code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
from math import ceil def _a ( lowerCAmelCase , lowerCAmelCase )-> Tuple: SCREAMING_SNAKE_CASE_ = list(range(0 , lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_ = [item for sublist in list(device_map.values() ) for item in sublist] # Duplicate check SCREAMING_SNAKE_CASE_ = [] for i in device_map_blocks: if device_map_blocks.count(lowerCAmelCase ) > 1 and i not in duplicate_blocks: duplicate_blocks.append(lowerCAmelCase ) # Missing blocks SCREAMING_SNAKE_CASE_ = [i for i in blocks if i not in device_map_blocks] SCREAMING_SNAKE_CASE_ = [i for i in device_map_blocks if i not in blocks] if len(lowerCAmelCase ) != 0: raise ValueError( 'Duplicate attention blocks specified in device_map. Attention blocks must be specified to one device.' ' These attention blocks were specified more than once: ' + str(lowerCAmelCase ) ) if len(lowerCAmelCase ) != 0: raise ValueError( 'There are attention blocks for this model that are not specified in the device_map. Add these attention ' 'blocks to a device on the device_map: ' + str(lowerCAmelCase ) ) if len(lowerCAmelCase ) != 0: raise ValueError( 'The device_map contains more attention blocks than this model has. Remove these from the device_map:' + str(lowerCAmelCase ) ) def _a ( lowerCAmelCase , lowerCAmelCase )-> Optional[int]: SCREAMING_SNAKE_CASE_ = list(range(lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_ = int(ceil(n_layers / len(lowerCAmelCase ) ) ) SCREAMING_SNAKE_CASE_ = [layers[i : i + n_blocks] for i in range(0 , lowerCAmelCase , lowerCAmelCase )] return dict(zip(lowerCAmelCase , lowerCAmelCase ) )
360
from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase_ : def __init__( self : Optional[Any] , snake_case__ : List[Any] , snake_case__ : Tuple=3 , snake_case__ : Union[str, Any]=32 , snake_case__ : Union[str, Any]=3 , snake_case__ : str=10 , snake_case__ : List[Any]=[10, 20, 30, 40] , snake_case__ : Optional[Any]=[1, 1, 2, 1] , snake_case__ : str=True , snake_case__ : str=True , snake_case__ : List[str]="relu" , snake_case__ : Tuple=3 , snake_case__ : str=None , ): """simple docstring""" SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = image_size SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = embeddings_size SCREAMING_SNAKE_CASE_ = hidden_sizes SCREAMING_SNAKE_CASE_ = depths SCREAMING_SNAKE_CASE_ = is_training SCREAMING_SNAKE_CASE_ = use_labels SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = num_labels SCREAMING_SNAKE_CASE_ = scope SCREAMING_SNAKE_CASE_ = len(snake_case__ ) def __a ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE_ = None if self.use_labels: SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size] , self.num_labels ) SCREAMING_SNAKE_CASE_ = self.get_config() return config, pixel_values, labels def __a ( self : int ): """simple docstring""" return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def __a ( self : str , snake_case__ : str , snake_case__ : Tuple , snake_case__ : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ = TFResNetModel(config=snake_case__ ) SCREAMING_SNAKE_CASE_ = model(snake_case__ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def __a ( self : int , snake_case__ : Optional[Any] , snake_case__ : int , snake_case__ : Any ): """simple docstring""" SCREAMING_SNAKE_CASE_ = self.num_labels SCREAMING_SNAKE_CASE_ = TFResNetForImageClassification(snake_case__ ) SCREAMING_SNAKE_CASE_ = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __a ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = config_and_inputs SCREAMING_SNAKE_CASE_ = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class lowercase_ (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): lowerCAmelCase__ =(TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () lowerCAmelCase__ =( {"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification} if is_tf_available() else {} ) lowerCAmelCase__ =False lowerCAmelCase__ =False lowerCAmelCase__ =False lowerCAmelCase__ =False lowerCAmelCase__ =False def __a ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ = TFResNetModelTester(self ) SCREAMING_SNAKE_CASE_ = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ ) def __a ( self : Optional[Any] ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __a ( self : List[Any] ): """simple docstring""" return @unittest.skip(reason='ResNet does not use inputs_embeds' ) def __a ( self : Optional[Any] ): """simple docstring""" pass @unittest.skip(reason='ResNet does not support input and output embeddings' ) def __a ( self : Tuple ): """simple docstring""" pass def __a ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = model_class(snake_case__ ) SCREAMING_SNAKE_CASE_ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE_ = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE_ = ['pixel_values'] self.assertListEqual(arg_names[:1] , snake_case__ ) def __a ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def __a ( self : int ): """simple docstring""" def check_hidden_states_output(snake_case__ : Optional[int] , snake_case__ : int , snake_case__ : Dict ): SCREAMING_SNAKE_CASE_ = model_class(snake_case__ ) SCREAMING_SNAKE_CASE_ = model(**self._prepare_for_class(snake_case__ , snake_case__ ) ) SCREAMING_SNAKE_CASE_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states SCREAMING_SNAKE_CASE_ = self.model_tester.num_stages self.assertEqual(len(snake_case__ ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ = ['basic', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: SCREAMING_SNAKE_CASE_ = layer_type SCREAMING_SNAKE_CASE_ = True check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE_ = True check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ) def __a ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case__ ) @slow def __a ( self : Tuple ): """simple docstring""" for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_ = TFResNetModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def _a ( )-> Tuple: SCREAMING_SNAKE_CASE_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class lowercase_ (unittest.TestCase ): @cached_property def __a ( self : List[Any] ): """simple docstring""" return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __a ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE_ = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) SCREAMING_SNAKE_CASE_ = self.default_image_processor SCREAMING_SNAKE_CASE_ = prepare_img() SCREAMING_SNAKE_CASE_ = image_processor(images=snake_case__ , return_tensors='tf' ) # forward pass SCREAMING_SNAKE_CASE_ = model(**snake_case__ ) # verify the logits SCREAMING_SNAKE_CASE_ = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape , snake_case__ ) SCREAMING_SNAKE_CASE_ = tf.constant([-11.10_69, -9.78_77, -8.37_77] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , snake_case__ , atol=1e-4 ) )
360
1
'''simple docstring''' import csv import tweepy # Twitter API credentials __SCREAMING_SNAKE_CASE = '' __SCREAMING_SNAKE_CASE = '' __SCREAMING_SNAKE_CASE = '' __SCREAMING_SNAKE_CASE = '' def __a ( lowerCAmelCase__ : str ): # authorize twitter, initialize tweepy a__ : Union[str, Any] = tweepy.OAuthHandler(lowerCAmelCase__ , lowerCAmelCase__ ) auth.set_access_token(lowerCAmelCase__ , lowerCAmelCase__ ) a__ : Tuple = tweepy.API(lowerCAmelCase__ ) # initialize a list to hold all the tweepy Tweets a__ : str = [] # make initial request for most recent tweets (200 is the maximum allowed count) a__ : List[Any] = api.user_timeline(screen_name=lowerCAmelCase__ , count=200 ) # save most recent tweets alltweets.extend(lowerCAmelCase__ ) # save the id of the oldest tweet less one a__ : List[Any] = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(lowerCAmelCase__ ) > 0: print(F'getting tweets before {oldest}' ) # all subsequent requests use the max_id param to prevent duplicates a__ : Optional[int] = api.user_timeline( screen_name=lowerCAmelCase__ , count=200 , max_id=lowerCAmelCase__ ) # save most recent tweets alltweets.extend(lowerCAmelCase__ ) # update the id of the oldest tweet less one a__ : Tuple = alltweets[-1].id - 1 print(F'...{len(lowerCAmelCase__ )} tweets downloaded so far' ) # transform the tweepy tweets into a 2D array that will populate the csv a__ : Optional[Any] = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(F'new_{screen_name}_tweets.csv' , '''w''' ) as f: a__ : Any = csv.writer(lowerCAmelCase__ ) writer.writerow(['''id''', '''created_at''', '''text'''] ) writer.writerows(lowerCAmelCase__ ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets('FirePing32')
703
'''simple docstring''' import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def __a ( lowerCAmelCase__ : List[Any] ): a__ : Union[str, Any] = torch.load(lowerCAmelCase__ , map_location='''cpu''' ) if "model" in sd.keys(): a__ : List[str] = torch.load(lowerCAmelCase__ , map_location='''cpu''' )['''model'''] # pop unnecessary weights a__ : Optional[Any] = [ '''decoder.version''', '''decoder.output_projection.weight''', ] for key in keys_to_delete: if key in sd: sd.pop(lowerCAmelCase__ ) a__ : Any = { '''decoder.project_in_dim.weight''': '''decoder.project_in.weight''', '''decoder.project_out_dim.weight''': '''decoder.project_out.weight''', '''decoder.layer_norm.weight''': '''decoder.final_layer_norm.weight''', '''decoder.layer_norm.bias''': '''decoder.final_layer_norm.bias''', } for old_key, new_key in keys_to_rename.items(): if old_key in sd: a__ : Dict = sd.pop(lowerCAmelCase__ ) a__ : Union[str, Any] = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: a__ : Optional[Any] = sd[key] # We split QKV in separate Q,K,V a__ : Optional[Any] = key.replace('''.qkv_proj.''' , '''.q_proj.''' ) a__ : List[str] = key.replace('''.qkv_proj.''' , '''.k_proj.''' ) a__ : Optional[int] = key.replace('''.qkv_proj.''' , '''.v_proj.''' ) a__ : Union[str, Any] = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 a__ , a__ , a__ : Optional[int] = torch.split(lowerCAmelCase__ , depth // 3 , dim=0 ) a__ : Tuple = q a__ : Union[str, Any] = k a__ : Dict = v del sd[key] return sd @torch.no_grad() def __a ( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[Any]=None ): a__ : Any = load_checkpoint(lowerCAmelCase__ ) if config is not None: a__ : List[Any] = OPTConfig.from_pretrained(lowerCAmelCase__ ) else: a__ : Union[str, Any] = OPTConfig() a__ : Union[str, Any] = OPTModel(lowerCAmelCase__ ).half().eval() model.load_state_dict(lowerCAmelCase__ ) # Check results Path(lowerCAmelCase__ ).mkdir(exist_ok=lowerCAmelCase__ ) model.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( '--fairseq_path', type=str, help=( 'path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:' ' https://huggingface.co/models?other=opt_metasq' ), ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--hf_config', default=None, type=str, help='Define HF config.') __SCREAMING_SNAKE_CASE = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
340
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL UpperCamelCase = logging.get_logger(__name__) def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): if isinstance(SCREAMING_SNAKE_CASE , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(SCREAMING_SNAKE_CASE , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(SCREAMING_SNAKE_CASE ): return [[videos]] raise ValueError(f'''Could not make batched video from {videos}''' ) class _lowerCamelCase ( UpperCamelCase ): """simple docstring""" snake_case = ["pixel_values"] def __init__( self , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = PILImageResampling.BILINEAR , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = 1 / 255 , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , )->None: '''simple docstring''' super().__init__(**_SCREAMING_SNAKE_CASE ) A_ : Optional[Any] = size if size is not None else {'''shortest_edge''': 224} A_ : List[str] = get_size_dict(_SCREAMING_SNAKE_CASE , default_to_square=_SCREAMING_SNAKE_CASE ) A_ : List[str] = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} A_ : List[str] = get_size_dict(_SCREAMING_SNAKE_CASE , param_name='''crop_size''' ) A_ : int = do_resize A_ : Optional[int] = size A_ : Optional[Any] = do_center_crop A_ : List[Any] = crop_size A_ : Union[str, Any] = resample A_ : Union[str, Any] = do_rescale A_ : List[str] = rescale_factor A_ : List[str] = do_normalize A_ : Optional[int] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN A_ : int = image_std if image_std is not None else IMAGENET_STANDARD_STD def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = PILImageResampling.BILINEAR , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , )->np.ndarray: '''simple docstring''' A_ : Union[str, Any] = get_size_dict(_SCREAMING_SNAKE_CASE , default_to_square=_SCREAMING_SNAKE_CASE ) if "shortest_edge" in size: A_ : List[Any] = get_resize_output_image_size(_SCREAMING_SNAKE_CASE , size['''shortest_edge'''] , default_to_square=_SCREAMING_SNAKE_CASE ) elif "height" in size and "width" in size: A_ : Any = (size['''height'''], size['''width''']) else: raise ValueError(F'''Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' ) return resize(_SCREAMING_SNAKE_CASE , size=_SCREAMING_SNAKE_CASE , resample=_SCREAMING_SNAKE_CASE , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , )->np.ndarray: '''simple docstring''' A_ : List[Any] = get_size_dict(_SCREAMING_SNAKE_CASE ) if "height" not in size or "width" not in size: raise ValueError(F'''Size must have \'height\' and \'width\' as keys. Got {size.keys()}''' ) return center_crop(_SCREAMING_SNAKE_CASE , size=(size['''height'''], size['''width''']) , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , )->int: '''simple docstring''' return rescale(_SCREAMING_SNAKE_CASE , scale=_SCREAMING_SNAKE_CASE , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , )->np.ndarray: '''simple docstring''' return normalize(_SCREAMING_SNAKE_CASE , mean=_SCREAMING_SNAKE_CASE , std=_SCREAMING_SNAKE_CASE , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = ChannelDimension.FIRST , )->np.ndarray: '''simple docstring''' if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. A_ : Tuple = to_numpy_array(_SCREAMING_SNAKE_CASE ) if do_resize: A_ : Optional[Any] = self.resize(image=_SCREAMING_SNAKE_CASE , size=_SCREAMING_SNAKE_CASE , resample=_SCREAMING_SNAKE_CASE ) if do_center_crop: A_ : str = self.center_crop(_SCREAMING_SNAKE_CASE , size=_SCREAMING_SNAKE_CASE ) if do_rescale: A_ : Union[str, Any] = self.rescale(image=_SCREAMING_SNAKE_CASE , scale=_SCREAMING_SNAKE_CASE ) if do_normalize: A_ : int = self.normalize(image=_SCREAMING_SNAKE_CASE , mean=_SCREAMING_SNAKE_CASE , std=_SCREAMING_SNAKE_CASE ) A_ : Optional[int] = to_channel_dimension_format(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return image def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = ChannelDimension.FIRST , **_SCREAMING_SNAKE_CASE , )->PIL.Image.Image: '''simple docstring''' A_ : Optional[Any] = do_resize if do_resize is not None else self.do_resize A_ : str = resample if resample is not None else self.resample A_ : Dict = do_center_crop if do_center_crop is not None else self.do_center_crop A_ : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale A_ : Tuple = rescale_factor if rescale_factor is not None else self.rescale_factor A_ : List[Any] = do_normalize if do_normalize is not None else self.do_normalize A_ : Optional[Any] = image_mean if image_mean is not None else self.image_mean A_ : Optional[Any] = image_std if image_std is not None else self.image_std A_ : Tuple = size if size is not None else self.size A_ : Optional[Any] = get_size_dict(_SCREAMING_SNAKE_CASE , default_to_square=_SCREAMING_SNAKE_CASE ) A_ : Tuple = crop_size if crop_size is not None else self.crop_size A_ : Tuple = get_size_dict(_SCREAMING_SNAKE_CASE , param_name='''crop_size''' ) if not valid_images(_SCREAMING_SNAKE_CASE ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) A_ : int = make_batched(_SCREAMING_SNAKE_CASE ) A_ : str = [ [ self._preprocess_image( image=_SCREAMING_SNAKE_CASE , do_resize=_SCREAMING_SNAKE_CASE , size=_SCREAMING_SNAKE_CASE , resample=_SCREAMING_SNAKE_CASE , do_center_crop=_SCREAMING_SNAKE_CASE , crop_size=_SCREAMING_SNAKE_CASE , do_rescale=_SCREAMING_SNAKE_CASE , rescale_factor=_SCREAMING_SNAKE_CASE , do_normalize=_SCREAMING_SNAKE_CASE , image_mean=_SCREAMING_SNAKE_CASE , image_std=_SCREAMING_SNAKE_CASE , data_format=_SCREAMING_SNAKE_CASE , ) for img in video ] for video in videos ] A_ : Union[str, Any] = {'''pixel_values''': videos} return BatchFeature(data=_SCREAMING_SNAKE_CASE , tensor_type=_SCREAMING_SNAKE_CASE )
590
UpperCamelCase = 256 # Modulus to hash a string UpperCamelCase = 100_0003 def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): A_ : Any = len(SCREAMING_SNAKE_CASE ) A_ : int = len(SCREAMING_SNAKE_CASE ) if p_len > t_len: return False A_ : int = 0 A_ : Dict = 0 A_ : Optional[int] = 1 # Calculating the hash of pattern and substring of text for i in range(SCREAMING_SNAKE_CASE ): A_ : List[Any] = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus A_ : Dict = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue A_ : Tuple = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash A_ : List[str] = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def _SCREAMING_SNAKE_CASE ( ): A_ : List[Any] = '''abc1abc12''' A_ : str = '''alskfjaldsabc1abc1abc12k23adsfabcabc''' A_ : Optional[Any] = '''alskfjaldsk23adsfabcabc''' assert rabin_karp(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and not rabin_karp(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Test 2) A_ : List[str] = '''ABABX''' A_ : Tuple = '''ABABZABABYABABX''' assert rabin_karp(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Test 3) A_ : Optional[int] = '''AAAB''' A_ : Optional[Any] = '''ABAAAAAB''' assert rabin_karp(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Test 4) A_ : Optional[Any] = '''abcdabcy''' A_ : str = '''abcxabcdabxabcdabcdabcy''' assert rabin_karp(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Test 5) A_ : Tuple = '''Lü''' A_ : Dict = '''Lüsai''' assert rabin_karp(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) A_ : Dict = '''Lue''' assert not rabin_karp(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) print('''Success.''' ) if __name__ == "__main__": test_rabin_karp()
590
1
import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin A = get_tests_dir('fixtures/test_sentencepiece.model') A = {'target_lang': 'fi', 'source_lang': 'en'} A = '>>zh<<' A = 'Helsinki-NLP/' if is_torch_available(): A = 'pt' elif is_tf_available(): A = 'tf' else: A = 'jax' @require_sentencepiece class lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = MarianTokenizer lowerCAmelCase_ = False lowerCAmelCase_ = True def _snake_case ( self : List[Any] ) -> Optional[int]: super().setUp() _lowerCamelCase = ['</s>', '<unk>', '▁This', '▁is', '▁a', '▁t', 'est', '\u0120', '<pad>'] _lowerCamelCase = dict(zip(snake_case__ , range(len(snake_case__ ) ) ) ) _lowerCamelCase = Path(self.tmpdirname ) save_json(snake_case__ , save_dir / VOCAB_FILES_NAMES['vocab'] ) save_json(snake_case__ , save_dir / VOCAB_FILES_NAMES['tokenizer_config_file'] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(snake_case__ , save_dir / VOCAB_FILES_NAMES['source_spm'] ) copyfile(snake_case__ , save_dir / VOCAB_FILES_NAMES['target_spm'] ) _lowerCamelCase = MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def _snake_case ( self : Any , **snake_case__ : Tuple ) -> MarianTokenizer: return MarianTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def _snake_case ( self : Optional[Any] , snake_case__ : Optional[Any] ) -> str: return ( "This is a test", "This is a test", ) def _snake_case ( self : List[str] ) -> Optional[Any]: _lowerCamelCase = '</s>' _lowerCamelCase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ ) def _snake_case ( self : int ) -> List[str]: _lowerCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '</s>' ) self.assertEqual(vocab_keys[1] , '<unk>' ) self.assertEqual(vocab_keys[-1] , '<pad>' ) self.assertEqual(len(snake_case__ ) , 9 ) def _snake_case ( self : int ) -> Optional[Any]: self.assertEqual(self.get_tokenizer().vocab_size , 9 ) def _snake_case ( self : Optional[Any] ) -> Union[str, Any]: _lowerCamelCase = MarianTokenizer.from_pretrained(f"""{ORG_NAME}opus-mt-en-de""" ) _lowerCamelCase = en_de_tokenizer(['I am a small frog'] , return_tensors=snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) _lowerCamelCase = [3_8, 1_2_1, 1_4, 6_9_7, 3_8_8_4_8, 0] self.assertListEqual(snake_case__ , batch.input_ids[0] ) _lowerCamelCase = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(snake_case__ ) _lowerCamelCase = [x.name for x in Path(snake_case__ ).glob('*' )] self.assertIn('source.spm' , snake_case__ ) MarianTokenizer.from_pretrained(snake_case__ ) def _snake_case ( self : Tuple ) -> Dict: _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = tok( ['I am a small frog' * 1_0_0_0, 'I am a small frog'] , padding=snake_case__ , truncation=snake_case__ , return_tensors=snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) self.assertEqual(batch.input_ids.shape , (2, 5_1_2) ) def _snake_case ( self : Union[str, Any] ) -> Optional[Any]: _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = tok(['I am a tiny frog', 'I am a small frog'] , padding=snake_case__ , return_tensors=snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) self.assertEqual(batch_smaller.input_ids.shape , (2, 1_0) ) @slow def _snake_case ( self : Union[str, Any] ) -> List[str]: # fmt: off _lowerCamelCase = {'input_ids': [[4_3_4_9_5, 4_6_2, 2_0, 4_2_1_6_4, 1_3_6_9, 5_2, 4_6_4, 1_3_2, 1_7_0_3, 4_9_2, 1_3, 7_4_9_1, 3_8_9_9_9, 6, 8, 4_6_4, 1_3_2, 1_7_0_3, 4_9_2, 1_3, 4_6_6_9, 3_7_8_6_7, 1_3, 7_5_2_5, 2_7, 1_5_9_3, 9_8_8, 1_3, 3_3_9_7_2, 7_0_2_9, 6, 2_0, 8_2_5_1, 3_8_3, 2, 2_7_0, 5_8_6_6, 3_7_8_8, 2, 2_3_5_3, 8_2_5_1, 1_2_3_3_8, 2, 1_3_9_5_8, 3_8_7, 2, 3_6_2_9, 6_9_5_3, 1_8_8, 2_9_0_0, 2, 1_3_9_5_8, 8_0_1_1, 1_1_5_0_1, 2_3, 8_4_6_0, 4_0_7_3, 3_4_0_0_9, 2_0, 4_3_5, 1_1_4_3_9, 2_7, 8, 8_4_6_0, 4_0_7_3, 6_0_0_4, 2_0, 9_9_8_8, 3_7_5, 2_7, 3_3, 2_6_6, 1_9_4_5, 1_0_7_6, 1_3_5_0, 3_7_8_6_7, 3_2_8_8, 5, 5_7_7, 1_0_7_6, 4_3_7_4, 8, 5_0_8_2, 5, 2_6_4_5_3, 2_5_7, 5_5_6, 4_0_3, 2, 2_4_2, 1_3_2, 3_8_3, 3_1_6, 4_9_2, 8, 1_0_7_6_7, 6, 3_1_6, 3_0_4, 4_2_3_9, 3, 0], [1_4_8, 1_5_7_2_2, 1_9, 1_8_3_9, 1_2, 1_3_5_0, 1_3, 2_2_3_2_7, 5_0_8_2, 5_4_1_8, 4_7_5_6_7, 3_5_9_3_8, 5_9, 3_1_8, 1_9_5_5_2, 1_0_8, 2_1_8_3, 5_4, 1_4_9_7_6, 4_8_3_5, 3_2, 5_4_7, 1_1_1_4, 8, 3_1_5, 2_4_1_7, 5, 9_2, 1_9_0_8_8, 3, 0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0], [3_6, 6_3_9_5, 1_2_5_7_0, 3_9_1_4_7, 1_1_5_9_7, 6, 2_6_6, 4, 4_5_4_0_5, 7_2_9_6, 3, 0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case__ , model_name='Helsinki-NLP/opus-mt-en-de' , revision='1a8c2263da11e68e50938f97e10cd57820bd504c' , decode_kwargs={'use_source_tokenizer': True} , ) def _snake_case ( self : List[str] ) -> Optional[Any]: _lowerCamelCase = MarianTokenizer.from_pretrained('hf-internal-testing/test-marian-two-vocabs' ) _lowerCamelCase = 'Tämä on testi' _lowerCamelCase = 'This is a test' _lowerCamelCase = [7_6, 7, 2_0_4_7, 2] _lowerCamelCase = [6_9, 1_2, 1_1, 9_4_0, 2] _lowerCamelCase = tokenizer(snake_case__ ).input_ids self.assertListEqual(snake_case__ , snake_case__ ) _lowerCamelCase = tokenizer(text_target=snake_case__ ).input_ids self.assertListEqual(snake_case__ , snake_case__ ) _lowerCamelCase = tokenizer.decode(snake_case__ , skip_special_tokens=snake_case__ ) self.assertEqual(snake_case__ , snake_case__ )
234
from ..utils import DummyObject, requires_backends class lowerCAmelCase__ ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCAmelCase_ = ['flax'] def __init__( self : Dict , *snake_case__ : Optional[int] , **snake_case__ : Optional[Any] ) -> Optional[int]: requires_backends(self , ['flax'] ) @classmethod def _snake_case ( cls : int , *snake_case__ : str , **snake_case__ : int ) -> Union[str, Any]: requires_backends(cls , ['flax'] ) @classmethod def _snake_case ( cls : Any , *snake_case__ : Any , **snake_case__ : Any ) -> int: requires_backends(cls , ['flax'] ) class lowerCAmelCase__ ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCAmelCase_ = ['flax'] def __init__( self : Optional[Any] , *snake_case__ : Optional[int] , **snake_case__ : List[str] ) -> Optional[Any]: requires_backends(self , ['flax'] ) @classmethod def _snake_case ( cls : Union[str, Any] , *snake_case__ : List[str] , **snake_case__ : Tuple ) -> int: requires_backends(cls , ['flax'] ) @classmethod def _snake_case ( cls : Dict , *snake_case__ : int , **snake_case__ : Dict ) -> str: requires_backends(cls , ['flax'] ) class lowerCAmelCase__ ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCAmelCase_ = ['flax'] def __init__( self : Union[str, Any] , *snake_case__ : Union[str, Any] , **snake_case__ : int ) -> Union[str, Any]: requires_backends(self , ['flax'] ) @classmethod def _snake_case ( cls : int , *snake_case__ : int , **snake_case__ : Optional[int] ) -> Optional[int]: requires_backends(cls , ['flax'] ) @classmethod def _snake_case ( cls : str , *snake_case__ : List[str] , **snake_case__ : Dict ) -> Union[str, Any]: requires_backends(cls , ['flax'] ) class lowerCAmelCase__ ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCAmelCase_ = ['flax'] def __init__( self : List[Any] , *snake_case__ : int , **snake_case__ : Any ) -> Tuple: requires_backends(self , ['flax'] ) @classmethod def _snake_case ( cls : str , *snake_case__ : Optional[Any] , **snake_case__ : List[Any] ) -> Tuple: requires_backends(cls , ['flax'] ) @classmethod def _snake_case ( cls : List[Any] , *snake_case__ : Optional[Any] , **snake_case__ : Any ) -> Union[str, Any]: requires_backends(cls , ['flax'] ) class lowerCAmelCase__ ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCAmelCase_ = ['flax'] def __init__( self : List[Any] , *snake_case__ : Optional[Any] , **snake_case__ : Union[str, Any] ) -> List[Any]: requires_backends(self , ['flax'] ) @classmethod def _snake_case ( cls : Any , *snake_case__ : Tuple , **snake_case__ : Any ) -> str: requires_backends(cls , ['flax'] ) @classmethod def _snake_case ( cls : List[str] , *snake_case__ : str , **snake_case__ : Tuple ) -> Tuple: requires_backends(cls , ['flax'] ) class lowerCAmelCase__ ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCAmelCase_ = ['flax'] def __init__( self : Optional[Any] , *snake_case__ : Dict , **snake_case__ : Optional[Any] ) -> Dict: requires_backends(self , ['flax'] ) @classmethod def _snake_case ( cls : Any , *snake_case__ : Optional[Any] , **snake_case__ : int ) -> Dict: requires_backends(cls , ['flax'] ) @classmethod def _snake_case ( cls : List[Any] , *snake_case__ : Dict , **snake_case__ : Optional[int] ) -> Tuple: requires_backends(cls , ['flax'] ) class lowerCAmelCase__ ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCAmelCase_ = ['flax'] def __init__( self : Optional[int] , *snake_case__ : Any , **snake_case__ : Dict ) -> List[str]: requires_backends(self , ['flax'] ) @classmethod def _snake_case ( cls : str , *snake_case__ : Union[str, Any] , **snake_case__ : List[str] ) -> int: requires_backends(cls , ['flax'] ) @classmethod def _snake_case ( cls : Any , *snake_case__ : Union[str, Any] , **snake_case__ : Optional[int] ) -> List[str]: requires_backends(cls , ['flax'] ) class lowerCAmelCase__ ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCAmelCase_ = ['flax'] def __init__( self : List[str] , *snake_case__ : str , **snake_case__ : str ) -> str: requires_backends(self , ['flax'] ) @classmethod def _snake_case ( cls : str , *snake_case__ : str , **snake_case__ : Dict ) -> Any: requires_backends(cls , ['flax'] ) @classmethod def _snake_case ( cls : int , *snake_case__ : Any , **snake_case__ : Tuple ) -> Any: requires_backends(cls , ['flax'] ) class lowerCAmelCase__ ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCAmelCase_ = ['flax'] def __init__( self : Optional[int] , *snake_case__ : List[Any] , **snake_case__ : int ) -> int: requires_backends(self , ['flax'] ) @classmethod def _snake_case ( cls : Any , *snake_case__ : Dict , **snake_case__ : Optional[Any] ) -> List[Any]: requires_backends(cls , ['flax'] ) @classmethod def _snake_case ( cls : Union[str, Any] , *snake_case__ : Any , **snake_case__ : Dict ) -> Dict: requires_backends(cls , ['flax'] ) class lowerCAmelCase__ ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCAmelCase_ = ['flax'] def __init__( self : int , *snake_case__ : str , **snake_case__ : str ) -> Optional[Any]: requires_backends(self , ['flax'] ) @classmethod def _snake_case ( cls : Optional[Any] , *snake_case__ : Dict , **snake_case__ : List[str] ) -> Dict: requires_backends(cls , ['flax'] ) @classmethod def _snake_case ( cls : int , *snake_case__ : Optional[Any] , **snake_case__ : List[str] ) -> Union[str, Any]: requires_backends(cls , ['flax'] ) class lowerCAmelCase__ ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCAmelCase_ = ['flax'] def __init__( self : int , *snake_case__ : Optional[int] , **snake_case__ : Union[str, Any] ) -> Tuple: requires_backends(self , ['flax'] ) @classmethod def _snake_case ( cls : List[Any] , *snake_case__ : int , **snake_case__ : List[Any] ) -> Dict: requires_backends(cls , ['flax'] ) @classmethod def _snake_case ( cls : Tuple , *snake_case__ : List[str] , **snake_case__ : Any ) -> Optional[Any]: requires_backends(cls , ['flax'] ) class lowerCAmelCase__ ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCAmelCase_ = ['flax'] def __init__( self : Optional[int] , *snake_case__ : List[str] , **snake_case__ : Dict ) -> Any: requires_backends(self , ['flax'] ) @classmethod def _snake_case ( cls : Dict , *snake_case__ : Any , **snake_case__ : int ) -> Union[str, Any]: requires_backends(cls , ['flax'] ) @classmethod def _snake_case ( cls : Optional[int] , *snake_case__ : Union[str, Any] , **snake_case__ : List[str] ) -> Dict: requires_backends(cls , ['flax'] ) class lowerCAmelCase__ ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCAmelCase_ = ['flax'] def __init__( self : int , *snake_case__ : Optional[int] , **snake_case__ : int ) -> int: requires_backends(self , ['flax'] ) @classmethod def _snake_case ( cls : List[Any] , *snake_case__ : List[Any] , **snake_case__ : Tuple ) -> Tuple: requires_backends(cls , ['flax'] ) @classmethod def _snake_case ( cls : List[Any] , *snake_case__ : List[Any] , **snake_case__ : Optional[int] ) -> Tuple: requires_backends(cls , ['flax'] )
234
1
"""simple docstring""" from __future__ import annotations import math def _lowercase ( __snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ) -> int: if depth < 0: raise ValueError("Depth cannot be less than 0" ) if len(__snake_case ) == 0: raise ValueError("Scores cannot be empty" ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 ,node_index * 2 ,__snake_case ,__snake_case ,__snake_case ) ,minimax(depth + 1 ,node_index * 2 + 1 ,__snake_case ,__snake_case ,__snake_case ) ,) return min( minimax(depth + 1 ,node_index * 2 ,__snake_case ,__snake_case ,__snake_case ) ,minimax(depth + 1 ,node_index * 2 + 1 ,__snake_case ,__snake_case ,__snake_case ) ,) def _lowercase ( ) -> None: __lowerCAmelCase : int = [90, 23, 6, 33, 21, 65, 123, 34_423] __lowerCAmelCase : Optional[int] = math.log(len(__snake_case ) ,2 ) print("Optimal value : " ,end="" ) print(minimax(0 ,0 ,__snake_case ,__snake_case ,__snake_case ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
293
"""simple docstring""" import inspect import jax import jax.lax as lax import jax.numpy as jnp from ..utils import add_start_docstrings from ..utils.logging import get_logger __snake_case : List[str] = get_logger(__name__) __snake_case : str = R'\n Args:\n input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):\n Indices of input sequence tokens in the vocabulary.\n\n Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n [What are input IDs?](../glossary#input-ids)\n scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`):\n Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam\n search or log softmax for each vocabulary token when using beam search\n kwargs (`Dict[str, Any]`, *optional*):\n Additional logits processor specific kwargs.\n\n Return:\n `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores.\n\n' class A__ : '''simple docstring''' @add_start_docstrings(_SCREAMING_SNAKE_CASE) def __call__( self: Tuple , _SCREAMING_SNAKE_CASE: jnp.ndarray , _SCREAMING_SNAKE_CASE: jnp.ndarray) -> jnp.ndarray: """simple docstring""" raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""") class A__ : '''simple docstring''' @add_start_docstrings(_SCREAMING_SNAKE_CASE) def __call__( self: List[str] , _SCREAMING_SNAKE_CASE: jnp.ndarray , _SCREAMING_SNAKE_CASE: jnp.ndarray) -> jnp.ndarray: """simple docstring""" raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""") class A__ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' @add_start_docstrings(_SCREAMING_SNAKE_CASE) def __call__( self: Optional[int] , _SCREAMING_SNAKE_CASE: jnp.ndarray , _SCREAMING_SNAKE_CASE: jnp.ndarray , _SCREAMING_SNAKE_CASE: int , **_SCREAMING_SNAKE_CASE: str) -> jnp.ndarray: """simple docstring""" for processor in self: __lowerCAmelCase : int = inspect.signature(processor.__call__).parameters if len(_SCREAMING_SNAKE_CASE) > 3: if not all(arg in kwargs for arg in list(function_args.keys())[2:]): raise ValueError( F"""Make sure that all the required parameters: {list(function_args.keys())} for """ F"""{processor.__class__} are passed to the logits processor.""") __lowerCAmelCase : int = processor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE) else: __lowerCAmelCase : Union[str, Any] = processor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) return scores class A__ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self: int , _SCREAMING_SNAKE_CASE: float) -> str: """simple docstring""" if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) or not (temperature > 0): raise ValueError(F"""`temperature` has to be a strictly positive float, but is {temperature}""") __lowerCAmelCase : List[str] = temperature def __call__( self: Dict , _SCREAMING_SNAKE_CASE: jnp.ndarray , _SCREAMING_SNAKE_CASE: jnp.ndarray , _SCREAMING_SNAKE_CASE: int) -> jnp.ndarray: """simple docstring""" __lowerCAmelCase : Union[str, Any] = scores / self.temperature return scores class A__ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self: Dict , _SCREAMING_SNAKE_CASE: float , _SCREAMING_SNAKE_CASE: float = -float("Inf") , _SCREAMING_SNAKE_CASE: int = 1) -> Optional[int]: """simple docstring""" if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) or (top_p < 0 or top_p > 1.0): raise ValueError(F"""`top_p` has to be a float > 0 and < 1, but is {top_p}""") if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) or (min_tokens_to_keep < 1): raise ValueError(F"""`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}""") __lowerCAmelCase : Union[str, Any] = top_p __lowerCAmelCase : Optional[int] = filter_value __lowerCAmelCase : str = min_tokens_to_keep def __call__( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: jnp.ndarray , _SCREAMING_SNAKE_CASE: jnp.ndarray , _SCREAMING_SNAKE_CASE: int) -> jnp.ndarray: """simple docstring""" __lowerCAmelCase , __lowerCAmelCase : Optional[Any] = lax.top_k(_SCREAMING_SNAKE_CASE , scores.shape[-1]) __lowerCAmelCase : List[str] = jnp.full_like(_SCREAMING_SNAKE_CASE , self.filter_value) __lowerCAmelCase : Any = jax.nn.softmax(_SCREAMING_SNAKE_CASE , axis=-1).cumsum(axis=-1) __lowerCAmelCase : Optional[Any] = cumulative_probs < self.top_p # include the token that is higher than top_p as well __lowerCAmelCase : Tuple = jnp.roll(_SCREAMING_SNAKE_CASE , 1) score_mask |= score_mask.at[:, 0].set(_SCREAMING_SNAKE_CASE) # min tokens to keep __lowerCAmelCase : Union[str, Any] = score_mask.at[:, : self.min_tokens_to_keep].set(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[Any] = jnp.where(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : Dict = jax.lax.sort_key_val(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE)[-1] return next_scores class A__ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self: Tuple , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: float = -float("Inf") , _SCREAMING_SNAKE_CASE: int = 1) -> Optional[int]: """simple docstring""" if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) or top_k <= 0: raise ValueError(F"""`top_k` has to be a strictly positive integer, but is {top_k}""") __lowerCAmelCase : Any = max(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[int] = filter_value def __call__( self: List[Any] , _SCREAMING_SNAKE_CASE: jnp.ndarray , _SCREAMING_SNAKE_CASE: jnp.ndarray , _SCREAMING_SNAKE_CASE: int) -> jnp.ndarray: """simple docstring""" __lowerCAmelCase , __lowerCAmelCase : Any = scores.shape __lowerCAmelCase : Union[str, Any] = jnp.full(batch_size * vocab_size , self.filter_value) __lowerCAmelCase : List[str] = min(self.top_k , scores.shape[-1]) # Safety check __lowerCAmelCase , __lowerCAmelCase : List[str] = lax.top_k(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : List[str] = jnp.broadcast_to((jnp.arange(_SCREAMING_SNAKE_CASE) * vocab_size)[:, None] , (batch_size, topk)).flatten() __lowerCAmelCase : Any = topk_scores.flatten() __lowerCAmelCase : Any = topk_indices.flatten() + shift __lowerCAmelCase : str = next_scores_flat.at[topk_indices_flat].set(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Union[str, Any] = next_scores_flat.reshape(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) return next_scores class A__ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self: List[str] , _SCREAMING_SNAKE_CASE: int) -> Optional[int]: """simple docstring""" __lowerCAmelCase : Tuple = bos_token_id def __call__( self: Optional[int] , _SCREAMING_SNAKE_CASE: jnp.ndarray , _SCREAMING_SNAKE_CASE: jnp.ndarray , _SCREAMING_SNAKE_CASE: int) -> jnp.ndarray: """simple docstring""" __lowerCAmelCase : int = jnp.full(scores.shape , -float("inf")) __lowerCAmelCase : int = 1 - jnp.bool_(cur_len - 1) __lowerCAmelCase : Tuple = jnp.where(_SCREAMING_SNAKE_CASE , new_scores.at[:, self.bos_token_id].set(0) , _SCREAMING_SNAKE_CASE) return scores class A__ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self: List[Any] , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: int) -> int: """simple docstring""" __lowerCAmelCase : List[str] = max_length __lowerCAmelCase : int = eos_token_id def __call__( self: List[Any] , _SCREAMING_SNAKE_CASE: jnp.ndarray , _SCREAMING_SNAKE_CASE: jnp.ndarray , _SCREAMING_SNAKE_CASE: int) -> jnp.ndarray: """simple docstring""" __lowerCAmelCase : Optional[int] = jnp.full(scores.shape , -float("inf")) __lowerCAmelCase : Any = 1 - jnp.bool_(cur_len - self.max_length + 1) __lowerCAmelCase : Union[str, Any] = jnp.where(_SCREAMING_SNAKE_CASE , new_scores.at[:, self.eos_token_id].set(0) , _SCREAMING_SNAKE_CASE) return scores class A__ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self: Optional[Any] , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: int) -> Optional[Any]: """simple docstring""" if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) or min_length < 0: raise ValueError(F"""`min_length` has to be a positive integer, but is {min_length}""") if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) or eos_token_id < 0: raise ValueError(F"""`eos_token_id` has to be a positive integer, but is {eos_token_id}""") __lowerCAmelCase : Any = min_length __lowerCAmelCase : Tuple = eos_token_id def __call__( self: str , _SCREAMING_SNAKE_CASE: jnp.ndarray , _SCREAMING_SNAKE_CASE: jnp.ndarray , _SCREAMING_SNAKE_CASE: int) -> jnp.ndarray: """simple docstring""" __lowerCAmelCase : Optional[Any] = 1 - jnp.clip(cur_len - self.min_length , 0 , 1) __lowerCAmelCase : Union[str, Any] = jnp.where(_SCREAMING_SNAKE_CASE , scores.at[:, self.eos_token_id].set(-float("inf")) , _SCREAMING_SNAKE_CASE) return scores class A__ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self: Optional[Any] , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: str) -> List[Any]: """simple docstring""" __lowerCAmelCase : int = list(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[Any] = begin_index def __call__( self: Optional[Any] , _SCREAMING_SNAKE_CASE: List[str] , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: int) -> Dict: """simple docstring""" __lowerCAmelCase : Any = 1 - jnp.bool_(cur_len - self.begin_index) __lowerCAmelCase : Optional[Any] = jnp.where(_SCREAMING_SNAKE_CASE , scores.at[:, self.begin_suppress_tokens].set(-float("inf")) , _SCREAMING_SNAKE_CASE) return scores class A__ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self: List[Any] , _SCREAMING_SNAKE_CASE: list) -> Optional[int]: """simple docstring""" __lowerCAmelCase : Optional[Any] = list(_SCREAMING_SNAKE_CASE) def __call__( self: int , _SCREAMING_SNAKE_CASE: jnp.ndarray , _SCREAMING_SNAKE_CASE: jnp.ndarray , _SCREAMING_SNAKE_CASE: int) -> jnp.ndarray: """simple docstring""" __lowerCAmelCase : Optional[Any] = scores.at[..., self.suppress_tokens].set(-float("inf")) return scores class A__ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self: List[str] , _SCREAMING_SNAKE_CASE: int) -> str: """simple docstring""" __lowerCAmelCase : Optional[Any] = dict(_SCREAMING_SNAKE_CASE) # Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the # index of the array corresponds to the index of the token to be forced, for XLA compatibility. # Indexes without forced tokens will have a negative value. __lowerCAmelCase : Any = jnp.ones((max(force_token_map.keys()) + 1) , dtype=jnp.intaa) * -1 for index, token in force_token_map.items(): if token is not None: __lowerCAmelCase : int = force_token_array.at[index].set(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Tuple = jnp.intaa(_SCREAMING_SNAKE_CASE) def __call__( self: List[str] , _SCREAMING_SNAKE_CASE: jnp.ndarray , _SCREAMING_SNAKE_CASE: jnp.ndarray , _SCREAMING_SNAKE_CASE: int) -> jnp.ndarray: """simple docstring""" def _force_token(_SCREAMING_SNAKE_CASE: Optional[Any]): __lowerCAmelCase : int = scores.shape[0] __lowerCAmelCase : Optional[int] = self.force_token_array[generation_idx] __lowerCAmelCase : int = jnp.ones_like(_SCREAMING_SNAKE_CASE , dtype=scores.dtype) * -float("inf") __lowerCAmelCase : Optional[int] = jnp.zeros((batch_size, 1) , dtype=scores.dtype) __lowerCAmelCase : Dict = lax.dynamic_update_slice(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , (0, current_token)) return new_scores __lowerCAmelCase : Union[str, Any] = lax.cond( cur_len >= self.force_token_array.shape[0] , lambda: scores , lambda: lax.cond( self.force_token_array[cur_len] >= 0 , lambda: _force_token(_SCREAMING_SNAKE_CASE) , lambda: scores , ) , ) return scores class A__ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self: Optional[Any] , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: Optional[Any]) -> int: """simple docstring""" __lowerCAmelCase : List[str] = generate_config.eos_token_id __lowerCAmelCase : Optional[int] = generate_config.no_timestamps_token_id __lowerCAmelCase : Dict = generate_config.no_timestamps_token_id + 1 __lowerCAmelCase : Optional[Any] = decoder_input_length + 1 if generate_config.is_multilingual: # room for language token and task token self.begin_index += 2 if hasattr(_SCREAMING_SNAKE_CASE , "max_initial_timestamp_index"): __lowerCAmelCase : Optional[int] = generate_config.max_initial_timestamp_index else: __lowerCAmelCase : Optional[int] = model_config.vocab_size if self.max_initial_timestamp_index is None: __lowerCAmelCase : int = model_config.vocab_size def __call__( self: Tuple , _SCREAMING_SNAKE_CASE: Union[str, Any] , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: int) -> Optional[int]: """simple docstring""" __lowerCAmelCase : Optional[Any] = scores.at[:, self.no_timestamps_token_id].set(-float("inf")) def handle_pairs(_SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: Union[str, Any]): __lowerCAmelCase : Tuple = jnp.where((cur_len - self.begin_index) >= 1 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : List[Any] = jnp.where( input_ids_k[cur_len - 1] >= self.timestamp_begin , True and last_was_timestamp , _SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : Tuple = jnp.where((cur_len - self.begin_index) < 2 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : int = jnp.where( input_ids_k[cur_len - 2] >= self.timestamp_begin , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) return jnp.where( _SCREAMING_SNAKE_CASE , jnp.where( penultimate_was_timestamp > 0 , scores_k.at[self.timestamp_begin :].set(-float("inf")) , scores_k.at[: self.eos_token_id].set(-float("inf")) , ) , _SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : int = jax.vmap(_SCREAMING_SNAKE_CASE)(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : List[str] = jnp.where(cur_len == self.begin_index , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : Any = jnp.where( self.max_initial_timestamp_index is not None , True and apply_max_initial_timestamp , _SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : List[Any] = self.timestamp_begin + self.max_initial_timestamp_index __lowerCAmelCase : Tuple = jnp.where( _SCREAMING_SNAKE_CASE , scores.at[:, last_allowed + 1 :].set(-float("inf")) , _SCREAMING_SNAKE_CASE , ) # if sum of probability over timestamps is above any other token, sample timestamp __lowerCAmelCase : List[str] = jax.nn.log_softmax(_SCREAMING_SNAKE_CASE , axis=-1) def handle_cumulative_probs(_SCREAMING_SNAKE_CASE: Any , _SCREAMING_SNAKE_CASE: Any): __lowerCAmelCase : Tuple = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] , axis=-1) __lowerCAmelCase : int = jnp.max(logprobs_k[: self.timestamp_begin]) return jnp.where( timestamp_logprob > max_text_token_logprob , scores_k.at[: self.timestamp_begin].set(-float("inf")) , _SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : Dict = jax.vmap(_SCREAMING_SNAKE_CASE)(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) return scores
293
1
'''simple docstring''' def A_ ( snake_case = 50 ): SCREAMING_SNAKE_CASE:Any = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(f'''{solution() = }''')
465
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaInpaintPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _snake_case ( _a , unittest.TestCase ): _A : str = KandinskyVaaInpaintPipeline _A : Tuple = ['''image_embeds''', '''negative_image_embeds''', '''image''', '''mask_image'''] _A : List[str] = [ '''image_embeds''', '''negative_image_embeds''', '''image''', '''mask_image''', ] _A : Optional[Any] = [ '''generator''', '''height''', '''width''', '''latents''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] _A : int = False @property def __UpperCamelCase ( self : Any ): return 32 @property def __UpperCamelCase ( self : Tuple ): return 32 @property def __UpperCamelCase ( self : Union[str, Any] ): return self.time_input_dim @property def __UpperCamelCase ( self : Any ): return self.time_input_dim * 4 @property def __UpperCamelCase ( self : Any ): return 100 @property def __UpperCamelCase ( self : Any ): torch.manual_seed(0 ) SCREAMING_SNAKE_CASE:Optional[Any] = { "in_channels": 9, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } SCREAMING_SNAKE_CASE:Dict = UNetaDConditionModel(**SCREAMING_SNAKE_CASE__ ) return model @property def __UpperCamelCase ( self : Dict ): return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __UpperCamelCase ( self : int ): torch.manual_seed(0 ) SCREAMING_SNAKE_CASE:str = VQModel(**self.dummy_movq_kwargs ) return model def __UpperCamelCase ( self : List[Any] ): SCREAMING_SNAKE_CASE:Tuple = self.dummy_unet SCREAMING_SNAKE_CASE:Union[str, Any] = self.dummy_movq SCREAMING_SNAKE_CASE:Any = DDIMScheduler( num_train_timesteps=1_000 ,beta_schedule="linear" ,beta_start=0.00_085 ,beta_end=0.012 ,clip_sample=SCREAMING_SNAKE_CASE__ ,set_alpha_to_one=SCREAMING_SNAKE_CASE__ ,steps_offset=1 ,prediction_type="epsilon" ,thresholding=SCREAMING_SNAKE_CASE__ ,) SCREAMING_SNAKE_CASE:Any = { "unet": unet, "scheduler": scheduler, "movq": movq, } return components def __UpperCamelCase ( self : str ,SCREAMING_SNAKE_CASE__ : Dict ,SCREAMING_SNAKE_CASE__ : Optional[Any]=0 ): SCREAMING_SNAKE_CASE:Optional[Any] = floats_tensor((1, self.text_embedder_hidden_size) ,rng=random.Random(SCREAMING_SNAKE_CASE__ ) ).to(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Any = floats_tensor((1, self.text_embedder_hidden_size) ,rng=random.Random(seed + 1 ) ).to( SCREAMING_SNAKE_CASE__ ) # create init_image SCREAMING_SNAKE_CASE:Any = floats_tensor((1, 3, 64, 64) ,rng=random.Random(SCREAMING_SNAKE_CASE__ ) ).to(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Union[str, Any] = image.cpu().permute(0 ,2 ,3 ,1 )[0] SCREAMING_SNAKE_CASE:Union[str, Any] = Image.fromarray(np.uinta(SCREAMING_SNAKE_CASE__ ) ).convert("RGB" ).resize((256, 256) ) # create mask SCREAMING_SNAKE_CASE:int = np.ones((64, 64) ,dtype=np.floataa ) SCREAMING_SNAKE_CASE:Optional[Any] = 0 if str(SCREAMING_SNAKE_CASE__ ).startswith("mps" ): SCREAMING_SNAKE_CASE:Tuple = torch.manual_seed(SCREAMING_SNAKE_CASE__ ) else: SCREAMING_SNAKE_CASE:List[Any] = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Tuple = { "image": init_image, "mask_image": mask, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 64, "width": 64, "num_inference_steps": 2, "guidance_scale": 4.0, "output_type": "np", } return inputs def __UpperCamelCase ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE:List[Any] = "cpu" SCREAMING_SNAKE_CASE:Union[str, Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE:List[Any] = self.pipeline_class(**SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:int = pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:str = pipe(**self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ ) ) SCREAMING_SNAKE_CASE:List[Any] = output.images SCREAMING_SNAKE_CASE:int = pipe( **self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ ) ,return_dict=SCREAMING_SNAKE_CASE__ ,)[0] SCREAMING_SNAKE_CASE:Union[str, Any] = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE:Optional[Any] = image_from_tuple[0, -3:, -3:, -1] print(F'''image.shape {image.shape}''' ) assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE:Union[str, Any] = np.array( [0.50_775_903, 0.49_527_195, 0.48_824_543, 0.50_192_237, 0.48_644_906, 0.49_373_814, 0.4_780_598, 0.47_234_827, 0.48_327_848] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' def __UpperCamelCase ( self : Any ): super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class _snake_case ( unittest.TestCase ): def __UpperCamelCase ( self : Any ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : Any ): SCREAMING_SNAKE_CASE:Optional[int] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/kandinskyv22_inpaint_cat_with_hat_fp16.npy" ) SCREAMING_SNAKE_CASE:str = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) SCREAMING_SNAKE_CASE:List[Any] = np.ones((768, 768) ,dtype=np.floataa ) SCREAMING_SNAKE_CASE:Union[str, Any] = 0 SCREAMING_SNAKE_CASE:Optional[int] = "a hat" SCREAMING_SNAKE_CASE:Optional[int] = KandinskyVaaPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-prior" ,torch_dtype=torch.floataa ) pipe_prior.to(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Optional[int] = KandinskyVaaInpaintPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-decoder-inpaint" ,torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE:List[str] = pipeline.to(SCREAMING_SNAKE_CASE__ ) pipeline.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:List[Any] = torch.Generator(device="cpu" ).manual_seed(0 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE:List[str] = pipe_prior( SCREAMING_SNAKE_CASE__ ,generator=SCREAMING_SNAKE_CASE__ ,num_inference_steps=5 ,negative_prompt="" ,).to_tuple() SCREAMING_SNAKE_CASE:Dict = pipeline( image=SCREAMING_SNAKE_CASE__ ,mask_image=SCREAMING_SNAKE_CASE__ ,image_embeds=SCREAMING_SNAKE_CASE__ ,negative_image_embeds=SCREAMING_SNAKE_CASE__ ,generator=SCREAMING_SNAKE_CASE__ ,num_inference_steps=100 ,height=768 ,width=768 ,output_type="np" ,) SCREAMING_SNAKE_CASE:List[Any] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ )
465
1
def _lowerCAmelCase ( A__: list[list] ): '''simple docstring''' UpperCAmelCase = current_set.copy() for row_index, row in enumerate(A__ ): UpperCAmelCase = row[0] for column_index, column in enumerate(A__ ): if magnitude == 0: UpperCAmelCase = column continue UpperCAmelCase = column / magnitude # Subtract to cancel term UpperCAmelCase = current_set[0] UpperCAmelCase = [first_row] UpperCAmelCase = current_set[1::] for row in current_set: UpperCAmelCase = [] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(A__ ) continue for column_index in range(len(A__ ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(A__ ) # Create next recursion iteration set if len(final_set[0] ) != 3: UpperCAmelCase = final_set[0] UpperCAmelCase = [] UpperCAmelCase = [] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) UpperCAmelCase = simplify(A__ ) for i in range(len(A__ ) ): resultant[i].insert(0 , current_first_column[i] ) resultant.insert(0 , A__ ) UpperCAmelCase = resultant return final_set def _lowerCAmelCase ( A__: list[list] ): '''simple docstring''' if len(A__ ) == 0: raise IndexError('''solve_simultaneous() requires n lists of length n+1''' ) UpperCAmelCase = len(A__ ) + 1 if any(len(A__ ) != _length for item in equations ): raise IndexError('''solve_simultaneous() requires n lists of length n+1''' ) for row in equations: if any(not isinstance(A__ , (int, float) ) for column in row ): raise ValueError('''solve_simultaneous() requires lists of integers''' ) if len(A__ ) == 1: return [equations[0][-1] / equations[0][0]] UpperCAmelCase = equations.copy() if any(0 in row for row in data_set ): UpperCAmelCase = data_set.copy() UpperCAmelCase = [] for row_index, row in enumerate(A__ ): if 0 not in row: UpperCAmelCase = data_set.pop(A__ ) break if not full_row: raise ValueError('''solve_simultaneous() requires at least 1 full equation''' ) data_set.insert(0 , A__ ) UpperCAmelCase = data_set.copy() UpperCAmelCase = simplify(A__ ) UpperCAmelCase = simplified[::-1] UpperCAmelCase = [] for row in simplified: UpperCAmelCase = row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue UpperCAmelCase = row.copy()[: len(A__ ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(A__ ) == 0: solutions.append(0 ) continue UpperCAmelCase = temp_row[1::] UpperCAmelCase = temp_row[::-1] for column_index, column in enumerate(A__ ): current_solution -= column * solutions[column_index] solutions.append(A__ ) UpperCAmelCase = [] for item in solutions: final.append(float(round(A__ , 5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() __magic_name__ = [ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
254
def _lowerCAmelCase ( A__: list[list] ): '''simple docstring''' UpperCAmelCase = current_set.copy() for row_index, row in enumerate(A__ ): UpperCAmelCase = row[0] for column_index, column in enumerate(A__ ): if magnitude == 0: UpperCAmelCase = column continue UpperCAmelCase = column / magnitude # Subtract to cancel term UpperCAmelCase = current_set[0] UpperCAmelCase = [first_row] UpperCAmelCase = current_set[1::] for row in current_set: UpperCAmelCase = [] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(A__ ) continue for column_index in range(len(A__ ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(A__ ) # Create next recursion iteration set if len(final_set[0] ) != 3: UpperCAmelCase = final_set[0] UpperCAmelCase = [] UpperCAmelCase = [] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) UpperCAmelCase = simplify(A__ ) for i in range(len(A__ ) ): resultant[i].insert(0 , current_first_column[i] ) resultant.insert(0 , A__ ) UpperCAmelCase = resultant return final_set def _lowerCAmelCase ( A__: list[list] ): '''simple docstring''' if len(A__ ) == 0: raise IndexError('''solve_simultaneous() requires n lists of length n+1''' ) UpperCAmelCase = len(A__ ) + 1 if any(len(A__ ) != _length for item in equations ): raise IndexError('''solve_simultaneous() requires n lists of length n+1''' ) for row in equations: if any(not isinstance(A__ , (int, float) ) for column in row ): raise ValueError('''solve_simultaneous() requires lists of integers''' ) if len(A__ ) == 1: return [equations[0][-1] / equations[0][0]] UpperCAmelCase = equations.copy() if any(0 in row for row in data_set ): UpperCAmelCase = data_set.copy() UpperCAmelCase = [] for row_index, row in enumerate(A__ ): if 0 not in row: UpperCAmelCase = data_set.pop(A__ ) break if not full_row: raise ValueError('''solve_simultaneous() requires at least 1 full equation''' ) data_set.insert(0 , A__ ) UpperCAmelCase = data_set.copy() UpperCAmelCase = simplify(A__ ) UpperCAmelCase = simplified[::-1] UpperCAmelCase = [] for row in simplified: UpperCAmelCase = row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue UpperCAmelCase = row.copy()[: len(A__ ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(A__ ) == 0: solutions.append(0 ) continue UpperCAmelCase = temp_row[1::] UpperCAmelCase = temp_row[::-1] for column_index, column in enumerate(A__ ): current_solution -= column * solutions[column_index] solutions.append(A__ ) UpperCAmelCase = [] for item in solutions: final.append(float(round(A__ , 5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() __magic_name__ = [ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
254
1
'''simple docstring''' import os import string import sys UpperCamelCase : Optional[int] = 1 << 8 UpperCamelCase : Any = { 'tab': ord('\t'), 'newline': ord('\r'), 'esc': 27, 'up': 65 + ARROW_KEY_FLAG, 'down': 66 + ARROW_KEY_FLAG, 'right': 67 + ARROW_KEY_FLAG, 'left': 68 + ARROW_KEY_FLAG, 'mod_int': 91, 'undefined': sys.maxsize, 'interrupt': 3, 'insert': 50, 'delete': 51, 'pg_up': 53, 'pg_down': 54, } UpperCamelCase : Any = KEYMAP['up'] UpperCamelCase : int = KEYMAP['left'] if sys.platform == "win32": UpperCamelCase : Union[str, Any] = [] UpperCamelCase : Any = { B'\xe0H': KEYMAP['up'] - ARROW_KEY_FLAG, B'\x00H': KEYMAP['up'] - ARROW_KEY_FLAG, B'\xe0P': KEYMAP['down'] - ARROW_KEY_FLAG, B'\x00P': KEYMAP['down'] - ARROW_KEY_FLAG, B'\xe0M': KEYMAP['right'] - ARROW_KEY_FLAG, B'\x00M': KEYMAP['right'] - ARROW_KEY_FLAG, B'\xe0K': KEYMAP['left'] - ARROW_KEY_FLAG, B'\x00K': KEYMAP['left'] - ARROW_KEY_FLAG, } for i in range(10): UpperCamelCase : Tuple = ord(str(i)) def A__ ( ): if os.name == "nt": import msvcrt lowerCamelCase__ = """mbcs""" # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(__lowerCAmelCase ) == 0: # Read the keystroke lowerCamelCase__ = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): lowerCamelCase__ = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: lowerCamelCase__ = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP["""mod_int"""] ) ) WIN_CH_BUFFER.append(__lowerCAmelCase ) if ord(__lowerCAmelCase ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) lowerCamelCase__ = chr(KEYMAP["""esc"""] ) except KeyError: lowerCamelCase__ = cha[1] else: lowerCamelCase__ = ch.decode(__lowerCAmelCase ) else: lowerCamelCase__ = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty lowerCamelCase__ = sys.stdin.fileno() lowerCamelCase__ = termios.tcgetattr(__lowerCAmelCase ) try: tty.setraw(__lowerCAmelCase ) lowerCamelCase__ = sys.stdin.read(1 ) finally: termios.tcsetattr(__lowerCAmelCase , termios.TCSADRAIN , __lowerCAmelCase ) return ch def A__ ( ): lowerCamelCase__ = get_raw_chars() if ord(__lowerCAmelCase ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(__lowerCAmelCase ) == KEYMAP["esc"]: lowerCamelCase__ = get_raw_chars() if ord(__lowerCAmelCase ) == KEYMAP["mod_int"]: lowerCamelCase__ = get_raw_chars() if ord(__lowerCAmelCase ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(__lowerCAmelCase ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(__lowerCAmelCase ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
9
'''simple docstring''' import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ,_lowerCAmelCase ): for model_result in results.values(): for batch_size, sequence_length in zip(model_result["""bs"""] ,model_result["""ss"""] ): lowerCamelCase__ = model_result["""result"""][batch_size][sequence_length] self.assertIsNotNone(_lowerCAmelCase ) def UpperCamelCase_ ( self ): lowerCamelCase__ = """sshleifer/tiny-gpt2""" lowerCamelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,eager_mode=_lowerCAmelCase ,multi_process=_lowerCAmelCase ,) lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase ) lowerCamelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase_ ( self ): lowerCamelCase__ = """sgugger/tiny-distilbert-classification""" lowerCamelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=_lowerCAmelCase ,only_pretrain_model=_lowerCAmelCase ,) lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase ) lowerCamelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase_ ( self ): lowerCamelCase__ = """sshleifer/tiny-gpt2""" lowerCamelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=_lowerCAmelCase ,) lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase ) lowerCamelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase_ ( self ): lowerCamelCase__ = """sshleifer/tiny-gpt2""" lowerCamelCase__ = AutoConfig.from_pretrained(_lowerCAmelCase ) lowerCamelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,eager_mode=_lowerCAmelCase ,multi_process=_lowerCAmelCase ,) lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase ,[config] ) lowerCamelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase_ ( self ): lowerCamelCase__ = """sshleifer/tiny-gpt2""" lowerCamelCase__ = AutoConfig.from_pretrained(_lowerCAmelCase ) lowerCamelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=_lowerCAmelCase ,) lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase ,[config] ) lowerCamelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase_ ( self ): lowerCamelCase__ = """sshleifer/tiny-gpt2""" lowerCamelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=_lowerCAmelCase ,) lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase ) lowerCamelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def UpperCamelCase_ ( self ): lowerCamelCase__ = """sshleifer/tiny-gpt2""" lowerCamelCase__ = AutoConfig.from_pretrained(_lowerCAmelCase ) lowerCamelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=_lowerCAmelCase ,) lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase ,[config] ) lowerCamelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def UpperCamelCase_ ( self ): lowerCamelCase__ = """patrickvonplaten/t5-tiny-random""" lowerCamelCase__ = AutoConfig.from_pretrained(_lowerCAmelCase ) lowerCamelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=_lowerCAmelCase ,) lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase ,configs=[config] ) lowerCamelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices("""GPU""" ) ) == 0 ,"""Cannot do xla on CPU.""" ) def UpperCamelCase_ ( self ): lowerCamelCase__ = """sshleifer/tiny-gpt2""" lowerCamelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,use_xla=_lowerCAmelCase ,multi_process=_lowerCAmelCase ,) lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase ) lowerCamelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase_ ( self ): lowerCamelCase__ = """sshleifer/tiny-gpt2""" with tempfile.TemporaryDirectory() as tmp_dir: lowerCamelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,inference=_lowerCAmelCase ,save_to_csv=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,inference_time_csv_file=os.path.join(_lowerCAmelCase ,"""inf_time.csv""" ) ,inference_memory_csv_file=os.path.join(_lowerCAmelCase ,"""inf_mem.csv""" ) ,env_info_csv_file=os.path.join(_lowerCAmelCase ,"""env.csv""" ) ,multi_process=_lowerCAmelCase ,) lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase ) benchmark.run() self.assertTrue(Path(os.path.join(_lowerCAmelCase ,"""inf_time.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(_lowerCAmelCase ,"""inf_mem.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(_lowerCAmelCase ,"""env.csv""" ) ).exists() ) def UpperCamelCase_ ( self ): lowerCamelCase__ = """sshleifer/tiny-gpt2""" def _check_summary_is_not_empty(_lowerCAmelCase ): self.assertTrue(hasattr(_lowerCAmelCase ,"""sequential""" ) ) self.assertTrue(hasattr(_lowerCAmelCase ,"""cumulative""" ) ) self.assertTrue(hasattr(_lowerCAmelCase ,"""current""" ) ) self.assertTrue(hasattr(_lowerCAmelCase ,"""total""" ) ) with tempfile.TemporaryDirectory() as tmp_dir: lowerCamelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,log_filename=os.path.join(_lowerCAmelCase ,"""log.txt""" ) ,log_print=_lowerCAmelCase ,trace_memory_line_by_line=_lowerCAmelCase ,eager_mode=_lowerCAmelCase ,multi_process=_lowerCAmelCase ,) lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase ) lowerCamelCase__ = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(_lowerCAmelCase ,"""log.txt""" ) ).exists() )
9
1
'''simple docstring''' import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class _lowercase : def __init__( self , A__ , A__=1_00 , A__=13 , A__=30 , A__=2 , A__=3 , A__=True , A__=True , A__=32 , A__=4 , A__=4 , A__=37 , A__="gelu" , A__=0.1 , A__=0.1 , A__=10 , A__=0.0_2 , A__=3 , A__=None , A__=[0, 1, 2, 3] , ) -> List[Any]: snake_case = parent snake_case = 1_00 snake_case = batch_size snake_case = image_size snake_case = patch_size snake_case = num_channels snake_case = is_training snake_case = use_labels snake_case = hidden_size snake_case = num_hidden_layers snake_case = num_attention_heads snake_case = intermediate_size snake_case = hidden_act snake_case = hidden_dropout_prob snake_case = attention_probs_dropout_prob snake_case = type_sequence_label_size snake_case = initializer_range snake_case = scope snake_case = out_indices snake_case = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) snake_case = (image_size // patch_size) ** 2 snake_case = num_patches + 1 def UpperCamelCase ( self ) -> str: snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case = None snake_case = None if self.use_labels: snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) snake_case = self.get_config() return config, pixel_values, labels, pixel_labels def UpperCamelCase ( self ) -> Tuple: return BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=A__ , initializer_range=self.initializer_range , out_indices=self.out_indices , ) def UpperCamelCase ( self , A__ , A__ , A__ , A__ ) -> str: snake_case = BeitModel(config=A__ ) model.to(A__ ) model.eval() snake_case = model(A__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase ( self , A__ , A__ , A__ , A__ ) -> Union[str, Any]: snake_case = BeitForMaskedImageModeling(config=A__ ) model.to(A__ ) model.eval() snake_case = model(A__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def UpperCamelCase ( self , A__ , A__ , A__ , A__ ) -> Optional[int]: snake_case = self.type_sequence_label_size snake_case = BeitForImageClassification(A__ ) model.to(A__ ) model.eval() snake_case = model(A__ , labels=A__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images snake_case = 1 snake_case = BeitForImageClassification(A__ ) model.to(A__ ) model.eval() snake_case = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) snake_case = model(A__ , labels=A__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCamelCase ( self , A__ , A__ , A__ , A__ ) -> List[Any]: snake_case = self.num_labels snake_case = BeitForSemanticSegmentation(A__ ) model.to(A__ ) model.eval() snake_case = model(A__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) snake_case = model(A__ , labels=A__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def UpperCamelCase ( self ) -> int: snake_case = self.prepare_config_and_inputs() snake_case , snake_case , snake_case , snake_case = config_and_inputs snake_case = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _lowercase ( __a , __a , unittest.TestCase ): _UpperCAmelCase = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) _UpperCAmelCase = ( { '''feature-extraction''': BeitModel, '''image-classification''': BeitForImageClassification, '''image-segmentation''': BeitForSemanticSegmentation, } if is_torch_available() else {} ) _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False def UpperCamelCase ( self ) -> Tuple: snake_case = BeitModelTester(self ) snake_case = ConfigTester(self , config_class=A__ , has_text_modality=A__ , hidden_size=37 ) def UpperCamelCase ( self ) -> Tuple: self.config_tester.run_common_tests() @unittest.skip(reason='''BEiT does not use inputs_embeds''' ) def UpperCamelCase ( self ) -> List[str]: pass @require_torch_multi_gpu @unittest.skip(reason='''BEiT has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def UpperCamelCase ( self ) -> Tuple: pass def UpperCamelCase ( self ) -> Optional[Any]: snake_case , snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case = model_class(A__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) snake_case = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A__ , nn.Linear ) ) def UpperCamelCase ( self ) -> str: snake_case , snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case = model_class(A__ ) snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case = [*signature.parameters.keys()] snake_case = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , A__ ) def UpperCamelCase ( self ) -> List[Any]: snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A__ ) def UpperCamelCase ( self ) -> Dict: snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A__ ) def UpperCamelCase ( self ) -> Union[str, Any]: snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A__ ) def UpperCamelCase ( self ) -> Union[str, Any]: snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*A__ ) def UpperCamelCase ( self ) -> Optional[int]: if not self.model_tester.is_training: return snake_case , snake_case = self.model_tester.prepare_config_and_inputs_for_common() snake_case = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(A__ ), BeitForMaskedImageModeling]: continue snake_case = model_class(A__ ) model.to(A__ ) model.train() snake_case = self._prepare_for_class(A__ , A__ , return_labels=A__ ) snake_case = model(**A__ ).loss loss.backward() def UpperCamelCase ( self ) -> Optional[int]: snake_case , snake_case = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return snake_case = False snake_case = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(A__ ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue snake_case = model_class(A__ ) model.gradient_checkpointing_enable() model.to(A__ ) model.train() snake_case = self._prepare_for_class(A__ , A__ , return_labels=A__ ) snake_case = model(**A__ ).loss loss.backward() def UpperCamelCase ( self ) -> List[Any]: snake_case , snake_case = self.model_tester.prepare_config_and_inputs_for_common() snake_case = _config_zero_init(A__ ) for model_class in self.all_model_classes: snake_case = model_class(config=A__ ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @slow def UpperCamelCase ( self ) -> Tuple: for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case = BeitModel.from_pretrained(A__ ) self.assertIsNotNone(A__ ) def __UpperCamelCase ( ) ->Union[str, Any]: snake_case = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class _lowercase ( unittest.TestCase ): @cached_property def UpperCamelCase ( self ) -> List[str]: return BeitImageProcessor.from_pretrained('''microsoft/beit-base-patch16-224''' ) if is_vision_available() else None @slow def UpperCamelCase ( self ) -> Dict: snake_case = BeitForMaskedImageModeling.from_pretrained('''microsoft/beit-base-patch16-224-pt22k''' ).to(A__ ) snake_case = self.default_image_processor snake_case = prepare_img() snake_case = image_processor(images=A__ , return_tensors='''pt''' ).pixel_values.to(A__ ) # prepare bool_masked_pos snake_case = torch.ones((1, 1_96) , dtype=torch.bool ).to(A__ ) # forward pass with torch.no_grad(): snake_case = model(pixel_values=A__ , bool_masked_pos=A__ ) snake_case = outputs.logits # verify the logits snake_case = torch.Size((1, 1_96, 81_92) ) self.assertEqual(logits.shape , A__ ) snake_case = torch.tensor( [[-3.2_4_3_7, 0.5_0_7_2, -1_3.9_1_7_4], [-3.2_4_5_6, 0.4_9_4_8, -1_3.9_4_0_1], [-3.2_0_3_3, 0.5_1_2_1, -1_3.8_5_5_0]] ).to(A__ ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , A__ , atol=1e-2 ) ) @slow def UpperCamelCase ( self ) -> List[str]: snake_case = BeitForImageClassification.from_pretrained('''microsoft/beit-base-patch16-224''' ).to(A__ ) snake_case = self.default_image_processor snake_case = prepare_img() snake_case = image_processor(images=A__ , return_tensors='''pt''' ).to(A__ ) # forward pass with torch.no_grad(): snake_case = model(**A__ ) snake_case = outputs.logits # verify the logits snake_case = torch.Size((1, 10_00) ) self.assertEqual(logits.shape , A__ ) snake_case = torch.tensor([-1.2_3_8_5, -1.0_9_8_7, -1.0_1_0_8] ).to(A__ ) self.assertTrue(torch.allclose(logits[0, :3] , A__ , atol=1e-4 ) ) snake_case = 2_81 self.assertEqual(logits.argmax(-1 ).item() , A__ ) @slow def UpperCamelCase ( self ) -> str: snake_case = BeitForImageClassification.from_pretrained('''microsoft/beit-large-patch16-224-pt22k-ft22k''' ).to( A__ ) snake_case = self.default_image_processor snake_case = prepare_img() snake_case = image_processor(images=A__ , return_tensors='''pt''' ).to(A__ ) # forward pass with torch.no_grad(): snake_case = model(**A__ ) snake_case = outputs.logits # verify the logits snake_case = torch.Size((1, 2_18_41) ) self.assertEqual(logits.shape , A__ ) snake_case = torch.tensor([1.6_8_8_1, -0.2_7_8_7, 0.5_9_0_1] ).to(A__ ) self.assertTrue(torch.allclose(logits[0, :3] , A__ , atol=1e-4 ) ) snake_case = 23_96 self.assertEqual(logits.argmax(-1 ).item() , A__ ) @slow def UpperCamelCase ( self ) -> Any: snake_case = BeitForSemanticSegmentation.from_pretrained('''microsoft/beit-base-finetuned-ade-640-640''' ) snake_case = model.to(A__ ) snake_case = BeitImageProcessor(do_resize=A__ , size=6_40 , do_center_crop=A__ ) snake_case = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' ) snake_case = Image.open(ds[0]['''file'''] ) snake_case = image_processor(images=A__ , return_tensors='''pt''' ).to(A__ ) # forward pass with torch.no_grad(): snake_case = model(**A__ ) snake_case = outputs.logits # verify the logits snake_case = torch.Size((1, 1_50, 1_60, 1_60) ) self.assertEqual(logits.shape , A__ ) snake_case = version.parse(PIL.__version__ ) < version.parse('''9.0.0''' ) if is_pillow_less_than_a: snake_case = torch.tensor( [ [[-4.9_2_2_5, -2.3_9_5_4, -3.0_5_2_2], [-2.8_8_2_2, -1.0_0_4_6, -1.7_5_6_1], [-2.9_5_4_9, -1.3_2_2_8, -2.1_3_4_7]], [[-5.8_1_6_8, -3.4_1_2_9, -4.0_7_7_8], [-3.8_6_5_1, -2.2_2_1_4, -3.0_2_7_7], [-3.8_3_5_6, -2.4_6_4_3, -3.3_5_3_5]], [[-0.0_0_7_8, 3.9_9_5_2, 4.0_7_5_4], [2.9_8_5_6, 4.6_9_4_4, 5.0_0_3_5], [3.2_4_1_3, 4.7_8_1_3, 4.9_9_6_9]], ] , device=A__ , ) else: snake_case = torch.tensor( [ [[-4.8_9_6_0, -2.3_6_8_8, -3.0_3_5_5], [-2.8_4_7_8, -0.9_8_3_6, -1.7_4_1_8], [-2.9_4_4_9, -1.3_3_3_2, -2.1_4_5_6]], [[-5.8_0_8_1, -3.4_1_2_4, -4.1_0_0_6], [-3.8_5_6_1, -2.2_0_8_1, -3.0_3_2_3], [-3.8_3_6_5, -2.4_6_0_1, -3.3_6_6_9]], [[-0.0_3_0_9, 3.9_8_6_8, 4.0_5_4_0], [2.9_6_4_0, 4.6_8_7_7, 4.9_9_7_6], [3.2_0_8_1, 4.7_6_9_0, 4.9_9_4_2]], ] , device=A__ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , A__ , atol=1e-4 ) ) @slow def UpperCamelCase ( self ) -> str: snake_case = BeitForSemanticSegmentation.from_pretrained('''microsoft/beit-base-finetuned-ade-640-640''' ) snake_case = model.to(A__ ) snake_case = BeitImageProcessor(do_resize=A__ , size=6_40 , do_center_crop=A__ ) snake_case = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' ) snake_case = Image.open(ds[0]['''file'''] ) snake_case = image_processor(images=A__ , return_tensors='''pt''' ).to(A__ ) # forward pass with torch.no_grad(): snake_case = model(**A__ ) snake_case = outputs.logits.detach().cpu() snake_case = image_processor.post_process_semantic_segmentation(outputs=A__ , target_sizes=[(5_00, 3_00)] ) snake_case = torch.Size((5_00, 3_00) ) self.assertEqual(segmentation[0].shape , A__ ) snake_case = image_processor.post_process_semantic_segmentation(outputs=A__ ) snake_case = torch.Size((1_60, 1_60) ) self.assertEqual(segmentation[0].shape , A__ )
342
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPanoramaPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() @skip_mps class _lowercase ( __a , __a , unittest.TestCase ): _UpperCAmelCase = StableDiffusionPanoramaPipeline _UpperCAmelCase = TEXT_TO_IMAGE_PARAMS _UpperCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS _UpperCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS _UpperCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS def UpperCamelCase ( self ) -> List[str]: torch.manual_seed(0 ) snake_case = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) snake_case = DDIMScheduler() torch.manual_seed(0 ) snake_case = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) snake_case = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) snake_case = CLIPTextModel(A__ ) snake_case = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) snake_case = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def UpperCamelCase ( self , A__ , A__=0 ) -> Union[str, Any]: snake_case = torch.manual_seed(A__ ) snake_case = { '''prompt''': '''a photo of the dolomites''', '''generator''': generator, # Setting height and width to None to prevent OOMs on CPU. '''height''': None, '''width''': None, '''num_inference_steps''': 1, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def UpperCamelCase ( self ) -> Optional[int]: snake_case = '''cpu''' # ensure determinism for the device-dependent torch.Generator snake_case = self.get_dummy_components() snake_case = StableDiffusionPanoramaPipeline(**A__ ) snake_case = sd_pipe.to(A__ ) sd_pipe.set_progress_bar_config(disable=A__ ) snake_case = self.get_dummy_inputs(A__ ) snake_case = sd_pipe(**A__ ).images snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case = np.array([0.6_1_8_6, 0.5_3_7_4, 0.4_9_1_5, 0.4_1_3_5, 0.4_1_1_4, 0.4_5_6_3, 0.5_1_2_8, 0.4_9_7_7, 0.4_7_5_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCamelCase ( self ) -> Union[str, Any]: super().test_inference_batch_consistent(batch_sizes=[1, 2] ) def UpperCamelCase ( self ) -> Optional[Any]: super().test_inference_batch_single_identical(batch_size=2 , expected_max_diff=3.25e-3 ) def UpperCamelCase ( self ) -> List[str]: snake_case = '''cpu''' # ensure determinism for the device-dependent torch.Generator snake_case = self.get_dummy_components() snake_case = StableDiffusionPanoramaPipeline(**A__ ) snake_case = sd_pipe.to(A__ ) sd_pipe.set_progress_bar_config(disable=A__ ) snake_case = self.get_dummy_inputs(A__ ) snake_case = '''french fries''' snake_case = sd_pipe(**A__ , negative_prompt=A__ ) snake_case = output.images snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case = np.array([0.6_1_8_7, 0.5_3_7_5, 0.4_9_1_5, 0.4_1_3_6, 0.4_1_1_4, 0.4_5_6_3, 0.5_1_2_8, 0.4_9_7_6, 0.4_7_5_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCamelCase ( self ) -> Optional[int]: snake_case = '''cpu''' # ensure determinism for the device-dependent torch.Generator snake_case = self.get_dummy_components() snake_case = StableDiffusionPanoramaPipeline(**A__ ) snake_case = sd_pipe.to(A__ ) sd_pipe.set_progress_bar_config(disable=A__ ) snake_case = self.get_dummy_inputs(A__ ) snake_case = sd_pipe(**A__ , view_batch_size=2 ) snake_case = output.images snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case = np.array([0.6_1_8_7, 0.5_3_7_5, 0.4_9_1_5, 0.4_1_3_6, 0.4_1_1_4, 0.4_5_6_3, 0.5_1_2_8, 0.4_9_7_6, 0.4_7_5_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCamelCase ( self ) -> List[Any]: snake_case = '''cpu''' # ensure determinism for the device-dependent torch.Generator snake_case = self.get_dummy_components() snake_case = EulerAncestralDiscreteScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' ) snake_case = StableDiffusionPanoramaPipeline(**A__ ) snake_case = sd_pipe.to(A__ ) sd_pipe.set_progress_bar_config(disable=A__ ) snake_case = self.get_dummy_inputs(A__ ) snake_case = sd_pipe(**A__ ).images snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case = np.array([0.4_0_2_4, 0.6_5_1_0, 0.4_9_0_1, 0.5_3_7_8, 0.5_8_1_3, 0.5_6_2_2, 0.4_7_9_5, 0.4_4_6_7, 0.4_9_5_2] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCamelCase ( self ) -> int: snake_case = '''cpu''' # ensure determinism for the device-dependent torch.Generator snake_case = self.get_dummy_components() snake_case = PNDMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , skip_prk_steps=A__ ) snake_case = StableDiffusionPanoramaPipeline(**A__ ) snake_case = sd_pipe.to(A__ ) sd_pipe.set_progress_bar_config(disable=A__ ) snake_case = self.get_dummy_inputs(A__ ) snake_case = sd_pipe(**A__ ).images snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case = np.array([0.6_3_9_1, 0.6_2_9_1, 0.4_8_6_1, 0.5_1_3_4, 0.5_5_5_2, 0.4_5_7_8, 0.5_0_3_2, 0.5_0_2_3, 0.4_5_3_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class _lowercase ( unittest.TestCase ): def UpperCamelCase ( self ) -> int: super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self , A__=0 ) -> Any: snake_case = torch.manual_seed(A__ ) snake_case = { '''prompt''': '''a photo of the dolomites''', '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def UpperCamelCase ( self ) -> Optional[Any]: snake_case = '''stabilityai/stable-diffusion-2-base''' snake_case = DDIMScheduler.from_pretrained(A__ , subfolder='''scheduler''' ) snake_case = StableDiffusionPanoramaPipeline.from_pretrained(A__ , scheduler=A__ , safety_checker=A__ ) pipe.to(A__ ) pipe.set_progress_bar_config(disable=A__ ) pipe.enable_attention_slicing() snake_case = self.get_inputs() snake_case = pipe(**A__ ).images snake_case = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 20_48, 3) snake_case = np.array( [ 0.3_6_9_6_8_3_9_2, 0.2_7_0_2_5_3_7_2, 0.3_2_4_4_6_7_6_6, 0.2_8_3_7_9_3_8_7, 0.3_6_3_6_3_2_7_4, 0.3_0_7_3_3_3_4_7, 0.2_7_1_0_0_0_2_7, 0.2_7_0_5_4_1_2_5, 0.2_5_5_3_6_0_9_6, ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-2 def UpperCamelCase ( self ) -> int: snake_case = StableDiffusionPanoramaPipeline.from_pretrained( '''stabilityai/stable-diffusion-2-base''' , safety_checker=A__ ) snake_case = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(A__ ) pipe.set_progress_bar_config(disable=A__ ) pipe.enable_attention_slicing() snake_case = self.get_inputs() snake_case = pipe(**A__ ).images snake_case = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 20_48, 3) snake_case = np.array( [ [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def UpperCamelCase ( self ) -> Union[str, Any]: snake_case = 0 def callback_fn(A__ , A__ , A__ ) -> None: snake_case = True nonlocal number_of_steps number_of_steps += 1 if step == 1: snake_case = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 2_56) snake_case = latents[0, -3:, -3:, -1] snake_case = np.array( [ 0.1_8_6_8_1_8_6_9, 0.3_3_9_0_7_8_1_6, 0.5_3_6_1_2_7_6, 0.1_4_4_3_2_8_6_5, -0.0_2_8_5_6_6_1_1, -0.7_3_9_4_1_1_2_3, 0.2_3_3_9_7_9_8_7, 0.4_7_3_2_2_6_8_2, -0.3_7_8_2_3_1_6_4, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: snake_case = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 2_56) snake_case = latents[0, -3:, -3:, -1] snake_case = np.array( [ 0.1_8_5_3_9_6_4_5, 0.3_3_9_8_7_2_4_8, 0.5_3_7_8_5_5_9, 0.1_4_4_3_7_1_4_2, -0.0_2_4_5_5_2_6_1, -0.7_3_3_8_3_1_7, 0.2_3_9_9_0_7_5_5, 0.4_7_3_5_6_2_7_2, -0.3_7_8_6_5_0_5, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 snake_case = False snake_case = '''stabilityai/stable-diffusion-2-base''' snake_case = DDIMScheduler.from_pretrained(A__ , subfolder='''scheduler''' ) snake_case = StableDiffusionPanoramaPipeline.from_pretrained(A__ , scheduler=A__ , safety_checker=A__ ) snake_case = pipe.to(A__ ) pipe.set_progress_bar_config(disable=A__ ) pipe.enable_attention_slicing() snake_case = self.get_inputs() pipe(**A__ , callback=A__ , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def UpperCamelCase ( self ) -> Any: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() snake_case = '''stabilityai/stable-diffusion-2-base''' snake_case = DDIMScheduler.from_pretrained(A__ , subfolder='''scheduler''' ) snake_case = StableDiffusionPanoramaPipeline.from_pretrained(A__ , scheduler=A__ , safety_checker=A__ ) snake_case = pipe.to(A__ ) pipe.set_progress_bar_config(disable=A__ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() snake_case = self.get_inputs() snake_case = pipe(**A__ ) snake_case = torch.cuda.max_memory_allocated() # make sure that less than 5.2 GB is allocated assert mem_bytes < 5.5 * 10**9
342
1
