code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def _lowercase ( __A ,__A ,__A ,__A ,__A ): '''simple docstring''' __UpperCamelCase = TapasConfig.from_json_file(a__ ) # set absolute/relative position embeddings parameter __UpperCamelCase = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": __UpperCamelCase = TapasForQuestionAnswering(config=a__ ) elif task == "WTQ": # run_task_main.py hparams __UpperCamelCase = 4 __UpperCamelCase = True # hparam_utils.py hparams __UpperCamelCase = 0.66_4694 __UpperCamelCase = 0.20_7951 __UpperCamelCase = 0.12_1194 __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = False __UpperCamelCase = 0.035_2513 __UpperCamelCase = TapasForQuestionAnswering(config=a__ ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams __UpperCamelCase = 4 __UpperCamelCase = False # hparam_utils.py hparams __UpperCamelCase = 36.4519 __UpperCamelCase = 0.90_3421 __UpperCamelCase = 222.088 __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = 0.76_3141 __UpperCamelCase = TapasForQuestionAnswering(config=a__ ) elif task == "TABFACT": __UpperCamelCase = TapasForSequenceClassification(config=a__ ) elif task == "MLM": __UpperCamelCase = TapasForMaskedLM(config=a__ ) elif task == "INTERMEDIATE_PRETRAINING": __UpperCamelCase = TapasModel(config=a__ ) else: raise ValueError(f"Task {task} not supported." ) print(f"Building PyTorch model from configuration: {config}" ) # Load weights from tf checkpoint load_tf_weights_in_tapas(a__ ,a__ ,a__ ) # Save pytorch-model (weights and configuration) print(f"Save PyTorch model to {pytorch_dump_path}" ) model.save_pretrained(a__ ) # Save tokenizer files print(f"Save tokenizer files to {pytorch_dump_path}" ) __UpperCamelCase = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + """vocab.txt""" ,model_max_length=512 ) tokenizer.save_pretrained(a__ ) print("""Used relative position embeddings:""" ,model.config.reset_position_index_per_cell ) if __name__ == "__main__": a__ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--task', default='SQA', type=str, help='Model task for which to convert a checkpoint. Defaults to SQA.' ) parser.add_argument( '--reset_position_index_per_cell', default=False, action='store_true', help='Whether to use relative position embeddings or not. Defaults to True.', ) parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--tapas_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained TAPAS model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) a__ : Dict = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
601
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() UpperCAmelCase : List[Any] = logging.get_logger(__name__) UpperCAmelCase : Optional[Any] = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'adapter_layer': 'encoder.layers.*.adapter_layer', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', 'pooling_layer.linear': 'projector', 'pooling_layer.projection': 'classifier', } UpperCAmelCase : Any = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', 'projector', 'classifier', ] def a__ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = {} with open(a__ , """r""" ) as file: for line_number, line in enumerate(a__ ): __SCREAMING_SNAKE_CASE = line.strip() if line: __SCREAMING_SNAKE_CASE = line.split() __SCREAMING_SNAKE_CASE = line_number __SCREAMING_SNAKE_CASE = words[0] __SCREAMING_SNAKE_CASE = value return result def a__ ( a__ , a__ , a__ , a__ , a__ ): """simple docstring""" for attribute in key.split(""".""" ): __SCREAMING_SNAKE_CASE = getattr(a__ , a__ ) __SCREAMING_SNAKE_CASE = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(a__ ): __SCREAMING_SNAKE_CASE = PARAM_MAPPING[full_name.split(""".""" )[-1]] __SCREAMING_SNAKE_CASE = """param""" if weight_type is not None and weight_type != "param": __SCREAMING_SNAKE_CASE = getattr(a__ , a__ ).shape elif weight_type is not None and weight_type == "param": __SCREAMING_SNAKE_CASE = hf_pointer for attribute in hf_param_name.split(""".""" ): __SCREAMING_SNAKE_CASE = getattr(a__ , a__ ) __SCREAMING_SNAKE_CASE = shape_pointer.shape # let's reduce dimension __SCREAMING_SNAKE_CASE = value[0] else: __SCREAMING_SNAKE_CASE = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": __SCREAMING_SNAKE_CASE = value elif weight_type == "weight_g": __SCREAMING_SNAKE_CASE = value elif weight_type == "weight_v": __SCREAMING_SNAKE_CASE = value elif weight_type == "bias": __SCREAMING_SNAKE_CASE = value elif weight_type == "param": for attribute in hf_param_name.split(""".""" ): __SCREAMING_SNAKE_CASE = getattr(a__ , a__ ) __SCREAMING_SNAKE_CASE = value else: __SCREAMING_SNAKE_CASE = value logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def a__ ( a__ , a__ , a__ , a__ , a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(a__ ): __SCREAMING_SNAKE_CASE = PARAM_MAPPING[full_name.split(""".""" )[-1]] __SCREAMING_SNAKE_CASE = """param""" if weight_type is not None and weight_type != "param": __SCREAMING_SNAKE_CASE = """.""".join([key, weight_type] ) elif weight_type is not None and weight_type == "param": __SCREAMING_SNAKE_CASE = """.""".join([key, hf_param_name] ) else: __SCREAMING_SNAKE_CASE = key __SCREAMING_SNAKE_CASE = value if """lm_head""" in full_key else value[0] UpperCAmelCase : Any = { 'W_a': 'linear_1.weight', 'W_b': 'linear_2.weight', 'b_a': 'linear_1.bias', 'b_b': 'linear_2.bias', 'ln_W': 'norm.weight', 'ln_b': 'norm.bias', } def a__ ( a__ , a__ , a__=None , a__=None ): """simple docstring""" __SCREAMING_SNAKE_CASE = False for key, mapped_key in MAPPING.items(): __SCREAMING_SNAKE_CASE = """wav2vec2.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: __SCREAMING_SNAKE_CASE = True if "*" in mapped_key: __SCREAMING_SNAKE_CASE = name.split(a__ )[0].split(""".""" )[-2] __SCREAMING_SNAKE_CASE = mapped_key.replace("""*""" , a__ ) if "weight_g" in name: __SCREAMING_SNAKE_CASE = """weight_g""" elif "weight_v" in name: __SCREAMING_SNAKE_CASE = """weight_v""" elif "bias" in name: __SCREAMING_SNAKE_CASE = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj __SCREAMING_SNAKE_CASE = """weight""" else: __SCREAMING_SNAKE_CASE = None if hf_dict is not None: rename_dict(a__ , a__ , a__ , a__ , a__ ) else: set_recursively(a__ , a__ , a__ , a__ , a__ ) return is_used return is_used def a__ ( a__ , a__ , a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = fairseq_model.state_dict() __SCREAMING_SNAKE_CASE = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): __SCREAMING_SNAKE_CASE = False if "conv_layers" in name: load_conv_layer( a__ , a__ , a__ , a__ , hf_model.config.feat_extract_norm == """group""" , ) __SCREAMING_SNAKE_CASE = True else: __SCREAMING_SNAKE_CASE = load_wavaveca_layer(a__ , a__ , a__ ) if not is_used: unused_weights.append(a__ ) logger.warning(F'Unused weights: {unused_weights}' ) def a__ ( a__ , a__ , a__ , a__ , a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = full_name.split("""conv_layers.""" )[-1] __SCREAMING_SNAKE_CASE = name.split(""".""" ) __SCREAMING_SNAKE_CASE = int(items[0] ) __SCREAMING_SNAKE_CASE = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) __SCREAMING_SNAKE_CASE = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) __SCREAMING_SNAKE_CASE = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' ) __SCREAMING_SNAKE_CASE = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' ) __SCREAMING_SNAKE_CASE = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(a__ ) @torch.no_grad() def a__ ( a__ , a__ , a__=None , a__=None , a__=True , a__=False ): """simple docstring""" if config_path is not None: __SCREAMING_SNAKE_CASE = WavaVecaConfig.from_pretrained(a__ ) else: __SCREAMING_SNAKE_CASE = WavaVecaConfig() if is_seq_class: __SCREAMING_SNAKE_CASE = read_txt_into_dict(a__ ) __SCREAMING_SNAKE_CASE = idalabel __SCREAMING_SNAKE_CASE = WavaVecaForSequenceClassification(a__ ) __SCREAMING_SNAKE_CASE = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=a__ , return_attention_mask=a__ , ) feature_extractor.save_pretrained(a__ ) elif is_finetuned: if dict_path: __SCREAMING_SNAKE_CASE = Dictionary.load(a__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __SCREAMING_SNAKE_CASE = target_dict.pad_index __SCREAMING_SNAKE_CASE = target_dict.bos_index __SCREAMING_SNAKE_CASE = target_dict.eos_index __SCREAMING_SNAKE_CASE = len(target_dict.symbols ) __SCREAMING_SNAKE_CASE = os.path.join(a__ , """vocab.json""" ) if not os.path.isdir(a__ ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(a__ ) ) return os.makedirs(a__ , exist_ok=a__ ) __SCREAMING_SNAKE_CASE = target_dict.indices # fairseq has the <pad> and <s> switched __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 1 with open(a__ , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(a__ , a__ ) __SCREAMING_SNAKE_CASE = WavaVecaCTCTokenizer( a__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=a__ , ) __SCREAMING_SNAKE_CASE = True if config.feat_extract_norm == """layer""" else False __SCREAMING_SNAKE_CASE = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=a__ , return_attention_mask=a__ , ) __SCREAMING_SNAKE_CASE = WavaVecaProcessor(feature_extractor=a__ , tokenizer=a__ ) processor.save_pretrained(a__ ) __SCREAMING_SNAKE_CASE = WavaVecaForCTC(a__ ) else: __SCREAMING_SNAKE_CASE = WavaVecaForPreTraining(a__ ) if is_finetuned or is_seq_class: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: __SCREAMING_SNAKE_CASE = argparse.Namespace(task="""audio_pretraining""" ) __SCREAMING_SNAKE_CASE = fairseq.tasks.setup_task(a__ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=a__ ) __SCREAMING_SNAKE_CASE = model[0].eval() recursively_load_weights(a__ , a__ , not is_finetuned ) hf_wavavec.save_pretrained(a__ ) if __name__ == "__main__": UpperCAmelCase : int = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) parser.add_argument( '--is_seq_class', action='store_true', help='Whether the model to convert is a fine-tuned sequence classification model or not', ) UpperCAmelCase : Optional[Any] = parser.parse_args() UpperCAmelCase : int = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
627
0
'''simple docstring''' import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset _UpperCamelCase : Tuple =random.Random() def lowerCamelCase_ ( A_ , A_=1.0 , A_=None , A_=None ): if rng is None: __lowerCamelCase = global_rng __lowerCamelCase = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def __init__( self , _snake_case , _snake_case=7 , _snake_case=4_00 , _snake_case=20_00 , _snake_case=20_48 , _snake_case=1_28 , _snake_case=1 , _snake_case=5_12 , _snake_case=30 , _snake_case=4_41_00 , ): """simple docstring""" __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = min_seq_length __lowerCamelCase = max_seq_length __lowerCamelCase = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __lowerCamelCase = spectrogram_length __lowerCamelCase = feature_size __lowerCamelCase = num_audio_channels __lowerCamelCase = hop_length __lowerCamelCase = chunk_length __lowerCamelCase = sampling_rate def _lowerCamelCase ( self ): """simple docstring""" return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def _lowerCamelCase ( self , _snake_case=False , _snake_case=False ): """simple docstring""" def _flatten(_snake_case ): return list(itertools.chain(*_snake_case ) ) if equal_length: __lowerCamelCase = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size __lowerCamelCase = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: __lowerCamelCase = [np.asarray(_snake_case ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class _SCREAMING_SNAKE_CASE ( UpperCamelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ = TvltFeatureExtractor def _lowerCamelCase ( self ): """simple docstring""" __lowerCamelCase = TvltFeatureExtractionTester(self ) def _lowerCamelCase ( self ): """simple docstring""" __lowerCamelCase = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(_snake_case , '''spectrogram_length''' ) ) self.assertTrue(hasattr(_snake_case , '''feature_size''' ) ) self.assertTrue(hasattr(_snake_case , '''num_audio_channels''' ) ) self.assertTrue(hasattr(_snake_case , '''hop_length''' ) ) self.assertTrue(hasattr(_snake_case , '''chunk_length''' ) ) self.assertTrue(hasattr(_snake_case , '''sampling_rate''' ) ) def _lowerCamelCase ( self ): """simple docstring""" __lowerCamelCase = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __lowerCamelCase = feat_extract_first.save_pretrained(_snake_case )[0] check_json_file_has_correct_format(_snake_case ) __lowerCamelCase = self.feature_extraction_class.from_pretrained(_snake_case ) __lowerCamelCase = feat_extract_first.to_dict() __lowerCamelCase = feat_extract_second.to_dict() __lowerCamelCase = dict_first.pop('''mel_filters''' ) __lowerCamelCase = dict_second.pop('''mel_filters''' ) self.assertTrue(np.allclose(_snake_case , _snake_case ) ) self.assertEqual(_snake_case , _snake_case ) def _lowerCamelCase ( self ): """simple docstring""" __lowerCamelCase = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __lowerCamelCase = os.path.join(_snake_case , '''feat_extract.json''' ) feat_extract_first.to_json_file(_snake_case ) __lowerCamelCase = self.feature_extraction_class.from_json_file(_snake_case ) __lowerCamelCase = feat_extract_first.to_dict() __lowerCamelCase = feat_extract_second.to_dict() __lowerCamelCase = dict_first.pop('''mel_filters''' ) __lowerCamelCase = dict_second.pop('''mel_filters''' ) self.assertTrue(np.allclose(_snake_case , _snake_case ) ) self.assertEqual(_snake_case , _snake_case ) def _lowerCamelCase ( self ): """simple docstring""" __lowerCamelCase = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 __lowerCamelCase = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] __lowerCamelCase = [np.asarray(_snake_case ) for speech_input in speech_inputs] # Test not batched input __lowerCamelCase = feature_extractor(np_speech_inputs[0] , return_tensors='''np''' , sampling_rate=4_41_00 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched __lowerCamelCase = feature_extractor(_snake_case , return_tensors='''np''' , sampling_rate=4_41_00 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking __lowerCamelCase = feature_extractor( _snake_case , return_tensors='''np''' , sampling_rate=4_41_00 , mask_audio=_snake_case ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. __lowerCamelCase = [floats_list((1, x) )[0] for x in (8_00, 8_00, 8_00)] __lowerCamelCase = np.asarray(_snake_case ) __lowerCamelCase = feature_extractor(_snake_case , return_tensors='''np''' , sampling_rate=4_41_00 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def _lowerCamelCase ( self , _snake_case ): """simple docstring""" __lowerCamelCase = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech __lowerCamelCase = ds.sort('''id''' ).select(range(_snake_case ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def _lowerCamelCase ( self ): """simple docstring""" __lowerCamelCase = self._load_datasamples(1 ) __lowerCamelCase = TvltFeatureExtractor() __lowerCamelCase = feature_extractor(_snake_case , return_tensors='''pt''' ).audio_values self.assertEquals(audio_values.shape , (1, 1, 1_92, 1_28) ) __lowerCamelCase = torch.tensor([[-0.3_0_3_2, -0.2_7_0_8], [-0.4_4_3_4, -0.4_0_0_7]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , _snake_case , atol=1E-4 ) )
575
'''simple docstring''' from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. _UpperCamelCase : Dict =2_00 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. _UpperCamelCase : Dict =50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. _UpperCamelCase : Tuple =0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 10_00)) def lowerCamelCase_ ( A_ , A_ ): __lowerCamelCase = len([g for position, g in enumerate(A_ ) if g == main_target[position]] ) return (item, float(A_ )) def lowerCamelCase_ ( A_ , A_ ): __lowerCamelCase = random.randint(0 , len(A_ ) - 1 ) __lowerCamelCase = parent_a[:random_slice] + parent_a[random_slice:] __lowerCamelCase = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def lowerCamelCase_ ( A_ , A_ ): __lowerCamelCase = list(A_ ) if random.uniform(0 , 1 ) < MUTATION_PROBABILITY: __lowerCamelCase = random.choice(A_ ) return "".join(A_ ) def lowerCamelCase_ ( A_ , A_ , A_ , ): __lowerCamelCase = [] # Generate more children proportionally to the fitness score. __lowerCamelCase = int(parent_a[1] * 1_00 ) + 1 __lowerCamelCase = 10 if child_n >= 10 else child_n for _ in range(A_ ): __lowerCamelCase = population_score[random.randint(0 , A_ )][0] __lowerCamelCase , __lowerCamelCase = crossover(parent_a[0] , A_ ) # Append new string to the population list. pop.append(mutate(A_ , A_ ) ) pop.append(mutate(A_ , A_ ) ) return pop def lowerCamelCase_ ( A_ , A_ , A_ = True ): # Verify if N_POPULATION is bigger than N_SELECTED if N_POPULATION < N_SELECTED: __lowerCamelCase = f'''{N_POPULATION} must be bigger than {N_SELECTED}''' raise ValueError(A_ ) # Verify that the target contains no genes besides the ones inside genes variable. __lowerCamelCase = sorted({c for c in target if c not in genes} ) if not_in_genes_list: __lowerCamelCase = f'''{not_in_genes_list} is not in genes list, evolution cannot converge''' raise ValueError(A_ ) # Generate random starting population. __lowerCamelCase = [] for _ in range(A_ ): population.append(''''''.join([random.choice(A_ ) for i in range(len(A_ ) )] ) ) # Just some logs to know what the algorithms is doing. __lowerCamelCase , __lowerCamelCase = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(A_ ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. __lowerCamelCase = [evaluate(A_ , A_ ) for item in population] # Check if there is a matching evolution. __lowerCamelCase = sorted(A_ , key=lambda A_ : x[1] , reverse=A_ ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( f'''\nGeneration: {generation}''' f'''\nTotal Population:{total_population}''' f'''\nBest score: {population_score[0][1]}''' f'''\nBest string: {population_score[0][0]}''' ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. __lowerCamelCase = population[: int(N_POPULATION / 3 )] population.clear() population.extend(A_ ) # Normalize population score to be between 0 and 1. __lowerCamelCase = [ (item, score / len(A_ )) for item, score in population_score ] # This is selection for i in range(A_ ): population.extend(select(population_score[int(A_ )] , A_ , A_ ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(A_ ) > N_POPULATION: break if __name__ == "__main__": _UpperCamelCase : Optional[int] =( "This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!" ) _UpperCamelCase : Union[str, Any] =list( " ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm" "nopqrstuvwxyz.,;!?+-*#@^'èéòà€ù=)(&%$£/\\" ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Tuple =basic(target_str, genes_list) print( f'''\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}''' )
575
1
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version __A : Dict = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt''') @dataclass class __A : lowerCAmelCase_ : Optional[str] = field( default="cifar10" , metadata={"help": "Name of a dataset from the datasets package"} ) lowerCAmelCase_ : Optional[str] = field( default=lowerCAmelCase , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) lowerCAmelCase_ : Optional[str] = field( default=lowerCAmelCase , metadata={"help": "The column name of the images in the files."} ) lowerCAmelCase_ : Optional[str] = field(default=lowerCAmelCase , metadata={"help": "A folder containing the training data."} ) lowerCAmelCase_ : Optional[str] = field(default=lowerCAmelCase , metadata={"help": "A folder containing the validation data."} ) lowerCAmelCase_ : Optional[float] = field( default=0.1_5 , metadata={"help": "Percent to split off of train for validation."} ) lowerCAmelCase_ : Optional[int] = field( default=lowerCAmelCase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) lowerCAmelCase_ : Optional[int] = field( default=lowerCAmelCase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def lowercase__ ( self : str ): lowerCAmelCase : List[Any] = {} if self.train_dir is not None: lowerCAmelCase : Dict = self.train_dir if self.validation_dir is not None: lowerCAmelCase : str = self.validation_dir lowerCAmelCase : int = data_files if data_files else None @dataclass class __A : lowerCAmelCase_ : str = field( default=lowerCAmelCase , metadata={ "help": ( "The model checkpoint for weights initialization.Don't set if you want to train a model from scratch." ) } , ) lowerCAmelCase_ : Optional[str] = field( default=lowerCAmelCase , metadata={"help": "Pretrained config name or path if not the same as model_name_or_path"} ) lowerCAmelCase_ : Optional[str] = field( default=lowerCAmelCase , metadata={ "help": ( "Override some existing default config settings when a model is trained from scratch. Example: " "n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index" ) } , ) lowerCAmelCase_ : Optional[str] = field( default=lowerCAmelCase , metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} ) lowerCAmelCase_ : str = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) lowerCAmelCase_ : str = field(default=lowerCAmelCase , metadata={"help": "Name or path of preprocessor config."} ) lowerCAmelCase_ : bool = field( default=lowerCAmelCase , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) lowerCAmelCase_ : float = field( default=0.7_5 , metadata={"help": "The ratio of the number of masked tokens in the input sequence."} ) lowerCAmelCase_ : bool = field( default=lowerCAmelCase , metadata={"help": "Whether or not to train with normalized pixel values as target."} ) @dataclass class __A ( lowerCAmelCase ): lowerCAmelCase_ : float = field( default=1E-3 , metadata={"help": "Base learning rate: absolute_lr = base_lr * total_batch_size / 256."} ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Optional[int]: '''simple docstring''' lowerCAmelCase : Optional[int] = torch.stack([example['pixel_values'] for example in examples] ) return {"pixel_values": pixel_values} def SCREAMING_SNAKE_CASE__ ( ) -> Tuple: '''simple docstring''' lowerCAmelCase : str = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Any = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Optional[int] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_mae', _UpperCAmelCase, _UpperCAmelCase ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', handlers=[logging.StreamHandler(sys.stdout )], ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowerCAmelCase : List[Any] = training_args.get_process_log_level() logger.setLevel(_UpperCAmelCase ) transformers.utils.logging.set_verbosity(_UpperCAmelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(f"Training/evaluation parameters {training_args}" ) # Detecting last checkpoint. lowerCAmelCase : str = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCAmelCase : List[Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Initialize our dataset. lowerCAmelCase : Optional[Any] = load_dataset( data_args.dataset_name, data_args.dataset_config_name, data_files=data_args.data_files, cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, ) # If we don't have a validation split, split off a percentage of train as validation. lowerCAmelCase : Optional[Any] = None if 'validation' in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split, _UpperCAmelCase ) and data_args.train_val_split > 0.0: lowerCAmelCase : Union[str, Any] = ds['train'].train_test_split(data_args.train_val_split ) lowerCAmelCase : Any = split['train'] lowerCAmelCase : Tuple = split['test'] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCAmelCase : str = { 'cache_dir': model_args.cache_dir, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.config_name: lowerCAmelCase : Union[str, Any] = ViTMAEConfig.from_pretrained(model_args.config_name, **_UpperCAmelCase ) elif model_args.model_name_or_path: lowerCAmelCase : List[str] = ViTMAEConfig.from_pretrained(model_args.model_name_or_path, **_UpperCAmelCase ) else: lowerCAmelCase : int = ViTMAEConfig() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.config_overrides is not None: logger.info(f"Overriding config: {model_args.config_overrides}" ) config.update_from_string(model_args.config_overrides ) logger.info(f"New config: {config}" ) # adapt config config.update( { 'mask_ratio': model_args.mask_ratio, 'norm_pix_loss': model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: lowerCAmelCase : int = ViTImageProcessor.from_pretrained(model_args.image_processor_name, **_UpperCAmelCase ) elif model_args.model_name_or_path: lowerCAmelCase : Optional[Any] = ViTImageProcessor.from_pretrained(model_args.model_name_or_path, **_UpperCAmelCase ) else: lowerCAmelCase : Optional[int] = ViTImageProcessor() # create model if model_args.model_name_or_path: lowerCAmelCase : Optional[int] = ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path, from_tf=bool('.ckpt' in model_args.model_name_or_path ), config=_UpperCAmelCase, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) else: logger.info('Training new model from scratch' ) lowerCAmelCase : Any = ViTMAEForPreTraining(_UpperCAmelCase ) if training_args.do_train: lowerCAmelCase : Dict = ds['train'].column_names else: lowerCAmelCase : int = ds['validation'].column_names if data_args.image_column_name is not None: lowerCAmelCase : Optional[Any] = data_args.image_column_name elif "image" in column_names: lowerCAmelCase : Any = 'image' elif "img" in column_names: lowerCAmelCase : Dict = 'img' else: lowerCAmelCase : List[str] = column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: lowerCAmelCase : Tuple = image_processor.size['shortest_edge'] else: lowerCAmelCase : Tuple = (image_processor.size['height'], image_processor.size['width']) lowerCAmelCase : str = Compose( [ Lambda(lambda _UpperCAmelCase : img.convert('RGB' ) if img.mode != "RGB" else img ), RandomResizedCrop(_UpperCAmelCase, scale=(0.2, 1.0), interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean, std=image_processor.image_std ), ] ) def preprocess_images(_UpperCAmelCase ): lowerCAmelCase : Optional[int] = [transforms(_UpperCAmelCase ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError('--do_train requires a train dataset' ) if data_args.max_train_samples is not None: lowerCAmelCase : List[Any] = ds['train'].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(_UpperCAmelCase ) if training_args.do_eval: if "validation" not in ds: raise ValueError('--do_eval requires a validation dataset' ) if data_args.max_eval_samples is not None: lowerCAmelCase : List[Any] = ( ds['validation'].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(_UpperCAmelCase ) # Compute absolute learning rate lowerCAmelCase : Dict = ( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: lowerCAmelCase : Optional[Any] = training_args.base_learning_rate * total_train_batch_size / 256 # Initialize our trainer lowerCAmelCase : List[Any] = Trainer( model=_UpperCAmelCase, args=_UpperCAmelCase, train_dataset=ds['train'] if training_args.do_train else None, eval_dataset=ds['validation'] if training_args.do_eval else None, tokenizer=_UpperCAmelCase, data_collator=_UpperCAmelCase, ) # Training if training_args.do_train: lowerCAmelCase : str = None if training_args.resume_from_checkpoint is not None: lowerCAmelCase : int = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowerCAmelCase : Dict = last_checkpoint lowerCAmelCase : Any = trainer.train(resume_from_checkpoint=_UpperCAmelCase ) trainer.save_model() trainer.log_metrics('train', train_result.metrics ) trainer.save_metrics('train', train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: lowerCAmelCase : Any = trainer.evaluate() trainer.log_metrics('eval', _UpperCAmelCase ) trainer.save_metrics('eval', _UpperCAmelCase ) # Write model card and (optionally) push to hub lowerCAmelCase : Optional[int] = { 'tasks': 'masked-auto-encoding', 'dataset': data_args.dataset_name, 'tags': ['masked-auto-encoding'], } if training_args.push_to_hub: trainer.push_to_hub(**_UpperCAmelCase ) else: trainer.create_model_card(**_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> int: '''simple docstring''' main() if __name__ == "__main__": main()
343
import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int __A : List[Any] = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class __A ( datasets.BuilderConfig ): lowerCAmelCase_ : Optional[datasets.Features] = None def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, ) -> Union[str, Any]: '''simple docstring''' import pyspark def generate_fn(): lowerCAmelCase : str = df.select('*', pyspark.sql.functions.spark_partition_id().alias('part_id' ) ) for partition_id in partition_order: lowerCAmelCase : List[Any] = df_with_partition_id.select('*' ).where(f"part_id = {partition_id}" ).drop('part_id' ) lowerCAmelCase : Optional[Any] = partition_df.collect() lowerCAmelCase : Optional[Any] = 0 for row in rows: yield f"{partition_id}_{row_id}", row.asDict() row_id += 1 return generate_fn class __A ( _BaseExamplesIterable ): def __init__( self : Optional[Any] , UpperCAmelCase_ : "pyspark.sql.DataFrame" , UpperCAmelCase_ : List[Any]=None , ): lowerCAmelCase : Optional[Any] = df lowerCAmelCase : Any = partition_order or range(self.df.rdd.getNumPartitions() ) lowerCAmelCase : Union[str, Any] = _generate_iterable_examples(self.df , self.partition_order ) def __iter__( self : Union[str, Any] ): yield from self.generate_examples_fn() def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : np.random.Generator ): lowerCAmelCase : Union[str, Any] = list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(UpperCAmelCase_ ) return SparkExamplesIterable(self.df , partition_order=UpperCAmelCase_ ) def lowercase__ ( self : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : int ): lowerCAmelCase : List[Any] = self.split_shard_indices_by_worker(UpperCAmelCase_ , UpperCAmelCase_ ) return SparkExamplesIterable(self.df , partition_order=UpperCAmelCase_ ) @property def lowercase__ ( self : Optional[Any] ): return len(self.partition_order ) class __A ( datasets.DatasetBuilder ): lowerCAmelCase_ : Any = SparkConfig def __init__( self : List[Any] , UpperCAmelCase_ : "pyspark.sql.DataFrame" , UpperCAmelCase_ : str = None , UpperCAmelCase_ : str = None , **UpperCAmelCase_ : Optional[Any] , ): import pyspark lowerCAmelCase : Tuple = pyspark.sql.SparkSession.builder.getOrCreate() lowerCAmelCase : Dict = df lowerCAmelCase : Dict = working_dir super().__init__( cache_dir=UpperCAmelCase_ , config_name=str(self.df.semanticHash() ) , **UpperCAmelCase_ , ) def lowercase__ ( self : int ): # Returns the path of the created file. def create_cache_and_write_probe(UpperCAmelCase_ : Union[str, Any] ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir , exist_ok=UpperCAmelCase_ ) lowerCAmelCase : Any = os.path.join(self._cache_dir , 'fs_test' + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(UpperCAmelCase_ , 'a' ) return [probe_file] if self._spark.conf.get('spark.master' , '' ).startswith('local' ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: lowerCAmelCase : List[str] = ( self._spark.sparkContext.parallelize(range(1 ) , 1 ).mapPartitions(UpperCAmelCase_ ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( 'When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir' ) def lowercase__ ( self : Optional[int] ): return datasets.DatasetInfo(features=self.config.features ) def lowercase__ ( self : Tuple , UpperCAmelCase_ : datasets.download.download_manager.DownloadManager ): return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def lowercase__ ( self : Tuple , UpperCAmelCase_ : Union[str, Any] ): import pyspark def get_arrow_batch_size(UpperCAmelCase_ : Tuple ): for batch in it: yield pa.RecordBatch.from_pydict({'batch_bytes': [batch.nbytes]} ) lowerCAmelCase : int = self.df.count() lowerCAmelCase : str = df_num_rows if df_num_rows <= 100 else 100 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. lowerCAmelCase : Tuple = ( self.df.limit(UpperCAmelCase_ ) .repartition(1 ) .mapInArrow(UpperCAmelCase_ , 'batch_bytes: long' ) .agg(pyspark.sql.functions.sum('batch_bytes' ).alias('sample_bytes' ) ) .collect()[0] .sample_bytes / sample_num_rows ) lowerCAmelCase : Tuple = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. lowerCAmelCase : List[str] = min(UpperCAmelCase_ , int(approx_total_size / max_shard_size ) ) lowerCAmelCase : List[Any] = self.df.repartition(UpperCAmelCase_ ) def lowercase__ ( self : int , UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : int , ): import pyspark lowerCAmelCase : Tuple = ParquetWriter if file_format == 'parquet' else ArrowWriter lowerCAmelCase : int = os.path.join(self._working_dir , os.path.basename(UpperCAmelCase_ ) ) if self._working_dir else fpath lowerCAmelCase : str = file_format == 'parquet' # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. lowerCAmelCase : int = self.config.features lowerCAmelCase : Union[str, Any] = self._writer_batch_size lowerCAmelCase : Tuple = self._fs.storage_options def write_arrow(UpperCAmelCase_ : int ): # Within the same SparkContext, no two task attempts will share the same attempt ID. lowerCAmelCase : List[Any] = pyspark.TaskContext().taskAttemptId() lowerCAmelCase : str = next(UpperCAmelCase_ , UpperCAmelCase_ ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]] , names=['task_id', 'num_examples', 'num_bytes'] , ) lowerCAmelCase : str = 0 lowerCAmelCase : Union[str, Any] = writer_class( features=UpperCAmelCase_ , path=working_fpath.replace('SSSSS' , f"{shard_id:05d}" ).replace('TTTTT' , f"{task_id:05d}" ) , writer_batch_size=UpperCAmelCase_ , storage_options=UpperCAmelCase_ , embed_local_files=UpperCAmelCase_ , ) lowerCAmelCase : Union[str, Any] = pa.Table.from_batches([first_batch] ) writer.write_table(UpperCAmelCase_ ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: lowerCAmelCase , lowerCAmelCase : Any = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=['task_id', 'num_examples', 'num_bytes'] , ) shard_id += 1 lowerCAmelCase : Tuple = writer_class( features=writer._features , path=working_fpath.replace('SSSSS' , f"{shard_id:05d}" ).replace('TTTTT' , f"{task_id:05d}" ) , writer_batch_size=UpperCAmelCase_ , storage_options=UpperCAmelCase_ , embed_local_files=UpperCAmelCase_ , ) lowerCAmelCase : str = pa.Table.from_batches([batch] ) writer.write_table(UpperCAmelCase_ ) if writer._num_bytes > 0: lowerCAmelCase , lowerCAmelCase : int = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=['task_id', 'num_examples', 'num_bytes'] , ) if working_fpath != fpath: for file in os.listdir(os.path.dirname(UpperCAmelCase_ ) ): lowerCAmelCase : Optional[int] = os.path.join(os.path.dirname(UpperCAmelCase_ ) , os.path.basename(UpperCAmelCase_ ) ) shutil.move(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = ( self.df.mapInArrow(UpperCAmelCase_ , 'task_id: long, num_examples: long, num_bytes: long' ) .groupBy('task_id' ) .agg( pyspark.sql.functions.sum('num_examples' ).alias('total_num_examples' ) , pyspark.sql.functions.sum('num_bytes' ).alias('total_num_bytes' ) , pyspark.sql.functions.count('num_bytes' ).alias('num_shards' ) , pyspark.sql.functions.collect_list('num_examples' ).alias('shard_lengths' ) , ) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def lowercase__ ( self : int , UpperCAmelCase_ : "datasets.SplitGenerator" , UpperCAmelCase_ : str = "arrow" , UpperCAmelCase_ : Optional[Union[str, int]] = None , UpperCAmelCase_ : Optional[int] = None , **UpperCAmelCase_ : str , ): self._validate_cache_dir() lowerCAmelCase : List[Any] = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = not is_remote_filesystem(self._fs ) lowerCAmelCase : Union[str, Any] = os.path.join if is_local else posixpath.join lowerCAmelCase : List[Any] = '-TTTTT-SSSSS-of-NNNNN' lowerCAmelCase : Optional[Any] = f"{self.name}-{split_generator.name}{SUFFIX}.{file_format}" lowerCAmelCase : int = path_join(self._output_dir , UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = 0 lowerCAmelCase : Dict = 0 lowerCAmelCase : str = 0 lowerCAmelCase : Optional[Any] = [] lowerCAmelCase : List[Any] = [] for task_id, content in self._prepare_split_single(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): ( ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ) : Dict = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(UpperCAmelCase_ ) lowerCAmelCase : Dict = total_num_examples lowerCAmelCase : List[Any] = total_num_bytes # should rename everything at the end logger.debug(f"Renaming {total_shards} shards." ) if total_shards > 1: lowerCAmelCase : Tuple = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. lowerCAmelCase : str = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int , ): rename( UpperCAmelCase_ , fpath.replace('SSSSS' , f"{shard_id:05d}" ).replace('TTTTT' , f"{task_id:05d}" ) , fpath.replace('TTTTT-SSSSS' , f"{global_shard_id:05d}" ).replace('NNNNN' , f"{total_shards:05d}" ) , ) lowerCAmelCase : int = [] lowerCAmelCase : List[Any] = 0 for i in range(len(UpperCAmelCase_ ) ): lowerCAmelCase , lowerCAmelCase : Dict = task_id_and_num_shards[i] for shard_id in range(UpperCAmelCase_ ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(UpperCAmelCase_ , len(UpperCAmelCase_ ) ).map(lambda UpperCAmelCase_ : _rename_shard(*UpperCAmelCase_ ) ).collect() else: # don't use any pattern lowerCAmelCase : int = 0 lowerCAmelCase : Union[str, Any] = task_id_and_num_shards[0][0] self._rename( fpath.replace('SSSSS' , f"{shard_id:05d}" ).replace('TTTTT' , f"{task_id:05d}" ) , fpath.replace(UpperCAmelCase_ , '' ) , ) def lowercase__ ( self : Tuple , UpperCAmelCase_ : "datasets.SplitGenerator" , ): return SparkExamplesIterable(self.df )
