sector] *\n lv_power_scaling) for sector in sectors}\n mv = {(sector, 'mv'): (peakload_consumption_ratio[sector] *\n mv_power_scaling) for sector in sectors}\n self.timeseries.load = pd.DataFrame({**lv, **mv}, index=self.timeseries\n .timeindex)\n",
"role": "user"
},
{
"content": "worst_case_load",
"role": "assistant"
}
] |
def x(self, curtailment_timeseries, network):
if curtailment_timeseries is None:
message = 'No curtailment given.'
logging.error(message)
raise KeyError(message)
try:
curtailment_timeseries.loc[network.timeseries.timeindex]
except:
message = (
'Time index of curtailment time series does not match with load and feed-in time series.'
)
logging.error(message)
raise KeyError(message)
|
check_timeindex
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, curtailment_timeseries, network):\n if curtailment_timeseries is None:\n message = 'No curtailment given.'\n logging.error(message)\n raise KeyError(message)\n try:\n curtailment_timeseries.loc[network.timeseries.timeindex]\n except:\n message = (\n 'Time index of curtailment time series does not match with load and feed-in time series.'\n )\n logging.error(message)\n raise KeyError(message)\n",
"role": "user"
},
{
"content": "check_timeindex",
"role": "assistant"
}
] |
def x(self, curtailment_timeseries, feedin_df, curtailment_key):
if not feedin_df.empty:
feedin_selected_sum = feedin_df.sum(axis=1)
diff = feedin_selected_sum - curtailment_timeseries
diff[diff.between(-1, 0)] = 0
if not (diff >= 0).all():
bad_time_steps = [_ for _ in diff.index if diff[_] < 0]
message = (
'Curtailment demand exceeds total feed-in in time steps {}.'
.format(bad_time_steps))
logging.error(message)
raise ValueError(message)
else:
bad_time_steps = [_ for _ in curtailment_timeseries.index if
curtailment_timeseries[_] > 0]
if bad_time_steps:
message = (
'Curtailment given for time steps {} but there are no generators to meet the curtailment target for {}.'
.format(bad_time_steps, curtailment_key))
logging.error(message)
raise ValueError(message)
|
precheck
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, curtailment_timeseries, feedin_df, curtailment_key):\n if not feedin_df.empty:\n feedin_selected_sum = feedin_df.sum(axis=1)\n diff = feedin_selected_sum - curtailment_timeseries\n diff[diff.between(-1, 0)] = 0\n if not (diff >= 0).all():\n bad_time_steps = [_ for _ in diff.index if diff[_] < 0]\n message = (\n 'Curtailment demand exceeds total feed-in in time steps {}.'\n .format(bad_time_steps))\n logging.error(message)\n raise ValueError(message)\n else:\n bad_time_steps = [_ for _ in curtailment_timeseries.index if \n curtailment_timeseries[_] > 0]\n if bad_time_steps:\n message = (\n 'Curtailment given for time steps {} but there are no generators to meet the curtailment target for {}.'\n .format(bad_time_steps, curtailment_key))\n logging.error(message)\n raise ValueError(message)\n",
"role": "user"
},
{
"content": "precheck",
"role": "assistant"
}
] |
def x(self, network, feedin):
curtailment = network.timeseries.curtailment
gen_repr = [repr(_) for _ in curtailment.columns]
feedin_repr = feedin.loc[:, gen_repr]
curtailment_repr = curtailment
curtailment_repr.columns = gen_repr
if not (feedin_repr - curtailment_repr > -0.1).all().all():
message = 'Curtailment exceeds feed-in.'
logging.error(message)
raise TypeError(message)
|
postcheck
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, network, feedin):\n curtailment = network.timeseries.curtailment\n gen_repr = [repr(_) for _ in curtailment.columns]\n feedin_repr = feedin.loc[:, gen_repr]\n curtailment_repr = curtailment\n curtailment_repr.columns = gen_repr\n if not (feedin_repr - curtailment_repr > -0.1).all().all():\n message = 'Curtailment exceeds feed-in.'\n logging.error(message)\n raise TypeError(message)\n",
"role": "user"
},
{
"content": "postcheck",
"role": "assistant"
}
] |
def x(self, timeseries, position, params, voltage_level,
reactive_power_timeseries, **kwargs):
params = self._check_nominal_power(params, timeseries)
if isinstance(position, Station) or isinstance(position, BranchTee
) or isinstance(position, Generator) or isinstance(position, Load):
storage = storage_integration.set_up_storage(node=position,
parameters=params, voltage_level=voltage_level)
line = storage_integration.connect_storage(storage, position)
elif isinstance(position, str) and position == 'hvmv_substation_busbar':
storage, line = storage_integration.storage_at_hvmv_substation(self
.edisgo.network.mv_grid, params)
elif isinstance(position, str) and position == 'distribute_storages_mv':
if not isinstance(timeseries, pd.Series):
raise ValueError(
"Storage time series needs to be a pandas Series if `position` is 'distribute_storages_mv'."
)
else:
timeseries = pd.DataFrame(data={'p': timeseries}, index=
timeseries.index)
self._check_timeindex(timeseries)
if reactive_power_timeseries is not None:
self._check_timeindex(reactive_power_timeseries)
timeseries['q'] = reactive_power_timeseries.loc[timeseries.index]
else:
timeseries['q'] = 0
storage_positioning.one_storage_per_feeder(edisgo=self.edisgo,
storage_timeseries=timeseries, storage_nominal_power=params[
'nominal_power'], **kwargs)
return
else:
message = 'Provided storage position option {} is not valid.'.format(
timeseries)
logging.error(message)
raise KeyError(message)
if isinstance(timeseries, pd.Series):
timeseries = pd.DataFrame(data={'p': timeseries}, index=timeseries.
index)
self._check_timeindex(timeseries)
storage.timeseries = timeseries
elif isinstance(timeseries, str) and timeseries == 'fifty-fifty':
storage_operation.fifty_fifty(self.edisgo.network, storage)
else:
message = 'Provided storage timeseries option {} is not valid.'.format(
timeseries)
logging.error(message)
raise KeyError(message)
if reactive_power_timeseries is not None:
self._check_timeindex(reactive_power_timeseries)
storage.timeseries = pd.DataFrame({'p': storage.timeseries.p, 'q':
reactive_power_timeseries.loc[storage.timeseries.index]}, index
=storage.timeseries.index)
if self.edisgo.network.pypsa is not None:
pypsa_io.update_pypsa_storage(self.edisgo.network.pypsa, storages=[
storage], storages_lines=[line])
|
integrate_storage
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, timeseries, position, params, voltage_level,\n reactive_power_timeseries, **kwargs):\n params = self._check_nominal_power(params, timeseries)\n if isinstance(position, Station) or isinstance(position, BranchTee\n ) or isinstance(position, Generator) or isinstance(position, Load):\n storage = storage_integration.set_up_storage(node=position,\n parameters=params, voltage_level=voltage_level)\n line = storage_integration.connect_storage(storage, position)\n elif isinstance(position, str) and position == 'hvmv_substation_busbar':\n storage, line = storage_integration.storage_at_hvmv_substation(self\n .edisgo.network.mv_grid, params)\n elif isinstance(position, str) and position == 'distribute_storages_mv':\n if not isinstance(timeseries, pd.Series):\n raise ValueError(\n \"Storage time series needs to be a pandas Series if `position` is 'distribute_storages_mv'.\"\n )\n else:\n timeseries = pd.DataFrame(data={'p': timeseries}, index=\n timeseries.index)\n self._check_timeindex(timeseries)\n if reactive_power_timeseries is not None:\n self._check_timeindex(reactive_power_timeseries)\n timeseries['q'] = reactive_power_timeseries.loc[timeseries.index]\n else:\n timeseries['q'] = 0\n storage_positioning.one_storage_per_feeder(edisgo=self.edisgo,\n storage_timeseries=timeseries, storage_nominal_power=params[\n 'nominal_power'], **kwargs)\n return\n else:\n message = 'Provided storage position option {} is not valid.'.format(\n timeseries)\n logging.error(message)\n raise KeyError(message)\n if isinstance(timeseries, pd.Series):\n timeseries = pd.DataFrame(data={'p': timeseries}, index=timeseries.\n index)\n self._check_timeindex(timeseries)\n storage.timeseries = timeseries\n elif isinstance(timeseries, str) and timeseries == 'fifty-fifty':\n storage_operation.fifty_fifty(self.edisgo.network, storage)\n else:\n message = 'Provided storage timeseries option {} is not valid.'.format(\n timeseries)\n logging.error(message)\n raise KeyError(message)\n if reactive_power_timeseries is not None:\n self._check_timeindex(reactive_power_timeseries)\n storage.timeseries = pd.DataFrame({'p': storage.timeseries.p, 'q':\n reactive_power_timeseries.loc[storage.timeseries.index]}, index\n =storage.timeseries.index)\n if self.edisgo.network.pypsa is not None:\n pypsa_io.update_pypsa_storage(self.edisgo.network.pypsa, storages=[\n storage], storages_lines=[line])\n",
"role": "user"
},
{
"content": "integrate_storage",
"role": "assistant"
}
] |
def x(self, storage_parameters, timeseries):
if storage_parameters.get('nominal_power', None) is None:
try:
storage_parameters['nominal_power'] = max(abs(timeseries))
except:
raise ValueError(
'Could not assign a nominal power to the storage. Please provide either a nominal power or an active power time series.'
)
return storage_parameters
|
check_nominal_power
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, storage_parameters, timeseries):\n if storage_parameters.get('nominal_power', None) is None:\n try:\n storage_parameters['nominal_power'] = max(abs(timeseries))\n except:\n raise ValueError(\n 'Could not assign a nominal power to the storage. Please provide either a nominal power or an active power time series.'\n )\n return storage_parameters\n",
"role": "user"
},
{
"content": "check_nominal_power",
"role": "assistant"
}
] |
def x(self, timeseries):
try:
timeseries.loc[self.edisgo.network.timeseries.timeindex]
except:
message = (
'Time index of storage time series does not match with load and feed-in time series.'
)
logging.error(message)
raise KeyError(message)
|
check_timeindex
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, timeseries):\n try:\n timeseries.loc[self.edisgo.network.timeseries.timeindex]\n except:\n message = (\n 'Time index of storage time series does not match with load and feed-in time series.'\n )\n logging.error(message)\n raise KeyError(message)\n",
"role": "user"
},
{
"content": "check_timeindex",
"role": "assistant"
}
] |
def x(self):
try:
return self._generation_dispatchable.loc[[self.timeindex], :]
except:
return self._generation_dispatchable.loc[self.timeindex, :]
|
generation_dispatchable
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n try:\n return self._generation_dispatchable.loc[[self.timeindex], :]\n except:\n return self._generation_dispatchable.loc[self.timeindex, :]\n",
"role": "user"
},
{
"content": "generation_dispatchable",
"role": "assistant"
}
] |
def x(self):
try:
return self._generation_fluctuating.loc[[self.timeindex], :]
except:
return self._generation_fluctuating.loc[self.timeindex, :]
|
generation_fluctuating
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n try:\n return self._generation_fluctuating.loc[[self.timeindex], :]\n except:\n return self._generation_fluctuating.loc[self.timeindex, :]\n",
"role": "user"
},
{
"content": "generation_fluctuating",
"role": "assistant"
}
] |
def x(self):
try:
return self._load.loc[[self.timeindex], :]
except:
return self._load.loc[self.timeindex, :]
|
load
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n try:\n return self._load.loc[[self.timeindex], :]\n except:\n return self._load.loc[self.timeindex, :]\n",
"role": "user"
},
{
"content": "load",
"role": "assistant"
}
] |
def x(self):
if self._curtailment is not None:
if isinstance(self._curtailment, pd.DataFrame):
try:
return self._curtailment.loc[[self.timeindex], :]
except:
return self._curtailment.loc[self.timeindex, :]
elif isinstance(self._curtailment, list):
try:
curtailment = pd.DataFrame()
for gen in self._curtailment:
curtailment[gen] = gen.curtailment
return curtailment
except:
raise
else:
return None
|
curtailment
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if self._curtailment is not None:\n if isinstance(self._curtailment, pd.DataFrame):\n try:\n return self._curtailment.loc[[self.timeindex], :]\n except:\n return self._curtailment.loc[self.timeindex, :]\n elif isinstance(self._curtailment, list):\n try:\n curtailment = pd.DataFrame()\n for gen in self._curtailment:\n curtailment[gen] = gen.curtailment\n return curtailment\n except:\n raise\n else:\n return None\n",
"role": "user"
},
{
"content": "curtailment",
"role": "assistant"
}
] |
def x(self):
if self._curtailment is not None:
result_dict = {}
for key, gen_list in self._curtailment.items():
curtailment_df = pd.DataFrame()
for gen in gen_list:
curtailment_df[gen] = gen.curtailment
result_dict[key] = curtailment_df
return result_dict
else:
return None
|
curtailment
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if self._curtailment is not None:\n result_dict = {}\n for key, gen_list in self._curtailment.items():\n curtailment_df = pd.DataFrame()\n for gen in gen_list:\n curtailment_df[gen] = gen.curtailment\n result_dict[key] = curtailment_df\n return result_dict\n else:\n return None\n",
"role": "user"
},
{
"content": "curtailment",
"role": "assistant"
}
] |
def x(self):
grids = [self.network.mv_grid] + list(self.network.mv_grid.lv_grids)
storage_results = {}
storage_results['storage_id'] = []
storage_results['nominal_power'] = []
storage_results['voltage_level'] = []
storage_results['grid_connection_point'] = []
for grid in grids:
for storage in grid.graph.nodes_by_attribute('storage'):
storage_results['storage_id'].append(repr(storage))
storage_results['nominal_power'].append(storage.nominal_power)
storage_results['voltage_level'].append('mv' if isinstance(grid,
MVGrid) else 'lv')
storage_results['grid_connection_point'].append(grid.graph.