"""simple docstring""" def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> List[Any]: _validate_point(UpperCAmelCase__ ) _validate_point(UpperCAmelCase__ ) if len(UpperCAmelCase__ ) != len(UpperCAmelCase__ ): raise ValueError('''Both points must be in the same n-dimensional space''' ) return float(sum(abs(a - b ) for a, b in zip(UpperCAmelCase__ , UpperCAmelCase__ ) ) ) def __UpperCAmelCase ( __lowerCamelCase ) -> Any: if point: if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): for item in point: if not isinstance(UpperCAmelCase__ , (int, float) ): lowercase__ : Any = ( '''Expected a list of numbers as input, found ''' f"""{type(UpperCAmelCase__ ).__name__}""" ) raise TypeError(UpperCAmelCase__ ) else: lowercase__ : List[Any] = f"""Expected a list of numbers as input, found {type(UpperCAmelCase__ ).__name__}""" raise TypeError(UpperCAmelCase__ ) else: raise ValueError('''Missing an input''' ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Tuple: _validate_point(UpperCAmelCase__ ) _validate_point(UpperCAmelCase__ ) if len(UpperCAmelCase__ ) != len(UpperCAmelCase__ ): raise ValueError('''Both points must be in the same n-dimensional space''' ) return float(sum(abs(x - y ) for x, y in zip(UpperCAmelCase__ , UpperCAmelCase__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
714
"""simple docstring""" def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> float: return base * power(__lowerCamelCase , (exponent - 1) ) if exponent else 1 if __name__ == "__main__": print('Raise base to the power of exponent using recursion...') lowerCAmelCase_ = int(input('Enter the base: ').strip()) lowerCAmelCase_ = int(input('Enter the exponent: ').strip()) lowerCAmelCase_ = power(base, abs(exponent)) if exponent < 0: # power() does not properly deal w/ negative exponents lowerCAmelCase_ = 1 / result print(F'''{base} to the power of {exponent} is {result}''')
122
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __snake_case : List[str] = logging.get_logger(__name__) __snake_case : Optional[int] = { '''google/bigbird-roberta-base''': '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/config.json''', '''google/bigbird-roberta-large''': '''https://huggingface.co/google/bigbird-roberta-large/resolve/main/config.json''', '''google/bigbird-base-trivia-itc''': '''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/config.json''', # See all BigBird models at https://huggingface.co/models?filter=big_bird } class lowercase_ ( SCREAMING_SNAKE_CASE_ ): a_ = '''big_bird''' def __init__( self , UpperCamelCase__=5_0_3_5_8 , UpperCamelCase__=7_6_8 , UpperCamelCase__=1_2 , UpperCamelCase__=1_2 , UpperCamelCase__=3_0_7_2 , UpperCamelCase__="gelu_new" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=4_0_9_6 , UpperCamelCase__=2 , UpperCamelCase__=0.02 , UpperCamelCase__=1e-12 , UpperCamelCase__=True , UpperCamelCase__=0 , UpperCamelCase__=1 , UpperCamelCase__=2 , UpperCamelCase__=6_6 , UpperCamelCase__="block_sparse" , UpperCamelCase__=True , UpperCamelCase__=False , UpperCamelCase__=6_4 , UpperCamelCase__=3 , UpperCamelCase__=None , **UpperCamelCase__ , ) -> List[Any]: """simple docstring""" super().__init__( pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , sep_token_id=__UpperCAmelCase , **__UpperCAmelCase , ) UpperCAmelCase_ = vocab_size UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = initializer_range UpperCAmelCase_ = type_vocab_size UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = use_cache UpperCAmelCase_ = rescale_embeddings UpperCAmelCase_ = attention_type UpperCAmelCase_ = use_bias UpperCAmelCase_ = block_size UpperCAmelCase_ = num_random_blocks UpperCAmelCase_ = classifier_dropout class lowercase_ ( SCREAMING_SNAKE_CASE_ ): @property def lowerCamelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": UpperCAmelCase_ = {0: """batch""", 1: """choice""", 2: """sequence"""} else: UpperCAmelCase_ = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
660
'''simple docstring''' from __future__ import absolute_import, division, print_function, unicode_literals from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers import RobertaConfig from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.roberta.modeling_roberta import ( ROBERTA_INPUTS_DOCSTRING, ROBERTA_START_DOCSTRING, RobertaEmbeddings, ) from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy @add_start_docstrings( '''The RoBERTa Model transformer with early exiting (DeeRoBERTa). ''' , SCREAMING_SNAKE_CASE_ , ) class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : Any = RobertaConfig __lowercase : Any = '''roberta''' def __init__( self ,__UpperCAmelCase ) -> Optional[Any]: super().__init__(__UpperCAmelCase ) lowerCAmelCase__ : Dict = RobertaEmbeddings(__UpperCAmelCase ) self.init_weights() @add_start_docstrings( '''RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top, also takes care of multi-layer training. ''' , SCREAMING_SNAKE_CASE_ , ) class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : str = RobertaConfig __lowercase : str = '''roberta''' def __init__( self ,__UpperCAmelCase ) -> str: super().__init__(__UpperCAmelCase ) lowerCAmelCase__ : Union[str, Any] = config.num_labels lowerCAmelCase__ : Union[str, Any] = config.num_hidden_layers lowerCAmelCase__ : Optional[int] = DeeRobertaModel(__UpperCAmelCase ) lowerCAmelCase__ : int = nn.Dropout(config.hidden_dropout_prob ) lowerCAmelCase__ : Optional[int] = nn.Linear(config.hidden_size ,self.config.num_labels ) @add_start_docstrings_to_model_forward(__UpperCAmelCase ) def UpperCAmelCase_ ( self ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,__UpperCAmelCase=-1 ,__UpperCAmelCase=False ,) -> int: lowerCAmelCase__ : Any = self.num_layers try: lowerCAmelCase__ : Tuple = self.roberta( __UpperCAmelCase ,attention_mask=__UpperCAmelCase ,token_type_ids=__UpperCAmelCase ,position_ids=__UpperCAmelCase ,head_mask=__UpperCAmelCase ,inputs_embeds=__UpperCAmelCase ,) lowerCAmelCase__ : str = outputs[1] lowerCAmelCase__ : List[str] = self.dropout(__UpperCAmelCase ) lowerCAmelCase__ : Dict = self.classifier(__UpperCAmelCase ) lowerCAmelCase__ : List[Any] = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: lowerCAmelCase__ : int = e.message lowerCAmelCase__ : int = e.exit_layer lowerCAmelCase__ : str = outputs[0] if not self.training: lowerCAmelCase__ : Optional[Any] = entropy(__UpperCAmelCase ) lowerCAmelCase__ : Tuple = [] lowerCAmelCase__ : Union[str, Any] = [] if labels is not None: if self.num_labels == 1: # We are doing regression lowerCAmelCase__ : List[str] = MSELoss() lowerCAmelCase__ : Optional[Any] = loss_fct(logits.view(-1 ) ,labels.view(-1 ) ) else: lowerCAmelCase__ : List[str] = CrossEntropyLoss() lowerCAmelCase__ : Union[str, Any] = loss_fct(logits.view(-1 ,self.num_labels ) ,labels.view(-1 ) ) # work with highway exits lowerCAmelCase__ : str = [] for highway_exit in outputs[-1]: lowerCAmelCase__ : Union[str, Any] = highway_exit[0] if not self.training: highway_logits_all.append(__UpperCAmelCase ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression lowerCAmelCase__ : List[Any] = MSELoss() lowerCAmelCase__ : List[Any] = loss_fct(highway_logits.view(-1 ) ,labels.view(-1 ) ) else: lowerCAmelCase__ : Dict = CrossEntropyLoss() lowerCAmelCase__ : Optional[Any] = loss_fct(highway_logits.view(-1 ,self.num_labels ) ,labels.view(-1 ) ) highway_losses.append(__UpperCAmelCase ) if train_highway: lowerCAmelCase__ : List[str] = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: lowerCAmelCase__ : Optional[int] = (loss,) + outputs if not self.training: lowerCAmelCase__ : List[Any] = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: lowerCAmelCase__ : int = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), entropy
565
0
from ...configuration_utils import PretrainedConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { 'uw-madison/mra-base-512-4': 'https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json', } class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : str = "mra" def __init__( self , A_=50265 , A_=768 , A_=12 , A_=12 , A_=3072 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=1 , A_=0.02 , A_=1E-5 , A_="absolute" , A_=4 , A_="full" , A_=0 , A_=0 , A_=1 , A_=0 , A_=2 , **A_ , ) -> Optional[Any]: super().__init__(pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ , **A_ ) __UpperCamelCase =vocab_size __UpperCamelCase =max_position_embeddings __UpperCamelCase =hidden_size __UpperCamelCase =num_hidden_layers __UpperCamelCase =num_attention_heads __UpperCamelCase =intermediate_size __UpperCamelCase =hidden_act __UpperCamelCase =hidden_dropout_prob __UpperCamelCase =attention_probs_dropout_prob __UpperCamelCase =initializer_range __UpperCamelCase =type_vocab_size __UpperCamelCase =layer_norm_eps __UpperCamelCase =position_embedding_type __UpperCamelCase =block_per_row __UpperCamelCase =approx_mode __UpperCamelCase =initial_prior_first_n_blocks __UpperCamelCase =initial_prior_diagonal_n_blocks
710
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self , A_ , A_=7 , A_=3 , A_=18 , A_=30 , A_=400 , A_=True , A_=None , A_=True , ) -> List[Any]: __UpperCamelCase =size if size is not None else {'height': 18, 'width': 18} __UpperCamelCase =parent __UpperCamelCase =batch_size __UpperCamelCase =num_channels __UpperCamelCase =image_size __UpperCamelCase =min_resolution __UpperCamelCase =max_resolution __UpperCamelCase =do_resize __UpperCamelCase =size __UpperCamelCase =apply_ocr def _a ( self ) -> Tuple: return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class UpperCAmelCase__ ( A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[str] = LayoutLMvaImageProcessor if is_pytesseract_available() else None def _a ( self ) -> Optional[Any]: __UpperCamelCase =LayoutLMvaImageProcessingTester(self ) @property def _a ( self ) -> Union[str, Any]: return self.image_processor_tester.prepare_image_processor_dict() def _a ( self ) -> List[Any]: __UpperCamelCase =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A_ , 'do_resize' ) ) self.assertTrue(hasattr(A_ , 'size' ) ) self.assertTrue(hasattr(A_ , 'apply_ocr' ) ) def _a ( self ) -> Dict: __UpperCamelCase =self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 18} ) __UpperCamelCase =self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) def _a ( self ) -> Dict: pass def _a ( self ) -> Optional[Any]: # Initialize image_processing __UpperCamelCase =self.image_processing_class(**self.image_processor_dict ) # create random PIL images __UpperCamelCase =prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ ) for image in image_inputs: self.assertIsInstance(A_ , Image.Image ) # Test not batched input __UpperCamelCase =image_processing(image_inputs[0] , return_tensors='pt' ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) self.assertIsInstance(encoding.words , A_ ) self.assertIsInstance(encoding.boxes , A_ ) # Test batched __UpperCamelCase =image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def _a ( self ) -> int: # Initialize image_processing __UpperCamelCase =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __UpperCamelCase =prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , numpify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , np.ndarray ) # Test not batched input __UpperCamelCase =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched __UpperCamelCase =image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def _a ( self ) -> List[str]: # Initialize image_processing __UpperCamelCase =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __UpperCamelCase =prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , torchify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , torch.Tensor ) # Test not batched input __UpperCamelCase =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched __UpperCamelCase =image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def _a ( self ) -> Any: # with apply_OCR = True __UpperCamelCase =LayoutLMvaImageProcessor() from datasets import load_dataset __UpperCamelCase =load_dataset('hf-internal-testing/fixtures_docvqa' , split='test' ) __UpperCamelCase =Image.open(ds[0]['file'] ).convert('RGB' ) __UpperCamelCase =image_processing(A_ , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 __UpperCamelCase =[['11:14', 'to', '11:39', 'a.m', '11:39', 'to', '11:44', 'a.m.', '11:44', 'a.m.', 'to', '12:25', 'p.m.', '12:25', 'to', '12:58', 'p.m.', '12:58', 'to', '4:00', 'p.m.', '2:00', 'to', '5:00', 'p.m.', 'Coffee', 'Break', 'Coffee', 'will', 'be', 'served', 'for', 'men', 'and', 'women', 'in', 'the', 'lobby', 'adjacent', 'to', 'exhibit', 'area.', 'Please', 'move', 'into', 'exhibit', 'area.', '(Exhibits', 'Open)', 'TRRF', 'GENERAL', 'SESSION', '(PART', '|)', 'Presiding:', 'Lee', 'A.', 'Waller', 'TRRF', 'Vice', 'President', '“Introductory', 'Remarks”', 'Lee', 'A.', 'Waller,', 'TRRF', 'Vice', 'Presi-', 'dent', 'Individual', 'Interviews', 'with', 'TRRF', 'Public', 'Board', 'Members', 'and', 'Sci-', 'entific', 'Advisory', 'Council', 'Mem-', 'bers', 'Conducted', 'by', 'TRRF', 'Treasurer', 'Philip', 'G.', 'Kuehn', 'to', 'get', 'answers', 'which', 'the', 'public', 'refrigerated', 'warehousing', 'industry', 'is', 'looking', 'for.', 'Plus', 'questions', 'from', 'the', 'floor.', 'Dr.', 'Emil', 'M.', 'Mrak,', 'University', 'of', 'Cal-', 'ifornia,', 'Chairman,', 'TRRF', 'Board;', 'Sam', 'R.', 'Cecil,', 'University', 'of', 'Georgia', 'College', 'of', 'Agriculture;', 'Dr.', 'Stanley', 'Charm,', 'Tufts', 'University', 'School', 'of', 'Medicine;', 'Dr.', 'Robert', 'H.', 'Cotton,', 'ITT', 'Continental', 'Baking', 'Company;', 'Dr.', 'Owen', 'Fennema,', 'University', 'of', 'Wis-', 'consin;', 'Dr.', 'Robert', 'E.', 'Hardenburg,', 'USDA.', 'Questions', 'and', 'Answers', 'Exhibits', 'Open', 'Capt.', 'Jack', 'Stoney', 'Room', 'TRRF', 'Scientific', 'Advisory', 'Council', 'Meeting', 'Ballroom', 'Foyer']] # noqa: E231 __UpperCamelCase =[[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , A_ ) self.assertListEqual(encoding.boxes , A_ ) # with apply_OCR = False __UpperCamelCase =LayoutLMvaImageProcessor(apply_ocr=A_ ) __UpperCamelCase =image_processing(A_ , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) )
682
0
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class lowercase_ : '''simple docstring''' def __init__( self , a_ , a_=1_3 , a_=7 , a_=True , a_=True , a_=True , a_=9_9 , a_=3_2 , a_=5 , a_=4 , a_=3_7 , a_="gelu" , a_=0.1 , a_=0.1 , a_=5_1_2 , a_=1_6 , a_=2 , a_=0.02 , a_=3 , a_=4 , a_=None , ) -> Tuple: """simple docstring""" UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = seq_length UpperCAmelCase = is_training UpperCAmelCase = use_token_type_ids UpperCAmelCase = use_labels UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_act UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = type_sequence_label_size UpperCAmelCase = initializer_range UpperCAmelCase = num_labels UpperCAmelCase = num_choices UpperCAmelCase = scope UpperCAmelCase = self.vocab_size - 1 def snake_case_ ( self ) -> int: """simple docstring""" UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase = None if self.use_token_type_ids: UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None if self.use_labels: UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) UpperCAmelCase = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def snake_case_ ( self , a_ , a_ , a_ , a_ , *a_ ) -> List[Any]: """simple docstring""" UpperCAmelCase = OpenAIGPTModel(config=a_ ) model.to(a_ ) model.eval() UpperCAmelCase = model(a_ , token_type_ids=a_ , head_mask=a_ ) UpperCAmelCase = model(a_ , token_type_ids=a_ ) UpperCAmelCase = model(a_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case_ ( self , a_ , a_ , a_ , a_ , *a_ ) -> List[Any]: """simple docstring""" UpperCAmelCase = OpenAIGPTLMHeadModel(a_ ) model.to(a_ ) model.eval() UpperCAmelCase = model(a_ , token_type_ids=a_ , labels=a_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case_ ( self , a_ , a_ , a_ , a_ , *a_ ) -> Any: """simple docstring""" UpperCAmelCase = OpenAIGPTDoubleHeadsModel(a_ ) model.to(a_ ) model.eval() UpperCAmelCase = model(a_ , token_type_ids=a_ , labels=a_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case_ ( self , a_ , a_ , a_ , a_ , *a_ ) -> Optional[Any]: """simple docstring""" UpperCAmelCase = self.num_labels UpperCAmelCase = OpenAIGPTForSequenceClassification(a_ ) model.to(a_ ) model.eval() UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase = model(a_ , token_type_ids=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case_ ( self ) -> Tuple: """simple docstring""" UpperCAmelCase = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) = config_and_inputs UpperCAmelCase = { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'head_mask': head_mask, } return config, inputs_dict @require_torch class lowercase_ ( a , a , a , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase : Union[str, Any] = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) __lowerCAmelCase : Tuple = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly __lowerCAmelCase : str = ( { "feature-extraction": OpenAIGPTModel, "text-classification": OpenAIGPTForSequenceClassification, "text-generation": OpenAIGPTLMHeadModel, "zero-shot": OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def snake_case_ ( self , a_ , a_ , a_ , a_ , a_ ) -> int: """simple docstring""" if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def snake_case_ ( self , a_ , a_ , a_=False ) -> List[Any]: """simple docstring""" UpperCAmelCase = super()._prepare_for_class(a_ , a_ , return_labels=a_ ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": UpperCAmelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=a_ , ) UpperCAmelCase = inputs_dict['labels'] UpperCAmelCase = inputs_dict['labels'] UpperCAmelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=a_ , ) UpperCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=a_ ) return inputs_dict def snake_case_ ( self ) -> Dict: """simple docstring""" UpperCAmelCase = OpenAIGPTModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=a_ , n_embd=3_7 ) def snake_case_ ( self ) -> Optional[Any]: """simple docstring""" self.config_tester.run_common_tests() def snake_case_ ( self ) -> Any: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*a_ ) def snake_case_ ( self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*a_ ) def snake_case_ ( self ) -> Dict: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*a_ ) def snake_case_ ( self ) -> str: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*a_ ) @slow def snake_case_ ( self ) -> Optional[Any]: """simple docstring""" for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase = OpenAIGPTModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) @require_torch class lowercase_ ( unittest.TestCase ): '''simple docstring''' @slow def snake_case_ ( self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase = OpenAIGPTLMHeadModel.from_pretrained('openai-gpt' ) model.to(a_ ) UpperCAmelCase = torch.tensor([[4_8_1, 4_7_3_5, 5_4_4]] , dtype=torch.long , device=a_ ) # the president is UpperCAmelCase = [ 4_8_1, 4_7_3_5, 5_4_4, 2_4_6, 9_6_3, 8_7_0, 7_6_2, 2_3_9, 2_4_4, 4_0_4_7_7, 2_4_4, 2_4_9, 7_1_9, 8_8_1, 4_8_7, 5_4_4, 2_4_0, 2_4_4, 6_0_3, 4_8_1, ] # the president is a very good man. " \n " i\'m sure he is, " said the UpperCAmelCase = model.generate(a_ , do_sample=a_ ) self.assertListEqual(output_ids[0].tolist() , a_ )
447
'''simple docstring''' from __future__ import annotations def lowerCamelCase__ ( SCREAMING_SNAKE_CASE : int | str ): UpperCAmelCase = str(SCREAMING_SNAKE_CASE ) return n == n[::-1] def lowerCamelCase__ ( SCREAMING_SNAKE_CASE : int = 100_0000 ): UpperCAmelCase = 0 for i in range(1 , SCREAMING_SNAKE_CASE ): if is_palindrome(SCREAMING_SNAKE_CASE ) and is_palindrome(bin(SCREAMING_SNAKE_CASE ).split('b' )[1] ): total += i return total if __name__ == "__main__": print(solution(int(str(input().strip()))))
447
1
'''simple docstring''' from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "linear": get_linear_schedule_with_warmup, "cosine": get_cosine_schedule_with_warmup, "cosine_w_restarts": get_cosine_with_hard_restarts_schedule_with_warmup, "polynomial": get_polynomial_decay_schedule_with_warmup, "constant": get_constant_schedule, "constant_w_warmup": get_constant_schedule_with_warmup, } class _lowerCAmelCase ( A__ ): """simple docstring""" def __init__( self : str , __snake_case : Any=None , __snake_case : Tuple=None , *__snake_case : List[str] , **__snake_case : Any )-> Any: super().__init__(*__snake_case , **__snake_case ) if config is None: assert isinstance(self.model , __snake_case ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" f''' {self.model.__class__}''' ) snake_case = self.model.config else: snake_case = config snake_case = data_args snake_case = self.config.tgt_vocab_size if isinstance(self.config , __snake_case ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( f'''The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for''' """ padding..""" ) if self.args.label_smoothing == 0: snake_case = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss snake_case = label_smoothed_nll_loss def lowerCAmelCase ( self : List[str] , __snake_case : int )-> Union[str, Any]: if self.optimizer is None: snake_case = ["""bias""", """LayerNorm.weight"""] snake_case = [ { """params""": [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], """weight_decay""": self.args.weight_decay, }, { """params""": [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], """weight_decay""": 0.0, }, ] snake_case = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: snake_case = Adafactor snake_case = {"""scale_parameter""": False, """relative_step""": False} else: snake_case = AdamW snake_case = { """betas""": (self.args.adam_betaa, self.args.adam_betaa), """eps""": self.args.adam_epsilon, } snake_case = self.args.learning_rate if self.sharded_ddp: snake_case = OSS( params=__snake_case , optim=__snake_case , **__snake_case , ) else: snake_case = optimizer_cls(__snake_case , **__snake_case ) if self.lr_scheduler is None: snake_case = self._get_lr_scheduler(__snake_case ) else: # ignoring --lr_scheduler logger.warning("""scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.""" ) def lowerCAmelCase ( self : Dict , __snake_case : Tuple )-> int: snake_case = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": snake_case = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": snake_case = schedule_func(self.optimizer , num_warmup_steps=self.args.warmup_steps ) else: snake_case = schedule_func( self.optimizer , num_warmup_steps=self.args.warmup_steps , num_training_steps=__snake_case ) return scheduler def lowerCAmelCase ( self : str )-> Optional[torch.utils.data.Sampler]: if isinstance(self.train_dataset , torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size , distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) , ) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def lowerCAmelCase ( self : Dict , __snake_case : List[Any] , __snake_case : str , __snake_case : List[str] )-> Union[str, Any]: if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token snake_case = model(**__snake_case , use_cache=__snake_case )[0] snake_case = self.loss_fn(logits.view(-1 , logits.shape[-1] ) , labels.view(-1 ) ) else: # compute usual loss via models snake_case , snake_case = model(**__snake_case , labels=__snake_case , use_cache=__snake_case )[:2] else: # compute label smoothed loss snake_case = model(**__snake_case , use_cache=__snake_case )[0] snake_case = torch.nn.functional.log_softmax(__snake_case , dim=-1 ) snake_case , snake_case = self.loss_fn(__snake_case , __snake_case , self.args.label_smoothing , ignore_index=self.config.pad_token_id ) return loss, logits def lowerCAmelCase ( self : Any , __snake_case : Dict , __snake_case : Union[str, Any] )-> Dict: snake_case = inputs.pop("""labels""" ) snake_case , snake_case = self._compute_loss(__snake_case , __snake_case , __snake_case ) return loss def lowerCAmelCase ( self : Optional[Any] , __snake_case : nn.Module , __snake_case : Dict[str, Union[torch.Tensor, Any]] , __snake_case : bool , __snake_case : Optional[List[str]] = None , )-> Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]: snake_case = self._prepare_inputs(__snake_case ) snake_case = { """max_length""": self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, """num_beams""": self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: snake_case = self.model.generate( inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , **__snake_case , ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: snake_case = self._pad_tensors_to_max_len(__snake_case , gen_kwargs["""max_length"""] ) snake_case = inputs.pop("""labels""" ) with torch.no_grad(): # compute loss on predict data snake_case , snake_case = self._compute_loss(__snake_case , __snake_case , __snake_case ) snake_case = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) snake_case = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: snake_case = self._pad_tensors_to_max_len(__snake_case , gen_kwargs["""max_length"""] ) return (loss, logits, labels) def lowerCAmelCase ( self : Dict , __snake_case : str , __snake_case : int )-> Optional[int]: # If PAD token is not defined at least EOS token has to be defined snake_case = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( """Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be""" f''' padded to `max_length`={max_length}''' ) snake_case = pad_token_id * torch.ones( (tensor.shape[0], max_length) , dtype=tensor.dtype , device=tensor.device ) snake_case = tensor return padded_tensor
709
'''simple docstring''' from __future__ import annotations def __lowerCamelCase ( __lowerCAmelCase : list ) -> list: if len(__lowerCAmelCase ) == 0: return [] snake_case , snake_case = min(__lowerCAmelCase ), max(__lowerCAmelCase ) snake_case = int(max_value - min_value ) + 1 snake_case = [[] for _ in range(__lowerCAmelCase )] for i in my_list: buckets[int(i - min_value )].append(__lowerCAmelCase ) return [v for bucket in buckets for v in sorted(__lowerCAmelCase )] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -10, 15, 2, -2]) == [-10, -2, 0, 1, 2, 15]
517
0
'''simple docstring''' lowerCAmelCase_ : int = 2_56 # Modulus to hash a string lowerCAmelCase_ : Dict = 1_00_00_03 def _lowerCamelCase ( lowercase : str , lowercase : str ) -> bool: _a = len(lowercase ) _a = len(lowercase ) if p_len > t_len: return False _a = 0 _a = 0 _a = 1 # Calculating the hash of pattern and substring of text for i in range(lowercase ): _a = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus _a = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue _a = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash _a = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def _lowerCamelCase ( ) -> None: _a = "abc1abc12" _a = "alskfjaldsabc1abc1abc12k23adsfabcabc" _a = "alskfjaldsk23adsfabcabc" assert rabin_karp(lowercase , lowercase ) and not rabin_karp(lowercase , lowercase ) # Test 2) _a = "ABABX" _a = "ABABZABABYABABX" assert rabin_karp(lowercase , lowercase ) # Test 3) _a = "AAAB" _a = "ABAAAAAB" assert rabin_karp(lowercase , lowercase ) # Test 4) _a = "abcdabcy" _a = "abcxabcdabxabcdabcdabcy" assert rabin_karp(lowercase , lowercase ) # Test 5) _a = "Lü" _a = "Lüsai" assert rabin_karp(lowercase , lowercase ) _a = "Lue" assert not rabin_karp(lowercase , lowercase ) print("Success." ) if __name__ == "__main__": test_rabin_karp()
692
'''simple docstring''' import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor lowerCAmelCase_ : Optional[int] = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" def __init__( self : int , *__a : Tuple , **__a : Optional[Any] ): warnings.warn( "The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use DPTImageProcessor instead." , __a , ) super().__init__(*__a , **__a )
692
1
from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __UpperCamelCase : Any = logging.get_logger(__name__) class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :int = ['pixel_values'] def __init__( self : List[str] , _lowerCAmelCase : bool = True , _lowerCAmelCase : Dict[str, int] = None , _lowerCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _lowerCAmelCase : bool = True , _lowerCAmelCase : Dict[str, int] = None , _lowerCAmelCase : bool = True , _lowerCAmelCase : Union[int, float] = 1 / 255 , _lowerCAmelCase : bool = True , _lowerCAmelCase : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_MEAN , _lowerCAmelCase : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_STD , **_lowerCAmelCase : str , ) -> None: """simple docstring""" super().__init__(**_lowerCAmelCase ) __lowercase = size if size is not None else {"""shortest_edge""": 224} __lowercase = get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) __lowercase = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} __lowercase = get_size_dict(_lowerCAmelCase , param_name="""crop_size""" ) __lowercase = do_resize __lowercase = size __lowercase = resample __lowercase = do_center_crop __lowercase = crop_size __lowercase = do_rescale __lowercase = rescale_factor __lowercase = do_normalize __lowercase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN __lowercase = image_std if image_std is not None else IMAGENET_DEFAULT_STD def _a ( self : Any , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : Dict[str, int] , _lowerCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase : Union[str, Any] , ) -> np.ndarray: """simple docstring""" __lowercase = get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: __lowercase = int((256 / 224) * size["""shortest_edge"""] ) __lowercase = get_resize_output_image_size(_lowerCAmelCase , size=_lowerCAmelCase , default_to_square=_lowerCAmelCase ) __lowercase = {"""height""": output_size[0], """width""": output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( F'Size dict must have keys \'height\' and \'width\' or \'shortest_edge\'. Got {size_dict.keys()}' ) return resize( _lowerCAmelCase , size=(size_dict["""height"""], size_dict["""width"""]) , resample=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def _a ( self : str , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : Dict[str, int] , _lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase : int , ) -> np.ndarray: """simple docstring""" __lowercase = get_size_dict(_lowerCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F'Size dict must have keys \'height\' and \'width\'. Got {size.keys()}' ) return center_crop(_lowerCAmelCase , size=(size["""height"""], size["""width"""]) , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def _a ( self : Union[str, Any] , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : Union[int, float] , _lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase : List[Any] , ) -> np.ndarray: """simple docstring""" return rescale(_lowerCAmelCase , scale=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def _a ( self : Any , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : Union[float, List[float]] , _lowerCAmelCase : Union[float, List[float]] , _lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase : Tuple , ) -> np.ndarray: """simple docstring""" return normalize(_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def _a ( self : Optional[Any] , _lowerCAmelCase : ImageInput , _lowerCAmelCase : Optional[bool] = None , _lowerCAmelCase : Optional[Dict[str, int]] = None , _lowerCAmelCase : PILImageResampling = None , _lowerCAmelCase : Optional[bool] = None , _lowerCAmelCase : Optional[Dict[str, int]] = None , _lowerCAmelCase : Optional[bool] = None , _lowerCAmelCase : Optional[float] = None , _lowerCAmelCase : Optional[bool] = None , _lowerCAmelCase : Optional[Union[float, Iterable[float]]] = None , _lowerCAmelCase : Optional[Union[float, Iterable[float]]] = None , _lowerCAmelCase : Optional[TensorType] = None , _lowerCAmelCase : ChannelDimension = ChannelDimension.FIRST , **_lowerCAmelCase : List[Any] , ) -> BatchFeature: """simple docstring""" __lowercase = do_resize if do_resize is not None else self.do_resize __lowercase = resample if resample is not None else self.resample __lowercase = do_center_crop if do_center_crop is not None else self.do_center_crop __lowercase = do_rescale if do_rescale is not None else self.do_rescale __lowercase = rescale_factor if rescale_factor is not None else self.rescale_factor __lowercase = do_normalize if do_normalize is not None else self.do_normalize __lowercase = image_mean if image_mean is not None else self.image_mean __lowercase = image_std if image_std is not None else self.image_std __lowercase = size if size is not None else self.size __lowercase = get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) __lowercase = crop_size if crop_size is not None else self.crop_size __lowercase = get_size_dict(_lowerCAmelCase , param_name="""crop_size""" ) __lowercase = make_list_of_images(_lowerCAmelCase ) if not valid_images(_lowerCAmelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. __lowercase = [to_numpy_array(_lowerCAmelCase ) for image in images] if do_resize: __lowercase = [self.resize(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) for image in images] if do_center_crop: __lowercase = [self.center_crop(_lowerCAmelCase , _lowerCAmelCase ) for image in images] if do_rescale: __lowercase = [self.rescale(_lowerCAmelCase , _lowerCAmelCase ) for image in images] if do_normalize: __lowercase = [self.normalize(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) for image in images] __lowercase = [to_channel_dimension_format(_lowerCAmelCase , _lowerCAmelCase ) for image in images] __lowercase = {"""pixel_values""": images} return BatchFeature(data=_lowerCAmelCase , tensor_type=_lowerCAmelCase )
53
from __future__ import annotations def snake_case ( lowerCamelCase ): '''simple docstring''' if not nums: return 0 __lowercase = nums[0] __lowercase = 0 for num in nums[1:]: __lowercase , __lowercase = ( max_excluding + num, max(lowerCamelCase , lowerCamelCase ), ) return max(lowerCamelCase , lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
53
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} _SCREAMING_SNAKE_CASE = { "vocab_file": { "junnyu/roformer_chinese_small": "https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt", "junnyu/roformer_chinese_base": "https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt", "junnyu/roformer_chinese_char_small": ( "https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt" ), "junnyu/roformer_chinese_char_base": ( "https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt" ), "junnyu/roformer_small_discriminator": ( "https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt" ), "junnyu/roformer_small_generator": ( "https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt" ), } } _SCREAMING_SNAKE_CASE = { "junnyu/roformer_chinese_small": 15_36, "junnyu/roformer_chinese_base": 15_36, "junnyu/roformer_chinese_char_small": 5_12, "junnyu/roformer_chinese_char_base": 5_12, "junnyu/roformer_small_discriminator": 1_28, "junnyu/roformer_small_generator": 1_28, } _SCREAMING_SNAKE_CASE = { "junnyu/roformer_chinese_small": {"do_lower_case": True}, "junnyu/roformer_chinese_base": {"do_lower_case": True}, "junnyu/roformer_chinese_char_small": {"do_lower_case": True}, "junnyu/roformer_chinese_char_base": {"do_lower_case": True}, "junnyu/roformer_small_discriminator": {"do_lower_case": True}, "junnyu/roformer_small_generator": {"do_lower_case": True}, } class SCREAMING_SNAKE_CASE_ ( _a ): """simple docstring""" __lowerCAmelCase : Dict =VOCAB_FILES_NAMES __lowerCAmelCase : str =PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase : List[str] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase : Tuple =PRETRAINED_INIT_CONFIGURATION __lowerCAmelCase : Optional[Any] =RoFormerTokenizer def __init__( self :Any, snake_case :Union[str, Any]=None, snake_case :int=None, snake_case :Union[str, Any]=True, snake_case :List[Any]="[UNK]", snake_case :Union[str, Any]="[SEP]", snake_case :int="[PAD]", snake_case :Union[str, Any]="[CLS]", snake_case :Optional[int]="[MASK]", snake_case :Dict=True, snake_case :Optional[Any]=None, **snake_case :Union[str, Any], ): """simple docstring""" super().__init__( snake_case, tokenizer_file=snake_case, do_lower_case=snake_case, unk_token=snake_case, sep_token=snake_case, pad_token=snake_case, cls_token=snake_case, mask_token=snake_case, tokenize_chinese_chars=snake_case, strip_accents=snake_case, **snake_case, ) _lowercase =json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( pre_tok_state.get('lowercase', snake_case) != do_lower_case or pre_tok_state.get('strip_accents', snake_case) != strip_accents ): _lowercase =getattr(snake_case, pre_tok_state.pop('type')) _lowercase =do_lower_case _lowercase =strip_accents _lowercase =pre_tok_class(**snake_case) _lowercase =do_lower_case def __getstate__( self :Any): """simple docstring""" _lowercase =self.__dict__.copy() _lowercase =BertPreTokenizer() return state def __setstate__( self :List[Any], snake_case :Optional[int]): """simple docstring""" _lowercase =d _lowercase =self.__dict__['_tokenizer'].get_vocab() _lowercase =PreTokenizer.custom(JiebaPreTokenizer(snake_case)) def UpperCamelCase__ ( self :Optional[Any], snake_case :Dict, snake_case :List[Any]=None): """simple docstring""" _lowercase =[self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase__ ( self :Optional[int], snake_case :List[int], snake_case :Optional[List[int]] = None): """simple docstring""" _lowercase =[self.sep_token_id] _lowercase =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def UpperCamelCase__ ( self :Union[str, Any], snake_case :str, snake_case :Optional[str] = None): """simple docstring""" _lowercase =self._tokenizer.model.save(snake_case, name=snake_case) return tuple(snake_case) def UpperCamelCase__ ( self :List[str], snake_case :List[Any], snake_case :List[str]=None, snake_case :List[Any]=None, snake_case :str=False, **snake_case :Union[str, Any], ): """simple docstring""" _lowercase =BertPreTokenizer() return super().save_pretrained(snake_case, snake_case, snake_case, snake_case, **snake_case)
181
from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "uw-madison/mra-base-512-4": "https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json", } class SCREAMING_SNAKE_CASE_ ( _a ): """simple docstring""" __lowerCAmelCase : str ='''mra''' def __init__( self :Any, snake_case :List[str]=5_0265, snake_case :List[Any]=768, snake_case :Optional[Any]=12, snake_case :Optional[Any]=12, snake_case :str=3072, snake_case :Tuple="gelu", snake_case :Optional[int]=0.1, snake_case :int=0.1, snake_case :Any=512, snake_case :Union[str, Any]=1, snake_case :Union[str, Any]=0.0_2, snake_case :List[Any]=1e-5, snake_case :Optional[int]="absolute", snake_case :Optional[int]=4, snake_case :str="full", snake_case :Optional[int]=0, snake_case :List[Any]=0, snake_case :int=1, snake_case :List[Any]=0, snake_case :Dict=2, **snake_case :Dict, ): """simple docstring""" super().__init__(pad_token_id=snake_case, bos_token_id=snake_case, eos_token_id=snake_case, **snake_case) _lowercase =vocab_size _lowercase =max_position_embeddings _lowercase =hidden_size _lowercase =num_hidden_layers _lowercase =num_attention_heads _lowercase =intermediate_size _lowercase =hidden_act _lowercase =hidden_dropout_prob _lowercase =attention_probs_dropout_prob _lowercase =initializer_range _lowercase =type_vocab_size _lowercase =layer_norm_eps _lowercase =position_embedding_type _lowercase =block_per_row _lowercase =approx_mode _lowercase =initial_prior_first_n_blocks _lowercase =initial_prior_diagonal_n_blocks
181
1
import unittest import numpy as np from transformers import MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING, TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING from transformers.pipelines import AudioClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_torchaudio, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class __lowercase ( unittest.TestCase ): UpperCamelCase = MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING UpperCamelCase = TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING def _lowercase ( self : Optional[int] , __lowerCamelCase : Any , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[Any] ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase = AudioClassificationPipeline(model=__lowerCamelCase , feature_extractor=__lowerCamelCase ) # test with a raw waveform UpperCAmelCase = np.zeros((3_4_0_0_0,) ) UpperCAmelCase = np.zeros((1_4_0_0_0,) ) return audio_classifier, [audioa, audio] def _lowercase ( self : Optional[int] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : int ) -> int: """simple docstring""" UpperCAmelCase , UpperCAmelCase = examples UpperCAmelCase = audio_classifier(__lowerCamelCase ) # by default a model is initialized with num_labels=2 self.assertEqual( __lowerCamelCase , [ {"""score""": ANY(__lowerCamelCase ), """label""": ANY(__lowerCamelCase )}, {"""score""": ANY(__lowerCamelCase ), """label""": ANY(__lowerCamelCase )}, ] , ) UpperCAmelCase = audio_classifier(__lowerCamelCase , top_k=1 ) self.assertEqual( __lowerCamelCase , [ {"""score""": ANY(__lowerCamelCase ), """label""": ANY(__lowerCamelCase )}, ] , ) self.run_torchaudio(__lowerCamelCase ) @require_torchaudio def _lowercase ( self : str , __lowerCamelCase : int ) -> Any: """simple docstring""" import datasets # test with a local file UpperCAmelCase = datasets.load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) UpperCAmelCase = dataset[0]["""audio"""]["""array"""] UpperCAmelCase = audio_classifier(__lowerCamelCase ) self.assertEqual( __lowerCamelCase , [ {"""score""": ANY(__lowerCamelCase ), """label""": ANY(__lowerCamelCase )}, {"""score""": ANY(__lowerCamelCase ), """label""": ANY(__lowerCamelCase )}, ] , ) @require_torch def _lowercase ( self : List[str] ) -> List[str]: """simple docstring""" UpperCAmelCase = """anton-l/wav2vec2-random-tiny-classifier""" UpperCAmelCase = pipeline("""audio-classification""" , model=__lowerCamelCase ) UpperCAmelCase = np.ones((8_0_0_0,) ) UpperCAmelCase = audio_classifier(__lowerCamelCase , top_k=4 ) UpperCAmelCase = [ {"""score""": 0.0_842, """label""": """no"""}, {"""score""": 0.0_838, """label""": """up"""}, {"""score""": 0.0_837, """label""": """go"""}, {"""score""": 0.0_834, """label""": """right"""}, ] UpperCAmelCase = [ {"""score""": 0.0_845, """label""": """stop"""}, {"""score""": 0.0_844, """label""": """on"""}, {"""score""": 0.0_841, """label""": """right"""}, {"""score""": 0.0_834, """label""": """left"""}, ] self.assertIn(nested_simplify(__lowerCamelCase , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) UpperCAmelCase = {"""array""": np.ones((8_0_0_0,) ), """sampling_rate""": audio_classifier.feature_extractor.sampling_rate} UpperCAmelCase = audio_classifier(__lowerCamelCase , top_k=4 ) self.assertIn(nested_simplify(__lowerCamelCase , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) @require_torch @slow def _lowercase ( self : List[str] ) -> Optional[int]: """simple docstring""" import datasets UpperCAmelCase = """superb/wav2vec2-base-superb-ks""" UpperCAmelCase = pipeline("""audio-classification""" , model=__lowerCamelCase ) UpperCAmelCase = datasets.load_dataset("""anton-l/superb_dummy""" , """ks""" , split="""test""" ) UpperCAmelCase = np.array(dataset[3]["""speech"""] , dtype=np.floataa ) UpperCAmelCase = audio_classifier(__lowerCamelCase , top_k=4 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=3 ) , [ {"""score""": 0.981, """label""": """go"""}, {"""score""": 0.007, """label""": """up"""}, {"""score""": 0.006, """label""": """_unknown_"""}, {"""score""": 0.001, """label""": """down"""}, ] , ) @require_tf @unittest.skip("""Audio classification is not implemented for TF""" ) def _lowercase ( self : Any ) -> Any: """simple docstring""" pass
627
import math import os import re import sys import unittest from pathlib import Path from typing import Tuple from unittest.mock import patch from parameterized import parameterized from transformers.testing_utils import ( CaptureStderr, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, get_torch_dist_unique_port, require_apex, require_bitsandbytes, require_fairscale, require_torch, require_torch_gpu, require_torch_multi_gpu, require_torch_non_multi_gpu, slow, ) from transformers.trainer_callback import TrainerState from transformers.trainer_utils import set_seed __a = os.path.abspath(os.path.dirname(__file__)) with ExtendSysPath(F"""{bindir}/../../examples/pytorch/translation"""): from run_translation import main # noqa set_seed(42) __a = """sshleifer/student_marian_en_ro_6_1""" __a = """sshleifer/tiny-mbart""" @require_torch class __lowercase ( __snake_case ): def _lowercase ( self : Dict , __lowerCamelCase : List[Any]=False , __lowerCamelCase : str=None , __lowerCamelCase : Any=True , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : str=True , __lowerCamelCase : List[str]=True , ) -> List[Any]: """simple docstring""" UpperCAmelCase = self.run_trainer( eval_steps=1 , max_len=1_2 , model_name=__lowerCamelCase , num_train_epochs=1 , distributed=__lowerCamelCase , extra_args_str=__lowerCamelCase , predict_with_generate=__lowerCamelCase , do_train=__lowerCamelCase , do_eval=__lowerCamelCase , do_predict=__lowerCamelCase , ) UpperCAmelCase = TrainerState.load_from_json(os.path.join(__lowerCamelCase , """trainer_state.json""" ) ).log_history if not do_eval: return UpperCAmelCase = [log for log in logs if """eval_loss""" in log.keys()] UpperCAmelCase = eval_metrics[0] if predict_with_generate: assert "eval_bleu" in first_step_stats UpperCAmelCase = eval_metrics[-1] assert isinstance(last_step_stats["""eval_bleu"""] , __lowerCamelCase ) assert not math.isnan(float(last_step_stats["""eval_loss"""] ) ), "eval_loss must not be `nan`" @require_torch_non_multi_gpu def _lowercase ( self : Dict ) -> str: """simple docstring""" self.run_seqaseq_quick() @require_torch_multi_gpu def _lowercase ( self : Tuple ) -> Any: """simple docstring""" self.run_seqaseq_quick(distributed=__lowerCamelCase ) @require_torch_multi_gpu def _lowercase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" self.run_seqaseq_quick(distributed=__lowerCamelCase ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def _lowercase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" self.run_seqaseq_quick(distributed=__lowerCamelCase , extra_args_str="""--sharded_ddp simple""" ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def _lowercase ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" self.run_seqaseq_quick(distributed=__lowerCamelCase , extra_args_str="""--sharded_ddp simple --fp16""" ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def _lowercase ( self : Dict ) -> Tuple: """simple docstring""" self.run_seqaseq_quick(distributed=__lowerCamelCase , extra_args_str="""--sharded_ddp zero_dp_2""" , predict_with_generate=__lowerCamelCase ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def _lowercase ( self : Optional[int] ) -> Dict: """simple docstring""" self.run_seqaseq_quick( distributed=__lowerCamelCase , extra_args_str="""--sharded_ddp zero_dp_2 --fp16""" , predict_with_generate=__lowerCamelCase ) @require_apex @require_torch_gpu def _lowercase ( self : str ) -> Optional[Any]: """simple docstring""" self.run_seqaseq_quick(distributed=__lowerCamelCase , extra_args_str="""--fp16 --fp16_backend=apex""" ) # test 2nd time - was getting eval_loss': nan' # to reproduce the problem set distributed=False self.run_seqaseq_quick(distributed=__lowerCamelCase , extra_args_str="""--fp16 --fp16_backend=apex""" ) @parameterized.expand(["""base""", """low""", """high""", """mixed"""] ) @require_torch_multi_gpu def _lowercase ( self : Union[str, Any] , __lowerCamelCase : Optional[Any] ) -> Optional[Any]: """simple docstring""" UpperCAmelCase = { # test with the default log_level - should be info and thus log info once """base""": {"""extra_args_str""": """""", """n_matches""": 1}, # test with low log_level and log_level_replica - should be noisy on all processes # now the info string should appear twice on 2 processes """low""": {"""extra_args_str""": """--log_level debug --log_level_replica debug""", """n_matches""": 2}, # test with high log_level and low log_level_replica # now the info string should appear once only on the replica """high""": {"""extra_args_str""": """--log_level error --log_level_replica debug""", """n_matches""": 1}, # test with high log_level and log_level_replica - should be quiet on all processes """mixed""": {"""extra_args_str""": """--log_level error --log_level_replica error""", """n_matches""": 0}, } UpperCAmelCase = experiments[experiment_id] UpperCAmelCase = {"""distributed""": True, """predict_with_generate""": False, """do_eval""": False, """do_predict""": False} UpperCAmelCase = """Running training""" with CaptureStderr() as cl: self.run_seqaseq_quick(**__lowerCamelCase , extra_args_str=data["""extra_args_str"""] ) UpperCAmelCase = len(re.findall(__lowerCamelCase , cl.err ) ) self.assertEqual(__lowerCamelCase , data["""n_matches"""] ) @slow def _lowercase ( self : Union[str, Any] ) -> Any: """simple docstring""" UpperCAmelCase = self.run_trainer( eval_steps=2 , max_len=1_2_8 , model_name=__lowerCamelCase , learning_rate=3e-4 , num_train_epochs=1_0 , distributed=__lowerCamelCase , ) # Check metrics UpperCAmelCase = TrainerState.load_from_json(os.path.join(__lowerCamelCase , """trainer_state.json""" ) ).log_history UpperCAmelCase = [log for log in logs if """eval_loss""" in log.keys()] UpperCAmelCase = eval_metrics[0] UpperCAmelCase = eval_metrics[-1] assert first_step_stats["eval_loss"] > last_step_stats["eval_loss"], "model learned nothing" assert isinstance(last_step_stats["""eval_bleu"""] , __lowerCamelCase ) # test if do_predict saves generations and metrics UpperCAmelCase = os.listdir(__lowerCamelCase ) UpperCAmelCase = {os.path.basename(__lowerCamelCase ) for p in contents} assert "generated_predictions.txt" in contents assert "predict_results.json" in contents @slow @require_bitsandbytes def _lowercase ( self : str ) -> int: """simple docstring""" from transformers.training_args import OptimizerNames def train_and_return_metrics(__lowerCamelCase : str ) -> Tuple[int, float]: UpperCAmelCase = """--skip_memory_metrics 0""" UpperCAmelCase = self.run_trainer( max_len=1_2_8 , model_name=__lowerCamelCase , learning_rate=3e-4 , num_train_epochs=1 , optim=__lowerCamelCase , distributed=__lowerCamelCase , extra_args_str=__lowerCamelCase , do_eval=__lowerCamelCase , do_predict=__lowerCamelCase , n_gpus_to_use=1 , ) # Check metrics UpperCAmelCase = TrainerState.load_from_json(Path(__lowerCamelCase , """trainer_state.json""" ) ).log_history UpperCAmelCase = int(logs[0]["""train_mem_gpu_peaked_delta"""] / 2**2_0 ) UpperCAmelCase = int(logs[0]["""train_mem_gpu_alloc_delta"""] / 2**2_0 ) UpperCAmelCase = logs[0]["""train_loss"""] return gpu_peak_mem_mb, gpu_alloc_mem_mb, loss UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = train_and_return_metrics(OptimizerNames.ADAMW_TORCH.value ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = train_and_return_metrics(OptimizerNames.ADAMW_BNB.value ) UpperCAmelCase = gpu_alloc_mem_orig - gpu_alloc_mem_bnb UpperCAmelCase = gpu_peak_mem_orig + gpu_alloc_mem_orig UpperCAmelCase = gpu_peak_mem_bnb + gpu_alloc_mem_bnb UpperCAmelCase = gpu_total_mem_orig - gpu_total_mem_bnb # sshleifer/student_marian_en_ro_6_1 has 54M parameter, 29M of which is `nn.Embedding` which # doesn't get quantized and remains in fp32. Therefore we only have 25M parameters quantized # in 2 bytes and the diff in optim memory usage is derived as so: # # - normal 25*8=~200MB (8 bytes per param) # - bnb 25*2= ~50MB (2 bytes per param) # # Thus we should expect ~150MB total memory saved. # # Peak memory should be the same - the total should be different by about that same margin # # After leaving a small margin to accommodate for differences between gpus let's check # that we have at least 120MB in savings UpperCAmelCase = 1_2_0 # uncomment the following if this test starts failing - requires py38 for a new print feature # gpu_peak_mem_diff = gpu_peak_mem_orig - gpu_peak_mem_bnb # print(f"{gpu_alloc_mem_orig=}MB {gpu_peak_mem_orig=}MB {gpu_alloc_mem_orig+gpu_peak_mem_orig=}MB") # print(f" {gpu_alloc_mem_bnb=}MB {gpu_peak_mem_bnb=}MB {gpu_alloc_mem_bnb+gpu_peak_mem_bnb=}MB") # print(f"{gpu_alloc_mem_diff=}MB") # print(f"{gpu_peak_mem_diff=}MB") # print(f"{gpu_total_mem_orig=}MB, {gpu_total_mem_bnb=}MB") # print(f"{gpu_total_mem_diff=}MB, {gpu_total_mem_diff=}MB") self.assertGreater( __lowerCamelCase , __lowerCamelCase , """should use ~150MB less alloc gpu memory with BNB, compared to without it for this model but got""" F""" a difference of {gpu_alloc_mem_diff}MB, with gpu_alloc_mem_orig={gpu_alloc_mem_orig}MB and""" F""" gpu_alloc_mem_bnb={gpu_alloc_mem_bnb}MB""" , ) self.assertGreater( __lowerCamelCase , __lowerCamelCase , """should use ~150MB less total gpu memory with BNB, compared to without it for this model but got""" F""" a difference of {gpu_total_mem_diff}MB, with gpu_total_mem_orig={gpu_total_mem_orig}MB and""" F""" gpu_total_mem_bnb={gpu_total_mem_bnb}MB""" , ) self.assertEqual( __lowerCamelCase , __lowerCamelCase , F"""loss should be the same, but got loss_orig={loss_orig}, loss_bnb={loss_bnb}""" ) def _lowercase ( self : Any , __lowerCamelCase : int , __lowerCamelCase : str , __lowerCamelCase : int , __lowerCamelCase : float = 3e-3 , __lowerCamelCase : str = "adafactor" , __lowerCamelCase : bool = False , __lowerCamelCase : str = None , __lowerCamelCase : int = 0 , __lowerCamelCase : bool = True , __lowerCamelCase : bool = True , __lowerCamelCase : bool = True , __lowerCamelCase : bool = True , __lowerCamelCase : int = None , ) -> Dict: """simple docstring""" UpperCAmelCase = self.test_file_dir / """../fixtures/tests_samples/wmt_en_ro""" UpperCAmelCase = self.get_auto_remove_tmp_dir() UpperCAmelCase = F""" --model_name_or_path {model_name} --train_file {data_dir}/train.json --validation_file {data_dir}/val.json --test_file {data_dir}/test.json --output_dir {output_dir} --overwrite_output_dir --max_train_samples 8 --max_source_length {max_len} --max_target_length {max_len} --do_train --num_train_epochs {str(__lowerCamelCase )} --per_device_train_batch_size 4 --learning_rate {learning_rate} --warmup_steps 8 --logging_steps 0 --logging_strategy no --save_steps {str(__lowerCamelCase )} --group_by_length --label_smoothing_factor 0.1 --target_lang ro_RO --source_lang en_XX """.split() UpperCAmelCase = F""" --do_eval --per_device_eval_batch_size 4 --max_eval_samples 8 --val_max_target_length {max_len} --evaluation_strategy steps --eval_steps {str(__lowerCamelCase )} """.split() UpperCAmelCase = """ --do_predict """.split() UpperCAmelCase = [] if do_train: args += args_train if do_eval: args += args_eval if do_predict: args += args_predict if predict_with_generate: args += "--predict_with_generate".split() if do_train: if optim == "adafactor": args += "--adafactor".split() else: args += F"""--optim {optim}""".split() if extra_args_str is not None: args += extra_args_str.split() if distributed: if n_gpus_to_use is None: UpperCAmelCase = get_gpu_count() UpperCAmelCase = get_torch_dist_unique_port() UpperCAmelCase = F""" -m torch.distributed.run --nproc_per_node={n_gpus_to_use} --master_port={master_port} {self.examples_dir_str}/pytorch/translation/run_translation.py """.split() UpperCAmelCase = [sys.executable] + distributed_args + args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(__lowerCamelCase , env=self.get_env() ) else: UpperCAmelCase = ["""run_translation.py"""] + args with patch.object(__lowerCamelCase , """argv""" , __lowerCamelCase ): main() return output_dir
627
1
import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html lowerCAmelCase__ : List[str] ='''platform''' import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class UpperCAmelCase_ : '''simple docstring''' UpperCamelCase__ : Dict = PegasusConfig UpperCamelCase__ : Optional[int] = {} UpperCamelCase__ : Union[str, Any] = '''gelu''' def __init__( self , _A , _A=13 , _A=7 , _A=True , _A=False , _A=99 , _A=32 , _A=5 , _A=4 , _A=37 , _A=0.1 , _A=0.1 , _A=20 , _A=2 , _A=1 , _A=0 , ): '''simple docstring''' __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = seq_length __SCREAMING_SNAKE_CASE = is_training __SCREAMING_SNAKE_CASE = use_labels __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = eos_token_id __SCREAMING_SNAKE_CASE = pad_token_id __SCREAMING_SNAKE_CASE = bos_token_id def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size ) __SCREAMING_SNAKE_CASE = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 ) __SCREAMING_SNAKE_CASE = np.concatenate([input_ids, eos_tensor] , axis=1 ) __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __SCREAMING_SNAKE_CASE = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) __SCREAMING_SNAKE_CASE = prepare_pegasus_inputs_dict(_A , _A , _A ) return config, inputs_dict def _A ( self , _A , _A , _A ): '''simple docstring''' __SCREAMING_SNAKE_CASE = 20 __SCREAMING_SNAKE_CASE = model_class_name(_A ) __SCREAMING_SNAKE_CASE = model.encode(inputs_dict['input_ids'] ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) __SCREAMING_SNAKE_CASE = model.init_cache(decoder_input_ids.shape[0] , _A , _A ) __SCREAMING_SNAKE_CASE = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='i4' ) __SCREAMING_SNAKE_CASE = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __SCREAMING_SNAKE_CASE = model.decode( decoder_input_ids[:, :-1] , _A , decoder_attention_mask=_A , past_key_values=_A , decoder_position_ids=_A , ) __SCREAMING_SNAKE_CASE = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) __SCREAMING_SNAKE_CASE = model.decode( decoder_input_ids[:, -1:] , _A , decoder_attention_mask=_A , past_key_values=outputs_cache.past_key_values , decoder_position_ids=_A , ) __SCREAMING_SNAKE_CASE = model.decode(_A , _A ) __SCREAMING_SNAKE_CASE = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" ) def _A ( self , _A , _A , _A ): '''simple docstring''' __SCREAMING_SNAKE_CASE = 20 __SCREAMING_SNAKE_CASE = model_class_name(_A ) __SCREAMING_SNAKE_CASE = model.encode(inputs_dict['input_ids'] ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) __SCREAMING_SNAKE_CASE = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) __SCREAMING_SNAKE_CASE = model.init_cache(decoder_input_ids.shape[0] , _A , _A ) __SCREAMING_SNAKE_CASE = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __SCREAMING_SNAKE_CASE = model.decode( decoder_input_ids[:, :-1] , _A , decoder_attention_mask=_A , past_key_values=_A , decoder_position_ids=_A , ) __SCREAMING_SNAKE_CASE = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) __SCREAMING_SNAKE_CASE = model.decode( decoder_input_ids[:, -1:] , _A , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=_A , decoder_position_ids=_A , ) __SCREAMING_SNAKE_CASE = model.decode(_A , _A , decoder_attention_mask=_A ) __SCREAMING_SNAKE_CASE = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" ) def __lowercase ( a__ , a__ , a__ , a__=None , a__=None , ) -> List[str]: if attention_mask is None: __SCREAMING_SNAKE_CASE = np.not_equal(a__ , config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: __SCREAMING_SNAKE_CASE = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ), ] , axis=-1 , ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class UpperCAmelCase_ ( UpperCamelCase_ , unittest.TestCase ): '''simple docstring''' UpperCamelCase__ : str = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) UpperCamelCase__ : Any = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () UpperCamelCase__ : List[Any] = True UpperCamelCase__ : List[Any] = False UpperCamelCase__ : List[Any] = False UpperCamelCase__ : Union[str, Any] = False def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = FlaxPegasusModelTester(self ) __SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=_A ) def _A ( self ): '''simple docstring''' self.config_tester.run_common_tests() def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(_A , _A , _A ) def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(_A , _A , _A ) def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __SCREAMING_SNAKE_CASE = self._prepare_for_class(_A , _A ) __SCREAMING_SNAKE_CASE = model_class(_A ) @jax.jit def encode_jitted(_A , _A=None , **_A ): return model.encode(input_ids=_A , attention_mask=_A ) with self.subTest('JIT Enabled' ): __SCREAMING_SNAKE_CASE = encode_jitted(**_A ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): __SCREAMING_SNAKE_CASE = encode_jitted(**_A ).to_tuple() self.assertEqual(len(_A ) , len(_A ) ) for jitted_output, output in zip(_A , _A ): self.assertEqual(jitted_output.shape , output.shape ) def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __SCREAMING_SNAKE_CASE = model_class(_A ) __SCREAMING_SNAKE_CASE = model.encode(inputs_dict['input_ids'] , inputs_dict['attention_mask'] ) __SCREAMING_SNAKE_CASE = { 'decoder_input_ids': inputs_dict['decoder_input_ids'], 'decoder_attention_mask': inputs_dict['decoder_attention_mask'], 'encoder_outputs': encoder_outputs, } @jax.jit def decode_jitted(_A , _A , _A ): return model.decode( decoder_input_ids=_A , decoder_attention_mask=_A , encoder_outputs=_A , ) with self.subTest('JIT Enabled' ): __SCREAMING_SNAKE_CASE = decode_jitted(**_A ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): __SCREAMING_SNAKE_CASE = decode_jitted(**_A ).to_tuple() self.assertEqual(len(_A ) , len(_A ) ) for jitted_output, output in zip(_A , _A ): self.assertEqual(jitted_output.shape , output.shape ) @slow def _A ( self ): '''simple docstring''' for model_class_name in self.all_model_classes: __SCREAMING_SNAKE_CASE = model_class_name.from_pretrained('google/pegasus-large' , from_pt=_A ) __SCREAMING_SNAKE_CASE = np.ones((1, 1) ) __SCREAMING_SNAKE_CASE = model(_A ) self.assertIsNotNone(_A ) @slow def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = FlaxPegasusForConditionalGeneration.from_pretrained('google/pegasus-xsum' ) __SCREAMING_SNAKE_CASE = PegasusTokenizer.from_pretrained('google/pegasus-xsum' ) __SCREAMING_SNAKE_CASE = [ ' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.', ' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ', ] __SCREAMING_SNAKE_CASE = [ 'California\'s largest electricity provider has turned off power to hundreds of thousands of customers.', 'Pop group N-Dubz have revealed they were surprised to get four nominations for this year\'s Mobo Awards.', ] __SCREAMING_SNAKE_CASE = tokenizer(_A , return_tensors='np' , truncation=_A , max_length=512 , padding=_A ) __SCREAMING_SNAKE_CASE = model.generate(**_A , num_beams=2 ).sequences __SCREAMING_SNAKE_CASE = tokenizer.batch_decode(_A , skip_special_tokens=_A ) assert tgt_text == decoded
148
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCAmelCase__ : Optional[Any] =logging.get_logger(__name__) lowerCAmelCase__ : int ={'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} lowerCAmelCase__ : List[Any] ={ '''tokenizer_file''': { '''EleutherAI/gpt-neox-20b''': '''https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json''', }, } lowerCAmelCase__ : Any ={ '''gpt-neox-20b''': 2048, } class UpperCAmelCase_ ( UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ : Optional[int] = VOCAB_FILES_NAMES UpperCamelCase__ : str = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ : int = ['''input_ids''', '''attention_mask'''] def __init__( self , _A=None , _A=None , _A=None , _A="<|endoftext|>" , _A="<|endoftext|>" , _A="<|endoftext|>" , _A=False , **_A , ): '''simple docstring''' super().__init__( _A , _A , tokenizer_file=_A , unk_token=_A , bos_token=_A , eos_token=_A , add_prefix_space=_A , **_A , ) __SCREAMING_SNAKE_CASE = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , _A ) != add_prefix_space: __SCREAMING_SNAKE_CASE = getattr(_A , pre_tok_state.pop('type' ) ) __SCREAMING_SNAKE_CASE = add_prefix_space __SCREAMING_SNAKE_CASE = pre_tok_class(**_A ) __SCREAMING_SNAKE_CASE = add_prefix_space def _A ( self , _A , _A = None ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self._tokenizer.model.save(_A , name=_A ) return tuple(_A ) def _A ( self , _A ): '''simple docstring''' __SCREAMING_SNAKE_CASE = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(_A , add_special_tokens=_A ) + [self.eos_token_id] ) if len(_A ) > self.model_max_length: __SCREAMING_SNAKE_CASE = input_ids[-self.model_max_length :] return input_ids
148
1
import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL A_ : Optional[Any] = version.parse(version.parse(torch.__version__).base_version) < version.parse('''1.11''') def UpperCAmelCase__ ( UpperCAmelCase__ :int , UpperCAmelCase__ :tuple , UpperCAmelCase__ :Path , UpperCAmelCase__ :Union[str, Any] , UpperCAmelCase__ :Tuple , UpperCAmelCase__ :Optional[Any] , UpperCAmelCase__ :List[str] , UpperCAmelCase__ :List[Any]=False , ): '''simple docstring''' output_path.parent.mkdir(parents=UpperCAmelCase__ , exist_ok=UpperCAmelCase__ ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( UpperCAmelCase__ , UpperCAmelCase__ , f=output_path.as_posix() , input_names=UpperCAmelCase__ , output_names=UpperCAmelCase__ , dynamic_axes=UpperCAmelCase__ , do_constant_folding=UpperCAmelCase__ , use_external_data_format=UpperCAmelCase__ , enable_onnx_checker=UpperCAmelCase__ , opset_version=UpperCAmelCase__ , ) else: export( UpperCAmelCase__ , UpperCAmelCase__ , f=output_path.as_posix() , input_names=UpperCAmelCase__ , output_names=UpperCAmelCase__ , dynamic_axes=UpperCAmelCase__ , do_constant_folding=UpperCAmelCase__ , opset_version=UpperCAmelCase__ , ) @torch.no_grad() def UpperCAmelCase__ ( UpperCAmelCase__ :str , UpperCAmelCase__ :str , UpperCAmelCase__ :int , UpperCAmelCase__ :bool = False ): '''simple docstring''' a = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): a = "cuda" elif fpaa and not torch.cuda.is_available(): raise ValueError("`float16` model export is only supported on GPUs with CUDA" ) else: a = "cpu" a = Path(UpperCAmelCase__ ) # VAE DECODER a = AutoencoderKL.from_pretrained(model_path + "/vae" ) a = vae_decoder.config.latent_channels # forward only through the decoder part a = vae_decoder.decode onnx_export( UpperCAmelCase__ , model_args=( torch.randn(1 , UpperCAmelCase__ , 25 , 25 ).to(device=UpperCAmelCase__ , dtype=UpperCAmelCase__ ), False, ) , output_path=output_path / "vae_decoder" / "model.onnx" , ordered_input_names=["latent_sample", "return_dict"] , output_names=["sample"] , dynamic_axes={ "latent_sample": {0: "batch", 1: "channels", 2: "height", 3: "width"}, } , opset=UpperCAmelCase__ , ) del vae_decoder if __name__ == "__main__": A_ : List[str] = argparse.ArgumentParser() parser.add_argument( '''--model_path''', type=str, required=True, help='''Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).''', ) parser.add_argument('''--output_path''', type=str, required=True, help='''Path to the output model.''') parser.add_argument( '''--opset''', default=14, type=int, help='''The version of the ONNX operator set to use.''', ) parser.add_argument('''--fp16''', action='''store_true''', default=False, help='''Export the models in `float16` mode''') A_ : str = parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print('''SD: Done: ONNX''')
711
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class _lowercase ( UpperCAmelCase__ ): _UpperCAmelCase = (UniPCMultistepScheduler,) _UpperCAmelCase = (('''num_inference_steps''', 25),) def A ( self : List[Any] , **__lowerCAmelCase : Optional[int] ) -> int: """simple docstring""" a = { "num_train_timesteps": 1000, "beta_start": 0.0_0_0_1, "beta_end": 0.0_2, "beta_schedule": "linear", "solver_order": 2, "solver_type": "bh2", } config.update(**__lowerCAmelCase ) return config def A ( self : List[Any] , __lowerCAmelCase : Optional[int]=0 , **__lowerCAmelCase : Optional[Any] ) -> int: """simple docstring""" a = dict(self.forward_default_kwargs ) a = kwargs.pop("num_inference_steps" , __lowerCAmelCase ) a = self.dummy_sample a = 0.1 * sample a = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: a = self.get_scheduler_config(**__lowerCAmelCase ) a = scheduler_class(**__lowerCAmelCase ) scheduler.set_timesteps(__lowerCAmelCase ) # copy over dummy past residuals a = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__lowerCAmelCase ) a = scheduler_class.from_pretrained(__lowerCAmelCase ) new_scheduler.set_timesteps(__lowerCAmelCase ) # copy over dummy past residuals a = dummy_past_residuals[: new_scheduler.config.solver_order] a , a = sample, sample for t in range(__lowerCAmelCase , time_step + scheduler.config.solver_order + 1 ): a = scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ).prev_sample a = new_scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def A ( self : List[Any] , __lowerCAmelCase : Optional[Any]=0 , **__lowerCAmelCase : List[Any] ) -> List[str]: """simple docstring""" a = dict(self.forward_default_kwargs ) a = kwargs.pop("num_inference_steps" , __lowerCAmelCase ) a = self.dummy_sample a = 0.1 * sample a = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: a = self.get_scheduler_config() a = scheduler_class(**__lowerCAmelCase ) scheduler.set_timesteps(__lowerCAmelCase ) # copy over dummy past residuals (must be after setting timesteps) a = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__lowerCAmelCase ) a = scheduler_class.from_pretrained(__lowerCAmelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(__lowerCAmelCase ) # copy over dummy past residual (must be after setting timesteps) a = dummy_past_residuals[: new_scheduler.config.solver_order] a = scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ).prev_sample a = new_scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def A ( self : str , __lowerCAmelCase : Any=None , **__lowerCAmelCase : List[str] ) -> Any: """simple docstring""" if scheduler is None: a = self.scheduler_classes[0] a = self.get_scheduler_config(**__lowerCAmelCase ) a = scheduler_class(**__lowerCAmelCase ) a = self.scheduler_classes[0] a = self.get_scheduler_config(**__lowerCAmelCase ) a = scheduler_class(**__lowerCAmelCase ) a = 10 a = self.dummy_model() a = self.dummy_sample_deter scheduler.set_timesteps(__lowerCAmelCase ) for i, t in enumerate(scheduler.timesteps ): a = model(__lowerCAmelCase , __lowerCAmelCase ) a = scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ).prev_sample return sample def A ( self : Any ) -> int: """simple docstring""" a = dict(self.forward_default_kwargs ) a = kwargs.pop("num_inference_steps" , __lowerCAmelCase ) for scheduler_class in self.scheduler_classes: a = self.get_scheduler_config() a = scheduler_class(**__lowerCAmelCase ) a = self.dummy_sample a = 0.1 * sample if num_inference_steps is not None and hasattr(__lowerCAmelCase , "set_timesteps" ): scheduler.set_timesteps(__lowerCAmelCase ) elif num_inference_steps is not None and not hasattr(__lowerCAmelCase , "set_timesteps" ): a = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) a = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] a = dummy_past_residuals[: scheduler.config.solver_order] a = scheduler.timesteps[5] a = scheduler.timesteps[6] a = scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ).prev_sample a = scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def A ( self : List[str] ) -> Dict: """simple docstring""" a = UniPCMultistepScheduler(**self.get_scheduler_config() ) a = self.full_loop(scheduler=__lowerCAmelCase ) a = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1E-3 a = DPMSolverSinglestepScheduler.from_config(scheduler.config ) a = DEISMultistepScheduler.from_config(scheduler.config ) a = DPMSolverMultistepScheduler.from_config(scheduler.config ) a = UniPCMultistepScheduler.from_config(scheduler.config ) a = self.full_loop(scheduler=__lowerCAmelCase ) a = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1E-3 def A ( self : List[Any] ) -> Dict: """simple docstring""" for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=__lowerCAmelCase ) def A ( self : Optional[Any] ) -> Tuple: """simple docstring""" self.check_over_configs(thresholding=__lowerCAmelCase ) for order in [1, 2, 3]: for solver_type in ["bh1", "bh2"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=__lowerCAmelCase , prediction_type=__lowerCAmelCase , sample_max_value=__lowerCAmelCase , solver_order=__lowerCAmelCase , solver_type=__lowerCAmelCase , ) def A ( self : Optional[Any] ) -> Any: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__lowerCAmelCase ) def A ( self : Optional[Any] ) -> Any: """simple docstring""" for solver_type in ["bh1", "bh2"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=__lowerCAmelCase , solver_type=__lowerCAmelCase , prediction_type=__lowerCAmelCase , ) a = self.full_loop( solver_order=__lowerCAmelCase , solver_type=__lowerCAmelCase , prediction_type=__lowerCAmelCase , ) assert not torch.isnan(__lowerCAmelCase ).any(), "Samples have nan numbers" def A ( self : Optional[int] ) -> Any: """simple docstring""" self.check_over_configs(lower_order_final=__lowerCAmelCase ) self.check_over_configs(lower_order_final=__lowerCAmelCase ) def A ( self : Dict ) -> str: """simple docstring""" for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=__lowerCAmelCase , time_step=0 ) def A ( self : Dict ) -> int: """simple docstring""" a = self.full_loop() a = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1E-3 def A ( self : Optional[int] ) -> int: """simple docstring""" a = self.full_loop(prediction_type="v_prediction" ) a = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_mean.item() - 0.1_0_1_4 ) < 1E-3 def A ( self : Union[str, Any] ) -> str: """simple docstring""" a = self.scheduler_classes[0] a = self.get_scheduler_config(thresholding=__lowerCAmelCase , dynamic_thresholding_ratio=0 ) a = scheduler_class(**__lowerCAmelCase ) a = 10 a = self.dummy_model() a = self.dummy_sample_deter.half() scheduler.set_timesteps(__lowerCAmelCase ) for i, t in enumerate(scheduler.timesteps ): a = model(__lowerCAmelCase , __lowerCAmelCase ) a = scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ).prev_sample assert sample.dtype == torch.floataa def A ( self : List[str] , **__lowerCAmelCase : int ) -> Dict: """simple docstring""" for scheduler_class in self.scheduler_classes: a = self.get_scheduler_config(**__lowerCAmelCase ) a = scheduler_class(**__lowerCAmelCase ) scheduler.set_timesteps(scheduler.config.num_train_timesteps ) assert len(scheduler.timesteps.unique() ) == scheduler.num_inference_steps
32
0
'''simple docstring''' def UpperCamelCase_( snake_case : Dict , snake_case : Optional[Any] ): '''simple docstring''' snake_case_ = [1] for i in range(2 , snake_case ): factorials.append(factorials[-1] * i ) assert 0 <= k < factorials[-1] * n, "k out of bounds" snake_case_ = [] snake_case_ = list(range(snake_case ) ) # Find permutation while factorials: snake_case_ = factorials.pop() snake_case_ , snake_case_ = divmod(snake_case , snake_case ) permutation.append(elements[number] ) elements.remove(elements[number] ) permutation.append(elements[0] ) return permutation if __name__ == "__main__": import doctest doctest.testmod()
400
'''simple docstring''' def UpperCamelCase_( ): '''simple docstring''' snake_case_ = [3_1, 2_8, 3_1, 3_0, 3_1, 3_0, 3_1, 3_1, 3_0, 3_1, 3_0, 3_1] snake_case_ = 6 snake_case_ = 1 snake_case_ = 1_9_0_1 snake_case_ = 0 while year < 2_0_0_1: day += 7 if (year % 4 == 0 and year % 1_0_0 != 0) or (year % 4_0_0 == 0): if day > days_per_month[month - 1] and month != 2: month += 1 snake_case_ = day - days_per_month[month - 2] elif day > 2_9 and month == 2: month += 1 snake_case_ = day - 2_9 else: if day > days_per_month[month - 1]: month += 1 snake_case_ = day - days_per_month[month - 2] if month > 1_2: year += 1 snake_case_ = 1 if year < 2_0_0_1 and day == 1: sundays += 1 return sundays if __name__ == "__main__": print(solution())
400
1
import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_config_file""": """tokenizer_config.json""", } lowerCAmelCase = { """vocab_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json""" }, """merges_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt""" }, """tokenizer_config_file""": { """facebook/blenderbot_small-90M""": ( """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json""" ) }, } lowerCAmelCase = {"""facebook/blenderbot_small-90M""": 512} def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Tuple = set() __UpperCAmelCase : str = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __UpperCAmelCase : Union[str, Any] = char __UpperCAmelCase : Union[str, Any] = set(lowercase_ ) return pairs class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : Any = VOCAB_FILES_NAMES _lowerCAmelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase : Optional[int] = ['''input_ids''', '''attention_mask'''] def __init__( self , lowercase__ , lowercase__ , lowercase__="__start__" , lowercase__="__end__" , lowercase__="__unk__" , lowercase__="__null__" , **lowercase__ , ): super().__init__(unk_token=lowercase__ , bos_token=lowercase__ , eos_token=lowercase__ , pad_token=lowercase__ , **lowercase__) with open(lowercase__ , encoding='''utf-8''') as vocab_handle: __UpperCAmelCase : str = json.load(lowercase__) __UpperCAmelCase : Optional[Any] = {v: k for k, v in self.encoder.items()} with open(lowercase__ , encoding='''utf-8''') as merges_handle: __UpperCAmelCase : Optional[Any] = merges_handle.read().split('''\n''')[1:-1] __UpperCAmelCase : Optional[int] = [tuple(merge.split()) for merge in merges] __UpperCAmelCase : List[str] = dict(zip(lowercase__ , range(len(lowercase__)))) __UpperCAmelCase : Tuple = {} @property def A( self): return len(self.encoder) def A( self): return dict(self.encoder , **self.added_tokens_encoder) def A( self , lowercase__): if token in self.cache: return self.cache[token] __UpperCAmelCase : List[str] = re.sub('''([.,!?()])''' , r''' \1''' , lowercase__) __UpperCAmelCase : Optional[int] = re.sub('''(\')''' , r''' \1 ''' , lowercase__) __UpperCAmelCase : List[Any] = re.sub(r'''\s{2,}''' , ''' ''' , lowercase__) if "\n" in token: __UpperCAmelCase : int = token.replace('''\n''' , ''' __newln__''') __UpperCAmelCase : str = token.split(''' ''') __UpperCAmelCase : Any = [] for token in tokens: if not len(lowercase__): continue __UpperCAmelCase : List[str] = token.lower() __UpperCAmelCase : Tuple = tuple(lowercase__) __UpperCAmelCase : int = tuple(list(word[:-1]) + [word[-1] + '''</w>''']) __UpperCAmelCase : List[str] = get_pairs(lowercase__) if not pairs: words.append(lowercase__) continue while True: __UpperCAmelCase : Optional[Any] = min(lowercase__ , key=lambda lowercase__: self.bpe_ranks.get(lowercase__ , float('''inf'''))) if bigram not in self.bpe_ranks: break __UpperCAmelCase : List[Any] = bigram __UpperCAmelCase : List[str] = [] __UpperCAmelCase : Optional[Any] = 0 while i < len(lowercase__): try: __UpperCAmelCase : Optional[int] = word.index(lowercase__ , lowercase__) new_word.extend(word[i:j]) __UpperCAmelCase : List[Any] = j except ValueError: new_word.extend(word[i:]) break if word[i] == first and i < len(lowercase__) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 __UpperCAmelCase : List[Any] = tuple(lowercase__) __UpperCAmelCase : List[Any] = new_word if len(lowercase__) == 1: break else: __UpperCAmelCase : Dict = get_pairs(lowercase__) __UpperCAmelCase : Union[str, Any] = '''@@ '''.join(lowercase__) __UpperCAmelCase : Any = word[:-4] __UpperCAmelCase : Union[str, Any] = word words.append(lowercase__) return " ".join(lowercase__) def A( self , lowercase__): __UpperCAmelCase : Union[str, Any] = [] __UpperCAmelCase : Optional[int] = re.findall(r'''\S+\n?''' , lowercase__) for token in words: split_tokens.extend(list(self.bpe(lowercase__).split(''' '''))) return split_tokens def A( self , lowercase__): __UpperCAmelCase : Any = token.lower() return self.encoder.get(lowercase__ , self.encoder.get(self.unk_token)) def A( self , lowercase__): return self.decoder.get(lowercase__ , self.unk_token) def A( self , lowercase__): __UpperCAmelCase : List[str] = ''' '''.join(lowercase__).replace('''@@ ''' , '''''').strip() return out_string def A( self , lowercase__ , lowercase__ = None): if not os.path.isdir(lowercase__): logger.error(F"Vocabulary path ({save_directory}) should be a directory") return __UpperCAmelCase : int = os.path.join( lowercase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) __UpperCAmelCase : List[str] = os.path.join( lowercase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file''']) with open(lowercase__ , '''w''' , encoding='''utf-8''') as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowercase__ , ensure_ascii=lowercase__) + '''\n''') __UpperCAmelCase : List[str] = 0 with open(lowercase__ , '''w''' , encoding='''utf-8''') as writer: writer.write('''#version: 0.2\n''') for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowercase__: kv[1]): if index != token_index: logger.warning( F"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." ''' Please check that the tokenizer is not corrupted!''') __UpperCAmelCase : List[Any] = token_index writer.write(''' '''.join(lowercase__) + '''\n''') index += 1 return vocab_file, merge_file
714
from typing import Dict, Optional import numpy as np import datasets lowerCAmelCase = """ IoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union between the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation, the mean IoU of the image is calculated by taking the IoU of each class and averaging them. """ lowerCAmelCase = """ Args: predictions (`List[ndarray]`): List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. references (`List[ndarray]`): List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. num_labels (`int`): Number of classes (categories). ignore_index (`int`): Index that will be ignored during evaluation. nan_to_num (`int`, *optional*): If specified, NaN values will be replaced by the number defined by the user. label_map (`dict`, *optional*): If specified, dictionary mapping old label indices to new label indices. reduce_labels (`bool`, *optional*, defaults to `False`): Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background, and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255. Returns: `Dict[str, float | ndarray]` comprising various elements: - *mean_iou* (`float`): Mean Intersection-over-Union (IoU averaged over all categories). - *mean_accuracy* (`float`): Mean accuracy (averaged over all categories). - *overall_accuracy* (`float`): Overall accuracy on all images. - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`): Per category accuracy. - *per_category_iou* (`ndarray` of shape `(num_labels,)`): Per category IoU. Examples: >>> import numpy as np >>> mean_iou = datasets.load_metric(\"mean_iou\") >>> # suppose one has 3 different segmentation maps predicted >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]]) >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]]) >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]]) >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]]) >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]]) >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]]) >>> predicted = [predicted_1, predicted_2, predicted_3] >>> ground_truth = [actual_1, actual_2, actual_3] >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False) >>> print(results) # doctest: +NORMALIZE_WHITESPACE {'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), 'per_category_accuracy': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])} """ lowerCAmelCase = """\ @software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020, author = {{MMSegmentation Contributors}}, license = {Apache-2.0}, month = {7}, title = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}}, url = {https://github.com/open-mmlab/mmsegmentation}, year = {2020} }""" def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , lowercase_ = False , ) -> Optional[Any]: '''simple docstring''' if label_map is not None: for old_id, new_id in label_map.items(): __UpperCAmelCase : List[str] = new_id # turn into Numpy arrays __UpperCAmelCase : Tuple = np.array(lowercase_ ) __UpperCAmelCase : str = np.array(lowercase_ ) if reduce_labels: __UpperCAmelCase : List[Any] = 255 __UpperCAmelCase : str = label - 1 __UpperCAmelCase : Dict = 255 __UpperCAmelCase : str = label != ignore_index __UpperCAmelCase : Optional[int] = np.not_equal(lowercase_ , lowercase_ ) __UpperCAmelCase : List[str] = pred_label[mask] __UpperCAmelCase : Any = np.array(lowercase_ )[mask] __UpperCAmelCase : Optional[Any] = pred_label[pred_label == label] __UpperCAmelCase : Optional[Any] = np.histogram(lowercase_ , bins=lowercase_ , range=(0, num_labels - 1) )[0] __UpperCAmelCase : Any = np.histogram(lowercase_ , bins=lowercase_ , range=(0, num_labels - 1) )[0] __UpperCAmelCase : List[str] = np.histogram(lowercase_ , bins=lowercase_ , range=(0, num_labels - 1) )[0] __UpperCAmelCase : List[Any] = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , lowercase_ = False , ) -> Any: '''simple docstring''' __UpperCAmelCase : List[Any] = np.zeros((num_labels,) , dtype=np.floataa ) __UpperCAmelCase : List[Any] = np.zeros((num_labels,) , dtype=np.floataa ) __UpperCAmelCase : str = np.zeros((num_labels,) , dtype=np.floataa ) __UpperCAmelCase : str = np.zeros((num_labels,) , dtype=np.floataa ) for result, gt_seg_map in zip(lowercase_ , lowercase_ ): __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Tuple = intersect_and_union( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = False , ) -> str: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Any = total_intersect_and_union( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) # compute metrics __UpperCAmelCase : Any = {} __UpperCAmelCase : Union[str, Any] = total_area_intersect.sum() / total_area_label.sum() __UpperCAmelCase : Optional[Any] = total_area_intersect / total_area_union __UpperCAmelCase : List[str] = total_area_intersect / total_area_label __UpperCAmelCase : Optional[int] = np.nanmean(lowercase_ ) __UpperCAmelCase : int = np.nanmean(lowercase_ ) __UpperCAmelCase : List[str] = all_acc __UpperCAmelCase : Any = iou __UpperCAmelCase : str = acc if nan_to_num is not None: __UpperCAmelCase : Any = {metric: np.nan_to_num(lowercase_ , nan=lowercase_ ) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase ( datasets.Metric ): def A( self): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { '''predictions''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16'''))), '''references''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16'''))), }) , reference_urls=[ '''https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py''' ] , ) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = False , ): __UpperCAmelCase : str = mean_iou( results=lowercase__ , gt_seg_maps=lowercase__ , num_labels=lowercase__ , ignore_index=lowercase__ , nan_to_num=lowercase__ , label_map=lowercase__ , reduce_labels=lowercase__ , ) return iou_result