343
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase__ = { "configuration_ctrl": ["CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP", "CTRLConfig"], "tokenization_ctrl": ["CTRLTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "CTRL_PRETRAINED_MODEL_ARCHIVE_LIST", "CTRLForSequenceClassification", "CTRLLMHeadModel", "CTRLModel", "CTRLPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCTRLForSequenceClassification", "TFCTRLLMHeadModel", "TFCTRLModel", "TFCTRLPreTrainedModel", ] if TYPE_CHECKING: from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig from .tokenization_ctrl import CTRLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ctrl import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, CTRLPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_ctrl import ( TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, TFCTRLForSequenceClassification, TFCTRLLMHeadModel, TFCTRLModel, TFCTRLPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
639
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase__ = {"configuration_yolos": ["YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP", "YolosConfig", "YolosOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ["YolosFeatureExtractor"] UpperCAmelCase__ = ["YolosImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST", "YolosForObjectDetection", "YolosModel", "YolosPreTrainedModel", ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
639
1
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging a :Union[str, Any] = logging.get_logger(__name__) a :int = {"vocab_file": "sentencepiece.bpe.model"} a :Optional[int] = { "vocab_file": { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model", } } a :Optional[Any] = { "camembert-base": 512, } a :Tuple = "▁" class __a (UpperCamelCase_): '''simple docstring''' _SCREAMING_SNAKE_CASE :List[str] = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE :Tuple = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE :Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE :Union[str, Any] = ["""input_ids""", """attention_mask"""] def __init__( self , _a , _a="<s>" , _a="</s>" , _a="</s>" , _a="<s>" , _a="<unk>" , _a="<pad>" , _a="<mask>" , _a=["<s>NOTUSED", "</s>NOTUSED"] , _a = None , **_a , ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else mask_token SCREAMING_SNAKE_CASE__ : Any = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_a , eos_token=_a , unk_token=_a , sep_token=_a , cls_token=_a , pad_token=_a , mask_token=_a , additional_special_tokens=_a , sp_model_kwargs=self.sp_model_kwargs , **_a , ) SCREAMING_SNAKE_CASE__ : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_a ) ) SCREAMING_SNAKE_CASE__ : Any = vocab_file # HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual # sentencepiece vocabulary (this is the case for <s> and </s> SCREAMING_SNAKE_CASE__ : Optional[Any] = {"""<s>NOTUSED""": 0, """<pad>""": 1, """</s>NOTUSED""": 2, """<unk>""": 3} SCREAMING_SNAKE_CASE__ : str = len(self.fairseq_tokens_to_ids ) SCREAMING_SNAKE_CASE__ : Any = len(self.sp_model ) + len(self.fairseq_tokens_to_ids ) SCREAMING_SNAKE_CASE__ : List[Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def _a ( self , _a , _a = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] SCREAMING_SNAKE_CASE__ : Union[str, Any] = [self.cls_token_id] SCREAMING_SNAKE_CASE__ : Optional[int] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _a ( self , _a , _a = None , _a = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_a , token_ids_a=_a , already_has_special_tokens=_a ) if token_ids_a is None: return [1] + ([0] * len(_a )) + [1] return [1] + ([0] * len(_a )) + [1, 1] + ([0] * len(_a )) + [1] def _a ( self , _a , _a = None ) -> List[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = [self.sep_token_id] SCREAMING_SNAKE_CASE__ : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _a ( self ) -> List[str]: """simple docstring""" return len(self.fairseq_tokens_to_ids ) + len(self.sp_model ) def _a ( self ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = {self.convert_ids_to_tokens(_a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _a ( self , _a ) -> List[str]: """simple docstring""" return self.sp_model.encode(_a , out_type=_a ) def _a ( self , _a ) -> Tuple: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] elif self.sp_model.PieceToId(_a ) == 0: # Convert sentence piece unk token to fairseq unk token index return self.unk_token_id return self.fairseq_offset + self.sp_model.PieceToId(_a ) def _a ( self , _a ) -> Dict: """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _a ( self , _a ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = [] SCREAMING_SNAKE_CASE__ : Optional[int] = """""" SCREAMING_SNAKE_CASE__ : Optional[Any] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_a ) + token SCREAMING_SNAKE_CASE__ : Tuple = True SCREAMING_SNAKE_CASE__ : str = [] else: current_sub_tokens.append(_a ) SCREAMING_SNAKE_CASE__ : List[str] = False out_string += self.sp_model.decode(_a ) return out_string.strip() def __getstate__( self ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = self.__dict__.copy() SCREAMING_SNAKE_CASE__ : Tuple = None return state def __setstate__( self , _a ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): SCREAMING_SNAKE_CASE__ : Dict = {} SCREAMING_SNAKE_CASE__ : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _a ( self , _a , _a = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(_a ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return SCREAMING_SNAKE_CASE__ : Optional[int] = os.path.join( _a , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _a ) elif not os.path.isfile(self.vocab_file ): with open(_a , """wb""" ) as fi: SCREAMING_SNAKE_CASE__ : Optional[int] = self.sp_model.serialized_model_proto() fi.write(_a ) return (out_vocab_file,)
680
"""simple docstring""" import glob import os import random from string import ascii_lowercase, digits import cva a :List[Any] = "" a :Union[str, Any] = "" a :List[str] = "" a :str = 1 # (0 is vertical, 1 is horizontal) def _lowercase ( ) -> None: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Dict = get_dataset(__lowerCAmelCase , __lowerCAmelCase ) print("""Processing...""" ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Tuple = update_image_and_anno(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) for index, image in enumerate(__lowerCAmelCase ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' SCREAMING_SNAKE_CASE__ : List[Any] = random_chars(32 ) SCREAMING_SNAKE_CASE__ : List[str] = paths[index].split(os.sep )[-1].rsplit(""".""" , 1 )[0] SCREAMING_SNAKE_CASE__ : List[str] = F'''{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}''' cva.imwrite(F'''/{file_root}.jpg''' , __lowerCAmelCase , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(F'''Success {index+1}/{len(__lowerCAmelCase )} with {file_name}''' ) SCREAMING_SNAKE_CASE__ : int = [] for anno in new_annos[index]: SCREAMING_SNAKE_CASE__ : Tuple = F'''{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}''' annos_list.append(__lowerCAmelCase ) with open(F'''/{file_root}.txt''' , """w""" ) as outfile: outfile.write("""\n""".join(line for line in annos_list ) ) def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> tuple[list, list]: SCREAMING_SNAKE_CASE__ : Any = [] SCREAMING_SNAKE_CASE__ : Union[str, Any] = [] for label_file in glob.glob(os.path.join(__lowerCAmelCase , """*.txt""" ) ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = label_file.split(os.sep )[-1].rsplit(""".""" , 1 )[0] with open(__lowerCAmelCase ) as in_file: SCREAMING_SNAKE_CASE__ : Dict = in_file.readlines() SCREAMING_SNAKE_CASE__ : int = os.path.join(__lowerCAmelCase , F'''{label_name}.jpg''' ) SCREAMING_SNAKE_CASE__ : int = [] for obj_list in obj_lists: SCREAMING_SNAKE_CASE__ : Optional[int] = obj_list.rstrip("""\n""" ).split(""" """ ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(__lowerCAmelCase ) labels.append(__lowerCAmelCase ) return img_paths, labels def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = 1 ) -> tuple[list, list, list]: SCREAMING_SNAKE_CASE__ : Dict = [] SCREAMING_SNAKE_CASE__ : Union[str, Any] = [] SCREAMING_SNAKE_CASE__ : Optional[int] = [] for idx in range(len(__lowerCAmelCase ) ): SCREAMING_SNAKE_CASE__ : List[str] = [] SCREAMING_SNAKE_CASE__ : str = img_list[idx] path_list.append(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[int] = anno_list[idx] SCREAMING_SNAKE_CASE__ : Tuple = cva.imread(__lowerCAmelCase ) if flip_type == 1: SCREAMING_SNAKE_CASE__ : int = cva.flip(__lowerCAmelCase , __lowerCAmelCase ) for bbox in img_annos: SCREAMING_SNAKE_CASE__ : Optional[int] = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: SCREAMING_SNAKE_CASE__ : Any = cva.flip(__lowerCAmelCase , __lowerCAmelCase ) for bbox in img_annos: SCREAMING_SNAKE_CASE__ : List[Any] = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(__lowerCAmelCase ) new_imgs_list.append(__lowerCAmelCase ) return new_imgs_list, new_annos_lists, path_list def _lowercase ( __lowerCAmelCase = 32 ) -> str: assert number_char > 1, "The number of character should greater than 1" SCREAMING_SNAKE_CASE__ : List[str] = ascii_lowercase + digits return "".join(random.choice(__lowerCAmelCase ) for _ in range(__lowerCAmelCase ) ) if __name__ == "__main__": main() print("DONE ✅")
680
1
'''simple docstring''' import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self : str ): '''simple docstring''' _a : str = Vector([1, 2, 3] ) self.assertEqual(x.component(0 ) ,1 ) self.assertEqual(x.component(2 ) ,3 ) _a : str = Vector() def __lowercase ( self : int ): '''simple docstring''' _a : Dict = Vector([0, 0, 0, 0, 0, 1] ) self.assertEqual(str(_a ) ,'(0,0,0,0,0,1)' ) def __lowercase ( self : Tuple ): '''simple docstring''' _a : Dict = Vector([1, 2, 3, 4] ) self.assertEqual(len(_a ) ,4 ) def __lowercase ( self : int ): '''simple docstring''' _a : List[str] = Vector([1, 2] ) _a : int = Vector([1, 2, 3, 4, 5] ) _a : List[Any] = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ) _a : int = Vector([1, -1, 1, -1, 2, -3, 4, -5] ) self.assertAlmostEqual(x.euclidean_length() ,2.236 ,3 ) self.assertAlmostEqual(y.euclidean_length() ,7.416 ,3 ) self.assertEqual(z.euclidean_length() ,0 ) self.assertAlmostEqual(w.euclidean_length() ,7.616 ,3 ) def __lowercase ( self : Any ): '''simple docstring''' _a : int = Vector([1, 2, 3] ) _a : Tuple = Vector([1, 1, 1] ) self.assertEqual((x + y).component(0 ) ,2 ) self.assertEqual((x + y).component(1 ) ,3 ) self.assertEqual((x + y).component(2 ) ,4 ) def __lowercase ( self : List[Any] ): '''simple docstring''' _a : Optional[Any] = Vector([1, 2, 3] ) _a : Tuple = Vector([1, 1, 1] ) self.assertEqual((x - y).component(0 ) ,0 ) self.assertEqual((x - y).component(1 ) ,1 ) self.assertEqual((x - y).component(2 ) ,2 ) def __lowercase ( self : List[Any] ): '''simple docstring''' _a : Dict = Vector([1, 2, 3] ) _a : Dict = Vector([2, -1, 4] ) # for test of dot product _a : Optional[int] = Vector([1, -2, -1] ) self.assertEqual(str(x * 3.0 ) ,'(3.0,6.0,9.0)' ) self.assertEqual((a * b) ,0 ) def __lowercase ( self : List[str] ): '''simple docstring''' self.assertEqual(str(zero_vector(10 ) ).count('0' ) ,10 ) def __lowercase ( self : Optional[int] ): '''simple docstring''' self.assertEqual(str(unit_basis_vector(3 ,1 ) ) ,'(0,1,0)' ) def __lowercase ( self : Dict ): '''simple docstring''' _a : Tuple = Vector([1, 2, 3] ) _a : Optional[Any] = Vector([1, 0, 1] ) self.assertEqual(str(axpy(2 ,_a ,_a ) ) ,'(3,4,7)' ) def __lowercase ( self : Tuple ): '''simple docstring''' _a : Any = Vector([1, 0, 0, 0, 0, 0] ) _a : Optional[int] = x.copy() self.assertEqual(str(_a ) ,str(_a ) ) def __lowercase ( self : Dict ): '''simple docstring''' _a : List[Any] = Vector([1, 0, 0] ) x.change_component(0 ,0 ) x.change_component(1 ,1 ) self.assertEqual(str(_a ) ,'(0,1,0)' ) def __lowercase ( self : Any ): '''simple docstring''' _a : int = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] ,3 ,3 ) self.assertEqual('|1,2,3|\n|2,4,5|\n|6,7,8|\n' ,str(_a ) ) def __lowercase ( self : List[str] ): '''simple docstring''' _a : Optional[Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] ,3 ,3 ) _a : Optional[Any] = [[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(minors[x][y] ,a.minor(_a ,_a ) ) def __lowercase ( self : Tuple ): '''simple docstring''' _a : Any = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] ,3 ,3 ) _a : List[str] = [[-3, 14, -10], [5, -10, 5], [-2, 1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(cofactors[x][y] ,a.cofactor(_a ,_a ) ) def __lowercase ( self : Dict ): '''simple docstring''' _a : Optional[int] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] ,3 ,3 ) self.assertEqual(-5 ,a.determinant() ) def __lowercase ( self : int ): '''simple docstring''' _a : List[str] = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ,3 ,3 ) _a : Dict = Vector([1, 2, 3] ) self.assertEqual('(14,32,50)' ,str(a * x ) ) self.assertEqual('|2,4,6|\n|8,10,12|\n|14,16,18|\n' ,str(a * 2 ) ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' _a : Optional[Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] ,3 ,3 ) a.change_component(0 ,2 ,5 ) self.assertEqual('|1,2,5|\n|2,4,5|\n|6,7,8|\n' ,str(_a ) ) def __lowercase ( self : List[Any] ): '''simple docstring''' _a : int = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] ,3 ,3 ) self.assertEqual(7 ,a.component(2 ,1 ) ,0.01 ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' _a : List[str] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] ,3 ,3 ) _a : str = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] ,3 ,3 ) self.assertEqual('|2,4,10|\n|4,8,10|\n|12,14,18|\n' ,str(a + b ) ) def __lowercase ( self : Union[str, Any] ): '''simple docstring''' _a : Optional[int] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] ,3 ,3 ) _a : Union[str, Any] = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] ,3 ,3 ) self.assertEqual('|0,0,-4|\n|0,0,0|\n|0,0,-2|\n' ,str(a - b ) ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' self.assertEqual( '|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n' ,str(square_zero_matrix(5 ) ) ,) if __name__ == "__main__": unittest.main()
708
'''simple docstring''' import json import os from typing import Optional import numpy as np from ...feature_extraction_utils import BatchFeature from ...processing_utils import ProcessorMixin from ...utils import logging from ...utils.hub import get_file_from_repo from ..auto import AutoTokenizer __lowerCAmelCase = logging.get_logger(__name__) class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" __UpperCAmelCase : int = '''AutoTokenizer''' __UpperCAmelCase : Optional[Any] = ['''tokenizer'''] __UpperCAmelCase : str = { '''semantic_prompt''': 1, '''coarse_prompt''': 2, '''fine_prompt''': 2, } def __init__( self : Union[str, Any] ,_a : Union[str, Any] ,_a : Dict=None ): '''simple docstring''' super().__init__(_a ) _a : List[str] = speaker_embeddings @classmethod def __lowercase ( cls : Any ,_a : Optional[int] ,_a : Union[str, Any]="speaker_embeddings_path.json" ,**_a : Union[str, Any] ): '''simple docstring''' if speaker_embeddings_dict_path is not None: _a : Tuple = get_file_from_repo( _a ,_a ,subfolder=kwargs.pop('subfolder' ,_a ) ,cache_dir=kwargs.pop('cache_dir' ,_a ) ,force_download=kwargs.pop('force_download' ,_a ) ,proxies=kwargs.pop('proxies' ,_a ) ,resume_download=kwargs.pop('resume_download' ,_a ) ,local_files_only=kwargs.pop('local_files_only' ,_a ) ,use_auth_token=kwargs.pop('use_auth_token' ,_a ) ,revision=kwargs.pop('revision' ,_a ) ,) if speaker_embeddings_path is None: logger.warning( F"""`{os.path.join(_a ,_a )}` does not exists , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`.""" ) _a : List[Any] = None else: with open(_a ) as speaker_embeddings_json: _a : List[str] = json.load(_a ) else: _a : str = None _a : Any = AutoTokenizer.from_pretrained(_a ,**_a ) return cls(tokenizer=_a ,speaker_embeddings=_a ) def __lowercase ( self : List[str] ,_a : Tuple ,_a : Any="speaker_embeddings_path.json" ,_a : Optional[int]="speaker_embeddings" ,_a : bool = False ,**_a : Optional[int] ,): '''simple docstring''' if self.speaker_embeddings is not None: os.makedirs(os.path.join(_a ,_a ,'v2' ) ,exist_ok=_a ) _a : Optional[Any] = {} _a : List[str] = save_directory for prompt_key in self.speaker_embeddings: if prompt_key != "repo_or_path": _a : Any = self._load_voice_preset(_a ) _a : Tuple = {} for key in self.speaker_embeddings[prompt_key]: np.save( os.path.join( embeddings_dict['repo_or_path'] ,_a ,F"""{prompt_key}_{key}""" ) ,voice_preset[key] ,allow_pickle=_a ,) _a : Dict = os.path.join(_a ,F"""{prompt_key}_{key}.npy""" ) _a : Any = tmp_dict with open(os.path.join(_a ,_a ) ,'w' ) as fp: json.dump(_a ,_a ) super().save_pretrained(_a ,_a ,**_a ) def __lowercase ( self : Tuple ,_a : str = None ,**_a : List[Any] ): '''simple docstring''' _a : Optional[Any] = self.speaker_embeddings[voice_preset] _a : Optional[Any] = {} for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset_paths: raise ValueError( F"""Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}].""" ) _a : List[Any] = get_file_from_repo( self.speaker_embeddings.get('repo_or_path' ,'/' ) ,voice_preset_paths[key] ,subfolder=kwargs.pop('subfolder' ,_a ) ,cache_dir=kwargs.pop('cache_dir' ,_a ) ,force_download=kwargs.pop('force_download' ,_a ) ,proxies=kwargs.pop('proxies' ,_a ) ,resume_download=kwargs.pop('resume_download' ,_a ) ,local_files_only=kwargs.pop('local_files_only' ,_a ) ,use_auth_token=kwargs.pop('use_auth_token' ,_a ) ,revision=kwargs.pop('revision' ,_a ) ,) if path is None: raise ValueError( F"""`{os.path.join(self.speaker_embeddings.get('repo_or_path' ,'/' ) ,voice_preset_paths[key] )}` does not exists , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset} embeddings.""" ) _a : Tuple = np.load(_a ) return voice_preset_dict def __lowercase ( self : List[Any] ,_a : Optional[dict] = None ): '''simple docstring''' for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset: raise ValueError(F"""Voice preset unrecognized, missing {key} as a key.""" ) if not isinstance(voice_preset[key] ,np.ndarray ): raise ValueError(F"""{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.""" ) if len(voice_preset[key].shape ) != self.preset_shape[key]: raise ValueError(F"""{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.""" ) def __call__( self : Any ,_a : List[str]=None ,_a : Tuple=None ,_a : Tuple="pt" ,_a : Any=256 ,_a : Optional[Any]=False ,_a : List[str]=True ,_a : Optional[Any]=False ,**_a : Dict ,): '''simple docstring''' if voice_preset is not None and not isinstance(_a ,_a ): if ( isinstance(_a ,_a ) and self.speaker_embeddings is not None and voice_preset in self.speaker_embeddings ): _a : Union[str, Any] = self._load_voice_preset(_a ) else: if isinstance(_a ,_a ) and not voice_preset.endswith('.npz' ): _a : str = voice_preset + '.npz' _a : Optional[int] = np.load(_a ) if voice_preset is not None: self._validate_voice_preset_dict(_a ,**_a ) _a : List[str] = BatchFeature(data=_a ,tensor_type=_a ) _a : List[Any] = self.tokenizer( _a ,return_tensors=_a ,padding='max_length' ,max_length=_a ,return_attention_mask=_a ,return_token_type_ids=_a ,add_special_tokens=_a ,**_a ,) if voice_preset is not None: _a : Dict = voice_preset return encoded_text
319
0
"""simple docstring""" from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) lowerCAmelCase = _symbol_database.Default() lowerCAmelCase = _descriptor_pool.Default().AddSerializedFile( b"""\n\x19sentencepiece_model.proto\x12\rsentencepiece\"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12\"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12\"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18\" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse\"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32\".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL\"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03""" ) lowerCAmelCase = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, """sentencepiece_model_pb2""", _globals) if _descriptor._USE_C_DESCRIPTORS is False: lowerCAmelCase = None lowerCAmelCase = b"""H\003""" # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" lowerCAmelCase = 45 lowerCAmelCase = 15_81 lowerCAmelCase = 15_17 lowerCAmelCase = 15_70 lowerCAmelCase = 15_84 lowerCAmelCase = 17_93 lowerCAmelCase = 17_95 lowerCAmelCase = 19_16 lowerCAmelCase = 18_64 lowerCAmelCase = 19_05 lowerCAmelCase = 19_19 lowerCAmelCase = 24_29 lowerCAmelCase = 22_08 lowerCAmelCase = 24_18 lowerCAmelCase = 23_23 lowerCAmelCase = 24_07 # @@protoc_insertion_point(module_scope)
174
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_config_file""": """tokenizer_config.json""", } lowerCAmelCase = { """vocab_file""": {"""facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"""}, """merges_file""": {"""facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"""}, """tokenizer_config_file""": { """facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json""" }, } lowerCAmelCase = {"""facebook/blenderbot-3B""": 1_28} class A_ ( A__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ = ["""input_ids""", """attention_mask"""] SCREAMING_SNAKE_CASE_ = BlenderbotTokenizer def __init__( self :Tuple , lowerCamelCase_ :List[str]=None , lowerCamelCase_ :Optional[int]=None , lowerCamelCase_ :Optional[int]=None , lowerCamelCase_ :str="replace" , lowerCamelCase_ :Dict="<s>" , lowerCamelCase_ :List[str]="</s>" , lowerCamelCase_ :Dict="</s>" , lowerCamelCase_ :List[str]="<s>" , lowerCamelCase_ :int="<unk>" , lowerCamelCase_ :List[Any]="<pad>" , lowerCamelCase_ :Optional[Any]="<mask>" , lowerCamelCase_ :Optional[Any]=False , lowerCamelCase_ :Union[str, Any]=True , **lowerCamelCase_ :Dict , ): """simple docstring""" super().__init__( lowerCamelCase_ , lowerCamelCase_ , tokenizer_file=lowerCamelCase_ , errors=lowerCamelCase_ , bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , sep_token=lowerCamelCase_ , cls_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , mask_token=lowerCamelCase_ , add_prefix_space=lowerCamelCase_ , trim_offsets=lowerCamelCase_ , **lowerCamelCase_ , ) lowerCamelCase__ : int =json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , lowerCamelCase_ ) != add_prefix_space: lowerCamelCase__ : Tuple =getattr(lowerCamelCase_ , pre_tok_state.pop('type' ) ) lowerCamelCase__ : Tuple =add_prefix_space lowerCamelCase__ : Tuple =pre_tok_class(**lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] =add_prefix_space lowerCamelCase__ : int ='post_processor' lowerCamelCase__ : int =getattr(self.backend_tokenizer , lowerCamelCase_ , lowerCamelCase_ ) if tokenizer_component_instance: lowerCamelCase__ : List[str] =json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowerCamelCase__ : Dict =tuple(state['sep'] ) if "cls" in state: lowerCamelCase__ : int =tuple(state['cls'] ) lowerCamelCase__ : Tuple =False if state.get('add_prefix_space' , lowerCamelCase_ ) != add_prefix_space: lowerCamelCase__ : str =add_prefix_space lowerCamelCase__ : List[Any] =True if state.get('trim_offsets' , lowerCamelCase_ ) != trim_offsets: lowerCamelCase__ : Tuple =trim_offsets lowerCamelCase__ : List[Any] =True if changes_to_apply: lowerCamelCase__ : Dict =getattr(lowerCamelCase_ , state.pop('type' ) ) lowerCamelCase__ : List[str] =component_class(**lowerCamelCase_ ) setattr(self.backend_tokenizer , lowerCamelCase_ , lowerCamelCase_ ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def UpperCAmelCase__ ( self :Union[str, Any] ): """simple docstring""" if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def UpperCAmelCase__ ( self :Tuple , lowerCamelCase_ :Dict ): """simple docstring""" lowerCamelCase__ : Optional[int] =AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else value lowerCamelCase__ : Dict =value def UpperCAmelCase__ ( self :str , *lowerCamelCase_ :Any , **lowerCamelCase_ :Union[str, Any] ): """simple docstring""" lowerCamelCase__ : List[str] =kwargs.get('is_split_into_words' , lowerCamelCase_ ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*lowerCamelCase_ , **lowerCamelCase_ ) def UpperCAmelCase__ ( self :Optional[int] , *lowerCamelCase_ :Optional[Any] , **lowerCamelCase_ :Union[str, Any] ): """simple docstring""" lowerCamelCase__ : List[Any] =kwargs.get('is_split_into_words' , lowerCamelCase_ ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*lowerCamelCase_ , **lowerCamelCase_ ) def UpperCAmelCase__ ( self :int , lowerCamelCase_ :str , lowerCamelCase_ :Optional[str] = None ): """simple docstring""" lowerCamelCase__ : Optional[int] =self._tokenizer.model.save(lowerCamelCase_ , name=lowerCamelCase_ ) return tuple(lowerCamelCase_ ) def UpperCAmelCase__ ( self :Union[str, Any] , lowerCamelCase_ :List[int] , lowerCamelCase_ :Optional[List[int]] = None ): """simple docstring""" lowerCamelCase__ : List[Any] =[self.sep_token_id] lowerCamelCase__ : str =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCAmelCase__ ( self :Optional[Any] , lowerCamelCase_ :List[int] , lowerCamelCase_ :Optional[List[int]] = None ): """simple docstring""" return token_ids_a + [self.eos_token_id] def UpperCAmelCase__ ( self :str , lowerCamelCase_ :"Conversation" ): """simple docstring""" lowerCamelCase__ : Tuple =[] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(' ' + text ) else: # Generated responses should contain them already. inputs.append(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] =' '.join(lowerCamelCase_ ) lowerCamelCase__ : int =self.encode(lowerCamelCase_ ) if len(lowerCamelCase_ ) > self.model_max_length: lowerCamelCase__ : Dict =input_ids[-self.model_max_length :] logger.warning(f"""Trimmed input from conversation as it was longer than {self.model_max_length} tokens.""" ) return input_ids
174
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) _a = { "configuration_funnel": ["FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP", "FunnelConfig"], "convert_funnel_original_tf_checkpoint_to_pytorch": [], "tokenization_funnel": ["FunnelTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = ["FunnelTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ "FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST", "FunnelBaseModel", "FunnelForMaskedLM", "FunnelForMultipleChoice", "FunnelForPreTraining", "FunnelForQuestionAnswering", "FunnelForSequenceClassification", "FunnelForTokenClassification", "FunnelModel", "FunnelPreTrainedModel", "load_tf_weights_in_funnel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ "TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST", "TFFunnelBaseModel", "TFFunnelForMaskedLM", "TFFunnelForMultipleChoice", "TFFunnelForPreTraining", "TFFunnelForQuestionAnswering", "TFFunnelForSequenceClassification", "TFFunnelForTokenClassification", "TFFunnelModel", "TFFunnelPreTrainedModel", ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys _a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
29
from dataclasses import dataclass from typing import Optional import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .modeling_utils import ModelMixin @dataclass class __A ( lowerCAmelCase ): '''simple docstring''' lowerCAmelCase_ = 42 class __A ( lowerCAmelCase , lowerCAmelCase ): '''simple docstring''' @register_to_config def __init__( self , __lowerCAmelCase = 1_6 , __lowerCAmelCase = 8_8 , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = 1 , __lowerCAmelCase = 0.0 , __lowerCAmelCase = 3_2 , __lowerCAmelCase = None , __lowerCAmelCase = False , __lowerCAmelCase = None , __lowerCAmelCase = "geglu" , __lowerCAmelCase = True , __lowerCAmelCase = True , ): '''simple docstring''' super().__init__() lowerCamelCase__ = num_attention_heads lowerCamelCase__ = attention_head_dim lowerCamelCase__ = num_attention_heads * attention_head_dim lowerCamelCase__ = in_channels lowerCamelCase__ = torch.nn.GroupNorm(num_groups=__lowerCAmelCase , num_channels=__lowerCAmelCase , eps=1E-6 , affine=__lowerCAmelCase ) lowerCamelCase__ = nn.Linear(__lowerCAmelCase , __lowerCAmelCase ) # 3. Define transformers blocks lowerCamelCase__ = nn.ModuleList( [ BasicTransformerBlock( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , dropout=__lowerCAmelCase , cross_attention_dim=__lowerCAmelCase , activation_fn=__lowerCAmelCase , attention_bias=__lowerCAmelCase , double_self_attention=__lowerCAmelCase , norm_elementwise_affine=__lowerCAmelCase , ) for d in range(__lowerCAmelCase ) ] ) lowerCamelCase__ = nn.Linear(__lowerCAmelCase , __lowerCAmelCase ) def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=1 , __lowerCAmelCase=None , __lowerCAmelCase = True , ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = hidden_states.shape lowerCamelCase__ = batch_frames // num_frames lowerCamelCase__ = hidden_states lowerCamelCase__ = hidden_states[None, :].reshape(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) lowerCamelCase__ = hidden_states.permute(0 , 2 , 1 , 3 , 4 ) lowerCamelCase__ = self.norm(__lowerCAmelCase ) lowerCamelCase__ = hidden_states.permute(0 , 3 , 4 , 2 , 1 ).reshape(batch_size * height * width , __lowerCAmelCase , __lowerCAmelCase ) lowerCamelCase__ = self.proj_in(__lowerCAmelCase ) # 2. Blocks for block in self.transformer_blocks: lowerCamelCase__ = block( __lowerCAmelCase , encoder_hidden_states=__lowerCAmelCase , timestep=__lowerCAmelCase , cross_attention_kwargs=__lowerCAmelCase , class_labels=__lowerCAmelCase , ) # 3. Output lowerCamelCase__ = self.proj_out(__lowerCAmelCase ) lowerCamelCase__ = ( hidden_states[None, None, :] .reshape(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) .permute(0 , 3 , 4 , 1 , 2 ) .contiguous() ) lowerCamelCase__ = hidden_states.reshape(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) lowerCamelCase__ = hidden_states + residual if not return_dict: return (output,) return TransformerTemporalModelOutput(sample=__lowerCAmelCase )