neighbors(storage)[0])
return pd.DataFrame(storage_results).set_index('storage_id')
|
storages
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n grids = [self.network.mv_grid] + list(self.network.mv_grid.lv_grids)\n storage_results = {}\n storage_results['storage_id'] = []\n storage_results['nominal_power'] = []\n storage_results['voltage_level'] = []\n storage_results['grid_connection_point'] = []\n for grid in grids:\n for storage in grid.graph.nodes_by_attribute('storage'):\n storage_results['storage_id'].append(repr(storage))\n storage_results['nominal_power'].append(storage.nominal_power)\n storage_results['voltage_level'].append('mv' if isinstance(grid,\n MVGrid) else 'lv')\n storage_results['grid_connection_point'].append(grid.graph.\n neighbors(storage)[0])\n return pd.DataFrame(storage_results).set_index('storage_id')\n",
"role": "user"
},
{
"content": "storages",
"role": "assistant"
}
] |
def x(self):
storages_p = pd.DataFrame()
storages_q = pd.DataFrame()
grids = [self.network.mv_grid] + list(self.network.mv_grid.lv_grids)
for grid in grids:
for storage in grid.graph.nodes_by_attribute('storage'):
ts = storage.timeseries
storages_p[repr(storage)] = ts.p
storages_q[repr(storage)] = ts.q
return storages_p, storages_q
|
storages_timeseries
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n storages_p = pd.DataFrame()\n storages_q = pd.DataFrame()\n grids = [self.network.mv_grid] + list(self.network.mv_grid.lv_grids)\n for grid in grids:\n for storage in grid.graph.nodes_by_attribute('storage'):\n ts = storage.timeseries\n storages_p[repr(storage)] = ts.p\n storages_q[repr(storage)] = ts.q\n return storages_p, storages_q\n",
"role": "user"
},
{
"content": "storages_timeseries",
"role": "assistant"
}
] |
def x(self, components=None):
if components is not None:
labels_included = []
labels_not_included = []
labels = [repr(l) for l in components]
for label in labels:
if label in list(self.pfa_p.columns) and label in list(self.
pfa_q.columns):
labels_included.append(label)
else:
labels_not_included.append(label)
if labels_not_included:
logging.warning(
'Apparent power for {lines} are not returned from PFA'.
format(lines=labels_not_included))
else:
labels_included = self.pfa_p.columns
s_res = (self.pfa_p[labels_included] ** 2 + self.pfa_q[labels_included] **
2).applymap(sqrt)
return s_res
|
s_res
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, components=None):\n if components is not None:\n labels_included = []\n labels_not_included = []\n labels = [repr(l) for l in components]\n for label in labels:\n if label in list(self.pfa_p.columns) and label in list(self.\n pfa_q.columns):\n labels_included.append(label)\n else:\n labels_not_included.append(label)\n if labels_not_included:\n logging.warning(\n 'Apparent power for {lines} are not returned from PFA'.\n format(lines=labels_not_included))\n else:\n labels_included = self.pfa_p.columns\n s_res = (self.pfa_p[labels_included] ** 2 + self.pfa_q[labels_included] **\n 2).applymap(sqrt)\n return s_res\n",
"role": "user"
},
{
"content": "s_res",
"role": "assistant"
}
] |
def x(self, directory, parameters='all'):
def x(target_dir):
if self.pfa_v_mag_pu is not None:
os.makedirs(target_dir, exist_ok=True)
self.pfa_v_mag_pu.to_csv(os.path.join(target_dir,
'voltages_pu.csv'))
self.i_res.to_csv(os.path.join(target_dir, 'currents.csv'))
self.pfa_p.to_csv(os.path.join(target_dir, 'active_powers.csv'))
self.pfa_q.to_csv(os.path.join(target_dir, 'reactive_powers.csv'))
self.s_res().to_csv(os.path.join(target_dir, 'apparent_powers.csv')
)
self.grid_losses.to_csv(os.path.join(target_dir, 'grid_losses.csv')
)
self.hv_mv_exchanges.to_csv(os.path.join(target_dir,
'hv_mv_exchanges.csv'))
def x(target_dir):
if self.network.pypsa:
os.makedirs(target_dir, exist_ok=True)
self.network.pypsa.export_to_csv_folder(target_dir)
def x(target_dir):
if self.grid_expansion_costs is not None:
os.makedirs(target_dir, exist_ok=True)
self.grid_expansion_costs.to_csv(os.path.join(target_dir,
'grid_expansion_costs.csv'))
pd.DataFrame(self.unresolved_issues).to_csv(os.path.join(
target_dir, 'unresolved_issues.csv'))
self.equipment_changes.to_csv(os.path.join(target_dir,
'equipment_changes.csv'))
def x(target_dir):
if self.curtailment is not None:
os.makedirs(target_dir, exist_ok=True)
for key, curtailment_df in self.curtailment.items():
if type(key) == tuple:
type_prefix = '-'.join([key[0], str(key[1])])
elif type(key) == str:
type_prefix = key
else:
raise KeyError('Unknown key type {} for key {}'.format(
type(key), key))
filename = os.path.join(target_dir, '{}.csv'.format(
type_prefix))
curtailment_df.to_csv(filename, index_label=type_prefix)
def x(target_dir):
storages = self.storages
if not storages.empty:
os.makedirs(target_dir, exist_ok=True)
storages.to_csv(os.path.join(target_dir, 'storages.csv'))
ts_p, ts_q = self.storages_timeseries()
ts_p.to_csv(os.path.join(target_dir, 'storages_active_power.csv'))
ts_q.to_csv(os.path.join(target_dir, 'storages_reactive_power.csv')
)
if not self.storages_costs_reduction is None:
self.storages_costs_reduction.to_csv(os.path.join(
target_dir, 'storages_costs_reduction.csv'))
func_dict = {'powerflow_results': _save_power_flow_results,
'pypsa_network': _save_pypsa_network, 'grid_expansion_results':
_save_grid_expansion_results, 'curtailment_results':
_save_curtailment_results, 'storage_integration_results':
_save_storage_integration_results}
if isinstance(parameters, str):
if parameters == 'all':
parameters = ['powerflow_results', 'pypsa_network',
'grid_expansion_results', 'curtailment_results',
'storage_integration_results']
else:
parameters = [parameters]
for parameter in parameters:
try:
func_dict[parameter](os.path.join(directory, parameter))
except KeyError:
message = (
"Invalid input {} for `parameters` when saving results. Must be any or a list of the following: 'pypsa_network', 'powerflow_results', 'grid_expansion_results', 'curtailment_results', 'storage_integration_results'."
.format(parameter))
logger.error(message)
raise KeyError(message)
except:
raise
pd.DataFrame(data={'measure': self.measures}).to_csv(os.path.join(
directory, 'measures.csv'))
with open(os.path.join(directory, 'configs.csv'), 'w') as f:
writer = csv.writer(f)
rows = [(['{}'.format(key)] + [value for item in values.items() for
value in item]) for key, values in self.network.config._data.
items()]
writer.writerows(rows)
|
save
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, directory, parameters='all'):\n\n def x(target_dir):\n if self.pfa_v_mag_pu is not None:\n os.makedirs(target_dir, exist_ok=True)\n self.pfa_v_mag_pu.to_csv(os.path.join(target_dir,\n 'voltages_pu.csv'))\n self.i_res.to_csv(os.path.join(target_dir, 'currents.csv'))\n self.pfa_p.to_csv(os.path.join(target_dir, 'active_powers.csv'))\n self.pfa_q.to_csv(os.path.join(target_dir, 'reactive_powers.csv'))\n self.s_res().to_csv(os.path.join(target_dir, 'apparent_powers.csv')\n )\n self.grid_losses.to_csv(os.path.join(target_dir, 'grid_losses.csv')\n )\n self.hv_mv_exchanges.to_csv(os.path.join(target_dir,\n 'hv_mv_exchanges.csv'))\n\n def x(target_dir):\n if self.network.pypsa:\n os.makedirs(target_dir, exist_ok=True)\n self.network.pypsa.export_to_csv_folder(target_dir)\n\n def x(target_dir):\n if self.grid_expansion_costs is not None:\n os.makedirs(target_dir, exist_ok=True)\n self.grid_expansion_costs.to_csv(os.path.join(target_dir,\n 'grid_expansion_costs.csv'))\n pd.DataFrame(self.unresolved_issues).to_csv(os.path.join(\n target_dir, 'unresolved_issues.csv'))\n self.equipment_changes.to_csv(os.path.join(target_dir,\n 'equipment_changes.csv'))\n\n def x(target_dir):\n if self.curtailment is not None:\n os.makedirs(target_dir, exist_ok=True)\n for key, curtailment_df in self.curtailment.items():\n if type(key) == tuple:\n type_prefix = '-'.join([key[0], str(key[1])])\n elif type(key) == str:\n type_prefix = key\n else:\n raise KeyError('Unknown key type {} for key {}'.format(\n type(key), key))\n filename = os.path.join(target_dir, '{}.csv'.format(\n type_prefix))\n curtailment_df.to_csv(filename, index_label=type_prefix)\n\n def x(target_dir):\n storages = self.storages\n if not storages.empty:\n os.makedirs(target_dir, exist_ok=True)\n storages.to_csv(os.path.join(target_dir, 'storages.csv'))\n ts_p, ts_q = self.storages_timeseries()\n ts_p.to_csv(os.path.join(target_dir, 'storages_active_power.csv'))\n ts_q.to_csv(os.path.join(target_dir, 'storages_reactive_power.csv')\n )\n if not self.storages_costs_reduction is None:\n self.storages_costs_reduction.to_csv(os.path.join(\n target_dir, 'storages_costs_reduction.csv'))\n func_dict = {'powerflow_results': _save_power_flow_results,\n 'pypsa_network': _save_pypsa_network, 'grid_expansion_results':\n _save_grid_expansion_results, 'curtailment_results':\n _save_curtailment_results, 'storage_integration_results':\n _save_storage_integration_results}\n if isinstance(parameters, str):\n if parameters == 'all':\n parameters = ['powerflow_results', 'pypsa_network',\n 'grid_expansion_results', 'curtailment_results',\n 'storage_integration_results']\n else:\n parameters = [parameters]\n for parameter in parameters:\n try:\n func_dict[parameter](os.path.join(directory, parameter))\n except KeyError:\n message = (\n \"Invalid input {} for `parameters` when saving results. Must be any or a list of the following: 'pypsa_network', 'powerflow_results', 'grid_expansion_results', 'curtailment_results', 'storage_integration_results'.\"\n .format(parameter))\n logger.error(message)\n raise KeyError(message)\n except:\n raise\n pd.DataFrame(data={'measure': self.measures}).to_csv(os.path.join(\n directory, 'measures.csv'))\n with open(os.path.join(directory, 'configs.csv'), 'w') as f:\n writer = csv.writer(f)\n rows = [(['{}'.format(key)] + [value for item in values.items() for\n value in item]) for key, values in self.network.config._data.\n items()]\n writer.writerows(rows)\n",
"role": "user"
},
{
"content": "save",
"role": "assistant"
}
] |
def x(self, nodes=None, level=None):
if hasattr(self, 'pfa_v_mag_pu'):
self.pfa_v_mag_pu.sort_index(axis=1, inplace=True)
else:
message = 'No voltage results available.'
raise AttributeError(message)
if level is None:
level = ['mv', 'lv']
if nodes is None:
return self.pfa_v_mag_pu.loc[:, (level, slice(None))]
else:
not_included = [_ for _ in nodes if _ not in list(self.pfa_v_mag_pu
[level].columns)]
labels_included = [_ for _ in nodes if _ not in not_included]
if not_included:
logging.warning(
'Voltage levels for {nodes} are not returned from PFA'.
format(nodes=not_included))
return self.pfa_v_mag_pu[level][labels_included]
|
v_res
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, nodes=None, level=None):\n if hasattr(self, 'pfa_v_mag_pu'):\n self.pfa_v_mag_pu.sort_index(axis=1, inplace=True)\n else:\n message = 'No voltage results available.'\n raise AttributeError(message)\n if level is None:\n level = ['mv', 'lv']\n if nodes is None:\n return self.pfa_v_mag_pu.loc[:, (level, slice(None))]\n else:\n not_included = [_ for _ in nodes if _ not in list(self.pfa_v_mag_pu\n [level].columns)]\n labels_included = [_ for _ in nodes if _ not in not_included]\n if not_included:\n logging.warning(\n 'Voltage levels for {nodes} are not returned from PFA'.\n format(nodes=not_included))\n return self.pfa_v_mag_pu[level][labels_included]\n",
"role": "user"
},
{
"content": "v_res",
"role": "assistant"
}
] |
def x(self, components=None):
if components is None:
return self.apparent_power
else:
not_included = [_ for _ in components if _ not in self.
apparent_power.index]
labels_included = [_ for _ in components if _ not in not_included]
if not_included:
logging.warning('No apparent power results available for: {}'.