675
0
'''simple docstring''' import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version lowercase : List[Any] = version.parse(importlib_metadata.version('nltk')) if NLTK_VERSION >= version.Version('3.6.4'): from nltk import word_tokenize lowercase : Any = '\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n' lowercase : Optional[int] = '\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n' lowercase : Dict = '\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n \'meteor\': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric(\'meteor\')\n >>> predictions = ["It is a guide to action which ensures that the military always obeys the commands of the party"]\n >>> references = ["It is a guide to action that ensures that the military will forever heed Party commands"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results["meteor"], 4))\n 0.6944\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): """simple docstring""" def __A ( self : List[str] ) -> Union[str, Any]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py"] , reference_urls=[ "https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score", "https://en.wikipedia.org/wiki/METEOR", ] , ) def __A ( self : Any , SCREAMING_SNAKE_CASE : Optional[int] ) -> str: """simple docstring""" import nltk nltk.download("wordnet" ) if NLTK_VERSION >= version.Version("3.6.5" ): nltk.download("punkt" ) if NLTK_VERSION >= version.Version("3.6.6" ): nltk.download("omw-1.4" ) def __A ( self : List[Any] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : int=0.9 , SCREAMING_SNAKE_CASE : Union[str, Any]=3 , SCREAMING_SNAKE_CASE : Union[str, Any]=0.5 ) -> Dict: """simple docstring""" if NLTK_VERSION >= version.Version("3.6.5" ): lowerCAmelCase = [ meteor_score.single_meteor_score( word_tokenize(SCREAMING_SNAKE_CASE ) , word_tokenize(SCREAMING_SNAKE_CASE ) , alpha=SCREAMING_SNAKE_CASE , beta=SCREAMING_SNAKE_CASE , gamma=SCREAMING_SNAKE_CASE ) for ref, pred in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ] else: lowerCAmelCase = [ meteor_score.single_meteor_score(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , alpha=SCREAMING_SNAKE_CASE , beta=SCREAMING_SNAKE_CASE , gamma=SCREAMING_SNAKE_CASE ) for ref, pred in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ] return {"meteor": np.mean(SCREAMING_SNAKE_CASE )}
649
'''simple docstring''' import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def __a ( A__ , A__ , A__ ) -> str: # Initialise PyTorch model lowerCAmelCase = BertConfig.from_json_file(A__ ) print(f"Building PyTorch model from configuration: {config}" ) lowerCAmelCase = BertForPreTraining(A__ ) # Load weights from tf checkpoint load_tf_weights_in_bert(A__ , A__ , A__ ) # Save pytorch-model print(f"Save PyTorch model to {pytorch_dump_path}" ) torch.save(model.state_dict() , A__ ) if __name__ == "__main__": lowercase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--bert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained BERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) lowercase : int = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
649
1
'''simple docstring''' import argparse import copy def _lowerCAmelCase ( lowercase : Tuple ) ->Tuple: """simple docstring""" lowercase__ = {} with open(lowercase ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: lowercase__ = [] _list.append([line.split()[1], line.split()[2]] ) lowercase__ = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: lowercase__ = [] _list.append([line.split()[0], line.split()[2]] ) lowercase__ = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def _lowerCAmelCase ( lowercase : int , lowercase : List[str] ) ->Optional[int]: """simple docstring""" with open(lowercase ) as f: lowercase__ = f.read(1 ) lowercase__ = start_node lowercase__ = [] lowercase__ = start_node lowercase__ = 0 while visiting not in first_solution: lowercase__ = 1_0_0_0_0 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(lowercase ) and k[0] not in first_solution: lowercase__ = k[1] lowercase__ = k[0] first_solution.append(lowercase ) lowercase__ = distance_of_first_solution + int(lowercase ) lowercase__ = best_node first_solution.append(lowercase ) lowercase__ = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 lowercase__ = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 1_0_0_0_0 ) return first_solution, distance_of_first_solution def _lowerCAmelCase ( lowercase : Any , lowercase : str ) ->str: """simple docstring""" lowercase__ = [] for n in solution[1:-1]: lowercase__ = solution.index(lowercase ) for kn in solution[1:-1]: lowercase__ = solution.index(lowercase ) if n == kn: continue lowercase__ = copy.deepcopy(lowercase ) lowercase__ = kn lowercase__ = n lowercase__ = 0 for k in _tmp[:-1]: lowercase__ = _tmp[_tmp.index(lowercase ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: lowercase__ = distance + int(i[1] ) _tmp.append(lowercase ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) lowercase__ = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda lowercase : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def _lowerCAmelCase ( lowercase : Union[str, Any] , lowercase : Optional[int] , lowercase : Optional[Any] , lowercase : Optional[Any] , lowercase : List[str] ) ->Dict: """simple docstring""" lowercase__ = 1 lowercase__ = first_solution lowercase__ = [] lowercase__ = distance_of_first_solution lowercase__ = solution while count <= iters: lowercase__ = find_neighborhood(lowercase , lowercase ) lowercase__ = 0 lowercase__ = neighborhood[index_of_best_solution] lowercase__ = len(lowercase ) - 1 lowercase__ = False while not found: lowercase__ = 0 while i < len(lowercase ): if best_solution[i] != solution[i]: lowercase__ = best_solution[i] lowercase__ = solution[i] break lowercase__ = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) lowercase__ = True lowercase__ = best_solution[:-1] lowercase__ = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: lowercase__ = cost lowercase__ = solution else: lowercase__ = index_of_best_solution + 1 lowercase__ = neighborhood[index_of_best_solution] if len(lowercase ) >= size: tabu_list.pop(0 ) lowercase__ = count + 1 return best_solution_ever, best_cost def _lowerCAmelCase ( lowercase : str=None ) ->int: """simple docstring""" lowercase__ = generate_neighbours(args.File ) lowercase__ , lowercase__ = generate_first_solution( args.File , lowercase ) lowercase__ , lowercase__ = tabu_search( lowercase , lowercase , lowercase , args.Iterations , args.Size , ) print(F'''Best solution: {best_sol}, with total distance: {best_cost}.''' ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser(description="Tabu Search") parser.add_argument( "-f", "--File", type=str, help="Path to the file containing the data", required=True, ) parser.add_argument( "-i", "--Iterations", type=int, help="How many iterations the algorithm should perform", required=True, ) parser.add_argument( "-s", "--Size", type=int, help="Size of the tabu list", required=True ) # Pass the arguments to main method main(parser.parse_args())
318
'''simple docstring''' # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. _lowerCAmelCase = abspath(join(dirname(__file__), "src")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="ignore", category=FutureWarning) def _lowerCAmelCase ( lowercase : Any ) ->Any: """simple docstring""" config.addinivalue_line( '''markers''' , '''is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested''' ) config.addinivalue_line( '''markers''' , '''is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested''' ) config.addinivalue_line('''markers''' , '''is_pipeline_test: mark test to run only when pipelines are tested''' ) config.addinivalue_line('''markers''' , '''is_staging_test: mark test to run only in the staging environment''' ) config.addinivalue_line('''markers''' , '''accelerate_tests: mark test that require accelerate''' ) config.addinivalue_line('''markers''' , '''tool_tests: mark the tool tests that are run on their specific schedule''' ) def _lowerCAmelCase ( lowercase : Optional[Any] ) ->List[Any]: """simple docstring""" from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(lowercase ) def _lowerCAmelCase ( lowercase : str ) ->Optional[Any]: """simple docstring""" from transformers.testing_utils import pytest_terminal_summary_main lowercase__ = terminalreporter.config.getoption('''--make-reports''' ) if make_reports: pytest_terminal_summary_main(lowercase , id=lowercase ) def _lowerCAmelCase ( lowercase : Any , lowercase : Dict ) ->Tuple: """simple docstring""" if exitstatus == 5: lowercase__ = 0 # Doctest custom flag to ignore output. _lowerCAmelCase = doctest.register_optionflag("IGNORE_RESULT") _lowerCAmelCase = doctest.OutputChecker class __A ( a ): """simple docstring""" def snake_case_( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )-> int: if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase = CustomOutputChecker _lowerCAmelCase = HfDoctestModule _lowerCAmelCase = HfDocTestParser
318
1
# Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version UpperCAmelCase = get_logger(__name__) class A_ : '''simple docstring''' _UpperCamelCase : Dict = """dummy_data""" _UpperCamelCase : Optional[int] = """datasets""" _UpperCamelCase : Tuple = False def __init__( self , snake_case , snake_case , snake_case , snake_case = None , snake_case = False , snake_case = True , snake_case = None , ): lowercase = 0 lowercase = dataset_name lowercase = cache_dir lowercase = use_local_dummy_data lowercase = config # download_callbacks take a single url as input lowercase = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root lowercase = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general lowercase = str(snake_case ) # to be downloaded lowercase = None lowercase = None @property def SCREAMING_SNAKE_CASE__ ( self ): if self._dummy_file is None: lowercase = self.download_dummy_data() return self._dummy_file @property def SCREAMING_SNAKE_CASE__ ( self ): if self.config is not None: # structure is dummy / config_name / version_name return os.path.join('dummy' , self.config.name , self.version_name ) # structure is dummy / version_name return os.path.join('dummy' , self.version_name ) @property def SCREAMING_SNAKE_CASE__ ( self ): return os.path.join(self.dummy_data_folder , 'dummy_data.zip' ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) lowercase = cached_path( snake_case , cache_dir=self.cache_dir , extract_compressed_file=snake_case , force_extract=snake_case ) return os.path.join(snake_case , self.dummy_file_name ) @property def SCREAMING_SNAKE_CASE__ ( self ): return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file ) @property def SCREAMING_SNAKE_CASE__ ( self ): if self._bucket_url is None: lowercase = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , '/' ) ) return self._bucket_url @property def SCREAMING_SNAKE_CASE__ ( self ): # return full path if its a dir if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , '/' ).split('/' )[:-1] ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , *snake_case ): if self.load_existing_dummy_data: # dummy data is downloaded and tested lowercase = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned lowercase = self.dummy_file_name # special case when data_url is a dict if isinstance(snake_case , snake_case ): return self.create_dummy_data_dict(snake_case , snake_case ) elif isinstance(snake_case , (list, tuple) ): return self.create_dummy_data_list(snake_case , snake_case ) else: return self.create_dummy_data_single(snake_case , snake_case ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , *snake_case ): return self.download_and_extract(snake_case ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case ): return self.download_and_extract(snake_case ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , *snake_case , **snake_case ): return path def SCREAMING_SNAKE_CASE__ ( self ): return {} def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case ): lowercase = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(snake_case , snake_case ): for single_url in single_urls: download_callback(snake_case ) else: lowercase = single_urls download_callback(snake_case ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(snake_case , snake_case ): lowercase = [os.path.join(snake_case , urllib.parse.quote_plus(Path(snake_case ).name ) ) for x in single_urls] else: lowercase = single_urls lowercase = os.path.join(snake_case , urllib.parse.quote_plus(Path(snake_case ).name ) ) lowercase = value # make sure that values are unique if all(isinstance(snake_case , snake_case ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique lowercase = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case ): lowercase = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one lowercase = all(bool(re.findall('[0-9]{3,}-of-[0-9]{3,}' , snake_case ) ) for url in data_url ) lowercase = all( url.startswith('https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed' ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): lowercase = [data_url[0]] * len(snake_case ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(snake_case ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus lowercase = os.path.join(snake_case , urllib.parse.quote_plus(single_url.split('/' )[-1] ) ) dummy_data_list.append(snake_case ) return dummy_data_list def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case ): for download_callback in self.download_callbacks: download_callback(snake_case ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus lowercase = os.path.join(snake_case , urllib.parse.quote_plus(data_url.split('/' )[-1] ) ) if os.path.exists(snake_case ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def SCREAMING_SNAKE_CASE__ ( self ): pass def SCREAMING_SNAKE_CASE__ ( self ): pass def SCREAMING_SNAKE_CASE__ ( self , snake_case ): def _iter_archive_members(snake_case ): # this preserves the order of the members inside the ZIP archive lowercase = Path(self.dummy_file ).parent lowercase = path.relative_to(snake_case ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: lowercase = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(snake_case ) lowercase = Path(snake_case ) lowercase = _iter_archive_members(snake_case ) if self.use_local_dummy_data else path.rglob('*' ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith(('.', '__') ): yield file_path.relative_to(snake_case ).as_posix(), file_path.open('rb' ) def SCREAMING_SNAKE_CASE__ ( self , snake_case ): if not isinstance(snake_case , snake_case ): lowercase = [paths] for path in paths: if os.path.isfile(snake_case ): if os.path.basename(snake_case ).startswith(('.', '__') ): return yield path else: for dirpath, dirnames, filenames in os.walk(snake_case ): if os.path.basename(snake_case ).startswith(('.', '__') ): continue dirnames.sort() for filename in sorted(snake_case ): if filename.startswith(('.', '__') ): continue yield os.path.join(snake_case , snake_case )
84
"""simple docstring""" import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor A_ = logging.get_logger(__name__) class __lowerCAmelCase ( UpperCAmelCase ): '''simple docstring''' def __init__( self: List[Any] , *UpperCamelCase_: Union[str, Any] , **UpperCamelCase_: Tuple ): warnings.warn( "The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use DonutImageProcessor instead." , UpperCamelCase_ , ) super().__init__(*UpperCamelCase_ , **UpperCamelCase_ )
391
0
'''simple docstring''' import operator as op _UpperCamelCase : Optional[Any] = "scaler.pt" _UpperCamelCase : Union[str, Any] = "pytorch_model" _UpperCamelCase : str = "random_states" _UpperCamelCase : Dict = "optimizer" _UpperCamelCase : str = "scheduler" _UpperCamelCase : Tuple = "pytorch_model.bin" _UpperCamelCase : int = "pytorch_model.bin.index.json" _UpperCamelCase : List[Any] = "model.safetensors" _UpperCamelCase : Dict = "model.safetensors.index.json" _UpperCamelCase : List[Any] = "1.10.2" _UpperCamelCase : Any = "py38" _UpperCamelCase : str = "4.17.0" _UpperCamelCase : int = ["ml.p3.16xlarge", "ml.p3dn.24xlarge", "ml.p4dn.24xlarge"] _UpperCamelCase : List[Any] = ["FULL_SHARD", "SHARD_GRAD_OP", "NO_SHARD", "HYBRID_SHARD", "HYBRID_SHARD_ZERO2"] _UpperCamelCase : Dict = ["TRANSFORMER_BASED_WRAP", "SIZE_BASED_WRAP", "NO_WRAP"] _UpperCamelCase : Dict = ["BACKWARD_PRE", "BACKWARD_POST", "NO_PREFETCH"] _UpperCamelCase : List[Any] = ["FULL_STATE_DICT", "LOCAL_STATE_DICT", "SHARDED_STATE_DICT"] _UpperCamelCase : Tuple = "2.0.1" _UpperCamelCase : List[Any] = ["pdsh", "standard", "openmpi", "mvapich"] _UpperCamelCase : Any = ["default", "reduce-overhead", "max-autotune"] _UpperCamelCase : Optional[Any] = {">": op.gt, ">=": op.ge, "==": op.eq, "!=": op.ne, "<=": op.le, "<": op.lt} # These are the args for `torch.distributed.launch` for pytorch < 1.9 _UpperCamelCase : Union[str, Any] = [ "nnodes", "nproc_per_node", "rdzv_backend", "rdzv_endpoint", "rdzv_id", "rdzv_conf", "standalone", "max_restarts", "monitor_interval", "start_method", "role", "module", "m", "no_python", "run_path", "log_dir", "r", "redirects", "t", "tee", "node_rank", "master_addr", "master_port", ] _UpperCamelCase : Any = ["DEEPSPEED", "MULTI_GPU", "FSDP", "MEGATRON_LM"] _UpperCamelCase : Optional[int] = ["DEEPSPEED", "MULTI_XPU", "FSDP"]
514
'''simple docstring''' import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch _UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) class _snake_case : def __init__( self , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ): '''simple docstring''' if not conversation_id: lowerCAmelCase = uuid.uuida() if past_user_inputs is None: lowerCAmelCase = [] if generated_responses is None: lowerCAmelCase = [] lowerCAmelCase = conversation_id lowerCAmelCase = past_user_inputs lowerCAmelCase = generated_responses lowerCAmelCase = text def __eq__( self , _SCREAMING_SNAKE_CASE ): '''simple docstring''' if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def _SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = False ): '''simple docstring''' if self.new_user_input: if overwrite: logger.warning( F'User input added while unprocessed input was existing: "{self.new_user_input}" was overwritten ' F'with: "{text}".' ) lowerCAmelCase = text else: logger.warning( F'User input added while unprocessed input was existing: "{self.new_user_input}" new input ' F'ignored: "{text}". Set `overwrite` to True to overwrite unprocessed user input' ) else: lowerCAmelCase = text def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) lowerCAmelCase = None def _SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ): '''simple docstring''' self.generated_responses.append(_SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self ): '''simple docstring''' lowerCAmelCase = F'Conversation id: {self.uuid} \n' for is_user, text in self.iter_texts(): lowerCAmelCase = 'user' if is_user else 'bot' output += F'{name} >> {text} \n' return output @add_end_docstrings( a_ , R''' min_length_for_response (`int`, *optional*, defaults to 32): The minimum length (in number of tokens) for a response. minimum_tokens (`int`, *optional*, defaults to 10): The minimum length of tokens to leave for a response. ''' , ) class _snake_case ( a_ ): def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): '''simple docstring''' super().__init__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if self.tokenizer.pad_token_id is None: lowerCAmelCase = self.tokenizer.eos_token def _SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCAmelCase = {} lowerCAmelCase = {} lowerCAmelCase = {} if min_length_for_response is not None: lowerCAmelCase = min_length_for_response if minimum_tokens is not None: lowerCAmelCase = minimum_tokens if "max_length" in generate_kwargs: lowerCAmelCase = generate_kwargs['max_length'] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: lowerCAmelCase = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(_SCREAMING_SNAKE_CASE ) return preprocess_params, forward_params, postprocess_params def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=0 , **_SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCAmelCase = super().__call__(_SCREAMING_SNAKE_CASE , num_workers=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and len(_SCREAMING_SNAKE_CASE ) == 1: return outputs[0] return outputs def _SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=32 ): '''simple docstring''' if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise ValueError('ConversationalPipeline, expects Conversation as inputs' ) if conversation.new_user_input is None: raise ValueError( F'Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. ' 'Add user inputs with the conversation\'s `add_user_input` method' ) if hasattr(self.tokenizer , '_build_conversation_input_ids' ): lowerCAmelCase = self.tokenizer._build_conversation_input_ids(_SCREAMING_SNAKE_CASE ) else: # If the tokenizer cannot handle conversations, we default to only the old version lowerCAmelCase = self._legacy_parse_and_tokenize(_SCREAMING_SNAKE_CASE ) if self.framework == "pt": lowerCAmelCase = torch.LongTensor([input_ids] ) elif self.framework == "tf": lowerCAmelCase = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def _SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=10 , **_SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCAmelCase = generate_kwargs.get('max_length' , self.model.config.max_length ) lowerCAmelCase = model_inputs['input_ids'].shape[1] if max_length - minimum_tokens < n: logger.warning(F'Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})' ) lowerCAmelCase = max_length - minimum_tokens lowerCAmelCase = model_inputs['input_ids'][:, -trim:] if "attention_mask" in model_inputs: lowerCAmelCase = model_inputs['attention_mask'][:, -trim:] lowerCAmelCase = model_inputs.pop('conversation' ) lowerCAmelCase = max_length lowerCAmelCase = self.model.generate(**_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if self.model.config.is_encoder_decoder: lowerCAmelCase = 1 else: lowerCAmelCase = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def _SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=True ): '''simple docstring''' lowerCAmelCase = model_outputs['output_ids'] lowerCAmelCase = self.tokenizer.decode( output_ids[0] , skip_special_tokens=_SCREAMING_SNAKE_CASE , clean_up_tokenization_spaces=_SCREAMING_SNAKE_CASE , ) lowerCAmelCase = model_outputs['conversation'] conversation.mark_processed() conversation.append_response(_SCREAMING_SNAKE_CASE ) return conversation def _SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCAmelCase = self.tokenizer.eos_token_id lowerCAmelCase = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) ) if len(_SCREAMING_SNAKE_CASE ) > self.tokenizer.model_max_length: lowerCAmelCase = input_ids[-self.tokenizer.model_max_length :] return input_ids
514
1
import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model _lowerCamelCase : str = '''0.12''' # assumed parallelism: 8 if is_torch_available(): import torch def A__ ( __A : Optional[int] , __A : Dict , __A : int=None ) ->int: if rng is None: __A =random.Random() __A =1 for dim in shape: total_dims *= dim __A =[] for _ in range(__A ): values.append(rng.randint(0 , vocab_size - 1 ) ) __A =np.array(__A , dtype=jnp.intaa ).reshape(__A ) return output def A__ ( __A : List[Any] , __A : Any=None ) ->Tuple: __A =ids_tensor(__A , vocab_size=2 , rng=__A ) # make sure that at least one token is attended to for each batch __A =1 return attn_mask @require_flax class lowerCAmelCase__ : '''simple docstring''' lowercase_ = None lowercase_ = () def __UpperCamelCase ( self ): '''simple docstring''' __A , __A =self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 __A =2 __A =inputs['''input_ids'''].shape[-1] // 2 __A =inputs['''input_ids'''][:max_batch_size, :sequence_length] __A =jnp.ones_like(lowercase__ ) __A =attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens __A =input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` __A =config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def __UpperCamelCase ( self ): '''simple docstring''' __A , __A , __A , __A =self._get_input_ids_and_config() __A =False __A =max_length __A =0 for model_class in self.all_generative_model_classes: __A =model_class(lowercase__ ) __A =model_class.__name__[4:] # Skip the "Flax" at the beginning __A =getattr(lowercase__ , lowercase__ ) __A =pt_model_class(lowercase__ ).eval() __A =load_flax_weights_in_pytorch_model(lowercase__ , flax_model.params ) __A =flax_model.generate(lowercase__ ).sequences __A =pt_model.generate(torch.tensor(lowercase__ , dtype=torch.long ) ) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: __A =flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist() , flax_generation_outputs.tolist() ) def __UpperCamelCase ( self ): '''simple docstring''' __A , __A , __A , __A =self._get_input_ids_and_config() __A =False __A =max_length for model_class in self.all_generative_model_classes: __A =model_class(lowercase__ ) __A =model.generate(lowercase__ ).sequences self.assertEqual(generation_outputs.shape[-1] , lowercase__ ) __A =jit(model.generate ) __A =jit_generate(lowercase__ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __UpperCamelCase ( self ): '''simple docstring''' __A , __A , __A , __A =self._get_input_ids_and_config() __A =True __A =max_length for model_class in self.all_generative_model_classes: __A =model_class(lowercase__ ) __A =model.generate(lowercase__ ).sequences self.assertEqual(generation_outputs.shape[-1] , lowercase__ ) __A =jit(model.generate ) __A =jit_generate(lowercase__ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __UpperCamelCase ( self ): '''simple docstring''' __A , __A , __A , __A =self._get_input_ids_and_config() __A =False __A =max_length __A =2 for model_class in self.all_generative_model_classes: __A =model_class(lowercase__ ) __A =model.generate(lowercase__ ).sequences self.assertEqual(generation_outputs.shape[-1] , lowercase__ ) __A =jit(model.generate ) __A =jit_generate(lowercase__ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __UpperCamelCase ( self ): '''simple docstring''' __A , __A , __A , __A =self._get_input_ids_and_config() __A =False __A =max_length __A =2 __A =2 for model_class in self.all_generative_model_classes: __A =model_class(lowercase__ ) __A =model.generate(lowercase__ ).sequences self.assertEqual(generation_outputs.shape[0] , input_ids.shape[0] * config.num_return_sequences ) def __UpperCamelCase ( self ): '''simple docstring''' __A , __A , __A , __A =self._get_input_ids_and_config() __A =True __A =max_length __A =0.8 __A =1_0 __A =0.3 __A =1 __A =8 __A =9 for model_class in self.all_generative_model_classes: __A =model_class(lowercase__ ) __A =model.generate(lowercase__ ).sequences self.assertEqual(generation_outputs.shape[-1] , lowercase__ ) __A =jit(model.generate ) __A =jit_generate(lowercase__ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __UpperCamelCase ( self ): '''simple docstring''' __A , __A , __A , __A =self._get_input_ids_and_config() __A =max_length __A =1 __A =8 __A =9 for model_class in self.all_generative_model_classes: __A =model_class(lowercase__ ) __A =model.generate(lowercase__ ).sequences self.assertEqual(generation_outputs.shape[-1] , lowercase__ ) __A =jit(model.generate ) __A =jit_generate(lowercase__ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __UpperCamelCase ( self ): '''simple docstring''' __A , __A , __A , __A =self._get_input_ids_and_config() __A =max_length __A =2 __A =1 __A =8 __A =9 for model_class in self.all_generative_model_classes: __A =model_class(lowercase__ ) __A =model.generate(lowercase__ ).sequences self.assertEqual(generation_outputs.shape[-1] , lowercase__ ) __A =jit(model.generate ) __A =jit_generate(lowercase__ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __UpperCamelCase ( self ): '''simple docstring''' __A , __A , __A , __A =self._get_input_ids_and_config() # pad attention mask on the left __A =attention_mask.at[(0, 0)].set(0 ) __A =False __A =max_length for model_class in self.all_generative_model_classes: __A =model_class(lowercase__ ) __A =model.generate(lowercase__ , attention_mask=lowercase__ ).sequences self.assertEqual(generation_outputs.shape[-1] , lowercase__ ) __A =jit(model.generate ) __A =jit_generate(lowercase__ , attention_mask=lowercase__ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __UpperCamelCase ( self ): '''simple docstring''' __A , __A , __A , __A =self._get_input_ids_and_config() # pad attention mask on the left __A =attention_mask.at[(0, 0)].set(0 ) __A =True __A =max_length for model_class in self.all_generative_model_classes: __A =model_class(lowercase__ ) __A =model.generate(lowercase__ , attention_mask=lowercase__ ).sequences self.assertEqual(generation_outputs.shape[-1] , lowercase__ ) __A =jit(model.generate ) __A =jit_generate(lowercase__ , attention_mask=lowercase__ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __UpperCamelCase ( self ): '''simple docstring''' __A , __A , __A , __A =self._get_input_ids_and_config() # pad attention mask on the left __A =attention_mask.at[(0, 0)].set(0 ) __A =2 __A =max_length for model_class in self.all_generative_model_classes: __A =model_class(lowercase__ ) __A =model.generate(lowercase__ , attention_mask=lowercase__ ).sequences self.assertEqual(generation_outputs.shape[-1] , lowercase__ ) __A =jit(model.generate ) __A =jit_generate(lowercase__ , attention_mask=lowercase__ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) @require_flax class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self ): '''simple docstring''' __A =AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-bert''' ) __A =FlaxAutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) __A ='''Hello world''' __A =tokenizer(lowercase__ , return_tensors='''np''' ).input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(lowercase__ , '''do_samples''' ): model.generate(lowercase__ , do_samples=lowercase__ ) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(lowercase__ , '''foo''' ): __A ={'''foo''': '''bar'''} model.generate(lowercase__ , **lowercase__ )
184
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss _lowerCamelCase : List[str] = pytest.mark.integration @require_faiss class lowerCAmelCase__ ( __magic_name__ ): '''simple docstring''' def __UpperCamelCase ( self ): '''simple docstring''' __A =Dataset.from_dict({'''filename''': ['''my_name-train''' + '''_''' + str(lowercase__ ) for x in np.arange(3_0 ).tolist()]} ) return dset def __UpperCamelCase ( self ): '''simple docstring''' import faiss __A =self._create_dummy_dataset() __A =dset.map( lambda lowercase__ , lowercase__ : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=lowercase__ , keep_in_memory=lowercase__ ) __A =dset.add_faiss_index('''vecs''' , batch_size=1_0_0 , metric_type=faiss.METRIC_INNER_PRODUCT ) __A , __A =dset.get_nearest_examples('''vecs''' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' ) dset.drop_index('''vecs''' ) def __UpperCamelCase ( self ): '''simple docstring''' import faiss __A =self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((3_0, 5) ) * np.arange(3_0 ).reshape(-1 , 1 ) , index_name='''vecs''' , batch_size=1_0_0 , metric_type=faiss.METRIC_INNER_PRODUCT , ) __A , __A =dset.get_nearest_examples('''vecs''' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' ) def __UpperCamelCase ( self ): '''simple docstring''' import faiss __A =self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((3_0, 5) ) * np.arange(3_0 ).reshape(-1 , 1 ) , index_name='''vecs''' , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=lowercase__ ) as tmp_file: dset.save_faiss_index('''vecs''' , tmp_file.name ) dset.load_faiss_index('''vecs2''' , tmp_file.name ) os.unlink(tmp_file.name ) __A , __A =dset.get_nearest_examples('''vecs2''' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' ) def __UpperCamelCase ( self ): '''simple docstring''' __A =self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((3_0, 5) ) * np.arange(3_0 ).reshape(-1 , 1 ) , index_name='''vecs''' ) dset.drop_index('''vecs''' ) self.assertRaises(lowercase__ , partial(dset.get_nearest_examples , '''vecs2''' , np.ones(5 , dtype=np.floataa ) ) ) def __UpperCamelCase ( self ): '''simple docstring''' from elasticsearch import Elasticsearch __A =self._create_dummy_dataset() with patch('''elasticsearch.Elasticsearch.search''' ) as mocked_search, patch( '''elasticsearch.client.IndicesClient.create''' ) as mocked_index_create, patch('''elasticsearch.helpers.streaming_bulk''' ) as mocked_bulk: __A ={'''acknowledged''': True} mocked_bulk.return_value([(True, None)] * 3_0 ) __A ={'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 2_9}]}} __A =Elasticsearch() dset.add_elasticsearch_index('''filename''' , es_client=lowercase__ ) __A , __A =dset.get_nearest_examples('''filename''' , '''my_name-train_29''' ) self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' ) @require_faiss class lowerCAmelCase__ ( __magic_name__ ): '''simple docstring''' def __UpperCamelCase ( self ): '''simple docstring''' import faiss __A =FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 1_0 ) # single query __A =np.zeros(5 , dtype=np.floataa ) __A =1 __A , __A =index.search(lowercase__ ) self.assertRaises(lowercase__ , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries __A =np.eye(5 , dtype=np.floataa )[::-1] __A , __A =index.search_batch(lowercase__ ) self.assertRaises(lowercase__ , index.search_batch , queries[0] ) __A =[scores[0] for scores in total_scores] __A =[indices[0] for indices in total_indices] self.assertGreater(np.min(lowercase__ ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , lowercase__ ) def __UpperCamelCase ( self ): '''simple docstring''' import faiss __A =FaissIndex(string_factory='''Flat''' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) __A =FaissIndex(string_factory='''LSH''' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(lowercase__ ): __A =FaissIndex(string_factory='''Flat''' , custom_index=faiss.IndexFlat(5 ) ) def __UpperCamelCase ( self ): '''simple docstring''' import faiss __A =faiss.IndexFlat(5 ) __A =FaissIndex(custom_index=lowercase__ ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def __UpperCamelCase ( self ): '''simple docstring''' import faiss __A =FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=lowercase__ ) as tmp_file: index.save(tmp_file.name ) __A =FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) __A =np.zeros(5 , dtype=np.floataa ) __A =1 __A , __A =index.search(lowercase__ ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def A__ ( __A : Dict ) ->List[Any]: import faiss __A =FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) __A ='''index.faiss''' __A =F'''mock://{index_name}''' index.save(__A , storage_options=mockfs.storage_options ) __A =FaissIndex.load(__A , storage_options=mockfs.storage_options ) __A =np.zeros(5 , dtype=np.floataa ) __A =1 __A , __A =index.search(__A ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class lowerCAmelCase__ ( __magic_name__ ): '''simple docstring''' def __UpperCamelCase ( self ): '''simple docstring''' from elasticsearch import Elasticsearch with patch('''elasticsearch.Elasticsearch.search''' ) as mocked_search, patch( '''elasticsearch.client.IndicesClient.create''' ) as mocked_index_create, patch('''elasticsearch.helpers.streaming_bulk''' ) as mocked_bulk: __A =Elasticsearch() __A ={'''acknowledged''': True} __A =ElasticSearchIndex(es_client=lowercase__ ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(['''foo''', '''bar''', '''foobar'''] ) # single query __A ='''foo''' __A ={'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 0}]}} __A , __A =index.search(lowercase__ ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout __A ='''foo''' __A ={'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 0}]}} __A , __A =index.search(lowercase__ , request_timeout=3_0 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries __A =['''foo''', '''bar''', '''foobar'''] __A ={'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 1}]}} __A , __A =index.search_batch(lowercase__ ) __A =[scores[0] for scores in total_scores] __A =[indices[0] for indices in total_indices] self.assertGreater(np.min(lowercase__ ) , 0 ) self.assertListEqual([1, 1, 1] , lowercase__ ) # batched queries with timeout __A =['''foo''', '''bar''', '''foobar'''] __A ={'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 1}]}} __A , __A =index.search_batch(lowercase__ , request_timeout=3_0 ) __A =[scores[0] for scores in total_scores] __A =[indices[0] for indices in total_indices] self.assertGreater(np.min(lowercase__ ) , 0 ) self.assertListEqual([1, 1, 1] , lowercase__ )
184
1
lowerCamelCase_ : str = frozenset( [ """prompt""", """height""", """width""", """guidance_scale""", """negative_prompt""", """prompt_embeds""", """negative_prompt_embeds""", """cross_attention_kwargs""", ] ) lowerCamelCase_ : int = frozenset(["""prompt""", """negative_prompt"""]) lowerCamelCase_ : Optional[int] = frozenset([]) lowerCamelCase_ : Dict = frozenset(["""image"""]) lowerCamelCase_ : Union[str, Any] = frozenset( [ """image""", """height""", """width""", """guidance_scale""", ] ) lowerCamelCase_ : Tuple = frozenset(["""image"""]) lowerCamelCase_ : str = frozenset( [ """prompt""", """image""", """height""", """width""", """guidance_scale""", """negative_prompt""", """prompt_embeds""", """negative_prompt_embeds""", ] ) lowerCamelCase_ : str = frozenset(["""prompt""", """image""", """negative_prompt"""]) lowerCamelCase_ : int = frozenset( [ # Text guided image variation with an image mask """prompt""", """image""", """mask_image""", """height""", """width""", """guidance_scale""", """negative_prompt""", """prompt_embeds""", """negative_prompt_embeds""", ] ) lowerCamelCase_ : Any = frozenset(["""prompt""", """image""", """mask_image""", """negative_prompt"""]) lowerCamelCase_ : Any = frozenset( [ # image variation with an image mask """image""", """mask_image""", """height""", """width""", """guidance_scale""", ] ) lowerCamelCase_ : Optional[Any] = frozenset(["""image""", """mask_image"""]) lowerCamelCase_ : Dict = frozenset( [ """example_image""", """image""", """mask_image""", """height""", """width""", """guidance_scale""", ] ) lowerCamelCase_ : Dict = frozenset(["""example_image""", """image""", """mask_image"""]) lowerCamelCase_ : Any = frozenset(["""class_labels"""]) lowerCamelCase_ : Tuple = frozenset(["""class_labels"""]) lowerCamelCase_ : List[Any] = frozenset(["""batch_size"""]) lowerCamelCase_ : List[Any] = frozenset([]) lowerCamelCase_ : Dict = frozenset(["""batch_size"""]) lowerCamelCase_ : Any = frozenset([]) lowerCamelCase_ : int = frozenset( [ """prompt""", """audio_length_in_s""", """guidance_scale""", """negative_prompt""", """prompt_embeds""", """negative_prompt_embeds""", """cross_attention_kwargs""", ] ) lowerCamelCase_ : Optional[Any] = frozenset(["""prompt""", """negative_prompt"""]) lowerCamelCase_ : Tuple = frozenset(["""input_tokens"""]) lowerCamelCase_ : Tuple = frozenset(["""input_tokens"""])
670
import random def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase = False ) -> dict: UpperCamelCase_: dict = {i: [] for i in range(lowerCamelCase )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(lowerCamelCase ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(lowerCamelCase ): for j in range(i + 1 , lowerCamelCase ): if random.random() < probability: graph[i].append(lowerCamelCase ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(lowerCamelCase ) return graph def A__ ( lowerCamelCase ) -> dict: return { i: [j for j in range(lowerCamelCase ) if i != j] for i in range(lowerCamelCase ) } if __name__ == "__main__": import doctest doctest.testmod()
670
1
'''simple docstring''' class UpperCamelCase__ : '''simple docstring''' def __init__( self ,_lowerCAmelCase ): lowerCamelCase__ = size lowerCamelCase__ = [0] * size lowerCamelCase__ = [0] * size @staticmethod def UpperCamelCase_ ( _lowerCAmelCase ): return index | (index + 1) @staticmethod def UpperCamelCase_ ( _lowerCAmelCase ): return (index & (index + 1)) - 1 def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = value while index < self.size: lowerCamelCase__ = self.get_prev(_lowerCAmelCase ) + 1 if current_left_border == index: lowerCamelCase__ = value else: lowerCamelCase__ = max(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = self.get_next(_lowerCAmelCase ) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ): right -= 1 # Because of right is exclusive lowerCamelCase__ = 0 while left <= right: lowerCamelCase__ = self.get_prev(_lowerCAmelCase ) if left <= current_left: lowerCamelCase__ = max(_lowerCAmelCase ,self.tree[right] ) lowerCamelCase__ = current_left else: lowerCamelCase__ = max(_lowerCAmelCase ,self.arr[right] ) right -= 1 return result if __name__ == "__main__": import doctest doctest.testmod()
50
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase = { """configuration_graphormer""": ["""GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GraphormerConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ """GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """GraphormerForGraphClassification""", """GraphormerModel""", """GraphormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_graphormer import ( GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST, GraphormerForGraphClassification, GraphormerModel, GraphormerPreTrainedModel, ) else: import sys lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
525
0
from ....configuration_utils import PretrainedConfig from ....utils import logging lowercase__ =logging.get_logger(__name__) lowercase__ ={ 'Visual-Attention-Network/van-base': ( 'https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json' ), } class UpperCamelCase__ ( __lowercase ): _SCREAMING_SNAKE_CASE : str = "van" def __init__(self : List[str] , snake_case_ : int=2_2_4 , snake_case_ : Dict=3 , snake_case_ : Any=[7, 3, 3, 3] , snake_case_ : Dict=[4, 2, 2, 2] , snake_case_ : Tuple=[6_4, 1_2_8, 3_2_0, 5_1_2] , snake_case_ : Union[str, Any]=[3, 3, 1_2, 3] , snake_case_ : Optional[int]=[8, 8, 4, 4] , snake_case_ : Dict="gelu" , snake_case_ : Tuple=0.02 , snake_case_ : Dict=1E-6 , snake_case_ : str=1E-2 , snake_case_ : str=0.0 , snake_case_ : str=0.0 , **snake_case_ : Union[str, Any] , ): super().__init__(**snake_case_ ) __a : str = image_size __a : Optional[int] = num_channels __a : Union[str, Any] = patch_sizes __a : Any = strides __a : int = hidden_sizes __a : Union[str, Any] = depths __a : List[Any] = mlp_ratios __a : List[Any] = hidden_act __a : int = initializer_range __a : Tuple = layer_norm_eps __a : str = layer_scale_init_value __a : List[Any] = drop_path_rate __a : List[str] = dropout_rate
713
import contextlib import copy import random from typing import Any, Dict, Iterable, Optional, Union import numpy as np import torch from .utils import deprecate, is_transformers_available if is_transformers_available(): import transformers def __UpperCamelCase ( lowerCAmelCase__ : int ): random.seed(lowerCAmelCase__ ) np.random.seed(lowerCAmelCase__ ) torch.manual_seed(lowerCAmelCase__ ) torch.cuda.manual_seed_all(lowerCAmelCase__ ) # ^^ safe to call this function even if cuda is not available class UpperCamelCase__ : def __init__(self : Any , snake_case_ : Iterable[torch.nn.Parameter] , snake_case_ : float = 0.9999 , snake_case_ : float = 0.0 , snake_case_ : int = 0 , snake_case_ : bool = False , snake_case_ : Union[float, int] = 1.0 , snake_case_ : Union[float, int] = 2 / 3 , snake_case_ : Optional[Any] = None , snake_case_ : Dict[str, Any] = None , **snake_case_ : int , ): if isinstance(snake_case_ , torch.nn.Module ): __a : Optional[Any] = ( '''Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. ''' '''Please pass the parameters of the module instead.''' ) deprecate( '''passing a `torch.nn.Module` to `ExponentialMovingAverage`''' , '''1.0.0''' , snake_case_ , standard_warn=snake_case_ , ) __a : Optional[int] = parameters.parameters() # set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility __a : str = True if kwargs.get('''max_value''' , snake_case_ ) is not None: __a : List[Any] = '''The `max_value` argument is deprecated. Please use `decay` instead.''' deprecate('''max_value''' , '''1.0.0''' , snake_case_ , standard_warn=snake_case_ ) __a : Optional[Any] = kwargs['''max_value'''] if kwargs.get('''min_value''' , snake_case_ ) is not None: __a : Optional[int] = '''The `min_value` argument is deprecated. Please use `min_decay` instead.''' deprecate('''min_value''' , '''1.0.0''' , snake_case_ , standard_warn=snake_case_ ) __a : int = kwargs['''min_value'''] __a : Any = list(snake_case_ ) __a : Optional[int] = [p.clone().detach() for p in parameters] if kwargs.get('''device''' , snake_case_ ) is not None: __a : Optional[Any] = '''The `device` argument is deprecated. Please use `to` instead.''' deprecate('''device''' , '''1.0.0''' , snake_case_ , standard_warn=snake_case_ ) self.to(device=kwargs['''device'''] ) __a : List[str] = None __a : Tuple = decay __a : str = min_decay __a : Any = update_after_step __a : List[str] = use_ema_warmup __a : Any = inv_gamma __a : Any = power __a : Union[str, Any] = 0 __a : Dict = None # set in `step()` __a : Any = model_cls __a : Any = model_config @classmethod def lowerCAmelCase (cls : List[str] , snake_case_ : Dict , snake_case_ : Dict ): __a , __a : Optional[int] = model_cls.load_config(snake_case_ , return_unused_kwargs=snake_case_ ) __a : Dict = model_cls.from_pretrained(snake_case_ ) __a : List[Any] = cls(model.parameters() , model_cls=snake_case_ , model_config=model.config ) ema_model.load_state_dict(snake_case_ ) return ema_model def lowerCAmelCase (self : Optional[Any] , snake_case_ : Dict ): if self.model_cls is None: raise ValueError('''`save_pretrained` can only be used if `model_cls` was defined at __init__.''' ) if self.model_config is None: raise ValueError('''`save_pretrained` can only be used if `model_config` was defined at __init__.''' ) __a : int = self.model_cls.from_config(self.model_config ) __a : List[Any] = self.state_dict() state_dict.pop('''shadow_params''' , snake_case_ ) model.register_to_config(**snake_case_ ) self.copy_to(model.parameters() ) model.save_pretrained(snake_case_ ) def lowerCAmelCase (self : Optional[int] , snake_case_ : int ): __a : Tuple = max(0 , optimization_step - self.update_after_step - 1 ) if step <= 0: return 0.0 if self.use_ema_warmup: __a : Tuple = 1 - (1 + step / self.inv_gamma) ** -self.power else: __a : List[str] = (1 + step) / (1_0 + step) __a : Dict = min(snake_case_ , self.decay ) # make sure decay is not smaller than min_decay __a : int = max(snake_case_ , self.min_decay ) return cur_decay_value @torch.no_grad() def lowerCAmelCase (self : Optional[int] , snake_case_ : Iterable[torch.nn.Parameter] ): if isinstance(snake_case_ , torch.nn.Module ): __a : List[Any] = ( '''Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. ''' '''Please pass the parameters of the module instead.''' ) deprecate( '''passing a `torch.nn.Module` to `ExponentialMovingAverage.step`''' , '''1.0.0''' , snake_case_ , standard_warn=snake_case_ , ) __a : Union[str, Any] = parameters.parameters() __a : Optional[Any] = list(snake_case_ ) self.optimization_step += 1 # Compute the decay factor for the exponential moving average. __a : str = self.get_decay(self.optimization_step ) __a : List[str] = decay __a : Dict = 1 - decay __a : Optional[int] = contextlib.nullcontext if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): import deepspeed for s_param, param in zip(self.shadow_params , snake_case_ ): if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): __a : Dict = deepspeed.zero.GatheredParameters(snake_case_ , modifier_rank=snake_case_ ) with context_manager(): if param.requires_grad: s_param.sub_(one_minus_decay * (s_param - param) ) else: s_param.copy_(snake_case_ ) def lowerCAmelCase (self : int , snake_case_ : Iterable[torch.nn.Parameter] ): __a : str = list(snake_case_ ) for s_param, param in zip(self.shadow_params , snake_case_ ): param.data.copy_(s_param.to(param.device ).data ) def lowerCAmelCase (self : int , snake_case_ : int=None , snake_case_ : int=None ): __a : str = [ p.to(device=snake_case_ , dtype=snake_case_ ) if p.is_floating_point() else p.to(device=snake_case_ ) for p in self.shadow_params ] def lowerCAmelCase (self : Dict ): return { "decay": self.decay, "min_decay": self.min_decay, "optimization_step": self.optimization_step, "update_after_step": self.update_after_step, "use_ema_warmup": self.use_ema_warmup, "inv_gamma": self.inv_gamma, "power": self.power, "shadow_params": self.shadow_params, } def lowerCAmelCase (self : Tuple , snake_case_ : Iterable[torch.nn.Parameter] ): __a : str = [param.detach().cpu().clone() for param in parameters] def lowerCAmelCase (self : Optional[int] , snake_case_ : Iterable[torch.nn.Parameter] ): if self.temp_stored_params is None: raise RuntimeError('''This ExponentialMovingAverage has no `store()`ed weights ''' '''to `restore()`''' ) for c_param, param in zip(self.temp_stored_params , snake_case_ ): param.data.copy_(c_param.data ) # Better memory-wise. __a : Optional[Any] = None def lowerCAmelCase (self : Optional[int] , snake_case_ : dict ): __a : Dict = copy.deepcopy(snake_case_ ) __a : int = state_dict.get('''decay''' , self.decay ) if self.decay < 0.0 or self.decay > 1.0: raise ValueError('''Decay must be between 0 and 1''' ) __a : List[str] = state_dict.get('''min_decay''' , self.min_decay ) if not isinstance(self.min_decay , snake_case_ ): raise ValueError('''Invalid min_decay''' ) __a : Dict = state_dict.get('''optimization_step''' , self.optimization_step ) if not isinstance(self.optimization_step , snake_case_ ): raise ValueError('''Invalid optimization_step''' ) __a : Optional[int] = state_dict.get('''update_after_step''' , self.update_after_step ) if not isinstance(self.update_after_step , snake_case_ ): raise ValueError('''Invalid update_after_step''' ) __a : Any = state_dict.get('''use_ema_warmup''' , self.use_ema_warmup ) if not isinstance(self.use_ema_warmup , snake_case_ ): raise ValueError('''Invalid use_ema_warmup''' ) __a : Any = state_dict.get('''inv_gamma''' , self.inv_gamma ) if not isinstance(self.inv_gamma , (float, int) ): raise ValueError('''Invalid inv_gamma''' ) __a : Tuple = state_dict.get('''power''' , self.power ) if not isinstance(self.power , (float, int) ): raise ValueError('''Invalid power''' ) __a : Dict = state_dict.get('''shadow_params''' , snake_case_ ) if shadow_params is not None: __a : Tuple = shadow_params if not isinstance(self.shadow_params , snake_case_ ): raise ValueError('''shadow_params must be a list''' ) if not all(isinstance(snake_case_ , torch.Tensor ) for p in self.shadow_params ): raise ValueError('''shadow_params must all be Tensors''' )
326
0
'''simple docstring''' import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class lowercase_ : '''simple docstring''' def __init__( self , a_ , a_=1_3 , a_=7 , a_=True , a_=True , a_=True , a_=True , a_=9_9 , a_=1_6 , a_=3_6 , a_=6 , a_=6 , a_=6 , a_=3_7 , a_="gelu" , a_=0.1 , a_=0.1 , a_=5_1_2 , a_=1_6 , a_=2 , a_=0.02 , a_=3 , a_=4 , a_=None , ) -> str: """simple docstring""" UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = seq_length UpperCAmelCase = is_training UpperCAmelCase = use_input_mask UpperCAmelCase = use_token_type_ids UpperCAmelCase = use_labels UpperCAmelCase = vocab_size UpperCAmelCase = embedding_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_hidden_groups UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_act UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = type_sequence_label_size UpperCAmelCase = initializer_range UpperCAmelCase = num_labels UpperCAmelCase = num_choices UpperCAmelCase = scope def snake_case_ ( self ) -> Tuple: """simple docstring""" UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase = None if self.use_input_mask: UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase = None if self.use_token_type_ids: UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None if self.use_labels: UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case_ ( self ) -> Optional[Any]: """simple docstring""" return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def snake_case_ ( self , a_ , a_ , a_ , a_ , a_ , a_ , a_ ) -> Any: """simple docstring""" UpperCAmelCase = AlbertModel(config=a_ ) model.to(a_ ) model.eval() UpperCAmelCase = model(a_ , attention_mask=a_ , token_type_ids=a_ ) UpperCAmelCase = model(a_ , token_type_ids=a_ ) UpperCAmelCase = model(a_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def snake_case_ ( self , a_ , a_ , a_ , a_ , a_ , a_ , a_ ) -> Dict: """simple docstring""" UpperCAmelCase = AlbertForPreTraining(config=a_ ) model.to(a_ ) model.eval() UpperCAmelCase = model( a_ , attention_mask=a_ , token_type_ids=a_ , labels=a_ , sentence_order_label=a_ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def snake_case_ ( self , a_ , a_ , a_ , a_ , a_ , a_ , a_ ) -> Optional[int]: """simple docstring""" UpperCAmelCase = AlbertForMaskedLM(config=a_ ) model.to(a_ ) model.eval() UpperCAmelCase = model(a_ , attention_mask=a_ , token_type_ids=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case_ ( self , a_ , a_ , a_ , a_ , a_ , a_ , a_ ) -> Any: """simple docstring""" UpperCAmelCase = AlbertForQuestionAnswering(config=a_ ) model.to(a_ ) model.eval() UpperCAmelCase = model( a_ , attention_mask=a_ , token_type_ids=a_ , start_positions=a_ , end_positions=a_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case_ ( self , a_ , a_ , a_ , a_ , a_ , a_ , a_ ) -> str: """simple docstring""" UpperCAmelCase = self.num_labels UpperCAmelCase = AlbertForSequenceClassification(a_ ) model.to(a_ ) model.eval() UpperCAmelCase = model(a_ , attention_mask=a_ , token_type_ids=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case_ ( self , a_ , a_ , a_ , a_ , a_ , a_ , a_ ) -> Optional[int]: """simple docstring""" UpperCAmelCase = self.num_labels UpperCAmelCase = AlbertForTokenClassification(config=a_ ) model.to(a_ ) model.eval() UpperCAmelCase = model(a_ , attention_mask=a_ , token_type_ids=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case_ ( self , a_ , a_ , a_ , a_ , a_ , a_ , a_ ) -> Optional[Any]: """simple docstring""" UpperCAmelCase = self.num_choices UpperCAmelCase = AlbertForMultipleChoice(config=a_ ) model.to(a_ ) model.eval() UpperCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase = model( a_ , attention_mask=a_ , token_type_ids=a_ , labels=a_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def snake_case_ ( self ) -> List[Any]: """simple docstring""" UpperCAmelCase = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) = config_and_inputs UpperCAmelCase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowercase_ ( a , a , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase : Dict = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) __lowerCAmelCase : Optional[int] = ( { "feature-extraction": AlbertModel, "fill-mask": AlbertForMaskedLM, "question-answering": AlbertForQuestionAnswering, "text-classification": AlbertForSequenceClassification, "token-classification": AlbertForTokenClassification, "zero-shot": AlbertForSequenceClassification, } if is_torch_available() else {} ) __lowerCAmelCase : str = True def snake_case_ ( self , a_ , a_ , a_=False ) -> Optional[Any]: """simple docstring""" UpperCAmelCase = super()._prepare_for_class(a_ , a_ , return_labels=a_ ) if return_labels: if model_class in get_values(a_ ): UpperCAmelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=a_ ) UpperCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=a_ ) return inputs_dict def snake_case_ ( self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase = AlbertModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=a_ , hidden_size=3_7 ) def snake_case_ ( self ) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() def snake_case_ ( self ) -> str: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a_ ) def snake_case_ ( self ) -> Dict: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*a_ ) def snake_case_ ( self ) -> str: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*a_ ) def snake_case_ ( self ) -> Tuple: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*a_ ) def snake_case_ ( self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*a_ ) def snake_case_ ( self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*a_ ) def snake_case_ ( self ) -> str: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase = type self.model_tester.create_and_check_model(*a_ ) @slow def snake_case_ ( self ) -> Dict: """simple docstring""" for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase = AlbertModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) @require_torch class lowercase_ ( unittest.TestCase ): '''simple docstring''' @slow def snake_case_ ( self ) -> List[Any]: """simple docstring""" UpperCAmelCase = AlbertModel.from_pretrained('albert-base-v2' ) UpperCAmelCase = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) UpperCAmelCase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): UpperCAmelCase = model(a_ , attention_mask=a_ )[0] UpperCAmelCase = torch.Size((1, 1_1, 7_6_8) ) self.assertEqual(output.shape , a_ ) UpperCAmelCase = torch.tensor( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , a_ , atol=1E-4 ) )
447
'''simple docstring''' from __future__ import annotations def lowerCamelCase__ ( SCREAMING_SNAKE_CASE : int | str ): UpperCAmelCase = str(SCREAMING_SNAKE_CASE ) return n == n[::-1] def lowerCamelCase__ ( SCREAMING_SNAKE_CASE : int = 100_0000 ): UpperCAmelCase = 0 for i in range(1 , SCREAMING_SNAKE_CASE ): if is_palindrome(SCREAMING_SNAKE_CASE ) and is_palindrome(bin(SCREAMING_SNAKE_CASE ).split('b' )[1] ): total += i return total if __name__ == "__main__": print(solution(int(str(input().strip()))))
447
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase__ : str = { "configuration_clipseg": [ "CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP", "CLIPSegConfig", "CLIPSegTextConfig", "CLIPSegVisionConfig", ], "processing_clipseg": ["CLIPSegProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : Union[str, Any] = [ "CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST", "CLIPSegModel", "CLIPSegPreTrainedModel", "CLIPSegTextModel", "CLIPSegVisionModel", "CLIPSegForImageSegmentation", ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys lowerCAmelCase__ : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
707
from collections import namedtuple lowerCAmelCase__ : Union[str, Any] = namedtuple('''from_to''', '''from_ to''') lowerCAmelCase__ : Tuple = { '''cubicmeter''': from_to(1, 1), '''litre''': from_to(0.0_01, 10_00), '''kilolitre''': from_to(1, 1), '''gallon''': from_to(0.0_04_54, 2_64.1_72), '''cubicyard''': from_to(0.7_64_55, 1.3_07_95), '''cubicfoot''': from_to(0.0_28, 35.31_47), '''cup''': from_to(0.0_00_23_65_88, 42_26.75), } def UpperCamelCase__ ( A__ , A__ , A__ ) -> float: if from_type not in METRIC_CONVERSION: raise ValueError( F"""Invalid 'from_type' value: {from_type!r} Supported values are:\n""" + ', '.join(A__ ) ) if to_type not in METRIC_CONVERSION: raise ValueError( F"""Invalid 'to_type' value: {to_type!r}. Supported values are:\n""" + ', '.join(A__ ) ) return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to if __name__ == "__main__": import doctest doctest.testmod()
699
0
import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def A__ (self): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ (self): '''simple docstring''' __UpperCAmelCase =StableDiffusionKDiffusionPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''') __UpperCAmelCase =sd_pipe.to(UpperCAmelCase) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase) sd_pipe.set_scheduler('''sample_euler''') __UpperCAmelCase ='''A painting of a squirrel eating a burger''' __UpperCAmelCase =torch.manual_seed(0) __UpperCAmelCase =sd_pipe([prompt] , generator=UpperCAmelCase , guidance_scale=9.0 , num_inference_steps=2_0 , output_type='''np''') __UpperCAmelCase =output.images __UpperCAmelCase =image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __UpperCAmelCase =np.array([0.0447, 0.0492, 0.0468, 0.0408, 0.0383, 0.0408, 0.0354, 0.0380, 0.0339]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def A__ (self): '''simple docstring''' __UpperCAmelCase =StableDiffusionKDiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''') __UpperCAmelCase =sd_pipe.to(UpperCAmelCase) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase) sd_pipe.set_scheduler('''sample_euler''') __UpperCAmelCase ='''A painting of a squirrel eating a burger''' __UpperCAmelCase =torch.manual_seed(0) __UpperCAmelCase =sd_pipe([prompt] , generator=UpperCAmelCase , guidance_scale=9.0 , num_inference_steps=2_0 , output_type='''np''') __UpperCAmelCase =output.images __UpperCAmelCase =image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __UpperCAmelCase =np.array([0.1237, 0.1320, 0.1438, 0.1359, 0.1390, 0.1132, 0.1277, 0.1175, 0.1112]) assert np.abs(image_slice.flatten() - expected_slice).max() < 5e-1 def A__ (self): '''simple docstring''' __UpperCAmelCase =StableDiffusionKDiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''') __UpperCAmelCase =sd_pipe.to(UpperCAmelCase) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase) sd_pipe.set_scheduler('''sample_dpmpp_2m''') __UpperCAmelCase ='''A painting of a squirrel eating a burger''' __UpperCAmelCase =torch.manual_seed(0) __UpperCAmelCase =sd_pipe( [prompt] , generator=UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=1_5 , output_type='''np''' , use_karras_sigmas=UpperCAmelCase , ) __UpperCAmelCase =output.images __UpperCAmelCase =image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __UpperCAmelCase =np.array( [0.1138_1689, 0.1211_2921, 0.138_9457, 0.1254_9606, 0.124_4964, 0.1083_1517, 0.1156_2866, 0.1086_7816, 0.1049_9048]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
132
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _SCREAMING_SNAKE_CASE ( _lowerCAmelCase ): a_ : Optional[Any] = ['''image_processor''', '''tokenizer'''] a_ : Any = '''BridgeTowerImageProcessor''' a_ : Any = ('''RobertaTokenizer''', '''RobertaTokenizerFast''') def __init__(self , UpperCAmelCase , UpperCAmelCase): '''simple docstring''' super().__init__(UpperCAmelCase , UpperCAmelCase) def __call__(self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = True , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = 0 , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = True , UpperCAmelCase = None , **UpperCAmelCase , ): '''simple docstring''' __UpperCAmelCase =self.tokenizer( text=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) # add pixel_values + pixel_mask __UpperCAmelCase =self.image_processor( UpperCAmelCase , return_tensors=UpperCAmelCase , do_normalize=UpperCAmelCase , do_center_crop=UpperCAmelCase , **UpperCAmelCase) encoding.update(UpperCAmelCase) return encoding def A__ (self , *UpperCAmelCase , **UpperCAmelCase): '''simple docstring''' return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase) def A__ (self , *UpperCAmelCase , **UpperCAmelCase): '''simple docstring''' return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase) @property def A__ (self): '''simple docstring''' __UpperCAmelCase =self.tokenizer.model_input_names __UpperCAmelCase =self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
132
1
from __future__ import annotations def _lowerCAmelCase ( UpperCamelCase__: list[int] , UpperCamelCase__: int ) -> list[int]: """simple docstring""" A = 0 A = len(UpperCamelCase__ ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: A = i + 1 else: A = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(f'''{two_pointer([2, 7, 11, 15], 9) = }''')
546
import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def _lowerCAmelCase ( UpperCamelCase__: Any ) -> Tuple: """simple docstring""" def wrapper(*UpperCamelCase__: Union[str, Any] , **UpperCamelCase__: List[str] ): A = timeit.default_timer() A = func(*UpperCamelCase__ , **UpperCamelCase__ ) A = timeit.default_timer() - starttime return delta A = func.__name__ return wrapper def _lowerCAmelCase ( UpperCamelCase__: dict , UpperCamelCase__: List[str]=1_00 , UpperCamelCase__: int=None ) -> Any: """simple docstring""" A = [] A = seq_shapes or {} for i in range(UpperCamelCase__ ): A = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(UpperCamelCase__ , _ArrayXD ): A = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(UpperCamelCase__ , datasets.Value ): if v.dtype == "string": A = """The small grey turtle was surprisingly fast when challenged.""" else: A = np.random.randint(10 , size=1 ).astype(v.dtype ).item() elif isinstance(UpperCamelCase__ , datasets.Sequence ): while isinstance(UpperCamelCase__ , datasets.Sequence ): A = v.feature A = seq_shapes[k] A = np.random.rand(*UpperCamelCase__ ).astype(v.dtype ) A = data dummy_data.append((i, example) ) return dummy_data def _lowerCAmelCase ( UpperCamelCase__: int , UpperCamelCase__: Union[str, Any] , UpperCamelCase__: List[str]=1_00 , UpperCamelCase__: str=None ) -> Optional[int]: """simple docstring""" A = generate_examples(UpperCamelCase__ , num_examples=UpperCamelCase__ , seq_shapes=UpperCamelCase__ ) with ArrowWriter(features=UpperCamelCase__ , path=UpperCamelCase__ ) as writer: for key, record in dummy_data: A = features.encode_example(UpperCamelCase__ ) writer.write(UpperCamelCase__ ) A , A = writer.finalize() if not num_final_examples == num_examples: raise ValueError( f'Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}.' ) A = datasets.Dataset.from_file(filename=UpperCamelCase__ , info=datasets.DatasetInfo(features=UpperCamelCase__ ) ) return dataset
546
1
"""simple docstring""" # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file __UpperCAmelCase = 'Run commands across TPU VMs for initial setup before running `accelerate launch`.' def lowerCAmelCase ( __UpperCamelCase=None ): '''simple docstring''' if subparsers is not None: UpperCAmelCase__ : int = subparsers.add_parser("""tpu-config""" , description=_description ) else: UpperCAmelCase__ : Dict = argparse.ArgumentParser("""Accelerate tpu-config command""" , description=_description ) # Core arguments UpperCAmelCase__ : str = parser.add_argument_group( """Config Arguments""" , """Arguments that can be configured through `accelerate config`.""" ) config_args.add_argument( """--config_file""" , type=__a , default=__a , help="""Path to the config file to use for accelerate.""" , ) config_args.add_argument( """--tpu_name""" , default=__a , help="""The name of the TPU to use. If not specified, will use the TPU specified in the config file.""" , ) config_args.add_argument( """--tpu_zone""" , default=__a , help="""The zone of the TPU to use. If not specified, will use the zone specified in the config file.""" , ) UpperCAmelCase__ : List[str] = parser.add_argument_group("""TPU Arguments""" , """Arguments for options ran inside the TPU.""" ) pod_args.add_argument( """--use_alpha""" , action="""store_true""" , help="""Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.""" , ) pod_args.add_argument( """--command_file""" , default=__a , help="""The path to the file containing the commands to run on the pod on startup.""" , ) pod_args.add_argument( """--command""" , action="""append""" , nargs="""+""" , help="""A command to run on the pod. Can be passed multiple times.""" , ) pod_args.add_argument( """--install_accelerate""" , action="""store_true""" , help="""Whether to install accelerate on the pod. Defaults to False.""" , ) pod_args.add_argument( """--accelerate_version""" , default="""latest""" , help="""The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify \'dev\' to install from GitHub.""" , ) pod_args.add_argument( """--debug""" , action="""store_true""" , help="""If set, will print the command that would be run instead of running it.""" ) if subparsers is not None: parser.set_defaults(func=__a ) return parser def lowerCAmelCase ( __UpperCamelCase ): '''simple docstring''' UpperCAmelCase__ : List[Any] = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(__a ): UpperCAmelCase__ : str = load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: UpperCAmelCase__ : List[Any] = defaults.command_file if not args.command and defaults.commands is not None: UpperCAmelCase__ : Dict = defaults.commands if not args.tpu_name: UpperCAmelCase__ : List[str] = defaults.tpu_name if not args.tpu_zone: UpperCAmelCase__ : Union[str, Any] = defaults.tpu_zone if args.accelerate_version == "dev": UpperCAmelCase__ : Tuple = """git+https://github.com/huggingface/accelerate.git""" elif args.accelerate_version == "latest": UpperCAmelCase__ : Tuple = """accelerate -U""" elif isinstance(parse(args.accelerate_version ) , __a ): UpperCAmelCase__ : List[str] = F"accelerate=={args.accelerate_version}" if not args.command_file and not args.command: raise ValueError("""You must specify either a command file or a command to run on the pod.""" ) if args.command_file: with open(args.command_file , """r""" ) as f: UpperCAmelCase__ : Union[str, Any] = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , __a ): UpperCAmelCase__ : Optional[int] = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate UpperCAmelCase__ : Optional[int] = ["""cd /usr/share"""] if args.install_accelerate: new_cmd += [F"pip install {args.accelerate_version}"] new_cmd += args.command UpperCAmelCase__ : List[Any] = """; """.join(__a ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess UpperCAmelCase__ : Dict = ["""gcloud"""] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(F"Running {' '.join(__a )}" ) return subprocess.run(__a ) print("""Successfully setup pod.""" ) def lowerCAmelCase ( ): '''simple docstring''' UpperCAmelCase__ : List[Any] = tpu_command_parser() UpperCAmelCase__ : Any = parser.parse_args() tpu_command_launcher(__a )
65
from importlib import import_module from .logging import get_logger _lowerCAmelCase: str = get_logger(__name__) class lowercase_ : def __init__( self , lowercase_ , lowercase_=None) -> Tuple: a__ =attrs or [] if module is not None: for key in module.__dict__: if key in attrs or not key.startswith('__'): setattr(self , lowercase_ , getattr(lowercase_ , lowercase_)) a__ =module._original_module if isinstance(lowercase_ , _PatchedModuleObj) else module class lowercase_ : snake_case =[] def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_=None) -> List[str]: a__ =obj a__ =target a__ =new a__ =target.split('.')[0] a__ ={} a__ =attrs or [] def __enter__( self) -> Optional[int]: *a__ , a__ =self.target.split('.') # Patch modules: # it's used to patch attributes of submodules like "os.path.join"; # in this case we need to patch "os" and "os.path" for i in range(len(lowercase_)): try: a__ =import_module('.'.join(submodules[: i + 1])) except ModuleNotFoundError: continue # We iterate over all the globals in self.obj in case we find "os" or "os.path" for attr in self.obj.__dir__(): a__ =getattr(self.obj , lowercase_) # We don't check for the name of the global, but rather if its value *is* "os" or "os.path". # This allows to patch renamed modules like "from os import path as ospath". if obj_attr is submodule or ( (isinstance(lowercase_ , _PatchedModuleObj) and obj_attr._original_module is submodule) ): a__ =obj_attr # patch at top level setattr(self.obj , lowercase_ , _PatchedModuleObj(lowercase_ , attrs=self.attrs)) a__ =getattr(self.obj , lowercase_) # construct lower levels patches for key in submodules[i + 1 :]: setattr(lowercase_ , lowercase_ , _PatchedModuleObj(getattr(lowercase_ , lowercase_ , lowercase_) , attrs=self.attrs)) a__ =getattr(lowercase_ , lowercase_) # finally set the target attribute setattr(lowercase_ , lowercase_ , self.new) # Patch attribute itself: # it's used for builtins like "open", # and also to patch "os.path.join" we may also need to patch "join" # itself if it was imported as "from os.path import join". if submodules: # if it's an attribute of a submodule like "os.path.join" try: a__ =getattr(import_module('.'.join(lowercase_)) , lowercase_) except (AttributeError, ModuleNotFoundError): return # We iterate over all the globals in self.obj in case we find "os.path.join" for attr in self.obj.__dir__(): # We don't check for the name of the global, but rather if its value *is* "os.path.join". # This allows to patch renamed attributes like "from os.path import join as pjoin". if getattr(self.obj , lowercase_) is attr_value: a__ =getattr(self.obj , lowercase_) setattr(self.obj , lowercase_ , self.new) elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open" a__ =globals()['__builtins__'][target_attr] setattr(self.obj , lowercase_ , self.new) else: raise RuntimeError(F"""Tried to patch attribute {target_attr} instead of a submodule.""") def __exit__( self , *lowercase_) -> str: for attr in list(self.original): setattr(self.obj , lowercase_ , self.original.pop(lowercase_)) def __UpperCamelCase ( self) -> Any: self.__enter__() self._active_patches.append(self) def __UpperCamelCase ( self) -> Union[str, Any]: try: self._active_patches.remove(self) except ValueError: # If the patch hasn't been started this will fail return None return self.__exit__()
20
0
"""simple docstring""" import re import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class lowercase ( _UpperCAmelCase ): _SCREAMING_SNAKE_CASE = ['image_processor', 'tokenizer'] _SCREAMING_SNAKE_CASE = 'AutoImageProcessor' _SCREAMING_SNAKE_CASE = 'AutoTokenizer' def __init__( self , lowercase=None , lowercase=None , **lowercase ) -> Tuple: lowerCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , lowercase , ) lowerCAmelCase = kwargs.pop("""feature_extractor""" ) lowerCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(lowercase , lowercase ) lowerCAmelCase = self.image_processor lowerCAmelCase = False def __call__( self , *lowercase , **lowercase ) -> str: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*lowercase , **lowercase ) lowerCAmelCase = kwargs.pop("""images""" , lowercase ) lowerCAmelCase = kwargs.pop("""text""" , lowercase ) if len(lowercase ) > 0: lowerCAmelCase = args[0] lowerCAmelCase = args[1:] if images is None and text is None: raise ValueError("""You need to specify either an `images` or `text` input to process.""" ) if images is not None: lowerCAmelCase = self.image_processor(lowercase , *lowercase , **lowercase ) if text is not None: lowerCAmelCase = self.tokenizer(lowercase , **lowercase ) if text is None: return inputs elif images is None: return encodings else: lowerCAmelCase = encodings["""input_ids"""] return inputs def _snake_case ( self , *lowercase , **lowercase ) -> Optional[int]: return self.tokenizer.batch_decode(*lowercase , **lowercase ) def _snake_case ( self , *lowercase , **lowercase ) -> Optional[Any]: return self.tokenizer.decode(*lowercase , **lowercase ) @contextmanager def _snake_case ( self ) -> List[Any]: warnings.warn( """`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your """ """labels by using the argument `text` of the regular `__call__` method (either in the same call as """ """your images inputs, or in a separate call.""" ) lowerCAmelCase = True lowerCAmelCase = self.tokenizer yield lowerCAmelCase = self.image_processor lowerCAmelCase = False def _snake_case ( self , lowercase , lowercase=False , lowercase=None ) -> Tuple: if added_vocab is None: lowerCAmelCase = self.tokenizer.get_added_vocab() lowerCAmelCase = {} while tokens: lowerCAmelCase = re.search(r"""<s_(.*?)>""" , lowercase , re.IGNORECASE ) if start_token is None: break lowerCAmelCase = start_token.group(1 ) lowerCAmelCase = re.search(rf'</s_{key}>' , lowercase , re.IGNORECASE ) lowerCAmelCase = start_token.group() if end_token is None: lowerCAmelCase = tokens.replace(lowercase , """""" ) else: lowerCAmelCase = end_token.group() lowerCAmelCase = re.escape(lowercase ) lowerCAmelCase = re.escape(lowercase ) lowerCAmelCase = re.search(f'{start_token_escaped}(.*?){end_token_escaped}' , lowercase , re.IGNORECASE ) if content is not None: lowerCAmelCase = content.group(1 ).strip() if r"<s_" in content and r"</s_" in content: # non-leaf node lowerCAmelCase = self.tokenajson(lowercase , is_inner_value=lowercase , added_vocab=lowercase ) if value: if len(lowercase ) == 1: lowerCAmelCase = value[0] lowerCAmelCase = value else: # leaf nodes lowerCAmelCase = [] for leaf in content.split(r"""<sep/>""" ): lowerCAmelCase = leaf.strip() if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>": lowerCAmelCase = leaf[1:-2] # for categorical special tokens output[key].append(lowercase ) if len(output[key] ) == 1: lowerCAmelCase = output[key][0] lowerCAmelCase = tokens[tokens.find(lowercase ) + len(lowercase ) :].strip() if tokens[:6] == r"<sep/>": # non-leaf nodes return [output] + self.tokenajson(tokens[6:] , is_inner_value=lowercase , added_vocab=lowercase ) if len(lowercase ): return [output] if is_inner_value else output else: return [] if is_inner_value else {"text_sequence": tokens} @property def _snake_case ( self ) -> List[str]: warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , lowercase , ) return self.image_processor_class @property def _snake_case ( self ) -> Tuple: warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , lowercase , ) return self.image_processor
393
"""simple docstring""" from __future__ import annotations def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float ): '''simple docstring''' if (voltage, current, resistance).count(0 ) != 1: raise ValueError("""One and only one argument must be 0""" ) if resistance < 0: raise ValueError("""Resistance cannot be negative""" ) if voltage == 0: return {"voltage": float(current * resistance )} elif current == 0: return {"current": voltage / resistance} elif resistance == 0: return {"resistance": voltage / current} else: raise ValueError("""Exactly one argument must be 0""" ) if __name__ == "__main__": import doctest doctest.testmod()
393
1
import argparse import gc import json import os import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler snake_case_ : Optional[int] = 16 snake_case_ : Optional[Any] = 32 def __a ( __UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" return int(x / 2**20 ) class snake_case_ : '''simple docstring''' def __enter__( self : Optional[Any] ) -> str: gc.collect() torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero lowerCamelCase_ : Tuple = torch.cuda.memory_allocated() return self def __exit__( self : Any , *__magic_name__ : str ) -> Tuple: gc.collect() torch.cuda.empty_cache() lowerCamelCase_ : Optional[Any] = torch.cuda.memory_allocated() lowerCamelCase_ : Tuple = torch.cuda.max_memory_allocated() lowerCamelCase_ : Tuple = bamb(self.end - self.begin ) lowerCamelCase_ : List[Any] = bamb(self.peak - self.begin ) # print(f"delta used/peak {self.used:4d}/{self.peaked:4d}") def __a ( __UpperCAmelCase : Accelerator , __UpperCAmelCase : int = 16 , __UpperCAmelCase : str = "bert-base-cased" , __UpperCAmelCase : int = 320 , __UpperCAmelCase : int = 160 , ) -> Optional[int]: """simple docstring""" lowerCamelCase_ : Union[str, Any] = AutoTokenizer.from_pretrained(__UpperCAmelCase ) lowerCamelCase_ : Union[str, Any] = load_dataset( "glue" , "mrpc" , split={"train": f"train[:{n_train}]", "validation": f"validation[:{n_val}]"} ) def tokenize_function(__UpperCAmelCase : List[str] ): # max_length=None => use the model max length (it's actually the default) lowerCamelCase_ : Optional[Any] = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset lowerCamelCase_ : Dict = datasets.map( __UpperCAmelCase , batched=__UpperCAmelCase , remove_columns=["idx", "sentence1", "sentence2"] , load_from_cache_file=__UpperCAmelCase ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCamelCase_ : Tuple = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(__UpperCAmelCase : Any ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__UpperCAmelCase , padding="max_length" , max_length=128 , return_tensors="pt" ) return tokenizer.pad(__UpperCAmelCase , padding="longest" , return_tensors="pt" ) # Instantiate dataloaders. lowerCamelCase_ : Optional[int] = DataLoader( tokenized_datasets["train"] , shuffle=__UpperCAmelCase , collate_fn=__UpperCAmelCase , batch_size=__UpperCAmelCase ) lowerCamelCase_ : Dict = DataLoader( tokenized_datasets["validation"] , shuffle=__UpperCAmelCase , collate_fn=__UpperCAmelCase , batch_size=__UpperCAmelCase ) return train_dataloader, eval_dataloader def __a ( __UpperCAmelCase : Tuple , __UpperCAmelCase : Optional[int] ) -> Tuple: """simple docstring""" lowerCamelCase_ : List[Any] = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCamelCase_ : List[str] = config['''lr'''] lowerCamelCase_ : List[str] = int(config["num_epochs"] ) lowerCamelCase_ : Union[str, Any] = int(config["seed"] ) lowerCamelCase_ : Optional[Any] = int(config["batch_size"] ) lowerCamelCase_ : List[Any] = args.model_name_or_path set_seed(__UpperCAmelCase ) lowerCamelCase_ : List[Any] = get_dataloaders(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , args.n_train , args.n_val ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCamelCase_ : Optional[Any] = AutoModelForSequenceClassification.from_pretrained(__UpperCAmelCase , return_dict=__UpperCAmelCase ) # Instantiate optimizer lowerCamelCase_ : List[Any] = ( AdamW if accelerator.state.deepspeed_plugin is None or '''optimizer''' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) lowerCamelCase_ : Tuple = optimizer_cls(params=model.parameters() , lr=__UpperCAmelCase ) if accelerator.state.deepspeed_plugin is not None: lowerCamelCase_ : Tuple = accelerator.state.deepspeed_plugin.deepspeed_config[ '''gradient_accumulation_steps''' ] else: lowerCamelCase_ : str = 1 lowerCamelCase_ : Optional[int] = (len(__UpperCAmelCase ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): lowerCamelCase_ : Optional[int] = get_linear_schedule_with_warmup( optimizer=__UpperCAmelCase , num_warmup_steps=0 , num_training_steps=__UpperCAmelCase , ) else: lowerCamelCase_ : Optional[int] = DummyScheduler(__UpperCAmelCase , total_num_steps=__UpperCAmelCase , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCamelCase_ : int = accelerator.prepare( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # We need to keep track of how many total steps we have iterated over lowerCamelCase_ : int = 0 # We also need to keep track of the stating epoch so files are named properly lowerCamelCase_ : Dict = 0 # Now we train the model lowerCamelCase_ : int = {} for epoch in range(__UpperCAmelCase , __UpperCAmelCase ): with TorchTracemalloc() as tracemalloc: model.train() for step, batch in enumerate(__UpperCAmelCase ): lowerCamelCase_ : Dict = model(**__UpperCAmelCase ) lowerCamelCase_ : Any = outputs.loss lowerCamelCase_ : Any = loss / gradient_accumulation_steps accelerator.backward(__UpperCAmelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 # Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage accelerator.print("Memory before entering the train : {}".format(bamb(tracemalloc.begin ) ) ) accelerator.print("Memory consumed at the end of the train (end-begin): {}".format(tracemalloc.used ) ) accelerator.print("Peak Memory consumed during the train (max-begin): {}".format(tracemalloc.peaked ) ) accelerator.print( "Total Peak Memory consumed during the train (max): {}".format( tracemalloc.peaked + bamb(tracemalloc.begin ) ) ) lowerCamelCase_ : Union[str, Any] = tracemalloc.peaked + bamb(tracemalloc.begin ) if args.peak_memory_upper_bound is not None: assert ( train_total_peak_memory[f"epoch-{epoch}"] <= args.peak_memory_upper_bound ), "Peak memory usage exceeded the upper bound" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , "peak_memory_utilization.json" ) , "w" ) as f: json.dump(__UpperCAmelCase , __UpperCAmelCase ) def __a ( ) -> str: """simple docstring""" lowerCamelCase_ : List[Any] = argparse.ArgumentParser(description="Simple example of training script tracking peak GPU memory usage." ) parser.add_argument( "--model_name_or_path" , type=__UpperCAmelCase , default="bert-base-cased" , help="Path to pretrained model or model identifier from huggingface.co/models." , required=__UpperCAmelCase , ) parser.add_argument( "--output_dir" , type=__UpperCAmelCase , default="." , help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." , ) parser.add_argument( "--peak_memory_upper_bound" , type=__UpperCAmelCase , default=__UpperCAmelCase , help="The upper bound of peak memory usage in MB. If set, the training will throw an error if the peak memory usage exceeds this value." , ) parser.add_argument( "--n_train" , type=__UpperCAmelCase , default=320 , help="Number of training examples to use." , ) parser.add_argument( "--n_val" , type=__UpperCAmelCase , default=160 , help="Number of validation examples to use." , ) parser.add_argument( "--num_epochs" , type=__UpperCAmelCase , default=1 , help="Number of train epochs." , ) lowerCamelCase_ : List[Any] = parser.parse_args() lowerCamelCase_ : Union[str, Any] = {'''lr''': 2e-5, '''num_epochs''': args.num_epochs, '''seed''': 42, '''batch_size''': 16} training_function(__UpperCAmelCase , __UpperCAmelCase ) if __name__ == "__main__": main()
