code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
from PIL import Image def lowerCamelCase( a__ ,a__): def brightness(a__) -> float: return 128 + level + (c - 128) if not -255.0 <= level <= 255.0: raise ValueError('''level must be between -255.0 (black) and 255.0 (white)''') return img.point(_lowerCamelCase) if __name__ == "__main__": # Load image with Image.open('''image_data/lena.jpg''') as img: # Change brightness to 100 snake_case_ : str = change_brightness(img, 1_00) brigt_img.save('''image_data/lena_brightness.png''', format='''png''')
691
"""simple docstring""" import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class _snake_case ( unittest.TestCase ): def __init__( self : str , UpperCAmelCase : int , UpperCAmelCase : bool = True , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : int = 32 , UpperCAmelCase : bool = True , UpperCAmelCase : Union[int, float] = 1 / 255 , UpperCAmelCase : bool = True , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[Union[float, List[float]]] = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , UpperCAmelCase : Optional[Union[float, List[float]]] = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , UpperCAmelCase : bool = True , UpperCAmelCase : str=7 , UpperCAmelCase : Union[str, Any]=30 , UpperCAmelCase : int=400 , UpperCAmelCase : Any=3 , ): __lowerCamelCase : str = parent __lowerCamelCase : Tuple = do_resize __lowerCamelCase : Tuple = size if size is not None else {"shortest_edge": 288} __lowerCamelCase : List[Any] = size_divisor __lowerCamelCase : List[str] = do_rescale __lowerCamelCase : List[Any] = rescale_factor __lowerCamelCase : Optional[int] = do_normalize __lowerCamelCase : Tuple = do_center_crop __lowerCamelCase : List[Any] = image_mean __lowerCamelCase : Tuple = image_std __lowerCamelCase : Any = do_pad __lowerCamelCase : int = batch_size __lowerCamelCase : Optional[Any] = num_channels __lowerCamelCase : Optional[int] = min_resolution __lowerCamelCase : Optional[int] = max_resolution def lowerCamelCase__ ( self : Tuple ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def lowerCamelCase__ ( self : Optional[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Union[str, Any]=False ): if not batched: __lowerCamelCase : List[str] = self.size["shortest_edge"] __lowerCamelCase : Optional[int] = image_inputs[0] if isinstance(UpperCAmelCase , Image.Image ): __lowerCamelCase , __lowerCamelCase : str = image.size else: __lowerCamelCase , __lowerCamelCase : Union[str, Any] = image.shape[1], image.shape[2] __lowerCamelCase : Optional[Any] = size / min(UpperCAmelCase , UpperCAmelCase ) if h < w: __lowerCamelCase , __lowerCamelCase : int = size, scale * w else: __lowerCamelCase , __lowerCamelCase : Union[str, Any] = scale * h, size __lowerCamelCase : Optional[Any] = int((1333 / 800) * size ) if max(UpperCAmelCase , UpperCAmelCase ) > max_size: __lowerCamelCase : Union[str, Any] = max_size / max(UpperCAmelCase , UpperCAmelCase ) __lowerCamelCase : Dict = newh * scale __lowerCamelCase : str = neww * scale __lowerCamelCase , __lowerCamelCase : Optional[int] = int(newh + 0.5 ), int(neww + 0.5 ) __lowerCamelCase , __lowerCamelCase : Dict = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: __lowerCamelCase : Optional[int] = [] for image in image_inputs: __lowerCamelCase , __lowerCamelCase : int = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __lowerCamelCase : Any = max(UpperCAmelCase , key=lambda UpperCAmelCase : item[0] )[0] __lowerCamelCase : Any = max(UpperCAmelCase , key=lambda UpperCAmelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _snake_case ( a__ , unittest.TestCase ): snake_case__ = BridgeTowerImageProcessor if is_vision_available() else None def lowerCamelCase__ ( self : Any ): __lowerCamelCase : Tuple = BridgeTowerImageProcessingTester(self ) @property def lowerCamelCase__ ( self : str ): return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase__ ( self : List[Any] ): __lowerCamelCase : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase , "image_mean" ) ) self.assertTrue(hasattr(UpperCAmelCase , "image_std" ) ) self.assertTrue(hasattr(UpperCAmelCase , "do_normalize" ) ) self.assertTrue(hasattr(UpperCAmelCase , "do_resize" ) ) self.assertTrue(hasattr(UpperCAmelCase , "size" ) ) self.assertTrue(hasattr(UpperCAmelCase , "size_divisor" ) ) def lowerCamelCase__ ( self : Union[str, Any] ): pass def lowerCamelCase__ ( self : Optional[Any] ): # Initialize image processor __lowerCamelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowerCamelCase : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase , Image.Image ) # Test not batched input __lowerCamelCase : Optional[int] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values __lowerCamelCase , __lowerCamelCase : List[str] = self.image_processor_tester.get_expected_values(UpperCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCamelCase : int = image_processing(UpperCAmelCase , return_tensors="pt" ).pixel_values __lowerCamelCase , __lowerCamelCase : Optional[int] = self.image_processor_tester.get_expected_values(UpperCAmelCase , batched=UpperCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCamelCase__ ( self : List[Any] ): # Initialize image processor __lowerCamelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowerCamelCase : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase , numpify=UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase , np.ndarray ) # Test not batched input __lowerCamelCase : List[str] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values __lowerCamelCase , __lowerCamelCase : Dict = self.image_processor_tester.get_expected_values(UpperCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCamelCase : str = image_processing(UpperCAmelCase , return_tensors="pt" ).pixel_values __lowerCamelCase , __lowerCamelCase : List[str] = self.image_processor_tester.get_expected_values(UpperCAmelCase , batched=UpperCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCamelCase__ ( self : Optional[int] ): # Initialize image processor __lowerCamelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowerCamelCase : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase , torchify=UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase , torch.Tensor ) # Test not batched input __lowerCamelCase : Tuple = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values __lowerCamelCase , __lowerCamelCase : Optional[Any] = self.image_processor_tester.get_expected_values(UpperCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCamelCase : str = image_processing(UpperCAmelCase , return_tensors="pt" ).pixel_values __lowerCamelCase , __lowerCamelCase : Optional[Any] = self.image_processor_tester.get_expected_values(UpperCAmelCase , batched=UpperCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
646
0
"""simple docstring""" import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase : List[str] =logging.get_logger(__name__) __lowerCAmelCase : Dict ="""https://openaipublic.azureedge.net/jukebox/models/""" __lowerCAmelCase : Optional[int] ={ """jukebox-1b-lyrics""": [ """5b/vqvae.pth.tar""", """5b/prior_level_0.pth.tar""", """5b/prior_level_1.pth.tar""", """1b_lyrics/prior_level_2.pth.tar""", ], """jukebox-5b-lyrics""": [ """5b/vqvae.pth.tar""", """5b/prior_level_0.pth.tar""", """5b/prior_level_1.pth.tar""", """5b_lyrics/prior_level_2.pth.tar""", ], } def UpperCAmelCase__ ( lowerCAmelCase__ :Optional[Any] ) -> Dict: '''simple docstring''' if key.endswith(""".model.1.bias""" ) and len(key.split(""".""" ) ) > 1_0: lowercase = key.replace(""".model.1.bias""" , """.conv1d_1.bias""" ) elif key.endswith(""".model.1.weight""" ) and len(key.split(""".""" ) ) > 1_0: lowercase = key.replace(""".model.1.weight""" , """.conv1d_1.weight""" ) elif key.endswith(""".model.3.bias""" ) and len(key.split(""".""" ) ) > 1_0: lowercase = key.replace(""".model.3.bias""" , """.conv1d_2.bias""" ) elif key.endswith(""".model.3.weight""" ) and len(key.split(""".""" ) ) > 1_0: lowercase = key.replace(""".model.3.weight""" , """.conv1d_2.weight""" ) if "conditioner_blocks.0." in key: lowercase = key.replace("""conditioner_blocks.0""" , """conditioner_blocks""" ) if "prime_prior" in key: lowercase = key.replace("""prime_prior""" , """encoder""" ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: lowercase = key.replace(""".emb.""" , """.""" ) if key.endswith("""k""" ): # replace vqvae.X.k with vqvae.X.codebook return key.replace(""".k""" , """.codebook""" ) if "y_emb." in key: return key.replace("""y_emb.""" , """metadata_embedding.""" ) if "x_emb.emb." in key: lowercase = key.replace("""0.x_emb.emb""" , """embed_tokens""" ) if "prime_state_ln" in key: return key.replace("""prime_state_ln""" , """encoder.final_layer_norm""" ) if ".ln" in key: return key.replace(""".ln""" , """.layer_norm""" ) if "_ln" in key: return key.replace("""_ln""" , """_layer_norm""" ) if "prime_state_proj" in key: return key.replace("""prime_state_proj""" , """encoder.proj_in""" ) if "prime_x_out" in key: return key.replace("""prime_x_out""" , """encoder.lm_head""" ) if "prior.x_out" in key: return key.replace("""x_out""" , """fc_proj_out""" ) if "x_emb" in key: return key.replace("""x_emb""" , """embed_tokens""" ) return key def UpperCAmelCase__ ( lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Tuple ) -> Union[str, Any]: '''simple docstring''' lowercase = {} import re lowercase = re.compile(R"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)""" ) lowercase = re.compile( R"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" ) lowercase = re.compile(R"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)""" ) lowercase = re.compile(R"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)""" ) lowercase = re.compile( R"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" ) lowercase = re.compile(R"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)""" ) lowercase = re.compile(R"""conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)""" ) lowercase = re.compile( R"""conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" ) lowercase = re.compile(R"""conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)""" ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(lowerCAmelCase__ ): lowercase = re_encoder_block_conv_in.match(lowerCAmelCase__ ) lowercase = regex_match.groups() lowercase = int(groups[2] ) * 2 + int(groups[3] ) lowercase = f'encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}' lowercase = re_encoder_block_conv_in.sub(lowerCAmelCase__ , lowerCAmelCase__ ) elif re_encoder_block_resnet.fullmatch(lowerCAmelCase__ ): lowercase = re_encoder_block_resnet.match(lowerCAmelCase__ ) lowercase = regex_match.groups() lowercase = int(groups[2] ) * 2 + int(groups[3] ) lowercase = {"""1""": 1, """3""": 2}[groups[-2]] lowercase = f'encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.' lowercase = f'resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}' lowercase = prefix + resnet_block lowercase = re_encoder_block_resnet.sub(lowerCAmelCase__ , lowerCAmelCase__ ) elif re_encoder_block_proj_out.fullmatch(lowerCAmelCase__ ): lowercase = re_encoder_block_proj_out.match(lowerCAmelCase__ ) lowercase = regex_match.groups() lowercase = f'encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}' lowercase = re_encoder_block_proj_out.sub(lowerCAmelCase__ , lowerCAmelCase__ ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(lowerCAmelCase__ ): lowercase = re_decoder_block_conv_out.match(lowerCAmelCase__ ) lowercase = regex_match.groups() lowercase = int(groups[2] ) * 2 + int(groups[3] ) - 2 lowercase = f'decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}' lowercase = re_decoder_block_conv_out.sub(lowerCAmelCase__ , lowerCAmelCase__ ) elif re_decoder_block_resnet.fullmatch(lowerCAmelCase__ ): lowercase = re_decoder_block_resnet.match(lowerCAmelCase__ ) lowercase = regex_match.groups() lowercase = int(groups[2] ) * 2 + int(groups[3] ) - 2 lowercase = {"""1""": 1, """3""": 2}[groups[-2]] lowercase = f'decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.' lowercase = f'resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}' lowercase = prefix + resnet_block lowercase = re_decoder_block_resnet.sub(lowerCAmelCase__ , lowerCAmelCase__ ) elif re_decoder_block_proj_in.fullmatch(lowerCAmelCase__ ): lowercase = re_decoder_block_proj_in.match(lowerCAmelCase__ ) lowercase = regex_match.groups() lowercase = f'decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}' lowercase = re_decoder_block_proj_in.sub(lowerCAmelCase__ , lowerCAmelCase__ ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(lowerCAmelCase__ ): lowercase = re_prior_cond_conv_out.match(lowerCAmelCase__ ) lowercase = regex_match.groups() lowercase = int(groups[1] ) * 2 + int(groups[2] ) - 2 lowercase = f'conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}' lowercase = re_prior_cond_conv_out.sub(lowerCAmelCase__ , lowerCAmelCase__ ) elif re_prior_cond_resnet.fullmatch(lowerCAmelCase__ ): lowercase = re_prior_cond_resnet.match(lowerCAmelCase__ ) lowercase = regex_match.groups() lowercase = int(groups[1] ) * 2 + int(groups[2] ) - 2 lowercase = {"""1""": 1, """3""": 2}[groups[-2]] lowercase = f'conditioner_blocks.upsampler.upsample_block.{block_index}.' lowercase = f'resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}' lowercase = prefix + resnet_block lowercase = re_prior_cond_resnet.sub(lowerCAmelCase__ , lowerCAmelCase__ ) elif re_prior_cond_proj_in.fullmatch(lowerCAmelCase__ ): lowercase = re_prior_cond_proj_in.match(lowerCAmelCase__ ) lowercase = regex_match.groups() lowercase = f'conditioner_blocks.upsampler.proj_in.{groups[-1]}' lowercase = re_prior_cond_proj_in.sub(lowerCAmelCase__ , lowerCAmelCase__ ) # keep original key else: lowercase = original_key lowercase = replace_key(lowerCAmelCase__ ) if f'{key_prefix}.{key}' not in model_state_dict or key is None: print(f'failed converting {original_key} to {key}, does not match' ) # handle missmatched shape elif value.shape != model_state_dict[f'{key_prefix}.{key}'].shape: lowercase = model_state_dict[f'{key_prefix}.{key}'] print(f'{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match' ) lowercase = original_key lowercase = original_key lowercase = value return new_dict @torch.no_grad() def UpperCAmelCase__ ( lowerCAmelCase__ :Any=None , lowerCAmelCase__ :Dict=None ) -> Dict: '''simple docstring''' for file in MODEL_MAPPING[model_name]: if not os.path.isfile(f'{pytorch_dump_folder_path}/{file.split("/" )[-1]}' ): lowercase = requests.get(f'{PREFIX}{file}' , allow_redirects=lowerCAmelCase__ ) os.makedirs(f'{pytorch_dump_folder_path}/' , exist_ok=lowerCAmelCase__ ) open(f'{pytorch_dump_folder_path}/{file.split("/" )[-1]}' , """wb""" ).write(r.content ) lowercase = MODEL_MAPPING[model_name.split("""/""" )[-1]] lowercase = JukeboxConfig.from_pretrained(lowerCAmelCase__ ) lowercase = JukeboxModel(lowerCAmelCase__ ) lowercase = [] lowercase = {} for i, dict_name in enumerate(lowerCAmelCase__ ): lowercase = torch.load(f'{pytorch_dump_folder_path}/{dict_name.split("/" )[-1]}' )["""model"""] lowercase = {} for k in old_dic.keys(): if k.endswith(""".b""" ): lowercase = old_dic[k] elif k.endswith(""".w""" ): lowercase = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: lowercase = old_dic[k] else: lowercase = old_dic[k] lowercase = """vqvae""" if i == 0 else f'priors.{3 - i}' lowercase = fix_jukebox_keys(lowerCAmelCase__ , model.state_dict() , lowerCAmelCase__ , lowerCAmelCase__ ) weight_dict.append(lowerCAmelCase__ ) lowercase = weight_dict.pop(0 ) model.vqvae.load_state_dict(lowerCAmelCase__ ) for i in range(len(lowerCAmelCase__ ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(lowerCAmelCase__ ).mkdir(exist_ok=lowerCAmelCase__ ) with open(f'{pytorch_dump_folder_path}/mapping.json' , """w""" ) as txtfile: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(lowerCAmelCase__ ) return weight_dict if __name__ == "__main__": __lowerCAmelCase : Union[str, Any] =argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""jukebox-5b-lyrics""", type=str, help="""Name of the model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""jukebox-5b-lyrics-converted""", type=str, help="""Path to the output PyTorch model directory.""", ) __lowerCAmelCase : str =parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
700
"""simple docstring""" import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets __lowerCAmelCase : str ="""\ @inproceedings{lin-2004-rouge, title = \"{ROUGE}: A Package for Automatic Evaluation of Summaries\", author = \"Lin, Chin-Yew\", booktitle = \"Text Summarization Branches Out\", month = jul, year = \"2004\", address = \"Barcelona, Spain\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/W04-1013\", pages = \"74--81\", } """ __lowerCAmelCase : str ="""\ ROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for evaluating automatic summarization and machine translation software in natural language processing. The metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation. Note that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters. This metrics is a wrapper around Google Research reimplementation of ROUGE: https://github.com/google-research/google-research/tree/master/rouge """ __lowerCAmelCase : Optional[int] =""" Calculates average rouge scores for a list of hypotheses and references Args: predictions: list of predictions to score. Each prediction should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. rouge_types: A list of rouge types to calculate. Valid names: `\"rouge{n}\"` (e.g. `\"rouge1\"`, `\"rouge2\"`) where: {n} is the n-gram based scoring, `\"rougeL\"`: Longest common subsequence based scoring. `\"rougeLSum\"`: rougeLsum splits text using `\"\n\"`. See details in https://github.com/huggingface/datasets/issues/617 use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes. use_aggregator: Return aggregates if this is set to True Returns: rouge1: rouge_1 (precision, recall, f1), rouge2: rouge_2 (precision, recall, f1), rougeL: rouge_l (precision, recall, f1), rougeLsum: rouge_lsum (precision, recall, f1) Examples: >>> rouge = datasets.load_metric('rouge') >>> predictions = [\"hello there\", \"general kenobi\"] >>> references = [\"hello there\", \"general kenobi\"] >>> results = rouge.compute(predictions=predictions, references=references) >>> print(list(results.keys())) ['rouge1', 'rouge2', 'rougeL', 'rougeLsum'] >>> print(results[\"rouge1\"]) AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0)) >>> print(results[\"rouge1\"].mid.fmeasure) 1.0 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _A ( datasets.Metric ): def A__ ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/google-research/google-research/tree/master/rouge"""] , reference_urls=[ """https://en.wikipedia.org/wiki/ROUGE_(metric)""", """https://github.com/google-research/google-research/tree/master/rouge""", ] , ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=True , __lowerCAmelCase=False ): """simple docstring""" if rouge_types is None: lowercase = ["""rouge1""", """rouge2""", """rougeL""", """rougeLsum"""] lowercase = rouge_scorer.RougeScorer(rouge_types=__lowerCAmelCase , use_stemmer=__lowerCAmelCase ) if use_aggregator: lowercase = scoring.BootstrapAggregator() else: lowercase = [] for ref, pred in zip(__lowerCAmelCase , __lowerCAmelCase ): lowercase = scorer.score(__lowerCAmelCase , __lowerCAmelCase ) if use_aggregator: aggregator.add_scores(__lowerCAmelCase ) else: scores.append(__lowerCAmelCase ) if use_aggregator: lowercase = aggregator.aggregate() else: lowercase = {} for key in scores[0]: lowercase = [score[key] for score in scores] return result
197
0
import argparse import gc import json import os import re import torch from huggingface_hub import hf_hub_download from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint lowerCAmelCase_ = { '169M': 12, '430M': 24, '1B5': 24, '3B': 32, '7B': 32, '14B': 40, } lowerCAmelCase_ = { '169M': 7_68, '430M': 10_24, '1B5': 20_48, '3B': 25_60, '7B': 40_96, '14B': 51_20, } def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = list(state_dict.keys() ) for name in state_dict_keys: snake_case_ = state_dict.pop(SCREAMING_SNAKE_CASE__ ) # emb -> embedding if name.startswith('''emb.''' ): snake_case_ = name.replace('''emb.''' , '''embeddings.''' ) # ln_0 -> pre_ln (only present at block 0) if name.startswith('''blocks.0.ln0''' ): snake_case_ = name.replace('''blocks.0.ln0''' , '''blocks.0.pre_ln''' ) # att -> attention snake_case_ = re.sub(R'''blocks\.(\d+)\.att''' , R'''blocks.\1.attention''' , SCREAMING_SNAKE_CASE__ ) # ffn -> feed_forward snake_case_ = re.sub(R'''blocks\.(\d+)\.ffn''' , R'''blocks.\1.feed_forward''' , SCREAMING_SNAKE_CASE__ ) # time_mix_k -> time_mix_key and reshape if name.endswith('''.time_mix_k''' ): snake_case_ = name.replace('''.time_mix_k''' , '''.time_mix_key''' ) # time_mix_v -> time_mix_value and reshape if name.endswith('''.time_mix_v''' ): snake_case_ = name.replace('''.time_mix_v''' , '''.time_mix_value''' ) # time_mix_r -> time_mix_key and reshape if name.endswith('''.time_mix_r''' ): snake_case_ = name.replace('''.time_mix_r''' , '''.time_mix_receptance''' ) if name != "head.weight": snake_case_ = """rwkv.""" + name snake_case_ = weight return state_dict def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=None ): if tokenizer_file is None: print('''No `--tokenizer_file` provided, we will use the default tokenizer.''' ) snake_case_ = 50277 snake_case_ = AutoTokenizer.from_pretrained('''EleutherAI/gpt-neox-20b''' ) else: snake_case_ = PreTrainedTokenizerFast(tokenizer_file=SCREAMING_SNAKE_CASE__ ) snake_case_ = len(SCREAMING_SNAKE_CASE__ ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__ ) # 2. Build the config snake_case_ = list(NUM_HIDDEN_LAYERS_MAPPING.keys() ) if size is None: # Try to infer size from the checkpoint name for candidate in possible_sizes: if candidate in checkpoint_file: snake_case_ = candidate break if size is None: raise ValueError('''Could not infer the size, please provide it with the `--size` argument.''' ) if size not in possible_sizes: raise ValueError(F'''`size` should be one of {possible_sizes}, got {size}.''' ) snake_case_ = RwkvConfig( vocab_size=SCREAMING_SNAKE_CASE__ , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , ) config.save_pretrained(SCREAMING_SNAKE_CASE__ ) # 3. Download model file then convert state_dict snake_case_ = hf_hub_download(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ = torch.load(SCREAMING_SNAKE_CASE__ , map_location='''cpu''' ) snake_case_ = convert_state_dict(SCREAMING_SNAKE_CASE__ ) # 4. Split in shards and save snake_case_ = shard_checkpoint(SCREAMING_SNAKE_CASE__ ) for shard_file, shard in shards.items(): torch.save(SCREAMING_SNAKE_CASE__ , os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) if index is not None: snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Save the index as well with open(SCREAMING_SNAKE_CASE__ , '''w''' , encoding='''utf-8''' ) as f: snake_case_ = json.dumps(SCREAMING_SNAKE_CASE__ , indent=2 , sort_keys=SCREAMING_SNAKE_CASE__ ) + """\n""" f.write(SCREAMING_SNAKE_CASE__ ) # 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict print( '''Cleaning up shards. This may error with an OOM error, it this is the case don\'t worry you still have converted the model.''' ) snake_case_ = list(shards.keys() ) del state_dict del shards gc.collect() for shard_file in shard_files: snake_case_ = torch.load(os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) del state_dict gc.collect() if push_to_hub: if model_name is None: raise ValueError('''Please provide a `model_name` to push the model to the Hub.''' ) snake_case_ = AutoModelForCausalLM.from_pretrained(SCREAMING_SNAKE_CASE__ ) model.push_to_hub(SCREAMING_SNAKE_CASE__ , max_shard_size='''2GB''' ) tokenizer.push_to_hub(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--repo_id''', default=None, type=str, required=True, help='''Repo ID from which to pull the checkpoint.''' ) parser.add_argument( '''--checkpoint_file''', default=None, type=str, required=True, help='''Name of the checkpoint file in the repo.''' ) parser.add_argument( '''--output_dir''', default=None, type=str, required=True, help='''Where to save the converted model.''' ) parser.add_argument( '''--tokenizer_file''', default=None, type=str, help='''Path to the tokenizer file to use (if not provided, only the model is converted).''', ) parser.add_argument( '''--size''', default=None, type=str, help='''Size of the model. Will be inferred from the `checkpoint_file` if not passed.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Push to the Hub the converted model.''', ) parser.add_argument( '''--model_name''', default=None, type=str, help='''Name of the pushed model on the Hub, including the username / organization.''', ) lowerCAmelCase_ = parser.parse_args() convert_rmkv_checkpoint_to_hf_format( args.repo_id, args.checkpoint_file, args.output_dir, size=args.size, tokenizer_file=args.tokenizer_file, push_to_hub=args.push_to_hub, model_name=args.model_name, )
39
'''simple docstring''' import numpy as np class lowercase__ : '''simple docstring''' def __init__( self ): _SCREAMING_SNAKE_CASE : List[Any] = (0, 0) _SCREAMING_SNAKE_CASE : List[str] = None _SCREAMING_SNAKE_CASE : Union[str, Any] = 0 _SCREAMING_SNAKE_CASE : List[str] = 0 _SCREAMING_SNAKE_CASE : Union[str, Any] = 0 def __eq__( self , __snake_case ): return self.position == cell.position def UpperCAmelCase_ ( self ): print(self.position ) class lowercase__ : '''simple docstring''' def __init__( self , __snake_case=(5, 5) ): _SCREAMING_SNAKE_CASE : str = np.zeros(__snake_case ) _SCREAMING_SNAKE_CASE : Optional[Any] = world_size[0] _SCREAMING_SNAKE_CASE : Tuple = world_size[1] def UpperCAmelCase_ ( self ): print(self.w ) def UpperCAmelCase_ ( self , __snake_case ): _SCREAMING_SNAKE_CASE : Optional[int] = [ (-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1), ] _SCREAMING_SNAKE_CASE : Optional[int] = cell.position[0] _SCREAMING_SNAKE_CASE : Optional[int] = cell.position[1] _SCREAMING_SNAKE_CASE : Tuple = [] for n in neughbour_cord: _SCREAMING_SNAKE_CASE : Optional[Any] = current_x + n[0] _SCREAMING_SNAKE_CASE : List[Any] = current_y + n[1] if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit: _SCREAMING_SNAKE_CASE : Optional[int] = Cell() _SCREAMING_SNAKE_CASE : Union[str, Any] = (x, y) _SCREAMING_SNAKE_CASE : Dict = cell neighbours.append(__snake_case ) return neighbours def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" _SCREAMING_SNAKE_CASE : Tuple = [] _SCREAMING_SNAKE_CASE : Optional[Any] = [] _open.append(SCREAMING_SNAKE_CASE__ ) while _open: _SCREAMING_SNAKE_CASE : Any = np.argmin([n.f for n in _open] ) _SCREAMING_SNAKE_CASE : List[Any] = _open[min_f] _closed.append(_open.pop(SCREAMING_SNAKE_CASE__ ) ) if current == goal: break for n in world.get_neigbours(SCREAMING_SNAKE_CASE__ ): for c in _closed: if c == n: continue _SCREAMING_SNAKE_CASE : Optional[int] = current.g + 1 _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[Any] = n.position _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[str] = goal.position _SCREAMING_SNAKE_CASE : Dict = (ya - ya) ** 2 + (xa - xa) ** 2 _SCREAMING_SNAKE_CASE : Any = n.h + n.g for c in _open: if c == n and c.f < n.f: continue _open.append(SCREAMING_SNAKE_CASE__ ) _SCREAMING_SNAKE_CASE : Any = [] while current.parent is not None: path.append(current.position ) _SCREAMING_SNAKE_CASE : List[Any] = current.parent path.append(current.position ) return path[::-1] if __name__ == "__main__": UpperCAmelCase_ : List[Any] = Gridworld() # Start position and goal UpperCAmelCase_ : Optional[Any] = Cell() UpperCAmelCase_ : Tuple = (0, 0) UpperCAmelCase_ : Optional[Any] = Cell() UpperCAmelCase_ : Tuple = (4, 4) print(F"path from {start.position} to {goal.position}") UpperCAmelCase_ : Union[str, Any] = astar(world, start, goal) # Just for visual reasons. for i in s: UpperCAmelCase_ : Optional[int] = 1 print(world.w)
533
0
'''simple docstring''' import math import unittest def _UpperCamelCase ( SCREAMING_SNAKE_CASE_ ): assert isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(SCREAMING_SNAKE_CASE_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def _lowerCamelCase (self ) -> int: self.assertTrue(is_prime(2 ) ) self.assertTrue(is_prime(3 ) ) self.assertTrue(is_prime(5 ) ) self.assertTrue(is_prime(7 ) ) self.assertTrue(is_prime(11 ) ) self.assertTrue(is_prime(13 ) ) self.assertTrue(is_prime(17 ) ) self.assertTrue(is_prime(19 ) ) self.assertTrue(is_prime(23 ) ) self.assertTrue(is_prime(29 ) ) def _lowerCamelCase (self ) -> Optional[Any]: with self.assertRaises(_a ): is_prime(-19 ) self.assertFalse( is_prime(0 ) , 'Zero doesn\'t have any positive factors, primes must have exactly two.' , ) self.assertFalse( is_prime(1 ) , 'One only has 1 positive factor, primes must have exactly two.' , ) self.assertFalse(is_prime(2 * 2 ) ) self.assertFalse(is_prime(2 * 3 ) ) self.assertFalse(is_prime(3 * 3 ) ) self.assertFalse(is_prime(3 * 5 ) ) self.assertFalse(is_prime(3 * 5 * 7 ) ) if __name__ == "__main__": unittest.main()
438
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { 'uw-madison/mra-base-512-4': 'https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json', } class UpperCAmelCase__ ( _snake_case ): """simple docstring""" A : Any = '''mra''' def __init__(self , _a=50_265 , _a=768 , _a=12 , _a=12 , _a=3_072 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=1 , _a=0.02 , _a=1e-5 , _a="absolute" , _a=4 , _a="full" , _a=0 , _a=0 , _a=1 , _a=0 , _a=2 , **_a , ) -> int: super().__init__(pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , **_a ) lowercase_ : Union[str, Any] = vocab_size lowercase_ : List[str] = max_position_embeddings lowercase_ : Optional[Any] = hidden_size lowercase_ : Optional[int] = num_hidden_layers lowercase_ : Dict = num_attention_heads lowercase_ : Optional[int] = intermediate_size lowercase_ : Dict = hidden_act lowercase_ : str = hidden_dropout_prob lowercase_ : int = attention_probs_dropout_prob lowercase_ : str = initializer_range lowercase_ : Union[str, Any] = type_vocab_size lowercase_ : Any = layer_norm_eps lowercase_ : Union[str, Any] = position_embedding_type lowercase_ : Any = block_per_row lowercase_ : Optional[int] = approx_mode lowercase_ : int = initial_prior_first_n_blocks lowercase_ : str = initial_prior_diagonal_n_blocks
438
1
import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class __SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def lowercase_ ( self ): __snake_case : Dict = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(_UpperCAmelCase ) ) def lowercase_ ( self ): __snake_case : Dict = [ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(_UpperCAmelCase ) ) def lowercase_ ( self ): __snake_case : List[str] = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(_UpperCAmelCase ) ) def lowercase_ ( self ): __snake_case : Any = [ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] self.assertTrue(is_safetensors_compatible(_UpperCAmelCase ) ) def lowercase_ ( self ): __snake_case : Tuple = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', # Removed: 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(_UpperCAmelCase ) ) def lowercase_ ( self ): __snake_case : int = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] __snake_case : Union[str, Any] = 'fp16' self.assertTrue(is_safetensors_compatible(_UpperCAmelCase , variant=_UpperCAmelCase ) ) def lowercase_ ( self ): __snake_case : int = [ 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] __snake_case : Optional[Any] = 'fp16' self.assertTrue(is_safetensors_compatible(_UpperCAmelCase , variant=_UpperCAmelCase ) ) def lowercase_ ( self ): # pass variant but use the non-variant filenames __snake_case : Union[str, Any] = [ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] __snake_case : int = 'fp16' self.assertTrue(is_safetensors_compatible(_UpperCAmelCase , variant=_UpperCAmelCase ) ) def lowercase_ ( self ): __snake_case : Dict = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] __snake_case : str = 'fp16' self.assertFalse(is_safetensors_compatible(_UpperCAmelCase , variant=_UpperCAmelCase ) ) def lowercase_ ( self ): __snake_case : List[str] = [ 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', ] __snake_case : Tuple = 'fp16' self.assertTrue(is_safetensors_compatible(_UpperCAmelCase , variant=_UpperCAmelCase ) ) def lowercase_ ( self ): # pass variant but use the non-variant filenames __snake_case : Union[str, Any] = [ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] __snake_case : Any = 'fp16' self.assertTrue(is_safetensors_compatible(_UpperCAmelCase , variant=_UpperCAmelCase ) ) def lowercase_ ( self ): __snake_case : Dict = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', # 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] __snake_case : Dict = 'fp16' self.assertFalse(is_safetensors_compatible(_UpperCAmelCase , variant=_UpperCAmelCase ) )
576
from ....configuration_utils import PretrainedConfig from ....utils import logging __magic_name__ = logging.get_logger(__name__) # TODO: upload to AWS __magic_name__ = { '''yjernite/retribert-base-uncased''': ( '''https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json''' ), } class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = "retribert" def __init__( self , _UpperCAmelCase=30_522 , _UpperCAmelCase=768 , _UpperCAmelCase=8 , _UpperCAmelCase=12 , _UpperCAmelCase=3_072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1E-12 , _UpperCAmelCase=True , _UpperCAmelCase=128 , _UpperCAmelCase=0 , **_UpperCAmelCase , ): super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase ) __snake_case : Tuple = vocab_size __snake_case : int = hidden_size __snake_case : Optional[int] = num_hidden_layers __snake_case : Union[str, Any] = num_attention_heads __snake_case : Union[str, Any] = hidden_act __snake_case : str = intermediate_size __snake_case : Any = hidden_dropout_prob __snake_case : int = attention_probs_dropout_prob __snake_case : Union[str, Any] = max_position_embeddings __snake_case : str = type_vocab_size __snake_case : str = initializer_range __snake_case : Union[str, Any] = layer_norm_eps __snake_case : Tuple = share_encoders __snake_case : int = projection_dim
576
1
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) UpperCamelCase = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f"transformer.encoder.layers.{i}.self_attn.out_proj.weight", f"encoder.layers.{i}.self_attn.out_proj.weight") ) rename_keys.append( (f"transformer.encoder.layers.{i}.self_attn.out_proj.bias", f"encoder.layers.{i}.self_attn.out_proj.bias") ) rename_keys.append((f"transformer.encoder.layers.{i}.linear1.weight", f"encoder.layers.{i}.fc1.weight")) rename_keys.append((f"transformer.encoder.layers.{i}.linear1.bias", f"encoder.layers.{i}.fc1.bias")) rename_keys.append((f"transformer.encoder.layers.{i}.linear2.weight", f"encoder.layers.{i}.fc2.weight")) rename_keys.append((f"transformer.encoder.layers.{i}.linear2.bias", f"encoder.layers.{i}.fc2.bias")) rename_keys.append( (f"transformer.encoder.layers.{i}.norm1.weight", f"encoder.layers.{i}.self_attn_layer_norm.weight") ) rename_keys.append((f"transformer.encoder.layers.{i}.norm1.bias", f"encoder.layers.{i}.self_attn_layer_norm.bias")) rename_keys.append((f"transformer.encoder.layers.{i}.norm2.weight", f"encoder.layers.{i}.final_layer_norm.weight")) rename_keys.append((f"transformer.encoder.layers.{i}.norm2.bias", f"encoder.layers.{i}.final_layer_norm.bias")) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f"transformer.decoder.layers.{i}.self_attn.out_proj.weight", f"decoder.layers.{i}.self_attn.out_proj.weight") ) rename_keys.append( (f"transformer.decoder.layers.{i}.self_attn.out_proj.bias", f"decoder.layers.{i}.self_attn.out_proj.bias") ) rename_keys.append( ( f"transformer.decoder.layers.{i}.cross_attn.out_proj.weight", f"decoder.layers.{i}.encoder_attn.out_proj.weight", ) ) rename_keys.append( ( f"transformer.decoder.layers.{i}.cross_attn.out_proj.bias", f"decoder.layers.{i}.encoder_attn.out_proj.bias", ) ) rename_keys.append((f"transformer.decoder.layers.{i}.linear1.weight", f"decoder.layers.{i}.fc1.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.linear1.bias", f"decoder.layers.{i}.fc1.bias")) rename_keys.append((f"transformer.decoder.layers.{i}.linear2.weight", f"decoder.layers.{i}.fc2.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.linear2.bias", f"decoder.layers.{i}.fc2.bias")) rename_keys.append( (f"transformer.decoder.layers.{i}.norm1.weight", f"decoder.layers.{i}.self_attn_layer_norm.weight") ) rename_keys.append((f"transformer.decoder.layers.{i}.norm1.bias", f"decoder.layers.{i}.self_attn_layer_norm.bias")) rename_keys.append( (f"transformer.decoder.layers.{i}.norm2.weight", f"decoder.layers.{i}.encoder_attn_layer_norm.weight") ) rename_keys.append( (f"transformer.decoder.layers.{i}.norm2.bias", f"decoder.layers.{i}.encoder_attn_layer_norm.bias") ) rename_keys.append((f"transformer.decoder.layers.{i}.norm3.weight", f"decoder.layers.{i}.final_layer_norm.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.norm3.bias", f"decoder.layers.{i}.final_layer_norm.bias")) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (f"transformer.decoder.layers.{i}.sa_qcontent_proj.weight", f"decoder.layers.{i}.sa_qcontent_proj.weight") ) rename_keys.append( (f"transformer.decoder.layers.{i}.sa_kcontent_proj.weight", f"decoder.layers.{i}.sa_kcontent_proj.weight") ) rename_keys.append( (f"transformer.decoder.layers.{i}.sa_qpos_proj.weight", f"decoder.layers.{i}.sa_qpos_proj.weight") ) rename_keys.append( (f"transformer.decoder.layers.{i}.sa_kpos_proj.weight", f"decoder.layers.{i}.sa_kpos_proj.weight") ) rename_keys.append((f"transformer.decoder.layers.{i}.sa_v_proj.weight", f"decoder.layers.{i}.sa_v_proj.weight")) rename_keys.append( (f"transformer.decoder.layers.{i}.ca_qcontent_proj.weight", f"decoder.layers.{i}.ca_qcontent_proj.weight") ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (f"transformer.decoder.layers.{i}.ca_kcontent_proj.weight", f"decoder.layers.{i}.ca_kcontent_proj.weight") ) rename_keys.append( (f"transformer.decoder.layers.{i}.ca_kpos_proj.weight", f"decoder.layers.{i}.ca_kpos_proj.weight") ) rename_keys.append((f"transformer.decoder.layers.{i}.ca_v_proj.weight", f"decoder.layers.{i}.ca_v_proj.weight")) rename_keys.append( (f"transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight", f"decoder.layers.{i}.ca_qpos_sine_proj.weight") ) rename_keys.append( (f"transformer.decoder.layers.{i}.sa_qcontent_proj.bias", f"decoder.layers.{i}.sa_qcontent_proj.bias") ) rename_keys.append( (f"transformer.decoder.layers.{i}.sa_kcontent_proj.bias", f"decoder.layers.{i}.sa_kcontent_proj.bias") ) rename_keys.append((f"transformer.decoder.layers.{i}.sa_qpos_proj.bias", f"decoder.layers.{i}.sa_qpos_proj.bias")) rename_keys.append((f"transformer.decoder.layers.{i}.sa_kpos_proj.bias", f"decoder.layers.{i}.sa_kpos_proj.bias")) rename_keys.append((f"transformer.decoder.layers.{i}.sa_v_proj.bias", f"decoder.layers.{i}.sa_v_proj.bias")) rename_keys.append( (f"transformer.decoder.layers.{i}.ca_qcontent_proj.bias", f"decoder.layers.{i}.ca_qcontent_proj.bias") ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (f"transformer.decoder.layers.{i}.ca_kcontent_proj.bias", f"decoder.layers.{i}.ca_kcontent_proj.bias") ) rename_keys.append((f"transformer.decoder.layers.{i}.ca_kpos_proj.bias", f"decoder.layers.{i}.ca_kpos_proj.bias")) rename_keys.append((f"transformer.decoder.layers.{i}.ca_v_proj.bias", f"decoder.layers.{i}.ca_v_proj.bias")) rename_keys.append( (f"transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias", f"decoder.layers.{i}.ca_qpos_sine_proj.bias") ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ('''input_proj.weight''', '''input_projection.weight'''), ('''input_proj.bias''', '''input_projection.bias'''), ('''query_embed.weight''', '''query_position_embeddings.weight'''), ('''transformer.decoder.norm.weight''', '''decoder.layernorm.weight'''), ('''transformer.decoder.norm.bias''', '''decoder.layernorm.bias'''), ('''class_embed.weight''', '''class_labels_classifier.weight'''), ('''class_embed.bias''', '''class_labels_classifier.bias'''), ('''bbox_embed.layers.0.weight''', '''bbox_predictor.layers.0.weight'''), ('''bbox_embed.layers.0.bias''', '''bbox_predictor.layers.0.bias'''), ('''bbox_embed.layers.1.weight''', '''bbox_predictor.layers.1.weight'''), ('''bbox_embed.layers.1.bias''', '''bbox_predictor.layers.1.bias'''), ('''bbox_embed.layers.2.weight''', '''bbox_predictor.layers.2.weight'''), ('''bbox_embed.layers.2.bias''', '''bbox_predictor.layers.2.bias'''), ('''transformer.decoder.ref_point_head.layers.0.weight''', '''decoder.ref_point_head.layers.0.weight'''), ('''transformer.decoder.ref_point_head.layers.0.bias''', '''decoder.ref_point_head.layers.0.bias'''), ('''transformer.decoder.ref_point_head.layers.1.weight''', '''decoder.ref_point_head.layers.1.weight'''), ('''transformer.decoder.ref_point_head.layers.1.bias''', '''decoder.ref_point_head.layers.1.bias'''), ('''transformer.decoder.query_scale.layers.0.weight''', '''decoder.query_scale.layers.0.weight'''), ('''transformer.decoder.query_scale.layers.0.bias''', '''decoder.query_scale.layers.0.bias'''), ('''transformer.decoder.query_scale.layers.1.weight''', '''decoder.query_scale.layers.1.weight'''), ('''transformer.decoder.query_scale.layers.1.bias''', '''decoder.query_scale.layers.1.bias'''), ('''transformer.decoder.layers.0.ca_qpos_proj.weight''', '''decoder.layers.0.ca_qpos_proj.weight'''), ('''transformer.decoder.layers.0.ca_qpos_proj.bias''', '''decoder.layers.0.ca_qpos_proj.bias'''), ] ) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE = state_dict.pop(snake_case__ ) _SCREAMING_SNAKE_CASE = val def __lowerCamelCase ( snake_case__ ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: _SCREAMING_SNAKE_CASE = key.replace("""backbone.0.body""" ,"""backbone.conv_encoder.model""" ) _SCREAMING_SNAKE_CASE = value else: _SCREAMING_SNAKE_CASE = value return new_state_dict def __lowerCamelCase ( snake_case__ ,snake_case__=False ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = """""" if is_panoptic: _SCREAMING_SNAKE_CASE = """conditional_detr.""" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) _SCREAMING_SNAKE_CASE = state_dict.pop(F'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight' ) _SCREAMING_SNAKE_CASE = state_dict.pop(F'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict _SCREAMING_SNAKE_CASE = in_proj_weight[:2_56, :] _SCREAMING_SNAKE_CASE = in_proj_bias[:2_56] _SCREAMING_SNAKE_CASE = in_proj_weight[2_56:5_12, :] _SCREAMING_SNAKE_CASE = in_proj_bias[2_56:5_12] _SCREAMING_SNAKE_CASE = in_proj_weight[-2_56:, :] _SCREAMING_SNAKE_CASE = in_proj_bias[-2_56:] def __lowerCamelCase ( ) -> Optional[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = """http://images.cocodataset.org/val2017/000000039769.jpg""" _SCREAMING_SNAKE_CASE = Image.open(requests.get(snake_case__ ,stream=snake_case__ ).raw ) return im @torch.no_grad() def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: _SCREAMING_SNAKE_CASE = """resnet101""" if "dc5" in model_name: _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = """panoptic""" in model_name if is_panoptic: _SCREAMING_SNAKE_CASE = 2_50 else: _SCREAMING_SNAKE_CASE = 91 _SCREAMING_SNAKE_CASE = """huggingface/label-files""" _SCREAMING_SNAKE_CASE = """coco-detection-id2label.json""" _SCREAMING_SNAKE_CASE = json.load(open(hf_hub_download(snake_case__ ,snake_case__ ,repo_type="""dataset""" ) ,"""r""" ) ) _SCREAMING_SNAKE_CASE = {int(snake_case__ ): v for k, v in idalabel.items()} _SCREAMING_SNAKE_CASE = idalabel _SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()} # load image processor _SCREAMING_SNAKE_CASE = """coco_panoptic""" if is_panoptic else """coco_detection""" _SCREAMING_SNAKE_CASE = ConditionalDetrImageProcessor(format=snake_case__ ) # prepare image _SCREAMING_SNAKE_CASE = prepare_img() _SCREAMING_SNAKE_CASE = image_processor(images=snake_case__ ,return_tensors="""pt""" ) _SCREAMING_SNAKE_CASE = encoding["""pixel_values"""] logger.info(F'Converting model {model_name}...' ) # load original model from torch hub _SCREAMING_SNAKE_CASE = torch.hub.load("""DeppMeng/ConditionalDETR""" ,snake_case__ ,pretrained=snake_case__ ).eval() _SCREAMING_SNAKE_CASE = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: _SCREAMING_SNAKE_CASE = """conditional_detr.""" + src rename_key(snake_case__ ,snake_case__ ,snake_case__ ) _SCREAMING_SNAKE_CASE = rename_backbone_keys(snake_case__ ) # query, key and value matrices need special treatment read_in_q_k_v(snake_case__ ,is_panoptic=snake_case__ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them _SCREAMING_SNAKE_CASE = """conditional_detr.model.""" if is_panoptic else """model.""" for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("""conditional_detr""" ) and not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ) ): _SCREAMING_SNAKE_CASE = state_dict.pop(snake_case__ ) _SCREAMING_SNAKE_CASE = val elif "class_labels_classifier" in key or "bbox_predictor" in key: _SCREAMING_SNAKE_CASE = state_dict.pop(snake_case__ ) _SCREAMING_SNAKE_CASE = val elif key.startswith("""bbox_attention""" ) or key.startswith("""mask_head""" ): continue else: _SCREAMING_SNAKE_CASE = state_dict.pop(snake_case__ ) _SCREAMING_SNAKE_CASE = val else: if not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ): _SCREAMING_SNAKE_CASE = state_dict.pop(snake_case__ ) _SCREAMING_SNAKE_CASE = val # finally, create HuggingFace model and load state dict _SCREAMING_SNAKE_CASE = ConditionalDetrForSegmentation(snake_case__ ) if is_panoptic else ConditionalDetrForObjectDetection(snake_case__ ) model.load_state_dict(snake_case__ ) model.eval() model.push_to_hub(repo_id=snake_case__ ,organization="""DepuMeng""" ,commit_message="""Add model""" ) # verify our conversion _SCREAMING_SNAKE_CASE = conditional_detr(snake_case__ ) _SCREAMING_SNAKE_CASE = model(snake_case__ ) assert torch.allclose(outputs.logits ,original_outputs["""pred_logits"""] ,atol=1e-4 ) assert torch.allclose(outputs.pred_boxes ,original_outputs["""pred_boxes"""] ,atol=1e-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks ,original_outputs["""pred_masks"""] ,atol=1e-4 ) # Save model and image processor logger.info(F'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(snake_case__ ).mkdir(exist_ok=snake_case__ ) model.save_pretrained(snake_case__ ) image_processor.save_pretrained(snake_case__ ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''conditional_detr_resnet50''', type=str, help='''Name of the CONDITIONAL_DETR model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) UpperCamelCase = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
569
from cva import destroyAllWindows, imread, imshow, waitKey def __lowerCamelCase ( snake_case__ ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = img.shape[0], img.shape[1] # converting each pixel's color to its negative for i in range(snake_case__ ): for j in range(snake_case__ ): _SCREAMING_SNAKE_CASE = [2_55, 2_55, 2_55] - img[i][j] return img if __name__ == "__main__": # read original image UpperCamelCase = imread('''image_data/lena.jpg''', 1) # convert to its negative UpperCamelCase = convert_to_negative(img) # show result image imshow('''negative of original image''', img) waitKey(0) destroyAllWindows()
569
1
'''simple docstring''' from math import ceil def lowerCAmelCase ( UpperCamelCase__ : int = 1_0_0_1 ): """simple docstring""" __UpperCAmelCase = 1 for i in range(1 , int(ceil(n / 2.0 ) ) ): __UpperCAmelCase = 2 * i + 1 __UpperCAmelCase = 2 * i __UpperCAmelCase = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: __lowerCAmelCase : List[str] = int(sys.argv[1]) print(solution(n)) except ValueError: print("Invalid entry - please enter a number")
262
import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) UpperCamelCase : Optional[Any] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} UpperCamelCase : Optional[Any] = { """vocab_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json""", }, """merges_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt""", }, """tokenizer_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json""", }, } UpperCamelCase : Dict = { """allenai/led-base-16384""": 1_6384, } class A__ ( A__ ): """simple docstring""" _lowercase = VOCAB_FILES_NAMES _lowercase = PRETRAINED_VOCAB_FILES_MAP _lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase = LEDTokenizer _lowercase = ['input_ids', 'attention_mask'] def __init__( self : Tuple , lowerCamelCase__ : Any=None , lowerCamelCase__ : List[str]=None , lowerCamelCase__ : Any=None , lowerCamelCase__ : int="replace" , lowerCamelCase__ : Union[str, Any]="<s>" , lowerCamelCase__ : Union[str, Any]="</s>" , lowerCamelCase__ : Tuple="</s>" , lowerCamelCase__ : Optional[int]="<s>" , lowerCamelCase__ : str="<unk>" , lowerCamelCase__ : Any="<pad>" , lowerCamelCase__ : Any="<mask>" , lowerCamelCase__ : Optional[int]=False , lowerCamelCase__ : int=True , **lowerCamelCase__ : Union[str, Any] , ): super().__init__( lowerCamelCase__ , lowerCamelCase__ , tokenizer_file=lowerCamelCase__ , errors=lowerCamelCase__ , bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , unk_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , add_prefix_space=lowerCamelCase__ , trim_offsets=lowerCamelCase__ , **lowerCamelCase__ , ) a__ : List[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , lowerCamelCase__ ) != add_prefix_space: a__ : List[str] = getattr(lowerCamelCase__ , pre_tok_state.pop("type" ) ) a__ : Optional[Any] = add_prefix_space a__ : List[str] = pre_tok_class(**lowerCamelCase__ ) a__ : Optional[int] = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` a__ : Any = "post_processor" a__ : str = getattr(self.backend_tokenizer , lowerCamelCase__ , lowerCamelCase__ ) if tokenizer_component_instance: a__ : Any = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: a__ : Optional[Any] = tuple(state["sep"] ) if "cls" in state: a__ : Optional[Any] = tuple(state["cls"] ) a__ : Optional[int] = False if state.get("add_prefix_space" , lowerCamelCase__ ) != add_prefix_space: a__ : Dict = add_prefix_space a__ : int = True if state.get("trim_offsets" , lowerCamelCase__ ) != trim_offsets: a__ : List[Any] = trim_offsets a__ : List[str] = True if changes_to_apply: a__ : int = getattr(lowerCamelCase__ , state.pop("type" ) ) a__ : int = component_class(**lowerCamelCase__ ) setattr(self.backend_tokenizer , lowerCamelCase__ , lowerCamelCase__ ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def _UpperCamelCase( self : Union[str, Any] ): if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def _UpperCamelCase( self : Optional[int] , lowerCamelCase__ : Union[str, Any] ): a__ : Any = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else value a__ : Union[str, Any] = value def _UpperCamelCase( self : Any , *lowerCamelCase__ : Optional[int] , **lowerCamelCase__ : Optional[Any] ): a__ : List[str] = kwargs.get("is_split_into_words" , lowerCamelCase__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*lowerCamelCase__ , **lowerCamelCase__ ) def _UpperCamelCase( self : Any , *lowerCamelCase__ : Dict , **lowerCamelCase__ : Optional[Any] ): a__ : Dict = kwargs.get("is_split_into_words" , lowerCamelCase__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*lowerCamelCase__ , **lowerCamelCase__ ) def _UpperCamelCase( self : Optional[int] , lowerCamelCase__ : str , lowerCamelCase__ : Optional[str] = None ): a__ : List[str] = self._tokenizer.model.save(lowerCamelCase__ , name=lowerCamelCase__ ) return tuple(lowerCamelCase__ ) def _UpperCamelCase( self : Dict , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Optional[Any]=None ): a__ : Any = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _UpperCamelCase( self : Tuple , lowerCamelCase__ : List[int] , lowerCamelCase__ : Optional[List[int]] = None ): a__ : List[str] = [self.sep_token_id] a__ : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _UpperCamelCase( self : Dict , lowerCamelCase__ : Union[Dict[str, EncodedInput], BatchEncoding] , lowerCamelCase__ : Optional[int] = None , lowerCamelCase__ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , lowerCamelCase__ : Optional[int] = None , lowerCamelCase__ : Optional[bool] = None , ): a__ : str = super()._pad( encoded_inputs=lowerCamelCase__ , max_length=lowerCamelCase__ , padding_strategy=lowerCamelCase__ , pad_to_multiple_of=lowerCamelCase__ , return_attention_mask=lowerCamelCase__ , ) # Load from model defaults if return_attention_mask is None: a__ : Optional[int] = "attention_mask" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: a__ : Tuple = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. a__ : Dict = len(encoded_inputs["global_attention_mask"] ) != len(lowerCamelCase__ ) if needs_to_be_padded: a__ : Union[str, Any] = len(lowerCamelCase__ ) - len(encoded_inputs["global_attention_mask"] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` a__ : List[Any] = ( encoded_inputs["global_attention_mask"] + [-1] * difference ) elif self.padding_side == "left": a__ : Any = [-1] * difference + encoded_inputs[ "global_attention_mask" ] else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return encoded_inputs
37
0
import gc import inspect import unittest import torch from parameterized import parameterized from diffusers import PriorTransformer from diffusers.utils import floats_tensor, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin enable_full_determinism() class __SCREAMING_SNAKE_CASE ( lowercase , unittest.TestCase): __SCREAMING_SNAKE_CASE : Any = PriorTransformer __SCREAMING_SNAKE_CASE : Dict = """hidden_states""" @property def UpperCAmelCase__ ( self : Tuple ): _UpperCAmelCase = 4 _UpperCAmelCase = 8 _UpperCAmelCase = 7 _UpperCAmelCase = floats_tensor((batch_size, embedding_dim) ).to(__UpperCamelCase ) _UpperCAmelCase = floats_tensor((batch_size, embedding_dim) ).to(__UpperCamelCase ) _UpperCAmelCase = floats_tensor((batch_size, num_embeddings, embedding_dim) ).to(__UpperCamelCase ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def UpperCAmelCase__ ( self : Union[str, Any] , __UpperCamelCase : Optional[int]=0 ): torch.manual_seed(__UpperCamelCase ) _UpperCAmelCase = 4 _UpperCAmelCase = 8 _UpperCAmelCase = 7 _UpperCAmelCase = torch.randn((batch_size, embedding_dim) ).to(__UpperCamelCase ) _UpperCAmelCase = torch.randn((batch_size, embedding_dim) ).to(__UpperCamelCase ) _UpperCAmelCase = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(__UpperCamelCase ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } @property def UpperCAmelCase__ ( self : List[Any] ): return (4, 8) @property def UpperCAmelCase__ ( self : Tuple ): return (4, 8) def UpperCAmelCase__ ( self : Union[str, Any] ): _UpperCAmelCase = { "num_attention_heads": 2, "attention_head_dim": 4, "num_layers": 2, "embedding_dim": 8, "num_embeddings": 7, "additional_embeddings": 4, } _UpperCAmelCase = self.dummy_input return init_dict, inputs_dict def UpperCAmelCase__ ( self : List[str] ): _UpperCAmelCase , _UpperCAmelCase = PriorTransformer.from_pretrained( "hf-internal-testing/prior-dummy" , output_loading_info=__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) self.assertEqual(len(loading_info["missing_keys"] ) , 0 ) model.to(__UpperCamelCase ) _UpperCAmelCase = model(**self.dummy_input )[0] assert hidden_states is not None, "Make sure output is not None" def UpperCAmelCase__ ( self : Dict ): _UpperCAmelCase , _UpperCAmelCase = self.prepare_init_args_and_inputs_for_common() _UpperCAmelCase = self.model_class(**__UpperCamelCase ) _UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase = [*signature.parameters.keys()] _UpperCAmelCase = ["hidden_states", "timestep"] self.assertListEqual(arg_names[:2] , __UpperCamelCase ) def UpperCAmelCase__ ( self : List[str] ): _UpperCAmelCase = PriorTransformer.from_pretrained("hf-internal-testing/prior-dummy" ) _UpperCAmelCase = model.to(__UpperCamelCase ) if hasattr(__UpperCamelCase , "set_default_attn_processor" ): model.set_default_attn_processor() _UpperCAmelCase = self.get_dummy_seed_input() with torch.no_grad(): _UpperCAmelCase = model(**__UpperCamelCase )[0] _UpperCAmelCase = output[0, :5].flatten().cpu() print(__UpperCamelCase ) # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. _UpperCAmelCase = torch.tensor([-1.3436, -0.2870, 0.7538, 0.4368, -0.0239] ) self.assertTrue(torch_all_close(__UpperCamelCase , __UpperCamelCase , rtol=1e-2 ) ) @slow class __SCREAMING_SNAKE_CASE ( unittest.TestCase): def UpperCAmelCase__ ( self : Dict , __UpperCamelCase : Optional[int]=1 , __UpperCamelCase : int=768 , __UpperCamelCase : Dict=77 , __UpperCamelCase : Tuple=0 ): torch.manual_seed(__UpperCamelCase ) _UpperCAmelCase = batch_size _UpperCAmelCase = embedding_dim _UpperCAmelCase = num_embeddings _UpperCAmelCase = torch.randn((batch_size, embedding_dim) ).to(__UpperCamelCase ) _UpperCAmelCase = torch.randn((batch_size, embedding_dim) ).to(__UpperCamelCase ) _UpperCAmelCase = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(__UpperCamelCase ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def UpperCAmelCase__ ( self : Dict ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @parameterized.expand( [ # fmt: off [13, [-0.5861, 0.1283, -0.0931, 0.0882, 0.4476, 0.1329, -0.0498, 0.0640]], [37, [-0.4913, 0.0110, -0.0483, 0.0541, 0.4954, -0.0170, 0.0354, 0.1651]], # fmt: on ] ) def UpperCAmelCase__ ( self : List[str] , __UpperCamelCase : Any , __UpperCamelCase : Tuple ): _UpperCAmelCase = PriorTransformer.from_pretrained("kandinsky-community/kandinsky-2-1-prior" , subfolder="prior" ) model.to(__UpperCamelCase ) _UpperCAmelCase = self.get_dummy_seed_input(seed=__UpperCamelCase ) with torch.no_grad(): _UpperCAmelCase = model(**__UpperCamelCase )[0] assert list(sample.shape ) == [1, 768] _UpperCAmelCase = sample[0, :8].flatten().cpu() print(__UpperCamelCase ) _UpperCAmelCase = torch.tensor(__UpperCamelCase ) assert torch_all_close(__UpperCamelCase , __UpperCamelCase , atol=1e-3 )
129
import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch __lowerCAmelCase = "sshleifer/bart-tiny-random" __lowerCAmelCase = "patrickvonplaten/t5-tiny-random" @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase): @cached_property def UpperCAmelCase__ ( self : Tuple ): return AutoConfig.from_pretrained(__UpperCamelCase ) def UpperCAmelCase__ ( self : Union[str, Any] ): _UpperCAmelCase , *_UpperCAmelCase = create_student_by_copying_alternating_layers(__UpperCamelCase , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.num_hidden_layers , 1 ) def UpperCAmelCase__ ( self : List[Any] ): _UpperCAmelCase , *_UpperCAmelCase = create_student_by_copying_alternating_layers(__UpperCamelCase , tempfile.mkdtemp() , e=1 , d=__UpperCamelCase ) def UpperCAmelCase__ ( self : Tuple ): _UpperCAmelCase , *_UpperCAmelCase = create_student_by_copying_alternating_layers(__UpperCamelCase , tempfile.mkdtemp() , e=1 , d=__UpperCamelCase ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers ) def UpperCAmelCase__ ( self : List[Any] ): _UpperCAmelCase , *_UpperCAmelCase = create_student_by_copying_alternating_layers(__UpperCamelCase , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , 1 ) def UpperCAmelCase__ ( self : str ): with self.assertRaises(__UpperCamelCase ): create_student_by_copying_alternating_layers(__UpperCamelCase , tempfile.mkdtemp() , e=__UpperCamelCase , d=__UpperCamelCase )
129
1
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class a ( unittest.TestCase ): """simple docstring""" UpperCamelCase_ : List[str] = ViTImageProcessor if is_vision_available() else None @property def UpperCAmelCase_ ( self : Any ) -> Union[str, Any]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase_ ( self : int ) -> Optional[int]: """simple docstring""" __lowercase = (3, 32, 128) __lowercase = tempfile.mkdtemp() # fmt: off __lowercase = ['''[GO]''', '''[s]''', '''0''', '''1''', '''2''', '''3''', '''4''', '''5''', '''6''', '''7''', '''8''', '''9''', '''a''', '''b''', '''c''', '''d''', '''e''', '''f''', '''g''', '''h''', '''i''', '''j''', '''k''', '''l''', '''m''', '''n''', '''o''', '''p''', '''q''', '''r''', '''s''', '''t''', '''u''', '''v''', '''w''', '''x''', '''y''', '''z'''] # fmt: on __lowercase = dict(zip(lowerCamelCase__ , range(len(lowerCamelCase__ ) ) ) ) __lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(lowerCamelCase__ ) + '''\n''' ) __lowercase = { '''do_normalize''': False, '''do_resize''': True, '''image_processor_type''': '''ViTImageProcessor''', '''resample''': 3, '''size''': {'''height''': 32, '''width''': 128}, } __lowercase = os.path.join(self.tmpdirname , lowerCamelCase__ ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(lowerCamelCase__ , lowerCamelCase__ ) def UpperCAmelCase_ ( self : List[str] , **lowerCamelCase__ : List[Any] ) -> Tuple: """simple docstring""" return MgpstrTokenizer.from_pretrained(self.tmpdirname , **lowerCamelCase__ ) def UpperCAmelCase_ ( self : Any , **lowerCamelCase__ : Dict ) -> Any: """simple docstring""" return ViTImageProcessor.from_pretrained(self.tmpdirname , **lowerCamelCase__ ) def UpperCAmelCase_ ( self : Tuple ) -> Dict: """simple docstring""" shutil.rmtree(self.tmpdirname ) def UpperCAmelCase_ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" __lowercase = np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta ) __lowercase = Image.fromarray(np.moveaxis(lowerCamelCase__ , 0 , -1 ) ) return image_input def UpperCAmelCase_ ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase = self.get_tokenizer() __lowercase = self.get_image_processor() __lowercase = MgpstrProcessor(tokenizer=lowerCamelCase__ , image_processor=lowerCamelCase__ ) processor.save_pretrained(self.tmpdirname ) __lowercase = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=lowerCamelCase__ ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , lowerCamelCase__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , lowerCamelCase__ ) def UpperCAmelCase_ ( self : Optional[int] ) -> Tuple: """simple docstring""" __lowercase = self.get_tokenizer() __lowercase = self.get_image_processor() __lowercase = MgpstrProcessor(tokenizer=lowerCamelCase__ , image_processor=lowerCamelCase__ ) processor.save_pretrained(self.tmpdirname ) __lowercase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) __lowercase = self.get_image_processor(do_normalize=lowerCamelCase__ , padding_value=1.0 ) __lowercase = MgpstrProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=lowerCamelCase__ , padding_value=1.0 ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , lowerCamelCase__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowerCamelCase__ ) def UpperCAmelCase_ ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase = self.get_image_processor() __lowercase = self.get_tokenizer() __lowercase = MgpstrProcessor(tokenizer=lowerCamelCase__ , image_processor=lowerCamelCase__ ) __lowercase = self.prepare_image_inputs() __lowercase = image_processor(lowerCamelCase__ , return_tensors='''np''' ) __lowercase = processor(images=lowerCamelCase__ , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def UpperCAmelCase_ ( self : int ) -> Union[str, Any]: """simple docstring""" __lowercase = self.get_image_processor() __lowercase = self.get_tokenizer() __lowercase = MgpstrProcessor(tokenizer=lowerCamelCase__ , image_processor=lowerCamelCase__ ) __lowercase = '''test''' __lowercase = processor(text=lowerCamelCase__ ) __lowercase = tokenizer(lowerCamelCase__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCAmelCase_ ( self : Dict ) -> List[str]: """simple docstring""" __lowercase = self.get_image_processor() __lowercase = self.get_tokenizer() __lowercase = MgpstrProcessor(tokenizer=lowerCamelCase__ , image_processor=lowerCamelCase__ ) __lowercase = '''test''' __lowercase = self.prepare_image_inputs() __lowercase = processor(text=lowerCamelCase__ , images=lowerCamelCase__ ) self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''labels'''] ) # test if it raises when no input is passed with pytest.raises(lowerCamelCase__ ): processor() def UpperCAmelCase_ ( self : str ) -> Optional[Any]: """simple docstring""" __lowercase = self.get_image_processor() __lowercase = self.get_tokenizer() __lowercase = MgpstrProcessor(tokenizer=lowerCamelCase__ , image_processor=lowerCamelCase__ ) __lowercase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] __lowercase = processor.char_decode(lowerCamelCase__ ) __lowercase = tokenizer.batch_decode(lowerCamelCase__ ) __lowercase = [seq.replace(''' ''' , '''''' ) for seq in decoded_tok] self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) def UpperCAmelCase_ ( self : Any ) -> Tuple: """simple docstring""" __lowercase = self.get_image_processor() __lowercase = self.get_tokenizer() __lowercase = MgpstrProcessor(tokenizer=lowerCamelCase__ , image_processor=lowerCamelCase__ ) __lowercase = None __lowercase = self.prepare_image_inputs() __lowercase = processor(text=lowerCamelCase__ , images=lowerCamelCase__ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowercase = self.get_image_processor() __lowercase = self.get_tokenizer() __lowercase = MgpstrProcessor(tokenizer=lowerCamelCase__ , image_processor=lowerCamelCase__ ) __lowercase = torch.randn(1 , 27 , 38 ) __lowercase = torch.randn(1 , 27 , 50_257 ) __lowercase = torch.randn(1 , 27 , 30_522 ) __lowercase = processor.batch_decode([char_input, bpe_input, wp_input] ) self.assertListEqual(list(results.keys() ) , ['''generated_text''', '''scores''', '''char_preds''', '''bpe_preds''', '''wp_preds'''] )
332
from __future__ import annotations from dataclasses import dataclass @dataclass class a : """simple docstring""" UpperCamelCase_ : float UpperCamelCase_ : TreeNode | None = None UpperCamelCase_ : TreeNode | None = None def _A( UpperCamelCase__ : TreeNode | None ) -> bool: '''simple docstring''' def is_valid_tree(UpperCamelCase__ : TreeNode | None ) -> bool: if node is None: return True if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): return False try: float(node.data ) except (TypeError, ValueError): return False return is_valid_tree(node.left ) and is_valid_tree(node.right ) if not is_valid_tree(UpperCamelCase__ ): raise ValueError( '''Each node should be type of TreeNode and data should be float.''' ) def is_binary_search_tree_recursive_check( UpperCamelCase__ : TreeNode | None , UpperCamelCase__ : float , UpperCamelCase__ : float ) -> bool: if node is None: return True return ( left_bound < node.data < right_bound and is_binary_search_tree_recursive_check(node.left , UpperCamelCase__ , node.data ) and is_binary_search_tree_recursive_check( node.right , node.data , UpperCamelCase__ ) ) return is_binary_search_tree_recursive_check(UpperCamelCase__ , -float('''inf''' ) , float('''inf''' ) ) if __name__ == "__main__": import doctest doctest.testmod()
332
1
import os import sys lowerCamelCase : Tuple = os.path.join(os.path.dirname(__file__), '''src''') sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) lowerCamelCase : List[Any] = [ 'torch', 'numpy', 'tokenizers', 'filelock', 'requests', 'tqdm', 'regex', 'sentencepiece', 'sacremoses', 'importlib_metadata', 'huggingface_hub', ] @add_start_docstrings(AutoConfig.__doc__ ) def __lowerCAmelCase ( *__snake_case , **__snake_case ): return AutoConfig.from_pretrained(*lowerCamelCase_ , **lowerCamelCase_ ) @add_start_docstrings(AutoTokenizer.__doc__ ) def __lowerCAmelCase ( *__snake_case , **__snake_case ): return AutoTokenizer.from_pretrained(*lowerCamelCase_ , **lowerCamelCase_ ) @add_start_docstrings(AutoModel.__doc__ ) def __lowerCAmelCase ( *__snake_case , **__snake_case ): return AutoModel.from_pretrained(*lowerCamelCase_ , **lowerCamelCase_ ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def __lowerCAmelCase ( *__snake_case , **__snake_case ): return AutoModelForCausalLM.from_pretrained(*lowerCamelCase_ , **lowerCamelCase_ ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def __lowerCAmelCase ( *__snake_case , **__snake_case ): return AutoModelForMaskedLM.from_pretrained(*lowerCamelCase_ , **lowerCamelCase_ ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def __lowerCAmelCase ( *__snake_case , **__snake_case ): return AutoModelForSequenceClassification.from_pretrained(*lowerCamelCase_ , **lowerCamelCase_ ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def __lowerCAmelCase ( *__snake_case , **__snake_case ): return AutoModelForQuestionAnswering.from_pretrained(*lowerCamelCase_ , **lowerCamelCase_ )
702
import argparse import os import re import numpy as np import PIL import torch from timm import create_model from torch.optim.lr_scheduler import OneCycleLR from torch.utils.data import DataLoader, Dataset from torchvision.transforms import Compose, RandomResizedCrop, Resize, ToTensor from accelerate import Accelerator def __lowerCAmelCase ( __snake_case ): __lowerCAmelCase = fname.split(os.path.sep )[-1] return re.search(r"^(.*)_\d+\.jpg$" , __snake_case ).groups()[0] class _UpperCamelCase (a_ ): def __init__( self , __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase=None )-> Dict: __lowerCAmelCase = file_names __lowerCAmelCase = image_transform __lowerCAmelCase = label_to_id def __len__( self )-> Optional[int]: return len(self.file_names ) def __getitem__( self , __UpperCamelCase )-> Union[str, Any]: __lowerCAmelCase = self.file_names[idx] __lowerCAmelCase = PIL.Image.open(__UpperCamelCase ) __lowerCAmelCase = raw_image.convert("RGB" ) if self.image_transform is not None: __lowerCAmelCase = self.image_transform(__UpperCamelCase ) __lowerCAmelCase = extract_label(__UpperCamelCase ) if self.label_to_id is not None: __lowerCAmelCase = self.label_to_id[label] return {"image": image, "label": label} def __lowerCAmelCase ( __snake_case , __snake_case ): # Initialize accelerator if args.with_tracking: __lowerCAmelCase = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with="all" , project_dir=args.project_dir ) else: __lowerCAmelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __lowerCAmelCase = config["lr"] __lowerCAmelCase = int(config["num_epochs"] ) __lowerCAmelCase = int(config["seed"] ) __lowerCAmelCase = int(config["batch_size"] ) __lowerCAmelCase = config["image_size"] if not isinstance(__snake_case , (list, tuple) ): __lowerCAmelCase = (image_size, image_size) # Parse out whether we are saving every epoch or after a certain number of batches if hasattr(args.checkpointing_steps , "isdigit" ): if args.checkpointing_steps == "epoch": __lowerCAmelCase = args.checkpointing_steps elif args.checkpointing_steps.isdigit(): __lowerCAmelCase = int(args.checkpointing_steps ) else: raise ValueError( F"""Argument `checkpointing_steps` must be either a number or `epoch`. `{args.checkpointing_steps}` passed.""" ) else: __lowerCAmelCase = None # We need to initialize the trackers we use, and also store our configuration if args.with_tracking: __lowerCAmelCase = os.path.split(__snake_case )[-1].split("." )[0] accelerator.init_trackers(__snake_case , __snake_case ) # Grab all the image filenames __lowerCAmelCase = [os.path.join(args.data_dir , __snake_case ) for fname in os.listdir(args.data_dir ) if fname.endswith(".jpg" )] # Build the label correspondences __lowerCAmelCase = [extract_label(__snake_case ) for fname in file_names] __lowerCAmelCase = list(set(__snake_case ) ) id_to_label.sort() __lowerCAmelCase = {lbl: i for i, lbl in enumerate(__snake_case )} # Set the seed before splitting the data. np.random.seed(__snake_case ) torch.manual_seed(__snake_case ) torch.cuda.manual_seed_all(__snake_case ) # Split our filenames between train and validation __lowerCAmelCase = np.random.permutation(len(__snake_case ) ) __lowerCAmelCase = int(0.8 * len(__snake_case ) ) __lowerCAmelCase = random_perm[:cut] __lowerCAmelCase = random_perm[cut:] # For training we use a simple RandomResizedCrop __lowerCAmelCase = Compose([RandomResizedCrop(__snake_case , scale=(0.5, 1.0) ), ToTensor()] ) __lowerCAmelCase = PetsDataset( [file_names[i] for i in train_split] , image_transform=__snake_case , label_to_id=__snake_case ) # For evaluation, we use a deterministic Resize __lowerCAmelCase = Compose([Resize(__snake_case ), ToTensor()] ) __lowerCAmelCase = PetsDataset([file_names[i] for i in eval_split] , image_transform=__snake_case , label_to_id=__snake_case ) # Instantiate dataloaders. __lowerCAmelCase = DataLoader(__snake_case , shuffle=__snake_case , batch_size=__snake_case , num_workers=4 ) __lowerCAmelCase = DataLoader(__snake_case , shuffle=__snake_case , batch_size=__snake_case , num_workers=4 ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __lowerCAmelCase = create_model("resnet50d" , pretrained=__snake_case , num_classes=len(__snake_case ) ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __lowerCAmelCase = model.to(accelerator.device ) # Freezing the base model for param in model.parameters(): __lowerCAmelCase = False for param in model.get_classifier().parameters(): __lowerCAmelCase = True # We normalize the batches of images to be a bit faster. __lowerCAmelCase = torch.tensor(model.default_cfg["mean"] )[None, :, None, None].to(accelerator.device ) __lowerCAmelCase = torch.tensor(model.default_cfg["std"] )[None, :, None, None].to(accelerator.device ) # Instantiate optimizer __lowerCAmelCase = torch.optim.Adam(params=model.parameters() , lr=lr / 25 ) # Instantiate learning rate scheduler __lowerCAmelCase = OneCycleLR(optimizer=__snake_case , max_lr=__snake_case , epochs=__snake_case , steps_per_epoch=len(__snake_case ) ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = accelerator.prepare( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) # We need to keep track of how many total steps we have iterated over __lowerCAmelCase = 0 # We also need to keep track of the starting epoch so files are named properly __lowerCAmelCase = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "": accelerator.print(F"""Resumed from checkpoint: {args.resume_from_checkpoint}""" ) accelerator.load_state(args.resume_from_checkpoint ) __lowerCAmelCase = os.path.basename(args.resume_from_checkpoint ) else: # Get the most recent checkpoint __lowerCAmelCase = [f.name for f in os.scandir(os.getcwd() ) if f.is_dir()] dirs.sort(key=os.path.getctime ) __lowerCAmelCase = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last # Extract `epoch_{i}` or `step_{i}` __lowerCAmelCase = os.path.splitext(__snake_case )[0] if "epoch" in training_difference: __lowerCAmelCase = int(training_difference.replace("epoch_" , "" ) ) + 1 __lowerCAmelCase = None else: __lowerCAmelCase = int(training_difference.replace("step_" , "" ) ) __lowerCAmelCase = resume_step // len(__snake_case ) resume_step -= starting_epoch * len(__snake_case ) # Now we train the model for epoch in range(__snake_case , __snake_case ): model.train() if args.with_tracking: __lowerCAmelCase = 0 if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None: # We need to skip steps until we reach the resumed step __lowerCAmelCase = accelerator.skip_first_batches(__snake_case , __snake_case ) overall_step += resume_step else: # After the first iteration though, we need to go back to the original dataloader __lowerCAmelCase = train_dataloader for batch in active_dataloader: # We could avoid this line since we set the accelerator with `device_placement=True`. __lowerCAmelCase = {k: v.to(accelerator.device ) for k, v in batch.items()} __lowerCAmelCase = (batch["image"] - mean) / std __lowerCAmelCase = model(__snake_case ) __lowerCAmelCase = torch.nn.functional.cross_entropy(__snake_case , batch["label"] ) # We keep track of the loss at each epoch if args.with_tracking: total_loss += loss.detach().float() accelerator.backward(__snake_case ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 if isinstance(__snake_case , __snake_case ): __lowerCAmelCase = F"""step_{overall_step}""" if overall_step % checkpointing_steps == 0: if args.output_dir is not None: __lowerCAmelCase = os.path.join(args.output_dir , __snake_case ) accelerator.save_state(__snake_case ) model.eval() __lowerCAmelCase = 0 __lowerCAmelCase = 0 for step, batch in enumerate(__snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True`. __lowerCAmelCase = {k: v.to(accelerator.device ) for k, v in batch.items()} __lowerCAmelCase = (batch["image"] - mean) / std with torch.no_grad(): __lowerCAmelCase = model(__snake_case ) __lowerCAmelCase = outputs.argmax(dim=-1 ) __lowerCAmelCase , __lowerCAmelCase = accelerator.gather_for_metrics((predictions, batch["label"]) ) __lowerCAmelCase = predictions == references num_elems += accurate_preds.shape[0] accurate += accurate_preds.long().sum() __lowerCAmelCase = accurate.item() / num_elems # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}: {100 * eval_metric:.2f}""" ) if args.with_tracking: accelerator.log( { "accuracy": 100 * eval_metric, "train_loss": total_loss.item() / len(__snake_case ), "epoch": epoch, } , step=__snake_case , ) if checkpointing_steps == "epoch": __lowerCAmelCase = F"""epoch_{epoch}""" if args.output_dir is not None: __lowerCAmelCase = os.path.join(args.output_dir , __snake_case ) accelerator.save_state(__snake_case ) if args.with_tracking: accelerator.end_training() def __lowerCAmelCase ( ): __lowerCAmelCase = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument("--data_dir" , required=__snake_case , help="The data folder on disk." ) parser.add_argument("--fp16" , action="store_true" , help="If passed, will use FP16 training." ) parser.add_argument( "--mixed_precision" , type=__snake_case , default=__snake_case , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) parser.add_argument( "--checkpointing_steps" , type=__snake_case , default=__snake_case , help="Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch." , ) parser.add_argument( "--output_dir" , type=__snake_case , default="." , help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." , ) parser.add_argument( "--resume_from_checkpoint" , type=__snake_case , default=__snake_case , help="If the training should continue from a checkpoint folder." , ) parser.add_argument( "--with_tracking" , action="store_true" , help="Whether to load in all available experiment trackers from the environment and use them for logging." , ) parser.add_argument( "--project_dir" , type=__snake_case , default="logs" , help="Location on where to store experiment tracking logs` and relevent project information" , ) __lowerCAmelCase = parser.parse_args() __lowerCAmelCase = {"lr": 3E-2, "num_epochs": 3, "seed": 42, "batch_size": 64, "image_size": 224} training_function(__snake_case , __snake_case ) if __name__ == "__main__": main()
290
0
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowerCamelCase__ ( _A): """simple docstring""" a__ : List[str] = ["image_processor", "tokenizer"] a__ : Optional[Any] = "LayoutLMv3ImageProcessor" a__ : Union[str, Any] = ("LayoutLMv3Tokenizer", "LayoutLMv3TokenizerFast") def __init__( self : str , __lowerCAmelCase : Any=None , __lowerCAmelCase : Any=None , **__lowerCAmelCase : Optional[int] ) -> Any: _A = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , __lowerCAmelCase , ) _A = kwargs.pop('''feature_extractor''' ) _A = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(__lowerCAmelCase , __lowerCAmelCase ) def __call__( self : List[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __lowerCAmelCase : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , __lowerCAmelCase : Union[List[List[int]], List[List[List[int]]]] = None , __lowerCAmelCase : Optional[Union[List[int], List[List[int]]]] = None , __lowerCAmelCase : bool = True , __lowerCAmelCase : Union[bool, str, PaddingStrategy] = False , __lowerCAmelCase : Union[bool, str, TruncationStrategy] = None , __lowerCAmelCase : Optional[int] = None , __lowerCAmelCase : int = 0 , __lowerCAmelCase : Optional[int] = None , __lowerCAmelCase : Optional[bool] = None , __lowerCAmelCase : Optional[bool] = None , __lowerCAmelCase : bool = False , __lowerCAmelCase : bool = False , __lowerCAmelCase : bool = False , __lowerCAmelCase : bool = False , __lowerCAmelCase : bool = True , __lowerCAmelCase : Optional[Union[str, TensorType]] = None , **__lowerCAmelCase : int , ) -> BatchEncoding: # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True.''' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' ) # first, apply the image processor _A = self.image_processor(images=__lowerCAmelCase , return_tensors=__lowerCAmelCase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(__lowerCAmelCase , __lowerCAmelCase ): _A = [text] # add batch dimension (as the image processor always adds a batch dimension) _A = features['''words'''] _A = self.tokenizer( text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , padding=__lowerCAmelCase , truncation=__lowerCAmelCase , max_length=__lowerCAmelCase , stride=__lowerCAmelCase , pad_to_multiple_of=__lowerCAmelCase , return_token_type_ids=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , return_overflowing_tokens=__lowerCAmelCase , return_special_tokens_mask=__lowerCAmelCase , return_offsets_mapping=__lowerCAmelCase , return_length=__lowerCAmelCase , verbose=__lowerCAmelCase , return_tensors=__lowerCAmelCase , **__lowerCAmelCase , ) # add pixel values _A = features.pop('''pixel_values''' ) if return_overflowing_tokens is True: _A = self.get_overflowing_images(__lowerCAmelCase , encoded_inputs['''overflow_to_sample_mapping'''] ) _A = images return encoded_inputs def snake_case_ ( self : Any , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any] ) -> int: # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image _A = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(__lowerCAmelCase ) != len(__lowerCAmelCase ): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' f''' {len(__lowerCAmelCase )} and {len(__lowerCAmelCase )}''' ) return images_with_overflow def snake_case_ ( self : List[Any] , *__lowerCAmelCase : str , **__lowerCAmelCase : str ) -> Optional[int]: return self.tokenizer.batch_decode(*__lowerCAmelCase , **__lowerCAmelCase ) def snake_case_ ( self : Optional[int] , *__lowerCAmelCase : Optional[Any] , **__lowerCAmelCase : Optional[Any] ) -> str: return self.tokenizer.decode(*__lowerCAmelCase , **__lowerCAmelCase ) @property def snake_case_ ( self : List[str] ) -> Any: return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def snake_case_ ( self : Optional[Any] ) -> List[str]: warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , __lowerCAmelCase , ) return self.image_processor_class @property def snake_case_ ( self : List[Any] ) -> Tuple: warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , __lowerCAmelCase , ) return self.image_processor
2
'''simple docstring''' from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class lowerCAmelCase__ ( a , a ): """simple docstring""" @register_to_config def __init__( self : int , __SCREAMING_SNAKE_CASE : int = 768 , ) -> int: """simple docstring""" super().__init__() __SCREAMING_SNAKE_CASE = nn.Parameter(torch.zeros(1 , __SCREAMING_SNAKE_CASE ) ) __SCREAMING_SNAKE_CASE = nn.Parameter(torch.ones(1 , __SCREAMING_SNAKE_CASE ) ) def UpperCAmelCase__ ( self : Any , __SCREAMING_SNAKE_CASE : Optional[Union[str, torch.device]] = None , __SCREAMING_SNAKE_CASE : Optional[torch.dtype] = None , ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = nn.Parameter(self.mean.to(__SCREAMING_SNAKE_CASE ).to(__SCREAMING_SNAKE_CASE ) ) __SCREAMING_SNAKE_CASE = nn.Parameter(self.std.to(__SCREAMING_SNAKE_CASE ).to(__SCREAMING_SNAKE_CASE ) ) return self def UpperCAmelCase__ ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[int] ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = (embeds - self.mean) * 1.0 / self.std return embeds def UpperCAmelCase__ ( self : Tuple , __SCREAMING_SNAKE_CASE : Any ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = (embeds * self.std) + self.mean return embeds
627
0
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class snake_case__ ( unittest.TestCase ): def __lowerCAmelCase ( self : Tuple ): '''simple docstring''' UpperCAmelCase : str = tempfile.mkdtemp() # fmt: off UpperCAmelCase : Dict = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on UpperCAmelCase : Tuple = dict(zip(lowercase , range(len(lowercase ) ) ) ) UpperCAmelCase : Tuple = ["#version: 0.2", "l o", "lo w</w>", "e r</w>", ""] UpperCAmelCase : List[Any] = {"unk_token": "<unk>"} UpperCAmelCase : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) UpperCAmelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(lowercase ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(lowercase ) ) UpperCAmelCase : Union[str, Any] = { "do_resize": True, "size": 20, "do_center_crop": True, "crop_size": 18, "do_normalize": True, "image_mean": [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], "image_std": [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } UpperCAmelCase : int = os.path.join(self.tmpdirname , lowercase ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(lowercase , lowercase ) def __lowerCAmelCase ( self : Union[str, Any] , **lowercase : List[Any] ): '''simple docstring''' return CLIPTokenizer.from_pretrained(self.tmpdirname , **lowercase ) def __lowerCAmelCase ( self : Optional[Any] , **lowercase : Any ): '''simple docstring''' return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **lowercase ) def __lowerCAmelCase ( self : List[Any] , **lowercase : str ): '''simple docstring''' return CLIPImageProcessor.from_pretrained(self.tmpdirname , **lowercase ) def __lowerCAmelCase ( self : Any ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def __lowerCAmelCase ( self : int ): '''simple docstring''' UpperCAmelCase : Optional[Any] = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] UpperCAmelCase : Tuple = [Image.fromarray(np.moveaxis(lowercase , 0 , -1 ) ) for x in image_inputs] return image_inputs def __lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = self.get_tokenizer() UpperCAmelCase : int = self.get_rust_tokenizer() UpperCAmelCase : Dict = self.get_image_processor() UpperCAmelCase : str = CLIPProcessor(tokenizer=lowercase , image_processor=lowercase ) processor_slow.save_pretrained(self.tmpdirname ) UpperCAmelCase : Tuple = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=lowercase ) UpperCAmelCase : str = CLIPProcessor(tokenizer=lowercase , image_processor=lowercase ) processor_fast.save_pretrained(self.tmpdirname ) UpperCAmelCase : Optional[int] = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , lowercase ) self.assertIsInstance(processor_fast.tokenizer , lowercase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , lowercase ) self.assertIsInstance(processor_fast.image_processor , lowercase ) def __lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase : Dict = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase : Optional[int] = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) UpperCAmelCase : Tuple = self.get_image_processor(do_normalize=lowercase , padding_value=1.0 ) UpperCAmelCase : Optional[int] = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=lowercase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowercase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowercase ) def __lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase : Tuple = self.get_image_processor() UpperCAmelCase : List[str] = self.get_tokenizer() UpperCAmelCase : Tuple = CLIPProcessor(tokenizer=lowercase , image_processor=lowercase ) UpperCAmelCase : Optional[Any] = self.prepare_image_inputs() UpperCAmelCase : List[Any] = image_processor(lowercase , return_tensors="np" ) UpperCAmelCase : Dict = processor(images=lowercase , return_tensors="np" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __lowerCAmelCase ( self : str ): '''simple docstring''' UpperCAmelCase : Optional[Any] = self.get_image_processor() UpperCAmelCase : Optional[Any] = self.get_tokenizer() UpperCAmelCase : Optional[int] = CLIPProcessor(tokenizer=lowercase , image_processor=lowercase ) UpperCAmelCase : Union[str, Any] = "lower newer" UpperCAmelCase : List[Any] = processor(text=lowercase ) UpperCAmelCase : List[Any] = tokenizer(lowercase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase : List[Any] = self.get_image_processor() UpperCAmelCase : Optional[int] = self.get_tokenizer() UpperCAmelCase : Optional[Any] = CLIPProcessor(tokenizer=lowercase , image_processor=lowercase ) UpperCAmelCase : Optional[int] = "lower newer" UpperCAmelCase : Optional[int] = self.prepare_image_inputs() UpperCAmelCase : str = processor(text=lowercase , images=lowercase ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(lowercase ): processor() def __lowerCAmelCase ( self : List[str] ): '''simple docstring''' UpperCAmelCase : Any = self.get_image_processor() UpperCAmelCase : Optional[Any] = self.get_tokenizer() UpperCAmelCase : Optional[Any] = CLIPProcessor(tokenizer=lowercase , image_processor=lowercase ) UpperCAmelCase : List[str] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCAmelCase : Dict = processor.batch_decode(lowercase ) UpperCAmelCase : List[Any] = tokenizer.batch_decode(lowercase ) self.assertListEqual(lowercase , lowercase ) def __lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase : int = self.get_image_processor() UpperCAmelCase : List[Any] = self.get_tokenizer() UpperCAmelCase : int = CLIPProcessor(tokenizer=lowercase , image_processor=lowercase ) UpperCAmelCase : str = "lower newer" UpperCAmelCase : Dict = self.prepare_image_inputs() UpperCAmelCase : Any = processor(text=lowercase , images=lowercase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
292
"""simple docstring""" from __future__ import annotations import unittest from transformers import BlenderbotSmallConfig, BlenderbotSmallTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel @require_tf class snake_case__ : SCREAMING_SNAKE_CASE__ = BlenderbotSmallConfig SCREAMING_SNAKE_CASE__ = {} SCREAMING_SNAKE_CASE__ = '''gelu''' def __init__( self : Tuple , lowercase : Any , lowercase : Optional[Any]=13 , lowercase : Any=7 , lowercase : List[Any]=True , lowercase : List[str]=False , lowercase : Optional[Any]=99 , lowercase : Union[str, Any]=32 , lowercase : List[Any]=2 , lowercase : Tuple=4 , lowercase : Union[str, Any]=37 , lowercase : str=0.1 , lowercase : Optional[Any]=0.1 , lowercase : Optional[Any]=20 , lowercase : str=2 , lowercase : int=1 , lowercase : Optional[int]=0 , ): '''simple docstring''' UpperCAmelCase : Dict = parent UpperCAmelCase : Union[str, Any] = batch_size UpperCAmelCase : Tuple = seq_length UpperCAmelCase : Dict = is_training UpperCAmelCase : str = use_labels UpperCAmelCase : Union[str, Any] = vocab_size UpperCAmelCase : Tuple = hidden_size UpperCAmelCase : List[Any] = num_hidden_layers UpperCAmelCase : Union[str, Any] = num_attention_heads UpperCAmelCase : Dict = intermediate_size UpperCAmelCase : Optional[int] = hidden_dropout_prob UpperCAmelCase : Optional[Any] = attention_probs_dropout_prob UpperCAmelCase : Dict = max_position_embeddings UpperCAmelCase : List[Any] = eos_token_id UpperCAmelCase : List[Any] = pad_token_id UpperCAmelCase : Union[str, Any] = bos_token_id def __lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCAmelCase : Optional[int] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCAmelCase : Optional[int] = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : int = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCAmelCase : Optional[Any] = prepare_blenderbot_small_inputs_dict(lowercase , lowercase , lowercase ) return config, inputs_dict def __lowerCAmelCase ( self : int , lowercase : List[Any] , lowercase : Optional[Any] ): '''simple docstring''' UpperCAmelCase : List[Any] = TFBlenderbotSmallModel(config=lowercase ).get_decoder() UpperCAmelCase : List[Any] = inputs_dict["input_ids"] UpperCAmelCase : int = input_ids[:1, :] UpperCAmelCase : Union[str, Any] = inputs_dict["attention_mask"][:1, :] UpperCAmelCase : Union[str, Any] = inputs_dict["head_mask"] UpperCAmelCase : List[Any] = 1 # first forward pass UpperCAmelCase : Optional[Any] = model(lowercase , attention_mask=lowercase , head_mask=lowercase , use_cache=lowercase ) UpperCAmelCase , UpperCAmelCase : List[str] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids UpperCAmelCase : Any = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase : Optional[int] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and UpperCAmelCase : Union[str, Any] = tf.concat([input_ids, next_tokens] , axis=-1 ) UpperCAmelCase : str = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) UpperCAmelCase : Optional[Any] = model(lowercase , attention_mask=lowercase )[0] UpperCAmelCase : List[str] = model(lowercase , attention_mask=lowercase , past_key_values=lowercase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice UpperCAmelCase : List[str] = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) UpperCAmelCase : Optional[int] = output_from_no_past[:, -3:, random_slice_idx] UpperCAmelCase : Optional[Any] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowercase , lowercase , rtol=1E-3 ) def lowercase_ ( _lowercase : Optional[Any] , _lowercase : Optional[int] , _lowercase : Tuple , _lowercase : Tuple=None , _lowercase : Any=None , _lowercase : str=None , _lowercase : Optional[Any]=None , _lowercase : Dict=None , ): '''simple docstring''' if attention_mask is None: UpperCAmelCase : List[str] = tf.cast(tf.math.not_equal(_lowercase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: UpperCAmelCase : str = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: UpperCAmelCase : Dict = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCAmelCase : Optional[Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCAmelCase : str = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class snake_case__ ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): SCREAMING_SNAKE_CASE__ = ( (TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel) if is_tf_available() else () ) SCREAMING_SNAKE_CASE__ = (TFBlenderbotSmallForConditionalGeneration,) if is_tf_available() else () SCREAMING_SNAKE_CASE__ = ( { '''conversational''': TFBlenderbotSmallForConditionalGeneration, '''feature-extraction''': TFBlenderbotSmallModel, '''summarization''': TFBlenderbotSmallForConditionalGeneration, '''text2text-generation''': TFBlenderbotSmallForConditionalGeneration, '''translation''': TFBlenderbotSmallForConditionalGeneration, } if is_tf_available() else {} ) SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False def __lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase : Dict = TFBlenderbotSmallModelTester(self ) UpperCAmelCase : Dict = ConfigTester(self , config_class=lowercase ) def __lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' self.config_tester.run_common_tests() def __lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase ) @require_tokenizers @require_tf class snake_case__ ( unittest.TestCase ): SCREAMING_SNAKE_CASE__ = [ '''Social anxiety\nWow, I am never shy. Do you have anxiety?\nYes. I end up sweating and blushing and feel like ''' ''' i\'m going to throw up.\nand why is that?''' ] SCREAMING_SNAKE_CASE__ = '''facebook/blenderbot_small-90M''' @cached_property def __lowerCAmelCase ( self : Any ): '''simple docstring''' return BlenderbotSmallTokenizer.from_pretrained("facebook/blenderbot-90M" ) @cached_property def __lowerCAmelCase ( self : Any ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def __lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase : List[Any] = self.tokenizer(self.src_text , return_tensors="tf" ) UpperCAmelCase : List[Any] = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=lowercase , ) UpperCAmelCase : Dict = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=lowercase )[0] assert generated_words in ( "i don't know. i just feel like i'm going to throw up. it's not fun.", "i'm not sure. i just feel like i've been feeling like i have to be in a certain place", "i'm not sure. i just feel like i've been in a bad situation.", )