format(not_included))
return self.apparent_power.loc[:, labels_included]
|
s_res
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, components=None):\n if components is None:\n return self.apparent_power\n else:\n not_included = [_ for _ in components if _ not in self.\n apparent_power.index]\n labels_included = [_ for _ in components if _ not in not_included]\n if not_included:\n logging.warning('No apparent power results available for: {}'.\n format(not_included))\n return self.apparent_power.loc[:, labels_included]\n",
"role": "user"
},
{
"content": "s_res",
"role": "assistant"
}
] |
def x(mv_grid, parameters, mode=None):
storage = set_up_storage(node=mv_grid.station, parameters=parameters,
operational_mode=mode)
line = connect_storage(storage, mv_grid.station)
return storage, line
|
storage_at_hvmv_substation
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(mv_grid, parameters, mode=None):\n storage = set_up_storage(node=mv_grid.station, parameters=parameters,\n operational_mode=mode)\n line = connect_storage(storage, mv_grid.station)\n return storage, line\n",
"role": "user"
},
{
"content": "storage_at_hvmv_substation",
"role": "assistant"
}
] |
def x(node, parameters, voltage_level=None, operational_mode=None):
if isinstance(node, LVStation):
if voltage_level == 'lv':
grid = node.grid
elif voltage_level == 'mv':
grid = node.mv_grid
else:
raise ValueError('{} is not a valid option for voltage_level.'.
format(voltage_level))
else:
grid = node.grid
return Storage(operation=operational_mode, id='{}_storage_{}'.format(
grid, len(grid.graph.nodes_by_attribute('storage')) + 1), grid=grid,
geom=node.geom, **parameters)
|
set_up_storage
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(node, parameters, voltage_level=None, operational_mode=None):\n if isinstance(node, LVStation):\n if voltage_level == 'lv':\n grid = node.grid\n elif voltage_level == 'mv':\n grid = node.mv_grid\n else:\n raise ValueError('{} is not a valid option for voltage_level.'.\n format(voltage_level))\n else:\n grid = node.grid\n return Storage(operation=operational_mode, id='{}_storage_{}'.format(\n grid, len(grid.graph.nodes_by_attribute('storage')) + 1), grid=grid,\n geom=node.geom, **parameters)\n",
"role": "user"
},
{
"content": "set_up_storage",
"role": "assistant"
}
] |
def x(storage, node):
storage.grid.graph.add_node(storage, type='storage')
if isinstance(storage.grid, MVGrid):
voltage_level = 'mv'
else:
voltage_level = 'lv'
lf_dict = storage.grid.network.config['grid_expansion_load_factors']
lf = min(lf_dict['{}_feedin_case_line'.format(voltage_level)], lf_dict[
'{}_load_case_line'.format(voltage_level)])
apparent_power_line = sqrt(2) * storage.nominal_power / lf
line_type, line_count = select_cable(storage.grid.network,
voltage_level, apparent_power_line)
line = Line(id=storage.id, type=line_type, kind='cable', length=0.001,
grid=storage.grid, quantity=line_count)
storage.grid.graph.add_edge(node, storage, line=line, type='line')
return line
|
connect_storage
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(storage, node):\n storage.grid.graph.add_node(storage, type='storage')\n if isinstance(storage.grid, MVGrid):\n voltage_level = 'mv'\n else:\n voltage_level = 'lv'\n lf_dict = storage.grid.network.config['grid_expansion_load_factors']\n lf = min(lf_dict['{}_feedin_case_line'.format(voltage_level)], lf_dict[\n '{}_load_case_line'.format(voltage_level)])\n apparent_power_line = sqrt(2) * storage.nominal_power / lf\n line_type, line_count = select_cable(storage.grid.network,\n voltage_level, apparent_power_line)\n line = Line(id=storage.id, type=line_type, kind='cable', length=0.001,\n grid=storage.grid, quantity=line_count)\n storage.grid.graph.add_edge(node, storage, line=line, type='line')\n return line\n",
"role": "user"
},
{
"content": "connect_storage",
"role": "assistant"
}
] |
def x(self, log_fields: LogFields, call_details: Union[grpc.
HandlerCallDetails, grpc.ClientCallDetails]):
service, method = call_details.method[1:].split('/')
log_fields.add_fields({'system': 'grpc', 'span.kind': self.KIND,
'grpc.service': service, 'grpc.method': method})
|
add_request_log_fields
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, log_fields: LogFields, call_details: Union[grpc.\n HandlerCallDetails, grpc.ClientCallDetails]):\n service, method = call_details.method[1:].split('/')\n log_fields.add_fields({'system': 'grpc', 'span.kind': self.KIND,\n 'grpc.service': service, 'grpc.method': method})\n",
"role": "user"
},
{
"content": "add_request_log_fields",
"role": "assistant"
}
] |
def x(self, log_fields: LogFields, start_time: datetime, err: Exception):
code = 'Unknown' if err is not None else 'OK'
duration = (datetime.utcnow() - start_time).total_seconds() * 1000
log_fields.add_fields({'grpc.start_time': start_time.isoformat() + 'Z',
'grpc.code': code, 'duration': '{duration}ms'.format(duration=
duration)})
|
add_response_log_fields
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, log_fields: LogFields, start_time: datetime, err: Exception):\n code = 'Unknown' if err is not None else 'OK'\n duration = (datetime.utcnow() - start_time).total_seconds() * 1000\n log_fields.add_fields({'grpc.start_time': start_time.isoformat() + 'Z',\n 'grpc.code': code, 'duration': '{duration}ms'.format(duration=\n duration)})\n",
"role": "user"
},
{
"content": "add_response_log_fields",
"role": "assistant"
}
] |
def x(network):
timeseries_load_feedin_case = network.timeseries.timesteps_load_feedin_case
timestamp = {}
timestamp['load_case'] = timeseries_load_feedin_case.residual_load.idxmax(
) if max(timeseries_load_feedin_case.residual_load) > 0 else None
timestamp['feedin_case'
] = timeseries_load_feedin_case.residual_load.idxmin() if min(
timeseries_load_feedin_case.residual_load) < 0 else None
return timestamp
|
select_worstcase_snapshots
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(network):\n timeseries_load_feedin_case = network.timeseries.timesteps_load_feedin_case\n timestamp = {}\n timestamp['load_case'] = timeseries_load_feedin_case.residual_load.idxmax(\n ) if max(timeseries_load_feedin_case.residual_load) > 0 else None\n timestamp['feedin_case'\n ] = timeseries_load_feedin_case.residual_load.idxmin() if min(\n timeseries_load_feedin_case.residual_load) < 0 else None\n return timestamp\n",
"role": "user"
},
{
"content": "select_worstcase_snapshots",
"role": "assistant"
}
] |
def x(pypsa_network):
residual_load = pypsa_network.loads_t.p_set.sum(axis=1) - (pypsa_network
.generators_t.p_set.loc[:, pypsa_network.generators_t.p_set.columns !=
'Generator_slack'].sum(axis=1) + pypsa_network.storage_units_t.
p_set.sum(axis=1))
return residual_load
|
get_residual_load_from_pypsa_network
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(pypsa_network):\n residual_load = pypsa_network.loads_t.p_set.sum(axis=1) - (pypsa_network\n .generators_t.p_set.loc[:, pypsa_network.generators_t.p_set.columns !=\n 'Generator_slack'].sum(axis=1) + pypsa_network.storage_units_t.\n p_set.sum(axis=1))\n return residual_load\n",
"role": "user"
},
{
"content": "get_residual_load_from_pypsa_network",
"role": "assistant"
}
] |
def x(network):
if network.pypsa is not None:
residual_load = get_residual_load_from_pypsa_network(network.pypsa
) * 1000.0
else:
grids = [network.mv_grid] + list(network.mv_grid.lv_grids)
gens = []
loads = []
for grid in grids:
gens.extend(grid.generators)
gens.extend(list(grid.graph.nodes_by_attribute('storage')))
loads.extend(list(grid.graph.nodes_by_attribute('load')))
generation_timeseries = pd.Series(0, index=network.timeseries.timeindex
)
for gen in gens:
generation_timeseries += gen.timeseries.p
load_timeseries = pd.Series(0, index=network.timeseries.timeindex)
for load in loads:
load_timeseries += load.timeseries.p
residual_load = load_timeseries - generation_timeseries
timeseries_load_feedin_case = residual_load.rename('residual_load'
).to_frame()
timeseries_load_feedin_case['case'
] = timeseries_load_feedin_case.residual_load.apply(lambda _:
'feedin_case' if _ < 0 else 'load_case')
return timeseries_load_feedin_case
|
assign_load_feedin_case
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(network):\n if network.pypsa is not None:\n residual_load = get_residual_load_from_pypsa_network(network.pypsa\n ) * 1000.0\n else:\n grids = [network.mv_grid] + list(network.mv_grid.lv_grids)\n gens = []\n loads = []\n for grid in grids:\n gens.extend(grid.generators)\n gens.extend(list(grid.graph.nodes_by_attribute('storage')))\n loads.extend(list(grid.graph.nodes_by_attribute('load')))\n generation_timeseries = pd.Series(0, index=network.timeseries.timeindex\n )\n for gen in gens:\n generation_timeseries += gen.timeseries.p\n load_timeseries = pd.Series(0, index=network.timeseries.timeindex)\n for load in loads:\n load_timeseries += load.timeseries.p\n residual_load = load_timeseries - generation_timeseries\n timeseries_load_feedin_case = residual_load.rename('residual_load'\n ).to_frame()\n timeseries_load_feedin_case['case'\n ] = timeseries_load_feedin_case.residual_load.apply(lambda _: \n 'feedin_case' if _ < 0 else 'load_case')\n return timeseries_load_feedin_case\n",
"role": "user"
},
{
"content": "assign_load_feedin_case",
"role": "assistant"
}
] |
def x(filename, config_dir=None, copy_default_config=True):
if not config_dir:
config_file = os.path.join(get_default_config_path(), filename)
else:
config_file = os.path.join(config_dir, filename)
if not os.path.isfile(config_file):
if copy_default_config:
logger.info(
'Config file {} not found, I will create a default version'
.format(config_file))
make_directory(config_dir)
shutil.copy(os.path.join(package_path, 'config', filename.
replace('.cfg', '_default.cfg')), config_file)
else:
message = 'Config file {} not found.'.format(config_file)
logger.error(message)
raise FileNotFoundError(message)
if len(cfg.read(config_file)) == 0:
message = 'Config file {} not found or empty.'.format(config_file)
logger.error(message)
raise FileNotFoundError(message)
global _loaded
_loaded = True
|
load_config
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(filename, config_dir=None, copy_default_config=True):\n if not config_dir:\n config_file = os.path.join(get_default_config_path(), filename)\n else:\n config_file = os.path.join(config_dir, filename)\n if not os.path.isfile(config_file):\n if copy_default_config:\n logger.info(\n 'Config file {} not found, I will create a default version'\n .format(config_file))\n make_directory(config_dir)\n shutil.copy(os.path.join(package_path, 'config', filename.\n replace('.cfg', '_default.cfg')), config_file)\n else:\n message = 'Config file {} not found.'.format(config_file)\n logger.error(message)\n raise FileNotFoundError(message)\n if len(cfg.read(config_file)) == 0:\n message = 'Config file {} not found or empty.'.format(config_file)\n logger.error(message)\n raise FileNotFoundError(message)\n global _loaded\n _loaded = True\n",
"role": "user"
},
{
"content": "load_config",
"role": "assistant"
}
] |
def x():
config_dir = get('user_dirs', 'config_dir')
root_dir = get('user_dirs', 'root_dir')
root_path = os.path.join(os.path.expanduser('~'), root_dir)
config_path = os.path.join(root_path, config_dir)
if not os.path.isdir(root_path):
logger.info('eDisGo root path {} not found, I will create it.'.
format(root_path))
make_directory(root_path)
if not os.path.isdir(config_path):
config_path = os.path.join(root_path, config_dir)
make_directory(config_path)
logger.info('eDisGo config path {} not found, I will create it.'.
format(config_path))
internal_config_dir = os.path.join(package_path, 'config')
for file in glob(os.path.join(internal_config_dir, '*.cfg')):
filename = os.path.join(config_path, os.path.basename(file).replace
('_default', ''))
if not os.path.isfile(filename):
logger.info('I will create a default config file {} in {}'.
format(file, config_path))
shutil.copy(file, filename)
return config_path
|
get_default_config_path
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n config_dir = get('user_dirs', 'config_dir')\n root_dir = get('user_dirs', 'root_dir')\n root_path = os.path.join(os.path.expanduser('~'), root_dir)\n config_path = os.path.join(root_path, config_dir)\n if not os.path.isdir(root_path):\n logger.info('eDisGo root path {} not found, I will create it.'.\n format(root_path))\n make_directory(root_path)\n if not os.path.isdir(config_path):\n config_path = os.path.join(root_path, config_dir)\n make_directory(config_path)\n logger.info('eDisGo config path {} not found, I will create it.'.\n format(config_path))\n internal_config_dir = os.path.join(package_path, 'config')\n for file in glob(os.path.join(internal_config_dir, '*.cfg')):\n filename = os.path.join(config_path, os.path.basename(file).replace\n ('_default', ''))\n if not os.path.isfile(filename):\n logger.info('I will create a default config file {} in {}'.\n format(file, config_path))\n shutil.copy(file, filename)\n return config_path\n",
"role": "user"
},
{
"content": "get_default_config_path",
"role": "assistant"
}
] |
def x(directory):
if not os.path.isdir(directory):
os.mkdir(directory)
logger.info('Path {} not found, I will create it.'.format(directory))
|
make_directory
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(directory):\n if not os.path.isdir(directory):\n os.mkdir(directory)\n logger.info('Path {} not found, I will create it.'.format(directory))\n",
"role": "user"
},
{
"content": "make_directory",
"role": "assistant"
}
] |
def x(network):
crit_lines = pd.DataFrame()
crit_lines = _line_load(network, network.mv_grid, crit_lines)
if not crit_lines.empty:
logger.debug('==> {} line(s) in MV grid has/have load issues.'.