29
1
'''simple docstring''' import bza import gzip import lzma import os import shutil import struct import tarfile import warnings import zipfile from abc import ABC, abstractmethod from pathlib import Path from typing import Dict, List, Optional, Type, Union from .. import config from .filelock import FileLock from .logging import get_logger lowercase_ = get_logger(__name__) class __A : '''simple docstring''' def __init__(self , A = None ) -> int: """simple docstring""" _a = ( os.path.join(A , config.EXTRACTED_DATASETS_DIR ) if cache_dir else config.EXTRACTED_DATASETS_PATH ) _a = Extractor def a__ (self , A ) -> str: """simple docstring""" from .file_utils import hash_url_to_filename # Path where we extract compressed archives # We extract in the cache dir, and get the extracted path name by hashing the original path" _a = os.path.abspath(A ) return os.path.join(self.extract_dir , hash_url_to_filename(A ) ) def a__ (self , A , A ) -> bool: """simple docstring""" return force_extract or ( not os.path.isfile(A ) and not (os.path.isdir(A ) and os.listdir(A )) ) def a__ (self , A , A = False ) -> str: """simple docstring""" _a = self.extractor.infer_extractor_format(A ) if not extractor_format: return input_path _a = self._get_output_path(A ) if self._do_extract(A , A ): self.extractor.extract(A , A , A ) return output_path class __A ( A ): '''simple docstring''' @classmethod @abstractmethod def a__ (cls , A , **A ) -> bool: """simple docstring""" ... @staticmethod @abstractmethod def a__ (A , A ) -> None: """simple docstring""" ... class __A ( A , A ): '''simple docstring''' __lowerCamelCase : List[bytes] = [] @staticmethod def a__ (A , A ) -> int: """simple docstring""" with open(A , '''rb''' ) as f: return f.read(A ) @classmethod def a__ (cls , A , A = b"" ) -> bool: """simple docstring""" if not magic_number: _a = max(len(A ) for cls_magic_number in cls.magic_numbers ) try: _a = cls.read_magic_number(A , A ) except OSError: return False return any(magic_number.startswith(A ) for cls_magic_number in cls.magic_numbers ) class __A ( A ): '''simple docstring''' @classmethod def a__ (cls , A , **A ) -> bool: """simple docstring""" return tarfile.is_tarfile(A ) @staticmethod def a__ (A , A ) -> List[Any]: """simple docstring""" def resolved(A ) -> str: return os.path.realpath(os.path.abspath(A ) ) def badpath(A , A ) -> bool: # joinpath will ignore base if path is absolute return not resolved(os.path.join(A , A ) ).startswith(A ) def badlink(A , A ) -> bool: # Links are interpreted relative to the directory containing the link _a = resolved(os.path.join(A , os.path.dirname(info.name ) ) ) return badpath(info.linkname , base=A ) _a = resolved(A ) for finfo in members: if badpath(finfo.name , A ): logger.error(f'''Extraction of {finfo.name} is blocked (illegal path)''' ) elif finfo.issym() and badlink(A , A ): logger.error(f'''Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}''' ) elif finfo.islnk() and badlink(A , A ): logger.error(f'''Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}''' ) else: yield finfo @staticmethod def a__ (A , A ) -> None: """simple docstring""" os.makedirs(A , exist_ok=A ) _a = tarfile.open(A ) tar_file.extractall(A , members=TarExtractor.safemembers(A , A ) ) tar_file.close() class __A ( A ): '''simple docstring''' __lowerCamelCase : int = [b'\x1F\x8B'] @staticmethod def a__ (A , A ) -> None: """simple docstring""" with gzip.open(A , '''rb''' ) as gzip_file: with open(A , '''wb''' ) as extracted_file: shutil.copyfileobj(A , A ) class __A ( A ): '''simple docstring''' __lowerCamelCase : Union[str, Any] = [ b'PK\x03\x04', b'PK\x05\x06', # empty archive b'PK\x07\x08', # spanned archive ] @classmethod def a__ (cls , A , A = b"" ) -> bool: """simple docstring""" if super().is_extractable(A , magic_number=A ): return True try: # Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives. # From: https://github.com/python/cpython/pull/5053 from zipfile import ( _CD_SIGNATURE, _ECD_DISK_NUMBER, _ECD_DISK_START, _ECD_ENTRIES_TOTAL, _ECD_OFFSET, _ECD_SIZE, _EndRecData, sizeCentralDir, stringCentralDir, structCentralDir, ) with open(A , '''rb''' ) as fp: _a = _EndRecData(A ) if endrec: if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0: return True # Empty zipfiles are still zipfiles elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]: fp.seek(endrec[_ECD_OFFSET] ) # Central directory is on the same disk if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir: _a = fp.read(A ) # CD is where we expect it to be if len(A ) == sizeCentralDir: _a = struct.unpack(A , A ) # CD is the right size if centdir[_CD_SIGNATURE] == stringCentralDir: return True # First central directory entry has correct magic number return False except Exception: # catch all errors in case future python versions change the zipfile internals return False @staticmethod def a__ (A , A ) -> None: """simple docstring""" os.makedirs(A , exist_ok=A ) with zipfile.ZipFile(A , '''r''' ) as zip_file: zip_file.extractall(A ) zip_file.close() class __A ( A ): '''simple docstring''' __lowerCamelCase : str = [b'\xFD\x37\x7A\x58\x5A\x00'] @staticmethod def a__ (A , A ) -> None: """simple docstring""" with lzma.open(A ) as compressed_file: with open(A , '''wb''' ) as extracted_file: shutil.copyfileobj(A , A ) class __A ( A ): '''simple docstring''' __lowerCamelCase : Any = [b'Rar!\x1a\x07\x00', b'Rar!\x1a\x07\x01\x00'] # RAR_ID # RAR5_ID @staticmethod def a__ (A , A ) -> None: """simple docstring""" if not config.RARFILE_AVAILABLE: raise ImportError('''Please pip install rarfile''' ) import rarfile os.makedirs(A , exist_ok=A ) _a = rarfile.RarFile(A ) rf.extractall(A ) rf.close() class __A ( A ): '''simple docstring''' __lowerCamelCase : Any = [b'\x28\xb5\x2F\xFD'] @staticmethod def a__ (A , A ) -> None: """simple docstring""" if not config.ZSTANDARD_AVAILABLE: raise ImportError('''Please pip install zstandard''' ) import zstandard as zstd _a = zstd.ZstdDecompressor() with open(A , '''rb''' ) as ifh, open(A , '''wb''' ) as ofh: dctx.copy_stream(A , A ) class __A ( A ): '''simple docstring''' __lowerCamelCase : List[str] = [b'\x42\x5A\x68'] @staticmethod def a__ (A , A ) -> None: """simple docstring""" with bza.open(A , '''rb''' ) as compressed_file: with open(A , '''wb''' ) as extracted_file: shutil.copyfileobj(A , A ) class __A ( A ): '''simple docstring''' __lowerCamelCase : Tuple = [b'\x37\x7A\xBC\xAF\x27\x1C'] @staticmethod def a__ (A , A ) -> None: """simple docstring""" if not config.PY7ZR_AVAILABLE: raise ImportError('''Please pip install py7zr''' ) import pyazr os.makedirs(A , exist_ok=A ) with pyazr.SevenZipFile(A , '''r''' ) as archive: archive.extractall(A ) class __A ( A ): '''simple docstring''' __lowerCamelCase : Optional[int] = [b'\x04\x22\x4D\x18'] @staticmethod def a__ (A , A ) -> None: """simple docstring""" if not config.LZ4_AVAILABLE: raise ImportError('''Please pip install lz4''' ) import lza.frame with lza.frame.open(A , '''rb''' ) as compressed_file: with open(A , '''wb''' ) as extracted_file: shutil.copyfileobj(A , A ) class __A : '''simple docstring''' __lowerCamelCase : Dict[str, Type[BaseExtractor]] = { "tar": TarExtractor, "gzip": GzipExtractor, "zip": ZipExtractor, "xz": XzExtractor, "rar": RarExtractor, "zstd": ZstdExtractor, "bz2": BzipaExtractor, "7z": SevenZipExtractor, # <Added version="2.4.0"/> "lz4": LzaExtractor, # <Added version="2.4.0"/> } @classmethod def a__ (cls ) -> Tuple: """simple docstring""" return max( len(A ) for extractor in cls.extractors.values() if issubclass(A , A ) for extractor_magic_number in extractor.magic_numbers ) @staticmethod def a__ (A , A ) -> Tuple: """simple docstring""" try: return MagicNumberBaseExtractor.read_magic_number(A , magic_number_length=A ) except OSError: return b"" @classmethod def a__ (cls , A , A = False ) -> bool: """simple docstring""" warnings.warn( '''Method \'is_extractable\' was deprecated in version 2.4.0 and will be removed in 3.0.0. ''' '''Use \'infer_extractor_format\' instead.''' , category=A , ) _a = cls.infer_extractor_format(A ) if extractor_format: return True if not return_extractor else (True, cls.extractors[extractor_format]) return False if not return_extractor else (False, None) @classmethod def a__ (cls , A ) -> str: # <Added version="2.4.0"/> """simple docstring""" _a = cls._get_magic_number_max_length() _a = cls._read_magic_number(A , A ) for extractor_format, extractor in cls.extractors.items(): if extractor.is_extractable(A , magic_number=A ): return extractor_format @classmethod def a__ (cls , A , A , A = None , A = "deprecated" , ) -> None: """simple docstring""" os.makedirs(os.path.dirname(A ) , exist_ok=A ) # Prevent parallel extractions _a = str(Path(A ).with_suffix('''.lock''' ) ) with FileLock(A ): shutil.rmtree(A , ignore_errors=A ) if extractor_format or extractor != "deprecated": if extractor != "deprecated" or not isinstance(A , A ): # passed as positional arg warnings.warn( '''Parameter \'extractor\' was deprecated in version 2.4.0 and will be removed in 3.0.0. ''' '''Use \'extractor_format\' instead.''' , category=A , ) _a = extractor if extractor != '''deprecated''' else extractor_format else: _a = cls.extractors[extractor_format] return extractor.extract(A , A ) else: warnings.warn( '''Parameter \'extractor_format\' was made required in version 2.4.0 and not passing it will raise an ''' '''exception in 3.0.0.''' , category=A , ) for extractor in cls.extractors.values(): if extractor.is_extractable(A ): return extractor.extract(A , A )
11
from __future__ import annotations def A__ ( lowerCamelCase ) -> bool: UpperCamelCase_: Optional[int] = len(lowerCamelCase ) # We need to create solution object to save path. UpperCamelCase_: List[str] = [[0 for _ in range(lowerCamelCase )] for _ in range(lowerCamelCase )] UpperCamelCase_: Dict = run_maze(lowerCamelCase , 0 , 0 , lowerCamelCase ) if solved: print("""\n""".join(str(lowerCamelCase ) for row in solutions ) ) else: print("""No solution exists!""" ) return solved def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> bool: UpperCamelCase_: Dict = len(lowerCamelCase ) # Final check point. if i == j == (size - 1): UpperCamelCase_: Union[str, Any] = 1 return True UpperCamelCase_: List[str] = (not i < 0) and (not j < 0) # Check lower bounds UpperCamelCase_: List[str] = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. UpperCamelCase_: Dict = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited UpperCamelCase_: Optional[Any] = 1 # check for directions if ( run_maze(lowerCamelCase , i + 1 , lowerCamelCase , lowerCamelCase ) or run_maze(lowerCamelCase , lowerCamelCase , j + 1 , lowerCamelCase ) or run_maze(lowerCamelCase , i - 1 , lowerCamelCase , lowerCamelCase ) or run_maze(lowerCamelCase , lowerCamelCase , j - 1 , lowerCamelCase ) ): return True UpperCamelCase_: Optional[Any] = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
548
0
import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse('9.1.0'): SCREAMING_SNAKE_CASE_ = { 'linear': PIL.Image.Resampling.BILINEAR, 'bilinear': PIL.Image.Resampling.BILINEAR, 'bicubic': PIL.Image.Resampling.BICUBIC, 'lanczos': PIL.Image.Resampling.LANCZOS, 'nearest': PIL.Image.Resampling.NEAREST, } else: SCREAMING_SNAKE_CASE_ = { 'linear': PIL.Image.LINEAR, 'bilinear': PIL.Image.BILINEAR, 'bicubic': PIL.Image.BICUBIC, 'lanczos': PIL.Image.LANCZOS, 'nearest': PIL.Image.NEAREST, } def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Dict ) -> List[str]: _UpperCAmelCase : List[Any] = (images / 2 + 0.5).clamp(0 , 1 ) _UpperCAmelCase : Tuple = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() _UpperCAmelCase : Optional[int] = numpy_to_pil(lowerCAmelCase ) return images def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Union[str, Any] ) -> Union[str, Any]: if images.ndim == 3: _UpperCAmelCase : List[str] = images[None, ...] _UpperCAmelCase : Union[str, Any] = (images * 255).round().astype("uint8" ) if images.shape[-1] == 1: # special case for grayscale (single channel) images _UpperCAmelCase : Optional[Any] = [Image.fromarray(image.squeeze() , mode="L" ) for image in images] else: _UpperCAmelCase : Union[str, Any] = [Image.fromarray(lowerCAmelCase ) for image in images] return pil_images
467
from __future__ import annotations from collections.abc import Callable def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Callable[[int | float], int | float] , lowerCAmelCase: int | float , lowerCAmelCase: int | float , lowerCAmelCase: int = 100 , ) -> float: _UpperCAmelCase : str = x_start _UpperCAmelCase : Union[str, Any] = fnc(lowerCAmelCase ) _UpperCAmelCase : Tuple = 0.0 for _ in range(lowerCAmelCase ): # Approximates small segments of curve as linear and solve # for trapezoidal area _UpperCAmelCase : Union[str, Any] = (x_end - x_start) / steps + xa _UpperCAmelCase : Optional[Any] = fnc(lowerCAmelCase ) area += abs(fxa + fxa ) * (xa - xa) / 2 # Increment step _UpperCAmelCase : Any = xa _UpperCAmelCase : Optional[Any] = fxa return area if __name__ == "__main__": def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: List[str] ) -> List[Any]: return x**3 + x**2 print('f(x) = x^3 + x^2') print('The area between the curve, x = -5, x = 5 and the x axis is:') SCREAMING_SNAKE_CASE_ = 10 while i <= 100000: print(F'''with {i} steps: {trapezoidal_area(f, -5, 5, i)}''') i *= 10
467
1
"""simple docstring""" from __future__ import annotations def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' if len(__UpperCamelCase ) <= 1 or n <= 1: return insert_next(__UpperCamelCase , n - 1 ) rec_insertion_sort(__UpperCamelCase , n - 1 ) def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' if index >= len(__UpperCamelCase ) or collection[index - 1] <= collection[index]: return # Swaps adjacent elements since they are not in ascending order UpperCAmelCase__ , UpperCAmelCase__ : Any = ( collection[index], collection[index - 1], ) insert_next(__UpperCamelCase , index + 1 ) if __name__ == "__main__": __UpperCAmelCase = input('Enter integers separated by spaces: ') __UpperCAmelCase = [int(num) for num in numbers.split()] rec_insertion_sort(number_list, len(number_list)) print(number_list)
65
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __UpperCAmelCase = { 'configuration_bridgetower': [ 'BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BridgeTowerConfig', 'BridgeTowerTextConfig', 'BridgeTowerVisionConfig', ], 'processing_bridgetower': ['BridgeTowerProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['BridgeTowerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST', 'BridgeTowerForContrastiveLearning', 'BridgeTowerForImageAndTextRetrieval', 'BridgeTowerForMaskedLM', 'BridgeTowerModel', 'BridgeTowerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_bridgetower import ( BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP, BridgeTowerConfig, BridgeTowerTextConfig, BridgeTowerVisionConfig, ) from .processing_bridgetower import BridgeTowerProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_bridgetower import BridgeTowerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bridgetower import ( BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST, BridgeTowerForContrastiveLearning, BridgeTowerForImageAndTextRetrieval, BridgeTowerForMaskedLM, BridgeTowerModel, BridgeTowerPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure)
65
1
import importlib import os import fsspec import pytest from fsspec import register_implementation from fsspec.registry import _registry as _fsspec_registry from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem from .utils import require_lza, require_zstandard def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): assert "mock" in _fsspec_registry assert "bz2" in _fsspec_registry def _SCREAMING_SNAKE_CASE ( ): assert "mock" not in _fsspec_registry assert "bz2" in _fsspec_registry def _SCREAMING_SNAKE_CASE ( ): A_ : Optional[int] = '''mock-s3-bucket''' A_ : Optional[Any] = f'''s3://{mock_bucket}''' A_ : List[Any] = extract_path_from_uri(SCREAMING_SNAKE_CASE ) assert dataset_path.startswith('''s3://''' ) is False A_ : List[Any] = '''./local/path''' A_ : List[Any] = extract_path_from_uri(SCREAMING_SNAKE_CASE ) assert dataset_path == new_dataset_path def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): A_ : Union[str, Any] = is_remote_filesystem(SCREAMING_SNAKE_CASE ) assert is_remote is True A_ : List[Any] = fsspec.filesystem('''file''' ) A_ : Optional[Any] = is_remote_filesystem(SCREAMING_SNAKE_CASE ) assert is_remote is False @pytest.mark.parametrize('''compression_fs_class''' , SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): A_ : Any = {'''gzip''': gz_file, '''xz''': xz_file, '''zstd''': zstd_file, '''bz2''': bza_file, '''lz4''': lza_file} A_ : List[str] = input_paths[compression_fs_class.protocol] if input_path is None: A_ : Any = f'''for \'{compression_fs_class.protocol}\' compression protocol, ''' if compression_fs_class.protocol == "lz4": reason += require_lza.kwargs["reason"] elif compression_fs_class.protocol == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(SCREAMING_SNAKE_CASE ) A_ : Dict = fsspec.filesystem(compression_fs_class.protocol , fo=SCREAMING_SNAKE_CASE ) assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) A_ : Dict = os.path.basename(SCREAMING_SNAKE_CASE ) A_ : List[str] = expected_filename[: expected_filename.rindex('''.''' )] assert fs.glob('''*''' ) == [expected_filename] with fs.open(SCREAMING_SNAKE_CASE , '''r''' , encoding='''utf-8''' ) as f, open(SCREAMING_SNAKE_CASE , encoding='''utf-8''' ) as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize('''protocol''' , ['''zip''', '''gzip'''] ) def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): A_ : Tuple = {'''zip''': zip_jsonl_path, '''gzip''': jsonl_gz_path} A_ : Optional[Any] = compressed_file_paths[protocol] A_ : List[Any] = '''dataset.jsonl''' A_ : List[Any] = f'''{protocol}://{member_file_path}::{compressed_file_path}''' A_ , *A_ : Optional[int] = fsspec.get_fs_token_paths(SCREAMING_SNAKE_CASE ) assert fs.isfile(SCREAMING_SNAKE_CASE ) assert not fs.isfile('''non_existing_''' + member_file_path ) @pytest.mark.integration def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): A_ : Any = hf_api.dataset_info(SCREAMING_SNAKE_CASE , token=SCREAMING_SNAKE_CASE ) A_ : Any = HfFileSystem(repo_info=SCREAMING_SNAKE_CASE , token=SCREAMING_SNAKE_CASE ) assert sorted(hffs.glob('''*''' ) ) == [".gitattributes", "data"] assert hffs.isdir('''data''' ) assert hffs.isfile('''.gitattributes''' ) and hffs.isfile('''data/text_data.txt''' ) with open(SCREAMING_SNAKE_CASE ) as f: assert hffs.open('''data/text_data.txt''' , '''r''' ).read() == f.read() def _SCREAMING_SNAKE_CASE ( ): A_ : Dict = '''bz2''' # Import module import datasets.filesystems # Overwrite protocol and reload register_implementation(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , clobber=SCREAMING_SNAKE_CASE ) with pytest.warns(SCREAMING_SNAKE_CASE ) as warning_info: importlib.reload(datasets.filesystems ) assert len(SCREAMING_SNAKE_CASE ) == 1 assert ( str(warning_info[0].message ) == f'''A filesystem protocol was already set for {protocol} and will be overwritten.''' )
152
import argparse import json from tqdm import tqdm def _SCREAMING_SNAKE_CASE ( ): A_ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--src_path''' , type=SCREAMING_SNAKE_CASE , default='''biencoder-nq-dev.json''' , help='''Path to raw DPR training data''' , ) parser.add_argument( '''--evaluation_set''' , type=SCREAMING_SNAKE_CASE , help='''where to store parsed evaluation_set file''' , ) parser.add_argument( '''--gold_data_path''' , type=SCREAMING_SNAKE_CASE , help='''where to store parsed gold_data_path file''' , ) A_ : Optional[int] = parser.parse_args() with open(args.src_path , '''r''' ) as src_file, open(args.evaluation_set , '''w''' ) as eval_file, open( args.gold_data_path , '''w''' ) as gold_file: A_ : Tuple = json.load(SCREAMING_SNAKE_CASE ) for dpr_record in tqdm(SCREAMING_SNAKE_CASE ): A_ : Optional[Any] = dpr_record['''question'''] A_ : Union[str, Any] = [context['''title'''] for context in dpr_record['''positive_ctxs''']] eval_file.write(question + '''\n''' ) gold_file.write('''\t'''.join(SCREAMING_SNAKE_CASE ) + '''\n''' ) if __name__ == "__main__": main()
152
1
import pytest from datasets import inspect_metric, list_metrics, load_metric @pytest.fixture def snake_case__ ( lowercase ): monkeypatch.setattr("datasets.utils.deprecation_utils._emitted_deprecation_warnings" , set() ) @pytest.fixture def snake_case__ ( lowercase ): class _lowercase : '''simple docstring''' def __init__( self , lowerCamelCase__ ): lowerCAmelCase_: Optional[int] = metric_id class _lowercase : '''simple docstring''' SCREAMING_SNAKE_CASE: List[Any] = [MetricMock(_A ) for metric_id in ['accuracy', 'mse', 'precision', 'codeparrot/apps_metric']] def _a ( self ): return self._metrics monkeypatch.setattr("datasets.inspect.huggingface_hub" , HfhMock() ) @pytest.mark.parametrize( "func, args" , [(load_metric, ("metrics/mse",)), (list_metrics, ()), (inspect_metric, ("metrics/mse", "tmp_path"))] ) def snake_case__ ( lowercase , lowercase , lowercase , lowercase , lowercase ): if "tmp_path" in args: lowerCAmelCase_: Any = tuple(arg if arg != "tmp_path" else tmp_path for arg in args ) with pytest.warns(A_ , match="https://huggingface.co/docs/evaluate" ): func(*A_ )
613
'''simple docstring''' import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __snake_case : Dict = logging.get_logger(__name__) __snake_case : Tuple = {'''vocab_file''': '''vocab.txt''', '''emoji_file''': '''emoji.json'''} __snake_case : Tuple = { '''vocab_file''': { '''abeja/gpt-neox-japanese-2.7b''': '''https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt''', }, '''emoji_file''': { '''abeja/gpt-neox-japanese-2.7b''': '''https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json''', }, } __snake_case : Dict = { '''abeja/gpt-neox-japanese-2.7b''': 20_48, } def lowerCamelCase__ ( A_ , A_ ): with open(A_ , "r" , encoding="utf-8" ) as f: UpperCAmelCase_ = json.loads(f.read() ) UpperCAmelCase_ = collections.OrderedDict() UpperCAmelCase_ = collections.OrderedDict() UpperCAmelCase_ = collections.OrderedDict() with open(A_ , "r" , encoding="utf-8" ) as f: UpperCAmelCase_ = f.readlines() UpperCAmelCase_ = [[t.rstrip("\n" )] if (t == "," or "," not in t) else t.rstrip("\n" ).split("," ) for t in token] for idx, b in enumerate(A_ ): UpperCAmelCase_ = b UpperCAmelCase_ = idx for wd in b: UpperCAmelCase_ = idx return vocab, raw_vocab, ids_to_tokens, emoji class lowercase_ ( _A ): a_ = VOCAB_FILES_NAMES a_ = PRETRAINED_VOCAB_FILES_MAP a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ = ["""input_ids""", """attention_mask"""] def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__="<|endoftext|>" , UpperCamelCase__="<|endoftext|>" , UpperCamelCase__="<|startoftext|>" , UpperCamelCase__="<|endoftext|>" , UpperCamelCase__=False , **UpperCamelCase__ , ) -> int: """simple docstring""" super().__init__( unk_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , do_clean_text=UpperCamelCase__ , **UpperCamelCase__ , ) if not os.path.isfile(UpperCamelCase__ ): raise ValueError( F"""Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained""" " model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" ) if not os.path.isfile(UpperCamelCase__ ): raise ValueError( F"""Can't find a emoji file at path '{emoji_file}'. To load the emoji information from a Google""" " pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" ) UpperCAmelCase_ = do_clean_text UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = load_vocab_and_emoji(UpperCamelCase__ , UpperCamelCase__ ) UpperCAmelCase_ = SubWordJapaneseTokenizer( vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji ) @property def lowerCamelCase_ ( self ) -> Dict: """simple docstring""" return len(self.raw_vocab ) def lowerCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" return dict(self.raw_vocab , **self.added_tokens_encoder ) def lowerCamelCase_ ( self , UpperCamelCase__ ) -> Union[str, Any]: """simple docstring""" return self.subword_tokenizer.tokenize(UpperCamelCase__ , clean=self.do_clean_text ) def lowerCamelCase_ ( self , UpperCamelCase__ ) -> int: """simple docstring""" return self.vocab.get(UpperCamelCase__ , self.vocab.get(self.unk_token ) ) def lowerCamelCase_ ( self , UpperCamelCase__ ) -> List[Any]: """simple docstring""" return self.subword_tokenizer.convert_id_to_token(UpperCamelCase__ ) def lowerCamelCase_ ( self , UpperCamelCase__ ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ = "".join(UpperCamelCase__ ).strip() return out_string def lowerCamelCase_ ( self , UpperCamelCase__ ) -> List[int]: """simple docstring""" UpperCAmelCase_ = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) + [self.eos_token_id] ) if len(UpperCamelCase__ ) > self.model_max_length: UpperCAmelCase_ = input_ids[-self.model_max_length :] return input_ids def lowerCamelCase_ ( self , UpperCamelCase__ , UpperCamelCase__ = None ) -> Tuple[str]: """simple docstring""" UpperCAmelCase_ = 0 if os.path.isdir(UpperCamelCase__ ): UpperCAmelCase_ = os.path.join( UpperCamelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) UpperCAmelCase_ = os.path.join( UpperCamelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["emoji_file"] ) else: UpperCAmelCase_ = ( (filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["vocab_file"] ) UpperCAmelCase_ = ( (filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["emoji_file"] ) with open(UpperCamelCase__ , "w" , encoding="utf-8" ) as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( F"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" " Please check that the vocabulary is not corrupted!" ) UpperCAmelCase_ = token_index writer.write(",".join(UpperCamelCase__ ) + "\n" ) index += 1 with open(UpperCamelCase__ , "w" , encoding="utf-8" ) as writer: json.dump(self.emoji , UpperCamelCase__ ) return vocab_file, emoji_file class lowercase_ ( _A ): def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ = vocab # same as swe UpperCAmelCase_ = ids_to_tokens # same as bpe UpperCAmelCase_ = emoji UpperCAmelCase_ = np.max([len(UpperCamelCase__ ) for w in self.vocab.keys()] ) UpperCAmelCase_ = re.compile(R"(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)" ) UpperCAmelCase_ = re.compile(R"[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*" ) UpperCAmelCase_ = re.compile(R"[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}" ) UpperCAmelCase_ = re.compile( R"([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*" ) UpperCAmelCase_ = re.compile( R"(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*" ) UpperCAmelCase_ = re.compile( R"((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*" ) UpperCAmelCase_ = "─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿" UpperCAmelCase_ = "▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟" UpperCAmelCase_ = str.maketrans({k: "<BLOCK>" for k in keisen + blocks} ) def __len__( self ) -> int: """simple docstring""" return len(self.ids_to_tokens ) def lowerCamelCase_ ( self , UpperCamelCase__ ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ = self.content_repattera.sub("<URL>" , UpperCamelCase__ ) UpperCAmelCase_ = self.content_repattera.sub("<EMAIL>" , UpperCamelCase__ ) UpperCAmelCase_ = self.content_repattera.sub("<TEL>" , UpperCamelCase__ ) UpperCAmelCase_ = self.content_repattera.sub("<DATE>" , UpperCamelCase__ ) UpperCAmelCase_ = self.content_repattera.sub("<DATE>" , UpperCamelCase__ ) UpperCAmelCase_ = self.content_repattera.sub("<PRICE>" , UpperCamelCase__ ) UpperCAmelCase_ = content.translate(self.content_transa ) while "<BLOCK><BLOCK>" in content: UpperCAmelCase_ = content.replace("<BLOCK><BLOCK>" , "<BLOCK>" ) return content def lowerCamelCase_ ( self , UpperCamelCase__ , UpperCamelCase__=False ) -> List[Any]: """simple docstring""" UpperCAmelCase_ = text.replace(" " , "<SP>" ) UpperCAmelCase_ = text.replace(" " , "<SP>" ) UpperCAmelCase_ = text.replace("\r\n" , "<BR>" ) UpperCAmelCase_ = text.replace("\n" , "<BR>" ) UpperCAmelCase_ = text.replace("\r" , "<BR>" ) UpperCAmelCase_ = text.replace("\t" , "<TAB>" ) UpperCAmelCase_ = text.replace("—" , "ー" ) UpperCAmelCase_ = text.replace("−" , "ー" ) for k, v in self.emoji["emoji"].items(): if k in text: UpperCAmelCase_ = text.replace(UpperCamelCase__ , UpperCamelCase__ ) if clean: UpperCAmelCase_ = self.clean_text(UpperCamelCase__ ) def check_simbol(UpperCamelCase__ ): UpperCAmelCase_ = x.encode() if len(UpperCamelCase__ ) == 1 and len(UpperCamelCase__ ) == 2: UpperCAmelCase_ = (int(e[0] ) << 8) + int(e[1] ) if ( (c >= 0Xc_2_a_1 and c <= 0Xc_2_b_f) or (c >= 0Xc_7_8_0 and c <= 0Xc_7_8_3) or (c >= 0Xc_a_b_9 and c <= 0Xc_b_b_f) or (c >= 0Xc_c_8_0 and c <= 0Xc_d_a_2) ): return True return False def checkuae(UpperCamelCase__ ): UpperCAmelCase_ = x.encode() if len(UpperCamelCase__ ) == 1 and len(UpperCamelCase__ ) == 3: UpperCAmelCase_ = (int(e[0] ) << 1_6) + (int(e[1] ) << 8) + int(e[2] ) if c >= 0Xe_2_8_0_8_0 and c <= 0Xe_2_b_0_7_f: return True return False UpperCAmelCase_ = 0 UpperCAmelCase_ = [] while pos < len(UpperCamelCase__ ): UpperCAmelCase_ = min(len(UpperCamelCase__ ) , pos + self.maxlen + 1 ) if text[pos] == "<" else pos + 3 UpperCAmelCase_ = [] # (token_id, token, pos) for e in range(UpperCamelCase__ , UpperCamelCase__ , -1 ): UpperCAmelCase_ = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(UpperCamelCase__ ) > 2: UpperCAmelCase_ = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e) ) if len(UpperCamelCase__ ) > 0: # the smallest token_id is adopted UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = sorted(UpperCamelCase__ , key=lambda UpperCamelCase__ : x[0] )[0] result.append(UpperCamelCase__ ) UpperCAmelCase_ = e else: UpperCAmelCase_ = pos + 1 UpperCAmelCase_ = text[pos:end] if check_simbol(UpperCamelCase__ ): result.append("<KIGOU>" ) elif checkuae(UpperCamelCase__ ): result.append("<U2000U2BFF>" ) else: for i in wd.encode("utf-8" ): result.append("<|byte%d|>" % i ) UpperCAmelCase_ = end return result def lowerCamelCase_ ( self , UpperCamelCase__ , UpperCamelCase__="\n" ) -> Optional[Any]: """simple docstring""" UpperCAmelCase_ = [] UpperCAmelCase_ = [] UpperCAmelCase_ = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2] ) ) else: if len(UpperCamelCase__ ) > 0: words.append(bytearray(UpperCamelCase__ ).decode("utf-8" , errors="replace" ) ) UpperCAmelCase_ = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji["emoji_inv"][word] ) elif word == "<SP>": words.append(" " ) elif word == "<BR>": words.append(UpperCamelCase__ ) elif word == "<TAB>": words.append("\t" ) elif word == "<BLOCK>": words.append("▀" ) elif word == "<KIGOU>": words.append("ǀ" ) elif word == "<U2000U2BFF>": words.append("‖" ) else: words.append(UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0: words.append(bytearray(UpperCamelCase__ ).decode("utf-8" , errors="replace" ) ) UpperCAmelCase_ = "".join(UpperCamelCase__ ) return text
660