292
1
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _a : List[str] = { 'configuration_informer': [ 'INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'InformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : List[Any] = [ 'INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'InformerForPrediction', 'InformerModel', 'InformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys _a : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
447
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from importlib import import_module from typing import Dict, List, Optional, Tuple import numpy as np from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch import nn from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask import transformers from transformers import ( AutoConfig, AutoModelForTokenClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process _a : List[Any] = logging.getLogger(__name__) @dataclass class lowercase_ : '''simple docstring''' __lowerCAmelCase : str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) __lowerCAmelCase : Optional[str] = field( default=a , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) __lowerCAmelCase : Optional[str] = field( default="NER" , metadata={"help": "Task type to fine tune in training (e.g. NER, POS, etc)"} ) __lowerCAmelCase : Optional[str] = field( default=a , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) __lowerCAmelCase : bool = field(default=a , metadata={"help": "Set this flag to use fast tokenization."} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. __lowerCAmelCase : Optional[str] = field( default=a , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) @dataclass class lowercase_ : '''simple docstring''' __lowerCAmelCase : str = field( metadata={"help": "The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task."} ) __lowerCAmelCase : Optional[str] = field( default=a , metadata={"help": "Path to a file containing all labels. If not specified, CoNLL-2003 labels are used."} , ) __lowerCAmelCase : int = field( default=1_28 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __lowerCAmelCase : bool = field( default=a , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def lowerCamelCase__ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' ' --overwrite_output_dir to overcome.' ) UpperCAmelCase = import_module('tasks' ) try: UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE , model_args.task_type ) UpperCAmelCase = token_classification_task_clazz() except AttributeError: raise ValueError( f'''Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ''' f'''Available tasks classes are: {TokenClassificationTask.__subclasses__()}''' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , SCREAMING_SNAKE_CASE ) # Set seed set_seed(training_args.seed ) # Prepare CONLL-2003 task UpperCAmelCase = token_classification_task.get_labels(data_args.labels ) UpperCAmelCase = dict(enumerate(SCREAMING_SNAKE_CASE ) ) UpperCAmelCase = len(SCREAMING_SNAKE_CASE ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCAmelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=SCREAMING_SNAKE_CASE , idalabel=SCREAMING_SNAKE_CASE , labelaid={label: i for i, label in enumerate(SCREAMING_SNAKE_CASE )} , cache_dir=model_args.cache_dir , ) UpperCAmelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , ) UpperCAmelCase = AutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=SCREAMING_SNAKE_CASE , cache_dir=model_args.cache_dir , ) # Get datasets UpperCAmelCase = ( TokenClassificationDataset( token_classification_task=SCREAMING_SNAKE_CASE , data_dir=data_args.data_dir , tokenizer=SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) UpperCAmelCase = ( TokenClassificationDataset( token_classification_task=SCREAMING_SNAKE_CASE , data_dir=data_args.data_dir , tokenizer=SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def align_predictions(SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : np.ndarray ) -> Tuple[List[int], List[int]]: UpperCAmelCase = np.argmax(SCREAMING_SNAKE_CASE , axis=2 ) UpperCAmelCase , UpperCAmelCase = preds.shape UpperCAmelCase = [[] for _ in range(SCREAMING_SNAKE_CASE )] UpperCAmelCase = [[] for _ in range(SCREAMING_SNAKE_CASE )] for i in range(SCREAMING_SNAKE_CASE ): for j in range(SCREAMING_SNAKE_CASE ): if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: out_label_list[i].append(label_map[label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) return preds_list, out_label_list def compute_metrics(SCREAMING_SNAKE_CASE : EvalPrediction ) -> Dict: UpperCAmelCase , UpperCAmelCase = align_predictions(p.predictions , p.label_ids ) return { "accuracy_score": accuracy_score(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ), "precision": precision_score(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ), "recall": recall_score(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ), "f1": fa_score(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ), } # Data collator UpperCAmelCase = DataCollatorWithPadding(SCREAMING_SNAKE_CASE , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer UpperCAmelCase = Trainer( model=SCREAMING_SNAKE_CASE , args=SCREAMING_SNAKE_CASE , train_dataset=SCREAMING_SNAKE_CASE , eval_dataset=SCREAMING_SNAKE_CASE , compute_metrics=SCREAMING_SNAKE_CASE , data_collator=SCREAMING_SNAKE_CASE , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation UpperCAmelCase = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) UpperCAmelCase = trainer.evaluate() UpperCAmelCase = os.path.join(training_args.output_dir , 'eval_results.txt' ) if trainer.is_world_process_zero(): with open(SCREAMING_SNAKE_CASE , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in result.items(): logger.info(' %s = %s' , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) writer.write('%s = %s\n' % (key, value) ) results.update(SCREAMING_SNAKE_CASE ) # Predict if training_args.do_predict: UpperCAmelCase = TokenClassificationDataset( token_classification_task=SCREAMING_SNAKE_CASE , data_dir=data_args.data_dir , tokenizer=SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = trainer.predict(SCREAMING_SNAKE_CASE ) UpperCAmelCase , UpperCAmelCase = align_predictions(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCAmelCase = os.path.join(training_args.output_dir , 'test_results.txt' ) if trainer.is_world_process_zero(): with open(SCREAMING_SNAKE_CASE , 'w' ) as writer: for key, value in metrics.items(): logger.info(' %s = %s' , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) writer.write('%s = %s\n' % (key, value) ) # Save predictions UpperCAmelCase = os.path.join(training_args.output_dir , 'test_predictions.txt' ) if trainer.is_world_process_zero(): with open(SCREAMING_SNAKE_CASE , 'w' ) as writer: with open(os.path.join(data_args.data_dir , 'test.txt' ) , 'r' ) as f: token_classification_task.write_predictions_to_file(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return results def lowerCamelCase__ ( SCREAMING_SNAKE_CASE : Dict ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
447
1
'''simple docstring''' import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class UpperCAmelCase ( __a ): '''simple docstring''' def __init__( self , lowercase__=0.0_1 , lowercase__=1_000 ) -> List[str]: SCREAMING_SNAKE_CASE : str = p_stop SCREAMING_SNAKE_CASE : Any = max_length def __iter__( self ) -> List[str]: SCREAMING_SNAKE_CASE : str = 0 SCREAMING_SNAKE_CASE : str = False while not stop and count < self.max_length: yield count count += 1 SCREAMING_SNAKE_CASE : List[Any] = random.random() < self.p_stop class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def _UpperCamelCase ( self , lowercase__ , lowercase__ , lowercase__=False , lowercase__=True ) -> str: SCREAMING_SNAKE_CASE : Optional[Any] = [ BatchSamplerShard(lowerCAmelCase_ , 2 , lowerCAmelCase_ , split_batches=lowerCAmelCase_ , even_batches=lowerCAmelCase_ ) for i in range(2 ) ] SCREAMING_SNAKE_CASE : Optional[int] = [list(lowerCAmelCase_ ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(lowerCAmelCase_ ) for shard in batch_sampler_shards] , [len(lowerCAmelCase_ ) for e in expected] ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def _UpperCamelCase ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE : List[str] = BatchSampler(range(24 ) , batch_size=3 , drop_last=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE : int = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(lowerCAmelCase_ , lowerCAmelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = BatchSampler(range(24 ) , batch_size=3 , drop_last=lowerCAmelCase_ ) # Expected shouldn't change self.check_batch_sampler_shards(lowerCAmelCase_ , lowerCAmelCase_ ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. SCREAMING_SNAKE_CASE : Tuple = BatchSampler(range(21 ) , batch_size=3 , drop_last=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE : Tuple = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(lowerCAmelCase_ , lowerCAmelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = BatchSampler(range(21 ) , batch_size=3 , drop_last=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE : str = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowerCAmelCase_ , lowerCAmelCase_ ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. SCREAMING_SNAKE_CASE : Any = BatchSampler(range(22 ) , batch_size=3 , drop_last=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE : int = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(lowerCAmelCase_ , lowerCAmelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = BatchSampler(range(22 ) , batch_size=3 , drop_last=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE : Any = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowerCAmelCase_ , lowerCAmelCase_ ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. SCREAMING_SNAKE_CASE : Tuple = BatchSampler(range(20 ) , batch_size=3 , drop_last=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(lowerCAmelCase_ , lowerCAmelCase_ ) SCREAMING_SNAKE_CASE : Tuple = BatchSampler(range(20 ) , batch_size=3 , drop_last=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowerCAmelCase_ , lowerCAmelCase_ ) # Check the shards when the dataset is very small. SCREAMING_SNAKE_CASE : Optional[Any] = BatchSampler(range(2 ) , batch_size=3 , drop_last=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE : int = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(lowerCAmelCase_ , lowerCAmelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = BatchSampler(range(2 ) , batch_size=3 , drop_last=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE : int = [[], []] self.check_batch_sampler_shards(lowerCAmelCase_ , lowerCAmelCase_ ) def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE : Optional[int] = BatchSampler(range(24 ) , batch_size=4 , drop_last=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE : Tuple = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(lowerCAmelCase_ , lowerCAmelCase_ , split_batches=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE : Tuple = BatchSampler(range(24 ) , batch_size=4 , drop_last=lowerCAmelCase_ ) # Expected shouldn't change self.check_batch_sampler_shards(lowerCAmelCase_ , lowerCAmelCase_ , split_batches=lowerCAmelCase_ ) # Check the shards when the dataset is not a round multiple of batch size. SCREAMING_SNAKE_CASE : Tuple = BatchSampler(range(22 ) , batch_size=4 , drop_last=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(lowerCAmelCase_ , lowerCAmelCase_ , split_batches=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE : List[str] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(lowerCAmelCase_ , lowerCAmelCase_ , split_batches=lowerCAmelCase_ ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. SCREAMING_SNAKE_CASE : Any = BatchSampler(range(21 ) , batch_size=4 , drop_last=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE : List[str] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(lowerCAmelCase_ , lowerCAmelCase_ , split_batches=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = BatchSampler(range(21 ) , batch_size=4 , drop_last=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(lowerCAmelCase_ , lowerCAmelCase_ , split_batches=lowerCAmelCase_ ) # Check the shards when the dataset is very small. SCREAMING_SNAKE_CASE : Optional[int] = BatchSampler(range(2 ) , batch_size=4 , drop_last=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(lowerCAmelCase_ , lowerCAmelCase_ , split_batches=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE : List[str] = BatchSampler(range(2 ) , batch_size=4 , drop_last=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE : str = [[], []] self.check_batch_sampler_shards(lowerCAmelCase_ , lowerCAmelCase_ , split_batches=lowerCAmelCase_ ) def _UpperCamelCase ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE : Union[str, Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE : str = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(lowerCAmelCase_ , lowerCAmelCase_ , even_batches=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=lowerCAmelCase_ ) # Expected shouldn't change self.check_batch_sampler_shards(lowerCAmelCase_ , lowerCAmelCase_ , even_batches=lowerCAmelCase_ ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. SCREAMING_SNAKE_CASE : Optional[Any] = BatchSampler(range(21 ) , batch_size=3 , drop_last=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowerCAmelCase_ , lowerCAmelCase_ , even_batches=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE : Tuple = BatchSampler(range(21 ) , batch_size=3 , drop_last=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE : Dict = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowerCAmelCase_ , lowerCAmelCase_ , even_batches=lowerCAmelCase_ ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. SCREAMING_SNAKE_CASE : Optional[int] = BatchSampler(range(22 ) , batch_size=3 , drop_last=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(lowerCAmelCase_ , lowerCAmelCase_ , even_batches=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE : Tuple = BatchSampler(range(22 ) , batch_size=3 , drop_last=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE : Any = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowerCAmelCase_ , lowerCAmelCase_ , even_batches=lowerCAmelCase_ ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. SCREAMING_SNAKE_CASE : str = BatchSampler(range(20 ) , batch_size=3 , drop_last=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE : str = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowerCAmelCase_ , lowerCAmelCase_ , even_batches=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE : Dict = BatchSampler(range(20 ) , batch_size=3 , drop_last=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowerCAmelCase_ , lowerCAmelCase_ , even_batches=lowerCAmelCase_ ) # Check the shards when the dataset is very small. SCREAMING_SNAKE_CASE : Tuple = BatchSampler(range(2 ) , batch_size=3 , drop_last=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE : int = [[[0, 1]], []] self.check_batch_sampler_shards(lowerCAmelCase_ , lowerCAmelCase_ , even_batches=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = BatchSampler(range(2 ) , batch_size=3 , drop_last=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = [[], []] self.check_batch_sampler_shards(lowerCAmelCase_ , lowerCAmelCase_ , even_batches=lowerCAmelCase_ ) def _UpperCamelCase ( self ) -> Dict: SCREAMING_SNAKE_CASE : List[str] = BatchSampler(range(24 ) , batch_size=4 , drop_last=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(lowerCAmelCase_ , lowerCAmelCase_ , split_batches=lowerCAmelCase_ , even_batches=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = BatchSampler(range(24 ) , batch_size=4 , drop_last=lowerCAmelCase_ ) # Expected shouldn't change self.check_batch_sampler_shards(lowerCAmelCase_ , lowerCAmelCase_ , split_batches=lowerCAmelCase_ , even_batches=lowerCAmelCase_ ) # Check the shards when the dataset is not a round multiple of batch size. SCREAMING_SNAKE_CASE : int = BatchSampler(range(22 ) , batch_size=4 , drop_last=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(lowerCAmelCase_ , lowerCAmelCase_ , split_batches=lowerCAmelCase_ , even_batches=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(lowerCAmelCase_ , lowerCAmelCase_ , split_batches=lowerCAmelCase_ , even_batches=lowerCAmelCase_ ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. SCREAMING_SNAKE_CASE : Optional[int] = BatchSampler(range(21 ) , batch_size=4 , drop_last=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE : List[str] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(lowerCAmelCase_ , lowerCAmelCase_ , split_batches=lowerCAmelCase_ , even_batches=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = BatchSampler(range(21 ) , batch_size=4 , drop_last=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(lowerCAmelCase_ , lowerCAmelCase_ , split_batches=lowerCAmelCase_ , even_batches=lowerCAmelCase_ ) # Check the shards when the dataset is very small. SCREAMING_SNAKE_CASE : Optional[int] = BatchSampler(range(2 ) , batch_size=4 , drop_last=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = [[[0, 1]], []] self.check_batch_sampler_shards(lowerCAmelCase_ , lowerCAmelCase_ , split_batches=lowerCAmelCase_ , even_batches=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = BatchSampler(range(2 ) , batch_size=4 , drop_last=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = [[], []] self.check_batch_sampler_shards(lowerCAmelCase_ , lowerCAmelCase_ , split_batches=lowerCAmelCase_ , even_batches=lowerCAmelCase_ ) def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE : Union[str, Any] = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] SCREAMING_SNAKE_CASE : str = [BatchSamplerShard(lowerCAmelCase_ , 2 , lowerCAmelCase_ , even_batches=lowerCAmelCase_ ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def _UpperCamelCase ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__=False , lowercase__=2 , lowercase__=False ) -> int: random.seed(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE : Any = list(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE : str = [ IterableDatasetShard( lowerCAmelCase_ , batch_size=lowerCAmelCase_ , drop_last=lowerCAmelCase_ , num_processes=lowerCAmelCase_ , process_index=lowerCAmelCase_ , split_batches=lowerCAmelCase_ , ) for i in range(lowerCAmelCase_ ) ] SCREAMING_SNAKE_CASE : Optional[Any] = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(lowerCAmelCase_ ) iterable_dataset_lists.append(list(lowerCAmelCase_ ) ) SCREAMING_SNAKE_CASE : Any = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size SCREAMING_SNAKE_CASE : List[str] = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(lowerCAmelCase_ ) , len(lowerCAmelCase_ ) ) self.assertTrue(len(lowerCAmelCase_ ) % shard_batch_size == 0 ) SCREAMING_SNAKE_CASE : Dict = [] for idx in range(0 , len(lowerCAmelCase_ ) , lowerCAmelCase_ ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(lowerCAmelCase_ ) < len(lowerCAmelCase_ ): reference += reference self.assertListEqual(lowerCAmelCase_ , reference[: len(lowerCAmelCase_ )] ) def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE : str = 42 SCREAMING_SNAKE_CASE : Tuple = RandomIterableDataset() self.check_iterable_dataset_shards(lowerCAmelCase_ , lowerCAmelCase_ , batch_size=4 , drop_last=lowerCAmelCase_ , split_batches=lowerCAmelCase_ ) self.check_iterable_dataset_shards(lowerCAmelCase_ , lowerCAmelCase_ , batch_size=4 , drop_last=lowerCAmelCase_ , split_batches=lowerCAmelCase_ ) self.check_iterable_dataset_shards(lowerCAmelCase_ , lowerCAmelCase_ , batch_size=4 , drop_last=lowerCAmelCase_ , split_batches=lowerCAmelCase_ ) self.check_iterable_dataset_shards(lowerCAmelCase_ , lowerCAmelCase_ , batch_size=4 , drop_last=lowerCAmelCase_ , split_batches=lowerCAmelCase_ ) # Edge case with a very small dataset SCREAMING_SNAKE_CASE : Dict = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(lowerCAmelCase_ , lowerCAmelCase_ , batch_size=4 , drop_last=lowerCAmelCase_ , split_batches=lowerCAmelCase_ ) self.check_iterable_dataset_shards(lowerCAmelCase_ , lowerCAmelCase_ , batch_size=4 , drop_last=lowerCAmelCase_ , split_batches=lowerCAmelCase_ ) self.check_iterable_dataset_shards(lowerCAmelCase_ , lowerCAmelCase_ , batch_size=4 , drop_last=lowerCAmelCase_ , split_batches=lowerCAmelCase_ ) self.check_iterable_dataset_shards(lowerCAmelCase_ , lowerCAmelCase_ , batch_size=4 , drop_last=lowerCAmelCase_ , split_batches=lowerCAmelCase_ ) def _UpperCamelCase ( self ) -> Any: SCREAMING_SNAKE_CASE : int = BatchSampler(range(16 ) , batch_size=4 , drop_last=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE : int = SkipBatchSampler(lowerCAmelCase_ , 2 ) self.assertListEqual(list(lowerCAmelCase_ ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _UpperCamelCase ( self ) -> List[Any]: SCREAMING_SNAKE_CASE : List[Any] = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _UpperCamelCase ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE : int = DataLoader(list(range(16 ) ) , batch_size=4 ) SCREAMING_SNAKE_CASE : Dict = skip_first_batches(lowerCAmelCase_ , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _UpperCamelCase ( self ) -> int: SCREAMING_SNAKE_CASE : List[Any] = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(lowerCAmelCase_ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(lowerCAmelCase_ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def _UpperCamelCase ( self ) -> int: Accelerator() SCREAMING_SNAKE_CASE : int = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(lowerCAmelCase_ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(lowerCAmelCase_ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
719
'''simple docstring''' from __future__ import annotations from statistics import mean def __lowerCAmelCase ( a_ , a_ , a_ ) -> list[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = [0] * no_of_processes SCREAMING_SNAKE_CASE : Optional[Any] = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(a_ ): SCREAMING_SNAKE_CASE : Tuple = burst_time[i] SCREAMING_SNAKE_CASE : list[int] = [] SCREAMING_SNAKE_CASE : List[Any] = 0 SCREAMING_SNAKE_CASE : Optional[Any] = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: SCREAMING_SNAKE_CASE : Optional[int] = [] SCREAMING_SNAKE_CASE : Dict = -1 for i in range(a_ ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(a_ ) if len(a_ ) > 0: SCREAMING_SNAKE_CASE : Dict = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: SCREAMING_SNAKE_CASE : Union[str, Any] = i total_time += burst_time[target_process] completed += 1 SCREAMING_SNAKE_CASE : Union[str, Any] = 0 SCREAMING_SNAKE_CASE : Tuple = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def __lowerCAmelCase ( a_ , a_ , a_ ) -> list[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = [0] * no_of_processes for i in range(a_ ): SCREAMING_SNAKE_CASE : List[Any] = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print("""[TEST CASE 01]""") _lowerCAmelCase :Optional[int] = 4 _lowerCAmelCase :Optional[int] = [2, 5, 3, 7] _lowerCAmelCase :List[str] = [0, 0, 0, 0] _lowerCAmelCase :Union[str, Any] = calculate_waitingtime(arrival_time, burst_time, no_of_processes) _lowerCAmelCase :Any = calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print("""PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time""") for i, process_id in enumerate(list(range(1, 5))): print( f"""{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t""" f"""{waiting_time[i]}\t\t\t\t{turn_around_time[i]}""" ) print(f"""\nAverage waiting time = {mean(waiting_time):.5f}""") print(f"""Average turnaround time = {mean(turn_around_time):.5f}""")
179
0
from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) __SCREAMING_SNAKE_CASE ={ """huggingface/informer-tourism-monthly""": ( """https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json""" ), # See all Informer models at https://huggingface.co/models?filter=informer } class __magic_name__ ( __UpperCAmelCase): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = "informer" SCREAMING_SNAKE_CASE__ : Optional[int] = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers", } def __init__( self: Tuple , _lowerCamelCase: Optional[int] = None , _lowerCamelCase: Optional[int] = None , _lowerCamelCase: str = "student_t" , _lowerCamelCase: str = "nll" , _lowerCamelCase: int = 1 , _lowerCamelCase: List[int] = None , _lowerCamelCase: Optional[Union[str, bool]] = "mean" , _lowerCamelCase: int = 0 , _lowerCamelCase: int = 0 , _lowerCamelCase: int = 0 , _lowerCamelCase: int = 0 , _lowerCamelCase: Optional[List[int]] = None , _lowerCamelCase: Optional[List[int]] = None , _lowerCamelCase: int = 64 , _lowerCamelCase: int = 32 , _lowerCamelCase: int = 32 , _lowerCamelCase: int = 2 , _lowerCamelCase: int = 2 , _lowerCamelCase: int = 2 , _lowerCamelCase: int = 2 , _lowerCamelCase: bool = True , _lowerCamelCase: str = "gelu" , _lowerCamelCase: float = 0.05 , _lowerCamelCase: float = 0.1 , _lowerCamelCase: float = 0.1 , _lowerCamelCase: float = 0.1 , _lowerCamelCase: float = 0.1 , _lowerCamelCase: int = 1_00 , _lowerCamelCase: float = 0.02 , _lowerCamelCase: List[str]=True , _lowerCamelCase: str = "prob" , _lowerCamelCase: int = 5 , _lowerCamelCase: bool = True , **_lowerCamelCase: Tuple , ): # time series specific configuration SCREAMING_SNAKE_CASE_ = prediction_length SCREAMING_SNAKE_CASE_ = context_length or prediction_length SCREAMING_SNAKE_CASE_ = distribution_output SCREAMING_SNAKE_CASE_ = loss SCREAMING_SNAKE_CASE_ = input_size SCREAMING_SNAKE_CASE_ = num_time_features SCREAMING_SNAKE_CASE_ = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] SCREAMING_SNAKE_CASE_ = scaling SCREAMING_SNAKE_CASE_ = num_dynamic_real_features SCREAMING_SNAKE_CASE_ = num_static_real_features SCREAMING_SNAKE_CASE_ = num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(_lowerCamelCase ) != num_static_categorical_features: raise ValueError( '''The cardinality should be a list of the same length as `num_static_categorical_features`''' ) SCREAMING_SNAKE_CASE_ = cardinality else: SCREAMING_SNAKE_CASE_ = [0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(_lowerCamelCase ) != num_static_categorical_features: raise ValueError( '''The embedding dimension should be a list of the same length as `num_static_categorical_features`''' ) SCREAMING_SNAKE_CASE_ = embedding_dimension else: SCREAMING_SNAKE_CASE_ = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] SCREAMING_SNAKE_CASE_ = num_parallel_samples # Transformer architecture configuration SCREAMING_SNAKE_CASE_ = input_size * len(self.lags_sequence ) + self._number_of_features SCREAMING_SNAKE_CASE_ = d_model SCREAMING_SNAKE_CASE_ = encoder_attention_heads SCREAMING_SNAKE_CASE_ = decoder_attention_heads SCREAMING_SNAKE_CASE_ = encoder_ffn_dim SCREAMING_SNAKE_CASE_ = decoder_ffn_dim SCREAMING_SNAKE_CASE_ = encoder_layers SCREAMING_SNAKE_CASE_ = decoder_layers SCREAMING_SNAKE_CASE_ = dropout SCREAMING_SNAKE_CASE_ = attention_dropout SCREAMING_SNAKE_CASE_ = activation_dropout SCREAMING_SNAKE_CASE_ = encoder_layerdrop SCREAMING_SNAKE_CASE_ = decoder_layerdrop SCREAMING_SNAKE_CASE_ = activation_function SCREAMING_SNAKE_CASE_ = init_std SCREAMING_SNAKE_CASE_ = use_cache # Informer SCREAMING_SNAKE_CASE_ = attention_type SCREAMING_SNAKE_CASE_ = sampling_factor SCREAMING_SNAKE_CASE_ = distil super().__init__(is_encoder_decoder=_lowerCamelCase , **_lowerCamelCase ) @property def _A ( self: List[Any] ): return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
234
import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class __magic_name__ ( __UpperCAmelCase): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = "Speech2TextFeatureExtractor" SCREAMING_SNAKE_CASE__ : List[str] = "Speech2TextTokenizer" def __init__( self: List[str] , _lowerCamelCase: str , _lowerCamelCase: Optional[Any] ): super().__init__(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE_ = self.feature_extractor SCREAMING_SNAKE_CASE_ = False def __call__( self: List[str] , *_lowerCamelCase: Dict , **_lowerCamelCase: List[str] ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*_lowerCamelCase , **_lowerCamelCase ) if "raw_speech" in kwargs: warnings.warn('''Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.''' ) SCREAMING_SNAKE_CASE_ = kwargs.pop('''raw_speech''' ) else: SCREAMING_SNAKE_CASE_ = kwargs.pop('''audio''' , _lowerCamelCase ) SCREAMING_SNAKE_CASE_ = kwargs.pop('''sampling_rate''' , _lowerCamelCase ) SCREAMING_SNAKE_CASE_ = kwargs.pop('''text''' , _lowerCamelCase ) if len(_lowerCamelCase ) > 0: SCREAMING_SNAKE_CASE_ = args[0] SCREAMING_SNAKE_CASE_ = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if audio is not None: SCREAMING_SNAKE_CASE_ = self.feature_extractor(_lowerCamelCase , *_lowerCamelCase , sampling_rate=_lowerCamelCase , **_lowerCamelCase ) if text is not None: SCREAMING_SNAKE_CASE_ = self.tokenizer(_lowerCamelCase , **_lowerCamelCase ) if text is None: return inputs elif audio is None: return encodings else: SCREAMING_SNAKE_CASE_ = encodings['''input_ids'''] return inputs def _A ( self: List[str] , *_lowerCamelCase: List[Any] , **_lowerCamelCase: Union[str, Any] ): return self.tokenizer.batch_decode(*_lowerCamelCase , **_lowerCamelCase ) def _A ( self: Union[str, Any] , *_lowerCamelCase: str , **_lowerCamelCase: Optional[Any] ): return self.tokenizer.decode(*_lowerCamelCase , **_lowerCamelCase ) @contextmanager def _A ( self: List[Any] ): warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your audio inputs, or in a separate call.''' ) SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = self.tokenizer yield SCREAMING_SNAKE_CASE_ = self.feature_extractor SCREAMING_SNAKE_CASE_ = False
234
1
from ...processing_utils import ProcessorMixin class __magic_name__ ( A__ ): lowercase : List[str] ='''WhisperFeatureExtractor''' lowercase : Any ='''WhisperTokenizer''' def __init__( self : Optional[int] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Dict ) -> int: '''simple docstring''' super().__init__(UpperCamelCase__ , UpperCamelCase__ ) UpperCAmelCase = self.feature_extractor UpperCAmelCase = False def SCREAMING_SNAKE_CASE_ ( self : Any , UpperCamelCase__ : int=None , UpperCamelCase__ : Union[str, Any]=None , UpperCamelCase__ : Dict=True ) -> Dict: '''simple docstring''' return self.tokenizer.get_decoder_prompt_ids(task=UpperCamelCase__ , language=UpperCamelCase__ , no_timestamps=UpperCamelCase__ ) def __call__( self : Dict , *UpperCamelCase__ : Optional[int] , **UpperCamelCase__ : Any ) -> Dict: '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*UpperCamelCase__ , **UpperCamelCase__ ) UpperCAmelCase = kwargs.pop("audio" , UpperCamelCase__ ) UpperCAmelCase = kwargs.pop("sampling_rate" , UpperCamelCase__ ) UpperCAmelCase = kwargs.pop("text" , UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0: UpperCAmelCase = args[0] UpperCAmelCase = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process." ) if audio is not None: UpperCAmelCase = self.feature_extractor(UpperCamelCase__ , *UpperCamelCase__ , sampling_rate=UpperCamelCase__ , **UpperCamelCase__ ) if text is not None: UpperCAmelCase = self.tokenizer(UpperCamelCase__ , **UpperCamelCase__ ) if text is None: return inputs elif audio is None: return encodings else: UpperCAmelCase = encodings["input_ids"] return inputs def SCREAMING_SNAKE_CASE_ ( self : Tuple , *UpperCamelCase__ : List[Any] , **UpperCamelCase__ : int ) -> List[Any]: '''simple docstring''' return self.tokenizer.batch_decode(*UpperCamelCase__ , **UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self : int , *UpperCamelCase__ : Dict , **UpperCamelCase__ : List[Any] ) -> str: '''simple docstring''' return self.tokenizer.decode(*UpperCamelCase__ , **UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self : Any , UpperCamelCase__ : str , UpperCamelCase__ : Any="np" ) -> List[str]: '''simple docstring''' return self.tokenizer.get_prompt_ids(UpperCamelCase__ , return_tensors=UpperCamelCase__ )
703
def lowerCamelCase_(lowerCamelCase_ , lowerCamelCase_ ) -> list[int]: UpperCAmelCase = int(lowerCamelCase_ ) # Initialize Result UpperCAmelCase = [] # Traverse through all denomination for denomination in reversed(lowerCamelCase_ ): # Find denominations while int(lowerCamelCase_ ) >= int(lowerCamelCase_ ): total_value -= int(lowerCamelCase_ ) answer.append(lowerCamelCase_ ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": __lowerCamelCase : Optional[int] = [] __lowerCamelCase : Dict = "0" if ( input("Do you want to enter your denominations ? (yY/n): ").strip().lower() == "y" ): __lowerCamelCase : List[Any] = int(input("Enter the number of denominations you want to add: ").strip()) for i in range(0, n): denominations.append(int(input(F'''Denomination {i}: ''').strip())) __lowerCamelCase : str = input("Enter the change you want to make in Indian Currency: ").strip() else: # All denominations of Indian Currency if user does not enter __lowerCamelCase : Optional[int] = [1, 2, 5, 10, 20, 50, 100, 500, 2_000] __lowerCamelCase : Optional[int] = input("Enter the change you want to make: ").strip() if int(value) == 0 or int(value) < 0: print("The total value cannot be zero or negative.") else: print(F'''Following is minimal change for {value}: ''') __lowerCamelCase : Union[str, Any] = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=" ")
457
0
import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor _snake_case = logging.get_logger(__name__) class UpperCAmelCase_ ( a): def __init__( self, *__a, **__a): '''simple docstring''' warnings.warn( "The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use GLPNImageProcessor instead.", __a, ) super().__init__(*__a, **__a)
500
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _snake_case = 16 _snake_case = 32 def A ( _lowerCamelCase , _lowerCamelCase = 16 ): '''simple docstring''' _lowerCAmelCase : int = AutoTokenizer.from_pretrained("bert-base-cased" ) _lowerCAmelCase : List[Any] = load_dataset("glue" , "mrpc" ) def tokenize_function(_lowerCamelCase ): # max_length=None => use the model max length (it's actually the default) _lowerCAmelCase : List[str] = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=_lowerCamelCase , max_length=_lowerCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _lowerCAmelCase : List[str] = datasets.map( _lowerCamelCase , batched=_lowerCamelCase , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _lowerCAmelCase : Any = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(_lowerCamelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. _lowerCAmelCase : Optional[Any] = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _lowerCAmelCase : Optional[int] = 16 elif accelerator.mixed_precision != "no": _lowerCAmelCase : str = 8 else: _lowerCAmelCase : int = None return tokenizer.pad( _lowerCamelCase , padding="longest" , max_length=_lowerCamelCase , pad_to_multiple_of=_lowerCamelCase , return_tensors="pt" , ) # Instantiate dataloaders. _lowerCAmelCase : Optional[Any] = DataLoader( tokenized_datasets["train"] , shuffle=_lowerCamelCase , collate_fn=_lowerCamelCase , batch_size=_lowerCamelCase ) _lowerCAmelCase : Dict = DataLoader( tokenized_datasets["validation"] , shuffle=_lowerCamelCase , collate_fn=_lowerCamelCase , batch_size=_lowerCamelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders _snake_case = mocked_dataloaders # noqa: F811 def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if os.environ.get("TESTING_MOCKED_DATALOADERS" , _lowerCamelCase ) == "1": _lowerCAmelCase : str = 2 # New Code # _lowerCAmelCase : Optional[Any] = int(args.gradient_accumulation_steps ) # Initialize accelerator _lowerCAmelCase : int = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=_lowerCamelCase ) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( "Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _lowerCAmelCase : Union[str, Any] = config["lr"] _lowerCAmelCase : List[Any] = int(config["num_epochs"] ) _lowerCAmelCase : str = int(config["seed"] ) _lowerCAmelCase : str = int(config["batch_size"] ) _lowerCAmelCase : int = evaluate.load("glue" , "mrpc" ) set_seed(_lowerCamelCase ) _lowerCAmelCase , _lowerCAmelCase : Any = get_dataloaders(_lowerCamelCase , _lowerCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _lowerCAmelCase : Dict = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=_lowerCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _lowerCAmelCase : Optional[int] = model.to(accelerator.device ) # Instantiate optimizer _lowerCAmelCase : Dict = AdamW(params=model.parameters() , lr=_lowerCamelCase ) # Instantiate scheduler _lowerCAmelCase : Any = get_linear_schedule_with_warmup( optimizer=_lowerCamelCase , num_warmup_steps=100 , num_training_steps=(len(_lowerCamelCase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : int = accelerator.prepare( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Now we train the model for epoch in range(_lowerCamelCase ): model.train() for step, batch in enumerate(_lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(_lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = model(**_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = output.loss accelerator.backward(_lowerCamelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _lowerCAmelCase : str = model(**_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = outputs.logits.argmax(dim=-1 ) _lowerCAmelCase , _lowerCAmelCase : str = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=_lowerCamelCase , references=_lowerCamelCase , ) _lowerCAmelCase : List[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"epoch {epoch}:" , _lowerCamelCase ) def A ( ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=_lowerCamelCase , default=_lowerCamelCase , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) # New Code # parser.add_argument( "--gradient_accumulation_steps" , type=_lowerCamelCase , default=1 , help="The number of minibatches to be ran before gradients are accumulated." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) _lowerCAmelCase : str = parser.parse_args() _lowerCAmelCase : List[Any] = {"lr": 2e-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(_lowerCamelCase , _lowerCamelCase ) if __name__ == "__main__": main()
500
1
import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class lowercase ( ctypes.Structure ): # _fields is a specific attr expected by ctypes lowerCamelCase : Dict = [('''size''', ctypes.c_int), ('''visible''', ctypes.c_byte)] def a ( ) -> str: '''simple docstring''' if os.name == "nt": SCREAMING_SNAKE_CASE__ : str = CursorInfo() SCREAMING_SNAKE_CASE__ : List[Any] = ctypes.windll.kernelaa.GetStdHandle(-1_1 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(A__ , ctypes.byref(A__ ) ) SCREAMING_SNAKE_CASE__ : Tuple = False ctypes.windll.kernelaa.SetConsoleCursorInfo(A__ , ctypes.byref(A__ ) ) elif os.name == "posix": sys.stdout.write('''\033[?25l''' ) sys.stdout.flush() def a ( ) -> Optional[int]: '''simple docstring''' if os.name == "nt": SCREAMING_SNAKE_CASE__ : Tuple = CursorInfo() SCREAMING_SNAKE_CASE__ : List[Any] = ctypes.windll.kernelaa.GetStdHandle(-1_1 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(A__ , ctypes.byref(A__ ) ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = True ctypes.windll.kernelaa.SetConsoleCursorInfo(A__ , ctypes.byref(A__ ) ) elif os.name == "posix": sys.stdout.write('''\033[?25h''' ) sys.stdout.flush() @contextmanager def a ( ) -> List[Any]: '''simple docstring''' try: hide_cursor() yield finally: show_cursor()
711
from __future__ import annotations a_ :str = 8.988e9 # units = N * m^s * C^-2 def a ( A__ , A__ , A__ , A__ ) -> dict[str, float]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = abs(chargea * chargea ) if (force, chargea, chargea, distance).count(0 ) != 1: raise ValueError('''One and only one argument must be 0''' ) if distance < 0: raise ValueError('''Distance cannot be negative''' ) if force == 0: SCREAMING_SNAKE_CASE__ : Dict = COULOMBS_CONSTANT * charge_product / (distance**2) return {"force": force} elif chargea == 0: SCREAMING_SNAKE_CASE__ : Tuple = abs(A__ ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge1": chargea} elif chargea == 0: SCREAMING_SNAKE_CASE__ : Optional[int] = abs(A__ ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge2": chargea} elif distance == 0: SCREAMING_SNAKE_CASE__ : List[Any] = (COULOMBS_CONSTANT * charge_product / abs(A__ )) ** 0.5 return {"distance": distance} raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
250
0
import unittest import numpy as np from diffusers import OnnxStableDiffusionInpaintPipelineLegacy from diffusers.utils.testing_utils import ( is_onnx_available, load_image, load_numpy, nightly, require_onnxruntime, require_torch_gpu, ) if is_onnx_available(): import onnxruntime as ort @nightly @require_onnxruntime @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase): @property def _snake_case ( self : Optional[int] ) ->Optional[Any]: """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _snake_case ( self : Tuple ) ->Optional[int]: """simple docstring""" a__ :List[str] = ort.SessionOptions() a__ :Dict = False return options def _snake_case ( self : Tuple ) ->Dict: """simple docstring""" a__ :List[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png" ) a__ :str = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png" ) a__ :Union[str, Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy" ) # using the PNDM scheduler by default a__ :List[str] = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="onnx" , safety_checker=__A , feature_extractor=__A , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__A ) a__ :List[str] = "A red cat sitting on a park bench" a__ :Tuple = np.random.RandomState(0 ) a__ :Optional[int] = pipe( prompt=__A , image=__A , mask_image=__A , strength=0.75 , guidance_scale=7.5 , num_inference_steps=15 , generator=__A , output_type="np" , ) a__ :Optional[Any] = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 1E-2
395
import time import warnings from abc import ABC from copy import deepcopy from typing import Optional import torch from ..utils import add_start_docstrings, logging snake_case__ = logging.get_logger(__name__) snake_case__ = r''' Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) scores (`torch.FloatTensor` of shape `(batch_size, config.vocab_size)`): Prediction scores of a language modeling head. These can be scores for each vocabulary token before SoftMax or scores for each vocabulary token after SoftMax. kwargs (`Dict[str, Any]`, *optional*): Additional stopping criteria specific kwargs. Return: `bool`. `False` indicates we should continue, `True` indicates we should stop. ''' class lowerCAmelCase_ ( _a): @add_start_docstrings(__A ) def __call__( self : Dict , __A : torch.LongTensor , __A : torch.FloatTensor , **__A : Union[str, Any] ) ->bool: """simple docstring""" raise NotImplementedError("StoppingCriteria needs to be subclassed" ) class lowerCAmelCase_ ( _a): def __init__( self : Dict , __A : int , __A : Optional[int] = None ) ->Dict: """simple docstring""" a__ :List[str] = max_length a__ :Union[str, Any] = max_position_embeddings @add_start_docstrings(__A ) def __call__( self : int , __A : torch.LongTensor , __A : torch.FloatTensor , **__A : List[str] ) ->bool: """simple docstring""" a__ :Optional[int] = input_ids.shape[-1] a__ :Dict = cur_len >= self.max_length if self.max_position_embeddings is not None and not is_done and cur_len >= self.max_position_embeddings: logger.warning_once( "This is a friendly reminder - the current text generation call will exceed the model's predefined " F'''maximum length ({self.max_position_embeddings}). Depending on the model, you may observe ''' "exceptions, performance degradation, or nothing at all." ) return is_done class lowerCAmelCase_ ( _a): def __init__( self : Any , __A : int , __A : int ) ->Optional[int]: """simple docstring""" warnings.warn( "The class `MaxNewTokensCriteria` is deprecated. " F'''Please use `MaxLengthCriteria(max_length={start_length + max_new_tokens})` ''' "with `max_length = start_length + max_new_tokens` instead." , __A , ) a__ :Tuple = start_length a__ :List[Any] = max_new_tokens a__ :int = start_length + max_new_tokens @add_start_docstrings(__A ) def __call__( self : Any , __A : torch.LongTensor , __A : torch.FloatTensor , **__A : List[str] ) ->bool: """simple docstring""" return input_ids.shape[-1] >= self.max_length class lowerCAmelCase_ ( _a): def __init__( self : Any , __A : float , __A : Optional[float] = None ) ->Tuple: """simple docstring""" a__ :Any = max_time a__ :List[str] = time.time() if initial_timestamp is None else initial_timestamp @add_start_docstrings(__A ) def __call__( self : Any , __A : torch.LongTensor , __A : torch.FloatTensor , **__A : Union[str, Any] ) ->bool: """simple docstring""" return time.time() - self.initial_timestamp > self.max_time class lowerCAmelCase_ ( _a): @add_start_docstrings(__A ) def __call__( self : List[str] , __A : torch.LongTensor , __A : torch.FloatTensor , **__A : Optional[Any] ) ->bool: """simple docstring""" return any(criteria(__A , __A ) for criteria in self ) @property def _snake_case ( self : int ) ->Optional[int]: """simple docstring""" for stopping_criterium in self: if isinstance(__A , __A ): return stopping_criterium.max_length elif isinstance(__A , __A ): return stopping_criterium.max_length return None def lowerCamelCase__ ( a : StoppingCriteriaList , a : int ) -> StoppingCriteriaList: """simple docstring""" a__ :Tuple = stopping_criteria.max_length a__ :str = deepcopy(a ) if stopping_max_length is not None and stopping_max_length != max_length: warnings.warn("You set different `max_length` for stopping criteria and `max_length` parameter" , a ) elif stopping_max_length is None: new_stopping_criteria.append(MaxLengthCriteria(max_length=a ) ) return new_stopping_criteria
395
1
"""simple docstring""" import unittest from knapsack import greedy_knapsack as kp class __snake_case ( unittest.TestCase ): def lowerCamelCase_ ( self) -> Union[str, Any]: '''simple docstring''' a__: Optional[Any] = [10, 20, 30, 40, 50, 60] a__: Any = [2, 4, 6, 8, 10, 12] a__: Optional[Any] = 1_00 self.assertEqual(kp.calc_profit(lowercase , lowercase , lowercase) , 2_10) def lowerCamelCase_ ( self) -> Optional[Any]: '''simple docstring''' self.assertRaisesRegex(lowercase , 'max_weight must greater than zero.') def lowerCamelCase_ ( self) -> Tuple: '''simple docstring''' self.assertRaisesRegex(lowercase , 'Weight can not be negative.') def lowerCamelCase_ ( self) -> Optional[int]: '''simple docstring''' self.assertRaisesRegex(lowercase , 'Profit can not be negative.') def lowerCamelCase_ ( self) -> Dict: '''simple docstring''' self.assertRaisesRegex(lowercase , 'max_weight must greater than zero.') def lowerCamelCase_ ( self) -> Dict: '''simple docstring''' self.assertRaisesRegex( lowercase , 'The length of profit and weight must be same.') if __name__ == "__main__": unittest.main()
217
"""simple docstring""" from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 10**-10 ) ->float: a__: int = a while True: a__: Optional[Any] = Decimal(_SCREAMING_SNAKE_CASE ) - ( Decimal(eval(_SCREAMING_SNAKE_CASE ) ) / Decimal(eval(str(diff(_SCREAMING_SNAKE_CASE ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(_SCREAMING_SNAKE_CASE ) ) < precision: # noqa: S307 return float(_SCREAMING_SNAKE_CASE ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f"The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}") # Find root of polynomial print(f"The root of x**2 - 5*x + 2 = 0 is {newton_raphson('x**2 - 5*x + 2', 0.4)}") # Find Square Root of 5 print(f"The root of log(x) - 1 = 0 is {newton_raphson('log(x) - 1', 2)}") # Exponential Roots print(f"The root of exp(x) - 1 = 0 is {newton_raphson('exp(x) - 1', 0)}")
217
1
from math import factorial, pi def __lowerCAmelCase ( _UpperCamelCase : float , _UpperCamelCase : int = 30 ) -> float: '''simple docstring''' if not isinstance(_UpperCamelCase , (int, float) ): raise ValueError('maclaurin_sin() requires either an int or float for theta' ) if not isinstance(_UpperCamelCase , _UpperCamelCase ) or accuracy <= 0: raise ValueError('maclaurin_sin() requires a positive int for accuracy' ) SCREAMING_SNAKE_CASE = float(_UpperCamelCase ) SCREAMING_SNAKE_CASE = theta // (2 * pi) theta -= 2 * div * pi return sum( (-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1 ) for r in range(_UpperCamelCase ) ) def __lowerCAmelCase ( _UpperCamelCase : float , _UpperCamelCase : int = 30 ) -> float: '''simple docstring''' if not isinstance(_UpperCamelCase , (int, float) ): raise ValueError('maclaurin_cos() requires either an int or float for theta' ) if not isinstance(_UpperCamelCase , _UpperCamelCase ) or accuracy <= 0: raise ValueError('maclaurin_cos() requires a positive int for accuracy' ) SCREAMING_SNAKE_CASE = float(_UpperCamelCase ) SCREAMING_SNAKE_CASE = theta // (2 * pi) theta -= 2 * div * pi return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r ) for r in range(_UpperCamelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() print(maclaurin_sin(10)) print(maclaurin_sin(-10)) print(maclaurin_sin(10, 15)) print(maclaurin_sin(-10, 15)) print(maclaurin_cos(5)) print(maclaurin_cos(-5)) print(maclaurin_cos(10, 15)) print(maclaurin_cos(-10, 15))
439
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu a_ : str = [ "EAGER", "AOT_EAGER", "INDUCTOR", "NVFUSER", "AOT_NVFUSER", "AOT_CUDAGRAPHS", "OFI", "FX2TRT", "ONNXRT", "IPEX", ] def __lowerCAmelCase ( _UpperCamelCase : int , _UpperCamelCase : List[Any]=None , _UpperCamelCase : Dict=None , _UpperCamelCase : str=None ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = True while ask_again: SCREAMING_SNAKE_CASE = input(_UpperCamelCase ) try: if default is not None and len(_UpperCamelCase ) == 0: return default return convert_value(_UpperCamelCase ) if convert_value is not None else result except Exception: if error_message is not None: print(_UpperCamelCase ) def __lowerCAmelCase ( _UpperCamelCase : Optional[Any] , _UpperCamelCase : Union[str, Any]=[] , _UpperCamelCase : Optional[int]=None , _UpperCamelCase : Optional[Any]=0 ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = BulletMenu(_UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = menu.run(default_choice=_UpperCamelCase ) return convert_value(_UpperCamelCase ) if convert_value is not None else result def __lowerCAmelCase ( _UpperCamelCase : List[str] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = int(_UpperCamelCase ) return ComputeEnvironment(['LOCAL_MACHINE', 'AMAZON_SAGEMAKER'][value] ) def __lowerCAmelCase ( _UpperCamelCase : Tuple ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = int(_UpperCamelCase ) return DistributedType(['NO', 'MULTI_CPU', 'MULTI_XPU', 'MULTI_GPU', 'MULTI_NPU', 'TPU'][value] ) def __lowerCAmelCase ( _UpperCamelCase : List[Any] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = int(_UpperCamelCase ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def __lowerCAmelCase ( _UpperCamelCase : Union[str, Any] ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = int(_UpperCamelCase ) return PrecisionType(['no', 'fp16', 'bf16', 'fp8'][value] ) def __lowerCAmelCase ( _UpperCamelCase : Tuple ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = int(_UpperCamelCase ) return SageMakerDistributedType(['NO', 'DATA_PARALLEL', 'MODEL_PARALLEL'][value] ) def __lowerCAmelCase ( _UpperCamelCase : Dict ) -> str: '''simple docstring''' return {"yes": True, "no": False}[value.lower()] class UpperCamelCase ( argparse.RawDescriptionHelpFormatter ): def UpperCamelCase ( self : Union[str, Any] , snake_case__ : Tuple , snake_case__ : Optional[Any] , snake_case__ : List[str] , snake_case__ : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = super()._format_usage(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) SCREAMING_SNAKE_CASE = usage.replace('<command> [<args>] ' , '' ) return usage
439
1
import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml __UpperCamelCase : List[Any] = NewType("""DataClass""", Any) __UpperCamelCase : str = NewType("""DataClassType""", Any) def snake_case ( lowerCamelCase ): '''simple docstring''' if isinstance(lowerCamelCase , lowerCamelCase ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( F'Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).' ) def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = {str(lowerCamelCase ): choice for choice in choices} return lambda lowerCamelCase : str_to_choice.get(lowerCamelCase , lowerCamelCase ) def snake_case ( *, lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = dataclasses.MISSING , lowerCamelCase = dataclasses.MISSING , lowerCamelCase = None , **lowerCamelCase , ): '''simple docstring''' if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls __lowercase = {} if aliases is not None: __lowercase = aliases if help is not None: __lowercase = help return dataclasses.field(metadata=lowerCamelCase , default=lowerCamelCase , default_factory=lowerCamelCase , **lowerCamelCase ) class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :Iterable[DataClassType] def __init__( self : Union[str, Any] , _lowerCAmelCase : Union[DataClassType, Iterable[DataClassType]] , **_lowerCAmelCase : Optional[Any] ) -> Union[str, Any]: """simple docstring""" if "formatter_class" not in kwargs: __lowercase = ArgumentDefaultsHelpFormatter super().__init__(**_lowerCAmelCase ) if dataclasses.is_dataclass(_lowerCAmelCase ): __lowercase = [dataclass_types] __lowercase = list(_lowerCAmelCase ) for dtype in self.dataclass_types: self._add_dataclass_arguments(_lowerCAmelCase ) @staticmethod def _a ( _lowerCAmelCase : ArgumentParser , _lowerCAmelCase : dataclasses.Field ) -> int: """simple docstring""" __lowercase = F'--{field.name}' __lowercase = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type , _lowerCAmelCase ): raise RuntimeError( """Unresolved type detected, which should have been done with the help of """ """`typing.get_type_hints` method by default""" ) __lowercase = kwargs.pop("""aliases""" , [] ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ): __lowercase = [aliases] __lowercase = getattr(field.type , """__origin__""" , field.type ) if origin_type is Union or (hasattr(_lowerCAmelCase , """UnionType""" ) and isinstance(_lowerCAmelCase , types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(_lowerCAmelCase ) not in field.type.__args__ ): raise ValueError( """Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because""" """ the argument parser only supports one type per argument.""" F' Problem encountered in field \'{field.name}\'.' ) if type(_lowerCAmelCase ) not in field.type.__args__: # filter `str` in Union __lowercase = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] __lowercase = getattr(field.type , """__origin__""" , field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) __lowercase = ( field.type.__args__[0] if isinstance(_lowerCAmelCase , field.type.__args__[1] ) else field.type.__args__[1] ) __lowercase = getattr(field.type , """__origin__""" , field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) __lowercase = {} if origin_type is Literal or (isinstance(field.type , _lowerCAmelCase ) and issubclass(field.type , _lowerCAmelCase )): if origin_type is Literal: __lowercase = field.type.__args__ else: __lowercase = [x.value for x in field.type] __lowercase = make_choice_type_function(kwargs["""choices"""] ) if field.default is not dataclasses.MISSING: __lowercase = field.default else: __lowercase = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument __lowercase = copy(_lowerCAmelCase ) # Hack because type=bool in argparse does not behave as we want. __lowercase = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. __lowercase = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way __lowercase = default # This tells argparse we accept 0 or 1 value after --field_name __lowercase = """?""" # This is the value that will get picked if we do --field_name (without value) __lowercase = True elif isclass(_lowerCAmelCase ) and issubclass(_lowerCAmelCase , _lowerCAmelCase ): __lowercase = field.type.__args__[0] __lowercase = """+""" if field.default_factory is not dataclasses.MISSING: __lowercase = field.default_factory() elif field.default is dataclasses.MISSING: __lowercase = True else: __lowercase = field.type if field.default is not dataclasses.MISSING: __lowercase = field.default elif field.default_factory is not dataclasses.MISSING: __lowercase = field.default_factory() else: __lowercase = True parser.add_argument(_lowerCAmelCase , *_lowerCAmelCase , **_lowerCAmelCase ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): __lowercase = False parser.add_argument(F'--no_{field.name}' , action="""store_false""" , dest=field.name , **_lowerCAmelCase ) def _a ( self : List[str] , _lowerCAmelCase : DataClassType ) -> List[Any]: """simple docstring""" if hasattr(_lowerCAmelCase , """_argument_group_name""" ): __lowercase = self.add_argument_group(dtype._argument_group_name ) else: __lowercase = self try: __lowercase = get_type_hints(_lowerCAmelCase ) except NameError: raise RuntimeError( F'Type resolution failed for {dtype}. Try declaring the class in global scope or ' """removing line of `from __future__ import annotations` which opts in Postponed """ """Evaluation of Annotations (PEP 563)""" ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(_lowerCAmelCase ): __lowercase = """.""".join(map(_lowerCAmelCase , sys.version_info[:3] ) ) raise RuntimeError( F'Type resolution failed for {dtype} on Python {python_version}. Try removing ' """line of `from __future__ import annotations` which opts in union types as """ """`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To """ """support Python versions that lower than 3.10, you need to use """ """`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of """ """`X | None`.""" ) from ex raise for field in dataclasses.fields(_lowerCAmelCase ): if not field.init: continue __lowercase = type_hints[field.name] self._parse_dataclass_field(_lowerCAmelCase , _lowerCAmelCase ) def _a ( self : int , _lowerCAmelCase : str=None , _lowerCAmelCase : Dict=False , _lowerCAmelCase : Optional[int]=True , _lowerCAmelCase : Optional[int]=None , _lowerCAmelCase : int=None , ) -> Tuple[DataClass, ...]: """simple docstring""" if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): __lowercase = [] if args_filename: args_files.append(Path(_lowerCAmelCase ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix(""".args""" ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values __lowercase = ArgumentParser() args_file_parser.add_argument(_lowerCAmelCase , type=_lowerCAmelCase , action="""append""" ) # Use only remaining args for further parsing (remove the args_file_flag) __lowercase , __lowercase = args_file_parser.parse_known_args(args=_lowerCAmelCase ) __lowercase = vars(_lowerCAmelCase ).get(args_file_flag.lstrip("""-""" ) , _lowerCAmelCase ) if cmd_args_file_paths: args_files.extend([Path(_lowerCAmelCase ) for p in cmd_args_file_paths] ) __lowercase = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last __lowercase = file_args + args if args is not None else file_args + sys.argv[1:] __lowercase , __lowercase = self.parse_known_args(args=_lowerCAmelCase ) __lowercase = [] for dtype in self.dataclass_types: __lowercase = {f.name for f in dataclasses.fields(_lowerCAmelCase ) if f.init} __lowercase = {k: v for k, v in vars(_lowerCAmelCase ).items() if k in keys} for k in keys: delattr(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = dtype(**_lowerCAmelCase ) outputs.append(_lowerCAmelCase ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(_lowerCAmelCase ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(F'Some specified arguments are not used by the HfArgumentParser: {remaining_args}' ) return (*outputs,) def _a ( self : int , _lowerCAmelCase : Dict[str, Any] , _lowerCAmelCase : bool = False ) -> Tuple[DataClass, ...]: """simple docstring""" __lowercase = set(args.keys() ) __lowercase = [] for dtype in self.dataclass_types: __lowercase = {f.name for f in dataclasses.fields(_lowerCAmelCase ) if f.init} __lowercase = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) __lowercase = dtype(**_lowerCAmelCase ) outputs.append(_lowerCAmelCase ) if not allow_extra_keys and unused_keys: raise ValueError(F'Some keys are not used by the HfArgumentParser: {sorted(_lowerCAmelCase )}' ) return tuple(_lowerCAmelCase ) def _a ( self : Tuple , _lowerCAmelCase : str , _lowerCAmelCase : bool = False ) -> Tuple[DataClass, ...]: """simple docstring""" with open(Path(_lowerCAmelCase ) , encoding="""utf-8""" ) as open_json_file: __lowercase = json.loads(open_json_file.read() ) __lowercase = self.parse_dict(_lowerCAmelCase , allow_extra_keys=_lowerCAmelCase ) return tuple(_lowerCAmelCase ) def _a ( self : Union[str, Any] , _lowerCAmelCase : str , _lowerCAmelCase : bool = False ) -> Tuple[DataClass, ...]: """simple docstring""" __lowercase = self.parse_dict(yaml.safe_load(Path(_lowerCAmelCase ).read_text() ) , allow_extra_keys=_lowerCAmelCase ) return tuple(_lowerCAmelCase )
53
import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class __UpperCamelCase : def __init__( self : int , _lowerCAmelCase : Tuple , _lowerCAmelCase : int = 13 , _lowerCAmelCase : int = 64 , _lowerCAmelCase : int = 2 , _lowerCAmelCase : int = 3 , _lowerCAmelCase : int = 3 , _lowerCAmelCase : bool = True , _lowerCAmelCase : bool = True , _lowerCAmelCase : int = 128 , _lowerCAmelCase : Optional[int]=[16, 32, 64, 128] , _lowerCAmelCase : int = 7 , _lowerCAmelCase : int = 4 , _lowerCAmelCase : int = 37 , _lowerCAmelCase : str = "gelu" , _lowerCAmelCase : float = 0.1 , _lowerCAmelCase : float = 0.1 , _lowerCAmelCase : int = 10 , _lowerCAmelCase : float = 0.02 , _lowerCAmelCase : int = 2 , _lowerCAmelCase : int = 1 , _lowerCAmelCase : int = 128 , _lowerCAmelCase : List[int] = [2, 2, 2, 2] , _lowerCAmelCase : int = 2 , _lowerCAmelCase : int = 2 , ) -> Tuple: """simple docstring""" __lowercase = parent __lowercase = batch_size __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = is_training __lowercase = use_labels __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = encoder_stride __lowercase = num_attention_outputs __lowercase = embed_dim __lowercase = embed_dim + 1 __lowercase = resolution __lowercase = depths __lowercase = hidden_sizes __lowercase = dim __lowercase = mlp_expansion_ratio def _a ( self : List[Any] ) -> Optional[int]: """simple docstring""" __lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase = self.get_config() return config, pixel_values, labels def _a ( self : Optional[Any] ) -> str: """simple docstring""" return EfficientFormerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , ) def _a ( self : Union[str, Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[int] ) -> Optional[int]: """simple docstring""" __lowercase = TFEfficientFormerModel(config=_lowerCAmelCase ) __lowercase = model(_lowerCAmelCase , training=_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self : Union[str, Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : Dict , _lowerCAmelCase : Dict ) -> Optional[Any]: """simple docstring""" __lowercase = self.type_sequence_label_size __lowercase = TFEfficientFormerForImageClassification(_lowerCAmelCase ) __lowercase = model(_lowerCAmelCase , labels=_lowerCAmelCase , training=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __lowercase = 1 __lowercase = TFEfficientFormerForImageClassification(_lowerCAmelCase ) __lowercase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowercase = model(_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _a ( self : Optional[Any] ) -> Any: """simple docstring""" __lowercase = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase = config_and_inputs __lowercase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): __snake_case :Any = ( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) __snake_case :Any = ( { 'feature-extraction': TFEfficientFormerModel, 'image-classification': ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) __snake_case :int = False __snake_case :Optional[int] = False __snake_case :int = False __snake_case :Any = False __snake_case :Any = False def _a ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase = TFEfficientFormerModelTester(self ) __lowercase = ConfigTester( self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=37 ) def _a ( self : Optional[int] ) -> int: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""EfficientFormer does not use inputs_embeds""" ) def _a ( self : Optional[int] ) -> Any: """simple docstring""" pass @unittest.skip(reason="""EfficientFormer does not support input and output embeddings""" ) def _a ( self : int ) -> str: """simple docstring""" pass def _a ( self : Union[str, Any] ) -> List[str]: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(_lowerCAmelCase ) __lowercase = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def _a ( self : Union[str, Any] ) -> Dict: """simple docstring""" def check_hidden_states_output(_lowerCAmelCase : int , _lowerCAmelCase : Any , _lowerCAmelCase : List[Any] ): __lowercase = model_class(_lowerCAmelCase ) __lowercase = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) , training=_lowerCAmelCase ) __lowercase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __lowercase = getattr( self.model_tester , """expected_num_hidden_layers""" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(_lowerCAmelCase ) , _lowerCAmelCase ) if hasattr(self.model_tester , """encoder_seq_length""" ): __lowercase = self.model_tester.encoder_seq_length if hasattr(self.model_tester , """chunk_length""" ) and self.model_tester.chunk_length > 1: __lowercase = seq_length * self.model_tester.chunk_length else: __lowercase = self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) if config.is_encoder_decoder: __lowercase = outputs.decoder_hidden_states self.asseretIsInstance(_lowerCAmelCase , (list, tuple) ) self.assertEqual(len(_lowerCAmelCase ) , _lowerCAmelCase ) __lowercase = getattr(self.model_tester , """seq_length""" , _lowerCAmelCase ) __lowercase = getattr(self.model_tester , """decoder_seq_length""" , _lowerCAmelCase ) self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [decoder_seq_length, self.model_tester.hidden_size] , ) __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def _a ( self : Optional[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : str , _lowerCAmelCase : Optional[Any]=False ) -> Dict: """simple docstring""" __lowercase = super()._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase ) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def _a ( self : int ) -> int: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) @unittest.skip(reason="""EfficientFormer does not implement masked image modeling yet""" ) def _a ( self : Union[str, Any] ) -> str: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_lowerCAmelCase ) def _a ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase ) @slow def _a ( self : List[str] ) -> List[Any]: """simple docstring""" for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = TFEfficientFormerModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) def _a ( self : Any ) -> List[str]: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = True __lowercase = getattr(self.model_tester , """seq_length""" , _lowerCAmelCase ) __lowercase = getattr(self.model_tester , """encoder_seq_length""" , _lowerCAmelCase ) __lowercase = getattr(self.model_tester , """key_length""" , _lowerCAmelCase ) __lowercase = getattr(self.model_tester , """chunk_length""" , _lowerCAmelCase ) if chunk_length is not None and hasattr(self.model_tester , """num_hashes""" ): __lowercase = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: __lowercase = True __lowercase = False __lowercase = True __lowercase = model_class(_lowerCAmelCase ) __lowercase = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) , training=_lowerCAmelCase ) __lowercase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(_lowerCAmelCase ) , self.model_tester.num_attention_outputs ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __lowercase = True __lowercase = model_class(_lowerCAmelCase ) __lowercase = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) , training=_lowerCAmelCase ) __lowercase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(_lowerCAmelCase ) , self.model_tester.num_attention_outputs ) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , ) else: self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , ) def _a ( self : Dict ) -> Optional[int]: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model __lowercase = model_class(_lowerCAmelCase ) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes __lowercase = { key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=_lowerCAmelCase ) for key, val in model.input_signature.items() if key in model.dummy_inputs } __lowercase = model(_lowerCAmelCase ) self.assertTrue(outputs_dict is not None ) def snake_case ( ): '''simple docstring''' __lowercase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class __UpperCamelCase ( unittest.TestCase ): @cached_property def _a ( self : Optional[Any] ) -> Any: """simple docstring""" return ( EfficientFormerImageProcessor.from_pretrained("""snap-research/efficientformer-l1-300""" ) if is_vision_available() else None ) @slow def _a ( self : Optional[Any] ) -> Any: """simple docstring""" __lowercase = TFEfficientFormerForImageClassification.from_pretrained("""snap-research/efficientformer-l1-300""" ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=_lowerCAmelCase , return_tensors="""tf""" ) # forward pass __lowercase = model(**_lowerCAmelCase , training=_lowerCAmelCase ) # verify the logits __lowercase = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) __lowercase = tf.constant([-0.0_555, 0.4_825, -0.0_852] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1e-4 ) ) @slow def _a ( self : Optional[Any] ) -> Tuple: """simple docstring""" __lowercase = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( """snap-research/efficientformer-l1-300""" ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=_lowerCAmelCase , return_tensors="""tf""" ) # forward pass __lowercase = model(**_lowerCAmelCase , training=_lowerCAmelCase ) # verify the logits __lowercase = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) __lowercase = tf.constant([-0.1_312, 0.4_353, -1.0_499] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1e-4 ) )
53
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''facebook/levit-128S''': '''https://huggingface.co/facebook/levit-128S/resolve/main/config.json''', # See all LeViT models at https://huggingface.co/models?filter=levit } class snake_case__(_lowerCAmelCase ): """simple docstring""" lowercase_ = "levit" def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE : Optional[int]=224 , SCREAMING_SNAKE_CASE : Union[str, Any]=3 , SCREAMING_SNAKE_CASE : List[str]=3 , SCREAMING_SNAKE_CASE : Tuple=2 , SCREAMING_SNAKE_CASE : Union[str, Any]=1 , SCREAMING_SNAKE_CASE : Optional[int]=16 , SCREAMING_SNAKE_CASE : List[str]=[128, 256, 384] , SCREAMING_SNAKE_CASE : List[str]=[4, 8, 12] , SCREAMING_SNAKE_CASE : Optional[Any]=[4, 4, 4] , SCREAMING_SNAKE_CASE : Tuple=[16, 16, 16] , SCREAMING_SNAKE_CASE : Union[str, Any]=0 , SCREAMING_SNAKE_CASE : Tuple=[2, 2, 2] , SCREAMING_SNAKE_CASE : str=[2, 2, 2] , SCREAMING_SNAKE_CASE : int=0.02 , **SCREAMING_SNAKE_CASE : List[str] , ): super().__init__(**SCREAMING_SNAKE_CASE__ ) lowercase__ : Union[str, Any] = image_size lowercase__ : List[str] = num_channels lowercase__ : Any = kernel_size lowercase__ : Union[str, Any] = stride lowercase__ : int = padding lowercase__ : Union[str, Any] = hidden_sizes lowercase__ : Optional[int] = num_attention_heads lowercase__ : Dict = depths lowercase__ : int = key_dim lowercase__ : List[Any] = drop_path_rate lowercase__ : Dict = patch_size lowercase__ : Optional[Any] = attention_ratio lowercase__ : Optional[Any] = mlp_ratio lowercase__ : Tuple = initializer_range lowercase__ : Optional[Any] = [ ["Subsample", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["Subsample", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class snake_case__(_lowerCAmelCase ): """simple docstring""" lowercase_ = version.parse("""1.11""" ) @property def snake_case ( self : Optional[Any] ): return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def snake_case ( self : List[Any] ): return 1E-4
496
"""simple docstring""" import unittest from transformers.utils.backbone_utils import ( BackboneMixin, get_aligned_output_features_output_indices, verify_out_features_out_indices, ) class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def snake_case__ ( self ) -> Dict: A__ = ["a", "b", "c"] # Defaults to last layer if both are None A__ , A__ = get_aligned_output_features_output_indices(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ , ["c"] ) self.assertEqual(SCREAMING_SNAKE_CASE__ , [2] ) # Out indices set to match out features A__ , A__ = get_aligned_output_features_output_indices(["a", "c"] , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ , ["a", "c"] ) self.assertEqual(SCREAMING_SNAKE_CASE__ , [0, 2] ) # Out features set to match out indices A__ , A__ = get_aligned_output_features_output_indices(SCREAMING_SNAKE_CASE__ , [0, 2] , SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ , ["a", "c"] ) self.assertEqual(SCREAMING_SNAKE_CASE__ , [0, 2] ) # Out features selected from negative indices A__ , A__ = get_aligned_output_features_output_indices(SCREAMING_SNAKE_CASE__ , [-3, -1] , SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ , ["a", "c"] ) self.assertEqual(SCREAMING_SNAKE_CASE__ , [-3, -1] ) def snake_case__ ( self ) -> Dict: # Stage names must be set with self.assertRaises(SCREAMING_SNAKE_CASE__ ): verify_out_features_out_indices(["a", "b"] , (0, 1) , SCREAMING_SNAKE_CASE__ ) # Out features must be a list with self.assertRaises(SCREAMING_SNAKE_CASE__ ): verify_out_features_out_indices(("a", "b") , (0, 1) , ["a", "b"] ) # Out features must be a subset of stage names with self.assertRaises(SCREAMING_SNAKE_CASE__ ): verify_out_features_out_indices(["a", "b"] , (0, 1) , ["a"] ) # Out indices must be a list or tuple with self.assertRaises(SCREAMING_SNAKE_CASE__ ): verify_out_features_out_indices(SCREAMING_SNAKE_CASE__ , 0 , ["a", "b"] ) # Out indices must be a subset of stage names with self.assertRaises(SCREAMING_SNAKE_CASE__ ): verify_out_features_out_indices(SCREAMING_SNAKE_CASE__ , (0, 1) , ["a"] ) # Out features and out indices must be the same length with self.assertRaises(SCREAMING_SNAKE_CASE__ ): verify_out_features_out_indices(["a", "b"] , (0,) , ["a", "b", "c"] ) # Out features should match out indices with self.assertRaises(SCREAMING_SNAKE_CASE__ ): verify_out_features_out_indices(["a", "b"] , (0, 2) , ["a", "b", "c"] ) # Out features and out indices should be in order with self.assertRaises(SCREAMING_SNAKE_CASE__ ): verify_out_features_out_indices(["b", "a"] , (0, 1) , ["a", "b"] ) # Check passes with valid inputs verify_out_features_out_indices(["a", "b", "d"] , (0, 1, -1) , ["a", "b", "c", "d"] ) def snake_case__ ( self ) -> List[Any]: A__ = BackboneMixin() A__ = ["a", "b", "c"] A__ = ["a", "c"] A__ = [0, 2] # Check that the output features and indices are set correctly self.assertEqual(backbone.out_features , ["a", "c"] ) self.assertEqual(backbone.out_indices , [0, 2] ) # Check out features and indices are updated correctly A__ = ["a", "b"] self.assertEqual(backbone.out_features , ["a", "b"] ) self.assertEqual(backbone.out_indices , [0, 1] ) A__ = [-3, -1] self.assertEqual(backbone.out_features , ["a", "c"] ) self.assertEqual(backbone.out_indices , [-3, -1] )
104
0
import argparse import json import os import torch from transformers.file_utils import has_file from diffusers import UNetaDConditionModel, UNetaDModel SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = False if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument( """--repo_path""", default=None, type=str, required=True, help="""The config json file corresponding to the architecture.""", ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") SCREAMING_SNAKE_CASE__ = parser.parse_args() SCREAMING_SNAKE_CASE__ = { """image_size""": """sample_size""", """num_res_blocks""": """layers_per_block""", """block_channels""": """block_out_channels""", """down_blocks""": """down_block_types""", """up_blocks""": """up_block_types""", """downscale_freq_shift""": """freq_shift""", """resnet_num_groups""": """norm_num_groups""", """resnet_act_fn""": """act_fn""", """resnet_eps""": """norm_eps""", """num_head_channels""": """attention_head_dim""", } SCREAMING_SNAKE_CASE__ = { """time_steps""": """time_proj""", """mid""": """mid_block""", """downsample_blocks""": """down_blocks""", """upsample_blocks""": """up_blocks""", } SCREAMING_SNAKE_CASE__ = """""" if has_file(args.repo_path, """config.json""") else """unet""" with open(os.path.join(args.repo_path, subfolder, """config.json"""), """r""", encoding="""utf-8""") as reader: SCREAMING_SNAKE_CASE__ = reader.read() SCREAMING_SNAKE_CASE__ = json.loads(text) if do_only_config: for key in config_parameters_to_change.keys(): config.pop(key, None) if has_file(args.repo_path, """config.json"""): SCREAMING_SNAKE_CASE__ = UNetaDModel(**config) else: SCREAMING_SNAKE_CASE__ = UNetaDConditionModel if """ldm-text2im-large-256""" in args.repo_path else UNetaDModel SCREAMING_SNAKE_CASE__ = class_name(**config) if do_only_config: model.save_config(os.path.join(args.repo_path, subfolder)) SCREAMING_SNAKE_CASE__ = dict(model.config) if do_only_renaming: for key, value in config_parameters_to_change.items(): if key in config: SCREAMING_SNAKE_CASE__ = config[key] del config[key] SCREAMING_SNAKE_CASE__ = [k.replace("""UNetRes""", """""") for k in config["""down_block_types"""]] SCREAMING_SNAKE_CASE__ = [k.replace("""UNetRes""", """""") for k in config["""up_block_types"""]] if do_only_weights: SCREAMING_SNAKE_CASE__ = torch.load(os.path.join(args.repo_path, subfolder, """diffusion_pytorch_model.bin""")) SCREAMING_SNAKE_CASE__ = {} for param_key, param_value in state_dict.items(): if param_key.endswith(""".op.bias""") or param_key.endswith(""".op.weight"""): continue SCREAMING_SNAKE_CASE__ = False for key, new_key in key_parameters_to_change.items(): if not has_changed and param_key.split(""".""")[0] == key: SCREAMING_SNAKE_CASE__ = param_value SCREAMING_SNAKE_CASE__ = True if not has_changed: SCREAMING_SNAKE_CASE__ = param_value model.load_state_dict(new_state_dict) model.save_pretrained(os.path.join(args.repo_path, subfolder))
707
from __future__ import annotations import math def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : int ) -> float: __lowercase = u for i in range(1 , SCREAMING_SNAKE_CASE ): __lowercase = temp * (u - i) return temp def __SCREAMING_SNAKE_CASE ( ) -> None: __lowercase = int(input('enter the numbers of values: ' ) ) __lowercase = [] for _ in range(SCREAMING_SNAKE_CASE ): y.append([] ) for i in range(SCREAMING_SNAKE_CASE ): for j in range(SCREAMING_SNAKE_CASE ): y[i].append(SCREAMING_SNAKE_CASE ) __lowercase = 0 print('enter the values of parameters in a list: ' ) __lowercase = list(map(SCREAMING_SNAKE_CASE , input().split() ) ) print('enter the values of corresponding parameters: ' ) for i in range(SCREAMING_SNAKE_CASE ): __lowercase = float(input() ) __lowercase = int(input('enter the value to interpolate: ' ) ) __lowercase = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , SCREAMING_SNAKE_CASE ): for j in range(n - i ): __lowercase = y[j + 1][i - 1] - y[j][i - 1] __lowercase = y[0][0] for i in range(1 , SCREAMING_SNAKE_CASE ): summ += (ucal(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) * y[0][i]) / math.factorial(SCREAMING_SNAKE_CASE ) print(F"""the value at {value} is {summ}""" ) if __name__ == "__main__": main()
688
0
'''simple docstring''' def lowerCAmelCase_ ( _lowerCamelCase: int ): assert ( isinstance(_lowerCamelCase , _lowerCamelCase ) and number_of_steps > 0 ), F"number_of_steps needs to be positive integer, your input {number_of_steps}" if number_of_steps == 1: return 1 __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[Any] = 1, 1 for _ in range(number_of_steps - 1 ): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Union[str, Any] = current + previous, current return current if __name__ == "__main__": import doctest doctest.testmod()
578
'''simple docstring''' from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def lowerCAmelCase_ ( _lowerCamelCase: str , _lowerCamelCase: float | Decimal , _lowerCamelCase: float = 10**-10 ): __SCREAMING_SNAKE_CASE : List[Any] = a while True: __SCREAMING_SNAKE_CASE : Optional[Any] = Decimal(_lowerCamelCase ) - ( Decimal(eval(_lowerCamelCase ) ) / Decimal(eval(str(diff(_lowerCamelCase ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(_lowerCamelCase ) ) < precision: # noqa: S307 return float(_lowerCamelCase ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f"The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}") # Find root of polynomial print(f"The root of x**2 - 5*x + 2 = 0 is {newton_raphson('x**2 - 5*x + 2', 0.4)}") # Find Square Root of 5 print(f"The root of log(x) - 1 = 0 is {newton_raphson('log(x) - 1', 2)}") # Exponential Roots print(f"The root of exp(x) - 1 = 0 is {newton_raphson('exp(x) - 1', 0)}")
578
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { '''google/bigbird-roberta-base''': '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/config.json''', '''google/bigbird-roberta-large''': '''https://huggingface.co/google/bigbird-roberta-large/resolve/main/config.json''', '''google/bigbird-base-trivia-itc''': '''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/config.json''', # See all BigBird models at https://huggingface.co/models?filter=big_bird } class A_ ( __lowerCamelCase ): '''simple docstring''' _UpperCamelCase : Dict = """big_bird""" def __init__( self , snake_case=5_0358 , snake_case=768 , snake_case=12 , snake_case=12 , snake_case=3072 , snake_case="gelu_new" , snake_case=0.1 , snake_case=0.1 , snake_case=4096 , snake_case=2 , snake_case=0.02 , snake_case=1E-12 , snake_case=True , snake_case=0 , snake_case=1 , snake_case=2 , snake_case=66 , snake_case="block_sparse" , snake_case=True , snake_case=False , snake_case=64 , snake_case=3 , snake_case=None , **snake_case , ): super().__init__( pad_token_id=snake_case , bos_token_id=snake_case , eos_token_id=snake_case , sep_token_id=snake_case , **snake_case , ) lowercase = vocab_size lowercase = max_position_embeddings lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = intermediate_size lowercase = hidden_act lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = initializer_range lowercase = type_vocab_size lowercase = layer_norm_eps lowercase = use_cache lowercase = rescale_embeddings lowercase = attention_type lowercase = use_bias lowercase = block_size lowercase = num_random_blocks lowercase = classifier_dropout class A_ ( __lowerCamelCase ): '''simple docstring''' @property def SCREAMING_SNAKE_CASE__ ( self ): if self.task == "multiple-choice": lowercase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowercase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
712
import argparse import json from pathlib import Path import torch import torchaudio from datasets import load_dataset from huggingface_hub import hf_hub_download from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase = logging.get_logger(__name__) def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE ): lowercase = ASTConfig() if "10-10" in model_name: pass elif "speech-commands" in model_name: lowercase = 128 elif "12-12" in model_name: lowercase = 12 lowercase = 12 elif "14-14" in model_name: lowercase = 14 lowercase = 14 elif "16-16" in model_name: lowercase = 16 lowercase = 16 else: raise ValueError('Model not supported' ) lowercase = 'huggingface/label-files' if "speech-commands" in model_name: lowercase = 35 lowercase = 'speech-commands-v2-id2label.json' else: lowercase = 527 lowercase = 'audioset-id2label.json' lowercase = json.load(open(hf_hub_download(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) ) lowercase = {int(__SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} lowercase = idalabel lowercase = {v: k for k, v in idalabel.items()} return config def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE ): if "module.v" in name: lowercase = name.replace('module.v' , 'audio_spectrogram_transformer' ) if "cls_token" in name: lowercase = name.replace('cls_token' , 'embeddings.cls_token' ) if "dist_token" in name: lowercase = name.replace('dist_token' , 'embeddings.distillation_token' ) if "pos_embed" in name: lowercase = name.replace('pos_embed' , 'embeddings.position_embeddings' ) if "patch_embed.proj" in name: lowercase = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) # transformer blocks if "blocks" in name: lowercase = name.replace('blocks' , 'encoder.layer' ) if "attn.proj" in name: lowercase = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: lowercase = name.replace('attn' , 'attention.self' ) if "norm1" in name: lowercase = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: lowercase = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: lowercase = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: lowercase = name.replace('mlp.fc2' , 'output.dense' ) # final layernorm if "audio_spectrogram_transformer.norm" in name: lowercase = name.replace('audio_spectrogram_transformer.norm' , 'audio_spectrogram_transformer.layernorm' ) # classifier head if "module.mlp_head.0" in name: lowercase = name.replace('module.mlp_head.0' , 'classifier.layernorm' ) if "module.mlp_head.1" in name: lowercase = name.replace('module.mlp_head.1' , 'classifier.dense' ) return name def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): for key in orig_state_dict.copy().keys(): lowercase = orig_state_dict.pop(__SCREAMING_SNAKE_CASE ) if "qkv" in key: lowercase = key.split('.' ) lowercase = int(key_split[3] ) lowercase = config.hidden_size if "weight" in key: lowercase = val[:dim, :] lowercase = val[dim : dim * 2, :] lowercase = val[-dim:, :] else: lowercase = val[:dim] lowercase = val[dim : dim * 2] lowercase = val[-dim:] else: lowercase = val return orig_state_dict def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE ): lowercase = [ 'module.v.head.weight', 'module.v.head.bias', 'module.v.head_dist.weight', 'module.v.head_dist.bias', ] for k in ignore_keys: state_dict.pop(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) @torch.no_grad() def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=False ): lowercase = get_audio_spectrogram_transformer_config(__SCREAMING_SNAKE_CASE ) lowercase = { 'ast-finetuned-audioset-10-10-0.4593': ( 'https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1' ), 'ast-finetuned-audioset-10-10-0.450': ( 'https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1' ), 'ast-finetuned-audioset-10-10-0.448': ( 'https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1' ), 'ast-finetuned-audioset-10-10-0.448-v2': ( 'https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1' ), 'ast-finetuned-audioset-12-12-0.447': ( 'https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1' ), 'ast-finetuned-audioset-14-14-0.443': ( 'https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1' ), 'ast-finetuned-audioset-16-16-0.442': ( 'https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1' ), 'ast-finetuned-speech-commands-v2': ( 'https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1' ), } # load original state_dict lowercase = model_name_to_url[model_name] lowercase = torch.hub.load_state_dict_from_url(__SCREAMING_SNAKE_CASE , map_location='cpu' ) # remove some keys remove_keys(__SCREAMING_SNAKE_CASE ) # rename some keys lowercase = convert_state_dict(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # load 🤗 model lowercase = ASTForAudioClassification(__SCREAMING_SNAKE_CASE ) model.eval() model.load_state_dict(__SCREAMING_SNAKE_CASE ) # verify outputs on dummy input # source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62 lowercase = -4.2_67_73_93 if 'speech-commands' not in model_name else -6.84_59_78 lowercase = 4.5_68_99_74 if 'speech-commands' not in model_name else 5.5_65_45_26 lowercase = 1024 if 'speech-commands' not in model_name else 128 lowercase = ASTFeatureExtractor(mean=__SCREAMING_SNAKE_CASE , std=__SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE ) if "speech-commands" in model_name: lowercase = load_dataset('speech_commands' , 'v0.02' , split='validation' ) lowercase = dataset[0]['audio']['array'] else: lowercase = hf_hub_download( repo_id='nielsr/audio-spectogram-transformer-checkpoint' , filename='sample_audio.flac' , repo_type='dataset' , ) lowercase , lowercase = torchaudio.load(__SCREAMING_SNAKE_CASE ) lowercase = waveform.squeeze().numpy() lowercase = feature_extractor(__SCREAMING_SNAKE_CASE , sampling_rate=1_6000 , return_tensors='pt' ) # forward pass lowercase = model(**__SCREAMING_SNAKE_CASE ) lowercase = outputs.logits if model_name == "ast-finetuned-audioset-10-10-0.4593": lowercase = torch.tensor([-0.87_60, -7.00_42, -8.66_02] ) elif model_name == "ast-finetuned-audioset-10-10-0.450": lowercase = torch.tensor([-1.19_86, -7.09_03, -8.27_18] ) elif model_name == "ast-finetuned-audioset-10-10-0.448": lowercase = torch.tensor([-2.61_28, -8.00_80, -9.43_44] ) elif model_name == "ast-finetuned-audioset-10-10-0.448-v2": lowercase = torch.tensor([-1.50_80, -7.45_34, -8.89_17] ) elif model_name == "ast-finetuned-audioset-12-12-0.447": lowercase = torch.tensor([-0.50_50, -6.58_33, -8.08_43] ) elif model_name == "ast-finetuned-audioset-14-14-0.443": lowercase = torch.tensor([-0.38_26, -7.03_36, -8.24_13] ) elif model_name == "ast-finetuned-audioset-16-16-0.442": lowercase = torch.tensor([-1.21_13, -6.91_01, -8.34_70] ) elif model_name == "ast-finetuned-speech-commands-v2": lowercase = torch.tensor([6.15_89, -8.05_66, -8.79_84] ) else: raise ValueError('Unknown model name' ) if not torch.allclose(logits[0, :3] , __SCREAMING_SNAKE_CASE , atol=1e-4 ): raise ValueError('Logits don\'t match' ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: Path(__SCREAMING_SNAKE_CASE ).mkdir(exist_ok=__SCREAMING_SNAKE_CASE ) print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__SCREAMING_SNAKE_CASE ) print(F'''Saving feature extractor to {pytorch_dump_folder_path}''' ) feature_extractor.save_pretrained(__SCREAMING_SNAKE_CASE ) if push_to_hub: print('Pushing model and feature extractor to the hub...' ) model.push_to_hub(F'''MIT/{model_name}''' ) feature_extractor.push_to_hub(F'''MIT/{model_name}''' ) if __name__ == "__main__": UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''ast-finetuned-audioset-10-10-0.4593''', type=str, help='''Name of the Audio Spectrogram Transformer model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) UpperCAmelCase = parser.parse_args() convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