format(crit_lines.shape[0]))
else:
logger.debug('==> No line load issues in MV grid.')
return crit_lines
|
mv_line_load
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(network):\n crit_lines = pd.DataFrame()\n crit_lines = _line_load(network, network.mv_grid, crit_lines)\n if not crit_lines.empty:\n logger.debug('==> {} line(s) in MV grid has/have load issues.'.\n format(crit_lines.shape[0]))\n else:\n logger.debug('==> No line load issues in MV grid.')\n return crit_lines\n",
"role": "user"
},
{
"content": "mv_line_load",
"role": "assistant"
}
] |
def x(network):
crit_lines = pd.DataFrame()
for lv_grid in network.mv_grid.lv_grids:
crit_lines = _line_load(network, lv_grid, crit_lines)
if not crit_lines.empty:
logger.debug('==> {} line(s) in LV grids has/have load issues.'.
format(crit_lines.shape[0]))
else:
logger.debug('==> No line load issues in LV grids.')
return crit_lines
|
lv_line_load
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(network):\n crit_lines = pd.DataFrame()\n for lv_grid in network.mv_grid.lv_grids:\n crit_lines = _line_load(network, lv_grid, crit_lines)\n if not crit_lines.empty:\n logger.debug('==> {} line(s) in LV grids has/have load issues.'.\n format(crit_lines.shape[0]))\n else:\n logger.debug('==> No line load issues in LV grids.')\n return crit_lines\n",
"role": "user"
},
{
"content": "lv_line_load",
"role": "assistant"
}
] |
def x(network, grid, crit_lines):
if isinstance(grid, LVGrid):
grid_level = 'lv'
else:
grid_level = 'mv'
for line in list(grid.graph.lines()):
i_line_allowed_per_case = {}
i_line_allowed_per_case['feedin_case'] = line['line'].type['I_max_th'
] * line['line'].quantity * network.config[
'grid_expansion_load_factors']['{}_feedin_case_line'.format(
grid_level)]
i_line_allowed_per_case['load_case'] = line['line'].type['I_max_th'
] * line['line'].quantity * network.config[
'grid_expansion_load_factors']['{}_load_case_line'.format(
grid_level)]
i_line_allowed = (network.timeseries.timesteps_load_feedin_case.
case.apply(lambda _: i_line_allowed_per_case[_]))
try:
i_line_pfa = network.results.i_res[repr(line['line'])]
if any(i_line_allowed - i_line_pfa < 0):
relative_i_res = i_line_pfa / i_line_allowed
crit_lines = crit_lines.append(pd.DataFrame({
'max_rel_overload': relative_i_res.max(), 'time_index':
relative_i_res.idxmax()}, index=[line['line']]))
except KeyError:
logger.debug('No results for line {} '.format(str(line)) +
'to check overloading.')
return crit_lines
|
line_load
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(network, grid, crit_lines):\n if isinstance(grid, LVGrid):\n grid_level = 'lv'\n else:\n grid_level = 'mv'\n for line in list(grid.graph.lines()):\n i_line_allowed_per_case = {}\n i_line_allowed_per_case['feedin_case'] = line['line'].type['I_max_th'\n ] * line['line'].quantity * network.config[\n 'grid_expansion_load_factors']['{}_feedin_case_line'.format(\n grid_level)]\n i_line_allowed_per_case['load_case'] = line['line'].type['I_max_th'\n ] * line['line'].quantity * network.config[\n 'grid_expansion_load_factors']['{}_load_case_line'.format(\n grid_level)]\n i_line_allowed = (network.timeseries.timesteps_load_feedin_case.\n case.apply(lambda _: i_line_allowed_per_case[_]))\n try:\n i_line_pfa = network.results.i_res[repr(line['line'])]\n if any(i_line_allowed - i_line_pfa < 0):\n relative_i_res = i_line_pfa / i_line_allowed\n crit_lines = crit_lines.append(pd.DataFrame({\n 'max_rel_overload': relative_i_res.max(), 'time_index':\n relative_i_res.idxmax()}, index=[line['line']]))\n except KeyError:\n logger.debug('No results for line {} '.format(str(line)) +\n 'to check overloading.')\n return crit_lines\n",
"role": "user"
},
{
"content": "line_load",
"role": "assistant"
}
] |
def x(network):
crit_stations = pd.DataFrame()
crit_stations = _station_load(network, network.mv_grid.station,
crit_stations)
if not crit_stations.empty:
logger.debug('==> HV/MV station has load issues.')
else:
logger.debug('==> No HV/MV station load issues.')
return crit_stations
|
hv_mv_station_load
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(network):\n crit_stations = pd.DataFrame()\n crit_stations = _station_load(network, network.mv_grid.station,\n crit_stations)\n if not crit_stations.empty:\n logger.debug('==> HV/MV station has load issues.')\n else:\n logger.debug('==> No HV/MV station load issues.')\n return crit_stations\n",
"role": "user"
},
{
"content": "hv_mv_station_load",
"role": "assistant"
}
] |
def x(network):
crit_stations = pd.DataFrame()
for lv_grid in network.mv_grid.lv_grids:
crit_stations = _station_load(network, lv_grid.station, crit_stations)
if not crit_stations.empty:
logger.debug('==> {} MV/LV station(s) has/have load issues.'.format
(crit_stations.shape[0]))
else:
logger.debug('==> No MV/LV station load issues.')
return crit_stations
|
mv_lv_station_load
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(network):\n crit_stations = pd.DataFrame()\n for lv_grid in network.mv_grid.lv_grids:\n crit_stations = _station_load(network, lv_grid.station, crit_stations)\n if not crit_stations.empty:\n logger.debug('==> {} MV/LV station(s) has/have load issues.'.format\n (crit_stations.shape[0]))\n else:\n logger.debug('==> No MV/LV station load issues.')\n return crit_stations\n",
"role": "user"
},
{
"content": "mv_lv_station_load",
"role": "assistant"
}
] |
def x(network, station, crit_stations):
if isinstance(station, LVStation):
grid_level = 'lv'
else:
grid_level = 'mv'
s_station = sum([_.type.S_nom for _ in station.transformers])
s_station_allowed_per_case = {}
s_station_allowed_per_case['feedin_case'] = s_station * network.config[
'grid_expansion_load_factors']['{}_feedin_case_transformer'.format(
grid_level)]
s_station_allowed_per_case['load_case'] = s_station * network.config[
'grid_expansion_load_factors']['{}_load_case_transformer'.format(
grid_level)]
s_station_allowed = (network.timeseries.timesteps_load_feedin_case.case
.apply(lambda _: s_station_allowed_per_case[_]))
try:
if isinstance(station, LVStation):
s_station_pfa = network.results.s_res(station.transformers).sum(
axis=1)
else:
s_station_pfa = network.results.s_res([station]).iloc[:, 0]
s_res = s_station_allowed - s_station_pfa
s_res = s_res[s_res < 0]
if not s_res.empty:
load_factor = (network.timeseries.timesteps_load_feedin_case.
case.apply(lambda _: network.config[
'grid_expansion_load_factors']['{}_{}_transformer'.format(
grid_level, _)]))
relative_s_res = load_factor * s_res
crit_stations = crit_stations.append(pd.DataFrame({'s_pfa':
s_station_pfa.loc[relative_s_res.idxmin()], 'time_index':
relative_s_res.idxmin()}, index=[station]))
except KeyError:
logger.debug('No results for {} station to check overloading.'.
format(grid_level.upper()))
return crit_stations
|
station_load
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(network, station, crit_stations):\n if isinstance(station, LVStation):\n grid_level = 'lv'\n else:\n grid_level = 'mv'\n s_station = sum([_.type.S_nom for _ in station.transformers])\n s_station_allowed_per_case = {}\n s_station_allowed_per_case['feedin_case'] = s_station * network.config[\n 'grid_expansion_load_factors']['{}_feedin_case_transformer'.format(\n grid_level)]\n s_station_allowed_per_case['load_case'] = s_station * network.config[\n 'grid_expansion_load_factors']['{}_load_case_transformer'.format(\n grid_level)]\n s_station_allowed = (network.timeseries.timesteps_load_feedin_case.case\n .apply(lambda _: s_station_allowed_per_case[_]))\n try:\n if isinstance(station, LVStation):\n s_station_pfa = network.results.s_res(station.transformers).sum(\n axis=1)\n else:\n s_station_pfa = network.results.s_res([station]).iloc[:, 0]\n s_res = s_station_allowed - s_station_pfa\n s_res = s_res[s_res < 0]\n if not s_res.empty:\n load_factor = (network.timeseries.timesteps_load_feedin_case.\n case.apply(lambda _: network.config[\n 'grid_expansion_load_factors']['{}_{}_transformer'.format(\n grid_level, _)]))\n relative_s_res = load_factor * s_res\n crit_stations = crit_stations.append(pd.DataFrame({'s_pfa':\n s_station_pfa.loc[relative_s_res.idxmin()], 'time_index':\n relative_s_res.idxmin()}, index=[station]))\n except KeyError:\n logger.debug('No results for {} station to check overloading.'.\n format(grid_level.upper()))\n return crit_stations\n",
"role": "user"
},
{
"content": "station_load",
"role": "assistant"
}
] |
def x(network, voltage_levels='mv_lv'):
crit_nodes = {}
v_dev_allowed_per_case = {}
v_dev_allowed_per_case['feedin_case_lower'] = 0.9
v_dev_allowed_per_case['load_case_upper'] = 1.1
offset = network.config['grid_expansion_allowed_voltage_deviations'][
'hv_mv_trafo_offset']
control_deviation = network.config[
'grid_expansion_allowed_voltage_deviations'][
'hv_mv_trafo_control_deviation']
if voltage_levels == 'mv_lv':
v_dev_allowed_per_case['feedin_case_upper'
] = 1 + offset + control_deviation + network.config[
'grid_expansion_allowed_voltage_deviations'][
'mv_lv_feedin_case_max_v_deviation']
v_dev_allowed_per_case['load_case_lower'
] = 1 + offset - control_deviation - network.config[
'grid_expansion_allowed_voltage_deviations'][
'mv_lv_load_case_max_v_deviation']
elif voltage_levels == 'mv':
v_dev_allowed_per_case['feedin_case_upper'
] = 1 + offset + control_deviation + network.config[
'grid_expansion_allowed_voltage_deviations'][
'mv_feedin_case_max_v_deviation']
v_dev_allowed_per_case['load_case_lower'
] = 1 + offset - control_deviation - network.config[
'grid_expansion_allowed_voltage_deviations'][
'mv_load_case_max_v_deviation']
else:
raise ValueError('Specified mode {} is not a valid option.'.format(
voltage_levels))
v_dev_allowed_upper = (network.timeseries.timesteps_load_feedin_case.
case.apply(lambda _: v_dev_allowed_per_case['{}_upper'.format(_)]))
v_dev_allowed_lower = (network.timeseries.timesteps_load_feedin_case.
case.apply(lambda _: v_dev_allowed_per_case['{}_lower'.format(_)]))
nodes = network.mv_grid.graph.nodes()
crit_nodes_grid = _voltage_deviation(network, nodes,
v_dev_allowed_upper, v_dev_allowed_lower, voltage_level='mv')
if not crit_nodes_grid.empty:
crit_nodes[network.mv_grid] = crit_nodes_grid.sort_values(by=[
'v_mag_pu'], ascending=False)
logger.debug('==> {} node(s) in MV grid has/have voltage issues.'.
format(crit_nodes[network.mv_grid].shape[0]))
else:
logger.debug('==> No voltage issues in MV grid.')