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowerCAmelCase ( UpperCamelCase_ , unittest.TestCase ): A_ : Union[str, Any] = KandinskyInpaintPipeline A_ : List[Any] = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image"""] A_ : Optional[int] = [ """prompt""", """negative_prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image""", ] A_ : Optional[int] = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """negative_prompt""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] A_ : Union[str, Any] = False @property def _A ( self : str ): '''simple docstring''' return 32 @property def _A ( self : List[Any] ): '''simple docstring''' return 32 @property def _A ( self : Optional[int] ): '''simple docstring''' return self.time_input_dim @property def _A ( self : Optional[int] ): '''simple docstring''' return self.time_input_dim * 4 @property def _A ( self : List[Any] ): '''simple docstring''' return 100 @property def _A ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : str = XLMRobertaTokenizerFast.from_pretrained("YiYiXu/tiny-random-mclip-base" ) return tokenizer @property def _A ( self : Any ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ : Optional[Any] = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1005 , ) lowerCAmelCase__ : Union[str, Any] = MultilingualCLIP(_lowerCAmelCase ) lowerCAmelCase__ : str = text_encoder.eval() return text_encoder @property def _A ( self : Union[str, Any] ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ : Any = { "in_channels": 9, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "text_image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "text_image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } lowerCAmelCase__ : int = UNetaDConditionModel(**_lowerCAmelCase ) return model @property def _A ( self : Tuple ): '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def _A ( self : Tuple ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ : int = VQModel(**self.dummy_movq_kwargs ) return model def _A ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = self.dummy_text_encoder lowerCAmelCase__ : List[str] = self.dummy_tokenizer lowerCAmelCase__ : Union[str, Any] = self.dummy_unet lowerCAmelCase__ : int = self.dummy_movq lowerCAmelCase__ : List[str] = DDIMScheduler( num_train_timesteps=1000 , beta_schedule="linear" , beta_start=0.00085 , beta_end=0.012 , clip_sample=_lowerCAmelCase , set_alpha_to_one=_lowerCAmelCase , steps_offset=1 , prediction_type="epsilon" , thresholding=_lowerCAmelCase , ) lowerCAmelCase__ : Tuple = { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "movq": movq, } return components def _A ( self : List[str] , a__ : Optional[int] , a__ : str=0 ): '''simple docstring''' lowerCAmelCase__ : int = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) lowerCAmelCase__ : Union[str, Any] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(_lowerCAmelCase ) # create init_image lowerCAmelCase__ : Dict = floats_tensor((1, 3, 64, 64) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) lowerCAmelCase__ : Dict = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCAmelCase__ : Dict = Image.fromarray(np.uinta(_lowerCAmelCase ) ).convert("RGB" ).resize((256, 256) ) # create mask lowerCAmelCase__ : Optional[Any] = np.ones((64, 64) , dtype=np.floataa ) lowerCAmelCase__ : Optional[int] = 0 if str(_lowerCAmelCase ).startswith("mps" ): lowerCAmelCase__ : Any = torch.manual_seed(_lowerCAmelCase ) else: lowerCAmelCase__ : Optional[Any] = torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase ) lowerCAmelCase__ : str = { "prompt": "horse", "image": init_image, "mask_image": mask, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 64, "width": 64, "num_inference_steps": 2, "guidance_scale": 4.0, "output_type": "np", } return inputs def _A ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : int = "cpu" lowerCAmelCase__ : Optional[Any] = self.get_dummy_components() lowerCAmelCase__ : Any = self.pipeline_class(**_lowerCAmelCase ) lowerCAmelCase__ : Tuple = pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) lowerCAmelCase__ : Tuple = pipe(**self.get_dummy_inputs(_lowerCAmelCase ) ) lowerCAmelCase__ : Dict = output.images lowerCAmelCase__ : Optional[Any] = pipe( **self.get_dummy_inputs(_lowerCAmelCase ) , return_dict=_lowerCAmelCase , )[0] lowerCAmelCase__ : Optional[Any] = image[0, -3:, -3:, -1] lowerCAmelCase__ : Optional[Any] = image_from_tuple[0, -3:, -3:, -1] print(F'''image.shape {image.shape}''' ) assert image.shape == (1, 64, 64, 3) lowerCAmelCase__ : str = np.array( [0.8326919, 0.73790467, 0.20918581, 0.9309612, 0.5511791, 0.43713328, 0.5513321, 0.49922934, 0.59497786] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' def _A ( self : Any ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class lowerCAmelCase ( unittest.TestCase ): def _A ( self : Dict ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _A ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy" ) lowerCAmelCase__ : List[str] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) lowerCAmelCase__ : str = np.ones((768, 768) , dtype=np.floataa ) lowerCAmelCase__ : List[str] = 0 lowerCAmelCase__ : Tuple = "a hat" lowerCAmelCase__ : int = KandinskyPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1-prior" , torch_dtype=torch.floataa ) pipe_prior.to(_lowerCAmelCase ) lowerCAmelCase__ : Dict = KandinskyInpaintPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1-inpaint" , torch_dtype=torch.floataa ) lowerCAmelCase__ : List[str] = pipeline.to(_lowerCAmelCase ) pipeline.set_progress_bar_config(disable=_lowerCAmelCase ) lowerCAmelCase__ : int = torch.Generator(device="cpu" ).manual_seed(0 ) lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = pipe_prior( _lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=5 , negative_prompt="" , ).to_tuple() lowerCAmelCase__ : Union[str, Any] = pipeline( _lowerCAmelCase , image=_lowerCAmelCase , mask_image=_lowerCAmelCase , image_embeds=_lowerCAmelCase , negative_image_embeds=_lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=100 , height=768 , width=768 , output_type="np" , ) lowerCAmelCase__ : int = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_lowerCAmelCase , _lowerCAmelCase )
709
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: snake_case = None snake_case = logging.get_logger(__name__) snake_case = {"""vocab_file""": """sentencepiece.model""", """tokenizer_file""": """tokenizer.json"""} snake_case = { """vocab_file""": { """google/rembert""": """https://huggingface.co/google/rembert/resolve/main/sentencepiece.model""", }, """tokenizer_file""": { """google/rembert""": """https://huggingface.co/google/rembert/resolve/main/tokenizer.json""", }, } snake_case = { """google/rembert""": 2_56, } snake_case = """▁""" class lowerCAmelCase ( UpperCamelCase_ ): A_ : Dict = VOCAB_FILES_NAMES A_ : List[Any] = PRETRAINED_VOCAB_FILES_MAP A_ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ : Tuple = RemBertTokenizer def __init__( self : Dict , a__ : int=None , a__ : List[Any]=None , a__ : List[Any]=True , a__ : Dict=True , a__ : int=False , a__ : Tuple="[CLS]" , a__ : Optional[int]="[SEP]" , a__ : Optional[Any]="<unk>" , a__ : List[str]="[SEP]" , a__ : Any="<pad>" , a__ : List[str]="[CLS]" , a__ : int="[MASK]" , **a__ : Dict , ): '''simple docstring''' lowerCAmelCase__ : Tuple = AddedToken(a__ , lstrip=a__ , rstrip=a__ ) if isinstance(a__ , a__ ) else mask_token super().__init__( a__ , tokenizer_file=a__ , do_lower_case=a__ , remove_space=a__ , keep_accents=a__ , bos_token=a__ , eos_token=a__ , unk_token=a__ , sep_token=a__ , pad_token=a__ , cls_token=a__ , mask_token=a__ , **a__ , ) lowerCAmelCase__ : Dict = do_lower_case lowerCAmelCase__ : List[str] = remove_space lowerCAmelCase__ : Optional[int] = keep_accents lowerCAmelCase__ : Tuple = vocab_file lowerCAmelCase__ : Optional[int] = False if not self.vocab_file else True def _A ( self : List[str] , a__ : List[int] , a__ : Optional[List[int]] = None ): '''simple docstring''' lowerCAmelCase__ : Any = [self.sep_token_id] lowerCAmelCase__ : Any = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _A ( self : List[str] , a__ : List[int] , a__ : Optional[List[int]] = None , a__ : bool = False ): '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(a__ )) + [1] + ([0] * len(a__ )) + [1] return [1] + ([0] * len(a__ )) + [1] def _A ( self : Tuple , a__ : List[int] , a__ : Optional[List[int]] = None ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = [self.sep_token_id] lowerCAmelCase__ : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _A ( self : List[str] , a__ : str , a__ : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(a__ ): logger.error("Vocabulary path ({}) should be a directory".format(a__ ) ) return lowerCAmelCase__ : List[Any] = os.path.join( a__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a__ ): copyfile(self.vocab_file , a__ ) return (out_vocab_file,)
568
0
'''simple docstring''' import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class _a : '''simple docstring''' def __init__( self, A, A=100, A=13, A=30, A=2, A=3, A=True, A=True, A=32, A=4, A=4, A=37, A="gelu", A=0.1, A=0.1, A=10, A=0.02, A=3, A=None, A=[0, 1, 2, 3], ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = parent SCREAMING_SNAKE_CASE : List[Any] = 100 SCREAMING_SNAKE_CASE : int = batch_size SCREAMING_SNAKE_CASE : str = image_size SCREAMING_SNAKE_CASE : List[str] = patch_size SCREAMING_SNAKE_CASE : Dict = num_channels SCREAMING_SNAKE_CASE : List[Any] = is_training SCREAMING_SNAKE_CASE : Optional[Any] = use_labels SCREAMING_SNAKE_CASE : List[str] = hidden_size SCREAMING_SNAKE_CASE : Tuple = num_hidden_layers SCREAMING_SNAKE_CASE : Union[str, Any] = num_attention_heads SCREAMING_SNAKE_CASE : Any = intermediate_size SCREAMING_SNAKE_CASE : str = hidden_act SCREAMING_SNAKE_CASE : List[Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE : Optional[Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Optional[Any] = type_sequence_label_size SCREAMING_SNAKE_CASE : int = initializer_range SCREAMING_SNAKE_CASE : Optional[int] = scope SCREAMING_SNAKE_CASE : Union[str, Any] = out_indices SCREAMING_SNAKE_CASE : Tuple = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) SCREAMING_SNAKE_CASE : Union[str, Any] = (image_size // patch_size) ** 2 SCREAMING_SNAKE_CASE : Union[str, Any] = num_patches + 1 def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : Optional[int] = None if self.use_labels: SCREAMING_SNAKE_CASE : str = ids_tensor([self.batch_size], self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : Union[str, Any] = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels ) SCREAMING_SNAKE_CASE : Optional[Any] = self.get_config() return config, pixel_values, labels, pixel_labels def UpperCamelCase_ ( self ): '''simple docstring''' return BeitConfig( vocab_size=self.vocab_size, image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=A, initializer_range=self.initializer_range, out_indices=self.out_indices, ) def UpperCamelCase_ ( self, A, A, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = BeitModel(config=A ) model.to(A ) model.eval() SCREAMING_SNAKE_CASE : List[str] = model(A ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self, A, A, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = BeitForMaskedImageModeling(config=A ) model.to(A ) model.eval() SCREAMING_SNAKE_CASE : str = model(A ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length - 1, self.vocab_size) ) def UpperCamelCase_ ( self, A, A, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.type_sequence_label_size SCREAMING_SNAKE_CASE : str = BeitForImageClassification(A ) model.to(A ) model.eval() SCREAMING_SNAKE_CASE : Optional[Any] = model(A, labels=A ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) # test greyscale images SCREAMING_SNAKE_CASE : Dict = 1 SCREAMING_SNAKE_CASE : Any = BeitForImageClassification(A ) model.to(A ) model.eval() SCREAMING_SNAKE_CASE : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE : str = model(A, labels=A ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) def UpperCamelCase_ ( self, A, A, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.num_labels SCREAMING_SNAKE_CASE : List[str] = BeitForSemanticSegmentation(A ) model.to(A ) model.eval() SCREAMING_SNAKE_CASE : List[Any] = model(A ) self.parent.assertEqual( result.logits.shape, (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) SCREAMING_SNAKE_CASE : Dict = model(A, labels=A ) self.parent.assertEqual( result.logits.shape, (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = config_and_inputs SCREAMING_SNAKE_CASE : Optional[Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' A : Tuple = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) A : Tuple = ( { '''feature-extraction''': BeitModel, '''image-classification''': BeitForImageClassification, '''image-segmentation''': BeitForSemanticSegmentation, } if is_torch_available() else {} ) A : Optional[Any] = False A : Any = False A : List[str] = False def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = BeitModelTester(self ) SCREAMING_SNAKE_CASE : str = ConfigTester(self, config_class=A, has_text_modality=A, hidden_size=37 ) def UpperCamelCase_ ( self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='BEiT does not use inputs_embeds' ) def UpperCamelCase_ ( self ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason='BEiT has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def UpperCamelCase_ ( self ): '''simple docstring''' pass def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : List[str] = model_class(A ) self.assertIsInstance(model.get_input_embeddings(), (nn.Module) ) SCREAMING_SNAKE_CASE : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A, nn.Linear ) ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : int = model_class(A ) SCREAMING_SNAKE_CASE : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE : List[str] = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE : Dict = ['pixel_values'] self.assertListEqual(arg_names[:1], A ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*A ) def UpperCamelCase_ ( self ): '''simple docstring''' if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : List[str] = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(A ), BeitForMaskedImageModeling]: continue SCREAMING_SNAKE_CASE : Union[str, Any] = model_class(A ) model.to(A ) model.train() SCREAMING_SNAKE_CASE : Any = self._prepare_for_class(A, A, return_labels=A ) SCREAMING_SNAKE_CASE : int = model(**A ).loss loss.backward() def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE : Optional[Any] = False SCREAMING_SNAKE_CASE : str = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(A ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue SCREAMING_SNAKE_CASE : List[Any] = model_class(A ) model.gradient_checkpointing_enable() model.to(A ) model.train() SCREAMING_SNAKE_CASE : List[str] = self._prepare_for_class(A, A, return_labels=A ) SCREAMING_SNAKE_CASE : Dict = model(**A ).loss loss.backward() def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : List[str] = _config_zero_init(A ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Optional[int] = model_class(config=A ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item(), [0.0, 1.0], msg=F"Parameter {name} of model {model_class} seems not properly initialized", ) @slow def UpperCamelCase_ ( self ): '''simple docstring''' for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : str = BeitModel.from_pretrained(A ) self.assertIsNotNone(A ) def lowercase__( ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class _a ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self ): '''simple docstring''' return BeitImageProcessor.from_pretrained('microsoft/beit-base-patch16-224' ) if is_vision_available() else None @slow def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = BeitForMaskedImageModeling.from_pretrained('microsoft/beit-base-patch16-224-pt22k' ).to(A ) SCREAMING_SNAKE_CASE : Any = self.default_image_processor SCREAMING_SNAKE_CASE : Tuple = prepare_img() SCREAMING_SNAKE_CASE : Optional[int] = image_processor(images=A, return_tensors='pt' ).pixel_values.to(A ) # prepare bool_masked_pos SCREAMING_SNAKE_CASE : Optional[int] = torch.ones((1, 196), dtype=torch.bool ).to(A ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE : Tuple = model(pixel_values=A, bool_masked_pos=A ) SCREAMING_SNAKE_CASE : List[Any] = outputs.logits # verify the logits SCREAMING_SNAKE_CASE : Union[str, Any] = torch.Size((1, 196, 8_192) ) self.assertEqual(logits.shape, A ) SCREAMING_SNAKE_CASE : Any = torch.tensor( [[-3.24_37, 0.50_72, -13.91_74], [-3.24_56, 0.49_48, -13.94_01], [-3.20_33, 0.51_21, -13.85_50]] ).to(A ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3], A, atol=1E-2 ) ) @slow def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = BeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224' ).to(A ) SCREAMING_SNAKE_CASE : List[str] = self.default_image_processor SCREAMING_SNAKE_CASE : Any = prepare_img() SCREAMING_SNAKE_CASE : List[str] = image_processor(images=A, return_tensors='pt' ).to(A ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE : Union[str, Any] = model(**A ) SCREAMING_SNAKE_CASE : Union[str, Any] = outputs.logits # verify the logits SCREAMING_SNAKE_CASE : str = torch.Size((1, 1_000) ) self.assertEqual(logits.shape, A ) SCREAMING_SNAKE_CASE : List[Any] = torch.tensor([-1.23_85, -1.09_87, -1.01_08] ).to(A ) self.assertTrue(torch.allclose(logits[0, :3], A, atol=1E-4 ) ) SCREAMING_SNAKE_CASE : int = 281 self.assertEqual(logits.argmax(-1 ).item(), A ) @slow def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = BeitForImageClassification.from_pretrained('microsoft/beit-large-patch16-224-pt22k-ft22k' ).to( A ) SCREAMING_SNAKE_CASE : List[str] = self.default_image_processor SCREAMING_SNAKE_CASE : str = prepare_img() SCREAMING_SNAKE_CASE : str = image_processor(images=A, return_tensors='pt' ).to(A ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE : Any = model(**A ) SCREAMING_SNAKE_CASE : Optional[Any] = outputs.logits # verify the logits SCREAMING_SNAKE_CASE : Tuple = torch.Size((1, 21_841) ) self.assertEqual(logits.shape, A ) SCREAMING_SNAKE_CASE : List[Any] = torch.tensor([1.68_81, -0.27_87, 0.59_01] ).to(A ) self.assertTrue(torch.allclose(logits[0, :3], A, atol=1E-4 ) ) SCREAMING_SNAKE_CASE : Dict = 2_396 self.assertEqual(logits.argmax(-1 ).item(), A ) @slow def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' ) SCREAMING_SNAKE_CASE : Tuple = model.to(A ) SCREAMING_SNAKE_CASE : int = BeitImageProcessor(do_resize=A, size=640, do_center_crop=A ) SCREAMING_SNAKE_CASE : Optional[int] = load_dataset('hf-internal-testing/fixtures_ade20k', split='test' ) SCREAMING_SNAKE_CASE : str = Image.open(ds[0]['file'] ) SCREAMING_SNAKE_CASE : Union[str, Any] = image_processor(images=A, return_tensors='pt' ).to(A ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE : Optional[Any] = model(**A ) SCREAMING_SNAKE_CASE : str = outputs.logits # verify the logits SCREAMING_SNAKE_CASE : Optional[Any] = torch.Size((1, 150, 160, 160) ) self.assertEqual(logits.shape, A ) SCREAMING_SNAKE_CASE : str = version.parse(PIL.__version__ ) < version.parse('9.0.0' ) if is_pillow_less_than_a: SCREAMING_SNAKE_CASE : List[str] = torch.tensor( [ [[-4.92_25, -2.39_54, -3.05_22], [-2.88_22, -1.00_46, -1.75_61], [-2.95_49, -1.32_28, -2.13_47]], [[-5.81_68, -3.41_29, -4.07_78], [-3.86_51, -2.22_14, -3.02_77], [-3.83_56, -2.46_43, -3.35_35]], [[-0.00_78, 3.99_52, 4.07_54], [2.98_56, 4.69_44, 5.00_35], [3.24_13, 4.78_13, 4.99_69]], ], device=A, ) else: SCREAMING_SNAKE_CASE : int = torch.tensor( [ [[-4.89_60, -2.36_88, -3.03_55], [-2.84_78, -0.98_36, -1.74_18], [-2.94_49, -1.33_32, -2.14_56]], [[-5.80_81, -3.41_24, -4.10_06], [-3.85_61, -2.20_81, -3.03_23], [-3.83_65, -2.46_01, -3.36_69]], [[-0.03_09, 3.98_68, 4.05_40], [2.96_40, 4.68_77, 4.99_76], [3.20_81, 4.76_90, 4.99_42]], ], device=A, ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3], A, atol=1E-4 ) ) @slow def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' ) SCREAMING_SNAKE_CASE : Tuple = model.to(A ) SCREAMING_SNAKE_CASE : Tuple = BeitImageProcessor(do_resize=A, size=640, do_center_crop=A ) SCREAMING_SNAKE_CASE : Any = load_dataset('hf-internal-testing/fixtures_ade20k', split='test' ) SCREAMING_SNAKE_CASE : Optional[int] = Image.open(ds[0]['file'] ) SCREAMING_SNAKE_CASE : Any = image_processor(images=A, return_tensors='pt' ).to(A ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE : Any = model(**A ) SCREAMING_SNAKE_CASE : List[str] = outputs.logits.detach().cpu() SCREAMING_SNAKE_CASE : List[Any] = image_processor.post_process_semantic_segmentation(outputs=A, target_sizes=[(500, 300)] ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape, A ) SCREAMING_SNAKE_CASE : List[Any] = image_processor.post_process_semantic_segmentation(outputs=A ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.Size((160, 160) ) self.assertEqual(segmentation[0].shape, A )
28
'''simple docstring''' from __future__ import annotations def lowerCamelCase__ ( SCREAMING_SNAKE_CASE : int | float | str , SCREAMING_SNAKE_CASE : int | float | str ): if nth_term == "": return [""] UpperCAmelCase = int(SCREAMING_SNAKE_CASE ) UpperCAmelCase = int(SCREAMING_SNAKE_CASE ) UpperCAmelCase = [] for temp in range(int(SCREAMING_SNAKE_CASE ) ): series.append(f'''1 / {pow(temp + 1 , int(SCREAMING_SNAKE_CASE ) )}''' if series else '1' ) return series if __name__ == "__main__": import doctest doctest.testmod() _a : List[Any] = int(input('Enter the last number (nth term) of the P-Series')) _a : Tuple = int(input('Enter the power for P-Series')) print('Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p') print(p_series(nth_term, power))
447
0
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A : str = { 'configuration_autoformer': [ 'AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AutoformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Any = [ 'AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'AutoformerForPrediction', 'AutoformerModel', 'AutoformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys __A : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
705
"""simple docstring""" def snake_case__ ( _lowerCamelCase, _lowerCamelCase ) ->int: """simple docstring""" return abs(_lowerCamelCase ) if a == 0 else greatest_common_divisor(b % a, _lowerCamelCase ) def snake_case__ ( _lowerCamelCase, _lowerCamelCase ) ->int: """simple docstring""" while y: # --> when y=0 then loop will terminate and return x as final GCD. __lowercase ,__lowercase : Any = y, x % y return abs(_lowerCamelCase ) def snake_case__ ( ) ->Optional[int]: """simple docstring""" try: __lowercase : Optional[int] = input("Enter two integers separated by comma (,): " ).split("," ) __lowercase : Optional[Any] = int(nums[0] ) __lowercase : str = int(nums[1] ) print( F'greatest_common_divisor({num_a}, {num_a}) = ' F'{greatest_common_divisor(_lowerCamelCase, _lowerCamelCase )}' ) print(F'By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(_lowerCamelCase, _lowerCamelCase )}' ) except (IndexError, UnboundLocalError, ValueError): print("Wrong input" ) if __name__ == "__main__": main()
281
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _snake_case : str = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : List[str] = ['NllbTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : List[Any] = ['NllbTokenizerFast'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys _snake_case : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
53
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int]=3 , lowerCAmelCase_ : Dict=3_2 , lowerCAmelCase_ : Tuple=3 , lowerCAmelCase_ : Union[str, Any]=1_0 , lowerCAmelCase_ : List[str]=[1_0, 2_0, 3_0, 4_0] , lowerCAmelCase_ : Optional[int]=[1, 1, 2, 1] , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : Any=True , lowerCAmelCase_ : Tuple="relu" , lowerCAmelCase_ : Union[str, Any]=3 , lowerCAmelCase_ : Optional[int]=None , ) -> int: __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = image_size __lowerCAmelCase = num_channels __lowerCAmelCase = embeddings_size __lowerCAmelCase = hidden_sizes __lowerCAmelCase = depths __lowerCAmelCase = is_training __lowerCAmelCase = use_labels __lowerCAmelCase = hidden_act __lowerCAmelCase = num_labels __lowerCAmelCase = scope __lowerCAmelCase = len(lowerCAmelCase_ ) def lowercase ( self : Optional[int] ) -> List[Any]: __lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase = self.get_config() return config, pixel_values def lowercase ( self : Tuple ) -> List[Any]: return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def lowercase ( self : List[str] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[str] ) -> str: __lowerCAmelCase = FlaxRegNetModel(config=lowerCAmelCase_ ) __lowerCAmelCase = model(lowerCAmelCase_ ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def lowercase ( self : str , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : int ) -> Tuple: __lowerCAmelCase = self.num_labels __lowerCAmelCase = FlaxRegNetForImageClassification(config=lowerCAmelCase_ ) __lowerCAmelCase = model(lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase ( self : List[Any] ) -> Optional[Any]: __lowerCAmelCase = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase = config_and_inputs __lowerCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_flax class _UpperCAmelCase ( _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () a_ = False a_ = False a_ = False def lowercase ( self : Dict ) -> None: __lowerCAmelCase = FlaxRegNetModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ ) def lowercase ( self : int ) -> Optional[int]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase ( self : str ) -> Union[str, Any]: return def lowercase ( self : Dict ) -> str: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def lowercase ( self : Union[str, Any] ) -> Tuple: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase_ ) @unittest.skip(reason='RegNet does not use inputs_embeds' ) def lowercase ( self : Union[str, Any] ) -> Any: pass @unittest.skip(reason='RegNet does not support input and output embeddings' ) def lowercase ( self : Tuple ) -> Tuple: pass def lowercase ( self : Optional[Any] ) -> str: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(lowerCAmelCase_ ) __lowerCAmelCase = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def lowercase ( self : List[Any] ) -> Union[str, Any]: def check_hidden_states_output(lowerCAmelCase_ : Any , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple ): __lowerCAmelCase = model_class(lowerCAmelCase_ ) __lowerCAmelCase = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) __lowerCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __lowerCAmelCase = self.model_tester.num_stages self.assertEqual(len(lowerCAmelCase_ ) , expected_num_stages + 1 ) __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCAmelCase = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def lowercase ( self : str ) -> str: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowerCAmelCase = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = model_class(lowerCAmelCase_ ) @jax.jit def model_jitted(lowerCAmelCase_ : Optional[int] , **lowerCAmelCase_ : Dict ): return model(pixel_values=lowerCAmelCase_ , **lowerCAmelCase_ ) with self.subTest('JIT Enabled' ): __lowerCAmelCase = model_jitted(**lowerCAmelCase_ ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): __lowerCAmelCase = model_jitted(**lowerCAmelCase_ ).to_tuple() self.assertEqual(len(lowerCAmelCase_ ) , len(lowerCAmelCase_ ) ) for jitted_output, output in zip(lowerCAmelCase_ , lowerCAmelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) def a_ ( ): __lowerCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_flax class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase ( self : Union[str, Any] ) -> Optional[Any]: return AutoImageProcessor.from_pretrained('facebook/regnet-y-040' ) if is_vision_available() else None @slow def lowercase ( self : Optional[Any] ) -> Union[str, Any]: __lowerCAmelCase = FlaxRegNetForImageClassification.from_pretrained('facebook/regnet-y-040' ) __lowerCAmelCase = self.default_image_processor __lowerCAmelCase = prepare_img() __lowerCAmelCase = image_processor(images=lowerCAmelCase_ , return_tensors='np' ) __lowerCAmelCase = model(**lowerCAmelCase_ ) # verify the logits __lowerCAmelCase = (1, 1_0_0_0) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) __lowerCAmelCase = jnp.array([-0.41_80, -1.50_51, -3.48_36] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , lowerCAmelCase_ , atol=1e-4 ) )
53
1
"""simple docstring""" import shutil import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_tf_cross_test, require_tf, require_torch, require_torchvision, require_vision, ) from transformers.utils import is_tf_available, is_torch_available, is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, SamImageProcessor, SamProcessor if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf @require_vision @require_torchvision class UpperCamelCase ( unittest.TestCase ): def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" _SCREAMING_SNAKE_CASE : Dict = tempfile.mkdtemp() _SCREAMING_SNAKE_CASE : Any = SamImageProcessor() _SCREAMING_SNAKE_CASE : List[str] = SamProcessor(snake_case__ ) processor.save_pretrained(self.tmpdirname ) def __SCREAMING_SNAKE_CASE ( self , **snake_case__ ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **snake_case__ ).image_processor def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" _SCREAMING_SNAKE_CASE : List[str] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] _SCREAMING_SNAKE_CASE : Union[str, Any] = [Image.fromarray(np.moveaxis(snake_case__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" _SCREAMING_SNAKE_CASE : Optional[int] = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _SCREAMING_SNAKE_CASE : Dict = self.get_image_processor(do_normalize=snake_case__ , padding_value=1.0 ) _SCREAMING_SNAKE_CASE : List[Any] = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=snake_case__ , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , snake_case__ ) def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" _SCREAMING_SNAKE_CASE : Optional[Any] = self.get_image_processor() _SCREAMING_SNAKE_CASE : Any = SamProcessor(image_processor=snake_case__ ) _SCREAMING_SNAKE_CASE : List[Any] = self.prepare_image_inputs() _SCREAMING_SNAKE_CASE : Optional[Any] = image_processor(snake_case__ , return_tensors="np" ) _SCREAMING_SNAKE_CASE : Any = processor(images=snake_case__ , return_tensors="np" ) input_feat_extract.pop("original_sizes" ) # pop original_sizes as it is popped in the processor input_feat_extract.pop("reshaped_input_sizes" ) # pop original_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) @require_torch def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" _SCREAMING_SNAKE_CASE : Tuple = self.get_image_processor() _SCREAMING_SNAKE_CASE : Dict = SamProcessor(image_processor=snake_case__ ) _SCREAMING_SNAKE_CASE : Tuple = [torch.ones((1, 3, 5, 5) )] _SCREAMING_SNAKE_CASE : int = [[1764, 2646]] _SCREAMING_SNAKE_CASE : Dict = [[683, 1024]] _SCREAMING_SNAKE_CASE : List[Any] = processor.post_process_masks(snake_case__ , snake_case__ , snake_case__ ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) _SCREAMING_SNAKE_CASE : str = processor.post_process_masks( snake_case__ , torch.tensor(snake_case__ ) , torch.tensor(snake_case__ ) ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) # should also work with np _SCREAMING_SNAKE_CASE : Any = [np.ones((1, 3, 5, 5) )] _SCREAMING_SNAKE_CASE : Optional[Any] = processor.post_process_masks(snake_case__ , np.array(snake_case__ ) , np.array(snake_case__ ) ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) _SCREAMING_SNAKE_CASE : Optional[int] = [[1, 0], [0, 1]] with self.assertRaises(snake_case__ ): _SCREAMING_SNAKE_CASE : int = processor.post_process_masks(snake_case__ , np.array(snake_case__ ) , np.array(snake_case__ ) ) @require_vision @require_tf class UpperCamelCase ( unittest.TestCase ): def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" _SCREAMING_SNAKE_CASE : Tuple = tempfile.mkdtemp() _SCREAMING_SNAKE_CASE : Union[str, Any] = SamImageProcessor() _SCREAMING_SNAKE_CASE : str = SamProcessor(snake_case__ ) processor.save_pretrained(self.tmpdirname ) def __SCREAMING_SNAKE_CASE ( self , **snake_case__ ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **snake_case__ ).image_processor def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" _SCREAMING_SNAKE_CASE : List[str] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] _SCREAMING_SNAKE_CASE : int = [Image.fromarray(np.moveaxis(snake_case__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" _SCREAMING_SNAKE_CASE : Optional[int] = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _SCREAMING_SNAKE_CASE : int = self.get_image_processor(do_normalize=snake_case__ , padding_value=1.0 ) _SCREAMING_SNAKE_CASE : Tuple = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=snake_case__ , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , snake_case__ ) def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" _SCREAMING_SNAKE_CASE : Optional[int] = self.get_image_processor() _SCREAMING_SNAKE_CASE : str = SamProcessor(image_processor=snake_case__ ) _SCREAMING_SNAKE_CASE : Optional[int] = self.prepare_image_inputs() _SCREAMING_SNAKE_CASE : str = image_processor(snake_case__ , return_tensors="np" ) _SCREAMING_SNAKE_CASE : str = processor(images=snake_case__ , return_tensors="np" ) input_feat_extract.pop("original_sizes" ) # pop original_sizes as it is popped in the processor input_feat_extract.pop("reshaped_input_sizes" ) # pop reshaped_input_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) @require_tf def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" _SCREAMING_SNAKE_CASE : Dict = self.get_image_processor() _SCREAMING_SNAKE_CASE : List[Any] = SamProcessor(image_processor=snake_case__ ) _SCREAMING_SNAKE_CASE : Union[str, Any] = [tf.ones((1, 3, 5, 5) )] _SCREAMING_SNAKE_CASE : List[str] = [[1764, 2646]] _SCREAMING_SNAKE_CASE : Tuple = [[683, 1024]] _SCREAMING_SNAKE_CASE : int = processor.post_process_masks(snake_case__ , snake_case__ , snake_case__ , return_tensors="tf" ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) _SCREAMING_SNAKE_CASE : Union[str, Any] = processor.post_process_masks( snake_case__ , tf.convert_to_tensor(snake_case__ ) , tf.convert_to_tensor(snake_case__ ) , return_tensors="tf" , ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) # should also work with np _SCREAMING_SNAKE_CASE : str = [np.ones((1, 3, 5, 5) )] _SCREAMING_SNAKE_CASE : List[str] = processor.post_process_masks( snake_case__ , np.array(snake_case__ ) , np.array(snake_case__ ) , return_tensors="tf" ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) _SCREAMING_SNAKE_CASE : int = [[1, 0], [0, 1]] with self.assertRaises(tf.errors.InvalidArgumentError ): _SCREAMING_SNAKE_CASE : str = processor.post_process_masks( snake_case__ , np.array(snake_case__ ) , np.array(snake_case__ ) , return_tensors="tf" ) @require_vision @require_torchvision class UpperCamelCase ( unittest.TestCase ): def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" _SCREAMING_SNAKE_CASE : Optional[int] = tempfile.mkdtemp() _SCREAMING_SNAKE_CASE : Tuple = SamImageProcessor() _SCREAMING_SNAKE_CASE : Any = SamProcessor(snake_case__ ) processor.save_pretrained(self.tmpdirname ) def __SCREAMING_SNAKE_CASE ( self , **snake_case__ ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **snake_case__ ).image_processor def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" _SCREAMING_SNAKE_CASE : List[str] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] _SCREAMING_SNAKE_CASE : Dict = [Image.fromarray(np.moveaxis(snake_case__ , 0 , -1 ) ) for x in image_inputs] return image_inputs @is_pt_tf_cross_test def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" _SCREAMING_SNAKE_CASE : Optional[Any] = self.get_image_processor() _SCREAMING_SNAKE_CASE : List[str] = SamProcessor(image_processor=snake_case__ ) _SCREAMING_SNAKE_CASE : Optional[Any] = np.random.randint(0 , 2 , size=(1, 3, 5, 5) ).astype(np.floataa ) _SCREAMING_SNAKE_CASE : List[Any] = [tf.convert_to_tensor(snake_case__ )] _SCREAMING_SNAKE_CASE : Any = [torch.tensor(snake_case__ )] _SCREAMING_SNAKE_CASE : Tuple = [[1764, 2646]] _SCREAMING_SNAKE_CASE : List[Any] = [[683, 1024]] _SCREAMING_SNAKE_CASE : Tuple = processor.post_process_masks( snake_case__ , snake_case__ , snake_case__ , return_tensors="tf" ) _SCREAMING_SNAKE_CASE : Any = processor.post_process_masks( snake_case__ , snake_case__ , snake_case__ , return_tensors="pt" ) self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy() ) ) @is_pt_tf_cross_test def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" _SCREAMING_SNAKE_CASE : Optional[int] = self.get_image_processor() _SCREAMING_SNAKE_CASE : List[Any] = SamProcessor(image_processor=snake_case__ ) _SCREAMING_SNAKE_CASE : List[Any] = self.prepare_image_inputs() _SCREAMING_SNAKE_CASE : int = image_processor(snake_case__ , return_tensors="pt" )["pixel_values"].numpy() _SCREAMING_SNAKE_CASE : str = processor(images=snake_case__ , return_tensors="pt" )["pixel_values"].numpy() _SCREAMING_SNAKE_CASE : Optional[Any] = image_processor(snake_case__ , return_tensors="tf" )["pixel_values"].numpy() _SCREAMING_SNAKE_CASE : Optional[Any] = processor(images=snake_case__ , return_tensors="tf" )["pixel_values"].numpy() self.assertTrue(np.allclose(snake_case__ , snake_case__ ) ) self.assertTrue(np.allclose(snake_case__ , snake_case__ ) ) self.assertTrue(np.allclose(snake_case__ , snake_case__ ) )