488
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() lowerCAmelCase_ : Optional[int] = logging.get_logger(__name__) lowerCAmelCase_ : List[str] = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'adapter_layer': 'encoder.layers.*.adapter_layer', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', 'pooling_layer.linear': 'projector', 'pooling_layer.projection': 'classifier', } lowerCAmelCase_ : Any = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', 'projector', 'classifier', ] def UpperCAmelCase ( A : Dict ): SCREAMING_SNAKE_CASE : Optional[Any] = {} with open(A , '''r''' ) as file: for line_number, line in enumerate(A ): SCREAMING_SNAKE_CASE : Dict = line.strip() if line: SCREAMING_SNAKE_CASE : Union[str, Any] = line.split() SCREAMING_SNAKE_CASE : Any = line_number SCREAMING_SNAKE_CASE : Any = words[0] SCREAMING_SNAKE_CASE : Optional[Any] = value return result def UpperCAmelCase ( A : Union[str, Any] , A : Tuple , A : List[Any] , A : str , A : int ): for attribute in key.split('''.''' ): SCREAMING_SNAKE_CASE : Optional[Any] = getattr(A , A ) SCREAMING_SNAKE_CASE : Any = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(A ): SCREAMING_SNAKE_CASE : List[str] = PARAM_MAPPING[full_name.split('''.''' )[-1]] SCREAMING_SNAKE_CASE : Tuple = '''param''' if weight_type is not None and weight_type != "param": SCREAMING_SNAKE_CASE : List[Any] = getattr(A , A ).shape elif weight_type is not None and weight_type == "param": SCREAMING_SNAKE_CASE : List[str] = hf_pointer for attribute in hf_param_name.split('''.''' ): SCREAMING_SNAKE_CASE : int = getattr(A , A ) SCREAMING_SNAKE_CASE : int = shape_pointer.shape # let's reduce dimension SCREAMING_SNAKE_CASE : Dict = value[0] else: SCREAMING_SNAKE_CASE : Optional[int] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": SCREAMING_SNAKE_CASE : str = value elif weight_type == "weight_g": SCREAMING_SNAKE_CASE : List[str] = value elif weight_type == "weight_v": SCREAMING_SNAKE_CASE : Optional[int] = value elif weight_type == "bias": SCREAMING_SNAKE_CASE : Dict = value elif weight_type == "param": for attribute in hf_param_name.split('''.''' ): SCREAMING_SNAKE_CASE : List[str] = getattr(A , A ) SCREAMING_SNAKE_CASE : Optional[Any] = value else: SCREAMING_SNAKE_CASE : Tuple = value logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def UpperCAmelCase ( A : Optional[Any] , A : List[str] , A : Optional[int] , A : Tuple , A : Tuple ): SCREAMING_SNAKE_CASE : List[str] = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(A ): SCREAMING_SNAKE_CASE : List[str] = PARAM_MAPPING[full_name.split('''.''' )[-1]] SCREAMING_SNAKE_CASE : List[Any] = '''param''' if weight_type is not None and weight_type != "param": SCREAMING_SNAKE_CASE : str = '''.'''.join([key, weight_type] ) elif weight_type is not None and weight_type == "param": SCREAMING_SNAKE_CASE : Tuple = '''.'''.join([key, hf_param_name] ) else: SCREAMING_SNAKE_CASE : Union[str, Any] = key SCREAMING_SNAKE_CASE : int = value if '''lm_head''' in full_key else value[0] lowerCAmelCase_ : Union[str, Any] = { 'W_a': 'linear_1.weight', 'W_b': 'linear_2.weight', 'b_a': 'linear_1.bias', 'b_b': 'linear_2.bias', 'ln_W': 'norm.weight', 'ln_b': 'norm.bias', } def UpperCAmelCase ( A : List[Any] , A : Tuple , A : Dict=None , A : Optional[int]=None ): SCREAMING_SNAKE_CASE : Union[str, Any] = False for key, mapped_key in MAPPING.items(): SCREAMING_SNAKE_CASE : Optional[Any] = '''wav2vec2.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: SCREAMING_SNAKE_CASE : Optional[int] = True if "*" in mapped_key: SCREAMING_SNAKE_CASE : int = name.split(A )[0].split('''.''' )[-2] SCREAMING_SNAKE_CASE : Union[str, Any] = mapped_key.replace('''*''' , A ) if "weight_g" in name: SCREAMING_SNAKE_CASE : List[Any] = '''weight_g''' elif "weight_v" in name: SCREAMING_SNAKE_CASE : int = '''weight_v''' elif "bias" in name: SCREAMING_SNAKE_CASE : str = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj SCREAMING_SNAKE_CASE : Optional[Any] = '''weight''' else: SCREAMING_SNAKE_CASE : Optional[int] = None if hf_dict is not None: rename_dict(A , A , A , A , A ) else: set_recursively(A , A , A , A , A ) return is_used return is_used def UpperCAmelCase ( A : Optional[int] , A : Any , A : int ): SCREAMING_SNAKE_CASE : List[str] = [] SCREAMING_SNAKE_CASE : Any = fairseq_model.state_dict() SCREAMING_SNAKE_CASE : List[str] = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): SCREAMING_SNAKE_CASE : str = False if "conv_layers" in name: load_conv_layer( A , A , A , A , hf_model.config.feat_extract_norm == '''group''' , ) SCREAMING_SNAKE_CASE : List[str] = True else: SCREAMING_SNAKE_CASE : Optional[Any] = load_wavaveca_layer(A , A , A ) if not is_used: unused_weights.append(A ) logger.warning(F"""Unused weights: {unused_weights}""" ) def UpperCAmelCase ( A : Tuple , A : int , A : Tuple , A : int , A : Union[str, Any] ): SCREAMING_SNAKE_CASE : str = full_name.split('''conv_layers.''' )[-1] SCREAMING_SNAKE_CASE : Optional[Any] = name.split('''.''' ) SCREAMING_SNAKE_CASE : Tuple = int(items[0] ) SCREAMING_SNAKE_CASE : int = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) SCREAMING_SNAKE_CASE : Union[str, Any] = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) SCREAMING_SNAKE_CASE : str = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) SCREAMING_SNAKE_CASE : Tuple = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) SCREAMING_SNAKE_CASE : Tuple = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(A ) @torch.no_grad() def UpperCAmelCase ( A : Any , A : Union[str, Any] , A : Optional[Any]=None , A : Any=None , A : Any=True , A : str=False ): if config_path is not None: SCREAMING_SNAKE_CASE : List[Any] = WavaVecaConfig.from_pretrained(A ) else: SCREAMING_SNAKE_CASE : Any = WavaVecaConfig() if is_seq_class: SCREAMING_SNAKE_CASE : List[Any] = read_txt_into_dict(A ) SCREAMING_SNAKE_CASE : Optional[Any] = idalabel SCREAMING_SNAKE_CASE : Tuple = WavaVecaForSequenceClassification(A ) SCREAMING_SNAKE_CASE : Tuple = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=A , return_attention_mask=A , ) feature_extractor.save_pretrained(A ) elif is_finetuned: if dict_path: SCREAMING_SNAKE_CASE : Optional[Any] = Dictionary.load(A ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq SCREAMING_SNAKE_CASE : List[str] = target_dict.pad_index SCREAMING_SNAKE_CASE : Optional[Any] = target_dict.bos_index SCREAMING_SNAKE_CASE : Dict = target_dict.eos_index SCREAMING_SNAKE_CASE : Dict = len(target_dict.symbols ) SCREAMING_SNAKE_CASE : str = os.path.join(A , '''vocab.json''' ) if not os.path.isdir(A ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(A ) ) return os.makedirs(A , exist_ok=A ) SCREAMING_SNAKE_CASE : Optional[Any] = target_dict.indices # fairseq has the <pad> and <s> switched SCREAMING_SNAKE_CASE : str = 0 SCREAMING_SNAKE_CASE : Tuple = 1 with open(A , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(A , A ) SCREAMING_SNAKE_CASE : Any = WavaVecaCTCTokenizer( A , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=A , ) SCREAMING_SNAKE_CASE : Optional[Any] = True if config.feat_extract_norm == '''layer''' else False SCREAMING_SNAKE_CASE : Optional[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=A , return_attention_mask=A , ) SCREAMING_SNAKE_CASE : Any = WavaVecaProcessor(feature_extractor=A , tokenizer=A ) processor.save_pretrained(A ) SCREAMING_SNAKE_CASE : List[str] = WavaVecaForCTC(A ) else: SCREAMING_SNAKE_CASE : Optional[Any] = WavaVecaForPreTraining(A ) if is_finetuned or is_seq_class: SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Optional[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: SCREAMING_SNAKE_CASE : str = argparse.Namespace(task='''audio_pretraining''' ) SCREAMING_SNAKE_CASE : Dict = fairseq.tasks.setup_task(A ) SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=A ) SCREAMING_SNAKE_CASE : List[Any] = model[0].eval() recursively_load_weights(A , A , not is_finetuned ) hf_wavavec.save_pretrained(A ) if __name__ == "__main__": lowerCAmelCase_ : List[Any] = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) parser.add_argument( '--is_seq_class', action='store_true', help='Whether the model to convert is a fine-tuned sequence classification model or not', ) lowerCAmelCase_ : Union[str, Any] = parser.parse_args() lowerCAmelCase_ : Dict = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
527
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) a__ : List[str] = {'''configuration_vit''': ['''VIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTConfig''', '''ViTOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Optional[Any] = ['''ViTFeatureExtractor'''] a__ : Any = ['''ViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Optional[Any] = [ '''VIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTForImageClassification''', '''ViTForMaskedImageModeling''', '''ViTModel''', '''ViTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Any = [ '''TFViTForImageClassification''', '''TFViTModel''', '''TFViTPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Any = [ '''FlaxViTForImageClassification''', '''FlaxViTModel''', '''FlaxViTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys a__ : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
333
from numpy import exp, pi, sqrt def UpperCAmelCase_( a__ , a__ = 0.0 , a__ = 1.0 ): """simple docstring""" return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
333
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ = logging.get_logger(__name__) A_ = { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/config.json", "umberto-commoncrawl-cased-v1": ( "https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json" ), "umberto-wikipedia-uncased-v1": ( "https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json" ), } class _snake_case ( _a ): _A : List[str] = '''camembert''' def __init__( self : List[Any] ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=30_522 ,SCREAMING_SNAKE_CASE__ : int=768 ,SCREAMING_SNAKE_CASE__ : List[Any]=12 ,SCREAMING_SNAKE_CASE__ : Any=12 ,SCREAMING_SNAKE_CASE__ : Tuple=3_072 ,SCREAMING_SNAKE_CASE__ : str="gelu" ,SCREAMING_SNAKE_CASE__ : int=0.1 ,SCREAMING_SNAKE_CASE__ : Optional[int]=0.1 ,SCREAMING_SNAKE_CASE__ : Dict=512 ,SCREAMING_SNAKE_CASE__ : List[str]=2 ,SCREAMING_SNAKE_CASE__ : Tuple=0.02 ,SCREAMING_SNAKE_CASE__ : Any=1e-12 ,SCREAMING_SNAKE_CASE__ : str=1 ,SCREAMING_SNAKE_CASE__ : Optional[Any]=0 ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=2 ,SCREAMING_SNAKE_CASE__ : Any="absolute" ,SCREAMING_SNAKE_CASE__ : Tuple=True ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=None ,**SCREAMING_SNAKE_CASE__ : Tuple ,): super().__init__(pad_token_id=SCREAMING_SNAKE_CASE__ ,bos_token_id=SCREAMING_SNAKE_CASE__ ,eos_token_id=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Union[str, Any] = vocab_size SCREAMING_SNAKE_CASE:str = hidden_size SCREAMING_SNAKE_CASE:str = num_hidden_layers SCREAMING_SNAKE_CASE:List[str] = num_attention_heads SCREAMING_SNAKE_CASE:Optional[int] = hidden_act SCREAMING_SNAKE_CASE:int = intermediate_size SCREAMING_SNAKE_CASE:List[str] = hidden_dropout_prob SCREAMING_SNAKE_CASE:Any = attention_probs_dropout_prob SCREAMING_SNAKE_CASE:str = max_position_embeddings SCREAMING_SNAKE_CASE:Union[str, Any] = type_vocab_size SCREAMING_SNAKE_CASE:Optional[int] = initializer_range SCREAMING_SNAKE_CASE:Tuple = layer_norm_eps SCREAMING_SNAKE_CASE:Optional[Any] = position_embedding_type SCREAMING_SNAKE_CASE:Optional[int] = use_cache SCREAMING_SNAKE_CASE:List[Any] = classifier_dropout class _snake_case ( _a ): @property def __UpperCamelCase ( self : List[str] ): if self.task == "multiple-choice": SCREAMING_SNAKE_CASE:Any = {0: "batch", 1: "choice", 2: "sequence"} else: SCREAMING_SNAKE_CASE:str = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
143
'''simple docstring''' import argparse import os import re import packaging.version A_ = "examples/" A_ = { "examples": (re.compile(R"^check_min_version\(\"[^\"]+\"\)\s*$", re.MULTILINE), "check_min_version(\"VERSION\")\n"), "init": (re.compile(R"^__version__\s+=\s+\"([^\"]+)\"\s*$", re.MULTILINE), "__version__ = \"VERSION\"\n"), "setup": (re.compile(R"^(\s*)version\s*=\s*\"[^\"]+\",", re.MULTILINE), R"\1version=\"VERSION\","), "doc": (re.compile(R"^(\s*)release\s*=\s*\"[^\"]+\"$", re.MULTILINE), "release = \"VERSION\"\n"), } A_ = { "init": "src/transformers/__init__.py", "setup": "setup.py", } A_ = "README.md" def A_ ( snake_case , snake_case , snake_case ): with open(snake_case , "r" , encoding="utf-8" , newline="\n" ) as f: SCREAMING_SNAKE_CASE:List[str] = f.read() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE:Any = REPLACE_PATTERNS[pattern] SCREAMING_SNAKE_CASE:Tuple = replace.replace("VERSION" , snake_case ) SCREAMING_SNAKE_CASE:Optional[Any] = re_pattern.sub(snake_case , snake_case ) with open(snake_case , "w" , encoding="utf-8" , newline="\n" ) as f: f.write(snake_case ) def A_ ( snake_case ): for folder, directories, fnames in os.walk(snake_case ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove("research_projects" ) if "legacy" in directories: directories.remove("legacy" ) for fname in fnames: if fname.endswith(".py" ): update_version_in_file(os.path.join(snake_case , snake_case ) , snake_case , pattern="examples" ) def A_ ( snake_case , snake_case=False ): for pattern, fname in REPLACE_FILES.items(): update_version_in_file(snake_case , snake_case , snake_case ) if not patch: update_version_in_examples(snake_case ) def A_ ( ): SCREAMING_SNAKE_CASE:int = "🤗 Transformers currently provides the following architectures" SCREAMING_SNAKE_CASE:int = "1. Want to contribute a new model?" with open(snake_case , "r" , encoding="utf-8" , newline="\n" ) as f: SCREAMING_SNAKE_CASE:List[Any] = f.readlines() # Find the start of the list. SCREAMING_SNAKE_CASE:Dict = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 SCREAMING_SNAKE_CASE:str = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith("1." ): SCREAMING_SNAKE_CASE:Optional[Any] = lines[index].replace( "https://huggingface.co/docs/transformers/main/model_doc" , "https://huggingface.co/docs/transformers/model_doc" , ) index += 1 with open(snake_case , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(snake_case ) def A_ ( ): with open(REPLACE_FILES["init"] , "r" ) as f: SCREAMING_SNAKE_CASE:str = f.read() SCREAMING_SNAKE_CASE:Tuple = REPLACE_PATTERNS["init"][0].search(snake_case ).groups()[0] return packaging.version.parse(snake_case ) def A_ ( snake_case=False ): SCREAMING_SNAKE_CASE:Dict = get_version() if patch and default_version.is_devrelease: raise ValueError("Can't create a patch version from the dev branch, checkout a released version!" ) if default_version.is_devrelease: SCREAMING_SNAKE_CASE:Any = default_version.base_version elif patch: SCREAMING_SNAKE_CASE:str = F'''{default_version.major}.{default_version.minor}.{default_version.micro + 1}''' else: SCREAMING_SNAKE_CASE:str = F'''{default_version.major}.{default_version.minor + 1}.0''' # Now let's ask nicely if that's the right one. SCREAMING_SNAKE_CASE:Optional[int] = input(F'''Which version are you releasing? [{default_version}]''' ) if len(snake_case ) == 0: SCREAMING_SNAKE_CASE:Dict = default_version print(F'''Updating version to {version}.''' ) global_version_update(snake_case , patch=snake_case ) if not patch: print("Cleaning main README, don't forget to run `make fix-copies`." ) clean_main_ref_in_model_list() def A_ ( ): SCREAMING_SNAKE_CASE:int = get_version() SCREAMING_SNAKE_CASE:int = F'''{current_version.major}.{current_version.minor + 1}.0.dev0''' SCREAMING_SNAKE_CASE:Optional[Any] = current_version.base_version # Check with the user we got that right. SCREAMING_SNAKE_CASE:Any = input(F'''Which version are we developing now? [{dev_version}]''' ) if len(snake_case ) == 0: SCREAMING_SNAKE_CASE:Union[str, Any] = dev_version print(F'''Updating version to {version}.''' ) global_version_update(snake_case ) print("Cleaning main README, don't forget to run `make fix-copies`." ) clean_main_ref_in_model_list() if __name__ == "__main__": A_ = argparse.ArgumentParser() parser.add_argument("--post_release", action="store_true", help="Whether this is pre or post release.") parser.add_argument("--patch", action="store_true", help="Whether or not this is a patch release.") A_ = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("Nothing to do after a patch :-)") else: post_release_work()
143
1
import argparse from argparse import Namespace import torch from torch import nn from transformers import XGLMConfig, XGLMForCausalLM def SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[Any]: """simple docstring""" A__ = [ '''decoder.version''', '''decoder.output_projection.weight''', '''_float_tensor''', '''decoder.embed_positions._float_tensor''', ] for k in ignore_keys: state_dict.pop(UpperCamelCase__ , UpperCamelCase__ ) def SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: """simple docstring""" A__ , A__ = emb.weight.shape A__ = nn.Linear(UpperCamelCase__ , UpperCamelCase__ , bias=UpperCamelCase__ ) A__ = emb.weight.data return lin_layer def SCREAMING_SNAKE_CASE ( lowercase_ ) -> str: """simple docstring""" A__ = torch.load(UpperCamelCase__ , map_location='''cpu''' ) A__ = Namespace(**checkpoint['''cfg''']['''model'''] ) A__ = checkpoint['''model'''] remove_ignore_keys_(UpperCamelCase__ ) A__ = state_dict['''decoder.embed_tokens.weight'''].shape[0] A__ = {key.replace('''decoder''' , '''model''' ): val for key, val in state_dict.items()} A__ = XGLMConfig( vocab_size=UpperCamelCase__ , max_position_embeddings=args.max_target_positions , num_layers=args.decoder_layers , attention_heads=args.decoder_attention_heads , ffn_dim=args.decoder_ffn_embed_dim , d_model=args.decoder_embed_dim , layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='''gelu''' , scale_embedding=not args.no_scale_embedding , tie_word_embeddings=args.share_decoder_input_output_embed , ) A__ = XGLMForCausalLM(UpperCamelCase__ ) A__ = model.load_state_dict(UpperCamelCase__ , strict=UpperCamelCase__ ) print(UpperCamelCase__ ) A__ = make_linear_from_emb(model.model.embed_tokens ) return model if __name__ == "__main__": _lowerCamelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument("""fairseq_path""", type=str, help="""path to a model.pt on local filesystem.""") parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") _lowerCamelCase : Optional[Any] = parser.parse_args() _lowerCamelCase : str = convert_fairseq_xglm_checkpoint_from_disk(args.fairseq_path) model.save_pretrained(args.pytorch_dump_folder_path)
703
import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Tuple: """simple docstring""" assert isinstance(lowercase_ , lowercase_ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> int: """simple docstring""" A__ = tmp_path / '''cache''' A__ = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): A__ = ParquetDatasetReader(lowercase_ , cache_dir=lowercase_ , keep_in_memory=lowercase_ ).read() _check_parquet_dataset(lowercase_ , lowercase_ ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> List[str]: """simple docstring""" A__ = tmp_path / '''cache''' A__ = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} A__ = features.copy() if features else default_expected_features A__ = ( Features({feature: Value(lowercase_ ) for feature, dtype in features.items()} ) if features is not None else None ) A__ = ParquetDatasetReader(lowercase_ , features=lowercase_ , cache_dir=lowercase_ ).read() _check_parquet_dataset(lowercase_ , lowercase_ ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> str: """simple docstring""" A__ = tmp_path / '''cache''' A__ = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} A__ = ParquetDatasetReader(lowercase_ , cache_dir=lowercase_ , split=lowercase_ ).read() _check_parquet_dataset(lowercase_ , lowercase_ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('''path_type''' , [str, list] ) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> List[Any]: """simple docstring""" if issubclass(lowercase_ , lowercase_ ): A__ = parquet_path elif issubclass(lowercase_ , lowercase_ ): A__ = [parquet_path] A__ = tmp_path / '''cache''' A__ = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} A__ = ParquetDatasetReader(lowercase_ , cache_dir=lowercase_ ).read() _check_parquet_dataset(lowercase_ , lowercase_ ) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_=("train",) ) -> List[str]: """simple docstring""" assert isinstance(lowercase_ , lowercase_ ) for split in splits: A__ = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> str: """simple docstring""" A__ = tmp_path / '''cache''' A__ = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): A__ = ParquetDatasetReader( {'''train''': parquet_path} , cache_dir=lowercase_ , keep_in_memory=lowercase_ ).read() _check_parquet_datasetdict(lowercase_ , lowercase_ ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> List[Any]: """simple docstring""" A__ = tmp_path / '''cache''' A__ = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} A__ = features.copy() if features else default_expected_features A__ = ( Features({feature: Value(lowercase_ ) for feature, dtype in features.items()} ) if features is not None else None ) A__ = ParquetDatasetReader({'''train''': parquet_path} , features=lowercase_ , cache_dir=lowercase_ ).read() _check_parquet_datasetdict(lowercase_ , lowercase_ ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> Union[str, Any]: """simple docstring""" if split: A__ = {split: parquet_path} else: A__ = '''train''' A__ = {'''train''': parquet_path, '''test''': parquet_path} A__ = tmp_path / '''cache''' A__ = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} A__ = ParquetDatasetReader(lowercase_ , cache_dir=lowercase_ ).read() _check_parquet_datasetdict(lowercase_ , lowercase_ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> List[str]: """simple docstring""" A__ = ParquetDatasetWriter(lowercase_ , tmp_path / '''foo.parquet''' ) assert writer.write() > 0 A__ = pq.ParquetFile(tmp_path / '''foo.parquet''' ) A__ = pf.read() assert dataset.data.table == output_table def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: """simple docstring""" A__ = str(shared_datadir / '''test_image_rgb.jpg''' ) A__ = {'''image''': [image_path]} A__ = Features({'''image''': Image()} ) A__ = Dataset.from_dict(lowercase_ , features=lowercase_ ) A__ = ParquetDatasetWriter(lowercase_ , tmp_path / '''foo.parquet''' ) assert writer.write() > 0 A__ = Dataset.from_parquet(str(tmp_path / '''foo.parquet''' ) ) assert dataset.features == reloaded_dataset.features A__ = ParquetDatasetReader(str(tmp_path / '''foo.parquet''' ) , streaming=lowercase_ ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( '''feature, expected''' , [ (Features({'''foo''': Value('''int32''' )} ), None), (Features({'''image''': Image(), '''foo''': Value('''int32''' )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({'''nested''': Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Tuple: """simple docstring""" assert get_writer_batch_size(lowercase_ ) == expected
177
0
from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def A__ ( ) -> Dict: """simple docstring""" import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join _UpperCAmelCase = '''__test_patch_submodule_mock__''' with patch_submodule(_test_patching , '''os.path.join''' , SCREAMING_SNAKE_CASE_ ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os , _PatchedModuleObj ) assert isinstance(_test_patching.os.path , _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path , _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os , _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path , _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def A__ ( ) -> Dict: """simple docstring""" assert _test_patching.open is open _UpperCAmelCase = '''__test_patch_submodule_builtin_mock__''' # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching , '''open''' , SCREAMING_SNAKE_CASE_ ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def A__ ( ) -> List[Any]: """simple docstring""" _UpperCAmelCase = '''__test_patch_submodule_missing_mock__''' with patch_submodule(_test_patching , '''pandas.read_csv''' , SCREAMING_SNAKE_CASE_ ): pass def A__ ( ) -> List[Any]: """simple docstring""" _UpperCAmelCase = '''__test_patch_submodule_missing_builtin_mock__''' # _test_patching doesn't have "len" in its globals assert getattr(_test_patching , '''len''' , SCREAMING_SNAKE_CASE_ ) is None with patch_submodule(_test_patching , '''len''' , SCREAMING_SNAKE_CASE_ ): assert _test_patching.len is mock assert _test_patching.len is len def A__ ( ) -> Tuple: """simple docstring""" _UpperCAmelCase = '''__test_patch_submodule_start_and_stop_mock__''' _UpperCAmelCase = patch_submodule(_test_patching , '''open''' , SCREAMING_SNAKE_CASE_ ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def A__ ( ) -> Union[str, Any]: """simple docstring""" from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join _UpperCAmelCase = '''__test_patch_submodule_successive_join__''' _UpperCAmelCase = '''__test_patch_submodule_successive_dirname__''' _UpperCAmelCase = '''__test_patch_submodule_successive_rename__''' assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching , '''os.path.join''' , SCREAMING_SNAKE_CASE_ ): with patch_submodule(_test_patching , '''os.rename''' , SCREAMING_SNAKE_CASE_ ): with patch_submodule(_test_patching , '''os.path.dirname''' , SCREAMING_SNAKE_CASE_ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching , '''os.rename''' , SCREAMING_SNAKE_CASE_ ): with patch_submodule(_test_patching , '''os.path.join''' , SCREAMING_SNAKE_CASE_ ): with patch_submodule(_test_patching , '''os.path.dirname''' , SCREAMING_SNAKE_CASE_ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def A__ ( ) -> List[Any]: """simple docstring""" _UpperCAmelCase = '''__test_patch_submodule_doesnt_exist_mock__''' with patch_submodule(_test_patching , '''__module_that_doesn_exist__.__attribute_that_doesn_exist__''' , SCREAMING_SNAKE_CASE_ ): pass with patch_submodule(_test_patching , '''os.__attribute_that_doesn_exist__''' , SCREAMING_SNAKE_CASE_ ): pass
32
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { "tiiuae/falcon-40b": "https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json", "tiiuae/falcon-7b": "https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json", } class __UpperCamelCase ( A__ ): __A : Dict = """falcon""" __A : Any = ["""past_key_values"""] def __init__( self , _UpperCamelCase=65024 , _UpperCamelCase=4544 , _UpperCamelCase=32 , _UpperCamelCase=71 , _UpperCamelCase=1e-5 , _UpperCamelCase=0.02 , _UpperCamelCase=True , _UpperCamelCase=0.0 , _UpperCamelCase=0.0 , _UpperCamelCase=None , _UpperCamelCase=False , _UpperCamelCase=False , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=False , _UpperCamelCase=11 , _UpperCamelCase=11 , **_UpperCamelCase , ): _UpperCAmelCase = vocab_size # Backward compatibility with n_embed kwarg _UpperCAmelCase = kwargs.pop('''n_embed''' , _UpperCamelCase ) _UpperCAmelCase = hidden_size if n_embed is None else n_embed _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = layer_norm_epsilon _UpperCAmelCase = initializer_range _UpperCAmelCase = use_cache _UpperCAmelCase = hidden_dropout _UpperCAmelCase = attention_dropout _UpperCAmelCase = bos_token_id _UpperCAmelCase = eos_token_id _UpperCAmelCase = num_attention_heads if num_kv_heads is None else num_kv_heads _UpperCAmelCase = alibi _UpperCAmelCase = new_decoder_architecture _UpperCAmelCase = multi_query # Ignored when new_decoder_architecture is True _UpperCAmelCase = parallel_attn _UpperCAmelCase = bias super().__init__(bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase ) @property def UpperCamelCase( self ): return self.hidden_size // self.num_attention_heads @property def UpperCamelCase( self ): return not self.alibi
32
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers import ( TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, BertConfig, DPRConfig, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) class lowerCamelCase : def __init__( self : str , __snake_case : Optional[int] , __snake_case : Tuple=13 , __snake_case : Optional[Any]=7 , __snake_case : List[Any]=True , __snake_case : Any=True , __snake_case : int=True , __snake_case : Dict=True , __snake_case : int=99 , __snake_case : str=32 , __snake_case : Any=2 , __snake_case : Optional[Any]=4 , __snake_case : Dict=37 , __snake_case : Union[str, Any]="gelu" , __snake_case : Dict=0.1 , __snake_case : Any=0.1 , __snake_case : Optional[Any]=5_12 , __snake_case : List[str]=16 , __snake_case : Dict=2 , __snake_case : str=0.02 , __snake_case : Tuple=3 , __snake_case : Union[str, Any]=4 , __snake_case : Tuple=None , __snake_case : Optional[Any]=0 , ): '''simple docstring''' _snake_case: Optional[Any] = parent _snake_case: Any = batch_size _snake_case: Optional[int] = seq_length _snake_case: Any = is_training _snake_case: Any = use_input_mask _snake_case: Union[str, Any] = use_token_type_ids _snake_case: Dict = use_labels _snake_case: List[Any] = vocab_size _snake_case: Union[str, Any] = hidden_size _snake_case: Optional[Any] = num_hidden_layers _snake_case: Tuple = num_attention_heads _snake_case: Dict = intermediate_size _snake_case: Tuple = hidden_act _snake_case: List[Any] = hidden_dropout_prob _snake_case: List[Any] = attention_probs_dropout_prob _snake_case: List[Any] = max_position_embeddings _snake_case: Union[str, Any] = type_vocab_size _snake_case: Any = type_sequence_label_size _snake_case: str = initializer_range _snake_case: List[str] = num_labels _snake_case: List[str] = num_choices _snake_case: List[Any] = scope _snake_case: int = projection_dim def SCREAMING_SNAKE_CASE_ ( self : Dict ): '''simple docstring''' _snake_case: Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _snake_case: Dict = None if self.use_input_mask: # follow test_modeling_tf_ctrl.py _snake_case: Any = random_attention_mask([self.batch_size, self.seq_length] ) _snake_case: Tuple = None if self.use_token_type_ids: _snake_case: Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _snake_case: Optional[Any] = None _snake_case: str = None _snake_case: Tuple = None if self.use_labels: _snake_case: List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _snake_case: int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _snake_case: List[str] = ids_tensor([self.batch_size] , self.num_choices ) _snake_case: Optional[Any] = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase_ , initializer_range=self.initializer_range , ) _snake_case: List[Any] = DPRConfig(projection_dim=self.projection_dim , **config.to_dict() ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , __snake_case : int , __snake_case : Optional[Any] , __snake_case : int , __snake_case : Union[str, Any] , __snake_case : Dict , __snake_case : List[Any] , __snake_case : int ): '''simple docstring''' _snake_case: Union[str, Any] = TFDPRContextEncoder(config=lowercase_ ) _snake_case: Union[str, Any] = model(lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ ) _snake_case: str = model(lowercase_ , token_type_ids=lowercase_ ) _snake_case: int = model(lowercase_ ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , __snake_case : List[str] , __snake_case : Any , __snake_case : List[Any] , __snake_case : List[str] , __snake_case : Tuple , __snake_case : Optional[Any] , __snake_case : Optional[Any] ): '''simple docstring''' _snake_case: Dict = TFDPRQuestionEncoder(config=lowercase_ ) _snake_case: Optional[int] = model(lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ ) _snake_case: Optional[int] = model(lowercase_ , token_type_ids=lowercase_ ) _snake_case: List[str] = model(lowercase_ ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , __snake_case : Optional[Any] , __snake_case : List[str] , __snake_case : Tuple , __snake_case : Union[str, Any] , __snake_case : Dict , __snake_case : int , __snake_case : List[Any] ): '''simple docstring''' _snake_case: Optional[int] = TFDPRReader(config=lowercase_ ) _snake_case: Any = model(lowercase_ , attention_mask=lowercase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.relevance_logits.shape , (self.batch_size,) ) def SCREAMING_SNAKE_CASE_ ( self : Any ): '''simple docstring''' _snake_case: Optional[Any] = self.prepare_config_and_inputs() ( _snake_case ): Tuple = config_and_inputs _snake_case: Union[str, Any] = {"input_ids": input_ids} return config, inputs_dict @require_tf class lowerCamelCase ( snake_case__ , snake_case__ , unittest.TestCase ): _SCREAMING_SNAKE_CASE = ( ( TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) if is_tf_available() else () ) _SCREAMING_SNAKE_CASE = {"feature-extraction": TFDPRQuestionEncoder} if is_tf_available() else {} _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' _snake_case: Any = TFDPRModelTester(self ) _snake_case: Tuple = ConfigTester(self , config_class=lowercase_ , hidden_size=37 ) def SCREAMING_SNAKE_CASE_ ( self : Dict ): '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE_ ( self : List[str] ): '''simple docstring''' _snake_case: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_context_encoder(*lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Any ): '''simple docstring''' _snake_case: Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_question_encoder(*lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : int ): '''simple docstring''' _snake_case: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_reader(*lowercase_ ) @slow def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): '''simple docstring''' for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case: List[Any] = TFDPRContextEncoder.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case: List[str] = TFDPRContextEncoder.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case: Union[str, Any] = TFDPRQuestionEncoder.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case: Tuple = TFDPRReader.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) @require_tf class lowerCamelCase ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE_ ( self : Tuple ): '''simple docstring''' _snake_case: Any = TFDPRQuestionEncoder.from_pretrained('facebook/dpr-question_encoder-single-nq-base' ) _snake_case: Dict = tf.constant( [[1_01, 75_92, 10_10, 20_03, 20_26, 38_99, 1_01_40, 10_29, 1_02]] ) # [CLS] hello, is my dog cute? [SEP] _snake_case: List[Any] = model(lowercase_ )[0] # embedding shape = (1, 768) # compare the actual values for a slice. _snake_case: str = tf.constant( [ [ 0.03_236_253, 0.12_753_335, 0.16_818_509, 0.00_279_786, 0.3_896_933, 0.24_264_945, 0.2_178_971, -0.02_335_227, -0.08_481_959, -0.14_324_117, ] ] ) self.assertTrue(numpy.allclose(output[:, :10].numpy() , expected_slice.numpy() , atol=1e-4 ) )
704
'''simple docstring''' def lowercase_ ( lowercase__ = 50 ) ->int: _snake_case: Union[str, Any] = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(F'{solution() = }')
273
0
"""simple docstring""" from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_=None ,lowercase_=None ) -> List[str]: """simple docstring""" if attention_mask is None: _UpperCamelCase : int = tf.cast(tf.math.not_equal(lowercase_ ,config.pad_token_id ) ,tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class __SCREAMING_SNAKE_CASE : '''simple docstring''' SCREAMING_SNAKE_CASE__ :List[str] = OPTConfig SCREAMING_SNAKE_CASE__ :Union[str, Any] = {} SCREAMING_SNAKE_CASE__ :List[Any] = 'gelu' def __init__( self : List[Any] , __a : List[Any] , __a : Dict=13 , __a : Optional[Any]=7 , __a : str=True , __a : Any=False , __a : int=99 , __a : Optional[int]=16 , __a : int=2 , __a : Dict=4 , __a : List[Any]=4 , __a : Union[str, Any]="gelu" , __a : Any=0.1 , __a : int=0.1 , __a : Optional[int]=20 , __a : int=2 , __a : Tuple=1 , __a : str=0 , __a : Dict=16 , __a : List[str]=16 , ) -> Union[str, Any]: _UpperCamelCase : Union[str, Any] = parent _UpperCamelCase : Dict = batch_size _UpperCamelCase : List[str] = seq_length _UpperCamelCase : Optional[Any] = is_training _UpperCamelCase : str = use_labels _UpperCamelCase : Union[str, Any] = vocab_size _UpperCamelCase : Union[str, Any] = hidden_size _UpperCamelCase : Tuple = num_hidden_layers _UpperCamelCase : List[str] = num_attention_heads _UpperCamelCase : List[str] = intermediate_size _UpperCamelCase : str = hidden_act _UpperCamelCase : List[str] = hidden_dropout_prob _UpperCamelCase : List[str] = attention_probs_dropout_prob _UpperCamelCase : Optional[Any] = max_position_embeddings _UpperCamelCase : Optional[Any] = eos_token_id _UpperCamelCase : Optional[Any] = pad_token_id _UpperCamelCase : Optional[int] = bos_token_id _UpperCamelCase : List[str] = embed_dim _UpperCamelCase : List[Any] = word_embed_proj_dim _UpperCamelCase : List[Any] = False def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: _UpperCamelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _UpperCamelCase : Dict = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _UpperCamelCase : Tuple = tf.concat([input_ids, eos_tensor] , axis=1 ) _UpperCamelCase : Any = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=snake_case_ , **self.config_updates , ) _UpperCamelCase : Optional[Any] = prepare_opt_inputs_dict(snake_case_ , snake_case_ ) return config, inputs_dict def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : Any , __a : Optional[int] ) -> List[Any]: _UpperCamelCase : int = TFOPTModel(config=snake_case_ ) _UpperCamelCase : str = inputs_dict["input_ids"] _UpperCamelCase : Optional[int] = input_ids[:1, :] _UpperCamelCase : Dict = inputs_dict["attention_mask"][:1, :] _UpperCamelCase : Any = 1 # first forward pass _UpperCamelCase : str = model(snake_case_ , attention_mask=snake_case_ , use_cache=snake_case_ ) _UpperCamelCase, _UpperCamelCase : int = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _UpperCamelCase : Optional[int] = ids_tensor((self.batch_size, 3) , config.vocab_size ) _UpperCamelCase : int = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _UpperCamelCase : int = tf.concat([input_ids, next_tokens] , axis=-1 ) _UpperCamelCase : Optional[Any] = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _UpperCamelCase : str = model(snake_case_ , attention_mask=snake_case_ )[0] _UpperCamelCase : Optional[Any] = model(snake_case_ , attention_mask=snake_case_ , past_key_values=snake_case_ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _UpperCamelCase : List[str] = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _UpperCamelCase : List[str] = output_from_no_past[:, -3:, random_slice_idx] _UpperCamelCase : str = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(snake_case_ , snake_case_ , rtol=1e-3 ) @require_tf class __SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Tuple = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () SCREAMING_SNAKE_CASE__ :Tuple = (TFOPTForCausalLM,) if is_tf_available() else () SCREAMING_SNAKE_CASE__ :List[str] = ( {'feature-extraction': TFOPTModel, 'text-generation': TFOPTForCausalLM} if is_tf_available() else {} ) SCREAMING_SNAKE_CASE__ :List[str] = False SCREAMING_SNAKE_CASE__ :List[str] = False SCREAMING_SNAKE_CASE__ :List[Any] = False SCREAMING_SNAKE_CASE__ :Union[str, Any] = 10 def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Union[str, Any]: _UpperCamelCase : List[str] = TFOPTModelTester(self ) _UpperCamelCase : List[Any] = ConfigTester(self , config_class=snake_case_ ) def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[str]: self.config_tester.run_common_tests() def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> str: _UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*snake_case_ ) def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Tuple: _UpperCamelCase, _UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(__a : Optional[Any] , __a : Optional[int] ): if hasattr(snake_case_ , "weight" ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(snake_case_ , "weight" ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 10, config.vocab_size + 10]: # build the embeddings _UpperCamelCase : Optional[Any] = model_class(config=snake_case_ ) _UpperCamelCase : Union[str, Any] = _get_word_embedding_weight(snake_case_ , model.get_input_embeddings() ) _UpperCamelCase : Optional[int] = _get_word_embedding_weight(snake_case_ , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(snake_case_ ) _UpperCamelCase : List[str] = _get_word_embedding_weight(snake_case_ , model.get_input_embeddings() ) _UpperCamelCase : Optional[int] = _get_word_embedding_weight(snake_case_ , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. _UpperCamelCase : List[str] = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , snake_case_ ) # check that weights remain the same after resizing _UpperCamelCase : Union[str, Any] = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: _UpperCamelCase : Union[str, Any] = False self.assertTrue(snake_case_ ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , snake_case_ ) _UpperCamelCase : str = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: _UpperCamelCase : List[str] = False self.assertTrue(snake_case_ ) def lowercase__ ( lowercase_ ) -> Any: """simple docstring""" return tf.constant(lowercase_ ,dtype=tf.intaa ) @require_tf class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Optional[Any] = 99 def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[Any]: _UpperCamelCase : Optional[Any] = tf.ones((4, 1) , dtype=tf.intaa ) * 2 _UpperCamelCase : Tuple = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) _UpperCamelCase : Optional[Any] = input_ids.shape[0] _UpperCamelCase : Union[str, Any] = OPTConfig( vocab_size=self.vocab_size , hidden_size=24 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @slow def __SCREAMING_SNAKE_CASE ( self : Dict ) -> int: _UpperCamelCase : Any = TFOPTModel.from_pretrained("facebook/opt-350m" ) _UpperCamelCase : str = _long_tensor([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] ) _UpperCamelCase : int = tf.not_equal(snake_case_ , model.config.pad_token_id ) with tf.GradientTape(): _UpperCamelCase : Union[str, Any] = model(input_ids=snake_case_ , attention_mask=snake_case_ ).last_hidden_state _UpperCamelCase : Optional[int] = (1, 11, 512) self.assertEqual(output.shape , snake_case_ ) _UpperCamelCase : str = tf.constant( [[-0.28_73, -1.92_18, -0.30_33], [-1.27_10, -0.13_38, -0.19_02], [0.40_95, 0.12_14, -1.31_21]] ) self.assertTrue(np.allclose(output[:, :3, :3] , snake_case_ , atol=4e-3 ) ) _UpperCamelCase : int = tf.function(snake_case_ , jit_compile=snake_case_ ) _UpperCamelCase : int = xla_generate(snake_case_ , snake_case_ )[0] self.assertTrue(np.allclose(output[:, :3, :3] , snake_case_ , atol=4e-2 ) ) @require_tf @slow class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Tuple: super().setUp() _UpperCamelCase : List[str] = "facebook/opt-350m" def __SCREAMING_SNAKE_CASE ( self : Any ) -> Tuple: _UpperCamelCase : str = TFOPTForCausalLM.from_pretrained(self.path_model ) _UpperCamelCase : Any = GPTaTokenizer.from_pretrained(self.path_model ) _UpperCamelCase : Union[str, Any] = [ "Today is a beautiful day and I want to", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False _UpperCamelCase : int = tokenizer(snake_case_ , return_tensors="tf" , padding=snake_case_ , add_special_tokens=snake_case_ ) _UpperCamelCase : Optional[int] = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) _UpperCamelCase : str = tf.constant( [ [1.38_51, -13.89_23, -10.52_29, -10.75_33, -0.23_09, -10.23_84, -0.53_65, -9.09_47, -5.16_70], [-4.70_73, -10.62_76, -3.94_15, -21.52_42, -0.28_22, -0.28_22, -0.28_22, -0.28_22, -0.28_22], [0.62_47, -3.42_29, -8.91_79, -1.42_97, -14.16_50, 1.41_46, -9.02_18, -0.27_03, -0.27_03], [6.47_83, -1.99_13, -10.79_26, -2.33_36, 1.50_92, -0.99_74, -6.82_13, 1.34_77, 1.34_77], ] ) self.assertTrue(np.allclose(snake_case_ , snake_case_ , atol=1e-4 ) ) _UpperCamelCase : List[str] = tf.function(snake_case_ , jit_compile=snake_case_ ) _UpperCamelCase : Any = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(snake_case_ , snake_case_ , atol=1e-4 ) ) @require_tf @slow class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @property def __SCREAMING_SNAKE_CASE ( self : Any ) -> int: return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Tuple: _UpperCamelCase : List[Any] = "facebook/opt-125m" _UpperCamelCase : List[Any] = [ "Today is a beautiful day and I want to", "In the city of New York, the city", "Paris is the capital of France and the capital", "Computers and mobile phones have taken over the", ] _UpperCamelCase : str = [] _UpperCamelCase : List[str] = GPTaTokenizer.from_pretrained(snake_case_ ) _UpperCamelCase : Optional[Any] = TFOPTForCausalLM.from_pretrained(snake_case_ ) for prompt in self.prompts: _UpperCamelCase : int = tokenizer(snake_case_ , return_tensors="tf" ).input_ids _UpperCamelCase : Any = model.generate(snake_case_ , max_length=10 ) _UpperCamelCase : int = tokenizer.batch_decode(snake_case_ , skip_special_tokens=snake_case_ ) predicted_outputs += generated_string self.assertListEqual(snake_case_ , snake_case_ ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> int: _UpperCamelCase : Optional[int] = "facebook/opt-350m" _UpperCamelCase : List[str] = GPTaTokenizer.from_pretrained(snake_case_ ) _UpperCamelCase : Optional[int] = TFOPTForCausalLM.from_pretrained(snake_case_ ) _UpperCamelCase : Optional[int] = "left" # use different length sentences to test batching _UpperCamelCase : Optional[int] = [ "Hello, my dog is a little", "Today, I", ] _UpperCamelCase : Optional[Any] = tokenizer(snake_case_ , return_tensors="tf" , padding=snake_case_ ) _UpperCamelCase : str = inputs["input_ids"] _UpperCamelCase : Any = model.generate(input_ids=snake_case_ , attention_mask=inputs["attention_mask"] ) _UpperCamelCase : Any = tokenizer(sentences[0] , return_tensors="tf" ).input_ids _UpperCamelCase : Optional[Any] = model.generate(input_ids=snake_case_ ) _UpperCamelCase : List[Any] = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs["attention_mask"][-1] , tf.intaa ) ) _UpperCamelCase : List[Any] = tokenizer(sentences[1] , return_tensors="tf" ).input_ids _UpperCamelCase : List[str] = model.generate(input_ids=snake_case_ , max_length=model.config.max_length - num_paddings ) _UpperCamelCase : Optional[int] = tokenizer.batch_decode(snake_case_ , skip_special_tokens=snake_case_ ) _UpperCamelCase : int = tokenizer.decode(output_non_padded[0] , skip_special_tokens=snake_case_ ) _UpperCamelCase : int = tokenizer.decode(output_padded[0] , skip_special_tokens=snake_case_ ) _UpperCamelCase : str = [ "Hello, my dog is a little bit of a dork.\nI'm a little bit", "Today, I was in the middle of a conversation with a friend about the", ] self.assertListEqual(snake_case_ , snake_case_ ) self.assertListEqual(snake_case_ , [non_padded_sentence, padded_sentence] ) def __SCREAMING_SNAKE_CASE ( self : int ) -> int: _UpperCamelCase : List[str] = "facebook/opt-350m" _UpperCamelCase : Optional[int] = [ "Today is a beautiful day and I want to", "In the city of San Francisco, the city", "Paris is the capital of France and the capital", "Computers and mobile phones have taken over the", ] _UpperCamelCase : Optional[int] = [] _UpperCamelCase : Optional[int] = GPTaTokenizer.from_pretrained(snake_case_ ) _UpperCamelCase : int = TFOPTForCausalLM.from_pretrained(snake_case_ ) for prompt in self.prompts: _UpperCamelCase : Union[str, Any] = tokenizer(snake_case_ , return_tensors="tf" ).input_ids _UpperCamelCase : Tuple = model.generate(snake_case_ , max_length=10 ) _UpperCamelCase : Optional[Any] = tokenizer.batch_decode(snake_case_ , skip_special_tokens=snake_case_ ) predicted_outputs += generated_string self.assertListEqual(snake_case_ , snake_case_ )
624
"""simple docstring""" import os import pytest from transformers.dynamic_module_utils import get_imports _SCREAMING_SNAKE_CASE = """ import os """ _SCREAMING_SNAKE_CASE = """ def foo(): import os return False """ _SCREAMING_SNAKE_CASE = """ def foo(): def bar(): if True: import os return False return bar() """ _SCREAMING_SNAKE_CASE = """ import os try: import bar except ImportError: raise ValueError() """ _SCREAMING_SNAKE_CASE = """ import os def foo(): try: import bar except ImportError: raise ValueError() """ _SCREAMING_SNAKE_CASE = """ import os try: import bar except (ImportError, AttributeError): raise ValueError() """ _SCREAMING_SNAKE_CASE = """ import os try: import bar except ImportError as e: raise ValueError() """ _SCREAMING_SNAKE_CASE = """ import os try: import bar except: raise ValueError() """ _SCREAMING_SNAKE_CASE = """ import os try: import bar import baz except ImportError: raise ValueError() """ _SCREAMING_SNAKE_CASE = """ import os try: import bar import baz except ImportError: x = 1 raise ValueError() """ _SCREAMING_SNAKE_CASE = [ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize("case" , SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" __snake_case = os.path.join(SCREAMING_SNAKE_CASE , "test_file.py" ) with open(SCREAMING_SNAKE_CASE , "w" ) as _tmp_file: _tmp_file.write(SCREAMING_SNAKE_CASE ) __snake_case = get_imports(SCREAMING_SNAKE_CASE ) assert parsed_imports == ["os"]
163
0
from __future__ import annotations from fractions import Fraction def _lowercase ( _UpperCAmelCase , _UpperCAmelCase ) -> bool: return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def _lowercase ( _UpperCAmelCase ) -> list[str]: lowerCamelCase =[] lowerCamelCase =11 lowerCamelCase =int("""1""" + """0""" * digit_len ) for num in range(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): solutions.append(F"""{num}/{den}""" ) den += 1 num += 1 lowerCamelCase =10 return solutions def _lowercase ( _UpperCAmelCase = 2 ) -> int: lowerCamelCase =1.0 for fraction in fraction_list(_SCREAMING_SNAKE_CASE ): lowerCamelCase =Fraction(_SCREAMING_SNAKE_CASE ) result *= frac.denominator / frac.numerator return int(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(solution())
701
from typing import List from .keymap import KEYMAP, get_character def _lowercase ( _UpperCAmelCase ) -> Tuple: def decorator(_UpperCAmelCase ): lowerCamelCase =getattr(_UpperCAmelCase , """handle_key""" , [] ) handle += [key] setattr(_UpperCAmelCase , """handle_key""" , _UpperCAmelCase ) return func return decorator def _lowercase ( *_UpperCAmelCase ) -> Tuple: def decorator(_UpperCAmelCase ): lowerCamelCase =getattr(_UpperCAmelCase , """handle_key""" , [] ) handle += keys setattr(_UpperCAmelCase , """handle_key""" , _UpperCAmelCase ) return func return decorator class __A ( a ): def __new__( cls , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): lowerCamelCase =super().__new__(cls , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) if not hasattr(UpperCAmelCase_ , """key_handler""" ): setattr(UpperCAmelCase_ , """key_handler""" , {} ) setattr(UpperCAmelCase_ , """handle_input""" , KeyHandler.handle_input ) for value in attrs.values(): lowerCamelCase =getattr(UpperCAmelCase_ , """handle_key""" , [] ) for key in handled_keys: lowerCamelCase =value return new_cls @staticmethod def _snake_case ( cls ): lowerCamelCase =get_character() if char != KEYMAP["undefined"]: lowerCamelCase =ord(UpperCAmelCase_ ) lowerCamelCase =cls.key_handler.get(UpperCAmelCase_ ) if handler: lowerCamelCase =char return handler(cls ) else: return None def _lowercase ( cls ) -> List[str]: return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
269
0
'''simple docstring''' import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def UpperCAmelCase__ ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any]=10_24 , UpperCAmelCase_ : List[Any]=10_24 , UpperCAmelCase_ : List[str]=False , **UpperCAmelCase_ : str ) -> Dict: __lowerCamelCase : str = AutoTokenizer.from_pretrained(UpperCAmelCase_ ) __lowerCamelCase : Union[str, Any] = SeqaSeqDataset(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , type_path='train' , **UpperCAmelCase_ ) __lowerCamelCase : List[str] = tok.pad_token_id def get_lens(UpperCAmelCase_ : Optional[Any] ): __lowerCamelCase : Union[str, Any] = tqdm( DataLoader(UpperCAmelCase_ , batch_size=5_12 , num_workers=8 , shuffle=UpperCAmelCase_ , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) __lowerCamelCase : Optional[Any] = [] for batch in dl: __lowerCamelCase : int = batch['input_ids'].ne(UpperCAmelCase_ ).sum(1 ).tolist() __lowerCamelCase : Any = batch['labels'].ne(UpperCAmelCase_ ).sum(1 ).tolist() if consider_target: for src, tgt in zip(UpperCAmelCase_ , UpperCAmelCase_ ): max_lens.append(max(UpperCAmelCase_ , UpperCAmelCase_ ) ) else: max_lens.extend(UpperCAmelCase_ ) return max_lens __lowerCamelCase : int = get_lens(UpperCAmelCase_ ) __lowerCamelCase : Any = SeqaSeqDataset(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , type_path='val' , **UpperCAmelCase_ ) __lowerCamelCase : Union[str, Any] = get_lens(UpperCAmelCase_ ) pickle_save(UpperCAmelCase_ , train_ds.len_file ) pickle_save(UpperCAmelCase_ , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
13
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer A__ : str = logging.get_logger(__name__) A__ : str = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} A__ : Tuple = { """vocab_file""": { """junnyu/roformer_chinese_small""": """https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt""", """junnyu/roformer_chinese_base""": """https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt""", """junnyu/roformer_chinese_char_small""": ( """https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt""" ), """junnyu/roformer_chinese_char_base""": ( """https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt""" ), """junnyu/roformer_small_discriminator""": ( """https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt""" ), """junnyu/roformer_small_generator""": ( """https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt""" ), } } A__ : str = { """junnyu/roformer_chinese_small""": 1536, """junnyu/roformer_chinese_base""": 1536, """junnyu/roformer_chinese_char_small""": 512, """junnyu/roformer_chinese_char_base""": 512, """junnyu/roformer_small_discriminator""": 128, """junnyu/roformer_small_generator""": 128, } A__ : Tuple = { """junnyu/roformer_chinese_small""": {"""do_lower_case""": True}, """junnyu/roformer_chinese_base""": {"""do_lower_case""": True}, """junnyu/roformer_chinese_char_small""": {"""do_lower_case""": True}, """junnyu/roformer_chinese_char_base""": {"""do_lower_case""": True}, """junnyu/roformer_small_discriminator""": {"""do_lower_case""": True}, """junnyu/roformer_small_generator""": {"""do_lower_case""": True}, } class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" lowerCamelCase : Union[str, Any] = VOCAB_FILES_NAMES lowerCamelCase : int = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : Optional[int] = PRETRAINED_INIT_CONFIGURATION lowerCamelCase : Dict = RoFormerTokenizer def __init__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_="[UNK]" , SCREAMING_SNAKE_CASE_="[SEP]" , SCREAMING_SNAKE_CASE_="[PAD]" , SCREAMING_SNAKE_CASE_="[CLS]" , SCREAMING_SNAKE_CASE_="[MASK]" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , ) -> Optional[Any]: super().__init__( SCREAMING_SNAKE_CASE_ , tokenizer_file=SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , tokenize_chinese_chars=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) __lowerCamelCase : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get('lowercase' , SCREAMING_SNAKE_CASE_ ) != do_lower_case or pre_tok_state.get('strip_accents' , SCREAMING_SNAKE_CASE_ ) != strip_accents ): __lowerCamelCase : Optional[int] = getattr(SCREAMING_SNAKE_CASE_ , pre_tok_state.pop('type' ) ) __lowerCamelCase : Union[str, Any] = do_lower_case __lowerCamelCase : str = strip_accents __lowerCamelCase : Optional[Any] = pre_tok_class(**SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Tuple = do_lower_case def __getstate__( self ) -> List[str]: __lowerCamelCase : Union[str, Any] = self.__dict__.copy() __lowerCamelCase : Dict = BertPreTokenizer() return state def __setstate__( self , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: __lowerCamelCase : Optional[int] = d __lowerCamelCase : List[Any] = self.__dict__['_tokenizer'].get_vocab() __lowerCamelCase : Union[str, Any] = PreTokenizer.custom(JiebaPreTokenizer(SCREAMING_SNAKE_CASE_ ) ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> str: __lowerCamelCase : Union[str, Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> List[int]: __lowerCamelCase : List[str] = [self.sep_token_id] __lowerCamelCase : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> Tuple[str]: __lowerCamelCase : Optional[Any] = self._tokenizer.model.save(SCREAMING_SNAKE_CASE_ , name=SCREAMING_SNAKE_CASE_ ) return tuple(SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=False , **SCREAMING_SNAKE_CASE_ , ) -> Any: __lowerCamelCase : Tuple = BertPreTokenizer() return super().save_pretrained(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
13
1
'''simple docstring''' import dataclasses import re from dataclasses import dataclass from functools import total_ordering from typing import Optional, Union UpperCAmelCase_ = re.compile(r"^(?P<major>\d+)" r"\.(?P<minor>\d+)" r"\.(?P<patch>\d+)$") @total_ordering @dataclass class __lowercase : _a = 42 _a = None _a = None _a = None _a = None def UpperCamelCase__ ( self ) -> Any: __a , __a , __a = _str_to_version_tuple(self.version_str ) def __repr__( self ) -> Union[str, Any]: return f"{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}" @property def UpperCamelCase__ ( self ) -> List[str]: return self.major, self.minor, self.patch def UpperCamelCase__ ( self , UpperCamelCase ) -> Dict: if isinstance(UpperCamelCase , UpperCamelCase ): return Version(UpperCamelCase ) elif isinstance(UpperCamelCase , UpperCamelCase ): return other raise TypeError(f"{other} (type {type(UpperCamelCase )}) cannot be compared to version." ) def __eq__( self , UpperCamelCase ) -> List[str]: try: __a = self._validate_operand(UpperCamelCase ) except (TypeError, ValueError): return False else: return self.tuple == other.tuple def __lt__( self , UpperCamelCase ) -> Any: __a = self._validate_operand(UpperCamelCase ) return self.tuple < other.tuple def __hash__( self ) -> Optional[int]: return hash(_version_tuple_to_str(self.tuple ) ) @classmethod def UpperCamelCase__ ( cls , UpperCamelCase ) -> Optional[Any]: __a = {f.name for f in dataclasses.fields(cls )} return cls(**{k: v for k, v in dic.items() if k in field_names} ) def UpperCamelCase__ ( self ) -> str: return self.version_str def SCREAMING_SNAKE_CASE ( a_ : List[Any] ): __a = _VERSION_REG.match(a_ ) if not res: raise ValueError(f"Invalid version '{version_str}'. Format should be x.y.z with {{x,y,z}} being digits." ) return tuple(int(a_ ) for v in [res.group('major' ), res.group('minor' ), res.group('patch' )] ) def SCREAMING_SNAKE_CASE ( a_ : str ): return ".".join(str(a_ ) for v in version_tuple )
718
'''simple docstring''' import os from datetime import datetime as dt from github import Github UpperCAmelCase_ = [ "good first issue", "good second issue", "good difficult issue", "enhancement", "new pipeline/model", "new scheduler", "wip", ] def SCREAMING_SNAKE_CASE ( ): __a = Github(os.environ['GITHUB_TOKEN'] ) __a = g.get_repo('huggingface/diffusers' ) __a = repo.get_issues(state='open' ) for issue in open_issues: __a = sorted(issue.get_comments() , key=lambda a_ : i.created_at , reverse=a_ ) __a = comments[0] if len(a_ ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state='closed' ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state='open' ) issue.remove_from_labels('stale' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( 'This issue has been automatically marked as stale because it has not had ' 'recent activity. If you think this still needs to be addressed ' 'please comment on this thread.\n\nPlease note that issues that do not follow the ' '[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) ' 'are likely to be ignored.' ) issue.add_to_labels('stale' ) if __name__ == "__main__": main()
490
0
'''simple docstring''' from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class SCREAMING_SNAKE_CASE : def __init__( self : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[Any]=3 , __SCREAMING_SNAKE_CASE : Union[str, Any]=32 , __SCREAMING_SNAKE_CASE : Dict=3 , __SCREAMING_SNAKE_CASE : Dict=10 , __SCREAMING_SNAKE_CASE : List[Any]=[10, 20, 30, 40] , __SCREAMING_SNAKE_CASE : List[Any]=[1, 1, 2, 1] , __SCREAMING_SNAKE_CASE : Union[str, Any]=True , __SCREAMING_SNAKE_CASE : List[Any]=True , __SCREAMING_SNAKE_CASE : List[Any]="relu" , __SCREAMING_SNAKE_CASE : Dict=3 , __SCREAMING_SNAKE_CASE : Dict=None , ) -> Dict: a_ : Optional[Any] = parent a_ : int = batch_size a_ : Tuple = image_size a_ : List[Any] = num_channels a_ : Optional[Any] = embeddings_size a_ : str = hidden_sizes a_ : Any = depths a_ : Dict = is_training a_ : Union[str, Any] = use_labels a_ : str = hidden_act a_ : Optional[int] = num_labels a_ : Any = scope a_ : str = len(__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: a_ : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a_ : str = None if self.use_labels: a_ : str = ids_tensor([self.batch_size] , self.num_labels ) a_ : List[str] = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[int]: return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def SCREAMING_SNAKE_CASE ( self : int , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[str] ) -> Tuple: a_ : str = TFResNetModel(config=__SCREAMING_SNAKE_CASE ) a_ : Any = model(__SCREAMING_SNAKE_CASE ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def SCREAMING_SNAKE_CASE ( self : Dict , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : str ) -> Union[str, Any]: a_ : Any = self.num_labels a_ : str = TFResNetForImageClassification(__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = model(__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self : int ) -> int: a_ : str = self.prepare_config_and_inputs() a_ , a_ , a_ : str = config_and_inputs a_ : Optional[Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ , unittest.TestCase ): snake_case__ = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () snake_case__ = ( {"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification} if is_tf_available() else {} ) snake_case__ = False snake_case__ = False snake_case__ = False snake_case__ = False snake_case__ = False def SCREAMING_SNAKE_CASE ( self : Tuple ) -> str: a_ : Tuple = TFResNetModelTester(self ) a_ : Optional[int] = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , has_text_modality=__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> List[str]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[Any]: return @unittest.skip(reason='''ResNet does not use inputs_embeds''' ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[int]: pass @unittest.skip(reason='''ResNet does not support input and output embeddings''' ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[Any]: pass def SCREAMING_SNAKE_CASE ( self : Dict ) -> str: a_ , a_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ : Optional[int] = model_class(__SCREAMING_SNAKE_CASE ) a_ : str = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a_ : Dict = [*signature.parameters.keys()] a_ : Optional[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Dict: a_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : str ) -> int: def check_hidden_states_output(__SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Dict ): a_ : List[str] = model_class(__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = model(**self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) a_ : List[str] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states a_ : Optional[int] = self.model_tester.num_stages self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) a_ , a_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() a_ : Dict = ['''basic''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: a_ : Tuple = layer_type a_ : Any = True check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a_ : int = True check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : int ) -> str: a_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__SCREAMING_SNAKE_CASE ) @slow def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[int]: for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a_ : Tuple = TFResNetModel.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( ): a_ : Dict = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class SCREAMING_SNAKE_CASE ( unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Dict: return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: a_ : Optional[int] = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) a_ : int = self.default_image_processor a_ : Tuple = prepare_img() a_ : Dict = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors='''tf''' ) # forward pass a_ : Optional[Any] = model(**__SCREAMING_SNAKE_CASE ) # verify the logits a_ : List[Any] = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , __SCREAMING_SNAKE_CASE ) a_ : str = tf.constant([-11.1069, -9.7877, -8.3777] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , __SCREAMING_SNAKE_CASE , atol=1e-4 ) )
466
'''simple docstring''' from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import BaseOutput, is_torch_available, is_transformers_available @dataclass class a_ ( snake_case_ ): '''simple docstring''' UpperCamelCase = 42 UpperCamelCase = 42 if is_transformers_available() and is_torch_available(): from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
314
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { "facebook/data2vec-vision-base-ft": ( "https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json" ), } class UpperCAmelCase_ ( snake_case__ ): UpperCAmelCase_ = """data2vec-vision""" def __init__( self , lowercase_=7_68 , lowercase_=12 , lowercase_=12 , lowercase_=30_72 , lowercase_="gelu" , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.02 , lowercase_=1E-12 , lowercase_=2_24 , lowercase_=16 , lowercase_=3 , lowercase_=False , lowercase_=False , lowercase_=False , lowercase_=False , lowercase_=0.1 , lowercase_=0.1 , lowercase_=True , lowercase_=[3, 5, 7, 11] , lowercase_=[1, 2, 3, 6] , lowercase_=True , lowercase_=0.4 , lowercase_=2_56 , lowercase_=1 , lowercase_=False , lowercase_=2_55 , **lowercase_ , ): super().__init__(**lowercase_) snake_case_ : int = hidden_size snake_case_ : Dict = num_hidden_layers snake_case_ : List[Any] = num_attention_heads snake_case_ : int = intermediate_size snake_case_ : str = hidden_act snake_case_ : Tuple = hidden_dropout_prob snake_case_ : Any = attention_probs_dropout_prob snake_case_ : List[str] = initializer_range snake_case_ : Any = layer_norm_eps snake_case_ : Optional[int] = image_size snake_case_ : str = patch_size snake_case_ : Dict = num_channels snake_case_ : Any = use_mask_token snake_case_ : Dict = use_absolute_position_embeddings snake_case_ : Union[str, Any] = use_relative_position_bias snake_case_ : Any = use_shared_relative_position_bias snake_case_ : Tuple = layer_scale_init_value snake_case_ : Optional[Any] = drop_path_rate snake_case_ : str = use_mean_pooling # decode head attributes (semantic segmentation) snake_case_ : Dict = out_indices snake_case_ : Dict = pool_scales # auxiliary head attributes (semantic segmentation) snake_case_ : Any = use_auxiliary_head snake_case_ : Union[str, Any] = auxiliary_loss_weight snake_case_ : Any = auxiliary_channels snake_case_ : int = auxiliary_num_convs snake_case_ : List[str] = auxiliary_concat_input snake_case_ : Any = semantic_loss_ignore_index class UpperCAmelCase_ ( snake_case__ ): UpperCAmelCase_ = version.parse("""1.11""" ) @property def snake_case__ ( self): return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ]) @property def snake_case__ ( self): return 1E-4
92
'''simple docstring''' import argparse import os import torch from transformers.utils import WEIGHTS_NAME a_ = ["small", "medium", "large"] a_ = "lm_head.decoder.weight" a_ = "lm_head.weight" def UpperCamelCase_ ( __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE ): """simple docstring""" snake_case_ : List[Any] = torch.load(__SCREAMING_SNAKE_CASE ) snake_case_ : List[Any] = d.pop(__SCREAMING_SNAKE_CASE ) os.makedirs(__SCREAMING_SNAKE_CASE, exist_ok=__SCREAMING_SNAKE_CASE ) torch.save(__SCREAMING_SNAKE_CASE, os.path.join(__SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument("--dialogpt_path", default=".", type=str) a_ = parser.parse_args() for MODEL in DIALOGPT_MODELS: a_ = os.path.join(args.dialogpt_path, f"""{MODEL}_ft.pkl""") a_ = f"""./DialoGPT-{MODEL}""" convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
92
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = torch.device('''cpu''') def UpperCamelCase ( ) -> Tuple: UpperCamelCase : List[str] = 'http://images.cocodataset.org/val2017/000000039769.jpg' UpperCamelCase : Tuple = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ) return im def UpperCamelCase ( snake_case__ : str ) -> int: if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1_703E00, 2.1_107E00, -2.0_811E00, 8.8_685E-01, 2.4_360E-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9_636E-01, 2.3_478E-01, -1.6_963E00, -1.7_381E00, -8.6_337E-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2_768E-01, -4.7_429E-01, -1.0_897E00, -1.0_248E00, 3.5_523E-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5_330E-01, 2.4_211E-01, -6.0_185E-01, -8.2_789E-01, -6.0_446E-02] ) def UpperCamelCase ( snake_case__ : List[Any] , snake_case__ : Optional[int] , snake_case__ : List[Any] ) -> str: UpperCamelCase : Optional[int] = dct.pop(snake_case__ ) UpperCamelCase : int = val def UpperCamelCase ( snake_case__ : Optional[int] ) -> Optional[Any]: UpperCamelCase : List[str] = [] for k in state_dict.keys(): UpperCamelCase : Optional[Any] = k if ".pwconv" in k: UpperCamelCase : Dict = k_new.replace('.pwconv' , '.point_wise_conv' ) if ".dwconv" in k: UpperCamelCase : Optional[Any] = k_new.replace('.dwconv' , '.depth_wise_conv' ) if ".Proj." in k: UpperCamelCase : Optional[Any] = k_new.replace('.Proj.' , '.proj.' ) if "patch_embed" in k_new: UpperCamelCase : Optional[Any] = k_new.replace('patch_embed' , 'swiftformer.patch_embed.patch_embedding' ) if "network" in k_new: UpperCamelCase : Dict = k_new.split('.' ) if ls[2].isdigit(): UpperCamelCase : Union[str, Any] = 'swiftformer.encoder.network.' + ls[1] + '.blocks.' + ls[2] + '.' + '.'.join(ls[3:] ) else: UpperCamelCase : int = k_new.replace('network' , 'swiftformer.encoder.network' ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def UpperCamelCase ( snake_case__ : List[Any] , snake_case__ : List[Any] , snake_case__ : str ) -> List[Any]: UpperCamelCase : Dict = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size UpperCamelCase : str = 1000 UpperCamelCase : List[Any] = 'huggingface/label-files' UpperCamelCase : str = 'imagenet-1k-id2label.json' UpperCamelCase : List[Any] = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type='dataset' ) , 'r' ) ) UpperCamelCase : List[Any] = {int(snake_case__ ): v for k, v in idalabel.items()} UpperCamelCase : List[Any] = idalabel UpperCamelCase : Dict = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": UpperCamelCase : Any = [3, 3, 6, 4] UpperCamelCase : Optional[Any] = [48, 56, 112, 220] elif swiftformer_name == "swiftformer_s": UpperCamelCase : Optional[Any] = [3, 3, 9, 6] UpperCamelCase : str = [48, 64, 168, 224] elif swiftformer_name == "swiftformer_l1": UpperCamelCase : Optional[Any] = [4, 3, 10, 5] UpperCamelCase : Union[str, Any] = [48, 96, 192, 384] elif swiftformer_name == "swiftformer_l3": UpperCamelCase : List[Any] = [4, 4, 12, 6] UpperCamelCase : List[str] = [64, 128, 320, 512] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith('https' ): UpperCamelCase : Any = torch.hub.load_state_dict_from_url(snake_case__ , map_location='cpu' , check_hash=snake_case__ ) else: UpperCamelCase : Optional[Any] = torch.load(snake_case__ , map_location='cpu' ) UpperCamelCase : int = checkpoint UpperCamelCase : str = create_rename_keys(snake_case__ ) for rename_key_src, rename_key_dest in rename_keys: rename_key(snake_case__ , snake_case__ , snake_case__ ) # load HuggingFace model UpperCamelCase : str = SwiftFormerForImageClassification(snake_case__ ).eval() hf_model.load_state_dict(snake_case__ ) # prepare test inputs UpperCamelCase : Union[str, Any] = prepare_img() UpperCamelCase : Optional[int] = ViTImageProcessor.from_pretrained('preprocessor_config' ) UpperCamelCase : int = processor(images=snake_case__ , return_tensors='pt' ) # compare outputs from both models UpperCamelCase : Tuple = get_expected_output(snake_case__ ) UpperCamelCase : Optional[Any] = hf_model(inputs['pixel_values'] ).logits assert hf_logits.shape == torch.Size([1, 1000] ) assert torch.allclose(hf_logits[0, 0:5] , snake_case__ , atol=1E-3 ) Path(snake_case__ ).mkdir(exist_ok=snake_case__ ) print(F"""Saving model {swiftformer_name} to {pytorch_dump_folder_path}""" ) hf_model.save_pretrained(snake_case__ ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--swiftformer_name''', default='''swiftformer_xs''', choices=['''swiftformer_xs''', '''swiftformer_s''', '''swiftformer_l1''', '''swiftformer_l3'''], type=str, help='''Name of the SwiftFormer model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''./converted_outputs/''', type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--original_ckpt''', default=None, type=str, help='''Path to the original model checkpoint.''') __UpperCAmelCase = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
40
def A ( lowercase__ : int ) -> Optional[Any]: stooge(lowercase__ , 0 , len(lowercase__ ) - 1 ) return arr def A ( lowercase__ : Union[str, Any] , lowercase__ : Dict , lowercase__ : str ) -> List[str]: if i >= h: return # If first element is smaller than the last then swap them if arr[i] > arr[h]: UpperCamelCase__ , UpperCamelCase__ :List[str] = arr[h], arr[i] # If there are more than 2 elements in the array if h - i + 1 > 2: UpperCamelCase__ :Optional[int] = (int)((h - i + 1) / 3 ) # Recursively sort first 2/3 elements stooge(lowercase__ , lowercase__ , (h - t) ) # Recursively sort last 2/3 elements stooge(lowercase__ , i + t , (lowercase__) ) # Recursively sort first 2/3 elements stooge(lowercase__ , lowercase__ , (h - t) ) if __name__ == "__main__": UpperCamelCase = input("Enter numbers separated by a comma:\n").strip() UpperCamelCase = [int(item) for item in user_input.split(",")] print(stooge_sort(unsorted))
45
0
"""simple docstring""" import pytest from datasets import inspect_metric, list_metrics, load_metric @pytest.fixture def lowercase_ ( __UpperCAmelCase ) -> List[str]: monkeypatch.setattr("""datasets.utils.deprecation_utils._emitted_deprecation_warnings""" , set() ) @pytest.fixture def lowercase_ ( __UpperCAmelCase ) -> Optional[Any]: class _lowerCamelCase : def __init__( self : List[str] , UpperCamelCase : str ) -> Any: """simple docstring""" lowerCAmelCase__ : str = metric_id class _lowerCamelCase : _lowerCamelCase :str = [MetricMock(a_ ) for metric_id in ["accuracy", "mse", "precision", "codeparrot/apps_metric"]] def _lowerCAmelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" return self._metrics monkeypatch.setattr("""datasets.inspect.huggingface_hub""" , HfhMock() ) @pytest.mark.parametrize( """func, args""" , [(load_metric, ("""metrics/mse""",)), (list_metrics, ()), (inspect_metric, ("""metrics/mse""", """tmp_path"""))] ) def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Any: if "tmp_path" in args: lowerCAmelCase__ : Dict = tuple(arg if arg != """tmp_path""" else tmp_path for arg in args ) with pytest.warns(__UpperCAmelCase , match="""https://huggingface.co/docs/evaluate""" ): func(*__UpperCAmelCase )
507
"""simple docstring""" import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class _lowerCamelCase ( a_ , unittest.TestCase ): _lowerCamelCase :Dict = FlaxAutoencoderKL @property def _lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" lowerCAmelCase__ : List[Any] = 4 lowerCAmelCase__ : Tuple = 3 lowerCAmelCase__ : Union[str, Any] = (32, 32) lowerCAmelCase__ : Dict = jax.random.PRNGKey(0 ) lowerCAmelCase__ : Optional[int] = jax.random.uniform(UpperCamelCase , ((batch_size, num_channels) + sizes) ) return {"sample": image, "prng_key": prng_key} def _lowerCAmelCase ( self : str ) -> int: """simple docstring""" lowerCAmelCase__ : Dict = { """block_out_channels""": [32, 64], """in_channels""": 3, """out_channels""": 3, """down_block_types""": ["""DownEncoderBlock2D""", """DownEncoderBlock2D"""], """up_block_types""": ["""UpDecoderBlock2D""", """UpDecoderBlock2D"""], """latent_channels""": 4, } lowerCAmelCase__ : List[Any] = self.dummy_input return init_dict, inputs_dict
507
1
from ..utils import DummyObject, requires_backends class A__ ( metaclass=snake_case__ ): """simple docstring""" __magic_name__ = ['flax', 'transformers'] def __init__( self , *__snake_case , **__snake_case ): requires_backends(self , ['''flax''', '''transformers'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''flax''', '''transformers'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''flax''', '''transformers'''] ) class A__ ( metaclass=snake_case__ ): """simple docstring""" __magic_name__ = ['flax', 'transformers'] def __init__( self , *__snake_case , **__snake_case ): requires_backends(self , ['''flax''', '''transformers'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''flax''', '''transformers'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''flax''', '''transformers'''] ) class A__ ( metaclass=snake_case__ ): """simple docstring""" __magic_name__ = ['flax', 'transformers'] def __init__( self , *__snake_case , **__snake_case ): requires_backends(self , ['''flax''', '''transformers'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''flax''', '''transformers'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''flax''', '''transformers'''] ) class A__ ( metaclass=snake_case__ ): """simple docstring""" __magic_name__ = ['flax', 'transformers'] def __init__( self , *__snake_case , **__snake_case ): requires_backends(self , ['''flax''', '''transformers'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''flax''', '''transformers'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''flax''', '''transformers'''] )
550
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : str = {"vocab_file": "vocab.json", "merges_file": "merges.txt"} _SCREAMING_SNAKE_CASE : Any = { "vocab_file": { "allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json", "allenai/longformer-large-4096": ( "https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json" ), "allenai/longformer-large-4096-finetuned-triviaqa": ( "https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json" ), "allenai/longformer-base-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json" ), "allenai/longformer-large-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json" ), }, "merges_file": { "allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt", "allenai/longformer-large-4096": ( "https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt" ), "allenai/longformer-large-4096-finetuned-triviaqa": ( "https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt" ), "allenai/longformer-base-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt" ), "allenai/longformer-large-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt" ), }, } _SCREAMING_SNAKE_CASE : List[Any] = { "allenai/longformer-base-4096": 40_96, "allenai/longformer-large-4096": 40_96, "allenai/longformer-large-4096-finetuned-triviaqa": 40_96, "allenai/longformer-base-4096-extra.pos.embd.only": 40_96, "allenai/longformer-large-4096-extra.pos.embd.only": 40_96, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def UpperCAmelCase__ (): """simple docstring""" snake_case = ( list(range(ord('''!''' ) ,ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) ,ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) ,ord('''ÿ''' ) + 1 ) ) ) snake_case = bs[:] snake_case = 0 for b in range(2**8 ): if b not in bs: bs.append(UpperCamelCase_ ) cs.append(2**8 + n ) n += 1 snake_case = [chr(UpperCamelCase_ ) for n in cs] return dict(zip(UpperCamelCase_ ,UpperCamelCase_ ) ) def UpperCAmelCase__ (UpperCamelCase_ ): """simple docstring""" snake_case = set() snake_case = word[0] for char in word[1:]: pairs.add((prev_char, char) ) snake_case = char return pairs class A__ ( snake_case__ ): """simple docstring""" __magic_name__ = VOCAB_FILES_NAMES __magic_name__ = PRETRAINED_VOCAB_FILES_MAP __magic_name__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ = ['input_ids', 'attention_mask'] def __init__( self , __snake_case , __snake_case , __snake_case="replace" , __snake_case="<s>" , __snake_case="</s>" , __snake_case="</s>" , __snake_case="<s>" , __snake_case="<unk>" , __snake_case="<pad>" , __snake_case="<mask>" , __snake_case=False , **__snake_case , ): snake_case = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else bos_token snake_case = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else eos_token snake_case = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else sep_token snake_case = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else cls_token snake_case = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else unk_token snake_case = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else pad_token # Mask token behave like a normal word, i.e. include the space before it snake_case = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else mask_token super().__init__( errors=__snake_case , bos_token=__snake_case , eos_token=__snake_case , unk_token=__snake_case , sep_token=__snake_case , cls_token=__snake_case , pad_token=__snake_case , mask_token=__snake_case , add_prefix_space=__snake_case , **__snake_case , ) with open(__snake_case , encoding='''utf-8''' ) as vocab_handle: snake_case = json.load(__snake_case ) snake_case = {v: k for k, v in self.encoder.items()} snake_case = errors # how to handle errors in decoding snake_case = bytes_to_unicode() snake_case = {v: k for k, v in self.byte_encoder.items()} with open(__snake_case , encoding='''utf-8''' ) as merges_handle: snake_case = merges_handle.read().split('''\n''' )[1:-1] snake_case = [tuple(merge.split() ) for merge in bpe_merges] snake_case = dict(zip(__snake_case , range(len(__snake_case ) ) ) ) snake_case = {} snake_case = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions snake_case = re.compile(R'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property def a_ ( self ): return len(self.encoder ) def a_ ( self ): return dict(self.encoder , **self.added_tokens_encoder ) def a_ ( self , __snake_case ): if token in self.cache: return self.cache[token] snake_case = tuple(__snake_case ) snake_case = get_pairs(__snake_case ) if not pairs: return token while True: snake_case = min(__snake_case , key=lambda __snake_case : self.bpe_ranks.get(__snake_case , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break snake_case , snake_case = bigram snake_case = [] snake_case = 0 while i < len(__snake_case ): try: snake_case = word.index(__snake_case , __snake_case ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) snake_case = j if word[i] == first and i < len(__snake_case ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 snake_case = tuple(__snake_case ) snake_case = new_word if len(__snake_case ) == 1: break else: snake_case = get_pairs(__snake_case ) snake_case = ''' '''.join(__snake_case ) snake_case = word return word def a_ ( self , __snake_case ): snake_case = [] for token in re.findall(self.pat , __snake_case ): snake_case = ''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__snake_case ).split(''' ''' ) ) return bpe_tokens def a_ ( self , __snake_case ): return self.encoder.get(__snake_case , self.encoder.get(self.unk_token ) ) def a_ ( self , __snake_case ): return self.decoder.get(__snake_case ) def a_ ( self , __snake_case ): snake_case = ''''''.join(__snake_case ) snake_case = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def a_ ( self , __snake_case , __snake_case = None ): if not os.path.isdir(__snake_case ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case = os.path.join( __snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) snake_case = os.path.join( __snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(__snake_case , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__snake_case , ensure_ascii=__snake_case ) + '''\n''' ) snake_case = 0 with open(__snake_case , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __snake_case : kv[1] ): if index != token_index: logger.warning( F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ''' Please check that the tokenizer is not corrupted!''' ) snake_case = token_index writer.write(''' '''.join(__snake_case ) + '''\n''' ) index += 1 return vocab_file, merge_file def a_ ( self , __snake_case , __snake_case = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case = [self.cls_token_id] snake_case = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def a_ ( self , __snake_case , __snake_case = None , __snake_case = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__snake_case , token_ids_a=__snake_case , already_has_special_tokens=__snake_case ) if token_ids_a is None: return [1] + ([0] * len(__snake_case )) + [1] return [1] + ([0] * len(__snake_case )) + [1, 1] + ([0] * len(__snake_case )) + [1] def a_ ( self , __snake_case , __snake_case = None ): snake_case = [self.sep_token_id] snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def a_ ( self , __snake_case , __snake_case=False , **__snake_case ): snake_case = kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__snake_case ) > 0 and not text[0].isspace()): snake_case = ''' ''' + text return (text, kwargs)