return crit_nodes
|
mv_voltage_deviation
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(network, voltage_levels='mv_lv'):\n crit_nodes = {}\n v_dev_allowed_per_case = {}\n v_dev_allowed_per_case['feedin_case_lower'] = 0.9\n v_dev_allowed_per_case['load_case_upper'] = 1.1\n offset = network.config['grid_expansion_allowed_voltage_deviations'][\n 'hv_mv_trafo_offset']\n control_deviation = network.config[\n 'grid_expansion_allowed_voltage_deviations'][\n 'hv_mv_trafo_control_deviation']\n if voltage_levels == 'mv_lv':\n v_dev_allowed_per_case['feedin_case_upper'\n ] = 1 + offset + control_deviation + network.config[\n 'grid_expansion_allowed_voltage_deviations'][\n 'mv_lv_feedin_case_max_v_deviation']\n v_dev_allowed_per_case['load_case_lower'\n ] = 1 + offset - control_deviation - network.config[\n 'grid_expansion_allowed_voltage_deviations'][\n 'mv_lv_load_case_max_v_deviation']\n elif voltage_levels == 'mv':\n v_dev_allowed_per_case['feedin_case_upper'\n ] = 1 + offset + control_deviation + network.config[\n 'grid_expansion_allowed_voltage_deviations'][\n 'mv_feedin_case_max_v_deviation']\n v_dev_allowed_per_case['load_case_lower'\n ] = 1 + offset - control_deviation - network.config[\n 'grid_expansion_allowed_voltage_deviations'][\n 'mv_load_case_max_v_deviation']\n else:\n raise ValueError('Specified mode {} is not a valid option.'.format(\n voltage_levels))\n v_dev_allowed_upper = (network.timeseries.timesteps_load_feedin_case.\n case.apply(lambda _: v_dev_allowed_per_case['{}_upper'.format(_)]))\n v_dev_allowed_lower = (network.timeseries.timesteps_load_feedin_case.\n case.apply(lambda _: v_dev_allowed_per_case['{}_lower'.format(_)]))\n nodes = network.mv_grid.graph.nodes()\n crit_nodes_grid = _voltage_deviation(network, nodes,\n v_dev_allowed_upper, v_dev_allowed_lower, voltage_level='mv')\n if not crit_nodes_grid.empty:\n crit_nodes[network.mv_grid] = crit_nodes_grid.sort_values(by=[\n 'v_mag_pu'], ascending=False)\n logger.debug('==> {} node(s) in MV grid has/have voltage issues.'.\n format(crit_nodes[network.mv_grid].shape[0]))\n else:\n logger.debug('==> No voltage issues in MV grid.')\n return crit_nodes\n",
"role": "user"
},
{
"content": "mv_voltage_deviation",
"role": "assistant"
}
] |
def x(network, mode=None, voltage_levels='mv_lv'):
crit_nodes = {}
v_dev_allowed_per_case = {}
if voltage_levels == 'mv_lv':
offset = network.config['grid_expansion_allowed_voltage_deviations'][
'hv_mv_trafo_offset']
control_deviation = network.config[
'grid_expansion_allowed_voltage_deviations'][
'hv_mv_trafo_control_deviation']
v_dev_allowed_per_case['feedin_case_upper'
] = 1 + offset + control_deviation + network.config[
'grid_expansion_allowed_voltage_deviations'][
'mv_lv_feedin_case_max_v_deviation']
v_dev_allowed_per_case['load_case_lower'
] = 1 + offset - control_deviation - network.config[
'grid_expansion_allowed_voltage_deviations'][
'mv_lv_load_case_max_v_deviation']
v_dev_allowed_per_case['feedin_case_lower'] = 0.9
v_dev_allowed_per_case['load_case_upper'] = 1.1
v_dev_allowed_upper = (network.timeseries.
timesteps_load_feedin_case.case.apply(lambda _:
v_dev_allowed_per_case['{}_upper'.format(_)]))
v_dev_allowed_lower = (network.timeseries.
timesteps_load_feedin_case.case.apply(lambda _:
v_dev_allowed_per_case['{}_lower'.format(_)]))
elif voltage_levels == 'lv':
pass
else:
raise ValueError('Specified mode {} is not a valid option.'.format(
voltage_levels))
for lv_grid in network.mv_grid.lv_grids:
if mode:
if mode == 'stations':
nodes = [lv_grid.station]
else:
raise ValueError(
"{} is not a valid option for input variable 'mode' in function lv_voltage_deviation. Try 'stations' or None"
.format(mode))
else:
nodes = lv_grid.graph.nodes()
if voltage_levels == 'lv':
if mode == 'stations':
v_lv_station_primary = network.results.v_res(nodes=[lv_grid
.station], level='mv').iloc[:, 0]
timeindex = v_lv_station_primary.index
v_dev_allowed_per_case['feedin_case_upper'
] = v_lv_station_primary + network.config[
'grid_expansion_allowed_voltage_deviations'][
'mv_lv_station_feedin_case_max_v_deviation']
v_dev_allowed_per_case['load_case_lower'
] = v_lv_station_primary - network.config[
'grid_expansion_allowed_voltage_deviations'][
'mv_lv_station_load_case_max_v_deviation']
else:
v_lv_station_secondary = network.results.v_res(nodes=[
lv_grid.station], level='lv').iloc[:, 0]
timeindex = v_lv_station_secondary.index
v_dev_allowed_per_case['feedin_case_upper'
] = v_lv_station_secondary + network.config[
'grid_expansion_allowed_voltage_deviations'][
'lv_feedin_case_max_v_deviation']
v_dev_allowed_per_case['load_case_lower'
] = v_lv_station_secondary - network.config[
'grid_expansion_allowed_voltage_deviations'][
'lv_load_case_max_v_deviation']
v_dev_allowed_per_case['feedin_case_lower'] = pd.Series(0.9,
index=timeindex)
v_dev_allowed_per_case['load_case_upper'] = pd.Series(1.1,
index=timeindex)
v_dev_allowed_upper = []
v_dev_allowed_lower = []
for t in timeindex:
case = network.timeseries.timesteps_load_feedin_case.loc[t,
'case']
v_dev_allowed_upper.append(v_dev_allowed_per_case[
'{}_upper'.format(case)].loc[t])
v_dev_allowed_lower.append(v_dev_allowed_per_case[
'{}_lower'.format(case)].loc[t])
v_dev_allowed_upper = pd.Series(v_dev_allowed_upper, index=
timeindex)
v_dev_allowed_lower = pd.Series(v_dev_allowed_lower, index=
timeindex)
crit_nodes_grid = _voltage_deviation(network, nodes,
v_dev_allowed_upper, v_dev_allowed_lower, voltage_level='lv')
if not crit_nodes_grid.empty:
crit_nodes[lv_grid] = crit_nodes_grid.sort_values(by=[
'v_mag_pu'], ascending=False)
if crit_nodes:
if mode == 'stations':
logger.debug('==> {} LV station(s) has/have voltage issues.'.
format(len(crit_nodes)))
else:
logger.debug('==> {} LV grid(s) has/have voltage issues.'.
format(len(crit_nodes)))
elif mode == 'stations':
logger.debug('==> No voltage issues in LV stations.')
else:
logger.debug('==> No voltage issues in LV grids.')
return crit_nodes
|
lv_voltage_deviation
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(network, mode=None, voltage_levels='mv_lv'):\n crit_nodes = {}\n v_dev_allowed_per_case = {}\n if voltage_levels == 'mv_lv':\n offset = network.config['grid_expansion_allowed_voltage_deviations'][\n 'hv_mv_trafo_offset']\n control_deviation = network.config[\n 'grid_expansion_allowed_voltage_deviations'][\n 'hv_mv_trafo_control_deviation']\n v_dev_allowed_per_case['feedin_case_upper'\n ] = 1 + offset + control_deviation + network.config[\n 'grid_expansion_allowed_voltage_deviations'][\n 'mv_lv_feedin_case_max_v_deviation']\n v_dev_allowed_per_case['load_case_lower'\n ] = 1 + offset - control_deviation - network.config[\n 'grid_expansion_allowed_voltage_deviations'][\n 'mv_lv_load_case_max_v_deviation']\n v_dev_allowed_per_case['feedin_case_lower'] = 0.9\n v_dev_allowed_per_case['load_case_upper'] = 1.1\n v_dev_allowed_upper = (network.timeseries.\n timesteps_load_feedin_case.case.apply(lambda _:\n v_dev_allowed_per_case['{}_upper'.format(_)]))\n v_dev_allowed_lower = (network.timeseries.\n timesteps_load_feedin_case.case.apply(lambda _:\n v_dev_allowed_per_case['{}_lower'.format(_)]))\n elif voltage_levels == 'lv':\n pass\n else:\n raise ValueError('Specified mode {} is not a valid option.'.format(\n voltage_levels))\n for lv_grid in network.mv_grid.lv_grids:\n if mode:\n if mode == 'stations':\n nodes = [lv_grid.station]\n else:\n raise ValueError(\n \"{} is not a valid option for input variable 'mode' in function lv_voltage_deviation. Try 'stations' or None\"\n .format(mode))\n else:\n nodes = lv_grid.graph.nodes()\n if voltage_levels == 'lv':\n if mode == 'stations':\n v_lv_station_primary = network.results.v_res(nodes=[lv_grid\n .station], level='mv').iloc[:, 0]\n timeindex = v_lv_station_primary.index\n v_dev_allowed_per_case['feedin_case_upper'\n ] = v_lv_station_primary + network.config[\n 'grid_expansion_allowed_voltage_deviations'][\n 'mv_lv_station_feedin_case_max_v_deviation']\n v_dev_allowed_per_case['load_case_lower'\n ] = v_lv_station_primary - network.config[\n 'grid_expansion_allowed_voltage_deviations'][\n 'mv_lv_station_load_case_max_v_deviation']\n else:\n v_lv_station_secondary = network.results.v_res(nodes=[\n lv_grid.station], level='lv').iloc[:, 0]\n timeindex = v_lv_station_secondary.index\n v_dev_allowed_per_case['feedin_case_upper'\n ] = v_lv_station_secondary + network.config[\n 'grid_expansion_allowed_voltage_deviations'][\n 'lv_feedin_case_max_v_deviation']\n v_dev_allowed_per_case['load_case_lower'\n ] = v_lv_station_secondary - network.config[\n 'grid_expansion_allowed_voltage_deviations'][\n 'lv_load_case_max_v_deviation']\n v_dev_allowed_per_case['feedin_case_lower'] = pd.Series(0.9,\n index=timeindex)\n v_dev_allowed_per_case['load_case_upper'] = pd.Series(1.1,\n index=timeindex)\n v_dev_allowed_upper = []\n v_dev_allowed_lower = []\n for t in timeindex:\n case = network.timeseries.timesteps_load_feedin_case.loc[t,\n 'case']\n v_dev_allowed_upper.append(v_dev_allowed_per_case[\n '{}_upper'.format(case)].loc[t])\n v_dev_allowed_lower.append(v_dev_allowed_per_case[\n '{}_lower'.format(case)].loc[t])\n v_dev_allowed_upper = pd.Series(v_dev_allowed_upper, index=\n timeindex)\n v_dev_allowed_lower = pd.Series(v_dev_allowed_lower, index=\n timeindex)\n crit_nodes_grid = _voltage_deviation(network, nodes,\n v_dev_allowed_upper, v_dev_allowed_lower, voltage_level='lv')\n if not crit_nodes_grid.empty:\n crit_nodes[lv_grid] = crit_nodes_grid.sort_values(by=[\n 'v_mag_pu'], ascending=False)\n if crit_nodes:\n if mode == 'stations':\n logger.debug('==> {} LV station(s) has/have voltage issues.'.\n format(len(crit_nodes)))\n else:\n logger.debug('==> {} LV grid(s) has/have voltage issues.'.\n format(len(crit_nodes)))\n elif mode == 'stations':\n logger.debug('==> No voltage issues in LV stations.')\n else:\n logger.debug('==> No voltage issues in LV grids.')\n return crit_nodes\n",
"role": "user"
},
{
"content": "lv_voltage_deviation",
"role": "assistant"
}
] |
def x(network, nodes, v_dev_allowed_upper, v_dev_allowed_lower, voltage_level):
def x(series):
return pd.DataFrame({'v_mag_pu': series.max(), 'time_index': series
.idxmax()}, index=[node])
crit_nodes_grid = pd.DataFrame()
v_mag_pu_pfa = network.results.v_res(nodes=nodes, level=voltage_level)
for node in nodes:
overvoltage = v_mag_pu_pfa[repr(node)][v_mag_pu_pfa[repr(node)] >
v_dev_allowed_upper.loc[v_mag_pu_pfa.index]]
undervoltage = v_mag_pu_pfa[repr(node)][v_mag_pu_pfa[repr(node)] <
v_dev_allowed_lower.loc[v_mag_pu_pfa.index]]
if not overvoltage.empty:
overvoltage_diff = overvoltage - v_dev_allowed_upper.loc[
overvoltage.index]
if not undervoltage.empty:
undervoltage_diff = v_dev_allowed_lower.loc[undervoltage.index
] - undervoltage
if overvoltage_diff.max() > undervoltage_diff.max():
crit_nodes_grid = crit_nodes_grid.append(_append_crit_node
(overvoltage_diff))
else:
crit_nodes_grid = crit_nodes_grid.append(_append_crit_node
(undervoltage_diff))
else:
crit_nodes_grid = crit_nodes_grid.append(_append_crit_node(
overvoltage_diff))
elif not undervoltage.empty:
undervoltage_diff = v_dev_allowed_lower.loc[undervoltage.index
] - undervoltage
crit_nodes_grid = crit_nodes_grid.append(_append_crit_node(
undervoltage_diff))
return crit_nodes_grid
|
voltage_deviation
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(network, nodes, v_dev_allowed_upper, v_dev_allowed_lower, voltage_level):\n\n def x(series):\n return pd.DataFrame({'v_mag_pu': series.max(), 'time_index': series\n .idxmax()}, index=[node])\n crit_nodes_grid = pd.DataFrame()\n v_mag_pu_pfa = network.results.v_res(nodes=nodes, level=voltage_level)\n for node in nodes:\n overvoltage = v_mag_pu_pfa[repr(node)][v_mag_pu_pfa[repr(node)] >\n v_dev_allowed_upper.loc[v_mag_pu_pfa.index]]\n undervoltage = v_mag_pu_pfa[repr(node)][v_mag_pu_pfa[repr(node)] <\n v_dev_allowed_lower.loc[v_mag_pu_pfa.index]]\n if not overvoltage.empty:\n overvoltage_diff = overvoltage - v_dev_allowed_upper.loc[\n overvoltage.index]\n if not undervoltage.empty:\n undervoltage_diff = v_dev_allowed_lower.loc[undervoltage.index\n ] - undervoltage\n if overvoltage_diff.max() > undervoltage_diff.max():\n crit_nodes_grid = crit_nodes_grid.append(_append_crit_node\n (overvoltage_diff))\n else:\n crit_nodes_grid = crit_nodes_grid.append(_append_crit_node\n (undervoltage_diff))\n else:\n crit_nodes_grid = crit_nodes_grid.append(_append_crit_node(\n overvoltage_diff))\n elif not undervoltage.empty:\n undervoltage_diff = v_dev_allowed_lower.loc[undervoltage.index\n ] - undervoltage\n crit_nodes_grid = crit_nodes_grid.append(_append_crit_node(\n undervoltage_diff))\n return crit_nodes_grid\n",
"role": "user"
},
{
"content": "voltage_deviation",
"role": "assistant"
}
] |
def x(network):
v_mag_pu_pfa = network.results.v_res()
if (v_mag_pu_pfa > 1.1).any().any() or (v_mag_pu_pfa < 0.9).any().any():
message = 'Maximum allowed voltage deviation of 10% exceeded.'