295
"""simple docstring""" from dataclasses import dataclass, field from typing import Optional @dataclass class UpperCamelCase : A__ = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Model name or path of model to be trained."""} ) A__ = field( default="""./""" , metadata={"""help""": """Save dir where model repo is cloned and models updates are saved to."""} ) A__ = field( default="""codeparrot/codeparrot-clean-train""" , metadata={"""help""": """Name or path of training dataset."""} ) A__ = field( default="""codeparrot/codeparrot-clean-valid""" , metadata={"""help""": """Name or path of validation dataset."""} ) A__ = field(default=2 , metadata={"""help""": """Batch size for training."""} ) A__ = field(default=2 , metadata={"""help""": """Batch size for evaluation."""} ) A__ = field(default=0.1 , metadata={"""help""": """Value of weight decay."""} ) A__ = field( default=10000 , metadata={"""help""": """Size of buffer used to shuffle streaming dataset."""} ) A__ = field(default=2e-4 , metadata={"""help""": """Learning rate fo training."""} ) A__ = field(default="""cosine""" , metadata={"""help""": """Learning rate."""} ) A__ = field( default=750 , metadata={"""help""": """Number of warmup steps in the learning rate schedule."""} ) A__ = field( default=16 , metadata={"""help""": """Number of gradient accumulation steps."""} ) A__ = field( default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """Use gradient checkpointing to reduce memory footprint."""} ) A__ = field(default=50000 , metadata={"""help""": """Maximum number of training steps."""} ) A__ = field( default=-1 , metadata={"""help""": """Maximum number of evaluation steps. If -1 the full dataset is evaluated."""} ) A__ = field(default=1024 , metadata={"""help""": """Sequence lengths used for training."""} ) A__ = field(default=1 , metadata={"""help""": """Training seed."""} ) A__ = field( default=1024 , metadata={"""help""": """Interval to save checkpoints. Measured as number of forward passes not training steps."""} , ) A__ = field( default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """States path if the training should continue from a checkpoint folder."""} ) A__ = field(default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """If True the data is pretokenized."""} ) @dataclass class UpperCamelCase : A__ = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Model name or path of model to be evaluated."""} ) A__ = field( default="""codeparrot/codeparrot-clean-valid""" , metadata={"""help""": """Name or path of validation dataset."""} ) A__ = field(default=2 , metadata={"""help""": """Batch size used for evaluation."""} ) A__ = field( default=-1 , metadata={"""help""": """Maximum number of evaluation steps. If -1 the full dataset is evaluated."""} ) A__ = field(default=1024 , metadata={"""help""": """Length of sequences to be evaluated."""} ) A__ = field(default=1 , metadata={"""help""": """Random seed used for evaluation."""} ) @dataclass class UpperCamelCase : A__ = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Model name or path of model to be evaluated."""} ) A__ = field(default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """Number of workers used for code evaluation."""} ) A__ = field( default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """The number of human-eval tasks to run. If not included all tasks are evaluated."""} , ) A__ = field( default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """Sample from the language model's output distribution."""} ) A__ = field(default=0.2 , metadata={"""help""": """Sampling temperature used for generation."""} ) A__ = field(default=256 , metadata={"""help""": """Maximum number of newly generated tokens."""} ) A__ = field(default=0 , metadata={"""help""": """Top-k parameter used for generation."""} ) A__ = field(default=0.95 , metadata={"""help""": """Top-p parameter used for nucleus sampling."""} ) A__ = field(default=10 , metadata={"""help""": """Number of generations to run in parallel."""} ) A__ = field( default=200 , metadata={"""help""": """Number of completions to generate for each sample."""} ) A__ = field(default=1 , metadata={"""help""": """Random seed used for evaluation."""} ) A__ = field( default="""eval_results.json""" , metadata={"""help""": """Random seed used for evaluation."""} ) A__ = field( default="""0""" , metadata={"""help""": """Allow `code_eval` to execute Python code on machine"""} ) A__ = field( default=-1 , metadata={ """help""": ( """Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive""" """ number corresponds to which GPU device id to run on.""" ) } , ) @dataclass class UpperCamelCase : A__ = field( default=__SCREAMING_SNAKE_CASE , metadata={ """help""": """The number of CPU cores to use for parallel preprocessing. Default uses the maximum available.""" } , ) A__ = field( default="""transformersbook/codeparrot""" , metadata={"""help""": """Folder or name of dataset to process."""} ) A__ = field( default="""codeparrot-clean""" , metadata={"""help""": """Folder to save processed processed dataset."""} ) A__ = field( default=100000 , metadata={"""help""": """Number of files to save per JSON output file."""} ) A__ = field(default="""content""" , metadata={"""help""": """Column containing text data to process."""} ) A__ = field( default=1000 , metadata={"""help""": """Maximum line length in file, otherwise file is filtered."""} ) A__ = field( default=100 , metadata={"""help""": """Maximum mean line length in file, otherwise file is filtered."""} ) A__ = field( default=0.25 , metadata={"""help""": """Maximum fraction of non-alphanumeric characters, otherwise file is filtered."""} ) A__ = field( default=1.5 , metadata={"""help""": """Minimum character token ratio for the file, otherwise file is filtered."""} ) A__ = field( default=0.7 , metadata={"""help""": """Probability for filtering config, test and uncommon files."""} ) A__ = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Name or path to the tokenizer."""} , ) A__ = field( default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """If True, near-duplicate samples are removed."""} ) A__ = field( default=0.85 , metadata={"""help""": """Jaccard threshold for near-duplicate samples."""} ) @dataclass class UpperCamelCase : A__ = field( default="""gpt2""" , metadata={"""help""": """Base tokenizer to build new tokenizer from."""} ) A__ = field( default="""transformersbook/codeparrot-train""" , metadata={"""help""": """Dataset to train tokenizer on."""} ) A__ = field(default="""content""" , metadata={"""help""": """Column containing text data to process."""} ) A__ = field(default=200000 , metadata={"""help""": """Number of examples to train tokenizer on."""} ) A__ = field( default=32768 , metadata={"""help""": """Number of examples to train the tokenizer on."""} ) A__ = field(default="""codeparrot""" , metadata={"""help""": """Name of new tokenizer."""} ) A__ = field(default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """Push saved tokenizer to the hub."""} ) @dataclass class UpperCamelCase : A__ = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Name or path to the tokenizer."""} ) A__ = field( default="""codeparrot/codeparrot-clean-train""" , metadata={"""help""": """Name or path to the dataset to pretokenize."""} ) A__ = field( default="""tokenized-codeparrot-train""" , metadata={"""help""": """Repo name of the pretokenized data."""} ) A__ = field(default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """Number of workers used for code evaluation."""} ) @dataclass class UpperCamelCase : A__ = field( default="""gpt2-large""" , metadata={"""help""": """Configuration to use for model initialization."""} ) A__ = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Tokenizer attached to model."""} ) A__ = field(default="""codeparrot""" , metadata={"""help""": """Name of the created model."""} ) A__ = field(default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """Push saved tokenizer to the hub."""} )
295
1
def lowerCamelCase_ ( UpperCamelCase_ = 10**12 ): _a : Tuple = 1 _a : Optional[int] = 0 _a : Any = 1 _a : Optional[int] = 1 while numerator <= 2 * min_total - 1: prev_numerator += 2 * numerator numerator += 2 * prev_numerator prev_denominator += 2 * denominator denominator += 2 * prev_denominator return (denominator + 1) // 2 if __name__ == "__main__": print(f'''{solution() = }''')
471
def lowerCamelCase_ ( UpperCamelCase_ , UpperCamelCase_ ): if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) _a : str = str(bin(UpperCamelCase_ ) )[2:] # remove the leading "0b" _a : Dict = str(bin(UpperCamelCase_ ) )[2:] _a : str = max(len(UpperCamelCase_ ) , len(UpperCamelCase_ ) ) return "0b" + "".join( str(int('''1''' in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(UpperCamelCase_ ) , b_binary.zfill(UpperCamelCase_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
471
1
"""simple docstring""" from typing import List, Optional import numpy as np from ...processing_utils import ProcessorMixin from ...utils import to_numpy class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Dict = "EncodecFeatureExtractor" _UpperCamelCase : Optional[int] = ("T5Tokenizer", "T5TokenizerFast") def __init__( self , a__ , a__ ): super().__init__(a__ , a__ ) _lowerCAmelCase : Optional[Any] = self.feature_extractor _lowerCAmelCase : Dict = False def __A ( self , a__=None , a__=None , a__=True ): return self.tokenizer.get_decoder_prompt_ids(task=a__ , language=a__ , no_timestamps=a__ ) def __call__( self , *a__ , **a__ ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*a__ , **a__ ) _lowerCAmelCase : Any = kwargs.pop("""audio""" , a__ ) _lowerCAmelCase : Dict = kwargs.pop("""sampling_rate""" , a__ ) _lowerCAmelCase : List[Any] = kwargs.pop("""text""" , a__ ) if len(a__ ) > 0: _lowerCAmelCase : List[str] = args[0] _lowerCAmelCase : str = args[1:] if audio is None and text is None: raise ValueError("""You need to specify either an `audio` or `text` input to process.""" ) if text is not None: _lowerCAmelCase : Union[str, Any] = self.tokenizer(a__ , **a__ ) if audio is not None: _lowerCAmelCase : List[str] = self.feature_extractor(a__ , *a__ , sampling_rate=a__ , **a__ ) if audio is None: return inputs elif text is None: return audio_inputs else: _lowerCAmelCase : Optional[int] = audio_inputs["""input_values"""] if "padding_mask" in audio_inputs: _lowerCAmelCase : Union[str, Any] = audio_inputs["""padding_mask"""] return inputs def __A ( self , *a__ , **a__ ): _lowerCAmelCase : Optional[int] = kwargs.pop("""audio""" , a__ ) _lowerCAmelCase : Dict = kwargs.pop("""padding_mask""" , a__ ) if len(a__ ) > 0: _lowerCAmelCase : Optional[int] = args[0] _lowerCAmelCase : str = args[1:] if audio_values is not None: return self._decode_audio(a__ , padding_mask=a__ ) else: return self.tokenizer.batch_decode(*a__ , **a__ ) def __A ( self , *a__ , **a__ ): return self.tokenizer.decode(*a__ , **a__ ) def __A ( self , a__ , a__ = None ): _lowerCAmelCase : Optional[Any] = to_numpy(a__ ) _lowerCAmelCase : List[str] = audio_values.shape if padding_mask is None: return list(a__ ) _lowerCAmelCase : Any = to_numpy(a__ ) # match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding** # token (so that the generated audio values are **not** treated as padded tokens) _lowerCAmelCase : List[str] = seq_len - padding_mask.shape[-1] _lowerCAmelCase : Optional[int] = 1 - self.feature_extractor.padding_value _lowerCAmelCase : List[str] = np.pad(a__ , ((0, 0), (0, difference)) , """constant""" , constant_values=a__ ) _lowerCAmelCase : List[str] = audio_values.tolist() for i in range(a__ ): _lowerCAmelCase : Union[str, Any] = np.asarray(audio_values[i] )[ padding_mask[i][None, :] != self.feature_extractor.padding_value ] _lowerCAmelCase : Optional[int] = sliced_audio.reshape(a__ , -1 ) return audio_values
702
"""simple docstring""" import unittest import numpy as np from transformers import MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING, TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING from transformers.pipelines import AudioClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_torchaudio, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class __A ( unittest.TestCase ): _UpperCamelCase : str = MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING _UpperCamelCase : Any = TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING def __A ( self , a__ , a__ , a__ ): _lowerCAmelCase : List[Any] = AudioClassificationPipeline(model=a__ , feature_extractor=a__ ) # test with a raw waveform _lowerCAmelCase : Optional[int] = np.zeros((34000,) ) _lowerCAmelCase : Optional[Any] = np.zeros((14000,) ) return audio_classifier, [audioa, audio] def __A ( self , a__ , a__ ): _lowerCAmelCase , _lowerCAmelCase : List[Any] = examples _lowerCAmelCase : List[Any] = audio_classifier(a__ ) # by default a model is initialized with num_labels=2 self.assertEqual( a__ , [ {"""score""": ANY(a__ ), """label""": ANY(a__ )}, {"""score""": ANY(a__ ), """label""": ANY(a__ )}, ] , ) _lowerCAmelCase : Tuple = audio_classifier(a__ , top_k=1 ) self.assertEqual( a__ , [ {"""score""": ANY(a__ ), """label""": ANY(a__ )}, ] , ) self.run_torchaudio(a__ ) @require_torchaudio def __A ( self , a__ ): import datasets # test with a local file _lowerCAmelCase : int = datasets.load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) _lowerCAmelCase : List[Any] = dataset[0]["""audio"""]["""array"""] _lowerCAmelCase : str = audio_classifier(a__ ) self.assertEqual( a__ , [ {"""score""": ANY(a__ ), """label""": ANY(a__ )}, {"""score""": ANY(a__ ), """label""": ANY(a__ )}, ] , ) @require_torch def __A ( self ): _lowerCAmelCase : int = """anton-l/wav2vec2-random-tiny-classifier""" _lowerCAmelCase : Optional[Any] = pipeline("""audio-classification""" , model=a__ ) _lowerCAmelCase : Any = np.ones((8000,) ) _lowerCAmelCase : List[str] = audio_classifier(a__ , top_k=4 ) _lowerCAmelCase : List[str] = [ {"""score""": 0.0_8_4_2, """label""": """no"""}, {"""score""": 0.0_8_3_8, """label""": """up"""}, {"""score""": 0.0_8_3_7, """label""": """go"""}, {"""score""": 0.0_8_3_4, """label""": """right"""}, ] _lowerCAmelCase : str = [ {"""score""": 0.0_8_4_5, """label""": """stop"""}, {"""score""": 0.0_8_4_4, """label""": """on"""}, {"""score""": 0.0_8_4_1, """label""": """right"""}, {"""score""": 0.0_8_3_4, """label""": """left"""}, ] self.assertIn(nested_simplify(a__ , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) _lowerCAmelCase : int = {"""array""": np.ones((8000,) ), """sampling_rate""": audio_classifier.feature_extractor.sampling_rate} _lowerCAmelCase : int = audio_classifier(a__ , top_k=4 ) self.assertIn(nested_simplify(a__ , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) @require_torch @slow def __A ( self ): import datasets _lowerCAmelCase : Optional[Any] = """superb/wav2vec2-base-superb-ks""" _lowerCAmelCase : List[str] = pipeline("""audio-classification""" , model=a__ ) _lowerCAmelCase : str = datasets.load_dataset("""anton-l/superb_dummy""" , """ks""" , split="""test""" ) _lowerCAmelCase : Optional[Any] = np.array(dataset[3]["""speech"""] , dtype=np.floataa ) _lowerCAmelCase : List[str] = audio_classifier(a__ , top_k=4 ) self.assertEqual( nested_simplify(a__ , decimals=3 ) , [ {"""score""": 0.9_8_1, """label""": """go"""}, {"""score""": 0.0_0_7, """label""": """up"""}, {"""score""": 0.0_0_6, """label""": """_unknown_"""}, {"""score""": 0.0_0_1, """label""": """down"""}, ] , ) @require_tf @unittest.skip("""Audio classification is not implemented for TF""" ) def __A ( self ): pass
663
0
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """openai/whisper-base""": """https://huggingface.co/openai/whisper-base/resolve/main/config.json""", } # fmt: off lowerCamelCase = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 3_57, 3_66, 4_38, 5_32, 6_85, 7_05, 7_96, 9_30, 10_58, 12_20, 12_67, 12_79, 13_03, 13_43, 13_77, 13_91, 16_35, 17_82, 18_75, 21_62, 23_61, 24_88, 34_67, 40_08, 42_11, 46_00, 48_08, 52_99, 58_55, 63_29, 72_03, 96_09, 99_59, 1_05_63, 1_07_86, 1_14_20, 1_17_09, 1_19_07, 1_31_63, 1_36_97, 1_37_00, 1_48_08, 1_53_06, 1_64_10, 1_67_91, 1_79_92, 1_92_03, 1_95_10, 2_07_24, 2_23_05, 2_29_35, 2_70_07, 3_01_09, 3_04_20, 3_34_09, 3_49_49, 4_02_83, 4_04_93, 4_05_49, 4_72_82, 4_91_46, 5_02_57, 5_03_59, 5_03_60, 5_03_61 ] lowerCamelCase = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 3_59, 5_03, 5_22, 5_42, 8_73, 8_93, 9_02, 9_18, 9_22, 9_31, 13_50, 18_53, 19_82, 24_60, 26_27, 32_46, 32_53, 32_68, 35_36, 38_46, 39_61, 41_83, 46_67, 65_85, 66_47, 72_73, 90_61, 93_83, 1_04_28, 1_09_29, 1_19_38, 1_20_33, 1_23_31, 1_25_62, 1_37_93, 1_41_57, 1_46_35, 1_52_65, 1_56_18, 1_65_53, 1_66_04, 1_83_62, 1_89_56, 2_00_75, 2_16_75, 2_25_20, 2_61_30, 2_61_61, 2_64_35, 2_82_79, 2_94_64, 3_16_50, 3_23_02, 3_24_70, 3_68_65, 4_28_63, 4_74_25, 4_98_70, 5_02_54, 5_02_58, 5_03_60, 5_03_61, 5_03_62 ] class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A :str = "whisper" A :Tuple = ["past_key_values"] A :int = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self , __UpperCAmelCase=5_1865 , __UpperCAmelCase=80 , __UpperCAmelCase=6 , __UpperCAmelCase=4 , __UpperCAmelCase=6 , __UpperCAmelCase=4 , __UpperCAmelCase=1536 , __UpperCAmelCase=1536 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=5_0257 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase="gelu" , __UpperCAmelCase=256 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=False , __UpperCAmelCase=1500 , __UpperCAmelCase=448 , __UpperCAmelCase=5_0256 , __UpperCAmelCase=5_0256 , __UpperCAmelCase=5_0256 , __UpperCAmelCase=None , __UpperCAmelCase=[220, 5_0256] , __UpperCAmelCase=False , __UpperCAmelCase=256 , __UpperCAmelCase=False , __UpperCAmelCase=0.0_5 , __UpperCAmelCase=10 , __UpperCAmelCase=2 , __UpperCAmelCase=0.0 , __UpperCAmelCase=10 , __UpperCAmelCase=0 , __UpperCAmelCase=7 , **__UpperCAmelCase , ): """simple docstring""" a__ : List[str] = vocab_size a__ : List[str] = num_mel_bins a__ : str = d_model a__ : Union[str, Any] = encoder_layers a__ : int = encoder_attention_heads a__ : List[Any] = decoder_layers a__ : Any = decoder_attention_heads a__ : Dict = decoder_ffn_dim a__ : Tuple = encoder_ffn_dim a__ : Union[str, Any] = dropout a__ : Optional[int] = attention_dropout a__ : Union[str, Any] = activation_dropout a__ : Optional[int] = activation_function a__ : List[Any] = init_std a__ : List[str] = encoder_layerdrop a__ : str = decoder_layerdrop a__ : List[Any] = use_cache a__ : Dict = encoder_layers a__ : Tuple = scale_embedding # scale factor will be sqrt(d_model) if True a__ : Optional[int] = max_source_positions a__ : Tuple = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. a__ : int = classifier_proj_size a__ : Union[str, Any] = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 a__ : str = apply_spec_augment a__ : Dict = mask_time_prob a__ : List[Any] = mask_time_length a__ : Union[str, Any] = mask_time_min_masks a__ : List[str] = mask_feature_prob a__ : Dict = mask_feature_length a__ : Any = mask_feature_min_masks a__ : Union[str, Any] = median_filter_width super().__init__( pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , is_encoder_decoder=__UpperCAmelCase , decoder_start_token_id=__UpperCAmelCase , suppress_tokens=__UpperCAmelCase , begin_suppress_tokens=__UpperCAmelCase , **__UpperCAmelCase , ) class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def _A ( self ): """simple docstring""" a__ : Any = OrderedDict( [ ("input_features", {0: "batch", 1: "feature_size", 2: "encoder_sequence"}), ] ) if self.use_past: a__ : Dict = {0: "batch"} else: a__ : Union[str, Any] = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(__UpperCAmelCase , direction="inputs" ) return common_inputs def _A ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = 2_2050 , __UpperCAmelCase = 5.0 , __UpperCAmelCase = 220 , ): """simple docstring""" a__ : Optional[Any] = OrderedDict() a__ : str = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=__UpperCAmelCase , framework=__UpperCAmelCase , sampling_rate=__UpperCAmelCase , time_duration=__UpperCAmelCase , frequency=__UpperCAmelCase , ) a__ : Optional[Any] = encoder_inputs["input_features"].shape[2] a__ : Optional[Any] = encoder_sequence_length // 2 if self.use_past else seq_length a__ : int = super().generate_dummy_inputs( preprocessor.tokenizer , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) a__ : List[Any] = encoder_inputs.pop("input_features" ) a__ : Dict = decoder_inputs.pop("decoder_input_ids" ) if "past_key_values" in decoder_inputs: a__ : Tuple = decoder_inputs.pop("past_key_values" ) return dummy_inputs @property def _A ( self ): """simple docstring""" return 1E-3
191
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A :int = ["image_processor", "tokenizer"] A :Any = "LayoutLMv3ImageProcessor" A :str = ("LayoutLMv3Tokenizer", "LayoutLMv3TokenizerFast") def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase ): """simple docstring""" a__ : str = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , __UpperCAmelCase , ) a__ : List[str] = kwargs.pop("feature_extractor" ) a__ : Optional[int] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(__UpperCAmelCase , __UpperCAmelCase ) def __call__( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = True , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = 0 , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = True , __UpperCAmelCase = None , **__UpperCAmelCase , ): """simple docstring""" if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( "You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True." ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( "You cannot provide word labels if you initialized the image processor with apply_ocr set to True." ) # first, apply the image processor a__ : List[str] = self.image_processor(images=__UpperCAmelCase , return_tensors=__UpperCAmelCase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(__UpperCAmelCase , __UpperCAmelCase ): a__ : Union[str, Any] = [text] # add batch dimension (as the image processor always adds a batch dimension) a__ : Optional[Any] = features["words"] a__ : Union[str, Any] = self.tokenizer( text=text if text is not None else features["words"] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["boxes"] , word_labels=__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , padding=__UpperCAmelCase , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase , stride=__UpperCAmelCase , pad_to_multiple_of=__UpperCAmelCase , return_token_type_ids=__UpperCAmelCase , return_attention_mask=__UpperCAmelCase , return_overflowing_tokens=__UpperCAmelCase , return_special_tokens_mask=__UpperCAmelCase , return_offsets_mapping=__UpperCAmelCase , return_length=__UpperCAmelCase , verbose=__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase , ) # add pixel values a__ : Dict = features.pop("pixel_values" ) if return_overflowing_tokens is True: a__ : str = self.get_overflowing_images(__UpperCAmelCase , encoded_inputs["overflow_to_sample_mapping"] ) a__ : Tuple = images return encoded_inputs def _A ( self , __UpperCAmelCase , __UpperCAmelCase ): """simple docstring""" a__ : Any = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(__UpperCAmelCase ) != len(__UpperCAmelCase ): raise ValueError( "Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got" f' {len(__UpperCAmelCase )} and {len(__UpperCAmelCase )}' ) return images_with_overflow def _A ( self , *__UpperCAmelCase , **__UpperCAmelCase ): """simple docstring""" return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase ) def _A ( self , *__UpperCAmelCase , **__UpperCAmelCase ): """simple docstring""" return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase ) @property def _A ( self ): """simple docstring""" return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def _A ( self ): """simple docstring""" warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , __UpperCAmelCase , ) return self.image_processor_class @property def _A ( self ): """simple docstring""" warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , __UpperCAmelCase , ) return self.image_processor
191
1
def __UpperCamelCase ( _A ): if not isinstance(_A , _A ): raise ValueError('''check_bouncy() accepts only integer arguments''' ) lowerCAmelCase_ = str(_A ) lowerCAmelCase_ = ''.join(sorted(_A ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def __UpperCamelCase ( _A = 99 ): if not 0 < percent < 100: raise ValueError('''solution() only accepts values from 0 to 100''' ) lowerCAmelCase_ = 0 lowerCAmelCase_ = 1 while True: if check_bouncy(_A ): bouncy_num += 1 if (bouncy_num / num) * 100 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(f"{solution(99)}")
711
import inspect from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel, VQModel from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class A ( __UpperCAmelCase ): def __init__( self, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ): """simple docstring""" super().__init__() self.register_modules(vqvae=UpperCamelCase__, unet=UpperCamelCase__, scheduler=UpperCamelCase__ ) @torch.no_grad() def __call__( self, UpperCamelCase__ = 1, UpperCamelCase__ = None, UpperCamelCase__ = 0.0, UpperCamelCase__ = 50, UpperCamelCase__ = "pil", UpperCamelCase__ = True, **UpperCamelCase__, ): """simple docstring""" lowerCAmelCase_ = randn_tensor( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size), generator=UpperCamelCase__, ) lowerCAmelCase_ = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowerCAmelCase_ = latents * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(UpperCamelCase__ ) # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature lowerCAmelCase_ = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowerCAmelCase_ = {} if accepts_eta: lowerCAmelCase_ = eta for t in self.progress_bar(self.scheduler.timesteps ): lowerCAmelCase_ = self.scheduler.scale_model_input(UpperCamelCase__, UpperCamelCase__ ) # predict the noise residual lowerCAmelCase_ = self.unet(UpperCamelCase__, UpperCamelCase__ ).sample # compute the previous noisy sample x_t -> x_t-1 lowerCAmelCase_ = self.scheduler.step(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, **UpperCamelCase__ ).prev_sample # decode the image latents with the VAE lowerCAmelCase_ = self.vqvae.decode(UpperCamelCase__ ).sample lowerCAmelCase_ = (image / 2 + 0.5).clamp(0, 1 ) lowerCAmelCase_ = image.cpu().permute(0, 2, 3, 1 ).numpy() if output_type == "pil": lowerCAmelCase_ = self.numpy_to_pil(UpperCamelCase__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCamelCase__ )
325
0