550
1
'''simple docstring''' import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 __magic_name__ : List[str] = sys.version_info >= (3, 10) def A__ ( A_=None , A_=None ) -> Union[str, Any]: return field(default_factory=lambda: default , metadata=UpperCamelCase__ ) @dataclass class UpperCamelCase__ : """simple docstring""" UpperCAmelCase__ = 42 UpperCAmelCase__ = 42 UpperCAmelCase__ = 42 UpperCAmelCase__ = 42 @dataclass class UpperCamelCase__ : """simple docstring""" UpperCAmelCase__ = 42 UpperCAmelCase__ = field(default='toto' , metadata={'help': 'help message'} ) @dataclass class UpperCamelCase__ : """simple docstring""" UpperCAmelCase__ = False UpperCAmelCase__ = True UpperCAmelCase__ = None class UpperCamelCase__ ( UpperCamelCase__ ): """simple docstring""" UpperCAmelCase__ = 'titi' UpperCAmelCase__ = 'toto' class UpperCamelCase__ ( UpperCamelCase__ ): """simple docstring""" UpperCAmelCase__ = 'titi' UpperCAmelCase__ = 'toto' UpperCAmelCase__ = 42 @dataclass class UpperCamelCase__ : """simple docstring""" UpperCAmelCase__ = 'toto' def snake_case ( self : Dict ): """simple docstring""" _lowercase = BasicEnum(self.foo ) @dataclass class UpperCamelCase__ : """simple docstring""" UpperCAmelCase__ = 'toto' def snake_case ( self : str ): """simple docstring""" _lowercase = MixedTypeEnum(self.foo ) @dataclass class UpperCamelCase__ : """simple docstring""" UpperCAmelCase__ = None UpperCAmelCase__ = field(default=UpperCamelCase__ , metadata={'help': 'help message'} ) UpperCAmelCase__ = None UpperCAmelCase__ = list_field(default=[] ) UpperCAmelCase__ = list_field(default=[] ) @dataclass class UpperCamelCase__ : """simple docstring""" UpperCAmelCase__ = list_field(default=[] ) UpperCAmelCase__ = list_field(default=[1, 2, 3] ) UpperCAmelCase__ = list_field(default=['Hallo', 'Bonjour', 'Hello'] ) UpperCAmelCase__ = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class UpperCamelCase__ : """simple docstring""" UpperCAmelCase__ = field() UpperCAmelCase__ = field() UpperCAmelCase__ = field() def snake_case ( self : str ): """simple docstring""" _lowercase = BasicEnum(self.required_enum ) @dataclass class UpperCamelCase__ : """simple docstring""" UpperCAmelCase__ = 42 UpperCAmelCase__ = field() UpperCAmelCase__ = None UpperCAmelCase__ = field(default='toto' , metadata={'help': 'help message'} ) UpperCAmelCase__ = list_field(default=['Hallo', 'Bonjour', 'Hello'] ) if is_python_no_less_than_3_10: @dataclass class UpperCamelCase__ : """simple docstring""" UpperCAmelCase__ = False UpperCAmelCase__ = True UpperCAmelCase__ = None @dataclass class UpperCamelCase__ : """simple docstring""" UpperCAmelCase__ = None UpperCAmelCase__ = field(default=UpperCamelCase__ , metadata={'help': 'help message'} ) UpperCAmelCase__ = None UpperCAmelCase__ = list_field(default=[] ) UpperCAmelCase__ = list_field(default=[] ) class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def snake_case ( self : str , __A : argparse.ArgumentParser , __A : argparse.ArgumentParser ): """simple docstring""" self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): _lowercase = {k: v for k, v in vars(__A ).items() if k != "container"} _lowercase = {k: v for k, v in vars(__A ).items() if k != "container"} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get("choices" , __A ) and yy.get("choices" , __A ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx["type"](__A ) , yy["type"](__A ) ) del xx["type"], yy["type"] self.assertEqual(__A , __A ) def snake_case ( self : int ): """simple docstring""" _lowercase = HfArgumentParser(__A ) _lowercase = argparse.ArgumentParser() expected.add_argument("--foo" , type=__A , required=__A ) expected.add_argument("--bar" , type=__A , required=__A ) expected.add_argument("--baz" , type=__A , required=__A ) expected.add_argument("--flag" , type=__A , default=__A , const=__A , nargs="?" ) self.argparsersEqual(__A , __A ) _lowercase = ["--foo", "1", "--baz", "quux", "--bar", "0.5"] ((_lowercase ) , ) = parser.parse_args_into_dataclasses(__A , look_for_args_file=__A ) self.assertFalse(example.flag ) def snake_case ( self : Tuple ): """simple docstring""" _lowercase = HfArgumentParser(__A ) _lowercase = argparse.ArgumentParser() expected.add_argument("--foo" , default=4_2 , type=__A ) expected.add_argument("--baz" , default="toto" , type=__A , help="help message" ) self.argparsersEqual(__A , __A ) def snake_case ( self : List[str] ): """simple docstring""" _lowercase = argparse.ArgumentParser() expected.add_argument("--foo" , type=__A , default=__A , const=__A , nargs="?" ) expected.add_argument("--baz" , type=__A , default=__A , const=__A , nargs="?" ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument("--no_baz" , action="store_false" , default=__A , dest="baz" ) expected.add_argument("--opt" , type=__A , default=__A ) _lowercase = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(__A ) for dataclass_type in dataclass_types: _lowercase = HfArgumentParser(__A ) self.argparsersEqual(__A , __A ) _lowercase = parser.parse_args([] ) self.assertEqual(__A , Namespace(foo=__A , baz=__A , opt=__A ) ) _lowercase = parser.parse_args(["--foo", "--no_baz"] ) self.assertEqual(__A , Namespace(foo=__A , baz=__A , opt=__A ) ) _lowercase = parser.parse_args(["--foo", "--baz"] ) self.assertEqual(__A , Namespace(foo=__A , baz=__A , opt=__A ) ) _lowercase = parser.parse_args(["--foo", "True", "--baz", "True", "--opt", "True"] ) self.assertEqual(__A , Namespace(foo=__A , baz=__A , opt=__A ) ) _lowercase = parser.parse_args(["--foo", "False", "--baz", "False", "--opt", "False"] ) self.assertEqual(__A , Namespace(foo=__A , baz=__A , opt=__A ) ) def snake_case ( self : Any ): """simple docstring""" _lowercase = HfArgumentParser(__A ) _lowercase = argparse.ArgumentParser() expected.add_argument( "--foo" , default="toto" , choices=["titi", "toto", 4_2] , type=make_choice_type_function(["titi", "toto", 4_2] ) , ) self.argparsersEqual(__A , __A ) _lowercase = parser.parse_args([] ) self.assertEqual(args.foo , "toto" ) _lowercase = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) _lowercase = parser.parse_args(["--foo", "titi"] ) self.assertEqual(args.foo , "titi" ) _lowercase = parser.parse_args_into_dataclasses(["--foo", "titi"] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) _lowercase = parser.parse_args(["--foo", "42"] ) self.assertEqual(args.foo , 4_2 ) _lowercase = parser.parse_args_into_dataclasses(["--foo", "42"] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def snake_case ( self : int ): """simple docstring""" @dataclass class UpperCamelCase__ : """simple docstring""" UpperCAmelCase__ = 'toto' _lowercase = HfArgumentParser(__A ) _lowercase = argparse.ArgumentParser() expected.add_argument( "--foo" , default="toto" , choices=("titi", "toto", 4_2) , type=make_choice_type_function(["titi", "toto", 4_2] ) , ) self.argparsersEqual(__A , __A ) _lowercase = parser.parse_args([] ) self.assertEqual(args.foo , "toto" ) _lowercase = parser.parse_args(["--foo", "titi"] ) self.assertEqual(args.foo , "titi" ) _lowercase = parser.parse_args(["--foo", "42"] ) self.assertEqual(args.foo , 4_2 ) def snake_case ( self : Any ): """simple docstring""" _lowercase = HfArgumentParser(__A ) _lowercase = argparse.ArgumentParser() expected.add_argument("--foo_int" , nargs="+" , default=[] , type=__A ) expected.add_argument("--bar_int" , nargs="+" , default=[1, 2, 3] , type=__A ) expected.add_argument("--foo_str" , nargs="+" , default=["Hallo", "Bonjour", "Hello"] , type=__A ) expected.add_argument("--foo_float" , nargs="+" , default=[0.1, 0.2, 0.3] , type=__A ) self.argparsersEqual(__A , __A ) _lowercase = parser.parse_args([] ) self.assertEqual( __A , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=["Hallo", "Bonjour", "Hello"] , foo_float=[0.1, 0.2, 0.3] ) , ) _lowercase = parser.parse_args("--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7".split() ) self.assertEqual(__A , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=["a", "b", "c"] , foo_float=[0.1, 0.7] ) ) def snake_case ( self : str ): """simple docstring""" _lowercase = argparse.ArgumentParser() expected.add_argument("--foo" , default=__A , type=__A ) expected.add_argument("--bar" , default=__A , type=__A , help="help message" ) expected.add_argument("--baz" , default=__A , type=__A ) expected.add_argument("--ces" , nargs="+" , default=[] , type=__A ) expected.add_argument("--des" , nargs="+" , default=[] , type=__A ) _lowercase = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(__A ) for dataclass_type in dataclass_types: _lowercase = HfArgumentParser(__A ) self.argparsersEqual(__A , __A ) _lowercase = parser.parse_args([] ) self.assertEqual(__A , Namespace(foo=__A , bar=__A , baz=__A , ces=[] , des=[] ) ) _lowercase = parser.parse_args("--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3".split() ) self.assertEqual(__A , Namespace(foo=1_2 , bar=3.1_4 , baz="42" , ces=["a", "b", "c"] , des=[1, 2, 3] ) ) def snake_case ( self : Dict ): """simple docstring""" _lowercase = HfArgumentParser(__A ) _lowercase = argparse.ArgumentParser() expected.add_argument("--required_list" , nargs="+" , type=__A , required=__A ) expected.add_argument("--required_str" , type=__A , required=__A ) expected.add_argument( "--required_enum" , type=make_choice_type_function(["titi", "toto"] ) , choices=["titi", "toto"] , required=__A , ) self.argparsersEqual(__A , __A ) def snake_case ( self : Optional[Any] ): """simple docstring""" _lowercase = HfArgumentParser(__A ) _lowercase = argparse.ArgumentParser() expected.add_argument("--foo" , type=__A , required=__A ) expected.add_argument( "--required_enum" , type=make_choice_type_function(["titi", "toto"] ) , choices=["titi", "toto"] , required=__A , ) expected.add_argument("--opt" , type=__A , default=__A ) expected.add_argument("--baz" , default="toto" , type=__A , help="help message" ) expected.add_argument("--foo_str" , nargs="+" , default=["Hallo", "Bonjour", "Hello"] , type=__A ) self.argparsersEqual(__A , __A ) def snake_case ( self : int ): """simple docstring""" _lowercase = HfArgumentParser(__A ) _lowercase = { "foo": 1_2, "bar": 3.1_4, "baz": "42", "flag": True, } _lowercase = parser.parse_dict(__A )[0] _lowercase = BasicExample(**__A ) self.assertEqual(__A , __A ) def snake_case ( self : Optional[int] ): """simple docstring""" _lowercase = HfArgumentParser(__A ) _lowercase = { "foo": 1_2, "bar": 3.1_4, "baz": "42", "flag": True, "extra": 4_2, } self.assertRaises(__A , parser.parse_dict , __A , allow_extra_keys=__A ) def snake_case ( self : str ): """simple docstring""" _lowercase = HfArgumentParser(__A ) _lowercase = { "foo": 1_2, "bar": 3.1_4, "baz": "42", "flag": True, } with tempfile.TemporaryDirectory() as tmp_dir: _lowercase = os.path.join(__A , "temp_json" ) os.mkdir(__A ) with open(temp_local_path + ".json" , "w+" ) as f: json.dump(__A , __A ) _lowercase = parser.parse_yaml_file(Path(temp_local_path + ".json" ) )[0] _lowercase = BasicExample(**__A ) self.assertEqual(__A , __A ) def snake_case ( self : Optional[int] ): """simple docstring""" _lowercase = HfArgumentParser(__A ) _lowercase = { "foo": 1_2, "bar": 3.1_4, "baz": "42", "flag": True, } with tempfile.TemporaryDirectory() as tmp_dir: _lowercase = os.path.join(__A , "temp_yaml" ) os.mkdir(__A ) with open(temp_local_path + ".yaml" , "w+" ) as f: yaml.dump(__A , __A ) _lowercase = parser.parse_yaml_file(Path(temp_local_path + ".yaml" ) )[0] _lowercase = BasicExample(**__A ) self.assertEqual(__A , __A ) def snake_case ( self : str ): """simple docstring""" _lowercase = HfArgumentParser(__A ) self.assertIsNotNone(__A )
715
'''simple docstring''' from __future__ import annotations class UpperCamelCase__ : """simple docstring""" def __init__( self : Union[str, Any] , __A : str=None ): """simple docstring""" _lowercase = data _lowercase = None def __repr__( self : Optional[int] ): """simple docstring""" _lowercase = [] _lowercase = self while temp: string_rep.append(f"""{temp.data}""" ) _lowercase = temp.next return "->".join(__A ) def A__ ( A_ ) -> Any: if not elements_list: raise Exception("The Elements List is empty" ) _lowercase = _lowercase = Node(elements_list[0] ) for i in range(1 , len(A_ ) ): _lowercase = Node(elements_list[i] ) _lowercase = current.next return head def A__ ( A_ ) -> None: if head_node is not None and isinstance(A_ , A_ ): print_reverse(head_node.next ) print(head_node.data ) def A__ ( ) -> Union[str, Any]: from doctest import testmod testmod() _lowercase = make_linked_list([14, 52, 14, 12, 43] ) print("Linked List:" ) print(A_ ) print("Elements in Reverse:" ) print_reverse(A_ ) if __name__ == "__main__": main()
602
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule A__ : str = {"""tokenization_byt5""": ["""ByT5Tokenizer"""]} if TYPE_CHECKING: from .tokenization_byta import ByTaTokenizer else: import sys A__ : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
13
'''simple docstring''' def snake_case_ ( lowercase__ = "The quick brown fox jumps over the lazy dog" , ): UpperCAmelCase__ : Dict = set() # Replace all the whitespace in our sentence UpperCAmelCase__ : str = input_str.replace(" " , "" ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(lowercase__ ) == 2_6 def snake_case_ ( lowercase__ = "The quick brown fox jumps over the lazy dog" , ): UpperCAmelCase__ : str = [False] * 2_6 for char in input_str: if char.islower(): UpperCAmelCase__ : List[Any] = True elif char.isupper(): UpperCAmelCase__ : List[Any] = True return all(lowercase__ ) def snake_case_ ( lowercase__ = "The quick brown fox jumps over the lazy dog" , ): return len({char for char in input_str.lower() if char.isalpha()} ) == 2_6 def snake_case_ ( ): from timeit import timeit UpperCAmelCase__ : Union[str, Any] = "from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest" print(timeit("is_pangram()" , setup=lowercase__ ) ) print(timeit("is_pangram_faster()" , setup=lowercase__ ) ) print(timeit("is_pangram_fastest()" , setup=lowercase__ ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
199
0
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _a: Optional[int] = logging.get_logger(__name__) _a: Optional[int] = {"""tokenizer_file""": """tokenizer.json"""} _a: Tuple = { """tokenizer_file""": { """bigscience/tokenizer""": """https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json""", """bigscience/bloom-560m""": """https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json""", """bigscience/bloom-1b1""": """https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json""", """bigscience/bloom-1b7""": """https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json""", """bigscience/bloom-3b""": """https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json""", """bigscience/bloom-7b1""": """https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json""", """bigscience/bloom""": """https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json""", }, } class __UpperCamelCase ( snake_case_ ): SCREAMING_SNAKE_CASE__ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ = ["""input_ids""", """attention_mask"""] SCREAMING_SNAKE_CASE__ = None def __init__( self : Any , lowerCAmelCase : List[str]=None , lowerCAmelCase : List[str]=None , lowerCAmelCase : List[Any]=None , lowerCAmelCase : Tuple="<unk>" , lowerCAmelCase : Union[str, Any]="<s>" , lowerCAmelCase : Union[str, Any]="</s>" , lowerCAmelCase : Tuple="<pad>" , lowerCAmelCase : Optional[int]=False , lowerCAmelCase : Dict=False , **lowerCAmelCase : Tuple , ): '''simple docstring''' super().__init__( lowerCAmelCase , lowerCAmelCase , tokenizer_file=lowerCAmelCase , unk_token=lowerCAmelCase , bos_token=lowerCAmelCase , eos_token=lowerCAmelCase , pad_token=lowerCAmelCase , add_prefix_space=lowerCAmelCase , clean_up_tokenization_spaces=lowerCAmelCase , **lowerCAmelCase , ) UpperCAmelCase_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , lowerCAmelCase ) != add_prefix_space: UpperCAmelCase_ = getattr(lowerCAmelCase , pre_tok_state.pop("type" ) ) UpperCAmelCase_ = add_prefix_space UpperCAmelCase_ = pre_tok_class(**lowerCAmelCase ) UpperCAmelCase_ = add_prefix_space def __A ( self : List[Any] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Optional[int] ): '''simple docstring''' UpperCAmelCase_ = kwargs.get("is_split_into_words" , lowerCAmelCase ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with" " pretokenized inputs." ) return super()._batch_encode_plus(*lowerCAmelCase , **lowerCAmelCase ) def __A ( self : Union[str, Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Any ): '''simple docstring''' UpperCAmelCase_ = kwargs.get("is_split_into_words" , lowerCAmelCase ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with" " pretokenized inputs." ) return super()._encode_plus(*lowerCAmelCase , **lowerCAmelCase ) def __A ( self : Tuple , lowerCAmelCase : List[Any] , lowerCAmelCase : List[Any] = None ): '''simple docstring''' UpperCAmelCase_ = self._tokenizer.model.save(lowerCAmelCase , name=lowerCAmelCase ) return tuple(lowerCAmelCase ) def __A ( self : Any , lowerCAmelCase : List[Any] ): '''simple docstring''' UpperCAmelCase_ = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) + [self.eos_token_id] ) if len(lowerCAmelCase ) > self.model_max_length: UpperCAmelCase_ = input_ids[-self.model_max_length :] return input_ids
701
from __future__ import annotations class __UpperCamelCase : def __init__( self : Optional[Any] , lowerCAmelCase : str , lowerCAmelCase : str ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ = text, pattern UpperCAmelCase_ , UpperCAmelCase_ = len(lowerCAmelCase ), len(lowerCAmelCase ) def __A ( self : List[str] , lowerCAmelCase : str ): '''simple docstring''' for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def __A ( self : int , lowerCAmelCase : int ): '''simple docstring''' for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def __A ( self : str ): '''simple docstring''' UpperCAmelCase_ = [] for i in range(self.textLen - self.patLen + 1 ): UpperCAmelCase_ = self.mismatch_in_text(lowerCAmelCase ) if mismatch_index == -1: positions.append(lowerCAmelCase ) else: UpperCAmelCase_ = self.match_in_pattern(self.text[mismatch_index] ) UpperCAmelCase_ = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions _a: Dict = """ABAABA""" _a: Union[str, Any] = """AB""" _a: str = BoyerMooreSearch(text, pattern) _a: Dict = bms.bad_character_heuristic() if len(positions) == 0: print("""No match found""") else: print("""Pattern found in following positions: """) print(positions)
268
0
"""simple docstring""" import unittest from pathlib import Path from shutil import copyfile from transformers import SPIECE_UNDERLINE, is_sentencepiece_available from transformers.models.speech_to_text import SpeechaTextTokenizer from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase =get_tests_dir("fixtures/test_sentencepiece.model") if is_sentencepiece_available(): import sentencepiece as sp UpperCAmelCase =5 UpperCAmelCase =10 @require_sentencepiece @require_tokenizers class lowerCamelCase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' _lowerCamelCase = SpeechaTextTokenizer _lowerCamelCase = False _lowerCamelCase = True def UpperCamelCase__ ( self ) -> Dict: super().setUp() A = sp.SentencePieceProcessor() spm_model.Load(lowerCamelCase_ ) A = ["""<s>""", """<pad>""", """</s>""", """<unk>"""] vocab += [spm_model.IdToPiece(id_ ) for id_ in range(len(lowerCamelCase_ ) )] A = dict(zip(lowerCamelCase_ ,range(len(lowerCamelCase_ ) ) ) ) A = Path(self.tmpdirname ) save_json(lowerCamelCase_ ,save_dir / VOCAB_FILES_NAMES["""vocab_file"""] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(lowerCamelCase_ ,save_dir / VOCAB_FILES_NAMES["""spm_file"""] ) A = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase__ ( self ) -> Optional[Any]: A = """<pad>""" A = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase_ ) ,lowerCamelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase_ ) ,lowerCamelCase_ ) def UpperCamelCase__ ( self ) -> int: A = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,"""<s>""" ) self.assertEqual(vocab_keys[1] ,"""<pad>""" ) self.assertEqual(vocab_keys[-1] ,"""j""" ) self.assertEqual(len(lowerCamelCase_ ) ,1_0_0_1 ) def UpperCamelCase__ ( self ) -> Dict: self.assertEqual(self.get_tokenizer().vocab_size ,1_0_0_1 ) def UpperCamelCase__ ( self ) -> Optional[int]: A = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) A = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(lowerCamelCase_ ,["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) ,[2_8_9, 5_0, 1_4, 1_7_4, 3_8_6] ,) A = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( lowerCamelCase_ ,[SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """."""] ,) A = tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ ,[1_2, 2_5, 8_8, 5_9, 2_8, 2_3, 1_1, 4, 6_0_6, 3_5_1, 3_5_1, 3_5_1, 7, 1_6, 7_0, 5_0, 7_6, 8_4, 1_0, 4, 8] ) A = tokenizer.convert_ids_to_tokens(lowerCamelCase_ ) self.assertListEqual( lowerCamelCase_ ,[SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """."""] ,) @slow def UpperCamelCase__ ( self ) -> Tuple: # fmt: off A = {"""input_ids""": [[3_7_9_1, 7_9_7, 3_1, 1_1, 6_4, 7_9_7, 3_1, 2_4_2_9, 4_3_3, 1_2, 1_1_7_6, 1_2, 2_0, 7_8_6, 9_1_5, 1_4_2, 2_4_1_3, 2_4_0, 3_7, 3_2_3_8, 7_9_7, 3_1, 1_1, 3_5, 9_3, 9_1_5, 1_4_2, 2_4_1_3, 2_4_0, 3_7, 5_5_4_0, 5_6_7, 1_2_7_6, 9_3, 3_7, 6_1_0, 4_0, 6_2, 4_5_5, 6_5_7, 1_0_4_2, 1_2_3, 7_8_0, 1_7_7, 3_7, 3_0_9, 2_4_1, 1_2_9_8, 5_1_4, 2_0, 2_9_2, 2_7_3_7, 1_1_4, 2_4_6_9, 2_4_1, 8_5, 6_4, 3_0_2, 5_4_8, 5_2_8, 4_2_3, 4, 5_0_9, 4_0_6, 4_2_3, 3_7, 6_0_1, 4, 7_7_7, 3_0_2, 5_4_8, 5_2_8, 4_2_3, 2_8_4, 4, 3_3_8_8, 5_1_1, 4_5_9, 4, 3_5_5_5, 4_0, 3_2_1, 3_0_2, 7_0_5, 4, 3_3_8_8, 5_1_1, 5_8_3, 3_2_6, 5, 5, 5, 6_2, 3_3_1_0, 5_6_0, 1_7_7, 2_6_8_0, 2_1_7, 1_5_0_8, 3_2, 3_1, 8_5_3, 4_1_8, 6_4, 5_8_3, 5_1_1, 1_6_0_5, 6_2, 3_5, 9_3, 5_6_0, 1_7_7, 2_6_8_0, 2_1_7, 1_5_0_8, 1_5_2_1, 6_4, 5_8_3, 5_1_1, 5_1_9, 6_2, 2_0, 1_5_1_5, 7_6_4, 2_0, 1_4_9, 2_6_1, 5_6_2_5, 7_9_7_2, 2_0, 5_5_4_0, 5_6_7, 1_2_7_6, 9_3, 3_9_2_5, 1_6_7_5, 1_1, 1_5, 8_0_2, 7_9_7_2, 5_7_6, 2_1_7, 1_5_0_8, 1_1, 3_5, 9_3, 1_2_5_3, 2_4_4_1, 1_5, 2_8_9, 6_5_2, 3_1, 4_1_6, 3_2_1, 3_8_4_2, 1_1_5, 4_0, 9_1_1, 8, 4_7_6, 6_1_9, 4, 3_8_0, 1_4_2, 4_2_3, 3_3_5, 2_4_0, 3_5, 9_3, 2_6_4, 8, 1_1, 3_3_5, 5_6_9, 4_2_0, 1_6_3, 5, 2], [2_6_0, 5_4_8, 5_2_8, 4_2_3, 2_0, 4_5_1, 2_0, 2_6_8_1, 1_1_5_3, 3_4_3_4, 2_0, 5_5_4_0, 3_7, 5_6_7, 1_2_6, 1_2_5_3, 2_4_4_1, 3_3_7_6, 4_4_9, 2_1_0, 4_3_1, 1_5_6_3, 1_7_7, 7_6_7, 5_5_4_0, 1_1, 1_2_0_3, 4_7_2, 1_1, 2_9_5_3, 6_8_5, 2_8_5, 3_6_4, 7_0_6, 1_1_5_3, 2_0, 6_7_9_9, 2_0, 2_8_6_9, 2_0, 4_4_6_4, 1_2_6, 4_0, 2_4_2_9, 2_0, 1_0_4_0, 8_6_6, 2_6_6_4, 4_1_8, 2_0, 3_1_8, 2_0, 1_7_2_6, 1_8_6, 2_0, 2_6_5, 5_2_2, 3_5, 9_3, 2_1_9_1, 4_6_3_4, 2_0, 1_0_4_0, 1_2, 6_7_9_9, 1_5, 2_2_8, 2_3_5_6, 1_4_2, 3_1, 1_1, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [2_5_7_5, 2_6_6_6, 6_8_4, 1_5_8_2, 1_1_7_6, 1_2, 6_2_7, 1_4_9, 6_1_9, 2_0, 4_9_0_2, 5_6_3, 1_1, 2_0, 1_4_9, 2_6_1, 3_4_2_0, 2_3_5_6, 1_7_4, 1_4_2, 4_7_1_4, 1_3_1, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase_ ,model_name="""facebook/s2t-small-mustc-en-de-st""" ,revision="""a14f04cf0776c02f62a8cb800cf7909e15ea23ad""" ,) @require_sentencepiece class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' _lowerCamelCase = '''valhalla/s2t_mustc_multilinguial_medium''' _lowerCamelCase = '''C\'est trop cool''' _lowerCamelCase = '''Esto es genial''' @classmethod def UpperCamelCase__ ( cls ) -> Any: A = SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name ) return cls def UpperCamelCase__ ( self ) -> str: self.assertEqual(self.tokenizer.lang_code_to_id["""pt"""] ,4 ) self.assertEqual(self.tokenizer.lang_code_to_id["""ru"""] ,6 ) self.assertEqual(self.tokenizer.lang_code_to_id["""it"""] ,9 ) self.assertEqual(self.tokenizer.lang_code_to_id["""de"""] ,1_1 ) def UpperCamelCase__ ( self ) -> Optional[Any]: self.assertEqual(self.tokenizer.vocab_size ,1_0_0_0_0 ) def UpperCamelCase__ ( self ) -> Union[str, Any]: self.assertIn(lowerCamelCase_ ,self.tokenizer.all_special_ids ) A = [ES_CODE, 4, 1_6_0_1, 4_7, 7_6_4_7, 2] A = self.tokenizer.decode(lowerCamelCase_ ,skip_special_tokens=lowerCamelCase_ ) A = self.tokenizer.decode(generated_ids[1:] ,skip_special_tokens=lowerCamelCase_ ) self.assertEqual(lowerCamelCase_ ,lowerCamelCase_ ) self.assertNotIn(self.tokenizer.eos_token ,lowerCamelCase_ ) def UpperCamelCase__ ( self ) -> int: A = """fr""" A = self.tokenizer(self.french_text ).input_ids self.assertEqual(encoded[0] ,lowerCamelCase_ ) self.assertEqual(encoded[-1] ,self.tokenizer.eos_token_id ) def UpperCamelCase__ ( self ) -> Any: A = """fr""" self.assertListEqual(self.tokenizer.prefix_tokens ,[FR_CODE] ) A = """es""" self.assertListEqual(self.tokenizer.prefix_tokens ,[ES_CODE] )
617
"""simple docstring""" class lowerCamelCase__ : '''simple docstring''' def __init__( self ) -> Union[str, Any]: A = {} def UpperCamelCase__ ( self ) -> None: print(self.vertex ) for i in self.vertex: print(lowerCamelCase_ ,""" -> """ ,""" -> """.join([str(lowerCamelCase_ ) for j in self.vertex[i]] ) ) def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ) -> None: # check if vertex is already present, if from_vertex in self.vertex: self.vertex[from_vertex].append(lowerCamelCase_ ) else: # else make a new vertex A = [to_vertex] def UpperCamelCase__ ( self ) -> None: # visited array for storing already visited nodes A = [False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(lowerCamelCase_ ,lowerCamelCase_ ) def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ) -> None: # mark start vertex as visited A = True print(lowerCamelCase_ ,end=""" """ ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(lowerCamelCase_ ,lowerCamelCase_ ) if __name__ == "__main__": UpperCAmelCase =Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print("DFS:") g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
617
1
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int ): SCREAMING_SNAKE_CASE__ = [1] SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = 0, 0, 0 SCREAMING_SNAKE_CASE__ = ugly_nums[ia] * 2 SCREAMING_SNAKE_CASE__ = ugly_nums[ia] * 3 SCREAMING_SNAKE_CASE__ = ugly_nums[ia] * 5 for _ in range(1 , UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ = min(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) ugly_nums.append(UpperCamelCase__ ) if next_num == next_a: ia += 1 SCREAMING_SNAKE_CASE__ = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 SCREAMING_SNAKE_CASE__ = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 SCREAMING_SNAKE_CASE__ = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(F'''{ugly_numbers(200) = }''')
712
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Union[str, Any] , UpperCamelCase__: List[Any] , UpperCamelCase__: Optional[Any] , UpperCamelCase__: Optional[Any] ): SCREAMING_SNAKE_CASE__ = original_name.split(""".""" )[0] SCREAMING_SNAKE_CASE__ = key.split(""".""" ) SCREAMING_SNAKE_CASE__ = int(key_list[key_list.index(UpperCamelCase__ ) - 2] ) SCREAMING_SNAKE_CASE__ = int(key_list[key_list.index(UpperCamelCase__ ) - 1] ) SCREAMING_SNAKE_CASE__ = orig_block_num - offset SCREAMING_SNAKE_CASE__ = key.replace(f'''{orig_block_num}.{layer_num}.{original_name}''' , f'''block.{new_block_num}.{layer_num}.{new_name}''' ) return key def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int ): SCREAMING_SNAKE_CASE__ = OrderedDict() SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = 0, 0 for key, value in state_dict.items(): if key.startswith("""network""" ): SCREAMING_SNAKE_CASE__ = key.replace("""network""" , """poolformer.encoder""" ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith("""bias""" ) and "patch_embed" not in key: patch_emb_offset += 1 SCREAMING_SNAKE_CASE__ = key[: key.find("""proj""" )] SCREAMING_SNAKE_CASE__ = key.replace(UpperCamelCase__ , f'''patch_embeddings.{total_embed_found}.''' ) SCREAMING_SNAKE_CASE__ = key.replace("""proj""" , """projection""" ) if key.endswith("""bias""" ): total_embed_found += 1 if "patch_embeddings" in key: SCREAMING_SNAKE_CASE__ = """poolformer.encoder.""" + key if "mlp.fc1" in key: SCREAMING_SNAKE_CASE__ = replace_key_with_offset(UpperCamelCase__ , UpperCamelCase__ , """mlp.fc1""" , """output.conv1""" ) if "mlp.fc2" in key: SCREAMING_SNAKE_CASE__ = replace_key_with_offset(UpperCamelCase__ , UpperCamelCase__ , """mlp.fc2""" , """output.conv2""" ) if "norm1" in key: SCREAMING_SNAKE_CASE__ = replace_key_with_offset(UpperCamelCase__ , UpperCamelCase__ , """norm1""" , """before_norm""" ) if "norm2" in key: SCREAMING_SNAKE_CASE__ = replace_key_with_offset(UpperCamelCase__ , UpperCamelCase__ , """norm2""" , """after_norm""" ) if "layer_scale_1" in key: SCREAMING_SNAKE_CASE__ = replace_key_with_offset(UpperCamelCase__ , UpperCamelCase__ , """layer_scale_1""" , """layer_scale_1""" ) if "layer_scale_2" in key: SCREAMING_SNAKE_CASE__ = replace_key_with_offset(UpperCamelCase__ , UpperCamelCase__ , """layer_scale_2""" , """layer_scale_2""" ) if "head" in key: SCREAMING_SNAKE_CASE__ = key.replace("""head""" , """classifier""" ) SCREAMING_SNAKE_CASE__ = value return new_state_dict def SCREAMING_SNAKE_CASE__ ( ): SCREAMING_SNAKE_CASE__ = """http://images.cocodataset.org/val2017/000000039769.jpg""" SCREAMING_SNAKE_CASE__ = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw ) return image @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[str] , UpperCamelCase__: Optional[int] , UpperCamelCase__: Any ): SCREAMING_SNAKE_CASE__ = PoolFormerConfig() # set attributes based on model_name SCREAMING_SNAKE_CASE__ = """huggingface/label-files""" SCREAMING_SNAKE_CASE__ = model_name[-3:] SCREAMING_SNAKE_CASE__ = 1_000 SCREAMING_SNAKE_CASE__ = """imagenet-1k-id2label.json""" SCREAMING_SNAKE_CASE__ = (1, 1_000) # set config attributes SCREAMING_SNAKE_CASE__ = json.load(open(hf_hub_download(UpperCamelCase__ , UpperCamelCase__ , repo_type="""dataset""" ) , """r""" ) ) SCREAMING_SNAKE_CASE__ = {int(UpperCamelCase__ ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE__ = idalabel SCREAMING_SNAKE_CASE__ = {v: k for k, v in idalabel.items()} if size == "s12": SCREAMING_SNAKE_CASE__ = [2, 2, 6, 2] SCREAMING_SNAKE_CASE__ = [64, 128, 320, 512] SCREAMING_SNAKE_CASE__ = 4.0 SCREAMING_SNAKE_CASE__ = 0.9 elif size == "s24": SCREAMING_SNAKE_CASE__ = [4, 4, 12, 4] SCREAMING_SNAKE_CASE__ = [64, 128, 320, 512] SCREAMING_SNAKE_CASE__ = 4.0 SCREAMING_SNAKE_CASE__ = 0.9 elif size == "s36": SCREAMING_SNAKE_CASE__ = [6, 6, 18, 6] SCREAMING_SNAKE_CASE__ = [64, 128, 320, 512] SCREAMING_SNAKE_CASE__ = 4.0 SCREAMING_SNAKE_CASE__ = 1e-6 SCREAMING_SNAKE_CASE__ = 0.9 elif size == "m36": SCREAMING_SNAKE_CASE__ = [6, 6, 18, 6] SCREAMING_SNAKE_CASE__ = [96, 192, 384, 768] SCREAMING_SNAKE_CASE__ = 4.0 SCREAMING_SNAKE_CASE__ = 1e-6 SCREAMING_SNAKE_CASE__ = 0.9_5 elif size == "m48": SCREAMING_SNAKE_CASE__ = [8, 8, 24, 8] SCREAMING_SNAKE_CASE__ = [96, 192, 384, 768] SCREAMING_SNAKE_CASE__ = 4.0 SCREAMING_SNAKE_CASE__ = 1e-6 SCREAMING_SNAKE_CASE__ = 0.9_5 else: raise ValueError(f'''Size {size} not supported''' ) # load image processor SCREAMING_SNAKE_CASE__ = PoolFormerImageProcessor(crop_pct=UpperCamelCase__ ) # Prepare image SCREAMING_SNAKE_CASE__ = prepare_img() SCREAMING_SNAKE_CASE__ = image_processor(images=UpperCamelCase__ , return_tensors="""pt""" ).pixel_values logger.info(f'''Converting model {model_name}...''' ) # load original state dict SCREAMING_SNAKE_CASE__ = torch.load(UpperCamelCase__ , map_location=torch.device("""cpu""" ) ) # rename keys SCREAMING_SNAKE_CASE__ = rename_keys(UpperCamelCase__ ) # create HuggingFace model and load state dict SCREAMING_SNAKE_CASE__ = PoolFormerForImageClassification(UpperCamelCase__ ) model.load_state_dict(UpperCamelCase__ ) model.eval() # Define image processor SCREAMING_SNAKE_CASE__ = PoolFormerImageProcessor(crop_pct=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = image_processor(images=prepare_img() , return_tensors="""pt""" ).pixel_values # forward pass SCREAMING_SNAKE_CASE__ = model(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = outputs.logits # define expected logit slices for different models if size == "s12": SCREAMING_SNAKE_CASE__ = torch.tensor([-0.3_0_4_5, -0.6_7_5_8, -0.4_8_6_9] ) elif size == "s24": SCREAMING_SNAKE_CASE__ = torch.tensor([0.4_4_0_2, -0.1_3_7_4, -0.8_0_4_5] ) elif size == "s36": SCREAMING_SNAKE_CASE__ = torch.tensor([-0.6_0_8_0, -0.5_1_3_3, -0.5_8_9_8] ) elif size == "m36": SCREAMING_SNAKE_CASE__ = torch.tensor([0.3_9_5_2, 0.2_2_6_3, -1.2_6_6_8] ) elif size == "m48": SCREAMING_SNAKE_CASE__ = torch.tensor([0.1_1_6_7, -0.0_6_5_6, -0.3_4_2_3] ) else: raise ValueError(f'''Size {size} not supported''' ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3] , UpperCamelCase__ , atol=1e-2 ) # finally, save model and image processor logger.info(f'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) model.save_pretrained(UpperCamelCase__ ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": _lowerCamelCase = argparse.ArgumentParser() parser.add_argument( '--model_name', default='poolformer_s12', type=str, help='Name of the model you\'d like to convert.', ) parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) _lowerCamelCase = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
59
0
"""simple docstring""" from __future__ import annotations from math import pi # Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of # Pi and the function lowercase__ = 1.0_5_4_5_7_1_8_1_7E-3_4 # unit of ℏ : J * s lowercase__ = 3E8 # unit of c : m * s^-1 def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> dict[str, float]: """simple docstring""" if (force, area, distance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if force < 0: raise ValueError("Magnitude of force can not be negative" ) if distance < 0: raise ValueError("Distance can not be negative" ) if area < 0: raise ValueError("Area can not be negative" ) if force == 0: lowerCAmelCase_ : Tuple = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / ( 240 * (distance) ** 4 ) return {"force": force} elif area == 0: lowerCAmelCase_ : Any = (240 * force * (distance) ** 4) / ( REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 ) return {"area": area} elif distance == 0: lowerCAmelCase_ : str = ( (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (240 * force) ) ** (1 / 4) return {"distance": distance} raise ValueError("One and only one argument must be 0" ) # Run doctest if __name__ == "__main__": import doctest doctest.testmod()
610
"""simple docstring""" def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase ) -> int: """simple docstring""" return 1 if input_a == input_a else 0 def __lowerCamelCase ( ) -> None: """simple docstring""" assert xnor_gate(0 , 0 ) == 1 assert xnor_gate(0 , 1 ) == 0 assert xnor_gate(1 , 0 ) == 0 assert xnor_gate(1 , 1 ) == 1 if __name__ == "__main__": print(xnor_gate(0, 0)) print(xnor_gate(0, 1)) print(xnor_gate(1, 0)) print(xnor_gate(1, 1))
610
1
def a__ ( snake_case__ ) -> list: if n_term == "": return [] lowerCamelCase = [] for temp in range(int(snake_case__ ) ): series.append(F'1/{temp + 1}' if series else """1""" ) return series if __name__ == "__main__": lowerCAmelCase : Optional[int] = input("""Enter the last number (nth term) of the Harmonic Series""") print("""Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n""") print(harmonic_series(nth_term))
710
"""simple docstring""" def a__ ( snake_case__ ) -> list: if n_term == "": return [] lowerCamelCase = [] for temp in range(int(snake_case__ ) ): series.append(F'1/{temp + 1}' if series else """1""" ) return series if __name__ == "__main__": lowerCAmelCase : Optional[int] = input("""Enter the last number (nth term) of the Harmonic Series""") print("""Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n""") print(harmonic_series(nth_term))
533
0
import json import os from typing import Optional import numpy as np from ...feature_extraction_utils import BatchFeature from ...processing_utils import ProcessorMixin from ...utils import logging from ...utils.hub import get_file_from_repo from ..auto import AutoTokenizer __snake_case = logging.get_logger(__name__) class UpperCAmelCase ( __snake_case ): lowercase = """AutoTokenizer""" lowercase = ["""tokenizer"""] lowercase = { """semantic_prompt""": 1, """coarse_prompt""": 2, """fine_prompt""": 2, } def __init__( self : List[Any] , __magic_name__ : Any , __magic_name__ : Optional[int]=None ): """simple docstring""" super().__init__(__magic_name__ ) UpperCamelCase = speaker_embeddings @classmethod def lowerCamelCase_ ( cls : Union[str, Any] , __magic_name__ : Dict , __magic_name__ : Dict="speaker_embeddings_path.json" , **__magic_name__ : Union[str, Any] ): """simple docstring""" if speaker_embeddings_dict_path is not None: UpperCamelCase = get_file_from_repo( __magic_name__ , __magic_name__ , subfolder=kwargs.pop("""subfolder""" , __magic_name__ ) , cache_dir=kwargs.pop("""cache_dir""" , __magic_name__ ) , force_download=kwargs.pop("""force_download""" , __magic_name__ ) , proxies=kwargs.pop("""proxies""" , __magic_name__ ) , resume_download=kwargs.pop("""resume_download""" , __magic_name__ ) , local_files_only=kwargs.pop("""local_files_only""" , __magic_name__ ) , use_auth_token=kwargs.pop("""use_auth_token""" , __magic_name__ ) , revision=kwargs.pop("""revision""" , __magic_name__ ) , ) if speaker_embeddings_path is None: logger.warning( F'`{os.path.join(__magic_name__ , __magic_name__ )}` does not exists\n , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json\n dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`.' ) UpperCamelCase = None else: with open(__magic_name__ ) as speaker_embeddings_json: UpperCamelCase = json.load(__magic_name__ ) else: UpperCamelCase = None UpperCamelCase = AutoTokenizer.from_pretrained(__magic_name__ , **__magic_name__ ) return cls(tokenizer=__magic_name__ , speaker_embeddings=__magic_name__ ) def lowerCamelCase_ ( self : int , __magic_name__ : Dict , __magic_name__ : Union[str, Any]="speaker_embeddings_path.json" , __magic_name__ : List[Any]="speaker_embeddings" , __magic_name__ : bool = False , **__magic_name__ : Tuple , ): """simple docstring""" if self.speaker_embeddings is not None: os.makedirs(os.path.join(__magic_name__ , __magic_name__ , """v2""" ) , exist_ok=__magic_name__ ) UpperCamelCase = {} UpperCamelCase = save_directory for prompt_key in self.speaker_embeddings: if prompt_key != "repo_or_path": UpperCamelCase = self._load_voice_preset(__magic_name__ ) UpperCamelCase = {} for key in self.speaker_embeddings[prompt_key]: np.save( os.path.join( embeddings_dict["""repo_or_path"""] , __magic_name__ , F'{prompt_key}_{key}' ) , voice_preset[key] , allow_pickle=__magic_name__ , ) UpperCamelCase = os.path.join(__magic_name__ , F'{prompt_key}_{key}.npy' ) UpperCamelCase = tmp_dict with open(os.path.join(__magic_name__ , __magic_name__ ) , """w""" ) as fp: json.dump(__magic_name__ , __magic_name__ ) super().save_pretrained(__magic_name__ , __magic_name__ , **__magic_name__ ) def lowerCamelCase_ ( self : List[str] , __magic_name__ : str = None , **__magic_name__ : str ): """simple docstring""" UpperCamelCase = self.speaker_embeddings[voice_preset] UpperCamelCase = {} for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset_paths: raise ValueError( F'Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}].' ) UpperCamelCase = get_file_from_repo( self.speaker_embeddings.get("""repo_or_path""" , """/""" ) , voice_preset_paths[key] , subfolder=kwargs.pop("""subfolder""" , __magic_name__ ) , cache_dir=kwargs.pop("""cache_dir""" , __magic_name__ ) , force_download=kwargs.pop("""force_download""" , __magic_name__ ) , proxies=kwargs.pop("""proxies""" , __magic_name__ ) , resume_download=kwargs.pop("""resume_download""" , __magic_name__ ) , local_files_only=kwargs.pop("""local_files_only""" , __magic_name__ ) , use_auth_token=kwargs.pop("""use_auth_token""" , __magic_name__ ) , revision=kwargs.pop("""revision""" , __magic_name__ ) , ) if path is None: raise ValueError( F'`{os.path.join(self.speaker_embeddings.get("repo_or_path" , "/" ) , voice_preset_paths[key] )}` does not exists\n , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset}\n embeddings.' ) UpperCamelCase = np.load(__magic_name__ ) return voice_preset_dict def lowerCamelCase_ ( self : Optional[Any] , __magic_name__ : Optional[dict] = None ): """simple docstring""" for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset: raise ValueError(F'Voice preset unrecognized, missing {key} as a key.' ) if not isinstance(voice_preset[key] , np.ndarray ): raise ValueError(F'{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.' ) if len(voice_preset[key].shape ) != self.preset_shape[key]: raise ValueError(F'{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.' ) def __call__( self : List[str] , __magic_name__ : List[Any]=None , __magic_name__ : Any=None , __magic_name__ : Tuple="pt" , __magic_name__ : Dict=2_5_6 , __magic_name__ : Optional[Any]=False , __magic_name__ : List[Any]=True , __magic_name__ : Optional[Any]=False , **__magic_name__ : Dict , ): """simple docstring""" if voice_preset is not None and not isinstance(__magic_name__ , __magic_name__ ): if ( isinstance(__magic_name__ , __magic_name__ ) and self.speaker_embeddings is not None and voice_preset in self.speaker_embeddings ): UpperCamelCase = self._load_voice_preset(__magic_name__ ) else: if isinstance(__magic_name__ , __magic_name__ ) and not voice_preset.endswith(""".npz""" ): UpperCamelCase = voice_preset + """.npz""" UpperCamelCase = np.load(__magic_name__ ) if voice_preset is not None: self._validate_voice_preset_dict(__magic_name__ , **__magic_name__ ) UpperCamelCase = BatchFeature(data=__magic_name__ , tensor_type=__magic_name__ ) UpperCamelCase = self.tokenizer( __magic_name__ , return_tensors=__magic_name__ , padding="""max_length""" , max_length=__magic_name__ , return_attention_mask=__magic_name__ , return_token_type_ids=__magic_name__ , add_special_tokens=__magic_name__ , **__magic_name__ , ) if voice_preset is not None: UpperCamelCase = voice_preset return encoded_text
386
import math def _lowercase ( SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" assert isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False UpperCamelCase = range(3 , int(math.sqrt(SCREAMING_SNAKE_CASE_ ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def _lowercase ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Dict=1 , **SCREAMING_SNAKE_CASE_ : List[Any] ): """simple docstring""" UpperCamelCase = factor * value UpperCamelCase = value while not is_prime(SCREAMING_SNAKE_CASE_ ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **SCREAMING_SNAKE_CASE_ ) return value
386
1
'''simple docstring''' import argparse import os import torch from transformers.utils import WEIGHTS_NAME _UpperCamelCase = ["""small""", """medium""", """large"""] _UpperCamelCase = """lm_head.decoder.weight""" _UpperCamelCase = """lm_head.weight""" def _lowerCAmelCase( UpperCAmelCase_ : int , UpperCAmelCase_ : Dict ) -> int: lowerCAmelCase__ = torch.load(__snake_case ) lowerCAmelCase__ = d.pop(__snake_case ) os.makedirs(__snake_case , exist_ok=__snake_case ) torch.save(__snake_case , os.path.join(__snake_case , __snake_case ) ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() parser.add_argument("""--dialogpt_path""", default=""".""", type=str) _UpperCamelCase = parser.parse_args() for MODEL in DIALOGPT_MODELS: _UpperCamelCase = os.path.join(args.dialogpt_path, f'{MODEL}_ft.pkl') _UpperCamelCase = f'./DialoGPT-{MODEL}' convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
712
'''simple docstring''' def _lowerCAmelCase( UpperCAmelCase_ : str ) -> int: assert column_title.isupper() lowerCAmelCase__ = 0 lowerCAmelCase__ = len(UpperCAmelCase_ ) - 1 lowerCAmelCase__ = 0 while index >= 0: lowerCAmelCase__ = (ord(column_title[index] ) - 64) * pow(26 , UpperCAmelCase_ ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
211
0
from __future__ import annotations from random import choice def __a ( A__ : int ): return choice(A__ ) def __a ( A__ : list[int] , A__ : int ): SCREAMING_SNAKE_CASE = random_pivot(A__ ) # partition based on pivot # linear time SCREAMING_SNAKE_CASE = [e for e in lst if e < pivot] SCREAMING_SNAKE_CASE = [e for e in lst if e > pivot] # if we get lucky, pivot might be the element we want. # we can easily see this: # small (elements smaller than k) # + pivot (kth element) # + big (elements larger than k) if len(A__ ) == k - 1: return pivot # pivot is in elements bigger than k elif len(A__ ) < k - 1: return kth_number(A__ , k - len(A__ ) - 1 ) # pivot is in elements smaller than k else: return kth_number(A__ , A__ ) if __name__ == "__main__": import doctest doctest.testmod()
16
from __future__ import annotations def __UpperCAmelCase ( __A , __A , __A , ) -> tuple[str, float]: '''simple docstring''' if (stress, tangential_force, area).count(0 ) != 1: raise ValueError("You cannot supply more or less than 2 values" ) elif stress < 0: raise ValueError("Stress cannot be negative" ) elif tangential_force < 0: raise ValueError("Tangential Force cannot be negative" ) elif area < 0: raise ValueError("Area cannot be negative" ) elif stress == 0: return ( "stress", tangential_force / area, ) elif tangential_force == 0: return ( "tangential_force", stress * area, ) else: return ( "area", tangential_force / stress, ) if __name__ == "__main__": import doctest doctest.testmod()
475
0
"""simple docstring""" import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def UpperCAmelCase_ ( __a : str , __a : str , __a : str , __a : PreTrainedTokenizer , __a : int , __a : Optional[int] = None , ): '''simple docstring''' _lowerCamelCase : Optional[int] = {} if train_file is not None: _lowerCamelCase : List[str] = [train_file] if eval_file is not None: _lowerCamelCase : Union[str, Any] = [eval_file] if test_file is not None: _lowerCamelCase : Union[str, Any] = [test_file] _lowerCamelCase : int = datasets.load_dataset('csv' , data_files=__a ) _lowerCamelCase : Optional[Any] = list(ds[list(files.keys() )[0]].features.keys() ) _lowerCamelCase : int = features_name.pop(__a ) _lowerCamelCase : str = list(set(ds[list(files.keys() )[0]][label_name] ) ) _lowerCamelCase : str = {label: i for i, label in enumerate(__a )} _lowerCamelCase : Dict = tokenizer.model_input_names _lowerCamelCase : Optional[Any] = {} if len(__a ) == 1: for k in files.keys(): _lowerCamelCase : str = ds[k].map( lambda __a : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=__a , max_length=__a , padding='max_length' ) , batched=__a , ) elif len(__a ) == 2: for k in files.keys(): _lowerCamelCase : str = ds[k].map( lambda __a : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=__a , max_length=__a , padding='max_length' , ) , batched=__a , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: _lowerCamelCase : Tuple = {k: v for k, v in ex.items() if k in input_names} _lowerCamelCase : Dict = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: _lowerCamelCase : str = {k: v for k, v in ex.items() if k in input_names} _lowerCamelCase : Tuple = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: _lowerCamelCase : List[Any] = {k: v for k, v in ex.items() if k in input_names} _lowerCamelCase : List[Any] = labelaid[ex[label_name]] yield (d, label) _lowerCamelCase : Optional[Any] = ( tf.data.Dataset.from_generator( __a , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: _lowerCamelCase : List[Any] = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) _lowerCamelCase : str = ( tf.data.Dataset.from_generator( __a , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: _lowerCamelCase : List[str] = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) _lowerCamelCase : Tuple = ( tf.data.Dataset.from_generator( __a , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: _lowerCamelCase : Union[str, Any] = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid a_ = logging.getLogger(__name__) @dataclass class A_: """simple docstring""" a_ : int = field(metadata={"""help""": """Which column contains the label"""} ) a_ : str = field(default=SCREAMING_SNAKE_CASE_ , metadata={"""help""": """The path of the training file"""} ) a_ : Optional[str] = field(default=SCREAMING_SNAKE_CASE_ , metadata={"""help""": """The path of the development file"""} ) a_ : Optional[str] = field(default=SCREAMING_SNAKE_CASE_ , metadata={"""help""": """The path of the test file"""} ) a_ : int = field( default=1_28 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) a_ : bool = field( default=SCREAMING_SNAKE_CASE_ , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) @dataclass class A_: """simple docstring""" a_ : str = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) a_ : Optional[str] = field( default=SCREAMING_SNAKE_CASE_ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) a_ : Optional[str] = field( default=SCREAMING_SNAKE_CASE_ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) a_ : bool = field(default=SCREAMING_SNAKE_CASE_ , metadata={"""help""": """Set this flag to use fast tokenization."""} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. a_ : Optional[str] = field( default=SCREAMING_SNAKE_CASE_ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) def UpperCAmelCase_ ( ): '''simple docstring''' _lowerCamelCase : Optional[int] = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Union[str, Any] = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. Use" ' --overwrite_output_dir to overcome.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO , ) logger.info( f"n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, " f"16-bits training: {training_args.fpaa}" ) logger.info(f"Training/evaluation parameters {training_args}" ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _lowerCamelCase : Optional[Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : List[Any] = get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=__a , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) _lowerCamelCase : Tuple = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(__a ) , labelaid=__a , idalabel={id: label for label, id in labelaid.items()} , finetuning_task='text-classification' , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): _lowerCamelCase : int = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool('.bin' in model_args.model_name_or_path ) , config=__a , cache_dir=model_args.cache_dir , ) def compute_metrics(__a : EvalPrediction ) -> Dict: _lowerCamelCase : str = np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer _lowerCamelCase : Any = TFTrainer( model=__a , args=__a , train_dataset=__a , eval_dataset=__a , compute_metrics=__a , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation _lowerCamelCase : List[str] = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) _lowerCamelCase : Dict = trainer.evaluate() _lowerCamelCase : List[Any] = os.path.join(training_args.output_dir , 'eval_results.txt' ) with open(__a , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in result.items(): logger.info(f" {key} = {value}" ) writer.write(f"{key} = {value}\n" ) results.update(__a ) return results if __name__ == "__main__": main()
349
"""simple docstring""" def UpperCAmelCase_ ( __a : Dict , __a : Optional[Any] ): '''simple docstring''' _lowerCamelCase : Any = '' for i in table: res += inp[i - 1] return res def UpperCAmelCase_ ( __a : List[Any] ): '''simple docstring''' return data[1:] + data[0] def UpperCAmelCase_ ( __a : Any , __a : Optional[int] ): '''simple docstring''' _lowerCamelCase : List[str] = '' for i in range(len(__a ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def UpperCAmelCase_ ( __a : List[Any] , __a : str ): '''simple docstring''' _lowerCamelCase : str = int('0b' + data[0] + data[-1] , 2 ) _lowerCamelCase : Optional[int] = int('0b' + data[1:3] , 2 ) return bin(s[row][col] )[2:] def UpperCAmelCase_ ( __a : Dict , __a : int , __a : str , __a : Union[str, Any] , __a : Optional[Any] ): '''simple docstring''' _lowerCamelCase : str = message[:4] _lowerCamelCase : Optional[Any] = message[4:] _lowerCamelCase : Union[str, Any] = apply_table(__a , __a ) _lowerCamelCase : int = xor(__a , __a ) _lowerCamelCase : str = apply_sbox(__a , temp[:4] ) # noqa: E741 _lowerCamelCase : Any = apply_sbox(__a , temp[4:] ) _lowerCamelCase : Dict = '0' * (2 - len(__a )) + l # noqa: E741 _lowerCamelCase : Optional[Any] = '0' * (2 - len(__a )) + r _lowerCamelCase : Tuple = apply_table(l + r , __a ) _lowerCamelCase : Tuple = xor(__a , __a ) return temp + right if __name__ == "__main__": a_ = input("""Enter 10 bit key: """) a_ = input("""Enter 8 bit message: """) a_ = [6, 3, 7, 4, 8, 5, 10, 9] a_ = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6] a_ = [2, 4, 3, 1] a_ = [2, 6, 3, 1, 4, 8, 5, 7] a_ = [4, 1, 3, 5, 7, 2, 8, 6] a_ = [4, 1, 2, 3, 2, 3, 4, 1] a_ = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] a_ = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation a_ = apply_table(key, paa_table) a_ = temp[:5] a_ = temp[5:] a_ = left_shift(left) a_ = left_shift(right) a_ = apply_table(left + right, pa_table) a_ = left_shift(left) a_ = left_shift(right) a_ = left_shift(left) a_ = left_shift(right) a_ = apply_table(left + right, pa_table) # encryption a_ = apply_table(message, IP) a_ = function(expansion, sa, sa, keya, temp) a_ = temp[4:] + temp[:4] a_ = function(expansion, sa, sa, keya, temp) a_ = apply_table(temp, IP_inv) print("""Cipher text is:""", CT) # decryption a_ = apply_table(CT, IP) a_ = function(expansion, sa, sa, keya, temp) a_ = temp[4:] + temp[:4] a_ = function(expansion, sa, sa, keya, temp) a_ = apply_table(temp, IP_inv) print("""Plain text after decypting is:""", PT)
349
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class lowerCAmelCase__ ( unittest.TestCase ): def __init__( self , a , a=7 , a=3 , a=30 , a=4_00 , a=True , a=None , a=0.9 , a=None , a=True , a=[0.5, 0.5, 0.5] , a=[0.5, 0.5, 0.5] , ) -> int: '''simple docstring''' _UpperCamelCase = size if size is not None else {"""shortest_edge""": 30} _UpperCamelCase = crop_size if crop_size is not None else {"""height""": 30, """width""": 30} _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = num_channels _UpperCamelCase = min_resolution _UpperCamelCase = max_resolution _UpperCamelCase = do_resize_and_center_crop _UpperCamelCase = size _UpperCamelCase = crop_pct _UpperCamelCase = crop_size _UpperCamelCase = do_normalize _UpperCamelCase = image_mean _UpperCamelCase = image_std def A_ ( self ) -> Union[str, Any]: '''simple docstring''' return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class lowerCAmelCase__ ( __lowercase , unittest.TestCase ): UpperCamelCase_ : str = PoolFormerImageProcessor if is_vision_available() else None def A_ ( self ) -> List[str]: '''simple docstring''' _UpperCamelCase = PoolFormerImageProcessingTester(self ) @property def A_ ( self ) -> Optional[Any]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def A_ ( self ) -> Dict: '''simple docstring''' _UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a , """do_resize_and_center_crop""" ) ) self.assertTrue(hasattr(a , """size""" ) ) self.assertTrue(hasattr(a , """crop_pct""" ) ) self.assertTrue(hasattr(a , """do_normalize""" ) ) self.assertTrue(hasattr(a , """image_mean""" ) ) self.assertTrue(hasattr(a , """image_std""" ) ) def A_ ( self ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 30} ) self.assertEqual(image_processor.crop_size , {"""height""": 30, """width""": 30} ) _UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) def A_ ( self ) -> List[str]: '''simple docstring''' pass def A_ ( self ) -> Dict: '''simple docstring''' _UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=a ) for image in image_inputs: self.assertIsInstance(a , Image.Image ) # Test not batched input _UpperCamelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _UpperCamelCase = image_processing(a , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def A_ ( self ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=a , numpify=a ) for image in image_inputs: self.assertIsInstance(a , np.ndarray ) # Test not batched input _UpperCamelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _UpperCamelCase = image_processing(a , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def A_ ( self ) -> Tuple: '''simple docstring''' _UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=a , torchify=a ) for image in image_inputs: self.assertIsInstance(a , torch.Tensor ) # Test not batched input _UpperCamelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _UpperCamelCase = image_processing(a , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
612
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase__ = { "configuration_upernet": ["UperNetConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ "UperNetForSemanticSegmentation", "UperNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_upernet import UperNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_upernet import UperNetForSemanticSegmentation, UperNetPreTrainedModel else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
612
1
"""simple docstring""" import argparse import os.path as osp import re import torch from safetensors.torch import load_file, save_file # =================# # UNet Conversion # # =================# lowercase_ = [ # (stable-diffusion, HF Diffusers) ('time_embed.0.weight', 'time_embedding.linear_1.weight'), ('time_embed.0.bias', 'time_embedding.linear_1.bias'), ('time_embed.2.weight', 'time_embedding.linear_2.weight'), ('time_embed.2.bias', 'time_embedding.linear_2.bias'), ('input_blocks.0.0.weight', 'conv_in.weight'), ('input_blocks.0.0.bias', 'conv_in.bias'), ('out.0.weight', 'conv_norm_out.weight'), ('out.0.bias', 'conv_norm_out.bias'), ('out.2.weight', 'conv_out.weight'), ('out.2.bias', 'conv_out.bias'), ] lowercase_ = [ # (stable-diffusion, HF Diffusers) ('in_layers.0', 'norm1'), ('in_layers.2', 'conv1'), ('out_layers.0', 'norm2'), ('out_layers.3', 'conv2'), ('emb_layers.1', 'time_emb_proj'), ('skip_connection', 'conv_shortcut'), ] lowercase_ = [] # hardcoded number of downblocks and resnets/attentions... # would need smarter logic for other networks. for i in range(4): # loop over downblocks/upblocks for j in range(2): # loop over resnets/attentions for downblocks lowercase_ = F'''down_blocks.{i}.resnets.{j}.''' lowercase_ = F'''input_blocks.{3*i + j + 1}.0.''' unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix)) if i < 3: # no attention layers in down_blocks.3 lowercase_ = F'''down_blocks.{i}.attentions.{j}.''' lowercase_ = F'''input_blocks.{3*i + j + 1}.1.''' unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix)) for j in range(3): # loop over resnets/attentions for upblocks lowercase_ = F'''up_blocks.{i}.resnets.{j}.''' lowercase_ = F'''output_blocks.{3*i + j}.0.''' unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix)) if i > 0: # no attention layers in up_blocks.0 lowercase_ = F'''up_blocks.{i}.attentions.{j}.''' lowercase_ = F'''output_blocks.{3*i + j}.1.''' unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix)) if i < 3: # no downsample in down_blocks.3 lowercase_ = F'''down_blocks.{i}.downsamplers.0.conv.''' lowercase_ = F'''input_blocks.{3*(i+1)}.0.op.''' unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix)) # no upsample in up_blocks.3 lowercase_ = F'''up_blocks.{i}.upsamplers.0.''' lowercase_ = F'''output_blocks.{3*i + 2}.{1 if i == 0 else 2}.''' unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix)) lowercase_ = 'mid_block.attentions.0.' lowercase_ = 'middle_block.1.' unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix)) for j in range(2): lowercase_ = F'''mid_block.resnets.{j}.''' lowercase_ = F'''middle_block.{2*j}.''' unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix)) def lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" __A = {k: k for k in unet_state_dict.keys()} for sd_name, hf_name in unet_conversion_map: __A = sd_name for k, v in mapping.items(): if "resnets" in k: for sd_part, hf_part in unet_conversion_map_resnet: __A = v.replace(__UpperCamelCase , __UpperCamelCase ) __A = v for k, v in mapping.items(): for sd_part, hf_part in unet_conversion_map_layer: __A = v.replace(__UpperCamelCase , __UpperCamelCase ) __A = v __A = {v: unet_state_dict[k] for k, v in mapping.items()} return new_state_dict # ================# # VAE Conversion # # ================# lowercase_ = [ # (stable-diffusion, HF Diffusers) ('nin_shortcut', 'conv_shortcut'), ('norm_out', 'conv_norm_out'), ('mid.attn_1.', 'mid_block.attentions.0.'), ] for i in range(4): # down_blocks have two resnets for j in range(2): lowercase_ = F'''encoder.down_blocks.{i}.resnets.{j}.''' lowercase_ = F'''encoder.down.{i}.block.{j}.''' vae_conversion_map.append((sd_down_prefix, hf_down_prefix)) if i < 3: lowercase_ = F'''down_blocks.{i}.downsamplers.0.''' lowercase_ = F'''down.{i}.downsample.''' vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix)) lowercase_ = F'''up_blocks.{i}.upsamplers.0.''' lowercase_ = F'''up.{3-i}.upsample.''' vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix)) # up_blocks have three resnets # also, up blocks in hf are numbered in reverse from sd for j in range(3): lowercase_ = F'''decoder.up_blocks.{i}.resnets.{j}.''' lowercase_ = F'''decoder.up.{3-i}.block.{j}.''' vae_conversion_map.append((sd_up_prefix, hf_up_prefix)) # this part accounts for mid blocks in both the encoder and the decoder for i in range(2): lowercase_ = F'''mid_block.resnets.{i}.''' lowercase_ = F'''mid.block_{i+1}.''' vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix)) lowercase_ = [ # (stable-diffusion, HF Diffusers) ('norm.', 'group_norm.'), ('q.', 'query.'), ('k.', 'key.'), ('v.', 'value.'), ('proj_out.', 'proj_attn.'), ] def lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" return w.reshape(*w.shape , 1 , 1 ) def lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" __A = {k: k for k in vae_state_dict.keys()} for k, v in mapping.items(): for sd_part, hf_part in vae_conversion_map: __A = v.replace(__UpperCamelCase , __UpperCamelCase ) __A = v for k, v in mapping.items(): if "attentions" in k: for sd_part, hf_part in vae_conversion_map_attn: __A = v.replace(__UpperCamelCase , __UpperCamelCase ) __A = v __A = {v: vae_state_dict[k] for k, v in mapping.items()} __A = ['''q''', '''k''', '''v''', '''proj_out'''] for k, v in new_state_dict.items(): for weight_name in weights_to_convert: if f'mid.attn_1.{weight_name}.weight' in k: print(f'Reshaping {k} for SD format' ) __A = reshape_weight_for_sd(__UpperCamelCase ) return new_state_dict # =========================# # Text Encoder Conversion # # =========================# lowercase_ = [ # (stable-diffusion, HF Diffusers) ('resblocks.', 'text_model.encoder.layers.'), ('ln_1', 'layer_norm1'), ('ln_2', 'layer_norm2'), ('.c_fc.', '.fc1.'), ('.c_proj.', '.fc2.'), ('.attn', '.self_attn'), ('ln_final.', 'transformer.text_model.final_layer_norm.'), ('token_embedding.weight', 'transformer.text_model.embeddings.token_embedding.weight'), ('positional_embedding', 'transformer.text_model.embeddings.position_embedding.weight'), ] lowercase_ = {re.escape(x[1]): x[0] for x in textenc_conversion_lst} lowercase_ = re.compile('|'.join(protected.keys())) # Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp lowercase_ = {'q': 0, 'k': 1, 'v': 2} def lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" __A = {} __A = {} __A = {} for k, v in text_enc_dict.items(): if ( k.endswith('''.self_attn.q_proj.weight''' ) or k.endswith('''.self_attn.k_proj.weight''' ) or k.endswith('''.self_attn.v_proj.weight''' ) ): __A = k[: -len('''.q_proj.weight''' )] __A = k[-len('''q_proj.weight''' )] if k_pre not in capture_qkv_weight: __A = [None, None, None] __A = v continue if ( k.endswith('''.self_attn.q_proj.bias''' ) or k.endswith('''.self_attn.k_proj.bias''' ) or k.endswith('''.self_attn.v_proj.bias''' ) ): __A = k[: -len('''.q_proj.bias''' )] __A = k[-len('''q_proj.bias''' )] if k_pre not in capture_qkv_bias: __A = [None, None, None] __A = v continue __A = textenc_pattern.sub(lambda __UpperCamelCase : protected[re.escape(m.group(0 ) )] , __UpperCamelCase ) __A = v for k_pre, tensors in capture_qkv_weight.items(): if None in tensors: raise Exception('''CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing''' ) __A = textenc_pattern.sub(lambda __UpperCamelCase : protected[re.escape(m.group(0 ) )] , __UpperCamelCase ) __A = torch.cat(__UpperCamelCase ) for k_pre, tensors in capture_qkv_bias.items(): if None in tensors: raise Exception('''CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing''' ) __A = textenc_pattern.sub(lambda __UpperCamelCase : protected[re.escape(m.group(0 ) )] , __UpperCamelCase ) __A = torch.cat(__UpperCamelCase ) return new_state_dict def lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" return text_enc_dict if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument('--model_path', default=None, type=str, required=True, help='Path to the model to convert.') parser.add_argument('--checkpoint_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument('--half', action='store_true', help='Save weights in half precision.') parser.add_argument( '--use_safetensors', action='store_true', help='Save weights use safetensors, default is ckpt.' ) lowercase_ = parser.parse_args() assert args.model_path is not None, "Must provide a model path!" assert args.checkpoint_path is not None, "Must provide a checkpoint path!" # Path for safetensors lowercase_ = osp.join(args.model_path, 'unet', 'diffusion_pytorch_model.safetensors') lowercase_ = osp.join(args.model_path, 'vae', 'diffusion_pytorch_model.safetensors') lowercase_ = osp.join(args.model_path, 'text_encoder', 'model.safetensors') # Load models from safetensors if it exists, if it doesn't pytorch if osp.exists(unet_path): lowercase_ = load_file(unet_path, device='cpu') else: lowercase_ = osp.join(args.model_path, 'unet', 'diffusion_pytorch_model.bin') lowercase_ = torch.load(unet_path, map_location='cpu') if osp.exists(vae_path): lowercase_ = load_file(vae_path, device='cpu') else: lowercase_ = osp.join(args.model_path, 'vae', 'diffusion_pytorch_model.bin') lowercase_ = torch.load(vae_path, map_location='cpu') if osp.exists(text_enc_path): lowercase_ = load_file(text_enc_path, device='cpu') else: lowercase_ = osp.join(args.model_path, 'text_encoder', 'pytorch_model.bin') lowercase_ = torch.load(text_enc_path, map_location='cpu') # Convert the UNet model lowercase_ = convert_unet_state_dict(unet_state_dict) lowercase_ = {'model.diffusion_model.' + k: v for k, v in unet_state_dict.items()} # Convert the VAE model lowercase_ = convert_vae_state_dict(vae_state_dict) lowercase_ = {'first_stage_model.' + k: v for k, v in vae_state_dict.items()} # Easiest way to identify v2.0 model seems to be that the text encoder (OpenCLIP) is deeper lowercase_ = 'text_model.encoder.layers.22.layer_norm2.bias' in text_enc_dict if is_vaa_model: # Need to add the tag 'transformer' in advance so we can knock it out from the final layer-norm lowercase_ = {'transformer.' + k: v for k, v in text_enc_dict.items()} lowercase_ = convert_text_enc_state_dict_vaa(text_enc_dict) lowercase_ = {'cond_stage_model.model.' + k: v for k, v in text_enc_dict.items()} else: lowercase_ = convert_text_enc_state_dict(text_enc_dict) lowercase_ = {'cond_stage_model.transformer.' + k: v for k, v in text_enc_dict.items()} # Put together new checkpoint lowercase_ = {**unet_state_dict, **vae_state_dict, **text_enc_dict} if args.half: lowercase_ = {k: v.half() for k, v in state_dict.items()} if args.use_safetensors: save_file(state_dict, args.checkpoint_path) else: lowercase_ = {'state_dict': state_dict} torch.save(state_dict, args.checkpoint_path)
215
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input lowercase_ = 'Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine' def lowerCAmelCase ( ): """simple docstring""" __A = _ask_options( '''In which compute environment are you running?''' , ['''This machine''', '''AWS (Amazon SageMaker)'''] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: __A = get_sagemaker_input() else: __A = get_cluster_input() return config def lowerCAmelCase ( __UpperCamelCase=None ): """simple docstring""" if subparsers is not None: __A = subparsers.add_parser('''config''' , description=__UpperCamelCase ) else: __A = argparse.ArgumentParser('''Accelerate config command''' , description=__UpperCamelCase ) parser.add_argument( '''--config_file''' , default=__UpperCamelCase , help=( '''The path to use to store the config file. Will default to a file named default_config.yaml in the cache ''' '''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ''' '''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ''' '''with \'huggingface\'.''' ) , ) if subparsers is not None: parser.set_defaults(func=__UpperCamelCase ) return parser def lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" __A = get_user_input() if args.config_file is not None: __A = args.config_file else: if not os.path.isdir(__UpperCamelCase ): os.makedirs(__UpperCamelCase ) __A = default_yaml_config_file if config_file.endswith('''.json''' ): config.to_json_file(__UpperCamelCase ) else: config.to_yaml_file(__UpperCamelCase ) print(f'accelerate configuration saved at {config_file}' ) def lowerCAmelCase ( ): """simple docstring""" __A = config_command_parser() __A = parser.parse_args() config_command(__UpperCamelCase ) if __name__ == "__main__": main()
215
1
import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class lowerCAmelCase_ ( unittest.TestCase ): UpperCAmelCase = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def UpperCamelCase_ ( self : Tuple , _A : str , _A : List[Any] , _A : List[Any] ): _UpperCamelCase = hf_hub_download( repo_id='''nateraw/video-demo''' , filename='''archery.mp4''' , repo_type='''dataset''' ) _UpperCamelCase = VideoClassificationPipeline(model=_A , image_processor=_A , top_k=2 ) _UpperCamelCase = [ example_video_filepath, '''https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4''', ] return video_classifier, examples def UpperCamelCase_ ( self : Tuple , _A : List[Any] , _A : Union[str, Any] ): for example in examples: _UpperCamelCase = video_classifier(_A ) self.assertEqual( _A , [ {'''score''': ANY(_A ), '''label''': ANY(_A )}, {'''score''': ANY(_A ), '''label''': ANY(_A )}, ] , ) @require_torch def UpperCamelCase_ ( self : Optional[Any] ): _UpperCamelCase = '''hf-internal-testing/tiny-random-VideoMAEForVideoClassification''' _UpperCamelCase = VideoMAEFeatureExtractor( size={'''shortest_edge''': 10} , crop_size={'''height''': 10, '''width''': 10} ) _UpperCamelCase = pipeline( '''video-classification''' , model=_A , feature_extractor=_A , frame_sampling_rate=4 ) _UpperCamelCase = hf_hub_download(repo_id='''nateraw/video-demo''' , filename='''archery.mp4''' , repo_type='''dataset''' ) _UpperCamelCase = video_classifier(_A , top_k=2 ) self.assertEqual( nested_simplify(_A , decimals=4 ) , [{'''score''': 0.5199, '''label''': '''LABEL_0'''}, {'''score''': 0.4801, '''label''': '''LABEL_1'''}] , ) _UpperCamelCase = video_classifier( [ video_file_path, video_file_path, ] , top_k=2 , ) self.assertEqual( nested_simplify(_A , decimals=4 ) , [ [{'''score''': 0.5199, '''label''': '''LABEL_0'''}, {'''score''': 0.4801, '''label''': '''LABEL_1'''}], [{'''score''': 0.5199, '''label''': '''LABEL_0'''}, {'''score''': 0.4801, '''label''': '''LABEL_1'''}], ] , ) @require_tf def UpperCamelCase_ ( self : Optional[int] ): pass
10
'''simple docstring''' import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class _snake_case : '''simple docstring''' def lowerCAmelCase__ ( self: int , __UpperCamelCase: str , __UpperCamelCase: int , __UpperCamelCase: Dict ) -> str: return None class _snake_case : '''simple docstring''' def lowerCAmelCase__ ( self: List[str] , __UpperCamelCase: List[Any] , __UpperCamelCase: Optional[Any] , __UpperCamelCase: Any , __UpperCamelCase: Optional[int] ) -> str: return None class _snake_case ( unittest.TestCase ): '''simple docstring''' __snake_case = [ # (model_name, model_kwargs) ("bert-base-cased", {}), ("gpt2", {"use_cache": False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def lowerCAmelCase__ ( self: Optional[int] ) -> Any: for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(__UpperCamelCase , "tf" , 12 , **__UpperCamelCase ) @require_torch @slow def lowerCAmelCase__ ( self: Optional[int] ) -> List[Any]: for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(__UpperCamelCase , "pt" , 12 , **__UpperCamelCase ) @require_torch @slow def lowerCAmelCase__ ( self: Any ) -> Union[str, Any]: from transformers import BertModel __magic_name__ : Any = ["[UNK]", "[SEP]", "[CLS]", "[PAD]", "[MASK]", "some", "other", "words"] with NamedTemporaryFile(mode="w+t" ) as vocab_file: vocab_file.write("\n".join(__UpperCamelCase ) ) vocab_file.flush() __magic_name__ : Dict = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: __magic_name__ : str = BertModel(BertConfig(vocab_size=len(__UpperCamelCase ) ) ) model.save_pretrained(__UpperCamelCase ) self._test_export(__UpperCamelCase , "pt" , 12 , __UpperCamelCase ) @require_tf @slow def lowerCAmelCase__ ( self: int ) -> Tuple: for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: __magic_name__ : List[str] = self._test_export(__UpperCamelCase , "tf" , 12 , **__UpperCamelCase ) __magic_name__ : Tuple = quantize(Path(__UpperCamelCase ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(__UpperCamelCase ).stat().st_size: self.fail("Quantized model is bigger than initial ONNX model" ) @require_torch @slow def lowerCAmelCase__ ( self: Tuple ) -> Union[str, Any]: for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: __magic_name__ : Optional[Any] = self._test_export(__UpperCamelCase , "pt" , 12 , **__UpperCamelCase ) __magic_name__ : Union[str, Any] = quantize(__UpperCamelCase ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(__UpperCamelCase ).stat().st_size: self.fail("Quantized model is bigger than initial ONNX model" ) def lowerCAmelCase__ ( self: List[str] , __UpperCamelCase: Dict , __UpperCamelCase: Dict , __UpperCamelCase: Dict , __UpperCamelCase: List[Any]=None , **__UpperCamelCase: List[Any] ) -> int: try: # Compute path with TemporaryDirectory() as tempdir: __magic_name__ : Optional[int] = Path(__UpperCamelCase ).joinpath("model.onnx" ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ) return path except Exception as e: self.fail(__UpperCamelCase ) @require_torch @require_tokenizers @slow def lowerCAmelCase__ ( self: Any ) -> Dict: from transformers import BertModel __magic_name__ : Optional[Any] = BertModel(BertConfig.from_pretrained("lysandre/tiny-bert-random" ) ) __magic_name__ : Optional[int] = BertTokenizerFast.from_pretrained("lysandre/tiny-bert-random" ) self._test_infer_dynamic_axis(__UpperCamelCase , __UpperCamelCase , "pt" ) @require_tf @require_tokenizers @slow def lowerCAmelCase__ ( self: Tuple ) -> Optional[int]: from transformers import TFBertModel __magic_name__ : Union[str, Any] = TFBertModel(BertConfig.from_pretrained("lysandre/tiny-bert-random" ) ) __magic_name__ : List[str] = BertTokenizerFast.from_pretrained("lysandre/tiny-bert-random" ) self._test_infer_dynamic_axis(__UpperCamelCase , __UpperCamelCase , "tf" ) def lowerCAmelCase__ ( self: Dict , __UpperCamelCase: List[Any] , __UpperCamelCase: List[Any] , __UpperCamelCase: Dict ) -> Optional[Any]: __magic_name__ : Tuple = FeatureExtractionPipeline(__UpperCamelCase , __UpperCamelCase ) __magic_name__ : Union[str, Any] = ["input_ids", "token_type_ids", "attention_mask", "output_0", "output_1"] __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : Optional[Any] = infer_shapes(__UpperCamelCase , __UpperCamelCase ) # Assert all variables are present self.assertEqual(len(__UpperCamelCase ) , len(__UpperCamelCase ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3] , __UpperCamelCase ) self.assertSequenceEqual(variable_names[3:] , __UpperCamelCase ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] , {0: "batch", 1: "sequence"} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes["output_0"] , {0: "batch", 1: "sequence"} ) self.assertDictEqual(shapes["output_1"] , {0: "batch"} ) def lowerCAmelCase__ ( self: Optional[int] ) -> List[Any]: __magic_name__ : List[str] = ["input_ids", "attention_mask", "token_type_ids"] __magic_name__ : Optional[int] = {"input_ids": [1, 2, 3, 4], "attention_mask": [0, 0, 0, 0], "token_type_ids": [1, 1, 1, 1]} __magic_name__ , __magic_name__ : List[str] = ensure_valid_input(FuncContiguousArgs() , __UpperCamelCase , __UpperCamelCase ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(__UpperCamelCase ) , 3 ) # Should have exactly the same input names self.assertEqual(set(__UpperCamelCase ) , set(__UpperCamelCase ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(__UpperCamelCase , (tokens["input_ids"], tokens["token_type_ids"], tokens["attention_mask"]) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) __magic_name__ , __magic_name__ : Dict = ensure_valid_input(FuncNonContiguousArgs() , __UpperCamelCase , __UpperCamelCase ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(__UpperCamelCase ) , 1 ) self.assertEqual(len(__UpperCamelCase ) , 1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0] , tokens["input_ids"] ) self.assertEqual(ordered_input_names[0] , "input_ids" ) def lowerCAmelCase__ ( self: Any ) -> List[Any]: __magic_name__ : Optional[Any] = generate_identified_filename(Path("/home/something/my_fake_model.onnx" ) , "-test" ) self.assertEqual("/home/something/my_fake_model-test.onnx" , generated.as_posix() )
436
0
'''simple docstring''' import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel lowerCAmelCase__ : List[Any] = HfApi() lowerCAmelCase__ : Any = {} # fmt: off lowerCAmelCase__ : Union[str, Any] = torch.tensor([ -0.7515, -1.6883, 0.2420, 0.0300, 0.6347, 1.3433, -1.1743, -3.7467, 1.2342, -2.2485, 0.4636, 0.8076, -0.7991, 0.3969, 0.8498, 0.9189, -1.8887, -3.3522, 0.7639, 0.2040, 0.6271, -2.7148, -1.6316, 3.0839, 0.3186, 0.2721, -0.9759, -1.2461, 2.6257, 1.3557 ]) lowerCAmelCase__ : int = torch.tensor([ -2.3639, -2.5344, 0.0054, -0.6674, 1.5990, 1.0158, 0.3124, -2.1436, 1.8795, -2.5429, -0.1566, -0.3973, 1.2490, 2.6447, 1.2283, -0.5208, -2.8154, -3.5119, 2.3838, 1.2033, 1.7201, -2.1256, -1.4576, 2.7948, 2.4204, -0.9752, -1.2546, 0.8027, 3.2758, 3.1365 ]) lowerCAmelCase__ : str = torch.tensor([ -0.6531, -0.6891, -0.3172, -0.5375, -0.9140, -0.5367, -0.1175, -0.7869, -0.3808, -0.4513, -0.2098, -0.0083, 0.3183, 0.5140, 0.2247, -0.1304, -0.1302, -0.2802, -0.2084, -0.2025, -0.4967, -0.4873, -0.0861, 0.6925, 0.0250, 0.1290, -0.1543, 0.6316, 1.0460, 1.4943 ]) lowerCAmelCase__ : str = torch.tensor([ 0.0911, 0.1107, 0.0182, 0.0435, -0.0805, -0.0608, 0.0381, 0.2172, -0.0280, 0.1327, -0.0299, -0.0255, -0.0050, -0.1170, -0.1046, 0.0309, 0.1367, 0.1728, -0.0533, -0.0748, -0.0534, 0.1624, 0.0384, -0.1805, -0.0707, 0.0642, 0.0220, -0.0134, -0.1333, -0.1505 ]) lowerCAmelCase__ : List[Any] = torch.tensor([ 0.1321, 0.1337, 0.0440, 0.0622, -0.0591, -0.0370, 0.0503, 0.2133, -0.0177, 0.1415, -0.0116, -0.0112, 0.0044, -0.0980, -0.0789, 0.0395, 0.1502, 0.1785, -0.0488, -0.0514, -0.0404, 0.1539, 0.0454, -0.1559, -0.0665, 0.0659, 0.0383, -0.0005, -0.1266, -0.1386 ]) lowerCAmelCase__ : Union[str, Any] = torch.tensor([ 0.1154, 0.1218, 0.0307, 0.0526, -0.0711, -0.0541, 0.0366, 0.2078, -0.0267, 0.1317, -0.0226, -0.0193, -0.0014, -0.1055, -0.0902, 0.0330, 0.1391, 0.1709, -0.0562, -0.0693, -0.0560, 0.1482, 0.0381, -0.1683, -0.0681, 0.0661, 0.0331, -0.0046, -0.1268, -0.1431 ]) lowerCAmelCase__ : int = torch.tensor([ 0.1192, 0.1240, 0.0414, 0.0606, -0.0557, -0.0412, 0.0430, 0.2042, -0.0200, 0.1385, -0.0115, -0.0132, 0.0017, -0.0965, -0.0802, 0.0398, 0.1433, 0.1747, -0.0458, -0.0533, -0.0407, 0.1545, 0.0419, -0.1574, -0.0645, 0.0626, 0.0341, -0.0010, -0.1199, -0.1390 ]) lowerCAmelCase__ : Union[str, Any] = torch.tensor([ 0.1075, 0.1074, 0.0205, 0.0431, -0.0774, -0.0607, 0.0298, 0.2042, -0.0320, 0.1267, -0.0281, -0.0250, -0.0064, -0.1091, -0.0946, 0.0290, 0.1328, 0.1650, -0.0580, -0.0738, -0.0586, 0.1440, 0.0337, -0.1746, -0.0712, 0.0605, 0.0250, -0.0099, -0.1316, -0.1473 ]) lowerCAmelCase__ : Optional[int] = torch.tensor([ -1.4572, -2.0481, -0.0414, -0.6005, 1.4136, 0.5848, 0.4028, -2.7330, 1.2212, -2.1228, 0.2155, 0.4039, 0.7662, 2.0535, 0.7477, -0.3243, -2.1758, -2.7648, 1.6947, 0.7026, 1.2338, -1.6078, -0.8682, 2.2810, 1.8574, -0.5718, -0.5586, -0.0186, 2.3415, 2.1251]) lowerCAmelCase__ : int = torch.tensor([ -1.3690, -1.9720, -0.4090, -0.6966, 1.4660, 0.9938, -0.1385, -2.7324, 0.7736, -1.8917, 0.2923, 0.4293, 0.1693, 1.4112, 1.1887, -0.3181, -2.2160, -2.6381, 1.3170, 0.8163, 0.9240, -1.6544, -0.6099, 2.5259, 1.6430, -0.9090, -0.9392, -0.0126, 2.4268, 2.3266 ]) lowerCAmelCase__ : List[str] = torch.tensor([ -1.3525, -1.9628, -0.3956, -0.6860, 1.4664, 1.0014, -0.1259, -2.7212, 0.7772, -1.8811, 0.2996, 0.4388, 0.1704, 1.4029, 1.1701, -0.3027, -2.2053, -2.6287, 1.3350, 0.8131, 0.9274, -1.6292, -0.6098, 2.5131, 1.6505, -0.8958, -0.9298, -0.0151, 2.4257, 2.3355 ]) lowerCAmelCase__ : Any = torch.tensor([ -2.0585, -2.7897, -0.2850, -0.8940, 1.9052, 0.5702, 0.6345, -3.8959, 1.5932, -3.2319, 0.1974, 0.0287, 1.7566, 2.6543, 0.8387, -0.5351, -3.2736, -4.3375, 2.9029, 1.6390, 1.4640, -2.1701, -1.9013, 2.9341, 3.4981, -0.6255, -1.1644, -0.1591, 3.7097, 3.2066 ]) lowerCAmelCase__ : str = torch.tensor([ -2.3139, -2.5594, -0.0197, -0.6785, 1.7001, 1.1606, 0.3075, -2.1740, 1.8071, -2.5630, -0.0926, -0.3811, 1.2116, 2.6246, 1.2731, -0.5398, -2.8153, -3.6140, 2.3893, 1.3262, 1.6258, -2.1856, -1.3267, 2.8395, 2.3779, -1.0623, -1.2468, 0.8959, 3.3367, 3.2243 ]) lowerCAmelCase__ : List[str] = torch.tensor([ -2.0628, -2.7667, -0.2089, -0.8263, 2.0539, 0.5992, 0.6495, -3.8336, 1.6025, -3.2817, 0.1721, -0.0633, 1.7516, 2.7039, 0.8100, -0.5908, -3.2113, -4.4343, 2.9257, 1.3632, 1.5562, -2.1489, -1.9894, 3.0560, 3.3396, -0.7328, -1.0417, 0.0383, 3.7093, 3.2343 ]) lowerCAmelCase__ : str = torch.tensor([ -1.4574, -2.0569, -0.0473, -0.6117, 1.4018, 0.5769, 0.4129, -2.7344, 1.2241, -2.1397, 0.2000, 0.3937, 0.7616, 2.0453, 0.7324, -0.3391, -2.1746, -2.7744, 1.6963, 0.6921, 1.2187, -1.6172, -0.8877, 2.2439, 1.8471, -0.5839, -0.5605, -0.0464, 2.3250, 2.1219 ]) # fmt: on lowerCAmelCase__ : List[str] = api.list_models(filter="""diffusers""") for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": lowerCAmelCase__ : str = """/home/patrick/google_checkpoints/""" + mod.modelId.split("""/""")[-1] print(f"""Started running {mod.modelId}!!!""") if mod.modelId.startswith("""CompVis"""): lowerCAmelCase__ : Tuple = UNetaDModel.from_pretrained(local_checkpoint, subfolder="""unet""") else: lowerCAmelCase__ : str = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) lowerCAmelCase__ : Tuple = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) lowerCAmelCase__ : List[Any] = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): lowerCAmelCase__ : Union[str, Any] = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results["""_""".join("""_""".join(mod.modelId.split("""/""")).split("""-"""))], atol=1E-3 ) print(f"""{mod.modelId} has passed successfully!!!""")