raise ValueError(message)
|
check_ten_percent_voltage_deviation
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(network):\n v_mag_pu_pfa = network.results.v_res()\n if (v_mag_pu_pfa > 1.1).any().any() or (v_mag_pu_pfa < 0.9).any().any():\n message = 'Maximum allowed voltage deviation of 10% exceeded.'\n raise ValueError(message)\n",
"role": "user"
},
{
"content": "check_ten_percent_voltage_deviation",
"role": "assistant"
}
] |
def x(network):
srid = int(network.config['geo']['srid'])
return partial(pyproj.transform, pyproj.Proj(init='epsg:{}'.format(str(
srid))), pyproj.Proj(init='epsg:3035'))
|
proj2equidistant
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(network):\n srid = int(network.config['geo']['srid'])\n return partial(pyproj.transform, pyproj.Proj(init='epsg:{}'.format(str(\n srid))), pyproj.Proj(init='epsg:3035'))\n",
"role": "user"
},
{
"content": "proj2equidistant",
"role": "assistant"
}
] |
def x(network, node, grid, radius, radius_inc):
lines = []
while not lines:
node_shp = transform(proj2equidistant(network), node.geom)
buffer_zone_shp = node_shp.buffer(radius)
for line in grid.graph.lines():
nodes = line['adj_nodes']
branch_shp = transform(proj2equidistant(network), LineString([
nodes[0].geom, nodes[1].geom]))
if buffer_zone_shp.intersects(branch_shp):
lines.append(line)
radius += radius_inc
return sorted(lines, key=lambda _: repr(_))
|
calc_geo_lines_in_buffer
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(network, node, grid, radius, radius_inc):\n lines = []\n while not lines:\n node_shp = transform(proj2equidistant(network), node.geom)\n buffer_zone_shp = node_shp.buffer(radius)\n for line in grid.graph.lines():\n nodes = line['adj_nodes']\n branch_shp = transform(proj2equidistant(network), LineString([\n nodes[0].geom, nodes[1].geom]))\n if buffer_zone_shp.intersects(branch_shp):\n lines.append(line)\n radius += radius_inc\n return sorted(lines, key=lambda _: repr(_))\n",
"role": "user"
},
{
"content": "calc_geo_lines_in_buffer",
"role": "assistant"
}
] |
def x(network, node_source, node_target):
branch_detour_factor = network.config['grid_connection'][
'branch_detour_factor']
branch_length = branch_detour_factor * vincenty((node_source.geom.y,
node_source.geom.x), (node_target.geom.y, node_target.geom.x)).m
if branch_length == 0:
branch_length = 1
logger.debug(
"Geo distance is zero, check objects' positions. Distance is set to 1m"
)
return branch_length
|
calc_geo_dist_vincenty
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(network, node_source, node_target):\n branch_detour_factor = network.config['grid_connection'][\n 'branch_detour_factor']\n branch_length = branch_detour_factor * vincenty((node_source.geom.y,\n node_source.geom.x), (node_target.geom.y, node_target.geom.x)).m\n if branch_length == 0:\n branch_length = 1\n logger.debug(\n \"Geo distance is zero, check objects' positions. Distance is set to 1m\"\n )\n return branch_length\n",
"role": "user"
},
{
"content": "calc_geo_dist_vincenty",
"role": "assistant"
}
] |
def x(details, backend, response, *args, **kwargs):
user = details.get('user')
if not user:
user_uuid = kwargs.get('uid')
if not user_uuid:
return
username = uuid_to_username(user_uuid)
else:
username = user.username
return {'username': username}
|
get_username
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(details, backend, response, *args, **kwargs):\n user = details.get('user')\n if not user:\n user_uuid = kwargs.get('uid')\n if not user_uuid:\n return\n username = uuid_to_username(user_uuid)\n else:\n username = user.username\n return {'username': username}\n",
"role": "user"
},
{
"content": "get_username",
"role": "assistant"
}
] |
def x(self, request, sociallogin):
user = sociallogin.user
if not user.pk:
return
data = sociallogin.account.extra_data
oidc = sociallogin.account.provider == 'helsinki_oidc'
update_user(user, data, oidc)
|
pre_social_login
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, request, sociallogin):\n user = sociallogin.user\n if not user.pk:\n return\n data = sociallogin.account.extra_data\n oidc = sociallogin.account.provider == 'helsinki_oidc'\n update_user(user, data, oidc)\n",
"role": "user"
},
{
"content": "pre_social_login",
"role": "assistant"
}
] |
def x(self):
ad_list = ADGroupMapping.objects.values_list('ad_group', 'group')
mappings = {ad_group: group for ad_group, group in ad_list}
user_ad_groups = set(self.ad_groups.filter(groups__isnull=False).
values_list(flat=True))
all_mapped_groups = set(mappings.values())
old_groups = set(self.groups.filter(id__in=all_mapped_groups).
values_list(flat=True))
new_groups = set([mappings[x] for x in user_ad_groups])
groups_to_delete = old_groups - new_groups
if groups_to_delete:
self.groups.remove(*groups_to_delete)
groups_to_add = new_groups - old_groups
if groups_to_add:
self.groups.add(*groups_to_add)
|
sync_groups_from_ad
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n ad_list = ADGroupMapping.objects.values_list('ad_group', 'group')\n mappings = {ad_group: group for ad_group, group in ad_list}\n user_ad_groups = set(self.ad_groups.filter(groups__isnull=False).\n values_list(flat=True))\n all_mapped_groups = set(mappings.values())\n old_groups = set(self.groups.filter(id__in=all_mapped_groups).\n values_list(flat=True))\n new_groups = set([mappings[x] for x in user_ad_groups])\n groups_to_delete = old_groups - new_groups\n if groups_to_delete:\n self.groups.remove(*groups_to_delete)\n groups_to_add = new_groups - old_groups\n if groups_to_add:\n self.groups.add(*groups_to_add)\n",
"role": "user"
},
{
"content": "sync_groups_from_ad",
"role": "assistant"
}
] |
def x():
defaults = api_settings.defaults
defaults['JWT_PAYLOAD_GET_USER_ID_HANDLER'
] = __name__ + '.get_user_id_from_payload_handler'
if 'allauth.socialaccount' not in settings.INSTALLED_APPS:
return
from allauth.socialaccount.models import SocialApp
try:
app = SocialApp.objects.get(provider='helsinki')
except SocialApp.DoesNotExist:
return
defaults['JWT_SECRET_KEY'] = app.secret
defaults['JWT_AUDIENCE'] = app.client_id
|
patch_jwt_settings
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n defaults = api_settings.defaults\n defaults['JWT_PAYLOAD_GET_USER_ID_HANDLER'\n ] = __name__ + '.get_user_id_from_payload_handler'\n if 'allauth.socialaccount' not in settings.INSTALLED_APPS:\n return\n from allauth.socialaccount.models import SocialApp\n try:\n app = SocialApp.objects.get(provider='helsinki')\n except SocialApp.DoesNotExist:\n return\n defaults['JWT_SECRET_KEY'] = app.secret\n defaults['JWT_AUDIENCE'] = app.client_id\n",
"role": "user"
},
{
"content": "patch_jwt_settings",
"role": "assistant"
}
] |
def x(uuid):
uuid_data = getattr(uuid, 'bytes', None) or UUID(uuid).bytes
b32coded = base64.b32encode(uuid_data)
return 'u-' + b32coded.decode('ascii').replace('=', '').lower()
|
uuid_to_username
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(uuid):\n uuid_data = getattr(uuid, 'bytes', None) or UUID(uuid).bytes\n b32coded = base64.b32encode(uuid_data)\n return 'u-' + b32coded.decode('ascii').replace('=', '').lower()\n",
"role": "user"
},
{
"content": "uuid_to_username",
"role": "assistant"
}
] |
def x(username):
if not username.startswith('u-') or len(username) != 28:
raise ValueError('Not an UUID based username: %r' % (username,))
decoded = base64.b32decode(username[2:].upper() + '======')
return UUID(bytes=decoded)
|
username_to_uuid
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(username):\n if not username.startswith('u-') or len(username) != 28:\n raise ValueError('Not an UUID based username: %r' % (username,))\n decoded = base64.b32decode(username[2:].upper() + '======')\n return UUID(bytes=decoded)\n",
"role": "user"
},
{
"content": "username_to_uuid",
"role": "assistant"
}
] |
def x(payload):
payload = payload.copy()
field_map = {'given_name': 'first_name', 'family_name': 'last_name',
'email': 'email'}
ret = {}
for token_attr, user_attr in field_map.items():
if token_attr not in payload:
continue
ret[user_attr] = payload.pop(token_attr)
ret.update(payload)
return ret
|
oidc_to_user_data
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(payload):\n payload = payload.copy()\n field_map = {'given_name': 'first_name', 'family_name': 'last_name',\n 'email': 'email'}\n ret = {}\n for token_attr, user_attr in field_map.items():\n if token_attr not in payload:\n continue\n ret[user_attr] = payload.pop(token_attr)\n ret.update(payload)\n return ret\n",
"role": "user"
},
{
"content": "oidc_to_user_data",
"role": "assistant"
}
] |
def x(self, *api_scopes):
if self._authorized_api_scopes is None:
return None
return all(x in self._authorized_api_scopes for x in api_scopes)
|
has_api_scopes
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, *api_scopes):\n if self._authorized_api_scopes is None:\n return None\n return all(x in self._authorized_api_scopes for x in api_scopes)\n",
"role": "user"
},
{
"content": "has_api_scopes",
"role": "assistant"
}
] |
def x(self, prefix):
if self._authorized_api_scopes is None:
return None
return any(x == prefix or x.startswith(prefix + '.') for x in self.
_authorized_api_scopes)
|
has_api_scope_with_prefix
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, prefix):\n if self._authorized_api_scopes is None:\n return None\n return any(x == prefix or x.startswith(prefix + '.') for x in self.\n _authorized_api_scopes)\n",
"role": "user"
},
{
"content": "has_api_scope_with_prefix",
"role": "assistant"
}
] |
def x(dotted_function_module_path):
module_path, function_name = tuple(dotted_function_module_path.rsplit(
'.', 1))
module = import_module(module_path)
return getattr(module, function_name)
|
get_function_by_path
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(dotted_function_module_path):\n module_path, function_name = tuple(dotted_function_module_path.rsplit(\n '.', 1))\n module = import_module(module_path)\n return getattr(module, function_name)\n",
"role": "user"
},
{
"content": "get_function_by_path",
"role": "assistant"
}
] |
def x(self, name, shortname, country, latitude, longitude, elevation=u'',
style=WaypointStyle.NORMAL, runway_direction=u'', runway_length=u'',
frequency=u'', description=u''):
if self.in_task_section:
raise RuntimeError(u'Waypoints must be written before any tasks')
if not name:
raise ValueError(u'Waypoint name must not be empty')
fields = [self.escape(name), self.escape(shortname), country, self.
format_latitude(latitude), self.format_longitude(longitude), self.
format_distance(elevation), str(style), str(runway_direction), self
.format_distance(runway_length), self.escape(frequency), self.