565
0
"""simple docstring""" import unittest import numpy as np import torch from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class lowercase__ ( unittest.TestCase ): """simple docstring""" @property def _a ( self ): '''simple docstring''' torch.manual_seed(0 ) UpperCamelCase : List[Any] = UNetaDModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) return model def _a ( self ): '''simple docstring''' UpperCamelCase : Tuple = self.dummy_uncond_unet UpperCamelCase : Dict = ScoreSdeVeScheduler() UpperCamelCase : Any = ScoreSdeVePipeline(unet=_A , scheduler=_A ) sde_ve.to(_A ) sde_ve.set_progress_bar_config(disable=_A ) UpperCamelCase : List[Any] = torch.manual_seed(0 ) UpperCamelCase : Dict = sde_ve(num_inference_steps=2 , output_type="""numpy""" , generator=_A ).images UpperCamelCase : Optional[int] = torch.manual_seed(0 ) UpperCamelCase : Optional[Any] = sde_ve(num_inference_steps=2 , output_type="""numpy""" , generator=_A , return_dict=_A )[ 0 ] UpperCamelCase : List[str] = image[0, -3:, -3:, -1] UpperCamelCase : Tuple = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) UpperCamelCase : List[str] = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class lowercase__ ( unittest.TestCase ): """simple docstring""" def _a ( self ): '''simple docstring''' UpperCamelCase : Optional[int] = """google/ncsnpp-church-256""" UpperCamelCase : Any = UNetaDModel.from_pretrained(_A ) UpperCamelCase : List[str] = ScoreSdeVeScheduler.from_pretrained(_A ) UpperCamelCase : Tuple = ScoreSdeVePipeline(unet=_A , scheduler=_A ) sde_ve.to(_A ) sde_ve.set_progress_bar_config(disable=_A ) UpperCamelCase : Dict = torch.manual_seed(0 ) UpperCamelCase : Any = sde_ve(num_inference_steps=1_0 , output_type="""numpy""" , generator=_A ).images UpperCamelCase : str = image[0, -3:, -3:, -1] assert image.shape == (1, 2_5_6, 2_5_6, 3) UpperCamelCase : List[Any] = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
102
'''simple docstring''' import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class lowercase_ : '''simple docstring''' @staticmethod def snake_case_ ( *a_ , **a_ ) -> Tuple: """simple docstring""" pass def lowerCamelCase__ ( SCREAMING_SNAKE_CASE : Image ): UpperCAmelCase = hashlib.mda(image.tobytes() ) return m.hexdigest()[:10] def lowerCamelCase__ ( SCREAMING_SNAKE_CASE : Image ): UpperCAmelCase = np.array(SCREAMING_SNAKE_CASE ) UpperCAmelCase = npimg.shape return {"hash": hashimage(SCREAMING_SNAKE_CASE ), "shape": shape} @is_pipeline_test @require_vision @require_torch class lowercase_ ( unittest.TestCase ): '''simple docstring''' __lowerCAmelCase : Tuple = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) __lowerCAmelCase : Tuple = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def snake_case_ ( self , a_ , a_ , a_ ) -> Dict: """simple docstring""" UpperCAmelCase = MaskGenerationPipeline(model=a_ , image_processor=a_ ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def snake_case_ ( self , a_ , a_ ) -> Optional[Any]: """simple docstring""" pass @require_tf @unittest.skip('Image segmentation not implemented in TF' ) def snake_case_ ( self ) -> Union[str, Any]: """simple docstring""" pass @slow @require_torch def snake_case_ ( self ) -> Optional[int]: """simple docstring""" UpperCAmelCase = pipeline('mask-generation' , model='facebook/sam-vit-huge' ) UpperCAmelCase = image_segmenter('http://images.cocodataset.org/val2017/000000039769.jpg' , points_per_batch=2_5_6 ) # Shortening by hashing UpperCAmelCase = [] for i, o in enumerate(outputs['masks'] ): new_outupt += [{"mask": mask_to_test_readable(a_ ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(a_ , decimals=4 ) , [ {'mask': {'hash': '115ad19f5f', 'shape': (4_8_0, 6_4_0)}, 'scores': 1.0444}, {'mask': {'hash': '6affa964c6', 'shape': (4_8_0, 6_4_0)}, 'scores': 1.021}, {'mask': {'hash': 'dfe28a0388', 'shape': (4_8_0, 6_4_0)}, 'scores': 1.0167}, {'mask': {'hash': 'c0a5f4a318', 'shape': (4_8_0, 6_4_0)}, 'scores': 1.0132}, {'mask': {'hash': 'fe8065c197', 'shape': (4_8_0, 6_4_0)}, 'scores': 1.0053}, {'mask': {'hash': 'e2d0b7a0b7', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.9967}, {'mask': {'hash': '453c7844bd', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.993}, {'mask': {'hash': '3d44f2926d', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.9909}, {'mask': {'hash': '64033ddc3f', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.9879}, {'mask': {'hash': '801064ff79', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.9834}, {'mask': {'hash': '6172f276ef', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.9716}, {'mask': {'hash': 'b49e60e084', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.9612}, {'mask': {'hash': 'a811e775fd', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.9599}, {'mask': {'hash': 'a6a8ebcf4b', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.9552}, {'mask': {'hash': '9d8257e080', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.9532}, {'mask': {'hash': '32de6454a8', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.9516}, {'mask': {'hash': 'af3d4af2c8', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.9499}, {'mask': {'hash': '3c6db475fb', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.9483}, {'mask': {'hash': 'c290813fb9', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.9464}, {'mask': {'hash': 'b6f0b8f606', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.943}, {'mask': {'hash': '92ce16bfdf', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.943}, {'mask': {'hash': 'c749b25868', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.9408}, {'mask': {'hash': 'efb6cab859', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.9335}, {'mask': {'hash': '1ff2eafb30', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.9326}, {'mask': {'hash': '788b798e24', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.9262}, {'mask': {'hash': 'abea804f0e', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.8999}, {'mask': {'hash': '7b9e8ddb73', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.8986}, {'mask': {'hash': 'cd24047c8a', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.8984}, {'mask': {'hash': '6943e6bcbd', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.8873}, {'mask': {'hash': 'b5f47c9191', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.8871} ] , ) # fmt: on @require_torch @slow def snake_case_ ( self ) -> Dict: """simple docstring""" UpperCAmelCase = 'facebook/sam-vit-huge' UpperCAmelCase = pipeline('mask-generation' , model=a_ ) UpperCAmelCase = image_segmenter( 'http://images.cocodataset.org/val2017/000000039769.jpg' , pred_iou_thresh=1 , points_per_batch=2_5_6 ) # Shortening by hashing UpperCAmelCase = [] for i, o in enumerate(outputs['masks'] ): new_outupt += [{"mask": mask_to_test_readable(a_ ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(a_ , decimals=4 ) , [ {'mask': {'hash': '115ad19f5f', 'shape': (4_8_0, 6_4_0)}, 'scores': 1.0444}, {'mask': {'hash': '6affa964c6', 'shape': (4_8_0, 6_4_0)}, 'scores': 1.0210}, {'mask': {'hash': 'dfe28a0388', 'shape': (4_8_0, 6_4_0)}, 'scores': 1.0167}, {'mask': {'hash': 'c0a5f4a318', 'shape': (4_8_0, 6_4_0)}, 'scores': 1.0132}, {'mask': {'hash': 'fe8065c197', 'shape': (4_8_0, 6_4_0)}, 'scores': 1.0053}, ] , )
447
0
"""simple docstring""" import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def __lowerCAmelCase ( __UpperCamelCase : dict ): '''simple docstring''' return (data["data"], data["target"]) def __lowerCAmelCase ( __UpperCamelCase : np.ndarray , __UpperCamelCase : np.ndarray ): '''simple docstring''' snake_case_ : Dict = XGBClassifier() classifier.fit(__UpperCamelCase , __UpperCamelCase ) return classifier def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : Optional[Any] = load_iris() snake_case_ , snake_case_ : Optional[Any] = data_handling(__UpperCamelCase ) snake_case_ , snake_case_ , snake_case_ , snake_case_ : List[str] = train_test_split( __UpperCamelCase , __UpperCamelCase , test_size=0.25 ) snake_case_ : List[str] = iris["""target_names"""] # Create an XGBoost Classifier from the training data snake_case_ : List[str] = xgboost(__UpperCamelCase , __UpperCamelCase ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , display_labels=__UpperCamelCase , cmap="""Blues""" , normalize="""true""" , ) plt.title("""Normalized Confusion Matrix - IRIS Dataset""" ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
21
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : bool = False ): '''simple docstring''' if n == 2: return True if not n % 2 or n < 2: return False if n > 5 and n % 1_0 not in (1, 3, 7, 9): # can quickly check last digit return False if n > 3_3_1_7_0_4_4_0_6_4_6_7_9_8_8_7_3_8_5_9_6_1_9_8_1 and not allow_probable: raise ValueError( """Warning: upper bound of deterministic test is exceeded. """ """Pass allow_probable=True to allow probabilistic test. """ """A return value of True indicates a probable prime.""" ) # array bounds provided by analysis snake_case_ : List[Any] = [ 2_0_4_7, 1_3_7_3_6_5_3, 2_5_3_2_6_0_0_1, 3_2_1_5_0_3_1_7_5_1, 2_1_5_2_3_0_2_8_9_8_7_4_7, 3_4_7_4_7_4_9_6_6_0_3_8_3, 3_4_1_5_5_0_0_7_1_7_2_8_3_2_1, 1, 3_8_2_5_1_2_3_0_5_6_5_4_6_4_1_3_0_5_1, 1, 1, 3_1_8_6_6_5_8_5_7_8_3_4_0_3_1_1_5_1_1_6_7_4_6_1, 3_3_1_7_0_4_4_0_6_4_6_7_9_8_8_7_3_8_5_9_6_1_9_8_1, ] snake_case_ : Dict = [2, 3, 5, 7, 1_1, 1_3, 1_7, 1_9, 2_3, 2_9, 3_1, 3_7, 4_1] for idx, _p in enumerate(__UpperCamelCase , 1 ): if n < _p: # then we have our last prime to check snake_case_ : Optional[int] = primes[:idx] break snake_case_ , snake_case_ : Tuple = n - 1, 0 # break up n -1 into a power of 2 (s) and # remaining odd component # essentially, solve for d * 2 ** s == n - 1 while d % 2 == 0: d //= 2 s += 1 for prime in plist: snake_case_ : List[str] = False for r in range(__UpperCamelCase ): snake_case_ : int = pow(__UpperCamelCase , d * 2**r , __UpperCamelCase ) # see article for analysis explanation for m if (r == 0 and m == 1) or ((m + 1) % n == 0): snake_case_ : Optional[Any] = True # this loop will not determine compositeness break if pr: continue # if pr is False, then the above loop never evaluated to true, # and the n MUST be composite return False return True def __lowerCAmelCase ( ): '''simple docstring''' assert not miller_rabin(5_6_1 ) assert miller_rabin(5_6_3 ) # 2047 assert not miller_rabin(8_3_8_2_0_1 ) assert miller_rabin(8_3_8_2_0_7 ) # 1_373_653 assert not miller_rabin(1_7_3_1_6_0_0_1 ) assert miller_rabin(1_7_3_1_6_0_1_7 ) # 25_326_001 assert not miller_rabin(3_0_7_8_3_8_6_6_4_1 ) assert miller_rabin(3_0_7_8_3_8_6_6_5_3 ) # 3_215_031_751 assert not miller_rabin(1_7_1_3_0_4_5_5_7_4_8_0_1 ) assert miller_rabin(1_7_1_3_0_4_5_5_7_4_8_1_9 ) # 2_152_302_898_747 assert not miller_rabin(2_7_7_9_7_9_9_7_2_8_3_0_7 ) assert miller_rabin(2_7_7_9_7_9_9_7_2_8_3_2_7 ) # 3_474_749_660_383 assert not miller_rabin(1_1_3_8_5_0_0_2_3_9_0_9_4_4_1 ) assert miller_rabin(1_1_3_8_5_0_0_2_3_9_0_9_5_2_7 ) # 341_550_071_728_321 assert not miller_rabin(1_2_7_5_0_4_1_0_1_8_8_4_8_8_0_4_3_5_1 ) assert miller_rabin(1_2_7_5_0_4_1_0_1_8_8_4_8_8_0_4_3_9_1 ) # 3_825_123_056_546_413_051 assert not miller_rabin(7_9_6_6_6_4_6_4_4_5_8_5_0_7_7_8_7_7_9_1_8_6_7 ) assert miller_rabin(7_9_6_6_6_4_6_4_4_5_8_5_0_7_7_8_7_7_9_1_9_5_1 ) # 318_665_857_834_031_151_167_461 assert not miller_rabin(5_5_2_8_4_0_6_7_7_4_4_6_6_4_7_8_9_7_6_6_0_3_3_3 ) assert miller_rabin(5_5_2_8_4_0_6_7_7_4_4_6_6_4_7_8_9_7_6_6_0_3_5_9 ) # 3_317_044_064_679_887_385_961_981 # upper limit for probabilistic test if __name__ == "__main__": test_miller_rabin()
21
1
import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.esm.modeling_esmfold import EsmForProteinFolding class lowerCamelCase : """simple docstring""" def __init__( self : Optional[int], _UpperCAmelCase : Tuple, _UpperCAmelCase : List[str]=1_3, _UpperCAmelCase : Any=7, _UpperCAmelCase : Optional[int]=False, _UpperCAmelCase : int=True, _UpperCAmelCase : List[Any]=False, _UpperCAmelCase : str=False, _UpperCAmelCase : Dict=1_9, _UpperCAmelCase : int=3_2, _UpperCAmelCase : Union[str, Any]=5, _UpperCAmelCase : Tuple=4, _UpperCAmelCase : Union[str, Any]=3_7, _UpperCAmelCase : Union[str, Any]="gelu", _UpperCAmelCase : Optional[Any]=0.1, _UpperCAmelCase : str=0.1, _UpperCAmelCase : List[str]=5_1_2, _UpperCAmelCase : Tuple=1_6, _UpperCAmelCase : Any=2, _UpperCAmelCase : str=0.02, _UpperCAmelCase : Any=3, _UpperCAmelCase : int=4, _UpperCAmelCase : Union[str, Any]=None, ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = parent SCREAMING_SNAKE_CASE__ : Optional[int] = batch_size SCREAMING_SNAKE_CASE__ : Union[str, Any] = seq_length SCREAMING_SNAKE_CASE__ : Union[str, Any] = is_training SCREAMING_SNAKE_CASE__ : Union[str, Any] = use_input_mask SCREAMING_SNAKE_CASE__ : List[str] = use_token_type_ids SCREAMING_SNAKE_CASE__ : Any = use_labels SCREAMING_SNAKE_CASE__ : str = vocab_size SCREAMING_SNAKE_CASE__ : List[Any] = hidden_size SCREAMING_SNAKE_CASE__ : Optional[int] = num_hidden_layers SCREAMING_SNAKE_CASE__ : Optional[Any] = num_attention_heads SCREAMING_SNAKE_CASE__ : Dict = intermediate_size SCREAMING_SNAKE_CASE__ : Optional[int] = hidden_act SCREAMING_SNAKE_CASE__ : Union[str, Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE__ : str = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : Optional[Any] = max_position_embeddings SCREAMING_SNAKE_CASE__ : Union[str, Any] = type_vocab_size SCREAMING_SNAKE_CASE__ : Any = type_sequence_label_size SCREAMING_SNAKE_CASE__ : str = initializer_range SCREAMING_SNAKE_CASE__ : Union[str, Any] = num_labels SCREAMING_SNAKE_CASE__ : str = num_choices SCREAMING_SNAKE_CASE__ : List[str] = scope def A_ ( self : int ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) SCREAMING_SNAKE_CASE__ : Any = None if self.use_input_mask: SCREAMING_SNAKE_CASE__ : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE__ : str = None SCREAMING_SNAKE_CASE__ : int = None SCREAMING_SNAKE_CASE__ : Union[str, Any] = None if self.use_labels: SCREAMING_SNAKE_CASE__ : str = ids_tensor([self.batch_size], self.type_sequence_label_size ) SCREAMING_SNAKE_CASE__ : int = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) SCREAMING_SNAKE_CASE__ : Optional[int] = ids_tensor([self.batch_size], self.num_choices ) SCREAMING_SNAKE_CASE__ : int = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def A_ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = EsmConfig( vocab_size=3_3, hidden_size=self.hidden_size, pad_token_id=1, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, is_folding_model=_UpperCAmelCase, esmfold_config={"trunk": {"num_blocks": 2}, "fp16_esm": False}, ) return config def A_ ( self : str, _UpperCAmelCase : str, _UpperCAmelCase : Union[str, Any], _UpperCAmelCase : List[Any], _UpperCAmelCase : List[Any], _UpperCAmelCase : Tuple, _UpperCAmelCase : Tuple ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = EsmForProteinFolding(config=_UpperCAmelCase ).float() model.to(_UpperCAmelCase ) model.eval() SCREAMING_SNAKE_CASE__ : Any = model(_UpperCAmelCase, attention_mask=_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : List[str] = model(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : str = model(_UpperCAmelCase ) self.parent.assertEqual(result.positions.shape, (8, self.batch_size, self.seq_length, 1_4, 3) ) self.parent.assertEqual(result.angles.shape, (8, self.batch_size, self.seq_length, 7, 2) ) def A_ ( self : Any ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = self.prepare_config_and_inputs() ( SCREAMING_SNAKE_CASE__ ) : str = config_and_inputs SCREAMING_SNAKE_CASE__ : Tuple = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowerCamelCase (__lowerCamelCase , __lowerCamelCase , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ = False UpperCAmelCase_ = (EsmForProteinFolding,) if is_torch_available() else () UpperCAmelCase_ = () UpperCAmelCase_ = {} if is_torch_available() else {} UpperCAmelCase_ = False def A_ ( self : Any ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = EsmFoldModelTester(self ) SCREAMING_SNAKE_CASE__ : Optional[Any] = ConfigTester(self, config_class=_UpperCAmelCase, hidden_size=3_7 ) def A_ ( self : List[Any] ) -> Any: """simple docstring""" self.config_tester.run_common_tests() def A_ ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) @unittest.skip("Does not support attention outputs" ) def A_ ( self : Tuple ) -> str: """simple docstring""" pass @unittest.skip def A_ ( self : Tuple ) -> str: """simple docstring""" pass @unittest.skip("Esm does not support embedding resizing" ) def A_ ( self : int ) -> Optional[int]: """simple docstring""" pass @unittest.skip("Esm does not support embedding resizing" ) def A_ ( self : Any ) -> Tuple: """simple docstring""" pass @unittest.skip("ESMFold does not support passing input embeds!" ) def A_ ( self : List[Any] ) -> Any: """simple docstring""" pass @unittest.skip("ESMFold does not support head pruning." ) def A_ ( self : Any ) -> Dict: """simple docstring""" pass @unittest.skip("ESMFold does not support head pruning." ) def A_ ( self : Any ) -> str: """simple docstring""" pass @unittest.skip("ESMFold does not support head pruning." ) def A_ ( self : int ) -> Optional[int]: """simple docstring""" pass @unittest.skip("ESMFold does not support head pruning." ) def A_ ( self : List[str] ) -> List[Any]: """simple docstring""" pass @unittest.skip("ESMFold does not support head pruning." ) def A_ ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" pass @unittest.skip("ESMFold does not output hidden states in the normal way." ) def A_ ( self : Tuple ) -> Tuple: """simple docstring""" pass @unittest.skip("ESMfold does not output hidden states in the normal way." ) def A_ ( self : Dict ) -> Optional[Any]: """simple docstring""" pass @unittest.skip("ESMFold only has one output format." ) def A_ ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" pass @unittest.skip("This test doesn\'t work for ESMFold and doesn\'t test core functionality" ) def A_ ( self : Tuple ) -> List[str]: """simple docstring""" pass @unittest.skip("ESMFold does not support input chunking." ) def A_ ( self : Tuple ) -> str: """simple docstring""" pass @unittest.skip("ESMFold doesn\'t respect you and it certainly doesn\'t respect your initialization arguments." ) def A_ ( self : Optional[Any] ) -> Tuple: """simple docstring""" pass @unittest.skip("ESMFold doesn\'t support torchscript compilation." ) def A_ ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" pass @unittest.skip("ESMFold doesn\'t support torchscript compilation." ) def A_ ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip("ESMFold doesn\'t support torchscript compilation." ) def A_ ( self : int ) -> Any: """simple docstring""" pass @unittest.skip("ESMFold doesn\'t support data parallel." ) def A_ ( self : Dict ) -> str: """simple docstring""" pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def A_ ( self : Any ) -> List[str]: """simple docstring""" pass @require_torch class lowerCamelCase (__lowerCamelCase ): """simple docstring""" @slow def A_ ( self : Tuple ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = EsmForProteinFolding.from_pretrained("facebook/esmfold_v1" ).float() model.eval() SCREAMING_SNAKE_CASE__ : Dict = torch.tensor([[0, 6, 4, 1_3, 5, 4, 1_6, 1_2, 1_1, 7, 2]] ) SCREAMING_SNAKE_CASE__ : Optional[int] = model(_UpperCAmelCase )['''positions'''] SCREAMING_SNAKE_CASE__ : int = torch.tensor([2.5828, 0.7993, -1_0.9_3_3_4], dtype=torch.floataa ) self.assertTrue(torch.allclose(position_outputs[0, 0, 0, 0], _UpperCAmelCase, atol=1E-4 ) )
663
'''simple docstring''' import logging from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import arg_to_scheduler from transformers import TrainingArguments _A = logging.getLogger(__name__) @dataclass class SCREAMING_SNAKE_CASE_ ( snake_case ): __a : Optional[float] = field( default=0.0 , metadata={'''help''': '''The label smoothing epsilon to apply (if not zero).'''} ) __a : bool = field(default=snake_case , metadata={'''help''': '''Whether to SortishSamler or not.'''} ) __a : bool = field( default=snake_case , metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''} ) __a : bool = field(default=snake_case , metadata={'''help''': '''whether to use adafactor'''} ) __a : Optional[float] = field( default=snake_case , metadata={'''help''': '''Encoder layer dropout probability. Goes into model.config.'''} ) __a : Optional[float] = field( default=snake_case , metadata={'''help''': '''Decoder layer dropout probability. Goes into model.config.'''} ) __a : Optional[float] = field(default=snake_case , metadata={'''help''': '''Dropout probability. Goes into model.config.'''} ) __a : Optional[float] = field( default=snake_case , metadata={'''help''': '''Attention dropout probability. Goes into model.config.'''} ) __a : Optional[str] = field( default='''linear''' , metadata={'''help''': f'''Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}'''} , )
158
0
import numpy as np def A ( _lowercase ): return 1 / (1 + np.exp(-vector )) if __name__ == "__main__": import doctest doctest.testmod()
34
from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def A ( _lowercase ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = analyze_text(_lowercase ) SCREAMING_SNAKE_CASE : Any = list(''' ''' + ascii_lowercase ) # what is our total sum of probabilities. SCREAMING_SNAKE_CASE : Tuple = sum(single_char_strings.values() ) # one length string SCREAMING_SNAKE_CASE : Tuple = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: SCREAMING_SNAKE_CASE : Tuple = single_char_strings[ch] SCREAMING_SNAKE_CASE : List[str] = my_str / all_sum my_fir_sum += prob * math.loga(_lowercase ) # entropy formula. # print entropy print(f"""{round(-1 * my_fir_sum ):.1f}""" ) # two len string SCREAMING_SNAKE_CASE : Optional[Any] = sum(two_char_strings.values() ) SCREAMING_SNAKE_CASE : List[str] = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: SCREAMING_SNAKE_CASE : Union[str, Any] = cha + cha if sequence in two_char_strings: SCREAMING_SNAKE_CASE : Any = two_char_strings[sequence] SCREAMING_SNAKE_CASE : Dict = int(_lowercase ) / all_sum my_sec_sum += prob * math.loga(_lowercase ) # print second entropy print(f"""{round(-1 * my_sec_sum ):.1f}""" ) # print the difference between them print(f"""{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}""" ) def A ( _lowercase ): SCREAMING_SNAKE_CASE : Tuple = Counter() # type: ignore SCREAMING_SNAKE_CASE : Any = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 , len(_lowercase ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def A ( ): import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
34
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class __UpperCAmelCase ( lowerCAmelCase ,lowerCAmelCase ,unittest.TestCase ): '''simple docstring''' _UpperCamelCase = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) _UpperCamelCase = ( { """feature-extraction""": TFMobileBertModel, """fill-mask""": TFMobileBertForMaskedLM, """question-answering""": TFMobileBertForQuestionAnswering, """text-classification""": TFMobileBertForSequenceClassification, """token-classification""": TFMobileBertForTokenClassification, """zero-shot""": TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) _UpperCamelCase = False _UpperCamelCase = False def __snake_case ( self : str , _lowercase : Union[str, Any] , _lowercase : List[str] , _lowercase : int=False) -> List[str]: A_ = super()._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase) if return_labels: if model_class in get_values(_lowercase): A_ = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa) return inputs_dict class __UpperCAmelCase ( lowerCAmelCase ): '''simple docstring''' def __init__( self : str , _lowercase : Union[str, Any] , _lowercase : Any=13 , _lowercase : Union[str, Any]=7 , _lowercase : List[Any]=True , _lowercase : Optional[int]=True , _lowercase : Union[str, Any]=True , _lowercase : int=True , _lowercase : Optional[int]=99 , _lowercase : Optional[Any]=32 , _lowercase : int=32 , _lowercase : Optional[Any]=2 , _lowercase : Optional[Any]=4 , _lowercase : List[Any]=37 , _lowercase : List[str]="gelu" , _lowercase : List[Any]=0.1 , _lowercase : Dict=0.1 , _lowercase : int=512 , _lowercase : Dict=16 , _lowercase : Dict=2 , _lowercase : Optional[Any]=0.02 , _lowercase : Dict=3 , _lowercase : Dict=4 , _lowercase : str=None , ) -> int: A_ = parent A_ = batch_size A_ = seq_length A_ = is_training A_ = use_input_mask A_ = use_token_type_ids A_ = use_labels A_ = vocab_size A_ = hidden_size A_ = num_hidden_layers A_ = num_attention_heads A_ = intermediate_size A_ = hidden_act A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = max_position_embeddings A_ = type_vocab_size A_ = type_sequence_label_size A_ = initializer_range A_ = num_labels A_ = num_choices A_ = scope A_ = embedding_size def __snake_case ( self : Optional[Any]) -> str: A_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) A_ = None if self.use_input_mask: A_ = random_attention_mask([self.batch_size, self.seq_length]) A_ = None if self.use_token_type_ids: A_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) A_ = None A_ = None A_ = None if self.use_labels: A_ = ids_tensor([self.batch_size] , self.type_sequence_label_size) A_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) A_ = ids_tensor([self.batch_size] , self.num_choices) A_ = MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __snake_case ( self : Union[str, Any] , _lowercase : Optional[Any] , _lowercase : Optional[int] , _lowercase : Tuple , _lowercase : int , _lowercase : Tuple , _lowercase : Optional[Any] , _lowercase : Optional[Any]) -> Union[str, Any]: A_ = TFMobileBertModel(config=_lowercase) A_ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} A_ = model(_lowercase) A_ = [input_ids, input_mask] A_ = model(_lowercase) A_ = model(_lowercase) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size)) def __snake_case ( self : Optional[Any] , _lowercase : Any , _lowercase : Any , _lowercase : Any , _lowercase : List[Any] , _lowercase : Tuple , _lowercase : Union[str, Any] , _lowercase : Optional[int]) -> Optional[Any]: A_ = TFMobileBertForMaskedLM(config=_lowercase) A_ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} A_ = model(_lowercase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def __snake_case ( self : int , _lowercase : str , _lowercase : Dict , _lowercase : Tuple , _lowercase : List[str] , _lowercase : List[Any] , _lowercase : Optional[int] , _lowercase : List[Any]) -> List[Any]: A_ = TFMobileBertForNextSentencePrediction(config=_lowercase) A_ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} A_ = model(_lowercase) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2)) def __snake_case ( self : Tuple , _lowercase : Optional[int] , _lowercase : Dict , _lowercase : Optional[int] , _lowercase : Any , _lowercase : int , _lowercase : Optional[Any] , _lowercase : Union[str, Any]) -> Dict: A_ = TFMobileBertForPreTraining(config=_lowercase) A_ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} A_ = model(_lowercase) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2)) def __snake_case ( self : Optional[int] , _lowercase : Optional[Any] , _lowercase : List[Any] , _lowercase : Optional[Any] , _lowercase : Union[str, Any] , _lowercase : Dict , _lowercase : str , _lowercase : Union[str, Any]) -> Tuple: A_ = self.num_labels A_ = TFMobileBertForSequenceClassification(config=_lowercase) A_ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} A_ = model(_lowercase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def __snake_case ( self : List[str] , _lowercase : Tuple , _lowercase : Tuple , _lowercase : List[Any] , _lowercase : Tuple , _lowercase : List[Any] , _lowercase : Union[str, Any] , _lowercase : str) -> Dict: A_ = self.num_choices A_ = TFMobileBertForMultipleChoice(config=_lowercase) A_ = tf.tile(tf.expand_dims(_lowercase , 1) , (1, self.num_choices, 1)) A_ = tf.tile(tf.expand_dims(_lowercase , 1) , (1, self.num_choices, 1)) A_ = tf.tile(tf.expand_dims(_lowercase , 1) , (1, self.num_choices, 1)) A_ = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } A_ = model(_lowercase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def __snake_case ( self : Tuple , _lowercase : Union[str, Any] , _lowercase : Any , _lowercase : List[Any] , _lowercase : int , _lowercase : int , _lowercase : List[Any] , _lowercase : int) -> Tuple: A_ = self.num_labels A_ = TFMobileBertForTokenClassification(config=_lowercase) A_ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} A_ = model(_lowercase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def __snake_case ( self : Optional[Any] , _lowercase : int , _lowercase : str , _lowercase : Tuple , _lowercase : str , _lowercase : Dict , _lowercase : Dict , _lowercase : Optional[Any]) -> Union[str, Any]: A_ = TFMobileBertForQuestionAnswering(config=_lowercase) A_ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} A_ = model(_lowercase) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def __snake_case ( self : int) -> List[str]: A_ = self.prepare_config_and_inputs() ( ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ) = config_and_inputs A_ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict def __snake_case ( self : List[Any]) -> Dict: A_ = TFMobileBertModelTest.TFMobileBertModelTester(self) A_ = ConfigTester(self , config_class=_lowercase , hidden_size=37) def __snake_case ( self : Tuple) -> Optional[int]: self.config_tester.run_common_tests() def __snake_case ( self : Any) -> Optional[int]: A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*_lowercase) def __snake_case ( self : str) -> Optional[Any]: A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*_lowercase) def __snake_case ( self : Union[str, Any]) -> Any: A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*_lowercase) def __snake_case ( self : Dict) -> Dict: A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*_lowercase) def __snake_case ( self : Optional[int]) -> Tuple: A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*_lowercase) def __snake_case ( self : List[Any]) -> int: A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*_lowercase) def __snake_case ( self : List[str]) -> int: A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*_lowercase) def __snake_case ( self : Optional[int]) -> Dict: A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*_lowercase) @slow def __snake_case ( self : int) -> List[Any]: # for model_name in TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["google/mobilebert-uncased"]: A_ = TFMobileBertModel.from_pretrained(_lowercase) self.assertIsNotNone(_lowercase) @require_tf class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def __snake_case ( self : str) -> Tuple: A_ = TFMobileBertForPreTraining.from_pretrained('google/mobilebert-uncased') A_ = tf.constant([[0, 1, 2, 3, 4, 5]]) A_ = model(_lowercase)[0] A_ = [1, 6, 30_522] self.assertEqual(output.shape , _lowercase) A_ = tf.constant( [ [ [-4.5_91_95_47, -9.24_82_95, -9.64_52_56], [-6.7_30_61_75, -6.44_02_84, -6.6_05_28_37], [-7.2_74_35_06, -6.7_84_79_15, -6.02_46_73], ] ]) tf.debugging.assert_near(output[:, :3, :3] , _lowercase , atol=1E-4)
366
'''simple docstring''' import re import time from typing import Optional import IPython.display as disp from ..trainer_callback import TrainerCallback from ..trainer_utils import IntervalStrategy, has_length def lowerCamelCase( SCREAMING_SNAKE_CASE_ ) -> str: A_ = int(SCREAMING_SNAKE_CASE_ ) A_ , A_ , A_ = t // 3600, (t // 60) % 60, t % 60 return F'{h}:{m:02d}:{s:02d}' if h != 0 else F'{m:02d}:{s:02d}' def lowerCamelCase( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_=300 ) -> Dict: # docstyle-ignore return F'\n <div>\n {prefix}\n <progress value=\'{value}\' max=\'{total}\' style=\'width:{width}px; height:20px; vertical-align: middle;\'></progress>\n {label}\n </div>\n ' def lowerCamelCase( SCREAMING_SNAKE_CASE_ ) -> List[str]: A_ = '<table border="1" class="dataframe">\n' html_code += """ <thead>\n <tr style="text-align: left;">\n""" for i in items[0]: html_code += F' <th>{i}</th>\n' html_code += " </tr>\n </thead>\n <tbody>\n" for line in items[1:]: html_code += " <tr>\n" for elt in line: A_ = F'{elt:.6f}' if isinstance(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) else str(SCREAMING_SNAKE_CASE_ ) html_code += F' <td>{elt}</td>\n' html_code += " </tr>\n" html_code += " </tbody>\n</table><p>" return html_code class __UpperCAmelCase : '''simple docstring''' _UpperCamelCase = 5 _UpperCamelCase = 0.2 def __init__( self : Tuple , _lowercase : int , _lowercase : Optional[str] = None , _lowercase : bool = True , _lowercase : Optional["NotebookTrainingTracker"] = None , _lowercase : int = 300 , ) -> Dict: A_ = total A_ = '' if prefix is None else prefix A_ = leave A_ = parent A_ = width A_ = None A_ = None A_ = None def __snake_case ( self : Optional[int] , _lowercase : int , _lowercase : bool = False , _lowercase : str = None) -> Dict: A_ = value if comment is not None: A_ = comment if self.last_value is None: A_ = A_ = time.time() A_ = A_ = value A_ = A_ = None A_ = self.warmup A_ = 1 self.update_bar(_lowercase) elif value <= self.last_value and not force_update: return elif force_update or self.first_calls > 0 or value >= min(self.last_value + self.wait_for , self.total): if self.first_calls > 0: self.first_calls -= 1 A_ = time.time() A_ = current_time - self.start_time # We could have value = self.start_value if the update is called twixe with the same start value. if value > self.start_value: A_ = self.elapsed_time / (value - self.start_value) else: A_ = None if value >= self.total: A_ = self.total A_ = None if not self.leave: self.close() elif self.average_time_per_item is not None: A_ = self.average_time_per_item * (self.total - value) self.update_bar(_lowercase) A_ = value A_ = current_time if self.average_time_per_item is None: A_ = 1 else: A_ = max(int(self.update_every / self.average_time_per_item) , 1) def __snake_case ( self : str , _lowercase : List[Any] , _lowercase : Optional[int]=None) -> str: A_ = ' ' * (len(str(self.total)) - len(str(_lowercase))) + str(_lowercase) if self.elapsed_time is None: A_ = F'[{spaced_value}/{self.total} : < :' elif self.predicted_remaining is None: A_ = F'[{spaced_value}/{self.total} {format_time(self.elapsed_time)}' else: A_ = ( F'[{spaced_value}/{self.total} {format_time(self.elapsed_time)} <' F' {format_time(self.predicted_remaining)}' ) self.label += F', {1/self.average_time_per_item:.2f} it/s' self.label += "]" if self.comment is None or len(self.comment) == 0 else F', {self.comment}]' self.display() def __snake_case ( self : Optional[int]) -> Dict: A_ = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width) if self.parent is not None: # If this is a child bar, the parent will take care of the display. self.parent.display() return if self.output is None: A_ = disp.display(disp.HTML(self.html_code) , display_id=_lowercase) else: self.output.update(disp.HTML(self.html_code)) def __snake_case ( self : List[Any]) -> Optional[Any]: if self.parent is None and self.output is not None: self.output.update(disp.HTML('')) class __UpperCAmelCase ( lowerCAmelCase ): '''simple docstring''' def __init__( self : int , _lowercase : Union[str, Any] , _lowercase : str=None) -> str: super().__init__(_lowercase) A_ = None if column_names is None else [column_names] A_ = None def __snake_case ( self : Dict) -> List[Any]: A_ = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width) if self.inner_table is not None: self.html_code += text_to_html_table(self.inner_table) if self.child_bar is not None: self.html_code += self.child_bar.html_code if self.output is None: A_ = disp.display(disp.HTML(self.html_code) , display_id=_lowercase) else: self.output.update(disp.HTML(self.html_code)) def __snake_case ( self : str , _lowercase : int) -> Optional[int]: if self.inner_table is None: A_ = [list(values.keys()), list(values.values())] else: A_ = self.inner_table[0] if len(self.inner_table) == 1: # We give a chance to update the column names at the first iteration for key in values.keys(): if key not in columns: columns.append(_lowercase) A_ = columns self.inner_table.append([values[c] for c in columns]) def __snake_case ( self : List[Any] , _lowercase : Union[str, Any] , _lowercase : str=None , _lowercase : Optional[int]=300) -> Dict: A_ = NotebookProgressBar(_lowercase , prefix=_lowercase , parent=self , width=_lowercase) return self.child_bar def __snake_case ( self : Any) -> int: A_ = None self.display() class __UpperCAmelCase ( lowerCAmelCase ): '''simple docstring''' def __init__( self : Dict) -> Tuple: A_ = None A_ = None A_ = False def __snake_case ( self : int , _lowercase : str , _lowercase : str , _lowercase : str , **_lowercase : List[Any]) -> List[Any]: A_ = 'Epoch' if args.evaluation_strategy == IntervalStrategy.EPOCH else 'Step' A_ = 0 A_ = 0 A_ = [self.first_column] + ['Training Loss'] if args.evaluation_strategy != IntervalStrategy.NO: column_names.append('Validation Loss') A_ = NotebookTrainingTracker(state.max_steps , _lowercase) def __snake_case ( self : Tuple , _lowercase : Union[str, Any] , _lowercase : List[Any] , _lowercase : List[str] , **_lowercase : Union[str, Any]) -> str: A_ = int(state.epoch) if int(state.epoch) == state.epoch else F'{state.epoch:.2f}' self.training_tracker.update( state.global_step + 1 , comment=F'Epoch {epoch}/{state.num_train_epochs}' , force_update=self._force_next_update , ) A_ = False def __snake_case ( self : Union[str, Any] , _lowercase : Any , _lowercase : int , _lowercase : Optional[int] , _lowercase : List[Any]=None , **_lowercase : Any) -> Union[str, Any]: if not has_length(_lowercase): return if self.prediction_bar is None: if self.training_tracker is not None: A_ = self.training_tracker.add_child(len(_lowercase)) else: A_ = NotebookProgressBar(len(_lowercase)) self.prediction_bar.update(1) else: self.prediction_bar.update(self.prediction_bar.value + 1) def __snake_case ( self : List[Any] , _lowercase : List[str] , _lowercase : Any , _lowercase : Union[str, Any] , **_lowercase : Optional[int]) -> Optional[Any]: if self.prediction_bar is not None: self.prediction_bar.close() A_ = None def __snake_case ( self : Dict , _lowercase : Dict , _lowercase : str , _lowercase : str , _lowercase : Optional[Any]=None , **_lowercase : Dict) -> Optional[int]: # Only for when there is no evaluation if args.evaluation_strategy == IntervalStrategy.NO and "loss" in logs: A_ = {'Training Loss': logs['loss']} # First column is necessarily Step sine we're not in epoch eval strategy A_ = state.global_step self.training_tracker.write_line(_lowercase) def __snake_case ( self : List[Any] , _lowercase : Any , _lowercase : Optional[int] , _lowercase : str , _lowercase : Optional[Any]=None , **_lowercase : Union[str, Any]) -> Union[str, Any]: if self.training_tracker is not None: A_ = {'Training Loss': 'No log', 'Validation Loss': 'No log'} for log in reversed(state.log_history): if "loss" in log: A_ = log['loss'] break if self.first_column == "Epoch": A_ = int(state.epoch) else: A_ = state.global_step A_ = 'eval' for k in metrics: if k.endswith('_loss'): A_ = re.sub(r'\_loss$' , '' , _lowercase) A_ = metrics.pop('total_flos' , _lowercase) A_ = metrics.pop('epoch' , _lowercase) A_ = metrics.pop(F'{metric_key_prefix}_runtime' , _lowercase) A_ = metrics.pop(F'{metric_key_prefix}_samples_per_second' , _lowercase) A_ = metrics.pop(F'{metric_key_prefix}_steps_per_second' , _lowercase) A_ = metrics.pop(F'{metric_key_prefix}_jit_compilation_time' , _lowercase) for k, v in metrics.items(): if k == F'{metric_key_prefix}_loss': A_ = v else: A_ = k.split('_') A_ = ' '.join([part.capitalize() for part in splits[1:]]) A_ = v self.training_tracker.write_line(_lowercase) self.training_tracker.remove_child() A_ = None # Evaluation takes a long time so we should force the next update. A_ = True def __snake_case ( self : Tuple , _lowercase : Dict , _lowercase : str , _lowercase : List[str] , **_lowercase : str) -> Optional[int]: self.training_tracker.update( state.global_step , comment=F'Epoch {int(state.epoch)}/{state.num_train_epochs}' , force_update=_lowercase) A_ = None
366
1
"""simple docstring""" from torch import nn class __snake_case ( nn.Module ): def __init__( self , lowercase , lowercase) -> List[str]: '''simple docstring''' super().__init__() a__: Optional[Any] = class_size a__: Any = embed_size # self.mlp1 = nn.Linear(embed_size, embed_size) # self.mlp2 = (nn.Linear(embed_size, class_size)) a__: List[str] = nn.Linear(lowercase , lowercase) def lowerCamelCase_ ( self , lowercase) -> Optional[Any]: '''simple docstring''' a__: Dict = self.mlp(lowercase) return logits
217
"""simple docstring""" def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = False ) ->str: if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): a__: int = F'Expected string as input, found {type(_SCREAMING_SNAKE_CASE )}' raise ValueError(_SCREAMING_SNAKE_CASE ) if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): a__: Dict = F'Expected boolean as use_pascal parameter, found {type(_SCREAMING_SNAKE_CASE )}' raise ValueError(_SCREAMING_SNAKE_CASE ) a__: Any = input_str.split('_' ) a__: int = 0 if use_pascal else 1 a__: str = words[start_index:] a__: Any = [word[0].upper() + word[1:] for word in words_to_capitalize] a__: Dict = '' if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
217
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { '''EleutherAI/gpt-neox-20b''': '''https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json''', # See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox } class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: List[Any] = "gpt_neox" def __init__( self : int ,A_ : Tuple=5_0432 ,A_ : Tuple=6144 ,A_ : Dict=44 ,A_ : Union[str, Any]=64 ,A_ : List[str]=2_4576 ,A_ : Dict="gelu" ,A_ : int=0.25 ,A_ : Optional[Any]=1_0000 ,A_ : str=0.0 ,A_ : Optional[Any]=0.0 ,A_ : List[Any]=0.1 ,A_ : List[Any]=2048 ,A_ : Union[str, Any]=0.02 ,A_ : List[str]=1e-5 ,A_ : str=True ,A_ : Dict=0 ,A_ : int=2 ,A_ : Optional[Any]=False ,A_ : Tuple=True ,A_ : Optional[Any]=None ,**A_ : Any ,) -> str: super().__init__(bos_token_id=_snake_case ,eos_token_id=_snake_case ,**_snake_case ) A = vocab_size A = max_position_embeddings A = hidden_size A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_act A = rotary_pct A = rotary_emb_base A = attention_dropout A = hidden_dropout A = classifier_dropout A = initializer_range A = layer_norm_eps A = use_cache A = tie_word_embeddings A = use_parallel_residual A = rope_scaling self._rope_scaling_validation() if self.hidden_size % self.num_attention_heads != 0: raise ValueError( 'The hidden size is not divisble by the number of attention heads! Make sure to update them!' ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: if self.rope_scaling is None: return if not isinstance(self.rope_scaling ,_snake_case ) or len(self.rope_scaling ) != 2: raise ValueError( '`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ' F'got {self.rope_scaling}' ) A = self.rope_scaling.get('type' ,_snake_case ) A = self.rope_scaling.get('factor' ,_snake_case ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F'`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}' ) if rope_scaling_factor is None or not isinstance(_snake_case ,_snake_case ) or rope_scaling_factor <= 1.0: raise ValueError(F'`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}' )
91
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( HubertConfig, HubertForCTC, HubertModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __magic_name__ = logging.get_logger(__name__) __magic_name__ = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } def _lowerCamelCase ( UpperCAmelCase__,UpperCAmelCase__,UpperCAmelCase__,UpperCAmelCase__,UpperCAmelCase__ ) -> int: '''simple docstring''' for attribute in key.split('.' ): a__ = getattr(UpperCAmelCase__,UpperCAmelCase__ ) if weight_type is not None: a__ = getattr(UpperCAmelCase__,UpperCAmelCase__ ).shape else: a__ = hf_pointer.shape assert hf_shape == value.shape, ( f'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": a__ = value elif weight_type == "weight_g": a__ = value elif weight_type == "weight_v": a__ = value elif weight_type == "bias": a__ = value else: a__ = value logger.info(f'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def _lowerCamelCase ( UpperCAmelCase__,UpperCAmelCase__,UpperCAmelCase__ ) -> int: '''simple docstring''' a__ = [] a__ = fairseq_model.state_dict() a__ = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): a__ = False if "conv_layers" in name: load_conv_layer( UpperCAmelCase__,UpperCAmelCase__,UpperCAmelCase__,UpperCAmelCase__,hf_model.config.feat_extract_norm == 'group',) a__ = True else: for key, mapped_key in MAPPING.items(): a__ = 'hubert.' + mapped_key if (is_finetuned and mapped_key != 'lm_head') else mapped_key if key in name or (key.split('w2v_model.' )[-1] == name.split('.' )[0] and not is_finetuned): a__ = True if "*" in mapped_key: a__ = name.split(UpperCAmelCase__ )[0].split('.' )[-2] a__ = mapped_key.replace('*',UpperCAmelCase__ ) if "weight_g" in name: a__ = 'weight_g' elif "weight_v" in name: a__ = 'weight_v' elif "weight" in name: a__ = 'weight' elif "bias" in name: a__ = 'bias' else: a__ = None set_recursively(UpperCAmelCase__,UpperCAmelCase__,UpperCAmelCase__,UpperCAmelCase__,UpperCAmelCase__ ) continue if not is_used: unused_weights.append(UpperCAmelCase__ ) logger.warning(f'''Unused weights: {unused_weights}''' ) def _lowerCamelCase ( UpperCAmelCase__,UpperCAmelCase__,UpperCAmelCase__,UpperCAmelCase__,UpperCAmelCase__ ) -> str: '''simple docstring''' a__ = full_name.split('conv_layers.' )[-1] a__ = name.split('.' ) a__ = int(items[0] ) a__ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) a__ = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) a__ = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) a__ = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) a__ = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(UpperCAmelCase__ ) @torch.no_grad() def _lowerCamelCase ( UpperCAmelCase__,UpperCAmelCase__,UpperCAmelCase__=None,UpperCAmelCase__=None,UpperCAmelCase__=True ) -> int: '''simple docstring''' if config_path is not None: a__ = HubertConfig.from_pretrained(UpperCAmelCase__ ) else: a__ = HubertConfig() if is_finetuned: if dict_path: a__ = Dictionary.load(UpperCAmelCase__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq a__ = target_dict.pad_index a__ = target_dict.bos_index a__ = target_dict.eos_index a__ = len(target_dict.symbols ) a__ = os.path.join(UpperCAmelCase__,'vocab.json' ) if not os.path.isdir(UpperCAmelCase__ ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(UpperCAmelCase__ ) ) return os.makedirs(UpperCAmelCase__,exist_ok=UpperCAmelCase__ ) with open(UpperCAmelCase__,'w',encoding='utf-8' ) as vocab_handle: json.dump(target_dict.indices,UpperCAmelCase__ ) a__ = WavaVecaCTCTokenizer( UpperCAmelCase__,unk_token=target_dict.unk_word,pad_token=target_dict.pad_word,bos_token=target_dict.bos_word,eos_token=target_dict.eos_word,word_delimiter_token='|',do_lower_case=UpperCAmelCase__,) a__ = True if config.feat_extract_norm == 'layer' else False a__ = WavaVecaFeatureExtractor( feature_size=1,sampling_rate=1_60_00,padding_value=0,do_normalize=UpperCAmelCase__,return_attention_mask=UpperCAmelCase__,) a__ = WavaVecaProcessor(feature_extractor=UpperCAmelCase__,tokenizer=UpperCAmelCase__ ) processor.save_pretrained(UpperCAmelCase__ ) a__ = HubertForCTC(UpperCAmelCase__ ) else: a__ = HubertModel(UpperCAmelCase__ ) if is_finetuned: a__ , a__ , a__ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path],arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) else: a__ , a__ , a__ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) a__ = model[0].eval() recursively_load_weights(UpperCAmelCase__,UpperCAmelCase__,UpperCAmelCase__ ) hf_wavavec.save_pretrained(UpperCAmelCase__ ) if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) __magic_name__ = parser.parse_args() convert_hubert_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
232
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { "google/realm-cc-news-pretrained-embedder": ( "https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json" ), "google/realm-cc-news-pretrained-encoder": ( "https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json" ), "google/realm-cc-news-pretrained-scorer": ( "https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json" ), "google/realm-cc-news-pretrained-openqa": ( "https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json" ), "google/realm-orqa-nq-openqa": "https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json", "google/realm-orqa-nq-reader": "https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json", "google/realm-orqa-wq-openqa": "https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json", "google/realm-orqa-wq-reader": "https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json", # See all REALM models at https://huggingface.co/models?filter=realm } class SCREAMING_SNAKE_CASE__ ( __snake_case ): _lowerCAmelCase = "realm" def __init__(self , _lowercase=30522 , _lowercase=768 , _lowercase=128 , _lowercase=12 , _lowercase=12 , _lowercase=8 , _lowercase=3072 , _lowercase="gelu_new" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=512 , _lowercase=2 , _lowercase=0.02 , _lowercase=1e-12 , _lowercase=256 , _lowercase=10 , _lowercase=1e-3 , _lowercase=5 , _lowercase=320 , _lowercase=13353718 , _lowercase=5000 , _lowercase=1 , _lowercase=0 , _lowercase=2 , **_lowercase , ): '''simple docstring''' super().__init__(pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase ) # Common config __a : Any = vocab_size __a : Union[str, Any] = max_position_embeddings __a : int = hidden_size __a : Optional[int] = retriever_proj_size __a : int = num_hidden_layers __a : List[Any] = num_attention_heads __a : Union[str, Any] = num_candidates __a : int = intermediate_size __a : List[Any] = hidden_act __a : Dict = hidden_dropout_prob __a : int = attention_probs_dropout_prob __a : List[Any] = initializer_range __a : str = type_vocab_size __a : List[Any] = layer_norm_eps # Reader config __a : Any = span_hidden_size __a : List[Any] = max_span_width __a : Tuple = reader_layer_norm_eps __a : Dict = reader_beam_size __a : List[Any] = reader_seq_len # Retrieval config __a : str = num_block_records __a : int = searcher_beam_size
63
"""simple docstring""" import math import sys import cva import numpy as np def __magic_name__ ( _lowerCamelCase : np.ndarray , _lowerCamelCase : float ): # For applying gaussian function for each element in matrix. __a : int = math.sqrt(_lowerCamelCase ) __a : Any = 1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def __magic_name__ ( _lowerCamelCase : np.ndarray , _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : int ): __a : Any = kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def __magic_name__ ( _lowerCamelCase : int , _lowerCamelCase : float ): # Creates a gaussian kernel of given dimension. __a : int = np.zeros((kernel_size, kernel_size) ) for i in range(0 , _lowerCamelCase ): for j in range(0 , _lowerCamelCase ): __a : Any = math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(_lowerCamelCase , _lowerCamelCase ) def __magic_name__ ( _lowerCamelCase : np.ndarray , _lowerCamelCase : float , _lowerCamelCase : float , _lowerCamelCase : int , ): __a : Tuple = np.zeros(img.shape ) __a : Optional[int] = get_gauss_kernel(_lowerCamelCase , _lowerCamelCase ) __a , __a : int = img.shape for i in range(kernel_size // 2 , size_x - kernel_size // 2 ): for j in range(kernel_size // 2 , size_y - kernel_size // 2 ): __a : List[str] = get_slice(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) __a : Any = img_s - img_s[kernel_size // 2, kernel_size // 2] __a : Optional[Any] = vec_gaussian(_lowerCamelCase , _lowerCamelCase ) __a : Optional[Any] = np.multiply(_lowerCamelCase , _lowerCamelCase ) __a : Any = np.multiply(_lowerCamelCase , _lowerCamelCase ) __a : Tuple = np.sum(_lowerCamelCase ) / np.sum(_lowerCamelCase ) __a : Optional[Any] = val return imga def __magic_name__ ( _lowerCamelCase : list ): __a : Optional[Any] = args[1] if args[1:] else """../image_data/lena.jpg""" __a : Union[str, Any] = float(args[2] ) if args[2:] else 1.0 __a : Optional[int] = float(args[3] ) if args[3:] else 1.0 if args[4:]: __a : Any = int(args[4] ) __a : Any = kernel_size + abs(kernel_size % 2 - 1 ) else: __a : Optional[int] = 5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": lowercase__ , lowercase__ , lowercase__ , lowercase__ = parse_args(sys.argv) lowercase__ = cva.imread(filename, 0) cva.imshow("input image", img) lowercase__ = img / 255 lowercase__ = out.astype("float32") lowercase__ = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) lowercase__ = out * 255 lowercase__ = np.uinta(out) cva.imshow("output image", out) cva.waitKey(0) cva.destroyAllWindows()
63
1
def a (lowerCAmelCase__ = 1_000_000 ): __a = 1 __a = 1 __a = {1: 1} for inputa in range(2 , lowerCAmelCase__ ): __a = 0 __a = inputa while True: if number in counters: counter += counters[number] break if number % 2 == 0: number //= 2 counter += 1 else: __a = (3 * number) + 1 counter += 1 if inputa not in counters: __a = counter if counter > pre_counter: __a = inputa __a = counter return largest_number if __name__ == "__main__": print(solution(int(input().strip())))
99
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class __UpperCAmelCase ( __A ): """simple docstring""" _lowerCamelCase = ( """This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image.""" """It takes two arguments named `image` which should be the original image, and `label` which should be a text """ """describing the elements what should be identified in the segmentation mask. The tool returns the mask.""" ) _lowerCamelCase = """CIDAS/clipseg-rd64-refined""" _lowerCamelCase = """image_segmenter""" _lowerCamelCase = CLIPSegForImageSegmentation _lowerCamelCase = ["""image""", """text"""] _lowerCamelCase = ["""image"""] def __init__( self , *__A , **__A ): requires_backends(self , ["""vision"""] ) super().__init__(*__A , **__A ) def snake_case_ ( self , __A , __A ): return self.pre_processor(text=[label] , images=[image] , padding=__A , return_tensors="""pt""" ) def snake_case_ ( self , __A ): with torch.no_grad(): __a = self.model(**__A ).logits return logits def snake_case_ ( self , __A ): __a = outputs.cpu().detach().numpy() __a = 0 __a = 1 return Image.fromarray((array * 255).astype(np.uinta ) )
99
1
'''simple docstring''' # A Bipartite Graph is a graph whose vertices can be divided into two independent sets, # U and V such that every edge (u, v) either connects a vertex from U to V or a vertex # from V to U. In other words, for every edge (u, v), either u belongs to U and v to V, # or u belongs to V and v to U. We can also say that there is no edge that connects # vertices of same set. def _lowerCamelCase ( lowerCamelCase_ : List[Any] ): """simple docstring""" UpperCAmelCase_ : str = [False] * len(lowerCamelCase_ ) UpperCAmelCase_ : List[Any] = [-1] * len(lowerCamelCase_ ) def dfs(lowerCamelCase_ : str , lowerCamelCase_ : Optional[int] ): UpperCAmelCase_ : str = True UpperCAmelCase_ : Union[str, Any] = c for u in graph[v]: if not visited[u]: dfs(lowerCamelCase_ , 1 - c ) for i in range(len(lowerCamelCase_ ) ): if not visited[i]: dfs(lowerCamelCase_ , 0 ) for i in range(len(lowerCamelCase_ ) ): for j in graph[i]: if color[i] == color[j]: return False return True # Adjacency list of graph snake_case__ : str = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []} print(check_bipartite_dfs(graph))
389
'''simple docstring''' def _lowerCamelCase ( lowerCamelCase_ : str , lowerCamelCase_ : int ): """simple docstring""" return [sentence[i : i + ngram_size] for i in range(len(lowerCamelCase_ ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
389
1
from __future__ import annotations def SCREAMING_SNAKE_CASE__ ( lowerCAmelCase_ : float ,lowerCAmelCase_ : float ,lowerCAmelCase_ : float ) -> dict[str, float]: """simple docstring""" if (voltage, current, resistance).count(0 ) != 1: raise ValueError('One and only one argument must be 0' ) if resistance < 0: raise ValueError('Resistance cannot be negative' ) if voltage == 0: return {"voltage": float(current * resistance )} elif current == 0: return {"current": voltage / resistance} elif resistance == 0: return {"resistance": voltage / current} else: raise ValueError('Exactly one argument must be 0' ) if __name__ == "__main__": import doctest doctest.testmod()
220
import argparse import shutil from pathlib import Path from tqdm import tqdm from transformers import AutoTokenizer def SCREAMING_SNAKE_CASE__ ( lowerCAmelCase_ : Tuple ,lowerCAmelCase_ : Optional[int] ,lowerCAmelCase_ : Union[str, Any] ,lowerCAmelCase_ : Optional[Any]=1024 ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] =[], [] SCREAMING_SNAKE_CASE_ : int =list(zip(lowerCAmelCase_ ,lowerCAmelCase_ ) ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] =sorted_examples[0] def is_too_big(lowerCAmelCase_ : Dict ): return tok(lowerCAmelCase_ ,return_tensors='pt' ).input_ids.shape[1] > max_tokens for src, tgt in tqdm(sorted_examples[1:] ): SCREAMING_SNAKE_CASE_ : int =new_src + ' ' + src SCREAMING_SNAKE_CASE_ : str =new_tgt + ' ' + tgt if is_too_big(lowerCAmelCase_ ) or is_too_big(lowerCAmelCase_ ): # cant fit, finalize example finished_src.append(lowerCAmelCase_ ) finished_tgt.append(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any =src, tgt else: # can fit, keep adding SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[int] =cand_src, cand_tgt # cleanup if new_src: assert new_tgt finished_src.append(lowerCAmelCase_ ) finished_tgt.append(lowerCAmelCase_ ) return finished_src, finished_tgt def SCREAMING_SNAKE_CASE__ ( lowerCAmelCase_ : Any ,lowerCAmelCase_ : Path ,lowerCAmelCase_ : List[Any] ,lowerCAmelCase_ : List[str] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] =Path(lowerCAmelCase_ ) save_path.mkdir(exist_ok=lowerCAmelCase_ ) for split in ["train"]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str =data_dir / F"""{split}.source""", data_dir / F"""{split}.target""" SCREAMING_SNAKE_CASE_ : int =[x.rstrip() for x in Path(lowerCAmelCase_ ).open().readlines()] SCREAMING_SNAKE_CASE_ : Dict =[x.rstrip() for x in Path(lowerCAmelCase_ ).open().readlines()] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int =pack_examples(lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ) print(F"""packed {split} split from {len(lowerCAmelCase_ )} examples -> {len(lowerCAmelCase_ )}.""" ) Path(save_path / F"""{split}.source""" ).open('w' ).write('\n'.join(lowerCAmelCase_ ) ) Path(save_path / F"""{split}.target""" ).open('w' ).write('\n'.join(lowerCAmelCase_ ) ) for split in ["val", "test"]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] =data_dir / F"""{split}.source""", data_dir / F"""{split}.target""" shutil.copyfile(lowerCAmelCase_ ,save_path / F"""{split}.source""" ) shutil.copyfile(lowerCAmelCase_ ,save_path / F"""{split}.target""" ) def SCREAMING_SNAKE_CASE__ ( ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict =argparse.ArgumentParser() parser.add_argument('--tok_name' ,type=lowerCAmelCase_ ,help='like facebook/bart-large-cnn,t5-base, etc.' ) parser.add_argument('--max_seq_len' ,type=lowerCAmelCase_ ,default=128 ) parser.add_argument('--data_dir' ,type=lowerCAmelCase_ ) parser.add_argument('--save_path' ,type=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ : Dict =parser.parse_args() SCREAMING_SNAKE_CASE_ : Dict =AutoTokenizer.from_pretrained(args.tok_name ) return pack_data_dir(lowerCAmelCase_ ,Path(args.data_dir ) ,args.max_seq_len ,args.save_path ) if __name__ == "__main__": packer_cli()
220
1
"""simple docstring""" import unittest from transformers import DebertaVaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaVaForMaskedLM, DebertaVaForMultipleChoice, DebertaVaForQuestionAnswering, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaModel, ) from transformers.models.deberta_va.modeling_deberta_va import DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST class _UpperCamelCase ( __UpperCAmelCase ): '''simple docstring''' def __init__( self , __lowercase , __lowercase=13 , __lowercase=7 , __lowercase=True , __lowercase=True , __lowercase=True , __lowercase=True , __lowercase=99 , __lowercase=32 , __lowercase=5 , __lowercase=4 , __lowercase=37 , __lowercase="gelu" , __lowercase=0.1 , __lowercase=0.1 , __lowercase=512 , __lowercase=16 , __lowercase=2 , __lowercase=0.02 , __lowercase=False , __lowercase=True , __lowercase="None" , __lowercase=3 , __lowercase=4 , __lowercase=None , ): UpperCAmelCase__ = parent UpperCAmelCase__ = batch_size UpperCAmelCase__ = seq_length UpperCAmelCase__ = is_training UpperCAmelCase__ = use_input_mask UpperCAmelCase__ = use_token_type_ids UpperCAmelCase__ = use_labels UpperCAmelCase__ = vocab_size UpperCAmelCase__ = hidden_size UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = hidden_act UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = max_position_embeddings UpperCAmelCase__ = type_vocab_size UpperCAmelCase__ = type_sequence_label_size UpperCAmelCase__ = initializer_range UpperCAmelCase__ = num_labels UpperCAmelCase__ = num_choices UpperCAmelCase__ = relative_attention UpperCAmelCase__ = position_biased_input UpperCAmelCase__ = pos_att_type UpperCAmelCase__ = scope def A__ ( self ): UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase__ = None if self.use_input_mask: UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) UpperCAmelCase__ = None if self.use_token_type_ids: UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = None if self.use_labels: UpperCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase__ = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ ( self ): return DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def A__ ( self , __lowercase ): self.parent.assertListEqual(list(result.loss.size() ) , [] ) def A__ ( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ): UpperCAmelCase__ = DebertaVaModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() UpperCAmelCase__ = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ )[0] UpperCAmelCase__ = model(lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ )[0] UpperCAmelCase__ = model(lowerCAmelCase_ )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def A__ ( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ): UpperCAmelCase__ = DebertaVaForMaskedLM(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() UpperCAmelCase__ = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A__ ( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ): UpperCAmelCase__ = self.num_labels UpperCAmelCase__ = DebertaVaForSequenceClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() UpperCAmelCase__ = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(lowerCAmelCase_ ) def A__ ( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ): UpperCAmelCase__ = self.num_labels UpperCAmelCase__ = DebertaVaForTokenClassification(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() UpperCAmelCase__ = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A__ ( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ): UpperCAmelCase__ = DebertaVaForQuestionAnswering(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() UpperCAmelCase__ = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A__ ( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ): UpperCAmelCase__ = DebertaVaForMultipleChoice(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() UpperCAmelCase__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase__ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase__ = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A__ ( self ): UpperCAmelCase__ = self.prepare_config_and_inputs() ( ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ) = config_and_inputs UpperCAmelCase__ = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _UpperCamelCase ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): '''simple docstring''' __lowercase : Tuple = ( ( DebertaVaModel, DebertaVaForMaskedLM, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaForQuestionAnswering, DebertaVaForMultipleChoice, ) if is_torch_available() else () ) __lowercase : Union[str, Any] = ( { 'feature-extraction': DebertaVaModel, 'fill-mask': DebertaVaForMaskedLM, 'question-answering': DebertaVaForQuestionAnswering, 'text-classification': DebertaVaForSequenceClassification, 'token-classification': DebertaVaForTokenClassification, 'zero-shot': DebertaVaForSequenceClassification, } if is_torch_available() else {} ) __lowercase : str = True __lowercase : List[Any] = False __lowercase : Dict = False __lowercase : str = False __lowercase : Tuple = False def A__ ( self ): UpperCAmelCase__ = DebertaVaModelTester(self ) UpperCAmelCase__ = ConfigTester(self , config_class=lowerCAmelCase_ , hidden_size=37 ) def A__ ( self ): self.config_tester.run_common_tests() def A__ ( self ): UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*lowerCAmelCase_ ) def A__ ( self ): UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*lowerCAmelCase_ ) def A__ ( self ): UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*lowerCAmelCase_ ) def A__ ( self ): UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*lowerCAmelCase_ ) def A__ ( self ): UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*lowerCAmelCase_ ) def A__ ( self ): UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_multiple_choice(*lowerCAmelCase_ ) @slow def A__ ( self ): for model_name in DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ = DebertaVaModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) @require_torch @require_sentencepiece @require_tokenizers class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @unittest.skip(reason="""Model not available yet""" ) def A__ ( self ): pass @slow def A__ ( self ): UpperCAmelCase__ = DebertaVaModel.from_pretrained("""microsoft/deberta-v2-xlarge""" ) UpperCAmelCase__ = torch.tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] ) UpperCAmelCase__ = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): UpperCAmelCase__ = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ )[0] # compare the actual values for a slice. UpperCAmelCase__ = torch.tensor( [[[0.2_356, 0.1_948, 0.0_369], [-0.1_063, 0.3_586, -0.5_152], [-0.6_399, -0.0_259, -0.2_525]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , lowerCAmelCase_ , atol=1e-4 ) , F'''{output[:, 1:4, 1:4]}''' )
712
"""simple docstring""" import argparse import re from pathlib import Path import requests import torch from PIL import Image from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor from transformers import ( EfficientFormerConfig, EfficientFormerForImageClassificationWithTeacher, EfficientFormerImageProcessor, ) from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def snake_case__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->List[str]: UpperCAmelCase__ = old_name if "patch_embed" in old_name: UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = old_name.split(""".""" ) if layer == "0": UpperCAmelCase__ = old_name.replace("""0""" , """convolution1""" ) elif layer == "1": UpperCAmelCase__ = old_name.replace("""1""" , """batchnorm_before""" ) elif layer == "3": UpperCAmelCase__ = old_name.replace("""3""" , """convolution2""" ) else: UpperCAmelCase__ = old_name.replace("""4""" , """batchnorm_after""" ) if "network" in old_name and re.search(r"""\d\.\d""" , _SCREAMING_SNAKE_CASE ): UpperCAmelCase__ = r"""\b\d{2}\b""" if bool(re.search(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ): UpperCAmelCase__ = re.search(r"""\d\.\d\d.""" , _SCREAMING_SNAKE_CASE ).group() else: UpperCAmelCase__ = re.search(r"""\d\.\d.""" , _SCREAMING_SNAKE_CASE ).group() if int(match[0] ) < 6: UpperCAmelCase__ = old_name.replace(_SCREAMING_SNAKE_CASE , """""" ) UpperCAmelCase__ = trimmed_name.replace("""network""" , match[0] + """.meta4D_layers.blocks.""" + match[2:-1] ) UpperCAmelCase__ = """intermediate_stages.""" + trimmed_name else: UpperCAmelCase__ = old_name.replace(_SCREAMING_SNAKE_CASE , """""" ) if int(match[2] ) < num_meta4D_last_stage: UpperCAmelCase__ = trimmed_name.replace("""network""" , """meta4D_layers.blocks.""" + match[2] ) else: UpperCAmelCase__ = str(int(match[2] ) - num_meta4D_last_stage ) UpperCAmelCase__ = trimmed_name.replace("""network""" , """meta3D_layers.blocks.""" + layer_index ) if "norm1" in old_name: UpperCAmelCase__ = trimmed_name.replace("""norm1""" , """layernorm1""" ) elif "norm2" in old_name: UpperCAmelCase__ = trimmed_name.replace("""norm2""" , """layernorm2""" ) elif "fc1" in old_name: UpperCAmelCase__ = trimmed_name.replace("""fc1""" , """linear_in""" ) elif "fc2" in old_name: UpperCAmelCase__ = trimmed_name.replace("""fc2""" , """linear_out""" ) UpperCAmelCase__ = """last_stage.""" + trimmed_name elif "network" in old_name and re.search(r""".\d.""" , _SCREAMING_SNAKE_CASE ): UpperCAmelCase__ = old_name.replace("""network""" , """intermediate_stages""" ) if "fc" in new_name: UpperCAmelCase__ = new_name.replace("""fc""" , """convolution""" ) elif ("norm1" in new_name) and ("layernorm1" not in new_name): UpperCAmelCase__ = new_name.replace("""norm1""" , """batchnorm_before""" ) elif ("norm2" in new_name) and ("layernorm2" not in new_name): UpperCAmelCase__ = new_name.replace("""norm2""" , """batchnorm_after""" ) if "proj" in new_name: UpperCAmelCase__ = new_name.replace("""proj""" , """projection""" ) if "dist_head" in new_name: UpperCAmelCase__ = new_name.replace("""dist_head""" , """distillation_classifier""" ) elif "head" in new_name: UpperCAmelCase__ = new_name.replace("""head""" , """classifier""" ) elif "patch_embed" in new_name: UpperCAmelCase__ = """efficientformer.""" + new_name elif new_name == "norm.weight" or new_name == "norm.bias": UpperCAmelCase__ = new_name.replace("""norm""" , """layernorm""" ) UpperCAmelCase__ = """efficientformer.""" + new_name else: UpperCAmelCase__ = """efficientformer.encoder.""" + new_name return new_name def snake_case__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->str: for key in checkpoint.copy().keys(): UpperCAmelCase__ = checkpoint.pop(_SCREAMING_SNAKE_CASE ) UpperCAmelCase__ = val return checkpoint def snake_case__ ( ) ->Optional[Any]: UpperCAmelCase__ = """http://images.cocodataset.org/val2017/000000039769.jpg""" UpperCAmelCase__ = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ) return image def snake_case__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->List[Any]: UpperCAmelCase__ = torch.load(_SCREAMING_SNAKE_CASE , map_location="""cpu""" )["""model"""] UpperCAmelCase__ = EfficientFormerConfig.from_json_file(_SCREAMING_SNAKE_CASE ) UpperCAmelCase__ = EfficientFormerForImageClassificationWithTeacher(_SCREAMING_SNAKE_CASE ) UpperCAmelCase__ = """_""".join(checkpoint_path.split("""/""" )[-1].split(""".""" )[0].split("""_""" )[:-1] ) UpperCAmelCase__ = config.depths[-1] - config.num_metaad_blocks + 1 UpperCAmelCase__ = convert_torch_checkpoint(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) model.load_state_dict(_SCREAMING_SNAKE_CASE ) model.eval() UpperCAmelCase__ = { """bilinear""": PILImageResampling.BILINEAR, """bicubic""": PILImageResampling.BICUBIC, """nearest""": PILImageResampling.NEAREST, } # prepare image UpperCAmelCase__ = prepare_img() UpperCAmelCase__ = 2_5_6 UpperCAmelCase__ = 2_2_4 UpperCAmelCase__ = EfficientFormerImageProcessor( size={"""shortest_edge""": image_size} , crop_size={"""height""": crop_size, """width""": crop_size} , resample=pillow_resamplings["""bicubic"""] , ) UpperCAmelCase__ = processor(images=_SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).pixel_values # original processing pipeline UpperCAmelCase__ = Compose( [ Resize(_SCREAMING_SNAKE_CASE , interpolation=pillow_resamplings["""bicubic"""] ), CenterCrop(_SCREAMING_SNAKE_CASE ), ToTensor(), Normalize(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), ] ) UpperCAmelCase__ = image_transforms(_SCREAMING_SNAKE_CASE ).unsqueeze(0 ) assert torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCAmelCase__ = model(_SCREAMING_SNAKE_CASE ) UpperCAmelCase__ = outputs.logits UpperCAmelCase__ = (1, 1_0_0_0) if "l1" in model_name: UpperCAmelCase__ = torch.Tensor( [-0.1312, 0.4353, -1.0499, -0.5124, 0.4183, -0.6793, -1.3777, -0.0893, -0.7358, -2.4328] ) assert torch.allclose(logits[0, :1_0] , _SCREAMING_SNAKE_CASE , atol=1E-3 ) assert logits.shape == expected_shape elif "l3" in model_name: UpperCAmelCase__ = torch.Tensor( [-1.3150, -1.5456, -1.2556, -0.8496, -0.7127, -0.7897, -0.9728, -0.3052, 0.3751, -0.3127] ) assert torch.allclose(logits[0, :1_0] , _SCREAMING_SNAKE_CASE , atol=1E-3 ) assert logits.shape == expected_shape elif "l7" in model_name: UpperCAmelCase__ = torch.Tensor( [-1.0283, -1.4131, -0.5644, -1.3115, -0.5785, -1.2049, -0.7528, 0.1992, -0.3822, -0.0878] ) assert logits.shape == expected_shape else: raise ValueError( F'''Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7''' ) # Save Checkpoints Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) print(F'''Checkpoint successfuly converted. Model saved at {pytorch_dump_path}''' ) processor.save_pretrained(_SCREAMING_SNAKE_CASE ) print(F'''Processor successfuly saved at {pytorch_dump_path}''' ) if push_to_hub: print("""Pushing model to the hub...""" ) model.push_to_hub( repo_id=F'''Bearnardd/{pytorch_dump_path}''' , commit_message="""Add model""" , use_temp_dir=_SCREAMING_SNAKE_CASE , ) processor.push_to_hub( repo_id=F'''Bearnardd/{pytorch_dump_path}''' , commit_message="""Add image processor""" , use_temp_dir=_SCREAMING_SNAKE_CASE , ) if __name__ == "__main__": a : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--pytorch_model_path''', default=None, type=str, required=True, help='''Path to EfficientFormer pytorch checkpoint.''', ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The json file for EfficientFormer model config.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Push model and image processor to the hub''') parser.add_argument( '''--no-push_to_hub''', dest='''push_to_hub''', action='''store_false''', help='''Do not push model and image processor to the hub''', ) parser.set_defaults(push_to_hub=True) a : Optional[int] = parser.parse_args() convert_efficientformer_checkpoint( checkpoint_path=args.pytorch_model_path, efficientformer_config_file=args.config_file, pytorch_dump_path=args.pytorch_dump_path, push_to_hub=args.push_to_hub, )
422
0
"""simple docstring""" from collections import defaultdict class lowerCamelCase : '''simple docstring''' def __init__(self , _lowerCamelCase , _lowerCamelCase ): """simple docstring""" UpperCAmelCase__ : Dict = total # total no of tasks (N) # DP table will have a dimension of (2^M)*N # initially all values are set to -1 UpperCAmelCase__ : Tuple = [ [-1 for i in range(total + 1 )] for j in range(2 ** len(_lowerCamelCase ) ) ] UpperCAmelCase__ : str = defaultdict(_lowerCamelCase ) # stores the list of persons for each task # final_mask is used to check if all persons are included by setting all bits # to 1 UpperCAmelCase__ : List[str] = (1 << len(_lowerCamelCase )) - 1 def _a (self , _lowerCamelCase , _lowerCamelCase ): """simple docstring""" if mask == self.final_mask: return 1 # if not everyone gets the task and no more tasks are available, return 0 if task_no > self.total_tasks: return 0 # if case already considered if self.dp[mask][task_no] != -1: return self.dp[mask][task_no] # Number of ways when we don't this task in the arrangement UpperCAmelCase__ : Dict = self.count_ways_until(_lowerCamelCase , task_no + 1 ) # now assign the tasks one by one to all possible persons and recursively # assign for the remaining tasks. if task_no in self.task: for p in self.task[task_no]: # if p is already given a task if mask & (1 << p): continue # assign this task to p and change the mask value. And recursively # assign tasks with the new mask value. total_ways_util += self.count_ways_until(mask | (1 << p) , task_no + 1 ) # save the value. UpperCAmelCase__ : Dict = total_ways_util return self.dp[mask][task_no] def _a (self , _lowerCamelCase ): """simple docstring""" for i in range(len(_lowerCamelCase ) ): for j in task_performed[i]: self.task[j].append(_lowerCamelCase ) # call the function to fill the DP table, final answer is stored in dp[0][1] return self.count_ways_until(0 , 1 ) if __name__ == "__main__": _A = 5 # total no of tasks (the value of N) # the list of tasks that can be done by M persons. _A = [[1, 3, 4], [1, 2, 5], [3, 4]] print( AssignmentUsingBitmask(task_performed, total_tasks).count_no_of_ways( task_performed ) )
182
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _A = {"""configuration_sew""": ["""SEW_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SEWConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ """SEW_PRETRAINED_MODEL_ARCHIVE_LIST""", """SEWForCTC""", """SEWForSequenceClassification""", """SEWModel""", """SEWPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_sew import SEW_PRETRAINED_CONFIG_ARCHIVE_MAP, SEWConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_sew import ( SEW_PRETRAINED_MODEL_ARCHIVE_LIST, SEWForCTC, SEWForSequenceClassification, SEWModel, SEWPreTrainedModel, ) else: import sys _A = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
182
1
import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging snake_case_ : Optional[Any] =logging.get_logger(__name__) class a__ ( lowerCAmelCase__ ): def __init__( self , lowercase__ ) -> str: super().__init__() __A = nn.ModuleList(lowercase__ ) def _lowerCamelCase ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = False , lowercase__ = True , ) -> Union[ControlNetOutput, Tuple]: for i, (image, scale, controlnet) in enumerate(zip(lowercase__ , lowercase__ , self.nets ) ): __A , __A = controlnet( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ) # merge samples if i == 0: __A , __A = down_samples, mid_sample else: __A = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(lowercase__ , lowercase__ ) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def _lowerCamelCase ( self , lowercase__ , lowercase__ = True , lowercase__ = None , lowercase__ = False , lowercase__ = None , ) -> Optional[int]: __A = 0 __A = save_directory for controlnet in self.nets: controlnet.save_pretrained( lowercase__ , is_main_process=lowercase__ , save_function=lowercase__ , safe_serialization=lowercase__ , variant=lowercase__ , ) idx += 1 __A = model_path_to_save + F"""_{idx}""" @classmethod def _lowerCamelCase ( cls , lowercase__ , **lowercase__ ) -> int: __A = 0 __A = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... __A = pretrained_model_path while os.path.isdir(lowercase__ ): __A = ControlNetModel.from_pretrained(lowercase__ , **lowercase__ ) controlnets.append(lowercase__ ) idx += 1 __A = pretrained_model_path + F"""_{idx}""" logger.info(F"""{len(lowercase__ )} controlnets loaded from {pretrained_model_path}.""" ) if len(lowercase__ ) == 0: raise ValueError( F"""No ControlNets found under {os.path.dirname(lowercase__ )}. Expected at least {pretrained_model_path + '_0'}.""" ) return cls(lowercase__ )
205
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class a__ : def __init__( self , lowercase__ , lowercase__=13 , lowercase__=10 , lowercase__=3 , lowercase__=2 , lowercase__=2 , lowercase__=True , lowercase__=True , lowercase__=32 , lowercase__=5 , lowercase__=4 , lowercase__=37 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=10 , lowercase__=0.02 , lowercase__="divided_space_time" , lowercase__=None , ) -> Any: __A = parent __A = batch_size __A = image_size __A = num_channels __A = patch_size __A = num_frames __A = is_training __A = use_labels __A = hidden_size __A = num_hidden_layers __A = num_attention_heads __A = intermediate_size __A = hidden_act __A = hidden_dropout_prob __A = attention_probs_dropout_prob __A = attention_type __A = initializer_range __A = scope __A = num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token __A = (image_size // patch_size) ** 2 __A = (num_frames) * self.num_patches_per_frame + 1 def _lowerCamelCase ( self ) -> Any: __A = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) __A = None if self.use_labels: __A = ids_tensor([self.batch_size] , self.num_labels ) __A = self.get_config() return config, pixel_values, labels def _lowerCamelCase ( self ) -> List[Any]: __A = TimesformerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , ) __A = self.num_labels return config def _lowerCamelCase ( self , lowercase__ , lowercase__ , lowercase__ ) -> Dict: __A = TimesformerModel(config=lowercase__ ) model.to(lowercase__ ) model.eval() __A = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self , lowercase__ , lowercase__ , lowercase__ ) -> List[str]: __A = TimesformerForVideoClassification(lowercase__ ) model.to(lowercase__ ) model.eval() __A = model(lowercase__ ) # verify the logits shape __A = torch.Size((self.batch_size, self.num_labels) ) self.parent.assertEqual(result.logits.shape , lowercase__ ) def _lowerCamelCase ( self ) -> Union[str, Any]: __A = self.prepare_config_and_inputs() __A , __A , __A = config_and_inputs __A = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class a__ ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): UpperCAmelCase_ : Optional[Any] = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () UpperCAmelCase_ : Optional[Any] = ( {'feature-extraction': TimesformerModel, 'video-classification': TimesformerForVideoClassification} if is_torch_available() else {} ) UpperCAmelCase_ : List[str] = False UpperCAmelCase_ : str = False UpperCAmelCase_ : str = False UpperCAmelCase_ : Dict = False def _lowerCamelCase ( self ) -> int: __A = TimesformerModelTester(self ) __A = ConfigTester( self , config_class=lowercase__ , has_text_modality=lowercase__ , hidden_size=37 ) def _lowerCamelCase ( self , lowercase__ , lowercase__ , lowercase__=False ) -> int: __A = copy.deepcopy(lowercase__ ) if return_labels: if model_class in get_values(lowercase__ ): __A = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowercase__ ) return inputs_dict def _lowerCamelCase ( self ) -> Any: self.config_tester.run_common_tests() @unittest.skip(reason="TimeSformer does not use inputs_embeds" ) def _lowerCamelCase ( self ) -> Optional[Any]: pass def _lowerCamelCase ( self ) -> int: __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A = model_class(lowercase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __A = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase__ , nn.Linear ) ) def _lowerCamelCase ( self ) -> int: __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A = model_class(lowercase__ ) __A = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __A = [*signature.parameters.keys()] __A = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowercase__ ) def _lowerCamelCase ( self ) -> List[Any]: __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__ ) def _lowerCamelCase ( self ) -> Dict: __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*lowercase__ ) @slow def _lowerCamelCase ( self ) -> Optional[Any]: for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A = TimesformerModel.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) def _lowerCamelCase ( self ) -> str: if not self.has_attentions: pass else: __A , __A = self.model_tester.prepare_config_and_inputs_for_common() __A = True for model_class in self.all_model_classes: __A = self.model_tester.seq_length __A = self.model_tester.num_frames __A = True __A = False __A = True __A = model_class(lowercase__ ) model.to(lowercase__ ) model.eval() with torch.no_grad(): __A = model(**self._prepare_for_class(lowercase__ , lowercase__ ) ) __A = outputs.attentions self.assertEqual(len(lowercase__ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __A = True __A = model_class(lowercase__ ) model.to(lowercase__ ) model.eval() with torch.no_grad(): __A = model(**self._prepare_for_class(lowercase__ , lowercase__ ) ) __A = outputs.attentions self.assertEqual(len(lowercase__ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) __A = len(lowercase__ ) # Check attention is always last and order is fine __A = True __A = True __A = model_class(lowercase__ ) model.to(lowercase__ ) model.eval() with torch.no_grad(): __A = model(**self._prepare_for_class(lowercase__ , lowercase__ ) ) self.assertEqual(out_len + 1 , len(lowercase__ ) ) __A = outputs.attentions self.assertEqual(len(lowercase__ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) def _lowerCamelCase ( self ) -> Union[str, Any]: def check_hidden_states_output(lowercase__ , lowercase__ , lowercase__ ): __A = model_class(lowercase__ ) model.to(lowercase__ ) model.eval() with torch.no_grad(): __A = model(**self._prepare_for_class(lowercase__ , lowercase__ ) ) __A = outputs.hidden_states __A = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(lowercase__ ) , lowercase__ ) __A = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A = True check_hidden_states_output(lowercase__ , lowercase__ , lowercase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __A = True check_hidden_states_output(lowercase__ , lowercase__ , lowercase__ ) def UpperCAmelCase ( ): '''simple docstring''' __A = hf_hub_download( repo_id="hf-internal-testing/spaghetti-video" , filename="eating_spaghetti.npy" , repo_type="dataset" ) __A = np.load(lowerCAmelCase__ ) return list(lowerCAmelCase__ ) @require_torch @require_vision class a__ ( unittest.TestCase ): @cached_property def _lowerCamelCase ( self ) -> int: # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def _lowerCamelCase ( self ) -> Optional[int]: __A = TimesformerForVideoClassification.from_pretrained("facebook/timesformer-base-finetuned-k400" ).to( lowercase__ ) __A = self.default_image_processor __A = prepare_video() __A = image_processor(video[:8] , return_tensors="pt" ).to(lowercase__ ) # forward pass with torch.no_grad(): __A = model(**lowercase__ ) # verify the logits __A = torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape , lowercase__ ) __A = torch.tensor([-0.3016, -0.7713, -0.4205] ).to(lowercase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase__ , atol=1e-4 ) )
205
1
def _a ( lowerCAmelCase = 10 )-> List[Any]: if not isinstance(UpperCamelCase_ , UpperCamelCase_ ) or n < 0: raise ValueError('Invalid input' ) SCREAMING_SNAKE_CASE_ = 10**n SCREAMING_SNAKE_CASE_ = 28433 * (pow(2 , 7830457 , UpperCamelCase_ )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(f"""{solution(1_0) = }""")
360
'''simple docstring''' import importlib.util import json import os import warnings from dataclasses import dataclass, field import torch from ..training_args import TrainingArguments from ..utils import cached_property, is_sagemaker_dp_enabled, logging __lowerCamelCase = logging.get_logger(__name__) def a__ ( ): # Get the sagemaker specific mp parameters from smp_options variable. UpperCAmelCase__ :Any = os.getenv('''SM_HP_MP_PARAMETERS''', '''{}''' ) try: # Parse it and check the field "partitions" is included, it is required for model parallel. UpperCAmelCase__ :Any = json.loads(UpperCamelCase_ ) if "partitions" not in smp_options: return False except json.JSONDecodeError: return False # Get the sagemaker specific framework parameters from mpi_options variable. UpperCAmelCase__ :Optional[Any] = os.getenv('''SM_FRAMEWORK_PARAMS''', '''{}''' ) try: # Parse it and check the field "sagemaker_distributed_dataparallel_enabled". UpperCAmelCase__ :str = json.loads(UpperCamelCase_ ) if not mpi_options.get('''sagemaker_mpi_enabled''', UpperCamelCase_ ): return False except json.JSONDecodeError: return False # Lastly, check if the `smdistributed` module is present. return importlib.util.find_spec('''smdistributed''' ) is not None if is_sagemaker_model_parallel_available(): import smdistributed.modelparallel.torch as smp smp.init() @dataclass class UpperCAmelCase ( _snake_case ): UpperCAmelCase = field( default="" , metadata={"help": "Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer"} , ) def __SCREAMING_SNAKE_CASE ( self : List[Any] ): super().__post_init__() warnings.warn( '''`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use ''' '''`TrainingArguments` instead.''' , __lowerCamelCase , ) @cached_property def __SCREAMING_SNAKE_CASE ( self : List[Any] ): logger.info('''PyTorch: setting up devices''' ) if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1: logger.warning( '''torch.distributed process group is initialized, but local_rank == -1. ''' '''In order to use Torch DDP, launch your script with `python -m torch.distributed.launch''' ) if self.no_cuda: UpperCAmelCase__ :Union[str, Any] = torch.device('''cpu''' ) UpperCAmelCase__ :Dict = 0 elif is_sagemaker_model_parallel_available(): UpperCAmelCase__ :Dict = smp.local_rank() UpperCAmelCase__ :List[str] = torch.device('''cuda''' , __lowerCamelCase ) UpperCAmelCase__ :Optional[int] = 1 elif is_sagemaker_dp_enabled(): import smdistributed.dataparallel.torch.torch_smddp # noqa: F401 torch.distributed.init_process_group(backend='''smddp''' , timeout=self.ddp_timeout_delta ) UpperCAmelCase__ :int = int(os.getenv('''SMDATAPARALLEL_LOCAL_RANK''' ) ) UpperCAmelCase__ :int = torch.device('''cuda''' , self.local_rank ) UpperCAmelCase__ :Union[str, Any] = 1 elif self.local_rank == -1: # if n_gpu is > 1 we'll use nn.DataParallel. # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0` # Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will # trigger an error that a device index is missing. Index 0 takes into account the # GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0` # will use the first GPU in that env, i.e. GPU#1 UpperCAmelCase__ :str = torch.device('''cuda:0''' if torch.cuda.is_available() else '''cpu''' ) # Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at # the default value. UpperCAmelCase__ :str = torch.cuda.device_count() else: # Here, we'll use torch.distributed. # Initializes the distributed backend which will take care of synchronizing nodes/GPUs if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend='''nccl''' , timeout=self.ddp_timeout_delta ) UpperCAmelCase__ :str = torch.device('''cuda''' , self.local_rank ) UpperCAmelCase__ :Union[str, Any] = 1 if device.type == "cuda": torch.cuda.set_device(__lowerCamelCase ) return device @property def __SCREAMING_SNAKE_CASE ( self : List[str] ): if is_sagemaker_model_parallel_available(): return smp.dp_size() return super().world_size @property def __SCREAMING_SNAKE_CASE ( self : Dict ): return not is_sagemaker_model_parallel_available() @property def __SCREAMING_SNAKE_CASE ( self : int ): return False
467
0