502
'''simple docstring''' from bisect import bisect from itertools import accumulate def _a ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any] ): """simple docstring""" snake_case__ : Any = sorted(zip(__lowerCAmelCase , __lowerCAmelCase ) , key=lambda __lowerCAmelCase : x[0] / x[1] , reverse=__lowerCAmelCase ) snake_case__ , snake_case__ : Union[str, Any] = [i[0] for i in r], [i[1] for i in r] snake_case__ : Dict = list(accumulate(__lowerCAmelCase ) ) snake_case__ : Optional[int] = bisect(__lowerCAmelCase , __lowerCAmelCase ) return ( 0 if k == 0 else sum(vl[:k] ) + (w - acc[k - 1]) * (vl[k]) / (wt[k]) if k != n else sum(vl[:k] ) ) if __name__ == "__main__": import doctest doctest.testmod()
502
1
def UpperCamelCase_( lowerCamelCase_ = 5000_0000 ) -> List[str]: _lowercase : Union[str, Any] = set() _lowercase : Optional[int] = int((limit - 24) ** (1 / 2) ) _lowercase : Optional[Any] = set(range(3 , prime_square_limit + 1 , 2 ) ) primes.add(2 ) for p in range(3 , prime_square_limit + 1 , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , prime_square_limit + 1 , lowerCAmelCase__ ) ) ) for primea in primes: _lowercase : Optional[Any] = primea * primea for primea in primes: _lowercase : List[str] = primea * primea * primea if square + cube >= limit - 16: break for primea in primes: _lowercase : Optional[int] = primea * primea * primea * primea _lowercase : Optional[Any] = square + cube + tetr if total >= limit: break ret.add(lowerCAmelCase__ ) return len(lowerCAmelCase__ ) if __name__ == "__main__": print(F"{solution() = }")
89
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class __lowerCamelCase ( unittest.TestCase ): def UpperCAmelCase__ ( self ): lowerCamelCase_ = tempfile.mkdtemp() lowerCamelCase_ = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) lowerCamelCase_ = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], '''image_std''': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } lowerCamelCase_ = os.path.join(self.tmpdirname , UpperCAmelCase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase__ ( self , **UpperCAmelCase ): return BertTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def UpperCAmelCase__ ( self , **UpperCAmelCase ): return BertTokenizerFast.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def UpperCAmelCase__ ( self , **UpperCAmelCase ): return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def UpperCAmelCase__ ( self ): shutil.rmtree(self.tmpdirname ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCamelCase_ = [Image.fromarray(np.moveaxis(UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = self.get_rust_tokenizer() lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) processor_slow.save_pretrained(self.tmpdirname ) lowerCamelCase_ = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCAmelCase ) lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) processor_fast.save_pretrained(self.tmpdirname ) lowerCamelCase_ = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , UpperCAmelCase ) self.assertIsInstance(processor_fast.tokenizer , UpperCAmelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , UpperCAmelCase ) self.assertIsInstance(processor_fast.image_processor , UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase_ = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) lowerCamelCase_ = self.get_image_processor(do_normalize=UpperCAmelCase , padding_value=1.0 ) lowerCamelCase_ = AlignProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowerCamelCase_ = self.prepare_image_inputs() lowerCamelCase_ = image_processor(UpperCAmelCase , return_tensors='''np''' ) lowerCamelCase_ = processor(images=UpperCAmelCase , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowerCamelCase_ = '''lower newer''' lowerCamelCase_ = processor(text=UpperCAmelCase ) lowerCamelCase_ = tokenizer(UpperCAmelCase , padding='''max_length''' , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowerCamelCase_ = '''lower newer''' lowerCamelCase_ = self.prepare_image_inputs() lowerCamelCase_ = processor(text=UpperCAmelCase , images=UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase ): processor() def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowerCamelCase_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCamelCase_ = processor.batch_decode(UpperCAmelCase ) lowerCamelCase_ = tokenizer.batch_decode(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowerCamelCase_ = '''lower newer''' lowerCamelCase_ = self.prepare_image_inputs() lowerCamelCase_ = processor(text=UpperCAmelCase , images=UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
29
0
"""simple docstring""" from math import sqrt import numpy as np from sympy import symbols # Coefficient # Speed of light (m/s) lowerCamelCase_ = 2_9979_2458 # Symbols lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = symbols('''ct x y z''') def snake_case ( A__ ): if velocity > c: raise ValueError("Speed must not exceed light speed 299,792,458 [m/s]!" ) elif velocity < 1: # Usually the speed should be much higher than 1 (c order of magnitude) raise ValueError("Speed must be greater than or equal to 1!" ) return velocity / c def snake_case ( A__ ): return 1 / sqrt(1 - beta(A__ ) ** 2 ) def snake_case ( A__ ): return np.array( [ [gamma(A__ ), -gamma(A__ ) * beta(A__ ), 0, 0], [-gamma(A__ ) * beta(A__ ), gamma(A__ ), 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], ] ) def snake_case ( A__ ,A__ = None ): # Ensure event is not empty if event is None: UpperCAmelCase_ : List[Any] = np.array([ct, x, y, z] ) # Symbolic four vector else: event[0] *= c # x0 is ct (speed of light * time) return transformation_matrix(A__ ) @ event if __name__ == "__main__": import doctest doctest.testmod() # Example of symbolic vector: lowerCamelCase_ = transform(2997_9245) print('''Example of four vector: ''') print(f'ct\' = {four_vector[0]}') print(f'x\' = {four_vector[1]}') print(f'y\' = {four_vector[2]}') print(f'z\' = {four_vector[3]}') # Substitute symbols with numerical values lowerCamelCase_ = {ct: c, x: 1, y: 1, z: 1} lowerCamelCase_ = [four_vector[i].subs(sub_dict) for i in range(4)] print(f'\n{numerical_vector}')
463
"""simple docstring""" import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def snake_case ( A__ ): UpperCAmelCase_ : Tuple = [] embed.append( ( F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight""", F"""stage{idx}.patch_embed.proj.weight""", ) ) embed.append( ( F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias""", F"""stage{idx}.patch_embed.proj.bias""", ) ) embed.append( ( F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight""", F"""stage{idx}.patch_embed.norm.weight""", ) ) embed.append( ( F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias""", F"""stage{idx}.patch_embed.norm.bias""", ) ) return embed def snake_case ( A__ ,A__ ): UpperCAmelCase_ : List[Any] = [] attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight""", F"""stage{idx}.blocks.{cnt}.attn.proj_q.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias""", F"""stage{idx}.blocks.{cnt}.attn.proj_q.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight""", F"""stage{idx}.blocks.{cnt}.attn.proj_k.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias""", F"""stage{idx}.blocks.{cnt}.attn.proj_k.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight""", F"""stage{idx}.blocks.{cnt}.attn.proj_v.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias""", F"""stage{idx}.blocks.{cnt}.attn.proj_v.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight""", F"""stage{idx}.blocks.{cnt}.attn.proj.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias""", F"""stage{idx}.blocks.{cnt}.attn.proj.bias""", ) ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight""", F"""stage{idx}.blocks.{cnt}.mlp.fc1.weight""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias""", F"""stage{idx}.blocks.{cnt}.mlp.fc1.bias""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight""", F"""stage{idx}.blocks.{cnt}.mlp.fc2.weight""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias""", F"""stage{idx}.blocks.{cnt}.mlp.fc2.bias""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight""", F"""stage{idx}.blocks.{cnt}.norm1.weight""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias""", F"""stage{idx}.blocks.{cnt}.norm1.bias""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight""", F"""stage{idx}.blocks.{cnt}.norm2.weight""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias""", F"""stage{idx}.blocks.{cnt}.norm2.bias""") ) return attention_weights def snake_case ( A__ ): UpperCAmelCase_ : Union[str, Any] = [] token.append((F"""cvt.encoder.stages.{idx}.cls_token""", "stage2.cls_token") ) return token def snake_case ( ): UpperCAmelCase_ : str = [] head.append(("layernorm.weight", "norm.weight") ) head.append(("layernorm.bias", "norm.bias") ) head.append(("classifier.weight", "head.weight") ) head.append(("classifier.bias", "head.bias") ) return head def snake_case ( A__ ,A__ ,A__ ,A__ ): UpperCAmelCase_ : int = "imagenet-1k-id2label.json" UpperCAmelCase_ : Union[str, Any] = 10_00 UpperCAmelCase_ : Any = "huggingface/label-files" UpperCAmelCase_ : Optional[int] = num_labels UpperCAmelCase_ : Union[str, Any] = json.load(open(cached_download(hf_hub_url(A__ ,A__ ,repo_type="dataset" ) ) ,"r" ) ) UpperCAmelCase_ : Optional[int] = {int(A__ ): v for k, v in idalabel.items()} UpperCAmelCase_ : Optional[int] = idalabel UpperCAmelCase_ : Optional[Any] = {v: k for k, v in idalabel.items()} UpperCAmelCase_ : str = CvtConfig(num_labels=A__ ,idalabel=A__ ,labelaid=A__ ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit("/" ,1 )[-1][4:6] == "13": UpperCAmelCase_ : Optional[int] = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit("/" ,1 )[-1][4:6] == "21": UpperCAmelCase_ : str = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: UpperCAmelCase_ : Optional[int] = [2, 2, 20] UpperCAmelCase_ : List[str] = [3, 12, 16] UpperCAmelCase_ : Optional[Any] = [1_92, 7_68, 10_24] UpperCAmelCase_ : Tuple = CvtForImageClassification(A__ ) UpperCAmelCase_ : Tuple = AutoImageProcessor.from_pretrained("facebook/convnext-base-224-22k-1k" ) UpperCAmelCase_ : int = image_size UpperCAmelCase_ : List[str] = torch.load(A__ ,map_location=torch.device("cpu" ) ) UpperCAmelCase_ : int = OrderedDict() UpperCAmelCase_ : Optional[Any] = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: UpperCAmelCase_ : Optional[Any] = list_of_state_dict + cls_token(A__ ) UpperCAmelCase_ : Any = list_of_state_dict + embeddings(A__ ) for cnt in range(config.depth[idx] ): UpperCAmelCase_ : Dict = list_of_state_dict + attention(A__ ,A__ ) UpperCAmelCase_ : Union[str, Any] = list_of_state_dict + final() for gg in list_of_state_dict: print(A__ ) for i in range(len(A__ ) ): UpperCAmelCase_ : Any = original_weights[list_of_state_dict[i][1]] model.load_state_dict(A__ ) model.save_pretrained(A__ ) image_processor.save_pretrained(A__ ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() parser.add_argument( '''--cvt_model''', default='''cvt-w24''', type=str, help='''Name of the cvt model you\'d like to convert.''', ) parser.add_argument( '''--image_size''', default=384, type=int, help='''Input Image Size''', ) parser.add_argument( '''--cvt_file_name''', default=r'''cvtmodels\CvT-w24-384x384-IN-22k.pth''', type=str, help='''Input Image Size''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) lowerCamelCase_ = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
463
1
'''simple docstring''' import warnings from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch from ...models import UNetaDModel from ...schedulers import RePaintScheduler from ...utils import PIL_INTERPOLATION, logging, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput _lowercase = logging.get_logger(__name__) # pylint: disable=invalid-name def __UpperCamelCase ( a : Union[List, PIL.Image.Image, torch.Tensor] ) ->Optional[int]: warnings.warn( '''The preprocess method is deprecated and will be removed in a future version. Please''' ''' use VaeImageProcessor.preprocess instead''' , a , ) if isinstance(a , torch.Tensor ): return image elif isinstance(a , PIL.Image.Image ): snake_case = [image] if isinstance(image[0] , PIL.Image.Image ): snake_case , snake_case = image[0].size snake_case , snake_case = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8 snake_case = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] ) )[None, :] for i in image] snake_case = np.concatenate(a , axis=0 ) snake_case = np.array(a ).astype(np.floataa ) / 255.0 snake_case = image.transpose(0 , 3 , 1 , 2 ) snake_case = 2.0 * image - 1.0 snake_case = torch.from_numpy(a ) elif isinstance(image[0] , torch.Tensor ): snake_case = torch.cat(a , dim=0 ) return image def __UpperCamelCase ( a : Union[List, PIL.Image.Image, torch.Tensor] ) ->str: if isinstance(a , torch.Tensor ): return mask elif isinstance(a , PIL.Image.Image ): snake_case = [mask] if isinstance(mask[0] , PIL.Image.Image ): snake_case , snake_case = mask[0].size snake_case , snake_case = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 snake_case = [np.array(m.convert('''L''' ).resize((w, h) , resample=PIL_INTERPOLATION['''nearest'''] ) )[None, :] for m in mask] snake_case = np.concatenate(a , axis=0 ) snake_case = mask.astype(np.floataa ) / 255.0 snake_case = 0 snake_case = 1 snake_case = torch.from_numpy(a ) elif isinstance(mask[0] , torch.Tensor ): snake_case = torch.cat(a , dim=0 ) return mask class _lowercase ( __a ): _UpperCAmelCase = 42 _UpperCAmelCase = 42 def __init__( self , A__ , A__ ) -> List[Any]: super().__init__() self.register_modules(unet=A__ , scheduler=A__ ) @torch.no_grad() def __call__( self , A__ , A__ , A__ = 2_50 , A__ = 0.0 , A__ = 10 , A__ = 10 , A__ = None , A__ = "pil" , A__ = True , ) -> Union[ImagePipelineOutput, Tuple]: snake_case = image snake_case = _preprocess_image(A__ ) snake_case = original_image.to(device=self.device , dtype=self.unet.dtype ) snake_case = _preprocess_mask(A__ ) snake_case = mask_image.to(device=self.device , dtype=self.unet.dtype ) snake_case = original_image.shape[0] # sample gaussian noise to begin the loop if isinstance(A__ , A__ ) and len(A__ ) != batch_size: raise ValueError( F"""You have passed a list of generators of length {len(A__ )}, but requested an effective batch""" F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) snake_case = original_image.shape snake_case = randn_tensor(A__ , generator=A__ , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(A__ , A__ , A__ , self.device ) snake_case = eta snake_case = self.scheduler.timesteps[0] + 1 snake_case = generator[0] if isinstance(A__ , A__ ) else generator for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): if t < t_last: # predict the noise residual snake_case = self.unet(A__ , A__ ).sample # compute previous image: x_t -> x_t-1 snake_case = self.scheduler.step(A__ , A__ , A__ , A__ , A__ , A__ ).prev_sample else: # compute the reverse: x_t-1 -> x_t snake_case = self.scheduler.undo_step(A__ , A__ , A__ ) snake_case = t snake_case = (image / 2 + 0.5).clamp(0 , 1 ) snake_case = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": snake_case = self.numpy_to_pil(A__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=A__ )
342
'''simple docstring''' import argparse import os import torch from transformers import FlavaConfig, FlavaForPreTraining from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint def __UpperCamelCase ( a : Any ) ->Union[str, Any]: # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if '''encoder.embeddings''' not in key else 0 for key, param in state_dict.items() ) def __UpperCamelCase ( a : Any , a : Tuple ) ->List[Any]: snake_case = {} for key, value in state_dict.items(): if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key: continue snake_case = key.replace('''heads.cmd.mim_head.cls.predictions''' , '''mmm_image_head''' ) snake_case = key.replace('''heads.cmd.mlm_head.cls.predictions''' , '''mmm_text_head''' ) snake_case = key.replace('''heads.cmd.itm_head.cls''' , '''itm_head''' ) snake_case = key.replace('''heads.cmd.itm_head.pooler''' , '''itm_head.pooler''' ) snake_case = key.replace('''heads.cmd.clip_head.logit_scale''' , '''flava.logit_scale''' ) snake_case = key.replace('''heads.fairseq_mlm.cls.predictions''' , '''mlm_head''' ) snake_case = key.replace('''heads.imagenet.mim_head.cls.predictions''' , '''mim_head''' ) snake_case = key.replace('''mm_text_projection''' , '''flava.text_to_mm_projection''' ) snake_case = key.replace('''mm_image_projection''' , '''flava.image_to_mm_projection''' ) snake_case = key.replace('''image_encoder.module''' , '''flava.image_model''' ) snake_case = key.replace('''text_encoder.module''' , '''flava.text_model''' ) snake_case = key.replace('''mm_encoder.module.encoder.cls_token''' , '''flava.multimodal_model.cls_token''' ) snake_case = key.replace('''mm_encoder.module''' , '''flava.multimodal_model''' ) snake_case = key.replace('''text_projection''' , '''flava.text_projection''' ) snake_case = key.replace('''image_projection''' , '''flava.image_projection''' ) snake_case = value.float() for key, value in codebook_state_dict.items(): snake_case = value return upgrade @torch.no_grad() def __UpperCamelCase ( a : Tuple , a : List[str] , a : Optional[Any] , a : Tuple=None ) ->Union[str, Any]: if config_path is not None: snake_case = FlavaConfig.from_pretrained(a ) else: snake_case = FlavaConfig() snake_case = FlavaForPreTraining(a ).eval() snake_case = convert_dalle_checkpoint(a , a , save_checkpoint=a ) if os.path.exists(a ): snake_case = torch.load(a , map_location='''cpu''' ) else: snake_case = torch.hub.load_state_dict_from_url(a , map_location='''cpu''' ) snake_case = upgrade_state_dict(a , a ) hf_model.load_state_dict(a ) snake_case = hf_model.state_dict() snake_case = count_parameters(a ) snake_case = count_parameters(a ) + count_parameters(a ) assert torch.allclose(a , a , atol=1e-3 ) hf_model.save_pretrained(a ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to flava checkpoint') parser.add_argument('--codebook_path', default=None, type=str, help='Path to flava codebook checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') _lowercase = parser.parse_args() convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
342
1
'''simple docstring''' def _lowerCAmelCase ( __lowerCAmelCase = 1000 ) -> Dict: """simple docstring""" return sum(e for e in range(3 , __UpperCamelCase ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(f"""{solution() = }""")
721
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class a ( __lowerCamelCase , unittest.TestCase ): __lowerCAmelCase : str = ShapEPipeline __lowerCAmelCase : Union[str, Any] = ["""prompt"""] __lowerCAmelCase : Union[str, Any] = ["""prompt"""] __lowerCAmelCase : Tuple = [ """num_images_per_prompt""", """num_inference_steps""", """generator""", """latents""", """guidance_scale""", """frame_size""", """output_type""", """return_dict""", ] __lowerCAmelCase : Optional[Any] = False @property def __lowerCamelCase ( self :Dict ): return 3_2 @property def __lowerCamelCase ( self :str ): return 3_2 @property def __lowerCamelCase ( self :Optional[int] ): return self.time_input_dim * 4 @property def __lowerCamelCase ( self :int ): return 8 @property def __lowerCamelCase ( self :int ): snake_case__ : Optional[Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def __lowerCamelCase ( self :int ): torch.manual_seed(0 ) snake_case__ : Optional[Any] = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=self.text_embedder_hidden_size ,projection_dim=self.text_embedder_hidden_size ,intermediate_size=3_7 ,layer_norm_eps=1e-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_0_0_0 ,) return CLIPTextModelWithProjection(__lowercase ) @property def __lowerCamelCase ( self :str ): torch.manual_seed(0 ) snake_case__ : Optional[Any] = { '''num_attention_heads''': 2, '''attention_head_dim''': 1_6, '''embedding_dim''': self.time_input_dim, '''num_embeddings''': 3_2, '''embedding_proj_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''num_layers''': 1, '''clip_embed_dim''': self.time_input_dim * 2, '''additional_embeddings''': 0, '''time_embed_act_fn''': '''gelu''', '''norm_in_type''': '''layer''', '''encoder_hid_proj_type''': None, '''added_emb_type''': None, } snake_case__ : Optional[int] = PriorTransformer(**__lowercase ) return model @property def __lowerCamelCase ( self :Optional[int] ): torch.manual_seed(0 ) snake_case__ : Dict = { '''param_shapes''': ( (self.renderer_dim, 9_3), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), '''d_latent''': self.time_input_dim, '''d_hidden''': self.renderer_dim, '''n_output''': 1_2, '''background''': ( 0.1, 0.1, 0.1, ), } snake_case__ : List[str] = ShapERenderer(**__lowercase ) return model def __lowerCamelCase ( self :Union[str, Any] ): snake_case__ : str = self.dummy_prior snake_case__ : Optional[Any] = self.dummy_text_encoder snake_case__ : List[Any] = self.dummy_tokenizer snake_case__ : Optional[int] = self.dummy_renderer snake_case__ : str = HeunDiscreteScheduler( beta_schedule='''exp''' ,num_train_timesteps=1_0_2_4 ,prediction_type='''sample''' ,use_karras_sigmas=__lowercase ,clip_sample=__lowercase ,clip_sample_range=1.0 ,) snake_case__ : Tuple = { '''prior''': prior, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''renderer''': renderer, '''scheduler''': scheduler, } return components def __lowerCamelCase ( self :Union[str, Any] ,__lowercase :int ,__lowercase :str=0 ): if str(__lowercase ).startswith('''mps''' ): snake_case__ : List[str] = torch.manual_seed(__lowercase ) else: snake_case__ : Optional[Any] = torch.Generator(device=__lowercase ).manual_seed(__lowercase ) snake_case__ : Optional[int] = { '''prompt''': '''horse''', '''generator''': generator, '''num_inference_steps''': 1, '''frame_size''': 3_2, '''output_type''': '''np''', } return inputs def __lowerCamelCase ( self :Tuple ): snake_case__ : str = '''cpu''' snake_case__ : str = self.get_dummy_components() snake_case__ : Optional[Any] = self.pipeline_class(**__lowercase ) snake_case__ : Tuple = pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) snake_case__ : Tuple = pipe(**self.get_dummy_inputs(__lowercase ) ) snake_case__ : Dict = output.images[0] snake_case__ : Dict = image[0, -3:, -3:, -1] assert image.shape == (2_0, 3_2, 3_2, 3) snake_case__ : Tuple = np.array( [ 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __lowerCamelCase ( self :Any ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def __lowerCamelCase ( self :Optional[int] ): snake_case__ : Optional[int] = torch_device == '''cpu''' snake_case__ : Dict = True self._test_inference_batch_single_identical( batch_size=2 ,test_max_difference=__lowercase ,relax_max_difference=__lowercase ,) def __lowerCamelCase ( self :Union[str, Any] ): snake_case__ : List[Any] = self.get_dummy_components() snake_case__ : Any = self.pipeline_class(**__lowercase ) snake_case__ : str = pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) snake_case__ : Any = 1 snake_case__ : str = 2 snake_case__ : Any = self.get_dummy_inputs(__lowercase ) for key in inputs.keys(): if key in self.batch_params: snake_case__ : Optional[Any] = batch_size * [inputs[key]] snake_case__ : Any = pipe(**__lowercase ,num_images_per_prompt=__lowercase )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class a ( unittest.TestCase ): def __lowerCamelCase ( self :List[Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self :Optional[int] ): snake_case__ : Tuple = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/test_shap_e_np_out.npy''' ) snake_case__ : Optional[int] = ShapEPipeline.from_pretrained('''openai/shap-e''' ) snake_case__ : Any = pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) snake_case__ : Optional[int] = torch.Generator(device=__lowercase ).manual_seed(0 ) snake_case__ : Tuple = pipe( '''a shark''' ,generator=__lowercase ,guidance_scale=15.0 ,num_inference_steps=6_4 ,frame_size=6_4 ,output_type='''np''' ,).images[0] assert images.shape == (2_0, 6_4, 6_4, 3) assert_mean_pixel_difference(__lowercase ,__lowercase )
219
0
'''simple docstring''' import unittest from transformers import AutoTokenizer, FalconConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, ) class __A : def __init__(self : Dict , __a : int , __a : List[str]=3 , __a : Dict=7 , __a : List[str]=True , __a : List[Any]=True , __a : Optional[Any]=False , __a : List[str]=True , __a : Dict=99 , __a : Optional[Any]=32 , __a : Union[str, Any]=5 , __a : List[Any]=4 , __a : Optional[Any]=37 , __a : Optional[Any]="gelu" , __a : Any=0.1 , __a : Union[str, Any]=0.1 , __a : Optional[Any]=512 , __a : Optional[Any]=16 , __a : int=2 , __a : Dict=0.02 , __a : str=3 , __a : Optional[int]=4 , __a : Tuple=None , ): UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = seq_length UpperCAmelCase_ = is_training UpperCAmelCase_ = use_input_mask UpperCAmelCase_ = use_token_type_ids UpperCAmelCase_ = use_labels UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = type_vocab_size UpperCAmelCase_ = type_sequence_label_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = num_labels UpperCAmelCase_ = num_choices UpperCAmelCase_ = scope def _lowercase (self : int ): UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ = None if self.use_input_mask: UpperCAmelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ = None UpperCAmelCase_ = None UpperCAmelCase_ = None UpperCAmelCase_ = None if self.use_labels: UpperCAmelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase_ = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowercase (self : str ): return FalconConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_A , initializer_range=self.initializer_range , pad_token_id=1 , new_decoder_architecture=_A , ) def _lowercase (self : Any , __a : Any , __a : List[Any] , __a : Dict , __a : Optional[int] , __a : Optional[int] , __a : Optional[int] , __a : List[Any] ): UpperCAmelCase_ = FalconModel(config=_A ) model.to(_A ) model.eval() UpperCAmelCase_ = model(_A , attention_mask=_A ) UpperCAmelCase_ = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase (self : Dict , __a : Dict , __a : str , __a : Dict , __a : List[Any] , __a : Optional[int] , __a : str , __a : Optional[Any] , __a : Union[str, Any] , __a : Optional[int] , ): UpperCAmelCase_ = True UpperCAmelCase_ = FalconModel(_A ) model.to(_A ) model.eval() UpperCAmelCase_ = model( _A , attention_mask=_A , encoder_hidden_states=_A , encoder_attention_mask=_A , ) UpperCAmelCase_ = model( _A , attention_mask=_A , encoder_hidden_states=_A , ) UpperCAmelCase_ = model(_A , attention_mask=_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase (self : str , __a : Dict , __a : Union[str, Any] , __a : str , __a : Union[str, Any] , __a : Optional[Any] , __a : Optional[int] , __a : Optional[Any] , __a : str , __a : Dict , ): UpperCAmelCase_ = FalconForCausalLM(config=_A ) model.to(_A ) model.eval() UpperCAmelCase_ = model(_A , attention_mask=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase (self : str , __a : List[str] , __a : Union[str, Any] , __a : str , __a : int , __a : Union[str, Any] , __a : str , __a : Tuple , __a : Dict , __a : Optional[int] , ): UpperCAmelCase_ = True UpperCAmelCase_ = True UpperCAmelCase_ = FalconForCausalLM(config=_A ) model.to(_A ) model.eval() # first forward pass UpperCAmelCase_ = model( _A , attention_mask=_A , encoder_hidden_states=_A , encoder_attention_mask=_A , use_cache=_A , ) UpperCAmelCase_ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCAmelCase_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase_ = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and UpperCAmelCase_ = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCAmelCase_ = torch.cat([input_mask, next_mask] , dim=-1 ) UpperCAmelCase_ = model( _A , attention_mask=_A , encoder_hidden_states=_A , encoder_attention_mask=_A , output_hidden_states=_A , )["hidden_states"][0] UpperCAmelCase_ = model( _A , attention_mask=_A , encoder_hidden_states=_A , encoder_attention_mask=_A , past_key_values=_A , output_hidden_states=_A , )["hidden_states"][0] # select random slice UpperCAmelCase_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCAmelCase_ = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCAmelCase_ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_A , _A , atol=1E-3 ) ) def _lowercase (self : Any ): UpperCAmelCase_ = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) = config_and_inputs UpperCAmelCase_ = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class __A ( a_ , a_ , a_ , unittest.TestCase ): a__ : Union[str, Any] = ( ( FalconModel, FalconForCausalLM, FalconForSequenceClassification, FalconForTokenClassification, FalconForQuestionAnswering, ) if is_torch_available() else () ) a__ : Tuple = (FalconForCausalLM,) if is_torch_available() else () a__ : Tuple = ( { """feature-extraction""": FalconModel, """text-classification""": FalconForSequenceClassification, """text-generation""": FalconForCausalLM, """question-answering""": FalconForQuestionAnswering, """token-classification""": FalconForTokenClassification, """zero-shot""": FalconForSequenceClassification, } if is_torch_available() else {} ) a__ : Any = False a__ : Any = False def _lowercase (self : List[str] ): UpperCAmelCase_ = FalconModelTester(self ) UpperCAmelCase_ = ConfigTester(self , config_class=_A , hidden_size=37 ) def _lowercase (self : List[Any] ): self.config_tester.run_common_tests() def _lowercase (self : List[str] ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def _lowercase (self : List[str] ): UpperCAmelCase_ , *UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() for alibi in [True, False]: UpperCAmelCase_ = alibi self.model_tester.create_and_check_model(_A , *_A ) def _lowercase (self : List[Any] ): UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ = 3 UpperCAmelCase_ = input_dict["input_ids"] UpperCAmelCase_ = input_ids.ne(1 ).to(_A ) UpperCAmelCase_ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCAmelCase_ = FalconForSequenceClassification(_A ) model.to(_A ) model.eval() UpperCAmelCase_ = model(_A , attention_mask=_A , labels=_A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowercase (self : str ): UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ = 3 UpperCAmelCase_ = "single_label_classification" UpperCAmelCase_ = input_dict["input_ids"] UpperCAmelCase_ = input_ids.ne(1 ).to(_A ) UpperCAmelCase_ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCAmelCase_ = FalconForSequenceClassification(_A ) model.to(_A ) model.eval() UpperCAmelCase_ = model(_A , attention_mask=_A , labels=_A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowercase (self : Optional[int] ): UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ = input_dict["input_ids"] UpperCAmelCase_ = FalconForCausalLM(_A ) model.to(_A ) model.eval() UpperCAmelCase_ = model(_A , use_cache=_A ) UpperCAmelCase_ = input_ids.shape[0] UpperCAmelCase_ = model._convert_to_rw_cache(result.past_key_values ) UpperCAmelCase_ = model._convert_cache_to_standard_format(_A , _A ) for layer in range(len(_A ) ): for tensor_idx in range(2 ): self.assertTrue(rw_cache[layer][tensor_idx].ndim == 3 ) self.assertTrue(result.past_key_values[layer][tensor_idx].ndim == 4 ) self.assertTrue( torch.all(result.past_key_values[layer][tensor_idx] == standard_cache[layer][tensor_idx] ) ) def _lowercase (self : Optional[int] ): UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ = 3 UpperCAmelCase_ = "multi_label_classification" UpperCAmelCase_ = input_dict["input_ids"] UpperCAmelCase_ = input_ids.ne(1 ).to(_A ) UpperCAmelCase_ = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) UpperCAmelCase_ = FalconForSequenceClassification(_A ) model.to(_A ) model.eval() UpperCAmelCase_ = model(_A , attention_mask=_A , labels=_A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowercase (self : Tuple ): for model_class in self.all_generative_model_classes: UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() # If it doesn't support cache, pass the test if not hasattr(_A , "use_cache" ): return UpperCAmelCase_ = model_class(_A ).to(_A ) if "use_cache" not in inputs: UpperCAmelCase_ = True UpperCAmelCase_ = model(**_A ) # If "past_key_values" is not returned, pass the test (e.g. RWKV uses a different cache name and format) if "past_key_values" not in outputs: return UpperCAmelCase_ = ( getattr(_A , "decoder_layers" , _A ) or getattr(_A , "num_decoder_layers" , _A ) or config.num_hidden_layers ) UpperCAmelCase_ = getattr(_A , "num_kv_heads" , config.num_attention_heads ) UpperCAmelCase_ = getattr(_A , "d_model" , config.hidden_size ) UpperCAmelCase_ = embed_dim // num_attention_heads UpperCAmelCase_ = outputs["past_key_values"] self.assertEqual(len(_A ) , _A ) UpperCAmelCase_ , UpperCAmelCase_ = inputs["input_ids"].shape for i in range(_A ): if config.new_decoder_architecture: UpperCAmelCase_ = config.num_attention_heads elif config.multi_query: UpperCAmelCase_ = 1 self.assertEqual(len(past_kv[0] ) , 2 ) # K V for the decoder = 2 self.assertEqual( past_kv[i][0].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) self.assertEqual( past_kv[i][1].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) @require_torch class __A ( unittest.TestCase ): @slow def _lowercase (self : Tuple ): UpperCAmelCase_ = AutoTokenizer.from_pretrained("Rocketknight1/falcon-rw-1b" ) UpperCAmelCase_ = FalconForCausalLM.from_pretrained("Rocketknight1/falcon-rw-1b" ) model.eval() model.to(_A ) UpperCAmelCase_ = tokenizer("My favorite food is" , return_tensors="pt" ).to(_A ) UpperCAmelCase_ = ( "My favorite food is pizza. I love it so much that I have a pizza party every year for my birthday." ) UpperCAmelCase_ = model.generate(**_A , do_sample=_A , max_new_tokens=19 ) UpperCAmelCase_ = tokenizer.batch_decode(_A )[0] self.assertEqual(_A , _A ) @slow def _lowercase (self : Tuple ): for repo in ["Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b"]: UpperCAmelCase_ = AutoTokenizer.from_pretrained(_A ) UpperCAmelCase_ = FalconForCausalLM.from_pretrained(_A ) model.eval() model.to(_A ) UpperCAmelCase_ = tokenizer("My favorite food is" , return_tensors="pt" ).to(_A ) # We just test that these run without errors - the models are randomly initialized # and so the actual text outputs will be garbage model.generate(**_A , do_sample=_A , max_new_tokens=4 ) model.generate(**_A , do_sample=_A , max_new_tokens=4 ) model.generate(**_A , num_beams=2 , max_new_tokens=4 ) @slow def _lowercase (self : Optional[int] ): with torch.no_grad(): for repo in [ "Rocketknight1/falcon-rw-1b", "Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b", ]: UpperCAmelCase_ = AutoTokenizer.from_pretrained(_A ) UpperCAmelCase_ = FalconForCausalLM.from_pretrained(_A ) model.eval() model.to(device=_A ) UpperCAmelCase_ = tokenizer("My favorite food is" , return_tensors="pt" ).to(_A ) # Test results are the same with and without cache UpperCAmelCase_ = model.generate(**_A , do_sample=_A , max_new_tokens=20 , use_cache=_A ) UpperCAmelCase_ = model.generate(**_A , do_sample=_A , max_new_tokens=20 , use_cache=_A ) self.assertTrue((outputs_cache - outputs_no_cache).sum().item() == 0 )
78
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class A_ (a_ , unittest.TestCase ): UpperCAmelCase__ = KandinskyVaaImgaImgPipeline UpperCAmelCase__ = ['''image_embeds''', '''negative_image_embeds''', '''image'''] UpperCAmelCase__ = [ '''image_embeds''', '''negative_image_embeds''', '''image''', ] UpperCAmelCase__ = [ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] UpperCAmelCase__ = False @property def _lowercase ( self ): '''simple docstring''' return 3_2 @property def _lowercase ( self ): '''simple docstring''' return 3_2 @property def _lowercase ( self ): '''simple docstring''' return self.time_input_dim @property def _lowercase ( self ): '''simple docstring''' return self.time_input_dim * 4 @property def _lowercase ( self ): '''simple docstring''' return 1_0_0 @property def _lowercase ( self ): '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase = { '''in_channels''': 4, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } UpperCAmelCase = UNetaDConditionModel(**_A ) return model @property def _lowercase ( self ): '''simple docstring''' return { "block_out_channels": [3_2, 6_4], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def _lowercase ( self ): '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase = VQModel(**self.dummy_movq_kwargs ) return model def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = self.dummy_unet UpperCAmelCase = self.dummy_movq UpperCAmelCase = { '''num_train_timesteps''': 1_0_0_0, '''beta_schedule''': '''linear''', '''beta_start''': 0.0_00_85, '''beta_end''': 0.0_12, '''clip_sample''': False, '''set_alpha_to_one''': False, '''steps_offset''': 0, '''prediction_type''': '''epsilon''', '''thresholding''': False, } UpperCAmelCase = DDIMScheduler(**_A ) UpperCAmelCase = { '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def _lowercase ( self , _A , _A=0 ): '''simple docstring''' UpperCAmelCase = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_A ) ).to(_A ) UpperCAmelCase = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _A ) # create init_image UpperCAmelCase = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(_A ) ).to(_A ) UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase = Image.fromarray(np.uinta(_A ) ).convert('''RGB''' ).resize((2_5_6, 2_5_6) ) if str(_A ).startswith('''mps''' ): UpperCAmelCase = torch.manual_seed(_A ) else: UpperCAmelCase = torch.Generator(device=_A ).manual_seed(_A ) UpperCAmelCase = { '''image''': init_image, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 6_4, '''width''': 6_4, '''num_inference_steps''': 1_0, '''guidance_scale''': 7.0, '''strength''': 0.2, '''output_type''': '''np''', } return inputs def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = '''cpu''' UpperCAmelCase = self.get_dummy_components() UpperCAmelCase = self.pipeline_class(**_A ) UpperCAmelCase = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase = pipe(**self.get_dummy_inputs(_A ) ) UpperCAmelCase = output.images UpperCAmelCase = pipe( **self.get_dummy_inputs(_A ) , return_dict=_A , )[0] UpperCAmelCase = image[0, -3:, -3:, -1] UpperCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) UpperCAmelCase = np.array( [0.6_19_97_78, 0.63_98_44_06, 0.46_14_57_85, 0.62_94_49_84, 0.5_62_22_15, 0.47_30_61_32, 0.47_44_14_56, 0.4_60_76_06, 0.48_71_92_63] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class A_ (unittest.TestCase ): def _lowercase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_img2img_frog.npy''' ) UpperCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) UpperCAmelCase = '''A red cartoon frog, 4k''' UpperCAmelCase = KandinskyVaaPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(_A ) UpperCAmelCase = KandinskyVaaImgaImgPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-decoder''' , torch_dtype=torch.floataa ) UpperCAmelCase = pipeline.to(_A ) pipeline.set_progress_bar_config(disable=_A ) UpperCAmelCase = torch.Generator(device='''cpu''' ).manual_seed(0 ) UpperCAmelCase , UpperCAmelCase = pipe_prior( _A , generator=_A , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() UpperCAmelCase = pipeline( image=_A , image_embeds=_A , negative_image_embeds=_A , generator=_A , num_inference_steps=1_0_0 , height=7_6_8 , width=7_6_8 , strength=0.2 , output_type='''np''' , ) UpperCAmelCase = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(_A , _A )
130
0
'''simple docstring''' from __future__ import annotations import requests def A ( A_ : str ): snake_case : Optional[int] = F"""https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty""" return requests.get(A_ ).json() def A ( A_ : int = 10 ): snake_case : Tuple = '''https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty''' snake_case : Optional[Any] = requests.get(A_ ).json()[:max_stories] return [get_hackernews_story(A_ ) for story_id in story_ids] def A ( A_ : int = 10 ): snake_case : List[Any] = hackernews_top_stories(A_ ) return "\n".join('''* [{title}]({url})'''.format(**A_ ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
555
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} UpperCAmelCase = { "vocab_file": { "gpt2": "https://huggingface.co/gpt2/resolve/main/vocab.json", "gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/vocab.json", "gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/vocab.json", "gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/vocab.json", "distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/vocab.json", }, "merges_file": { "gpt2": "https://huggingface.co/gpt2/resolve/main/merges.txt", "gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/merges.txt", "gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/merges.txt", "gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/merges.txt", "distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/merges.txt", }, "tokenizer_file": { "gpt2": "https://huggingface.co/gpt2/resolve/main/tokenizer.json", "gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json", "gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/tokenizer.json", "gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json", "distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/tokenizer.json", }, } UpperCAmelCase = { "gpt2": 1_024, "gpt2-medium": 1_024, "gpt2-large": 1_024, "gpt2-xl": 1_024, "distilgpt2": 1_024, } class a ( __magic_name__ ): _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case = ['''input_ids''', '''attention_mask'''] _snake_case = GPTaTokenizer def __init__( self : Union[str, Any], SCREAMING_SNAKE_CASE_ : Union[str, Any]=None, SCREAMING_SNAKE_CASE_ : Any=None, SCREAMING_SNAKE_CASE_ : List[str]=None, SCREAMING_SNAKE_CASE_ : Union[str, Any]="<|endoftext|>", SCREAMING_SNAKE_CASE_ : Optional[int]="<|endoftext|>", SCREAMING_SNAKE_CASE_ : Dict="<|endoftext|>", SCREAMING_SNAKE_CASE_ : Union[str, Any]=False, **SCREAMING_SNAKE_CASE_ : Tuple, ): super().__init__( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, tokenizer_file=SCREAMING_SNAKE_CASE_, unk_token=SCREAMING_SNAKE_CASE_, bos_token=SCREAMING_SNAKE_CASE_, eos_token=SCREAMING_SNAKE_CASE_, add_prefix_space=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_, ) snake_case : Optional[Any] = kwargs.pop('''add_bos_token''', SCREAMING_SNAKE_CASE_ ) snake_case : Dict = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''', SCREAMING_SNAKE_CASE_ ) != add_prefix_space: snake_case : List[Any] = getattr(SCREAMING_SNAKE_CASE_, pre_tok_state.pop('''type''' ) ) snake_case : Dict = add_prefix_space snake_case : List[Any] = pre_tok_class(**SCREAMING_SNAKE_CASE_ ) snake_case : Optional[Any] = add_prefix_space def __snake_case ( self : Optional[Any], *SCREAMING_SNAKE_CASE_ : Dict, **SCREAMING_SNAKE_CASE_ : List[str] ): snake_case : str = kwargs.get('''is_split_into_words''', SCREAMING_SNAKE_CASE_ ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) def __snake_case ( self : Union[str, Any], *SCREAMING_SNAKE_CASE_ : Tuple, **SCREAMING_SNAKE_CASE_ : int ): snake_case : int = kwargs.get('''is_split_into_words''', SCREAMING_SNAKE_CASE_ ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) def __snake_case ( self : List[Any], SCREAMING_SNAKE_CASE_ : str, SCREAMING_SNAKE_CASE_ : Optional[str] = None ): snake_case : List[Any] = self._tokenizer.model.save(SCREAMING_SNAKE_CASE_, name=SCREAMING_SNAKE_CASE_ ) return tuple(SCREAMING_SNAKE_CASE_ ) def __snake_case ( self : Optional[Any], SCREAMING_SNAKE_CASE_ : "Conversation" ): snake_case : int = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(SCREAMING_SNAKE_CASE_, add_special_tokens=SCREAMING_SNAKE_CASE_ ) + [self.eos_token_id] ) if len(SCREAMING_SNAKE_CASE_ ) > self.model_max_length: snake_case : str = input_ids[-self.model_max_length :] return input_ids
555
1
'''simple docstring''' import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin SCREAMING_SNAKE_CASE_: Optional[Any] =get_tests_dir('fixtures/spiece.model') @require_sentencepiece @require_tokenizers class __A ( UpperCamelCase__ , unittest.TestCase ): a__ : Union[str, Any] = DebertaVaTokenizer a__ : Any = DebertaVaTokenizerFast a__ : Union[str, Any] = True a__ : Tuple = True def _lowercase (self : Dict ): super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase_ = DebertaVaTokenizer(__a , unk_token="<unk>" ) tokenizer.save_pretrained(self.tmpdirname ) def _lowercase (self : int , __a : Optional[Any] ): UpperCAmelCase_ = "this is a test" UpperCAmelCase_ = "this is a test" return input_text, output_text def _lowercase (self : Tuple ): UpperCAmelCase_ = "<pad>" UpperCAmelCase_ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__a ) , __a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__a ) , __a ) def _lowercase (self : Dict ): UpperCAmelCase_ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<pad>" ) self.assertEqual(vocab_keys[1] , "<unk>" ) self.assertEqual(vocab_keys[-1] , "[PAD]" ) self.assertEqual(len(__a ) , 30001 ) def _lowercase (self : List[str] ): self.assertEqual(self.get_tokenizer().vocab_size , 30000 ) def _lowercase (self : Tuple ): # fmt: off UpperCAmelCase_ = " \tHeLLo!how \n Are yoU? " UpperCAmelCase_ = ["▁hello", "!", "how", "▁are", "▁you", "?"] # fmt: on UpperCAmelCase_ = DebertaVaTokenizer(__a , do_lower_case=__a ) UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(tokenizer.encode(__a , add_special_tokens=__a ) ) self.assertListEqual(__a , __a ) UpperCAmelCase_ = DebertaVaTokenizerFast(__a , do_lower_case=__a ) UpperCAmelCase_ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__a , add_special_tokens=__a ) ) self.assertListEqual(__a , __a ) @unittest.skip("There is an inconsistency between slow and fast tokenizer due to a bug in the fast one." ) def _lowercase (self : str ): pass @unittest.skip("There is an inconsistency between slow and fast tokenizer due to a bug in the fast one." ) def _lowercase (self : Any ): pass def _lowercase (self : List[Any] ): # fmt: off UpperCAmelCase_ = "I was born in 92000, and this is falsé." UpperCAmelCase_ = ["▁", "<unk>", "▁was", "▁born", "▁in", "▁9", "2000", "▁", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "▁", ".", ] # fmt: on UpperCAmelCase_ = DebertaVaTokenizer(__a , split_by_punct=__a ) UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(tokenizer.encode(__a , add_special_tokens=__a ) ) self.assertListEqual(__a , __a ) UpperCAmelCase_ = DebertaVaTokenizerFast(__a , split_by_punct=__a ) UpperCAmelCase_ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__a , add_special_tokens=__a ) ) self.assertListEqual(__a , __a ) def _lowercase (self : Dict ): # fmt: off UpperCAmelCase_ = "I was born in 92000, and this is falsé." UpperCAmelCase_ = ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", "▁", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "▁", ".", ] # fmt: on UpperCAmelCase_ = DebertaVaTokenizer(__a , do_lower_case=__a , split_by_punct=__a ) UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(tokenizer.encode(__a , add_special_tokens=__a ) ) self.assertListEqual(__a , __a ) UpperCAmelCase_ = DebertaVaTokenizerFast(__a , do_lower_case=__a , split_by_punct=__a ) UpperCAmelCase_ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__a , add_special_tokens=__a ) ) self.assertListEqual(__a , __a ) def _lowercase (self : Any ): # fmt: off UpperCAmelCase_ = "I was born in 92000, and this is falsé." UpperCAmelCase_ = ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", ".", ] # fmt: on UpperCAmelCase_ = DebertaVaTokenizer(__a , do_lower_case=__a , split_by_punct=__a ) UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(tokenizer.encode(__a , add_special_tokens=__a ) ) self.assertListEqual(__a , __a ) UpperCAmelCase_ = DebertaVaTokenizerFast(__a , do_lower_case=__a , split_by_punct=__a ) UpperCAmelCase_ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__a , add_special_tokens=__a ) ) self.assertListEqual(__a , __a ) def _lowercase (self : Optional[Any] ): # fmt: off UpperCAmelCase_ = "I was born in 92000, and this is falsé." UpperCAmelCase_ = ["▁", "<unk>", "▁was", "▁born", "▁in", "▁9", "2000", "▁", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "▁", ".", ] # fmt: on UpperCAmelCase_ = DebertaVaTokenizer(__a , do_lower_case=__a , split_by_punct=__a ) UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(tokenizer.encode(__a , add_special_tokens=__a ) ) self.assertListEqual(__a , __a ) UpperCAmelCase_ = DebertaVaTokenizerFast(__a , do_lower_case=__a , split_by_punct=__a ) UpperCAmelCase_ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__a , add_special_tokens=__a ) ) self.assertListEqual(__a , __a ) def _lowercase (self : int ): # fmt: off UpperCAmelCase_ = " \tHeLLo!how \n Are yoU? " UpperCAmelCase_ = ["▁", "<unk>", "e", "<unk>", "o", "!", "how", "▁", "<unk>", "re", "▁yo", "<unk>", "?"] # fmt: on UpperCAmelCase_ = DebertaVaTokenizer(__a , do_lower_case=__a , split_by_punct=__a ) UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(tokenizer.encode(__a , add_special_tokens=__a ) ) self.assertListEqual(__a , __a ) UpperCAmelCase_ = DebertaVaTokenizerFast(__a , do_lower_case=__a , split_by_punct=__a ) UpperCAmelCase_ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__a , add_special_tokens=__a ) ) self.assertListEqual(__a , __a ) def _lowercase (self : Optional[int] ): UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_rust_tokenizer() UpperCAmelCase_ = "I was born in 92000, and this is falsé." UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(tokenizer.encode(__a , add_special_tokens=__a ) ) UpperCAmelCase_ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__a , add_special_tokens=__a ) ) self.assertListEqual(__a , __a ) UpperCAmelCase_ = tokenizer.encode(__a , add_special_tokens=__a ) UpperCAmelCase_ = rust_tokenizer.encode(__a , add_special_tokens=__a ) self.assertListEqual(__a , __a ) UpperCAmelCase_ = self.get_rust_tokenizer() UpperCAmelCase_ = tokenizer.encode(__a ) UpperCAmelCase_ = rust_tokenizer.encode(__a ) self.assertListEqual(__a , __a ) def _lowercase (self : Tuple ): UpperCAmelCase_ = "This is a test" UpperCAmelCase_ = [13, 1, 4398, 25, 21, 1289] UpperCAmelCase_ = ["▁", "T", "his", "▁is", "▁a", "▁test"] UpperCAmelCase_ = ["▁", "<unk>", "his", "▁is", "▁a", "▁test"] UpperCAmelCase_ = DebertaVaTokenizer(__a , keep_accents=__a ) UpperCAmelCase_ = DebertaVaTokenizerFast(__a , keep_accents=__a ) UpperCAmelCase_ = tokenizer.encode(__a , add_special_tokens=__a ) self.assertListEqual(__a , __a ) UpperCAmelCase_ = tokenizer.tokenize(__a ) self.assertListEqual(__a , __a ) UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(__a ) self.assertListEqual(__a , __a ) UpperCAmelCase_ = rust_tokenizer.encode(__a , add_special_tokens=__a ) self.assertListEqual(__a , __a ) UpperCAmelCase_ = rust_tokenizer.tokenize(__a ) self.assertListEqual(__a , __a ) UpperCAmelCase_ = rust_tokenizer.convert_ids_to_tokens(__a ) self.assertListEqual(__a , __a ) # fmt: off UpperCAmelCase_ = "I was born in 92000, and this is falsé." UpperCAmelCase_ = [13, 1, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] UpperCAmelCase_ = ["▁", "I", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "é", ".", ] UpperCAmelCase_ = ["▁", "<unk>", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", ".", ] # fmt: on UpperCAmelCase_ = tokenizer.encode(__a , add_special_tokens=__a ) self.assertListEqual(__a , __a ) UpperCAmelCase_ = tokenizer.tokenize(__a ) self.assertListEqual(__a , __a ) UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(__a ) self.assertListEqual(__a , __a ) UpperCAmelCase_ = rust_tokenizer.encode(__a , add_special_tokens=__a ) self.assertListEqual(__a , __a ) UpperCAmelCase_ = rust_tokenizer.tokenize(__a ) self.assertListEqual(__a , __a ) UpperCAmelCase_ = rust_tokenizer.convert_ids_to_tokens(__a ) self.assertListEqual(__a , __a ) def _lowercase (self : Union[str, Any] ): UpperCAmelCase_ = DebertaVaTokenizer(__a ) UpperCAmelCase_ = tokenizer.encode("sequence builders" ) UpperCAmelCase_ = tokenizer.encode("multi-sequence build" ) UpperCAmelCase_ = tokenizer.build_inputs_with_special_tokens(__a ) UpperCAmelCase_ = tokenizer.build_inputs_with_special_tokens(__a , __a ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , __a ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , __a , ) @slow def _lowercase (self : Union[str, Any] ): # fmt: off UpperCAmelCase_ = {"input_ids": [[1, 39867, 36, 19390, 486, 27, 35052, 81436, 18, 60685, 1225, 7, 35052, 81436, 18, 9367, 16899, 18, 15937, 53, 594, 773, 18, 16287, 30465, 36, 15937, 6, 41139, 38, 36979, 60763, 191, 6, 34132, 99, 6, 50538, 390, 43230, 6, 34132, 2779, 20850, 14, 699, 1072, 1194, 36, 382, 10901, 53, 7, 699, 1072, 2084, 36, 20422, 630, 53, 19, 105, 3049, 1896, 1053, 16899, 1506, 11, 37978, 4243, 7, 1237, 31869, 200, 16566, 654, 6, 35052, 81436, 7, 55630, 13593, 4, 2], [1, 26, 15011, 13, 667, 8, 1053, 18, 23611, 1237, 72356, 12820, 34, 104134, 1209, 35, 13313, 6627, 21, 202, 347, 7, 164, 2399, 11, 46, 4485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1232, 2864, 15785, 14951, 105, 5, 8581, 1250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "token_type_ids": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__a , model_name="microsoft/deberta-v2-xlarge" , revision="ad6e42c1532ddf3a15c39246b63f5559d558b670" , )
78
import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin snake_case__ : Optional[Any] = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece class _A ( _lowercase , unittest.TestCase ): '''simple docstring''' _snake_case : Dict = XLMProphetNetTokenizer _snake_case : List[str] = False _snake_case : int = True def _snake_case ( self : str ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing __lowercase = XLMProphetNetTokenizer(lowerCamelCase , keep_accents=lowerCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def _snake_case ( self : Optional[Any] ): '''simple docstring''' __lowercase = "[PAD]" __lowercase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase ) , lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase ) , lowerCamelCase ) def _snake_case ( self : List[str] ): '''simple docstring''' __lowercase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "[PAD]" ) self.assertEqual(vocab_keys[1] , "[CLS]" ) self.assertEqual(vocab_keys[-1] , "j" ) self.assertEqual(len(lowerCamelCase ) , 1_012 ) def _snake_case ( self : Tuple ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1_012 ) def _snake_case ( self : Union[str, Any] ): '''simple docstring''' __lowercase = XLMProphetNetTokenizer(lowerCamelCase , keep_accents=lowerCamelCase ) __lowercase = tokenizer.tokenize("This is a test" ) self.assertListEqual(lowerCamelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCamelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) __lowercase = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( lowerCamelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) __lowercase = tokenizer.convert_tokens_to_ids(lowerCamelCase ) self.assertListEqual( lowerCamelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4] ] , ) __lowercase = tokenizer.convert_ids_to_tokens(lowerCamelCase ) self.assertListEqual( lowerCamelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "[UNK]", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "[UNK]", ".", ] , ) @cached_property def _snake_case ( self : Any ): '''simple docstring''' return XLMProphetNetTokenizer.from_pretrained("microsoft/xprophetnet-large-wiki100-cased" ) @slow def _snake_case ( self : str ): '''simple docstring''' __lowercase = "Hello World!" __lowercase = [35_389, 6_672, 49, 2] self.assertListEqual(lowerCamelCase , self.big_tokenizer.encode(lowerCamelCase ) ) @slow def _snake_case ( self : Optional[int] ): '''simple docstring''' __lowercase = {"input_ids": [[11_073, 82_783, 18, 26, 82_783, 549, 51_540, 248, 17_209, 1_301, 217, 20, 215_186, 1_325, 147, 17_209, 1_301, 217, 20, 56_370, 53, 122_020, 20, 16_477, 27, 87_355, 4_548, 20, 4_728, 78_392, 17, 159_969, 18, 26, 24_491, 629, 15, 538, 22_704, 5_439, 15, 2_788, 24_491, 9_885, 15, 43_534, 605, 15, 814, 18_403, 33_200, 29, 15, 43_534, 24_458, 12_410, 111, 24_966, 83_669, 9_637, 144_068, 26, 850, 22_346, 27, 147, 24_966, 83_669, 83_490, 26, 39_113, 735, 27, 689, 656, 2_800, 1_339, 4_600, 53, 122_020, 115_785, 34, 816, 1_339, 46_887, 18, 147, 53_905, 1_951, 42_238, 41_170, 17_732, 834, 436, 15, 27_523, 98_733, 217, 147, 5_542, 4_981, 930, 17_347, 16, 2], [20_091, 629, 94, 82_786, 58, 490, 20, 1_528, 84, 53_905, 344, 80_592, 110_128, 18_822, 5_267, 1_306, 62, 152_537, 308, 7_997, 401, 124_427, 549, 35_442, 225, 109, 15_055, 25_748, 147, 7_119, 43_712, 34, 767, 135_366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 63_784, 119_466, 17, 147_808, 88_214, 18, 656, 81, 32, 3_296, 10_280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase , model_name="microsoft/xprophetnet-large-wiki100-cased" , revision="1acad1643ddd54a44df6a1b797ada8373685d90e" , )
402
0
from typing import Optional, Tuple, Union import torch from einops import rearrange, reduce from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput lowercase_ = 8 def a ( A__ : Optional[int] , A__ : int=BITS ) -> Optional[int]: """simple docstring""" _lowercase =x.device _lowercase =(x * 255).int().clamp(0 , 255 ) _lowercase =2 ** torch.arange(bits - 1 , -1 , -1 , device=A__ ) _lowercase =rearrange(A__ , 'd -> d 1 1' ) _lowercase =rearrange(A__ , 'b c h w -> b c 1 h w' ) _lowercase =((x & mask) != 0).float() _lowercase =rearrange(A__ , 'b c d h w -> b (c d) h w' ) _lowercase =bits * 2 - 1 return bits def a ( A__ : List[Any] , A__ : int=BITS ) -> Optional[Any]: """simple docstring""" _lowercase =x.device _lowercase =(x > 0).int() _lowercase =2 ** torch.arange(bits - 1 , -1 , -1 , device=A__ , dtype=torch.intaa ) _lowercase =rearrange(A__ , 'd -> d 1 1' ) _lowercase =rearrange(A__ , 'b (c d) h w -> b c d h w' , d=8 ) _lowercase =reduce(x * mask , 'b c d h w -> b c h w' , 'sum' ) return (dec / 255).clamp(0.0 , 1.0 ) def a ( self : Optional[Any] , A__ : torch.FloatTensor , A__ : int , A__ : torch.FloatTensor , A__ : float = 0.0 , A__ : bool = True , A__ : int=None , A__ : bool = True , ) -> Union[DDIMSchedulerOutput, Tuple]: """simple docstring""" if self.num_inference_steps is None: raise ValueError( 'Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler' ) # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation (<variable name> -> <name in paper> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_sample -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> η # - pred_sample_direction -> "direction pointing to x_t" # - pred_prev_sample -> "x_t-1" # 1. get previous step value (=t-1) _lowercase =timestep - self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas _lowercase =self.alphas_cumprod[timestep] _lowercase =self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod _lowercase =1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _lowercase =(sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 # 4. Clip "predicted x_0" _lowercase =self.bit_scale if self.config.clip_sample: _lowercase =torch.clamp(A__ , -scale , A__ ) # 5. compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) _lowercase =self._get_variance(A__ , A__ ) _lowercase =eta * variance ** 0.5 if use_clipped_model_output: # the model_output is always re-derived from the clipped x_0 in Glide _lowercase =(sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _lowercase =(1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _lowercase =alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if eta > 0: # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072 _lowercase =model_output.device if torch.is_tensor(A__ ) else 'cpu' _lowercase =torch.randn(model_output.shape , dtype=model_output.dtype , generator=A__ ).to(A__ ) _lowercase =self._get_variance(A__ , A__ ) ** 0.5 * eta * noise _lowercase =prev_sample + variance if not return_dict: return (prev_sample,) return DDIMSchedulerOutput(prev_sample=A__ , pred_original_sample=A__ ) def a ( self : Any , A__ : torch.FloatTensor , A__ : int , A__ : torch.FloatTensor , A__ : Tuple="epsilon" , A__ : Any=None , A__ : bool = True , ) -> Union[DDPMSchedulerOutput, Tuple]: """simple docstring""" _lowercase =timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: _lowercase =torch.split(A__ , sample.shape[1] , dim=1 ) else: _lowercase =None # 1. compute alphas, betas _lowercase =self.alphas_cumprod[t] _lowercase =self.alphas_cumprod[t - 1] if t > 0 else self.one _lowercase =1 - alpha_prod_t _lowercase =1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if prediction_type == "epsilon": _lowercase =(sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif prediction_type == "sample": _lowercase =model_output else: raise ValueError(F'''Unsupported prediction_type {prediction_type}.''' ) # 3. Clip "predicted x_0" _lowercase =self.bit_scale if self.config.clip_sample: _lowercase =torch.clamp(A__ , -scale , A__ ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _lowercase =(alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t _lowercase =self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _lowercase =pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise _lowercase =0 if t > 0: _lowercase =torch.randn( model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=A__ ).to(model_output.device ) _lowercase =(self._get_variance(A__ , predicted_variance=A__ ) ** 0.5) * noise _lowercase =pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return DDPMSchedulerOutput(prev_sample=A__ , pred_original_sample=A__ ) class __lowerCAmelCase ( UpperCAmelCase_ ): def __init__( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = 1.0 , ) -> Union[str, Any]: '''simple docstring''' super().__init__() _lowercase =bit_scale _lowercase =( ddim_bit_scheduler_step if isinstance(_lowercase , _lowercase ) else ddpm_bit_scheduler_step ) self.register_modules(unet=_lowercase , scheduler=_lowercase ) @torch.no_grad() def __call__( self , lowerCAmelCase = 256 , lowerCAmelCase = 256 , lowerCAmelCase = 50 , lowerCAmelCase = None , lowerCAmelCase = 1 , lowerCAmelCase = "pil" , lowerCAmelCase = True , **lowerCAmelCase , ) -> Union[Tuple, ImagePipelineOutput]: '''simple docstring''' _lowercase =torch.randn( (batch_size, self.unet.config.in_channels, height, width) , generator=_lowercase , ) _lowercase =decimal_to_bits(_lowercase ) * self.bit_scale _lowercase =latents.to(self.device ) self.scheduler.set_timesteps(_lowercase ) for t in self.progress_bar(self.scheduler.timesteps ): # predict the noise residual _lowercase =self.unet(_lowercase , _lowercase ).sample # compute the previous noisy sample x_t -> x_t-1 _lowercase =self.scheduler.step(_lowercase , _lowercase , _lowercase ).prev_sample _lowercase =bits_to_decimal(_lowercase ) if output_type == "pil": _lowercase =self.numpy_to_pil(_lowercase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_lowercase )
707
import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class __lowerCAmelCase ( unittest.TestCase ): def __init__( self , lowerCAmelCase , lowerCAmelCase=7 , lowerCAmelCase=3 , lowerCAmelCase=18 , lowerCAmelCase=30 , lowerCAmelCase=400 , lowerCAmelCase=True , lowerCAmelCase=None , lowerCAmelCase=True , lowerCAmelCase=None , lowerCAmelCase=True , lowerCAmelCase=[0.5, 0.5, 0.5] , lowerCAmelCase=[0.5, 0.5, 0.5] , lowerCAmelCase=False , ) -> Tuple: '''simple docstring''' _lowercase =size if size is not None else {'height': 20, 'width': 20} _lowercase =crop_size if crop_size is not None else {'height': 18, 'width': 18} _lowercase =parent _lowercase =batch_size _lowercase =num_channels _lowercase =image_size _lowercase =min_resolution _lowercase =max_resolution _lowercase =do_resize _lowercase =size _lowercase =do_center_crop _lowercase =crop_size _lowercase =do_normalize _lowercase =image_mean _lowercase =image_std _lowercase =do_reduce_labels def A__ ( self ) -> Any: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def a ( ) -> Tuple: """simple docstring""" _lowercase =load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) _lowercase =Image.open(dataset[0]['file'] ) _lowercase =Image.open(dataset[1]['file'] ) return image, map def a ( ) -> Union[str, Any]: """simple docstring""" _lowercase =load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) _lowercase =Image.open(ds[0]['file'] ) _lowercase =Image.open(ds[1]['file'] ) _lowercase =Image.open(ds[2]['file'] ) _lowercase =Image.open(ds[3]['file'] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class __lowerCAmelCase ( SCREAMING_SNAKE_CASE , unittest.TestCase ): _a = BeitImageProcessor if is_vision_available() else None def A__ ( self ) -> Optional[int]: '''simple docstring''' _lowercase =BeitImageProcessingTester(self ) @property def A__ ( self ) -> int: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def A__ ( self ) -> Optional[int]: '''simple docstring''' _lowercase =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase , 'do_resize' ) ) self.assertTrue(hasattr(lowerCAmelCase , 'size' ) ) self.assertTrue(hasattr(lowerCAmelCase , 'do_center_crop' ) ) self.assertTrue(hasattr(lowerCAmelCase , 'center_crop' ) ) self.assertTrue(hasattr(lowerCAmelCase , 'do_normalize' ) ) self.assertTrue(hasattr(lowerCAmelCase , 'image_mean' ) ) self.assertTrue(hasattr(lowerCAmelCase , 'image_std' ) ) def A__ ( self ) -> Union[str, Any]: '''simple docstring''' _lowercase =self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 20, 'width': 20} ) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} ) self.assertEqual(image_processor.do_reduce_labels , lowerCAmelCase ) _lowercase =self.image_processing_class.from_dict( self.image_processor_dict , size=42 , crop_size=84 , reduce_labels=lowerCAmelCase ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) self.assertEqual(image_processor.do_reduce_labels , lowerCAmelCase ) def A__ ( self ) -> Dict: '''simple docstring''' pass def A__ ( self ) -> Optional[Any]: '''simple docstring''' _lowercase =self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowercase =prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , Image.Image ) # Test not batched input _lowercase =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _lowercase =image_processing(lowerCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def A__ ( self ) -> Optional[Any]: '''simple docstring''' _lowercase =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowercase =prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase , numpify=lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , np.ndarray ) # Test not batched input _lowercase =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _lowercase =image_processing(lowerCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def A__ ( self ) -> Dict: '''simple docstring''' _lowercase =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowercase =prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase , torchify=lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , torch.Tensor ) # Test not batched input _lowercase =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _lowercase =image_processing(lowerCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def A__ ( self ) -> Optional[Any]: '''simple docstring''' _lowercase =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowercase =prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase , torchify=lowerCAmelCase ) _lowercase =[] for image in image_inputs: self.assertIsInstance(lowerCAmelCase , torch.Tensor ) maps.append(torch.zeros(image.shape[-2:] ).long() ) # Test not batched input _lowercase =image_processing(image_inputs[0] , maps[0] , return_tensors='pt' ) self.assertEqual( encoding['pixel_values'].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual( encoding['labels'].shape , ( 1, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual(encoding['labels'].dtype , torch.long ) self.assertTrue(encoding['labels'].min().item() >= 0 ) self.assertTrue(encoding['labels'].max().item() <= 255 ) # Test batched _lowercase =image_processing(lowerCAmelCase , lowerCAmelCase , return_tensors='pt' ) self.assertEqual( encoding['pixel_values'].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual( encoding['labels'].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual(encoding['labels'].dtype , torch.long ) self.assertTrue(encoding['labels'].min().item() >= 0 ) self.assertTrue(encoding['labels'].max().item() <= 255 ) # Test not batched input (PIL images) _lowercase , _lowercase =prepare_semantic_single_inputs() _lowercase =image_processing(lowerCAmelCase , lowerCAmelCase , return_tensors='pt' ) self.assertEqual( encoding['pixel_values'].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual( encoding['labels'].shape , ( 1, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual(encoding['labels'].dtype , torch.long ) self.assertTrue(encoding['labels'].min().item() >= 0 ) self.assertTrue(encoding['labels'].max().item() <= 255 ) # Test batched input (PIL images) _lowercase , _lowercase =prepare_semantic_batch_inputs() _lowercase =image_processing(lowerCAmelCase , lowerCAmelCase , return_tensors='pt' ) self.assertEqual( encoding['pixel_values'].shape , ( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual( encoding['labels'].shape , ( 2, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual(encoding['labels'].dtype , torch.long ) self.assertTrue(encoding['labels'].min().item() >= 0 ) self.assertTrue(encoding['labels'].max().item() <= 255 ) def A__ ( self ) -> List[Any]: '''simple docstring''' _lowercase =self.image_processing_class(**self.image_processor_dict ) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 _lowercase , _lowercase =prepare_semantic_single_inputs() _lowercase =image_processing(lowerCAmelCase , lowerCAmelCase , return_tensors='pt' ) self.assertTrue(encoding['labels'].min().item() >= 0 ) self.assertTrue(encoding['labels'].max().item() <= 150 ) _lowercase =True _lowercase =image_processing(lowerCAmelCase , lowerCAmelCase , return_tensors='pt' ) self.assertTrue(encoding['labels'].min().item() >= 0 ) self.assertTrue(encoding['labels'].max().item() <= 255 )
380
0
"""simple docstring""" a_ = """Input must be a string of 8 numbers plus letter""" a_ = """TRWAGMYFPDXBNJZSQVHLCKE""" def __lowercase ( snake_case_ : str ) ->bool: '''simple docstring''' if not isinstance(snake_case_ ,snake_case_ ): __A : str = F"""Expected string as input, found {type(snake_case_ ).__name__}""" raise TypeError(snake_case_ ) __A : Tuple = spanish_id.replace('''-''' ,'''''' ).upper() if len(snake_case_ ) != 9: raise ValueError(snake_case_ ) try: __A : Optional[Any] = int(spanish_id_clean[0:8] ) __A : Optional[Any] = spanish_id_clean[8] except ValueError as ex: raise ValueError(snake_case_ ) from ex if letter.isdigit(): raise ValueError(snake_case_ ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
177
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { """sail/poolformer_s12""": """https://huggingface.co/sail/poolformer_s12/resolve/main/config.json""", # See all PoolFormer models at https://huggingface.co/models?filter=poolformer } class __snake_case ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = """poolformer""" def __init__( self , __lowerCamelCase=3 , __lowerCamelCase=16 , __lowerCamelCase=16 , __lowerCamelCase=3 , __lowerCamelCase=4.0 , __lowerCamelCase=[2, 2, 6, 2] , __lowerCamelCase=[64, 128, 320, 512] , __lowerCamelCase=[7, 3, 3, 3] , __lowerCamelCase=[4, 2, 2, 2] , __lowerCamelCase=[2, 1, 1, 1] , __lowerCamelCase=4 , __lowerCamelCase=0.0 , __lowerCamelCase="gelu" , __lowerCamelCase=True , __lowerCamelCase=1e-5 , __lowerCamelCase=0.0_2 , **__lowerCamelCase , ): '''simple docstring''' __A : str = num_channels __A : List[str] = patch_size __A : str = stride __A : Any = padding __A : Any = pool_size __A : Dict = hidden_sizes __A : Optional[Any] = mlp_ratio __A : Any = depths __A : List[str] = patch_sizes __A : Union[str, Any] = strides __A : List[str] = num_encoder_blocks __A : Optional[int] = drop_path_rate __A : Union[str, Any] = hidden_act __A : Optional[Any] = use_layer_scale __A : List[Any] = layer_scale_init_value __A : List[Any] = initializer_range super().__init__(**__lowerCamelCase ) class __snake_case ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = version.parse("""1.11""" ) @property def UpperCamelCase__( self ): '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def UpperCamelCase__( self ): '''simple docstring''' return 2e-3
177
1
'''simple docstring''' import importlib import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Union import torch from ..utils import BaseOutput lowercase_ = "scheduler_config.json" class __A ( A ): '''simple docstring''' __lowerCamelCase : Any = 1 __lowerCamelCase : Dict = 2 __lowerCamelCase : Optional[int] = 3 __lowerCamelCase : Tuple = 4 __lowerCamelCase : Any = 5 __lowerCamelCase : Any = 6 __lowerCamelCase : Dict = 7 __lowerCamelCase : List[str] = 8 __lowerCamelCase : Any = 9 __lowerCamelCase : Tuple = 10 __lowerCamelCase : Optional[Any] = 11 __lowerCamelCase : int = 12 __lowerCamelCase : int = 13 __lowerCamelCase : str = 14 @dataclass class __A ( A ): '''simple docstring''' __lowerCamelCase : torch.FloatTensor class __A : '''simple docstring''' __lowerCamelCase : Dict = SCHEDULER_CONFIG_NAME __lowerCamelCase : str = [] __lowerCamelCase : Any = True @classmethod def a__ (cls , A = None , A = None , A=False , **A , ) -> List[Any]: """simple docstring""" _a , _a , _a = cls.load_config( pretrained_model_name_or_path=A , subfolder=A , return_unused_kwargs=A , return_commit_hash=A , **A , ) return cls.from_config(A , return_unused_kwargs=A , **A ) def a__ (self , A , A = False , **A ) -> Union[str, Any]: """simple docstring""" self.save_config(save_directory=A , push_to_hub=A , **A ) @property def a__ (self ) -> Dict: """simple docstring""" return self._get_compatibles() @classmethod def a__ (cls ) -> Tuple: """simple docstring""" _a = list(set([cls.__name__] + cls._compatibles ) ) _a = importlib.import_module(__name__.split('''.''' )[0] ) _a = [ getattr(A , A ) for c in compatible_classes_str if hasattr(A , A ) ] return compatible_classes
352
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class __A ( unittest.TestCase ): '''simple docstring''' def __init__(self , A , A=7 , A=3 , A=18 , A=30 , A=400 , A=True , A=None , A=True , A=None , ) -> Any: """simple docstring""" _a = size if size is not None else {'''shortest_edge''': 20} _a = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} _a = parent _a = batch_size _a = num_channels _a = image_size _a = min_resolution _a = max_resolution _a = do_resize _a = size _a = do_center_crop _a = crop_size def a__ (self ) -> Optional[Any]: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class __A ( A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Tuple = MobileNetVaImageProcessor if is_vision_available() else None def a__ (self ) -> int: """simple docstring""" _a = MobileNetVaImageProcessingTester(self ) @property def a__ (self ) -> Optional[Any]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def a__ (self ) -> str: """simple docstring""" _a = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A , '''do_resize''' ) ) self.assertTrue(hasattr(A , '''size''' ) ) self.assertTrue(hasattr(A , '''do_center_crop''' ) ) self.assertTrue(hasattr(A , '''crop_size''' ) ) def a__ (self ) -> Optional[int]: """simple docstring""" _a = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 20} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) _a = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def a__ (self ) -> Union[str, Any]: """simple docstring""" pass def a__ (self ) -> Any: """simple docstring""" _a = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _a = prepare_image_inputs(self.image_processor_tester , equal_resolution=A ) for image in image_inputs: self.assertIsInstance(A , Image.Image ) # Test not batched input _a = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _a = image_processing(A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def a__ (self ) -> Optional[int]: """simple docstring""" _a = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _a = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , numpify=A ) for image in image_inputs: self.assertIsInstance(A , np.ndarray ) # Test not batched input _a = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _a = image_processing(A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def a__ (self ) -> Optional[Any]: """simple docstring""" _a = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _a = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , torchify=A ) for image in image_inputs: self.assertIsInstance(A , torch.Tensor ) # Test not batched input _a = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _a = image_processing(A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
352
1
import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TextClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. UpperCamelCase__ : str = {'''LayoutLMv2Config''', '''LayoutLMv3Config'''} @is_pipeline_test class lowerCAmelCase_ ( unittest.TestCase ): __a : Dict = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING __a : List[Any] = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: __a : Union[str, Any] = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: __a : Any = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } @require_torch def snake_case ( self ): SCREAMING_SNAKE_CASE_ : List[Any] = pipeline( task='text-classification' ,model='hf-internal-testing/tiny-random-distilbert' ,framework='pt' ) SCREAMING_SNAKE_CASE_ : Optional[int] = text_classifier('This is great !' ) self.assertEqual(nested_simplify(snake_case__ ) ,[{'label': 'LABEL_0', 'score': 0.504}] ) SCREAMING_SNAKE_CASE_ : Any = text_classifier('This is great !' ,top_k=2 ) self.assertEqual( nested_simplify(snake_case__ ) ,[{'label': 'LABEL_0', 'score': 0.504}, {'label': 'LABEL_1', 'score': 0.496}] ) SCREAMING_SNAKE_CASE_ : Tuple = text_classifier(['This is great !', 'This is bad'] ,top_k=2 ) self.assertEqual( nested_simplify(snake_case__ ) ,[ [{'label': 'LABEL_0', 'score': 0.504}, {'label': 'LABEL_1', 'score': 0.496}], [{'label': 'LABEL_0', 'score': 0.504}, {'label': 'LABEL_1', 'score': 0.496}], ] ,) SCREAMING_SNAKE_CASE_ : Tuple = text_classifier('This is great !' ,top_k=1 ) self.assertEqual(nested_simplify(snake_case__ ) ,[{'label': 'LABEL_0', 'score': 0.504}] ) # Legacy behavior SCREAMING_SNAKE_CASE_ : Optional[Any] = text_classifier('This is great !' ,return_all_scores=snake_case__ ) self.assertEqual(nested_simplify(snake_case__ ) ,[{'label': 'LABEL_0', 'score': 0.504}] ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = text_classifier('This is great !' ,return_all_scores=snake_case__ ) self.assertEqual( nested_simplify(snake_case__ ) ,[[{'label': 'LABEL_0', 'score': 0.504}, {'label': 'LABEL_1', 'score': 0.496}]] ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = text_classifier(['This is great !', 'Something else'] ,return_all_scores=snake_case__ ) self.assertEqual( nested_simplify(snake_case__ ) ,[ [{'label': 'LABEL_0', 'score': 0.504}, {'label': 'LABEL_1', 'score': 0.496}], [{'label': 'LABEL_0', 'score': 0.504}, {'label': 'LABEL_1', 'score': 0.496}], ] ,) SCREAMING_SNAKE_CASE_ : Tuple = text_classifier(['This is great !', 'Something else'] ,return_all_scores=snake_case__ ) self.assertEqual( nested_simplify(snake_case__ ) ,[ {'label': 'LABEL_0', 'score': 0.504}, {'label': 'LABEL_0', 'score': 0.504}, ] ,) @require_torch def snake_case ( self ): import torch SCREAMING_SNAKE_CASE_ : Optional[Any] = pipeline( task='text-classification' ,model='hf-internal-testing/tiny-random-distilbert' ,framework='pt' ,device=torch.device('cpu' ) ,) SCREAMING_SNAKE_CASE_ : List[Any] = text_classifier('This is great !' ) self.assertEqual(nested_simplify(snake_case__ ) ,[{'label': 'LABEL_0', 'score': 0.504}] ) @require_tf def snake_case ( self ): SCREAMING_SNAKE_CASE_ : str = pipeline( task='text-classification' ,model='hf-internal-testing/tiny-random-distilbert' ,framework='tf' ) SCREAMING_SNAKE_CASE_ : int = text_classifier('This is great !' ) self.assertEqual(nested_simplify(snake_case__ ) ,[{'label': 'LABEL_0', 'score': 0.504}] ) @slow @require_torch def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Tuple = pipeline('text-classification' ) SCREAMING_SNAKE_CASE_ : List[str] = text_classifier('This is great !' ) self.assertEqual(nested_simplify(snake_case__ ) ,[{'label': 'POSITIVE', 'score': 1.0}] ) SCREAMING_SNAKE_CASE_ : Optional[int] = text_classifier('This is bad !' ) self.assertEqual(nested_simplify(snake_case__ ) ,[{'label': 'NEGATIVE', 'score': 1.0}] ) SCREAMING_SNAKE_CASE_ : List[Any] = text_classifier('Birds are a type of animal' ) self.assertEqual(nested_simplify(snake_case__ ) ,[{'label': 'POSITIVE', 'score': 0.988}] ) @slow @require_tf def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Optional[int] = pipeline('text-classification' ,framework='tf' ) SCREAMING_SNAKE_CASE_ : List[Any] = text_classifier('This is great !' ) self.assertEqual(nested_simplify(snake_case__ ) ,[{'label': 'POSITIVE', 'score': 1.0}] ) SCREAMING_SNAKE_CASE_ : Optional[int] = text_classifier('This is bad !' ) self.assertEqual(nested_simplify(snake_case__ ) ,[{'label': 'NEGATIVE', 'score': 1.0}] ) SCREAMING_SNAKE_CASE_ : Tuple = text_classifier('Birds are a type of animal' ) self.assertEqual(nested_simplify(snake_case__ ) ,[{'label': 'POSITIVE', 'score': 0.988}] ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : List[str] = TextClassificationPipeline(model=snake_case__ ,tokenizer=snake_case__ ) return text_classifier, ["HuggingFace is in", "This is another test"] def snake_case ( self ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : str = text_classifier.model # Small inputs because BartTokenizer tiny has maximum position embeddings = 22 SCREAMING_SNAKE_CASE_ : Dict = 'HuggingFace is in' SCREAMING_SNAKE_CASE_ : Optional[int] = text_classifier(snake_case__ ) self.assertEqual(nested_simplify(snake_case__ ) ,[{'label': ANY(snake_case__ ), 'score': ANY(snake_case__ )}] ) self.assertTrue(outputs[0]['label'] in model.config.idalabel.values() ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = ['HuggingFace is in ', 'Paris is in France'] SCREAMING_SNAKE_CASE_ : Optional[Any] = text_classifier(snake_case__ ) self.assertEqual( nested_simplify(snake_case__ ) ,[{'label': ANY(snake_case__ ), 'score': ANY(snake_case__ )}, {'label': ANY(snake_case__ ), 'score': ANY(snake_case__ )}] ,) self.assertTrue(outputs[0]['label'] in model.config.idalabel.values() ) self.assertTrue(outputs[1]['label'] in model.config.idalabel.values() ) # Forcing to get all results with `top_k=None` # This is NOT the legacy format SCREAMING_SNAKE_CASE_ : Tuple = text_classifier(snake_case__ ,top_k=snake_case__ ) SCREAMING_SNAKE_CASE_ : List[Any] = len(model.config.idalabel.values() ) self.assertEqual( nested_simplify(snake_case__ ) ,[[{'label': ANY(snake_case__ ), 'score': ANY(snake_case__ )}] * N, [{'label': ANY(snake_case__ ), 'score': ANY(snake_case__ )}] * N] ,) SCREAMING_SNAKE_CASE_ : List[str] = {'text': 'HuggingFace is in ', 'text_pair': 'Paris is in France'} SCREAMING_SNAKE_CASE_ : List[Any] = text_classifier(snake_case__ ) self.assertEqual( nested_simplify(snake_case__ ) ,{'label': ANY(snake_case__ ), 'score': ANY(snake_case__ )} ,) self.assertTrue(outputs['label'] in model.config.idalabel.values() ) # This might be used a text pair, but tokenizer + pipe interaction # makes it hard to understand that it's not using the pair properly # https://github.com/huggingface/transformers/issues/17305 # We disabled this usage instead as it was outputting wrong outputs. SCREAMING_SNAKE_CASE_ : List[str] = [['HuggingFace is in ', 'Paris is in France']] with self.assertRaises(snake_case__ ): text_classifier(snake_case__ ) # This used to be valid for doing text pairs # We're keeping it working because of backward compatibility SCREAMING_SNAKE_CASE_ : Tuple = text_classifier([[['HuggingFace is in ', 'Paris is in France']]] ) self.assertEqual( nested_simplify(snake_case__ ) ,[{'label': ANY(snake_case__ ), 'score': ANY(snake_case__ )}] ,) self.assertTrue(outputs[0]['label'] in model.config.idalabel.values() )
105
"""simple docstring""" from collections import deque class lowercase: def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> None: """simple docstring""" a__ = process_name # process name a__ = arrival_time # arrival time of the process # completion time of finished process or last interrupted time a__ = arrival_time a__ = burst_time # remaining burst time a__ = 0 # total time of the process wait in ready queue a__ = 0 # time from arrival time to completion time class lowercase: def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , ) -> None: """simple docstring""" a__ = number_of_queues # time slice of queues that round robin algorithm applied a__ = time_slices # unfinished process is in this ready_queue a__ = queue # current time a__ = current_time # finished process is in this sequence queue a__ = deque() def lowercase__ ( self ) -> list[str]: """simple docstring""" a__ = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def lowercase__ ( self , __SCREAMING_SNAKE_CASE ) -> list[int]: """simple docstring""" a__ = [] for i in range(len(__SCREAMING_SNAKE_CASE ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def lowercase__ ( self , __SCREAMING_SNAKE_CASE ) -> list[int]: """simple docstring""" a__ = [] for i in range(len(__SCREAMING_SNAKE_CASE ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def lowercase__ ( self , __SCREAMING_SNAKE_CASE ) -> list[int]: """simple docstring""" a__ = [] for i in range(len(__SCREAMING_SNAKE_CASE ) ): completion_times.append(queue[i].stop_time ) return completion_times def lowercase__ ( self , __SCREAMING_SNAKE_CASE ) -> list[int]: """simple docstring""" return [q.burst_time for q in queue] def lowercase__ ( self , __SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" process.waiting_time += self.current_time - process.stop_time return process.waiting_time def lowercase__ ( self , __SCREAMING_SNAKE_CASE ) -> deque[Process]: """simple docstring""" a__ = deque() # sequence deque of finished process while len(__SCREAMING_SNAKE_CASE ) != 0: a__ = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(__SCREAMING_SNAKE_CASE ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 a__ = 0 # set the process's turnaround time because it is finished a__ = self.current_time - cp.arrival_time # set the completion time a__ = self.current_time # add the process to queue that has finished queue finished.append(__SCREAMING_SNAKE_CASE ) self.finish_queue.extend(__SCREAMING_SNAKE_CASE ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def lowercase__ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> tuple[deque[Process], deque[Process]]: """simple docstring""" a__ = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(__SCREAMING_SNAKE_CASE ) ): a__ = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(__SCREAMING_SNAKE_CASE ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time a__ = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(__SCREAMING_SNAKE_CASE ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished a__ = 0 # set the finish time a__ = self.current_time # update the process' turnaround time because it is finished a__ = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(__SCREAMING_SNAKE_CASE ) self.finish_queue.extend(__SCREAMING_SNAKE_CASE ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def lowercase__ ( self ) -> deque[Process]: """simple docstring""" for i in range(self.number_of_queues - 1 ): a__ , a__ = self.round_robin( self.ready_queue , self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest a : List[str] = Process('P1', 0, 53) a : Optional[int] = Process('P2', 0, 17) a : Union[str, Any] = Process('P3', 0, 68) a : Optional[int] = Process('P4', 0, 24) a : Optional[int] = 3 a : Optional[Any] = [17, 25] a : Union[str, Any] = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={'queue': deque([Pa, Pa, Pa, Pa])}) a : Union[str, Any] = Process('P1', 0, 53) a : Optional[int] = Process('P2', 0, 17) a : Optional[Any] = Process('P3', 0, 68) a : str = Process('P4', 0, 24) a : Optional[Any] = 3 a : Tuple = [17, 25] a : int = deque([Pa, Pa, Pa, Pa]) a : Tuple = MLFQ(number_of_queues, time_slices, queue, 0) a : Optional[int] = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( F'''waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print completion times of processes(P1, P2, P3, P4) print( F'''completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print total turnaround times of processes(P1, P2, P3, P4) print( F'''turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print sequence of finished processes print( F'''sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}''' )