escape(description)]
self.write_fields(fields)
self.wps.add(name)
|
write_waypoint
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, name, shortname, country, latitude, longitude, elevation=u'',\n style=WaypointStyle.NORMAL, runway_direction=u'', runway_length=u'',\n frequency=u'', description=u''):\n if self.in_task_section:\n raise RuntimeError(u'Waypoints must be written before any tasks')\n if not name:\n raise ValueError(u'Waypoint name must not be empty')\n fields = [self.escape(name), self.escape(shortname), country, self.\n format_latitude(latitude), self.format_longitude(longitude), self.\n format_distance(elevation), str(style), str(runway_direction), self\n .format_distance(runway_length), self.escape(frequency), self.\n escape(description)]\n self.write_fields(fields)\n self.wps.add(name)\n",
"role": "user"
},
{
"content": "write_waypoint",
"role": "assistant"
}
] |
def x(self, description, waypoints):
if not self.in_task_section:
self.write_line()
self.write_line(self.DIVIDER)
self.in_task_section = True
fields = [self.escape(description)]
for waypoint in waypoints:
if waypoint not in self.wps:
raise ValueError(u'Waypoint "%s" was not found' % waypoint)
fields.append(self.escape(waypoint))
self.write_fields(fields)
|
write_task
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, description, waypoints):\n if not self.in_task_section:\n self.write_line()\n self.write_line(self.DIVIDER)\n self.in_task_section = True\n fields = [self.escape(description)]\n for waypoint in waypoints:\n if waypoint not in self.wps:\n raise ValueError(u'Waypoint \"%s\" was not found' % waypoint)\n fields.append(self.escape(waypoint))\n self.write_fields(fields)\n",
"role": "user"
},
{
"content": "write_task",
"role": "assistant"
}
] |
def x(self, **kw):
if not self.in_task_section:
raise RuntimeError(u'Task options have to be written in task section')
fields = ['Options']
if 'start_time' in kw:
fields.append(u'NoStart=' + self.format_time(kw['start_time']))
if 'task_time' in kw:
fields.append(u'TaskTime=' + self.format_timedelta(kw['task_time']))
if 'waypoint_distance' in kw:
fields.append(u'WpDis=%s' % kw['waypoint_distance'])
if 'distance_tolerance' in kw:
fields.append(u'NearDis=' + self.format_distance(kw[
'distance_tolerance']))
if 'altitude_tolerance' in kw:
fields.append(u'NearAlt=' + self.format_distance(kw[
'altitude_tolerance']))
if 'min_distance' in kw:
fields.append(u'MinDis=%s' % kw['min_distance'])
if 'random_order' in kw:
fields.append(u'RandomOrder=%s' % kw['random_order'])
if 'max_points' in kw:
fields.append(u'MaxPts=%d' % kw['max_points'])
if 'before_points' in kw:
fields.append(u'BeforePts=%d' % kw['before_points'])
if 'after_points' in kw:
fields.append(u'AfterPts=%d' % kw['after_points'])
if 'bonus' in kw:
fields.append(u'Bonus=%d' % kw['bonus'])
self.write_fields(fields)
|
write_task_options
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, **kw):\n if not self.in_task_section:\n raise RuntimeError(u'Task options have to be written in task section')\n fields = ['Options']\n if 'start_time' in kw:\n fields.append(u'NoStart=' + self.format_time(kw['start_time']))\n if 'task_time' in kw:\n fields.append(u'TaskTime=' + self.format_timedelta(kw['task_time']))\n if 'waypoint_distance' in kw:\n fields.append(u'WpDis=%s' % kw['waypoint_distance'])\n if 'distance_tolerance' in kw:\n fields.append(u'NearDis=' + self.format_distance(kw[\n 'distance_tolerance']))\n if 'altitude_tolerance' in kw:\n fields.append(u'NearAlt=' + self.format_distance(kw[\n 'altitude_tolerance']))\n if 'min_distance' in kw:\n fields.append(u'MinDis=%s' % kw['min_distance'])\n if 'random_order' in kw:\n fields.append(u'RandomOrder=%s' % kw['random_order'])\n if 'max_points' in kw:\n fields.append(u'MaxPts=%d' % kw['max_points'])\n if 'before_points' in kw:\n fields.append(u'BeforePts=%d' % kw['before_points'])\n if 'after_points' in kw:\n fields.append(u'AfterPts=%d' % kw['after_points'])\n if 'bonus' in kw:\n fields.append(u'Bonus=%d' % kw['bonus'])\n self.write_fields(fields)\n",
"role": "user"
},
{
"content": "write_task_options",
"role": "assistant"
}
] |
def x(self, num, **kw):
if not self.in_task_section:
raise RuntimeError(
u'Observation zones have to be written in task section')
fields = [u'ObsZone=%d' % num]
if 'style' in kw:
fields.append(u'Style=%d' % kw['style'])
if 'radius' in kw:
fields.append(u'R1=' + self.format_distance(kw['radius']))
if 'angle' in kw:
fields.append(u'A1=' + self.format_angle(kw['angle']))
if 'radius2' in kw:
fields.append(u'R2=' + self.format_distance(kw['radius2']))
if 'angle2' in kw:
fields.append(u'A2=' + self.format_angle(kw['angle2']))
if 'angle12' in kw:
fields.append(u'A12=' + self.format_angle(kw['angle12']))
if 'line' in kw:
fields.append(u'Line=' + ('1' if kw['line'] else '0'))
self.write_fields(fields)
|
write_observation_zone
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, num, **kw):\n if not self.in_task_section:\n raise RuntimeError(\n u'Observation zones have to be written in task section')\n fields = [u'ObsZone=%d' % num]\n if 'style' in kw:\n fields.append(u'Style=%d' % kw['style'])\n if 'radius' in kw:\n fields.append(u'R1=' + self.format_distance(kw['radius']))\n if 'angle' in kw:\n fields.append(u'A1=' + self.format_angle(kw['angle']))\n if 'radius2' in kw:\n fields.append(u'R2=' + self.format_distance(kw['radius2']))\n if 'angle2' in kw:\n fields.append(u'A2=' + self.format_angle(kw['angle2']))\n if 'angle12' in kw:\n fields.append(u'A12=' + self.format_angle(kw['angle12']))\n if 'line' in kw:\n fields.append(u'Line=' + ('1' if kw['line'] else '0'))\n self.write_fields(fields)\n",
"role": "user"
},
{
"content": "write_observation_zone",
"role": "assistant"
}
] |
def x(self):
if self.oxd_id:
logger.info('Client is already registered. ID: %s', self.oxd_id)
return self.oxd_id
params = {'authorization_redirect_uri': self.authorization_redirect_uri,
'oxd_rp_programming_language': 'python'}
for op in self.opt_params:
if self.config.get('client', op):
params[op] = self.config.get('client', op)
for olp in self.opt_list_params:
if self.config.get('client', olp):
params[olp] = self.config.get('client', olp).split(',')
logger.debug('Sending command `register_site` with params %s', params)
response = self.msgr.request('register_site', **params)
logger.debug('Received response: %s', response)
if response['status'] == 'error':
raise OxdServerError(response['data'])
self.oxd_id = response['data']['oxd_id']
self.config.set('oxd', 'id', self.oxd_id)
logger.info('Site registration successful. Oxd ID: %s', self.oxd_id)
return self.oxd_id
|
register_site
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if self.oxd_id:\n logger.info('Client is already registered. ID: %s', self.oxd_id)\n return self.oxd_id\n params = {'authorization_redirect_uri': self.authorization_redirect_uri,\n 'oxd_rp_programming_language': 'python'}\n for op in self.opt_params:\n if self.config.get('client', op):\n params[op] = self.config.get('client', op)\n for olp in self.opt_list_params:\n if self.config.get('client', olp):\n params[olp] = self.config.get('client', olp).split(',')\n logger.debug('Sending command `register_site` with params %s', params)\n response = self.msgr.request('register_site', **params)\n logger.debug('Received response: %s', response)\n if response['status'] == 'error':\n raise OxdServerError(response['data'])\n self.oxd_id = response['data']['oxd_id']\n self.config.set('oxd', 'id', self.oxd_id)\n logger.info('Site registration successful. Oxd ID: %s', self.oxd_id)\n return self.oxd_id\n",
"role": "user"
},
{
"content": "register_site",
"role": "assistant"
}
] |
def x(self, acr_values=None, prompt=None, scope=None, custom_params=None):
params = {'oxd_id': self.oxd_id}
if scope and isinstance(scope, list):
params['scope'] = scope
if acr_values and isinstance(acr_values, list):
params['acr_values'] = acr_values
if prompt and isinstance(prompt, str):
params['prompt'] = prompt
if custom_params:
params['custom_parameters'] = custom_params
logger.debug('Sending command `get_authorization_url` with params %s',
params)
response = self.msgr.request('get_authorization_url', **params)
logger.debug('Received response: %s', response)
if response['status'] == 'error':
raise OxdServerError(response['data'])
return response['data']['authorization_url']
|
get_authorization_url
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, acr_values=None, prompt=None, scope=None, custom_params=None):\n params = {'oxd_id': self.oxd_id}\n if scope and isinstance(scope, list):\n params['scope'] = scope\n if acr_values and isinstance(acr_values, list):\n params['acr_values'] = acr_values\n if prompt and isinstance(prompt, str):\n params['prompt'] = prompt\n if custom_params:\n params['custom_parameters'] = custom_params\n logger.debug('Sending command `get_authorization_url` with params %s',\n params)\n response = self.msgr.request('get_authorization_url', **params)\n logger.debug('Received response: %s', response)\n if response['status'] == 'error':\n raise OxdServerError(response['data'])\n return response['data']['authorization_url']\n",
"role": "user"
},
{
"content": "get_authorization_url",
"role": "assistant"
}
] |
def x(self, code, state):
params = dict(oxd_id=self.oxd_id, code=code, state=state)
logger.debug('Sending command `get_tokens_by_code` with params %s', params)
response = self.msgr.request('get_tokens_by_code', **params)
logger.debug('Received response: %s', response)
if response['status'] == 'error':
raise OxdServerError(response['data'])
return response['data']
|
get_tokens_by_code
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, code, state):\n params = dict(oxd_id=self.oxd_id, code=code, state=state)\n logger.debug('Sending command `get_tokens_by_code` with params %s', params)\n response = self.msgr.request('get_tokens_by_code', **params)\n logger.debug('Received response: %s', response)\n if response['status'] == 'error':\n raise OxdServerError(response['data'])\n return response['data']\n",
"role": "user"
},
{
"content": "get_tokens_by_code",
"role": "assistant"
}
] |
def x(self, refresh_token, scope=None):
params = {'oxd_id': self.oxd_id, 'refresh_token': refresh_token}
if scope:
params['scope'] = scope
logger.debug(
'Sending command `get_access_token_by_refresh_token` with params %s',
params)
response = self.msgr.request('get_access_token_by_refresh_token', **params)
logger.debug('Received response: %s', response)
if response['status'] == 'error':
raise OxdServerError(response['data'])
return response['data']
|
get_access_token_by_refresh_token
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, refresh_token, scope=None):\n params = {'oxd_id': self.oxd_id, 'refresh_token': refresh_token}\n if scope:\n params['scope'] = scope\n logger.debug(\n 'Sending command `get_access_token_by_refresh_token` with params %s',\n params)\n response = self.msgr.request('get_access_token_by_refresh_token', **params)\n logger.debug('Received response: %s', response)\n if response['status'] == 'error':\n raise OxdServerError(response['data'])\n return response['data']\n",
"role": "user"
},
{
"content": "get_access_token_by_refresh_token",
"role": "assistant"
}
] |
def x(self, access_token):
params = dict(oxd_id=self.oxd_id, access_token=access_token)
params['access_token'] = access_token
logger.debug('Sending command `get_user_info` with params %s', params)
response = self.msgr.request('get_user_info', **params)
logger.debug('Received response: %s', response)
if response['status'] == 'error':
raise OxdServerError(response['data'])
return response['data']['claims']
|
get_user_info
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, access_token):\n params = dict(oxd_id=self.oxd_id, access_token=access_token)\n params['access_token'] = access_token\n logger.debug('Sending command `get_user_info` with params %s', params)\n response = self.msgr.request('get_user_info', **params)\n logger.debug('Received response: %s', response)\n if response['status'] == 'error':\n raise OxdServerError(response['data'])\n return response['data']['claims']\n",
"role": "user"
},
{
"content": "get_user_info",
"role": "assistant"
}
] |
def x(self, id_token_hint=None, post_logout_redirect_uri=None, state=None,
session_state=None):
params = {'oxd_id': self.oxd_id}
if id_token_hint:
params['id_token_hint'] = id_token_hint
if post_logout_redirect_uri:
params['post_logout_redirect_uri'] = post_logout_redirect_uri
if state:
params['state'] = state
if session_state:
params['session_state'] = session_state
logger.debug('Sending command `get_logout_uri` with params %s', params)
response = self.msgr.request('get_logout_uri', **params)
logger.debug('Received response: %s', response)
if response['status'] == 'error':
raise OxdServerError(response['data'])
return response['data']['uri']
|
get_logout_uri
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, id_token_hint=None, post_logout_redirect_uri=None, state=None,\n session_state=None):\n params = {'oxd_id': self.oxd_id}\n if id_token_hint:\n params['id_token_hint'] = id_token_hint\n if post_logout_redirect_uri:\n params['post_logout_redirect_uri'] = post_logout_redirect_uri\n if state:\n params['state'] = state\n if session_state:\n params['session_state'] = session_state\n logger.debug('Sending command `get_logout_uri` with params %s', params)\n response = self.msgr.request('get_logout_uri', **params)\n logger.debug('Received response: %s', response)\n if response['status'] == 'error':\n raise OxdServerError(response['data'])\n return response['data']['uri']\n",
"role": "user"
},
{
"content": "get_logout_uri",
"role": "assistant"
}
] |
def x(self, client_secret_expires_at=None):
params = {'oxd_id': self.oxd_id, 'authorization_redirect_uri': self.