'''simple docstring''' import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase : Optional[int] = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) _lowerCamelCase : List[Any] = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', f'''encoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (f'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', f'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.weight''', f'''encoder.layers.{i}.fc1.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.bias''', f'''encoder.layers.{i}.fc1.bias''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.weight''', f'''encoder.layers.{i}.fc2.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.bias''', f'''encoder.layers.{i}.fc2.bias''')) rename_keys.append( (f'''transformer.encoder.layers.{i}.norm1.weight''', f'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm1.bias''', f'''encoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.weight''', f'''encoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.bias''', f'''encoder.layers.{i}.final_layer_norm.bias''')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', f'''decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', f'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( f'''transformer.decoder.layers.{i}.cross_attn.out_proj.weight''', f'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( f'''transformer.decoder.layers.{i}.cross_attn.out_proj.bias''', f'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.weight''', f'''decoder.layers.{i}.fc1.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.bias''', f'''decoder.layers.{i}.fc1.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.weight''', f'''decoder.layers.{i}.fc2.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.bias''', f'''decoder.layers.{i}.fc2.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm1.weight''', f'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm1.bias''', f'''decoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm2.weight''', f'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm2.bias''', f'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.weight''', f'''decoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.bias''', f'''decoder.layers.{i}.final_layer_norm.bias''')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_qcontent_proj.weight''', f'''decoder.layers.{i}.sa_qcontent_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_kcontent_proj.weight''', f'''decoder.layers.{i}.sa_kcontent_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_qpos_proj.weight''', f'''decoder.layers.{i}.sa_qpos_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_kpos_proj.weight''', f'''decoder.layers.{i}.sa_kpos_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_v_proj.weight''', f'''decoder.layers.{i}.sa_v_proj.weight''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qcontent_proj.weight''', f'''decoder.layers.{i}.ca_qcontent_proj.weight''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_kcontent_proj.weight''', f'''decoder.layers.{i}.ca_kcontent_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_kpos_proj.weight''', f'''decoder.layers.{i}.ca_kpos_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.ca_v_proj.weight''', f'''decoder.layers.{i}.ca_v_proj.weight''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight''', f'''decoder.layers.{i}.ca_qpos_sine_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_qcontent_proj.bias''', f'''decoder.layers.{i}.sa_qcontent_proj.bias''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_kcontent_proj.bias''', f'''decoder.layers.{i}.sa_kcontent_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_qpos_proj.bias''', f'''decoder.layers.{i}.sa_qpos_proj.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_kpos_proj.bias''', f'''decoder.layers.{i}.sa_kpos_proj.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_v_proj.bias''', f'''decoder.layers.{i}.sa_v_proj.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qcontent_proj.bias''', f'''decoder.layers.{i}.ca_qcontent_proj.bias''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_kcontent_proj.bias''', f'''decoder.layers.{i}.ca_kcontent_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.ca_kpos_proj.bias''', f'''decoder.layers.{i}.ca_kpos_proj.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.ca_v_proj.bias''', f'''decoder.layers.{i}.ca_v_proj.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias''', f'''decoder.layers.{i}.ca_qpos_sine_proj.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ("input_proj.weight", "input_projection.weight"), ("input_proj.bias", "input_projection.bias"), ("query_embed.weight", "query_position_embeddings.weight"), ("transformer.decoder.norm.weight", "decoder.layernorm.weight"), ("transformer.decoder.norm.bias", "decoder.layernorm.bias"), ("class_embed.weight", "class_labels_classifier.weight"), ("class_embed.bias", "class_labels_classifier.bias"), ("bbox_embed.layers.0.weight", "bbox_predictor.layers.0.weight"), ("bbox_embed.layers.0.bias", "bbox_predictor.layers.0.bias"), ("bbox_embed.layers.1.weight", "bbox_predictor.layers.1.weight"), ("bbox_embed.layers.1.bias", "bbox_predictor.layers.1.bias"), ("bbox_embed.layers.2.weight", "bbox_predictor.layers.2.weight"), ("bbox_embed.layers.2.bias", "bbox_predictor.layers.2.bias"), ("transformer.decoder.ref_point_head.layers.0.weight", "decoder.ref_point_head.layers.0.weight"), ("transformer.decoder.ref_point_head.layers.0.bias", "decoder.ref_point_head.layers.0.bias"), ("transformer.decoder.ref_point_head.layers.1.weight", "decoder.ref_point_head.layers.1.weight"), ("transformer.decoder.ref_point_head.layers.1.bias", "decoder.ref_point_head.layers.1.bias"), ("transformer.decoder.query_scale.layers.0.weight", "decoder.query_scale.layers.0.weight"), ("transformer.decoder.query_scale.layers.0.bias", "decoder.query_scale.layers.0.bias"), ("transformer.decoder.query_scale.layers.1.weight", "decoder.query_scale.layers.1.weight"), ("transformer.decoder.query_scale.layers.1.bias", "decoder.query_scale.layers.1.bias"), ("transformer.decoder.layers.0.ca_qpos_proj.weight", "decoder.layers.0.ca_qpos_proj.weight"), ("transformer.decoder.layers.0.ca_qpos_proj.bias", "decoder.layers.0.ca_qpos_proj.bias"), ] ) def __lowerCamelCase ( A__ , A__ , A__ ) -> Optional[Any]: """simple docstring""" UpperCamelCase = state_dict.pop(A__ ) UpperCamelCase = val def __lowerCamelCase ( A__ ) -> str: """simple docstring""" UpperCamelCase = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: UpperCamelCase = key.replace('backbone.0.body' , 'backbone.conv_encoder.model' ) UpperCamelCase = value else: UpperCamelCase = value return new_state_dict def __lowerCamelCase ( A__ , A__=False ) -> str: """simple docstring""" UpperCamelCase = '' if is_panoptic: UpperCamelCase = 'conditional_detr.' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) UpperCamelCase = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" ) UpperCamelCase = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCamelCase = in_proj_weight[:256, :] UpperCamelCase = in_proj_bias[:256] UpperCamelCase = in_proj_weight[256:512, :] UpperCamelCase = in_proj_bias[256:512] UpperCamelCase = in_proj_weight[-256:, :] UpperCamelCase = in_proj_bias[-256:] def __lowerCamelCase ( ) -> str: """simple docstring""" UpperCamelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' UpperCamelCase = Image.open(requests.get(A__ , stream=A__ ).raw ) return im @torch.no_grad() def __lowerCamelCase ( A__ , A__ ) -> Tuple: """simple docstring""" UpperCamelCase = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: UpperCamelCase = 'resnet101' if "dc5" in model_name: UpperCamelCase = True UpperCamelCase = 'panoptic' in model_name if is_panoptic: UpperCamelCase = 250 else: UpperCamelCase = 91 UpperCamelCase = 'huggingface/label-files' UpperCamelCase = 'coco-detection-id2label.json' UpperCamelCase = json.load(open(hf_hub_download(A__ , A__ , repo_type='dataset' ) , 'r' ) ) UpperCamelCase = {int(A__ ): v for k, v in idalabel.items()} UpperCamelCase = idalabel UpperCamelCase = {v: k for k, v in idalabel.items()} # load image processor UpperCamelCase = 'coco_panoptic' if is_panoptic else 'coco_detection' UpperCamelCase = ConditionalDetrImageProcessor(format=A__ ) # prepare image UpperCamelCase = prepare_img() UpperCamelCase = image_processor(images=A__ , return_tensors='pt' ) UpperCamelCase = encoding['pixel_values'] logger.info(F"""Converting model {model_name}...""" ) # load original model from torch hub UpperCamelCase = torch.hub.load('DeppMeng/ConditionalDETR' , A__ , pretrained=A__ ).eval() UpperCamelCase = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: UpperCamelCase = 'conditional_detr.' + src rename_key(A__ , A__ , A__ ) UpperCamelCase = rename_backbone_keys(A__ ) # query, key and value matrices need special treatment read_in_q_k_v(A__ , is_panoptic=A__ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them UpperCamelCase = 'conditional_detr.model.' if is_panoptic else 'model.' for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith('conditional_detr' ) and not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ) ): UpperCamelCase = state_dict.pop(A__ ) UpperCamelCase = val elif "class_labels_classifier" in key or "bbox_predictor" in key: UpperCamelCase = state_dict.pop(A__ ) UpperCamelCase = val elif key.startswith('bbox_attention' ) or key.startswith('mask_head' ): continue else: UpperCamelCase = state_dict.pop(A__ ) UpperCamelCase = val else: if not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ): UpperCamelCase = state_dict.pop(A__ ) UpperCamelCase = val # finally, create HuggingFace model and load state dict UpperCamelCase = ConditionalDetrForSegmentation(A__ ) if is_panoptic else ConditionalDetrForObjectDetection(A__ ) model.load_state_dict(A__ ) model.eval() model.push_to_hub(repo_id=A__ , organization='DepuMeng' , commit_message='Add model' ) # verify our conversion UpperCamelCase = conditional_detr(A__ ) UpperCamelCase = model(A__ ) assert torch.allclose(outputs.logits , original_outputs['pred_logits'] , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs['pred_boxes'] , atol=1e-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs['pred_masks'] , atol=1e-4 ) # Save model and image processor logger.info(F"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(A__ ).mkdir(exist_ok=A__ ) model.save_pretrained(A__ ) image_processor.save_pretrained(A__ ) if __name__ == "__main__": _lowerCamelCase : int = argparse.ArgumentParser() parser.add_argument( "--model_name", default="conditional_detr_resnet50", type=str, help="Name of the CONDITIONAL_DETR model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) _lowerCamelCase : int = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
719
'''simple docstring''' import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def __lowerCamelCase ( A__ , A__="shi-labs/oneformer_demo" ) -> Tuple: """simple docstring""" with open(hf_hub_download(A__ , A__ , repo_type='dataset' ) , 'r' ) as f: UpperCamelCase = json.load(A__ ) UpperCamelCase = {} UpperCamelCase = [] UpperCamelCase = [] for key, info in class_info.items(): UpperCamelCase = info['name'] class_names.append(info['name'] ) if info["isthing"]: thing_ids.append(int(A__ ) ) UpperCamelCase = thing_ids UpperCamelCase = class_names return metadata class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def __init__( self : Optional[int] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[Any]=7 , UpperCamelCase__ : int=3 , UpperCamelCase__ : Dict=3_0 , UpperCamelCase__ : Tuple=4_0_0 , UpperCamelCase__ : Optional[Any]=None , UpperCamelCase__ : Any=True , UpperCamelCase__ : Optional[Any]=True , UpperCamelCase__ : List[str]=[0.5, 0.5, 0.5] , UpperCamelCase__ : List[str]=[0.5, 0.5, 0.5] , UpperCamelCase__ : Optional[int]=1_0 , UpperCamelCase__ : List[Any]=False , UpperCamelCase__ : str=2_5_5 , UpperCamelCase__ : Optional[Any]="shi-labs/oneformer_demo" , UpperCamelCase__ : Any="ade20k_panoptic.json" , UpperCamelCase__ : Dict=1_0 , ): """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = num_channels UpperCamelCase = min_resolution UpperCamelCase = max_resolution UpperCamelCase = do_resize UpperCamelCase = {'shortest_edge': 3_2, 'longest_edge': 1_3_3_3} if size is None else size UpperCamelCase = do_normalize UpperCamelCase = image_mean UpperCamelCase = image_std UpperCamelCase = class_info_file UpperCamelCase = prepare_metadata(UpperCamelCase__ , UpperCamelCase__ ) UpperCamelCase = num_text UpperCamelCase = repo_path # for the post_process_functions UpperCamelCase = 2 UpperCamelCase = 1_0 UpperCamelCase = 1_0 UpperCamelCase = 3 UpperCamelCase = 4 UpperCamelCase = num_labels UpperCamelCase = do_reduce_labels UpperCamelCase = ignore_index def A ( self : Dict ): """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def A ( self : Optional[Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Tuple=False ): """simple docstring""" if not batched: UpperCamelCase = image_inputs[0] if isinstance(UpperCamelCase__ , Image.Image ): UpperCamelCase , UpperCamelCase = image.size else: UpperCamelCase , UpperCamelCase = image.shape[1], image.shape[2] if w < h: UpperCamelCase = int(self.size['shortest_edge'] * h / w ) UpperCamelCase = self.size['shortest_edge'] elif w > h: UpperCamelCase = self.size['shortest_edge'] UpperCamelCase = int(self.size['shortest_edge'] * w / h ) else: UpperCamelCase = self.size['shortest_edge'] UpperCamelCase = self.size['shortest_edge'] else: UpperCamelCase = [] for image in image_inputs: UpperCamelCase , UpperCamelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) UpperCamelCase = max(UpperCamelCase__ , key=lambda UpperCamelCase__ : item[0] )[0] UpperCamelCase = max(UpperCamelCase__ , key=lambda UpperCamelCase__ : item[1] )[1] return expected_height, expected_width def A ( self : List[str] ): """simple docstring""" return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class SCREAMING_SNAKE_CASE ( _a , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string _SCREAMING_SNAKE_CASE = image_processing_class def A ( self : Optional[Any] ): """simple docstring""" UpperCamelCase = OneFormerImageProcessorTester(self ) @property def A ( self : int ): """simple docstring""" return self.image_processing_tester.prepare_image_processor_dict() def A ( self : List[str] ): """simple docstring""" UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase__ , 'image_mean' ) ) self.assertTrue(hasattr(UpperCamelCase__ , 'image_std' ) ) self.assertTrue(hasattr(UpperCamelCase__ , 'do_normalize' ) ) self.assertTrue(hasattr(UpperCamelCase__ , 'do_resize' ) ) self.assertTrue(hasattr(UpperCamelCase__ , 'size' ) ) self.assertTrue(hasattr(UpperCamelCase__ , 'ignore_index' ) ) self.assertTrue(hasattr(UpperCamelCase__ , 'class_info_file' ) ) self.assertTrue(hasattr(UpperCamelCase__ , 'num_text' ) ) self.assertTrue(hasattr(UpperCamelCase__ , 'repo_path' ) ) self.assertTrue(hasattr(UpperCamelCase__ , 'metadata' ) ) self.assertTrue(hasattr(UpperCamelCase__ , 'do_reduce_labels' ) ) def A ( self : int ): """simple docstring""" pass def A ( self : Any ): """simple docstring""" UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , Image.Image ) # Test not batched input UpperCamelCase = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values UpperCamelCase , UpperCamelCase = self.image_processing_tester.get_expected_values(UpperCamelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase , UpperCamelCase = self.image_processing_tester.get_expected_values(UpperCamelCase__ , batched=UpperCamelCase__ ) UpperCamelCase = image_processor( UpperCamelCase__ , ['semantic'] * len(UpperCamelCase__ ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def A ( self : List[Any] ): """simple docstring""" UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCamelCase__ , numpify=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , np.ndarray ) # Test not batched input UpperCamelCase = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values UpperCamelCase , UpperCamelCase = self.image_processing_tester.get_expected_values(UpperCamelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase , UpperCamelCase = self.image_processing_tester.get_expected_values(UpperCamelCase__ , batched=UpperCamelCase__ ) UpperCamelCase = image_processor( UpperCamelCase__ , ['semantic'] * len(UpperCamelCase__ ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def A ( self : int ): """simple docstring""" UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCamelCase__ , torchify=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , torch.Tensor ) # Test not batched input UpperCamelCase = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values UpperCamelCase , UpperCamelCase = self.image_processing_tester.get_expected_values(UpperCamelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase , UpperCamelCase = self.image_processing_tester.get_expected_values(UpperCamelCase__ , batched=UpperCamelCase__ ) UpperCamelCase = image_processor( UpperCamelCase__ , ['semantic'] * len(UpperCamelCase__ ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def A ( self : str , UpperCamelCase__ : Dict=False , UpperCamelCase__ : Tuple=False , UpperCamelCase__ : str="np" ): """simple docstring""" UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # prepare image and target UpperCamelCase = self.image_processing_tester.num_labels UpperCamelCase = None UpperCamelCase = None UpperCamelCase = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCamelCase__ ) if with_segmentation_maps: UpperCamelCase = num_labels if is_instance_map: UpperCamelCase = list(range(UpperCamelCase__ ) ) * 2 UpperCamelCase = dict(enumerate(UpperCamelCase__ ) ) UpperCamelCase = [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": UpperCamelCase = [Image.fromarray(UpperCamelCase__ ) for annotation in annotations] UpperCamelCase = image_processor( UpperCamelCase__ , ['semantic'] * len(UpperCamelCase__ ) , UpperCamelCase__ , return_tensors='pt' , instance_id_to_semantic_id=UpperCamelCase__ , pad_and_return_pixel_mask=UpperCamelCase__ , ) return inputs def A ( self : str ): """simple docstring""" pass def A ( self : Union[str, Any] ): """simple docstring""" def common(UpperCamelCase__ : Optional[int]=False , UpperCamelCase__ : List[str]=None ): UpperCamelCase = self.comm_get_image_processor_inputs( with_segmentation_maps=UpperCamelCase__ , is_instance_map=UpperCamelCase__ , segmentation_type=UpperCamelCase__ ) UpperCamelCase = inputs['mask_labels'] UpperCamelCase = inputs['class_labels'] UpperCamelCase = inputs['pixel_values'] UpperCamelCase = inputs['text_inputs'] # check the batch_size for mask_label, class_label, text_input in zip(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(UpperCamelCase__ ) , self.image_processing_tester.num_text ) common() common(is_instance_map=UpperCamelCase__ ) common(is_instance_map=UpperCamelCase__ , segmentation_type='pil' ) common(is_instance_map=UpperCamelCase__ , segmentation_type='pil' ) def A ( self : List[Any] ): """simple docstring""" UpperCamelCase = np.zeros((2_0, 5_0) ) UpperCamelCase = 1 UpperCamelCase = 1 UpperCamelCase = 1 UpperCamelCase = binary_mask_to_rle(UpperCamelCase__ ) self.assertEqual(len(UpperCamelCase__ ) , 4 ) self.assertEqual(rle[0] , 2_1 ) self.assertEqual(rle[1] , 4_5 ) def A ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=7_7 , task_seq_length=7_7 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) UpperCamelCase = self.image_processing_tester.get_fake_oneformer_outputs() UpperCamelCase = fature_extractor.post_process_semantic_segmentation(UpperCamelCase__ ) self.assertEqual(len(UpperCamelCase__ ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) UpperCamelCase = [(1, 4) for i in range(self.image_processing_tester.batch_size )] UpperCamelCase = fature_extractor.post_process_semantic_segmentation(UpperCamelCase__ , target_sizes=UpperCamelCase__ ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def A ( self : Optional[Any] ): """simple docstring""" UpperCamelCase = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=7_7 , task_seq_length=7_7 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) UpperCamelCase = self.image_processing_tester.get_fake_oneformer_outputs() UpperCamelCase = image_processor.post_process_instance_segmentation(UpperCamelCase__ , threshold=0 ) self.assertTrue(len(UpperCamelCase__ ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('segmentation' in el ) self.assertTrue('segments_info' in el ) self.assertEqual(type(el['segments_info'] ) , UpperCamelCase__ ) self.assertEqual( el['segmentation'].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def A ( self : List[str] ): """simple docstring""" UpperCamelCase = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=7_7 , task_seq_length=7_7 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) UpperCamelCase = self.image_processing_tester.get_fake_oneformer_outputs() UpperCamelCase = image_processor.post_process_panoptic_segmentation(UpperCamelCase__ , threshold=0 ) self.assertTrue(len(UpperCamelCase__ ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('segmentation' in el ) self.assertTrue('segments_info' in el ) self.assertEqual(type(el['segments_info'] ) , UpperCamelCase__ ) self.assertEqual( el['segmentation'].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
324
0
import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ): """simple docstring""" lowercase : torch.FloatTensor lowercase : Optional[torch.FloatTensor] = None def UpperCAmelCase_ (_lowerCAmelCase : List[Any] , _lowerCAmelCase : List[str]=0.999 , _lowerCAmelCase : str="cosine" , ): if alpha_transform_type == "cosine": def alpha_bar_fn(_lowerCAmelCase : Any ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_lowerCAmelCase : Tuple ): return math.exp(t * -12.0 ) else: raise ValueError(F'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) __UpperCamelCase : Dict = [] for i in range(_lowerCAmelCase ): __UpperCamelCase : Union[str, Any] = i / num_diffusion_timesteps __UpperCamelCase : Tuple = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_lowerCAmelCase ) / alpha_bar_fn(_lowerCAmelCase ) , _lowerCAmelCase ) ) return torch.tensor(_lowerCAmelCase , dtype=torch.floataa ) class SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" @register_to_config def __init__( self , __UpperCamelCase = 10_00 , __UpperCamelCase = "fixed_small_log" , __UpperCamelCase = True , __UpperCamelCase = 1.0 , __UpperCamelCase = "epsilon" , __UpperCamelCase = "squaredcos_cap_v2" , ) -> Tuple: '''simple docstring''' if beta_schedule != "squaredcos_cap_v2": raise ValueError("UnCLIPScheduler only supports `beta_schedule`: 'squaredcos_cap_v2'" ) __UpperCamelCase : List[str] = betas_for_alpha_bar(__UpperCamelCase ) __UpperCamelCase : Optional[Any] = 1.0 - self.betas __UpperCamelCase : List[Any] = torch.cumprod(self.alphas , dim=0 ) __UpperCamelCase : Optional[int] = torch.tensor(1.0 ) # standard deviation of the initial noise distribution __UpperCamelCase : List[str] = 1.0 # setable values __UpperCamelCase : List[str] = None __UpperCamelCase : str = torch.from_numpy(np.arange(0 , __UpperCamelCase )[::-1].copy() ) __UpperCamelCase : Union[str, Any] = variance_type def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase = None ) -> torch.FloatTensor: '''simple docstring''' return sample def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase = None ) -> Optional[Any]: '''simple docstring''' __UpperCamelCase : Any = num_inference_steps __UpperCamelCase : List[str] = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) __UpperCamelCase : List[str] = (np.arange(0 , __UpperCamelCase ) * step_ratio).round()[::-1].copy().astype(np.intaa ) __UpperCamelCase : Any = torch.from_numpy(__UpperCamelCase ).to(__UpperCamelCase ) def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None ) -> Any: '''simple docstring''' if prev_timestep is None: __UpperCamelCase : Union[str, Any] = t - 1 __UpperCamelCase : Union[str, Any] = self.alphas_cumprod[t] __UpperCamelCase : Optional[int] = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one __UpperCamelCase : int = 1 - alpha_prod_t __UpperCamelCase : Union[str, Any] = 1 - alpha_prod_t_prev if prev_timestep == t - 1: __UpperCamelCase : str = self.betas[t] else: __UpperCamelCase : Optional[int] = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample __UpperCamelCase : Union[str, Any] = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: __UpperCamelCase : Any = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": __UpperCamelCase : Dict = torch.log(torch.clamp(__UpperCamelCase , min=1E-20 ) ) __UpperCamelCase : Dict = torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler __UpperCamelCase : Tuple = variance.log() __UpperCamelCase : str = beta.log() __UpperCamelCase : Union[str, Any] = (predicted_variance + 1) / 2 __UpperCamelCase : Union[str, Any] = frac * max_log + (1 - frac) * min_log return variance def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase=None , __UpperCamelCase = True , ) -> Union[UnCLIPSchedulerOutput, Tuple]: '''simple docstring''' __UpperCamelCase : Dict = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": __UpperCamelCase , __UpperCamelCase : Optional[Any] = torch.split(__UpperCamelCase , sample.shape[1] , dim=1 ) else: __UpperCamelCase : Any = None # 1. compute alphas, betas if prev_timestep is None: __UpperCamelCase : List[str] = t - 1 __UpperCamelCase : Optional[int] = self.alphas_cumprod[t] __UpperCamelCase : List[Any] = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one __UpperCamelCase : Tuple = 1 - alpha_prod_t __UpperCamelCase : Tuple = 1 - alpha_prod_t_prev if prev_timestep == t - 1: __UpperCamelCase : Any = self.betas[t] __UpperCamelCase : Any = self.alphas[t] else: __UpperCamelCase : List[Any] = 1 - alpha_prod_t / alpha_prod_t_prev __UpperCamelCase : Union[str, Any] = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": __UpperCamelCase : int = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": __UpperCamelCase : Any = model_output else: raise ValueError( f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`''' " for the UnCLIPScheduler." ) # 3. Clip "predicted x_0" if self.config.clip_sample: __UpperCamelCase : Optional[int] = torch.clamp( __UpperCamelCase , -self.config.clip_sample_range , self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __UpperCamelCase : Dict = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t __UpperCamelCase : List[str] = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __UpperCamelCase : List[Any] = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise __UpperCamelCase : int = 0 if t > 0: __UpperCamelCase : str = randn_tensor( model_output.shape , dtype=model_output.dtype , generator=__UpperCamelCase , device=model_output.device ) __UpperCamelCase : int = self._get_variance( __UpperCamelCase , predicted_variance=__UpperCamelCase , prev_timestep=__UpperCamelCase , ) if self.variance_type == "fixed_small_log": __UpperCamelCase : Any = variance elif self.variance_type == "learned_range": __UpperCamelCase : List[Any] = (0.5 * variance).exp() else: raise ValueError( f'''variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`''' " for the UnCLIPScheduler." ) __UpperCamelCase : Tuple = variance * variance_noise __UpperCamelCase : Optional[int] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=__UpperCamelCase , pred_original_sample=__UpperCamelCase ) def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ) -> torch.FloatTensor: '''simple docstring''' __UpperCamelCase : Union[str, Any] = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype ) __UpperCamelCase : Any = timesteps.to(original_samples.device ) __UpperCamelCase : List[Any] = alphas_cumprod[timesteps] ** 0.5 __UpperCamelCase : List[str] = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): __UpperCamelCase : List[Any] = sqrt_alpha_prod.unsqueeze(-1 ) __UpperCamelCase : Optional[Any] = (1 - alphas_cumprod[timesteps]) ** 0.5 __UpperCamelCase : Union[str, Any] = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): __UpperCamelCase : Tuple = sqrt_one_minus_alpha_prod.unsqueeze(-1 ) __UpperCamelCase : Optional[int] = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
327
def UpperCAmelCase_ (_lowerCAmelCase : int = 60_08_51_47_51_43 ): try: __UpperCamelCase : Optional[Any] = int(_lowerCAmelCase ) except (TypeError, ValueError): raise TypeError("Parameter n must be int or castable to int." ) if n <= 0: raise ValueError("Parameter n must be greater than or equal to one." ) __UpperCamelCase : List[Any] = 2 __UpperCamelCase : int = 0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 __UpperCamelCase : int = i while n % i == 0: __UpperCamelCase : Optional[Any] = n // i i += 1 return int(_lowerCAmelCase ) if __name__ == "__main__": print(F"""{solution() = }""")
327
1
'''simple docstring''' import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class lowerCamelCase ( _A , _A , unittest.TestCase ): snake_case_ = IFInpaintingSuperResolutionPipeline snake_case_ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"width", "height"} snake_case_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({"original_image"} ) snake_case_ = PipelineTesterMixin.required_optional_params - {"latents"} def _lowerCamelCase ( self ): return self._get_superresolution_dummy_components() def _lowerCamelCase ( self , a_ , a_=0 ): if str(a_ ).startswith("mps" ): lowerCAmelCase : List[str] = torch.manual_seed(a_ ) else: lowerCAmelCase : Dict = torch.Generator(device=a_ ).manual_seed(a_ ) lowerCAmelCase : Any = floats_tensor((1, 3, 16, 16) , rng=random.Random(a_ ) ).to(a_ ) lowerCAmelCase : int = floats_tensor((1, 3, 32, 32) , rng=random.Random(a_ ) ).to(a_ ) lowerCAmelCase : int = floats_tensor((1, 3, 32, 32) , rng=random.Random(a_ ) ).to(a_ ) lowerCAmelCase : Optional[int] = { "prompt": "A painting of a squirrel eating a burger", "image": image, "original_image": original_image, "mask_image": mask_image, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def _lowerCamelCase ( self ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def _lowerCamelCase ( self ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" ) def _lowerCamelCase ( self ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def _lowerCamelCase ( self ): self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def _lowerCamelCase ( self ): self._test_save_load_local() def _lowerCamelCase ( self ): self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
551
'''simple docstring''' import importlib.util import os import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import ( is_accelerate_available, is_flax_available, is_safetensors_available, is_tf_available, is_torch_available, ) from . import BaseTransformersCLICommand def __A ( a_ : int ): return EnvironmentCommand() def __A ( a_ : Tuple ): return EnvironmentCommand(args.accelerate_config_file ) class lowerCamelCase ( _A ): @staticmethod def _lowerCamelCase ( a_ ): lowerCAmelCase : int = parser.add_parser("env" ) download_parser.set_defaults(func=a_ ) download_parser.add_argument( "--accelerate-config_file" , default=a_ , help="The accelerate config file to use for the default values in the launching script." , ) download_parser.set_defaults(func=a_ ) def __init__( self , a_ , *a_ ): lowerCAmelCase : List[str] = accelerate_config_file def _lowerCamelCase ( self ): lowerCAmelCase : int = "not installed" if is_safetensors_available(): import safetensors lowerCAmelCase : Optional[int] = safetensors.__version__ elif importlib.util.find_spec("safetensors" ) is not None: import safetensors lowerCAmelCase : Optional[int] = F'''{safetensors.__version__} but is ignored because of PyTorch version too old.''' lowerCAmelCase : int = "not installed" lowerCAmelCase : List[str] = "not found" if is_accelerate_available(): import accelerate from accelerate.commands.config import default_config_file, load_config_from_file lowerCAmelCase : int = accelerate.__version__ # Get the default from the config file. if self._accelerate_config_file is not None or os.path.isfile(a_ ): lowerCAmelCase : int = load_config_from_file(self._accelerate_config_file ).to_dict() lowerCAmelCase : Optional[int] = ( "\n".join([F'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] ) if isinstance(a_ , a_ ) else F'''\t{accelerate_config}''' ) lowerCAmelCase : str = "not installed" lowerCAmelCase : Union[str, Any] = "NA" if is_torch_available(): import torch lowerCAmelCase : Optional[Any] = torch.__version__ lowerCAmelCase : List[Any] = torch.cuda.is_available() lowerCAmelCase : int = "not installed" lowerCAmelCase : Dict = "NA" if is_tf_available(): import tensorflow as tf lowerCAmelCase : Optional[int] = tf.__version__ try: # deprecated in v2.1 lowerCAmelCase : List[str] = tf.test.is_gpu_available() except AttributeError: # returns list of devices, convert to bool lowerCAmelCase : List[Any] = bool(tf.config.list_physical_devices("GPU" ) ) lowerCAmelCase : Union[str, Any] = "not installed" lowerCAmelCase : Any = "not installed" lowerCAmelCase : str = "not installed" lowerCAmelCase : Dict = "NA" if is_flax_available(): import flax import jax import jaxlib lowerCAmelCase : Union[str, Any] = flax.__version__ lowerCAmelCase : int = jax.__version__ lowerCAmelCase : Optional[Any] = jaxlib.__version__ lowerCAmelCase : int = jax.lib.xla_bridge.get_backend().platform lowerCAmelCase : Optional[Any] = { "`transformers` version": version, "Platform": platform.platform(), "Python version": platform.python_version(), "Huggingface_hub version": huggingface_hub.__version__, "Safetensors version": F'''{safetensors_version}''', "Accelerate version": F'''{accelerate_version}''', "Accelerate config": F'''{accelerate_config_str}''', "PyTorch version (GPU?)": F'''{pt_version} ({pt_cuda_available})''', "Tensorflow version (GPU?)": F'''{tf_version} ({tf_cuda_available})''', "Flax version (CPU?/GPU?/TPU?)": F'''{flax_version} ({jax_backend})''', "Jax version": F'''{jax_version}''', "JaxLib version": F'''{jaxlib_version}''', "Using GPU in script?": "<fill in>", "Using distributed or parallel set-up in script?": "<fill in>", } print("\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n" ) print(self.format_dict(a_ ) ) return info @staticmethod def _lowerCamelCase ( a_ ): return "\n".join([F'''- {prop}: {val}''' for prop, val in d.items()] ) + "\n"
551
1
import unittest from transformers import SqueezeBertConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, ) class lowercase__( UpperCAmelCase ): """simple docstring""" def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : str=1_3 , SCREAMING_SNAKE_CASE_ : Tuple=7 , SCREAMING_SNAKE_CASE_ : int=True , SCREAMING_SNAKE_CASE_ : Optional[Any]=True , SCREAMING_SNAKE_CASE_ : List[Any]=False , SCREAMING_SNAKE_CASE_ : int=True , SCREAMING_SNAKE_CASE_ : Union[str, Any]=9_9 , SCREAMING_SNAKE_CASE_ : Optional[Any]=3_2 , SCREAMING_SNAKE_CASE_ : List[str]=5 , SCREAMING_SNAKE_CASE_ : Any=4 , SCREAMING_SNAKE_CASE_ : Dict=6_4 , SCREAMING_SNAKE_CASE_ : Any="gelu" , SCREAMING_SNAKE_CASE_ : Optional[int]=0.1 , SCREAMING_SNAKE_CASE_ : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE_ : Optional[Any]=5_1_2 , SCREAMING_SNAKE_CASE_ : str=1_6 , SCREAMING_SNAKE_CASE_ : Any=2 , SCREAMING_SNAKE_CASE_ : Tuple=0.02 , SCREAMING_SNAKE_CASE_ : str=3 , SCREAMING_SNAKE_CASE_ : Dict=4 , SCREAMING_SNAKE_CASE_ : Optional[int]=None , SCREAMING_SNAKE_CASE_ : int=2 , SCREAMING_SNAKE_CASE_ : Tuple=2 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=2 , SCREAMING_SNAKE_CASE_ : Dict=2 , SCREAMING_SNAKE_CASE_ : Any=4 , SCREAMING_SNAKE_CASE_ : Optional[Any]=1 , ) -> Dict: lowercase_ = parent lowercase_ = batch_size lowercase_ = seq_length lowercase_ = is_training lowercase_ = use_input_mask lowercase_ = use_token_type_ids lowercase_ = use_labels lowercase_ = vocab_size lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_act lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = max_position_embeddings lowercase_ = type_vocab_size lowercase_ = type_sequence_label_size lowercase_ = initializer_range lowercase_ = num_labels lowercase_ = num_choices lowercase_ = scope lowercase_ = q_groups lowercase_ = k_groups lowercase_ = v_groups lowercase_ = post_attention_groups lowercase_ = intermediate_groups lowercase_ = output_groups def _lowercase ( self : Any ) -> Optional[int]: lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase_ = None if self.use_input_mask: lowercase_ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase_ = None lowercase_ = None lowercase_ = None if self.use_labels: lowercase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase_ = ids_tensor([self.batch_size] , self.num_choices ) lowercase_ = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowercase ( self : List[Any] ) -> Optional[int]: return SqueezeBertConfig( embedding_size=self.hidden_size , vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , attention_probs_dropout_prob=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , q_groups=self.q_groups , k_groups=self.k_groups , v_groups=self.v_groups , post_attention_groups=self.post_attention_groups , intermediate_groups=self.intermediate_groups , output_groups=self.output_groups , ) def _lowercase ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> List[str]: lowercase_ = SqueezeBertModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowercase_ = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowercase_ = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : int ) -> Dict: lowercase_ = SqueezeBertForMaskedLM(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowercase_ = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : int ) -> List[Any]: lowercase_ = SqueezeBertForQuestionAnswering(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowercase_ = model( SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , start_positions=SCREAMING_SNAKE_CASE_ , end_positions=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowercase ( self : str , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> Optional[Any]: lowercase_ = self.num_labels lowercase_ = SqueezeBertForSequenceClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowercase_ = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowercase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : int ) -> Optional[int]: lowercase_ = self.num_labels lowercase_ = SqueezeBertForTokenClassification(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowercase_ = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowercase ( self : str , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : List[str] ) -> Optional[Any]: lowercase_ = self.num_choices lowercase_ = SqueezeBertForMultipleChoice(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowercase_ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase_ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase_ = model( SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowercase ( self : Optional[Any] ) -> Union[str, Any]: lowercase_ = self.prepare_config_and_inputs() ((lowercase_) , (lowercase_) , (lowercase_) , (lowercase_) , (lowercase_) , (lowercase_)) = config_and_inputs lowercase_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowercase__( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): """simple docstring""" a :Any = ( ( SqueezeBertModel, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, ) if is_torch_available() else None ) a :Tuple = ( { 'feature-extraction': SqueezeBertModel, 'fill-mask': SqueezeBertForMaskedLM, 'question-answering': SqueezeBertForQuestionAnswering, 'text-classification': SqueezeBertForSequenceClassification, 'token-classification': SqueezeBertForTokenClassification, 'zero-shot': SqueezeBertForSequenceClassification, } if is_torch_available() else {} ) a :Union[str, Any] = False a :Union[str, Any] = True a :Optional[Any] = False def _lowercase ( self : Optional[int] ) -> Tuple: lowercase_ = SqueezeBertModelTester(self ) lowercase_ = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , dim=3_7 ) def _lowercase ( self : int ) -> Tuple: self.config_tester.run_common_tests() def _lowercase ( self : Optional[Any] ) -> List[str]: lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_model(*SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : Optional[Any] ) -> Any: lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_masked_lm(*SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : Dict ) -> Dict: lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_question_answering(*SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : Dict ) -> int: lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_sequence_classification(*SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : Optional[Any] ) -> Union[str, Any]: lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_token_classification(*SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : Optional[Any] ) -> Dict: lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_multiple_choice(*SCREAMING_SNAKE_CASE_ ) @slow def _lowercase ( self : Union[str, Any] ) -> Dict: for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ = SqueezeBertModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) @require_sentencepiece @require_tokenizers @require_torch class lowercase__( unittest.TestCase ): """simple docstring""" @slow def _lowercase ( self : Dict ) -> Dict: lowercase_ = SqueezeBertForSequenceClassification.from_pretrained('''squeezebert/squeezebert-mnli''' ) lowercase_ = torch.tensor([[1, 2_9_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 1_3, 1_5_8_8, 2]] ) lowercase_ = model(SCREAMING_SNAKE_CASE_ )[0] lowercase_ = torch.Size((1, 3) ) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE_ ) lowercase_ = torch.tensor([[0.64_01, -0.03_49, -0.60_41]] ) self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) )
97
from __future__ import annotations def a ( snake_case__: Optional[int] , snake_case__: Optional[int] , snake_case__: Any , snake_case__: Optional[int] ): # noqa: E741 '''simple docstring''' while r - l > 1: lowercase_ = (l + r) // 2 if v[m] >= key: lowercase_ = m else: lowercase_ = m # noqa: E741 return r def a ( snake_case__: list[int] ): '''simple docstring''' if len(snake_case__ ) == 0: return 0 lowercase_ = [0] * len(snake_case__ ) lowercase_ = 1 lowercase_ = v[0] for i in range(1 , len(snake_case__ ) ): if v[i] < tail[0]: lowercase_ = v[i] elif v[i] > tail[length - 1]: lowercase_ = v[i] length += 1 else: lowercase_ = v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
97
1
import gc import unittest import numpy as np import torch import torch.nn.functional as F from transformers import ( ClapTextConfig, ClapTextModelWithProjection, RobertaTokenizer, SpeechTaHifiGan, SpeechTaHifiGanConfig, ) from diffusers import ( AudioLDMPipeline, AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowerCamelCase (__lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ = AudioLDMPipeline UpperCAmelCase_ = TEXT_TO_AUDIO_PARAMS UpperCAmelCase_ = TEXT_TO_AUDIO_BATCH_PARAMS UpperCAmelCase_ = frozenset( [ "num_inference_steps", "num_waveforms_per_prompt", "generator", "latents", "output_type", "return_dict", "callback", "callback_steps", ] ) def A_ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Optional[int] = UNetaDConditionModel( block_out_channels=(3_2, 6_4), layers_per_block=2, sample_size=3_2, in_channels=4, out_channels=4, down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), cross_attention_dim=(3_2, 6_4), class_embed_type="simple_projection", projection_class_embeddings_input_dim=3_2, class_embeddings_concat=_A, ) SCREAMING_SNAKE_CASE__ : str = DDIMScheduler( beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=_A, set_alpha_to_one=_A, ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Dict = AutoencoderKL( block_out_channels=[3_2, 6_4], in_channels=1, out_channels=1, down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], latent_channels=4, ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : int = ClapTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=3_2, intermediate_size=3_7, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1_0_0_0, projection_dim=3_2, ) SCREAMING_SNAKE_CASE__ : Dict = ClapTextModelWithProjection(_A ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = RobertaTokenizer.from_pretrained("hf-internal-testing/tiny-random-roberta", model_max_length=7_7 ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = SpeechTaHifiGanConfig( model_in_dim=8, sampling_rate=1_6_0_0_0, upsample_initial_channel=1_6, upsample_rates=[2, 2], upsample_kernel_sizes=[4, 4], resblock_kernel_sizes=[3, 7], resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]], normalize_before=_A, ) SCREAMING_SNAKE_CASE__ : List[str] = SpeechTaHifiGan(_A ) SCREAMING_SNAKE_CASE__ : str = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "vocoder": vocoder, } return components def A_ ( self : Optional[int], _UpperCAmelCase : int, _UpperCAmelCase : Optional[int]=0 ) -> Optional[Any]: """simple docstring""" if str(_A ).startswith("mps" ): SCREAMING_SNAKE_CASE__ : Any = torch.manual_seed(_A ) else: SCREAMING_SNAKE_CASE__ : Optional[int] = torch.Generator(device=_A ).manual_seed(_A ) SCREAMING_SNAKE_CASE__ : List[str] = { "prompt": "A hammer hitting a wooden surface", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, } return inputs def A_ ( self : Any ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = "cpu" # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE__ : Optional[int] = self.get_dummy_components() SCREAMING_SNAKE_CASE__ : Dict = AudioLDMPipeline(**_A ) SCREAMING_SNAKE_CASE__ : List[str] = audioldm_pipe.to(_A ) audioldm_pipe.set_progress_bar_config(disable=_A ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.get_dummy_inputs(_A ) SCREAMING_SNAKE_CASE__ : List[str] = audioldm_pipe(**_A ) SCREAMING_SNAKE_CASE__ : List[Any] = output.audios[0] assert audio.ndim == 1 assert len(_A ) == 2_5_6 SCREAMING_SNAKE_CASE__ : List[str] = audio[:1_0] SCREAMING_SNAKE_CASE__ : Optional[Any] = np.array( [-0.0050, 0.0050, -0.0060, 0.0033, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0033] ) assert np.abs(audio_slice - expected_slice ).max() < 1E-2 def A_ ( self : Optional[int] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE__ : Union[str, Any] = AudioLDMPipeline(**_A ) SCREAMING_SNAKE_CASE__ : Tuple = audioldm_pipe.to(_A ) SCREAMING_SNAKE_CASE__ : Optional[Any] = audioldm_pipe.to(_A ) audioldm_pipe.set_progress_bar_config(disable=_A ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.get_dummy_inputs(_A ) SCREAMING_SNAKE_CASE__ : Tuple = 3 * [inputs["prompt"]] # forward SCREAMING_SNAKE_CASE__ : List[Any] = audioldm_pipe(**_A ) SCREAMING_SNAKE_CASE__ : List[Any] = output.audios[0] SCREAMING_SNAKE_CASE__ : List[str] = self.get_dummy_inputs(_A ) SCREAMING_SNAKE_CASE__ : int = 3 * [inputs.pop("prompt" )] SCREAMING_SNAKE_CASE__ : List[Any] = audioldm_pipe.tokenizer( _A, padding="max_length", max_length=audioldm_pipe.tokenizer.model_max_length, truncation=_A, return_tensors="pt", ) SCREAMING_SNAKE_CASE__ : Tuple = text_inputs["input_ids"].to(_A ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = audioldm_pipe.text_encoder( _A, ) SCREAMING_SNAKE_CASE__ : Optional[Any] = prompt_embeds.text_embeds # additional L_2 normalization over each hidden-state SCREAMING_SNAKE_CASE__ : List[Any] = F.normalize(_A, dim=-1 ) SCREAMING_SNAKE_CASE__ : Optional[int] = prompt_embeds # forward SCREAMING_SNAKE_CASE__ : Optional[int] = audioldm_pipe(**_A ) SCREAMING_SNAKE_CASE__ : List[str] = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1E-2 def A_ ( self : List[Any] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE__ : int = AudioLDMPipeline(**_A ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = audioldm_pipe.to(_A ) SCREAMING_SNAKE_CASE__ : List[Any] = audioldm_pipe.to(_A ) audioldm_pipe.set_progress_bar_config(disable=_A ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.get_dummy_inputs(_A ) SCREAMING_SNAKE_CASE__ : int = 3 * ["this is a negative prompt"] SCREAMING_SNAKE_CASE__ : Any = negative_prompt SCREAMING_SNAKE_CASE__ : List[str] = 3 * [inputs["prompt"]] # forward SCREAMING_SNAKE_CASE__ : List[Any] = audioldm_pipe(**_A ) SCREAMING_SNAKE_CASE__ : str = output.audios[0] SCREAMING_SNAKE_CASE__ : Any = self.get_dummy_inputs(_A ) SCREAMING_SNAKE_CASE__ : int = 3 * [inputs.pop("prompt" )] SCREAMING_SNAKE_CASE__ : List[Any] = [] for p in [prompt, negative_prompt]: SCREAMING_SNAKE_CASE__ : str = audioldm_pipe.tokenizer( _A, padding="max_length", max_length=audioldm_pipe.tokenizer.model_max_length, truncation=_A, return_tensors="pt", ) SCREAMING_SNAKE_CASE__ : int = text_inputs["input_ids"].to(_A ) SCREAMING_SNAKE_CASE__ : Any = audioldm_pipe.text_encoder( _A, ) SCREAMING_SNAKE_CASE__ : Optional[int] = text_embeds.text_embeds # additional L_2 normalization over each hidden-state SCREAMING_SNAKE_CASE__ : List[str] = F.normalize(_A, dim=-1 ) embeds.append(_A ) SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : Optional[int] = embeds # forward SCREAMING_SNAKE_CASE__ : Tuple = audioldm_pipe(**_A ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1E-2 def A_ ( self : str ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = "cpu" # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE__ : Any = self.get_dummy_components() SCREAMING_SNAKE_CASE__ : Dict = PNDMScheduler(skip_prk_steps=_A ) SCREAMING_SNAKE_CASE__ : List[str] = AudioLDMPipeline(**_A ) SCREAMING_SNAKE_CASE__ : List[Any] = audioldm_pipe.to(_A ) audioldm_pipe.set_progress_bar_config(disable=_A ) SCREAMING_SNAKE_CASE__ : List[str] = self.get_dummy_inputs(_A ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = "egg cracking" SCREAMING_SNAKE_CASE__ : List[str] = audioldm_pipe(**_A, negative_prompt=_A ) SCREAMING_SNAKE_CASE__ : List[str] = output.audios[0] assert audio.ndim == 1 assert len(_A ) == 2_5_6 SCREAMING_SNAKE_CASE__ : Any = audio[:1_0] SCREAMING_SNAKE_CASE__ : int = np.array( [-0.0051, 0.0050, -0.0060, 0.0034, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0032] ) assert np.abs(audio_slice - expected_slice ).max() < 1E-2 def A_ ( self : Tuple ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = "cpu" # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE__ : Tuple = self.get_dummy_components() SCREAMING_SNAKE_CASE__ : Optional[int] = PNDMScheduler(skip_prk_steps=_A ) SCREAMING_SNAKE_CASE__ : List[Any] = AudioLDMPipeline(**_A ) SCREAMING_SNAKE_CASE__ : List[Any] = audioldm_pipe.to(_A ) audioldm_pipe.set_progress_bar_config(disable=_A ) SCREAMING_SNAKE_CASE__ : str = "A hammer hitting a wooden surface" # test num_waveforms_per_prompt=1 (default) SCREAMING_SNAKE_CASE__ : List[Any] = audioldm_pipe(_A, num_inference_steps=2 ).audios assert audios.shape == (1, 2_5_6) # test num_waveforms_per_prompt=1 (default) for batch of prompts SCREAMING_SNAKE_CASE__ : Tuple = 2 SCREAMING_SNAKE_CASE__ : int = audioldm_pipe([prompt] * batch_size, num_inference_steps=2 ).audios assert audios.shape == (batch_size, 2_5_6) # test num_waveforms_per_prompt for single prompt SCREAMING_SNAKE_CASE__ : int = 2 SCREAMING_SNAKE_CASE__ : Tuple = audioldm_pipe(_A, num_inference_steps=2, num_waveforms_per_prompt=_A ).audios assert audios.shape == (num_waveforms_per_prompt, 2_5_6) # test num_waveforms_per_prompt for batch of prompts SCREAMING_SNAKE_CASE__ : List[str] = 2 SCREAMING_SNAKE_CASE__ : Tuple = audioldm_pipe( [prompt] * batch_size, num_inference_steps=2, num_waveforms_per_prompt=_A ).audios assert audios.shape == (batch_size * num_waveforms_per_prompt, 2_5_6) def A_ ( self : Tuple ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = "cpu" # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE__ : List[str] = self.get_dummy_components() SCREAMING_SNAKE_CASE__ : int = AudioLDMPipeline(**_A ) SCREAMING_SNAKE_CASE__ : Optional[int] = audioldm_pipe.to(_A ) audioldm_pipe.set_progress_bar_config(disable=_A ) SCREAMING_SNAKE_CASE__ : Any = audioldm_pipe.vocoder.config.sampling_rate SCREAMING_SNAKE_CASE__ : Optional[Any] = self.get_dummy_inputs(_A ) SCREAMING_SNAKE_CASE__ : int = audioldm_pipe(audio_length_in_s=0.016, **_A ) SCREAMING_SNAKE_CASE__ : int = output.audios[0] assert audio.ndim == 1 assert len(_A ) / vocoder_sampling_rate == 0.016 SCREAMING_SNAKE_CASE__ : str = audioldm_pipe(audio_length_in_s=0.032, **_A ) SCREAMING_SNAKE_CASE__ : Tuple = output.audios[0] assert audio.ndim == 1 assert len(_A ) / vocoder_sampling_rate == 0.032 def A_ ( self : Tuple ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE__ : int = AudioLDMPipeline(**_A ) SCREAMING_SNAKE_CASE__ : str = audioldm_pipe.to(_A ) audioldm_pipe.set_progress_bar_config(disable=_A ) SCREAMING_SNAKE_CASE__ : Optional[int] = ["hey"] SCREAMING_SNAKE_CASE__ : str = audioldm_pipe(_A, num_inference_steps=1 ) SCREAMING_SNAKE_CASE__ : str = output.audios.shape assert audio_shape == (1, 2_5_6) SCREAMING_SNAKE_CASE__ : Dict = audioldm_pipe.vocoder.config config.model_in_dim *= 2 SCREAMING_SNAKE_CASE__ : Tuple = SpeechTaHifiGan(_A ).to(_A ) SCREAMING_SNAKE_CASE__ : Optional[Any] = audioldm_pipe(_A, num_inference_steps=1 ) SCREAMING_SNAKE_CASE__ : Dict = output.audios.shape # waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram assert audio_shape == (1, 2_5_6) def A_ ( self : Optional[int] ) -> Dict: """simple docstring""" self._test_attention_slicing_forward_pass(test_mean_pixel_difference=_A ) def A_ ( self : str ) -> int: """simple docstring""" self._test_inference_batch_single_identical(test_mean_pixel_difference=_A ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available(), reason="XFormers attention is only available with CUDA and `xformers` installed", ) def A_ ( self : Union[str, Any] ) -> Tuple: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=_A ) @slow class lowerCamelCase (unittest.TestCase ): """simple docstring""" def A_ ( self : Optional[int] ) -> Optional[int]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def A_ ( self : List[str], _UpperCAmelCase : Union[str, Any], _UpperCAmelCase : List[str]="cpu", _UpperCAmelCase : Any=torch.floataa, _UpperCAmelCase : Dict=0 ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = torch.Generator(device=_A ).manual_seed(_A ) SCREAMING_SNAKE_CASE__ : Optional[int] = np.random.RandomState(_A ).standard_normal((1, 8, 1_2_8, 1_6) ) SCREAMING_SNAKE_CASE__ : Dict = torch.from_numpy(_A ).to(device=_A, dtype=_A ) SCREAMING_SNAKE_CASE__ : Optional[int] = { "prompt": "A hammer hitting a wooden surface", "latents": latents, "generator": generator, "num_inference_steps": 3, "guidance_scale": 2.5, } return inputs def A_ ( self : List[Any] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = AudioLDMPipeline.from_pretrained("cvssp/audioldm" ) SCREAMING_SNAKE_CASE__ : Optional[Any] = audioldm_pipe.to(_A ) audioldm_pipe.set_progress_bar_config(disable=_A ) SCREAMING_SNAKE_CASE__ : str = self.get_inputs(_A ) SCREAMING_SNAKE_CASE__ : List[Any] = 2_5 SCREAMING_SNAKE_CASE__ : Union[str, Any] = audioldm_pipe(**_A ).audios[0] assert audio.ndim == 1 assert len(_A ) == 8_1_9_2_0 SCREAMING_SNAKE_CASE__ : List[Any] = audio[7_7_2_3_0:7_7_2_4_0] SCREAMING_SNAKE_CASE__ : Any = np.array( [-0.4884, -0.4607, 0.0023, 0.5007, 0.5896, 0.5151, 0.3813, -0.0208, -0.3687, -0.4315] ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = np.abs(expected_slice - audio_slice ).max() assert max_diff < 1E-2 def A_ ( self : Dict ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = AudioLDMPipeline.from_pretrained("cvssp/audioldm" ) SCREAMING_SNAKE_CASE__ : Dict = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = audioldm_pipe.to(_A ) audioldm_pipe.set_progress_bar_config(disable=_A ) SCREAMING_SNAKE_CASE__ : Tuple = self.get_inputs(_A ) SCREAMING_SNAKE_CASE__ : Optional[int] = audioldm_pipe(**_A ).audios[0] assert audio.ndim == 1 assert len(_A ) == 8_1_9_2_0 SCREAMING_SNAKE_CASE__ : int = audio[2_7_7_8_0:2_7_7_9_0] SCREAMING_SNAKE_CASE__ : List[str] = np.array([-0.2131, -0.0873, -0.0124, -0.0189, 0.0569, 0.1373, 0.1883, 0.2886, 0.3297, 0.2212] ) SCREAMING_SNAKE_CASE__ : int = np.abs(expected_slice - audio_slice ).max() assert max_diff < 3E-2
705
import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets _lowerCamelCase : Tuple = datasets.logging.get_logger(__name__) _lowerCamelCase : Any = '''\ @InProceedings{moosavi2019minimum, author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube}, title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection}, year = {2019}, booktitle = {Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)}, publisher = {Association for Computational Linguistics}, address = {Florence, Italy}, } @inproceedings{10.3115/1072399.1072405, author = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette}, title = {A Model-Theoretic Coreference Scoring Scheme}, year = {1995}, isbn = {1558604022}, publisher = {Association for Computational Linguistics}, address = {USA}, url = {https://doi.org/10.3115/1072399.1072405}, doi = {10.3115/1072399.1072405}, booktitle = {Proceedings of the 6th Conference on Message Understanding}, pages = {45–52}, numpages = {8}, location = {Columbia, Maryland}, series = {MUC6 ’95} } @INPROCEEDINGS{Bagga98algorithmsfor, author = {Amit Bagga and Breck Baldwin}, title = {Algorithms for Scoring Coreference Chains}, booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference}, year = {1998}, pages = {563--566} } @INPROCEEDINGS{Luo05oncoreference, author = {Xiaoqiang Luo}, title = {On coreference resolution performance metrics}, booktitle = {In Proc. of HLT/EMNLP}, year = {2005}, pages = {25--32}, publisher = {URL} } @inproceedings{moosavi-strube-2016-coreference, title = "Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric", author = "Moosavi, Nafise Sadat and Strube, Michael", booktitle = "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)", month = aug, year = "2016", address = "Berlin, Germany", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/P16-1060", doi = "10.18653/v1/P16-1060", pages = "632--642", } ''' _lowerCamelCase : Optional[int] = '''\ CoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which implements of the common evaluation metrics including MUC [Vilain et al, 1995], B-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005], LEA [Moosavi and Strube, 2016] and the averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) [Denis and Baldridge, 2009a; Pradhan et al., 2011]. This wrapper of CoVal currently only work with CoNLL line format: The CoNLL format has one word per line with all the annotation for this word in column separated by spaces: Column Type Description 1 Document ID This is a variation on the document filename 2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc. 3 Word number 4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release. 5 Part-of-Speech 6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the "([pos] [word])" string (or leaf) and concatenating the items in the rows of that column. 7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a "-" 8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7. 9 Word sense This is the word sense of the word in Column 3. 10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data. 11 Named Entities These columns identifies the spans representing various named entities. 12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7. N Coreference Coreference chain information encoded in a parenthesis structure. More informations on the format can be found here (section "*_conll File Format"): http://www.conll.cemantix.org/2012/data.html Details on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md CoVal code was written by @ns-moosavi. Some parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py The test suite is taken from https://github.com/conll/reference-coreference-scorers/ Mention evaluation and the test suite are added by @andreasvc. Parsing CoNLL files is developed by Leo Born. ''' _lowerCamelCase : str = ''' Calculates coreference evaluation metrics. Args: predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format. Each prediction is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format. Each reference is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. keep_singletons: After extracting all mentions of key or system files, mentions whose corresponding coreference chain is of size one, are considered as singletons. The default evaluation mode will include singletons in evaluations if they are included in the key or the system files. By setting \'keep_singletons=False\', all singletons in the key and system files will be excluded from the evaluation. NP_only: Most of the recent coreference resolvers only resolve NP mentions and leave out the resolution of VPs. By setting the \'NP_only\' option, the scorer will only evaluate the resolution of NPs. min_span: By setting \'min_span\', the scorer reports the results based on automatically detected minimum spans. Minimum spans are determined using the MINA algorithm. Returns: \'mentions\': mentions \'muc\': MUC metric [Vilain et al, 1995] \'bcub\': B-cubed [Bagga and Baldwin, 1998] \'ceafe\': CEAFe [Luo et al., 2005] \'lea\': LEA [Moosavi and Strube, 2016] \'conll_score\': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) Examples: >>> coval = datasets.load_metric(\'coval\') >>> words = [\'bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -\', ... \'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)\', ... \'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)\', ... \'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -\', ... \'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -\', ... \'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -\'] >>> references = [words] >>> predictions = [words] >>> results = coval.compute(predictions=predictions, references=references) >>> print(results) # doctest:+ELLIPSIS {\'mentions/recall\': 1.0,[...] \'conll_score\': 100.0} ''' def _a ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Dict=False , SCREAMING_SNAKE_CASE__ : int=False , SCREAMING_SNAKE_CASE__ : Tuple=True , SCREAMING_SNAKE_CASE__ : List[str]=False , SCREAMING_SNAKE_CASE__ : List[Any]="dummy_doc" ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = {doc: key_lines} SCREAMING_SNAKE_CASE__ : Tuple = {doc: sys_lines} SCREAMING_SNAKE_CASE__ : List[Any] = {} SCREAMING_SNAKE_CASE__ : Optional[Any] = 0 SCREAMING_SNAKE_CASE__ : List[str] = 0 SCREAMING_SNAKE_CASE__ : Optional[Any] = 0 SCREAMING_SNAKE_CASE__ : int = 0 SCREAMING_SNAKE_CASE__ : int = 0 SCREAMING_SNAKE_CASE__ : str = 0 SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : List[str] = reader.get_doc_mentions(SCREAMING_SNAKE_CASE__ , key_doc_lines[doc] , SCREAMING_SNAKE_CASE__ ) key_singletons_num += singletons_num if NP_only or min_span: SCREAMING_SNAKE_CASE__ : str = reader.set_annotated_parse_trees(SCREAMING_SNAKE_CASE__ , key_doc_lines[doc] , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : Any = reader.get_doc_mentions(SCREAMING_SNAKE_CASE__ , sys_doc_lines[doc] , SCREAMING_SNAKE_CASE__ ) sys_singletons_num += singletons_num if NP_only or min_span: SCREAMING_SNAKE_CASE__ : Tuple = reader.set_annotated_parse_trees(SCREAMING_SNAKE_CASE__ , key_doc_lines[doc] , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if remove_nested: SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : Union[str, Any] = reader.remove_nested_coref_mentions(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : Dict = reader.remove_nested_coref_mentions(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters SCREAMING_SNAKE_CASE__ : Dict = reader.get_mention_assignments(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Any = reader.get_mention_assignments(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Tuple = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( "Number of removed nested coreferring mentions in the key " f'''annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}''' ) logger.info( "Number of resulting singleton clusters in the key " f'''annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}''' ) if not keep_singletons: logger.info( f'''{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system ''' "files, respectively" ) return doc_coref_infos def _a ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = get_coref_infos(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : List[str] = {} SCREAMING_SNAKE_CASE__ : Dict = 0 SCREAMING_SNAKE_CASE__ : Optional[int] = 0 for name, metric in metrics: SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : int = evaluator.evaluate_documents(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({f'''{name}/recall''': recall, f'''{name}/precision''': precision, f'''{name}/f1''': fa} ) logger.info( name.ljust(10 ) , f'''Recall: {recall * 1_00:.2f}''' , f''' Precision: {precision * 1_00:.2f}''' , f''' F1: {fa * 1_00:.2f}''' , ) if conll_subparts_num == 3: SCREAMING_SNAKE_CASE__ : List[Any] = (conll / 3) * 1_00 logger.info(f'''CoNLL score: {conll:.2f}''' ) output_scores.update({"conll_score": conll} ) return output_scores def _a ( SCREAMING_SNAKE_CASE__ : Any ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = False for line in key_lines: if not line.startswith("#" ): if len(line.split() ) > 6: SCREAMING_SNAKE_CASE__ : Optional[int] = line.split()[5] if not parse_col == "-": SCREAMING_SNAKE_CASE__ : Any = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase (datasets.Metric ): """simple docstring""" def A_ ( self : Optional[Any] ) -> Dict: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" ) ), "references": datasets.Sequence(datasets.Value("string" ) ), } ), codebase_urls=["https://github.com/ns-moosavi/coval"], reference_urls=[ "https://github.com/ns-moosavi/coval", "https://www.aclweb.org/anthology/P16-1060", "http://www.conll.cemantix.org/2012/data.html", ], ) def A_ ( self : Any, _UpperCAmelCase : Optional[int], _UpperCAmelCase : str, _UpperCAmelCase : str=True, _UpperCAmelCase : int=False, _UpperCAmelCase : Any=False, _UpperCAmelCase : Optional[Any]=False ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = [ ("mentions", evaluator.mentions), ("muc", evaluator.muc), ("bcub", evaluator.b_cubed), ("ceafe", evaluator.ceafe), ("lea", evaluator.lea), ] if min_span: SCREAMING_SNAKE_CASE__ : Any = util.check_gold_parse_annotation(_UpperCAmelCase ) if not has_gold_parse: raise NotImplementedError("References should have gold parse annotation to use 'min_span'." ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" SCREAMING_SNAKE_CASE__ : List[str] = evaluate( key_lines=_UpperCAmelCase, sys_lines=_UpperCAmelCase, metrics=_UpperCAmelCase, NP_only=_UpperCAmelCase, remove_nested=_UpperCAmelCase, keep_singletons=_UpperCAmelCase, min_span=_UpperCAmelCase, ) return score
157
0
import inspect import unittest from transformers import SegformerConfig, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_MAPPING, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerModel, ) from transformers.models.segformer.modeling_segformer import SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import SegformerImageProcessor class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def SCREAMING_SNAKE_CASE_ (self : Dict) ->Any: '''simple docstring''' lowerCamelCase__: Dict =self.config_class(**self.inputs_dict) self.parent.assertTrue(hasattr(UpperCAmelCase_ , "hidden_sizes")) self.parent.assertTrue(hasattr(UpperCAmelCase_ , "num_attention_heads")) self.parent.assertTrue(hasattr(UpperCAmelCase_ , "num_encoder_blocks")) class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__(self : Any , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[Any]=13 , UpperCAmelCase_ : Tuple=64 , UpperCAmelCase_ : str=3 , UpperCAmelCase_ : str=4 , UpperCAmelCase_ : Dict=[2, 2, 2, 2] , UpperCAmelCase_ : Dict=[8, 4, 2, 1] , UpperCAmelCase_ : Optional[Any]=[16, 32, 64, 128] , UpperCAmelCase_ : str=[1, 4, 8, 16] , UpperCAmelCase_ : Optional[int]=[1, 2, 4, 8] , UpperCAmelCase_ : str=True , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : List[str]="gelu" , UpperCAmelCase_ : str=0.1 , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : List[str]=0.02 , UpperCAmelCase_ : Dict=3 , UpperCAmelCase_ : List[Any]=None , ) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: Optional[int] =parent lowerCamelCase__: int =batch_size lowerCamelCase__: Tuple =image_size lowerCamelCase__: List[Any] =num_channels lowerCamelCase__: Dict =num_encoder_blocks lowerCamelCase__: Dict =sr_ratios lowerCamelCase__: Union[str, Any] =depths lowerCamelCase__: Tuple =hidden_sizes lowerCamelCase__: Any =downsampling_rates lowerCamelCase__: int =num_attention_heads lowerCamelCase__: Tuple =is_training lowerCamelCase__: Any =use_labels lowerCamelCase__: str =hidden_act lowerCamelCase__: Tuple =hidden_dropout_prob lowerCamelCase__: Union[str, Any] =attention_probs_dropout_prob lowerCamelCase__: int =initializer_range lowerCamelCase__: int =num_labels lowerCamelCase__: List[Any] =scope def SCREAMING_SNAKE_CASE_ (self : str) ->Dict: '''simple docstring''' lowerCamelCase__: List[Any] =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) lowerCamelCase__: Union[str, Any] =None if self.use_labels: lowerCamelCase__: List[Any] =ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels) lowerCamelCase__: List[str] =self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE_ (self : Tuple) ->List[str]: '''simple docstring''' return SegformerConfig( image_size=self.image_size , num_channels=self.num_channels , num_encoder_blocks=self.num_encoder_blocks , depths=self.depths , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE_ (self : Optional[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any]) ->Optional[int]: '''simple docstring''' lowerCamelCase__: str =SegformerModel(config=UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() lowerCamelCase__: Union[str, Any] =model(UpperCAmelCase_) lowerCamelCase__: List[str] =self.image_size // (self.downsampling_rates[-1] * 2) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], expected_height, expected_width)) def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[Any]) ->Tuple: '''simple docstring''' lowerCamelCase__: Tuple =self.num_labels lowerCamelCase__: Any =SegformerForSemanticSegmentation(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() lowerCamelCase__: Any =model(UpperCAmelCase_) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4)) lowerCamelCase__: Union[str, Any] =model(UpperCAmelCase_ , labels=UpperCAmelCase_) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4)) self.parent.assertGreater(result.loss , 0.0) def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Union[str, Any]) ->Tuple: '''simple docstring''' lowerCamelCase__: Optional[Any] =1 lowerCamelCase__: Union[str, Any] =SegformerForSemanticSegmentation(config=UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() lowerCamelCase__: str =torch.randint(0 , 1 , (self.batch_size, self.image_size, self.image_size)).to(UpperCAmelCase_) lowerCamelCase__: Tuple =model(UpperCAmelCase_ , labels=UpperCAmelCase_) self.parent.assertGreater(result.loss , 0.0) def SCREAMING_SNAKE_CASE_ (self : str) ->List[Any]: '''simple docstring''' lowerCamelCase__: Union[str, Any] =self.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Union[str, Any] =config_and_inputs lowerCamelCase__: List[str] ={"pixel_values": pixel_values} return config, inputs_dict @require_torch class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = ( ( SegformerModel, SegformerForSemanticSegmentation, SegformerForImageClassification, ) if is_torch_available() else () ) lowercase_ = ( { "feature-extraction": SegformerModel, "image-classification": SegformerForImageClassification, "image-segmentation": SegformerForSemanticSegmentation, } if is_torch_available() else {} ) lowercase_ = True lowercase_ = False lowercase_ = False lowercase_ = False def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Any: '''simple docstring''' lowerCamelCase__: Tuple =SegformerModelTester(self) lowerCamelCase__: str =SegformerConfigTester(self , config_class=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Dict) ->List[str]: '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Optional[int]: '''simple docstring''' lowerCamelCase__: str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Any) ->str: '''simple docstring''' lowerCamelCase__: List[str] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_binary_image_segmentation(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : int) ->int: '''simple docstring''' lowerCamelCase__: Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_segmentation(*UpperCAmelCase_) @unittest.skip("SegFormer does not use inputs_embeds") def SCREAMING_SNAKE_CASE_ (self : str) ->Tuple: '''simple docstring''' pass @unittest.skip("SegFormer does not have get_input_embeddings method and get_output_embeddings methods") def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Optional[Any]: '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ (self : Any) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: Optional[int] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__: Union[str, Any] =model_class(UpperCAmelCase_) lowerCamelCase__: Dict =inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase__: int =[*signature.parameters.keys()] lowerCamelCase__: str =["pixel_values"] self.assertListEqual(arg_names[:1] , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Dict) ->Tuple: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: Optional[int] =self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__: List[Any] =True for model_class in self.all_model_classes: lowerCamelCase__: Optional[int] =True lowerCamelCase__: Dict =False lowerCamelCase__: Any =True lowerCamelCase__: str =model_class(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() with torch.no_grad(): lowerCamelCase__: Optional[int] =model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_)) lowerCamelCase__: Tuple =outputs.attentions lowerCamelCase__: List[Any] =sum(self.model_tester.depths) self.assertEqual(len(UpperCAmelCase_) , UpperCAmelCase_) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowerCamelCase__: Optional[Any] =True lowerCamelCase__: List[str] =model_class(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() with torch.no_grad(): lowerCamelCase__: Optional[Any] =model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_)) lowerCamelCase__: List[Any] =outputs.attentions self.assertEqual(len(UpperCAmelCase_) , UpperCAmelCase_) # verify the first attentions (first block, first layer) lowerCamelCase__: Dict =(self.model_tester.image_size // 4) ** 2 lowerCamelCase__: int =(self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) # verify the last attentions (last block, last layer) lowerCamelCase__: Any =(self.model_tester.image_size // 32) ** 2 lowerCamelCase__: str =(self.model_tester.image_size // (32 * self.model_tester.sr_ratios[-1])) ** 2 self.assertListEqual( list(attentions[-1].shape[-3:]) , [self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len] , ) lowerCamelCase__: int =len(UpperCAmelCase_) # Check attention is always last and order is fine lowerCamelCase__: Union[str, Any] =True lowerCamelCase__: List[Any] =True lowerCamelCase__: Dict =model_class(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() with torch.no_grad(): lowerCamelCase__: Union[str, Any] =model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_)) self.assertEqual(out_len + 1 , len(UpperCAmelCase_)) lowerCamelCase__: Any =outputs.attentions self.assertEqual(len(UpperCAmelCase_) , UpperCAmelCase_) # verify the first attentions (first block, first layer) lowerCamelCase__: Union[str, Any] =(self.model_tester.image_size // 4) ** 2 lowerCamelCase__: Any =(self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(self_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) def SCREAMING_SNAKE_CASE_ (self : Dict) ->Dict: '''simple docstring''' def check_hidden_states_output(UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any]): lowerCamelCase__: List[str] =model_class(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() with torch.no_grad(): lowerCamelCase__: str =model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_)) lowerCamelCase__: Any =outputs.hidden_states lowerCamelCase__: Any =self.model_tester.num_encoder_blocks self.assertEqual(len(UpperCAmelCase_) , UpperCAmelCase_) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:]) , [ self.model_tester.hidden_sizes[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) lowerCamelCase__ , lowerCamelCase__: str =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__: Tuple =True check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase__: Any =True check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Optional[int]: '''simple docstring''' if not self.model_tester.is_training: return lowerCamelCase__ , lowerCamelCase__: List[str] =self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__: Tuple =True for model_class in self.all_model_classes: if model_class in get_values(UpperCAmelCase_): continue lowerCamelCase__: List[str] =model_class(UpperCAmelCase_) model.to(UpperCAmelCase_) model.train() lowerCamelCase__: Tuple =self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ , return_labels=UpperCAmelCase_) lowerCamelCase__: Optional[Any] =model(**UpperCAmelCase_).loss loss.backward() @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests.") def SCREAMING_SNAKE_CASE_ (self : str) ->Tuple: '''simple docstring''' pass @slow def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Optional[int]: '''simple docstring''' for model_name in SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__: Union[str, Any] =SegformerModel.from_pretrained(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) def lowerCAmelCase_ ( ) -> Dict: """simple docstring""" lowerCamelCase__: Any =Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @slow def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->List[Any]: '''simple docstring''' lowerCamelCase__: Optional[Any] =SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=UpperCAmelCase_ , align=UpperCAmelCase_ , do_random_crop=UpperCAmelCase_) lowerCamelCase__: Tuple =SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512").to( UpperCAmelCase_) lowerCamelCase__: Tuple =prepare_img() lowerCamelCase__: Union[str, Any] =image_processor(images=UpperCAmelCase_ , return_tensors="pt") lowerCamelCase__: List[str] =encoded_inputs.pixel_values.to(UpperCAmelCase_) with torch.no_grad(): lowerCamelCase__: Dict =model(UpperCAmelCase_) lowerCamelCase__: Optional[Any] =torch.Size((1, model.config.num_labels, 128, 128)) self.assertEqual(outputs.logits.shape , UpperCAmelCase_) lowerCamelCase__: Optional[Any] =torch.tensor( [ [[-4.6310, -5.5232, -6.2356], [-5.1921, -6.1444, -6.5996], [-5.4424, -6.2790, -6.7574]], [[-12.1391, -13.3122, -13.9554], [-12.8732, -13.9352, -14.3563], [-12.9438, -13.8226, -14.2513]], [[-12.5134, -13.4686, -14.4915], [-12.8669, -14.4343, -14.7758], [-13.2523, -14.5819, -15.0694]], ]).to(UpperCAmelCase_) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , UpperCAmelCase_ , atol=1E-4)) @slow def SCREAMING_SNAKE_CASE_ (self : Any) ->str: '''simple docstring''' lowerCamelCase__: Optional[Any] =SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=UpperCAmelCase_ , align=UpperCAmelCase_ , do_random_crop=UpperCAmelCase_) lowerCamelCase__: str =SegformerForSemanticSegmentation.from_pretrained( "nvidia/segformer-b1-finetuned-cityscapes-1024-1024").to(UpperCAmelCase_) lowerCamelCase__: Tuple =prepare_img() lowerCamelCase__: Optional[Any] =image_processor(images=UpperCAmelCase_ , return_tensors="pt") lowerCamelCase__: Tuple =encoded_inputs.pixel_values.to(UpperCAmelCase_) with torch.no_grad(): lowerCamelCase__: List[Any] =model(UpperCAmelCase_) lowerCamelCase__: Any =torch.Size((1, model.config.num_labels, 128, 128)) self.assertEqual(outputs.logits.shape , UpperCAmelCase_) lowerCamelCase__: Optional[int] =torch.tensor( [ [[-13.5748, -13.9111, -12.6500], [-14.3500, -15.3683, -14.2328], [-14.7532, -16.0424, -15.6087]], [[-17.1651, -15.8725, -12.9653], [-17.2580, -17.3718, -14.8223], [-16.6058, -16.8783, -16.7452]], [[-3.6456, -3.0209, -1.4203], [-3.0797, -3.1959, -2.0000], [-1.8757, -1.9217, -1.6997]], ]).to(UpperCAmelCase_) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , UpperCAmelCase_ , atol=1E-1)) @slow def SCREAMING_SNAKE_CASE_ (self : str) ->Dict: '''simple docstring''' lowerCamelCase__: Union[str, Any] =SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=UpperCAmelCase_ , align=UpperCAmelCase_ , do_random_crop=UpperCAmelCase_) lowerCamelCase__: str =SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512").to( UpperCAmelCase_) lowerCamelCase__: int =prepare_img() lowerCamelCase__: Tuple =image_processor(images=UpperCAmelCase_ , return_tensors="pt") lowerCamelCase__: Any =encoded_inputs.pixel_values.to(UpperCAmelCase_) with torch.no_grad(): lowerCamelCase__: Union[str, Any] =model(UpperCAmelCase_) lowerCamelCase__: Dict =outputs.logits.detach().cpu() lowerCamelCase__: Any =image_processor.post_process_semantic_segmentation(outputs=UpperCAmelCase_ , target_sizes=[(500, 300)]) lowerCamelCase__: List[str] =torch.Size((500, 300)) self.assertEqual(segmentation[0].shape , UpperCAmelCase_) lowerCamelCase__: Tuple =image_processor.post_process_semantic_segmentation(outputs=UpperCAmelCase_) lowerCamelCase__: Dict =torch.Size((128, 128)) self.assertEqual(segmentation[0].shape , UpperCAmelCase_)
59
from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor __A = transforms.Compose( [ transforms.Resize((256, 256)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def lowerCAmelCase_ ( __a ) -> str: """simple docstring""" if isinstance(__a , torch.Tensor ): return image elif isinstance(__a , PIL.Image.Image ): lowerCamelCase__: Any =[image] lowerCamelCase__: Optional[Any] =[trans(img.convert("RGB" ) ) for img in image] lowerCamelCase__: Dict =torch.stack(__a ) return image class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__(self : Any , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Tuple) ->int: '''simple docstring''' super().__init__() # make sure scheduler can always be converted to DDIM lowerCamelCase__: Tuple =DDIMScheduler.from_config(scheduler.config) self.register_modules(unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Optional[int] , UpperCAmelCase_ : Union[str, Any]) ->Dict: '''simple docstring''' if strength < 0 or strength > 1: raise ValueError(F"""The value of strength should in [0.0, 1.0] but is {strength}""") def SCREAMING_SNAKE_CASE_ (self : Optional[int] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Tuple) ->Tuple: '''simple docstring''' lowerCamelCase__: int =min(int(num_inference_steps * strength) , UpperCAmelCase_) lowerCamelCase__: str =max(num_inference_steps - init_timestep , 0) lowerCamelCase__: int =self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def SCREAMING_SNAKE_CASE_ (self : Any , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[int]=None) ->Optional[int]: '''simple docstring''' if not isinstance(UpperCAmelCase_ , (torch.Tensor, PIL.Image.Image, list)): raise ValueError( F"""`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(UpperCAmelCase_)}""") lowerCamelCase__: Optional[int] =image.to(device=UpperCAmelCase_ , dtype=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) and len(UpperCAmelCase_) != batch_size: raise ValueError( F"""You have passed a list of generators of length {len(UpperCAmelCase_)}, but requested an effective batch""" F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""") lowerCamelCase__: Dict =init_latents.shape lowerCamelCase__: int =randn_tensor(UpperCAmelCase_ , generator=UpperCAmelCase_ , device=UpperCAmelCase_ , dtype=UpperCAmelCase_) # get latents print("add noise to latents at timestep" , UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =self.scheduler.add_noise(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: int =init_latents return latents @torch.no_grad() def __call__(self : Tuple , UpperCAmelCase_ : Union[torch.FloatTensor, PIL.Image.Image] = None , UpperCAmelCase_ : float = 0.8 , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCAmelCase_ : float = 0.0 , UpperCAmelCase_ : int = 50 , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[str] = "pil" , UpperCAmelCase_ : bool = True , ) ->Union[ImagePipelineOutput, Tuple]: '''simple docstring''' self.check_inputs(UpperCAmelCase_) # 2. Preprocess image lowerCamelCase__: Dict =preprocess(UpperCAmelCase_) # 3. set timesteps self.scheduler.set_timesteps(UpperCAmelCase_ , device=self.device) lowerCamelCase__ , lowerCamelCase__: str =self.get_timesteps(UpperCAmelCase_ , UpperCAmelCase_ , self.device) lowerCamelCase__: Optional[int] =timesteps[:1].repeat(UpperCAmelCase_) # 4. Prepare latent variables lowerCamelCase__: int =self.prepare_latents(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , self.unet.dtype , self.device , UpperCAmelCase_) lowerCamelCase__: Tuple =latents # 5. Denoising loop for t in self.progress_bar(UpperCAmelCase_): # 1. predict noise model_output lowerCamelCase__: Dict =self.unet(UpperCAmelCase_ , UpperCAmelCase_).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 lowerCamelCase__: Optional[int] =self.scheduler.step( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , eta=UpperCAmelCase_ , use_clipped_model_output=UpperCAmelCase_ , generator=UpperCAmelCase_ , ).prev_sample lowerCamelCase__: str =(image / 2 + 0.5).clamp(0 , 1) lowerCamelCase__: Optional[Any] =image.cpu().permute(0 , 2 , 3 , 1).numpy() if output_type == "pil": lowerCamelCase__: Dict =self.numpy_to_pil(UpperCAmelCase_) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=UpperCAmelCase_)
59
1
import argparse import datetime def lowercase_ (A : str ): snake_case__ : int = { '0': 'Sunday', '1': 'Monday', '2': 'Tuesday', '3': 'Wednesday', '4': 'Thursday', '5': 'Friday', '6': 'Saturday', } snake_case__ : Union[str, Any] = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(A ) < 1_1: raise ValueError('Must be 10 characters long' ) # Get month snake_case__ : int = int(date_input[0] + date_input[1] ) # Validate if not 0 < m < 1_3: raise ValueError('Month must be between 1 - 12' ) snake_case__ : str = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError('Date separator must be \'-\' or \'/\'' ) # Get day snake_case__ : int = int(date_input[3] + date_input[4] ) # Validate if not 0 < d < 3_2: raise ValueError('Date must be between 1 - 31' ) # Get second separator snake_case__ : str = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError('Date separator must be \'-\' or \'/\'' ) # Get year snake_case__ : int = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] ) # Arbitrary year range if not 4_5 < y < 8_5_0_0: raise ValueError( 'Year out of range. There has to be some sort of limit...right?' ) # Get datetime obj for validation snake_case__ : Optional[int] = datetime.date(int(A ) , int(A ) , int(A ) ) # Start math if m <= 2: snake_case__ : Optional[Any] = y - 1 snake_case__ : int = m + 1_2 # maths var snake_case__ : int = int(str(A )[:2] ) snake_case__ : int = int(str(A )[2:] ) snake_case__ : int = int(2.6 * m - 5.39 ) snake_case__ : int = int(c / 4 ) snake_case__ : int = int(k / 4 ) snake_case__ : int = int(d + k ) snake_case__ : int = int(t + u + v + x ) snake_case__ : int = int(z - (2 * c) ) snake_case__ : int = round(w % 7 ) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError('The date was evaluated incorrectly. Contact developer.' ) # Response snake_case__ : str = F'''Your date {date_input}, is a {days[str(A )]}!''' return response if __name__ == "__main__": import doctest doctest.testmod() a_ :Union[str, Any] = argparse.ArgumentParser( description=( "Find out what day of the week nearly any date is or was. Enter " "date as a string in the mm-dd-yyyy or mm/dd/yyyy format" ) ) parser.add_argument( "date_input", type=str, help="Date as a string (mm-dd-yyyy or mm/dd/yyyy)" ) a_ :Optional[int] = parser.parse_args() zeller(args.date_input)
243
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys a_ :int = subprocess.check_output("git merge-base main HEAD".split()).decode("utf-8") a_ :str = ( subprocess.check_output(F"""git diff --diff-filter=d --name-only {fork_point_sha}""".split()).decode("utf-8").split() ) a_ :int = "|".join(sys.argv[1:]) a_ :int = re.compile(RF"""^({joined_dirs}).*?\.py$""") a_ :str = [x for x in modified_files if regex.match(x)] print(" ".join(relevant_modified_files), end="")
243
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available __snake_case = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ["""GPTSw3Tokenizer"""] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys __snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
472
'''simple docstring''' def _A ( ): '''simple docstring''' A__ = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] A__ = 6 A__ = 1 A__ = 1901 A__ = 0 while year < 2001: day += 7 if (year % 4 == 0 and year % 100 != 0) or (year % 400 == 0): if day > days_per_month[month - 1] and month != 2: month += 1 A__ = day - days_per_month[month - 2] elif day > 29 and month == 2: month += 1 A__ = day - 29 else: if day > days_per_month[month - 1]: month += 1 A__ = day - days_per_month[month - 2] if month > 12: year += 1 A__ = 1 if year < 2001 and day == 1: sundays += 1 return sundays if __name__ == "__main__": print(solution())
531
0
'''simple docstring''' import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate _snake_case = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow('''''', '''|''', '''|'''), datarow=DataRow('''''', '''|''', '''|'''), padding=1, with_header_hide=None, ) _snake_case = [] _snake_case = [] _snake_case = {'''type''': '''section''', '''text''': {'''type''': '''plain_text''', '''text''': '''No failed tests! 🤗''', '''emoji''': True}} _snake_case = [ { '''type''': '''header''', '''text''': { '''type''': '''plain_text''', '''text''': F"🤗 Accelerate nightly {os.environ.get('TEST_TYPE', '')} test results", '''emoji''': True, }, } ] _snake_case = 0 for log in Path().glob('''*.log'''): _snake_case = 0 with open(log, '''r''') as f: for line in f: _snake_case = json.loads(line) if line.get('''nodeid''', '''''') != "": _snake_case = line['''nodeid'''] if line.get('''duration''', None) is not None: _snake_case = F"{line['duration']:.4f}" if line.get('''outcome''', '''''') == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split('''_''')[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) _snake_case = [] log.unlink() _snake_case = '''''' _snake_case = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += F"*{name[1:]}: {num_failed} failed test*\n" else: message += F"*{name[1:]}: {num_failed} failed tests*\n" _snake_case = [] _snake_case = {} for test in failed_tests: _snake_case = test[0].split('''::''') _snake_case = data[0].split('''/''')[-1] if data[0] not in filesafailed: _snake_case = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) _snake_case = [test[0] for test in failed_table] _snake_case = list(set(files)) # Count number of instances in failed_tests _snake_case = [] for file in individual_files: table.append([file, len(filesafailed[file])]) _snake_case = tabulate( table, headers=['''Test Location''', '''Num Failed'''], tablefmt=hf_table_format, stralign='''right''', ) message += F"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3_000: _snake_case = '''Too many failed tests, please see the full report in the Action results.''' _snake_case = len(err) + 10 _snake_case = message[: 3_000 - offset] + F"\n...\n```\n{err}" print(F"### {message}") else: _snake_case = '''No failed tests! 🤗''' print(F"## {message}") payload.append(no_error_payload) if os.environ.get('''TEST_TYPE''', '''''') != "": from slack_sdk import WebClient _snake_case = WebClient(token=os.environ['''SLACK_API_TOKEN''']) if message != "No failed tests! 🤗": _snake_case = { '''type''': '''section''', '''text''': { '''type''': '''mrkdwn''', '''text''': message, }, } payload.append(md_report) _snake_case = { '''type''': '''section''', '''text''': { '''type''': '''mrkdwn''', '''text''': '''*For more details:*''', }, '''accessory''': { '''type''': '''button''', '''text''': { '''type''': '''plain_text''', '''text''': '''Check Action results''', '''emoji''': True, }, '''url''': F"https://github.com/{os.environ['GITHUB_REPOSITORY']}/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } payload.append(action_button) _snake_case = { '''type''': '''context''', '''elements''': [ { '''type''': '''plain_text''', '''text''': F"Nightly {os.environ.get('TEST_TYPE')} test results for {date.today()}", } ], } payload.append(date_report) _snake_case = client.chat_postMessage(channel='''#accelerate-ci-daily''', text=message, blocks=payload) _snake_case = response.data['''ts'''] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name _snake_case = '''''' for i, row in enumerate(test_failures): if row[0] != test_class: _snake_case = row[0] else: _snake_case = '''''' _snake_case = { '''type''': '''section''', '''text''': { '''type''': '''mrkdwn''', '''text''': F"Test location: {test_location}\n```\n{tabulate(test_failures, headers=['Class', 'Test'], tablefmt=hf_table_format, stralign='right')}\n```", }, } client.chat_postMessage( channel='''#accelerate-ci-daily''', thread_ts=ts, blocks=[payload], )
701
from math import factorial, pi def __lowerCamelCase ( _lowercase , _lowercase = 30 ) -> float: if not isinstance(_lowercase , (int, float) ): raise ValueError('maclaurin_sin() requires either an int or float for theta' ) if not isinstance(_lowercase , _lowercase ) or accuracy <= 0: raise ValueError('maclaurin_sin() requires a positive int for accuracy' ) UpperCamelCase = float(_lowercase ) UpperCamelCase = theta // (2 * pi) theta -= 2 * div * pi return sum( (-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1 ) for r in range(_lowercase ) ) def __lowerCamelCase ( _lowercase , _lowercase = 30 ) -> float: if not isinstance(_lowercase , (int, float) ): raise ValueError('maclaurin_cos() requires either an int or float for theta' ) if not isinstance(_lowercase , _lowercase ) or accuracy <= 0: raise ValueError('maclaurin_cos() requires a positive int for accuracy' ) UpperCamelCase = float(_lowercase ) UpperCamelCase = theta // (2 * pi) theta -= 2 * div * pi return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r ) for r in range(_lowercase ) ) if __name__ == "__main__": import doctest doctest.testmod() print(maclaurin_sin(10)) print(maclaurin_sin(-10)) print(maclaurin_sin(10, 15)) print(maclaurin_sin(-10, 15)) print(maclaurin_cos(5)) print(maclaurin_cos(-5)) print(maclaurin_cos(10, 15)) print(maclaurin_cos(-10, 15))