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel if is_vision_available(): from transformers import MaskFormerImageProcessor if is_vision_available(): from PIL import Image class __lowerCAmelCase : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=2 , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=10 , __UpperCAmelCase=3 , __UpperCAmelCase=32 * 4 , __UpperCAmelCase=32 * 6 , __UpperCAmelCase=4 , __UpperCAmelCase=32 , ): '''simple docstring''' __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = is_training __lowerCamelCase = use_auxiliary_loss __lowerCamelCase = num_queries __lowerCamelCase = num_channels __lowerCamelCase = min_size __lowerCamelCase = max_size __lowerCamelCase = num_labels __lowerCamelCase = mask_feature_size def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( a_ ) __lowerCamelCase = torch.ones([self.batch_size, self.min_size, self.max_size] , device=a_ ) __lowerCamelCase = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=a_ ) > 0.5 ).float() __lowerCamelCase = (torch.rand((self.batch_size, self.num_labels) , device=a_ ) > 0.5).long() __lowerCamelCase = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def lowerCamelCase ( self ): '''simple docstring''' return MaskFormerConfig.from_backbone_and_decoder_configs( backbone_config=SwinConfig( depths=[1, 1, 1, 1] , ) , decoder_config=DetrConfig( decoder_ffn_dim=128 , num_queries=self.num_queries , decoder_attention_heads=2 , d_model=self.mask_feature_size , ) , mask_feature_size=self.mask_feature_size , fpn_feature_size=self.mask_feature_size , num_channels=self.num_channels , num_labels=self.num_labels , ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.prepare_config_and_inputs() __lowerCamelCase = {"pixel_values": pixel_values, "pixel_mask": pixel_mask} return config, inputs_dict def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = output.encoder_hidden_states __lowerCamelCase = output.pixel_decoder_hidden_states __lowerCamelCase = output.transformer_decoder_hidden_states self.parent.assertTrue(len(a_ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(a_ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(a_ ) , config.decoder_config.decoder_layers ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False ): '''simple docstring''' with torch.no_grad(): __lowerCamelCase = MaskFormerModel(config=a_ ) model.to(a_ ) model.eval() __lowerCamelCase = model(pixel_values=a_ , pixel_mask=a_ ) __lowerCamelCase = model(a_ , output_hidden_states=a_ ) # the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the # encoder and pixel decoder self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.mask_feature_size) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(a_ , a_ ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = MaskFormerForInstanceSegmentation(config=a_ ) model.to(a_ ) model.eval() def comm_check_on_output(__UpperCAmelCase ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): __lowerCamelCase = model(pixel_values=a_ , pixel_mask=a_ ) __lowerCamelCase = model(a_ ) comm_check_on_output(a_ ) __lowerCamelCase = model( pixel_values=a_ , pixel_mask=a_ , mask_labels=a_ , class_labels=a_ ) comm_check_on_output(a_ ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class __lowerCAmelCase ( __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): lowerCAmelCase__ = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else () lowerCAmelCase__ = ( {'''feature-extraction''': MaskFormerModel, '''image-segmentation''': MaskFormerForInstanceSegmentation} if is_torch_available() else {} ) lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = MaskFormerModelTester(self ) __lowerCamelCase = ConfigTester(self , config_class=a_ , has_text_modality=a_ ) def lowerCamelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(a_ , **a_ , output_hidden_states=a_ ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*a_ ) @unittest.skip(reason='''MaskFormer does not use inputs_embeds''' ) def lowerCamelCase ( self ): '''simple docstring''' pass @unittest.skip(reason='''MaskFormer does not have a get_input_embeddings method''' ) def lowerCamelCase ( self ): '''simple docstring''' pass @unittest.skip(reason='''MaskFormer is not a generative model''' ) def lowerCamelCase ( self ): '''simple docstring''' pass @unittest.skip(reason='''MaskFormer does not use token embeddings''' ) def lowerCamelCase ( self ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip( reason='''MaskFormer has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def lowerCamelCase ( self ): '''simple docstring''' pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def lowerCamelCase ( self ): '''simple docstring''' pass def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase = model_class(a_ ) __lowerCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCamelCase = [*signature.parameters.keys()] __lowerCamelCase = ["pixel_values"] self.assertListEqual(arg_names[:1] , a_ ) @slow def lowerCamelCase ( self ): '''simple docstring''' for model_name in ["facebook/maskformer-swin-small-coco"]: __lowerCamelCase = MaskFormerModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = (self.model_tester.min_size,) * 2 __lowerCamelCase = { "pixel_values": torch.randn((2, 3, *size) , device=a_ ), "mask_labels": torch.randn((2, 10, *size) , device=a_ ), "class_labels": torch.zeros(2 , 10 , device=a_ ).long(), } __lowerCamelCase = MaskFormerForInstanceSegmentation(MaskFormerConfig() ).to(a_ ) __lowerCamelCase = model(**a_ ) self.assertTrue(outputs.loss is not None ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(a_ , **a_ , output_hidden_states=a_ ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase = model_class(a_ ).to(a_ ) __lowerCamelCase = model(**a_ , output_attentions=a_ ) self.assertTrue(outputs.attentions is not None ) def lowerCamelCase ( self ): '''simple docstring''' if not self.model_tester.is_training: return # only MaskFormerForInstanceSegmentation has the loss __lowerCamelCase = self.all_model_classes[1] __lowerCamelCase = self.model_tester.prepare_config_and_inputs() __lowerCamelCase = model_class(a_ ) model.to(a_ ) model.train() __lowerCamelCase = model(a_ , mask_labels=a_ , class_labels=a_ ).loss loss.backward() def lowerCamelCase ( self ): '''simple docstring''' # only MaskFormerForInstanceSegmentation has the loss __lowerCamelCase = self.all_model_classes[1] __lowerCamelCase = self.model_tester.prepare_config_and_inputs() __lowerCamelCase = True __lowerCamelCase = True __lowerCamelCase = model_class(a_ ) model.to(a_ ) model.train() __lowerCamelCase = model(a_ , mask_labels=a_ , class_labels=a_ ) __lowerCamelCase = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() __lowerCamelCase = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() # we requires_grad=True in inputs_embeds (line 2152), the original implementation don't __lowerCamelCase = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() __lowerCamelCase = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=a_ ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) a_ = 1E-4 def a__ ( ): __lowerCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_vision @slow class __lowerCAmelCase ( unittest.TestCase ): @cached_property def lowerCamelCase ( self ): '''simple docstring''' return ( MaskFormerImageProcessor.from_pretrained('''facebook/maskformer-swin-small-coco''' ) if is_vision_available() else None ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = MaskFormerModel.from_pretrained('''facebook/maskformer-swin-small-coco''' ).to(a_ ) __lowerCamelCase = self.default_image_processor __lowerCamelCase = prepare_img() __lowerCamelCase = image_processor(a_ , return_tensors='''pt''' ).to(a_ ) __lowerCamelCase = inputs["pixel_values"].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(a_ , (1, 3, 800, 1088) ) with torch.no_grad(): __lowerCamelCase = model(**a_ ) __lowerCamelCase = torch.tensor( [[-0.0_482, 0.9_228, 0.4_951], [-0.2_547, 0.8_017, 0.8_527], [-0.0_069, 0.3_385, -0.0_089]] ).to(a_ ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , a_ , atol=a_ ) ) __lowerCamelCase = torch.tensor( [[-0.8_422, -0.8_434, -0.9_718], [-1.0_144, -0.5_565, -0.4_195], [-1.0_038, -0.4_484, -0.1_961]] ).to(a_ ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , a_ , atol=a_ ) ) __lowerCamelCase = torch.tensor( [[0.2_852, -0.0_159, 0.9_735], [0.6_254, 0.1_858, 0.8_529], [-0.0_680, -0.4_116, 1.8_413]] ).to(a_ ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , a_ , atol=a_ ) ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = ( MaskFormerForInstanceSegmentation.from_pretrained('''facebook/maskformer-swin-small-coco''' ) .to(a_ ) .eval() ) __lowerCamelCase = self.default_image_processor __lowerCamelCase = prepare_img() __lowerCamelCase = image_processor(a_ , return_tensors='''pt''' ).to(a_ ) __lowerCamelCase = inputs["pixel_values"].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(a_ , (1, 3, 800, 1088) ) with torch.no_grad(): __lowerCamelCase = model(**a_ ) # masks_queries_logits __lowerCamelCase = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) __lowerCamelCase = [ [-1.3_737_124, -1.7_724_937, -1.9_364_233], [-1.5_977_281, -1.9_867_939, -2.1_523_695], [-1.5_795_398, -1.9_269_832, -2.093_942], ] __lowerCamelCase = torch.tensor(a_ ).to(a_ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , a_ , atol=a_ ) ) # class_queries_logits __lowerCamelCase = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) __lowerCamelCase = torch.tensor( [ [1.6_5_1_2E0_0, -5.2_5_7_2E0_0, -3.3_5_1_9E0_0], [3.6_1_6_9E-0_2, -5.9_0_2_5E0_0, -2.9_3_1_3E0_0], [1.0_7_6_6E-0_4, -7.7_6_3_0E0_0, -5.1_2_6_3E0_0], ] ).to(a_ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , a_ , atol=a_ ) ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = ( MaskFormerForInstanceSegmentation.from_pretrained('''facebook/maskformer-resnet101-coco-stuff''' ) .to(a_ ) .eval() ) __lowerCamelCase = self.default_image_processor __lowerCamelCase = prepare_img() __lowerCamelCase = image_processor(a_ , return_tensors='''pt''' ).to(a_ ) __lowerCamelCase = inputs["pixel_values"].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(a_ , (1, 3, 800, 1088) ) with torch.no_grad(): __lowerCamelCase = model(**a_ ) # masks_queries_logits __lowerCamelCase = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) __lowerCamelCase = [[-0.9_046, -2.6_366, -4.6_062], [-3.4_179, -5.7_890, -8.8_057], [-4.9_179, -7.6_560, -10.7_711]] __lowerCamelCase = torch.tensor(a_ ).to(a_ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , a_ , atol=a_ ) ) # class_queries_logits __lowerCamelCase = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) __lowerCamelCase = torch.tensor( [[4.7_188, -3.2_585, -2.8_857], [6.6_871, -2.9_181, -1.2_487], [7.2_449, -2.2_764, -2.1_874]] ).to(a_ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , a_ , atol=a_ ) ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = ( MaskFormerForInstanceSegmentation.from_pretrained('''facebook/maskformer-swin-small-coco''' ) .to(a_ ) .eval() ) __lowerCamelCase = self.default_image_processor __lowerCamelCase = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors='''pt''' , ) __lowerCamelCase = inputs["pixel_values"].to(a_ ) __lowerCamelCase = [el.to(a_ ) for el in inputs["mask_labels"]] __lowerCamelCase = [el.to(a_ ) for el in inputs["class_labels"]] with torch.no_grad(): __lowerCamelCase = model(**a_ ) self.assertTrue(outputs.loss is not None )
175
from __future__ import annotations def __magic_name__ ( lowerCAmelCase_ , lowerCAmelCase_): '''simple docstring''' lowerCamelCase_ : list[list[int]] = [] create_all_state(1 , lowerCAmelCase_ , lowerCAmelCase_ , [] , lowerCAmelCase_) return result def __magic_name__ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , ): '''simple docstring''' if level == 0: total_list.append(current_list[:]) return for i in range(lowerCAmelCase_ , total_number - level + 2): current_list.append(lowerCAmelCase_) create_all_state(i + 1 , lowerCAmelCase_ , level - 1 , lowerCAmelCase_ , lowerCAmelCase_) current_list.pop() def __magic_name__ ( lowerCAmelCase_): '''simple docstring''' for i in total_list: print(*lowerCAmelCase_) if __name__ == "__main__": __magic_name__ = 4 __magic_name__ = 2 __magic_name__ = generate_all_combinations(n, k) print_all_state(total_list)
250
0
import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Any = (KDPMaDiscreteScheduler,) lowerCAmelCase__ : int = 10 def a__ ( self : Union[str, Any] , **_UpperCAmelCase : Optional[Any] ) -> Tuple: """simple docstring""" __lowercase = { 'num_train_timesteps': 11_00, 'beta_start': 0.0_001, 'beta_end': 0.02, 'beta_schedule': 'linear', } config.update(**_UpperCAmelCase ) return config def a__ ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=_UpperCAmelCase ) def a__ ( self : int ) -> Optional[Any]: """simple docstring""" for beta_start, beta_end in zip([0.00_001, 0.0_001, 0.001] , [0.0_002, 0.002, 0.02] ): self.check_over_configs(beta_start=_UpperCAmelCase , beta_end=_UpperCAmelCase ) def a__ ( self : str ) -> Dict: """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=_UpperCAmelCase ) def a__ ( self : Any ) -> Optional[Any]: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_UpperCAmelCase ) def a__ ( self : List[str] ) -> Dict: """simple docstring""" __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config(prediction_type='v_prediction' ) __lowercase = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(self.num_inference_steps ) __lowercase = self.dummy_model() __lowercase = self.dummy_sample_deter * scheduler.init_noise_sigma __lowercase = sample.to(_UpperCAmelCase ) for i, t in enumerate(scheduler.timesteps ): __lowercase = scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase ) __lowercase = model(_UpperCAmelCase , _UpperCAmelCase ) __lowercase = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __lowercase = output.prev_sample __lowercase = torch.sum(torch.abs(_UpperCAmelCase ) ) __lowercase = torch.mean(torch.abs(_UpperCAmelCase ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.6_9_3_4e-0_7 ) < 1e-2 assert abs(result_mean.item() - 6.1_1_1_2e-1_0 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 4.6_9_3_4_2_8_6_5_0_1_7_0_9_7_2e-0_7 ) < 1e-2 assert abs(result_mean.item() - 0.0_002 ) < 1e-3 def a__ ( self : str ) -> Dict: """simple docstring""" if torch_device == "mps": return __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(self.num_inference_steps ) __lowercase = self.dummy_model() __lowercase = self.dummy_sample_deter * scheduler.init_noise_sigma __lowercase = sample.to(_UpperCAmelCase ) for i, t in enumerate(scheduler.timesteps ): __lowercase = scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase ) __lowercase = model(_UpperCAmelCase , _UpperCAmelCase ) __lowercase = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __lowercase = output.prev_sample __lowercase = torch.sum(torch.abs(_UpperCAmelCase ) ) __lowercase = torch.mean(torch.abs(_UpperCAmelCase ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 20.4_125 ) < 1e-2 assert abs(result_mean.item() - 0.0_266 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 20.4_125 ) < 1e-2 assert abs(result_mean.item() - 0.0_266 ) < 1e-3 def a__ ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" if torch_device == "mps": return __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(self.num_inference_steps , device=_UpperCAmelCase ) __lowercase = self.dummy_model() __lowercase = self.dummy_sample_deter.to(_UpperCAmelCase ) * scheduler.init_noise_sigma for t in scheduler.timesteps: __lowercase = scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase ) __lowercase = model(_UpperCAmelCase , _UpperCAmelCase ) __lowercase = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __lowercase = output.prev_sample __lowercase = torch.sum(torch.abs(_UpperCAmelCase ) ) __lowercase = torch.mean(torch.abs(_UpperCAmelCase ) ) if str(_UpperCAmelCase ).startswith('cpu' ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 20.4_125 ) < 1e-2 assert abs(result_mean.item() - 0.0_266 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 20.4_125 ) < 1e-2 assert abs(result_mean.item() - 0.0_266 ) < 1e-3
688
from __future__ import annotations import math def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : int ) -> float: __lowercase = u for i in range(1 , SCREAMING_SNAKE_CASE ): __lowercase = temp * (u - i) return temp def __SCREAMING_SNAKE_CASE ( ) -> None: __lowercase = int(input('enter the numbers of values: ' ) ) __lowercase = [] for _ in range(SCREAMING_SNAKE_CASE ): y.append([] ) for i in range(SCREAMING_SNAKE_CASE ): for j in range(SCREAMING_SNAKE_CASE ): y[i].append(SCREAMING_SNAKE_CASE ) __lowercase = 0 print('enter the values of parameters in a list: ' ) __lowercase = list(map(SCREAMING_SNAKE_CASE , input().split() ) ) print('enter the values of corresponding parameters: ' ) for i in range(SCREAMING_SNAKE_CASE ): __lowercase = float(input() ) __lowercase = int(input('enter the value to interpolate: ' ) ) __lowercase = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , SCREAMING_SNAKE_CASE ): for j in range(n - i ): __lowercase = y[j + 1][i - 1] - y[j][i - 1] __lowercase = y[0][0] for i in range(1 , SCREAMING_SNAKE_CASE ): summ += (ucal(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) * y[0][i]) / math.factorial(SCREAMING_SNAKE_CASE ) print(F"""the value at {value} is {summ}""" ) if __name__ == "__main__": main()
688
1
'''simple docstring''' import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html __snake_case : int = 'platform' import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class lowerCamelCase : '''simple docstring''' __snake_case = PegasusConfig __snake_case = {} __snake_case = 'gelu' def __init__( self : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict=13 , lowerCAmelCase_ : List[Any]=7 , lowerCAmelCase_ : Any=True , lowerCAmelCase_ : List[str]=False , lowerCAmelCase_ : List[str]=99 , lowerCAmelCase_ : Union[str, Any]=32 , lowerCAmelCase_ : List[str]=5 , lowerCAmelCase_ : Optional[int]=4 , lowerCAmelCase_ : List[str]=37 , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : Optional[Any]=20 , lowerCAmelCase_ : Union[str, Any]=2 , lowerCAmelCase_ : Optional[Any]=1 , lowerCAmelCase_ : int=0 , ) -> Optional[Any]: '''simple docstring''' A__ : Any =parent A__ : str =batch_size A__ : List[Any] =seq_length A__ : Any =is_training A__ : int =use_labels A__ : Any =vocab_size A__ : List[Any] =hidden_size A__ : Optional[int] =num_hidden_layers A__ : Union[str, Any] =num_attention_heads A__ : List[str] =intermediate_size A__ : Optional[Any] =hidden_dropout_prob A__ : Dict =attention_probs_dropout_prob A__ : Any =max_position_embeddings A__ : Tuple =eos_token_id A__ : Optional[Any] =pad_token_id A__ : Union[str, Any] =bos_token_id def lowercase__ ( self : Optional[int] ) -> Any: '''simple docstring''' A__ : str =ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size ) A__ : Tuple =np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 ) A__ : int =np.concatenate([input_ids, eos_tensor] , axis=1 ) A__ : List[Any] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ : Dict =self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) A__ : Union[str, Any] =prepare_pegasus_inputs_dict(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) return config, inputs_dict def lowercase__ ( self : str , lowerCAmelCase_ : int , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Dict ) -> Union[str, Any]: '''simple docstring''' A__ : Tuple =20 A__ : Dict =model_class_name(lowerCAmelCase_ ) A__ : Union[str, Any] =model.encode(inputs_dict["""input_ids"""] ) A__ , A__ : str =( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) A__ : List[Any] =model.init_cache(decoder_input_ids.shape[0] , lowerCAmelCase_ , lowerCAmelCase_ ) A__ : List[str] =jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""" ) A__ : str =jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) A__ : Optional[Any] =model.decode( decoder_input_ids[:, :-1] , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , past_key_values=lowerCAmelCase_ , decoder_position_ids=lowerCAmelCase_ , ) A__ : Tuple =jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) A__ : str =model.decode( decoder_input_ids[:, -1:] , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=lowerCAmelCase_ , ) A__ : Any =model.decode(lowerCAmelCase_ , lowerCAmelCase_ ) A__ : Tuple =np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"Max diff is {diff}" ) def lowercase__ ( self : str , lowerCAmelCase_ : str , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Any ) -> str: '''simple docstring''' A__ : Optional[Any] =20 A__ : str =model_class_name(lowerCAmelCase_ ) A__ : Dict =model.encode(inputs_dict["""input_ids"""] ) A__ , A__ : str =( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) A__ : Dict =jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) A__ : Tuple =model.init_cache(decoder_input_ids.shape[0] , lowerCAmelCase_ , lowerCAmelCase_ ) A__ : Optional[int] =jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) A__ : Any =model.decode( decoder_input_ids[:, :-1] , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , past_key_values=lowerCAmelCase_ , decoder_position_ids=lowerCAmelCase_ , ) A__ : str =jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) A__ : Any =model.decode( decoder_input_ids[:, -1:] , lowerCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=lowerCAmelCase_ , decoder_position_ids=lowerCAmelCase_ , ) A__ : str =model.decode(lowerCAmelCase_ , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ ) A__ : Optional[Any] =np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"Max diff is {diff}" ) def __lowerCamelCase ( __snake_case : str, __snake_case : int, __snake_case : List[str], __snake_case : int=None, __snake_case : Union[str, Any]=None, ) -> Optional[int]: """simple docstring""" if attention_mask is None: A__ : Optional[int] =np.not_equal(__snake_case, config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: A__ : Optional[int] =np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape, dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:], config.pad_token_id ).astype(np.inta ), ], axis=-1, ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class lowerCamelCase ( lowercase_ , unittest.TestCase ): '''simple docstring''' __snake_case = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) __snake_case = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () __snake_case = True __snake_case = False __snake_case = False __snake_case = False def lowercase__ ( self : str ) -> List[Any]: '''simple docstring''' A__ : Optional[int] =FlaxPegasusModelTester(self ) A__ : str =ConfigTester(self , config_class=lowerCAmelCase_ ) def lowercase__ ( self : Tuple ) -> List[Any]: '''simple docstring''' self.config_tester.run_common_tests() def lowercase__ ( self : int ) -> Dict: '''simple docstring''' A__ , A__ : Optional[int] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def lowercase__ ( self : List[str] ) -> int: '''simple docstring''' A__ , A__ : Dict =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def lowercase__ ( self : Tuple ) -> List[Any]: '''simple docstring''' A__ , A__ : Any =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): A__ : Optional[int] =self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) A__ : List[str] =model_class(lowerCAmelCase_ ) @jax.jit def encode_jitted(lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple=None , **lowerCAmelCase_ : int ): return model.encode(input_ids=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ ) with self.subTest("""JIT Enabled""" ): A__ : List[Any] =encode_jitted(**lowerCAmelCase_ ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): A__ : Dict =encode_jitted(**lowerCAmelCase_ ).to_tuple() self.assertEqual(len(lowerCAmelCase_ ) , len(lowerCAmelCase_ ) ) for jitted_output, output in zip(lowerCAmelCase_ , lowerCAmelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) def lowercase__ ( self : Optional[int] ) -> str: '''simple docstring''' A__ , A__ : List[str] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): A__ : Any =model_class(lowerCAmelCase_ ) A__ : List[str] =model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""] ) A__ : List[str] ={ """decoder_input_ids""": inputs_dict["""decoder_input_ids"""], """decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""], """encoder_outputs""": encoder_outputs, } @jax.jit def decode_jitted(lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] ): return model.decode( decoder_input_ids=lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , encoder_outputs=lowerCAmelCase_ , ) with self.subTest("""JIT Enabled""" ): A__ : Any =decode_jitted(**lowerCAmelCase_ ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): A__ : Dict =decode_jitted(**lowerCAmelCase_ ).to_tuple() self.assertEqual(len(lowerCAmelCase_ ) , len(lowerCAmelCase_ ) ) for jitted_output, output in zip(lowerCAmelCase_ , lowerCAmelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def lowercase__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' for model_class_name in self.all_model_classes: A__ : str =model_class_name.from_pretrained("""google/pegasus-large""" , from_pt=lowerCAmelCase_ ) A__ : Dict =np.ones((1, 1) ) A__ : List[str] =model(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) @slow def lowercase__ ( self : str ) -> str: '''simple docstring''' A__ : Tuple =FlaxPegasusForConditionalGeneration.from_pretrained("""google/pegasus-xsum""" ) A__ : Optional[Any] =PegasusTokenizer.from_pretrained("""google/pegasus-xsum""" ) A__ : Dict =[ """ PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.""", """ The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" """, ] A__ : Dict =[ """California's largest electricity provider has turned off power to hundreds of thousands of customers.""", """Pop group N-Dubz have revealed they were surprised to get four nominations for this year's Mobo Awards.""", ] A__ : List[Any] =tokenizer(lowerCAmelCase_ , return_tensors="""np""" , truncation=lowerCAmelCase_ , max_length=5_12 , padding=lowerCAmelCase_ ) A__ : Union[str, Any] =model.generate(**lowerCAmelCase_ , num_beams=2 ).sequences A__ : int =tokenizer.batch_decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ ) assert tgt_text == decoded
215
'''simple docstring''' import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) __snake_case : Dict = logging.getLogger() def __lowerCamelCase ( ) -> Optional[int]: """simple docstring""" A__ : int =argparse.ArgumentParser() parser.add_argument("""-f""" ) A__ : int =parser.parse_args() return args.f class lowerCamelCase ( lowercase_ ): '''simple docstring''' def lowercase__ ( self : int ) -> None: '''simple docstring''' A__ : List[Any] =logging.StreamHandler(sys.stdout ) logger.addHandler(lowerCAmelCase_ ) def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : Any ) -> int: '''simple docstring''' A__ : Optional[Any] =get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0 , """run_glue_deebert.py""" ) with patch.object(lowerCAmelCase_ , """argv""" , lowerCAmelCase_ ): A__ : Optional[Any] =run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(lowerCAmelCase_ , 0.666 ) @slow @require_torch_non_multi_gpu def lowercase__ ( self : List[Any] ) -> List[str]: '''simple docstring''' A__ : Any =""" --model_type roberta --model_name_or_path roberta-base --task_name MRPC --do_train --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --max_seq_length 128 --per_gpu_eval_batch_size=1 --per_gpu_train_batch_size=8 --learning_rate 2e-4 --num_train_epochs 3 --overwrite_output_dir --seed 42 --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --save_steps 0 --overwrite_cache --eval_after_first_stage """.split() self.run_and_check(lowerCAmelCase_ ) A__ : Dict =""" --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --eval_each_highway --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 """.split() self.run_and_check(lowerCAmelCase_ ) A__ : Tuple =""" --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --early_exit_entropy 0.1 --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 """.split() self.run_and_check(lowerCAmelCase_ )
215
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A__ : List[str]= { """configuration_clipseg""": [ """CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CLIPSegConfig""", """CLIPSegTextConfig""", """CLIPSegVisionConfig""", ], """processing_clipseg""": ["""CLIPSegProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Optional[Any]= [ """CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST""", """CLIPSegModel""", """CLIPSegPreTrainedModel""", """CLIPSegTextModel""", """CLIPSegVisionModel""", """CLIPSegForImageSegmentation""", ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys A__ : Union[str, Any]= _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
713
"""simple docstring""" import inspect import unittest import numpy as np from transformers import BeitConfig from transformers.testing_utils import require_flax, require_vision, slow from transformers.utils import cached_property, is_flax_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor if is_flax_available(): import jax from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class __lowerCamelCase ( unittest.TestCase ): def __init__( self , snake_case_ , snake_case_=100 , snake_case_=13 , snake_case_=30 , snake_case_=2 , snake_case_=3 , snake_case_=True , snake_case_=True , snake_case_=32 , snake_case_=5 , snake_case_=4 , snake_case_=37 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=10 , snake_case_=0.02 , snake_case_=3 , ) -> Optional[int]: UpperCamelCase__ = parent UpperCamelCase__ = vocab_size UpperCamelCase__ = batch_size UpperCamelCase__ = image_size UpperCamelCase__ = patch_size UpperCamelCase__ = num_channels UpperCamelCase__ = is_training UpperCamelCase__ = use_labels UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = type_sequence_label_size UpperCamelCase__ = initializer_range # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCamelCase__ = (image_size // patch_size) ** 2 UpperCamelCase__ = num_patches + 1 def SCREAMING_SNAKE_CASE__ ( self ) -> str: UpperCamelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase__ = None if self.use_labels: UpperCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ = BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case_ , initializer_range=self.initializer_range , ) return config, pixel_values, labels def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> List[Any]: UpperCamelCase__ = FlaxBeitModel(config=snake_case_ ) UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> List[Any]: UpperCamelCase__ = FlaxBeitForMaskedImageModeling(config=snake_case_ ) UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> List[str]: UpperCamelCase__ = self.type_sequence_label_size UpperCamelCase__ = FlaxBeitForImageClassification(config=snake_case_ ) UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCamelCase__ = 1 UpperCamelCase__ = FlaxBeitForImageClassification(snake_case_ ) UpperCamelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase__ = model(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ = self.prepare_config_and_inputs() ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) = config_and_inputs UpperCamelCase__ = {'pixel_values': pixel_values} return config, inputs_dict @require_flax class __lowerCamelCase ( _a , unittest.TestCase ): a : int =( (FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else () ) def SCREAMING_SNAKE_CASE__ ( self ) -> None: UpperCamelCase__ = FlaxBeitModelTester(self ) UpperCamelCase__ = ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ , hidden_size=37 ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ = model_class(snake_case_ ) UpperCamelCase__ = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase__ = [*signature.parameters.keys()] UpperCamelCase__ = ['pixel_values'] self.assertListEqual(arg_names[:1] , snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCamelCase__ = self._prepare_for_class(snake_case_ , snake_case_ ) UpperCamelCase__ = model_class(snake_case_ ) @jax.jit def model_jitted(snake_case_ , **snake_case_ ): return model(pixel_values=snake_case_ , **snake_case_ ) with self.subTest('JIT Enabled' ): UpperCamelCase__ = model_jitted(**snake_case_ ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): UpperCamelCase__ = model_jitted(**snake_case_ ).to_tuple() self.assertEqual(len(snake_case_ ) , len(snake_case_ ) ) for jitted_output, output in zip(snake_case_ , snake_case_ ): self.assertEqual(jitted_output.shape , output.shape ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Any: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case_ ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: for model_class_name in self.all_model_classes: UpperCamelCase__ = model_class_name.from_pretrained('microsoft/beit-base-patch16-224' ) UpperCamelCase__ = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(snake_case_ ) def lowerCAmelCase_( ) -> Optional[int]: """simple docstring""" UpperCamelCase__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_vision @require_flax class __lowerCamelCase ( unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: return BeitImageProcessor.from_pretrained('microsoft/beit-base-patch16-224' ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE__ ( self ) -> str: UpperCamelCase__ = FlaxBeitForMaskedImageModeling.from_pretrained('microsoft/beit-base-patch16-224-pt22k' ) UpperCamelCase__ = self.default_image_processor UpperCamelCase__ = prepare_img() UpperCamelCase__ = image_processor(images=snake_case_ , return_tensors='np' ).pixel_values # prepare bool_masked_pos UpperCamelCase__ = np.ones((1, 196) , dtype=snake_case_ ) # forward pass UpperCamelCase__ = model(pixel_values=snake_case_ , bool_masked_pos=snake_case_ ) UpperCamelCase__ = outputs.logits # verify the logits UpperCamelCase__ = (1, 196, 8192) self.assertEqual(logits.shape , snake_case_ ) UpperCamelCase__ = np.array( [[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] ) self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3] , snake_case_ , atol=1E-2 ) ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = FlaxBeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224' ) UpperCamelCase__ = self.default_image_processor UpperCamelCase__ = prepare_img() UpperCamelCase__ = image_processor(images=snake_case_ , return_tensors='np' ) # forward pass UpperCamelCase__ = model(**snake_case_ ) UpperCamelCase__ = outputs.logits # verify the logits UpperCamelCase__ = (1, 1000) self.assertEqual(logits.shape , snake_case_ ) UpperCamelCase__ = np.array([-1.2_385, -1.0_987, -1.0_108] ) self.assertTrue(np.allclose(logits[0, :3] , snake_case_ , atol=1E-4 ) ) UpperCamelCase__ = 281 self.assertEqual(logits.argmax(-1 ).item() , snake_case_ ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> int: UpperCamelCase__ = FlaxBeitForImageClassification.from_pretrained('microsoft/beit-large-patch16-224-pt22k-ft22k' ) UpperCamelCase__ = self.default_image_processor UpperCamelCase__ = prepare_img() UpperCamelCase__ = image_processor(images=snake_case_ , return_tensors='np' ) # forward pass UpperCamelCase__ = model(**snake_case_ ) UpperCamelCase__ = outputs.logits # verify the logits UpperCamelCase__ = (1, 2_1841) self.assertEqual(logits.shape , snake_case_ ) UpperCamelCase__ = np.array([1.6_881, -0.2_787, 0.5_901] ) self.assertTrue(np.allclose(logits[0, :3] , snake_case_ , atol=1E-4 ) ) UpperCamelCase__ = 2396 self.assertEqual(logits.argmax(-1 ).item() , snake_case_ )
20
0
"""simple docstring""" import argparse import torch from transformers import YosoConfig, YosoForMaskedLM def lowerCamelCase__ ( __snake_case ) -> Optional[int]: """simple docstring""" if "model" in orig_key: _UpperCamelCase = orig_key.replace('''model.''', '''''' ) if "norm1" in orig_key: _UpperCamelCase = orig_key.replace('''norm1''', '''attention.output.LayerNorm''' ) if "norm2" in orig_key: _UpperCamelCase = orig_key.replace('''norm2''', '''output.LayerNorm''' ) if "norm" in orig_key: _UpperCamelCase = orig_key.replace('''norm''', '''LayerNorm''' ) if "transformer" in orig_key: _UpperCamelCase = orig_key.split('''.''' )[0].split('''_''' )[-1] _UpperCamelCase = orig_key.replace(F'''transformer_{layer_num}''', F'''encoder.layer.{layer_num}''' ) if "mha.attn" in orig_key: _UpperCamelCase = orig_key.replace('''mha.attn''', '''attention.self''' ) if "mha" in orig_key: _UpperCamelCase = orig_key.replace('''mha''', '''attention''' ) if "W_q" in orig_key: _UpperCamelCase = orig_key.replace('''W_q''', '''self.query''' ) if "W_k" in orig_key: _UpperCamelCase = orig_key.replace('''W_k''', '''self.key''' ) if "W_v" in orig_key: _UpperCamelCase = orig_key.replace('''W_v''', '''self.value''' ) if "ff1" in orig_key: _UpperCamelCase = orig_key.replace('''ff1''', '''intermediate.dense''' ) if "ff2" in orig_key: _UpperCamelCase = orig_key.replace('''ff2''', '''output.dense''' ) if "ff" in orig_key: _UpperCamelCase = orig_key.replace('''ff''', '''output.dense''' ) if "mlm_class" in orig_key: _UpperCamelCase = orig_key.replace('''mlm.mlm_class''', '''cls.predictions.decoder''' ) if "mlm" in orig_key: _UpperCamelCase = orig_key.replace('''mlm''', '''cls.predictions.transform''' ) if "cls" not in orig_key: _UpperCamelCase = """yoso.""" + orig_key return orig_key def lowerCamelCase__ ( __snake_case, __snake_case ) -> Union[str, Any]: """simple docstring""" for key in orig_state_dict.copy().keys(): _UpperCamelCase = orig_state_dict.pop(snake_case__ ) if ("pooler" in key) or ("sen_class" in key): continue else: _UpperCamelCase = val _UpperCamelCase = orig_state_dict["""cls.predictions.decoder.bias"""] _UpperCamelCase = torch.arange(snake_case__ ).expand((1, -1) ) + 2 return orig_state_dict def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case ) -> str: """simple docstring""" _UpperCamelCase = torch.load(snake_case__, map_location='''cpu''' )["""model_state_dict"""] _UpperCamelCase = YosoConfig.from_json_file(snake_case__ ) _UpperCamelCase = YosoForMaskedLM(snake_case__ ) _UpperCamelCase = convert_checkpoint_helper(config.max_position_embeddings, snake_case__ ) print(model.load_state_dict(snake_case__ ) ) model.eval() model.save_pretrained(snake_case__ ) print(F'''Checkpoint successfuly converted. Model saved at {pytorch_dump_path}''' ) if __name__ == "__main__": _a = argparse.ArgumentParser() # Required parameters parser.add_argument( """--pytorch_model_path""", default=None, type=str, required=True, help="""Path to YOSO pytorch checkpoint.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The json file for YOSO model config.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) _a = parser.parse_args() convert_yoso_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path)