authorization_redirect_uri}
if client_secret_expires_at:
params['client_secret_expires_at'] = client_secret_expires_at
for param in self.opt_params:
if self.config.get('client', param):
value = self.config.get('client', param)
params[param] = value
for param in self.opt_list_params:
if self.config.get('client', param):
value = self.config.get('client', param).split(',')
params[param] = value
logger.debug('Sending `update_site` with params %s', params)
response = self.msgr.request('update_site', **params)
logger.debug('Received response: %s', response)
if response['status'] == 'error':
raise OxdServerError(response['data'])
return True
|
update_site
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, client_secret_expires_at=None):\n params = {'oxd_id': self.oxd_id, 'authorization_redirect_uri': self.\n authorization_redirect_uri}\n if client_secret_expires_at:\n params['client_secret_expires_at'] = client_secret_expires_at\n for param in self.opt_params:\n if self.config.get('client', param):\n value = self.config.get('client', param)\n params[param] = value\n for param in self.opt_list_params:\n if self.config.get('client', param):\n value = self.config.get('client', param).split(',')\n params[param] = value\n logger.debug('Sending `update_site` with params %s', params)\n response = self.msgr.request('update_site', **params)\n logger.debug('Received response: %s', response)\n if response['status'] == 'error':\n raise OxdServerError(response['data'])\n return True\n",
"role": "user"
},
{
"content": "update_site",
"role": "assistant"
}
] |
def x(self, resources, overwrite=None):
params = dict(oxd_id=self.oxd_id, resources=resources)
if overwrite:
params['overwrite'] = overwrite
logger.debug('Sending `uma_rs_protect` with params %s', params)
response = self.msgr.request('uma_rs_protect', **params)
logger.debug('Received response: %s', response)
if response['status'] == 'error':
raise OxdServerError(response['data'])
return True
|
uma_rs_protect
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, resources, overwrite=None):\n params = dict(oxd_id=self.oxd_id, resources=resources)\n if overwrite:\n params['overwrite'] = overwrite\n logger.debug('Sending `uma_rs_protect` with params %s', params)\n response = self.msgr.request('uma_rs_protect', **params)\n logger.debug('Received response: %s', response)\n if response['status'] == 'error':\n raise OxdServerError(response['data'])\n return True\n",
"role": "user"
},
{
"content": "uma_rs_protect",
"role": "assistant"
}
] |
def x(self, rpt, path, http_method):
params = {'oxd_id': self.oxd_id, 'rpt': rpt, 'path': path,
'http_method': http_method}
logger.debug('Sending command `uma_rs_check_access` with params %s', params
)
response = self.msgr.request('uma_rs_check_access', **params)
logger.debug('Received response: %s', response)
if response['status'] == 'error':
if response['data']['error'] == 'invalid_request':
raise InvalidRequestError(response['data'])
else:
raise OxdServerError(response['data'])
return response['data']
|
uma_rs_check_access
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, rpt, path, http_method):\n params = {'oxd_id': self.oxd_id, 'rpt': rpt, 'path': path,\n 'http_method': http_method}\n logger.debug('Sending command `uma_rs_check_access` with params %s', params\n )\n response = self.msgr.request('uma_rs_check_access', **params)\n logger.debug('Received response: %s', response)\n if response['status'] == 'error':\n if response['data']['error'] == 'invalid_request':\n raise InvalidRequestError(response['data'])\n else:\n raise OxdServerError(response['data'])\n return response['data']\n",
"role": "user"
},
{
"content": "uma_rs_check_access",
"role": "assistant"
}
] |
def x(self, ticket, claim_token=None, claim_token_format=None, pct=None,
rpt=None, scope=None, state=None):
params = {'oxd_id': self.oxd_id, 'ticket': ticket}
if claim_token:
params['claim_token'] = claim_token
if claim_token_format:
params['claim_token_format'] = claim_token_format
if pct:
params['pct'] = pct
if rpt:
params['rpt'] = rpt
if scope:
params['scope'] = scope
if state:
params['state'] = state
logger.debug('Sending command `uma_rp_get_rpt` with params %s', params)
response = self.msgr.request('uma_rp_get_rpt', **params)
logger.debug('Received response: %s', response)
if response['status'] == 'ok':
return response['data']
if response['data']['error'] == 'internal_error':
raise OxdServerError(response['data'])
if response['data']['error'] == 'need_info':
return response['data']
if response['data']['error'] == 'invalid_ticket':
raise InvalidTicketError(response['data'])
|
uma_rp_get_rpt
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, ticket, claim_token=None, claim_token_format=None, pct=None,\n rpt=None, scope=None, state=None):\n params = {'oxd_id': self.oxd_id, 'ticket': ticket}\n if claim_token:\n params['claim_token'] = claim_token\n if claim_token_format:\n params['claim_token_format'] = claim_token_format\n if pct:\n params['pct'] = pct\n if rpt:\n params['rpt'] = rpt\n if scope:\n params['scope'] = scope\n if state:\n params['state'] = state\n logger.debug('Sending command `uma_rp_get_rpt` with params %s', params)\n response = self.msgr.request('uma_rp_get_rpt', **params)\n logger.debug('Received response: %s', response)\n if response['status'] == 'ok':\n return response['data']\n if response['data']['error'] == 'internal_error':\n raise OxdServerError(response['data'])\n if response['data']['error'] == 'need_info':\n return response['data']\n if response['data']['error'] == 'invalid_ticket':\n raise InvalidTicketError(response['data'])\n",
"role": "user"
},
{
"content": "uma_rp_get_rpt",
"role": "assistant"
}
] |
def x(self, ticket):
params = {'oxd_id': self.oxd_id, 'claims_redirect_uri': self.config.get
('client', 'claims_redirect_uri'), 'ticket': ticket}
logger.debug(
'Sending command `uma_rp_get_claims_gathering_url` with params %s',
params)
response = self.msgr.request('uma_rp_get_claims_gathering_url', **params)
logger.debug('Received response: %s', response)
if response['status'] == 'error':
raise OxdServerError(response['data'])
return response['data']['url']
|
uma_rp_get_claims_gathering_url
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, ticket):\n params = {'oxd_id': self.oxd_id, 'claims_redirect_uri': self.config.get\n ('client', 'claims_redirect_uri'), 'ticket': ticket}\n logger.debug(\n 'Sending command `uma_rp_get_claims_gathering_url` with params %s',\n params)\n response = self.msgr.request('uma_rp_get_claims_gathering_url', **params)\n logger.debug('Received response: %s', response)\n if response['status'] == 'error':\n raise OxdServerError(response['data'])\n return response['data']['url']\n",
"role": "user"
},
{
"content": "uma_rp_get_claims_gathering_url",
"role": "assistant"
}
] |
def x(self):
params = {'authorization_redirect_uri': self.authorization_redirect_uri,
'oxd_rp_programming_language': 'python'}
for op in self.opt_params:
if self.config.get('client', op):
params[op] = self.config.get('client', op)
for olp in self.opt_list_params:
if self.config.get('client', olp):
params[olp] = self.config.get('client', olp).split(',')
logger.debug('Sending command `setup_client` with params %s', params)
response = self.msgr.request('setup_client', **params)
logger.debug('Received response: %s', response)
if response['status'] == 'error':
raise OxdServerError(response['data'])
data = response['data']
self.oxd_id = data['oxd_id']
self.config.set('oxd', 'id', data['oxd_id'])
self.config.set('client', 'client_id', data['client_id'])
self.config.set('client', 'client_secret', data['client_secret'])
if data['client_registration_access_token']:
self.config.set('client', 'client_registration_access_token', data[
'client_registration_access_token'])
if data['client_registration_client_uri']:
self.config.set('client', 'client_registration_client_uri', data[
'client_registration_client_uri'])
self.config.set('client', 'client_id_issued_at', str(data[
'client_id_issued_at']))
return data
|
setup_client
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n params = {'authorization_redirect_uri': self.authorization_redirect_uri,\n 'oxd_rp_programming_language': 'python'}\n for op in self.opt_params:\n if self.config.get('client', op):\n params[op] = self.config.get('client', op)\n for olp in self.opt_list_params:\n if self.config.get('client', olp):\n params[olp] = self.config.get('client', olp).split(',')\n logger.debug('Sending command `setup_client` with params %s', params)\n response = self.msgr.request('setup_client', **params)\n logger.debug('Received response: %s', response)\n if response['status'] == 'error':\n raise OxdServerError(response['data'])\n data = response['data']\n self.oxd_id = data['oxd_id']\n self.config.set('oxd', 'id', data['oxd_id'])\n self.config.set('client', 'client_id', data['client_id'])\n self.config.set('client', 'client_secret', data['client_secret'])\n if data['client_registration_access_token']:\n self.config.set('client', 'client_registration_access_token', data[\n 'client_registration_access_token'])\n if data['client_registration_client_uri']:\n self.config.set('client', 'client_registration_client_uri', data[\n 'client_registration_client_uri'])\n self.config.set('client', 'client_id_issued_at', str(data[\n 'client_id_issued_at']))\n return data\n",
"role": "user"
},
{
"content": "setup_client",
"role": "assistant"
}
] |
def x(self, client_id=None, client_secret=None, op_host=None,
op_discovery_path=None, scope=None, auto_update=True):
params = dict(client_id=client_id, client_secret=client_secret, op_host
=op_host)
if op_discovery_path:
params['op_discovery_path'] = op_discovery_path
if scope and isinstance(scope, list):
params['scope'] = scope
if not client_id:
params['client_id'] = self.config.get('client', 'client_id')
if not client_secret:
params['client_secret'] = self.config.get('client', 'client_secret')
if not op_host:
params['op_host'] = self.config.get('client', 'op_host')
logger.debug('Sending command `get_client_token` with params %s', params)
response = self.msgr.request('get_client_token', **params)
logger.debug('Received response: %s', response)
if response['status'] == 'error':
raise OxdServerError(response['data'])
self.config.set('client', 'protection_access_token', response['data'][
'access_token'])
self.msgr.access_token = response['data']['access_token']
if auto_update:
interval = int(response['data']['expires_in'])
args = [client_id, client_secret, op_host, op_discovery_path, scope,
auto_update]
logger.info(
'Setting up a threading.Timer to get_client_token in %s seconds',
interval)
t = Timer(interval, self.get_client_token, args)
t.start()
return response['data']
|
get_client_token
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, client_id=None, client_secret=None, op_host=None,\n op_discovery_path=None, scope=None, auto_update=True):\n params = dict(client_id=client_id, client_secret=client_secret, op_host\n =op_host)\n if op_discovery_path:\n params['op_discovery_path'] = op_discovery_path\n if scope and isinstance(scope, list):\n params['scope'] = scope\n if not client_id:\n params['client_id'] = self.config.get('client', 'client_id')\n if not client_secret:\n params['client_secret'] = self.config.get('client', 'client_secret')\n if not op_host:\n params['op_host'] = self.config.get('client', 'op_host')\n logger.debug('Sending command `get_client_token` with params %s', params)\n response = self.msgr.request('get_client_token', **params)\n logger.debug('Received response: %s', response)\n if response['status'] == 'error':\n raise OxdServerError(response['data'])\n self.config.set('client', 'protection_access_token', response['data'][\n 'access_token'])\n self.msgr.access_token = response['data']['access_token']\n if auto_update:\n interval = int(response['data']['expires_in'])\n args = [client_id, client_secret, op_host, op_discovery_path, scope,\n auto_update]\n logger.info(\n 'Setting up a threading.Timer to get_client_token in %s seconds',\n interval)\n t = Timer(interval, self.get_client_token, args)\n t.start()\n return response['data']\n",
"role": "user"
},
{
"content": "get_client_token",
"role": "assistant"
}
] |
def x(self):
params = dict(oxd_id=self.oxd_id)
logger.debug('Sending command `remove_site` with params %s', params)
response = self.msgr.request('remove_site', **params)
logger.debug('Received response: %s', response)
if response['status'] == 'error':
raise OxdServerError(response['data'])
return response['data']['oxd_id']
|
remove_site
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n params = dict(oxd_id=self.oxd_id)\n logger.debug('Sending command `remove_site` with params %s', params)\n response = self.msgr.request('remove_site', **params)\n logger.debug('Received response: %s', response)\n if response['status'] == 'error':\n raise OxdServerError(response['data'])\n return response['data']['oxd_id']\n",
"role": "user"
},
{
"content": "remove_site",
"role": "assistant"
}
] |
def x(self, rpt):
params = dict(oxd_id=self.oxd_id)
params['rpt'] = rpt
logger.debug('Sending command `introspect_rpt` with params %s', params)
response = self.msgr.request('introspect_rpt', **params)
logger.debug('Received response: %s', response)
if response['status'] == 'error':
raise OxdServerError(response['data'])
return response['data']
|
introspect_rpt
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, rpt):\n params = dict(oxd_id=self.oxd_id)\n params['rpt'] = rpt\n logger.debug('Sending command `introspect_rpt` with params %s', params)\n response = self.msgr.request('introspect_rpt', **params)\n logger.debug('Received response: %s', response)\n if response['status'] == 'error':\n raise OxdServerError(response['data'])\n return response['data']\n",
"role": "user"
},
{
"content": "introspect_rpt",
"role": "assistant"
}
] |
def x(self, **kw):
self.convert_timedelta(kw, 'aat_min_time')
self.convert_time(kw, 'start_open_time')
self.convert_time(kw, 'start_close_time')
self.convert_bool(kw, 'fai_finish')
self.convert_bool(kw, 'start_requires_arm')
return self.write_tag_with_content('Task', **kw)
|
write_task
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, **kw):\n self.convert_timedelta(kw, 'aat_min_time')\n self.convert_time(kw, 'start_open_time')\n self.convert_time(kw, 'start_close_time')\n self.convert_bool(kw, 'fai_finish')\n self.convert_bool(kw, 'start_requires_arm')\n return self.write_tag_with_content('Task', **kw)\n",
"role": "user"
},
{
"content": "write_task",
"role": "assistant"
}
] |
def x(self, **kw):
assert 'type' in kw
self.convert_bool(kw, 'score_exit')
return self.write_tag_with_content('Point', **kw)
|
write_point
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, **kw):\n assert 'type' in kw\n self.convert_bool(kw, 'score_exit')\n return self.write_tag_with_content('Point', **kw)\n",
"role": "user"
},
{
"content": "write_point",
"role": "assistant"
}
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.