170
0
from typing import Any class lowerCamelCase_ : '''simple docstring''' def __init__( self , __lowercase) -> List[str]: __UpperCamelCase :List[str] = data __UpperCamelCase :Optional[Any] = None def __repr__( self) -> int: return f"""Node({self.data})""" class lowerCamelCase_ : '''simple docstring''' def __init__( self) -> Any: __UpperCamelCase :Dict = None def __iter__( self) -> Any: __UpperCamelCase :int = self.head while node: yield node.data __UpperCamelCase :List[Any] = node.next def __len__( self) -> Any: return sum(1 for _ in self) def __repr__( self) -> List[str]: return "->".join([str(_UpperCAmelCase) for item in self]) def __getitem__( self , __lowercase) -> Dict: if not 0 <= index < len(self): raise ValueError('''list index out of range.''') for i, node in enumerate(self): if i == index: return node return None def __setitem__( self , __lowercase , __lowercase) -> List[str]: if not 0 <= index < len(self): raise ValueError('''list index out of range.''') __UpperCamelCase :Optional[int] = self.head for _ in range(_UpperCAmelCase): __UpperCamelCase :List[Any] = current.next __UpperCamelCase :List[Any] = data def UpperCamelCase__ ( self , __lowercase) -> List[Any]: self.insert_nth(len(self) , _UpperCAmelCase) def UpperCamelCase__ ( self , __lowercase) -> int: self.insert_nth(0 , _UpperCAmelCase) def UpperCamelCase__ ( self , __lowercase , __lowercase) -> Tuple: if not 0 <= index <= len(self): raise IndexError('''list index out of range''') __UpperCamelCase :List[Any] = Node(_UpperCAmelCase) if self.head is None: __UpperCamelCase :Dict = new_node elif index == 0: __UpperCamelCase :Any = self.head # link new_node to head __UpperCamelCase :Tuple = new_node else: __UpperCamelCase :Union[str, Any] = self.head for _ in range(index - 1): __UpperCamelCase :int = temp.next __UpperCamelCase :int = temp.next __UpperCamelCase :Any = new_node def UpperCamelCase__ ( self) -> Dict: # print every node data print(self) def UpperCamelCase__ ( self) -> List[str]: return self.delete_nth(0) def UpperCamelCase__ ( self) -> Optional[Any]: # delete from tail return self.delete_nth(len(self) - 1) def UpperCamelCase__ ( self , __lowercase = 0) -> Any: if not 0 <= index <= len(self) - 1: # test if index is valid raise IndexError('''List index out of range.''') __UpperCamelCase :Any = self.head # default first node if index == 0: __UpperCamelCase :Tuple = self.head.next else: __UpperCamelCase :Union[str, Any] = self.head for _ in range(index - 1): __UpperCamelCase :List[str] = temp.next __UpperCamelCase :int = temp.next __UpperCamelCase :List[str] = temp.next.next return delete_node.data def UpperCamelCase__ ( self) -> List[str]: return self.head is None def UpperCamelCase__ ( self) -> Union[str, Any]: __UpperCamelCase :Optional[int] = None __UpperCamelCase :Union[str, Any] = self.head while current: # Store the current node's next node. __UpperCamelCase :Union[str, Any] = current.next # Make the current node's next point backwards __UpperCamelCase :Union[str, Any] = prev # Make the previous node be the current node __UpperCamelCase :Union[str, Any] = current # Make the current node the next node (to progress iteration) __UpperCamelCase :Any = next_node # Return prev in order to put the head at the end __UpperCamelCase :int = prev def lowerCamelCase ( ): '''simple docstring''' __UpperCamelCase :Tuple = LinkedList() assert linked_list.is_empty() is True assert str(__UpperCAmelCase ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(__UpperCAmelCase ) == i linked_list.insert_nth(__UpperCAmelCase , i + 1 ) assert str(__UpperCAmelCase ) == "->".join(str(__UpperCAmelCase ) for i in range(1 , 11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(__UpperCAmelCase ) == "->".join(str(__UpperCAmelCase ) for i in range(0 , 12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(__UpperCAmelCase ) == 9 assert str(__UpperCAmelCase ) == "->".join(str(__UpperCAmelCase ) for i in range(1 , 10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): __UpperCamelCase :Optional[Any] = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(__UpperCAmelCase ) == "->".join(str(__UpperCAmelCase ) for i in range(-8 , 1 ) ) def lowerCamelCase ( ): '''simple docstring''' __UpperCamelCase :List[Any] = [ -9, 100, Node(77_345_112 ), '''dlrow olleH''', 7, 5_555, 0, -192.55_555, '''Hello, world!''', 77.9, Node(10 ), None, None, 12.20, ] __UpperCamelCase :Union[str, Any] = LinkedList() for i in test_input: linked_list.insert_tail(__UpperCAmelCase ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(__UpperCAmelCase ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head __UpperCamelCase :Tuple = linked_list.delete_head() assert result == -9 assert ( str(__UpperCAmelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail __UpperCamelCase :str = linked_list.delete_tail() assert result == 12.2 assert ( str(__UpperCAmelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list __UpperCamelCase :List[str] = linked_list.delete_nth(10 ) assert result is None assert ( str(__UpperCAmelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node('''Hello again, world!''' ) ) assert ( str(__UpperCAmelCase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(__UpperCAmelCase ) assert ( str(__UpperCAmelCase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(__UpperCAmelCase ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def lowerCamelCase ( ): '''simple docstring''' from doctest import testmod testmod() __UpperCamelCase :Any = LinkedList() linked_list.insert_head(input('''Inserting 1st at head ''' ).strip() ) linked_list.insert_head(input('''Inserting 2nd at head ''' ).strip() ) print('''\nPrint list:''' ) linked_list.print_list() linked_list.insert_tail(input('''\nInserting 1st at tail ''' ).strip() ) linked_list.insert_tail(input('''Inserting 2nd at tail ''' ).strip() ) print('''\nPrint list:''' ) linked_list.print_list() print('''\nDelete head''' ) linked_list.delete_head() print('''Delete tail''' ) linked_list.delete_tail() print('''\nPrint list:''' ) linked_list.print_list() print('''\nReverse linked list''' ) linked_list.reverse() print('''\nPrint list:''' ) linked_list.print_list() print('''\nString representation of linked list:''' ) print(__UpperCAmelCase ) print('''\nReading/changing Node data using indexing:''' ) print(f"""Element at Position 1: {linked_list[1]}""" ) __UpperCamelCase :Optional[int] = input('''Enter New Value: ''' ).strip() print('''New list:''' ) print(__UpperCAmelCase ) print(f"""length of linked_list is : {len(__UpperCAmelCase )}""" ) if __name__ == "__main__": main()
167
"""simple docstring""" from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance __A = 637_8137.0 __A = 635_6752.31_4245 __A = 6_3_7_8_1_3_7 def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> float: lowercase__: str = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude lowercase__: Tuple = atan((1 - flattening) * tan(radians(__UpperCAmelCase ) ) ) lowercase__: Optional[int] = atan((1 - flattening) * tan(radians(__UpperCAmelCase ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius lowercase__: Dict = haversine_distance(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) / EQUATORIAL_RADIUS # Intermediate P and Q values lowercase__: Dict = (b_lata + b_lata) / 2 lowercase__: Optional[int] = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) lowercase__: List[Any] = (sin(__UpperCAmelCase ) ** 2) * (cos(__UpperCAmelCase ) ** 2) lowercase__: int = cos(sigma / 2 ) ** 2 lowercase__: Union[str, Any] = (sigma - sin(__UpperCAmelCase )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) lowercase__: Optional[int] = (cos(__UpperCAmelCase ) ** 2) * (sin(__UpperCAmelCase ) ** 2) lowercase__: List[Any] = sin(sigma / 2 ) ** 2 lowercase__: str = (sigma + sin(__UpperCAmelCase )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
586
0
def UpperCAmelCase_ ( UpperCAmelCase__ ): if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise TypeError("""Input value must be an 'int' type""" ) lowercase_ = 0 while number: position += 1 number >>= 1 return position if __name__ == "__main__": import doctest doctest.testmod()
717
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def UpperCAmelCase_ ( UpperCAmelCase__=None ): if subparsers is not None: lowercase_ = subparsers.add_parser("""env""" ) else: lowercase_ = argparse.ArgumentParser("""Accelerate env command""" ) parser.add_argument( """--config_file""" , default=UpperCAmelCase__ , help="""The config file to use for the default values in the launching script.""" ) if subparsers is not None: parser.set_defaults(func=UpperCAmelCase__ ) return parser def UpperCAmelCase_ ( UpperCAmelCase__ ): lowercase_ = torch.__version__ lowercase_ = torch.cuda.is_available() lowercase_ = is_xpu_available() lowercase_ = is_npu_available() lowercase_ = """Not found""" # Get the default from the config file. if args.config_file is not None or os.path.isfile(UpperCAmelCase__ ): lowercase_ = load_config_from_file(args.config_file ).to_dict() lowercase_ = { """`Accelerate` version""": version, """Platform""": platform.platform(), """Python version""": platform.python_version(), """Numpy version""": np.__version__, """PyTorch version (GPU?)""": F'''{pt_version} ({pt_cuda_available})''', """PyTorch XPU available""": str(UpperCAmelCase__ ), """PyTorch NPU available""": str(UpperCAmelCase__ ), """System RAM""": F'''{psutil.virtual_memory().total / 1_0_2_4 ** 3:.2f} GB''', } if pt_cuda_available: lowercase_ = torch.cuda.get_device_name() print("""\nCopy-and-paste the text below in your GitHub issue\n""" ) print("""\n""".join([F'''- {prop}: {val}''' for prop, val in info.items()] ) ) print("""- `Accelerate` default config:""" if args.config_file is None else """- `Accelerate` config passed:""" ) lowercase_ = ( """\n""".join([F'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else F'''\t{accelerate_config}''' ) print(UpperCAmelCase__ ) lowercase_ = accelerate_config return info def UpperCAmelCase_ ( ): lowercase_ = env_command_parser() lowercase_ = parser.parse_args() env_command(UpperCAmelCase__ ) return 0 if __name__ == "__main__": raise SystemExit(main())
650
0
import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class lowercase ( pl.LightningModule): """simple docstring""" def __init__( self : List[str] , __UpperCAmelCase : str ) -> List[Any]: super().__init__() UpperCAmelCase_= model UpperCAmelCase_= 2 UpperCAmelCase_= nn.Linear(self.model.config.hidden_size , self.num_labels ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Tuple: pass def __a ( lowerCAmelCase_ : str ,lowerCAmelCase_ : str ,lowerCAmelCase_ : str ) -> Dict: '''simple docstring''' UpperCAmelCase_= LongformerModel.from_pretrained(__lowerCamelCase ) UpperCAmelCase_= LightningModel(__lowerCamelCase ) UpperCAmelCase_= torch.load(__lowerCamelCase ,map_location=torch.device("""cpu""" ) ) lightning_model.load_state_dict(ckpt["""state_dict"""] ) # init longformer question answering model UpperCAmelCase_= LongformerForQuestionAnswering.from_pretrained(__lowerCamelCase ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(__lowerCamelCase ) print(F"""Conversion successful. Model saved under {pytorch_dump_folder_path}""" ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--longformer_model''', default=None, type=str, required=True, help='''model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.''', ) parser.add_argument( '''--longformer_question_answering_ckpt_path''', default=None, type=str, required=True, help='''Path the official PyTorch Lightning Checkpoint.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __A = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
593
'''simple docstring''' def lowerCamelCase__ ( __lowerCamelCase : str ): '''simple docstring''' _UpperCAmelCase : Dict ='' for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def lowerCamelCase__ ( __lowerCamelCase : str ): '''simple docstring''' _UpperCAmelCase : List[str] =[chr(i + 6_5 ) for i in range(2_6 )] # Remove duplicate characters from key _UpperCAmelCase : Any =remove_duplicates(key.upper() ) _UpperCAmelCase : Optional[Any] =len(__lowerCamelCase ) # First fill cipher with key characters _UpperCAmelCase : List[Any] ={alphabet[i]: char for i, char in enumerate(__lowerCamelCase )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(__lowerCamelCase ) , 2_6 ): _UpperCAmelCase : Union[str, Any] =alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 _UpperCAmelCase : str =alphabet[i - offset] _UpperCAmelCase : Any =char return cipher_alphabet def lowerCamelCase__ ( __lowerCamelCase : str , __lowerCamelCase : dict[str, str] ): '''simple docstring''' return "".join(cipher_map.get(__lowerCamelCase , __lowerCamelCase ) for ch in message.upper() ) def lowerCamelCase__ ( __lowerCamelCase : str , __lowerCamelCase : dict[str, str] ): '''simple docstring''' _UpperCAmelCase : List[str] ={v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(__lowerCamelCase , __lowerCamelCase ) for ch in message.upper() ) def lowerCamelCase__ ( ): '''simple docstring''' _UpperCAmelCase : Union[str, Any] =input('Enter message to encode or decode: ' ).strip() _UpperCAmelCase : int =input('Enter keyword: ' ).strip() _UpperCAmelCase : int =input('Encipher or decipher? E/D:' ).strip()[0].lower() try: _UpperCAmelCase : Tuple ={'e': encipher, 'd': decipher}[option] except KeyError: raise KeyError('invalid input option' ) _UpperCAmelCase : List[str] =create_cipher_map(__lowerCamelCase ) print(func(__lowerCamelCase , __lowerCamelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
446
0
class _a : """simple docstring""" def __init__( self: Dict , __lowerCamelCase: Union[str, Any] = "" , __lowerCamelCase: Any = False ): '''simple docstring''' UpperCamelCase__: dict[str, RadixNode] = {} # A node will be a leaf if the tree contains its word UpperCamelCase__: int = is_leaf UpperCamelCase__: Union[str, Any] = prefix def UpperCAmelCase_ ( self: str , __lowerCamelCase: List[str] ): '''simple docstring''' UpperCamelCase__: Optional[int] = 0 for q, w in zip(self.prefix , _lowercase ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def UpperCAmelCase_ ( self: Tuple , __lowerCamelCase: str ): '''simple docstring''' for word in words: self.insert(_lowercase ) def UpperCAmelCase_ ( self: Dict , __lowerCamelCase: Any ): '''simple docstring''' if self.prefix == word: UpperCamelCase__: Dict = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: UpperCamelCase__: Optional[int] = RadixNode(prefix=_lowercase , is_leaf=_lowercase ) else: UpperCamelCase__: List[Any] = self.nodes[word[0]] UpperCamelCase__: Any = incoming_node.match( _lowercase ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(_lowercase ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: UpperCamelCase__: Any = remaining_prefix UpperCamelCase__: int = self.nodes[matching_string[0]] UpperCamelCase__: int = RadixNode(_lowercase , _lowercase ) UpperCamelCase__: List[Any] = aux_node if remaining_word == "": UpperCamelCase__: Optional[Any] = True else: self.nodes[matching_string[0]].insert(_lowercase ) def UpperCAmelCase_ ( self: Any , __lowerCamelCase: List[Any] ): '''simple docstring''' UpperCamelCase__: List[str] = self.nodes.get(word[0] , _lowercase ) if not incoming_node: return False else: UpperCamelCase__: Optional[int] = incoming_node.match( _lowercase ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(_lowercase ) def UpperCAmelCase_ ( self: Union[str, Any] , __lowerCamelCase: str ): '''simple docstring''' UpperCamelCase__: List[str] = self.nodes.get(word[0] , _lowercase ) if not incoming_node: return False else: UpperCamelCase__: Optional[int] = incoming_node.match( _lowercase ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(_lowercase ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: UpperCamelCase__: List[str] = list(self.nodes.values() )[0] UpperCamelCase__: Dict = merging_node.is_leaf self.prefix += merging_node.prefix UpperCamelCase__: List[Any] = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: UpperCamelCase__: int = False # If there is 1 edge, we merge it with its child else: UpperCamelCase__: Tuple = list(incoming_node.nodes.values() )[0] UpperCamelCase__: Optional[int] = merging_node.is_leaf incoming_node.prefix += merging_node.prefix UpperCamelCase__: Union[str, Any] = merging_node.nodes return True def UpperCAmelCase_ ( self: List[Any] , __lowerCamelCase: Dict = 0 ): '''simple docstring''' if self.prefix != "": print("-" * height , self.prefix , " (leaf)" if self.is_leaf else "" ) for value in self.nodes.values(): value.print_tree(height + 1 ) def lowerCAmelCase_ ( ): UpperCamelCase__: int = """banana bananas bandana band apple all beast""".split() UpperCamelCase__: List[str] = RadixNode() root.insert_many(__UpperCamelCase) assert all(root.find(__UpperCamelCase) for word in words) assert not root.find("bandanas") assert not root.find("apps") root.delete("all") assert not root.find("all") root.delete("banana") assert not root.find("banana") assert root.find("bananas") return True def lowerCAmelCase_ ( ): assert test_trie() def lowerCAmelCase_ ( ): UpperCamelCase__: Union[str, Any] = RadixNode() UpperCamelCase__: Any = """banana bananas bandanas bandana band apple all beast""".split() root.insert_many(__UpperCamelCase) print("Words:" ,__UpperCamelCase) print("Tree:") root.print_tree() if __name__ == "__main__": main()
721
def lowerCAmelCase_ ( ): for n in range(1 ,1_00_00_00): yield n * (n + 1) // 2 def lowerCAmelCase_ ( A_): UpperCamelCase__: int = 1 UpperCamelCase__: Dict = 2 while i * i <= n: UpperCamelCase__: Any = 0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def lowerCAmelCase_ ( ): return next(i for i in triangle_number_generator() if count_divisors(A_) > 5_00) if __name__ == "__main__": print(solution())
221
0
import requests from bsa import BeautifulSoup def __magic_name__ ( SCREAMING_SNAKE_CASE = "https://www.worldometers.info/coronavirus" ) -> dict: _lowercase : Optional[Any] = BeautifulSoup(requests.get(SCREAMING_SNAKE_CASE ).text , 'html.parser' ) _lowercase : Dict = soup.findAll('h1' ) _lowercase : Tuple = soup.findAll('div' , {'class': 'maincounter-number'} ) keys += soup.findAll('span' , {'class': 'panel-title'} ) values += soup.findAll('div' , {'class': 'number-table-main'} ) return {key.text.strip(): value.text.strip() for key, value in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )} if __name__ == "__main__": print("\033[1m" + "COVID-19 Status of the World" + "\033[0m\n") for key, value in world_covidaa_stats().items(): print(f'''{key}\n{value}\n''')
66
from __future__ import annotations import string from itertools import cycle, product from pathlib import Path UpperCAmelCase : str = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) UpperCAmelCase : list[int] = [ord(letter) for letter in string.ascii_lowercase] UpperCAmelCase : set[int] = {ord(char) for char in VALID_CHARS} UpperCAmelCase : list[str] = ["the", "be", "to", "of", "and", "in", "that", "have"] def _SCREAMING_SNAKE_CASE ( a , a ) -> str | None: __A : str = "" __A : int __A : int __A : int for keychar, cipherchar in zip(cycle(a ) , a ): __A : List[Any] = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(a ) return decoded def _SCREAMING_SNAKE_CASE ( a ) -> list[str]: __A : list[str] = [] for key in product(a , repeat=3 ): __A : str = try_key(a , a ) if encoded is not None: possibles.append(a ) return possibles def _SCREAMING_SNAKE_CASE ( a , a ) -> list[str]: return [possible for possible in possibles if common_word in possible.lower()] def _SCREAMING_SNAKE_CASE ( a = "p059_cipher.txt" ) -> int: __A : list[int] __A : list[str] __A : str __A : str __A : str = Path(a ).parent.joinpath(a ).read_text(encoding='utf-8' ) __A : Union[str, Any] = [int(a ) for number in data.strip().split(',' )] __A : Any = filter_valid_chars(a ) for common_word in COMMON_WORDS: __A : Tuple = filter_common_word(a , a ) if len(a ) == 1: break __A : Union[str, Any] = possibles[0] return sum(ord(a ) for char in decoded_text ) if __name__ == "__main__": print(F"""{solution() = }""")
239
0
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { """microsoft/deberta-v2-xlarge""": """https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json""", """microsoft/deberta-v2-xxlarge""": """https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json""", """microsoft/deberta-v2-xlarge-mnli""": ( """https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json""" ), """microsoft/deberta-v2-xxlarge-mnli""": ( """https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json""" ), } class _UpperCAmelCase ( _lowerCamelCase ): a = '''deberta-v2''' def __init__( self , a__=128100 , a__=1536 , a__=24 , a__=24 , a__=6144 , a__="gelu" , a__=0.1 , a__=0.1 , a__=512 , a__=0 , a__=0.02 , a__=1E-7 , a__=False , a__=-1 , a__=0 , a__=True , a__=None , a__=0 , a__="gelu" , **a__ , ): super().__init__(**a__ ) A_ : Union[str, Any] = hidden_size A_ : List[str] = num_hidden_layers A_ : Optional[int] = num_attention_heads A_ : Tuple = intermediate_size A_ : Union[str, Any] = hidden_act A_ : Union[str, Any] = hidden_dropout_prob A_ : Any = attention_probs_dropout_prob A_ : Any = max_position_embeddings A_ : Union[str, Any] = type_vocab_size A_ : Dict = initializer_range A_ : List[str] = relative_attention A_ : Tuple = max_relative_positions A_ : Union[str, Any] = pad_token_id A_ : Any = position_biased_input # Backwards compatibility if type(a__ ) == str: A_ : Tuple = [x.strip() for x in pos_att_type.lower().split("""|""" )] A_ : int = pos_att_type A_ : List[Any] = vocab_size A_ : Union[str, Any] = layer_norm_eps A_ : Optional[int] = kwargs.get("""pooler_hidden_size""" , a__ ) A_ : Optional[int] = pooler_dropout A_ : int = pooler_hidden_act class _UpperCAmelCase ( _lowerCamelCase ): @property def _lowerCamelCase ( self ): if self.task == "multiple-choice": A_ : List[Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: A_ : Optional[int] = {0: """batch""", 1: """sequence"""} if self._config.type_vocab_size > 0: return OrderedDict( [("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis)] ) else: return OrderedDict([("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis)] ) @property def _lowerCamelCase ( self ): return 12 def _lowerCamelCase ( self , a__ , a__ = -1 , a__ = -1 , a__ = -1 , a__ = False , a__ = None , a__ = 3 , a__ = 40 , a__ = 40 , a__ = None , ): A_ : Tuple = super().generate_dummy_inputs(preprocessor=a__ , framework=a__ ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
481
from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DISABLE_TELEMETRY, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_full_repo_name, get_torch_version, has_file, http_user_agent, is_apex_available, is_bsa_available, is_coloredlogs_available, is_datasets_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
481
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer a_ = logging.get_logger(__name__) a_ = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} a_ = { """vocab_file""": { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/vocab.txt""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/vocab.txt""", """bert-base-multilingual-uncased""": ( """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt""" ), """bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt""", """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt""" ), """bert-base-cased-finetuned-mrpc""": ( """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt""" ), """bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt""", """bert-base-german-dbmdz-uncased""": ( """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt""" ), """wietsedv/bert-base-dutch-cased""": ( """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json""", """bert-base-multilingual-uncased""": ( """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json""" ), """bert-base-multilingual-cased""": ( """https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json""" ), """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json""" ), """bert-base-cased-finetuned-mrpc""": ( """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json""" ), """bert-base-german-dbmdz-cased""": ( """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json""" ), """bert-base-german-dbmdz-uncased""": ( """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json""" ), """wietsedv/bert-base-dutch-cased""": ( """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json""" ), }, } a_ = { """bert-base-uncased""": 512, """bert-large-uncased""": 512, """bert-base-cased""": 512, """bert-large-cased""": 512, """bert-base-multilingual-uncased""": 512, """bert-base-multilingual-cased""": 512, """bert-base-chinese""": 512, """bert-base-german-cased""": 512, """bert-large-uncased-whole-word-masking""": 512, """bert-large-cased-whole-word-masking""": 512, """bert-large-uncased-whole-word-masking-finetuned-squad""": 512, """bert-large-cased-whole-word-masking-finetuned-squad""": 512, """bert-base-cased-finetuned-mrpc""": 512, """bert-base-german-dbmdz-cased""": 512, """bert-base-german-dbmdz-uncased""": 512, """TurkuNLP/bert-base-finnish-cased-v1""": 512, """TurkuNLP/bert-base-finnish-uncased-v1""": 512, """wietsedv/bert-base-dutch-cased""": 512, } a_ = { """bert-base-uncased""": {"""do_lower_case""": True}, """bert-large-uncased""": {"""do_lower_case""": True}, """bert-base-cased""": {"""do_lower_case""": False}, """bert-large-cased""": {"""do_lower_case""": False}, """bert-base-multilingual-uncased""": {"""do_lower_case""": True}, """bert-base-multilingual-cased""": {"""do_lower_case""": False}, """bert-base-chinese""": {"""do_lower_case""": False}, """bert-base-german-cased""": {"""do_lower_case""": False}, """bert-large-uncased-whole-word-masking""": {"""do_lower_case""": True}, """bert-large-cased-whole-word-masking""": {"""do_lower_case""": False}, """bert-large-uncased-whole-word-masking-finetuned-squad""": {"""do_lower_case""": True}, """bert-large-cased-whole-word-masking-finetuned-squad""": {"""do_lower_case""": False}, """bert-base-cased-finetuned-mrpc""": {"""do_lower_case""": False}, """bert-base-german-dbmdz-cased""": {"""do_lower_case""": False}, """bert-base-german-dbmdz-uncased""": {"""do_lower_case""": True}, """TurkuNLP/bert-base-finnish-cased-v1""": {"""do_lower_case""": False}, """TurkuNLP/bert-base-finnish-uncased-v1""": {"""do_lower_case""": True}, """wietsedv/bert-base-dutch-cased""": {"""do_lower_case""": False}, } class __lowerCAmelCase ( __UpperCamelCase ): lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_INIT_CONFIGURATION lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = BertTokenizer def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase="[UNK]" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="[PAD]" , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[MASK]" , __UpperCAmelCase=True , __UpperCAmelCase=None , **__UpperCAmelCase , ): '''simple docstring''' super().__init__( __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , tokenize_chinese_chars=__UpperCAmelCase , strip_accents=__UpperCAmelCase , **__UpperCAmelCase , ) __lowerCamelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , __UpperCAmelCase ) != do_lower_case or normalizer_state.get('''strip_accents''' , __UpperCAmelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , __UpperCAmelCase ) != tokenize_chinese_chars ): __lowerCamelCase = getattr(__UpperCAmelCase , normalizer_state.pop('''type''' ) ) __lowerCamelCase = do_lower_case __lowerCamelCase = strip_accents __lowerCamelCase = tokenize_chinese_chars __lowerCamelCase = normalizer_class(**__UpperCAmelCase ) __lowerCamelCase = do_lower_case def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase=None ): '''simple docstring''' __lowerCamelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ): '''simple docstring''' __lowerCamelCase = [self.sep_token_id] __lowerCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ): '''simple docstring''' __lowerCamelCase = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase ) return tuple(__UpperCAmelCase )
175
import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class __a ( ctypes.Structure ): # _fields is a specific attr expected by ctypes __snake_case : Optional[Any] = [("""size""", ctypes.c_int), ("""visible""", ctypes.c_byte)] def __UpperCamelCase ( ) -> Optional[Any]: '''simple docstring''' if os.name == "nt": lowerCAmelCase_ : str = CursorInfo() lowerCAmelCase_ : Dict = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(lowercase__ , ctypes.byref(lowercase__ ) ) lowerCAmelCase_ : str = False ctypes.windll.kernelaa.SetConsoleCursorInfo(lowercase__ , ctypes.byref(lowercase__ ) ) elif os.name == "posix": sys.stdout.write("""\033[?25l""" ) sys.stdout.flush() def __UpperCamelCase ( ) -> int: '''simple docstring''' if os.name == "nt": lowerCAmelCase_ : int = CursorInfo() lowerCAmelCase_ : int = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(lowercase__ , ctypes.byref(lowercase__ ) ) lowerCAmelCase_ : Tuple = True ctypes.windll.kernelaa.SetConsoleCursorInfo(lowercase__ , ctypes.byref(lowercase__ ) ) elif os.name == "posix": sys.stdout.write("""\033[?25h""" ) sys.stdout.flush() @contextmanager def __UpperCamelCase ( ) -> List[Any]: '''simple docstring''' try: hide_cursor() yield finally: show_cursor()
600
0
"""simple docstring""" import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def a_ ( ): '''simple docstring''' lowercase__ : Union[str, Any] = 'https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png' lowercase__ : str = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ).convert('RGB' ) return image def a_ ( _lowerCAmelCase : Optional[Any] ): '''simple docstring''' lowercase__ : Any = [] # fmt: off # vision encoder rename_keys.append(('visual_encoder.cls_token', 'vision_model.embeddings.class_embedding') ) rename_keys.append(('visual_encoder.pos_embed', 'vision_model.embeddings.position_embedding') ) rename_keys.append(('visual_encoder.patch_embed.proj.weight', 'vision_model.embeddings.patch_embedding.weight') ) rename_keys.append(('visual_encoder.patch_embed.proj.bias', 'vision_model.embeddings.patch_embedding.bias') ) rename_keys.append(('ln_vision.weight', 'vision_model.post_layernorm.weight') ) rename_keys.append(('ln_vision.bias', 'vision_model.post_layernorm.bias') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((f"""visual_encoder.blocks.{i}.norm1.weight""", f"""vision_model.encoder.layers.{i}.layer_norm1.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.norm1.bias""", f"""vision_model.encoder.layers.{i}.layer_norm1.bias""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.norm2.weight""", f"""vision_model.encoder.layers.{i}.layer_norm2.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.norm2.bias""", f"""vision_model.encoder.layers.{i}.layer_norm2.bias""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.attn.qkv.weight""", f"""vision_model.encoder.layers.{i}.self_attn.qkv.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.attn.proj.weight""", f"""vision_model.encoder.layers.{i}.self_attn.projection.weight""",) ) rename_keys.append((f"""visual_encoder.blocks.{i}.attn.proj.bias""", f"""vision_model.encoder.layers.{i}.self_attn.projection.bias""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.mlp.fc1.weight""", f"""vision_model.encoder.layers.{i}.mlp.fc1.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.mlp.fc1.bias""", f"""vision_model.encoder.layers.{i}.mlp.fc1.bias""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.mlp.fc2.weight""", f"""vision_model.encoder.layers.{i}.mlp.fc2.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.mlp.fc2.bias""", f"""vision_model.encoder.layers.{i}.mlp.fc2.bias""") ) # QFormer rename_keys.append(('Qformer.bert.embeddings.LayerNorm.weight', 'qformer.layernorm.weight') ) rename_keys.append(('Qformer.bert.embeddings.LayerNorm.bias', 'qformer.layernorm.bias') ) # fmt: on return rename_keys def a_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Tuple , _lowerCAmelCase : List[Any] ): '''simple docstring''' lowercase__ : Optional[int] = dct.pop(_lowerCAmelCase ) lowercase__ : Optional[int] = val def a_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict ): '''simple docstring''' for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases lowercase__ : Dict = state_dict.pop(f"""visual_encoder.blocks.{i}.attn.q_bias""" ) lowercase__ : Optional[int] = state_dict.pop(f"""visual_encoder.blocks.{i}.attn.v_bias""" ) # next, set bias in the state dict lowercase__ : List[Any] = torch.cat((q_bias, torch.zeros_like(_lowerCAmelCase , requires_grad=_lowerCAmelCase ), v_bias) ) lowercase__ : Optional[int] = qkv_bias def a_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : Optional[Any] ): '''simple docstring''' lowercase__ : Optional[int] = 364 if 'coco' in model_name else 224 lowercase__ : str = BlipaVisionConfig(image_size=_lowerCAmelCase ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: lowercase__ : Union[str, Any] = OPTConfig.from_pretrained('facebook/opt-2.7b' , eos_token_id=_lowerCAmelCase ).to_dict() elif "opt-6.7b" in model_name: lowercase__ : Dict = OPTConfig.from_pretrained('facebook/opt-6.7b' , eos_token_id=_lowerCAmelCase ).to_dict() elif "t5-xl" in model_name: lowercase__ : Any = TaConfig.from_pretrained('google/flan-t5-xl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: lowercase__ : List[Any] = TaConfig.from_pretrained('google/flan-t5-xxl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() lowercase__ : List[str] = BlipaConfig(vision_config=_lowerCAmelCase , text_config=_lowerCAmelCase ) return config, image_size @torch.no_grad() def a_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[Any]=None , _lowerCAmelCase : List[Any]=False ): '''simple docstring''' lowercase__ : int = ( AutoTokenizer.from_pretrained('facebook/opt-2.7b' ) if 'opt' in model_name else AutoTokenizer.from_pretrained('google/flan-t5-xl' ) ) lowercase__ : Any = tokenizer('\n' , add_special_tokens=_lowerCAmelCase ).input_ids[0] lowercase__ , lowercase__ : Tuple = get_blipa_config(_lowerCAmelCase , eos_token_id=_lowerCAmelCase ) lowercase__ : Optional[int] = BlipaForConditionalGeneration(_lowerCAmelCase ).eval() lowercase__ : List[Any] = { 'blip2-opt-2.7b': ('blip2_opt', 'pretrain_opt2.7b'), 'blip2-opt-6.7b': ('blip2_opt', 'pretrain_opt6.7b'), 'blip2-opt-2.7b-coco': ('blip2_opt', 'caption_coco_opt2.7b'), 'blip2-opt-6.7b-coco': ('blip2_opt', 'caption_coco_opt6.7b'), 'blip2-flan-t5-xl': ('blip2_t5', 'pretrain_flant5xl'), 'blip2-flan-t5-xl-coco': ('blip2_t5', 'caption_coco_flant5xl'), 'blip2-flan-t5-xxl': ('blip2_t5', 'pretrain_flant5xxl'), } lowercase__ , lowercase__ : int = model_name_to_original[model_name] # load original model print('Loading original model...' ) lowercase__ : List[str] = 'cuda' if torch.cuda.is_available() else 'cpu' lowercase__ , lowercase__ , lowercase__ : Dict = load_model_and_preprocess( name=_lowerCAmelCase , model_type=_lowerCAmelCase , is_eval=_lowerCAmelCase , device=_lowerCAmelCase ) original_model.eval() print('Done!' ) # update state dict keys lowercase__ : Optional[int] = original_model.state_dict() lowercase__ : int = create_rename_keys(_lowerCAmelCase ) for src, dest in rename_keys: rename_key(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): lowercase__ : List[str] = state_dict.pop(_lowerCAmelCase ) if key.startswith('Qformer.bert' ): lowercase__ : Any = key.replace('Qformer.bert' , 'qformer' ) if "attention.self" in key: lowercase__ : str = key.replace('self' , 'attention' ) if "opt_proj" in key: lowercase__ : List[str] = key.replace('opt_proj' , 'language_projection' ) if "t5_proj" in key: lowercase__ : str = key.replace('t5_proj' , 'language_projection' ) if key.startswith('opt' ): lowercase__ : Dict = key.replace('opt' , 'language' ) if key.startswith('t5' ): lowercase__ : Any = key.replace('t5' , 'language' ) lowercase__ : Optional[int] = val # read in qv biases read_in_q_v_bias(_lowerCAmelCase , _lowerCAmelCase ) lowercase__ , lowercase__ : List[Any] = hf_model.load_state_dict(_lowerCAmelCase , strict=_lowerCAmelCase ) assert len(_lowerCAmelCase ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] lowercase__ : str = load_demo_image() lowercase__ : List[Any] = vis_processors['eval'](_lowerCAmelCase ).unsqueeze(0 ).to(_lowerCAmelCase ) lowercase__ : List[str] = tokenizer(['\n'] , return_tensors='pt' ).input_ids.to(_lowerCAmelCase ) # create processor lowercase__ : Any = BlipImageProcessor( size={'height': image_size, 'width': image_size} , image_mean=_lowerCAmelCase , image_std=_lowerCAmelCase ) lowercase__ : Any = BlipaProcessor(image_processor=_lowerCAmelCase , tokenizer=_lowerCAmelCase ) lowercase__ : Any = processor(images=_lowerCAmelCase , return_tensors='pt' ).pixel_values.to(_lowerCAmelCase ) # make sure processor creates exact same pixel values assert torch.allclose(_lowerCAmelCase , _lowerCAmelCase ) original_model.to(_lowerCAmelCase ) hf_model.to(_lowerCAmelCase ) with torch.no_grad(): if "opt" in model_name: lowercase__ : List[str] = original_model({'image': original_pixel_values, 'text_input': ['']} ).logits lowercase__ : str = hf_model(_lowerCAmelCase , _lowerCAmelCase ).logits else: lowercase__ : Dict = original_model( {'image': original_pixel_values, 'text_input': ['\n'], 'text_output': ['\n']} ).logits lowercase__ : Any = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -100 ) lowercase__ : Optional[int] = hf_model(_lowerCAmelCase , _lowerCAmelCase , labels=_lowerCAmelCase ).logits assert original_logits.shape == logits.shape print('First values of original logits:' , original_logits[0, :3, :3] ) print('First values of HF logits:' , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": lowercase__ : List[str] = torch.tensor( [[-4_1.5_8_5_0, -4.4_4_4_0, -8.9_9_2_2], [-4_7.4_3_2_2, -5.9_1_4_3, -1.7_3_4_0]] , device=_lowerCAmelCase ) assert torch.allclose(logits[0, :3, :3] , _lowerCAmelCase , atol=1E-4 ) elif model_name == "blip2-flan-t5-xl-coco": lowercase__ : Optional[int] = torch.tensor( [[-5_7.0_1_0_9, -9.8_9_6_7, -1_2.6_2_8_0], [-6_8.6_5_7_8, -1_2.7_1_9_1, -1_0.5_0_6_5]] , device=_lowerCAmelCase ) else: # cast to same type lowercase__ : Optional[Any] = logits.dtype assert torch.allclose(original_logits.to(_lowerCAmelCase ) , _lowerCAmelCase , atol=1E-2 ) print('Looks ok!' ) print('Generating a caption...' ) lowercase__ : int = '' lowercase__ : Dict = tokenizer(_lowerCAmelCase , return_tensors='pt' ).input_ids.to(_lowerCAmelCase ) lowercase__ : int = original_model.generate({'image': original_pixel_values} ) lowercase__ : Optional[int] = hf_model.generate( _lowerCAmelCase , _lowerCAmelCase , do_sample=_lowerCAmelCase , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print('Original generation:' , _lowerCAmelCase ) lowercase__ : Optional[Any] = input_ids.shape[1] lowercase__ : Tuple = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=_lowerCAmelCase ) lowercase__ : Union[str, Any] = [text.strip() for text in output_text] print('HF generation:' , _lowerCAmelCase ) if pytorch_dump_folder_path is not None: processor.save_pretrained(_lowerCAmelCase ) hf_model.save_pretrained(_lowerCAmelCase ) if push_to_hub: processor.push_to_hub(f"""nielsr/{model_name}""" ) hf_model.push_to_hub(f"""nielsr/{model_name}""" ) if __name__ == "__main__": _UpperCamelCase : Dict = argparse.ArgumentParser() _UpperCamelCase : Any = [ "blip2-opt-2.7b", "blip2-opt-6.7b", "blip2-opt-2.7b-coco", "blip2-opt-6.7b-coco", "blip2-flan-t5-xl", "blip2-flan-t5-xl-coco", "blip2-flan-t5-xxl", ] parser.add_argument( "--model_name", default="blip2-opt-2.7b", choices=choices, type=str, help="Path to hf config.json of model to convert", ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model and processor to the hub after converting", ) _UpperCamelCase : Tuple = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
645
"""simple docstring""" import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class UpperCAmelCase_ : def __init__( self , a , a=1_3 , a=1_0 , a=3 , a=2 , a=2 , a=2 , a=True , a=True , a=3_2 , a=5 , a=4 , a=3_7 , a="gelu" , a=0.1 , a=0.1 , a=1_0 , a=0.02 , a=0.9 , a=None , ) -> Optional[Any]: lowercase__ : str = parent lowercase__ : int = batch_size lowercase__ : Union[str, Any] = image_size lowercase__ : Optional[Any] = num_channels lowercase__ : Dict = patch_size lowercase__ : Tuple = tubelet_size lowercase__ : Optional[int] = num_frames lowercase__ : Optional[int] = is_training lowercase__ : int = use_labels lowercase__ : Optional[int] = hidden_size lowercase__ : Union[str, Any] = num_hidden_layers lowercase__ : Optional[int] = num_attention_heads lowercase__ : Any = intermediate_size lowercase__ : str = hidden_act lowercase__ : List[Any] = hidden_dropout_prob lowercase__ : str = attention_probs_dropout_prob lowercase__ : Union[str, Any] = type_sequence_label_size lowercase__ : List[Any] = initializer_range lowercase__ : str = mask_ratio lowercase__ : Optional[Any] = scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame lowercase__ : Optional[Any] = (image_size // patch_size) ** 2 lowercase__ : str = (num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos lowercase__ : str = int(mask_ratio * self.seq_length ) def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : int = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) lowercase__ : int = None if self.use_labels: lowercase__ : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ : Dict = self.get_config() return config, pixel_values, labels def _UpperCAmelCase ( self ) -> Tuple: return VideoMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , tubelet_size=self.tubelet_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=a , initializer_range=self.initializer_range , ) def _UpperCAmelCase ( self , a , a , a ) -> Optional[int]: lowercase__ : Dict = VideoMAEModel(config=a ) model.to(a ) model.eval() lowercase__ : Tuple = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase ( self , a , a , a ) -> Union[str, Any]: lowercase__ : str = VideoMAEForPreTraining(a ) model.to(a ) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch lowercase__ : Any = torch.ones((self.num_masks,) ) lowercase__ : str = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] ) lowercase__ : Optional[int] = mask.expand(self.batch_size , -1 ).bool() lowercase__ : str = model(a , a ) # model only returns predictions for masked patches lowercase__ : str = mask.sum().item() lowercase__ : int = 3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_masked_patches, decoder_num_labels) ) def _UpperCAmelCase ( self ) -> str: lowercase__ : Dict = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = config_and_inputs lowercase__ : List[str] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( _a , _a , unittest.TestCase): lowerCamelCase__ : Tuple = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) lowerCamelCase__ : Optional[int] = ( {"feature-extraction": VideoMAEModel, "video-classification": VideoMAEForVideoClassification} if is_torch_available() else {} ) lowerCamelCase__ : Any = False lowerCamelCase__ : Any = False lowerCamelCase__ : Union[str, Any] = False lowerCamelCase__ : str = False def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : Optional[Any] = VideoMAEModelTester(self ) lowercase__ : Optional[Any] = ConfigTester(self , config_class=a , has_text_modality=a , hidden_size=3_7 ) def _UpperCAmelCase ( self , a , a , a=False ) -> Optional[int]: lowercase__ : Union[str, Any] = copy.deepcopy(a ) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch lowercase__ : Optional[Any] = torch.ones((self.model_tester.num_masks,) ) lowercase__ : Any = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] ) lowercase__ : Any = mask.expand(self.model_tester.batch_size , -1 ).bool() lowercase__ : Union[str, Any] = bool_masked_pos.to(a ) if return_labels: if model_class in [ *get_values(a ), ]: lowercase__ : Dict = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=a ) return inputs_dict def _UpperCAmelCase ( self ) -> Tuple: self.config_tester.run_common_tests() @unittest.skip(reason='VideoMAE does not use inputs_embeds' ) def _UpperCAmelCase ( self ) -> Dict: pass def _UpperCAmelCase ( self ) -> List[Any]: lowercase__ , lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : int = model_class(a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase__ : int = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a , nn.Linear ) ) def _UpperCAmelCase ( self ) -> Optional[int]: lowercase__ , lowercase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : List[str] = model_class(a ) lowercase__ : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : Optional[Any] = [*signature.parameters.keys()] lowercase__ : int = ['pixel_values'] self.assertListEqual(arg_names[:1] , a ) def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*a ) @slow def _UpperCAmelCase ( self ) -> str: for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : List[Any] = VideoMAEModel.from_pretrained(a ) self.assertIsNotNone(a ) def _UpperCAmelCase ( self ) -> Optional[Any]: if not self.has_attentions: pass else: lowercase__ , lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : str = True for model_class in self.all_model_classes: lowercase__ : Union[str, Any] = self.model_tester.seq_length - self.model_tester.num_masks lowercase__ : Any = ( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) lowercase__ : Optional[Any] = True lowercase__ : int = False lowercase__ : Any = True lowercase__ : List[str] = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): lowercase__ : Optional[int] = model(**self._prepare_for_class(a , a ) ) lowercase__ : Dict = outputs.attentions self.assertEqual(len(a ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowercase__ : str = True lowercase__ : List[str] = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): lowercase__ : List[Any] = model(**self._prepare_for_class(a , a ) ) lowercase__ : Optional[Any] = outputs.attentions self.assertEqual(len(a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) lowercase__ : List[str] = len(a ) # Check attention is always last and order is fine lowercase__ : Optional[int] = True lowercase__ : List[str] = True lowercase__ : int = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): lowercase__ : List[str] = model(**self._prepare_for_class(a , a ) ) self.assertEqual(out_len + 1 , len(a ) ) lowercase__ : int = outputs.attentions self.assertEqual(len(a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def _UpperCAmelCase ( self ) -> Optional[int]: def check_hidden_states_output(a , a , a ): lowercase__ : Optional[int] = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): lowercase__ : Optional[Any] = model(**self._prepare_for_class(a , a ) ) lowercase__ : Optional[int] = outputs.hidden_states lowercase__ : List[Any] = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(a ) , a ) lowercase__ : Optional[Any] = self.model_tester.seq_length - self.model_tester.num_masks lowercase__ : Union[str, Any] = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) lowercase__ , lowercase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : Tuple = True check_hidden_states_output(a , a , a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : Union[str, Any] = True check_hidden_states_output(a , a , a ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def _UpperCAmelCase ( self ) -> List[Any]: pass def a_ ( ): '''simple docstring''' lowercase__ : int = hf_hub_download( repo_id='hf-internal-testing/spaghetti-video' , filename='eating_spaghetti.npy' , repo_type='dataset' ) lowercase__ : str = np.load(_lowerCAmelCase ) return list(_lowerCAmelCase ) @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase): @cached_property def _UpperCAmelCase ( self ) -> Optional[Any]: # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def _UpperCAmelCase ( self ) -> int: lowercase__ : Dict = VideoMAEForVideoClassification.from_pretrained('MCG-NJU/videomae-base-finetuned-kinetics' ).to( a ) lowercase__ : str = self.default_image_processor lowercase__ : List[str] = prepare_video() lowercase__ : int = image_processor(a , return_tensors='pt' ).to(a ) # forward pass with torch.no_grad(): lowercase__ : Union[str, Any] = model(**a ) # verify the logits lowercase__ : str = torch.Size((1, 4_0_0) ) self.assertEqual(outputs.logits.shape , a ) lowercase__ : List[Any] = torch.tensor([0.3_669, -0.0_688, -0.2_421] ).to(a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , a , atol=1e-4 ) ) @slow def _UpperCAmelCase ( self ) -> List[str]: lowercase__ : Optional[int] = VideoMAEForPreTraining.from_pretrained('MCG-NJU/videomae-base-short' ).to(a ) lowercase__ : Optional[Any] = self.default_image_processor lowercase__ : List[str] = prepare_video() lowercase__ : str = image_processor(a , return_tensors='pt' ).to(a ) # add boolean mask, indicating which patches to mask lowercase__ : Union[str, Any] = hf_hub_download(repo_id='hf-internal-testing/bool-masked-pos' , filename='bool_masked_pos.pt' ) lowercase__ : str = torch.load(a ) # forward pass with torch.no_grad(): lowercase__ : List[Any] = model(**a ) # verify the logits lowercase__ : Dict = torch.Size([1, 1_4_0_8, 1_5_3_6] ) lowercase__ : List[str] = torch.tensor( [[0.7_994, 0.9_612, 0.8_508], [0.7_401, 0.8_958, 0.8_302], [0.5_862, 0.7_468, 0.7_325]] , device=a ) self.assertEqual(outputs.logits.shape , a ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , a , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `True`) lowercase__ : List[Any] = torch.tensor([0.5_142] , device=a ) self.assertTrue(torch.allclose(outputs.loss , a , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `False`) lowercase__ : Tuple = VideoMAEForPreTraining.from_pretrained('MCG-NJU/videomae-base-short' , norm_pix_loss=a ).to( a ) with torch.no_grad(): lowercase__ : Any = model(**a ) lowercase__ : List[Any] = torch.tensor(torch.tensor([0.6_469] ) , device=a ) self.assertTrue(torch.allclose(outputs.loss , a , atol=1e-4 ) )
645
1
import datasets from .evaluate import evaluate SCREAMING_SNAKE_CASE = "\\n@article{hendrycks2021cuad,\n title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review},\n author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball},\n journal={arXiv preprint arXiv:2103.06268},\n year={2021}\n}\n" SCREAMING_SNAKE_CASE = "\nThis metric wrap the official scoring script for version 1 of the Contract\nUnderstanding Atticus Dataset (CUAD).\nContract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510\ncommercial legal contracts that have been manually labeled to identify 41 categories of important\nclauses that lawyers look for when reviewing contracts in connection with corporate transactions.\n" SCREAMING_SNAKE_CASE = "\nComputes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - 'id': id of the question-answer pair as given in the references (see below)\n - 'prediction_text': list of possible texts for the answer, as a list of strings\n depending on a threshold on the confidence probability of each prediction.\n references: List of question-answers dictionaries with the following key-values:\n - 'id': id of the question-answer pair (see above),\n - 'answers': a Dict in the CUAD dataset format\n {\n 'text': list of possible texts for the answer, as a list of strings\n 'answer_start': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n 'exact_match': Exact match (the normalized answer exactly match the gold answer)\n 'f1': The F-score of predicted tokens versus the gold answer\n 'aupr': Area Under the Precision-Recall curve\n 'prec_at_80_recall': Precision at 80% recall\n 'prec_at_90_recall': Precision at 90% recall\nExamples:\n >>> predictions = [{'prediction_text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.'], 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}]\n >>> references = [{'answers': {'answer_start': [143, 49], 'text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.']}, 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}]\n >>> cuad_metric = datasets.load_metric(\"cuad\")\n >>> results = cuad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'exact_match': 100.0, 'f1': 100.0, 'aupr': 0.0, 'prec_at_80_recall': 1.0, 'prec_at_90_recall': 1.0}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class lowerCamelCase ( datasets.Metric ): '''simple docstring''' def A__ ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": { "id": datasets.Value("string" ), "prediction_text": datasets.features.Sequence(datasets.Value("string" ) ), }, "references": { "id": datasets.Value("string" ), "answers": datasets.features.Sequence( { "text": datasets.Value("string" ), "answer_start": datasets.Value("int32" ), } ), }, } ) , codebase_urls=["https://www.atticusprojectai.org/cuad"] , reference_urls=["https://www.atticusprojectai.org/cuad"] , ) def A__ ( self , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = {prediction["id"]: prediction["prediction_text"] for prediction in predictions} UpperCAmelCase_ = [ { "paragraphs": [ { "qas": [ { "answers": [{"text": answer_text} for answer_text in ref["answers"]["text"]], "id": ref["id"], } for ref in references ] } ] } ] UpperCAmelCase_ = evaluate(dataset=__lowercase , predictions=__lowercase ) return score
579
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class _snake_case ( lowercase__ , lowercase__ , lowercase__ , unittest.TestCase): UpperCamelCase__ : List[Any] =StableUnCLIPImgaImgPipeline UpperCamelCase__ : Tuple =TEXT_GUIDED_IMAGE_VARIATION_PARAMS UpperCamelCase__ : Dict =TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS UpperCamelCase__ : int =frozenset( []) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess UpperCamelCase__ : Optional[Any] =frozenset([]) def A__ ( self : Optional[Any] ): lowercase__ = 32 lowercase__ = embedder_hidden_size # image encoding components lowercase__ = CLIPImageProcessor(crop_size=32, size=32 ) torch.manual_seed(0 ) lowercase__ = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=__lowercase, projection_dim=__lowercase, num_hidden_layers=5, num_attention_heads=4, image_size=32, intermediate_size=37, patch_size=1, ) ) # regular denoising components torch.manual_seed(0 ) lowercase__ = StableUnCLIPImageNormalizer(embedding_dim=__lowercase ) lowercase__ = DDPMScheduler(beta_schedule="squaredcos_cap_v2" ) torch.manual_seed(0 ) lowercase__ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) lowercase__ = CLIPTextModel( CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=__lowercase, projection_dim=32, intermediate_size=37, layer_norm_eps=1e-0_5, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, ) ) torch.manual_seed(0 ) lowercase__ = UNetaDConditionModel( sample_size=32, in_channels=4, out_channels=4, down_block_types=("CrossAttnDownBlock2D", "DownBlock2D"), up_block_types=("UpBlock2D", "CrossAttnUpBlock2D"), block_out_channels=(32, 64), attention_head_dim=(2, 4), class_embed_type="projection", projection_class_embeddings_input_dim=embedder_projection_dim * 2, cross_attention_dim=__lowercase, layers_per_block=1, upcast_attention=__lowercase, use_linear_projection=__lowercase, ) torch.manual_seed(0 ) lowercase__ = DDIMScheduler( beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, prediction_type="v_prediction", set_alpha_to_one=__lowercase, steps_offset=1, ) torch.manual_seed(0 ) lowercase__ = AutoencoderKL() lowercase__ = { # image encoding components "feature_extractor": feature_extractor, "image_encoder": image_encoder.eval(), # image noising components "image_normalizer": image_normalizer.eval(), "image_noising_scheduler": image_noising_scheduler, # regular denoising components "tokenizer": tokenizer, "text_encoder": text_encoder.eval(), "unet": unet.eval(), "scheduler": scheduler, "vae": vae.eval(), } return components def A__ ( self : Dict, __lowercase : Tuple, __lowercase : Union[str, Any]=0, __lowercase : Tuple=True ): if str(__lowercase ).startswith("mps" ): lowercase__ = torch.manual_seed(__lowercase ) else: lowercase__ = torch.Generator(device=__lowercase ).manual_seed(__lowercase ) lowercase__ = floats_tensor((1, 3, 32, 32), rng=random.Random(__lowercase ) ).to(__lowercase ) if pil_image: lowercase__ = input_image * 0.5 + 0.5 lowercase__ = input_image.clamp(0, 1 ) lowercase__ = input_image.cpu().permute(0, 2, 3, 1 ).float().numpy() lowercase__ = DiffusionPipeline.numpy_to_pil(__lowercase )[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def A__ ( self : str ): lowercase__ = "cpu" # ensure determinism for the device-dependent torch.Generator lowercase__ = self.get_dummy_components() lowercase__ = StableUnCLIPImgaImgPipeline(**__lowercase ) lowercase__ = sd_pipe.to(__lowercase ) sd_pipe.set_progress_bar_config(disable=__lowercase ) lowercase__ = self.get_dummy_inputs(__lowercase ) inputs.update({"image_embeds": None} ) lowercase__ = sd_pipe(**__lowercase ).images lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowercase__ = np.array([0.3872, 0.7224, 0.5601, 0.4741, 0.6872, 0.5814, 0.4636, 0.3867, 0.5078] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def A__ ( self : List[str] ): lowercase__ = torch_device in ["cpu", "mps"] self._test_attention_slicing_forward_pass(test_max_difference=__lowercase ) def A__ ( self : Optional[Any] ): lowercase__ = torch_device in ["cpu", "mps"] self._test_inference_batch_single_identical(test_max_difference=__lowercase ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available(), reason="XFormers attention is only available with CUDA and `xformers` installed", ) def A__ ( self : Dict ): self._test_xformers_attention_forwardGenerator_pass(test_max_difference=__lowercase ) @slow @require_torch_gpu class _snake_case ( unittest.TestCase): def A__ ( self : str ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self : List[Any] ): lowercase__ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) lowercase__ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy" ) lowercase__ = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-l-img2img", torch_dtype=torch.floataa ) pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowercase__ = torch.Generator(device="cpu" ).manual_seed(0 ) lowercase__ = pipe(__lowercase, "anime turle", generator=__lowercase, output_type="np" ) lowercase__ = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(__lowercase, __lowercase ) def A__ ( self : Any ): lowercase__ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) lowercase__ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy" ) lowercase__ = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-h-img2img", torch_dtype=torch.floataa ) pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowercase__ = torch.Generator(device="cpu" ).manual_seed(0 ) lowercase__ = pipe(__lowercase, "anime turle", generator=__lowercase, output_type="np" ) lowercase__ = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(__lowercase, __lowercase ) def A__ ( self : Optional[int] ): lowercase__ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowercase__ = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-h-img2img", torch_dtype=torch.floataa ) lowercase__ = pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowercase__ = pipe( __lowercase, "anime turtle", num_inference_steps=2, output_type="np", ) lowercase__ = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
413
0
'''simple docstring''' import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> int: UpperCAmelCase__ : List[Any] = 1.5 UpperCAmelCase__ : str = int(factor * num_class_images ) UpperCAmelCase__ : List[Any] = ClipClient( url='''https://knn.laion.ai/knn-service''' , indice_name='''laion_400m''' , num_images=lowerCAmelCase__ , aesthetic_weight=0.1 ) os.makedirs(F"""{class_data_dir}/images""" , exist_ok=lowerCAmelCase__ ) if len(list(Path(F"""{class_data_dir}/images""" ).iterdir() ) ) >= num_class_images: return while True: UpperCAmelCase__ : str = client.query(text=lowerCAmelCase__ ) if len(lowerCAmelCase__ ) >= factor * num_class_images or num_images > 1E4: break else: UpperCAmelCase__ : Tuple = int(factor * num_images ) UpperCAmelCase__ : Optional[Any] = ClipClient( url='''https://knn.laion.ai/knn-service''' , indice_name='''laion_400m''' , num_images=lowerCAmelCase__ , aesthetic_weight=0.1 , ) UpperCAmelCase__ : Any = 0 UpperCAmelCase__ : List[str] = 0 UpperCAmelCase__ : Tuple = tqdm(desc='''downloading real regularization images''' , total=lowerCAmelCase__ ) with open(F"""{class_data_dir}/caption.txt""" , '''w''' ) as fa, open(F"""{class_data_dir}/urls.txt""" , '''w''' ) as fa, open( F"""{class_data_dir}/images.txt""" , '''w''' ) as fa: while total < num_class_images: UpperCAmelCase__ : List[Any] = class_images[count] count += 1 try: UpperCAmelCase__ : Dict = requests.get(images['''url'''] ) if img.status_code == 2_00: UpperCAmelCase__ : str = Image.open(BytesIO(img.content ) ) with open(F"""{class_data_dir}/images/{total}.jpg""" , '''wb''' ) as f: f.write(img.content ) fa.write(images['''caption'''] + '''\n''' ) fa.write(images['''url'''] + '''\n''' ) fa.write(F"""{class_data_dir}/images/{total}.jpg""" + '''\n''' ) total += 1 pbar.update(1 ) else: continue except Exception: continue return def a__ ( ) -> str: UpperCAmelCase__ : Optional[int] = argparse.ArgumentParser('''''' , add_help=lowerCAmelCase__ ) parser.add_argument('''--class_prompt''' , help='''text prompt to retrieve images''' , required=lowerCAmelCase__ , type=lowerCAmelCase__ ) parser.add_argument('''--class_data_dir''' , help='''path to save images''' , required=lowerCAmelCase__ , type=lowerCAmelCase__ ) parser.add_argument('''--num_class_images''' , help='''number of images to download''' , default=2_00 , type=lowerCAmelCase__ ) return parser.parse_args() if __name__ == "__main__": UpperCamelCase__ = parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
312
'''simple docstring''' def a__ ( lowerCAmelCase__ ) -> bool: UpperCAmelCase__ : List[Any] = n ** (1 / 3) return (val * val * val) == n if __name__ == "__main__": print(perfect_cube(2_7)) print(perfect_cube(4))
312
1
def __lowercase ( lowerCamelCase : int ): if num <= 0: raise ValueError('Input must be a positive integer' ) UpperCamelCase_ : int = [True] * (num + 1) UpperCamelCase_ : str = 2 while p * p <= num: if primes[p]: for i in range(p * p , num + 1 , lowerCamelCase_ ): UpperCamelCase_ : Optional[int] = False p += 1 return [prime for prime in range(2 , num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() a_ = int(input('Enter a positive integer: ').strip()) print(prime_sieve_eratosthenes(user_num))
417
'''simple docstring''' import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm __magic_name__ : Dict =re.compile('[^A-Za-z_0-9]') # parameters used in DuplicationIndex __magic_name__ : int =10 __magic_name__ : Union[str, Any] =2_56 def __snake_case ( lowerCamelCase_ : List[str] ): '''simple docstring''' if len(lowerCamelCase_ ) < MIN_NUM_TOKENS: return None __magic_name__ = MinHash(num_perm=lowerCamelCase_ ) for token in set(lowerCamelCase_ ): min_hash.update(token.encode() ) return min_hash def __snake_case ( lowerCamelCase_ : str ): '''simple docstring''' return {t for t in NON_ALPHA.split(lowerCamelCase_ ) if len(t.strip() ) > 0} class UpperCamelCase_ : """simple docstring""" def __init__( self : int , *, _lowerCamelCase : float = 0.85 , ) -> Optional[Any]: __magic_name__ = duplication_jaccard_threshold __magic_name__ = NUM_PERM __magic_name__ = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) __magic_name__ = defaultdict(_lowerCamelCase ) def __A ( self : List[Any] , _lowerCamelCase : Tuple , _lowerCamelCase : MinHash ) -> None: __magic_name__ = self._index.query(_lowerCamelCase ) if code_key in self._index.keys: print(f'Duplicate key {code_key}' ) return self._index.insert(_lowerCamelCase , _lowerCamelCase ) if len(_lowerCamelCase ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(_lowerCamelCase ) break else: self._duplicate_clusters[close_duplicates[0]].add(_lowerCamelCase ) def __A ( self : Union[str, Any] ) -> List[List[Dict]]: __magic_name__ = [] for base, duplicates in self._duplicate_clusters.items(): __magic_name__ = [base] + list(_lowerCamelCase ) # reformat the cluster to be a list of dict __magic_name__ = [{"base_index": el[0], "repo_name": el[1], "path": el[2]} for el in cluster] duplicate_clusters.append(_lowerCamelCase ) return duplicate_clusters def __A ( self : Tuple , _lowerCamelCase : Tuple ) -> None: __magic_name__ = self.get_duplicate_clusters() with open(_lowerCamelCase , "w" ) as f: json.dump(_lowerCamelCase , _lowerCamelCase ) def __snake_case ( lowerCamelCase_ : List[Any] ): '''simple docstring''' __magic_name__ , __magic_name__ = element __magic_name__ = get_min_hash([t for t in NON_ALPHA.split(data["content"] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def __snake_case ( lowerCamelCase_ : Type[Dataset] ): '''simple docstring''' with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(lowerCamelCase_ , max_queue_size=1_0000 ) , chunksize=100 , ): if data is not None: yield data def __snake_case ( lowerCamelCase_ : Type[Dataset] , lowerCamelCase_ : float ): '''simple docstring''' __magic_name__ = DuplicationIndex(duplication_jaccard_threshold=lowerCamelCase_ ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(lowerCamelCase_ ) ) , max_queue_size=100 ) ): di.add(lowerCamelCase_ , lowerCamelCase_ ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def __snake_case ( lowerCamelCase_ : str , lowerCamelCase_ : str ): '''simple docstring''' __magic_name__ = get_tokens(lowerCamelCase_ ) __magic_name__ = get_tokens(lowerCamelCase_ ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) __magic_name__ : List[str] =None def __snake_case ( lowerCamelCase_ : Dict , lowerCamelCase_ : List[Any] ): '''simple docstring''' __magic_name__ = [] for elementa in cluster: __magic_name__ = _shared_dataset[elementa["base_index"]]["content"] for elementa in extremes: __magic_name__ = _shared_dataset[elementa["base_index"]]["content"] if jaccard_similarity(lowerCamelCase_ , lowerCamelCase_ ) >= jaccard_threshold: elementa["copies"] += 1 break else: __magic_name__ = 1 extremes.append(lowerCamelCase_ ) return extremes def __snake_case ( lowerCamelCase_ : Dict , lowerCamelCase_ : Any , lowerCamelCase_ : Union[str, Any] ): '''simple docstring''' global _shared_dataset __magic_name__ = dataset __magic_name__ = [] __magic_name__ = partial(_find_cluster_extremes_shared , jaccard_threshold=lowerCamelCase_ ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( lowerCamelCase_ , lowerCamelCase_ , ) , total=len(lowerCamelCase_ ) , ): extremes_list.append(lowerCamelCase_ ) return extremes_list def __snake_case ( lowerCamelCase_ : Type[Dataset] , lowerCamelCase_ : float = 0.85 ): '''simple docstring''' __magic_name__ = make_duplicate_clusters(lowerCamelCase_ , lowerCamelCase_ ) __magic_name__ = {x["base_index"] for cluster in duplicate_clusters for x in cluster} __magic_name__ = {} __magic_name__ = find_extremes(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) for extremes in extremes_clusters: for element in extremes: __magic_name__ = element __magic_name__ = duplicate_indices - set(extreme_dict.keys() ) __magic_name__ = dataset.filter(lambda lowerCamelCase_ , lowerCamelCase_ : idx not in remove_indices , with_indices=lowerCamelCase_ ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: __magic_name__ = element["base_index"] in extreme_dict if element["is_extreme"]: __magic_name__ = extreme_dict[element["base_index"]]["copies"] print(F'Original dataset size: {len(lowerCamelCase_ )}' ) print(F'Number of duplicate clusters: {len(lowerCamelCase_ )}' ) print(F'Files in duplicate cluster: {len(lowerCamelCase_ )}' ) print(F'Unique files in duplicate cluster: {len(lowerCamelCase_ )}' ) print(F'Filtered dataset size: {len(lowerCamelCase_ )}' ) return ds_filter, duplicate_clusters
664
0
'''simple docstring''' import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate lowerCAmelCase : str = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow('''''', '''|''', '''|'''), datarow=DataRow('''''', '''|''', '''|'''), padding=1, with_header_hide=None, ) lowerCAmelCase : Optional[int] = [] lowerCAmelCase : str = [] lowerCAmelCase : str = {'''type''': '''section''', '''text''': {'''type''': '''plain_text''', '''text''': '''No failed tests! 🤗''', '''emoji''': True}} lowerCAmelCase : List[Any] = [ { '''type''': '''header''', '''text''': { '''type''': '''plain_text''', '''text''': f'🤗 Accelerate nightly {os.environ.get("TEST_TYPE", "")} test results', '''emoji''': True, }, } ] lowerCAmelCase : Dict = 0 for log in Path().glob('''*.log'''): lowerCAmelCase : List[Any] = 0 with open(log, '''r''') as f: for line in f: lowerCAmelCase : List[str] = json.loads(line) if line.get('''nodeid''', '''''') != "": lowerCAmelCase : List[Any] = line['''nodeid'''] if line.get('''duration''', None) is not None: lowerCAmelCase : str = f'{line["duration"]:.4f}' if line.get('''outcome''', '''''') == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split('''_''')[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) lowerCAmelCase : Dict = [] log.unlink() lowerCAmelCase : Optional[int] = '''''' lowerCAmelCase : Optional[Any] = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += f"*{name[1:]}: {num_failed} failed test*\n" else: message += f"*{name[1:]}: {num_failed} failed tests*\n" lowerCAmelCase : Any = [] lowerCAmelCase : str = {} for test in failed_tests: lowerCAmelCase : Optional[int] = test[0].split('''::''') lowerCAmelCase : Optional[Any] = data[0].split('''/''')[-1] if data[0] not in filesafailed: lowerCAmelCase : List[str] = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) lowerCAmelCase : Optional[Any] = [test[0] for test in failed_table] lowerCAmelCase : str = list(set(files)) # Count number of instances in failed_tests lowerCAmelCase : Tuple = [] for file in individual_files: table.append([file, len(filesafailed[file])]) lowerCAmelCase : List[str] = tabulate( table, headers=['''Test Location''', '''Num Failed'''], tablefmt=hf_table_format, stralign='''right''', ) message += f"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3_0_0_0: lowerCAmelCase : List[Any] = '''Too many failed tests, please see the full report in the Action results.''' lowerCAmelCase : Tuple = len(err) + 1_0 lowerCAmelCase : List[Any] = message[: 3_0_0_0 - offset] + f'\n...\n```\n{err}' print(f'### {message}') else: lowerCAmelCase : List[Any] = '''No failed tests! 🤗''' print(f'## {message}') payload.append(no_error_payload) if os.environ.get('''TEST_TYPE''', '''''') != "": from slack_sdk import WebClient lowerCAmelCase : List[str] = WebClient(token=os.environ['''SLACK_API_TOKEN''']) if message != "No failed tests! 🤗": lowerCAmelCase : int = { '''type''': '''section''', '''text''': { '''type''': '''mrkdwn''', '''text''': message, }, } payload.append(md_report) lowerCAmelCase : List[Any] = { '''type''': '''section''', '''text''': { '''type''': '''mrkdwn''', '''text''': '''*For more details:*''', }, '''accessory''': { '''type''': '''button''', '''text''': { '''type''': '''plain_text''', '''text''': '''Check Action results''', '''emoji''': True, }, '''url''': f'https://github.com/{os.environ["GITHUB_REPOSITORY"]}/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } payload.append(action_button) lowerCAmelCase : str = { '''type''': '''context''', '''elements''': [ { '''type''': '''plain_text''', '''text''': f'Nightly {os.environ.get("TEST_TYPE")} test results for {date.today()}', } ], } payload.append(date_report) lowerCAmelCase : Optional[Any] = client.chat_postMessage(channel='''#accelerate-ci-daily''', text=message, blocks=payload) lowerCAmelCase : Union[str, Any] = response.data['''ts'''] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name lowerCAmelCase : Optional[int] = '''''' for i, row in enumerate(test_failures): if row[0] != test_class: lowerCAmelCase : Union[str, Any] = row[0] else: lowerCAmelCase : Tuple = '''''' lowerCAmelCase : Tuple = { '''type''': '''section''', '''text''': { '''type''': '''mrkdwn''', '''text''': f'Test location: {test_location}\n```\n{tabulate(test_failures, headers=["Class", "Test"], tablefmt=hf_table_format, stralign="right")}\n```', }, } client.chat_postMessage( channel='''#accelerate-ci-daily''', thread_ts=ts, blocks=[payload], )
718
'''simple docstring''' import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def __lowerCAmelCase ( lowerCamelCase : bytes , lowerCamelCase : int ): '''simple docstring''' __lowerCAmelCase = f'''{sampling_rate}''' __lowerCAmelCase = "1" __lowerCAmelCase = "f32le" __lowerCAmelCase = [ "ffmpeg", "-i", "pipe:0", "-ac", ac, "-ar", ar, "-f", format_for_conversion, "-hide_banner", "-loglevel", "quiet", "pipe:1", ] try: with subprocess.Popen(lowerCamelCase , stdin=subprocess.PIPE , stdout=subprocess.PIPE ) as ffmpeg_process: __lowerCAmelCase = ffmpeg_process.communicate(lowerCamelCase ) except FileNotFoundError as error: raise ValueError("ffmpeg was not found but is required to load audio files from filename" ) from error __lowerCAmelCase = output_stream[0] __lowerCAmelCase = np.frombuffer(lowerCamelCase , np.floataa ) if audio.shape[0] == 0: raise ValueError("Malformed soundfile" ) return audio def __lowerCAmelCase ( lowerCamelCase : int , lowerCamelCase : float , lowerCamelCase : str = "f32le" , ): '''simple docstring''' __lowerCAmelCase = f'''{sampling_rate}''' __lowerCAmelCase = "1" if format_for_conversion == "s16le": __lowerCAmelCase = 2 elif format_for_conversion == "f32le": __lowerCAmelCase = 4 else: raise ValueError(f'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' ) __lowerCAmelCase = platform.system() if system == "Linux": __lowerCAmelCase = "alsa" __lowerCAmelCase = "default" elif system == "Darwin": __lowerCAmelCase = "avfoundation" __lowerCAmelCase = ":0" elif system == "Windows": __lowerCAmelCase = "dshow" __lowerCAmelCase = "default" __lowerCAmelCase = [ "ffmpeg", "-f", format_, "-i", input_, "-ac", ac, "-ar", ar, "-f", format_for_conversion, "-fflags", "nobuffer", "-hide_banner", "-loglevel", "quiet", "pipe:1", ] __lowerCAmelCase = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample __lowerCAmelCase = _ffmpeg_stream(lowerCamelCase , lowerCamelCase ) for item in iterator: yield item def __lowerCAmelCase ( lowerCamelCase : int , lowerCamelCase : float , lowerCamelCase : Optional[int] = None , lowerCamelCase : Optional[Union[Tuple[float, float], float]] = None , lowerCamelCase : str = "f32le" , ): '''simple docstring''' if stream_chunk_s is not None: __lowerCAmelCase = stream_chunk_s else: __lowerCAmelCase = chunk_length_s __lowerCAmelCase = ffmpeg_microphone(lowerCamelCase , lowerCamelCase , format_for_conversion=lowerCamelCase ) if format_for_conversion == "s16le": __lowerCAmelCase = np.intaa __lowerCAmelCase = 2 elif format_for_conversion == "f32le": __lowerCAmelCase = np.floataa __lowerCAmelCase = 4 else: raise ValueError(f'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' ) if stride_length_s is None: __lowerCAmelCase = chunk_length_s / 6 __lowerCAmelCase = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(lowerCamelCase , (int, float) ): __lowerCAmelCase = [stride_length_s, stride_length_s] __lowerCAmelCase = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample __lowerCAmelCase = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample __lowerCAmelCase = datetime.datetime.now() __lowerCAmelCase = datetime.timedelta(seconds=lowerCamelCase ) for item in chunk_bytes_iter(lowerCamelCase , lowerCamelCase , stride=(stride_left, stride_right) , stream=lowerCamelCase ): # Put everything back in numpy scale __lowerCAmelCase = np.frombuffer(item["raw"] , dtype=lowerCamelCase ) __lowerCAmelCase = ( item["stride"][0] // size_of_sample, item["stride"][1] // size_of_sample, ) __lowerCAmelCase = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 10 * delta: # We're late !! SKIP continue yield item def __lowerCAmelCase ( lowerCamelCase : Optional[Any] , lowerCamelCase : int , lowerCamelCase : Tuple[int, int] , lowerCamelCase : bool = False ): '''simple docstring''' __lowerCAmelCase = B"" __lowerCAmelCase , __lowerCAmelCase = stride if stride_left + stride_right >= chunk_len: raise ValueError( f'''Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}''' ) __lowerCAmelCase = 0 for raw in iterator: acc += raw if stream and len(lowerCamelCase ) < chunk_len: __lowerCAmelCase = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(lowerCamelCase ) >= chunk_len: # We are flushing the accumulator __lowerCAmelCase = (_stride_left, stride_right) __lowerCAmelCase = {"raw": acc[:chunk_len], "stride": stride} if stream: __lowerCAmelCase = False yield item __lowerCAmelCase = stride_left __lowerCAmelCase = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(lowerCamelCase ) > stride_left: __lowerCAmelCase = {"raw": acc, "stride": (_stride_left, 0)} if stream: __lowerCAmelCase = False yield item def __lowerCAmelCase ( lowerCamelCase : Optional[int] , lowerCamelCase : int ): '''simple docstring''' __lowerCAmelCase = 2**24 # 16Mo try: with subprocess.Popen(lowerCamelCase , stdout=subprocess.PIPE , bufsize=lowerCamelCase ) as ffmpeg_process: while True: __lowerCAmelCase = ffmpeg_process.stdout.read(lowerCamelCase ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError("ffmpeg was not found but is required to stream audio files from filename" ) from error
39
0
from queue import PriorityQueue from typing import Any import numpy as np def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ): for nxt, d in graph[v]: if nxt in visited_forward: continue snake_case_ = cst_fwd.get(SCREAMING_SNAKE_CASE__ , np.inf ) snake_case_ = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) snake_case_ = new_cost_f snake_case_ = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: snake_case_ = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = -1 snake_case_ = set() snake_case_ = set() snake_case_ = {source: 0} snake_case_ = {destination: 0} snake_case_ = {source: None} snake_case_ = {destination: None} snake_case_ = PriorityQueue() snake_case_ = PriorityQueue() snake_case_ = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): snake_case_, snake_case_ = queue_forward.get() visited_forward.add(SCREAMING_SNAKE_CASE__ ) snake_case_, snake_case_ = queue_backward.get() visited_backward.add(SCREAMING_SNAKE_CASE__ ) snake_case_ = pass_and_relaxation( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) snake_case_ = pass_and_relaxation( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: snake_case_ = shortest_distance return shortest_path_distance lowerCAmelCase_ = { '''B''': [['''C''', 1]], '''C''': [['''D''', 1]], '''D''': [['''F''', 1]], '''E''': [['''B''', 1], ['''G''', 2]], '''F''': [], '''G''': [['''F''', 1]], } lowerCAmelCase_ = { '''B''': [['''E''', 1]], '''C''': [['''B''', 1]], '''D''': [['''C''', 1]], '''F''': [['''D''', 1], ['''G''', 1]], '''E''': [[None, np.inf]], '''G''': [['''E''', 2]], } if __name__ == "__main__": import doctest doctest.testmod()
39
import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 lowerCAmelCase_ = sys.version_info >= (3, 10) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None ): return field(default_factory=lambda: default , metadata=SCREAMING_SNAKE_CASE__ ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : int SCREAMING_SNAKE_CASE : float SCREAMING_SNAKE_CASE : str SCREAMING_SNAKE_CASE : bool @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : int = 42 SCREAMING_SNAKE_CASE : str = field(default="toto" , metadata={"help": "help message"} ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : bool = False SCREAMING_SNAKE_CASE : bool = True SCREAMING_SNAKE_CASE : Optional[bool] = None class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = "titi" SCREAMING_SNAKE_CASE : Any = "toto" class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = "titi" SCREAMING_SNAKE_CASE : Optional[Any] = "toto" SCREAMING_SNAKE_CASE : Any = 42 @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : BasicEnum = "toto" def snake_case__( self : Tuple ) ->List[str]: snake_case_ = BasicEnum(self.foo ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : MixedTypeEnum = "toto" def snake_case__( self : Union[str, Any] ) ->Dict: snake_case_ = MixedTypeEnum(self.foo ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : Optional[float] = field(default=__A , metadata={"help": "help message"} ) SCREAMING_SNAKE_CASE : Optional[str] = None SCREAMING_SNAKE_CASE : Optional[List[str]] = list_field(default=[] ) SCREAMING_SNAKE_CASE : Optional[List[int]] = list_field(default=[] ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : List[int] = list_field(default=[] ) SCREAMING_SNAKE_CASE : List[int] = list_field(default=[1, 2, 3] ) SCREAMING_SNAKE_CASE : List[str] = list_field(default=["Hallo", "Bonjour", "Hello"] ) SCREAMING_SNAKE_CASE : List[float] = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : List[int] = field() SCREAMING_SNAKE_CASE : str = field() SCREAMING_SNAKE_CASE : BasicEnum = field() def snake_case__( self : Optional[Any] ) ->Tuple: snake_case_ = BasicEnum(self.required_enum ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : int SCREAMING_SNAKE_CASE : "BasicEnum" = field() SCREAMING_SNAKE_CASE : "Optional[bool]" = None SCREAMING_SNAKE_CASE : "str" = field(default="toto" , metadata={"help": "help message"} ) SCREAMING_SNAKE_CASE : "List[str]" = list_field(default=["Hallo", "Bonjour", "Hello"] ) if is_python_no_less_than_3_10: @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : bool = False SCREAMING_SNAKE_CASE : bool = True SCREAMING_SNAKE_CASE : bool | None = None @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : int | None = None SCREAMING_SNAKE_CASE : float | None = field(default=__A , metadata={"help": "help message"} ) SCREAMING_SNAKE_CASE : str | None = None SCREAMING_SNAKE_CASE : list[str] | None = list_field(default=[] ) SCREAMING_SNAKE_CASE : list[int] | None = list_field(default=[] ) class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : Dict , _UpperCamelCase : argparse.ArgumentParser , _UpperCamelCase : argparse.ArgumentParser ) ->str: self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): snake_case_ = {k: v for k, v in vars(_UpperCamelCase ).items() if k != '''container'''} snake_case_ = {k: v for k, v in vars(_UpperCamelCase ).items() if k != '''container'''} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get('''choices''' , _UpperCamelCase ) and yy.get('''choices''' , _UpperCamelCase ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx['''type'''](_UpperCamelCase ) , yy['''type'''](_UpperCamelCase ) ) del xx["type"], yy["type"] self.assertEqual(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : Optional[Any] ) ->Dict: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=_UpperCamelCase , required=_UpperCamelCase ) expected.add_argument('''--bar''' , type=_UpperCamelCase , required=_UpperCamelCase ) expected.add_argument('''--baz''' , type=_UpperCamelCase , required=_UpperCamelCase ) expected.add_argument('''--flag''' , type=_UpperCamelCase , default=_UpperCamelCase , const=_UpperCamelCase , nargs='''?''' ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) snake_case_ = ['''--foo''', '''1''', '''--baz''', '''quux''', '''--bar''', '''0.5'''] ((snake_case_), ) = parser.parse_args_into_dataclasses(_UpperCamelCase , look_for_args_file=_UpperCamelCase ) self.assertFalse(example.flag ) def snake_case__( self : Tuple ) ->Optional[int]: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=4_2 , type=_UpperCamelCase ) expected.add_argument('''--baz''' , default='''toto''' , type=_UpperCamelCase , help='''help message''' ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : Tuple ) ->Tuple: snake_case_ = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=_UpperCamelCase , default=_UpperCamelCase , const=_UpperCamelCase , nargs='''?''' ) expected.add_argument('''--baz''' , type=_UpperCamelCase , default=_UpperCamelCase , const=_UpperCamelCase , nargs='''?''' ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument('''--no_baz''' , action='''store_false''' , default=_UpperCamelCase , dest='''baz''' ) expected.add_argument('''--opt''' , type=_UpperCamelCase , default=_UpperCamelCase ) snake_case_ = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(_UpperCamelCase ) for dataclass_type in dataclass_types: snake_case_ = HfArgumentParser(_UpperCamelCase ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) snake_case_ = parser.parse_args([] ) self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase ) ) snake_case_ = parser.parse_args(['''--foo''', '''--no_baz'''] ) self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase ) ) snake_case_ = parser.parse_args(['''--foo''', '''--baz'''] ) self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase ) ) snake_case_ = parser.parse_args(['''--foo''', '''True''', '''--baz''', '''True''', '''--opt''', '''True'''] ) self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase ) ) snake_case_ = parser.parse_args(['''--foo''', '''False''', '''--baz''', '''False''', '''--opt''', '''False'''] ) self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase ) ) def snake_case__( self : Tuple ) ->Tuple: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=['''titi''', '''toto''', 4_2] , type=make_choice_type_function(['''titi''', '''toto''', 4_2] ) , ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) snake_case_ = parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) snake_case_ = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) snake_case_ = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) snake_case_ = parser.parse_args_into_dataclasses(['''--foo''', '''titi'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) snake_case_ = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 4_2 ) snake_case_ = parser.parse_args_into_dataclasses(['''--foo''', '''42'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def snake_case__( self : Tuple ) ->Union[str, Any]: @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : Literal["titi", "toto", 42] = "toto" snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=('''titi''', '''toto''', 4_2) , type=make_choice_type_function(['''titi''', '''toto''', 4_2] ) , ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) snake_case_ = parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) snake_case_ = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) snake_case_ = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 4_2 ) def snake_case__( self : List[str] ) ->int: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = argparse.ArgumentParser() expected.add_argument('''--foo_int''' , nargs='''+''' , default=[] , type=_UpperCamelCase ) expected.add_argument('''--bar_int''' , nargs='''+''' , default=[1, 2, 3] , type=_UpperCamelCase ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=_UpperCamelCase ) expected.add_argument('''--foo_float''' , nargs='''+''' , default=[0.1, 0.2, 0.3] , type=_UpperCamelCase ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) snake_case_ = parser.parse_args([] ) self.assertEqual( _UpperCamelCase , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=['''Hallo''', '''Bonjour''', '''Hello'''] , foo_float=[0.1, 0.2, 0.3] ) , ) snake_case_ = parser.parse_args('''--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7'''.split() ) self.assertEqual(_UpperCamelCase , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=['''a''', '''b''', '''c'''] , foo_float=[0.1, 0.7] ) ) def snake_case__( self : Optional[Any] ) ->List[Any]: snake_case_ = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=_UpperCamelCase , type=_UpperCamelCase ) expected.add_argument('''--bar''' , default=_UpperCamelCase , type=_UpperCamelCase , help='''help message''' ) expected.add_argument('''--baz''' , default=_UpperCamelCase , type=_UpperCamelCase ) expected.add_argument('''--ces''' , nargs='''+''' , default=[] , type=_UpperCamelCase ) expected.add_argument('''--des''' , nargs='''+''' , default=[] , type=_UpperCamelCase ) snake_case_ = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(_UpperCamelCase ) for dataclass_type in dataclass_types: snake_case_ = HfArgumentParser(_UpperCamelCase ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) snake_case_ = parser.parse_args([] ) self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , bar=_UpperCamelCase , baz=_UpperCamelCase , ces=[] , des=[] ) ) snake_case_ = parser.parse_args('''--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3'''.split() ) self.assertEqual(_UpperCamelCase , Namespace(foo=1_2 , bar=3.14 , baz='''42''' , ces=['''a''', '''b''', '''c'''] , des=[1, 2, 3] ) ) def snake_case__( self : Union[str, Any] ) ->Optional[int]: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = argparse.ArgumentParser() expected.add_argument('''--required_list''' , nargs='''+''' , type=_UpperCamelCase , required=_UpperCamelCase ) expected.add_argument('''--required_str''' , type=_UpperCamelCase , required=_UpperCamelCase ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=_UpperCamelCase , ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : List[str] ) ->int: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=_UpperCamelCase , required=_UpperCamelCase ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=_UpperCamelCase , ) expected.add_argument('''--opt''' , type=_UpperCamelCase , default=_UpperCamelCase ) expected.add_argument('''--baz''' , default='''toto''' , type=_UpperCamelCase , help='''help message''' ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=_UpperCamelCase ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : Dict ) ->Any: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = { '''foo''': 1_2, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } snake_case_ = parser.parse_dict(_UpperCamelCase )[0] snake_case_ = BasicExample(**_UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : int ) ->Dict: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = { '''foo''': 1_2, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, '''extra''': 4_2, } self.assertRaises(_UpperCamelCase , parser.parse_dict , _UpperCamelCase , allow_extra_keys=_UpperCamelCase ) def snake_case__( self : str ) ->Tuple: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = { '''foo''': 1_2, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: snake_case_ = os.path.join(_UpperCamelCase , '''temp_json''' ) os.mkdir(_UpperCamelCase ) with open(temp_local_path + '''.json''' , '''w+''' ) as f: json.dump(_UpperCamelCase , _UpperCamelCase ) snake_case_ = parser.parse_yaml_file(Path(temp_local_path + '''.json''' ) )[0] snake_case_ = BasicExample(**_UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : Optional[int] ) ->str: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = { '''foo''': 1_2, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: snake_case_ = os.path.join(_UpperCamelCase , '''temp_yaml''' ) os.mkdir(_UpperCamelCase ) with open(temp_local_path + '''.yaml''' , '''w+''' ) as f: yaml.dump(_UpperCamelCase , _UpperCamelCase ) snake_case_ = parser.parse_yaml_file(Path(temp_local_path + '''.yaml''' ) )[0] snake_case_ = BasicExample(**_UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : Any ) ->Any: snake_case_ = HfArgumentParser(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase )
39
1
from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def lowerCamelCase__ (): _SCREAMING_SNAKE_CASE : Tuple = [randint(-1000, 1000 ) for i in range(10 )] _SCREAMING_SNAKE_CASE : int = randint(-5000, 5000 ) return (arr, r) UpperCamelCase__ =make_dataset() def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase ): for triplet in permutations(__lowerCamelCase, 3 ): if sum(__lowerCamelCase ) == target: return tuple(sorted(__lowerCamelCase ) ) return (0, 0, 0) def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase ): arr.sort() _SCREAMING_SNAKE_CASE : List[str] = len(__lowerCamelCase ) for i in range(n - 1 ): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Optional[Any] = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def lowerCamelCase__ (): _SCREAMING_SNAKE_CASE : Optional[int] = "\nfrom __main__ import dataset, triplet_sum1, triplet_sum2\n" _SCREAMING_SNAKE_CASE : Dict = "\ntriplet_sum1(*dataset)\n" _SCREAMING_SNAKE_CASE : str = "\ntriplet_sum2(*dataset)\n" _SCREAMING_SNAKE_CASE : Optional[int] = repeat(setup=__lowerCamelCase, stmt=__lowerCamelCase, repeat=5, number=10000 ) _SCREAMING_SNAKE_CASE : Tuple = repeat(setup=__lowerCamelCase, stmt=__lowerCamelCase, repeat=5, number=10000 ) return (min(__lowerCamelCase ), min(__lowerCamelCase )) if __name__ == "__main__": from doctest import testmod testmod() UpperCamelCase__ =solution_times() print(f"The time for naive implementation is {times[0]}.") print(f"The time for optimized implementation is {times[1]}.")