19
import json import os import unittest from transformers import AutoTokenizer, GPTaTokenizer, GPTaTokenizerFast from transformers.models.gpta.tokenization_gpta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class snake_case__ ( lowercase_ , unittest.TestCase): '''simple docstring''' lowerCamelCase : List[str] = GPTaTokenizer lowerCamelCase : Optional[int] = GPTaTokenizerFast lowerCamelCase : List[Any] = True lowerCamelCase : List[str] = {"add_prefix_space": True} lowerCamelCase : Optional[int] = False def __lowercase ( self ) -> int: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __snake_case :Optional[Any] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", """<|endoftext|>""", ] __snake_case :Dict = dict(zip(a__ , range(len(a__ ) ) ) ) __snake_case :List[Any] = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] __snake_case :List[str] = {"""unk_token""": """<unk>"""} __snake_case :Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __snake_case :Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(a__ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(a__ ) ) def __lowercase ( self , **a__ ) -> Any: '''simple docstring''' kwargs.update(self.special_tokens_map ) return GPTaTokenizer.from_pretrained(self.tmpdirname , **a__ ) def __lowercase ( self , **a__ ) -> Tuple: '''simple docstring''' kwargs.update(self.special_tokens_map ) return GPTaTokenizerFast.from_pretrained(self.tmpdirname , **a__ ) def __lowercase ( self , a__ ) -> Optional[int]: '''simple docstring''' __snake_case :List[Any] = """lower newer""" __snake_case :Any = """lower newer""" return input_text, output_text def __lowercase ( self ) -> Optional[int]: '''simple docstring''' __snake_case :Optional[int] = GPTaTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __snake_case :List[Any] = """lower newer""" __snake_case :int = ["""\u0120low""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] __snake_case :Any = tokenizer.tokenize(a__ , add_prefix_space=a__ ) self.assertListEqual(a__ , a__ ) __snake_case :List[Any] = tokens + [tokenizer.unk_token] __snake_case :List[Any] = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(a__ ) , a__ ) def __lowercase ( self ) -> Dict: '''simple docstring''' if not self.test_rust_tokenizer: return __snake_case :Union[str, Any] = self.get_tokenizer() __snake_case :Optional[Any] = self.get_rust_tokenizer(add_prefix_space=a__ ) __snake_case :Optional[int] = """lower newer""" # Testing tokenization __snake_case :List[Any] = tokenizer.tokenize(a__ , add_prefix_space=a__ ) __snake_case :int = rust_tokenizer.tokenize(a__ ) self.assertListEqual(a__ , a__ ) # Testing conversion to ids without special tokens __snake_case :List[str] = tokenizer.encode(a__ , add_special_tokens=a__ , add_prefix_space=a__ ) __snake_case :int = rust_tokenizer.encode(a__ , add_special_tokens=a__ ) self.assertListEqual(a__ , a__ ) # Testing conversion to ids with special tokens __snake_case :Union[str, Any] = self.get_rust_tokenizer(add_prefix_space=a__ ) __snake_case :Optional[int] = tokenizer.encode(a__ , add_prefix_space=a__ ) __snake_case :Optional[int] = rust_tokenizer.encode(a__ ) self.assertListEqual(a__ , a__ ) # Testing the unknown token __snake_case :Dict = tokens + [rust_tokenizer.unk_token] __snake_case :Optional[int] = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(a__ ) , a__ ) def __lowercase ( self , *a__ , **a__ ) -> Any: '''simple docstring''' pass def __lowercase ( self , a__=15 ) -> Optional[Any]: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __snake_case :Optional[int] = self.rust_tokenizer_class.from_pretrained(a__ , **a__ ) # Simple input __snake_case :List[str] = """This is a simple input""" __snake_case :List[str] = ["""This is a simple input 1""", """This is a simple input 2"""] __snake_case :Tuple = ("""This is a simple input""", """This is a pair""") __snake_case :Union[str, Any] = [ ("""This is a simple input 1""", """This is a simple input 2"""), ("""This is a simple pair 1""", """This is a simple pair 2"""), ] # Simple input tests self.assertRaises(a__ , tokenizer_r.encode , a__ , max_length=a__ , padding="""max_length""" ) # Simple input self.assertRaises(a__ , tokenizer_r.encode_plus , a__ , max_length=a__ , padding="""max_length""" ) # Simple input self.assertRaises( a__ , tokenizer_r.batch_encode_plus , a__ , max_length=a__ , padding="""max_length""" , ) # Pair input self.assertRaises(a__ , tokenizer_r.encode , a__ , max_length=a__ , padding="""max_length""" ) # Pair input self.assertRaises(a__ , tokenizer_r.encode_plus , a__ , max_length=a__ , padding="""max_length""" ) # Pair input self.assertRaises( a__ , tokenizer_r.batch_encode_plus , a__ , max_length=a__ , padding="""max_length""" , ) def __lowercase ( self ) -> int: '''simple docstring''' __snake_case :Union[str, Any] = GPTaTokenizer.from_pretrained(self.tmpdirname , pad_token="""<pad>""" ) # Simple input __snake_case :Tuple = """This is a simple input""" __snake_case :Optional[int] = ["""This is a simple input looooooooong""", """This is a simple input"""] __snake_case :List[str] = ("""This is a simple input""", """This is a pair""") __snake_case :List[str] = [ ("""This is a simple input loooooong""", """This is a simple input"""), ("""This is a simple pair loooooong""", """This is a simple pair"""), ] __snake_case :Tuple = tokenizer.pad_token_id __snake_case :int = tokenizer(a__ , padding="""max_length""" , max_length=30 , return_tensors="""np""" ) __snake_case :Optional[Any] = tokenizer(a__ , padding=a__ , truncate=a__ , return_tensors="""np""" ) __snake_case :List[Any] = tokenizer(*a__ , padding="""max_length""" , max_length=60 , return_tensors="""np""" ) __snake_case :Optional[int] = tokenizer(a__ , padding=a__ , truncate=a__ , return_tensors="""np""" ) # s # test single string max_length padding self.assertEqual(out_s["""input_ids"""].shape[-1] , 30 ) self.assertTrue(pad_token_id in out_s["""input_ids"""] ) self.assertTrue(0 in out_s["""attention_mask"""] ) # s2 # test automatic padding self.assertEqual(out_sa["""input_ids"""].shape[-1] , 33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["""input_ids"""][0] ) self.assertFalse(0 in out_sa["""attention_mask"""][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["""input_ids"""][1] ) self.assertTrue(0 in out_sa["""attention_mask"""][1] ) # p # test single pair max_length padding self.assertEqual(out_p["""input_ids"""].shape[-1] , 60 ) self.assertTrue(pad_token_id in out_p["""input_ids"""] ) self.assertTrue(0 in out_p["""attention_mask"""] ) # p2 # test automatic padding pair self.assertEqual(out_pa["""input_ids"""].shape[-1] , 52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["""input_ids"""][0] ) self.assertFalse(0 in out_pa["""attention_mask"""][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["""input_ids"""][1] ) self.assertTrue(0 in out_pa["""attention_mask"""][1] ) def __lowercase ( self ) -> List[str]: '''simple docstring''' __snake_case :Optional[int] = """$$$""" __snake_case :Optional[Any] = GPTaTokenizer.from_pretrained(self.tmpdirname , bos_token=a__ , add_bos_token=a__ ) __snake_case :List[Any] = """This is a simple input""" __snake_case :Tuple = ["""This is a simple input 1""", """This is a simple input 2"""] __snake_case :Tuple = tokenizer.bos_token_id __snake_case :List[str] = tokenizer(a__ ) __snake_case :Any = tokenizer(a__ ) self.assertEqual(out_s.input_ids[0] , a__ ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) __snake_case :int = tokenizer.decode(out_s.input_ids ) __snake_case :Tuple = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , a__ ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) def __lowercase ( self ) -> str: '''simple docstring''' pass def __lowercase ( self ) -> Optional[int]: '''simple docstring''' __snake_case :List[str] = [self.get_tokenizer(do_lower_case=a__ , add_bos_token=a__ )] for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): __snake_case :Tuple = """Encode this.""" __snake_case :Tuple = """This one too please.""" __snake_case :Union[str, Any] = tokenizer.encode(a__ , add_special_tokens=a__ ) encoded_sequence += tokenizer.encode(a__ , add_special_tokens=a__ ) __snake_case :List[str] = tokenizer.encode_plus( a__ , a__ , add_special_tokens=a__ , return_special_tokens_mask=a__ , ) __snake_case :Union[str, Any] = encoded_sequence_dict["""input_ids"""] __snake_case :Optional[Any] = encoded_sequence_dict["""special_tokens_mask"""] self.assertEqual(len(a__ ) , len(a__ ) ) __snake_case :Optional[int] = [ (x if not special_tokens_mask[i] else None) for i, x in enumerate(a__ ) ] __snake_case :str = [x for x in filtered_sequence if x is not None] self.assertEqual(a__ , a__ ) @require_tokenizers class snake_case__ ( unittest.TestCase): '''simple docstring''' def __lowercase ( self ) -> Any: '''simple docstring''' __snake_case :Union[str, Any] = AutoTokenizer.from_pretrained("""facebook/opt-350m""" , from_slow=a__ ) __snake_case :Union[str, Any] = """A photo of a cat""" __snake_case :int = tokenizer.encode( a__ , ) self.assertEqual(a__ , [2, 2_50, 13_45, 9, 10, 47_58] ) tokenizer.save_pretrained("""test_opt""" ) __snake_case :int = AutoTokenizer.from_pretrained("""./test_opt""" ) __snake_case :Tuple = tokenizer.encode( a__ , ) self.assertEqual(a__ , [2, 2_50, 13_45, 9, 10, 47_58] ) def __lowercase ( self ) -> Any: '''simple docstring''' __snake_case :Tuple = AutoTokenizer.from_pretrained("""facebook/opt-350m""" , use_slow=a__ ) __snake_case :str = """A photo of a cat""" __snake_case :List[str] = tokenizer.encode( a__ , ) # Same as above self.assertEqual(a__ , [2, 2_50, 13_45, 9, 10, 47_58] ) @unittest.skip("""This test is failing because of a bug in the fast tokenizer""" ) def __lowercase ( self ) -> List[Any]: '''simple docstring''' __snake_case :int = AutoTokenizer.from_pretrained("""facebook/opt-350m""" , from_slow=a__ ) __snake_case :Optional[Any] = """bos""" __snake_case :int = tokenizer.get_vocab()["""bos"""] __snake_case :str = """A photo of a cat""" __snake_case :int = tokenizer.encode( a__ , ) # We changed the bos token self.assertEqual(a__ , [3_19_57, 2_50, 13_45, 9, 10, 47_58] ) tokenizer.save_pretrained("""./tok""" ) __snake_case :Dict = AutoTokenizer.from_pretrained("""./tok""" ) self.assertTrue(tokenizer.is_fast ) __snake_case :List[Any] = tokenizer.encode( a__ , ) self.assertEqual(a__ , [3_19_57, 2_50, 13_45, 9, 10, 47_58] )
455
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} UpperCamelCase = { "vocab_file": { "junnyu/roformer_chinese_small": "https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt", "junnyu/roformer_chinese_base": "https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt", "junnyu/roformer_chinese_char_small": ( "https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt" ), "junnyu/roformer_chinese_char_base": ( "https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt" ), "junnyu/roformer_small_discriminator": ( "https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt" ), "junnyu/roformer_small_generator": ( "https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt" ), } } UpperCamelCase = { "junnyu/roformer_chinese_small": 1_536, "junnyu/roformer_chinese_base": 1_536, "junnyu/roformer_chinese_char_small": 512, "junnyu/roformer_chinese_char_base": 512, "junnyu/roformer_small_discriminator": 128, "junnyu/roformer_small_generator": 128, } UpperCamelCase = { "junnyu/roformer_chinese_small": {"do_lower_case": True}, "junnyu/roformer_chinese_base": {"do_lower_case": True}, "junnyu/roformer_chinese_char_small": {"do_lower_case": True}, "junnyu/roformer_chinese_char_base": {"do_lower_case": True}, "junnyu/roformer_small_discriminator": {"do_lower_case": True}, "junnyu/roformer_small_generator": {"do_lower_case": True}, } class lowerCAmelCase_ ( __snake_case ): _UpperCamelCase : Optional[Any] = VOCAB_FILES_NAMES _UpperCamelCase : str = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : Optional[Any] = PRETRAINED_INIT_CONFIGURATION _UpperCamelCase : Union[str, Any] = RoFormerTokenizer def __init__( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=True , _lowerCAmelCase="[UNK]" , _lowerCAmelCase="[SEP]" , _lowerCAmelCase="[PAD]" , _lowerCAmelCase="[CLS]" , _lowerCAmelCase="[MASK]" , _lowerCAmelCase=True , _lowerCAmelCase=None , **_lowerCAmelCase , ): super().__init__( _lowerCAmelCase , tokenizer_file=_lowerCAmelCase , do_lower_case=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , tokenize_chinese_chars=_lowerCAmelCase , strip_accents=_lowerCAmelCase , **_lowerCAmelCase , ) _lowercase : Optional[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get('lowercase' , _lowerCAmelCase ) != do_lower_case or pre_tok_state.get('strip_accents' , _lowerCAmelCase ) != strip_accents ): _lowercase : Any = getattr(_lowerCAmelCase , pre_tok_state.pop('type' ) ) _lowercase : Union[str, Any] = do_lower_case _lowercase : Optional[int] = strip_accents _lowercase : int = pre_tok_class(**_lowerCAmelCase ) _lowercase : Tuple = do_lower_case def __getstate__( self ): _lowercase : Tuple = self.__dict__.copy() _lowercase : str = BertPreTokenizer() return state def __setstate__( self , _lowerCAmelCase ): _lowercase : int = d _lowercase : Any = self.__dict__['_tokenizer'].get_vocab() _lowercase : int = PreTokenizer.custom(JiebaPreTokenizer(_lowerCAmelCase ) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase=None ): _lowercase : int = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __a ( self , _lowerCAmelCase , _lowerCAmelCase = None ): _lowercase : Optional[Any] = [self.sep_token_id] _lowercase : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __a ( self , _lowerCAmelCase , _lowerCAmelCase = None ): _lowercase : int = self._tokenizer.model.save(_lowerCAmelCase , name=_lowerCAmelCase ) return tuple(_lowerCAmelCase ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=False , **_lowerCAmelCase , ): _lowercase : str = BertPreTokenizer() return super().save_pretrained(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase )
702
import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format="%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=os.environ.get("LOGLEVEL", "INFO").upper(), stream=sys.stdout, ) UpperCamelCase = logging.getLogger(__name__) UpperCamelCase = {"facebook/bart-base": BartForConditionalGeneration} UpperCamelCase = {"facebook/bart-base": BartTokenizer} def __magic_name__ ( ) -> str: _lowercase : Optional[int] = argparse.ArgumentParser(description='Export Bart model + Beam Search to ONNX graph.' ) parser.add_argument( '--validation_file' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help='A csv or a json file containing the validation data.' ) parser.add_argument( '--max_length' , type=SCREAMING_SNAKE_CASE , default=5 , help='The maximum total input sequence length after tokenization.' , ) parser.add_argument( '--num_beams' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help=( 'Number of beams to use for evaluation. This argument will be ' 'passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.' ) , ) parser.add_argument( '--model_name_or_path' , type=SCREAMING_SNAKE_CASE , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=SCREAMING_SNAKE_CASE , ) parser.add_argument( '--config_name' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help='Pretrained config name or path if not the same as model_name' , ) parser.add_argument( '--device' , type=SCREAMING_SNAKE_CASE , default='cpu' , help='Device where the model will be run' , ) parser.add_argument('--output_file_path' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help='Where to store the final ONNX file.' ) _lowercase : Optional[Any] = parser.parse_args() return args def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE="cpu" ) -> List[Any]: _lowercase : Dict = model_dict[model_name].from_pretrained(SCREAMING_SNAKE_CASE ).to(SCREAMING_SNAKE_CASE ) _lowercase : int = tokenizer_dict[model_name].from_pretrained(SCREAMING_SNAKE_CASE ) if model_name in ["facebook/bart-base"]: _lowercase : Dict = 0 _lowercase : Optional[int] = None _lowercase : Union[str, Any] = 0 return huggingface_model, tokenizer def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: model.eval() _lowercase : List[Any] = None _lowercase : List[str] = torch.jit.script(BARTBeamSearchGenerator(SCREAMING_SNAKE_CASE ) ) with torch.no_grad(): _lowercase : Optional[int] = 'My friends are cool but they eat too many carbs.' _lowercase : int = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1_024 , return_tensors='pt' ).to(model.device ) _lowercase : str = model.generate( inputs['input_ids'] , attention_mask=inputs['attention_mask'] , num_beams=SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , early_stopping=SCREAMING_SNAKE_CASE , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( SCREAMING_SNAKE_CASE , ( inputs['input_ids'], inputs['attention_mask'], num_beams, max_length, model.config.decoder_start_token_id, ) , SCREAMING_SNAKE_CASE , opset_version=14 , input_names=['input_ids', 'attention_mask', 'num_beams', 'max_length', 'decoder_start_token_id'] , output_names=['output_ids'] , dynamic_axes={ 'input_ids': {0: 'batch', 1: 'seq'}, 'output_ids': {0: 'batch', 1: 'seq_out'}, } , example_outputs=SCREAMING_SNAKE_CASE , ) logger.info('Model exported to {}'.format(SCREAMING_SNAKE_CASE ) ) _lowercase : str = remove_dup_initializers(os.path.abspath(SCREAMING_SNAKE_CASE ) ) logger.info('Deduplicated and optimized model written to {}'.format(SCREAMING_SNAKE_CASE ) ) _lowercase : Union[str, Any] = onnxruntime.InferenceSession(SCREAMING_SNAKE_CASE ) _lowercase : Union[str, Any] = ort_sess.run( SCREAMING_SNAKE_CASE , { 'input_ids': inputs['input_ids'].cpu().numpy(), 'attention_mask': inputs['attention_mask'].cpu().numpy(), 'num_beams': np.array(SCREAMING_SNAKE_CASE ), 'max_length': np.array(SCREAMING_SNAKE_CASE ), 'decoder_start_token_id': np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1E-3 , atol=1E-3 ) logger.info('Model outputs from torch and ONNX Runtime are similar.' ) logger.info('Success.' ) def __magic_name__ ( ) -> Any: _lowercase : Dict = parse_args() _lowercase : Union[str, Any] = 5 _lowercase : Union[str, Any] = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() _lowercase : Optional[Any] = torch.device(args.device ) _lowercase , _lowercase : List[Any] = load_model_tokenizer(args.model_name_or_path , SCREAMING_SNAKE_CASE ) if model.config.decoder_start_token_id is None: raise ValueError('Make sure that `config.decoder_start_token_id` is correctly defined' ) model.to(SCREAMING_SNAKE_CASE ) if args.max_length: _lowercase : Any = args.max_length if args.num_beams: _lowercase : List[str] = args.num_beams if args.output_file_path: _lowercase : Union[str, Any] = args.output_file_path else: _lowercase : Tuple = 'BART.onnx' logger.info('Exporting model to ONNX' ) export_and_validate_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
677
0
from .imports import is_tqdm_available if is_tqdm_available(): from tqdm.auto import tqdm as _tqdm from ..state import PartialState def lowerCamelCase__ ( __A :bool = True ,*__A :Tuple ,**__A :List[Any] ): """simple docstring""" if not is_tqdm_available(): raise ImportError("""Accelerate's `tqdm` module requires `tqdm` to be installed. Please run `pip install tqdm`.""" ) __snake_case = False if main_process_only: __snake_case = PartialState().local_process_index == 0 return _tqdm(*__A ,**__A ,disable=__A )
268
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) UpperCamelCase__ = { '''configuration_convnext''': ['''CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ConvNextConfig''', '''ConvNextOnnxConfig'''] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = ['''ConvNextFeatureExtractor'''] UpperCamelCase__ = ['''ConvNextImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ '''CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ConvNextForImageClassification''', '''ConvNextModel''', '''ConvNextPreTrainedModel''', '''ConvNextBackbone''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ '''TFConvNextForImageClassification''', '''TFConvNextModel''', '''TFConvNextPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
268
1
"""simple docstring""" import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def __lowerCAmelCase (_UpperCamelCase ): if is_torch_version('<' , '2.0.0' ) or not hasattr(_UpperCamelCase , '_dynamo' ): return False return isinstance(_UpperCamelCase , torch._dynamo.eval_frame.OptimizedModule ) def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase = True ): __lowerCAmelCase = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) __lowerCAmelCase = is_compiled_module(_UpperCamelCase ) if is_compiled: __lowerCAmelCase = model __lowerCAmelCase = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(_UpperCamelCase , _UpperCamelCase ): __lowerCAmelCase = model.module if not keep_fpaa_wrapper: __lowerCAmelCase = getattr(_UpperCamelCase , 'forward' ) __lowerCAmelCase = model.__dict__.pop('_original_forward' , _UpperCamelCase ) if original_forward is not None: while hasattr(_UpperCamelCase , '__wrapped__' ): __lowerCAmelCase = forward.__wrapped__ if forward == original_forward: break __lowerCAmelCase = forward if getattr(_UpperCamelCase , '_converted_to_transformer_engine' , _UpperCamelCase ): convert_model(_UpperCamelCase , to_transformer_engine=_UpperCamelCase ) if is_compiled: __lowerCAmelCase = model __lowerCAmelCase = compiled_model return model def __lowerCAmelCase (): PartialState().wait_for_everyone() def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase ): if PartialState().distributed_type == DistributedType.TPU: xm.save(_UpperCamelCase , _UpperCamelCase ) elif PartialState().local_process_index == 0: torch.save(_UpperCamelCase , _UpperCamelCase ) @contextmanager def __lowerCAmelCase (**_UpperCamelCase ): for key, value in kwargs.items(): __lowerCAmelCase = str(_UpperCamelCase ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def __lowerCAmelCase (_UpperCamelCase ): if not hasattr(_UpperCamelCase , '__qualname__' ) and not hasattr(_UpperCamelCase , '__name__' ): __lowerCAmelCase = getattr(_UpperCamelCase , '__class__' , _UpperCamelCase ) if hasattr(_UpperCamelCase , '__qualname__' ): return obj.__qualname__ if hasattr(_UpperCamelCase , '__name__' ): return obj.__name__ return str(_UpperCamelCase ) def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase ): for key, value in source.items(): if isinstance(_UpperCamelCase , _UpperCamelCase ): __lowerCAmelCase = destination.setdefault(_UpperCamelCase , {} ) merge_dicts(_UpperCamelCase , _UpperCamelCase ) else: __lowerCAmelCase = value return destination def __lowerCAmelCase (_UpperCamelCase = None ): if port is None: __lowerCAmelCase = 2_9500 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(('localhost', port) ) == 0
702
"""simple docstring""" import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 lowerCamelCase__ = data_utils.TransfoXLTokenizer lowerCamelCase__ = data_utils.TransfoXLCorpus lowerCamelCase__ = data_utils lowerCamelCase__ = data_utils def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(_UpperCamelCase , 'rb' ) as fp: __lowerCAmelCase : int = pickle.load(_UpperCamelCase , encoding='latin1' ) # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) __lowerCAmelCase : Any = pytorch_dump_folder_path + '/' + VOCAB_FILES_NAMES['pretrained_vocab_file'] print(F"Save vocabulary to {pytorch_vocab_dump_path}" ) __lowerCAmelCase : Optional[Any] = corpus.vocab.__dict__ torch.save(_UpperCamelCase , _UpperCamelCase ) __lowerCAmelCase : Dict = corpus.__dict__ corpus_dict_no_vocab.pop('vocab' , _UpperCamelCase ) __lowerCAmelCase : List[str] = pytorch_dump_folder_path + '/' + CORPUS_NAME print(F"Save dataset to {pytorch_dataset_dump_path}" ) torch.save(_UpperCamelCase , _UpperCamelCase ) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model __lowerCAmelCase : Tuple = os.path.abspath(_UpperCamelCase ) __lowerCAmelCase : List[Any] = os.path.abspath(_UpperCamelCase ) print(F"Converting Transformer XL checkpoint from {tf_path} with config at {config_path}." ) # Initialise PyTorch model if transfo_xl_config_file == "": __lowerCAmelCase : Any = TransfoXLConfig() else: __lowerCAmelCase : str = TransfoXLConfig.from_json_file(_UpperCamelCase ) print(F"Building PyTorch model from configuration: {config}" ) __lowerCAmelCase : Optional[Any] = TransfoXLLMHeadModel(_UpperCamelCase ) __lowerCAmelCase : Dict = load_tf_weights_in_transfo_xl(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Save pytorch-model __lowerCAmelCase : str = os.path.join(_UpperCamelCase , _UpperCamelCase ) __lowerCAmelCase : Tuple = os.path.join(_UpperCamelCase , _UpperCamelCase ) print(F"Save PyTorch model to {os.path.abspath(_UpperCamelCase )}" ) torch.save(model.state_dict() , _UpperCamelCase ) print(F"Save configuration file to {os.path.abspath(_UpperCamelCase )}" ) with open(_UpperCamelCase , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the folder to store the PyTorch model or dataset/vocab.""", ) parser.add_argument( """--tf_checkpoint_path""", default="""""", type=str, help="""An optional path to a TensorFlow checkpoint path to be converted.""", ) parser.add_argument( """--transfo_xl_config_file""", default="""""", type=str, help=( """An optional config json file corresponding to the pre-trained BERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--transfo_xl_dataset_file""", default="""""", type=str, help="""An optional dataset file to be converted in a vocabulary.""", ) lowerCamelCase__ = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
549
0
"""simple docstring""" from __future__ import annotations from collections.abc import MutableSequence class __a : '''simple docstring''' def __init__( self , _lowerCamelCase , _lowerCamelCase ) -> Any: '''simple docstring''' if len(_lowercase ) != degree + 1: raise ValueError( "The number of coefficients should be equal to the degree + 1." ) __lowercase = list(_lowercase ) __lowercase = degree def __add__( self , _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' if self.degree > polynomial_a.degree: __lowercase = self.coefficients[:] for i in range(polynomial_a.degree + 1 ): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree , _lowercase ) else: __lowercase = polynomial_a.coefficients[:] for i in range(self.degree + 1 ): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree , _lowercase ) def __sub__( self , _lowerCamelCase ) -> Any: '''simple docstring''' return self + polynomial_a * Polynomial(0 , [-1] ) def __neg__( self ) -> Any: '''simple docstring''' return Polynomial(self.degree , [-c for c in self.coefficients] ) def __mul__( self , _lowerCamelCase ) -> List[Any]: '''simple docstring''' __lowercase = [0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1 ): for j in range(polynomial_a.degree + 1 ): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree , _lowercase ) def SCREAMING_SNAKE_CASE ( self , _lowerCamelCase ) -> List[str]: '''simple docstring''' __lowercase = 0 for i in range(self.degree + 1 ): result += self.coefficients[i] * (substitution**i) return result def __str__( self ) -> Optional[int]: '''simple docstring''' __lowercase = "" for i in range(self.degree , -1 , -1 ): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i] ) ) elif i == 1: polynomial += str(abs(self.coefficients[i] ) ) + "x" else: polynomial += str(abs(self.coefficients[i] ) ) + "x^" + str(_lowercase ) return polynomial def __repr__( self ) -> Optional[int]: '''simple docstring''' return self.__str__() def SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' __lowercase = [0] * self.degree for i in range(self.degree ): __lowercase = self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1 , _lowercase ) def SCREAMING_SNAKE_CASE ( self , _lowerCamelCase = 0 ) -> List[str]: '''simple docstring''' __lowercase = [0] * (self.degree + 2) __lowercase = constant for i in range(self.degree + 1 ): __lowercase = self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1 , _lowercase ) def __eq__( self , _lowerCamelCase ) -> List[Any]: '''simple docstring''' if not isinstance(_lowercase , _lowercase ): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1 ): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self , _lowerCamelCase ) -> List[Any]: '''simple docstring''' return not self.__eq__(_lowercase )
118
"""simple docstring""" import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _UpperCAmelCase ( _lowerCAmelCase , unittest.TestCase ): # FIXME: add fast tests pass @nightly @require_onnxruntime @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): @property def a ( self : List[str] ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def a ( self : Dict ): __UpperCAmelCase = ort.SessionOptions() __UpperCAmelCase = False return options def a ( self : Any ): __UpperCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo.png''' ) __UpperCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' ) __UpperCAmelCase = OnnxStableDiffusionInpaintPipeline.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , safety_checker=_lowercase , feature_extractor=_lowercase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_lowercase ) __UpperCAmelCase = '''A red cat sitting on a park bench''' __UpperCAmelCase = np.random.RandomState(0 ) __UpperCAmelCase = pipe( prompt=_lowercase , image=_lowercase , mask_image=_lowercase , guidance_scale=7.5 , num_inference_steps=10 , generator=_lowercase , output_type='''np''' , ) __UpperCAmelCase = output.images __UpperCAmelCase = images[0, 2_55:2_58, 2_55:2_58, -1] assert images.shape == (1, 5_12, 5_12, 3) __UpperCAmelCase = np.array([0.2_514, 0.3_007, 0.3_517, 0.1_790, 0.2_382, 0.3_167, 0.1_944, 0.2_273, 0.2_464] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def a ( self : Optional[int] ): __UpperCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo.png''' ) __UpperCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' ) __UpperCAmelCase = LMSDiscreteScheduler.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , subfolder='''scheduler''' , revision='''onnx''' ) __UpperCAmelCase = OnnxStableDiffusionInpaintPipeline.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , scheduler=_lowercase , safety_checker=_lowercase , feature_extractor=_lowercase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_lowercase ) __UpperCAmelCase = '''A red cat sitting on a park bench''' __UpperCAmelCase = np.random.RandomState(0 ) __UpperCAmelCase = pipe( prompt=_lowercase , image=_lowercase , mask_image=_lowercase , guidance_scale=7.5 , num_inference_steps=20 , generator=_lowercase , output_type='''np''' , ) __UpperCAmelCase = output.images __UpperCAmelCase = images[0, 2_55:2_58, 2_55:2_58, -1] assert images.shape == (1, 5_12, 5_12, 3) __UpperCAmelCase = np.array([0.0_086, 0.0_077, 0.0_083, 0.0_093, 0.0_107, 0.0_139, 0.0_094, 0.0_097, 0.0_125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
49
0
'''simple docstring''' import secrets from random import shuffle from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation def __A ( UpperCAmelCase = 8 ) -> str: '''simple docstring''' _UpperCamelCase : Optional[int] = ascii_letters + digits + punctuation return "".join(secrets.choice(UpperCAmelCase ) for _ in range(UpperCAmelCase ) ) def __A ( UpperCAmelCase ,UpperCAmelCase ) -> str: '''simple docstring''' # Password Generator = full boot with random_number, random_letters, and # random_character FUNCTIONS # Put your code here... i -= len(UpperCAmelCase ) _UpperCamelCase : Optional[int] = i // 3 _UpperCamelCase : Optional[Any] = i % 3 # chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) _UpperCamelCase : int = ( chars_incl + random(UpperCAmelCase ,quotient + remainder ) + random(UpperCAmelCase ,UpperCAmelCase ) + random(UpperCAmelCase ,UpperCAmelCase ) ) _UpperCamelCase : Union[str, Any] = list(UpperCAmelCase ) shuffle(UpperCAmelCase ) return "".join(UpperCAmelCase ) # random is a generalised function for letters, characters and numbers def __A ( UpperCAmelCase ,UpperCAmelCase ) -> str: '''simple docstring''' return "".join(secrets.choice(UpperCAmelCase ) for _ in range(UpperCAmelCase ) ) def __A ( UpperCAmelCase ,UpperCAmelCase ) -> List[str]: '''simple docstring''' pass # Put your code here... def __A ( UpperCAmelCase ,UpperCAmelCase ) -> int: '''simple docstring''' pass # Put your code here... def __A ( UpperCAmelCase ,UpperCAmelCase ) -> List[str]: '''simple docstring''' pass # Put your code here... def __A ( UpperCAmelCase ,UpperCAmelCase = 8 ) -> bool: '''simple docstring''' if len(UpperCAmelCase ) < min_length: # Your Password must be at least 8 characters long return False _UpperCamelCase : Optional[Any] = any(char in ascii_uppercase for char in password ) _UpperCamelCase : Optional[Any] = any(char in ascii_lowercase for char in password ) _UpperCamelCase : Optional[int] = any(char in digits for char in password ) _UpperCamelCase : Optional[int] = any(char in punctuation for char in password ) return upper and lower and num and spec_char # Passwords should contain UPPERCASE, lowerase # numbers, and special characters def __A ( ) -> Optional[int]: '''simple docstring''' _UpperCamelCase : Any = int(input("Please indicate the max length of your password: " ).strip() ) _UpperCamelCase : Dict = input( "Please indicate the characters that must be in your password: " ).strip() print("Password generated:" ,password_generator(UpperCAmelCase ) ) print( "Alternative Password generated:" ,alternative_password_generator(UpperCAmelCase ,UpperCAmelCase ) ,) print("[If you are thinking of using this passsword, You better save it.]" ) if __name__ == "__main__": main()