273
0
def __UpperCamelCase ( _A : dict ) -> set: """simple docstring""" lowerCAmelCase : int = set() # edges = list of graph's edges lowerCAmelCase : List[str] = get_edges(_A ) # While there are still elements in edges list, take an arbitrary edge # (from_node, to_node) and add his extremity to chosen_vertices and then # remove all arcs adjacent to the from_node and to_node while edges: lowerCAmelCase : Tuple = edges.pop() chosen_vertices.add(_A ) chosen_vertices.add(_A ) for edge in edges.copy(): if from_node in edge or to_node in edge: edges.discard(_A ) return chosen_vertices def __UpperCamelCase ( _A : dict ) -> set: """simple docstring""" lowerCAmelCase : Optional[Any] = set() for from_node, to_nodes in graph.items(): for to_node in to_nodes: edges.add((from_node, to_node) ) return edges if __name__ == "__main__": import doctest doctest.testmod() # graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} # print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
712
'''simple docstring''' import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging _lowerCAmelCase : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name class lowerCAmelCase ( a ): def __init__( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): super().__init__() if safety_checker is None: logger.warning( f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" ' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered' ' results in services or applications open to the public. Both the diffusers team and Hugging Face' ' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling' ' it only for use-cases that involve analyzing network behavior or auditing its results. For more' ' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .' ) self.register_modules( speech_model=snake_case__ , speech_processor=snake_case__ , vae=snake_case__ , text_encoder=snake_case__ , tokenizer=snake_case__ , unet=snake_case__ , scheduler=snake_case__ , feature_extractor=snake_case__ , ) def lowercase ( self , snake_case__ = "auto" ): if slice_size == "auto": lowerCAmelCase : Union[str, Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(snake_case__ ) def lowercase ( self ): self.enable_attention_slicing(snake_case__ ) @torch.no_grad() def __call__( self , snake_case__ , snake_case__=1_6000 , snake_case__ = 512 , snake_case__ = 512 , snake_case__ = 50 , snake_case__ = 7.5 , snake_case__ = None , snake_case__ = 1 , snake_case__ = 0.0 , snake_case__ = None , snake_case__ = None , snake_case__ = "pil" , snake_case__ = True , snake_case__ = None , snake_case__ = 1 , **snake_case__ , ): lowerCAmelCase : List[str] = self.speech_processor.feature_extractor( snake_case__ , return_tensors='pt' , sampling_rate=snake_case__ ).input_features.to(self.device ) lowerCAmelCase : Optional[Any] = self.speech_model.generate(snake_case__ , max_length=48_0000 ) lowerCAmelCase : str = self.speech_processor.tokenizer.batch_decode(snake_case__ , skip_special_tokens=snake_case__ , normalize=snake_case__ )[ 0 ] if isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : Optional[int] = 1 elif isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : Optional[int] = len(snake_case__ ) else: raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(snake_case__ )}" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}." ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(snake_case__ , snake_case__ ) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(snake_case__ )}." ) # get prompt text embeddings lowerCAmelCase : str = self.tokenizer( snake_case__ , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , ) lowerCAmelCase : Tuple = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: lowerCAmelCase : str = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) lowerCAmelCase : Union[str, Any] = text_input_ids[:, : self.tokenizer.model_max_length] lowerCAmelCase : Union[str, Any] = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : int = text_embeddings.shape lowerCAmelCase : Any = text_embeddings.repeat(1 , snake_case__ , 1 ) lowerCAmelCase : Optional[int] = text_embeddings.view(bs_embed * num_images_per_prompt , snake_case__ , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. lowerCAmelCase : List[str] = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: lowerCAmelCase : List[str] if negative_prompt is None: lowerCAmelCase : Any = [''] * batch_size elif type(snake_case__ ) is not type(snake_case__ ): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(snake_case__ )} !=" f" {type(snake_case__ )}." ) elif isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : Union[str, Any] = [negative_prompt] elif batch_size != len(snake_case__ ): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(snake_case__ )}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" ' the batch size of `prompt`.' ) else: lowerCAmelCase : Dict = negative_prompt lowerCAmelCase : Optional[int] = text_input_ids.shape[-1] lowerCAmelCase : int = self.tokenizer( snake_case__ , padding='max_length' , max_length=snake_case__ , truncation=snake_case__ , return_tensors='pt' , ) lowerCAmelCase : Union[str, Any] = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowerCAmelCase : List[Any] = uncond_embeddings.shape[1] lowerCAmelCase : List[str] = uncond_embeddings.repeat(1 , snake_case__ , 1 ) lowerCAmelCase : Optional[Any] = uncond_embeddings.view(batch_size * num_images_per_prompt , snake_case__ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowerCAmelCase : List[str] = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. lowerCAmelCase : Union[str, Any] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) lowerCAmelCase : Dict = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps lowerCAmelCase : str = torch.randn(snake_case__ , generator=snake_case__ , device='cpu' , dtype=snake_case__ ).to( self.device ) else: lowerCAmelCase : Tuple = torch.randn(snake_case__ , generator=snake_case__ , device=self.device , dtype=snake_case__ ) else: if latents.shape != latents_shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" ) lowerCAmelCase : str = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(snake_case__ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand lowerCAmelCase : Union[str, Any] = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowerCAmelCase : Any = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowerCAmelCase : Tuple = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowerCAmelCase : Union[str, Any] = {} if accepts_eta: lowerCAmelCase : int = eta for i, t in enumerate(self.progress_bar(snake_case__ ) ): # expand the latents if we are doing classifier free guidance lowerCAmelCase : Dict = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowerCAmelCase : Tuple = self.scheduler.scale_model_input(snake_case__ , snake_case__ ) # predict the noise residual lowerCAmelCase : List[str] = self.unet(snake_case__ , snake_case__ , encoder_hidden_states=snake_case__ ).sample # perform guidance if do_classifier_free_guidance: lowerCAmelCase , lowerCAmelCase : Dict = noise_pred.chunk(2 ) lowerCAmelCase : Tuple = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 lowerCAmelCase : int = self.scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(snake_case__ , snake_case__ , snake_case__ ) lowerCAmelCase : List[Any] = 1 / 0.1_8_2_1_5 * latents lowerCAmelCase : Dict = self.vae.decode(snake_case__ ).sample lowerCAmelCase : List[Any] = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowerCAmelCase : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowerCAmelCase : Dict = self.numpy_to_pil(snake_case__ ) if not return_dict: return image return StableDiffusionPipelineOutput(images=snake_case__ , nsfw_content_detected=snake_case__ )
646
0
import numpy as np a_ :int = [ ["a", "b", "c", "d", "e"], ["f", "g", "h", "i", "k"], ["l", "m", "n", "o", "p"], ["q", "r", "s", "t", "u"], ["v", "w", "x", "y", "z"], ] class snake_case__ : """simple docstring""" def __init__( self : Dict ) ->None: snake_case__ : Optional[int] = np.array(_snake_case ) def lowercase_ ( self : str, _snake_case : str ) ->np.ndarray: snake_case__ , snake_case__ : str = np.where(letter == self.SQUARE ) snake_case__ : Optional[int] = np.concatenate([indexa + 1, indexa + 1] ) return indexes def lowercase_ ( self : str, _snake_case : int, _snake_case : int ) ->str: snake_case__ : List[str] = self.SQUARE[indexa - 1, indexa - 1] return letter def lowercase_ ( self : Optional[Any], _snake_case : str ) ->str: snake_case__ : List[str] = message.lower() snake_case__ : Dict = message.replace(' ', '' ) snake_case__ : int = message.replace('j', 'i' ) snake_case__ : Dict = np.empty((2, len(_snake_case )) ) for letter_index in range(len(_snake_case ) ): snake_case__ : Union[str, Any] = self.letter_to_numbers(message[letter_index] ) snake_case__ : Union[str, Any] = numbers[0] snake_case__ : int = numbers[1] snake_case__ : str = first_step.reshape(2 * len(_snake_case ) ) snake_case__ : List[Any] = '' for numbers_index in range(len(_snake_case ) ): snake_case__ : Tuple = int(second_step[numbers_index * 2] ) snake_case__ : Union[str, Any] = int(second_step[(numbers_index * 2) + 1] ) snake_case__ : str = self.numbers_to_letter(_snake_case, _snake_case ) snake_case__ : Any = encoded_message + letter return encoded_message def lowercase_ ( self : int, _snake_case : str ) ->str: snake_case__ : List[str] = message.lower() message.replace(' ', '' ) snake_case__ : Optional[int] = np.empty(2 * len(_snake_case ) ) for letter_index in range(len(_snake_case ) ): snake_case__ : List[Any] = self.letter_to_numbers(message[letter_index] ) snake_case__ : Dict = numbers[0] snake_case__ : Optional[int] = numbers[1] snake_case__ : List[str] = first_step.reshape((2, len(_snake_case )) ) snake_case__ : List[str] = '' for numbers_index in range(len(_snake_case ) ): snake_case__ : List[Any] = int(second_step[0, numbers_index] ) snake_case__ : Dict = int(second_step[1, numbers_index] ) snake_case__ : int = self.numbers_to_letter(_snake_case, _snake_case ) snake_case__ : List[Any] = decoded_message + letter return decoded_message
478
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices a_ :int = logging.get_logger(__name__) class snake_case__ ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = """maskformer-swin""" _SCREAMING_SNAKE_CASE = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : Optional[Any], _snake_case : Dict=2_2_4, _snake_case : Optional[Any]=4, _snake_case : Dict=3, _snake_case : int=9_6, _snake_case : int=[2, 2, 6, 2], _snake_case : int=[3, 6, 1_2, 2_4], _snake_case : Tuple=7, _snake_case : Tuple=4.0, _snake_case : int=True, _snake_case : Union[str, Any]=0.0, _snake_case : Tuple=0.0, _snake_case : Dict=0.1, _snake_case : Optional[int]="gelu", _snake_case : List[str]=False, _snake_case : Union[str, Any]=0.0_2, _snake_case : int=1e-5, _snake_case : Any=None, _snake_case : Tuple=None, **_snake_case : int, ) ->Optional[int]: super().__init__(**_snake_case ) snake_case__ : List[Any] = image_size snake_case__ : Tuple = patch_size snake_case__ : Tuple = num_channels snake_case__ : Union[str, Any] = embed_dim snake_case__ : Dict = depths snake_case__ : Optional[Any] = len(_snake_case ) snake_case__ : Optional[int] = num_heads snake_case__ : Union[str, Any] = window_size snake_case__ : Tuple = mlp_ratio snake_case__ : Tuple = qkv_bias snake_case__ : int = hidden_dropout_prob snake_case__ : int = attention_probs_dropout_prob snake_case__ : Optional[Any] = drop_path_rate snake_case__ : List[str] = hidden_act snake_case__ : Tuple = use_absolute_embeddings snake_case__ : Tuple = layer_norm_eps snake_case__ : Optional[int] = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model snake_case__ : int = int(embed_dim * 2 ** (len(_snake_case ) - 1) ) snake_case__ : int = ['stem'] + [F'''stage{idx}''' for idx in range(1, len(_snake_case ) + 1 )] snake_case__ , snake_case__ : int = get_aligned_output_features_output_indices( out_features=_snake_case, out_indices=_snake_case, stage_names=self.stage_names )
478
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _UpperCamelCase: List[str] ={ """configuration_bert""": ["""BERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BertConfig""", """BertOnnxConfig"""], """tokenization_bert""": ["""BasicTokenizer""", """BertTokenizer""", """WordpieceTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase: int =["""BertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase: str =[ """BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """BertForMaskedLM""", """BertForMultipleChoice""", """BertForNextSentencePrediction""", """BertForPreTraining""", """BertForQuestionAnswering""", """BertForSequenceClassification""", """BertForTokenClassification""", """BertLayer""", """BertLMHeadModel""", """BertModel""", """BertPreTrainedModel""", """load_tf_weights_in_bert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase: Tuple =[ """TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBertEmbeddings""", """TFBertForMaskedLM""", """TFBertForMultipleChoice""", """TFBertForNextSentencePrediction""", """TFBertForPreTraining""", """TFBertForQuestionAnswering""", """TFBertForSequenceClassification""", """TFBertForTokenClassification""", """TFBertLMHeadModel""", """TFBertMainLayer""", """TFBertModel""", """TFBertPreTrainedModel""", ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase: int =["""TFBertTokenizer"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase: Any =[ """FlaxBertForCausalLM""", """FlaxBertForMaskedLM""", """FlaxBertForMultipleChoice""", """FlaxBertForNextSentencePrediction""", """FlaxBertForPreTraining""", """FlaxBertForQuestionAnswering""", """FlaxBertForSequenceClassification""", """FlaxBertForTokenClassification""", """FlaxBertModel""", """FlaxBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys _UpperCamelCase: Optional[int] =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
721
def _a ( __SCREAMING_SNAKE_CASE : list ): """simple docstring""" if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): raise ValueError('Input series is not valid, valid series - [2, 4, 6]' ) if len(__SCREAMING_SNAKE_CASE ) == 0: raise ValueError('Input list must be a non empty list' ) if len(__SCREAMING_SNAKE_CASE ) == 1: return True _lowerCAmelCase = series[1] - series[0] for index in range(len(__SCREAMING_SNAKE_CASE ) - 1 ): if series[index + 1] - series[index] != common_diff: return False return True def _a ( __SCREAMING_SNAKE_CASE : list ): """simple docstring""" if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): raise ValueError('Input series is not valid, valid series - [2, 4, 6]' ) if len(__SCREAMING_SNAKE_CASE ) == 0: raise ValueError('Input list must be a non empty list' ) _lowerCAmelCase = 0 for val in series: answer += val return answer / len(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
585
0
'''simple docstring''' import doctest from collections import deque import numpy as np class __lowerCAmelCase : """simple docstring""" def __init__( self : Tuple ) -> None: '''simple docstring''' _UpperCamelCase = [2, 1, 2, -1] _UpperCamelCase = [1, 2, 3, 4] def snake_case__ ( self : Optional[int] ) -> list[float]: '''simple docstring''' _UpperCamelCase = len(self.first_signal ) _UpperCamelCase = len(self.second_signal ) _UpperCamelCase = max(lowerCAmelCase__ , lowerCAmelCase__ ) # create a zero matrix of max_length x max_length _UpperCamelCase = [[0] * max_length for i in range(lowerCAmelCase__ )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(lowerCAmelCase__ ): _UpperCamelCase = deque(self.second_signal ) rotated_signal.rotate(lowerCAmelCase__ ) for j, item in enumerate(lowerCAmelCase__ ): matrix[i][j] += item # multiply the matrix with the first signal _UpperCamelCase = np.matmul(np.transpose(lowerCAmelCase__ ) , np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(lowerCAmelCase__ , 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
98
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { '''RWKV/rwkv-4-169m-pile''': '''https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-430m-pile''': '''https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-1b5-pile''': '''https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json''', '''RWKV/rwkv-4-3b-pile''': '''https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-7b-pile''': '''https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-14b-pile''': '''https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json''', '''RWKV/rwkv-raven-1b5''': '''https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json''', '''RWKV/rwkv-raven-3b''': '''https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json''', '''RWKV/rwkv-raven-7b''': '''https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json''', '''RWKV/rwkv-raven-14b''': '''https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json''', } class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = "rwkv" SCREAMING_SNAKE_CASE : Any = {"max_position_embeddings": "context_length"} def __init__( self : Union[str, Any] , _UpperCamelCase : Any=5_0_2_7_7 , _UpperCamelCase : Optional[int]=1_0_2_4 , _UpperCamelCase : Optional[int]=4_0_9_6 , _UpperCamelCase : str=3_2 , _UpperCamelCase : Tuple=None , _UpperCamelCase : Dict=None , _UpperCamelCase : Optional[int]=1e-5 , _UpperCamelCase : Any=0 , _UpperCamelCase : Optional[Any]=0 , _UpperCamelCase : int=6 , _UpperCamelCase : Dict=False , _UpperCamelCase : Optional[int]=True , **_UpperCamelCase : int , ) ->List[str]: snake_case_ = vocab_size snake_case_ = context_length snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = attention_hidden_size if attention_hidden_size is not None else hidden_size snake_case_ = intermediate_size if intermediate_size is not None else 4 * hidden_size snake_case_ = layer_norm_epsilon snake_case_ = rescale_every snake_case_ = use_cache snake_case_ = bos_token_id snake_case_ = eos_token_id super().__init__( tie_word_embeddings=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase )
39
0
from math import pow, sqrt def _UpperCAmelCase (*UpperCamelCase_ : float ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = len(UpperCamelCase_ ) > 0 and all(value > 0.0 for value in values ) return result def _UpperCAmelCase (UpperCamelCase_ : float , UpperCamelCase_ : float ): '''simple docstring''' return ( round(sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(UpperCamelCase_ , UpperCamelCase_ ) else ValueError("""Input Error: Molar mass values must greater than 0.""" ) ) def _UpperCAmelCase (UpperCamelCase_ : float , UpperCamelCase_ : float , UpperCamelCase_ : float ): '''simple docstring''' return ( round(effusion_rate * sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) else ValueError( """Input Error: Molar mass and effusion rate values must greater than 0.""" ) ) def _UpperCAmelCase (UpperCamelCase_ : float , UpperCamelCase_ : float , UpperCamelCase_ : float ): '''simple docstring''' return ( round(effusion_rate / sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) else ValueError( """Input Error: Molar mass and effusion rate values must greater than 0.""" ) ) def _UpperCAmelCase (UpperCamelCase_ : float , UpperCamelCase_ : float , UpperCamelCase_ : float ): '''simple docstring''' return ( round(molar_mass / pow(effusion_rate_a / effusion_rate_a , 2 ) , 6 ) if validate(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) else ValueError( """Input Error: Molar mass and effusion rate values must greater than 0.""" ) ) def _UpperCAmelCase (UpperCamelCase_ : float , UpperCamelCase_ : float , UpperCamelCase_ : float ): '''simple docstring''' return ( round(pow(effusion_rate_a / effusion_rate_a , 2 ) / molar_mass , 6 ) if validate(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) else ValueError( """Input Error: Molar mass and effusion rate values must greater than 0.""" ) )
700
import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class __snake_case (_a ): lowerCAmelCase__ = (PNDMScheduler,) lowerCAmelCase__ = (("num_inference_steps", 5_0),) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , **_UpperCAmelCase : Optional[int] ) -> str: '''simple docstring''' _lowerCAmelCase : Optional[Any] = { """num_train_timesteps""": 1000, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", } config.update(**_UpperCAmelCase ) return config def SCREAMING_SNAKE_CASE ( self : Any , _UpperCAmelCase : Union[str, Any]=0 , **_UpperCAmelCase : str ) -> Any: '''simple docstring''' _lowerCAmelCase : Union[str, Any] = dict(self.forward_default_kwargs ) _lowerCAmelCase : str = kwargs.pop("""num_inference_steps""" , _UpperCAmelCase ) _lowerCAmelCase : Optional[Any] = self.dummy_sample _lowerCAmelCase : List[str] = 0.1 * sample _lowerCAmelCase : Tuple = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: _lowerCAmelCase : Any = self.get_scheduler_config(**_UpperCAmelCase ) _lowerCAmelCase : Optional[Any] = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residuals _lowerCAmelCase : Tuple = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_UpperCAmelCase ) _lowerCAmelCase : str = scheduler_class.from_pretrained(_UpperCAmelCase ) new_scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residuals _lowerCAmelCase : Any = dummy_past_residuals[:] _lowerCAmelCase : int = scheduler.step_prk(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample _lowerCAmelCase : List[str] = new_scheduler.step_prk(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" _lowerCAmelCase : Tuple = scheduler.step_plms(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample _lowerCAmelCase : Optional[int] = new_scheduler.step_plms(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> str: '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self : int , _UpperCAmelCase : Any=0 , **_UpperCAmelCase : Optional[int] ) -> Any: '''simple docstring''' _lowerCAmelCase : int = dict(self.forward_default_kwargs ) _lowerCAmelCase : Any = kwargs.pop("""num_inference_steps""" , _UpperCAmelCase ) _lowerCAmelCase : List[Any] = self.dummy_sample _lowerCAmelCase : Dict = 0.1 * sample _lowerCAmelCase : Dict = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: _lowerCAmelCase : Any = self.get_scheduler_config() _lowerCAmelCase : Optional[Any] = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residuals (must be after setting timesteps) _lowerCAmelCase : str = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_UpperCAmelCase ) _lowerCAmelCase : List[Any] = scheduler_class.from_pretrained(_UpperCAmelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residual (must be after setting timesteps) _lowerCAmelCase : Any = dummy_past_residuals[:] _lowerCAmelCase : Tuple = scheduler.step_prk(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample _lowerCAmelCase : str = new_scheduler.step_prk(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" _lowerCAmelCase : Any = scheduler.step_plms(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample _lowerCAmelCase : Any = new_scheduler.step_plms(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def SCREAMING_SNAKE_CASE ( self : Any , **_UpperCAmelCase : Dict ) -> List[str]: '''simple docstring''' _lowerCAmelCase : Tuple = self.scheduler_classes[0] _lowerCAmelCase : int = self.get_scheduler_config(**_UpperCAmelCase ) _lowerCAmelCase : List[str] = scheduler_class(**_UpperCAmelCase ) _lowerCAmelCase : List[Any] = 10 _lowerCAmelCase : Any = self.dummy_model() _lowerCAmelCase : Tuple = self.dummy_sample_deter scheduler.set_timesteps(_UpperCAmelCase ) for i, t in enumerate(scheduler.prk_timesteps ): _lowerCAmelCase : List[Any] = model(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase : Tuple = scheduler.step_prk(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): _lowerCAmelCase : List[Any] = model(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase : Dict = scheduler.step_plms(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).prev_sample return sample def SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: '''simple docstring''' _lowerCAmelCase : List[str] = dict(self.forward_default_kwargs ) _lowerCAmelCase : int = kwargs.pop("""num_inference_steps""" , _UpperCAmelCase ) for scheduler_class in self.scheduler_classes: _lowerCAmelCase : Tuple = self.get_scheduler_config() _lowerCAmelCase : Union[str, Any] = scheduler_class(**_UpperCAmelCase ) _lowerCAmelCase : str = self.dummy_sample _lowerCAmelCase : str = 0.1 * sample if num_inference_steps is not None and hasattr(_UpperCAmelCase , """set_timesteps""" ): scheduler.set_timesteps(_UpperCAmelCase ) elif num_inference_steps is not None and not hasattr(_UpperCAmelCase , """set_timesteps""" ): _lowerCAmelCase : Tuple = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) _lowerCAmelCase : List[Any] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] _lowerCAmelCase : List[str] = dummy_past_residuals[:] _lowerCAmelCase : Optional[int] = scheduler.step_prk(_UpperCAmelCase , 0 , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample _lowerCAmelCase : Optional[int] = scheduler.step_prk(_UpperCAmelCase , 1 , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) _lowerCAmelCase : Tuple = scheduler.step_plms(_UpperCAmelCase , 0 , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample _lowerCAmelCase : Optional[Any] = scheduler.step_plms(_UpperCAmelCase , 1 , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]: '''simple docstring''' for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' for steps_offset in [0, 1]: self.check_over_configs(steps_offset=_UpperCAmelCase ) _lowerCAmelCase : Dict = self.scheduler_classes[0] _lowerCAmelCase : Any = self.get_scheduler_config(steps_offset=1 ) _lowerCAmelCase : Any = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1] ) , ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[Any]: '''simple docstring''' for beta_start, beta_end in zip([0.0001, 0.001] , [0.002, 0.02] ): self.check_over_configs(beta_start=_UpperCAmelCase , beta_end=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> int: '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : str ) -> Union[str, Any]: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> List[str]: '''simple docstring''' for t in [1, 5, 10]: self.check_over_forward(time_step=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[Any]: '''simple docstring''' _lowerCAmelCase : Union[str, Any] = 27 for scheduler_class in self.scheduler_classes: _lowerCAmelCase : Optional[Any] = self.dummy_sample _lowerCAmelCase : Any = 0.1 * sample _lowerCAmelCase : List[str] = self.get_scheduler_config() _lowerCAmelCase : Any = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(_UpperCAmelCase ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): _lowerCAmelCase : List[Any] = scheduler.step_prk(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).prev_sample def SCREAMING_SNAKE_CASE ( self : Dict ) -> Union[str, Any]: '''simple docstring''' with self.assertRaises(_UpperCAmelCase ): _lowerCAmelCase : Tuple = self.scheduler_classes[0] _lowerCAmelCase : List[str] = self.get_scheduler_config() _lowerCAmelCase : Any = scheduler_class(**_UpperCAmelCase ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Any: '''simple docstring''' _lowerCAmelCase : Tuple = self.full_loop() _lowerCAmelCase : str = torch.sum(torch.abs(_UpperCAmelCase ) ) _lowerCAmelCase : List[Any] = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_sum.item() - 198.1318 ) < 1E-2 assert abs(result_mean.item() - 0.2580 ) < 1E-3 def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' _lowerCAmelCase : Optional[int] = self.full_loop(prediction_type="""v_prediction""" ) _lowerCAmelCase : Optional[int] = torch.sum(torch.abs(_UpperCAmelCase ) ) _lowerCAmelCase : Optional[int] = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_sum.item() - 67.3986 ) < 1E-2 assert abs(result_mean.item() - 0.0878 ) < 1E-3 def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' _lowerCAmelCase : str = self.full_loop(set_alpha_to_one=_UpperCAmelCase , beta_start=0.01 ) _lowerCAmelCase : Any = torch.sum(torch.abs(_UpperCAmelCase ) ) _lowerCAmelCase : Optional[Any] = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_sum.item() - 230.0399 ) < 1E-2 assert abs(result_mean.item() - 0.2995 ) < 1E-3 def SCREAMING_SNAKE_CASE ( self : str ) -> Union[str, Any]: '''simple docstring''' _lowerCAmelCase : int = self.full_loop(set_alpha_to_one=_UpperCAmelCase , beta_start=0.01 ) _lowerCAmelCase : List[Any] = torch.sum(torch.abs(_UpperCAmelCase ) ) _lowerCAmelCase : Tuple = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_sum.item() - 186.9482 ) < 1E-2 assert abs(result_mean.item() - 0.2434 ) < 1E-3
196
0
'''simple docstring''' lowerCAmelCase_ : List[str] = tuple[float, float, float] lowerCAmelCase_ : List[Any] = tuple[float, float, float] def __A ( UpperCAmelCase ,UpperCAmelCase ) -> Tuple: '''simple docstring''' _UpperCamelCase : str = end_pointa[0] - end_pointa[0] _UpperCamelCase : str = end_pointa[1] - end_pointa[1] _UpperCamelCase : Dict = end_pointa[2] - end_pointa[2] return (x, y, z) def __A ( UpperCAmelCase ,UpperCAmelCase ) -> int: '''simple docstring''' _UpperCamelCase : List[Any] = ab[1] * ac[2] - ab[2] * ac[1] # *i _UpperCamelCase : int = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j _UpperCamelCase : Dict = ab[0] * ac[1] - ab[1] * ac[0] # *k return (x, y, z) def __A ( UpperCAmelCase ,UpperCAmelCase ) -> Dict: '''simple docstring''' return tuple(round(UpperCAmelCase ,UpperCAmelCase ) for x in vector ) == (0, 0, 0) def __A ( UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase = 1_0 ) -> Dict: '''simple docstring''' _UpperCamelCase : Optional[Any] = create_vector(UpperCAmelCase ,UpperCAmelCase ) _UpperCamelCase : Optional[Any] = create_vector(UpperCAmelCase ,UpperCAmelCase ) return is_zero_vector(get_ad_vectors_cross(UpperCAmelCase ,UpperCAmelCase ) ,UpperCAmelCase )
435
'''simple docstring''' import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __magic_name__ : """simple docstring""" def __init__( self , lowerCamelCase , lowerCamelCase=13 , lowerCamelCase=30 , lowerCamelCase=2 , lowerCamelCase=3 , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=32 , lowerCamelCase=5 , lowerCamelCase=4 , lowerCamelCase=37 , lowerCamelCase="gelu" , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=10 , lowerCamelCase=0.02 , lowerCamelCase=3 , lowerCamelCase=0.6 , lowerCamelCase=None , ): '''simple docstring''' __A : Tuple = parent __A : Union[str, Any] = batch_size __A : List[Any] = image_size __A : Union[str, Any] = patch_size __A : List[Any] = num_channels __A : Optional[Any] = is_training __A : str = use_labels __A : Tuple = hidden_size __A : int = num_hidden_layers __A : Dict = num_attention_heads __A : List[Any] = intermediate_size __A : Tuple = hidden_act __A : Tuple = hidden_dropout_prob __A : str = attention_probs_dropout_prob __A : Optional[Any] = type_sequence_label_size __A : Union[str, Any] = initializer_range __A : Optional[Any] = mask_ratio __A : List[Any] = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) __A : Optional[int] = (image_size // patch_size) ** 2 __A : List[Any] = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def lowerCAmelCase__ ( self ): '''simple docstring''' __A : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __A : Tuple = None if self.use_labels: __A : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __A : Optional[int] = self.get_config() return config, pixel_values, labels def lowerCAmelCase__ ( self ): '''simple docstring''' return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCamelCase , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def lowerCAmelCase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __A : Optional[Any] = ViTMAEModel(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __A : List[Any] = model(lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __A : str = ViTMAEForPreTraining(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __A : Optional[Any] = model(lowerCamelCase ) __A : List[str] = (self.image_size // self.patch_size) ** 2 __A : List[Any] = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images __A : List[str] = 1 __A : str = ViTMAEForPreTraining(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __A : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __A : int = model(lowerCamelCase ) __A : Union[str, Any] = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def lowerCAmelCase__ ( self ): '''simple docstring''' __A : List[str] = self.prepare_config_and_inputs() __A ,__A ,__A : List[Any] = config_and_inputs __A : Tuple = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __magic_name__ ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () lowerCamelCase__ = {'feature-extraction': ViTMAEModel} if is_torch_available() else {} lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def lowerCAmelCase__ ( self ): '''simple docstring''' __A : Union[str, Any] = ViTMAEModelTester(self ) __A : Tuple = ConfigTester(self , config_class=lowerCamelCase , has_text_modality=lowerCamelCase , hidden_size=37 ) def lowerCAmelCase__ ( self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="ViTMAE does not use inputs_embeds" ) def lowerCAmelCase__ ( self ): '''simple docstring''' pass def lowerCAmelCase__ ( self ): '''simple docstring''' __A ,__A : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A : List[Any] = model_class(lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __A : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase , nn.Linear ) ) def lowerCAmelCase__ ( self ): '''simple docstring''' __A ,__A : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A : int = model_class(lowerCamelCase ) __A : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __A : Optional[Any] = [*signature.parameters.keys()] __A : Any = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCamelCase ) def lowerCAmelCase__ ( self ): '''simple docstring''' __A : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) def lowerCAmelCase__ ( self ): '''simple docstring''' __A : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowerCamelCase ) def lowerCAmelCase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' np.random.seed(2 ) __A : Tuple = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) __A : Optional[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) __A : Optional[Any] = torch.from_numpy(lowerCamelCase ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument __A : int = pt_noise super().check_pt_tf_models(lowerCamelCase , lowerCamelCase , lowerCamelCase ) def lowerCAmelCase__ ( self ): '''simple docstring''' __A ,__A : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A : int = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): __A : List[str] = model(**self._prepare_for_class(lowerCamelCase , lowerCamelCase ) ) __A : Tuple = outputs[0].cpu().numpy() __A : List[Any] = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCamelCase ) __A : List[Any] = model_class.from_pretrained(lowerCamelCase ) model.to(lowerCamelCase ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): __A : Optional[Any] = model(**self._prepare_for_class(lowerCamelCase , lowerCamelCase ) ) # Make sure we don't have nans __A : List[Any] = after_outputs[0].cpu().numpy() __A : List[str] = 0 __A : int = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowerCamelCase , 1E-5 ) @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def lowerCAmelCase__ ( self ): '''simple docstring''' pass @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def lowerCAmelCase__ ( self ): '''simple docstring''' pass @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def lowerCAmelCase__ ( self ): '''simple docstring''' pass @unittest.skip(reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load" ) def lowerCAmelCase__ ( self ): '''simple docstring''' pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def lowerCAmelCase__ ( self ): '''simple docstring''' pass @slow def lowerCAmelCase__ ( self ): '''simple docstring''' for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A : List[Any] = ViTMAEModel.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) def _lowercase (): '''simple docstring''' __A : Union[str, Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class __magic_name__ ( unittest.TestCase ): """simple docstring""" @cached_property def lowerCAmelCase__ ( self ): '''simple docstring''' return ViTImageProcessor.from_pretrained("facebook/vit-mae-base" ) if is_vision_available() else None @slow def lowerCAmelCase__ ( self ): '''simple docstring''' np.random.seed(2 ) __A : Dict = ViTMAEForPreTraining.from_pretrained("facebook/vit-mae-base" ).to(lowerCamelCase ) __A : str = self.default_image_processor __A : List[Any] = prepare_img() __A : Union[str, Any] = image_processor(images=lowerCamelCase , return_tensors="pt" ).to(lowerCamelCase ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) __A : Optional[Any] = ViTMAEConfig() __A : List[str] = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) __A : Any = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): __A : str = model(**lowerCamelCase , noise=torch.from_numpy(lowerCamelCase ).to(device=lowerCamelCase ) ) # verify the logits __A : Union[str, Any] = torch.Size((1, 196, 768) ) self.assertEqual(outputs.logits.shape , lowerCamelCase ) __A : int = torch.tensor( [[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(lowerCamelCase ) , atol=1E-4 ) )
111
0
from __future__ import annotations _A : List[str] = [] def lowerCamelCase__ ( __lowerCAmelCase : list[list[int]] , __lowerCAmelCase : int , __lowerCAmelCase : int ): """simple docstring""" for i in range(len(__lowerCAmelCase ) ): if board[row][i] == 1: return False for i in range(len(__lowerCAmelCase ) ): if board[i][column] == 1: return False for i, j in zip(range(__lowerCAmelCase , -1 , -1 ) , range(__lowerCAmelCase , -1 , -1 ) ): if board[i][j] == 1: return False for i, j in zip(range(__lowerCAmelCase , -1 , -1 ) , range(__lowerCAmelCase , len(__lowerCAmelCase ) ) ): if board[i][j] == 1: return False return True def lowerCamelCase__ ( __lowerCAmelCase : list[list[int]] , __lowerCAmelCase : int ): """simple docstring""" if row >= len(__lowerCAmelCase ): solution.append(__lowerCAmelCase ) printboard(__lowerCAmelCase ) print() return True for i in range(len(__lowerCAmelCase ) ): if is_safe(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): lowerCAmelCase_ = 1 solve(__lowerCAmelCase , row + 1 ) lowerCAmelCase_ = 0 return False def lowerCamelCase__ ( __lowerCAmelCase : list[list[int]] ): """simple docstring""" for i in range(len(__lowerCAmelCase ) ): for j in range(len(__lowerCAmelCase ) ): if board[i][j] == 1: print("Q" , end=" " ) else: print("." , end=" " ) print() # n=int(input("The no. of queens")) _A : Any = 8 _A : Tuple = [[0 for i in range(n)] for j in range(n)] solve(board, 0) print("The total no. of solutions are :", len(solution))
700
from collections.abc import Iterable from typing import Any class _lowerCAmelCase : def __init__( self , _UpperCamelCase = None ) -> str: lowerCAmelCase_ = value lowerCAmelCase_ = None # Added in order to delete a node easier lowerCAmelCase_ = None lowerCAmelCase_ = None def __repr__( self ) -> str: from pprint import pformat if self.left is None and self.right is None: return str(self.value ) return pformat({f"""{self.value}""": (self.left, self.right)} , indent=1 ) class _lowerCAmelCase : def __init__( self , _UpperCamelCase = None ) -> Union[str, Any]: lowerCAmelCase_ = root def __str__( self ) -> str: return str(self.root ) def __a ( self , _UpperCamelCase , _UpperCamelCase ) -> None: if new_children is not None: # reset its kids lowerCAmelCase_ = node.parent if node.parent is not None: # reset its parent if self.is_right(_UpperCamelCase ): # If it is the right children lowerCAmelCase_ = new_children else: lowerCAmelCase_ = new_children else: lowerCAmelCase_ = new_children def __a ( self , _UpperCamelCase ) -> bool: if node.parent and node.parent.right: return node == node.parent.right return False def __a ( self ) -> bool: return self.root is None def __a ( self , _UpperCamelCase ) -> None: lowerCAmelCase_ = Node(_UpperCamelCase ) # create a new Node if self.empty(): # if Tree is empty lowerCAmelCase_ = new_node # set its root else: # Tree is not empty lowerCAmelCase_ = self.root # from root if parent_node is None: return while True: # While we don't get to a leaf if value < parent_node.value: # We go left if parent_node.left is None: lowerCAmelCase_ = new_node # We insert the new node in a leaf break else: lowerCAmelCase_ = parent_node.left else: if parent_node.right is None: lowerCAmelCase_ = new_node break else: lowerCAmelCase_ = parent_node.right lowerCAmelCase_ = parent_node def __a ( self , *_UpperCamelCase ) -> None: for value in values: self.__insert(_UpperCamelCase ) def __a ( self , _UpperCamelCase ) -> Node | None: if self.empty(): raise IndexError("Warning: Tree is empty! please use another." ) else: lowerCAmelCase_ = self.root # use lazy evaluation here to avoid NoneType Attribute error while node is not None and node.value is not value: lowerCAmelCase_ = node.left if value < node.value else node.right return node def __a ( self , _UpperCamelCase = None ) -> Node | None: if node is None: if self.root is None: return None lowerCAmelCase_ = self.root if not self.empty(): while node.right is not None: lowerCAmelCase_ = node.right return node def __a ( self , _UpperCamelCase = None ) -> Node | None: if node is None: lowerCAmelCase_ = self.root if self.root is None: return None if not self.empty(): lowerCAmelCase_ = self.root while node.left is not None: lowerCAmelCase_ = node.left return node def __a ( self , _UpperCamelCase ) -> None: lowerCAmelCase_ = self.search(_UpperCamelCase ) # Look for the node with that label if node is not None: if node.left is None and node.right is None: # If it has no children self.__reassign_nodes(_UpperCamelCase , _UpperCamelCase ) elif node.left is None: # Has only right children self.__reassign_nodes(_UpperCamelCase , node.right ) elif node.right is None: # Has only left children self.__reassign_nodes(_UpperCamelCase , node.left ) else: lowerCAmelCase_ = self.get_max( node.left ) # Gets the max value of the left branch self.remove(tmp_node.value ) # type: ignore lowerCAmelCase_ = ( tmp_node.value # type: ignore ) # Assigns the value to the node to delete and keep tree structure def __a ( self , _UpperCamelCase ) -> Iterable: if node is not None: yield node # Preorder Traversal yield from self.preorder_traverse(node.left ) yield from self.preorder_traverse(node.right ) def __a ( self , _UpperCamelCase=None ) -> Any: if traversal_function is None: return self.preorder_traverse(self.root ) else: return traversal_function(self.root ) def __a ( self , _UpperCamelCase , _UpperCamelCase ) -> None: if node: self.inorder(_UpperCamelCase , node.left ) arr.append(node.value ) self.inorder(_UpperCamelCase , node.right ) def __a ( self , _UpperCamelCase , _UpperCamelCase ) -> int: lowerCAmelCase_ = [] self.inorder(_UpperCamelCase , _UpperCamelCase ) # append all values to list using inorder traversal return arr[k - 1] def lowerCamelCase__ ( __lowerCAmelCase : Node | None ): """simple docstring""" lowerCAmelCase_ = [] if curr_node is not None: lowerCAmelCase_ = postorder(curr_node.left ) + postorder(curr_node.right ) + [curr_node] return node_list def lowerCamelCase__ ( ): """simple docstring""" lowerCAmelCase_ = (8, 3, 6, 1, 10, 14, 13, 4, 7) lowerCAmelCase_ = BinarySearchTree() for i in testlist: t.insert(__lowerCAmelCase ) # Prints all the elements of the list in order traversal print(__lowerCAmelCase ) if t.search(6 ) is not None: print("The value 6 exists" ) else: print("The value 6 doesn't exist" ) if t.search(-1 ) is not None: print("The value -1 exists" ) else: print("The value -1 doesn't exist" ) if not t.empty(): print("Max Value: " , t.get_max().value ) # type: ignore print("Min Value: " , t.get_min().value ) # type: ignore for i in testlist: t.remove(__lowerCAmelCase ) print(__lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
279
0
'''simple docstring''' import argparse import glob import logging import os import sys import time from collections import defaultdict from pathlib import Path from typing import Dict, List, Tuple import numpy as np import pytorch_lightning as pl import torch from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback from torch import nn from torch.utils.data import DataLoader from transformers import MBartTokenizer, TaForConditionalGeneration from transformers.models.bart.modeling_bart import shift_tokens_right from utils import ( ROUGE_KEYS, LegacySeqaSeqDataset, SeqaSeqDataset, assert_all_frozen, calculate_bleu, calculate_rouge, check_output_dir, flatten_list, freeze_embeds, freeze_params, get_git_info, label_smoothed_nll_loss, lmap, pickle_save, save_git_info, save_json, use_task_specific_params, ) # need the parent dir module sys.path.insert(2, str(Path(__file__).resolve().parents[1])) from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa lowercase__ : Union[str, Any] = logging.getLogger(__name__) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" _snake_case : str = 'summarization' _snake_case : Union[str, Any] = ['loss'] _snake_case : Dict = ROUGE_KEYS _snake_case : List[Any] = 'rouge2' def __init__( self : Optional[int] , lowerCAmelCase__ : List[Any] , **lowerCAmelCase__ : int ) -> List[str]: '''simple docstring''' if hparams.sortish_sampler and hparams.gpus > 1: _UpperCamelCase = False elif hparams.max_tokens_per_batch is not None: if hparams.gpus > 1: raise NotImplementedError('''Dynamic Batch size does not work for multi-gpu training''' ) if hparams.sortish_sampler: raise ValueError('''--sortish_sampler and --max_tokens_per_batch may not be used simultaneously''' ) super().__init__(lowerCAmelCase__ , num_labels=lowerCAmelCase__ , mode=self.mode , **lowerCAmelCase__ ) use_task_specific_params(self.model , '''summarization''' ) save_git_info(self.hparams.output_dir ) _UpperCamelCase = Path(self.output_dir ) / '''metrics.json''' _UpperCamelCase = Path(self.output_dir ) / '''hparams.pkl''' pickle_save(self.hparams , self.hparams_save_path ) _UpperCamelCase = 0 _UpperCamelCase = defaultdict(lowerCAmelCase__ ) _UpperCamelCase = self.config.model_type _UpperCamelCase = self.config.tgt_vocab_size if self.model_type == '''fsmt''' else self.config.vocab_size _UpperCamelCase = { "data_dir": self.hparams.data_dir, "max_source_length": self.hparams.max_source_length, "prefix": self.model.config.prefix or "", } _UpperCamelCase = { '''train''': self.hparams.n_train, '''val''': self.hparams.n_val, '''test''': self.hparams.n_test, } _UpperCamelCase = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()} _UpperCamelCase = { '''train''': self.hparams.max_target_length, '''val''': self.hparams.val_max_target_length, '''test''': self.hparams.test_max_target_length, } assert self.target_lens["train"] <= self.target_lens["val"], f"""target_lens: {self.target_lens}""" assert self.target_lens["train"] <= self.target_lens["test"], f"""target_lens: {self.target_lens}""" if self.hparams.freeze_embeds: freeze_embeds(self.model ) if self.hparams.freeze_encoder: freeze_params(self.model.get_encoder() ) assert_all_frozen(self.model.get_encoder() ) _UpperCamelCase = get_git_info()['''repo_sha'''] _UpperCamelCase = hparams.num_workers _UpperCamelCase = None # default to config if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer , lowerCAmelCase__ ): _UpperCamelCase = self.tokenizer.lang_code_to_id[hparams.tgt_lang] _UpperCamelCase = self.decoder_start_token_id _UpperCamelCase = ( SeqaSeqDataset if hasattr(self.tokenizer , '''prepare_seq2seq_batch''' ) else LegacySeqaSeqDataset ) _UpperCamelCase = False _UpperCamelCase = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams if self.hparams.eval_max_gen_length is not None: _UpperCamelCase = self.hparams.eval_max_gen_length else: _UpperCamelCase = self.model.config.max_length _UpperCamelCase = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric def snake_case__ ( self : int , lowerCAmelCase__ : Dict[str, torch.Tensor] ) -> Dict[str, List[str]]: '''simple docstring''' _UpperCamelCase = { k: self.tokenizer.batch_decode(v.tolist() ) if '''mask''' not in k else v.shape for k, v in batch.items() } save_json(lowerCAmelCase__ , Path(self.output_dir ) / '''text_batch.json''' ) save_json({k: v.tolist() for k, v in batch.items()} , Path(self.output_dir ) / '''tok_batch.json''' ) _UpperCamelCase = True return readable_batch def snake_case__ ( self : Optional[Any] , lowerCAmelCase__ : Tuple , **lowerCAmelCase__ : List[str] ) -> str: '''simple docstring''' return self.model(lowerCAmelCase__ , **lowerCAmelCase__ ) def snake_case__ ( self : Dict , lowerCAmelCase__ : List[int] ) -> int: '''simple docstring''' _UpperCamelCase = self.tokenizer.batch_decode( lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ , clean_up_tokenization_spaces=lowerCAmelCase__ ) return lmap(str.strip , lowerCAmelCase__ ) def snake_case__ ( self : Any , lowerCAmelCase__ : dict ) -> Tuple: '''simple docstring''' _UpperCamelCase = self.tokenizer.pad_token_id _UpperCamelCase , _UpperCamelCase = batch['''input_ids'''], batch['''attention_mask'''] _UpperCamelCase = batch['''labels'''] if isinstance(self.model , lowerCAmelCase__ ): _UpperCamelCase = self.model._shift_right(lowerCAmelCase__ ) else: _UpperCamelCase = shift_tokens_right(lowerCAmelCase__ , lowerCAmelCase__ ) if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero _UpperCamelCase = decoder_input_ids self.save_readable_batch(lowerCAmelCase__ ) _UpperCamelCase = self(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , decoder_input_ids=lowerCAmelCase__ , use_cache=lowerCAmelCase__ ) _UpperCamelCase = outputs['''logits'''] if self.hparams.label_smoothing == 0: # Same behavior as modeling_bart.py, besides ignoring pad_token_id _UpperCamelCase = nn.CrossEntropyLoss(ignore_index=lowerCAmelCase__ ) assert lm_logits.shape[-1] == self.vocab_size _UpperCamelCase = ce_loss_fct(lm_logits.view(-1 , lm_logits.shape[-1] ) , tgt_ids.view(-1 ) ) else: _UpperCamelCase = nn.functional.log_softmax(lowerCAmelCase__ , dim=-1 ) _UpperCamelCase , _UpperCamelCase = label_smoothed_nll_loss( lowerCAmelCase__ , lowerCAmelCase__ , self.hparams.label_smoothing , ignore_index=lowerCAmelCase__ ) return (loss,) @property def snake_case__ ( self : Optional[int] ) -> int: '''simple docstring''' return self.tokenizer.pad_token_id def snake_case__ ( self : Dict , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[Any] ) -> Dict: '''simple docstring''' _UpperCamelCase = self._step(lowerCAmelCase__ ) _UpperCamelCase = dict(zip(self.loss_names , lowerCAmelCase__ ) ) # tokens per batch _UpperCamelCase = batch['''input_ids'''].ne(self.pad ).sum() + batch['''labels'''].ne(self.pad ).sum() _UpperCamelCase = batch['''input_ids'''].shape[0] _UpperCamelCase = batch['''input_ids'''].eq(self.pad ).sum() _UpperCamelCase = batch['''input_ids'''].eq(self.pad ).float().mean() # TODO(SS): make a wandb summary metric for this return {"loss": loss_tensors[0], "log": logs} def snake_case__ ( self : Dict , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[Any] ) -> Dict: '''simple docstring''' return self._generative_step(lowerCAmelCase__ ) def snake_case__ ( self : Optional[int] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Any="val" ) -> Dict: '''simple docstring''' self.step_count += 1 _UpperCamelCase = {k: torch.stack([x[k] for x in outputs] ).mean() for k in self.loss_names} _UpperCamelCase = losses['''loss'''] _UpperCamelCase = { k: np.array([x[k] for x in outputs] ).mean() for k in self.metric_names + ['''gen_time''', '''gen_len'''] } _UpperCamelCase = ( generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric] ) _UpperCamelCase = torch.tensor(lowerCAmelCase__ ).type_as(lowerCAmelCase__ ) generative_metrics.update({k: v.item() for k, v in losses.items()} ) losses.update(lowerCAmelCase__ ) _UpperCamelCase = {f"""{prefix}_avg_{k}""": x for k, x in losses.items()} _UpperCamelCase = self.step_count self.metrics[prefix].append(lowerCAmelCase__ ) # callback writes this to self.metrics_save_path _UpperCamelCase = flatten_list([x['''preds'''] for x in outputs] ) return { "log": all_metrics, "preds": preds, f"""{prefix}_loss""": loss, f"""{prefix}_{self.val_metric}""": metric_tensor, } def snake_case__ ( self : List[str] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Any ) -> Dict: '''simple docstring''' return calculate_rouge(lowerCAmelCase__ , lowerCAmelCase__ ) def snake_case__ ( self : List[str] , lowerCAmelCase__ : dict ) -> dict: '''simple docstring''' _UpperCamelCase = time.time() # parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens') _UpperCamelCase = self.model.generate( batch['''input_ids'''] , attention_mask=batch['''attention_mask'''] , use_cache=lowerCAmelCase__ , decoder_start_token_id=self.decoder_start_token_id , num_beams=self.eval_beams , max_length=self.eval_max_length , ) _UpperCamelCase = (time.time() - ta) / batch['''input_ids'''].shape[0] _UpperCamelCase = self.ids_to_clean_text(lowerCAmelCase__ ) _UpperCamelCase = self.ids_to_clean_text(batch['''labels'''] ) _UpperCamelCase = self._step(lowerCAmelCase__ ) _UpperCamelCase = dict(zip(self.loss_names , lowerCAmelCase__ ) ) _UpperCamelCase = self.calc_generative_metrics(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase = np.mean(lmap(lowerCAmelCase__ , lowerCAmelCase__ ) ) base_metrics.update(gen_time=lowerCAmelCase__ , gen_len=lowerCAmelCase__ , preds=lowerCAmelCase__ , target=lowerCAmelCase__ , **lowerCAmelCase__ ) return base_metrics def snake_case__ ( self : Any , lowerCAmelCase__ : Dict , lowerCAmelCase__ : int ) -> Optional[int]: '''simple docstring''' return self._generative_step(lowerCAmelCase__ ) def snake_case__ ( self : List[Any] , lowerCAmelCase__ : Tuple ) -> List[str]: '''simple docstring''' return self.validation_epoch_end(lowerCAmelCase__ , prefix='''test''' ) def snake_case__ ( self : Optional[int] , lowerCAmelCase__ : str ) -> SeqaSeqDataset: '''simple docstring''' _UpperCamelCase = self.n_obs[type_path] _UpperCamelCase = self.target_lens[type_path] _UpperCamelCase = self.dataset_class( self.tokenizer , type_path=lowerCAmelCase__ , n_obs=lowerCAmelCase__ , max_target_length=lowerCAmelCase__ , **self.dataset_kwargs , ) return dataset def snake_case__ ( self : Tuple , lowerCAmelCase__ : str , lowerCAmelCase__ : int , lowerCAmelCase__ : bool = False ) -> DataLoader: '''simple docstring''' _UpperCamelCase = self.get_dataset(lowerCAmelCase__ ) if self.hparams.sortish_sampler and type_path != "test" and type_path != "val": _UpperCamelCase = dataset.make_sortish_sampler(lowerCAmelCase__ , distributed=self.hparams.gpus > 1 ) return DataLoader( lowerCAmelCase__ , batch_size=lowerCAmelCase__ , collate_fn=dataset.collate_fn , shuffle=lowerCAmelCase__ , num_workers=self.num_workers , sampler=lowerCAmelCase__ , ) elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val": _UpperCamelCase = dataset.make_dynamic_sampler( self.hparams.max_tokens_per_batch , distributed=self.hparams.gpus > 1 ) return DataLoader( lowerCAmelCase__ , batch_sampler=lowerCAmelCase__ , collate_fn=dataset.collate_fn , num_workers=self.num_workers , ) else: return DataLoader( lowerCAmelCase__ , batch_size=lowerCAmelCase__ , collate_fn=dataset.collate_fn , shuffle=lowerCAmelCase__ , num_workers=self.num_workers , sampler=lowerCAmelCase__ , ) def snake_case__ ( self : Optional[Any] ) -> DataLoader: '''simple docstring''' _UpperCamelCase = self.get_dataloader('''train''' , batch_size=self.hparams.train_batch_size , shuffle=lowerCAmelCase__ ) return dataloader def snake_case__ ( self : int ) -> DataLoader: '''simple docstring''' return self.get_dataloader('''val''' , batch_size=self.hparams.eval_batch_size ) def snake_case__ ( self : Tuple ) -> DataLoader: '''simple docstring''' return self.get_dataloader('''test''' , batch_size=self.hparams.eval_batch_size ) @staticmethod def snake_case__ ( lowerCAmelCase__ : Any , lowerCAmelCase__ : str ) -> int: '''simple docstring''' BaseTransformer.add_model_specific_args(lowerCAmelCase__ , lowerCAmelCase__ ) add_generic_args(lowerCAmelCase__ , lowerCAmelCase__ ) parser.add_argument( '''--max_source_length''' , default=1024 , type=lowerCAmelCase__ , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--max_target_length''' , default=56 , type=lowerCAmelCase__ , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--val_max_target_length''' , default=142 , type=lowerCAmelCase__ , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--test_max_target_length''' , default=142 , type=lowerCAmelCase__ , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument('''--freeze_encoder''' , action='''store_true''' ) parser.add_argument('''--freeze_embeds''' , action='''store_true''' ) parser.add_argument('''--sortish_sampler''' , action='''store_true''' , default=lowerCAmelCase__ ) parser.add_argument('''--overwrite_output_dir''' , action='''store_true''' , default=lowerCAmelCase__ ) parser.add_argument('''--max_tokens_per_batch''' , type=lowerCAmelCase__ , default=lowerCAmelCase__ ) parser.add_argument('''--logger_name''' , type=lowerCAmelCase__ , choices=['''default''', '''wandb''', '''wandb_shared'''] , default='''default''' ) parser.add_argument('''--n_train''' , type=lowerCAmelCase__ , default=-1 , required=lowerCAmelCase__ , help='''# examples. -1 means use all.''' ) parser.add_argument('''--n_val''' , type=lowerCAmelCase__ , default=500 , required=lowerCAmelCase__ , help='''# examples. -1 means use all.''' ) parser.add_argument('''--n_test''' , type=lowerCAmelCase__ , default=-1 , required=lowerCAmelCase__ , help='''# examples. -1 means use all.''' ) parser.add_argument( '''--task''' , type=lowerCAmelCase__ , default='''summarization''' , required=lowerCAmelCase__ , help='''# examples. -1 means use all.''' ) parser.add_argument('''--label_smoothing''' , type=lowerCAmelCase__ , default=0.0 , required=lowerCAmelCase__ ) parser.add_argument('''--src_lang''' , type=lowerCAmelCase__ , default='''''' , required=lowerCAmelCase__ ) parser.add_argument('''--tgt_lang''' , type=lowerCAmelCase__ , default='''''' , required=lowerCAmelCase__ ) parser.add_argument('''--eval_beams''' , type=lowerCAmelCase__ , default=lowerCAmelCase__ , required=lowerCAmelCase__ ) parser.add_argument( '''--val_metric''' , type=lowerCAmelCase__ , default=lowerCAmelCase__ , required=lowerCAmelCase__ , choices=['''bleu''', '''rouge2''', '''loss''', None] ) parser.add_argument('''--eval_max_gen_length''' , type=lowerCAmelCase__ , default=lowerCAmelCase__ , help='''never generate more than n tokens''' ) parser.add_argument('''--save_top_k''' , type=lowerCAmelCase__ , default=1 , required=lowerCAmelCase__ , help='''How many checkpoints to save''' ) parser.add_argument( '''--early_stopping_patience''' , type=lowerCAmelCase__ , default=-1 , required=lowerCAmelCase__ , help=( '''-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So''' ''' val_check_interval will effect it.''' ) , ) return parser class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" _snake_case : str = 'translation' _snake_case : Optional[Any] = ['loss'] _snake_case : List[Any] = ['bleu'] _snake_case : Dict = 'bleu' def __init__( self : Optional[Any] , lowerCAmelCase__ : Dict , **lowerCAmelCase__ : List[Any] ) -> Optional[Any]: '''simple docstring''' super().__init__(lowerCAmelCase__ , **lowerCAmelCase__ ) _UpperCamelCase = hparams.src_lang _UpperCamelCase = hparams.tgt_lang def snake_case__ ( self : Any , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[Any] ) -> dict: '''simple docstring''' return calculate_bleu(lowerCAmelCase__ , lowerCAmelCase__ ) def a__ ( lowercase : Tuple, lowercase : List[Any]=None ) -> SummarizationModule: """simple docstring""" Path(args.output_dir ).mkdir(exist_ok=lowercase ) check_output_dir(lowercase, expected_items=3 ) if model is None: if "summarization" in args.task: _UpperCamelCase = SummarizationModule(lowercase ) else: _UpperCamelCase = TranslationModule(lowercase ) _UpperCamelCase = Path(args.data_dir ).name if ( args.logger_name == "default" or args.fast_dev_run or str(args.output_dir ).startswith('''/tmp''' ) or str(args.output_dir ).startswith('''/var''' ) ): _UpperCamelCase = True # don't pollute wandb logs unnecessarily elif args.logger_name == "wandb": from pytorch_lightning.loggers import WandbLogger _UpperCamelCase = os.environ.get('''WANDB_PROJECT''', lowercase ) _UpperCamelCase = WandbLogger(name=model.output_dir.name, project=lowercase ) elif args.logger_name == "wandb_shared": from pytorch_lightning.loggers import WandbLogger _UpperCamelCase = WandbLogger(name=model.output_dir.name, project=F"""hf_{dataset}""" ) if args.early_stopping_patience >= 0: _UpperCamelCase = get_early_stopping_callback(model.val_metric, args.early_stopping_patience ) else: _UpperCamelCase = False _UpperCamelCase = args.val_metric == '''loss''' _UpperCamelCase = generic_train( lowercase, lowercase, logging_callback=SeqaSeqLoggingCallback(), checkpoint_callback=get_checkpoint_callback( args.output_dir, model.val_metric, args.save_top_k, lowercase ), early_stopping_callback=lowercase, logger=lowercase, ) pickle_save(model.hparams, model.output_dir / '''hparams.pkl''' ) if not args.do_predict: return model _UpperCamelCase = '''''' _UpperCamelCase = sorted(glob.glob(os.path.join(args.output_dir, '''*.ckpt''' ), recursive=lowercase ) ) if checkpoints: _UpperCamelCase = checkpoints[-1] _UpperCamelCase = checkpoints[-1] trainer.logger.log_hyperparams(model.hparams ) # test() without a model tests using the best checkpoint automatically trainer.test() return model if __name__ == "__main__": lowercase__ : int = argparse.ArgumentParser() lowercase__ : Any = pl.Trainer.add_argparse_args(parser) lowercase__ : int = SummarizationModule.add_model_specific_args(parser, os.getcwd()) lowercase__ : int = parser.parse_args() main(args)
98
"""simple docstring""" import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() A_ = logging.get_logger(__name__) A_ = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } A_ = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def _UpperCamelCase ( A , A , A , A , A ): for attribute in key.split("." ): UpperCamelCase_ =getattr(A , A ) if weight_type is not None: UpperCamelCase_ =getattr(A , A ).shape else: UpperCamelCase_ =hf_pointer.shape assert hf_shape == value.shape, ( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": UpperCamelCase_ =value elif weight_type == "weight_g": UpperCamelCase_ =value elif weight_type == "weight_v": UpperCamelCase_ =value elif weight_type == "bias": UpperCamelCase_ =value else: UpperCamelCase_ =value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def _UpperCamelCase ( A , A ): UpperCamelCase_ =[] UpperCamelCase_ =fairseq_model.state_dict() UpperCamelCase_ =hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight UpperCamelCase_ =None for name, value in fairseq_dict.items(): UpperCamelCase_ =False if "conv_layers" in name: load_conv_layer( A , A , A , A , hf_model.config.feat_extract_norm == "group" , ) UpperCamelCase_ =True elif name.split("." )[0] == "proj": UpperCamelCase_ =fairseq_model.proj UpperCamelCase_ =True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: UpperCamelCase_ =True if "*" in mapped_key: UpperCamelCase_ =name.split(A )[0].split("." )[-2] UpperCamelCase_ =mapped_key.replace("*" , A ) if "weight_g" in name: UpperCamelCase_ ="weight_g" elif "weight_v" in name: UpperCamelCase_ ="weight_v" elif "bias" in name: UpperCamelCase_ ="bias" elif "weight" in name: UpperCamelCase_ ="weight" else: UpperCamelCase_ =None set_recursively(A , A , A , A , A ) continue if not is_used: unused_weights.append(A ) logger.warning(f"""Unused weights: {unused_weights}""" ) return proj_weight def _UpperCamelCase ( A , A , A , A , A ): UpperCamelCase_ =full_name.split("conv_layers." )[-1] UpperCamelCase_ =name.split("." ) UpperCamelCase_ =int(items[0] ) UpperCamelCase_ =int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) UpperCamelCase_ =value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) UpperCamelCase_ =value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) UpperCamelCase_ =value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) UpperCamelCase_ =value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(A ) def _UpperCamelCase ( A ): UpperCamelCase_ , UpperCamelCase_ =emb.weight.shape UpperCamelCase_ =nn.Linear(A , A , bias=A ) UpperCamelCase_ =emb.weight.data return lin_layer def _UpperCamelCase ( A ): with open(A , "r" , encoding="utf-8" ) as f: UpperCamelCase_ =f.readlines() UpperCamelCase_ =[line.split(" " )[0] for line in lines] UpperCamelCase_ =len(A ) UpperCamelCase_ ={ "<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3, } vocab_dict.update(dict(zip(A , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def _UpperCamelCase ( A , A , A , A , A , A , A , ): UpperCamelCase_ =WavaVecaConfig.from_pretrained(A ) UpperCamelCase_ =SpeechaTextaConfig.from_pretrained( A , vocab_size=A , decoder_layers=A , do_stable_layer_norm=A ) UpperCamelCase_ =WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=A , return_attention_mask=A , ) UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ =fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) UpperCamelCase_ =model[0].eval() # set weights for wav2vec2 encoder UpperCamelCase_ =WavaVecaModel(A ) UpperCamelCase_ =recursively_load_weights_wavaveca(model.encoder , A ) UpperCamelCase_ =SpeechaTextaForCausalLM(A ) UpperCamelCase_ , UpperCamelCase_ =hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=A ) # set output linear layer unexpected_keys.remove("embed_out" ) UpperCamelCase_ =nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(f"""The following keys are missing when loading the decoder weights: {missing_keys}""" ) logger.warning(f"""The following keys are unexpected when loading the decoder weights: {unexpected_keys}""" ) UpperCamelCase_ =SpeechEncoderDecoderModel(encoder=A , decoder=A ) UpperCamelCase_ =False # add projection layer UpperCamelCase_ =nn.Parameter(projection_layer.weight ) UpperCamelCase_ =nn.Parameter(projection_layer.bias ) UpperCamelCase_ =create_vocab_dict(A ) with open(os.path.join(A , "vocab.json" ) , "w" ) as fp: json.dump(A , A ) UpperCamelCase_ =SpeechaTextaTokenizer(os.path.join(A , "vocab.json" ) ) tokenizer.save_pretrained(A ) UpperCamelCase_ =hf_wavavec.config.to_dict() UpperCamelCase_ =tokenizer.pad_token_id UpperCamelCase_ =tokenizer.bos_token_id UpperCamelCase_ =tokenizer.eos_token_id UpperCamelCase_ ="speech_to_text_2" UpperCamelCase_ ="wav2vec2" UpperCamelCase_ =SpeechEncoderDecoderConfig.from_dict(A ) hf_wavavec.save_pretrained(A ) feature_extractor.save_pretrained(A ) if __name__ == "__main__": A_ = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument( "--encoder_config_path", default="facebook/wav2vec2-large-lv60", type=str, help="Path to hf encoder wav2vec2 checkpoint config", ) parser.add_argument( "--decoder_config_path", default="facebook/s2t-small-mustc-en-fr-st", type=str, help="Path to hf decoder s2t checkpoint config", ) parser.add_argument("--vocab_size", default=10224, type=int, help="Vocab size of decoder") parser.add_argument("--num_decoder_layers", default=7, type=int, help="Number of decoder layers") A_ = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
391
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { 'kssteven/ibert-roberta-base': 'https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json', 'kssteven/ibert-roberta-large': 'https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json', 'kssteven/ibert-roberta-large-mnli': ( 'https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json' ), } class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): """simple docstring""" _a : int = '''ibert''' def __init__( self , lowerCamelCase__=3_0522 , lowerCamelCase__=768 , lowerCamelCase__=12 , lowerCamelCase__=12 , lowerCamelCase__=3072 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=512 , lowerCamelCase__=2 , lowerCamelCase__=0.02 , lowerCamelCase__=1E-12 , lowerCamelCase__=1 , lowerCamelCase__=0 , lowerCamelCase__=2 , lowerCamelCase__="absolute" , lowerCamelCase__=False , lowerCamelCase__="none" , **lowerCamelCase__ , ) -> int: super().__init__(pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case ) lowercase__ : Tuple = vocab_size lowercase__ : List[str] = hidden_size lowercase__ : Optional[int] = num_hidden_layers lowercase__ : int = num_attention_heads lowercase__ : Tuple = hidden_act lowercase__ : Optional[Any] = intermediate_size lowercase__ : Optional[int] = hidden_dropout_prob lowercase__ : Any = attention_probs_dropout_prob lowercase__ : int = max_position_embeddings lowercase__ : Any = type_vocab_size lowercase__ : int = initializer_range lowercase__ : Optional[Any] = layer_norm_eps lowercase__ : Union[str, Any] = position_embedding_type lowercase__ : List[Any] = quant_mode lowercase__ : Union[str, Any] = force_dequant class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): """simple docstring""" @property def UpperCAmelCase__( self ) -> Union[str, Any]: if self.task == "multiple-choice": lowercase__ : List[Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowercase__ : Tuple = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
705
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class _SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): """simple docstring""" _a : Tuple = '''philschmid/bart-large-cnn-samsum''' _a : Optional[Any] = ( '''This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, ''' '''and returns a summary of the text.''' ) _a : Union[str, Any] = '''summarizer''' _a : List[Any] = AutoTokenizer _a : Optional[Any] = AutoModelForSeqaSeqLM _a : Any = ['''text'''] _a : List[str] = ['''text'''] def UpperCAmelCase__( self , lowerCamelCase__ ) -> List[str]: return self.pre_processor(lowerCamelCase__ , return_tensors="""pt""" , truncation=lowerCamelCase__ ) def UpperCAmelCase__( self , lowerCamelCase__ ) -> Dict: return self.model.generate(**lowerCamelCase__ )[0] def UpperCAmelCase__( self , lowerCamelCase__ ) -> int: return self.pre_processor.decode(lowerCamelCase__ , skip_special_tokens=lowerCamelCase__ , clean_up_tokenization_spaces=lowerCamelCase__ )
128
0
import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset __A = "bert-base-cased" __A = "google/pegasus-xsum" __A = [" Sam ate lunch today.", "Sams lunch ingredients."] __A = ["A very interesting story about what I ate for lunch.", "Avocado, celery, turkey, coffee"] __A = "patrickvonplaten/t5-tiny-random" __A = "sshleifer/bart-tiny-random" __A = "sshleifer/tiny-mbart" __A = "sshleifer/tiny-marian-en-de" def lowercase__ ( A_: Path , A_: list ) -> Optional[int]: """simple docstring""" __UpperCAmelCase ="""\n""".join(A_ ) Path(A_ ).open("""w""" ).writelines(A_ ) def lowercase__ ( A_: Dict ) -> Tuple: """simple docstring""" for split in ["train", "val", "test"]: _dump_articles(os.path.join(A_ , F'''{split}.source''' ) , A_ ) _dump_articles(os.path.join(A_ , F'''{split}.target''' ) , A_ ) return tmp_dir class _A ( UpperCamelCase ): """simple docstring""" @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) @slow def _a ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : int ) -> List[str]: __UpperCAmelCase =AutoTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) __UpperCAmelCase =max(len(tokenizer.encode(__SCREAMING_SNAKE_CASE ) ) for a in ARTICLES ) __UpperCAmelCase =max(len(tokenizer.encode(__SCREAMING_SNAKE_CASE ) ) for a in SUMMARIES ) __UpperCAmelCase =4 __UpperCAmelCase =8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated __UpperCAmelCase , __UpperCAmelCase ="""ro_RO""", """de_DE""" # ignored for all but mbart, but never causes error. __UpperCAmelCase =SeqaSeqDataset( __SCREAMING_SNAKE_CASE , data_dir=__SCREAMING_SNAKE_CASE , type_path="""train""" , max_source_length=__SCREAMING_SNAKE_CASE , max_target_length=__SCREAMING_SNAKE_CASE , src_lang=__SCREAMING_SNAKE_CASE , tgt_lang=__SCREAMING_SNAKE_CASE , ) __UpperCAmelCase =DataLoader(__SCREAMING_SNAKE_CASE , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place __UpperCAmelCase =shift_tokens_right(batch["""labels"""] , tokenizer.pad_token_id ) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED] ) def _a ( self : Dict , __SCREAMING_SNAKE_CASE : List[Any] ) -> Any: __UpperCAmelCase =AutoTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) __UpperCAmelCase =max(len(tokenizer.encode(__SCREAMING_SNAKE_CASE ) ) for a in ARTICLES ) __UpperCAmelCase =max(len(tokenizer.encode(__SCREAMING_SNAKE_CASE ) ) for a in SUMMARIES ) __UpperCAmelCase =4 __UpperCAmelCase =LegacySeqaSeqDataset( __SCREAMING_SNAKE_CASE , data_dir=__SCREAMING_SNAKE_CASE , type_path="""train""" , max_source_length=20 , max_target_length=__SCREAMING_SNAKE_CASE , ) __UpperCAmelCase =DataLoader(__SCREAMING_SNAKE_CASE , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 20 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def _a ( self : int ) -> str: __UpperCAmelCase =AutoTokenizer.from_pretrained("""facebook/mbart-large-cc25""" ) __UpperCAmelCase =Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) __UpperCAmelCase =tmp_dir.joinpath("""train.source""" ).open().readlines() __UpperCAmelCase =Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) pack_data_dir(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , 128 , __SCREAMING_SNAKE_CASE ) __UpperCAmelCase ={x.name for x in tmp_dir.iterdir()} __UpperCAmelCase ={x.name for x in save_dir.iterdir()} __UpperCAmelCase =save_dir.joinpath("""train.source""" ).open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(__SCREAMING_SNAKE_CASE ) < len(__SCREAMING_SNAKE_CASE ) assert len(__SCREAMING_SNAKE_CASE ) == 1 assert len(packed_examples[0] ) == sum(len(__SCREAMING_SNAKE_CASE ) for x in orig_examples ) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason="""This test requires fairseq""" ) def _a ( self : str ) -> str: if not FAIRSEQ_AVAILABLE: return __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase =self._get_dataset(max_len=64 ) __UpperCAmelCase =64 __UpperCAmelCase =ds.make_dynamic_sampler(__SCREAMING_SNAKE_CASE , required_batch_size_multiple=__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =[len(__SCREAMING_SNAKE_CASE ) for x in batch_sampler] assert len(set(__SCREAMING_SNAKE_CASE ) ) > 1 # it's not dynamic batch size if every batch is the same length assert sum(__SCREAMING_SNAKE_CASE ) == len(__SCREAMING_SNAKE_CASE ) # no dropped or added examples __UpperCAmelCase =DataLoader(__SCREAMING_SNAKE_CASE , batch_sampler=__SCREAMING_SNAKE_CASE , collate_fn=ds.collate_fn , num_workers=2 ) __UpperCAmelCase =[] __UpperCAmelCase =[] for batch in data_loader: __UpperCAmelCase =batch["""input_ids"""].shape __UpperCAmelCase =src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple __UpperCAmelCase =np.product(batch["""input_ids"""].shape ) num_src_per_batch.append(__SCREAMING_SNAKE_CASE ) if num_src_tokens > (max_tokens * 1.1): failures.append(__SCREAMING_SNAKE_CASE ) assert num_src_per_batch[0] == max(__SCREAMING_SNAKE_CASE ) if failures: raise AssertionError(f'''too many tokens in {len(__SCREAMING_SNAKE_CASE )} batches''' ) def _a ( self : List[Any] ) -> int: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase =self._get_dataset(max_len=512 ) __UpperCAmelCase =2 __UpperCAmelCase =ds.make_sortish_sampler(__SCREAMING_SNAKE_CASE , shuffle=__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =DataLoader(__SCREAMING_SNAKE_CASE , batch_size=__SCREAMING_SNAKE_CASE , collate_fn=ds.collate_fn , num_workers=2 ) __UpperCAmelCase =DataLoader(__SCREAMING_SNAKE_CASE , batch_size=__SCREAMING_SNAKE_CASE , collate_fn=ds.collate_fn , num_workers=2 , sampler=__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =tokenizer.pad_token_id def count_pad_tokens(__SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : List[Any]="input_ids" ): return [batch[k].eq(__SCREAMING_SNAKE_CASE ).sum().item() for batch in data_loader] assert sum(count_pad_tokens(__SCREAMING_SNAKE_CASE , k="""labels""" ) ) < sum(count_pad_tokens(__SCREAMING_SNAKE_CASE , k="""labels""" ) ) assert sum(count_pad_tokens(__SCREAMING_SNAKE_CASE ) ) < sum(count_pad_tokens(__SCREAMING_SNAKE_CASE ) ) assert len(__SCREAMING_SNAKE_CASE ) == len(__SCREAMING_SNAKE_CASE ) def _a ( self : Any , __SCREAMING_SNAKE_CASE : Any=1000 , __SCREAMING_SNAKE_CASE : int=128 ) -> List[str]: if os.getenv("""USE_REAL_DATA""" , __SCREAMING_SNAKE_CASE ): __UpperCAmelCase ="""examples/seq2seq/wmt_en_ro""" __UpperCAmelCase =max_len * 2 * 64 if not Path(__SCREAMING_SNAKE_CASE ).joinpath("""train.len""" ).exists(): save_len_file(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else: __UpperCAmelCase ="""examples/seq2seq/test_data/wmt_en_ro""" __UpperCAmelCase =max_len * 4 save_len_file(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __UpperCAmelCase =AutoTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =SeqaSeqDataset( __SCREAMING_SNAKE_CASE , data_dir=__SCREAMING_SNAKE_CASE , type_path="""train""" , max_source_length=__SCREAMING_SNAKE_CASE , max_target_length=__SCREAMING_SNAKE_CASE , n_obs=__SCREAMING_SNAKE_CASE , ) return ds, max_tokens, tokenizer def _a ( self : Optional[Any] ) -> str: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase =self._get_dataset() __UpperCAmelCase =set(DistributedSortishSampler(__SCREAMING_SNAKE_CASE , 256 , num_replicas=2 , rank=0 , add_extra_examples=__SCREAMING_SNAKE_CASE ) ) __UpperCAmelCase =set(DistributedSortishSampler(__SCREAMING_SNAKE_CASE , 256 , num_replicas=2 , rank=1 , add_extra_examples=__SCREAMING_SNAKE_CASE ) ) assert idsa.intersection(__SCREAMING_SNAKE_CASE ) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) def _a ( self : List[Any] , __SCREAMING_SNAKE_CASE : List[Any] ) -> Optional[Any]: __UpperCAmelCase =AutoTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE ) if tok_name == MBART_TINY: __UpperCAmelCase =SeqaSeqDataset( __SCREAMING_SNAKE_CASE , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path="""train""" , max_source_length=4 , max_target_length=8 , src_lang="""EN""" , tgt_lang="""FR""" , ) __UpperCAmelCase =train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: __UpperCAmelCase =SeqaSeqDataset( __SCREAMING_SNAKE_CASE , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path="""train""" , max_source_length=4 , max_target_length=8 , ) __UpperCAmelCase =train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(__SCREAMING_SNAKE_CASE ) == 1 if tok_name == BART_TINY else len(__SCREAMING_SNAKE_CASE ) == 0
68
'''simple docstring''' import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import datasets import datasets.config from .utils import require_beam class SCREAMING_SNAKE_CASE ( datasets.BeamBasedBuilder ): """simple docstring""" def A ( self : List[Any] ): """simple docstring""" return datasets.DatasetInfo( features=datasets.Features({'content': datasets.Value('string' )} ) , supervised_keys=UpperCamelCase__ , ) def A ( self : Dict , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[Any] ): """simple docstring""" return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'examples': get_test_dummy_examples()} )] def A ( self : Tuple , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Tuple ): """simple docstring""" import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(UpperCamelCase__ ) class SCREAMING_SNAKE_CASE ( datasets.BeamBasedBuilder ): """simple docstring""" def A ( self : str ): """simple docstring""" return datasets.DatasetInfo( features=datasets.Features({'a': datasets.Sequence({'b': datasets.Value('string' )} )} ) , supervised_keys=UpperCamelCase__ , ) def A ( self : List[str] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[Any] ): """simple docstring""" return [ datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'examples': get_test_nested_examples()} ) ] def A ( self : Optional[int] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : str ): """simple docstring""" import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(UpperCamelCase__ ) def __lowerCamelCase ( ) -> Tuple: """simple docstring""" return [(i, {"content": content}) for i, content in enumerate(['foo', 'bar', 'foobar'] )] def __lowerCamelCase ( ) -> int: """simple docstring""" return [(i, {"a": {"b": [content]}}) for i, content in enumerate(['foo', 'bar', 'foobar'] )] class SCREAMING_SNAKE_CASE ( _a ): """simple docstring""" @require_beam def A ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCamelCase = DummyBeamDataset(cache_dir=UpperCamelCase__ , beam_runner='DirectRunner' ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(UpperCamelCase__ , builder.name , 'default' , '0.0.0' , f"""{builder.name}-train.arrow""" ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({'content': datasets.Value('string' )} ) ) UpperCamelCase = builder.as_dataset() self.assertEqual(dset['train'].num_rows , UpperCamelCase__ ) self.assertEqual(dset['train'].info.splits['train'].num_examples , UpperCamelCase__ ) self.assertDictEqual(dset['train'][0] , get_test_dummy_examples()[0][1] ) self.assertDictEqual( dset['train'][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(UpperCamelCase__ , builder.name , 'default' , '0.0.0' , 'dataset_info.json' ) ) ) del dset @require_beam def A ( self : Any ): """simple docstring""" import apache_beam as beam UpperCamelCase = beam.io.parquetio.WriteToParquet UpperCamelCase = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCamelCase = DummyBeamDataset(cache_dir=UpperCamelCase__ , beam_runner='DirectRunner' ) with patch('apache_beam.io.parquetio.WriteToParquet' ) as write_parquet_mock: UpperCamelCase = partial(UpperCamelCase__ , num_shards=2 ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join( UpperCamelCase__ , builder.name , 'default' , '0.0.0' , f"""{builder.name}-train-00000-of-00002.arrow""" ) ) ) self.assertTrue( os.path.exists( os.path.join( UpperCamelCase__ , builder.name , 'default' , '0.0.0' , f"""{builder.name}-train-00000-of-00002.arrow""" ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({'content': datasets.Value('string' )} ) ) UpperCamelCase = builder.as_dataset() self.assertEqual(dset['train'].num_rows , UpperCamelCase__ ) self.assertEqual(dset['train'].info.splits['train'].num_examples , UpperCamelCase__ ) # Order is not preserved when sharding, so we just check that all the elements are there self.assertListEqual(sorted(dset['train']['content'] ) , sorted(['foo', 'bar', 'foobar'] ) ) self.assertTrue( os.path.exists(os.path.join(UpperCamelCase__ , builder.name , 'default' , '0.0.0' , 'dataset_info.json' ) ) ) del dset @require_beam def A ( self : Optional[int] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCamelCase = DummyBeamDataset(cache_dir=UpperCamelCase__ ) self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare ) @require_beam def A ( self : Optional[int] ): """simple docstring""" UpperCamelCase = len(get_test_nested_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCamelCase = NestedBeamDataset(cache_dir=UpperCamelCase__ , beam_runner='DirectRunner' ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(UpperCamelCase__ , builder.name , 'default' , '0.0.0' , f"""{builder.name}-train.arrow""" ) ) ) self.assertDictEqual( builder.info.features , datasets.Features({'a': datasets.Sequence({'b': datasets.Value('string' )} )} ) ) UpperCamelCase = builder.as_dataset() self.assertEqual(dset['train'].num_rows , UpperCamelCase__ ) self.assertEqual(dset['train'].info.splits['train'].num_examples , UpperCamelCase__ ) self.assertDictEqual(dset['train'][0] , get_test_nested_examples()[0][1] ) self.assertDictEqual( dset['train'][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(UpperCamelCase__ , builder.name , 'default' , '0.0.0' , 'dataset_info.json' ) ) ) del dset
430
0
from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def _UpperCAmelCase ( a : Tuple , a : Optional[Any] ): snake_case__ = [] for part_id in partition_order: snake_case__ = df.where(F'''SPARK_PARTITION_ID() = {part_id}''' ).collect() for row_idx, row in enumerate(snake_case__ ): expected_row_ids_and_row_dicts.append((F'''{part_id}_{row_idx}''', row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def _UpperCAmelCase ( ): snake_case__ = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() snake_case__ = spark.range(100 ).repartition(1 ) snake_case__ = Spark(snake_case__ ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def _UpperCAmelCase ( ): snake_case__ = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() snake_case__ = spark.range(10 ).repartition(2 ) snake_case__ = [1, 0] snake_case__ = _generate_iterable_examples(snake_case__ , snake_case__ ) # Reverse the partitions. snake_case__ = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case__ , snake_case__ ) for i, (row_id, row_dict) in enumerate(generate_fn() ): snake_case__ , snake_case__ = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def _UpperCAmelCase ( ): snake_case__ = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() snake_case__ = spark.range(10 ).repartition(1 ) snake_case__ = SparkExamplesIterable(snake_case__ ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(snake_case__ ): assert row_id == F'''0_{i}''' assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def _UpperCAmelCase ( ): snake_case__ = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() snake_case__ = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch("""numpy.random.Generator""" ) as generator_mock: snake_case__ = lambda a : x.reverse() snake_case__ = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case__ , [2, 1, 0] ) snake_case__ = SparkExamplesIterable(snake_case__ ).shuffle_data_sources(snake_case__ ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(snake_case__ ): snake_case__ , snake_case__ = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def _UpperCAmelCase ( ): snake_case__ = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() snake_case__ = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 snake_case__ = SparkExamplesIterable(snake_case__ ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 snake_case__ = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case__ , [0, 2] ) for i, (row_id, row_dict) in enumerate(snake_case__ ): snake_case__ , snake_case__ = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 snake_case__ = SparkExamplesIterable(snake_case__ ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 snake_case__ = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case__ , [1, 3] ) for i, (row_id, row_dict) in enumerate(snake_case__ ): snake_case__ , snake_case__ = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def _UpperCAmelCase ( ): snake_case__ = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() snake_case__ = spark.range(100 ).repartition(1 ) snake_case__ = Spark(snake_case__ ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 100