381
from __future__ import annotations UpperCamelCase__ =[True] * 100_0001 UpperCamelCase__ =2 while i * i <= 100_0000: if seive[i]: for j in range(i * i, 100_0001, i): UpperCamelCase__ =False i += 1 def lowerCamelCase__ (__lowerCamelCase ): return seive[n] def lowerCamelCase__ (__lowerCamelCase ): return any(digit in "02468" for digit in str(__lowerCamelCase ) ) def lowerCamelCase__ (__lowerCamelCase = 1000000 ): _SCREAMING_SNAKE_CASE : Optional[Any] = [2] # result already includes the number 2. for num in range(3, limit + 1, 2 ): if is_prime(__lowerCamelCase ) and not contains_an_even_digit(__lowerCamelCase ): _SCREAMING_SNAKE_CASE : List[Any] = str(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = [int(str_num[j:] + str_num[:j] ) for j in range(len(__lowerCamelCase ) )] if all(is_prime(__lowerCamelCase ) for i in list_nums ): result.append(__lowerCamelCase ) return result def lowerCamelCase__ (): return len(find_circular_primes() ) if __name__ == "__main__": print(f"{len(find_circular_primes()) = }")
381
1
"""simple docstring""" import heapq as hq import math from collections.abc import Iterator class A_ : def __init__( self: Optional[Any] ,__lowerCAmelCase: Optional[Any] ): '''simple docstring''' _lowerCamelCase : Any = str(id_ ) _lowerCamelCase : Tuple = None _lowerCamelCase : str = None _lowerCamelCase : List[Any] = [] _lowerCamelCase : Union[str, Any] = {} # {vertex:distance} def __lt__( self: Optional[int] ,__lowerCAmelCase: List[str] ): '''simple docstring''' return self.key < other.key def __repr__( self: Optional[Any] ): '''simple docstring''' return self.id def _lowercase ( self: Any ,__lowerCAmelCase: List[Any] ): '''simple docstring''' self.neighbors.append(lowerCAmelCase_ ) def _lowercase ( self: List[str] ,__lowerCAmelCase: Tuple ,__lowerCAmelCase: List[Any] ): '''simple docstring''' _lowerCamelCase : Optional[int] = weight def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Dict: '''simple docstring''' graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , A_ ) graph[b - 1].add_edge(graph[a - 1] , A_ ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> List[Any]: '''simple docstring''' _lowerCamelCase : Optional[Any] = [] for u in graph: _lowerCamelCase : Any = math.inf _lowerCamelCase : List[Any] = None _lowerCamelCase : Optional[int] = 0 _lowerCamelCase : int = graph[:] while q: _lowerCamelCase : Any = min(A_ ) q.remove(A_ ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): _lowerCamelCase : Tuple = u _lowerCamelCase : List[Any] = u.edges[v.id] for i in range(1 , len(A_ ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Tuple: '''simple docstring''' for u in graph: _lowerCamelCase : Optional[Any] = math.inf _lowerCamelCase : Optional[int] = None _lowerCamelCase : Union[str, Any] = 0 _lowerCamelCase : List[Any] = list(A_ ) hq.heapify(A_ ) while h: _lowerCamelCase : Tuple = hq.heappop(A_ ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): _lowerCamelCase : str = u _lowerCamelCase : Union[str, Any] = u.edges[v.id] hq.heapify(A_ ) for i in range(1 , len(A_ ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def lowerCamelCase_( ) -> Any: '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
46
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self ): '''simple docstring''' a_ : int = tempfile.mkdtemp() # fmt: off a_ : str = ["""l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on a_ : Tuple = dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) a_ : Tuple = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>""", """"""] a_ : Tuple = {"""unk_token""": """<unk>"""} a_ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) a_ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowerCAmelCase_ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(lowerCAmelCase_ ) ) a_ : int = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.48145466, 0.4578275, 0.40821073], """image_std""": [0.26862954, 0.26130258, 0.27577711], } a_ : int = os.path.join(self.tmpdirname , lowerCAmelCase_ ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(lowerCAmelCase_ , lowerCAmelCase_ ) def _lowerCAmelCase ( self , **lowerCAmelCase_ ): '''simple docstring''' return CLIPTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def _lowerCAmelCase ( self , **lowerCAmelCase_ ): '''simple docstring''' return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def _lowerCAmelCase ( self , **lowerCAmelCase_ ): '''simple docstring''' return CLIPImageProcessor.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def _lowerCAmelCase ( self ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _lowerCAmelCase ( self ): '''simple docstring''' a_ : Any = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] a_ : Tuple = [Image.fromarray(np.moveaxis(lowerCAmelCase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def _lowerCAmelCase ( self ): '''simple docstring''' a_ : List[Any] = self.get_tokenizer() a_ : Any = self.get_rust_tokenizer() a_ : Any = self.get_image_processor() a_ : List[Any] = CLIPProcessor(tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ ) processor_slow.save_pretrained(self.tmpdirname ) a_ : Dict = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=lowerCAmelCase_ ) a_ : str = CLIPProcessor(tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ ) processor_fast.save_pretrained(self.tmpdirname ) a_ : List[Any] = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , lowerCAmelCase_ ) self.assertIsInstance(processor_fast.tokenizer , lowerCAmelCase_ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , lowerCAmelCase_ ) self.assertIsInstance(processor_fast.image_processor , lowerCAmelCase_ ) def _lowerCAmelCase ( self ): '''simple docstring''' a_ : Optional[Any] = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) a_ : Optional[int] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) a_ : Any = self.get_image_processor(do_normalize=lowerCAmelCase_ , padding_value=1.0 ) a_ : Union[str, Any] = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=lowerCAmelCase_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowerCAmelCase_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowerCAmelCase_ ) def _lowerCAmelCase ( self ): '''simple docstring''' a_ : Any = self.get_image_processor() a_ : List[str] = self.get_tokenizer() a_ : str = CLIPProcessor(tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ ) a_ : List[str] = self.prepare_image_inputs() a_ : Dict = image_processor(lowerCAmelCase_ , return_tensors="""np""" ) a_ : List[Any] = processor(images=lowerCAmelCase_ , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _lowerCAmelCase ( self ): '''simple docstring''' a_ : Optional[int] = self.get_image_processor() a_ : List[Any] = self.get_tokenizer() a_ : str = CLIPProcessor(tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ ) a_ : Optional[Any] = """lower newer""" a_ : List[str] = processor(text=lowerCAmelCase_ ) a_ : Union[str, Any] = tokenizer(lowerCAmelCase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _lowerCAmelCase ( self ): '''simple docstring''' a_ : Tuple = self.get_image_processor() a_ : Union[str, Any] = self.get_tokenizer() a_ : Optional[Any] = CLIPProcessor(tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ ) a_ : Dict = """lower newer""" a_ : Optional[int] = self.prepare_image_inputs() a_ : str = processor(text=lowerCAmelCase_ , images=lowerCAmelCase_ ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(lowerCAmelCase_ ): processor() def _lowerCAmelCase ( self ): '''simple docstring''' a_ : Optional[Any] = self.get_image_processor() a_ : str = self.get_tokenizer() a_ : Union[str, Any] = CLIPProcessor(tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ ) a_ : int = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] a_ : int = processor.batch_decode(lowerCAmelCase_ ) a_ : int = tokenizer.batch_decode(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def _lowerCAmelCase ( self ): '''simple docstring''' a_ : Optional[int] = self.get_image_processor() a_ : List[str] = self.get_tokenizer() a_ : int = CLIPProcessor(tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ ) a_ : Dict = """lower newer""" a_ : Optional[Any] = self.prepare_image_inputs() a_ : Any = processor(text=lowerCAmelCase_ , images=lowerCAmelCase_ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
577
0
import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params _UpperCamelCase = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ["memory_attention", "encoder_attn"], ["attention", "attn"], ["/", "."], [".LayerNorm.gamma", "_layer_norm.weight"], [".LayerNorm.beta", "_layer_norm.bias"], ["r.layer_", "r.layers."], ["output_proj", "out_proj"], ["ffn.dense_1.", "fc2."], ["ffn.dense.", "fc1."], ["ffn_layer_norm", "final_layer_norm"], ["kernel", "weight"], ["encoder_layer_norm.", "encoder.layer_norm."], ["decoder_layer_norm.", "decoder.layer_norm."], ["embeddings.weights", "shared.weight"], ] def _lowercase ( lowercase__ ): for pegasus_name, hf_name in PATTERNS: __lowerCAmelCase : Dict = k.replace(lowercase__ , lowercase__ ) return k def _lowercase ( lowercase__ , lowercase__ ): __lowerCAmelCase : Tuple = DEFAULTS.copy() cfg_kwargs.update(lowercase__ ) __lowerCAmelCase : List[Any] = PegasusConfig(**lowercase__ ) __lowerCAmelCase : Union[str, Any] = PegasusForConditionalGeneration(lowercase__ ) __lowerCAmelCase : List[str] = torch_model.model.state_dict() __lowerCAmelCase : Union[str, Any] = {} for k, v in tf_weights.items(): __lowerCAmelCase : int = rename_state_dict_key(lowercase__ ) if new_k not in sd: raise ValueError(f"""could not find new key {new_k} in state dict. (converted from {k})""" ) if "dense" in k or "proj" in new_k: __lowerCAmelCase : List[str] = v.T __lowerCAmelCase : List[str] = torch.tensor(lowercase__ , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, f"""{new_k}, {k}, {v.shape}, {sd[new_k].shape}""" # make sure embedding.padding_idx is respected __lowerCAmelCase : Dict = torch.zeros_like(mapping['''shared.weight'''][cfg.pad_token_id + 1] ) __lowerCAmelCase : Tuple = mapping['''shared.weight'''] __lowerCAmelCase : List[str] = mapping['''shared.weight'''] __lowerCAmelCase : Union[str, Any] = {k: torch.zeros_like(lowercase__ ) for k, v in sd.items() if k.endswith('''bias''' ) and k not in mapping} mapping.update(**lowercase__ ) __lowerCAmelCase, __lowerCAmelCase : List[str] = torch_model.model.load_state_dict(lowercase__ , strict=lowercase__ ) __lowerCAmelCase : Dict = [ k for k in missing if k not in ['''encoder.embed_positions.weight''', '''decoder.embed_positions.weight'''] ] assert unexpected_missing == [], f"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], f"""no matches found for the following tf keys {extra}""" return torch_model def _lowercase ( lowercase__="./ckpt/aeslc/model.ckpt-32000" ): __lowerCAmelCase : Dict = tf.train.list_variables(lowercase__ ) __lowerCAmelCase : Dict = {} __lowerCAmelCase : List[Any] = ['''Adafactor''', '''global_step'''] for name, shape in tqdm(lowercase__ , desc='''converting tf checkpoint to dict''' ): __lowerCAmelCase : Optional[int] = any(pat in name for pat in ignore_name ) if skip_key: continue __lowerCAmelCase : List[Any] = tf.train.load_variable(lowercase__ , lowercase__ ) __lowerCAmelCase : int = array return tf_weights def _lowercase ( lowercase__ , lowercase__ ): # save tokenizer first __lowerCAmelCase : Union[str, Any] = Path(lowercase__ ).parent.name __lowerCAmelCase : Optional[Any] = task_specific_params[f"""summarization_{dataset}"""]['''max_position_embeddings'''] __lowerCAmelCase : List[str] = PegasusTokenizer.from_pretrained('''sshleifer/pegasus''' , model_max_length=lowercase__ ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(lowercase__ ) # convert model __lowerCAmelCase : List[Any] = get_tf_weights_as_numpy(lowercase__ ) __lowerCAmelCase : int = task_specific_params[f"""summarization_{dataset}"""] if dataset == "large": __lowerCAmelCase : str = task_specific_params __lowerCAmelCase : Dict = convert_pegasus(lowercase__ , lowercase__ ) torch_model.save_pretrained(lowercase__ ) __lowerCAmelCase : Union[str, Any] = torch_model.state_dict() sd.pop('''model.decoder.embed_positions.weight''' ) sd.pop('''model.encoder.embed_positions.weight''' ) torch.save(lowercase__ , Path(lowercase__ ) / '''pytorch_model.bin''' ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument("tf_ckpt_path", type=str, help="passed to tf.train.list_variables") parser.add_argument("save_dir", default=None, type=str, help="Path to the output PyTorch model.") _UpperCamelCase = parser.parse_args() if args.save_dir is None: _UpperCamelCase = Path(args.tf_ckpt_path).parent.name _UpperCamelCase = os.path.join("pegasus", dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
583
import os import unittest from transformers import FunnelTokenizer, FunnelTokenizerFast from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowercase (_UpperCAmelCase , unittest.TestCase ): _UpperCamelCase = FunnelTokenizer _UpperCamelCase = FunnelTokenizerFast _UpperCamelCase = True _UpperCamelCase = True def UpperCamelCase__ ( self ) ->Any: '''simple docstring''' super().setUp() __lowerCAmelCase : Optional[Any] = [ '''<unk>''', '''<cls>''', '''<sep>''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] __lowerCAmelCase : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def UpperCamelCase__ ( self , **A_ ) ->str: '''simple docstring''' return FunnelTokenizer.from_pretrained(self.tmpdirname , **A_ ) def UpperCamelCase__ ( self , **A_ ) ->Optional[int]: '''simple docstring''' return FunnelTokenizerFast.from_pretrained(self.tmpdirname , **A_ ) def UpperCamelCase__ ( self , A_ ) ->List[str]: '''simple docstring''' __lowerCAmelCase : Optional[Any] = '''UNwant\u00E9d,running''' __lowerCAmelCase : Optional[Any] = '''unwanted, running''' return input_text, output_text def UpperCamelCase__ ( self ) ->str: '''simple docstring''' __lowerCAmelCase : int = self.tokenizer_class(self.vocab_file ) __lowerCAmelCase : List[Any] = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(A_ , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A_ ) , [7, 4, 5, 10, 8, 9] ) def UpperCamelCase__ ( self ) ->Optional[int]: '''simple docstring''' __lowerCAmelCase : Dict = self.get_tokenizers(do_lower_case=A_ ) for tokenizer in tokenizers: __lowerCAmelCase : List[Any] = tokenizer('''UNwant\u00E9d,running''' ) __lowerCAmelCase : List[str] = len(inputs['''input_ids'''] ) - 1 self.assertListEqual(inputs['''token_type_ids'''] , [2] + [0] * sentence_len ) __lowerCAmelCase : Union[str, Any] = tokenizer('''UNwant\u00E9d,running''' , '''UNwant\u00E9d,running''' ) self.assertListEqual(inputs['''token_type_ids'''] , [2] + [0] * sentence_len + [1] * sentence_len )
583
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ : str =logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : Union[str, Any] ={ 'bigcode/gpt_bigcode-santacoder': 'https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json', } class _UpperCAmelCase ( a_ ): """simple docstring""" __snake_case = """gpt_bigcode""" __snake_case = ["""past_key_values"""] __snake_case = { """hidden_size""": """n_embd""", """max_position_embeddings""": """n_positions""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , _lowercase=50257 , _lowercase=1024 , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=None , _lowercase="gelu_pytorch_tanh" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=0.1 , _lowercase=1E-5 , _lowercase=0.02 , _lowercase=True , _lowercase=True , _lowercase=50256 , _lowercase=50256 , _lowercase=True , _lowercase=True , _lowercase=True , **_lowercase , ) -> Optional[int]: _lowerCamelCase : Dict = vocab_size _lowerCamelCase : str = n_positions _lowerCamelCase : Tuple = n_embd _lowerCamelCase : Any = n_layer _lowerCamelCase : Optional[int] = n_head _lowerCamelCase : Optional[Any] = n_inner _lowerCamelCase : List[Any] = activation_function _lowerCamelCase : List[Any] = resid_pdrop _lowerCamelCase : List[str] = embd_pdrop _lowerCamelCase : Union[str, Any] = attn_pdrop _lowerCamelCase : str = layer_norm_epsilon _lowerCamelCase : int = initializer_range _lowerCamelCase : Optional[Any] = scale_attn_weights _lowerCamelCase : List[Any] = use_cache _lowerCamelCase : List[str] = attention_softmax_in_fpaa _lowerCamelCase : List[str] = scale_attention_softmax_in_fpaa _lowerCamelCase : Dict = multi_query _lowerCamelCase : Optional[int] = bos_token_id _lowerCamelCase : Optional[int] = eos_token_id super().__init__(bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase )
434
"""simple docstring""" def UpperCamelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ->Tuple: if height >= 1: move_tower(height - 1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) move_disk(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) move_tower(height - 1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def UpperCamelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ->List[str]: print('''moving disk from''' , SCREAMING_SNAKE_CASE_ , '''to''' , SCREAMING_SNAKE_CASE_ ) def UpperCamelCase ( ) ->Optional[Any]: _lowerCamelCase : Optional[int] = int(input('''Height of hanoi: ''' ).strip() ) move_tower(SCREAMING_SNAKE_CASE_ , '''A''' , '''B''' , '''C''' ) if __name__ == "__main__": main()
434
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCamelCase__ : List[Any] = {'configuration_yolos': ['YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP', 'YolosConfig', 'YolosOnnxConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : int = ['YolosFeatureExtractor'] UpperCamelCase__ : int = ['YolosImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : int = [ 'YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST', 'YolosForObjectDetection', 'YolosModel', 'YolosPreTrainedModel', ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys UpperCamelCase__ : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
496
'''simple docstring''' import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCamelCase__ : int = logging.get_logger(__name__) UpperCamelCase__ : Optional[Any] = {'vocab_file': 'vocab.json'} UpperCamelCase__ : Tuple = { 'vocab_file': { 'mgp-str': 'https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json', } } UpperCamelCase__ : List[Any] = {'mgp-str': 27} class _lowercase ( lowerCAmelCase ): '''simple docstring''' UpperCAmelCase_ : Any = VOCAB_FILES_NAMES UpperCAmelCase_ : Dict = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self ,lowerCamelCase_ ,lowerCamelCase_="[GO]" ,lowerCamelCase_="[GO]" ,lowerCamelCase_="[s]" ,lowerCamelCase_="[GO]" ,**lowerCamelCase_ ) -> str: '''simple docstring''' super().__init__( unk_token=lowerCamelCase_ ,bos_token=lowerCamelCase_ ,eos_token=lowerCamelCase_ ,pad_token=lowerCamelCase_ ,**lowerCamelCase_ ,) with open(lowerCamelCase_ ,encoding='''utf-8''' ) as vocab_handle: UpperCAmelCase__ : Optional[Any] = json.load(lowerCamelCase_ ) UpperCAmelCase__ : Any = {v: k for k, v in self.vocab.items()} @property def lowerCAmelCase__ ( self ) -> Tuple: '''simple docstring''' return len(self.vocab ) def lowerCAmelCase__ ( self ) -> Dict: '''simple docstring''' return dict(self.vocab ,**self.added_tokens_encoder ) def lowerCAmelCase__ ( self ,lowerCamelCase_ ) -> Any: '''simple docstring''' UpperCAmelCase__ : List[Any] = [] for s in text: char_tokens.extend(lowerCamelCase_ ) return char_tokens def lowerCAmelCase__ ( self ,lowerCamelCase_ ) -> str: '''simple docstring''' return self.vocab.get(lowerCamelCase_ ,self.vocab.get(self.unk_token ) ) def lowerCAmelCase__ ( self ,lowerCamelCase_ ) -> Any: '''simple docstring''' return self.decoder.get(lowerCamelCase_ ) def lowerCAmelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(lowerCamelCase_ ): logger.error('''Vocabulary path ({}) should be a directory'''.format(lowerCamelCase_ ) ) return UpperCAmelCase__ : Union[str, Any] = os.path.join( lowerCamelCase_ ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) with open(lowerCamelCase_ ,'''w''' ,encoding='''utf-8''' ) as f: f.write(json.dumps(self.vocab ,indent=2 ,sort_keys=lowerCamelCase_ ,ensure_ascii=lowerCamelCase_ ) + '''\n''' ) return (vocab_file,)
496
1
'''simple docstring''' import darl # noqa import gym import tqdm from diffusers.experimental import ValueGuidedRLPipeline lowerCAmelCase_ : List[Any] = { 'n_samples': 64, 'horizon': 32, 'num_inference_steps': 20, 'n_guide_steps': 2, # can set to 0 for faster sampling, does not use value network 'scale_grad_by_std': True, 'scale': 0.1, 'eta': 0.0, 't_grad_cutoff': 2, 'device': 'cpu', } if __name__ == "__main__": lowerCAmelCase_ : Dict = 'hopper-medium-v2' lowerCAmelCase_ : Optional[Any] = gym.make(env_name) lowerCAmelCase_ : List[str] = ValueGuidedRLPipeline.from_pretrained( 'bglick13/hopper-medium-v2-value-function-hor32', env=env, ) env.seed(0) lowerCAmelCase_ : str = env.reset() lowerCAmelCase_ : Union[str, Any] = 0 lowerCAmelCase_ : str = 0 lowerCAmelCase_ : int = 1000 lowerCAmelCase_ : Optional[int] = [obs.copy()] try: for t in tqdm.tqdm(range(T)): # call the policy lowerCAmelCase_ : List[str] = pipeline(obs, planning_horizon=32) # execute action in environment lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = env.step(denorm_actions) lowerCAmelCase_ : str = env.get_normalized_score(total_reward) # update return total_reward += reward total_score += score print( f'Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:' f' {total_score}' ) # save observations for rendering rollout.append(next_observation.copy()) lowerCAmelCase_ : int = next_observation except KeyboardInterrupt: pass print(f'Total reward: {total_reward}')
527
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowerCamelCase_ ( snake_case_ , unittest.TestCase ): _lowerCAmelCase : str = KandinskyInpaintPipeline _lowerCAmelCase : List[Any] = ['prompt', 'image_embeds', 'negative_image_embeds', 'image', 'mask_image'] _lowerCAmelCase : int = [ 'prompt', 'negative_prompt', 'image_embeds', 'negative_image_embeds', 'image', 'mask_image', ] _lowerCAmelCase : List[str] = [ 'generator', 'height', 'width', 'latents', 'guidance_scale', 'negative_prompt', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] _lowerCAmelCase : Union[str, Any] = False @property def __lowercase ( self : str ): """simple docstring""" return 32 @property def __lowercase ( self : str ): """simple docstring""" return 32 @property def __lowercase ( self : Optional[int] ): """simple docstring""" return self.time_input_dim @property def __lowercase ( self : int ): """simple docstring""" return self.time_input_dim * 4 @property def __lowercase ( self : int ): """simple docstring""" return 1_00 @property def __lowercase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = XLMRobertaTokenizerFast.from_pretrained('''YiYiXu/tiny-random-mclip-base''' ) return tokenizer @property def __lowercase ( self : List[Any] ): """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[Any] = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=10_05 , ) SCREAMING_SNAKE_CASE : Any = MultilingualCLIP(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = text_encoder.eval() return text_encoder @property def __lowercase ( self : List[Any] ): """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Tuple = { '''in_channels''': 9, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''text_image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''text_image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } SCREAMING_SNAKE_CASE : Union[str, Any] = UNetaDConditionModel(**lowerCAmelCase__ ) return model @property def __lowercase ( self : Optional[Any] ): """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __lowercase ( self : Union[str, Any] ): """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[Any] = VQModel(**self.dummy_movq_kwargs ) return model def __lowercase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = self.dummy_text_encoder SCREAMING_SNAKE_CASE : Tuple = self.dummy_tokenizer SCREAMING_SNAKE_CASE : int = self.dummy_unet SCREAMING_SNAKE_CASE : str = self.dummy_movq SCREAMING_SNAKE_CASE : Optional[int] = DDIMScheduler( num_train_timesteps=10_00 , beta_schedule='''linear''' , beta_start=0.0_0085 , beta_end=0.012 , clip_sample=lowerCAmelCase__ , set_alpha_to_one=lowerCAmelCase__ , steps_offset=1 , prediction_type='''epsilon''' , thresholding=lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE : Optional[int] = { '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def __lowercase ( self : Dict , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[Any]=0 ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : List[Any] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(lowerCAmelCase__ ) # create init_image SCREAMING_SNAKE_CASE : Optional[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Tuple = image.cpu().permute(0 , 2 , 3 , 1 )[0] SCREAMING_SNAKE_CASE : Union[str, Any] = Image.fromarray(np.uinta(lowerCAmelCase__ ) ).convert('''RGB''' ).resize((2_56, 2_56) ) # create mask SCREAMING_SNAKE_CASE : Union[str, Any] = np.ones((64, 64) , dtype=np.floataa ) SCREAMING_SNAKE_CASE : str = 0 if str(lowerCAmelCase__ ).startswith('''mps''' ): SCREAMING_SNAKE_CASE : Tuple = torch.manual_seed(lowerCAmelCase__ ) else: SCREAMING_SNAKE_CASE : Union[str, Any] = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Tuple = { '''prompt''': '''horse''', '''image''': init_image, '''mask_image''': mask, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 2, '''guidance_scale''': 4.0, '''output_type''': '''np''', } return inputs def __lowercase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = '''cpu''' SCREAMING_SNAKE_CASE : Dict = self.get_dummy_components() SCREAMING_SNAKE_CASE : Optional[int] = self.pipeline_class(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : int = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : str = pipe(**self.get_dummy_inputs(lowerCAmelCase__ ) ) SCREAMING_SNAKE_CASE : int = output.images SCREAMING_SNAKE_CASE : int = pipe( **self.get_dummy_inputs(lowerCAmelCase__ ) , return_dict=lowerCAmelCase__ , )[0] SCREAMING_SNAKE_CASE : Optional[Any] = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE : Dict = image_from_tuple[0, -3:, -3:, -1] print(F"""image.shape {image.shape}""" ) assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE : List[str] = np.array( [0.832_6919, 0.7379_0467, 0.2091_8581, 0.930_9612, 0.551_1791, 0.4371_3328, 0.551_3321, 0.4992_2934, 0.5949_7786] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" def __lowercase ( self : str ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class lowerCamelCase_ ( unittest.TestCase ): def __lowercase ( self : List[str] ): """simple docstring""" # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowercase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy''' ) SCREAMING_SNAKE_CASE : Optional[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = np.ones((7_68, 7_68) , dtype=np.floataa ) SCREAMING_SNAKE_CASE : List[str] = 0 SCREAMING_SNAKE_CASE : Dict = '''a hat''' SCREAMING_SNAKE_CASE : str = KandinskyPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = KandinskyInpaintPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-inpaint''' , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE : Dict = pipeline.to(lowerCAmelCase__ ) pipeline.set_progress_bar_config(disable=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Optional[int] = torch.Generator(device='''cpu''' ).manual_seed(0 ) SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Any = pipe_prior( lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() SCREAMING_SNAKE_CASE : Tuple = pipeline( lowerCAmelCase__ , image=lowerCAmelCase__ , mask_image=lowerCAmelCase__ , image_embeds=lowerCAmelCase__ , negative_image_embeds=lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=1_00 , height=7_68 , width=7_68 , output_type='''np''' , ) SCREAMING_SNAKE_CASE : Tuple = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(lowerCAmelCase__ , lowerCAmelCase__ )
527
1
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import ASTFeatureExtractor from transformers.testing_utils import require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin lowercase =random.Random() if is_torch_available(): import torch def lowerCamelCase__ ( __lowerCamelCase : Optional[Any] , __lowerCamelCase : int=1.0 , __lowerCamelCase : str=None , __lowerCamelCase : Tuple=None ): '''simple docstring''' if rng is None: _UpperCAmelCase : Optional[Any] =global_rng _UpperCAmelCase : Optional[int] =[] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class __magic_name__ ( unittest.TestCase ): def __init__( self , snake_case , snake_case=7 , snake_case=4_0_0 , snake_case=2_0_0_0 , snake_case=1 , snake_case=0.0 , snake_case=1_6_0_0_0 , snake_case=True , snake_case=True , ) -> int: '''simple docstring''' _UpperCAmelCase : int =parent _UpperCAmelCase : Any =batch_size _UpperCAmelCase : Tuple =min_seq_length _UpperCAmelCase : Tuple =max_seq_length _UpperCAmelCase : Optional[Any] =(self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _UpperCAmelCase : int =feature_size _UpperCAmelCase : List[str] =padding_value _UpperCAmelCase : int =sampling_rate _UpperCAmelCase : List[str] =return_attention_mask _UpperCAmelCase : Tuple =do_normalize def lowerCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def lowerCAmelCase ( self , snake_case=False , snake_case=False) -> Any: '''simple docstring''' def _flatten(snake_case): return list(itertools.chain(*snake_case)) if equal_length: _UpperCAmelCase : List[Any] =floats_list((self.batch_size, self.max_seq_length)) else: # make sure that inputs increase in size _UpperCAmelCase : Optional[Any] =[ _flatten(floats_list((x, self.feature_size))) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff) ] if numpify: _UpperCAmelCase : Optional[int] =[np.asarray(snake_case) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __magic_name__ ( lowerCAmelCase ,unittest.TestCase ): UpperCAmelCase =ASTFeatureExtractor def lowerCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCAmelCase : Tuple =ASTFeatureExtractionTester(self) def lowerCAmelCase ( self) -> Tuple: '''simple docstring''' # Tests that all call wrap to encode_plus and batch_encode_plus _UpperCAmelCase : str =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) # create three inputs of length 800, 1000, and 1200 _UpperCAmelCase : str =[floats_list((1, x))[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0)] _UpperCAmelCase : Optional[int] =[np.asarray(snake_case) for speech_input in speech_inputs] # Test not batched input _UpperCAmelCase : List[str] =feat_extract(speech_inputs[0] , return_tensors='np').input_values _UpperCAmelCase : List[Any] =feat_extract(np_speech_inputs[0] , return_tensors='np').input_values self.assertTrue(np.allclose(snake_case , snake_case , atol=1E-3)) # Test batched _UpperCAmelCase : Tuple =feat_extract(snake_case , padding=snake_case , return_tensors='np').input_values _UpperCAmelCase : List[Any] =feat_extract(snake_case , padding=snake_case , return_tensors='np').input_values for enc_seq_a, enc_seq_a in zip(snake_case , snake_case): self.assertTrue(np.allclose(snake_case , snake_case , atol=1E-3)) # Test 2-D numpy arrays are batched. _UpperCAmelCase : Dict =[floats_list((1, x))[0] for x in (8_0_0, 8_0_0, 8_0_0)] _UpperCAmelCase : Tuple =np.asarray(snake_case) _UpperCAmelCase : Optional[Any] =feat_extract(snake_case , return_tensors='np').input_values _UpperCAmelCase : Dict =feat_extract(snake_case , return_tensors='np').input_values for enc_seq_a, enc_seq_a in zip(snake_case , snake_case): self.assertTrue(np.allclose(snake_case , snake_case , atol=1E-3)) @require_torch def lowerCAmelCase ( self) -> List[Any]: '''simple docstring''' import torch _UpperCAmelCase : Any =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) _UpperCAmelCase : int =np.random.rand(1_0_0).astype(np.floataa) _UpperCAmelCase : str =np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: _UpperCAmelCase : Optional[Any] =feature_extractor.pad([{'input_values': inputs}] , return_tensors='np') self.assertTrue(np_processed.input_values.dtype == np.floataa) _UpperCAmelCase : List[str] =feature_extractor.pad([{'input_values': inputs}] , return_tensors='pt') self.assertTrue(pt_processed.input_values.dtype == torch.floataa) def lowerCAmelCase ( self , snake_case) -> int: '''simple docstring''' from datasets import load_dataset _UpperCAmelCase : Optional[Any] =load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation') # automatic decoding with librispeech _UpperCAmelCase : int =ds.sort('id').select(range(snake_case))[:num_samples]['audio'] return [x["array"] for x in speech_samples] @require_torch def lowerCAmelCase ( self) -> int: '''simple docstring''' # fmt: off _UpperCAmelCase : List[str] =torch.tensor( [-0.98_94, -1.27_76, -0.90_66, -1.27_76, -0.93_49, -1.26_09, -1.03_86, -1.27_76, -1.15_61, -1.27_76, -1.20_52, -1.27_23, -1.21_90, -1.21_32, -1.27_76, -1.11_33, -1.19_53, -1.13_43, -1.15_84, -1.22_03, -1.17_70, -1.24_74, -1.23_81, -1.19_36, -0.92_70, -0.83_17, -0.80_49, -0.77_06, -0.75_65, -0.78_69]) # fmt: on _UpperCAmelCase : Dict =self._load_datasamples(1) _UpperCAmelCase : Optional[Any] =ASTFeatureExtractor() _UpperCAmelCase : Optional[Any] =feature_extractor(snake_case , return_tensors='pt').input_values self.assertEquals(input_values.shape , (1, 1_0_2_4, 1_2_8)) self.assertTrue(torch.allclose(input_values[0, 0, :3_0] , snake_case , atol=1E-4))
331
'''simple docstring''' import os # Precomputes a list of the 100 first triangular numbers lowercase =[int(0.5 * n * (n + 1)) for n in range(1, 101)] def lowerCamelCase__ ( ): '''simple docstring''' _UpperCAmelCase : int =os.path.dirname(os.path.realpath(__lowerCamelCase ) ) _UpperCAmelCase : List[Any] =os.path.join(__lowerCamelCase , 'words.txt' ) _UpperCAmelCase : int ='' with open(__lowerCamelCase ) as f: _UpperCAmelCase : Tuple =f.readline() _UpperCAmelCase : List[str] =[word.strip('"' ) for word in words.strip('\r\n' ).split(',' )] _UpperCAmelCase : Dict =[ word for word in [sum(ord(__lowerCamelCase ) - 6_4 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(__lowerCamelCase ) if __name__ == "__main__": print(solution())
331
1
def A__ ( lowercase: Any, lowercase: List[Any], lowercase: List[Any]=False ) -> Dict: if isinstance(lowercase, lowercase ) and isinstance(lowercase, lowercase ): A : int =len(set_a.intersection(lowercase ) ) if alternative_union: A : Tuple =len(lowercase ) + len(lowercase ) else: A : Any =len(set_a.union(lowercase ) ) return intersection / union if isinstance(lowercase, (list, tuple) ) and isinstance(lowercase, (list, tuple) ): A : int =[element for element in set_a if element in set_b] if alternative_union: A : Union[str, Any] =len(lowercase ) + len(lowercase ) return len(lowercase ) / union else: A : Optional[Any] =set_a + [element for element in set_b if element not in set_a] return len(lowercase ) / len(lowercase ) return len(lowercase ) / len(lowercase ) return None if __name__ == "__main__": _lowercase : str ={'''a''', '''b''', '''c''', '''d''', '''e'''} _lowercase : List[Any] ={'''c''', '''d''', '''e''', '''f''', '''h''', '''i'''} print(jaccard_similarity(set_a, set_b))
305
import unittest from transformers import GPTSwaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _lowercase : Any =get_tests_dir('''fixtures/test_sentencepiece_with_bytefallback.model''') @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' lowercase : int = GPTSwaTokenizer lowercase : Union[str, Any] = False lowercase : Dict = True lowercase : int = False def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> Tuple: super().setUp() # We have a SentencePiece fixture for testing A : Dict =GPTSwaTokenizer(SCREAMING_SNAKE_CASE__ , eos_token='<unk>' , bos_token='<unk>' , pad_token='<unk>' ) tokenizer.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[str] ) -> Optional[Any]: A : Union[str, Any] ='This is a test' A : str ='This is a test' return input_text, output_text def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> Tuple: A : int ='<s>' A : Optional[Any] =1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Any: A : Dict =list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<unk>' ) self.assertEqual(vocab_keys[1] , '<s>' ) self.assertEqual(vocab_keys[-1] , 'j' ) self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , 20_00 ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> List[str]: self.assertEqual(self.get_tokenizer().vocab_size , 20_00 ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> Dict: A : Union[str, Any] =GPTSwaTokenizer(SCREAMING_SNAKE_CASE__ ) A : str =tokenizer.tokenize('This is a test' ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) , [4_65, 2_87, 2_65, 6_31, 8_42] ) A : Dict =tokenizer.tokenize('I was born in 92000, and this is falsé.' ) # fmt: off self.assertListEqual( SCREAMING_SNAKE_CASE__ , ['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] , ) # fmt: on A : int =tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) self.assertListEqual( SCREAMING_SNAKE_CASE__ , [2_62, 2_72, 15_25, 2_86, 2_71, 2_68, 60, 9_16, 6_33, 6_33, 6_33, 2_59, 2_66, 3_01, 2_87, 3_84, 3_67, 2_63, 1_98, 1_72, 2_60] , ) A : List[str] =tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ) # fmt: off self.assertListEqual( SCREAMING_SNAKE_CASE__ , ['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] ) # fmt: on def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> List[str]: A : Dict =GPTSwaTokenizer(SCREAMING_SNAKE_CASE__ ) A : Tuple =['This is a test', 'I was born in 92000, and this is falsé.'] A : int =[ [4_65, 2_87, 2_65, 6_31, 8_42], [2_62, 2_72, 15_25, 2_86, 2_71, 2_68, 60, 9_16, 6_33, 6_33, 6_33, 2_59, 2_66, 3_01, 2_87, 3_84, 3_67, 2_63, 1_98, 1_72, 2_60], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): self.assertListEqual(tokenizer.encode_fast(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) # Test that decode_fast returns the input text for text, token_ids in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): self.assertEqual(tokenizer.decode_fast(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) @slow def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Tuple: A : Optional[int] =[ '<|python|>def fibonacci(n)\n if n < 0:\n print(\'Incorrect input\')', 'Hey there, how are you doing this fine day?', 'This is a text with a trailing spaces followed by a dot .', 'Häj sväjs lillebrör! =)', 'Det är inget fel på Mr. Cool', ] # fmt: off A : Any ={'input_ids': [[6_34_23, 5, 68_11, 1_49_54, 2_82, 8_16, 38_21, 6_34_66, 6_34_25, 6_34_62, 18, 6_39_78, 6_78, 3_01, 13_20, 6_34_23, 6_34_55, 6_34_58, 18, 6_39_82, 42_46, 39_40, 19_01, 4_77_89, 55_47, 1_89_94], [1_96_30, 11_00, 6_34_46, 13_42, 6_33, 5_44, 44_88, 5_93, 51_02, 24_16, 6_34_95, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [16_52, 4_28, 2_68, 19_36, 5_15, 2_68, 5_85_93, 2_24_13, 91_06, 5_46, 2_68, 3_32_13, 6_39_79, 6_98, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_51_30, 6_34_50, 9_24, 6_34_49, 22_49, 40_62, 15_58, 3_18, 6_35_04, 2_14_98, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_09, 3_77, 28_27, 25_59, 3_32, 65_75, 6_34_43, 2_68_01, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: on self.tokenizer_integration_test_util( expected_encoding=SCREAMING_SNAKE_CASE__ , model_name='AI-Sweden/gpt-sw3-126m' , sequences=SCREAMING_SNAKE_CASE__ , )
305
1
"""simple docstring""" from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __UpperCAmelCase( SCREAMING_SNAKE_CASE__ ): """simple docstring""" __lowerCamelCase = ["image_processor", "tokenizer"] __lowerCamelCase = "AutoImageProcessor" __lowerCamelCase = "AutoTokenizer" def __init__( self , snake_case__ , snake_case__ ): '''simple docstring''' super().__init__(snake_case__ , snake_case__ ) lowercase__ : List[Any]= self.image_processor def __call__( self , snake_case__=None , snake_case__=None , snake_case__=None , **snake_case__ ): '''simple docstring''' if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none." ) if text is not None: lowercase__ : Tuple= self.tokenizer(snake_case__ , return_tensors=snake_case__ , **snake_case__ ) if images is not None: lowercase__ : str= self.image_processor(snake_case__ , return_tensors=snake_case__ , **snake_case__ ) if text is not None and images is not None: lowercase__ : Any= image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**snake_case__ ) , tensor_type=snake_case__ ) def UpperCAmelCase_ ( self , *snake_case__ , **snake_case__ ): '''simple docstring''' return self.tokenizer.batch_decode(*snake_case__ , **snake_case__ ) def UpperCAmelCase_ ( self , *snake_case__ , **snake_case__ ): '''simple docstring''' return self.tokenizer.decode(*snake_case__ , **snake_case__ ) @property def UpperCAmelCase_ ( self ): '''simple docstring''' return ["input_ids", "attention_mask", "pixel_values"]
85
"""simple docstring""" a : List[Any] = """ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/""" def lowercase__(A ) ->bytes: """simple docstring""" if not isinstance(A , A ): lowercase__ : Union[str, Any]= f'''a bytes-like object is required, not \'{data.__class__.__name__}\'''' raise TypeError(A ) lowercase__ : str= "".join(bin(A )[2:].zfill(8 ) for byte in data ) lowercase__ : Tuple= len(A ) % 6 != 0 if padding_needed: # The padding that will be added later lowercase__ : Union[str, Any]= b"=" * ((6 - len(A ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(A ) % 6) else: lowercase__ : str= b"" # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6] , 2 )] for index in range(0 , len(A ) , 6 ) ).encode() + padding ) def lowercase__(A ) ->bytes: """simple docstring""" if not isinstance(A , A ) and not isinstance(A , A ): lowercase__ : str= ( "argument should be a bytes-like object or ASCII string, " f'''not \'{encoded_data.__class__.__name__}\'''' ) raise TypeError(A ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(A , A ): try: lowercase__ : Optional[Any]= encoded_data.decode("utf-8" ) except UnicodeDecodeError: raise ValueError("base64 encoded data should only contain ASCII characters" ) lowercase__ : List[Any]= encoded_data.count("=" ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(A ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one lowercase__ : str= encoded_data[:-padding] lowercase__ : Tuple= "".join( bin(B64_CHARSET.index(A ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: lowercase__ : Tuple= "".join( bin(B64_CHARSET.index(A ) )[2:].zfill(6 ) for char in encoded_data ) lowercase__ : Any= [ int(binary_stream[index : index + 8] , 2 ) for index in range(0 , len(A ) , 8 ) ] return bytes(A ) if __name__ == "__main__": import doctest doctest.testmod()
85
1
import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class __lowerCAmelCase ( unittest.TestCase ): def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = tempfile.mkdtemp() # fmt: off __lowerCamelCase = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest'''] # fmt: on __lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) __lowerCamelCase = { '''do_resize''': True, '''size''': {'''height''': 18, '''width''': 18}, '''do_normalize''': True, '''image_mean''': [0.5, 0.5, 0.5], '''image_std''': [0.5, 0.5, 0.5], } __lowerCamelCase = os.path.join(self.tmpdirname , __lowerCamelCase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(__lowerCamelCase , __lowerCamelCase ) def lowerCamelCase ( self , **__UpperCAmelCase ): '''simple docstring''' return BertTokenizer.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def lowerCamelCase ( self , **__UpperCAmelCase ): '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def lowerCamelCase ( self ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __lowerCamelCase = [Image.fromarray(np.moveaxis(__lowerCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = self.get_image_processor() __lowerCamelCase = VisionTextDualEncoderProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) __lowerCamelCase = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowerCamelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowerCamelCase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) __lowerCamelCase = self.get_image_processor(do_normalize=__lowerCamelCase , padding_value=1.0 ) __lowerCamelCase = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__lowerCamelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowerCamelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.get_image_processor() __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = VisionTextDualEncoderProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) __lowerCamelCase = self.prepare_image_inputs() __lowerCamelCase = image_processor(__lowerCamelCase , return_tensors='''np''' ) __lowerCamelCase = processor(images=__lowerCamelCase , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.get_image_processor() __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = VisionTextDualEncoderProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) __lowerCamelCase = '''lower newer''' __lowerCamelCase = processor(text=__lowerCamelCase ) __lowerCamelCase = tokenizer(__lowerCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.get_image_processor() __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = VisionTextDualEncoderProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) __lowerCamelCase = '''lower newer''' __lowerCamelCase = self.prepare_image_inputs() __lowerCamelCase = processor(text=__lowerCamelCase , images=__lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with self.assertRaises(__lowerCamelCase ): processor() def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.get_image_processor() __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = VisionTextDualEncoderProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) __lowerCamelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __lowerCamelCase = processor.batch_decode(__lowerCamelCase ) __lowerCamelCase = tokenizer.batch_decode(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.get_image_processor() __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = VisionTextDualEncoderProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) __lowerCamelCase = '''lower newer''' __lowerCamelCase = self.prepare_image_inputs() __lowerCamelCase = processor(text=__lowerCamelCase , images=__lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
175
import bza import gzip import lzma import os import shutil import struct import tarfile import warnings import zipfile from abc import ABC, abstractmethod from pathlib import Path from typing import Dict, List, Optional, Type, Union from .. import config from .filelock import FileLock from .logging import get_logger __snake_case : Optional[int] =get_logger(__name__) class lowerCamelCase__ : '''simple docstring''' def __init__(self ,__lowerCamelCase = None ) -> Any: """simple docstring""" lowerCAmelCase__ : List[Any] = ( os.path.join(__lowerCamelCase ,config.EXTRACTED_DATASETS_DIR ) if cache_dir else config.EXTRACTED_DATASETS_PATH ) lowerCAmelCase__ : Tuple = Extractor def lowerCAmelCase__ (self ,__lowerCamelCase ) -> str: """simple docstring""" from .file_utils import hash_url_to_filename # Path where we extract compressed archives # We extract in the cache dir, and get the extracted path name by hashing the original path" lowerCAmelCase__ : List[Any] = os.path.abspath(__lowerCamelCase ) return os.path.join(self.extract_dir ,hash_url_to_filename(__lowerCamelCase ) ) def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase ) -> bool: """simple docstring""" return force_extract or ( not os.path.isfile(__lowerCamelCase ) and not (os.path.isdir(__lowerCamelCase ) and os.listdir(__lowerCamelCase )) ) def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase = False ) -> str: """simple docstring""" lowerCAmelCase__ : List[str] = self.extractor.infer_extractor_format(__lowerCamelCase ) if not extractor_format: return input_path lowerCAmelCase__ : Optional[int] = self._get_output_path(__lowerCamelCase ) if self._do_extract(__lowerCamelCase ,__lowerCamelCase ): self.extractor.extract(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) return output_path class lowerCamelCase__ ( lowerCamelCase__): '''simple docstring''' @classmethod @abstractmethod def lowerCAmelCase__ (cls ,__lowerCamelCase ,**__lowerCamelCase ) -> bool: """simple docstring""" ... @staticmethod @abstractmethod def lowerCAmelCase__ (__lowerCamelCase ,__lowerCamelCase ) -> None: """simple docstring""" ... class lowerCamelCase__ ( lowerCamelCase__ , lowerCamelCase__): '''simple docstring''' snake_case_ =[] @staticmethod def lowerCAmelCase__ (__lowerCamelCase ,__lowerCamelCase ) -> List[str]: """simple docstring""" with open(__lowerCamelCase ,'''rb''' ) as f: return f.read(__lowerCamelCase ) @classmethod def lowerCAmelCase__ (cls ,__lowerCamelCase ,__lowerCamelCase = b"" ) -> bool: """simple docstring""" if not magic_number: lowerCAmelCase__ : Optional[Any] = max(len(__lowerCamelCase ) for cls_magic_number in cls.magic_numbers ) try: lowerCAmelCase__ : Optional[Any] = cls.read_magic_number(__lowerCamelCase ,__lowerCamelCase ) except OSError: return False return any(magic_number.startswith(__lowerCamelCase ) for cls_magic_number in cls.magic_numbers ) class lowerCamelCase__ ( lowerCamelCase__): '''simple docstring''' @classmethod def lowerCAmelCase__ (cls ,__lowerCamelCase ,**__lowerCamelCase ) -> bool: """simple docstring""" return tarfile.is_tarfile(__lowerCamelCase ) @staticmethod def lowerCAmelCase__ (__lowerCamelCase ,__lowerCamelCase ) -> Any: """simple docstring""" def resolved(__lowerCamelCase ) -> str: return os.path.realpath(os.path.abspath(__lowerCamelCase ) ) def badpath(__lowerCamelCase ,__lowerCamelCase ) -> bool: # joinpath will ignore base if path is absolute return not resolved(os.path.join(__lowerCamelCase ,__lowerCamelCase ) ).startswith(__lowerCamelCase ) def badlink(__lowerCamelCase ,__lowerCamelCase ) -> bool: # Links are interpreted relative to the directory containing the link lowerCAmelCase__ : Dict = resolved(os.path.join(__lowerCamelCase ,os.path.dirname(info.name ) ) ) return badpath(info.linkname ,base=__lowerCamelCase ) lowerCAmelCase__ : Union[str, Any] = resolved(__lowerCamelCase ) for finfo in members: if badpath(finfo.name ,__lowerCamelCase ): logger.error(f"""Extraction of {finfo.name} is blocked (illegal path)""" ) elif finfo.issym() and badlink(__lowerCamelCase ,__lowerCamelCase ): logger.error(f"""Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}""" ) elif finfo.islnk() and badlink(__lowerCamelCase ,__lowerCamelCase ): logger.error(f"""Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}""" ) else: yield finfo @staticmethod def lowerCAmelCase__ (__lowerCamelCase ,__lowerCamelCase ) -> None: """simple docstring""" os.makedirs(__lowerCamelCase ,exist_ok=__lowerCamelCase ) lowerCAmelCase__ : int = tarfile.open(__lowerCamelCase ) tar_file.extractall(__lowerCamelCase ,members=TarExtractor.safemembers(__lowerCamelCase ,__lowerCamelCase ) ) tar_file.close() class lowerCamelCase__ ( lowerCamelCase__): '''simple docstring''' snake_case_ =[b"""\x1F\x8B"""] @staticmethod def lowerCAmelCase__ (__lowerCamelCase ,__lowerCamelCase ) -> None: """simple docstring""" with gzip.open(__lowerCamelCase ,'''rb''' ) as gzip_file: with open(__lowerCamelCase ,'''wb''' ) as extracted_file: shutil.copyfileobj(__lowerCamelCase ,__lowerCamelCase ) class lowerCamelCase__ ( lowerCamelCase__): '''simple docstring''' snake_case_ =[ b"""PK\x03\x04""", b"""PK\x05\x06""", # empty archive b"""PK\x07\x08""", # spanned archive ] @classmethod def lowerCAmelCase__ (cls ,__lowerCamelCase ,__lowerCamelCase = b"" ) -> bool: """simple docstring""" if super().is_extractable(__lowerCamelCase ,magic_number=__lowerCamelCase ): return True try: # Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives. # From: https://github.com/python/cpython/pull/5053 from zipfile import ( _CD_SIGNATURE, _ECD_DISK_NUMBER, _ECD_DISK_START, _ECD_ENTRIES_TOTAL, _ECD_OFFSET, _ECD_SIZE, _EndRecData, sizeCentralDir, stringCentralDir, structCentralDir, ) with open(__lowerCamelCase ,'''rb''' ) as fp: lowerCAmelCase__ : Optional[int] = _EndRecData(__lowerCamelCase ) if endrec: if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0: return True # Empty zipfiles are still zipfiles elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]: fp.seek(endrec[_ECD_OFFSET] ) # Central directory is on the same disk if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir: lowerCAmelCase__ : Optional[int] = fp.read(__lowerCamelCase ) # CD is where we expect it to be if len(__lowerCamelCase ) == sizeCentralDir: lowerCAmelCase__ : List[str] = struct.unpack(__lowerCamelCase ,__lowerCamelCase ) # CD is the right size if centdir[_CD_SIGNATURE] == stringCentralDir: return True # First central directory entry has correct magic number return False except Exception: # catch all errors in case future python versions change the zipfile internals return False @staticmethod def lowerCAmelCase__ (__lowerCamelCase ,__lowerCamelCase ) -> None: """simple docstring""" os.makedirs(__lowerCamelCase ,exist_ok=__lowerCamelCase ) with zipfile.ZipFile(__lowerCamelCase ,'''r''' ) as zip_file: zip_file.extractall(__lowerCamelCase ) zip_file.close() class lowerCamelCase__ ( lowerCamelCase__): '''simple docstring''' snake_case_ =[b"""\xFD\x37\x7A\x58\x5A\x00"""] @staticmethod def lowerCAmelCase__ (__lowerCamelCase ,__lowerCamelCase ) -> None: """simple docstring""" with lzma.open(__lowerCamelCase ) as compressed_file: with open(__lowerCamelCase ,'''wb''' ) as extracted_file: shutil.copyfileobj(__lowerCamelCase ,__lowerCamelCase ) class lowerCamelCase__ ( lowerCamelCase__): '''simple docstring''' snake_case_ =[b"""Rar!\x1a\x07\x00""", b"""Rar!\x1a\x07\x01\x00"""] # RAR_ID # RAR5_ID @staticmethod def lowerCAmelCase__ (__lowerCamelCase ,__lowerCamelCase ) -> None: """simple docstring""" if not config.RARFILE_AVAILABLE: raise ImportError('''Please pip install rarfile''' ) import rarfile os.makedirs(__lowerCamelCase ,exist_ok=__lowerCamelCase ) lowerCAmelCase__ : Dict = rarfile.RarFile(__lowerCamelCase ) rf.extractall(__lowerCamelCase ) rf.close() class lowerCamelCase__ ( lowerCamelCase__): '''simple docstring''' snake_case_ =[b"""\x28\xb5\x2F\xFD"""] @staticmethod def lowerCAmelCase__ (__lowerCamelCase ,__lowerCamelCase ) -> None: """simple docstring""" if not config.ZSTANDARD_AVAILABLE: raise ImportError('''Please pip install zstandard''' ) import zstandard as zstd lowerCAmelCase__ : Dict = zstd.ZstdDecompressor() with open(__lowerCamelCase ,'''rb''' ) as ifh, open(__lowerCamelCase ,'''wb''' ) as ofh: dctx.copy_stream(__lowerCamelCase ,__lowerCamelCase ) class lowerCamelCase__ ( lowerCamelCase__): '''simple docstring''' snake_case_ =[b"""\x42\x5A\x68"""] @staticmethod def lowerCAmelCase__ (__lowerCamelCase ,__lowerCamelCase ) -> None: """simple docstring""" with bza.open(__lowerCamelCase ,'''rb''' ) as compressed_file: with open(__lowerCamelCase ,'''wb''' ) as extracted_file: shutil.copyfileobj(__lowerCamelCase ,__lowerCamelCase ) class lowerCamelCase__ ( lowerCamelCase__): '''simple docstring''' snake_case_ =[b"""\x37\x7A\xBC\xAF\x27\x1C"""] @staticmethod def lowerCAmelCase__ (__lowerCamelCase ,__lowerCamelCase ) -> None: """simple docstring""" if not config.PY7ZR_AVAILABLE: raise ImportError('''Please pip install py7zr''' ) import pyazr os.makedirs(__lowerCamelCase ,exist_ok=__lowerCamelCase ) with pyazr.SevenZipFile(__lowerCamelCase ,'''r''' ) as archive: archive.extractall(__lowerCamelCase ) class lowerCamelCase__ ( lowerCamelCase__): '''simple docstring''' snake_case_ =[b"""\x04\x22\x4D\x18"""] @staticmethod def lowerCAmelCase__ (__lowerCamelCase ,__lowerCamelCase ) -> None: """simple docstring""" if not config.LZ4_AVAILABLE: raise ImportError('''Please pip install lz4''' ) import lza.frame with lza.frame.open(__lowerCamelCase ,'''rb''' ) as compressed_file: with open(__lowerCamelCase ,'''wb''' ) as extracted_file: shutil.copyfileobj(__lowerCamelCase ,__lowerCamelCase ) class lowerCamelCase__ : '''simple docstring''' snake_case_ ={ "tar": TarExtractor, "gzip": GzipExtractor, "zip": ZipExtractor, "xz": XzExtractor, "rar": RarExtractor, "zstd": ZstdExtractor, "bz2": BzipaExtractor, "7z": SevenZipExtractor, # <Added version="2.4.0"/> "lz4": LzaExtractor, # <Added version="2.4.0"/> } @classmethod def lowerCAmelCase__ (cls ) -> str: """simple docstring""" return max( len(__lowerCamelCase ) for extractor in cls.extractors.values() if issubclass(__lowerCamelCase ,__lowerCamelCase ) for extractor_magic_number in extractor.magic_numbers ) @staticmethod def lowerCAmelCase__ (__lowerCamelCase ,__lowerCamelCase ) -> Tuple: """simple docstring""" try: return MagicNumberBaseExtractor.read_magic_number(__lowerCamelCase ,magic_number_length=__lowerCamelCase ) except OSError: return b"" @classmethod def lowerCAmelCase__ (cls ,__lowerCamelCase ,__lowerCamelCase = False ) -> bool: """simple docstring""" warnings.warn( '''Method \'is_extractable\' was deprecated in version 2.4.0 and will be removed in 3.0.0. ''' '''Use \'infer_extractor_format\' instead.''' ,category=__lowerCamelCase ,) lowerCAmelCase__ : int = cls.infer_extractor_format(__lowerCamelCase ) if extractor_format: return True if not return_extractor else (True, cls.extractors[extractor_format]) return False if not return_extractor else (False, None) @classmethod def lowerCAmelCase__ (cls ,__lowerCamelCase ) -> str: # <Added version="2.4.0"/> """simple docstring""" lowerCAmelCase__ : Dict = cls._get_magic_number_max_length() lowerCAmelCase__ : Any = cls._read_magic_number(__lowerCamelCase ,__lowerCamelCase ) for extractor_format, extractor in cls.extractors.items(): if extractor.is_extractable(__lowerCamelCase ,magic_number=__lowerCamelCase ): return extractor_format @classmethod def lowerCAmelCase__ (cls ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase = None ,__lowerCamelCase = "deprecated" ,) -> None: """simple docstring""" os.makedirs(os.path.dirname(__lowerCamelCase ) ,exist_ok=__lowerCamelCase ) # Prevent parallel extractions lowerCAmelCase__ : Dict = str(Path(__lowerCamelCase ).with_suffix('''.lock''' ) ) with FileLock(__lowerCamelCase ): shutil.rmtree(__lowerCamelCase ,ignore_errors=__lowerCamelCase ) if extractor_format or extractor != "deprecated": if extractor != "deprecated" or not isinstance(__lowerCamelCase ,__lowerCamelCase ): # passed as positional arg warnings.warn( '''Parameter \'extractor\' was deprecated in version 2.4.0 and will be removed in 3.0.0. ''' '''Use \'extractor_format\' instead.''' ,category=__lowerCamelCase ,) lowerCAmelCase__ : Dict = extractor if extractor != '''deprecated''' else extractor_format else: lowerCAmelCase__ : str = cls.extractors[extractor_format] return extractor.extract(__lowerCamelCase ,__lowerCamelCase ) else: warnings.warn( '''Parameter \'extractor_format\' was made required in version 2.4.0 and not passing it will raise an ''' '''exception in 3.0.0.''' ,category=__lowerCamelCase ,) for extractor in cls.extractors.values(): if extractor.is_extractable(__lowerCamelCase ): return extractor.extract(__lowerCamelCase ,__lowerCamelCase )
647
0
'''simple docstring''' import os from datetime import datetime as dt from github import Github A = [ 'good first issue', 'good second issue', 'good difficult issue', 'enhancement', 'new pipeline/model', 'new scheduler', 'wip', ] def UpperCAmelCase ( ): lowerCamelCase : str = Github(os.environ['GITHUB_TOKEN']) lowerCamelCase : Optional[Any] = g.get_repo('huggingface/diffusers') lowerCamelCase : int = repo.get_issues(state='open') for issue in open_issues: lowerCamelCase : Union[str, Any] = sorted(issue.get_comments() , key=lambda UpperCAmelCase__: i.created_at , reverse=UpperCAmelCase__) lowerCamelCase : int = comments[0] if len(UpperCAmelCase__) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels()) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state='closed') elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state='open') issue.remove_from_labels('stale') elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels()) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( 'This issue has been automatically marked as stale because it has not had ' 'recent activity. If you think this still needs to be addressed ' 'please comment on this thread.\n\nPlease note that issues that do not follow the ' '[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) ' 'are likely to be ignored.') issue.add_to_labels('stale') if __name__ == "__main__": main()
449
'''simple docstring''' def UpperCAmelCase ( UpperCAmelCase__ : list[int]): if not nums: # Makes sure that the list is not empty raise ValueError('List is empty') lowerCamelCase : int = sum(UpperCAmelCase__) / len(UpperCAmelCase__) # Calculate the average return sum(abs(x - average) for x in nums) / len(UpperCAmelCase__) if __name__ == "__main__": import doctest doctest.testmod()
449
1
'''simple docstring''' def __lowercase ( __lowercase , __lowercase , __lowercase , __lowercase ) -> Optional[Any]: '''simple docstring''' global f # a global dp table for knapsack if f[i][j] < 0: if j < wt[i - 1]: _A = mf_knapsack(i - 1 , __lowercase , __lowercase , __lowercase ) else: _A = max( mf_knapsack(i - 1 , __lowercase , __lowercase , __lowercase ) , mf_knapsack(i - 1 , __lowercase , __lowercase , j - wt[i - 1] ) + val[i - 1] , ) _A = val return f[i][j] def __lowercase ( __lowercase , __lowercase , __lowercase , __lowercase ) -> int: '''simple docstring''' _A = [[0] * (w + 1) for _ in range(n + 1 )] for i in range(1 , n + 1 ): for w_ in range(1 , w + 1 ): if wt[i - 1] <= w_: _A = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] ) else: _A = dp[i - 1][w_] return dp[n][w_], dp def __lowercase ( __lowercase , __lowercase , __lowercase ) -> str: '''simple docstring''' if not (isinstance(__lowercase , (list, tuple) ) and isinstance(__lowercase , (list, tuple) )): raise ValueError( "Both the weights and values vectors must be either lists or tuples" ) _A = len(__lowercase ) if num_items != len(__lowercase ): _A = ( "The number of weights must be the same as the number of values.\n" F'''But got {num_items} weights and {len(__lowercase )} values''' ) raise ValueError(__lowercase ) for i in range(__lowercase ): if not isinstance(wt[i] , __lowercase ): _A = ( "All weights must be integers but got weight of " F'''type {type(wt[i] )} at index {i}''' ) raise TypeError(__lowercase ) _A = knapsack(__lowercase , __lowercase , __lowercase , __lowercase ) _A = set() _construct_solution(__lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) return optimal_val, example_optional_set def __lowercase ( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) -> Dict: '''simple docstring''' if i > 0 and j > 0: if dp[i - 1][j] == dp[i][j]: _construct_solution(__lowercase , __lowercase , i - 1 , __lowercase , __lowercase ) else: optimal_set.add(__lowercase ) _construct_solution(__lowercase , __lowercase , i - 1 , j - wt[i - 1] , __lowercase ) if __name__ == "__main__": lowerCamelCase_ = [3, 2, 4, 4] lowerCamelCase_ = [4, 3, 2, 3] lowerCamelCase_ = 4 lowerCamelCase_ = 6 lowerCamelCase_ = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)] lowerCamelCase_ , lowerCamelCase_ = knapsack(w, wt, val, n) print(optimal_solution) print(mf_knapsack(n, wt, val, w)) # switched the n and w # testing the dynamic programming problem with example # the optimal subset for the above example are items 3 and 4 lowerCamelCase_ , lowerCamelCase_ = knapsack_with_example_solution(w, wt, val) assert optimal_solution == 8 assert optimal_subset == {3, 4} print('''optimal_value = ''', optimal_solution) print('''An optimal subset corresponding to the optimal value''', optimal_subset)
330
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import importlib.metadata import json import os from dataclasses import dataclass from typing import Any, Dict, Union from packaging import version from ..utils import is_torch_available, logging if is_torch_available(): import torch A_ = logging.get_logger(__name__) @dataclass class _snake_case : def __init__( self : Optional[int] ,SCREAMING_SNAKE_CASE__ : Any=False ,SCREAMING_SNAKE_CASE__ : Dict=False ,SCREAMING_SNAKE_CASE__ : Tuple=6.0 ,SCREAMING_SNAKE_CASE__ : Optional[int]=None ,SCREAMING_SNAKE_CASE__ : List[str]=False ,SCREAMING_SNAKE_CASE__ : Any=False ,SCREAMING_SNAKE_CASE__ : Tuple=None ,SCREAMING_SNAKE_CASE__ : int="fp4" ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=False ,**SCREAMING_SNAKE_CASE__ : Optional[Any] ,): SCREAMING_SNAKE_CASE:Dict = load_in_abit SCREAMING_SNAKE_CASE:Optional[int] = load_in_abit SCREAMING_SNAKE_CASE:Optional[Any] = llm_inta_threshold SCREAMING_SNAKE_CASE:Dict = llm_inta_skip_modules SCREAMING_SNAKE_CASE:str = llm_inta_enable_fpaa_cpu_offload SCREAMING_SNAKE_CASE:Union[str, Any] = llm_inta_has_fpaa_weight SCREAMING_SNAKE_CASE:int = bnb_abit_quant_type SCREAMING_SNAKE_CASE:int = bnb_abit_use_double_quant if bnb_abit_compute_dtype is None: SCREAMING_SNAKE_CASE:Dict = torch.floataa elif isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): SCREAMING_SNAKE_CASE:str = getattr(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) elif isinstance(SCREAMING_SNAKE_CASE__ ,torch.dtype ): SCREAMING_SNAKE_CASE:int = bnb_abit_compute_dtype else: raise ValueError("bnb_4bit_compute_dtype must be a string or a torch.dtype" ) self.post_init() def __UpperCamelCase ( self : Tuple ): if not isinstance(self.llm_inta_threshold ,SCREAMING_SNAKE_CASE__ ): raise ValueError("llm_int8_threshold must be a float" ) if self.llm_inta_skip_modules is not None and not isinstance(self.llm_inta_skip_modules ,SCREAMING_SNAKE_CASE__ ): raise ValueError("llm_int8_skip_modules must be a list of strings" ) if not isinstance(self.llm_inta_enable_fpaa_cpu_offload ,SCREAMING_SNAKE_CASE__ ): raise ValueError("llm_int8_enable_fp32_cpu_offload must be a boolean" ) if not isinstance(self.llm_inta_has_fpaa_weight ,SCREAMING_SNAKE_CASE__ ): raise ValueError("llm_int8_has_fp16_weight must be a boolean" ) if self.bnb_abit_compute_dtype is not None and not isinstance(self.bnb_abit_compute_dtype ,torch.dtype ): raise ValueError("bnb_4bit_compute_dtype must be torch.dtype" ) if not isinstance(self.bnb_abit_quant_type ,SCREAMING_SNAKE_CASE__ ): raise ValueError("bnb_4bit_quant_type must be a string" ) if not isinstance(self.bnb_abit_use_double_quant ,SCREAMING_SNAKE_CASE__ ): raise ValueError("bnb_4bit_use_double_quant must be a boolean" ) if self.load_in_abit and not version.parse(importlib.metadata.version("bitsandbytes" ) ) >= version.parse( "0.39.0" ): raise ValueError( "4 bit quantization requires bitsandbytes>=0.39.0 - please upgrade your bitsandbytes version" ) def __UpperCamelCase ( self : Dict ): return self.load_in_abit or self.load_in_abit def __UpperCamelCase ( self : Union[str, Any] ): if self.load_in_abit: return "llm_int8" elif self.load_in_abit and self.bnb_abit_quant_type == "fp4": return "fp4" elif self.load_in_abit and self.bnb_abit_quant_type == "nf4": return "nf4" else: return None @classmethod def __UpperCamelCase ( cls : Dict ,SCREAMING_SNAKE_CASE__ : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : Dict ,**SCREAMING_SNAKE_CASE__ : Tuple ): SCREAMING_SNAKE_CASE:List[str] = cls(**SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:List[str] = [] for key, value in kwargs.items(): if hasattr(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): setattr(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) to_remove.append(SCREAMING_SNAKE_CASE__ ) for key in to_remove: kwargs.pop(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) if return_unused_kwargs: return config, kwargs else: return config def __UpperCamelCase ( self : str ,SCREAMING_SNAKE_CASE__ : Union[str, os.PathLike] ): with open(SCREAMING_SNAKE_CASE__ ,"w" ,encoding="utf-8" ) as writer: SCREAMING_SNAKE_CASE:List[str] = self.to_dict() SCREAMING_SNAKE_CASE:Union[str, Any] = json.dumps(SCREAMING_SNAKE_CASE__ ,indent=2 ,sort_keys=SCREAMING_SNAKE_CASE__ ) + "\n" writer.write(SCREAMING_SNAKE_CASE__ ) def __UpperCamelCase ( self : Optional[int] ): SCREAMING_SNAKE_CASE:Optional[int] = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE:Union[str, Any] = str(output["bnb_4bit_compute_dtype"] ).split("." )[1] return output def __repr__( self : Tuple ): return F'''{self.__class__.__name__} {self.to_json_string()}''' def __UpperCamelCase ( self : Tuple ,SCREAMING_SNAKE_CASE__ : bool = True ): if use_diff is True: SCREAMING_SNAKE_CASE:str = self.to_diff_dict() else: SCREAMING_SNAKE_CASE:List[Any] = self.to_dict() return json.dumps(SCREAMING_SNAKE_CASE__ ,indent=2 ,sort_keys=SCREAMING_SNAKE_CASE__ ) + "\n" def __UpperCamelCase ( self : int ): SCREAMING_SNAKE_CASE:Union[str, Any] = self.to_dict() # get the default config dict SCREAMING_SNAKE_CASE:str = BitsAndBytesConfig().to_dict() SCREAMING_SNAKE_CASE:Any = {} # only serialize values that differ from the default config for key, value in config_dict.items(): if value != default_config_dict[key]: SCREAMING_SNAKE_CASE:List[str] = value return serializable_config_dict
143
0
"""simple docstring""" from __future__ import annotations UpperCAmelCase =list[tuple[int, int]] UpperCAmelCase =[ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] UpperCAmelCase =([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right class lowerCamelCase__ : '''simple docstring''' def __init__( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,) -> int: A = pos_x A = pos_y A = (pos_y, pos_x) A = goal_x A = goal_y A = g_cost A = parent A = self.calculate_heuristic() def UpperCamelCase__ ( self ) -> float: A = abs(self.pos_x - self.goal_x ) A = abs(self.pos_y - self.goal_y ) return dx + dy def __lt__( self ,lowerCamelCase_ ) -> bool: return self.f_cost < other.f_cost class lowerCamelCase__ : '''simple docstring''' def __init__( self ,lowerCamelCase_ ,lowerCamelCase_ ) -> List[str]: A = Node(start[1] ,start[0] ,goal[1] ,goal[0] ,0 ,lowerCamelCase_ ) A = Node(goal[1] ,goal[0] ,goal[1] ,goal[0] ,9_9_9_9_9 ,lowerCamelCase_ ) A = [self.start] A = [] A = False def UpperCamelCase__ ( self ) -> Path | None: while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() A = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: A = True return self.retrace_path(lowerCamelCase_ ) self.closed_nodes.append(lowerCamelCase_ ) A = self.get_successors(lowerCamelCase_ ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(lowerCamelCase_ ) else: # retrieve the best current path A = self.open_nodes.pop(self.open_nodes.index(lowerCamelCase_ ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(lowerCamelCase_ ) else: self.open_nodes.append(lowerCamelCase_ ) if not self.reached: return [self.start.pos] return None def UpperCamelCase__ ( self ,lowerCamelCase_ ) -> list[Node]: A = [] for action in delta: A = parent.pos_x + action[1] A = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(lowerCamelCase_ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( lowerCamelCase_ ,lowerCamelCase_ ,self.target.pos_y ,self.target.pos_x ,parent.g_cost + 1 ,lowerCamelCase_ ,) ) return successors def UpperCamelCase__ ( self ,lowerCamelCase_ ) -> Path: A = node A = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) A = current_node.parent path.reverse() return path if __name__ == "__main__": UpperCAmelCase =(0, 0) UpperCAmelCase =(len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) print("------") UpperCAmelCase =GreedyBestFirst(init, goal) UpperCAmelCase =greedy_bf.search() if path: for pos_x, pos_y in path: UpperCAmelCase =2 for elem in grid: print(elem)
718
"""simple docstring""" import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class lowerCamelCase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowerCamelCase = (DDPMParallelScheduler,) def UpperCamelCase__ ( self ,**lowerCamelCase_ ) -> List[Any]: A = { """num_train_timesteps""": 1_0_0_0, """beta_start""": 0.00_01, """beta_end""": 0.02, """beta_schedule""": """linear""", """variance_type""": """fixed_small""", """clip_sample""": True, } config.update(**lowerCamelCase_ ) return config def UpperCamelCase__ ( self ) -> Tuple: for timesteps in [1, 5, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=lowerCamelCase_ ) def UpperCamelCase__ ( self ) -> Dict: for beta_start, beta_end in zip([0.00_01, 0.0_01, 0.01, 0.1] ,[0.0_02, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=lowerCamelCase_ ,beta_end=lowerCamelCase_ ) def UpperCamelCase__ ( self ) -> List[Any]: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowerCamelCase_ ) def UpperCamelCase__ ( self ) -> str: for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=lowerCamelCase_ ) def UpperCamelCase__ ( self ) -> Any: for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowerCamelCase_ ) def UpperCamelCase__ ( self ) -> int: self.check_over_configs(thresholding=lowerCamelCase_ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=lowerCamelCase_ ,prediction_type=lowerCamelCase_ ,sample_max_value=lowerCamelCase_ ,) def UpperCamelCase__ ( self ) -> Union[str, Any]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=lowerCamelCase_ ) def UpperCamelCase__ ( self ) -> Union[str, Any]: for t in [0, 5_0_0, 9_9_9]: self.check_over_forward(time_step=lowerCamelCase_ ) def UpperCamelCase__ ( self ) -> Optional[Any]: A = self.scheduler_classes[0] A = self.get_scheduler_config() A = scheduler_class(**lowerCamelCase_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 ) - 0.0_09_79 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 ) - 0.02 ) ) < 1E-5 def UpperCamelCase__ ( self ) -> Optional[Any]: A = self.scheduler_classes[0] A = self.get_scheduler_config() A = scheduler_class(**lowerCamelCase_ ) A = len(lowerCamelCase_ ) A = self.dummy_model() A = self.dummy_sample_deter A = self.dummy_sample_deter + 0.1 A = self.dummy_sample_deter - 0.1 A = samplea.shape[0] A = torch.stack([samplea, samplea, samplea] ,dim=0 ) A = torch.arange(lowerCamelCase_ )[0:3, None].repeat(1 ,lowerCamelCase_ ) A = model(samples.flatten(0 ,1 ) ,timesteps.flatten(0 ,1 ) ) A = scheduler.batch_step_no_noise(lowerCamelCase_ ,timesteps.flatten(0 ,1 ) ,samples.flatten(0 ,1 ) ) A = torch.sum(torch.abs(lowerCamelCase_ ) ) A = torch.mean(torch.abs(lowerCamelCase_ ) ) assert abs(result_sum.item() - 11_53.18_33 ) < 1E-2 assert abs(result_mean.item() - 0.50_05 ) < 1E-3 def UpperCamelCase__ ( self ) -> Optional[int]: A = self.scheduler_classes[0] A = self.get_scheduler_config() A = scheduler_class(**lowerCamelCase_ ) A = len(lowerCamelCase_ ) A = self.dummy_model() A = self.dummy_sample_deter A = torch.manual_seed(0 ) for t in reversed(range(lowerCamelCase_ ) ): # 1. predict noise residual A = model(lowerCamelCase_ ,lowerCamelCase_ ) # 2. predict previous mean of sample x_t-1 A = scheduler.step(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,generator=lowerCamelCase_ ).prev_sample A = pred_prev_sample A = torch.sum(torch.abs(lowerCamelCase_ ) ) A = torch.mean(torch.abs(lowerCamelCase_ ) ) assert abs(result_sum.item() - 2_58.96_06 ) < 1E-2 assert abs(result_mean.item() - 0.33_72 ) < 1E-3 def UpperCamelCase__ ( self ) -> int: A = self.scheduler_classes[0] A = self.get_scheduler_config(prediction_type="""v_prediction""" ) A = scheduler_class(**lowerCamelCase_ ) A = len(lowerCamelCase_ ) A = self.dummy_model() A = self.dummy_sample_deter A = torch.manual_seed(0 ) for t in reversed(range(lowerCamelCase_ ) ): # 1. predict noise residual A = model(lowerCamelCase_ ,lowerCamelCase_ ) # 2. predict previous mean of sample x_t-1 A = scheduler.step(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,generator=lowerCamelCase_ ).prev_sample A = pred_prev_sample A = torch.sum(torch.abs(lowerCamelCase_ ) ) A = torch.mean(torch.abs(lowerCamelCase_ ) ) assert abs(result_sum.item() - 2_02.02_96 ) < 1E-2 assert abs(result_mean.item() - 0.26_31 ) < 1E-3 def UpperCamelCase__ ( self ) -> Optional[Any]: A = self.scheduler_classes[0] A = self.get_scheduler_config() A = scheduler_class(**lowerCamelCase_ ) A = [1_0_0, 8_7, 5_0, 1, 0] scheduler.set_timesteps(timesteps=lowerCamelCase_ ) A = scheduler.timesteps for i, timestep in enumerate(lowerCamelCase_ ): if i == len(lowerCamelCase_ ) - 1: A = -1 else: A = timesteps[i + 1] A = scheduler.previous_timestep(lowerCamelCase_ ) A = prev_t.item() self.assertEqual(lowerCamelCase_ ,lowerCamelCase_ ) def UpperCamelCase__ ( self ) -> str: A = self.scheduler_classes[0] A = self.get_scheduler_config() A = scheduler_class(**lowerCamelCase_ ) A = [1_0_0, 8_7, 5_0, 5_1, 0] with self.assertRaises(lowerCamelCase_ ,msg="""`custom_timesteps` must be in descending order.""" ): scheduler.set_timesteps(timesteps=lowerCamelCase_ ) def UpperCamelCase__ ( self ) -> str: A = self.scheduler_classes[0] A = self.get_scheduler_config() A = scheduler_class(**lowerCamelCase_ ) A = [1_0_0, 8_7, 5_0, 1, 0] A = len(lowerCamelCase_ ) with self.assertRaises(lowerCamelCase_ ,msg="""Can only pass one of `num_inference_steps` or `custom_timesteps`.""" ): scheduler.set_timesteps(num_inference_steps=lowerCamelCase_ ,timesteps=lowerCamelCase_ ) def UpperCamelCase__ ( self ) -> List[str]: A = self.scheduler_classes[0] A = self.get_scheduler_config() A = scheduler_class(**lowerCamelCase_ ) A = [scheduler.config.num_train_timesteps] with self.assertRaises( lowerCamelCase_ ,msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" ,): scheduler.set_timesteps(timesteps=lowerCamelCase_ )
255
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __A : str = logging.get_logger(__name__) __A : List[Any] = { 'google/switch-base-8': 'https://huggingface.co/google/switch-base-8/blob/main/config.json', } class __UpperCamelCase ( SCREAMING_SNAKE_CASE_ ): lowercase : List[Any] = """switch_transformers""" lowercase : Union[str, Any] = ["""past_key_values"""] lowercase : Union[str, Any] = {"""hidden_size""": """d_model""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers"""} def __init__( self :List[str] ,_UpperCamelCase :Optional[Any]=3_2_1_2_8 ,_UpperCamelCase :Union[str, Any]=7_6_8 ,_UpperCamelCase :List[Any]=6_4 ,_UpperCamelCase :Optional[Any]=2_0_4_8 ,_UpperCamelCase :Optional[Any]=6_4 ,_UpperCamelCase :Any=1_2 ,_UpperCamelCase :Any=3 ,_UpperCamelCase :int=1_2 ,_UpperCamelCase :Optional[int]=3 ,_UpperCamelCase :str=1_2 ,_UpperCamelCase :Any=8 ,_UpperCamelCase :int=False ,_UpperCamelCase :str=0.01 ,_UpperCamelCase :Tuple="float32" ,_UpperCamelCase :str=False ,_UpperCamelCase :Any=3_2 ,_UpperCamelCase :Union[str, Any]=1_2_8 ,_UpperCamelCase :Dict=0.1 ,_UpperCamelCase :Optional[Any]=1E-6 ,_UpperCamelCase :Any=0.0_01 ,_UpperCamelCase :Tuple=0.0_01 ,_UpperCamelCase :Optional[int]=1.0 ,_UpperCamelCase :Tuple="relu" ,_UpperCamelCase :Dict=True ,_UpperCamelCase :Dict=False ,_UpperCamelCase :Dict=True ,_UpperCamelCase :Dict=0 ,_UpperCamelCase :Optional[Any]=1 ,**_UpperCamelCase :Any ,): snake_case_ : Optional[int] = vocab_size snake_case_ : str = d_model snake_case_ : Optional[Any] = d_kv snake_case_ : Optional[int] = d_ff snake_case_ : Any = num_sparse_encoder_layers snake_case_ : Dict = num_layers snake_case_ : Optional[int] = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry snake_case_ : Dict = num_sparse_decoder_layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_encoder_layers > 0: snake_case_ : Optional[Any] = self.num_layers // self.num_sparse_encoder_layers else: snake_case_ : Union[str, Any] = self.num_layers # HACK: this will create 0 sparse layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_decoder_layers > 0: snake_case_ : str = self.num_decoder_layers // self.num_sparse_decoder_layers else: snake_case_ : Union[str, Any] = self.num_decoder_layers # HACK: this will create 0 sparse layers snake_case_ : List[Any] = num_heads snake_case_ : int = num_experts snake_case_ : List[str] = expert_capacity snake_case_ : Any = router_bias snake_case_ : Dict = router_jitter_noise if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(F'''`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}''' ) snake_case_ : str = router_dtype snake_case_ : Optional[int] = router_ignore_padding_tokens snake_case_ : Dict = relative_attention_num_buckets snake_case_ : Dict = relative_attention_max_distance snake_case_ : List[str] = dropout_rate snake_case_ : Union[str, Any] = layer_norm_epsilon snake_case_ : Optional[int] = initializer_factor snake_case_ : List[Any] = feed_forward_proj snake_case_ : Dict = use_cache snake_case_ : str = add_router_probs snake_case_ : Dict = router_z_loss_coef snake_case_ : Dict = router_aux_loss_coef snake_case_ : List[str] = self.feed_forward_proj.split("""-""" ) snake_case_ : Union[str, Any] = act_info[-1] snake_case_ : List[Any] = act_info[0] == """gated""" if len(_UpperCamelCase ) > 1 and act_info[0] != "gated" or len(_UpperCamelCase ) > 2: raise ValueError( F'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.''' """Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. """ """'gated-gelu' or 'relu'""" ) # for backwards compatibility if feed_forward_proj == "gated-gelu": snake_case_ : List[Any] = """gelu_new""" super().__init__( pad_token_id=_UpperCamelCase ,eos_token_id=_UpperCamelCase ,is_encoder_decoder=_UpperCamelCase ,**_UpperCamelCase ,)
334
from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def lowercase ( SCREAMING_SNAKE_CASE__ : Any ) -> str: return getitem, k def lowercase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple ) -> int: return setitem, k, v def lowercase ( SCREAMING_SNAKE_CASE__ : Tuple ) -> Union[str, Any]: return delitem, k def lowercase ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int] , *SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Any: try: return fun(SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ ), None except Exception as e: return None, e a__ = ( _set("""key_a""", """val_a"""), _set("""key_b""", """val_b"""), ) a__ = [ _set("""key_a""", """val_a"""), _set("""key_a""", """val_b"""), ] a__ = [ _set("""key_a""", """val_a"""), _set("""key_b""", """val_b"""), _del("""key_a"""), _del("""key_b"""), _set("""key_a""", """val_a"""), _del("""key_a"""), ] a__ = [ _get("""key_a"""), _del("""key_a"""), _set("""key_a""", """val_a"""), _del("""key_a"""), _del("""key_a"""), _get("""key_a"""), ] a__ = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] a__ = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set("""key_a""", """val_b"""), ] @pytest.mark.parametrize( """operations""" , ( pytest.param(_add_items , id="""add items""" ), pytest.param(_overwrite_items , id="""overwrite items""" ), pytest.param(_delete_items , id="""delete items""" ), pytest.param(_access_absent_items , id="""access absent items""" ), pytest.param(_add_with_resize_up , id="""add with resize up""" ), pytest.param(_add_with_resize_down , id="""add with resize down""" ), ) , ) def lowercase ( SCREAMING_SNAKE_CASE__ : Dict ) -> Optional[int]: _snake_case : List[str] = HashMap(initial_block_size=4 ) _snake_case : List[Any] = {} for _, (fun, *args) in enumerate(SCREAMING_SNAKE_CASE__ ): _snake_case , _snake_case : Tuple = _run_operation(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ ) _snake_case , _snake_case : Dict = _run_operation(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ ) assert my_res == py_res assert str(SCREAMING_SNAKE_CASE__ ) == str(SCREAMING_SNAKE_CASE__ ) assert set(SCREAMING_SNAKE_CASE__ ) == set(SCREAMING_SNAKE_CASE__ ) assert len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ ) assert set(my.items() ) == set(py.items() ) def lowercase ( ) -> List[str]: def is_public(SCREAMING_SNAKE_CASE__ : str ) -> bool: return not name.startswith("""_""" ) _snake_case : Optional[Any] = {name for name in dir({} ) if is_public(SCREAMING_SNAKE_CASE__ )} _snake_case : str = {name for name in dir(HashMap() ) if is_public(SCREAMING_SNAKE_CASE__ )} assert dict_public_names > hash_public_names
477
0