700
import comet # From: unbabel-comet import torch import datasets a__ = datasets.logging.get_logger(__name__) a__ = """\ @inproceedings{rei-EtAl:2020:WMT, author = {Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon}, title = {Unbabel's Participation in the WMT20 Metrics Shared Task}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, month = {November}, year = {2020}, address = {Online}, publisher = {Association for Computational Linguistics}, pages = {909--918}, } @inproceedings{rei-etal-2020-comet, title = \"{COMET}: A Neural Framework for {MT} Evaluation\", author = \"Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon\", booktitle = \"Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)\", month = nov, year = \"2020\", address = \"Online\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/2020.emnlp-main.213\", pages = \"2685--2702\", } """ a__ = """\ Crosslingual Optimized Metric for Evaluation of Translation (COMET) is an open-source framework used to train Machine Translation metrics that achieve high levels of correlation with different types of human judgments (HTER, DA's or MQM). With the release of the framework the authors also released fully trained models that were used to compete in the WMT20 Metrics Shared Task achieving SOTA in that years competition. See the [README.md] file at https://unbabel.github.io/COMET/html/models.html for more information. """ a__ = """ COMET score. Args: `sources` (list of str): Source sentences `predictions` (list of str): candidate translations `references` (list of str): reference translations `cuda` (bool): If set to True, runs COMET using GPU `show_progress` (bool): Shows progress `model`: COMET model to be used. Will default to `wmt-large-da-estimator-1719` if None. Returns: `samples`: List of dictionaries with `src`, `mt`, `ref` and `score`. `scores`: List of scores. Examples: >>> comet_metric = datasets.load_metric('comet') >>> # comet_metric = load_metric('comet', 'wmt20-comet-da') # you can also choose which model to use >>> source = [\"Dem Feuer konnte Einhalt geboten werden\", \"Schulen und Kindergärten wurden eröffnet.\"] >>> hypothesis = [\"The fire could be stopped\", \"Schools and kindergartens were open\"] >>> reference = [\"They were able to control the fire.\", \"Schools and kindergartens opened\"] >>> results = comet_metric.compute(predictions=hypothesis, references=reference, sources=source) >>> print([round(v, 2) for v in results[\"scores\"]]) [0.19, 0.92] """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): """simple docstring""" def __magic_name__ ( self : Optional[Any]): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""https://unbabel.github.io/COMET/html/index.html""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """sources""": datasets.Value("""string""" , id="""sequence"""), """predictions""": datasets.Value("""string""" , id="""sequence"""), """references""": datasets.Value("""string""" , id="""sequence"""), }) , codebase_urls=["""https://github.com/Unbabel/COMET"""] , reference_urls=[ """https://github.com/Unbabel/COMET""", """https://www.aclweb.org/anthology/2020.emnlp-main.213/""", """http://www.statmt.org/wmt20/pdf/2020.wmt-1.101.pdf6""", ] , ) def __magic_name__ ( self : str , UpperCamelCase__ : Dict): '''simple docstring''' if self.config_name == "default": snake_case__ = comet.load_from_checkpoint(comet.download_model("""wmt20-comet-da""")) else: snake_case__ = comet.load_from_checkpoint(comet.download_model(self.config_name)) def __magic_name__ ( self : List[str] , UpperCamelCase__ : str , UpperCamelCase__ : Tuple , UpperCamelCase__ : List[Any] , UpperCamelCase__ : int=None , UpperCamelCase__ : List[Any]=False): '''simple docstring''' if gpus is None: snake_case__ = 1 if torch.cuda.is_available() else 0 snake_case__ = {"""src""": sources, """mt""": predictions, """ref""": references} snake_case__ = [dict(zip(UpperCamelCase__ , UpperCamelCase__)) for t in zip(*data.values())] snake_case__ , snake_case__ = self.scorer.predict(UpperCamelCase__ , gpus=UpperCamelCase__ , progress_bar=UpperCamelCase__) return {"mean_score": mean_score, "scores": scores}
99
0
'''simple docstring''' # We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation import warnings from .state import AcceleratorState, GradientState warnings.filterwarnings("ignore", category=UserWarning, module="torch.optim.lr_scheduler") class snake_case : """simple docstring""" def __init__( self , lowerCamelCase , lowerCamelCase , lowerCamelCase = True , lowerCamelCase = False ) -> Optional[int]: """simple docstring""" snake_case__ : List[str] = scheduler snake_case__ : Tuple = optimizers if isinstance(lowerCamelCase , (list, tuple) ) else [optimizers] snake_case__ : Optional[Any] = split_batches snake_case__ : Tuple = step_with_optimizer snake_case__ : str = GradientState() def lowercase__ ( self , *lowerCamelCase , **lowerCamelCase ) -> Dict: """simple docstring""" if not self.step_with_optimizer: # No link between scheduler and optimizer -> just step self.scheduler.step(*lowerCamelCase , **lowerCamelCase ) return # Otherwise, first make sure the optimizer was stepped. if not self.gradient_state.sync_gradients: if self.gradient_state.adjust_scheduler: self.scheduler._step_count += 1 return for opt in self.optimizers: if opt.step_was_skipped: return if self.split_batches: # Split batches -> the training dataloader batch size is not changed so one step per training step self.scheduler.step(*lowerCamelCase , **lowerCamelCase ) else: # Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do # num_processes steps per training step snake_case__ : List[str] = AcceleratorState().num_processes for _ in range(lowerCamelCase ): # Special case when using OneCycle and `drop_last` was not used if hasattr(self.scheduler , '''total_steps''' ): if self.scheduler._step_count <= self.scheduler.total_steps: self.scheduler.step(*lowerCamelCase , **lowerCamelCase ) else: self.scheduler.step(*lowerCamelCase , **lowerCamelCase ) def lowercase__ ( self ) -> Union[str, Any]: """simple docstring""" return self.scheduler.get_last_lr() def lowercase__ ( self ) -> Optional[Any]: """simple docstring""" return self.scheduler.state_dict() def lowercase__ ( self , lowerCamelCase ) -> Optional[int]: """simple docstring""" self.scheduler.load_state_dict(lowerCamelCase ) def lowercase__ ( self ) -> Optional[Any]: """simple docstring""" return self.scheduler.get_lr() def lowercase__ ( self , *lowerCamelCase , **lowerCamelCase ) -> Any: """simple docstring""" return self.scheduler.print_lr(*lowerCamelCase , **lowerCamelCase )
261
'''simple docstring''' import numpy as np def _A ( snake_case__ : np.ndarray , snake_case__ : np.ndarray , snake_case__ : float = 1E-12 , snake_case__ : int = 1_00 , ): assert np.shape(snake_case__ )[0] == np.shape(snake_case__ )[1] # Ensure proper dimensionality. assert np.shape(snake_case__ )[0] == np.shape(snake_case__ )[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(snake_case__ ) == np.iscomplexobj(snake_case__ ) snake_case__ : Tuple = np.iscomplexobj(snake_case__ ) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(snake_case__ , input_matrix.conj().T ) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. snake_case__ : str = False snake_case__ : Any = 0 snake_case__ : Union[str, Any] = 0 snake_case__ : List[str] = 1E12 while not convergence: # Multiple matrix by the vector. snake_case__ : Any = np.dot(snake_case__ , snake_case__ ) # Normalize the resulting output vector. snake_case__ : Dict = w / np.linalg.norm(snake_case__ ) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) snake_case__ : Tuple = vector.conj().T if is_complex else vector.T snake_case__ : Optional[Any] = np.dot(snake_case__ , np.dot(snake_case__ , snake_case__ ) ) # Check convergence. snake_case__ : Union[str, Any] = np.abs(lambda_ - lambda_previous ) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: snake_case__ : Optional[int] = True snake_case__ : int = lambda_ if is_complex: snake_case__ : Optional[int] = np.real(lambda_ ) return lambda_, vector def _A ( ): snake_case__ : int = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]] ) snake_case__ : List[Any] = np.array([41, 4, 20] ) snake_case__ : str = real_input_matrix.astype(np.complexaaa ) snake_case__ : str = np.triu(1j * complex_input_matrix , 1 ) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T snake_case__ : List[str] = np.array([41, 4, 20] ).astype(np.complexaaa ) for problem_type in ["real", "complex"]: if problem_type == "real": snake_case__ : Dict = real_input_matrix snake_case__ : str = real_vector elif problem_type == "complex": snake_case__ : Optional[Any] = complex_input_matrix snake_case__ : Any = complex_vector # Our implementation. snake_case__ ,snake_case__ : Optional[Any] = power_iteration(snake_case__ , snake_case__ ) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). snake_case__ ,snake_case__ : int = np.linalg.eigh(snake_case__ ) # Last eigenvalue is the maximum one. snake_case__ : List[str] = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. snake_case__ : Dict = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max ) <= 1E-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(snake_case__ ) - np.abs(snake_case__ ) ) <= 1E-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
261
1
'''simple docstring''' import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class lowerCAmelCase_ ( unittest.TestCase ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase=13 , _lowerCAmelCase=7 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=99 , _lowerCAmelCase=32 , _lowerCAmelCase=5 , _lowerCAmelCase=4 , _lowerCAmelCase=37 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=512 , _lowerCAmelCase=16 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=4 , ) -> List[str]: _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = seq_length _lowerCAmelCase = is_training _lowerCAmelCase = use_attention_mask _lowerCAmelCase = use_token_type_ids _lowerCAmelCase = use_labels _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = type_vocab_size _lowerCAmelCase = type_sequence_label_size _lowerCAmelCase = initializer_range _lowerCAmelCase = num_choices def _snake_case ( self ) -> Any: _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase = None if self.use_attention_mask: _lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCAmelCase = None if self.use_token_type_ids: _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowerCAmelCase = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def _snake_case ( self ) -> int: _lowerCAmelCase = self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = config_and_inputs _lowerCAmelCase = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class lowerCAmelCase_ ( __magic_name__ ,unittest.TestCase ): __lowerCamelCase : Dict = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def _snake_case ( self ) -> Tuple: _lowerCAmelCase = FlaxAlbertModelTester(self ) @slow def _snake_case ( self ) -> Tuple: for model_class_name in self.all_model_classes: _lowerCAmelCase = model_class_name.from_pretrained("albert-base-v2" ) _lowerCAmelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowerCAmelCase ) @require_flax class lowerCAmelCase_ ( unittest.TestCase ): @slow def _snake_case ( self ) -> Optional[Any]: _lowerCAmelCase = FlaxAlbertModel.from_pretrained("albert-base-v2" ) _lowerCAmelCase = np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) _lowerCAmelCase = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase )[0] _lowerCAmelCase = (1, 11, 768) self.assertEqual(output.shape , _lowerCAmelCase ) _lowerCAmelCase = np.array( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , _lowerCAmelCase , atol=1E-4 ) )
489
'''simple docstring''' import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = {"vocab_file": "spiece.model"} _SCREAMING_SNAKE_CASE = { "vocab_file": { "AI-Sweden/gpt-sw3-126m": "https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-350m": "https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-1.6b": "https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-6.7b": "https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-20b": "https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model", } } _SCREAMING_SNAKE_CASE = { "AI-Sweden/gpt-sw3-126m": 20_48, "AI-Sweden/gpt-sw3-350m": 20_48, "AI-Sweden/gpt-sw3-1.6b": 20_48, "AI-Sweden/gpt-sw3-6.7b": 20_48, "AI-Sweden/gpt-sw3-20b": 20_48, } class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : List[str] = VOCAB_FILES_NAMES __lowerCamelCase : List[Any] = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase : List[str] = ["input_ids", "attention_mask"] def __init__( self , _lowerCAmelCase , _lowerCAmelCase=False , _lowerCAmelCase=False , _lowerCAmelCase=False , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> None: _lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs _lowerCAmelCase = kwargs.get("name_or_path" ) if name_or_path is None: logger.warning( "name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b," " you are testing the model, this can safely be ignored" ) _lowerCAmelCase = "None" # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing _lowerCAmelCase = "<|endoftext|>" if eos_token is None else eos_token _lowerCAmelCase = "<unk>" if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: _lowerCAmelCase = unk_token if pad_token is None else pad_token _lowerCAmelCase = eos_token if bos_token is None else bos_token else: _lowerCAmelCase = "<pad>" if pad_token is None else pad_token _lowerCAmelCase = "<s>" if bos_token is None else bos_token super().__init__( do_lower_case=_lowerCAmelCase , remove_space=_lowerCAmelCase , keep_accents=_lowerCAmelCase , bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , unk_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCAmelCase , ) _lowerCAmelCase = do_lower_case _lowerCAmelCase = remove_space _lowerCAmelCase = keep_accents _lowerCAmelCase = vocab_file _lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_lowerCAmelCase ) # Used for whitespace normalization in input texts # fmt : off _lowerCAmelCase = {" ", " ", " ", " ", " ", " ", " ", " ", " ", " ", "", "„"} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing _lowerCAmelCase = re.compile( f'''[{''.join(map(_lowerCAmelCase , list(range(0 , 9 ) ) + list(range(11 , 32 ) ) + list(range(127 , 160 ) ) + [160, 173, 8203] ) )}]''' ) def __getstate__( self ) -> Any: _lowerCAmelCase = self.__dict__.copy() _lowerCAmelCase = None return state def __setstate__( self , _lowerCAmelCase ) -> Union[str, Any]: _lowerCAmelCase = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): _lowerCAmelCase = {} _lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def _snake_case ( self ) -> int: return len(self.sp_model ) def _snake_case ( self , _lowerCAmelCase ) -> str: _lowerCAmelCase = self.non_printing_characters_re.sub("" , _lowerCAmelCase ) # Normalize whitespaces _lowerCAmelCase = "".join([char if char not in self.whitespaces else " " for char in text] ) # NFC Unicode normalization _lowerCAmelCase = unicodedata.normalize("NFC" , _lowerCAmelCase ) return text def _snake_case ( self , _lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: _lowerCAmelCase = self.preprocess_text(_lowerCAmelCase ) return self.sp_model.encode(_lowerCAmelCase , out_type=_lowerCAmelCase ) def _snake_case ( self , _lowerCAmelCase ) -> int: return self.sp_model.PieceToId(_lowerCAmelCase ) def _snake_case ( self , _lowerCAmelCase ) -> str: return self.sp_model.IdToPiece(_lowerCAmelCase ) @staticmethod def _snake_case ( _lowerCAmelCase ) -> str: return out_string def _snake_case ( self , _lowerCAmelCase ) -> str: _lowerCAmelCase = [] _lowerCAmelCase = "" _lowerCAmelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_lowerCAmelCase ) + token _lowerCAmelCase = True _lowerCAmelCase = [] else: current_sub_tokens.append(_lowerCAmelCase ) _lowerCAmelCase = False out_string += self.sp_model.decode(_lowerCAmelCase ) return out_string def _snake_case ( self ) -> Dict[str, int]: _lowerCAmelCase = {self.convert_ids_to_tokens(_lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None ) -> Tuple[str]: if not os.path.isdir(_lowerCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _lowerCAmelCase = os.path.join( _lowerCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCAmelCase , "wb" ) as fi: _lowerCAmelCase = self.sp_model.serialized_model_proto() fi.write(_lowerCAmelCase ) return (out_vocab_file,) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = False ) -> Union[List[int], List[List[int]], "torch.Tensor"]: if isinstance(_lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = self.preprocess_text(_lowerCAmelCase ) _lowerCAmelCase = self.sp_model.encode(_lowerCAmelCase ) else: _lowerCAmelCase = [self.preprocess_text(_lowerCAmelCase ) for t in text] _lowerCAmelCase = self.sp_model.encode(_lowerCAmelCase ) if return_tensors is True or return_tensors == "pt": _lowerCAmelCase = torch.tensor(_lowerCAmelCase ) return token_ids def _snake_case ( self , _lowerCAmelCase ) -> str: return self.sp_model.decode(_lowerCAmelCase ) def _snake_case ( self , _lowerCAmelCase ) -> List[int]: _lowerCAmelCase = [f'''User: {text}''' if is_user else f'''Bot: {text}''' for is_user, text in conversation.iter_texts()] _lowerCAmelCase = ( f'''{self.eos_token}{self.bos_token}''' + f'''{self.bos_token}'''.join(_lowerCAmelCase ) + f'''{self.bos_token}Bot:''' ) return self.encode(text=_lowerCAmelCase )
489
1
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SegformerConfig, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Any , SCREAMING_SNAKE_CASE_: List[str]=False ) -> Any: '''simple docstring''' A__ = OrderedDict() for key, value in state_dict.items(): if encoder_only and not key.startswith("head" ): A__ = "segformer.encoder." + key if key.startswith("backbone" ): A__ = key.replace("backbone" , "segformer.encoder" ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 A__ = key[key.find("patch_embed" ) + len("patch_embed" )] A__ = key.replace(F'patch_embed{idx}' , F'patch_embeddings.{int(SCREAMING_SNAKE_CASE_ )-1}' ) if "norm" in key: A__ = key.replace("norm" , "layer_norm" ) if "segformer.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 A__ = key[key.find("segformer.encoder.layer_norm" ) + len("segformer.encoder.layer_norm" )] A__ = key.replace(F'layer_norm{idx}' , F'layer_norm.{int(SCREAMING_SNAKE_CASE_ )-1}' ) if "layer_norm1" in key: A__ = key.replace("layer_norm1" , "layer_norm_1" ) if "layer_norm2" in key: A__ = key.replace("layer_norm2" , "layer_norm_2" ) if "block" in key: # replace for example block1 by block.0 A__ = key[key.find("block" ) + len("block" )] A__ = key.replace(F'block{idx}' , F'block.{int(SCREAMING_SNAKE_CASE_ )-1}' ) if "attn.q" in key: A__ = key.replace("attn.q" , "attention.self.query" ) if "attn.proj" in key: A__ = key.replace("attn.proj" , "attention.output.dense" ) if "attn" in key: A__ = key.replace("attn" , "attention.self" ) if "fc1" in key: A__ = key.replace("fc1" , "dense1" ) if "fc2" in key: A__ = key.replace("fc2" , "dense2" ) if "linear_pred" in key: A__ = key.replace("linear_pred" , "classifier" ) if "linear_fuse" in key: A__ = key.replace("linear_fuse.conv" , "linear_fuse" ) A__ = key.replace("linear_fuse.bn" , "batch_norm" ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 A__ = key[key.find("linear_c" ) + len("linear_c" )] A__ = key.replace(F'linear_c{idx}' , F'linear_c.{int(SCREAMING_SNAKE_CASE_ )-1}' ) if key.startswith("head" ): A__ = key.replace("head" , "classifier" ) A__ = value return new_state_dict def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: int , SCREAMING_SNAKE_CASE_: Optional[Any] ) -> int: '''simple docstring''' for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) A__ = state_dict.pop(F'segformer.encoder.block.{i}.{j}.attention.self.kv.weight' ) A__ = state_dict.pop(F'segformer.encoder.block.{i}.{j}.attention.self.kv.bias' ) # next, add keys and values (in that order) to the state dict A__ = kv_weight[ : config.hidden_sizes[i], : ] A__ = kv_bias[: config.hidden_sizes[i]] A__ = kv_weight[ config.hidden_sizes[i] :, : ] A__ = kv_bias[ config.hidden_sizes[i] : ] def lowerCAmelCase__ ( ) -> List[Any]: '''simple docstring''' A__ = "http://images.cocodataset.org/val2017/000000039769.jpg" A__ = Image.open(requests.get(SCREAMING_SNAKE_CASE_ , stream=SCREAMING_SNAKE_CASE_ ).raw ) return image @torch.no_grad() def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: int , SCREAMING_SNAKE_CASE_: Optional[Any] , SCREAMING_SNAKE_CASE_: str ) -> Union[str, Any]: '''simple docstring''' A__ = SegformerConfig() A__ = False # set attributes based on model_name A__ = "huggingface/label-files" if "segformer" in model_name: A__ = model_name[len("segformer." ) : len("segformer." ) + 2] if "ade" in model_name: A__ = 1_5_0 A__ = "ade20k-id2label.json" A__ = (1, 1_5_0, 1_2_8, 1_2_8) elif "city" in model_name: A__ = 1_9 A__ = "cityscapes-id2label.json" A__ = (1, 1_9, 1_2_8, 1_2_8) else: raise ValueError(F'Model {model_name} not supported' ) elif "mit" in model_name: A__ = True A__ = model_name[4:6] A__ = 1_0_0_0 A__ = "imagenet-1k-id2label.json" A__ = (1, 1_0_0_0) else: raise ValueError(F'Model {model_name} not supported' ) # set config attributes A__ = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , repo_type="dataset" ) , "r" ) ) A__ = {int(SCREAMING_SNAKE_CASE_ ): v for k, v in idalabel.items()} A__ = idalabel A__ = {v: k for k, v in idalabel.items()} if size == "b0": pass elif size == "b1": A__ = [6_4, 1_2_8, 3_2_0, 5_1_2] A__ = 2_5_6 elif size == "b2": A__ = [6_4, 1_2_8, 3_2_0, 5_1_2] A__ = 7_6_8 A__ = [3, 4, 6, 3] elif size == "b3": A__ = [6_4, 1_2_8, 3_2_0, 5_1_2] A__ = 7_6_8 A__ = [3, 4, 1_8, 3] elif size == "b4": A__ = [6_4, 1_2_8, 3_2_0, 5_1_2] A__ = 7_6_8 A__ = [3, 8, 2_7, 3] elif size == "b5": A__ = [6_4, 1_2_8, 3_2_0, 5_1_2] A__ = 7_6_8 A__ = [3, 6, 4_0, 3] else: raise ValueError(F'Size {size} not supported' ) # load image processor (only resize + normalize) A__ = SegformerImageProcessor( image_scale=(5_1_2, 5_1_2) , keep_ratio=SCREAMING_SNAKE_CASE_ , align=SCREAMING_SNAKE_CASE_ , do_random_crop=SCREAMING_SNAKE_CASE_ ) # prepare image A__ = prepare_img() A__ = image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors="pt" ).pixel_values logger.info(F'Converting model {model_name}...' ) # load original state dict if encoder_only: A__ = torch.load(SCREAMING_SNAKE_CASE_ , map_location=torch.device("cpu" ) ) else: A__ = torch.load(SCREAMING_SNAKE_CASE_ , map_location=torch.device("cpu" ) )["state_dict"] # rename keys A__ = rename_keys(SCREAMING_SNAKE_CASE_ , encoder_only=SCREAMING_SNAKE_CASE_ ) if not encoder_only: del state_dict["decode_head.conv_seg.weight"] del state_dict["decode_head.conv_seg.bias"] # key and value matrices need special treatment read_in_k_v(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # create HuggingFace model and load state dict if encoder_only: A__ = False A__ = SegformerForImageClassification(SCREAMING_SNAKE_CASE_ ) else: A__ = SegformerForSemanticSegmentation(SCREAMING_SNAKE_CASE_ ) model.load_state_dict(SCREAMING_SNAKE_CASE_ ) model.eval() # forward pass A__ = model(SCREAMING_SNAKE_CASE_ ) A__ = outputs.logits # set expected_slice based on model name # ADE20k checkpoints if model_name == "segformer.b0.512x512.ade.160k": A__ = torch.tensor( [ [[-4.6310, -5.5232, -6.2356], [-5.1921, -6.1444, -6.5996], [-5.4424, -6.2790, -6.7574]], [[-12.1391, -13.3122, -13.9554], [-12.8732, -13.9352, -14.3563], [-12.9438, -13.8226, -14.2513]], [[-12.5134, -13.4686, -14.4915], [-12.8669, -14.4343, -14.7758], [-13.2523, -14.5819, -15.0694]], ] ) elif model_name == "segformer.b1.512x512.ade.160k": A__ = torch.tensor( [ [[-7.5820, -8.7231, -8.3215], [-8.0600, -10.3529, -10.0304], [-7.5208, -9.4103, -9.6239]], [[-12.6918, -13.8994, -13.7137], [-13.3196, -15.7523, -15.4789], [-12.9343, -14.8757, -14.9689]], [[-11.1911, -11.9421, -11.3243], [-11.3342, -13.6839, -13.3581], [-10.3909, -12.1832, -12.4858]], ] ) elif model_name == "segformer.b2.512x512.ade.160k": A__ = torch.tensor( [ [[-11.8173, -14.3850, -16.3128], [-14.5648, -16.5804, -18.6568], [-14.7223, -15.7387, -18.4218]], [[-15.7290, -17.9171, -19.4423], [-18.3105, -19.9448, -21.4661], [-17.9296, -18.6497, -20.7910]], [[-15.0783, -17.0336, -18.2789], [-16.8771, -18.6870, -20.1612], [-16.2454, -17.1426, -19.5055]], ] ) elif model_name == "segformer.b3.512x512.ade.160k": A__ = torch.tensor( [ [[-9.0878, -10.2081, -10.1891], [-9.3144, -10.7941, -10.9843], [-9.2294, -10.3855, -10.5704]], [[-12.2316, -13.9068, -13.6102], [-12.9161, -14.3702, -14.3235], [-12.5233, -13.7174, -13.7932]], [[-14.6275, -15.2490, -14.9727], [-14.3400, -15.9687, -16.2827], [-14.1484, -15.4033, -15.8937]], ] ) elif model_name == "segformer.b4.512x512.ade.160k": A__ = torch.tensor( [ [[-12.3144, -13.2447, -14.0802], [-13.3614, -14.5816, -15.6117], [-13.3340, -14.4433, -16.2219]], [[-19.2781, -20.4128, -20.7506], [-20.6153, -21.6566, -22.0998], [-19.9800, -21.0430, -22.1494]], [[-18.8739, -19.7804, -21.1834], [-20.1233, -21.6765, -23.2944], [-20.0315, -21.2641, -23.6944]], ] ) elif model_name == "segformer.b5.640x640.ade.160k": A__ = torch.tensor( [ [[-9.5524, -12.0835, -11.7348], [-10.5229, -13.6446, -14.5662], [-9.5842, -12.8851, -13.9414]], [[-15.3432, -17.5323, -17.0818], [-16.3330, -18.9255, -19.2101], [-15.1340, -17.7848, -18.3971]], [[-12.6072, -14.9486, -14.6631], [-13.7629, -17.0907, -17.7745], [-12.7899, -16.1695, -17.1671]], ] ) # Cityscapes checkpoints elif model_name == "segformer.b0.1024x1024.city.160k": A__ = torch.tensor( [ [[-11.9295, -13.4057, -14.8106], [-13.3431, -14.8179, -15.3781], [-14.2836, -15.5942, -16.1588]], [[-11.4906, -12.8067, -13.6564], [-13.1189, -14.0500, -14.1543], [-13.8748, -14.5136, -14.8789]], [[0.5374, 0.1067, -0.4742], [0.1141, -0.2255, -0.7099], [-0.3000, -0.5924, -1.3105]], ] ) elif model_name == "segformer.b0.512x1024.city.160k": A__ = torch.tensor( [ [[-7.8217, -9.8767, -10.1717], [-9.4438, -10.9058, -11.4047], [-9.7939, -12.3495, -12.1079]], [[-7.1514, -9.5336, -10.0860], [-9.7776, -11.6822, -11.8439], [-10.1411, -12.7655, -12.8972]], [[0.3021, 0.0805, -0.2310], [-0.0328, -0.1605, -0.2714], [-0.1408, -0.5477, -0.6976]], ] ) elif model_name == "segformer.b0.640x1280.city.160k": A__ = torch.tensor( [ [ [-1.1_372e01, -1.2_787e01, -1.3_477e01], [-1.2_536e01, -1.4_194e01, -1.4_409e01], [-1.3_217e01, -1.4_888e01, -1.5_327e01], ], [ [-1.4_791e01, -1.7_122e01, -1.8_277e01], [-1.7_163e01, -1.9_192e01, -1.9_533e01], [-1.7_897e01, -1.9_991e01, -2.0_315e01], ], [ [7.6_723e-01, 4.1_921e-01, -7.7_878e-02], [4.7_772e-01, 9.5_557e-03, -2.8_082e-01], [3.6_032e-01, -2.4_826e-01, -5.1_168e-01], ], ] ) elif model_name == "segformer.b0.768x768.city.160k": A__ = torch.tensor( [ [[-9.4959, -11.3087, -11.7479], [-11.0025, -12.6540, -12.3319], [-11.4064, -13.0487, -12.9905]], [[-9.8905, -11.3084, -12.0854], [-11.1726, -12.7698, -12.9583], [-11.5985, -13.3278, -14.1774]], [[0.2213, 0.0192, -0.2466], [-0.1731, -0.4213, -0.4874], [-0.3126, -0.6541, -1.1389]], ] ) elif model_name == "segformer.b1.1024x1024.city.160k": A__ = torch.tensor( [ [[-13.5748, -13.9111, -12.6500], [-14.3500, -15.3683, -14.2328], [-14.7532, -16.0424, -15.6087]], [[-17.1651, -15.8725, -12.9653], [-17.2580, -17.3718, -14.8223], [-16.6058, -16.8783, -16.7452]], [[-3.6456, -3.0209, -1.4203], [-3.0797, -3.1959, -2.0000], [-1.8757, -1.9217, -1.6997]], ] ) elif model_name == "segformer.b2.1024x1024.city.160k": A__ = torch.tensor( [ [[-16.0976, -16.4856, -17.3962], [-16.6234, -19.0342, -19.7685], [-16.0900, -18.0661, -19.1180]], [[-18.4750, -18.8488, -19.5074], [-19.4030, -22.1570, -22.5977], [-19.1191, -20.8486, -22.3783]], [[-4.5178, -5.5037, -6.5109], [-5.0884, -7.2174, -8.0334], [-4.4156, -5.8117, -7.2970]], ] ) elif model_name == "segformer.b3.1024x1024.city.160k": A__ = torch.tensor( [ [[-14.2081, -14.4732, -14.1977], [-14.5867, -16.4423, -16.6356], [-13.4441, -14.9685, -16.8696]], [[-14.4576, -14.7073, -15.0451], [-15.0816, -17.6237, -17.9873], [-14.4213, -16.0199, -18.5992]], [[-4.7349, -4.9588, -5.0966], [-4.3210, -6.9325, -7.2591], [-3.4312, -4.7484, -7.1917]], ] ) elif model_name == "segformer.b4.1024x1024.city.160k": A__ = torch.tensor( [ [[-11.7737, -11.9526, -11.3273], [-13.6692, -14.4574, -13.8878], [-13.8937, -14.6924, -15.9345]], [[-14.6706, -14.5330, -14.1306], [-16.1502, -16.8180, -16.4269], [-16.8338, -17.8939, -20.1746]], [[1.0491, 0.8289, 1.0310], [1.1044, 0.5219, 0.8055], [1.0899, 0.6926, 0.5590]], ] ) elif model_name == "segformer.b5.1024x1024.city.160k": A__ = torch.tensor( [ [[-12.5641, -13.4777, -13.0684], [-13.9587, -15.8983, -16.6557], [-13.3109, -15.7350, -16.3141]], [[-14.7074, -15.4352, -14.5944], [-16.6353, -18.1663, -18.6120], [-15.1702, -18.0329, -18.1547]], [[-1.7990, -2.0951, -1.7784], [-2.6397, -3.8245, -3.9686], [-1.5264, -2.8126, -2.9316]], ] ) else: A__ = logits.argmax(-1 ).item() print("Predicted class:" , model.config.idalabel[predicted_class_idx] ) # verify logits if not encoder_only: assert logits.shape == expected_shape assert torch.allclose(logits[0, :3, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-2 ) # finally, save model and image processor logger.info(F'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(SCREAMING_SNAKE_CASE_ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE_ ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""segformer.b0.512x512.ade.160k""", type=str, help="""Name of the model you'd like to convert.""", ) parser.add_argument( """--checkpoint_path""", default=None, type=str, help="""Path to the original PyTorch checkpoint (.pth file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) lowerCAmelCase__ = parser.parse_args() convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
514
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase__ = { """configuration_pix2struct""": [ """PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Pix2StructConfig""", """Pix2StructTextConfig""", """Pix2StructVisionConfig""", ], """processing_pix2struct""": ["""Pix2StructProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ["""Pix2StructImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ """PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST""", """Pix2StructPreTrainedModel""", """Pix2StructForConditionalGeneration""", """Pix2StructVisionModel""", """Pix2StructTextModel""", ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
514
1
"""simple docstring""" from ..utils import DummyObject, requires_backends class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Optional[Any] = ["speech"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""speech"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Union[str, Any] = ["speech"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""speech"""] )
704
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : Optional[int] = ShapEPipeline _UpperCamelCase : Optional[Any] = ["prompt"] _UpperCamelCase : Tuple = ["prompt"] _UpperCamelCase : Dict = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] _UpperCamelCase : str = False @property def __A ( self ): return 32 @property def __A ( self ): return 32 @property def __A ( self ): return self.time_input_dim * 4 @property def __A ( self ): return 8 @property def __A ( self ): _lowerCAmelCase : Union[str, Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def __A ( self ): torch.manual_seed(0 ) _lowerCAmelCase : List[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(a__ ) @property def __A ( self ): torch.manual_seed(0 ) _lowerCAmelCase : Tuple = { """num_attention_heads""": 2, """attention_head_dim""": 16, """embedding_dim""": self.time_input_dim, """num_embeddings""": 32, """embedding_proj_dim""": self.text_embedder_hidden_size, """time_embed_dim""": self.time_embed_dim, """num_layers""": 1, """clip_embed_dim""": self.time_input_dim * 2, """additional_embeddings""": 0, """time_embed_act_fn""": """gelu""", """norm_in_type""": """layer""", """encoder_hid_proj_type""": None, """added_emb_type""": None, } _lowerCAmelCase : Any = PriorTransformer(**a__ ) return model @property def __A ( self ): torch.manual_seed(0 ) _lowerCAmelCase : Tuple = { """param_shapes""": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), """d_latent""": self.time_input_dim, """d_hidden""": self.renderer_dim, """n_output""": 12, """background""": ( 0.1, 0.1, 0.1, ), } _lowerCAmelCase : Dict = ShapERenderer(**a__ ) return model def __A ( self ): _lowerCAmelCase : Union[str, Any] = self.dummy_prior _lowerCAmelCase : Any = self.dummy_text_encoder _lowerCAmelCase : List[Any] = self.dummy_tokenizer _lowerCAmelCase : Dict = self.dummy_renderer _lowerCAmelCase : List[Any] = HeunDiscreteScheduler( beta_schedule="""exp""" , num_train_timesteps=1024 , prediction_type="""sample""" , use_karras_sigmas=a__ , clip_sample=a__ , clip_sample_range=1.0 , ) _lowerCAmelCase : List[Any] = { """prior""": prior, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """renderer""": renderer, """scheduler""": scheduler, } return components def __A ( self , a__ , a__=0 ): if str(a__ ).startswith("""mps""" ): _lowerCAmelCase : List[str] = torch.manual_seed(a__ ) else: _lowerCAmelCase : Union[str, Any] = torch.Generator(device=a__ ).manual_seed(a__ ) _lowerCAmelCase : Dict = { """prompt""": """horse""", """generator""": generator, """num_inference_steps""": 1, """frame_size""": 32, """output_type""": """np""", } return inputs def __A ( self ): _lowerCAmelCase : List[Any] = """cpu""" _lowerCAmelCase : List[Any] = self.get_dummy_components() _lowerCAmelCase : str = self.pipeline_class(**a__ ) _lowerCAmelCase : List[Any] = pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : Optional[int] = pipe(**self.get_dummy_inputs(a__ ) ) _lowerCAmelCase : List[str] = output.images[0] _lowerCAmelCase : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) _lowerCAmelCase : Union[str, Any] = np.array( [ 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __A ( self ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def __A ( self ): _lowerCAmelCase : Any = torch_device == """cpu""" _lowerCAmelCase : Dict = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=a__ , relax_max_difference=a__ , ) def __A ( self ): _lowerCAmelCase : int = self.get_dummy_components() _lowerCAmelCase : Optional[Any] = self.pipeline_class(**a__ ) _lowerCAmelCase : int = pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : str = 1 _lowerCAmelCase : Optional[Any] = 2 _lowerCAmelCase : List[Any] = self.get_dummy_inputs(a__ ) for key in inputs.keys(): if key in self.batch_params: _lowerCAmelCase : str = batch_size * [inputs[key]] _lowerCAmelCase : Tuple = pipe(**a__ , num_images_per_prompt=a__ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __A ( unittest.TestCase ): def __A ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self ): _lowerCAmelCase : Dict = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/test_shap_e_np_out.npy""" ) _lowerCAmelCase : Union[str, Any] = ShapEPipeline.from_pretrained("""openai/shap-e""" ) _lowerCAmelCase : Tuple = pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : Optional[int] = torch.Generator(device=a__ ).manual_seed(0 ) _lowerCAmelCase : Any = pipe( """a shark""" , generator=a__ , guidance_scale=1_5.0 , num_inference_steps=64 , frame_size=64 , output_type="""np""" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(a__ , a__ )
663
0
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class __UpperCamelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self : List[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = tempfile.mkdtemp() __SCREAMING_SNAKE_CASE : List[Any] = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''的''', '''价''', '''格''', '''是''', '''15''', '''便''', '''alex''', '''##andra''', ''',''', '''。''', '''-''', '''t''', '''shirt''', ] __SCREAMING_SNAKE_CASE : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) __SCREAMING_SNAKE_CASE : int = { '''do_resize''': True, '''size''': {'''height''': 224, '''width''': 224}, '''do_center_crop''': True, '''crop_size''': {'''height''': 18, '''width''': 18}, '''do_normalize''': True, '''image_mean''': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], '''image_std''': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], '''do_convert_rgb''': True, } __SCREAMING_SNAKE_CASE : Dict = os.path.join(self.tmpdirname , _A ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(_A , _A ) def UpperCAmelCase__ ( self : int , **_A : Any ): """simple docstring""" return BertTokenizer.from_pretrained(self.tmpdirname , **_A ) def UpperCAmelCase__ ( self : Optional[int] , **_A : Optional[Any] ): """simple docstring""" return BertTokenizerFast.from_pretrained(self.tmpdirname , **_A ) def UpperCAmelCase__ ( self : Union[str, Any] , **_A : Optional[int] ): """simple docstring""" return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **_A ) def UpperCAmelCase__ ( self : List[Any] ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def UpperCAmelCase__ ( self : str ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __SCREAMING_SNAKE_CASE : List[str] = [Image.fromarray(np.moveaxis(_A , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCAmelCase__ ( self : int ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = self.get_tokenizer() __SCREAMING_SNAKE_CASE : List[str] = self.get_rust_tokenizer() __SCREAMING_SNAKE_CASE : Any = self.get_image_processor() __SCREAMING_SNAKE_CASE : Optional[int] = ChineseCLIPProcessor(tokenizer=_A , image_processor=_A ) processor_slow.save_pretrained(self.tmpdirname ) __SCREAMING_SNAKE_CASE : Optional[Any] = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=_A ) __SCREAMING_SNAKE_CASE : List[str] = ChineseCLIPProcessor(tokenizer=_A , image_processor=_A ) processor_fast.save_pretrained(self.tmpdirname ) __SCREAMING_SNAKE_CASE : List[str] = ChineseCLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _A ) self.assertIsInstance(processor_fast.tokenizer , _A ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _A ) self.assertIsInstance(processor_fast.image_processor , _A ) def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __SCREAMING_SNAKE_CASE : str = self.get_tokenizer(cls_token='''(CLS)''' , sep_token='''(SEP)''' ) __SCREAMING_SNAKE_CASE : Tuple = self.get_image_processor(do_normalize=_A ) __SCREAMING_SNAKE_CASE : str = ChineseCLIPProcessor.from_pretrained( self.tmpdirname , cls_token='''(CLS)''' , sep_token='''(SEP)''' , do_normalize=_A ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _A ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _A ) def UpperCAmelCase__ ( self : str ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = self.get_image_processor() __SCREAMING_SNAKE_CASE : Any = self.get_tokenizer() __SCREAMING_SNAKE_CASE : Union[str, Any] = ChineseCLIPProcessor(tokenizer=_A , image_processor=_A ) __SCREAMING_SNAKE_CASE : List[Any] = self.prepare_image_inputs() __SCREAMING_SNAKE_CASE : List[Any] = image_processor(_A , return_tensors='''np''' ) __SCREAMING_SNAKE_CASE : List[str] = processor(images=_A , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def UpperCAmelCase__ ( self : str ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_image_processor() __SCREAMING_SNAKE_CASE : Dict = self.get_tokenizer() __SCREAMING_SNAKE_CASE : Optional[int] = ChineseCLIPProcessor(tokenizer=_A , image_processor=_A ) __SCREAMING_SNAKE_CASE : str = '''Alexandra,T-shirt的价格是15便士。''' __SCREAMING_SNAKE_CASE : List[Any] = processor(text=_A ) __SCREAMING_SNAKE_CASE : str = tokenizer(_A ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCAmelCase__ ( self : Dict ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = self.get_image_processor() __SCREAMING_SNAKE_CASE : List[str] = self.get_tokenizer() __SCREAMING_SNAKE_CASE : Tuple = ChineseCLIPProcessor(tokenizer=_A , image_processor=_A ) __SCREAMING_SNAKE_CASE : int = '''Alexandra,T-shirt的价格是15便士。''' __SCREAMING_SNAKE_CASE : Optional[Any] = self.prepare_image_inputs() __SCREAMING_SNAKE_CASE : int = processor(text=_A , images=_A ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(_A ): processor() def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = self.get_image_processor() __SCREAMING_SNAKE_CASE : str = self.get_tokenizer() __SCREAMING_SNAKE_CASE : Optional[Any] = ChineseCLIPProcessor(tokenizer=_A , image_processor=_A ) __SCREAMING_SNAKE_CASE : Dict = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __SCREAMING_SNAKE_CASE : str = processor.batch_decode(_A ) __SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.batch_decode(_A ) self.assertListEqual(_A , _A ) def UpperCAmelCase__ ( self : Any ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = self.get_image_processor() __SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_tokenizer() __SCREAMING_SNAKE_CASE : Tuple = ChineseCLIPProcessor(tokenizer=_A , image_processor=_A ) __SCREAMING_SNAKE_CASE : int = '''Alexandra,T-shirt的价格是15便士。''' __SCREAMING_SNAKE_CASE : Dict = self.prepare_image_inputs() __SCREAMING_SNAKE_CASE : Optional[int] = processor(text=_A , images=_A ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
74
from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake lowerCamelCase = numpy.array([0, 0]) lowerCamelCase = numpy.array([0.5, 0.866_0254]) lowerCamelCase = numpy.array([1, 0]) lowerCamelCase = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def a_ ( SCREAMING_SNAKE_CASE__ : list[numpy.ndarray] , SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' _lowerCamelCase : List[Any] =initial_vectors for _ in range(SCREAMING_SNAKE_CASE__ ): _lowerCamelCase : List[str] =iteration_step(SCREAMING_SNAKE_CASE__ ) return vectors def a_ ( SCREAMING_SNAKE_CASE__ : list[numpy.ndarray] ): '''simple docstring''' _lowerCamelCase : Dict =[] for i, start_vector in enumerate(vectors[:-1] ): _lowerCamelCase : Tuple =vectors[i + 1] new_vectors.append(SCREAMING_SNAKE_CASE__ ) _lowerCamelCase : Tuple =end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 60 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def a_ ( SCREAMING_SNAKE_CASE__ : numpy.ndarray , SCREAMING_SNAKE_CASE__ : float ): '''simple docstring''' _lowerCamelCase : Union[str, Any] =numpy.radians(SCREAMING_SNAKE_CASE__ ) _lowerCamelCase , _lowerCamelCase : List[Any] =numpy.cos(SCREAMING_SNAKE_CASE__ ), numpy.sin(SCREAMING_SNAKE_CASE__ ) _lowerCamelCase : str =numpy.array(((c, -s), (s, c)) ) return numpy.dot(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def a_ ( SCREAMING_SNAKE_CASE__ : list[numpy.ndarray] ): '''simple docstring''' _lowerCamelCase : Optional[Any] =plt.gca() axes.set_aspect('equal' ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() _lowerCamelCase , _lowerCamelCase : Tuple =zip(*SCREAMING_SNAKE_CASE__ ) plt.plot(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
464
0
import math def UpperCAmelCase__ ( _A ): """simple docstring""" a_ = [] a_ = 2 a_ = int(math.sqrt(_A ) ) # Size of every segment a_ = [True] * (end + 1) a_ = [] while start <= end: if temp[start] is True: in_prime.append(_A ) for i in range(start * start , end + 1 , _A ): a_ = False start += 1 prime += in_prime a_ = end + 1 a_ = min(2 * end , _A ) while low <= n: a_ = [True] * (high - low + 1) for each in in_prime: a_ = math.floor(low / each ) * each if t < low: t += each for j in range(_A , high + 1 , _A ): a_ = False for j in range(len(_A ) ): if temp[j] is True: prime.append(j + low ) a_ = high + 1 a_ = min(high + end , _A ) return prime print(sieve(10**6))
143
import warnings from ...utils import logging from .image_processing_poolformer import PoolFormerImageProcessor UpperCamelCase__ = logging.get_logger(__name__) class __lowercase ( a__ ): def __init__( self : List[Any] , *lowercase__ : Tuple , **lowercase__ : List[Any] ): warnings.warn( '''The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use PoolFormerImageProcessor instead.''' , lowercase__ , ) super().__init__(*lowercase__ , **lowercase__ )
143
1
import argparse from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) parser.add_argument( '--original_config_file', type=str, required=True, help='The YAML config file corresponding to the original architecture.', ) parser.add_argument( '--num_in_channels', default=None, type=int, help='The number of input channels. If `None` number of input channels will be automatically inferred.', ) parser.add_argument( '--image_size', default=512, type=int, help=( 'The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2' ' Base. Use 768 for Stable Diffusion v2.' ), ) parser.add_argument( '--extract_ema', action='store_true', help=( 'Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights' ' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield' ' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.' ), ) parser.add_argument( '--upcast_attention', action='store_true', help=( 'Whether the attention computation should always be upcasted. This is necessary when running stable' ' diffusion 2.1.' ), ) parser.add_argument( '--from_safetensors', action='store_true', help='If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.', ) parser.add_argument( '--to_safetensors', action='store_true', help='Whether to store pipeline in safetensors format or not.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)') def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" if string == "True": return True elif string == "False": return False else: raise ValueError(f'could not parse string as bool {string}' ) parser.add_argument( '--use_linear_projection', help='Override for use linear projection', required=False, type=parse_bool ) parser.add_argument('--cross_attention_dim', help='Override for cross attention_dim', required=False, type=int) lowerCAmelCase = parser.parse_args() lowerCAmelCase = download_controlnet_from_original_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, extract_ema=args.extract_ema, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, use_linear_projection=args.use_linear_projection, cross_attention_dim=args.cross_attention_dim, ) controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
43
'''simple docstring''' # DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class __UpperCamelCase ( lowercase__ , lowercase__ ): lowercase : Tuple = 1 @register_to_config def __init__( self :Optional[Any] ,_UpperCamelCase :Tuple=2_0_0_0 ,_UpperCamelCase :List[str]=0.1 ,_UpperCamelCase :Optional[int]=2_0 ,_UpperCamelCase :Any=1E-3 ): snake_case_ : int = None snake_case_ : Tuple = None snake_case_ : Optional[Any] = None def a__ ( self :Tuple ,_UpperCamelCase :List[str] ,_UpperCamelCase :Union[str, torch.device] = None ): snake_case_ : List[Any] = torch.linspace(1 ,self.config.sampling_eps ,_UpperCamelCase ,device=_UpperCamelCase ) def a__ ( self :Any ,_UpperCamelCase :Optional[Any] ,_UpperCamelCase :Optional[Any] ,_UpperCamelCase :Any ,_UpperCamelCase :Tuple=None ): if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score snake_case_ : Union[str, Any] = ( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) snake_case_ : List[str] = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) snake_case_ : Tuple = std.flatten() while len(std.shape ) < len(score.shape ): snake_case_ : Dict = std.unsqueeze(-1 ) snake_case_ : Tuple = -score / std # compute snake_case_ : Any = -1.0 / len(self.timesteps ) snake_case_ : Union[str, Any] = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) snake_case_ : Any = beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): snake_case_ : Optional[int] = beta_t.unsqueeze(-1 ) snake_case_ : List[str] = -0.5 * beta_t * x snake_case_ : Tuple = torch.sqrt(_UpperCamelCase ) snake_case_ : Any = drift - diffusion**2 * score snake_case_ : List[str] = x + drift * dt # add noise snake_case_ : List[Any] = randn_tensor(x.shape ,layout=x.layout ,generator=_UpperCamelCase ,device=x.device ,dtype=x.dtype ) snake_case_ : int = x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self :List[Any] ): return self.config.num_train_timesteps
334
0
'''simple docstring''' from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class a__ : """simple docstring""" def __init__( self : int , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : int=1_3 , UpperCAmelCase__ : Tuple=7 , UpperCAmelCase__ : Optional[Any]=True , UpperCAmelCase__ : Union[str, Any]=True , UpperCAmelCase__ : Dict=True , UpperCAmelCase__ : List[Any]=True , UpperCAmelCase__ : int=9_9 , UpperCAmelCase__ : str=3_2 , UpperCAmelCase__ : str=2 , UpperCAmelCase__ : Tuple=4 , UpperCAmelCase__ : Optional[Any]=3_7 , UpperCAmelCase__ : List[str]="gelu" , UpperCAmelCase__ : List[Any]=0.1 , UpperCAmelCase__ : str=0.1 , UpperCAmelCase__ : Union[str, Any]=5_1_2 , UpperCAmelCase__ : Optional[Any]=1_6 , UpperCAmelCase__ : Optional[int]=2 , UpperCAmelCase__ : Optional[Any]=0.02 , UpperCAmelCase__ : str=3 , UpperCAmelCase__ : int=4 , UpperCAmelCase__ : int=None , ) ->List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = parent SCREAMING_SNAKE_CASE : Tuple = 1_3 SCREAMING_SNAKE_CASE : Dict = 7 SCREAMING_SNAKE_CASE : List[str] = True SCREAMING_SNAKE_CASE : Optional[Any] = True SCREAMING_SNAKE_CASE : Tuple = True SCREAMING_SNAKE_CASE : Optional[Any] = True SCREAMING_SNAKE_CASE : str = 9_9 SCREAMING_SNAKE_CASE : Optional[Any] = 3_8_4 SCREAMING_SNAKE_CASE : Optional[int] = 2 SCREAMING_SNAKE_CASE : str = 4 SCREAMING_SNAKE_CASE : str = 3_7 SCREAMING_SNAKE_CASE : List[Any] = """gelu""" SCREAMING_SNAKE_CASE : Dict = 0.1 SCREAMING_SNAKE_CASE : Union[str, Any] = 0.1 SCREAMING_SNAKE_CASE : Dict = 5_1_2 SCREAMING_SNAKE_CASE : int = 1_6 SCREAMING_SNAKE_CASE : List[Any] = 2 SCREAMING_SNAKE_CASE : str = 0.02 SCREAMING_SNAKE_CASE : Optional[int] = 3 SCREAMING_SNAKE_CASE : Tuple = 4 SCREAMING_SNAKE_CASE : Any = 1_2_8 SCREAMING_SNAKE_CASE : List[Any] = 2 SCREAMING_SNAKE_CASE : str = 9 SCREAMING_SNAKE_CASE : Optional[Any] = 1 SCREAMING_SNAKE_CASE : Optional[Any] = None def _lowercase ( self : Optional[int] ) ->Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE : str = None if self.use_input_mask: SCREAMING_SNAKE_CASE : int = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE : Any = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE : Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE : Tuple = None SCREAMING_SNAKE_CASE : Union[str, Any] = None SCREAMING_SNAKE_CASE : Tuple = None if self.use_labels: SCREAMING_SNAKE_CASE : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE : Dict = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=UpperCAmelCase__ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowercase ( self : Union[str, Any] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : int , UpperCAmelCase__ : Any , UpperCAmelCase__ : Any , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Dict ) ->List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = TFConvBertModel(config=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} SCREAMING_SNAKE_CASE : str = [input_ids, input_mask] SCREAMING_SNAKE_CASE : Any = model(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = model(UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self : Optional[int] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : str ) ->Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = TFConvBertForMaskedLM(config=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : Any = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } SCREAMING_SNAKE_CASE : int = model(UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase ( self : List[str] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : Dict ) ->List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = self.num_labels SCREAMING_SNAKE_CASE : Tuple = TFConvBertForSequenceClassification(config=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : Optional[Any] = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } SCREAMING_SNAKE_CASE : Union[str, Any] = model(UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowercase ( self : List[Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : str , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Tuple ) ->Any: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = self.num_choices SCREAMING_SNAKE_CASE : Union[str, Any] = TFConvBertForMultipleChoice(config=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : Dict = tf.tile(tf.expand_dims(UpperCAmelCase__ , 1 ) , (1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE : Dict = tf.tile(tf.expand_dims(UpperCAmelCase__ , 1 ) , (1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE : Dict = tf.tile(tf.expand_dims(UpperCAmelCase__ , 1 ) , (1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE : Optional[Any] = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } SCREAMING_SNAKE_CASE : Dict = model(UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowercase ( self : Tuple , UpperCAmelCase__ : Any , UpperCAmelCase__ : int , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Dict , UpperCAmelCase__ : int , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Dict ) ->Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = self.num_labels SCREAMING_SNAKE_CASE : Optional[int] = TFConvBertForTokenClassification(config=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : Optional[int] = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } SCREAMING_SNAKE_CASE : Any = model(UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowercase ( self : Tuple , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : str , UpperCAmelCase__ : int , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : List[str] ) ->Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = TFConvBertForQuestionAnswering(config=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } SCREAMING_SNAKE_CASE : Optional[int] = model(UpperCAmelCase__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowercase ( self : int ) ->List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : int = self.prepare_config_and_inputs() ( SCREAMING_SNAKE_CASE ) : Dict = config_and_inputs SCREAMING_SNAKE_CASE : Tuple = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class a__ ( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Dict =( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) UpperCAmelCase__ : List[str] =( { """feature-extraction""": TFConvBertModel, """fill-mask""": TFConvBertForMaskedLM, """question-answering""": TFConvBertForQuestionAnswering, """text-classification""": TFConvBertForSequenceClassification, """token-classification""": TFConvBertForTokenClassification, """zero-shot""": TFConvBertForSequenceClassification, } if is_tf_available() else {} ) UpperCAmelCase__ : Dict =False UpperCAmelCase__ : Union[str, Any] =False UpperCAmelCase__ : List[str] =False def _lowercase ( self : int ) ->int: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = TFConvBertModelTester(self ) SCREAMING_SNAKE_CASE : Any = ConfigTester(self , config_class=UpperCAmelCase__ , hidden_size=3_7 ) def _lowercase ( self : str ) ->int: """simple docstring""" self.config_tester.run_common_tests() def _lowercase ( self : Dict ) ->Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__ ) def _lowercase ( self : Union[str, Any] ) ->Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase__ ) def _lowercase ( self : List[Any] ) ->int: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCAmelCase__ ) def _lowercase ( self : Any ) ->Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase__ ) def _lowercase ( self : Optional[int] ) ->Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase__ ) def _lowercase ( self : Union[str, Any] ) ->Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase__ ) @slow def _lowercase ( self : Any ) ->Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : int = True SCREAMING_SNAKE_CASE : Dict = True if hasattr(UpperCAmelCase__ , """use_cache""" ): SCREAMING_SNAKE_CASE : Optional[Any] = True SCREAMING_SNAKE_CASE : Union[str, Any] = getattr(self.model_tester , """encoder_seq_length""" , self.model_tester.seq_length ) SCREAMING_SNAKE_CASE : Optional[Any] = getattr(self.model_tester , """key_length""" , UpperCAmelCase__ ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : int = self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : List[str] = model_class(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : str = len(model(UpperCAmelCase__ ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCAmelCase__ , saved_model=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : List[Any] = os.path.join(UpperCAmelCase__ , """saved_model""" , """1""" ) SCREAMING_SNAKE_CASE : int = tf.keras.models.load_model(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : int = model(UpperCAmelCase__ ) if self.is_encoder_decoder: SCREAMING_SNAKE_CASE : int = outputs["""encoder_hidden_states"""] SCREAMING_SNAKE_CASE : Tuple = outputs["""encoder_attentions"""] else: SCREAMING_SNAKE_CASE : str = outputs["""hidden_states"""] SCREAMING_SNAKE_CASE : Optional[int] = outputs["""attentions"""] self.assertEqual(len(UpperCAmelCase__ ) , UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : List[str] = getattr( self.model_tester , """expected_num_hidden_layers""" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(UpperCAmelCase__ ) , UpperCAmelCase__ ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(UpperCAmelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def _lowercase ( self : List[str] ) ->Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : int = TFConvBertModel.from_pretrained("""YituTech/conv-bert-base""" ) self.assertIsNotNone(UpperCAmelCase__ ) def _lowercase ( self : Any ) ->int: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : List[Any] = True SCREAMING_SNAKE_CASE : Dict = getattr(self.model_tester , """decoder_seq_length""" , self.model_tester.seq_length ) SCREAMING_SNAKE_CASE : Union[str, Any] = getattr(self.model_tester , """encoder_seq_length""" , self.model_tester.seq_length ) SCREAMING_SNAKE_CASE : int = getattr(self.model_tester , """key_length""" , UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : List[str] = getattr(self.model_tester , """key_length""" , UpperCAmelCase__ ) def check_decoder_attentions_output(UpperCAmelCase__ : Optional[int] ): SCREAMING_SNAKE_CASE : str = len(UpperCAmelCase__ ) self.assertEqual(out_len % 2 , 0 ) SCREAMING_SNAKE_CASE : Optional[int] = outputs.decoder_attentions self.assertEqual(len(UpperCAmelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(UpperCAmelCase__ : Union[str, Any] ): SCREAMING_SNAKE_CASE : Any = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(UpperCAmelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Union[str, Any] = True SCREAMING_SNAKE_CASE : Dict = False SCREAMING_SNAKE_CASE : Any = model_class(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : str = model(self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ ) ) SCREAMING_SNAKE_CASE : List[Any] = len(UpperCAmelCase__ ) self.assertEqual(config.output_hidden_states , UpperCAmelCase__ ) check_encoder_attentions_output(UpperCAmelCase__ ) if self.is_encoder_decoder: SCREAMING_SNAKE_CASE : List[Any] = model_class(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : List[Any] = model(self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ ) ) self.assertEqual(config.output_hidden_states , UpperCAmelCase__ ) check_decoder_attentions_output(UpperCAmelCase__ ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] SCREAMING_SNAKE_CASE : Optional[Any] = True SCREAMING_SNAKE_CASE : Optional[int] = model_class(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : Any = model(self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ ) ) self.assertEqual(config.output_hidden_states , UpperCAmelCase__ ) check_encoder_attentions_output(UpperCAmelCase__ ) # Check attention is always last and order is fine SCREAMING_SNAKE_CASE : Optional[Any] = True SCREAMING_SNAKE_CASE : List[str] = True SCREAMING_SNAKE_CASE : List[str] = model_class(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : Optional[Any] = model(self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(UpperCAmelCase__ ) ) self.assertEqual(model.config.output_hidden_states , UpperCAmelCase__ ) check_encoder_attentions_output(UpperCAmelCase__ ) @require_tf class a__ ( unittest.TestCase ): """simple docstring""" @slow def _lowercase ( self : Tuple ) ->List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = TFConvBertModel.from_pretrained("""YituTech/conv-bert-base""" ) SCREAMING_SNAKE_CASE : Optional[Any] = tf.constant([[0, 1, 2, 3, 4, 5]] ) SCREAMING_SNAKE_CASE : Tuple = model(UpperCAmelCase__ )[0] SCREAMING_SNAKE_CASE : Union[str, Any] = [1, 6, 7_6_8] self.assertEqual(output.shape , UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : Any = tf.constant( [ [ [-0.03_47_54_93, -0.4_68_60_34, -0.30_63_88_32], [0.22_63_72_48, -0.26_98_86_46, -0.7_42_34_24], [0.10_32_48_68, -0.45_01_35_08, -0.58_28_07_84], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase__ , atol=1e-4 )
702
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCAmelCase__ : str = {"""processing_layoutxlm""": ["""LayoutXLMProcessor"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Any = ["""LayoutXLMTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : List[str] = ["""LayoutXLMTokenizerFast"""] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys UpperCAmelCase__ : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
446
0
def _lowerCAmelCase ( UpperCamelCase__: int ) -> "list[int]": """simple docstring""" if upper_limit < 0: raise ValueError("""Limit for the Catalan sequence must be ≥ 0""" ) A = [0] * (upper_limit + 1) # Base case: C(0) = C(1) = 1 A = 1 if upper_limit > 0: A = 1 # Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i for i in range(2 , upper_limit + 1 ): for j in range(UpperCamelCase__ ): catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1] return catalan_list if __name__ == "__main__": print("\n********* Catalan Numbers Using Dynamic Programming ************\n") print("\n*** Enter -1 at any time to quit ***") print("\nEnter the upper limit (≥ 0) for the Catalan number sequence: ", end="") try: while True: _lowercase : List[str] = int(input().strip()) if N < 0: print("\n********* Goodbye!! ************") break else: print(f'''The Catalan numbers from 0 through {N} are:''') print(catalan_numbers(N)) print("Try another upper limit for the sequence: ", end="") except (NameError, ValueError): print("\n********* Invalid input, goodbye! ************\n") import doctest doctest.testmod()
641
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def _lowerCAmelCase ( UpperCamelCase__: List[Any]=None ) -> Union[str, Any]: """simple docstring""" if subparsers is not None: A = subparsers.add_parser("""test""" ) else: A = argparse.ArgumentParser("""Accelerate test command""" ) parser.add_argument( """--config_file""" , default=UpperCamelCase__ , help=( """The path to use to store the config file. Will default to a file named default_config.yaml in the cache """ """location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have """ """such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed """ """with 'huggingface'.""" ) , ) if subparsers is not None: parser.set_defaults(func=UpperCamelCase__ ) return parser def _lowerCAmelCase ( UpperCamelCase__: Union[str, Any] ) -> Any: """simple docstring""" A = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ["""test_utils""", """scripts""", """test_script.py"""] ) if args.config_file is None: A = script_name else: A = f'--config_file={args.config_file} {script_name}' A = ["""accelerate-launch"""] + test_args.split() A = execute_subprocess_async(UpperCamelCase__ , env=os.environ.copy() ) if result.returncode == 0: print("""Test is a success! You are ready for your distributed training!""" ) def _lowerCAmelCase ( ) -> List[Any]: """simple docstring""" A = test_command_parser() A = parser.parse_args() test_command(UpperCamelCase__ ) if __name__ == "__main__": main()
641
1
'''simple docstring''' from PIL import Image def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ): def brightness(UpperCAmelCase ) -> float: return 128 + level + (c - 128) if not -2_5_5.0 <= level <= 2_5_5.0: raise ValueError('''level must be between -255.0 (black) and 255.0 (white)''' ) return img.point(UpperCAmelCase ) if __name__ == "__main__": # Load image with Image.open("""image_data/lena.jpg""") as img: # Change brightness to 100 __a: Optional[int] = change_brightness(img, 1_00) brigt_img.save("""image_data/lena_brightness.png""", format="""png""")
428
'''simple docstring''' import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoImageProcessor, ViTImageProcessor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / """utils""")) from test_module.custom_image_processing import CustomImageProcessor # noqa E402 __a: str = get_tests_dir("""fixtures""") class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase( self ) -> str: # A mock response for an HTTP head request to emulate server down lowercase__ : Any = mock.Mock() lowercase__ : Dict = 500 lowercase__ : Dict = {} lowercase__ : Optional[int] = HTTPError lowercase__ : int = {} # Download this model to make sure it's in the cache. lowercase__ : Any = ViTImageProcessor.from_pretrained('''hf-internal-testing/tiny-random-vit''' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('''requests.Session.request''' , return_value=__lowerCAmelCase ) as mock_head: lowercase__ : Optional[int] = ViTImageProcessor.from_pretrained('''hf-internal-testing/tiny-random-vit''' ) # This check we did call the fake head request mock_head.assert_called() def _lowerCAmelCase( self ) -> Optional[Any]: # This test is for deprecated behavior and can be removed in v5 lowercase__ : Union[str, Any] = ViTImageProcessor.from_pretrained( '''https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json''' ) def _lowerCAmelCase( self ) -> List[str]: with self.assertRaises(__lowerCAmelCase ): # config is in subfolder, the following should not work without specifying the subfolder lowercase__ : Any = AutoImageProcessor.from_pretrained('''hf-internal-testing/stable-diffusion-all-variants''' ) lowercase__ : str = AutoImageProcessor.from_pretrained( '''hf-internal-testing/stable-diffusion-all-variants''' , subfolder='''feature_extractor''' ) self.assertIsNotNone(__lowerCAmelCase ) @is_staging_test class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @classmethod def _lowerCAmelCase( cls ) -> List[str]: lowercase__ : str = TOKEN HfFolder.save_token(__lowerCAmelCase ) @classmethod def _lowerCAmelCase( cls ) -> Union[str, Any]: try: delete_repo(token=cls._token , repo_id='''test-image-processor''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-image-processor-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-image-processor''' ) except HTTPError: pass def _lowerCAmelCase( self ) -> Dict: lowercase__ : str = ViTImageProcessor.from_pretrained(__lowerCAmelCase ) image_processor.push_to_hub('''test-image-processor''' , use_auth_token=self._token ) lowercase__ : Tuple = ViTImageProcessor.from_pretrained(F"""{USER}/test-image-processor""" ) for k, v in image_processor.__dict__.items(): self.assertEqual(__lowerCAmelCase , getattr(__lowerCAmelCase , __lowerCAmelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='''test-image-processor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( __lowerCAmelCase , repo_id='''test-image-processor''' , push_to_hub=__lowerCAmelCase , use_auth_token=self._token ) lowercase__ : Tuple = ViTImageProcessor.from_pretrained(F"""{USER}/test-image-processor""" ) for k, v in image_processor.__dict__.items(): self.assertEqual(__lowerCAmelCase , getattr(__lowerCAmelCase , __lowerCAmelCase ) ) def _lowerCAmelCase( self ) -> int: lowercase__ : Dict = ViTImageProcessor.from_pretrained(__lowerCAmelCase ) image_processor.push_to_hub('''valid_org/test-image-processor''' , use_auth_token=self._token ) lowercase__ : List[Any] = ViTImageProcessor.from_pretrained('''valid_org/test-image-processor''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(__lowerCAmelCase , getattr(__lowerCAmelCase , __lowerCAmelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-image-processor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( __lowerCAmelCase , repo_id='''valid_org/test-image-processor-org''' , push_to_hub=__lowerCAmelCase , use_auth_token=self._token ) lowercase__ : Tuple = ViTImageProcessor.from_pretrained('''valid_org/test-image-processor-org''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(__lowerCAmelCase , getattr(__lowerCAmelCase , __lowerCAmelCase ) ) def _lowerCAmelCase( self ) -> List[Any]: CustomImageProcessor.register_for_auto_class() lowercase__ : Dict = CustomImageProcessor.from_pretrained(__lowerCAmelCase ) image_processor.push_to_hub('''test-dynamic-image-processor''' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( image_processor.auto_map , {'''AutoImageProcessor''': '''custom_image_processing.CustomImageProcessor'''} , ) lowercase__ : Union[str, Any] = AutoImageProcessor.from_pretrained( F"""{USER}/test-dynamic-image-processor""" , trust_remote_code=__lowerCAmelCase ) # Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module self.assertEqual(new_image_processor.__class__.__name__ , '''CustomImageProcessor''' )
428
1
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, flip_channel_order, get_resize_output_image_size, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging if is_vision_available(): import PIL if is_torch_available(): import torch lowerCAmelCase = logging.get_logger(__name__) class A ( _SCREAMING_SNAKE_CASE ): UpperCamelCase_ : Dict =["pixel_values"] def __init__(self , lowerCAmelCase = True , lowerCAmelCase = None , lowerCAmelCase = PILImageResampling.BILINEAR , lowerCAmelCase = True , lowerCAmelCase = 1 / 2_5_5 , lowerCAmelCase = True , lowerCAmelCase = None , lowerCAmelCase = True , **lowerCAmelCase , ): super().__init__(**snake_case_ ) __lowercase= size if size is not None else {'shortest_edge': 2_2_4} __lowercase= get_size_dict(snake_case_ , default_to_square=snake_case_ ) __lowercase= crop_size if crop_size is not None else {'height': 2_5_6, 'width': 2_5_6} __lowercase= get_size_dict(snake_case_ , param_name='crop_size' ) __lowercase= do_resize __lowercase= size __lowercase= resample __lowercase= do_rescale __lowercase= rescale_factor __lowercase= do_center_crop __lowercase= crop_size __lowercase= do_flip_channel_order def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = PIL.Image.BILINEAR , lowerCAmelCase = None , **lowerCAmelCase , ): __lowercase= get_size_dict(snake_case_ , default_to_square=snake_case_ ) if "shortest_edge" not in size: raise ValueError(f'The `size` dictionary must contain the key `shortest_edge`. Got {size.keys()}' ) __lowercase= get_resize_output_image_size(snake_case_ , size=size['shortest_edge'] , default_to_square=snake_case_ ) return resize(snake_case_ , size=snake_case_ , resample=snake_case_ , data_format=snake_case_ , **snake_case_ ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = None , **lowerCAmelCase , ): __lowercase= get_size_dict(snake_case_ ) if "height" not in size or "width" not in size: raise ValueError(f'The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}' ) return center_crop(snake_case_ , size=(size['height'], size['width']) , data_format=snake_case_ , **snake_case_ ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = None , **lowerCAmelCase , ): return rescale(snake_case_ , scale=snake_case_ , data_format=snake_case_ , **snake_case_ ) def _A (self , lowerCAmelCase , lowerCAmelCase = None ): return flip_channel_order(snake_case_ , data_format=snake_case_ ) def _A (self , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = ChannelDimension.FIRST , **lowerCAmelCase , ): __lowercase= do_resize if do_resize is not None else self.do_resize __lowercase= resample if resample is not None else self.resample __lowercase= do_rescale if do_rescale is not None else self.do_rescale __lowercase= rescale_factor if rescale_factor is not None else self.rescale_factor __lowercase= do_center_crop if do_center_crop is not None else self.do_center_crop __lowercase= ( do_flip_channel_order if do_flip_channel_order is not None else self.do_flip_channel_order ) __lowercase= size if size is not None else self.size __lowercase= get_size_dict(snake_case_ , default_to_square=snake_case_ ) __lowercase= crop_size if crop_size is not None else self.crop_size __lowercase= get_size_dict(snake_case_ , param_name='crop_size' ) __lowercase= make_list_of_images(snake_case_ ) if not valid_images(snake_case_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) # All transformations expect numpy arrays. __lowercase= [to_numpy_array(snake_case_ ) for image in images] if do_resize: __lowercase= [self.resize(image=snake_case_ , size=snake_case_ , resample=snake_case_ ) for image in images] if do_center_crop: __lowercase= [self.center_crop(image=snake_case_ , size=snake_case_ ) for image in images] if do_rescale: __lowercase= [self.rescale(image=snake_case_ , scale=snake_case_ ) for image in images] # the pretrained checkpoints assume images are BGR, not RGB if do_flip_channel_order: __lowercase= [self.flip_channel_order(image=snake_case_ ) for image in images] __lowercase= [to_channel_dimension_format(snake_case_ , snake_case_ ) for image in images] __lowercase= {'pixel_values': images} return BatchFeature(data=snake_case_ , tensor_type=snake_case_ ) def _A (self , lowerCAmelCase , lowerCAmelCase = None ): __lowercase= outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(snake_case_ ) != len(snake_case_ ): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits' ) if is_torch_tensor(snake_case_ ): __lowercase= target_sizes.numpy() __lowercase= [] for idx in range(len(snake_case_ ) ): __lowercase= torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='bilinear' , align_corners=snake_case_ ) __lowercase= resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(snake_case_ ) else: __lowercase= logits.argmax(dim=1 ) __lowercase= [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
230
"""simple docstring""" import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def A__ ( A__ , A__ ) -> Optional[int]: '''simple docstring''' assert isinstance(A__ , A__ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def A__ ( A__ , A__ , A__ ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase = tmp_path / "cache" _UpperCAmelCase = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _UpperCAmelCase = JsonDatasetReader(A__ , cache_dir=A__ , keep_in_memory=A__ ).read() _check_json_dataset(A__ , A__ ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def A__ ( A__ , A__ , A__ ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = tmp_path / "cache" _UpperCAmelCase = {"col_1": "string", "col_2": "int64", "col_3": "float64"} _UpperCAmelCase = features.copy() if features else default_expected_features _UpperCAmelCase = ( Features({feature: Value(A__ ) for feature, dtype in features.items()} ) if features is not None else None ) _UpperCAmelCase = JsonDatasetReader(A__ , features=A__ , cache_dir=A__ ).read() _check_json_dataset(A__ , A__ ) @pytest.mark.parametrize( "features" , [ None, {"col_3": "float64", "col_1": "string", "col_2": "int64"}, ] , ) def A__ ( A__ , A__ , A__ ) -> List[Any]: '''simple docstring''' _UpperCAmelCase = tmp_path / "cache" _UpperCAmelCase = {"col_3": "float64", "col_1": "string", "col_2": "int64"} _UpperCAmelCase = features.copy() if features else default_expected_features _UpperCAmelCase = ( Features({feature: Value(A__ ) for feature, dtype in features.items()} ) if features is not None else None ) _UpperCAmelCase = JsonDatasetReader(A__ , features=A__ , cache_dir=A__ ).read() assert isinstance(A__ , A__ ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def A__ ( A__ , A__ ) -> List[str]: '''simple docstring''' _UpperCAmelCase = {"col_2": "int64", "col_3": "float64", "col_1": "string"} _UpperCAmelCase = features.copy() _UpperCAmelCase = ( Features({feature: Value(A__ ) for feature, dtype in features.items()} ) if features is not None else None ) _UpperCAmelCase = tmp_path / "cache" _UpperCAmelCase = JsonDatasetReader(A__ , features=A__ , cache_dir=A__ ).read() assert isinstance(A__ , A__ ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def A__ ( A__ , A__ , A__ ) -> str: '''simple docstring''' _UpperCAmelCase = tmp_path / "cache" _UpperCAmelCase = {"col_1": "string", "col_2": "int64", "col_3": "float64"} _UpperCAmelCase = JsonDatasetReader(A__ , cache_dir=A__ , split=A__ ).read() _check_json_dataset(A__ , A__ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type" , [str, list] ) def A__ ( A__ , A__ , A__ ) -> Dict: '''simple docstring''' if issubclass(A__ , A__ ): _UpperCAmelCase = jsonl_path elif issubclass(A__ , A__ ): _UpperCAmelCase = [jsonl_path] _UpperCAmelCase = tmp_path / "cache" _UpperCAmelCase = {"col_1": "string", "col_2": "int64", "col_3": "float64"} _UpperCAmelCase = JsonDatasetReader(A__ , cache_dir=A__ ).read() _check_json_dataset(A__ , A__ ) def A__ ( A__ , A__ , A__=("train",) ) -> List[str]: '''simple docstring''' assert isinstance(A__ , A__ ) for split in splits: _UpperCAmelCase = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def A__ ( A__ , A__ , A__ ) -> Any: '''simple docstring''' _UpperCAmelCase = tmp_path / "cache" _UpperCAmelCase = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _UpperCAmelCase = JsonDatasetReader({"train": jsonl_path} , cache_dir=A__ , keep_in_memory=A__ ).read() _check_json_datasetdict(A__ , A__ ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def A__ ( A__ , A__ , A__ ) -> List[Any]: '''simple docstring''' _UpperCAmelCase = tmp_path / "cache" _UpperCAmelCase = {"col_1": "string", "col_2": "int64", "col_3": "float64"} _UpperCAmelCase = features.copy() if features else default_expected_features _UpperCAmelCase = ( Features({feature: Value(A__ ) for feature, dtype in features.items()} ) if features is not None else None ) _UpperCAmelCase = JsonDatasetReader({"train": jsonl_path} , features=A__ , cache_dir=A__ ).read() _check_json_datasetdict(A__ , A__ ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def A__ ( A__ , A__ , A__ ) -> Optional[Any]: '''simple docstring''' if split: _UpperCAmelCase = {split: jsonl_path} else: _UpperCAmelCase = "train" _UpperCAmelCase = {"train": jsonl_path, "test": jsonl_path} _UpperCAmelCase = tmp_path / "cache" _UpperCAmelCase = {"col_1": "string", "col_2": "int64", "col_3": "float64"} _UpperCAmelCase = JsonDatasetReader(A__ , cache_dir=A__ ).read() _check_json_datasetdict(A__ , A__ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def A__ ( A__ ) -> List[Any]: '''simple docstring''' return json.load(A__ ) def A__ ( A__ ) -> int: '''simple docstring''' return [json.loads(A__ ) for line in buffer] class a : """simple docstring""" @pytest.mark.parametrize("lines, load_json_function" , [(True, load_json_lines), (False, load_json)] ) def __A ( self , snake_case_ , snake_case_ , snake_case_ ) -> Dict: with io.BytesIO() as buffer: JsonDatasetWriter(snake_case_ , snake_case_ , lines=snake_case_ ).write() buffer.seek(0 ) _UpperCAmelCase = load_json_function(snake_case_ ) assert isinstance(snake_case_ , snake_case_ ) assert isinstance(exported_content[0] , snake_case_ ) assert len(snake_case_ ) == 10 @pytest.mark.parametrize( "orient, container, keys, len_at" , [ ("records", list, {"tokens", "labels", "answers", "id"}, None), ("split", dict, {"columns", "data"}, "data"), ("index", dict, set("0123456789" ), None), ("columns", dict, {"tokens", "labels", "answers", "id"}, "tokens"), ("values", list, None, None), ("table", dict, {"schema", "data"}, "data"), ] , ) def __A ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Any: with io.BytesIO() as buffer: JsonDatasetWriter(snake_case_ , snake_case_ , lines=snake_case_ , orient=snake_case_ ).write() buffer.seek(0 ) _UpperCAmelCase = load_json(snake_case_ ) assert isinstance(snake_case_ , snake_case_ ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(snake_case_ , "keys" ) and not hasattr(exported_content[0] , "keys" ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(snake_case_ ) == 10 @pytest.mark.parametrize("lines, load_json_function" , [(True, load_json_lines), (False, load_json)] ) def __A ( self , snake_case_ , snake_case_ , snake_case_ ) -> Union[str, Any]: with io.BytesIO() as buffer: JsonDatasetWriter(snake_case_ , snake_case_ , lines=snake_case_ , num_proc=2 ).write() buffer.seek(0 ) _UpperCAmelCase = load_json_function(snake_case_ ) assert isinstance(snake_case_ , snake_case_ ) assert isinstance(exported_content[0] , snake_case_ ) assert len(snake_case_ ) == 10 @pytest.mark.parametrize( "orient, container, keys, len_at" , [ ("records", list, {"tokens", "labels", "answers", "id"}, None), ("split", dict, {"columns", "data"}, "data"), ("index", dict, set("0123456789" ), None), ("columns", dict, {"tokens", "labels", "answers", "id"}, "tokens"), ("values", list, None, None), ("table", dict, {"schema", "data"}, "data"), ] , ) def __A ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Dict: with io.BytesIO() as buffer: JsonDatasetWriter(snake_case_ , snake_case_ , lines=snake_case_ , orient=snake_case_ , num_proc=2 ).write() buffer.seek(0 ) _UpperCAmelCase = load_json(snake_case_ ) assert isinstance(snake_case_ , snake_case_ ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(snake_case_ , "keys" ) and not hasattr(exported_content[0] , "keys" ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(snake_case_ ) == 10 def __A ( self , snake_case_ ) -> Any: with pytest.raises(snake_case_ ): with io.BytesIO() as buffer: JsonDatasetWriter(snake_case_ , snake_case_ , num_proc=0 ) @pytest.mark.parametrize("compression, extension" , [("gzip", "gz"), ("bz2", "bz2"), ("xz", "xz")] ) def __A ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> List[str]: _UpperCAmelCase = tmp_path_factory.mktemp("data" ) / F"""test.json.{extension}""" _UpperCAmelCase = str(shared_datadir / F"""test_file.json.{extension}""" ) JsonDatasetWriter(snake_case_ , snake_case_ , compression=snake_case_ ).write() with fsspec.open(snake_case_ , "rb" , compression="infer" ) as f: _UpperCAmelCase = f.read() with fsspec.open(snake_case_ , "rb" , compression="infer" ) as f: _UpperCAmelCase = f.read() assert exported_content == original_content
426
0
_lowerCamelCase = { 'Pillow': 'Pillow<10.0.0', 'accelerate': 'accelerate>=0.20.3', 'av': 'av==9.2.0', 'beautifulsoup4': 'beautifulsoup4', 'black': 'black~=23.1', 'codecarbon': 'codecarbon==1.2.0', 'cookiecutter': 'cookiecutter==1.7.3', 'dataclasses': 'dataclasses', 'datasets': 'datasets!=2.5.0', 'decord': 'decord==0.6.0', 'deepspeed': 'deepspeed>=0.9.3', 'diffusers': 'diffusers', 'dill': 'dill<0.3.5', 'evaluate': 'evaluate>=0.2.0', 'fairscale': 'fairscale>0.3', 'faiss-cpu': 'faiss-cpu', 'fastapi': 'fastapi', 'filelock': 'filelock', 'flax': 'flax>=0.4.1,<=0.7.0', 'ftfy': 'ftfy', 'fugashi': 'fugashi>=1.0', 'GitPython': 'GitPython<3.1.19', 'hf-doc-builder': 'hf-doc-builder>=0.3.0', 'huggingface-hub': 'huggingface-hub>=0.14.1,<1.0', 'importlib_metadata': 'importlib_metadata', 'ipadic': 'ipadic>=1.0.0,<2.0', 'isort': 'isort>=5.5.4', 'jax': 'jax>=0.2.8,!=0.3.2,<=0.4.13', 'jaxlib': 'jaxlib>=0.1.65,<=0.4.13', 'jieba': 'jieba', 'kenlm': 'kenlm', 'keras-nlp': 'keras-nlp>=0.3.1', 'librosa': 'librosa', 'nltk': 'nltk', 'natten': 'natten>=0.14.6', 'numpy': 'numpy>=1.17', 'onnxconverter-common': 'onnxconverter-common', 'onnxruntime-tools': 'onnxruntime-tools>=1.4.2', 'onnxruntime': 'onnxruntime>=1.4.0', 'opencv-python': 'opencv-python', 'optuna': 'optuna', 'optax': 'optax>=0.0.8,<=0.1.4', 'packaging': 'packaging>=20.0', 'parameterized': 'parameterized', 'phonemizer': 'phonemizer', 'protobuf': 'protobuf', 'psutil': 'psutil', 'pyyaml': 'pyyaml>=5.1', 'pydantic': 'pydantic<2', 'pytest': 'pytest>=7.2.0', 'pytest-timeout': 'pytest-timeout', 'pytest-xdist': 'pytest-xdist', 'python': 'python>=3.8.0', 'ray[tune]': 'ray[tune]', 'regex': 'regex!=2019.12.17', 'requests': 'requests', 'rhoknp': 'rhoknp>=1.1.0,<1.3.1', 'rjieba': 'rjieba', 'rouge-score': 'rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1', 'ruff': 'ruff>=0.0.241,<=0.0.259', 'sacrebleu': 'sacrebleu>=1.4.12,<2.0.0', 'sacremoses': 'sacremoses', 'safetensors': 'safetensors>=0.3.1', 'sagemaker': 'sagemaker>=2.31.0', 'scikit-learn': 'scikit-learn', 'sentencepiece': 'sentencepiece>=0.1.91,!=0.1.92', 'sigopt': 'sigopt', 'starlette': 'starlette', 'sudachipy': 'sudachipy>=0.6.6', 'sudachidict_core': 'sudachidict_core>=20220729', 'tensorflow-cpu': 'tensorflow-cpu>=2.6,<2.14', 'tensorflow': 'tensorflow>=2.6,<2.14', 'tensorflow-text': 'tensorflow-text<2.14', 'tf2onnx': 'tf2onnx', 'timeout-decorator': 'timeout-decorator', 'timm': 'timm', 'tokenizers': 'tokenizers>=0.11.1,!=0.11.3,<0.14', 'torch': 'torch>=1.9,!=1.12.0', 'torchaudio': 'torchaudio', 'torchvision': 'torchvision', 'pyctcdecode': 'pyctcdecode>=0.4.0', 'tqdm': 'tqdm>=4.27', 'unidic': 'unidic>=1.0.2', 'unidic_lite': 'unidic_lite>=1.0.7', 'urllib3': 'urllib3<2.0.0', 'uvicorn': 'uvicorn', }
59
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) _lowerCamelCase = { 'configuration_layoutlmv3': [ 'LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LayoutLMv3Config', 'LayoutLMv3OnnxConfig', ], 'processing_layoutlmv3': ['LayoutLMv3Processor'], 'tokenization_layoutlmv3': ['LayoutLMv3Tokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = ['LayoutLMv3TokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = [ 'LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST', 'LayoutLMv3ForQuestionAnswering', 'LayoutLMv3ForSequenceClassification', 'LayoutLMv3ForTokenClassification', 'LayoutLMv3Model', 'LayoutLMv3PreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = [ 'TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFLayoutLMv3ForQuestionAnswering', 'TFLayoutLMv3ForSequenceClassification', 'TFLayoutLMv3ForTokenClassification', 'TFLayoutLMv3Model', 'TFLayoutLMv3PreTrainedModel', ] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = ['LayoutLMv3FeatureExtractor'] _lowerCamelCase = ['LayoutLMv3ImageProcessor'] if TYPE_CHECKING: from .configuration_layoutlmva import ( LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig, LayoutLMvaOnnxConfig, ) from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_layoutlmva import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, TFLayoutLMvaPreTrainedModel, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor from .image_processing_layoutlmva import LayoutLMvaImageProcessor else: import sys _lowerCamelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
59
1