import os import tempfile import unittest import uuid from pathlib import Path from transformers.testing_utils import get_tests_dir, require_soundfile, require_torch, require_vision from transformers.tools.agent_types import AgentAudio, AgentImage, AgentText from transformers.utils import is_soundfile_availble, is_torch_available, is_vision_available if is_torch_available(): import torch if is_soundfile_availble(): import soundfile as sf if is_vision_available(): from PIL import Image def lowerCamelCase__ (__lowerCamelCase="" ): _SCREAMING_SNAKE_CASE : List[Any] = tempfile.mkdtemp() return os.path.join(__lowerCamelCase, str(uuid.uuida() ) + suffix ) @require_soundfile @require_torch class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE : int = torch.rand(1_2 , dtype=torch.floataa ) - 0.5 _SCREAMING_SNAKE_CASE : Dict = AgentAudio(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Any = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(__lowerCamelCase , agent_type.to_raw() , atol=1E-4 ) ) del agent_type # Ensure the path remains even after the object deletion self.assertTrue(os.path.exists(__lowerCamelCase ) ) # Ensure that the file contains the same value as the original tensor _SCREAMING_SNAKE_CASE : Union[str, Any] = sf.read(__lowerCamelCase ) self.assertTrue(torch.allclose(__lowerCamelCase , torch.tensor(__lowerCamelCase ) , atol=1E-4 ) ) def UpperCamelCase_ ( self ) -> int: _SCREAMING_SNAKE_CASE : Tuple = torch.rand(1_2 , dtype=torch.floataa ) - 0.5 _SCREAMING_SNAKE_CASE : Tuple = get_new_path(suffix=".wav" ) sf.write(__lowerCamelCase , __lowerCamelCase , 1_6_0_0_0 ) _SCREAMING_SNAKE_CASE : Tuple = AgentAudio(__lowerCamelCase ) self.assertTrue(torch.allclose(__lowerCamelCase , agent_type.to_raw() , atol=1E-4 ) ) self.assertEqual(agent_type.to_string() , __lowerCamelCase ) @require_vision @require_torch class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ) -> List[str]: _SCREAMING_SNAKE_CASE : Dict = torch.randint(0 , 2_5_6 , (6_4, 6_4, 3) ) _SCREAMING_SNAKE_CASE : str = AgentImage(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(__lowerCamelCase , agent_type._tensor , atol=1E-4 ) ) self.assertIsInstance(agent_type.to_raw() , Image.Image ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(__lowerCamelCase ) ) def UpperCamelCase_ ( self ) -> Any: _SCREAMING_SNAKE_CASE : List[str] = Path(get_tests_dir("fixtures/tests_samples/COCO" ) ) / "000000039769.png" _SCREAMING_SNAKE_CASE : Dict = Image.open(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Tuple = AgentImage(__lowerCamelCase ) self.assertTrue(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(__lowerCamelCase ) ) def UpperCamelCase_ ( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE : Dict = Path(get_tests_dir("fixtures/tests_samples/COCO" ) ) / "000000039769.png" _SCREAMING_SNAKE_CASE : Dict = Image.open(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = AgentImage(__lowerCamelCase ) self.assertFalse(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(__lowerCamelCase ) ) class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE : Dict = "Hey!" _SCREAMING_SNAKE_CASE : Union[str, Any] = AgentText(__lowerCamelCase ) self.assertEqual(__lowerCamelCase , agent_type.to_string() ) self.assertEqual(__lowerCamelCase , agent_type.to_raw() ) self.assertEqual(__lowerCamelCase , __lowerCamelCase )
720
import os import pickle import unittest from transformers import AutoTokenizer from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.models.bert_japanese.tokenization_bert_japanese import ( VOCAB_FILES_NAMES, BertJapaneseTokenizer, CharacterTokenizer, JumanppTokenizer, MecabTokenizer, SudachiTokenizer, WordpieceTokenizer, ) from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi from ...test_tokenization_common import TokenizerTesterMixin @custom_tokenizers class lowerCAmelCase__( __lowercase , unittest.TestCase ): '''simple docstring''' __snake_case = BertJapaneseTokenizer __snake_case = False __snake_case = True def UpperCamelCase_ ( self ) -> Dict: super().setUp() _SCREAMING_SNAKE_CASE : Dict = [ "[UNK]", "[CLS]", "[SEP]", "こんにちは", "こん", "にちは", "ばんは", "##こん", "##にちは", "##ばんは", "世界", "##世界", "、", "##、", "。", "##。", ] _SCREAMING_SNAKE_CASE : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def UpperCamelCase_ ( self , __lowerCamelCase ) -> List[str]: _SCREAMING_SNAKE_CASE : List[Any] = "こんにちは、世界。 \nこんばんは、世界。" _SCREAMING_SNAKE_CASE : str = "こんにちは 、 世界 。 こんばんは 、 世界 。" return input_text, output_text def UpperCamelCase_ ( self , __lowerCamelCase ) -> Dict: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : int = self.get_input_output_texts(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[Any] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = tokenizer.decode(__lowerCamelCase , clean_up_tokenization_spaces=__lowerCamelCase ) return text, ids def UpperCamelCase_ ( self ) -> List[str]: pass # TODO add if relevant def UpperCamelCase_ ( self ) -> Union[str, Any]: pass # TODO add if relevant def UpperCamelCase_ ( self ) -> List[str]: pass # TODO add if relevant def UpperCamelCase_ ( self ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE : str = self.tokenizer_class(self.vocab_file ) _SCREAMING_SNAKE_CASE : int = tokenizer.tokenize("こんにちは、世界。\nこんばんは、世界。" ) self.assertListEqual(__lowerCamelCase , ["こんにちは", "、", "世界", "。", "こん", "##ばんは", "、", "世界", "。"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCamelCase ) , [3, 1_2, 1_0, 1_4, 4, 9, 1_2, 1_0, 1_4] ) def UpperCamelCase_ ( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE : Tuple = self.tokenizer_class(self.vocab_file , word_tokenizer_type="mecab" ) self.assertIsNotNone(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : int = "こんにちは、世界。\nこんばんは、世界。" _SCREAMING_SNAKE_CASE : List[Any] = tokenizer.tokenize(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , ["こんにちは", "、", "世界", "。", "こん", "##ばんは", "、", "世界", "。"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCamelCase ) , [3, 1_2, 1_0, 1_4, 4, 9, 1_2, 1_0, 1_4] ) _SCREAMING_SNAKE_CASE : int = os.path.join(self.tmpdirname , "tokenizer.bin" ) with open(__lowerCamelCase , "wb" ) as handle: pickle.dump(__lowerCamelCase , __lowerCamelCase ) with open(__lowerCamelCase , "rb" ) as handle: _SCREAMING_SNAKE_CASE : Optional[Any] = pickle.load(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Any = tokenizer_new.tokenize(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) def UpperCamelCase_ ( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE : Any = MecabTokenizer(mecab_dic="ipadic" ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップルストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", "。"] , ) def UpperCamelCase_ ( self ) -> str: try: _SCREAMING_SNAKE_CASE : List[Any] = MecabTokenizer(mecab_dic="unidic_lite" ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップル", "ストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", "。"] , ) def UpperCamelCase_ ( self ) -> List[Any]: try: _SCREAMING_SNAKE_CASE : Dict = MecabTokenizer(mecab_dic="unidic" ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップル", "ストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", "。"] , ) def UpperCamelCase_ ( self ) -> Optional[Any]: _SCREAMING_SNAKE_CASE : Dict = MecabTokenizer(do_lower_case=__lowerCamelCase , mecab_dic="ipadic" ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップルストア", "で", "iphone", "8", "が", "発売", "さ", "れ", "た", "。"] , ) def UpperCamelCase_ ( self ) -> Dict: try: _SCREAMING_SNAKE_CASE : Any = MecabTokenizer( do_lower_case=__lowerCamelCase , normalize_text=__lowerCamelCase , mecab_option="-d /usr/local/lib/mecab/dic/jumandic" ) except RuntimeError: # if dict doesn't exist in the system, previous code raises this error. return self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップルストア", "で", "iPhone", "8", "が", "発売", "さ", "れた", "\u3000", "。"] , ) def UpperCamelCase_ ( self ) -> List[str]: _SCREAMING_SNAKE_CASE : List[str] = MecabTokenizer(normalize_text=__lowerCamelCase , mecab_dic="ipadic" ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップルストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", " ", "。"] , ) @require_sudachi def UpperCamelCase_ ( self ) -> Dict: _SCREAMING_SNAKE_CASE : Union[str, Any] = self.tokenizer_class(self.vocab_file , word_tokenizer_type="sudachi" ) self.assertIsNotNone(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : int = "こんにちは、世界。\nこんばんは、世界。" _SCREAMING_SNAKE_CASE : List[Any] = tokenizer.tokenize(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , ["こんにちは", "、", "世界", "。", "こん", "##ばんは", "、", "世界", "。"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCamelCase ) , [3, 1_2, 1_0, 1_4, 4, 9, 1_2, 1_0, 1_4] ) _SCREAMING_SNAKE_CASE : Optional[int] = os.path.join(self.tmpdirname , "tokenizer.bin" ) with open(__lowerCamelCase , "wb" ) as handle: pickle.dump(__lowerCamelCase , __lowerCamelCase ) with open(__lowerCamelCase , "rb" ) as handle: _SCREAMING_SNAKE_CASE : List[str] = pickle.load(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[Any] = tokenizer_new.tokenize(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) @require_sudachi def UpperCamelCase_ ( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE : Tuple = SudachiTokenizer(sudachi_dict_type="core" ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , [" ", "\t", "アップル", "ストア", "で", "iPhone", "8", " ", "が", " ", " ", "\n ", "発売", "さ", "れ", "た", " ", "。", " ", " "] , ) @require_sudachi def UpperCamelCase_ ( self ) -> Dict: _SCREAMING_SNAKE_CASE : Tuple = SudachiTokenizer(sudachi_dict_type="core" , sudachi_split_mode="A" ) self.assertListEqual(tokenizer.tokenize("外国人参政権" ) , ["外国", "人", "参政", "権"] ) @require_sudachi def UpperCamelCase_ ( self ) -> int: _SCREAMING_SNAKE_CASE : Tuple = SudachiTokenizer(sudachi_dict_type="core" , sudachi_split_mode="B" ) self.assertListEqual(tokenizer.tokenize("外国人参政権" ) , ["外国人", "参政権"] ) @require_sudachi def UpperCamelCase_ ( self ) -> Optional[Any]: _SCREAMING_SNAKE_CASE : List[str] = SudachiTokenizer(sudachi_dict_type="core" , sudachi_split_mode="C" ) self.assertListEqual(tokenizer.tokenize("外国人参政権" ) , ["外国人参政権"] ) @require_sudachi def UpperCamelCase_ ( self ) -> Any: _SCREAMING_SNAKE_CASE : Dict = SudachiTokenizer(do_lower_case=__lowerCamelCase , sudachi_dict_type="core" ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , [" ", "\t", "アップル", "ストア", "で", "iphone", "8", " ", "が", " ", " ", "\n ", "発売", "さ", "れ", "た", " ", "。", " ", " "] , ) @require_sudachi def UpperCamelCase_ ( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE : List[Any] = SudachiTokenizer(normalize_text=__lowerCamelCase , sudachi_dict_type="core" ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , [" ", "\t", "アップル", "ストア", "で", "iPhone", "8", " ", "が", " ", " ", "\n ", "発売", "さ", "れ", "た", "\u3000", "。", " ", " "] , ) @require_sudachi def UpperCamelCase_ ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE : Union[str, Any] = SudachiTokenizer(trim_whitespace=__lowerCamelCase , sudachi_dict_type="core" ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップル", "ストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", "。"] , ) @require_jumanpp def UpperCamelCase_ ( self ) -> Dict: _SCREAMING_SNAKE_CASE : Optional[Any] = self.tokenizer_class(self.vocab_file , word_tokenizer_type="jumanpp" ) self.assertIsNotNone(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = "こんにちは、世界。\nこんばんは、世界。" _SCREAMING_SNAKE_CASE : Dict = tokenizer.tokenize(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , ["こんにちは", "、", "世界", "。", "こん", "##ばんは", "、", "世界", "。"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCamelCase ) , [3, 1_2, 1_0, 1_4, 4, 9, 1_2, 1_0, 1_4] ) _SCREAMING_SNAKE_CASE : List[str] = os.path.join(self.tmpdirname , "tokenizer.bin" ) with open(__lowerCamelCase , "wb" ) as handle: pickle.dump(__lowerCamelCase , __lowerCamelCase ) with open(__lowerCamelCase , "rb" ) as handle: _SCREAMING_SNAKE_CASE : Any = pickle.load(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Any = tokenizer_new.tokenize(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) @require_jumanpp def UpperCamelCase_ ( self ) -> Any: _SCREAMING_SNAKE_CASE : Optional[Any] = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップル", "ストア", "で", "iPhone", "8", "\u3000", "が", "\u3000", "\u3000", "\u3000", "発売", "さ", "れた", "\u3000", "。"] , ) @require_jumanpp def UpperCamelCase_ ( self ) -> Tuple: _SCREAMING_SNAKE_CASE : List[Any] = JumanppTokenizer(do_lower_case=__lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップル", "ストア", "で", "iphone", "8", "\u3000", "が", "\u3000", "\u3000", "\u3000", "発売", "さ", "れた", "\u3000", "。"] , ) @require_jumanpp def UpperCamelCase_ ( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE : Optional[int] = JumanppTokenizer(normalize_text=__lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["ア", "ッ", "フ", "゚", "ル", "ストア", "で", "iPhone", "8", "\u3000", "が", "\u3000", "\u3000", "\u3000", "発売", "さ", "れた", "\u3000", "。"] , ) @require_jumanpp def UpperCamelCase_ ( self ) -> Any: _SCREAMING_SNAKE_CASE : List[str] = JumanppTokenizer(trim_whitespace=__lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップル", "ストア", "で", "iPhone", "8", "が", "発売", "さ", "れた", "。"] , ) @require_jumanpp def UpperCamelCase_ ( self ) -> str: _SCREAMING_SNAKE_CASE : Tuple = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize("ありがとうございますm(_ _)m見つけるのが大変です。" ) , ["ありがとう", "ございます", "m(_ _)m", "見つける", "の", "が", "大変です", "。"] , ) def UpperCamelCase_ ( self ) -> List[str]: _SCREAMING_SNAKE_CASE : int = ["[UNK]", "[CLS]", "[SEP]", "こんにちは", "こん", "にちは", "ばんは", "##こん", "##にちは", "##ばんは"] _SCREAMING_SNAKE_CASE : str = {} for i, token in enumerate(__lowerCamelCase ): _SCREAMING_SNAKE_CASE : List[str] = i _SCREAMING_SNAKE_CASE : Union[str, Any] = WordpieceTokenizer(vocab=__lowerCamelCase , unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) , [] ) self.assertListEqual(tokenizer.tokenize("こんにちは" ) , ["こんにちは"] ) self.assertListEqual(tokenizer.tokenize("こんばんは" ) , ["こん", "##ばんは"] ) self.assertListEqual(tokenizer.tokenize("こんばんは こんばんにちは こんにちは" ) , ["こん", "##ばんは", "[UNK]", "こんにちは"] ) def UpperCamelCase_ ( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE : int = BertJapaneseTokenizer.from_pretrained("nlp-waseda/roberta-base-japanese-with-auto-jumanpp" ) _SCREAMING_SNAKE_CASE : str = tokenizer.subword_tokenizer _SCREAMING_SNAKE_CASE : Union[str, Any] = subword_tokenizer.tokenize("国境 の 長い トンネル を 抜ける と 雪国 であった 。" ) self.assertListEqual(__lowerCamelCase , ["▁国境", "▁の", "▁長い", "▁トンネル", "▁を", "▁抜ける", "▁と", "▁雪", "国", "▁であった", "▁。"] ) _SCREAMING_SNAKE_CASE : Tuple = subword_tokenizer.tokenize("こんばんは こんばん にち は こんにちは" ) self.assertListEqual(__lowerCamelCase , ["▁こん", "ばん", "は", "▁こん", "ばん", "▁に", "ち", "▁は", "▁こんにちは"] ) def UpperCamelCase_ ( self ) -> Any: _SCREAMING_SNAKE_CASE : Tuple = self.tokenizer_class.from_pretrained("cl-tohoku/bert-base-japanese" ) _SCREAMING_SNAKE_CASE : List[Any] = tokenizer.encode("ありがとう。" , add_special_tokens=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Dict = tokenizer.encode("どういたしまして。" , add_special_tokens=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Any = tokenizer.build_inputs_with_special_tokens(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Dict = tokenizer.build_inputs_with_special_tokens(__lowerCamelCase , __lowerCamelCase ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class lowerCAmelCase__( __lowercase , unittest.TestCase ): '''simple docstring''' __snake_case = BertJapaneseTokenizer __snake_case = False def UpperCamelCase_ ( self ) -> Union[str, Any]: super().setUp() _SCREAMING_SNAKE_CASE : List[str] = ["[UNK]", "[CLS]", "[SEP]", "こ", "ん", "に", "ち", "は", "ば", "世", "界", "、", "。"] _SCREAMING_SNAKE_CASE : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def UpperCamelCase_ ( self , **__lowerCamelCase ) -> List[Any]: return BertJapaneseTokenizer.from_pretrained(self.tmpdirname , subword_tokenizer_type="character" , **__lowerCamelCase ) def UpperCamelCase_ ( self , __lowerCamelCase ) -> Optional[int]: _SCREAMING_SNAKE_CASE : Optional[int] = "こんにちは、世界。 \nこんばんは、世界。" _SCREAMING_SNAKE_CASE : Dict = "こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。" return input_text, output_text def UpperCamelCase_ ( self ) -> Tuple: pass # TODO add if relevant def UpperCamelCase_ ( self ) -> Union[str, Any]: pass # TODO add if relevant def UpperCamelCase_ ( self ) -> int: pass # TODO add if relevant def UpperCamelCase_ ( self ) -> Any: _SCREAMING_SNAKE_CASE : int = self.tokenizer_class(self.vocab_file , subword_tokenizer_type="character" ) _SCREAMING_SNAKE_CASE : Any = tokenizer.tokenize("こんにちは、世界。 \nこんばんは、世界。" ) self.assertListEqual( __lowerCamelCase , ["こ", "ん", "に", "ち", "は", "、", "世", "界", "。", "こ", "ん", "ば", "ん", "は", "、", "世", "界", "。"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__lowerCamelCase ) , [3, 4, 5, 6, 7, 1_1, 9, 1_0, 1_2, 3, 4, 8, 4, 7, 1_1, 9, 1_0, 1_2] ) def UpperCamelCase_ ( self ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE : Optional[Any] = ["[UNK]", "[CLS]", "[SEP]", "こ", "ん", "に", "ち", "は", "ば", "世", "界", "、", "。"] _SCREAMING_SNAKE_CASE : Union[str, Any] = {} for i, token in enumerate(__lowerCamelCase ): _SCREAMING_SNAKE_CASE : int = i _SCREAMING_SNAKE_CASE : List[Any] = CharacterTokenizer(vocab=__lowerCamelCase , unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) , [] ) self.assertListEqual(tokenizer.tokenize("こんにちは" ) , ["こ", "ん", "に", "ち", "は"] ) self.assertListEqual(tokenizer.tokenize("こんにちほ" ) , ["こ", "ん", "に", "ち", "[UNK]"] ) def UpperCamelCase_ ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE : Optional[int] = self.tokenizer_class.from_pretrained("cl-tohoku/bert-base-japanese-char" ) _SCREAMING_SNAKE_CASE : int = tokenizer.encode("ありがとう。" , add_special_tokens=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Any = tokenizer.encode("どういたしまして。" , add_special_tokens=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Dict = tokenizer.build_inputs_with_special_tokens(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = tokenizer.build_inputs_with_special_tokens(__lowerCamelCase , __lowerCamelCase ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE : str = "cl-tohoku/bert-base-japanese" _SCREAMING_SNAKE_CASE : List[Any] = AutoTokenizer.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ) -> str: _SCREAMING_SNAKE_CASE : Optional[Any] = "cl-tohoku/bert-base-japanese" with self.assertLogs("transformers" , level="WARNING" ) as cm: BertTokenizer.from_pretrained(__lowerCamelCase ) self.assertTrue( cm.records[0].message.startswith( "The tokenizer class you load from this checkpoint is not the same type as the class this function" " is called from." ) ) _SCREAMING_SNAKE_CASE : Optional[Any] = "bert-base-cased" with self.assertLogs("transformers" , level="WARNING" ) as cm: BertJapaneseTokenizer.from_pretrained(__lowerCamelCase ) self.assertTrue( cm.records[0].message.startswith( "The tokenizer class you load from this checkpoint is not the same type as the class this function" " is called from." ) )
381
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import FunnelConfig, is_tf_available from transformers.testing_utils import require_tf from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, ) class lowerCamelCase_ : '''simple docstring''' def __init__( self : Optional[int] , A : int , A : Union[str, Any]=13 , A : str=7 , A : Tuple=True , A : Optional[int]=True , A : Dict=True , A : Optional[int]=True , A : str=99 , A : int=[1, 1, 2] , A : Union[str, Any]=1 , A : Optional[Any]=32 , A : int=4 , A : str=8 , A : Optional[int]=37 , A : Dict="gelu_new" , A : Union[str, Any]=0.1 , A : Optional[int]=0.1 , A : Dict=0.0 , A : Optional[int]=512 , A : Any=3 , A : Union[str, Any]=0.02 , A : List[str]=3 , A : Dict=4 , A : List[Any]=None , A : str=False , ): _UpperCAmelCase : Optional[int] = parent _UpperCAmelCase : Optional[Any] = batch_size _UpperCAmelCase : int = seq_length _UpperCAmelCase : Optional[int] = is_training _UpperCAmelCase : int = use_input_mask _UpperCAmelCase : List[Any] = use_token_type_ids _UpperCAmelCase : Optional[int] = use_labels _UpperCAmelCase : Optional[int] = vocab_size _UpperCAmelCase : Optional[int] = block_sizes _UpperCAmelCase : List[Any] = num_decoder_layers _UpperCAmelCase : Union[str, Any] = d_model _UpperCAmelCase : List[Any] = n_head _UpperCAmelCase : str = d_head _UpperCAmelCase : Dict = d_inner _UpperCAmelCase : Dict = hidden_act _UpperCAmelCase : List[str] = hidden_dropout _UpperCAmelCase : Optional[int] = attention_dropout _UpperCAmelCase : int = activation_dropout _UpperCAmelCase : List[Any] = max_position_embeddings _UpperCAmelCase : List[str] = type_vocab_size _UpperCAmelCase : str = 2 _UpperCAmelCase : str = num_labels _UpperCAmelCase : Optional[int] = num_choices _UpperCAmelCase : List[str] = scope _UpperCAmelCase : Dict = initializer_std # Used in the tests to check the size of the first attention layer _UpperCAmelCase : Optional[int] = n_head # Used in the tests to check the size of the first hidden state _UpperCAmelCase : Dict = self.d_model # Used in the tests to check the number of output hidden states/attentions _UpperCAmelCase : int = sum(self.block_sizes ) + (0 if base else self.num_decoder_layers) # FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with # the last hidden state of the first block (which is the first hidden state of the decoder). if not base: _UpperCAmelCase : Union[str, Any] = self.num_hidden_layers + 2 def _A ( self : Optional[Any] ): _UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase : Any = None if self.use_input_mask: _UpperCAmelCase : Any = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase : Any = None if self.use_token_type_ids: _UpperCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase : Dict = None _UpperCAmelCase : List[Any] = None _UpperCAmelCase : List[Any] = None if self.use_labels: _UpperCAmelCase : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.num_choices ) _UpperCAmelCase : Tuple = FunnelConfig( vocab_size=self.vocab_size , block_sizes=self.block_sizes , num_decoder_layers=self.num_decoder_layers , d_model=self.d_model , n_head=self.n_head , d_head=self.d_head , d_inner=self.d_inner , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , activation_dropout=self.activation_dropout , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_std=self.initializer_std , ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) def _A ( self : Dict , A : Tuple , A : Dict , A : int , A : List[Any] , A : Optional[int] , A : Any , A : Dict , ): _UpperCAmelCase : Tuple = TFFunnelModel(config=A ) _UpperCAmelCase : Union[str, Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _UpperCAmelCase : Any = model(A ) _UpperCAmelCase : Tuple = [input_ids, input_mask] _UpperCAmelCase : Optional[Any] = model(A ) _UpperCAmelCase : Any = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) _UpperCAmelCase : Dict = False _UpperCAmelCase : Union[str, Any] = TFFunnelModel(config=A ) _UpperCAmelCase : Optional[int] = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) _UpperCAmelCase : List[str] = False _UpperCAmelCase : List[Any] = TFFunnelModel(config=A ) _UpperCAmelCase : List[Any] = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) def _A ( self : Dict , A : List[str] , A : int , A : Optional[int] , A : int , A : Optional[Any] , A : List[str] , A : Optional[int] , ): _UpperCAmelCase : Any = TFFunnelBaseModel(config=A ) _UpperCAmelCase : int = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _UpperCAmelCase : Any = model(A ) _UpperCAmelCase : Any = [input_ids, input_mask] _UpperCAmelCase : Optional[int] = model(A ) _UpperCAmelCase : List[str] = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) _UpperCAmelCase : Optional[int] = False _UpperCAmelCase : Dict = TFFunnelBaseModel(config=A ) _UpperCAmelCase : Optional[int] = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 3, self.d_model) ) _UpperCAmelCase : Optional[Any] = False _UpperCAmelCase : Any = TFFunnelBaseModel(config=A ) _UpperCAmelCase : Union[str, Any] = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) def _A ( self : List[str] , A : str , A : Dict , A : Optional[Any] , A : Dict , A : int , A : Optional[Any] , A : Union[str, Any] , ): _UpperCAmelCase : Optional[int] = TFFunnelForPreTraining(config=A ) _UpperCAmelCase : Tuple = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _UpperCAmelCase : Dict = model(A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length) ) def _A ( self : Union[str, Any] , A : Tuple , A : Tuple , A : Any , A : Any , A : Dict , A : Optional[int] , A : List[str] , ): _UpperCAmelCase : Any = TFFunnelForMaskedLM(config=A ) _UpperCAmelCase : Union[str, Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _UpperCAmelCase : Any = model(A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _A ( self : List[str] , A : int , A : List[Any] , A : List[str] , A : Any , A : Optional[int] , A : str , A : Any , ): _UpperCAmelCase : Union[str, Any] = self.num_labels _UpperCAmelCase : str = TFFunnelForSequenceClassification(config=A ) _UpperCAmelCase : int = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _UpperCAmelCase : str = model(A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _A ( self : Optional[int] , A : List[Any] , A : Optional[Any] , A : Union[str, Any] , A : Union[str, Any] , A : Optional[Any] , A : int , A : List[str] , ): _UpperCAmelCase : str = self.num_choices _UpperCAmelCase : List[str] = TFFunnelForMultipleChoice(config=A ) _UpperCAmelCase : int = tf.tile(tf.expand_dims(A , 1 ) , (1, self.num_choices, 1) ) _UpperCAmelCase : int = tf.tile(tf.expand_dims(A , 1 ) , (1, self.num_choices, 1) ) _UpperCAmelCase : int = tf.tile(tf.expand_dims(A , 1 ) , (1, self.num_choices, 1) ) _UpperCAmelCase : List[str] = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } _UpperCAmelCase : int = model(A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _A ( self : List[Any] , A : Any , A : List[str] , A : Any , A : str , A : int , A : str , A : Any , ): _UpperCAmelCase : Optional[int] = self.num_labels _UpperCAmelCase : Any = TFFunnelForTokenClassification(config=A ) _UpperCAmelCase : Optional[Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _UpperCAmelCase : str = model(A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _A ( self : Dict , A : int , A : int , A : Union[str, Any] , A : int , A : str , A : List[Any] , A : Optional[int] , ): _UpperCAmelCase : Dict = TFFunnelForQuestionAnswering(config=A ) _UpperCAmelCase : Tuple = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _UpperCAmelCase : Any = model(A ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _A ( self : List[str] ): _UpperCAmelCase : Optional[int] = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) : Dict = config_and_inputs _UpperCAmelCase : Dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class lowerCamelCase_ (snake_case__ , snake_case__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase: str = ( ( TFFunnelModel, TFFunnelForMaskedLM, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForTokenClassification, ) if is_tf_available() else () ) __UpperCamelCase: Union[str, Any] = ( { "feature-extraction": (TFFunnelBaseModel, TFFunnelModel), "fill-mask": TFFunnelForMaskedLM, "question-answering": TFFunnelForQuestionAnswering, "text-classification": TFFunnelForSequenceClassification, "token-classification": TFFunnelForTokenClassification, "zero-shot": TFFunnelForSequenceClassification, } if is_tf_available() else {} ) __UpperCamelCase: List[str] = False __UpperCamelCase: str = False def _A ( self : Optional[Any] ): _UpperCAmelCase : Any = TFFunnelModelTester(self ) _UpperCAmelCase : List[str] = ConfigTester(self , config_class=A ) def _A ( self : List[str] ): self.config_tester.run_common_tests() def _A ( self : List[str] ): _UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def _A ( self : Any ): _UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*A ) def _A ( self : Dict ): _UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A ) def _A ( self : Optional[int] ): _UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A ) def _A ( self : Optional[int] ): _UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A ) @require_tf class lowerCamelCase_ (snake_case__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase: int = ( (TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else () ) __UpperCamelCase: Union[str, Any] = False __UpperCamelCase: str = False def _A ( self : Any ): _UpperCAmelCase : Optional[Any] = TFFunnelModelTester(self , base=A ) _UpperCAmelCase : Optional[Any] = ConfigTester(self , config_class=A ) def _A ( self : Dict ): self.config_tester.run_common_tests() def _A ( self : Tuple ): _UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_base_model(*A ) def _A ( self : List[str] ): _UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A ) def _A ( self : List[Any] ): _UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*A )
244
'''simple docstring''' import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class lowerCamelCase_ (snake_case__ ): '''simple docstring''' __UpperCamelCase: Union[str, Any] = (DDPMScheduler,) def _A ( self : Any , **A : List[str] ): _UpperCAmelCase : int = { "num_train_timesteps": 1000, "beta_start": 0.0_001, "beta_end": 0.02, "beta_schedule": "linear", "variance_type": "fixed_small", "clip_sample": True, } config.update(**A ) return config def _A ( self : List[Any] ): for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=A ) def _A ( self : Union[str, Any] ): for beta_start, beta_end in zip([0.0_001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=A , beta_end=A ) def _A ( self : Optional[Any] ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=A ) def _A ( self : int ): for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=A ) def _A ( self : Any ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=A ) def _A ( self : Union[str, Any] ): self.check_over_configs(thresholding=A ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=A , prediction_type=A , sample_max_value=A , ) def _A ( self : List[str] ): for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=A ) def _A ( self : Union[str, Any] ): for t in [0, 500, 999]: self.check_over_forward(time_step=A ) def _A ( self : Tuple ): _UpperCAmelCase : Union[str, Any] = self.scheduler_classes[0] _UpperCAmelCase : List[Any] = self.get_scheduler_config() _UpperCAmelCase : int = scheduler_class(**A ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.00_979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1E-5 def _A ( self : List[Any] ): _UpperCAmelCase : Optional[Any] = self.scheduler_classes[0] _UpperCAmelCase : Optional[Any] = self.get_scheduler_config() _UpperCAmelCase : int = scheduler_class(**A ) _UpperCAmelCase : Optional[Any] = len(A ) _UpperCAmelCase : List[Any] = self.dummy_model() _UpperCAmelCase : List[str] = self.dummy_sample_deter _UpperCAmelCase : List[str] = torch.manual_seed(0 ) for t in reversed(range(A ) ): # 1. predict noise residual _UpperCAmelCase : List[Any] = model(A , A ) # 2. predict previous mean of sample x_t-1 _UpperCAmelCase : List[Any] = scheduler.step(A , A , A , generator=A ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance _UpperCAmelCase : Any = pred_prev_sample _UpperCAmelCase : str = torch.sum(torch.abs(A ) ) _UpperCAmelCase : Tuple = torch.mean(torch.abs(A ) ) assert abs(result_sum.item() - 258.9_606 ) < 1E-2 assert abs(result_mean.item() - 0.3_372 ) < 1E-3 def _A ( self : Union[str, Any] ): _UpperCAmelCase : List[Any] = self.scheduler_classes[0] _UpperCAmelCase : Dict = self.get_scheduler_config(prediction_type="v_prediction" ) _UpperCAmelCase : Optional[int] = scheduler_class(**A ) _UpperCAmelCase : Union[str, Any] = len(A ) _UpperCAmelCase : Optional[int] = self.dummy_model() _UpperCAmelCase : Optional[Any] = self.dummy_sample_deter _UpperCAmelCase : List[Any] = torch.manual_seed(0 ) for t in reversed(range(A ) ): # 1. predict noise residual _UpperCAmelCase : Tuple = model(A , A ) # 2. predict previous mean of sample x_t-1 _UpperCAmelCase : List[Any] = scheduler.step(A , A , A , generator=A ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance _UpperCAmelCase : Tuple = pred_prev_sample _UpperCAmelCase : List[str] = torch.sum(torch.abs(A ) ) _UpperCAmelCase : int = torch.mean(torch.abs(A ) ) assert abs(result_sum.item() - 202.0_296 ) < 1E-2 assert abs(result_mean.item() - 0.2_631 ) < 1E-3 def _A ( self : Optional[Any] ): _UpperCAmelCase : Optional[Any] = self.scheduler_classes[0] _UpperCAmelCase : Optional[int] = self.get_scheduler_config() _UpperCAmelCase : int = scheduler_class(**A ) _UpperCAmelCase : Any = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=A ) _UpperCAmelCase : Optional[Any] = scheduler.timesteps for i, timestep in enumerate(A ): if i == len(A ) - 1: _UpperCAmelCase : int = -1 else: _UpperCAmelCase : str = timesteps[i + 1] _UpperCAmelCase : Any = scheduler.previous_timestep(A ) _UpperCAmelCase : Optional[Any] = prev_t.item() self.assertEqual(A , A ) def _A ( self : Optional[int] ): _UpperCAmelCase : List[Any] = self.scheduler_classes[0] _UpperCAmelCase : Union[str, Any] = self.get_scheduler_config() _UpperCAmelCase : Optional[Any] = scheduler_class(**A ) _UpperCAmelCase : Optional[int] = [100, 87, 50, 51, 0] with self.assertRaises(A , msg="`custom_timesteps` must be in descending order." ): scheduler.set_timesteps(timesteps=A ) def _A ( self : Dict ): _UpperCAmelCase : Optional[int] = self.scheduler_classes[0] _UpperCAmelCase : Tuple = self.get_scheduler_config() _UpperCAmelCase : str = scheduler_class(**A ) _UpperCAmelCase : str = [100, 87, 50, 1, 0] _UpperCAmelCase : Tuple = len(A ) with self.assertRaises(A , msg="Can only pass one of `num_inference_steps` or `custom_timesteps`." ): scheduler.set_timesteps(num_inference_steps=A , timesteps=A ) def _A ( self : List[str] ): _UpperCAmelCase : List[str] = self.scheduler_classes[0] _UpperCAmelCase : str = self.get_scheduler_config() _UpperCAmelCase : int = scheduler_class(**A ) _UpperCAmelCase : List[Any] = [scheduler.config.num_train_timesteps] with self.assertRaises( A , msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}" , ): scheduler.set_timesteps(timesteps=A )
244
1
def _snake_case ( __snake_case , __snake_case ): return abs(__snake_case ) if a == 0 else greatest_common_divisor(b % a , __snake_case ) def _snake_case ( __snake_case , __snake_case ): while y: # --> when y=0 then loop will terminate and return x as final GCD. _UpperCamelCase , _UpperCamelCase = y, x % y return abs(__snake_case ) def _snake_case ( ): try: _UpperCamelCase = input('''Enter two integers separated by comma (,): ''' ).split(''',''' ) _UpperCamelCase = int(nums[0] ) _UpperCamelCase = int(nums[1] ) print( f"""greatest_common_divisor({num_a}, {num_a}) = """ f"""{greatest_common_divisor(__snake_case , __snake_case )}""" ) print(f"""By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(__snake_case , __snake_case )}""" ) except (IndexError, UnboundLocalError, ValueError): print('''Wrong input''' ) if __name__ == "__main__": main()
718
from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def _snake_case ( __snake_case , __snake_case , __snake_case = 1 / sqrt(2 ) ): _UpperCamelCase = tau * frequency / samplerate _UpperCamelCase = sin(__snake_case ) _UpperCamelCase = cos(__snake_case ) _UpperCamelCase = _sin / (2 * q_factor) _UpperCamelCase = (1 - _cos) / 2 _UpperCamelCase = 1 - _cos _UpperCamelCase = 1 + alpha _UpperCamelCase = -2 * _cos _UpperCamelCase = 1 - alpha _UpperCamelCase = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _snake_case ( __snake_case , __snake_case , __snake_case = 1 / sqrt(2 ) ): _UpperCamelCase = tau * frequency / samplerate _UpperCamelCase = sin(__snake_case ) _UpperCamelCase = cos(__snake_case ) _UpperCamelCase = _sin / (2 * q_factor) _UpperCamelCase = (1 + _cos) / 2 _UpperCamelCase = -1 - _cos _UpperCamelCase = 1 + alpha _UpperCamelCase = -2 * _cos _UpperCamelCase = 1 - alpha _UpperCamelCase = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _snake_case ( __snake_case , __snake_case , __snake_case = 1 / sqrt(2 ) ): _UpperCamelCase = tau * frequency / samplerate _UpperCamelCase = sin(__snake_case ) _UpperCamelCase = cos(__snake_case ) _UpperCamelCase = _sin / (2 * q_factor) _UpperCamelCase = _sin / 2 _UpperCamelCase = 0 _UpperCamelCase = -ba _UpperCamelCase = 1 + alpha _UpperCamelCase = -2 * _cos _UpperCamelCase = 1 - alpha _UpperCamelCase = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _snake_case ( __snake_case , __snake_case , __snake_case = 1 / sqrt(2 ) ): _UpperCamelCase = tau * frequency / samplerate _UpperCamelCase = sin(__snake_case ) _UpperCamelCase = cos(__snake_case ) _UpperCamelCase = _sin / (2 * q_factor) _UpperCamelCase = 1 - alpha _UpperCamelCase = -2 * _cos _UpperCamelCase = 1 + alpha _UpperCamelCase = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def _snake_case ( __snake_case , __snake_case , __snake_case , __snake_case = 1 / sqrt(2 ) , ): _UpperCamelCase = tau * frequency / samplerate _UpperCamelCase = sin(__snake_case ) _UpperCamelCase = cos(__snake_case ) _UpperCamelCase = _sin / (2 * q_factor) _UpperCamelCase = 10 ** (gain_db / 40) _UpperCamelCase = 1 + alpha * big_a _UpperCamelCase = -2 * _cos _UpperCamelCase = 1 - alpha * big_a _UpperCamelCase = 1 + alpha / big_a _UpperCamelCase = -2 * _cos _UpperCamelCase = 1 - alpha / big_a _UpperCamelCase = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _snake_case ( __snake_case , __snake_case , __snake_case , __snake_case = 1 / sqrt(2 ) , ): _UpperCamelCase = tau * frequency / samplerate _UpperCamelCase = sin(__snake_case ) _UpperCamelCase = cos(__snake_case ) _UpperCamelCase = _sin / (2 * q_factor) _UpperCamelCase = 10 ** (gain_db / 40) _UpperCamelCase = (big_a + 1) - (big_a - 1) * _cos _UpperCamelCase = (big_a + 1) + (big_a - 1) * _cos _UpperCamelCase = (big_a - 1) - (big_a + 1) * _cos _UpperCamelCase = (big_a - 1) + (big_a + 1) * _cos _UpperCamelCase = 2 * sqrt(__snake_case ) * alpha _UpperCamelCase = big_a * (pmc + aaa) _UpperCamelCase = 2 * big_a * mpc _UpperCamelCase = big_a * (pmc - aaa) _UpperCamelCase = ppmc + aaa _UpperCamelCase = -2 * pmpc _UpperCamelCase = ppmc - aaa _UpperCamelCase = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _snake_case ( __snake_case , __snake_case , __snake_case , __snake_case = 1 / sqrt(2 ) , ): _UpperCamelCase = tau * frequency / samplerate _UpperCamelCase = sin(__snake_case ) _UpperCamelCase = cos(__snake_case ) _UpperCamelCase = _sin / (2 * q_factor) _UpperCamelCase = 10 ** (gain_db / 40) _UpperCamelCase = (big_a + 1) - (big_a - 1) * _cos _UpperCamelCase = (big_a + 1) + (big_a - 1) * _cos _UpperCamelCase = (big_a - 1) - (big_a + 1) * _cos _UpperCamelCase = (big_a - 1) + (big_a + 1) * _cos _UpperCamelCase = 2 * sqrt(__snake_case ) * alpha _UpperCamelCase = big_a * (ppmc + aaa) _UpperCamelCase = -2 * big_a * pmpc _UpperCamelCase = big_a * (ppmc - aaa) _UpperCamelCase = pmc + aaa _UpperCamelCase = 2 * mpc _UpperCamelCase = pmc - aaa _UpperCamelCase = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
71
0
import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": _lowerCamelCase = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( '--original_config_file', default=None, type=str, help='The YAML config file corresponding to the original architecture.', ) parser.add_argument( '--num_in_channels', default=None, type=int, help='The number of input channels. If `None` number of input channels will be automatically inferred.', ) parser.add_argument( '--scheduler_type', default='pndm', type=str, help='Type of scheduler to use. Should be one of [\'pndm\', \'lms\', \'ddim\', \'euler\', \'euler-ancestral\', \'dpm\']', ) parser.add_argument( '--pipeline_type', default=None, type=str, help=( 'The pipeline type. One of \'FrozenOpenCLIPEmbedder\', \'FrozenCLIPEmbedder\', \'PaintByExample\'' '. If `None` pipeline will be automatically inferred.' ), ) parser.add_argument( '--image_size', default=None, type=int, help=( 'The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2' ' Base. Use 768 for Stable Diffusion v2.' ), ) parser.add_argument( '--prediction_type', default=None, type=str, help=( 'The prediction type that the model was trained on. Use \'epsilon\' for Stable Diffusion v1.X and Stable' ' Diffusion v2 Base. Use \'v_prediction\' for Stable Diffusion v2.' ), ) parser.add_argument( '--extract_ema', action='store_true', help=( 'Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights' ' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield' ' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.' ), ) parser.add_argument( '--upcast_attention', action='store_true', help=( 'Whether the attention computation should always be upcasted. This is necessary when running stable' ' diffusion 2.1.' ), ) parser.add_argument( '--from_safetensors', action='store_true', help='If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.', ) parser.add_argument( '--to_safetensors', action='store_true', help='Whether to store pipeline in safetensors format or not.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)') parser.add_argument( '--stable_unclip', type=str, default=None, required=False, help='Set if this is a stable unCLIP model. One of \'txt2img\' or \'img2img\'.', ) parser.add_argument( '--stable_unclip_prior', type=str, default=None, required=False, help='Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.', ) parser.add_argument( '--clip_stats_path', type=str, help='Path to the clip stats file. Only required if the stable unclip model\'s config specifies `model.params.noise_aug_config.params.clip_stats_path`.', required=False, ) parser.add_argument( '--controlnet', action='store_true', default=None, help='Set flag if this is a controlnet checkpoint.' ) parser.add_argument('--half', action='store_true', help='Save weights in half precision.') parser.add_argument( '--vae_path', type=str, default=None, required=False, help='Set to a path, hub id to an already converted vae to not convert it again.', ) _lowerCamelCase = parser.parse_args() _lowerCamelCase = download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
144
import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int , __UpperCamelCase : List[str] , __UpperCamelCase : str ) -> Optional[Any]: if isinstance(__UpperCamelCase , torch.Tensor ): return image elif isinstance(__UpperCamelCase , PIL.Image.Image ): UpperCAmelCase_ = [image] if isinstance(image[0] , PIL.Image.Image ): UpperCAmelCase_ = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] ) )[None, :] for i in image] UpperCAmelCase_ = np.concatenate(__UpperCamelCase , axis=0 ) UpperCAmelCase_ = np.array(__UpperCamelCase ).astype(np.floataa ) / 255.0 UpperCAmelCase_ = image.transpose(0 , 3 , 1 , 2 ) UpperCAmelCase_ = 2.0 * image - 1.0 UpperCAmelCase_ = torch.from_numpy(__UpperCamelCase ) elif isinstance(image[0] , torch.Tensor ): UpperCAmelCase_ = torch.cat(__UpperCamelCase , dim=0 ) return image def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] , __UpperCamelCase : Any , __UpperCamelCase : str , __UpperCamelCase : Optional[int]=0.9_995 ) -> List[str]: if not isinstance(__UpperCamelCase , np.ndarray ): UpperCAmelCase_ = True UpperCAmelCase_ = va.device UpperCAmelCase_ = va.cpu().numpy() UpperCAmelCase_ = va.cpu().numpy() UpperCAmelCase_ = np.sum(va * va / (np.linalg.norm(__UpperCamelCase ) * np.linalg.norm(__UpperCamelCase )) ) if np.abs(__UpperCamelCase ) > DOT_THRESHOLD: UpperCAmelCase_ = (1 - t) * va + t * va else: UpperCAmelCase_ = np.arccos(__UpperCamelCase ) UpperCAmelCase_ = np.sin(__UpperCamelCase ) UpperCAmelCase_ = theta_a * t UpperCAmelCase_ = np.sin(__UpperCamelCase ) UpperCAmelCase_ = np.sin(theta_a - theta_t ) / sin_theta_a UpperCAmelCase_ = sin_theta_t / sin_theta_a UpperCAmelCase_ = sa * va + sa * va if inputs_are_torch: UpperCAmelCase_ = torch.from_numpy(__UpperCamelCase ).to(__UpperCamelCase ) return va def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str , __UpperCamelCase : List[str] ) -> Optional[int]: UpperCAmelCase_ = F.normalize(__UpperCamelCase , dim=-1 ) UpperCAmelCase_ = F.normalize(__UpperCamelCase , dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] , __UpperCamelCase : Dict ) -> Optional[int]: for param in model.parameters(): UpperCAmelCase_ = value class a ( _A ): '''simple docstring''' def __init__( self : List[str] , __snake_case : AutoencoderKL , __snake_case : CLIPTextModel , __snake_case : CLIPModel , __snake_case : CLIPTokenizer , __snake_case : UNetaDConditionModel , __snake_case : Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler] , __snake_case : CLIPFeatureExtractor , __snake_case : Dict=None , __snake_case : List[str]=None , __snake_case : Optional[Any]=None , ): super().__init__() self.register_modules( vae=__snake_case , text_encoder=__snake_case , clip_model=__snake_case , tokenizer=__snake_case , unet=__snake_case , scheduler=__snake_case , feature_extractor=__snake_case , coca_model=__snake_case , coca_tokenizer=__snake_case , coca_transform=__snake_case , ) UpperCAmelCase_ = ( feature_extractor.size if isinstance(feature_extractor.size , __snake_case ) else feature_extractor.size['''shortest_edge'''] ) UpperCAmelCase_ = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std ) set_requires_grad(self.text_encoder , __snake_case ) set_requires_grad(self.clip_model , __snake_case ) def lowerCamelCase_ ( self : Dict , __snake_case : Optional[Union[str, int]] = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory UpperCAmelCase_ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__snake_case ) def lowerCamelCase_ ( self : str ): self.enable_attention_slicing(__snake_case ) def lowerCamelCase_ ( self : List[Any] ): set_requires_grad(self.vae , __snake_case ) def lowerCamelCase_ ( self : int ): set_requires_grad(self.vae , __snake_case ) def lowerCamelCase_ ( self : str ): set_requires_grad(self.unet , __snake_case ) def lowerCamelCase_ ( self : List[Any] ): set_requires_grad(self.unet , __snake_case ) def lowerCamelCase_ ( self : Any , __snake_case : Any , __snake_case : Union[str, Any] , __snake_case : List[str] ): # get the original timestep using init_timestep UpperCAmelCase_ = min(int(num_inference_steps * strength ) , __snake_case ) UpperCAmelCase_ = max(num_inference_steps - init_timestep , 0 ) UpperCAmelCase_ = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def lowerCamelCase_ ( self : int , __snake_case : Tuple , __snake_case : Tuple , __snake_case : Union[str, Any] , __snake_case : Optional[Any] , __snake_case : Optional[Any] , __snake_case : str=None ): if not isinstance(__snake_case , torch.Tensor ): raise ValueError(F'`image` has to be of type `torch.Tensor` but is {type(__snake_case )}' ) UpperCAmelCase_ = image.to(device=__snake_case , dtype=__snake_case ) if isinstance(__snake_case , __snake_case ): UpperCAmelCase_ = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(__snake_case ) ] UpperCAmelCase_ = torch.cat(__snake_case , dim=0 ) else: UpperCAmelCase_ = self.vae.encode(__snake_case ).latent_dist.sample(__snake_case ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor UpperCAmelCase_ = 0.18_215 * init_latents UpperCAmelCase_ = init_latents.repeat_interleave(__snake_case , dim=0 ) UpperCAmelCase_ = randn_tensor(init_latents.shape , generator=__snake_case , device=__snake_case , dtype=__snake_case ) # get latents UpperCAmelCase_ = self.scheduler.add_noise(__snake_case , __snake_case , __snake_case ) UpperCAmelCase_ = init_latents return latents def lowerCamelCase_ ( self : Dict , __snake_case : Dict ): UpperCAmelCase_ = self.coca_transform(__snake_case ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): UpperCAmelCase_ = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) ) UpperCAmelCase_ = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split('''<end_of_text>''' )[0].replace('''<start_of_text>''' , '''''' ).rstrip(''' .,''' ) def lowerCamelCase_ ( self : Optional[int] , __snake_case : Any , __snake_case : List[Any] ): UpperCAmelCase_ = self.feature_extractor.preprocess(__snake_case ) UpperCAmelCase_ = torch.from_numpy(clip_image_input['''pixel_values'''][0] ).unsqueeze(0 ).to(self.device ).half() UpperCAmelCase_ = self.clip_model.get_image_features(__snake_case ) UpperCAmelCase_ = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=__snake_case ) UpperCAmelCase_ = image_embeddings_clip.repeat_interleave(__snake_case , dim=0 ) return image_embeddings_clip @torch.enable_grad() def lowerCamelCase_ ( self : Tuple , __snake_case : Tuple , __snake_case : List[Any] , __snake_case : Tuple , __snake_case : Optional[int] , __snake_case : Tuple , __snake_case : Optional[int] , __snake_case : Union[str, Any] , ): UpperCAmelCase_ = latents.detach().requires_grad_() UpperCAmelCase_ = self.scheduler.scale_model_input(__snake_case , __snake_case ) # predict the noise residual UpperCAmelCase_ = self.unet(__snake_case , __snake_case , encoder_hidden_states=__snake_case ).sample if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): UpperCAmelCase_ = self.scheduler.alphas_cumprod[timestep] UpperCAmelCase_ = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf UpperCAmelCase_ = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 UpperCAmelCase_ = torch.sqrt(__snake_case ) UpperCAmelCase_ = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler , __snake_case ): UpperCAmelCase_ = self.scheduler.sigmas[index] UpperCAmelCase_ = latents - sigma * noise_pred else: raise ValueError(F'scheduler type {type(self.scheduler )} not supported' ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor UpperCAmelCase_ = 1 / 0.18_215 * sample UpperCAmelCase_ = self.vae.decode(__snake_case ).sample UpperCAmelCase_ = (image / 2 + 0.5).clamp(0 , 1 ) UpperCAmelCase_ = transforms.Resize(self.feature_extractor_size )(__snake_case ) UpperCAmelCase_ = self.normalize(__snake_case ).to(latents.dtype ) UpperCAmelCase_ = self.clip_model.get_image_features(__snake_case ) UpperCAmelCase_ = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=__snake_case ) UpperCAmelCase_ = spherical_dist_loss(__snake_case , __snake_case ).mean() * clip_guidance_scale UpperCAmelCase_ = -torch.autograd.grad(__snake_case , __snake_case )[0] if isinstance(self.scheduler , __snake_case ): UpperCAmelCase_ = latents.detach() + grads * (sigma**2) UpperCAmelCase_ = noise_pred_original else: UpperCAmelCase_ = noise_pred_original - torch.sqrt(__snake_case ) * grads return noise_pred, latents @torch.no_grad() def __call__( self : Tuple , __snake_case : Union[torch.FloatTensor, PIL.Image.Image] , __snake_case : Union[torch.FloatTensor, PIL.Image.Image] , __snake_case : Optional[str] = None , __snake_case : Optional[str] = None , __snake_case : Optional[int] = 5_12 , __snake_case : Optional[int] = 5_12 , __snake_case : float = 0.6 , __snake_case : Optional[int] = 50 , __snake_case : Optional[float] = 7.5 , __snake_case : Optional[int] = 1 , __snake_case : float = 0.0 , __snake_case : Optional[float] = 1_00 , __snake_case : Optional[torch.Generator] = None , __snake_case : Optional[str] = "pil" , __snake_case : bool = True , __snake_case : float = 0.8 , __snake_case : float = 0.1 , __snake_case : float = 0.1 , ): if isinstance(__snake_case , __snake_case ) and len(__snake_case ) != batch_size: raise ValueError(F'You have passed {batch_size} batch_size, but only {len(__snake_case )} generators.' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F'`height` and `width` have to be divisible by 8 but are {height} and {width}.' ) if isinstance(__snake_case , torch.Generator ) and batch_size > 1: UpperCAmelCase_ = [generator] + [None] * (batch_size - 1) UpperCAmelCase_ = [ ('''model''', self.coca_model is None), ('''tokenizer''', self.coca_tokenizer is None), ('''transform''', self.coca_transform is None), ] UpperCAmelCase_ = [x[0] for x in coca_is_none if x[1]] UpperCAmelCase_ = ''', '''.join(__snake_case ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(__snake_case ): raise ValueError( F'Content prompt is None and CoCa [{coca_is_none_str}] is None.' F'Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.' ) UpperCAmelCase_ = self.get_image_description(__snake_case ) if style_prompt is None: if len(__snake_case ): raise ValueError( F'Style prompt is None and CoCa [{coca_is_none_str}] is None.' F' Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.' ) UpperCAmelCase_ = self.get_image_description(__snake_case ) # get prompt text embeddings for content and style UpperCAmelCase_ = self.tokenizer( __snake_case , padding='''max_length''' , max_length=self.tokenizer.model_max_length , truncation=__snake_case , return_tensors='''pt''' , ) UpperCAmelCase_ = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] UpperCAmelCase_ = self.tokenizer( __snake_case , padding='''max_length''' , max_length=self.tokenizer.model_max_length , truncation=__snake_case , return_tensors='''pt''' , ) UpperCAmelCase_ = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] UpperCAmelCase_ = slerp(__snake_case , __snake_case , __snake_case ) # duplicate text embeddings for each generation per prompt UpperCAmelCase_ = text_embeddings.repeat_interleave(__snake_case , dim=0 ) # set timesteps UpperCAmelCase_ = '''offset''' in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) UpperCAmelCase_ = {} if accepts_offset: UpperCAmelCase_ = 1 self.scheduler.set_timesteps(__snake_case , **__snake_case ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) UpperCAmelCase_ , UpperCAmelCase_ = self.get_timesteps(__snake_case , __snake_case , self.device ) UpperCAmelCase_ = timesteps[:1].repeat(__snake_case ) # Preprocess image UpperCAmelCase_ = preprocess(__snake_case , __snake_case , __snake_case ) UpperCAmelCase_ = self.prepare_latents( __snake_case , __snake_case , __snake_case , text_embeddings.dtype , self.device , __snake_case ) UpperCAmelCase_ = preprocess(__snake_case , __snake_case , __snake_case ) UpperCAmelCase_ = self.prepare_latents( __snake_case , __snake_case , __snake_case , text_embeddings.dtype , self.device , __snake_case ) UpperCAmelCase_ = slerp(__snake_case , __snake_case , __snake_case ) if clip_guidance_scale > 0: UpperCAmelCase_ = self.get_clip_image_embeddings(__snake_case , __snake_case ) UpperCAmelCase_ = self.get_clip_image_embeddings(__snake_case , __snake_case ) UpperCAmelCase_ = slerp( __snake_case , __snake_case , __snake_case ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. UpperCAmelCase_ = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: UpperCAmelCase_ = content_text_input.input_ids.shape[-1] UpperCAmelCase_ = self.tokenizer([''''''] , padding='''max_length''' , max_length=__snake_case , return_tensors='''pt''' ) UpperCAmelCase_ = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt UpperCAmelCase_ = uncond_embeddings.repeat_interleave(__snake_case , dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCAmelCase_ = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. UpperCAmelCase_ = (batch_size, self.unet.config.in_channels, height // 8, width // 8) UpperCAmelCase_ = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps UpperCAmelCase_ = torch.randn(__snake_case , generator=__snake_case , device='''cpu''' , dtype=__snake_case ).to( self.device ) else: UpperCAmelCase_ = torch.randn(__snake_case , generator=__snake_case , device=self.device , dtype=__snake_case ) else: if latents.shape != latents_shape: raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {latents_shape}' ) UpperCAmelCase_ = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler UpperCAmelCase_ = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] UpperCAmelCase_ = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) UpperCAmelCase_ = {} if accepts_eta: UpperCAmelCase_ = eta # check if the scheduler accepts generator UpperCAmelCase_ = '''generator''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: UpperCAmelCase_ = generator with self.progress_bar(total=__snake_case ): for i, t in enumerate(__snake_case ): # expand the latents if we are doing classifier free guidance UpperCAmelCase_ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCAmelCase_ = self.scheduler.scale_model_input(__snake_case , __snake_case ) # predict the noise residual UpperCAmelCase_ = self.unet(__snake_case , __snake_case , encoder_hidden_states=__snake_case ).sample # perform classifier free guidance if do_classifier_free_guidance: UpperCAmelCase_ , UpperCAmelCase_ = noise_pred.chunk(2 ) UpperCAmelCase_ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: UpperCAmelCase_ = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) UpperCAmelCase_ , UpperCAmelCase_ = self.cond_fn( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase_ = self.scheduler.step(__snake_case , __snake_case , __snake_case , **__snake_case ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor UpperCAmelCase_ = 1 / 0.18_215 * latents UpperCAmelCase_ = self.vae.decode(__snake_case ).sample UpperCAmelCase_ = (image / 2 + 0.5).clamp(0 , 1 ) UpperCAmelCase_ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCAmelCase_ = self.numpy_to_pil(__snake_case ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=__snake_case , nsfw_content_detected=__snake_case )
144
1
import math import sys def lowerCamelCase( a__): if number != int(a__): raise ValueError('''the value of input must be a natural number''') if number < 0: raise ValueError('''the value of input must not be a negative number''') if number == 0: return 1 _SCREAMING_SNAKE_CASE =[-1] * (number + 1) _SCREAMING_SNAKE_CASE =0 for i in range(1 ,number + 1): _SCREAMING_SNAKE_CASE =sys.maxsize _SCREAMING_SNAKE_CASE =int(math.sqrt(a__)) for j in range(1 ,root + 1): _SCREAMING_SNAKE_CASE =1 + answers[i - (j**2)] _SCREAMING_SNAKE_CASE =min(a__ ,a__) _SCREAMING_SNAKE_CASE =answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
191
import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal snake_case_ : Any = datasets.utils.logging.get_logger(__name__) snake_case_ : List[Any] = ['''names''', '''prefix'''] snake_case_ : Dict = ['''warn_bad_lines''', '''error_bad_lines''', '''mangle_dupe_cols'''] snake_case_ : Dict = ['''encoding_errors''', '''on_bad_lines'''] snake_case_ : Optional[Any] = ['''date_format'''] @dataclass class A__ ( datasets.BuilderConfig ): UpperCAmelCase = "," UpperCAmelCase = None UpperCAmelCase = "infer" UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = True UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = False UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = True UpperCAmelCase = True UpperCAmelCase = False UpperCAmelCase = True UpperCAmelCase = None UpperCAmelCase = "." UpperCAmelCase = None UpperCAmelCase = '"' UpperCAmelCase = 0 UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = True UpperCAmelCase = True UpperCAmelCase = 0 UpperCAmelCase = True UpperCAmelCase = False UpperCAmelCase = None UpperCAmelCase = 10000 UpperCAmelCase = None UpperCAmelCase = "strict" UpperCAmelCase = "error" UpperCAmelCase = None def __UpperCamelCase ( self : int ) -> Union[str, Any]: """simple docstring""" if self.delimiter is not None: _SCREAMING_SNAKE_CASE =self.delimiter if self.column_names is not None: _SCREAMING_SNAKE_CASE =self.column_names @property def __UpperCamelCase ( self : Dict ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE ={ '''sep''': self.sep, '''header''': self.header, '''names''': self.names, '''index_col''': self.index_col, '''usecols''': self.usecols, '''prefix''': self.prefix, '''mangle_dupe_cols''': self.mangle_dupe_cols, '''engine''': self.engine, '''converters''': self.converters, '''true_values''': self.true_values, '''false_values''': self.false_values, '''skipinitialspace''': self.skipinitialspace, '''skiprows''': self.skiprows, '''nrows''': self.nrows, '''na_values''': self.na_values, '''keep_default_na''': self.keep_default_na, '''na_filter''': self.na_filter, '''verbose''': self.verbose, '''skip_blank_lines''': self.skip_blank_lines, '''thousands''': self.thousands, '''decimal''': self.decimal, '''lineterminator''': self.lineterminator, '''quotechar''': self.quotechar, '''quoting''': self.quoting, '''escapechar''': self.escapechar, '''comment''': self.comment, '''encoding''': self.encoding, '''dialect''': self.dialect, '''error_bad_lines''': self.error_bad_lines, '''warn_bad_lines''': self.warn_bad_lines, '''skipfooter''': self.skipfooter, '''doublequote''': self.doublequote, '''memory_map''': self.memory_map, '''float_precision''': self.float_precision, '''chunksize''': self.chunksize, '''encoding_errors''': self.encoding_errors, '''on_bad_lines''': self.on_bad_lines, '''date_format''': self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , _a ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class A__ ( datasets.ArrowBasedBuilder ): UpperCAmelCase = CsvConfig def __UpperCamelCase ( self : Optional[int] ) -> int: """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def __UpperCamelCase ( self : Dict , _a : str ) -> List[str]: """simple docstring""" if not self.config.data_files: raise ValueError(f"At least one data file must be specified, but got data_files={self.config.data_files}" ) _SCREAMING_SNAKE_CASE =dl_manager.download_and_extract(self.config.data_files ) if isinstance(_a , (str, list, tuple) ): _SCREAMING_SNAKE_CASE =data_files if isinstance(_a , _a ): _SCREAMING_SNAKE_CASE =[files] _SCREAMING_SNAKE_CASE =[dl_manager.iter_files(_a ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] _SCREAMING_SNAKE_CASE =[] for split_name, files in data_files.items(): if isinstance(_a , _a ): _SCREAMING_SNAKE_CASE =[files] _SCREAMING_SNAKE_CASE =[dl_manager.iter_files(_a ) for file in files] splits.append(datasets.SplitGenerator(name=_a , gen_kwargs={'''files''': files} ) ) return splits def __UpperCamelCase ( self : Tuple , _a : pa.Table ) -> pa.Table: """simple docstring""" if self.config.features is not None: _SCREAMING_SNAKE_CASE =self.config.features.arrow_schema if all(not require_storage_cast(_a ) for feature in self.config.features.values() ): # cheaper cast _SCREAMING_SNAKE_CASE =pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=_a ) else: # more expensive cast; allows str <-> int/float or str to Audio for example _SCREAMING_SNAKE_CASE =table_cast(_a , _a ) return pa_table def __UpperCamelCase ( self : str , _a : Union[str, Any] ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE =self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str _SCREAMING_SNAKE_CASE =( { name: dtype.to_pandas_dtype() if not require_storage_cast(_a ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(_a ) ): _SCREAMING_SNAKE_CASE =pd.read_csv(_a , iterator=_a , dtype=_a , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(_a ): _SCREAMING_SNAKE_CASE =pa.Table.from_pandas(_a ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(_a ) except ValueError as e: logger.error(f"Failed to read file '{file}' with error {type(_a )}: {e}" ) raise
191
1
def UpperCamelCase ( snake_case__ : int ,snake_case__ : int ,snake_case__ : int ): '''simple docstring''' if exponent == 1: return base if exponent % 2 == 0: __snake_case :int = _modexpt(snake_case__ ,exponent // 2 ,snake_case__ ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(snake_case__ ,exponent - 1 ,snake_case__ )) % modulo_value def UpperCamelCase ( snake_case__ : int = 1777 ,snake_case__ : int = 1855 ,snake_case__ : int = 8 ): '''simple docstring''' __snake_case :int = base for _ in range(1 ,snake_case__ ): __snake_case :Union[str, Any] = _modexpt(snake_case__ ,snake_case__ ,10**digits ) return result if __name__ == "__main__": print(f'''{solution() = }''')
455
import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class snake_case__ ( lowercase_): '''simple docstring''' def __init__( self , a__=0.01 , a__=10_00 ) -> List[Any]: '''simple docstring''' __snake_case :int = p_stop __snake_case :List[Any] = max_length def __iter__( self ) -> Optional[int]: '''simple docstring''' __snake_case :str = 0 __snake_case :Optional[Any] = False while not stop and count < self.max_length: yield count count += 1 __snake_case :str = random.random() < self.p_stop class snake_case__ ( unittest.TestCase): '''simple docstring''' def __lowercase ( self , a__ , a__ , a__=False , a__=True ) -> List[Any]: '''simple docstring''' __snake_case :Optional[Any] = [ BatchSamplerShard(a__ , 2 , a__ , split_batches=a__ , even_batches=a__ ) for i in range(2 ) ] __snake_case :Union[str, Any] = [list(a__ ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(a__ ) for shard in batch_sampler_shards] , [len(a__ ) for e in expected] ) self.assertListEqual(a__ , a__ ) def __lowercase ( self ) -> Any: '''simple docstring''' __snake_case :Optional[Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=a__ ) __snake_case :Dict = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(a__ , a__ ) __snake_case :Optional[Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=a__ ) # Expected shouldn't change self.check_batch_sampler_shards(a__ , a__ ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. __snake_case :List[str] = BatchSampler(range(21 ) , batch_size=3 , drop_last=a__ ) __snake_case :Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(a__ , a__ ) __snake_case :List[Any] = BatchSampler(range(21 ) , batch_size=3 , drop_last=a__ ) __snake_case :Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(a__ , a__ ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. __snake_case :Optional[Any] = BatchSampler(range(22 ) , batch_size=3 , drop_last=a__ ) __snake_case :List[str] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(a__ , a__ ) __snake_case :List[Any] = BatchSampler(range(22 ) , batch_size=3 , drop_last=a__ ) __snake_case :List[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(a__ , a__ ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. __snake_case :List[str] = BatchSampler(range(20 ) , batch_size=3 , drop_last=a__ ) __snake_case :int = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(a__ , a__ ) __snake_case :Optional[Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=a__ ) __snake_case :Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(a__ , a__ ) # Check the shards when the dataset is very small. __snake_case :Dict = BatchSampler(range(2 ) , batch_size=3 , drop_last=a__ ) __snake_case :Optional[Any] = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(a__ , a__ ) __snake_case :Union[str, Any] = BatchSampler(range(2 ) , batch_size=3 , drop_last=a__ ) __snake_case :List[str] = [[], []] self.check_batch_sampler_shards(a__ , a__ ) def __lowercase ( self ) -> Dict: '''simple docstring''' __snake_case :Optional[int] = BatchSampler(range(24 ) , batch_size=4 , drop_last=a__ ) __snake_case :Any = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(a__ , a__ , split_batches=a__ ) __snake_case :List[Any] = BatchSampler(range(24 ) , batch_size=4 , drop_last=a__ ) # Expected shouldn't change self.check_batch_sampler_shards(a__ , a__ , split_batches=a__ ) # Check the shards when the dataset is not a round multiple of batch size. __snake_case :List[Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=a__ ) __snake_case :Optional[int] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(a__ , a__ , split_batches=a__ ) __snake_case :List[Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=a__ ) __snake_case :Union[str, Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(a__ , a__ , split_batches=a__ ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. __snake_case :Union[str, Any] = BatchSampler(range(21 ) , batch_size=4 , drop_last=a__ ) __snake_case :Union[str, Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(a__ , a__ , split_batches=a__ ) __snake_case :Any = BatchSampler(range(21 ) , batch_size=4 , drop_last=a__ ) __snake_case :Tuple = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(a__ , a__ , split_batches=a__ ) # Check the shards when the dataset is very small. __snake_case :str = BatchSampler(range(2 ) , batch_size=4 , drop_last=a__ ) __snake_case :Dict = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(a__ , a__ , split_batches=a__ ) __snake_case :Optional[Any] = BatchSampler(range(2 ) , batch_size=4 , drop_last=a__ ) __snake_case :List[Any] = [[], []] self.check_batch_sampler_shards(a__ , a__ , split_batches=a__ ) def __lowercase ( self ) -> List[Any]: '''simple docstring''' __snake_case :Tuple = BatchSampler(range(24 ) , batch_size=3 , drop_last=a__ ) __snake_case :int = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(a__ , a__ , even_batches=a__ ) __snake_case :List[Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=a__ ) # Expected shouldn't change self.check_batch_sampler_shards(a__ , a__ , even_batches=a__ ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. __snake_case :Any = BatchSampler(range(21 ) , batch_size=3 , drop_last=a__ ) __snake_case :List[str] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(a__ , a__ , even_batches=a__ ) __snake_case :Tuple = BatchSampler(range(21 ) , batch_size=3 , drop_last=a__ ) __snake_case :Dict = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(a__ , a__ , even_batches=a__ ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. __snake_case :int = BatchSampler(range(22 ) , batch_size=3 , drop_last=a__ ) __snake_case :Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(a__ , a__ , even_batches=a__ ) __snake_case :Tuple = BatchSampler(range(22 ) , batch_size=3 , drop_last=a__ ) __snake_case :Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(a__ , a__ , even_batches=a__ ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. __snake_case :Dict = BatchSampler(range(20 ) , batch_size=3 , drop_last=a__ ) __snake_case :int = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(a__ , a__ , even_batches=a__ ) __snake_case :Optional[int] = BatchSampler(range(20 ) , batch_size=3 , drop_last=a__ ) __snake_case :List[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(a__ , a__ , even_batches=a__ ) # Check the shards when the dataset is very small. __snake_case :Union[str, Any] = BatchSampler(range(2 ) , batch_size=3 , drop_last=a__ ) __snake_case :List[Any] = [[[0, 1]], []] self.check_batch_sampler_shards(a__ , a__ , even_batches=a__ ) __snake_case :List[str] = BatchSampler(range(2 ) , batch_size=3 , drop_last=a__ ) __snake_case :int = [[], []] self.check_batch_sampler_shards(a__ , a__ , even_batches=a__ ) def __lowercase ( self ) -> Dict: '''simple docstring''' __snake_case :int = BatchSampler(range(24 ) , batch_size=4 , drop_last=a__ ) __snake_case :Optional[int] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(a__ , a__ , split_batches=a__ , even_batches=a__ ) __snake_case :Dict = BatchSampler(range(24 ) , batch_size=4 , drop_last=a__ ) # Expected shouldn't change self.check_batch_sampler_shards(a__ , a__ , split_batches=a__ , even_batches=a__ ) # Check the shards when the dataset is not a round multiple of batch size. __snake_case :List[Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=a__ ) __snake_case :Dict = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(a__ , a__ , split_batches=a__ , even_batches=a__ ) __snake_case :Dict = BatchSampler(range(22 ) , batch_size=4 , drop_last=a__ ) __snake_case :Dict = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(a__ , a__ , split_batches=a__ , even_batches=a__ ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. __snake_case :Dict = BatchSampler(range(21 ) , batch_size=4 , drop_last=a__ ) __snake_case :List[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(a__ , a__ , split_batches=a__ , even_batches=a__ ) __snake_case :int = BatchSampler(range(21 ) , batch_size=4 , drop_last=a__ ) __snake_case :Tuple = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(a__ , a__ , split_batches=a__ , even_batches=a__ ) # Check the shards when the dataset is very small. __snake_case :List[str] = BatchSampler(range(2 ) , batch_size=4 , drop_last=a__ ) __snake_case :List[str] = [[[0, 1]], []] self.check_batch_sampler_shards(a__ , a__ , split_batches=a__ , even_batches=a__ ) __snake_case :Any = BatchSampler(range(2 ) , batch_size=4 , drop_last=a__ ) __snake_case :List[str] = [[], []] self.check_batch_sampler_shards(a__ , a__ , split_batches=a__ , even_batches=a__ ) def __lowercase ( self ) -> Optional[Any]: '''simple docstring''' __snake_case :str = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] __snake_case :List[str] = [BatchSamplerShard(a__ , 2 , a__ , even_batches=a__ ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def __lowercase ( self , a__ , a__ , a__ , a__=False , a__=2 , a__=False ) -> List[str]: '''simple docstring''' random.seed(a__ ) __snake_case :Optional[int] = list(a__ ) __snake_case :Union[str, Any] = [ IterableDatasetShard( a__ , batch_size=a__ , drop_last=a__ , num_processes=a__ , process_index=a__ , split_batches=a__ , ) for i in range(a__ ) ] __snake_case :Any = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(a__ ) iterable_dataset_lists.append(list(a__ ) ) __snake_case :Union[str, Any] = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size __snake_case :str = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(a__ ) , len(a__ ) ) self.assertTrue(len(a__ ) % shard_batch_size == 0 ) __snake_case :int = [] for idx in range(0 , len(a__ ) , a__ ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(a__ ) < len(a__ ): reference += reference self.assertListEqual(a__ , reference[: len(a__ )] ) def __lowercase ( self ) -> Any: '''simple docstring''' __snake_case :int = 42 __snake_case :Tuple = RandomIterableDataset() self.check_iterable_dataset_shards(a__ , a__ , batch_size=4 , drop_last=a__ , split_batches=a__ ) self.check_iterable_dataset_shards(a__ , a__ , batch_size=4 , drop_last=a__ , split_batches=a__ ) self.check_iterable_dataset_shards(a__ , a__ , batch_size=4 , drop_last=a__ , split_batches=a__ ) self.check_iterable_dataset_shards(a__ , a__ , batch_size=4 , drop_last=a__ , split_batches=a__ ) # Edge case with a very small dataset __snake_case :Optional[int] = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(a__ , a__ , batch_size=4 , drop_last=a__ , split_batches=a__ ) self.check_iterable_dataset_shards(a__ , a__ , batch_size=4 , drop_last=a__ , split_batches=a__ ) self.check_iterable_dataset_shards(a__ , a__ , batch_size=4 , drop_last=a__ , split_batches=a__ ) self.check_iterable_dataset_shards(a__ , a__ , batch_size=4 , drop_last=a__ , split_batches=a__ ) def __lowercase ( self ) -> Dict: '''simple docstring''' __snake_case :str = BatchSampler(range(16 ) , batch_size=4 , drop_last=a__ ) __snake_case :Optional[int] = SkipBatchSampler(a__ , 2 ) self.assertListEqual(list(a__ ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def __lowercase ( self ) -> str: '''simple docstring''' __snake_case :str = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def __lowercase ( self ) -> Dict: '''simple docstring''' __snake_case :Union[str, Any] = DataLoader(list(range(16 ) ) , batch_size=4 ) __snake_case :Dict = skip_first_batches(a__ , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def __lowercase ( self ) -> Optional[Any]: '''simple docstring''' __snake_case :Any = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(a__ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(a__ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def __lowercase ( self ) -> Any: '''simple docstring''' Accelerator() __snake_case :Union[str, Any] = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(a__ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(a__ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
455
1
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def __snake_case ( ): __a = ArgumentParser( description=( '''PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes''' ) ) # Optional arguments for the launch helper parser.add_argument('''--num_cores''' , type=_UpperCAmelCase , default=1 , help='''Number of TPU cores to use (1 or 8).''' ) # positional parser.add_argument( '''training_script''' , type=_UpperCAmelCase , help=( '''The full path to the single TPU training ''' '''program/script to be launched in parallel, ''' '''followed by all the arguments for the ''' '''training script''' ) , ) # rest from the training program parser.add_argument('''training_script_args''' , nargs=_UpperCAmelCase ) return parser.parse_args() def __snake_case ( ): __a = parse_args() # Import training_script as a module. __a = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) __a = script_fpath.stem __a = importlib.import_module(_UpperCAmelCase ) # Patch sys.argv __a = [args.training_script] + args.training_script_args + ['''--tpu_num_cores''', str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
711
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib __snake_case :str = get_logger() __snake_case :Optional[dict] = None class _A ( TensorFormatter[Mapping, '''jax.Array''', Mapping] ): def __init__( self : str , __SCREAMING_SNAKE_CASE : int=None , __SCREAMING_SNAKE_CASE : List[Any]=None , **__SCREAMING_SNAKE_CASE : Any): '''simple docstring''' super().__init__(features=__SCREAMING_SNAKE_CASE) import jax from jaxlib.xla_client import Device if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE): raise ValueError( F'Expected {device} to be a `str` not {type(__SCREAMING_SNAKE_CASE)}, as `jaxlib.xla_extension.Device` ' '''is not serializable neither with `pickle` nor with `dill`. Instead you can surround ''' '''the device with `str()` to get its string identifier that will be internally mapped ''' '''to the actual `jaxlib.xla_extension.Device`.''') __a = device if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) else str(jax.devices()[0]) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: __a = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys()): logger.warning( F'Device with string identifier {self.device} not listed among the available ' F'devices: {list(DEVICE_MAPPING.keys())}, so falling back to the default ' F'device: {str(jax.devices()[0])}.') __a = str(jax.devices()[0]) __a = jnp_array_kwargs @staticmethod def _lowerCamelCase ( ): '''simple docstring''' import jax return {str(__SCREAMING_SNAKE_CASE): device for device in jax.devices()} def _lowerCamelCase ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Tuple): '''simple docstring''' import jax import jax.numpy as jnp if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) and column: if all( isinstance(__SCREAMING_SNAKE_CASE , jax.Array) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column): return jnp.stack(__SCREAMING_SNAKE_CASE , axis=0) return column def _lowerCamelCase ( self : str , __SCREAMING_SNAKE_CASE : str): '''simple docstring''' import jax import jax.numpy as jnp if isinstance(__SCREAMING_SNAKE_CASE , (str, bytes, type(__SCREAMING_SNAKE_CASE))): return value elif isinstance(__SCREAMING_SNAKE_CASE , (np.character, np.ndarray)) and np.issubdtype(value.dtype , np.character): return value.tolist() __a = {} if isinstance(__SCREAMING_SNAKE_CASE , (np.number, np.ndarray)) and np.issubdtype(value.dtype , np.integer): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: __a = {'''dtype''': jnp.intaa} else: __a = {'''dtype''': jnp.intaa} elif isinstance(__SCREAMING_SNAKE_CASE , (np.number, np.ndarray)) and np.issubdtype(value.dtype , np.floating): __a = {'''dtype''': jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(__SCREAMING_SNAKE_CASE , PIL.Image.Image): __a = np.asarray(__SCREAMING_SNAKE_CASE) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: __a = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device]): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(__SCREAMING_SNAKE_CASE , **{**default_dtype, **self.jnp_array_kwargs}) def _lowerCamelCase ( self : Tuple , __SCREAMING_SNAKE_CASE : str): '''simple docstring''' import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(__SCREAMING_SNAKE_CASE , torch.Tensor): return self._tensorize(data_struct.detach().cpu().numpy()[()]) if hasattr(__SCREAMING_SNAKE_CASE , '''__array__''') and not isinstance(__SCREAMING_SNAKE_CASE , jax.Array): __a = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(__SCREAMING_SNAKE_CASE , np.ndarray): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(__SCREAMING_SNAKE_CASE) for substruct in data_struct]) elif isinstance(__SCREAMING_SNAKE_CASE , (list, tuple)): return self._consolidate([self.recursive_tensorize(__SCREAMING_SNAKE_CASE) for substruct in data_struct]) return self._tensorize(__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Tuple , __SCREAMING_SNAKE_CASE : dict): '''simple docstring''' return map_nested(self._recursive_tensorize , __SCREAMING_SNAKE_CASE , map_list=__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : str , __SCREAMING_SNAKE_CASE : pa.Table): '''simple docstring''' __a = self.numpy_arrow_extractor().extract_row(__SCREAMING_SNAKE_CASE) __a = self.python_features_decoder.decode_row(__SCREAMING_SNAKE_CASE) return self.recursive_tensorize(__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Tuple , __SCREAMING_SNAKE_CASE : pa.Table): '''simple docstring''' __a = self.numpy_arrow_extractor().extract_column(__SCREAMING_SNAKE_CASE) __a = self.python_features_decoder.decode_column(__SCREAMING_SNAKE_CASE , pa_table.column_names[0]) __a = self.recursive_tensorize(__SCREAMING_SNAKE_CASE) __a = self._consolidate(__SCREAMING_SNAKE_CASE) return column def _lowerCamelCase ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : pa.Table): '''simple docstring''' __a = self.numpy_arrow_extractor().extract_batch(__SCREAMING_SNAKE_CASE) __a = self.python_features_decoder.decode_batch(__SCREAMING_SNAKE_CASE) __a = self.recursive_tensorize(__SCREAMING_SNAKE_CASE) for column_name in batch: __a = self._consolidate(batch[column_name]) return batch
60
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE : Tuple = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : List[str] = { "facebook/xlm-roberta-xl": "https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json", "facebook/xlm-roberta-xxl": "https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json", # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class A_ ( __SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE = """xlm-roberta-xl""" def __init__( self : Tuple , __SCREAMING_SNAKE_CASE : Tuple=25_08_80 , __SCREAMING_SNAKE_CASE : Optional[int]=25_60 , __SCREAMING_SNAKE_CASE : str=36 , __SCREAMING_SNAKE_CASE : List[Any]=32 , __SCREAMING_SNAKE_CASE : Dict=1_02_40 , __SCREAMING_SNAKE_CASE : Optional[Any]="gelu" , __SCREAMING_SNAKE_CASE : List[Any]=0.1 , __SCREAMING_SNAKE_CASE : Tuple=0.1 , __SCREAMING_SNAKE_CASE : int=5_14 , __SCREAMING_SNAKE_CASE : Optional[Any]=1 , __SCREAMING_SNAKE_CASE : List[str]=0.02 , __SCREAMING_SNAKE_CASE : List[Any]=1E-05 , __SCREAMING_SNAKE_CASE : Tuple=1 , __SCREAMING_SNAKE_CASE : int=0 , __SCREAMING_SNAKE_CASE : List[str]=2 , __SCREAMING_SNAKE_CASE : str="absolute" , __SCREAMING_SNAKE_CASE : str=True , __SCREAMING_SNAKE_CASE : str=None , **__SCREAMING_SNAKE_CASE : List[str] , ): super().__init__(pad_token_id=__SCREAMING_SNAKE_CASE , bos_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = hidden_act __a = intermediate_size __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = type_vocab_size __a = initializer_range __a = layer_norm_eps __a = position_embedding_type __a = use_cache __a = classifier_dropout class A_ ( __SCREAMING_SNAKE_CASE ): @property def _UpperCAmelCase ( self : Any ): if self.task == "multiple-choice": __a = {0: """batch""", 1: """choice""", 2: """sequence"""} else: __a = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
197
'''simple docstring''' import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def UpperCamelCase__ ( __magic_name__ : str , __magic_name__ : List[Any]=None ) -> Union[str, Any]: '''simple docstring''' snake_case__ : str = None if token is not None: snake_case__ : str = {"""Accept""": """application/vnd.github+json""", """Authorization""": f"Bearer {token}"} snake_case__ : List[Any] = f"https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100" snake_case__ : str = requests.get(__magic_name__ , headers=__magic_name__ ).json() snake_case__ : str = {} try: job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) snake_case__ : List[Any] = math.ceil((result["""total_count"""] - 1_00) / 1_00 ) for i in range(__magic_name__ ): snake_case__ : Tuple = requests.get(url + f"&page={i + 2}" , headers=__magic_name__ ).json() job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) return job_links except Exception: print(f"Unknown error, could not fetch links:\n{traceback.format_exc()}" ) return {} def UpperCamelCase__ ( __magic_name__ : Optional[int] , __magic_name__ : Optional[Any]=None ) -> List[str]: '''simple docstring''' snake_case__ : Optional[Any] = None if token is not None: snake_case__ : Any = {"""Accept""": """application/vnd.github+json""", """Authorization""": f"Bearer {token}"} snake_case__ : Dict = f"https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100" snake_case__ : Union[str, Any] = requests.get(__magic_name__ , headers=__magic_name__ ).json() snake_case__ : Dict = {} try: artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) snake_case__ : List[Any] = math.ceil((result["""total_count"""] - 1_00) / 1_00 ) for i in range(__magic_name__ ): snake_case__ : Dict = requests.get(url + f"&page={i + 2}" , headers=__magic_name__ ).json() artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) return artifacts except Exception: print(f"Unknown error, could not fetch links:\n{traceback.format_exc()}" ) return {} def UpperCamelCase__ ( __magic_name__ : Optional[int] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[int] , __magic_name__ : Dict ) -> Dict: '''simple docstring''' snake_case__ : Optional[Any] = None if token is not None: snake_case__ : Dict = {"""Accept""": """application/vnd.github+json""", """Authorization""": f"Bearer {token}"} snake_case__ : str = requests.get(__magic_name__ , headers=__magic_name__ , allow_redirects=__magic_name__ ) snake_case__ : Any = result.headers["""Location"""] snake_case__ : Tuple = requests.get(__magic_name__ , allow_redirects=__magic_name__ ) snake_case__ : int = os.path.join(__magic_name__ , f"{artifact_name}.zip" ) with open(__magic_name__ , """wb""" ) as fp: fp.write(response.content ) def UpperCamelCase__ ( __magic_name__ : List[Any] , __magic_name__ : str=None ) -> Union[str, Any]: '''simple docstring''' snake_case__ : Any = [] snake_case__ : Union[str, Any] = [] snake_case__ : Any = None with zipfile.ZipFile(__magic_name__ ) as z: for filename in z.namelist(): if not os.path.isdir(__magic_name__ ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(__magic_name__ ) as f: for line in f: snake_case__ : Any = line.decode("""UTF-8""" ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs snake_case__ : str = line[: line.index(""": """ )] snake_case__ : Optional[int] = line[line.index(""": """ ) + len(""": """ ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith("""FAILED """ ): # `test` is the test method that failed snake_case__ : Dict = line[len("""FAILED """ ) :] failed_tests.append(__magic_name__ ) elif filename == "job_name.txt": snake_case__ : Optional[Any] = line if len(__magic_name__ ) != len(__magic_name__ ): raise ValueError( f"`errors` and `failed_tests` should have the same number of elements. Got {len(__magic_name__ )} for `errors` " f"and {len(__magic_name__ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some" """ problem.""" ) snake_case__ : Optional[Any] = None if job_name and job_links: snake_case__ : Optional[Any] = job_links.get(__magic_name__ , __magic_name__ ) # A list with elements of the form (line of error, error, failed test) snake_case__ : List[Any] = [x + [y] + [job_link] for x, y in zip(__magic_name__ , __magic_name__ )] return result def UpperCamelCase__ ( __magic_name__ : int , __magic_name__ : Union[str, Any]=None ) -> Union[str, Any]: '''simple docstring''' snake_case__ : str = [] snake_case__ : Dict = [os.path.join(__magic_name__ , __magic_name__ ) for p in os.listdir(__magic_name__ ) if p.endswith(""".zip""" )] for p in paths: errors.extend(get_errors_from_single_artifact(__magic_name__ , job_links=__magic_name__ ) ) return errors def UpperCamelCase__ ( __magic_name__ : Optional[Any] , __magic_name__ : str=None ) -> List[Any]: '''simple docstring''' snake_case__ : Any = Counter() counter.update([x[1] for x in logs] ) snake_case__ : Dict = counter.most_common() snake_case__ : Any = {} for error, count in counts: if error_filter is None or error not in error_filter: snake_case__ : int = {"""count""": count, """failed_tests""": [(x[2], x[0]) for x in logs if x[1] == error]} snake_case__ : Union[str, Any] = dict(sorted(r.items() , key=lambda __magic_name__ : item[1]["count"] , reverse=__magic_name__ ) ) return r def UpperCamelCase__ ( __magic_name__ : List[Any] ) -> List[Any]: '''simple docstring''' snake_case__ : str = test.split("""::""" )[0] if test.startswith("""tests/models/""" ): snake_case__ : Tuple = test.split("""/""" )[2] else: snake_case__ : Any = None return test def UpperCamelCase__ ( __magic_name__ : str , __magic_name__ : Union[str, Any]=None ) -> List[str]: '''simple docstring''' snake_case__ : List[str] = [(x[0], x[1], get_model(x[2] )) for x in logs] snake_case__ : List[Any] = [x for x in logs if x[2] is not None] snake_case__ : Any = {x[2] for x in logs} snake_case__ : Optional[Any] = {} for test in tests: snake_case__ : str = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) snake_case__ : Optional[int] = counter.most_common() snake_case__ : Optional[int] = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} snake_case__ : int = sum(error_counts.values() ) if n_errors > 0: snake_case__ : str = {"""count""": n_errors, """errors""": error_counts} snake_case__ : Union[str, Any] = dict(sorted(r.items() , key=lambda __magic_name__ : item[1]["count"] , reverse=__magic_name__ ) ) return r def UpperCamelCase__ ( __magic_name__ : int ) -> Optional[int]: '''simple docstring''' snake_case__ : Optional[Any] = """| no. | error | status |""" snake_case__ : int = """|-:|:-|:-|""" snake_case__ : int = [header, sep] for error in reduced_by_error: snake_case__ : Union[str, Any] = reduced_by_error[error]["""count"""] snake_case__ : Dict = f"| {count} | {error[:1_00]} | |" lines.append(__magic_name__ ) return "\n".join(__magic_name__ ) def UpperCamelCase__ ( __magic_name__ : Dict ) -> List[Any]: '''simple docstring''' snake_case__ : List[Any] = """| model | no. of errors | major error | count |""" snake_case__ : Optional[int] = """|-:|-:|-:|-:|""" snake_case__ : Dict = [header, sep] for model in reduced_by_model: snake_case__ : Tuple = reduced_by_model[model]["""count"""] snake_case__ , snake_case__ : Tuple = list(reduced_by_model[model]["""errors"""].items() )[0] snake_case__ : Optional[int] = f"| {model} | {count} | {error[:60]} | {_count} |" lines.append(__magic_name__ ) return "\n".join(__magic_name__ ) if __name__ == "__main__": A_ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.") parser.add_argument( "--output_dir", type=str, required=True, help="Where to store the downloaded artifacts and other result files.", ) parser.add_argument("--token", default=None, type=str, help="A token that has actions:read permission.") A_ : int = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) A_ : Optional[int] = get_job_links(args.workflow_run_id, token=args.token) A_ : Optional[Any] = {} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: A_ : int = k.find(" / ") A_ : List[Any] = k[index + len(" / ") :] A_ : List[str] = v with open(os.path.join(args.output_dir, "job_links.json"), "w", encoding="UTF-8") as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) A_ : int = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, "artifacts.json"), "w", encoding="UTF-8") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) A_ : str = get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error A_ : List[str] = Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors A_ : Any = counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, "errors.json"), "w", encoding="UTF-8") as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) A_ : Any = reduce_by_error(errors) A_ : Union[str, Any] = reduce_by_model(errors) A_ : Any = make_github_table(reduced_by_error) A_ : Optional[Any] = make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, "reduced_by_error.txt"), "w", encoding="UTF-8") as fp: fp.write(sa) with open(os.path.join(args.output_dir, "reduced_by_model.txt"), "w", encoding="UTF-8") as fp: fp.write(sa)
38
0
import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml a : Optional[int] = logging.get_logger(__name__) def lowercase_ ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' def run_func(_UpperCamelCase ): @wraps(_UpperCamelCase ) def run_in_eager_mode(*_UpperCamelCase , **_UpperCamelCase ): return func(*_UpperCamelCase , **_UpperCamelCase ) @wraps(_UpperCamelCase ) @tf.function(experimental_compile=_UpperCamelCase ) def run_in_graph_mode(*_UpperCamelCase , **_UpperCamelCase ): return func(*_UpperCamelCase , **_UpperCamelCase ) if do_eager_mode is True: if use_xla is not False: raise ValueError( '''Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`.''' ) return run_in_eager_mode else: return run_in_graph_mode return run_func def lowercase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowercase = random.Random() __lowercase = [rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(_UpperCamelCase , shape=(batch_size, sequence_length) , dtype=tf.intaa ) class lowerCamelCase_ ( lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase = 42 __UpperCAmelCase = 42 __UpperCAmelCase = "TensorFlow" @property def A ( self ) -> str: '''simple docstring''' return tf.__version__ def A ( self , snake_case_ , snake_case_ , snake_case_ ) -> float: '''simple docstring''' __lowercase = self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) __lowercase = self._prepare_inference_func(snake_case_ , snake_case_ , snake_case_ ) return self._measure_speed(_inference ) def A ( self , snake_case_ , snake_case_ , snake_case_ ) -> float: '''simple docstring''' __lowercase = self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) __lowercase = self._prepare_train_func(snake_case_ , snake_case_ , snake_case_ ) return self._measure_speed(_train ) def A ( self , snake_case_ , snake_case_ , snake_case_ ) -> [Memory, Optional[MemorySummary]]: '''simple docstring''' if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , snake_case_ ) __lowercase = self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) __lowercase = self._prepare_inference_func(snake_case_ , snake_case_ , snake_case_ ) return self._measure_memory(_inference ) def A ( self , snake_case_ , snake_case_ , snake_case_ ) -> [Memory, Optional[MemorySummary]]: '''simple docstring''' if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , snake_case_ ) __lowercase = self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) __lowercase = self._prepare_train_func(snake_case_ , snake_case_ , snake_case_ ) return self._measure_memory(_train ) def A ( self , snake_case_ , snake_case_ , snake_case_ ) -> Callable[[], None]: '''simple docstring''' __lowercase = self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError('''Mixed precision is currently not supported.''' ) __lowercase = ( hasattr(snake_case_ , '''architectures''' ) and isinstance(config.architectures , snake_case_ ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: __lowercase = '''TF''' + config.architectures[0] # prepend 'TF' for tensorflow model __lowercase = __import__('''transformers''' , fromlist=[model_class] ) __lowercase = getattr(snake_case_ , snake_case_ ) __lowercase = model_cls(snake_case_ ) except ImportError: raise ImportError( F'{model_class} does not exist. If you just want to test the pretrained model, you might want to' ''' set `--only_pretrain_model` or `args.only_pretrain_model=True`.''' ) else: __lowercase = TF_MODEL_MAPPING[config.__class__](snake_case_ ) # encoder-decoder has vocab size saved differently __lowercase = config.vocab_size if hasattr(snake_case_ , '''vocab_size''' ) else config.encoder.vocab_size __lowercase = random_input_ids(snake_case_ , snake_case_ , snake_case_ ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_forward(): return model(snake_case_ , decoder_input_ids=snake_case_ , training=snake_case_ ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_forward(): return model(snake_case_ , training=snake_case_ ) __lowercase = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def A ( self , snake_case_ , snake_case_ , snake_case_ ) -> Callable[[], None]: '''simple docstring''' __lowercase = self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError('''Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`.''' ) if self.args.fpaa: raise NotImplementedError('''Mixed precision is currently not supported.''' ) __lowercase = ( hasattr(snake_case_ , '''architectures''' ) and isinstance(config.architectures , snake_case_ ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: __lowercase = '''TF''' + config.architectures[0] # prepend 'TF' for tensorflow model __lowercase = __import__('''transformers''' , fromlist=[model_class] ) __lowercase = getattr(snake_case_ , snake_case_ ) __lowercase = model_cls(snake_case_ ) except ImportError: raise ImportError( F'{model_class} does not exist. If you just want to test the pretrained model, you might want to' ''' set `--only_pretrain_model` or `args.only_pretrain_model=True`.''' ) else: __lowercase = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](snake_case_ ) # encoder-decoder has vocab size saved differently __lowercase = config.vocab_size if hasattr(snake_case_ , '''vocab_size''' ) else config.encoder.vocab_size __lowercase = random_input_ids(snake_case_ , snake_case_ , snake_case_ ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_train(): __lowercase = model(snake_case_ , decoder_input_ids=snake_case_ , labels=snake_case_ , training=snake_case_ )[0] __lowercase = tf.gradients(snake_case_ , model.trainable_variables ) return gradients @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_train(): __lowercase = model(snake_case_ , labels=snake_case_ , training=snake_case_ )[0] __lowercase = tf.gradients(snake_case_ , model.trainable_variables ) return gradients __lowercase = encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def A ( self , snake_case_ ) -> float: '''simple docstring''' with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info('''Do inference on TPU. Running model 5 times to stabilize compilation''' ) timeit.repeat(snake_case_ , repeat=1 , number=5 ) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average __lowercase = timeit.repeat( snake_case_ , repeat=self.args.repeat , number=1_0 , ) return min(snake_case_ ) / 1_0.0 except ResourceExhaustedError as e: self.print_fn(F'Doesn\'t fit on GPU. {e}' ) def A ( self , snake_case_ ) -> [Memory, MemorySummary]: '''simple docstring''' logger.info( '''Note that TensorFlow allocates more memory than ''' '''it might need to speed up computation. ''' '''The memory reported here corresponds to the memory ''' '''reported by `nvidia-smi`, which can vary depending ''' '''on total available memory on the GPU that is used.''' ) with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( '''`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory''' ''' consumption line by line.''' ) __lowercase = start_memory_tracing('''transformers''' ) if self.args.is_tpu: # tpu raise NotImplementedError( '''Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking''' ''' with `args.memory=False`''' ) elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( '''py3nvml not installed, we won\'t log GPU memory usage. ''' '''Install py3nvml (pip install py3nvml) to log information about GPU.''' ) __lowercase = '''N/A''' else: logger.info( '''Measuring total GPU usage on GPU device. Make sure to not have additional processes''' ''' running on the same GPU.''' ) # init nvml nvml.nvmlInit() func() __lowercase = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx ) __lowercase = nvml.nvmlDeviceGetMemoryInfo(snake_case_ ) __lowercase = meminfo.used __lowercase = Memory(snake_case_ ) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( '''When enabling line by line tracing, the max peak memory for CPU is inaccurate in''' ''' TensorFlow.''' ) __lowercase = None else: __lowercase = measure_peak_memory_cpu(snake_case_ ) __lowercase = Memory(snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else memory_bytes if self.args.trace_memory_line_by_line: __lowercase = stop_memory_tracing(snake_case_ ) if memory is None: __lowercase = summary.total else: __lowercase = None return memory, summary except ResourceExhaustedError as e: self.print_fn(F'Doesn\'t fit on GPU. {e}' ) return "N/A", None
527
import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class lowerCamelCase_ : '''simple docstring''' def __init__( self , snake_case_=2 , snake_case_=3 , snake_case_=6_4 , snake_case_=None ) -> List[str]: '''simple docstring''' __lowercase = np.random.default_rng(snake_case_ ) __lowercase = length __lowercase = rng.normal(size=(length,) ).astype(np.floataa ) __lowercase = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self ) -> Dict: '''simple docstring''' return self.length def __getitem__( self , snake_case_ ) -> Union[str, Any]: '''simple docstring''' return {"x": self.x[i], "y": self.y[i]} class lowerCamelCase_ ( torch.nn.Module ): '''simple docstring''' def __init__( self , snake_case_=0 , snake_case_=0 , snake_case_=False ) -> Optional[Any]: '''simple docstring''' super().__init__() __lowercase = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) __lowercase = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) __lowercase = True def A ( self , snake_case_=None ) -> List[Any]: '''simple docstring''' if self.first_batch: print(F'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) __lowercase = False return x * self.a[0] + self.b[0] class lowerCamelCase_ ( torch.nn.Module ): '''simple docstring''' def __init__( self , snake_case_=0 , snake_case_=0 , snake_case_=False ) -> List[str]: '''simple docstring''' super().__init__() __lowercase = torch.nn.Parameter(torch.tensor(snake_case_ ).float() ) __lowercase = torch.nn.Parameter(torch.tensor(snake_case_ ).float() ) __lowercase = True def A ( self , snake_case_=None ) -> str: '''simple docstring''' if self.first_batch: print(F'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) __lowercase = False return x * self.a + self.b def lowercase_ ( _UpperCamelCase , _UpperCamelCase = 16 ): '''simple docstring''' from datasets import load_dataset from transformers import AutoTokenizer __lowercase = AutoTokenizer.from_pretrained('''bert-base-cased''' ) __lowercase = {'''train''': '''tests/test_samples/MRPC/train.csv''', '''validation''': '''tests/test_samples/MRPC/dev.csv'''} __lowercase = load_dataset('''csv''' , data_files=_UpperCamelCase ) __lowercase = datasets['''train'''].unique('''label''' ) __lowercase = {v: i for i, v in enumerate(_UpperCamelCase )} def tokenize_function(_UpperCamelCase ): # max_length=None => use the model max length (it's actually the default) __lowercase = tokenizer( examples['''sentence1'''] , examples['''sentence2'''] , truncation=_UpperCamelCase , max_length=_UpperCamelCase , padding='''max_length''' ) if "label" in examples: __lowercase = [label_to_id[l] for l in examples['''label''']] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __lowercase = datasets.map( _UpperCamelCase , batched=_UpperCamelCase , remove_columns=['''sentence1''', '''sentence2''', '''label'''] , ) def collate_fn(_UpperCamelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(_UpperCamelCase , padding='''max_length''' , max_length=1_28 , return_tensors='''pt''' ) return tokenizer.pad(_UpperCamelCase , padding='''longest''' , return_tensors='''pt''' ) # Instantiate dataloaders. __lowercase = DataLoader(tokenized_datasets['''train'''] , shuffle=_UpperCamelCase , collate_fn=_UpperCamelCase , batch_size=2 ) __lowercase = DataLoader(tokenized_datasets['''validation'''] , shuffle=_UpperCamelCase , collate_fn=_UpperCamelCase , batch_size=1 ) return train_dataloader, eval_dataloader
527
1
'''simple docstring''' from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) _lowercase = _symbol_database.Default() _lowercase = _descriptor_pool.Default().AddSerializedFile( B"""\n\x19sentencepiece_model.proto\x12\rsentencepiece\"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12\"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12\"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18\" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse\"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32\".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL\"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03""" ) _lowercase = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, """sentencepiece_model_pb2""", _globals) if _descriptor._USE_C_DESCRIPTORS is False: _lowercase = None _lowercase = B"""H\003""" # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" _lowercase = 45 _lowercase = 1581 _lowercase = 1517 _lowercase = 1570 _lowercase = 1584 _lowercase = 1793 _lowercase = 1795 _lowercase = 1916 _lowercase = 1864 _lowercase = 1905 _lowercase = 1919 _lowercase = 2429 _lowercase = 2208 _lowercase = 2418 _lowercase = 2323 _lowercase = 2407 # @@protoc_insertion_point(module_scope)
5
def lowerCAmelCase_ ( __UpperCAmelCase: str ) -> bool: return credit_card_number.startswith(('''34''', '''35''', '''37''', '''4''', '''5''', '''6''') ) def lowerCAmelCase_ ( __UpperCAmelCase: str ) -> bool: UpperCamelCase__ : Tuple = credit_card_number UpperCamelCase__ : List[str] = 0 UpperCamelCase__ : Any = len(__UpperCAmelCase ) - 2 for i in range(__UpperCAmelCase , -1 , -2 ): # double the value of every second digit UpperCamelCase__ : List[str] = int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 UpperCamelCase__ : List[Any] = cc_number[:i] + str(__UpperCAmelCase ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(__UpperCAmelCase ) - 1 , -1 , -2 ): total += int(cc_number[i] ) return total % 10 == 0 def lowerCAmelCase_ ( __UpperCAmelCase: str ) -> bool: UpperCamelCase__ : str = f"{credit_card_number} is an invalid credit card number because" if not credit_card_number.isdigit(): print(f"{error_message} it has nonnumerical characters." ) return False if not 13 <= len(__UpperCAmelCase ) <= 16: print(f"{error_message} of its length." ) return False if not validate_initial_digits(__UpperCAmelCase ): print(f"{error_message} of its first two digits." ) return False if not luhn_validation(__UpperCAmelCase ): print(f"{error_message} it fails the Luhn check." ) return False print(f"{credit_card_number} is a valid credit card number." ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number('4111111111111111') validate_credit_card_number('32323')
253
0
from __future__ import annotations def _lowerCAmelCase ( _a : list[int] ) -> list[int]: # This function is recursive lowerCAmelCase_ : List[Any] = len(_a ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else lowerCAmelCase_ : Union[str, Any] = array[0] lowerCAmelCase_ : str = False lowerCAmelCase_ : Optional[int] = 1 lowerCAmelCase_ : list[int] = [] while not is_found and i < array_length: if array[i] < pivot: lowerCAmelCase_ : Optional[Any] = True lowerCAmelCase_ : Tuple = [element for element in array[i:] if element >= array[i]] lowerCAmelCase_ : Any = longest_subsequence(_a ) if len(_a ) > len(_a ): lowerCAmelCase_ : List[Any] = temp_array else: i += 1 lowerCAmelCase_ : Tuple = [element for element in array[1:] if element >= pivot] lowerCAmelCase_ : List[Any] = [pivot, *longest_subsequence(_a )] if len(_a ) > len(_a ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
440
UpperCAmelCase_ : str = """Alexander Joslin""" import operator as op from .stack import Stack def _lowerCAmelCase ( _a : str ) -> int: lowerCAmelCase_ : Any = {"""*""": op.mul, """/""": op.truediv, """+""": op.add, """-""": op.sub} lowerCAmelCase_ : Stack[int] = Stack() lowerCAmelCase_ : Stack[str] = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(_a ) ) elif i in operators: # RULE 2 operator_stack.push(_a ) elif i == ")": # RULE 4 lowerCAmelCase_ : Optional[int] = operator_stack.peek() operator_stack.pop() lowerCAmelCase_ : Union[str, Any] = operand_stack.peek() operand_stack.pop() lowerCAmelCase_ : List[str] = operand_stack.peek() operand_stack.pop() lowerCAmelCase_ : Dict = operators[opr](_a , _a ) operand_stack.push(_a ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": UpperCAmelCase_ : Dict = """(5 + ((4 * 2) * (2 + 3)))""" # answer = 45 print(F"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
440
1
"""simple docstring""" import math import unittest def snake_case_ ( A_ : int ): '''simple docstring''' assert isinstance(A_, A_ ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5, int(math.sqrt(A_ ) + 1 ), 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True class __snake_case ( unittest.TestCase): def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" self.assertTrue(is_prime(2 ) ) self.assertTrue(is_prime(3 ) ) self.assertTrue(is_prime(5 ) ) self.assertTrue(is_prime(7 ) ) self.assertTrue(is_prime(1_1 ) ) self.assertTrue(is_prime(1_3 ) ) self.assertTrue(is_prime(1_7 ) ) self.assertTrue(is_prime(1_9 ) ) self.assertTrue(is_prime(2_3 ) ) self.assertTrue(is_prime(2_9 ) ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" with self.assertRaises(__lowerCAmelCase ): is_prime(-1_9 ) self.assertFalse( is_prime(0 ) , '''Zero doesn\'t have any positive factors, primes must have exactly two.''' , ) self.assertFalse( is_prime(1 ) , '''One only has 1 positive factor, primes must have exactly two.''' , ) self.assertFalse(is_prime(2 * 2 ) ) self.assertFalse(is_prime(2 * 3 ) ) self.assertFalse(is_prime(3 * 3 ) ) self.assertFalse(is_prime(3 * 5 ) ) self.assertFalse(is_prime(3 * 5 * 7 ) ) if __name__ == "__main__": unittest.main()
83
import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _UpperCAmelCase : Optional[int] = logging.get_logger(__name__) _UpperCAmelCase : str = { "vocab_file": "vocab.json", "merges_file": "merges.txt", } _UpperCAmelCase : str = { "vocab_file": {"ctrl": "https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json"}, "merges_file": {"ctrl": "https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt"}, } _UpperCAmelCase : List[str] = { "ctrl": 256, } _UpperCAmelCase : int = { "Pregnancy": 168_629, "Christianity": 7_675, "Explain": 106_423, "Fitness": 63_440, "Saving": 63_163, "Ask": 27_171, "Ass": 95_985, "Joke": 163_509, "Questions": 45_622, "Thoughts": 49_605, "Retail": 52_342, "Feminism": 164_338, "Writing": 11_992, "Atheism": 192_263, "Netflix": 48_616, "Computing": 39_639, "Opinion": 43_213, "Alone": 44_967, "Funny": 58_917, "Gaming": 40_358, "Human": 4_088, "India": 1_331, "Joker": 77_138, "Diet": 36_206, "Legal": 11_859, "Norman": 4_939, "Tip": 72_689, "Weight": 52_343, "Movies": 46_273, "Running": 23_425, "Science": 2_090, "Horror": 37_793, "Confession": 60_572, "Finance": 12_250, "Politics": 16_360, "Scary": 191_985, "Support": 12_654, "Technologies": 32_516, "Teenage": 66_160, "Event": 32_769, "Learned": 67_460, "Notion": 182_770, "Wikipedia": 37_583, "Books": 6_665, "Extract": 76_050, "Confessions": 102_701, "Conspiracy": 75_932, "Links": 63_674, "Narcissus": 150_425, "Relationship": 54_766, "Relationships": 134_796, "Reviews": 41_671, "News": 4_256, "Translation": 26_820, "multilingual": 128_406, } def lowerCAmelCase_ (lowercase__ : Optional[int] ) -> Any: '''simple docstring''' lowerCAmelCase__ = set() lowerCAmelCase__ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowerCAmelCase__ = char lowerCAmelCase__ = set(lowercase__ ) return pairs class lowerCAmelCase_ ( snake_case__ ): UpperCamelCase_ :int = VOCAB_FILES_NAMES UpperCamelCase_ :str = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ :Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ :Optional[int] = CONTROL_CODES def __init__( self : Any , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Union[str, Any]="<unk>" , **SCREAMING_SNAKE_CASE_ : Tuple ): super().__init__(unk_token=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) with open(SCREAMING_SNAKE_CASE_ , encoding='''utf-8''' ) as vocab_handle: lowerCAmelCase__ = json.load(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ = {v: k for k, v in self.encoder.items()} with open(SCREAMING_SNAKE_CASE_ , encoding='''utf-8''' ) as merges_handle: lowerCAmelCase__ = merges_handle.read().split('''\n''' )[1:-1] lowerCAmelCase__ = [tuple(merge.split() ) for merge in merges] lowerCAmelCase__ = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) lowerCAmelCase__ = {} @property def __snake_case ( self : List[str] ): return len(self.encoder ) def __snake_case ( self : Union[str, Any] ): return dict(self.encoder , **self.added_tokens_encoder ) def __snake_case ( self : Any , SCREAMING_SNAKE_CASE_ : Any ): if token in self.cache: return self.cache[token] lowerCAmelCase__ = tuple(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) lowerCAmelCase__ = get_pairs(SCREAMING_SNAKE_CASE_ ) if not pairs: return token while True: lowerCAmelCase__ = min(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_ : self.bpe_ranks.get(SCREAMING_SNAKE_CASE_ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break lowerCAmelCase__ , lowerCAmelCase__ = bigram lowerCAmelCase__ = [] lowerCAmelCase__ = 0 while i < len(SCREAMING_SNAKE_CASE_ ): try: lowerCAmelCase__ = word.index(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCAmelCase__ = j if word[i] == first and i < len(SCREAMING_SNAKE_CASE_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCAmelCase__ = tuple(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ = new_word if len(SCREAMING_SNAKE_CASE_ ) == 1: break else: lowerCAmelCase__ = get_pairs(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ = '''@@ '''.join(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ = word[:-4] lowerCAmelCase__ = word return word def __snake_case ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[int] ): lowerCAmelCase__ = [] lowerCAmelCase__ = re.findall(R'''\S+\n?''' , SCREAMING_SNAKE_CASE_ ) for token in words: split_tokens.extend(list(self.bpe(SCREAMING_SNAKE_CASE_ ).split(''' ''' ) ) ) return split_tokens def __snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : Any ): return self.encoder.get(SCREAMING_SNAKE_CASE_ , self.encoder.get(self.unk_token ) ) def __snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : List[Any] ): return self.decoder.get(SCREAMING_SNAKE_CASE_ , self.unk_token ) def __snake_case ( self : str , SCREAMING_SNAKE_CASE_ : str ): lowerCAmelCase__ = ''' '''.join(SCREAMING_SNAKE_CASE_ ).replace('''@@ ''' , '''''' ).strip() return out_string def __snake_case ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[str] = None ): if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return lowerCAmelCase__ = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCAmelCase__ = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(SCREAMING_SNAKE_CASE_ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=SCREAMING_SNAKE_CASE_ , ensure_ascii=SCREAMING_SNAKE_CASE_ ) + '''\n''' ) lowerCAmelCase__ = 0 with open(SCREAMING_SNAKE_CASE_ , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda SCREAMING_SNAKE_CASE_ : kv[1] ): if index != token_index: logger.warning( f'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' ''' Please check that the tokenizer is not corrupted!''' ) lowerCAmelCase__ = token_index writer.write(''' '''.join(SCREAMING_SNAKE_CASE_ ) + '''\n''' ) index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
668
0
'''simple docstring''' import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors a__ : Union[str, Any] = logging.getLogger(__name__) class lowercase_ ( a__ ): __UpperCAmelCase = 'sequence-classification' def __init__( self , a ): if type(a ) == dict: UpperCamelCase__ = Namespace(**a ) UpperCamelCase__ = glue_output_modes[hparams.task] UpperCamelCase__ = glue_tasks_num_labels[hparams.task] super().__init__(a , a , self.mode ) def __a ( self , **a ): return self.model(**a ) def __a ( self , a , a ): UpperCamelCase__ = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: UpperCamelCase__ = batch[2] if self.config.model_type in ["bert", "xlnet", "albert"] else None UpperCamelCase__ = self(**a ) UpperCamelCase__ = outputs[0] UpperCamelCase__ = self.trainer.lr_schedulers[0]["scheduler"] UpperCamelCase__ = {"loss": loss, "rate": lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def __a ( self ): UpperCamelCase__ = self.hparams UpperCamelCase__ = processors[args.task]() UpperCamelCase__ = processor.get_labels() for mode in ["train", "dev"]: UpperCamelCase__ = self._feature_file(a ) if os.path.exists(a ) and not args.overwrite_cache: logger.info("Loading features from cached file %s" , a ) else: logger.info("Creating features from dataset file at %s" , args.data_dir ) UpperCamelCase__ = ( processor.get_dev_examples(args.data_dir ) if mode == "dev" else processor.get_train_examples(args.data_dir ) ) UpperCamelCase__ = convert_examples_to_features( a , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info("Saving features into cached file %s" , a ) torch.save(a , a ) def __a ( self , a , a , a = False ): UpperCamelCase__ = "dev" if mode == "test" else mode UpperCamelCase__ = self._feature_file(a ) logger.info("Loading features from cached file %s" , a ) UpperCamelCase__ = torch.load(a ) UpperCamelCase__ = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) UpperCamelCase__ = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) UpperCamelCase__ = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) if self.hparams.glue_output_mode == "classification": UpperCamelCase__ = torch.tensor([f.label for f in features] , dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": UpperCamelCase__ = torch.tensor([f.label for f in features] , dtype=torch.float ) return DataLoader( TensorDataset(a , a , a , a ) , batch_size=a , shuffle=a , ) def __a ( self , a , a ): UpperCamelCase__ = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: UpperCamelCase__ = batch[2] if self.config.model_type in ["bert", "xlnet", "albert"] else None UpperCamelCase__ = self(**a ) UpperCamelCase__ , UpperCamelCase__ = outputs[:2] UpperCamelCase__ = logits.detach().cpu().numpy() UpperCamelCase__ = inputs["labels"].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def __a ( self , a ): UpperCamelCase__ = torch.stack([x["val_loss"] for x in outputs] ).mean().detach().cpu().item() UpperCamelCase__ = np.concatenate([x["pred"] for x in outputs] , axis=0 ) if self.hparams.glue_output_mode == "classification": UpperCamelCase__ = np.argmax(a , axis=1 ) elif self.hparams.glue_output_mode == "regression": UpperCamelCase__ = np.squeeze(a ) UpperCamelCase__ = np.concatenate([x["target"] for x in outputs] , axis=0 ) UpperCamelCase__ = [[] for _ in range(out_label_ids.shape[0] )] UpperCamelCase__ = [[] for _ in range(out_label_ids.shape[0] )] UpperCamelCase__ = {**{"val_loss": val_loss_mean}, **compute_metrics(self.hparams.task , a , a )} UpperCamelCase__ = dict(results.items() ) UpperCamelCase__ = results return ret, preds_list, out_label_list def __a ( self , a ): UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = self._eval_end(a ) UpperCamelCase__ = ret["log"] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def __a ( self , a ): UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = self._eval_end(a ) UpperCamelCase__ = ret["log"] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def __a ( a , a ): BaseTransformer.add_model_specific_args(a , a ) parser.add_argument( "--max_seq_length" , default=1_28 , type=a , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument( "--task" , default="" , type=a , required=a , help="The GLUE task to run" , ) parser.add_argument( "--gpus" , default=0 , type=a , help="The number of GPUs allocated for this, it is by default 0 meaning none" , ) parser.add_argument( "--overwrite_cache" , action="store_true" , help="Overwrite the cached training and evaluation sets" ) return parser def _UpperCamelCase ( ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ = argparse.ArgumentParser() add_generic_args(__A , os.getcwd() ) UpperCamelCase__ = GLUETransformer.add_model_specific_args(__A , os.getcwd() ) UpperCamelCase__ = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: UpperCamelCase__ = os.path.join( "./results" , F'''{args.task}_{time.strftime('%Y%m%d_%H%M%S' )}''' , ) os.makedirs(args.output_dir ) UpperCamelCase__ = GLUETransformer(__A ) UpperCamelCase__ = generic_train(__A , __A ) # Optionally, predict on dev set and write to output_dir if args.do_predict: UpperCamelCase__ = sorted(glob.glob(os.path.join(args.output_dir , "checkpoint-epoch=*.ckpt" ) , recursive=__A ) ) UpperCamelCase__ = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(__A ) if __name__ == "__main__": main()
223
'''simple docstring''' from __future__ import annotations def _UpperCamelCase ( __A , __A , __A , __A ) -> None: '''simple docstring''' if (direction == 1 and array[indexa] > array[indexa]) or ( direction == 0 and array[indexa] < array[indexa] ): UpperCamelCase__ , UpperCamelCase__ = array[indexa], array[indexa] def _UpperCamelCase ( __A , __A , __A , __A ) -> None: '''simple docstring''' if length > 1: UpperCamelCase__ = int(length / 2 ) for i in range(__A , low + middle ): comp_and_swap(__A , __A , i + middle , __A ) bitonic_merge(__A , __A , __A , __A ) bitonic_merge(__A , low + middle , __A , __A ) def _UpperCamelCase ( __A , __A , __A , __A ) -> None: '''simple docstring''' if length > 1: UpperCamelCase__ = int(length / 2 ) bitonic_sort(__A , __A , __A , 1 ) bitonic_sort(__A , low + middle , __A , 0 ) bitonic_merge(__A , __A , __A , __A ) if __name__ == "__main__": a__ : Optional[int] = input('Enter numbers separated by a comma:\n').strip() a__ : Any = [int(item.strip()) for item in user_input.split(',')] bitonic_sort(unsorted, 0, len(unsorted), 1) print('\nSorted array in ascending order is: ', end='') print(*unsorted, sep=', ') bitonic_merge(unsorted, 0, len(unsorted), 0) print('Sorted array in descending order is: ', end='') print(*unsorted, sep=', ')
223
1
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class __a ( unittest.TestCase ): '''simple docstring''' def __init__( self , _lowerCamelCase , _lowerCamelCase=7 , _lowerCamelCase=3 , _lowerCamelCase=18 , _lowerCamelCase=30 , _lowerCamelCase=400 , _lowerCamelCase=True , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=[0.5, 0.5, 0.5] , _lowerCamelCase=[0.5, 0.5, 0.5] , ) -> Optional[Any]: '''simple docstring''' __lowercase = size if size is not None else {"shortest_edge": 18} __lowercase = crop_size if crop_size is not None else {"height": 18, "width": 18} __lowercase = parent __lowercase = batch_size __lowercase = num_channels __lowercase = image_size __lowercase = min_resolution __lowercase = max_resolution __lowercase = do_resize __lowercase = size __lowercase = do_center_crop __lowercase = crop_size __lowercase = do_normalize __lowercase = image_mean __lowercase = image_std def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "do_center_crop": self.do_center_crop, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class __a ( __a , unittest.TestCase ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = LevitImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' __lowercase = LevitImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: '''simple docstring''' __lowercase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCamelCase , "image_mean" ) ) self.assertTrue(hasattr(_lowerCamelCase , "image_std" ) ) self.assertTrue(hasattr(_lowerCamelCase , "do_normalize" ) ) self.assertTrue(hasattr(_lowerCamelCase , "do_resize" ) ) self.assertTrue(hasattr(_lowerCamelCase , "do_center_crop" ) ) self.assertTrue(hasattr(_lowerCamelCase , "size" ) ) def SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' __lowercase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 18} ) self.assertEqual(image_processor.crop_size , {"height": 18, "width": 18} ) __lowercase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"shortest_edge": 42} ) self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84} ) def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: '''simple docstring''' # Initialize image_processing __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , Image.Image ) # Test not batched input __lowercase = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched __lowercase = image_processing(_lowerCamelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: '''simple docstring''' # Initialize image_processing __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , numpify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , np.ndarray ) # Test not batched input __lowercase = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched __lowercase = image_processing(_lowerCamelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' # Initialize image_processing __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , torchify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , torch.Tensor ) # Test not batched input __lowercase = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched __lowercase = image_processing(_lowerCamelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
118
"""simple docstring""" import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class __a ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' # A mock response for an HTTP head request to emulate server down __lowercase = mock.Mock() __lowercase = 500 __lowercase = {} __lowercase = HTTPError __lowercase = {} # Download this model to make sure it's in the cache. __lowercase = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request" , return_value=_lowerCamelCase ) as mock_head: __lowercase = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' # A mock response for an HTTP head request to emulate server down __lowercase = mock.Mock() __lowercase = 500 __lowercase = {} __lowercase = HTTPError __lowercase = {} # Download this model to make sure it's in the cache. __lowercase = GPTaTokenizerFast.from_pretrained("gpt2" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request" , return_value=_lowerCamelCase ) as mock_head: __lowercase = GPTaTokenizerFast.from_pretrained("gpt2" ) # This check we did call the fake head request mock_head.assert_called() def SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' # This test is for deprecated behavior and can be removed in v5 try: __lowercase = tempfile.mktemp() with open(_lowerCamelCase , "wb" ) as f: http_get("https://huggingface.co/albert-base-v1/resolve/main/spiece.model" , _lowerCamelCase ) __lowercase = AlbertTokenizer.from_pretrained(_lowerCamelCase ) finally: os.remove(_lowerCamelCase ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile("tokenizer.json" ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open("tokenizer.json" , "wb" ) as f: http_get("https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json" , _lowerCamelCase ) __lowercase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size , 1_000 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove("tokenizer.json" ) def SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' # This test is for deprecated behavior and can be removed in v5 __lowercase = AlbertTokenizer.from_pretrained("https://huggingface.co/albert-base-v1/resolve/main/spiece.model" ) @is_staging_test class __a ( unittest.TestCase ): '''simple docstring''' _lowerCamelCase : str = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """bla""", """blou"""] @classmethod def SCREAMING_SNAKE_CASE ( cls ) -> List[Any]: '''simple docstring''' __lowercase = TOKEN HfFolder.save_token(_lowerCamelCase ) @classmethod def SCREAMING_SNAKE_CASE ( cls ) -> List[str]: '''simple docstring''' try: delete_repo(token=cls._token , repo_id="test-tokenizer" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-tokenizer-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-tokenizer" ) except HTTPError: pass def SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: __lowercase = os.path.join(_lowerCamelCase , "vocab.txt" ) with open(_lowerCamelCase , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) __lowercase = BertTokenizer(_lowerCamelCase ) tokenizer.push_to_hub("test-tokenizer" , use_auth_token=self._token ) __lowercase = BertTokenizer.from_pretrained(f'''{USER}/test-tokenizer''' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id="test-tokenizer" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_lowerCamelCase , repo_id="test-tokenizer" , push_to_hub=_lowerCamelCase , use_auth_token=self._token ) __lowercase = BertTokenizer.from_pretrained(f'''{USER}/test-tokenizer''' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) def SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: __lowercase = os.path.join(_lowerCamelCase , "vocab.txt" ) with open(_lowerCamelCase , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) __lowercase = BertTokenizer(_lowerCamelCase ) tokenizer.push_to_hub("valid_org/test-tokenizer-org" , use_auth_token=self._token ) __lowercase = BertTokenizer.from_pretrained("valid_org/test-tokenizer-org" ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-tokenizer-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( _lowerCamelCase , repo_id="valid_org/test-tokenizer-org" , push_to_hub=_lowerCamelCase , use_auth_token=self._token ) __lowercase = BertTokenizer.from_pretrained("valid_org/test-tokenizer-org" ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) @require_tokenizers def SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: '''simple docstring''' CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: __lowercase = os.path.join(_lowerCamelCase , "vocab.txt" ) with open(_lowerCamelCase , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) __lowercase = CustomTokenizer(_lowerCamelCase ) # No fast custom tokenizer tokenizer.push_to_hub("test-dynamic-tokenizer" , use_auth_token=self._token ) __lowercase = AutoTokenizer.from_pretrained(f'''{USER}/test-dynamic-tokenizer''' , trust_remote_code=_lowerCamelCase ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , "CustomTokenizer" ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: __lowercase = os.path.join(_lowerCamelCase , "vocab.txt" ) with open(_lowerCamelCase , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) __lowercase = BertTokenizerFast.from_pretrained(_lowerCamelCase ) bert_tokenizer.save_pretrained(_lowerCamelCase ) __lowercase = CustomTokenizerFast.from_pretrained(_lowerCamelCase ) tokenizer.push_to_hub("test-dynamic-tokenizer" , use_auth_token=self._token ) __lowercase = AutoTokenizer.from_pretrained(f'''{USER}/test-dynamic-tokenizer''' , trust_remote_code=_lowerCamelCase ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , "CustomTokenizerFast" ) __lowercase = AutoTokenizer.from_pretrained( f'''{USER}/test-dynamic-tokenizer''' , use_fast=_lowerCamelCase , trust_remote_code=_lowerCamelCase ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , "CustomTokenizer" ) class __a ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' __lowercase = Trie() trie.add("Hello 友達" ) self.assertEqual(trie.data , {"H": {"e": {"l": {"l": {"o": {" ": {"友": {"達": {"": 1}}}}}}}}} ) trie.add("Hello" ) trie.data self.assertEqual(trie.data , {"H": {"e": {"l": {"l": {"o": {"": 1, " ": {"友": {"達": {"": 1}}}}}}}}} ) def SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' __lowercase = Trie() self.assertEqual(trie.split("[CLS] This is a extra_id_100" ) , ["[CLS] This is a extra_id_100"] ) trie.add("[CLS]" ) trie.add("extra_id_1" ) trie.add("extra_id_100" ) self.assertEqual(trie.split("[CLS] This is a extra_id_100" ) , ["[CLS]", " This is a ", "extra_id_100"] ) def SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' __lowercase = Trie() trie.add("A" ) self.assertEqual(trie.split("ABC" ) , ["A", "BC"] ) self.assertEqual(trie.split("BCA" ) , ["BC", "A"] ) def SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' __lowercase = Trie() trie.add("TOKEN]" ) trie.add("[SPECIAL_TOKEN]" ) self.assertEqual(trie.split("This is something [SPECIAL_TOKEN]" ) , ["This is something ", "[SPECIAL_TOKEN]"] ) def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' __lowercase = Trie() trie.add("A" ) trie.add("P" ) trie.add("[SPECIAL_TOKEN]" ) self.assertEqual(trie.split("This is something [SPECIAL_TOKEN]" ) , ["This is something ", "[SPECIAL_TOKEN]"] ) def SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' __lowercase = Trie() trie.add("AB" ) trie.add("B" ) trie.add("C" ) self.assertEqual(trie.split("ABC" ) , ["AB", "C"] ) def SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' __lowercase = Trie() trie.add("ABC" ) trie.add("B" ) trie.add("CD" ) self.assertEqual(trie.split("ABCD" ) , ["ABC", "D"] ) def SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' # Even if the offsets are wrong, we necessarily output correct string # parts. __lowercase = Trie() __lowercase = trie.cut_text("ABC" , [0, 0, 2, 1, 2, 3] ) self.assertEqual(_lowerCamelCase , ["AB", "C"] )
118
1
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor class __A ( unittest.TestCase ): def __init__(self : int , __a : List[Any] , __a : str=7 , __a : int=3 , __a : Optional[int]=18 , __a : Dict=30 , __a : Tuple=400 , __a : Tuple=True , __a : str=None , __a : Any=True , __a : List[str]=None , __a : Dict=True , __a : str=[0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] , __a : List[str]=[0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] , __a : List[str]=True , ): UpperCAmelCase_ = size if size is not None else {"height": 224, "width": 224} UpperCAmelCase_ = crop_size if crop_size is not None else {"height": 18, "width": 18} UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = image_size UpperCAmelCase_ = min_resolution UpperCAmelCase_ = max_resolution UpperCAmelCase_ = do_resize UpperCAmelCase_ = size UpperCAmelCase_ = do_center_crop UpperCAmelCase_ = crop_size UpperCAmelCase_ = do_normalize UpperCAmelCase_ = image_mean UpperCAmelCase_ = image_std UpperCAmelCase_ = do_convert_rgb def _lowercase (self : List[Any] ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_convert_rgb": self.do_convert_rgb, } def _lowercase (self : Tuple , __a : str=False , __a : List[str]=False , __a : List[Any]=False ): assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time" if equal_resolution: UpperCAmelCase_ = [] for i in range(self.batch_size ): image_inputs.append( np.random.randint( 255 , size=(self.num_channels, self.max_resolution, self.max_resolution) , dtype=np.uinta ) ) else: UpperCAmelCase_ = [] for i in range(self.batch_size ): UpperCAmelCase_ , UpperCAmelCase_ = np.random.choice(np.arange(self.min_resolution , self.max_resolution ) , 2 ) image_inputs.append(np.random.randint(255 , size=(self.num_channels, width, height) , dtype=np.uinta ) ) if not numpify and not torchify: # PIL expects the channel dimension as last dimension UpperCAmelCase_ = [Image.fromarray(np.moveaxis(__a , 0 , -1 ) ) for x in image_inputs] if torchify: UpperCAmelCase_ = [torch.from_numpy(__a ) for x in image_inputs] return image_inputs @require_torch @require_vision class __A ( UpperCamelCase__ , unittest.TestCase ): a__ : str = ChineseCLIPImageProcessor if is_vision_available() else None def _lowercase (self : List[Any] ): UpperCAmelCase_ = ChineseCLIPImageProcessingTester(self , do_center_crop=__a ) @property def _lowercase (self : str ): return self.image_processor_tester.prepare_image_processor_dict() def _lowercase (self : int ): UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__a , "do_resize" ) ) self.assertTrue(hasattr(__a , "size" ) ) self.assertTrue(hasattr(__a , "do_center_crop" ) ) self.assertTrue(hasattr(__a , "center_crop" ) ) self.assertTrue(hasattr(__a , "do_normalize" ) ) self.assertTrue(hasattr(__a , "image_mean" ) ) self.assertTrue(hasattr(__a , "image_std" ) ) self.assertTrue(hasattr(__a , "do_convert_rgb" ) ) def _lowercase (self : Dict ): UpperCAmelCase_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"height": 224, "width": 224} ) self.assertEqual(image_processor.crop_size , {"height": 18, "width": 18} ) UpperCAmelCase_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"shortest_edge": 42} ) self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84} ) def _lowercase (self : Optional[Any] ): pass def _lowercase (self : Optional[Any] ): # Initialize image_processing UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase_ = self.image_processor_tester.prepare_inputs(equal_resolution=__a ) for image in image_inputs: self.assertIsInstance(__a , Image.Image ) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched UpperCAmelCase_ = image_processing(__a , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def _lowercase (self : Union[str, Any] ): # Initialize image_processing UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase_ = self.image_processor_tester.prepare_inputs(equal_resolution=__a , numpify=__a ) for image in image_inputs: self.assertIsInstance(__a , np.ndarray ) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched UpperCAmelCase_ = image_processing(__a , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def _lowercase (self : Union[str, Any] ): # Initialize image_processing UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase_ = self.image_processor_tester.prepare_inputs(equal_resolution=__a , torchify=__a ) for image in image_inputs: self.assertIsInstance(__a , torch.Tensor ) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched UpperCAmelCase_ = image_processing(__a , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) @require_torch @require_vision class __A ( UpperCamelCase__ , unittest.TestCase ): a__ : List[str] = ChineseCLIPImageProcessor if is_vision_available() else None def _lowercase (self : List[str] ): UpperCAmelCase_ = ChineseCLIPImageProcessingTester(self , num_channels=4 , do_center_crop=__a ) UpperCAmelCase_ = 3 @property def _lowercase (self : Any ): return self.image_processor_tester.prepare_image_processor_dict() def _lowercase (self : Union[str, Any] ): UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__a , "do_resize" ) ) self.assertTrue(hasattr(__a , "size" ) ) self.assertTrue(hasattr(__a , "do_center_crop" ) ) self.assertTrue(hasattr(__a , "center_crop" ) ) self.assertTrue(hasattr(__a , "do_normalize" ) ) self.assertTrue(hasattr(__a , "image_mean" ) ) self.assertTrue(hasattr(__a , "image_std" ) ) self.assertTrue(hasattr(__a , "do_convert_rgb" ) ) def _lowercase (self : Optional[int] ): pass def _lowercase (self : Dict ): # Initialize image_processing UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase_ = self.image_processor_tester.prepare_inputs(equal_resolution=__a ) for image in image_inputs: self.assertIsInstance(__a , Image.Image ) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched UpperCAmelCase_ = image_processing(__a , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
415
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE_: Dict ={ 'configuration_autoformer': [ 'AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AutoformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_: int =[ 'AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'AutoformerForPrediction', 'AutoformerModel', 'AutoformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_: Tuple =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
415
1
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a =['image_processor', 'tokenizer'] __a ='LayoutLMv3ImageProcessor' __a =('LayoutLMv3Tokenizer', 'LayoutLMv3TokenizerFast') def __init__( self : int , __a : str=None , __a : str=None , **__a : List[Any] ): _a = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , __a , ) _a = kwargs.pop("feature_extractor" ) _a = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(__a , __a ) def __call__( self : Union[str, Any] , __a : Optional[int] , __a : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __a : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , __a : Union[List[List[int]], List[List[List[int]]]] = None , __a : Optional[Union[List[int], List[List[int]]]] = None , __a : bool = True , __a : Union[bool, str, PaddingStrategy] = False , __a : Union[bool, str, TruncationStrategy] = None , __a : Optional[int] = None , __a : int = 0 , __a : Optional[int] = None , __a : Optional[bool] = None , __a : Optional[bool] = None , __a : bool = False , __a : bool = False , __a : bool = False , __a : bool = False , __a : bool = True , __a : Optional[Union[str, TensorType]] = None , **__a : Any , ): # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( "You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True." ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( "You cannot provide word labels if you initialized the image processor with apply_ocr set to True." ) # first, apply the image processor _a = self.image_processor(images=__a , return_tensors=__a ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(__a , __a ): _a = [text] # add batch dimension (as the image processor always adds a batch dimension) _a = features["words"] _a = self.tokenizer( text=text if text is not None else features["words"] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["boxes"] , word_labels=__a , add_special_tokens=__a , padding=__a , truncation=__a , max_length=__a , stride=__a , pad_to_multiple_of=__a , return_token_type_ids=__a , return_attention_mask=__a , return_overflowing_tokens=__a , return_special_tokens_mask=__a , return_offsets_mapping=__a , return_length=__a , verbose=__a , return_tensors=__a , **__a , ) # add pixel values _a = features.pop("pixel_values" ) if return_overflowing_tokens is True: _a = self.get_overflowing_images(__a , encoded_inputs["overflow_to_sample_mapping"] ) _a = images return encoded_inputs def UpperCamelCase__ ( self : int , __a : List[Any] , __a : Dict ): # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image _a = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(__a ) != len(__a ): raise ValueError( "Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got" f' {len(__a )} and {len(__a )}' ) return images_with_overflow def UpperCamelCase__ ( self : List[Any] , *__a : Optional[Any] , **__a : Union[str, Any] ): return self.tokenizer.batch_decode(*__a , **__a ) def UpperCamelCase__ ( self : Dict , *__a : Union[str, Any] , **__a : Dict ): return self.tokenizer.decode(*__a , **__a ) @property def UpperCamelCase__ ( self : int ): return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def UpperCamelCase__ ( self : Dict ): warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , __a , ) return self.image_processor_class @property def UpperCamelCase__ ( self : Union[str, Any] ): warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , __a , ) return self.image_processor
692
'''simple docstring''' import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def _lowerCamelCase ( lowercase : Any ) -> Tuple: _a = filter(lambda lowercase : p.requires_grad , model.parameters() ) _a = sum([np.prod(p.size() ) for p in model_parameters] ) return params lowerCAmelCase_ : str = logging.getLogger(__name__) def _lowerCamelCase ( lowercase : Optional[Any] , lowercase : Union[str, Any] ) -> Dict: if metric == "rouge2": _a = "{val_avg_rouge2:.4f}-{step_count}" elif metric == "bleu": _a = "{val_avg_bleu:.4f}-{step_count}" elif metric == "em": _a = "{val_avg_em:.4f}-{step_count}" else: raise NotImplementedError( F'seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this' " function." ) _a = ModelCheckpoint( dirpath=lowercase , filename=lowercase , monitor=F'val_{metric}' , mode="max" , save_top_k=3 , every_n_epochs=1 , ) return checkpoint_callback def _lowerCamelCase ( lowercase : Optional[int] , lowercase : List[str] ) -> Dict: return EarlyStopping( monitor=F'val_{metric}' , mode="min" if "loss" in metric else "max" , patience=lowercase , verbose=lowercase , ) class __SCREAMING_SNAKE_CASE (pl.Callback ): """simple docstring""" def UpperCamelCase__ ( self : Optional[Any] , __a : Dict , __a : Optional[int] ): _a = {f'lr_group_{i}': param["lr"] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(__a ) @rank_zero_only def UpperCamelCase__ ( self : Any , __a : pl.Trainer , __a : pl.LightningModule , __a : str , __a : Optional[int]=True ): logger.info(f'***** {type_path} results at step {trainer.global_step:05d} *****' ) _a = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["log", "progress_bar", "preds"]} ) # Log results _a = Path(pl_module.hparams.output_dir ) if type_path == "test": _a = od / "test_results.txt" _a = od / "test_generations.txt" else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _a = od / f'{type_path}_results/{trainer.global_step:05d}.txt' _a = od / f'{type_path}_generations/{trainer.global_step:05d}.txt' results_file.parent.mkdir(exist_ok=__a ) generations_file.parent.mkdir(exist_ok=__a ) with open(__a , "a+" ) as writer: for key in sorted(__a ): if key in ["log", "progress_bar", "preds"]: continue _a = metrics[key] if isinstance(__a , torch.Tensor ): _a = val.item() _a = f'{key}: {val:.6f}\n' writer.write(__a ) if not save_generations: return if "preds" in metrics: _a = "\n".join(metrics["preds"] ) generations_file.open("w+" ).write(__a ) @rank_zero_only def UpperCamelCase__ ( self : List[str] , __a : Optional[Any] , __a : List[str] ): try: _a = pl_module.model.model.num_parameters() except AttributeError: _a = pl_module.model.num_parameters() _a = count_trainable_parameters(__a ) # mp stands for million parameters trainer.logger.log_metrics({"n_params": npars, "mp": npars / 1e6, "grad_mp": n_trainable_pars / 1e6} ) @rank_zero_only def UpperCamelCase__ ( self : Dict , __a : pl.Trainer , __a : pl.LightningModule ): save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(__a , __a , "test" ) @rank_zero_only def UpperCamelCase__ ( self : Any , __a : pl.Trainer , __a : Optional[int] ): save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
692
1
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from .config import config_command_parser from .config_args import default_config_file, load_config_from_file # noqa: F401 from .default import default_command_parser from .update import update_command_parser def __a ( __UpperCAmelCase=None ): a__ = argparse.ArgumentParser(add_help=__UpperCAmelCase , allow_abbrev=__UpperCAmelCase ) # The main config parser a__ = config_command_parser(__UpperCAmelCase ) # The subparser to add commands to a__ = config_parser.add_subparsers(title='''subcommands''' , dest='''subcommand''' ) # Then add other parsers with the parent parser default_command_parser(__UpperCAmelCase , parents=[parent_parser] ) update_command_parser(__UpperCAmelCase , parents=[parent_parser] ) return config_parser def __a ( ): a__ = get_config_parser() a__ = config_parser.parse_args() if not hasattr(__UpperCAmelCase , '''func''' ): config_parser.print_help() exit(1 ) # Run args.func(__UpperCAmelCase ) if __name__ == "__main__": main()
711
from __future__ import annotations def __a ( __UpperCAmelCase , __UpperCAmelCase ): a__ = get_failure_array(__UpperCAmelCase ) # 2) Step through text searching for pattern a__ , a__ = 0, 0 # index into text, pattern while i < len(__UpperCAmelCase ): if pattern[j] == text[i]: if j == (len(__UpperCAmelCase ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: a__ = failure[j - 1] continue i += 1 return False def __a ( __UpperCAmelCase ): a__ = [0] a__ = 0 a__ = 1 while j < len(__UpperCAmelCase ): if pattern[i] == pattern[j]: i += 1 elif i > 0: a__ = failure[i - 1] continue j += 1 failure.append(__UpperCAmelCase ) return failure if __name__ == "__main__": # Test 1) a_ : Tuple = 'abc1abc12' a_ : Optional[Any] = 'alskfjaldsabc1abc1abc12k23adsfabcabc' a_ : Optional[Any] = 'alskfjaldsk23adsfabcabc' assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) a_ : Any = 'ABABX' a_ : Any = 'ABABZABABYABABX' assert kmp(pattern, text) # Test 3) a_ : Union[str, Any] = 'AAAB' a_ : int = 'ABAAAAAB' assert kmp(pattern, text) # Test 4) a_ : Tuple = 'abcdabcy' a_ : Optional[Any] = 'abcxabcdabxabcdabcdabcy' assert kmp(pattern, text) # Test 5) a_ : Dict = 'aabaabaaa' assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
148
0
"""simple docstring""" import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class lowercase_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self : Tuple ): # clean up the VRAM after each test super().tearDown() gc.collect() def lowerCAmelCase_ ( self : Tuple ): _A = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png' ) _A = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' ) _A = 'xvjiarui/stable-diffusion-2-inpainting' _A , _A = FlaxStableDiffusionInpaintPipeline.from_pretrained(_UpperCAmelCase , safety_checker=_UpperCAmelCase ) _A = 'Face of a yellow cat, high resolution, sitting on a park bench' _A = jax.random.PRNGKey(0 ) _A = 50 _A = jax.device_count() _A = num_samples * [prompt] _A = num_samples * [init_image] _A = num_samples * [mask_image] _A , _A , _A = pipeline.prepare_inputs(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # shard inputs and rng _A = replicate(_UpperCAmelCase ) _A = jax.random.split(_UpperCAmelCase , jax.device_count() ) _A = shard(_UpperCAmelCase ) _A = shard(_UpperCAmelCase ) _A = shard(_UpperCAmelCase ) _A = pipeline( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , jit=_UpperCAmelCase ) _A = output.images.reshape(_UpperCAmelCase , 512 , 512 , 3 ) _A = images[0, 253:256, 253:256, -1] _A = jnp.asarray(jax.device_get(image_slice.flatten() ) ) _A = jnp.array( [0.361_1307, 0.3764_9736, 0.375_7408, 0.3821_3953, 0.3929_5167, 0.384_1631, 0.4155_4978, 0.413_7475, 0.421_7084] ) print(F'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
7
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase ={ "configuration_informer": [ "INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "InformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase =[ "INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "InformerForPrediction", "InformerModel", "InformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys UpperCAmelCase =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
617
0
from math import factorial def UpperCAmelCase ( lowercase__ : int = 100 ): '''simple docstring''' return sum(map(lowercase__ , str(factorial(lowercase__ ) ) ) ) if __name__ == "__main__": print(solution(int(input("""Enter the Number: """).strip())))
712
def UpperCAmelCase ( lowercase__ : float , lowercase__ : float ): '''simple docstring''' if density <= 0: raise ValueError("""Impossible fluid density""" ) if bulk_modulus <= 0: raise ValueError("""Impossible bulk modulus""" ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
412
0
"""simple docstring""" import logging from transformers import PretrainedConfig lowerCamelCase__ : Optional[int] = logging.getLogger(__name__) lowerCamelCase__ : str = { '''bertabs-finetuned-cnndm''': '''https://huggingface.co/remi/bertabs-finetuned-cnndm-extractive-abstractive-summarization/resolve/main/config.json''', } class _UpperCAmelCase ( __a): __a : Optional[int] = """bertabs""" def __init__( self , _A=3_05_22 , _A=5_12 , _A=6 , _A=5_12 , _A=8 , _A=5_12 , _A=0.2 , _A=6 , _A=7_68 , _A=8 , _A=20_48 , _A=0.2 , **_A , ) -> str: '''simple docstring''' super().__init__(**_A ) _UpperCAmelCase : Optional[Any] = vocab_size _UpperCAmelCase : List[Any] = max_pos _UpperCAmelCase : List[Any] = enc_layers _UpperCAmelCase : Optional[Any] = enc_hidden_size _UpperCAmelCase : int = enc_heads _UpperCAmelCase : Union[str, Any] = enc_ff_size _UpperCAmelCase : List[Any] = enc_dropout _UpperCAmelCase : List[Any] = dec_layers _UpperCAmelCase : Optional[int] = dec_hidden_size _UpperCAmelCase : Dict = dec_heads _UpperCAmelCase : Optional[int] = dec_ff_size _UpperCAmelCase : Tuple = dec_dropout
238
"""simple docstring""" import argparse import datetime def UpperCamelCase ( _lowerCAmelCase : str ) -> str: _UpperCAmelCase : List[str] = { """0""": """Sunday""", """1""": """Monday""", """2""": """Tuesday""", """3""": """Wednesday""", """4""": """Thursday""", """5""": """Friday""", """6""": """Saturday""", } _UpperCAmelCase : List[str] = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(_lowerCAmelCase ) < 11: raise ValueError("""Must be 10 characters long""" ) # Get month _UpperCAmelCase : int = int(date_input[0] + date_input[1] ) # Validate if not 0 < m < 13: raise ValueError("""Month must be between 1 - 12""" ) _UpperCAmelCase : str = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError("""Date separator must be '-' or '/'""" ) # Get day _UpperCAmelCase : int = int(date_input[3] + date_input[4] ) # Validate if not 0 < d < 32: raise ValueError("""Date must be between 1 - 31""" ) # Get second separator _UpperCAmelCase : str = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError("""Date separator must be '-' or '/'""" ) # Get year _UpperCAmelCase : int = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] ) # Arbitrary year range if not 45 < y < 8500: raise ValueError( """Year out of range. There has to be some sort of limit...right?""" ) # Get datetime obj for validation _UpperCAmelCase : List[str] = datetime.date(int(_lowerCAmelCase ), int(_lowerCAmelCase ), int(_lowerCAmelCase ) ) # Start math if m <= 2: _UpperCAmelCase : int = y - 1 _UpperCAmelCase : List[str] = m + 12 # maths var _UpperCAmelCase : int = int(str(_lowerCAmelCase )[:2] ) _UpperCAmelCase : int = int(str(_lowerCAmelCase )[2:] ) _UpperCAmelCase : int = int(2.6 * m - 5.39 ) _UpperCAmelCase : int = int(c / 4 ) _UpperCAmelCase : int = int(k / 4 ) _UpperCAmelCase : int = int(d + k ) _UpperCAmelCase : int = int(t + u + v + x ) _UpperCAmelCase : int = int(z - (2 * c) ) _UpperCAmelCase : int = round(w % 7 ) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError("""The date was evaluated incorrectly. Contact developer.""" ) # Response _UpperCAmelCase : str = f'''Your date {date_input}, is a {days[str(_lowerCAmelCase )]}!''' return response if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase__ : str = argparse.ArgumentParser( description=( '''Find out what day of the week nearly any date is or was. Enter ''' '''date as a string in the mm-dd-yyyy or mm/dd/yyyy format''' ) ) parser.add_argument( '''date_input''', type=str, help='''Date as a string (mm-dd-yyyy or mm/dd/yyyy)''' ) lowerCamelCase__ : int = parser.parse_args() zeller(args.date_input)
238
1
"""simple docstring""" from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = 9, 14 # noqa: F841 SCREAMING_SNAKE_CASE__ = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] SCREAMING_SNAKE_CASE__ = defaultdict(__UpperCAmelCase ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) SCREAMING_SNAKE_CASE__ = mst(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: SCREAMING_SNAKE_CASE__ = tuple(answer[:2] ) SCREAMING_SNAKE_CASE__ = tuple(edge[::-1] ) assert edge in result or reverse in result
538
"""simple docstring""" # Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def SCREAMING_SNAKE_CASE ( __UpperCAmelCase ) -> List[str]: return 1 / (1 + np.exp(-z )) def SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ) -> Dict: return (-y * np.log(__UpperCAmelCase ) - (1 - y) * np.log(1 - h )).mean() def SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Any: SCREAMING_SNAKE_CASE__ = np.dot(__UpperCAmelCase , __UpperCAmelCase ) return np.sum(y * scores - np.log(1 + np.exp(__UpperCAmelCase ) ) ) def SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=70_000 ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = np.zeros(x.shape[1] ) for iterations in range(__UpperCAmelCase ): SCREAMING_SNAKE_CASE__ = np.dot(__UpperCAmelCase , __UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = sigmoid_function(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = np.dot(x.T , h - y ) / y.size SCREAMING_SNAKE_CASE__ = theta - alpha * gradient # updating the weights SCREAMING_SNAKE_CASE__ = np.dot(__UpperCAmelCase , __UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = sigmoid_function(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = cost_function(__UpperCAmelCase , __UpperCAmelCase ) if iterations % 100 == 0: print(F"""loss: {j} \t""" ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": _A = datasets.load_iris() _A = iris.data[:, :2] _A = (iris.target != 0) * 1 _A = 0.1 _A = logistic_reg(alpha, x, y, max_iterations=7_0_0_0_0) print('theta: ', theta) # printing the theta i.e our weights vector def SCREAMING_SNAKE_CASE ( __UpperCAmelCase ) -> Union[str, Any]: return sigmoid_function( np.dot(__UpperCAmelCase , __UpperCAmelCase ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(1_0, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='b', label='0') plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='r', label='1') ((_A) , (_A)) = (x[:, 0].min(), x[:, 0].max()) ((_A) , (_A)) = (x[:, 1].min(), x[:, 1].max()) ((_A) , (_A)) = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) _A = np.c_[xxa.ravel(), xxa.ravel()] _A = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='black') plt.legend() plt.show()
538
1
"""simple docstring""" import itertools import random import unittest import numpy as np from transformers import is_speech_available from transformers.testing_utils import require_torch, require_torchaudio from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import SpeechaTextFeatureExtractor __magic_name__ = random.Random() def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__=1.0 , UpperCamelCase__=None , UpperCamelCase__=None ): """simple docstring""" if rng is None: _UpperCAmelCase = global_rng _UpperCAmelCase = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class _lowerCAmelCase ( unittest.TestCase ): def __init__( self , a_ , a_=7 , a_=400 , a_=2000 , a_=24 , a_=24 , a_=0.0 , a_=16000 , a_=True , a_=True , ) -> str: _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = min_seq_length _UpperCAmelCase = max_seq_length _UpperCAmelCase = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _UpperCAmelCase = feature_size _UpperCAmelCase = num_mel_bins _UpperCAmelCase = padding_value _UpperCAmelCase = sampling_rate _UpperCAmelCase = return_attention_mask _UpperCAmelCase = do_normalize def _a ( self ) -> str: return { "feature_size": self.feature_size, "num_mel_bins": self.num_mel_bins, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def _a ( self , a_=False , a_=False ) -> List[Any]: def _flatten(a_ ): return list(itertools.chain(*a_ ) ) if equal_length: _UpperCAmelCase = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _UpperCAmelCase = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _UpperCAmelCase = [np.asarray(a_ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class _lowerCAmelCase ( lowerCamelCase , unittest.TestCase ): lowercase_ : int = SpeechaTextFeatureExtractor if is_speech_available() else None def _a ( self ) -> Optional[int]: _UpperCAmelCase = SpeechaTextFeatureExtractionTester(self ) def _a ( self , a_ ) -> Union[str, Any]: self.assertTrue(np.all(np.mean(a_ , axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(a_ , axis=0 ) - 1 ) < 1e-3 ) ) def _a ( self ) -> Union[str, Any]: # Tests that all call wrap to encode_plus and batch_encode_plus _UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 _UpperCAmelCase = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _UpperCAmelCase = [np.asarray(a_ ) for speech_input in speech_inputs] # Test feature size _UpperCAmelCase = feature_extractor(a_ , padding=a_ , return_tensors="np" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.feature_size ) # Test not batched input _UpperCAmelCase = feature_extractor(speech_inputs[0] , return_tensors="np" ).input_features _UpperCAmelCase = feature_extractor(np_speech_inputs[0] , return_tensors="np" ).input_features self.assertTrue(np.allclose(a_ , a_ , atol=1e-3 ) ) # Test batched _UpperCAmelCase = feature_extractor(a_ , return_tensors="np" ).input_features _UpperCAmelCase = feature_extractor(a_ , return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(a_ , a_ ): self.assertTrue(np.allclose(a_ , a_ , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. _UpperCAmelCase = [floats_list((1, x) )[0] for x in (800, 800, 800)] _UpperCAmelCase = np.asarray(a_ ) _UpperCAmelCase = feature_extractor(a_ , return_tensors="np" ).input_features _UpperCAmelCase = feature_extractor(a_ , return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(a_ , a_ ): self.assertTrue(np.allclose(a_ , a_ , atol=1e-3 ) ) def _a ( self ) -> str: _UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _UpperCAmelCase = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _UpperCAmelCase = ["longest", "max_length", "do_not_pad"] _UpperCAmelCase = [None, 16, None] for max_length, padding in zip(a_ , a_ ): _UpperCAmelCase = feature_extractor( a_ , padding=a_ , max_length=a_ , return_attention_mask=a_ ) _UpperCAmelCase = inputs.input_features _UpperCAmelCase = inputs.attention_mask _UpperCAmelCase = [np.sum(a_ ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def _a ( self ) -> Optional[Any]: _UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _UpperCAmelCase = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _UpperCAmelCase = ["longest", "max_length", "do_not_pad"] _UpperCAmelCase = [None, 16, None] for max_length, padding in zip(a_ , a_ ): _UpperCAmelCase = feature_extractor( a_ , max_length=a_ , padding=a_ , return_tensors="np" , return_attention_mask=a_ ) _UpperCAmelCase = inputs.input_features _UpperCAmelCase = inputs.attention_mask _UpperCAmelCase = [np.sum(a_ ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self.assertTrue(input_features[0][fbank_feat_lengths[0] :].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self.assertTrue(input_features[0][fbank_feat_lengths[1] :].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def _a ( self ) -> Optional[Any]: _UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _UpperCAmelCase = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _UpperCAmelCase = feature_extractor( a_ , padding="max_length" , max_length=4 , truncation=a_ , return_tensors="np" , return_attention_mask=a_ , ) _UpperCAmelCase = inputs.input_features _UpperCAmelCase = inputs.attention_mask _UpperCAmelCase = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1] ) self._check_zero_mean_unit_variance(input_features[2] ) def _a ( self ) -> int: _UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _UpperCAmelCase = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _UpperCAmelCase = feature_extractor( a_ , padding="longest" , max_length=4 , truncation=a_ , return_tensors="np" , return_attention_mask=a_ , ) _UpperCAmelCase = inputs.input_features _UpperCAmelCase = inputs.attention_mask _UpperCAmelCase = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape , (3, 4, 24) ) _UpperCAmelCase = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _UpperCAmelCase = feature_extractor( a_ , padding="longest" , max_length=16 , truncation=a_ , return_tensors="np" , return_attention_mask=a_ , ) _UpperCAmelCase = inputs.input_features _UpperCAmelCase = inputs.attention_mask _UpperCAmelCase = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape , (3, 6, 24) ) def _a ( self ) -> int: import torch _UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _UpperCAmelCase = np.random.rand(100 , 32 ).astype(np.floataa ) _UpperCAmelCase = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: _UpperCAmelCase = feature_extractor.pad([{"input_features": inputs}] , return_tensors="np" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) _UpperCAmelCase = feature_extractor.pad([{"input_features": inputs}] , return_tensors="pt" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def _a ( self , a_ ) -> List[str]: from datasets import load_dataset _UpperCAmelCase = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) # automatic decoding with librispeech _UpperCAmelCase = ds.sort("id" ).select(range(a_ ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] def _a ( self ) -> Union[str, Any]: # fmt: off _UpperCAmelCase = np.array([ -1.5745, -1.7713, -1.7020, -1.6069, -1.2250, -1.1105, -0.9072, -0.8241, -1.2310, -0.8098, -0.3320, -0.4101, -0.7985, -0.4996, -0.8213, -0.9128, -1.0420, -1.1286, -1.0440, -0.7999, -0.8405, -1.2275, -1.5443, -1.4625, ] ) # fmt: on _UpperCAmelCase = self._load_datasamples(1 ) _UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _UpperCAmelCase = feature_extractor(a_ , return_tensors="pt" ).input_features self.assertEquals(input_features.shape , (1, 584, 24) ) self.assertTrue(np.allclose(input_features[0, 0, :30] , a_ , atol=1e-4 ) )
657
"""simple docstring""" def __lowerCamelCase ( UpperCamelCase__ ): """simple docstring""" try: _UpperCAmelCase = float(UpperCamelCase__ ) except ValueError: raise ValueError("Please enter a valid number" ) _UpperCAmelCase = decimal - int(UpperCamelCase__ ) if fractional_part == 0: return int(UpperCamelCase__ ), 1 else: _UpperCAmelCase = len(str(UpperCamelCase__ ).split("." )[1] ) _UpperCAmelCase = int(decimal * (10**number_of_frac_digits) ) _UpperCAmelCase = 10**number_of_frac_digits _UpperCAmelCase , _UpperCAmelCase = denominator, numerator while True: _UpperCAmelCase = dividend % divisor if remainder == 0: break _UpperCAmelCase , _UpperCAmelCase = divisor, remainder _UpperCAmelCase , _UpperCAmelCase = numerator / divisor, denominator / divisor return int(UpperCamelCase__ ), int(UpperCamelCase__ ) if __name__ == "__main__": print(f'''{decimal_to_fraction(2) = }''') print(f'''{decimal_to_fraction(89.0) = }''') print(f'''{decimal_to_fraction("67") = }''') print(f'''{decimal_to_fraction("45.0") = }''') print(f'''{decimal_to_fraction(1.5) = }''') print(f'''{decimal_to_fraction("6.25") = }''') print(f'''{decimal_to_fraction("78td") = }''')
657
1
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowercase__ = logging.get_logger(__name__) lowercase__ = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} lowercase__ = { "tokenizer_file": { "EleutherAI/gpt-neox-20b": "https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json", }, } lowercase__ = { "gpt-neox-20b": 2048, } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = VOCAB_FILES_NAMES UpperCAmelCase_ : str = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ : Dict = ["""input_ids""", """attention_mask"""] def __init__( self : List[str] , lowercase_ : Any=None , lowercase_ : Dict=None , lowercase_ : List[str]=None , lowercase_ : List[Any]="<|endoftext|>" , lowercase_ : List[str]="<|endoftext|>" , lowercase_ : Any="<|endoftext|>" , lowercase_ : List[str]=False , **lowercase_ : Union[str, Any] , ) -> str: super().__init__( lowercase_ , lowercase_ , tokenizer_file=lowercase_ , unk_token=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , add_prefix_space=lowercase_ , **lowercase_ , ) UpperCAmelCase : str = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , lowercase_ ) != add_prefix_space: UpperCAmelCase : Tuple = getattr(lowercase_ , pre_tok_state.pop('type' ) ) UpperCAmelCase : Optional[Any] = add_prefix_space UpperCAmelCase : Tuple = pre_tok_class(**lowercase_ ) UpperCAmelCase : Any = add_prefix_space def UpperCAmelCase_ ( self : Tuple , lowercase_ : str , lowercase_ : Optional[str] = None ) -> Tuple[str]: UpperCAmelCase : Optional[int] = self._tokenizer.model.save(lowercase_ , name=lowercase_ ) return tuple(lowercase_ ) def UpperCAmelCase_ ( self : Optional[Any] , lowercase_ : "Conversation" ) -> List[int]: UpperCAmelCase : List[Any] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowercase_ , add_special_tokens=lowercase_ ) + [self.eos_token_id] ) if len(lowercase_ ) > self.model_max_length: UpperCAmelCase : int = input_ids[-self.model_max_length :] return input_ids
695
'''simple docstring''' import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu lowercase__ = get_tests_dir() + "/test_data/fsmt/fsmt_val_data.json" with io.open(filename, "r", encoding="utf-8") as f: lowercase__ = json.load(f) @require_torch class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Dict , lowercase_ : Dict ) -> Tuple: return FSMTTokenizer.from_pretrained(lowercase_ ) def UpperCAmelCase_ ( self : Optional[int] , lowercase_ : Dict ) -> Tuple: UpperCAmelCase : Optional[Any] = FSMTForConditionalGeneration.from_pretrained(lowercase_ ).to(lowercase_ ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ['en-ru', 26.0], ['ru-en', 22.0], ['en-de', 22.0], ['de-en', 29.0], ] ) @slow def UpperCAmelCase_ ( self : List[str] , lowercase_ : int , lowercase_ : Any ) -> Optional[int]: # note: this test is not testing the best performance since it only evals a small batch # but it should be enough to detect a regression in the output quality UpperCAmelCase : List[str] = f"""facebook/wmt19-{pair}""" UpperCAmelCase : Optional[int] = self.get_tokenizer(lowercase_ ) UpperCAmelCase : int = self.get_model(lowercase_ ) UpperCAmelCase : List[Any] = bleu_data[pair]['src'] UpperCAmelCase : Optional[int] = bleu_data[pair]['tgt'] UpperCAmelCase : Any = tokenizer(lowercase_ , return_tensors='pt' , truncation=lowercase_ , padding='longest' ).to(lowercase_ ) UpperCAmelCase : List[Any] = model.generate( input_ids=batch.input_ids , num_beams=8 , ) UpperCAmelCase : List[Any] = tokenizer.batch_decode( lowercase_ , skip_special_tokens=lowercase_ , clean_up_tokenization_spaces=lowercase_ ) UpperCAmelCase : Any = calculate_bleu(lowercase_ , lowercase_ ) print(lowercase_ ) self.assertGreaterEqual(scores['bleu'] , lowercase_ )
695
1