204
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) lowerCAmelCase_ : List[str] = { """hustvl/yolos-small""": """https://huggingface.co/hustvl/yolos-small/resolve/main/config.json""", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCAmelCase__ = '''yolos''' def __init__( self : int , lowercase__ : List[str]=768 , lowercase__ : Optional[Any]=12 , lowercase__ : Union[str, Any]=12 , lowercase__ : Any=3_072 , lowercase__ : List[Any]="gelu" , lowercase__ : Dict=0.0 , lowercase__ : Any=0.0 , lowercase__ : Dict=0.0_2 , lowercase__ : Tuple=1e-12 , lowercase__ : str=[512, 864] , lowercase__ : Dict=16 , lowercase__ : int=3 , lowercase__ : Optional[Any]=True , lowercase__ : List[Any]=100 , lowercase__ : str=True , lowercase__ : str=False , lowercase__ : List[str]=1 , lowercase__ : Dict=5 , lowercase__ : str=2 , lowercase__ : Optional[int]=5 , lowercase__ : Optional[int]=2 , lowercase__ : Optional[Any]=0.1 , **lowercase__ : Union[str, Any] , ) ->Tuple: '''simple docstring''' super().__init__(**lowercase__ ) _UpperCamelCase : Optional[int] = hidden_size _UpperCamelCase : str = num_hidden_layers _UpperCamelCase : Optional[Any] = num_attention_heads _UpperCamelCase : Optional[int] = intermediate_size _UpperCamelCase : Union[str, Any] = hidden_act _UpperCamelCase : Tuple = hidden_dropout_prob _UpperCamelCase : Any = attention_probs_dropout_prob _UpperCamelCase : Optional[int] = initializer_range _UpperCamelCase : str = layer_norm_eps _UpperCamelCase : Optional[int] = image_size _UpperCamelCase : int = patch_size _UpperCamelCase : Dict = num_channels _UpperCamelCase : List[str] = qkv_bias _UpperCamelCase : Dict = num_detection_tokens _UpperCamelCase : int = use_mid_position_embeddings _UpperCamelCase : int = auxiliary_loss # Hungarian matcher _UpperCamelCase : Tuple = class_cost _UpperCamelCase : str = bbox_cost _UpperCamelCase : str = giou_cost # Loss coefficients _UpperCamelCase : List[str] = bbox_loss_coefficient _UpperCamelCase : str = giou_loss_coefficient _UpperCamelCase : str = eos_coefficient class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCAmelCase__ = version.parse('''1.11''' ) @property def snake_case__ ( self : Union[str, Any] ) ->Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def snake_case__ ( self : Any ) ->float: '''simple docstring''' return 1e-4 @property def snake_case__ ( self : List[str] ) ->int: '''simple docstring''' return 12
204
1
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all feature extractors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...feature_extraction_utils import FeatureExtractionMixin from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) snake_case = logging.get_logger(__name__) snake_case = OrderedDict( [ ("audio-spectrogram-transformer", "ASTFeatureExtractor"), ("beit", "BeitFeatureExtractor"), ("chinese_clip", "ChineseCLIPFeatureExtractor"), ("clap", "ClapFeatureExtractor"), ("clip", "CLIPFeatureExtractor"), ("clipseg", "ViTFeatureExtractor"), ("conditional_detr", "ConditionalDetrFeatureExtractor"), ("convnext", "ConvNextFeatureExtractor"), ("cvt", "ConvNextFeatureExtractor"), ("data2vec-audio", "Wav2Vec2FeatureExtractor"), ("data2vec-vision", "BeitFeatureExtractor"), ("deformable_detr", "DeformableDetrFeatureExtractor"), ("deit", "DeiTFeatureExtractor"), ("detr", "DetrFeatureExtractor"), ("dinat", "ViTFeatureExtractor"), ("donut-swin", "DonutFeatureExtractor"), ("dpt", "DPTFeatureExtractor"), ("encodec", "EncodecFeatureExtractor"), ("flava", "FlavaFeatureExtractor"), ("glpn", "GLPNFeatureExtractor"), ("groupvit", "CLIPFeatureExtractor"), ("hubert", "Wav2Vec2FeatureExtractor"), ("imagegpt", "ImageGPTFeatureExtractor"), ("layoutlmv2", "LayoutLMv2FeatureExtractor"), ("layoutlmv3", "LayoutLMv3FeatureExtractor"), ("levit", "LevitFeatureExtractor"), ("maskformer", "MaskFormerFeatureExtractor"), ("mctct", "MCTCTFeatureExtractor"), ("mobilenet_v1", "MobileNetV1FeatureExtractor"), ("mobilenet_v2", "MobileNetV2FeatureExtractor"), ("mobilevit", "MobileViTFeatureExtractor"), ("nat", "ViTFeatureExtractor"), ("owlvit", "OwlViTFeatureExtractor"), ("perceiver", "PerceiverFeatureExtractor"), ("poolformer", "PoolFormerFeatureExtractor"), ("regnet", "ConvNextFeatureExtractor"), ("resnet", "ConvNextFeatureExtractor"), ("segformer", "SegformerFeatureExtractor"), ("sew", "Wav2Vec2FeatureExtractor"), ("sew-d", "Wav2Vec2FeatureExtractor"), ("speech_to_text", "Speech2TextFeatureExtractor"), ("speecht5", "SpeechT5FeatureExtractor"), ("swiftformer", "ViTFeatureExtractor"), ("swin", "ViTFeatureExtractor"), ("swinv2", "ViTFeatureExtractor"), ("table-transformer", "DetrFeatureExtractor"), ("timesformer", "VideoMAEFeatureExtractor"), ("tvlt", "TvltFeatureExtractor"), ("unispeech", "Wav2Vec2FeatureExtractor"), ("unispeech-sat", "Wav2Vec2FeatureExtractor"), ("van", "ConvNextFeatureExtractor"), ("videomae", "VideoMAEFeatureExtractor"), ("vilt", "ViltFeatureExtractor"), ("vit", "ViTFeatureExtractor"), ("vit_mae", "ViTFeatureExtractor"), ("vit_msn", "ViTFeatureExtractor"), ("wav2vec2", "Wav2Vec2FeatureExtractor"), ("wav2vec2-conformer", "Wav2Vec2FeatureExtractor"), ("wavlm", "Wav2Vec2FeatureExtractor"), ("whisper", "WhisperFeatureExtractor"), ("xclip", "CLIPFeatureExtractor"), ("yolos", "YolosFeatureExtractor"), ] ) snake_case = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES) def UpperCamelCase_ ( lowerCAmelCase__ ): """simple docstring""" for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items(): if class_name in extractors: _lowerCAmelCase : Union[str, Any] = model_type_to_module_name(lowerCAmelCase__ ) _lowerCAmelCase : List[Any] = importlib.import_module(f""".{module_name}""" , "transformers.models" ) try: return getattr(lowerCAmelCase__ , lowerCAmelCase__ ) except AttributeError: continue for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items(): if getattr(lowerCAmelCase__ , "__name__" , lowerCAmelCase__ ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. _lowerCAmelCase : str = importlib.import_module("transformers" ) if hasattr(lowerCAmelCase__ , lowerCAmelCase__ ): return getattr(lowerCAmelCase__ , lowerCAmelCase__ ) return None def UpperCamelCase_ ( lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = False , lowerCAmelCase__ = False , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = False , **lowerCAmelCase__ , ): """simple docstring""" _lowerCAmelCase : Dict = get_file_from_repo( lowerCAmelCase__ , lowerCAmelCase__ , cache_dir=lowerCAmelCase__ , force_download=lowerCAmelCase__ , resume_download=lowerCAmelCase__ , proxies=lowerCAmelCase__ , use_auth_token=lowerCAmelCase__ , revision=lowerCAmelCase__ , local_files_only=lowerCAmelCase__ , ) if resolved_config_file is None: logger.info( "Could not locate the feature extractor configuration file, will try to use the model config instead." ) return {} with open(lowerCAmelCase__ , encoding="utf-8" ) as reader: return json.load(lowerCAmelCase__ ) class __A : '''simple docstring''' def __init__( self ): raise EnvironmentError( "AutoFeatureExtractor is designed to be instantiated " "using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method." ) @classmethod @replace_list_option_in_docstrings(_snake_case ) def SCREAMING_SNAKE_CASE__ ( cls , _snake_case , **_snake_case ): _lowerCAmelCase : Optional[Any] = kwargs.pop("config" , _snake_case ) _lowerCAmelCase : Tuple = kwargs.pop("trust_remote_code" , _snake_case ) _lowerCAmelCase : Optional[int] = True _lowerCAmelCase , _lowerCAmelCase : int = FeatureExtractionMixin.get_feature_extractor_dict(_snake_case , **_snake_case ) _lowerCAmelCase : Dict = config_dict.get("feature_extractor_type" , _snake_case ) _lowerCAmelCase : Tuple = None if "AutoFeatureExtractor" in config_dict.get("auto_map" , {} ): _lowerCAmelCase : Dict = config_dict["auto_map"]["AutoFeatureExtractor"] # If we don't find the feature extractor class in the feature extractor config, let's try the model config. if feature_extractor_class is None and feature_extractor_auto_map is None: if not isinstance(_snake_case , _snake_case ): _lowerCAmelCase : Any = AutoConfig.from_pretrained(_snake_case , **_snake_case ) # It could be in `config.feature_extractor_type`` _lowerCAmelCase : Any = getattr(_snake_case , "feature_extractor_type" , _snake_case ) if hasattr(_snake_case , "auto_map" ) and "AutoFeatureExtractor" in config.auto_map: _lowerCAmelCase : Optional[Any] = config.auto_map["AutoFeatureExtractor"] if feature_extractor_class is not None: _lowerCAmelCase : Union[str, Any] = feature_extractor_class_from_name(_snake_case ) _lowerCAmelCase : Tuple = feature_extractor_auto_map is not None _lowerCAmelCase : Dict = feature_extractor_class is not None or type(_snake_case ) in FEATURE_EXTRACTOR_MAPPING _lowerCAmelCase : Tuple = resolve_trust_remote_code( _snake_case , _snake_case , _snake_case , _snake_case ) if has_remote_code and trust_remote_code: _lowerCAmelCase : Tuple = get_class_from_dynamic_module( _snake_case , _snake_case , **_snake_case ) _lowerCAmelCase : Dict = kwargs.pop("code_revision" , _snake_case ) if os.path.isdir(_snake_case ): feature_extractor_class.register_for_auto_class() return feature_extractor_class.from_dict(_snake_case , **_snake_case ) elif feature_extractor_class is not None: return feature_extractor_class.from_dict(_snake_case , **_snake_case ) # Last try: we use the FEATURE_EXTRACTOR_MAPPING. elif type(_snake_case ) in FEATURE_EXTRACTOR_MAPPING: _lowerCAmelCase : List[Any] = FEATURE_EXTRACTOR_MAPPING[type(_snake_case )] return feature_extractor_class.from_dict(_snake_case , **_snake_case ) raise ValueError( F"""Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a """ F"""`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following """ F"""`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}""" ) @staticmethod def SCREAMING_SNAKE_CASE__ ( _snake_case , _snake_case ): FEATURE_EXTRACTOR_MAPPING.register(_snake_case , _snake_case )
424
from collections import namedtuple import requests from lxml import html # type: ignore snake_case = namedtuple("covid_data", "cases deaths recovered") def UpperCamelCase_ ( lowerCAmelCase__ = "https://www.worldometers.info/coronavirus/" ): """simple docstring""" _lowerCAmelCase : int = "//div[@class = \"maincounter-number\"]/span/text()" return covid_data(*html.fromstring(requests.get(lowerCAmelCase__ ).content ).xpath(lowerCAmelCase__ ) ) snake_case = "Total COVID-19 cases in the world: {}\nTotal deaths due to COVID-19 in the world: {}\nTotal COVID-19 patients recovered in the world: {}" print(fmt.format(*covid_stats()))
424
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCamelCase = { """configuration_bigbird_pegasus""": [ """BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BigBirdPegasusConfig""", """BigBirdPegasusOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ """BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST""", """BigBirdPegasusForCausalLM""", """BigBirdPegasusForConditionalGeneration""", """BigBirdPegasusForQuestionAnswering""", """BigBirdPegasusForSequenceClassification""", """BigBirdPegasusModel""", """BigBirdPegasusPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdPegasusConfig, BigBirdPegasusOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST, BigBirdPegasusForCausalLM, BigBirdPegasusForConditionalGeneration, BigBirdPegasusForQuestionAnswering, BigBirdPegasusForSequenceClassification, BigBirdPegasusModel, BigBirdPegasusPreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
211
'''simple docstring''' from ...utils import logging from ..ta.modeling_tf_ta import TFTaEncoderModel, TFTaForConditionalGeneration, TFTaModel from .configuration_mta import MTaConfig _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = """T5Config""" class lowerCamelCase__ ( _A ): '''simple docstring''' A__ = '''mt5''' A__ = MTaConfig class lowerCamelCase__ ( _A ): '''simple docstring''' A__ = '''mt5''' A__ = MTaConfig class lowerCamelCase__ ( _A ): '''simple docstring''' A__ = '''mt5''' A__ = MTaConfig
211
1
'''simple docstring''' import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO ) __snake_case : Optional[Any] = logging.getLogger(__name__) def _lowercase ( lowerCamelCase__ : Optional[Any], lowerCamelCase__ : List[Any] ): _a = np.argmax(lowerCamelCase__, axis=1 ) return np.sum(outputs == labels ) def _lowercase ( lowerCamelCase__ : Dict ): with open(lowerCamelCase__, encoding="utf_8" ) as f: _a = csv.reader(lowerCamelCase__ ) _a = [] next(lowerCamelCase__ ) # skip the first line for line in tqdm(lowerCamelCase__ ): output.append((" ".join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) ) return output def _lowercase ( lowerCamelCase__ : Any, lowerCamelCase__ : Optional[Any], lowerCamelCase__ : Optional[Any], lowerCamelCase__ : List[str], lowerCamelCase__ : int, lowerCamelCase__ : Union[str, Any] ): _a = [] for dataset in encoded_datasets: _a = len(lowerCamelCase__ ) _a = np.zeros((n_batch, 2, input_len), dtype=np.intaa ) _a = np.zeros((n_batch, 2), dtype=np.intaa ) _a = np.full((n_batch, 2, input_len), fill_value=-100, dtype=np.intaa ) _a = np.zeros((n_batch,), dtype=np.intaa ) for ( i, (story, conta, conta, mc_label), ) in enumerate(lowerCamelCase__ ): _a = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] _a = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] _a = with_conta _a = with_conta _a = len(lowerCamelCase__ ) - 1 _a = len(lowerCamelCase__ ) - 1 _a = with_conta _a = with_conta _a = mc_label _a = (input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(lowerCamelCase__ ) for t in all_inputs ) ) return tensor_datasets def _lowercase ( ): _a = argparse.ArgumentParser() parser.add_argument("--model_name", type=lowerCamelCase__, default="openai-gpt", help="pretrained model name" ) parser.add_argument("--do_train", action="store_true", help="Whether to run training." ) parser.add_argument("--do_eval", action="store_true", help="Whether to run eval on the dev set." ) parser.add_argument( "--output_dir", default=lowerCamelCase__, type=lowerCamelCase__, required=lowerCamelCase__, help="The output directory where the model predictions and checkpoints will be written.", ) parser.add_argument("--train_dataset", type=lowerCamelCase__, default="" ) parser.add_argument("--eval_dataset", type=lowerCamelCase__, default="" ) parser.add_argument("--seed", type=lowerCamelCase__, default=42 ) parser.add_argument("--num_train_epochs", type=lowerCamelCase__, default=3 ) parser.add_argument("--train_batch_size", type=lowerCamelCase__, default=8 ) parser.add_argument("--eval_batch_size", type=lowerCamelCase__, default=16 ) parser.add_argument("--adam_epsilon", default=1e-8, type=lowerCamelCase__, help="Epsilon for Adam optimizer." ) parser.add_argument("--max_grad_norm", type=lowerCamelCase__, default=1 ) parser.add_argument( "--max_steps", default=-1, type=lowerCamelCase__, help=( "If > 0: set total number of training steps to perform. Override num_train_epochs." ), ) parser.add_argument( "--gradient_accumulation_steps", type=lowerCamelCase__, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.", ) parser.add_argument("--learning_rate", type=lowerCamelCase__, default=6.25e-5 ) parser.add_argument("--warmup_steps", default=0, type=lowerCamelCase__, help="Linear warmup over warmup_steps." ) parser.add_argument("--lr_schedule", type=lowerCamelCase__, default="warmup_linear" ) parser.add_argument("--weight_decay", type=lowerCamelCase__, default=0.01 ) parser.add_argument("--lm_coef", type=lowerCamelCase__, default=0.9 ) parser.add_argument("--n_valid", type=lowerCamelCase__, default=374 ) parser.add_argument("--server_ip", type=lowerCamelCase__, default="", help="Can be used for distant debugging." ) parser.add_argument("--server_port", type=lowerCamelCase__, default="", help="Can be used for distant debugging." ) _a = parser.parse_args() print(lowerCamelCase__ ) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach" ) ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=lowerCamelCase__ ) ptvsd.wait_for_attach() random.seed(args.seed ) np.random.seed(args.seed ) torch.manual_seed(args.seed ) torch.cuda.manual_seed_all(args.seed ) _a = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) _a = torch.cuda.device_count() logger.info("device: {}, n_gpu {}".format(lowerCamelCase__, lowerCamelCase__ ) ) if not args.do_train and not args.do_eval: raise ValueError("At least one of `do_train` or `do_eval` must be True." ) if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset _a = ["_start_", "_delimiter_", "_classify_"] _a = OpenAIGPTTokenizer.from_pretrained(args.model_name ) tokenizer.add_tokens(lowerCamelCase__ ) _a = tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) _a = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name ) model.resize_token_embeddings(len(lowerCamelCase__ ) ) model.to(lowerCamelCase__ ) # Load and encode the datasets def tokenize_and_encode(lowerCamelCase__ : Optional[int] ): if isinstance(lowerCamelCase__, lowerCamelCase__ ): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(lowerCamelCase__ ) ) elif isinstance(lowerCamelCase__, lowerCamelCase__ ): return obj return [tokenize_and_encode(lowerCamelCase__ ) for o in obj] logger.info("Encoding dataset..." ) _a = load_rocstories_dataset(args.train_dataset ) _a = load_rocstories_dataset(args.eval_dataset ) _a = (train_dataset, eval_dataset) _a = tokenize_and_encode(lowerCamelCase__ ) # Compute the max input length for the Transformer _a = model.config.n_positions // 2 - 2 _a = max( len(story[:max_length] ) + max(len(conta[:max_length] ), len(conta[:max_length] ) ) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset ) _a = min(lowerCamelCase__, model.config.n_positions ) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders _a = pre_process_datasets(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, *lowerCamelCase__ ) _a , _a = tensor_datasets[0], tensor_datasets[1] _a = TensorDataset(*lowerCamelCase__ ) _a = RandomSampler(lowerCamelCase__ ) _a = DataLoader(lowerCamelCase__, sampler=lowerCamelCase__, batch_size=args.train_batch_size ) _a = TensorDataset(*lowerCamelCase__ ) _a = SequentialSampler(lowerCamelCase__ ) _a = DataLoader(lowerCamelCase__, sampler=lowerCamelCase__, batch_size=args.eval_batch_size ) # Prepare optimizer if args.do_train: if args.max_steps > 0: _a = args.max_steps _a = args.max_steps // (len(lowerCamelCase__ ) // args.gradient_accumulation_steps) + 1 else: _a = len(lowerCamelCase__ ) // args.gradient_accumulation_steps * args.num_train_epochs _a = list(model.named_parameters() ) _a = ["bias", "LayerNorm.bias", "LayerNorm.weight"] _a = [ { "params": [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )], "weight_decay": args.weight_decay, }, {"params": [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], "weight_decay": 0.0}, ] _a = AdamW(lowerCamelCase__, lr=args.learning_rate, eps=args.adam_epsilon ) _a = get_linear_schedule_with_warmup( lowerCamelCase__, num_warmup_steps=args.warmup_steps, num_training_steps=lowerCamelCase__ ) if args.do_train: _a , _a , _a = 0, 0, None model.train() for _ in trange(int(args.num_train_epochs ), desc="Epoch" ): _a = 0 _a = 0 _a = tqdm(lowerCamelCase__, desc="Training" ) for step, batch in enumerate(lowerCamelCase__ ): _a = tuple(t.to(lowerCamelCase__ ) for t in batch ) _a , _a , _a , _a = batch _a = model(lowerCamelCase__, mc_token_ids=lowerCamelCase__, lm_labels=lowerCamelCase__, mc_labels=lowerCamelCase__ ) _a = args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() _a = ( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 _a = "Training loss: {:.2e} lr: {:.2e}".format(lowerCamelCase__, scheduler.get_lr()[0] ) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer _a = model.module if hasattr(lowerCamelCase__, "module" ) else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` _a = os.path.join(args.output_dir, lowerCamelCase__ ) _a = os.path.join(args.output_dir, lowerCamelCase__ ) torch.save(model_to_save.state_dict(), lowerCamelCase__ ) model_to_save.config.to_json_file(lowerCamelCase__ ) tokenizer.save_vocabulary(args.output_dir ) # Load a trained model and vocabulary that you have fine-tuned _a = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir ) _a = OpenAIGPTTokenizer.from_pretrained(args.output_dir ) model.to(lowerCamelCase__ ) if args.do_eval: model.eval() _a , _a = 0, 0 _a , _a = 0, 0 for batch in tqdm(lowerCamelCase__, desc="Evaluating" ): _a = tuple(t.to(lowerCamelCase__ ) for t in batch ) _a , _a , _a , _a = batch with torch.no_grad(): _a , _a , _a , _a = model( lowerCamelCase__, mc_token_ids=lowerCamelCase__, lm_labels=lowerCamelCase__, mc_labels=lowerCamelCase__ ) _a = mc_logits.detach().cpu().numpy() _a = mc_labels.to("cpu" ).numpy() _a = accuracy(lowerCamelCase__, lowerCamelCase__ ) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0 ) nb_eval_steps += 1 _a = eval_loss / nb_eval_steps _a = eval_accuracy / nb_eval_examples _a = tr_loss / nb_tr_steps if args.do_train else None _a = {"eval_loss": eval_loss, "eval_accuracy": eval_accuracy, "train_loss": train_loss} _a = os.path.join(args.output_dir, "eval_results.txt" ) with open(lowerCamelCase__, "w" ) as writer: logger.info("***** Eval results *****" ) for key in sorted(result.keys() ): logger.info(" %s = %s", lowerCamelCase__, str(result[key] ) ) writer.write("%s = %s\n" % (key, str(result[key] )) ) if __name__ == "__main__": main()
131
'''simple docstring''' # This model implementation is heavily inspired by https://github.com/haofanwang/ControlNet-for-Diffusers/ import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, ControlNetModel, DDIMScheduler, StableDiffusionControlNetImgaImgPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel from diffusers.utils import floats_tensor, load_image, load_numpy, randn_tensor, slow, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, ) enable_full_determinism() class A ( a , a , a , unittest.TestCase ): __UpperCAmelCase : List[Any] = StableDiffusionControlNetImgaImgPipeline __UpperCAmelCase : List[str] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width"""} __UpperCAmelCase : Any = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __UpperCAmelCase : List[str] = IMAGE_TO_IMAGE_IMAGE_PARAMS.union({"""control_image"""} ) __UpperCAmelCase : Optional[int] = IMAGE_TO_IMAGE_IMAGE_PARAMS def __lowerCAmelCase ( self ) -> Tuple: torch.manual_seed(0 ) _a = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=3_2 , ) torch.manual_seed(0 ) _a = ControlNetModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , in_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , cross_attention_dim=3_2 , conditioning_embedding_out_channels=(1_6, 3_2) , ) torch.manual_seed(0 ) _a = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=snake_case_ , set_alpha_to_one=snake_case_ , ) torch.manual_seed(0 ) _a = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) _a = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) _a = CLIPTextModel(snake_case_ ) _a = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) _a = { "unet": unet, "controlnet": controlnet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def __lowerCAmelCase ( self , snake_case_ , snake_case_=0 ) -> Optional[int]: if str(snake_case_ ).startswith("mps" ): _a = torch.manual_seed(snake_case_ ) else: _a = torch.Generator(device=snake_case_ ).manual_seed(snake_case_ ) _a = 2 _a = randn_tensor( (1, 3, 3_2 * controlnet_embedder_scale_factor, 3_2 * controlnet_embedder_scale_factor) , generator=snake_case_ , device=torch.device(snake_case_ ) , ) _a = floats_tensor(control_image.shape , rng=random.Random(snake_case_ ) ).to(snake_case_ ) _a = image.cpu().permute(0 , 2 , 3 , 1 )[0] _a = Image.fromarray(np.uinta(snake_case_ ) ).convert("RGB" ).resize((6_4, 6_4) ) _a = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", "image": image, "control_image": control_image, } return inputs def __lowerCAmelCase ( self ) -> str: return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def __lowerCAmelCase ( self ) -> Dict: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 ) def __lowerCAmelCase ( self ) -> List[str]: self._test_inference_batch_single_identical(expected_max_diff=2E-3 ) class A ( a , a , unittest.TestCase ): __UpperCAmelCase : Dict = StableDiffusionControlNetImgaImgPipeline __UpperCAmelCase : int = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width"""} __UpperCAmelCase : Dict = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __UpperCAmelCase : List[Any] = frozenset([] ) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess def __lowerCAmelCase ( self ) -> str: torch.manual_seed(0 ) _a = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=3_2 , ) torch.manual_seed(0 ) def init_weights(snake_case_ ): if isinstance(snake_case_ , torch.nn.Convad ): torch.nn.init.normal(m.weight ) m.bias.data.fill_(1.0 ) _a = ControlNetModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , in_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , cross_attention_dim=3_2 , conditioning_embedding_out_channels=(1_6, 3_2) , ) controlneta.controlnet_down_blocks.apply(snake_case_ ) torch.manual_seed(0 ) _a = ControlNetModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , in_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , cross_attention_dim=3_2 , conditioning_embedding_out_channels=(1_6, 3_2) , ) controlneta.controlnet_down_blocks.apply(snake_case_ ) torch.manual_seed(0 ) _a = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=snake_case_ , set_alpha_to_one=snake_case_ , ) torch.manual_seed(0 ) _a = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) _a = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) _a = CLIPTextModel(snake_case_ ) _a = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) _a = MultiControlNetModel([controlneta, controlneta] ) _a = { "unet": unet, "controlnet": controlnet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def __lowerCAmelCase ( self , snake_case_ , snake_case_=0 ) -> Optional[int]: if str(snake_case_ ).startswith("mps" ): _a = torch.manual_seed(snake_case_ ) else: _a = torch.Generator(device=snake_case_ ).manual_seed(snake_case_ ) _a = 2 _a = [ randn_tensor( (1, 3, 3_2 * controlnet_embedder_scale_factor, 3_2 * controlnet_embedder_scale_factor) , generator=snake_case_ , device=torch.device(snake_case_ ) , ), randn_tensor( (1, 3, 3_2 * controlnet_embedder_scale_factor, 3_2 * controlnet_embedder_scale_factor) , generator=snake_case_ , device=torch.device(snake_case_ ) , ), ] _a = floats_tensor(control_image[0].shape , rng=random.Random(snake_case_ ) ).to(snake_case_ ) _a = image.cpu().permute(0 , 2 , 3 , 1 )[0] _a = Image.fromarray(np.uinta(snake_case_ ) ).convert("RGB" ).resize((6_4, 6_4) ) _a = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", "image": image, "control_image": control_image, } return inputs def __lowerCAmelCase ( self ) -> Tuple: _a = self.get_dummy_components() _a = self.pipeline_class(**snake_case_ ) pipe.to(snake_case_ ) _a = 10.0 _a = 4 _a = self.get_dummy_inputs(snake_case_ ) _a = steps _a = scale _a = pipe(**snake_case_ )[0] _a = self.get_dummy_inputs(snake_case_ ) _a = steps _a = scale _a = pipe(**snake_case_ , control_guidance_start=0.1 , control_guidance_end=0.2 )[0] _a = self.get_dummy_inputs(snake_case_ ) _a = steps _a = scale _a = pipe(**snake_case_ , control_guidance_start=[0.1, 0.3] , control_guidance_end=[0.2, 0.7] )[0] _a = self.get_dummy_inputs(snake_case_ ) _a = steps _a = scale _a = pipe(**snake_case_ , control_guidance_start=0.4 , control_guidance_end=[0.5, 0.8] )[0] # make sure that all outputs are different assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 def __lowerCAmelCase ( self ) -> Optional[int]: return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def __lowerCAmelCase ( self ) -> List[str]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 ) def __lowerCAmelCase ( self ) -> List[Any]: self._test_inference_batch_single_identical(expected_max_diff=2E-3 ) def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = self.get_dummy_components() _a = self.pipeline_class(**snake_case_ ) pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) with tempfile.TemporaryDirectory() as tmpdir: try: # save_pretrained is not implemented for Multi-ControlNet pipe.save_pretrained(snake_case_ ) except NotImplementedError: pass @slow @require_torch_gpu class A ( unittest.TestCase ): def __lowerCAmelCase ( self ) -> Tuple: super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self ) -> Optional[int]: _a = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny" ) _a = StableDiffusionControlNetImgaImgPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , safety_checker=snake_case_ , controlnet=snake_case_ ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=snake_case_ ) _a = torch.Generator(device="cpu" ).manual_seed(0 ) _a = "evil space-punk bird" _a = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png" ).resize((5_1_2, 5_1_2) ) _a = load_image( "https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png" ).resize((5_1_2, 5_1_2) ) _a = pipe( snake_case_ , snake_case_ , control_image=snake_case_ , generator=snake_case_ , output_type="np" , num_inference_steps=5_0 , strength=0.6 , ) _a = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) _a = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy" ) assert np.abs(expected_image - image ).max() < 9E-2
131
1
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase = logging.get_logger(__name__) _lowerCamelCase = { """microsoft/unispeech-sat-base-100h-libri-ft""": ( """https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json""" ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class _SCREAMING_SNAKE_CASE (UpperCamelCase ): lowerCAmelCase = """unispeech-sat""" def __init__( self : Any , UpperCamelCase : int=3_2 , UpperCamelCase : List[Any]=7_6_8 , UpperCamelCase : str=1_2 , UpperCamelCase : Dict=1_2 , UpperCamelCase : str=3_0_7_2 , UpperCamelCase : int="gelu" , UpperCamelCase : Dict=0.1 , UpperCamelCase : Tuple=0.1 , UpperCamelCase : Union[str, Any]=0.1 , UpperCamelCase : List[str]=0.0 , UpperCamelCase : List[str]=0.0 , UpperCamelCase : str=0.1 , UpperCamelCase : str=0.1 , UpperCamelCase : int=0.0_2 , UpperCamelCase : List[Any]=1E-5 , UpperCamelCase : Optional[int]="group" , UpperCamelCase : int="gelu" , UpperCamelCase : str=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , UpperCamelCase : int=(5, 2, 2, 2, 2, 2, 2) , UpperCamelCase : Optional[Any]=(1_0, 3, 3, 3, 3, 2, 2) , UpperCamelCase : Optional[int]=False , UpperCamelCase : int=1_2_8 , UpperCamelCase : Dict=1_6 , UpperCamelCase : Tuple=False , UpperCamelCase : Optional[Any]=True , UpperCamelCase : List[Any]=0.0_5 , UpperCamelCase : int=1_0 , UpperCamelCase : Optional[Any]=2 , UpperCamelCase : List[Any]=0.0 , UpperCamelCase : Optional[int]=1_0 , UpperCamelCase : Union[str, Any]=0 , UpperCamelCase : Union[str, Any]=3_2_0 , UpperCamelCase : str=2 , UpperCamelCase : List[str]=0.1 , UpperCamelCase : List[str]=1_0_0 , UpperCamelCase : List[str]=2_5_6 , UpperCamelCase : Optional[int]=2_5_6 , UpperCamelCase : str=0.1 , UpperCamelCase : Union[str, Any]="mean" , UpperCamelCase : Dict=False , UpperCamelCase : Optional[Any]=False , UpperCamelCase : int=2_5_6 , UpperCamelCase : Tuple=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 1_5_0_0) , UpperCamelCase : Dict=(5, 3, 3, 1, 1) , UpperCamelCase : Union[str, Any]=(1, 2, 3, 1, 1) , UpperCamelCase : List[Any]=5_1_2 , UpperCamelCase : str=0 , UpperCamelCase : Any=1 , UpperCamelCase : List[Any]=2 , UpperCamelCase : Tuple=5_0_4 , **UpperCamelCase : Dict , )->Dict: super().__init__(**UpperCamelCase , pad_token_id=UpperCamelCase , bos_token_id=UpperCamelCase , eos_token_id=UpperCamelCase ) __SCREAMING_SNAKE_CASE : Tuple = hidden_size __SCREAMING_SNAKE_CASE : Any = feat_extract_norm __SCREAMING_SNAKE_CASE : str = feat_extract_activation __SCREAMING_SNAKE_CASE : Tuple = list(UpperCamelCase ) __SCREAMING_SNAKE_CASE : int = list(UpperCamelCase ) __SCREAMING_SNAKE_CASE : List[Any] = list(UpperCamelCase ) __SCREAMING_SNAKE_CASE : Optional[Any] = conv_bias __SCREAMING_SNAKE_CASE : Dict = num_conv_pos_embeddings __SCREAMING_SNAKE_CASE : Any = num_conv_pos_embedding_groups __SCREAMING_SNAKE_CASE : Tuple = len(self.conv_dim ) __SCREAMING_SNAKE_CASE : Tuple = num_hidden_layers __SCREAMING_SNAKE_CASE : Tuple = intermediate_size __SCREAMING_SNAKE_CASE : List[str] = hidden_act __SCREAMING_SNAKE_CASE : Dict = num_attention_heads __SCREAMING_SNAKE_CASE : Any = hidden_dropout __SCREAMING_SNAKE_CASE : Dict = attention_dropout __SCREAMING_SNAKE_CASE : Optional[int] = activation_dropout __SCREAMING_SNAKE_CASE : List[Any] = feat_proj_dropout __SCREAMING_SNAKE_CASE : Any = final_dropout __SCREAMING_SNAKE_CASE : Any = layerdrop __SCREAMING_SNAKE_CASE : Optional[Any] = layer_norm_eps __SCREAMING_SNAKE_CASE : Dict = initializer_range __SCREAMING_SNAKE_CASE : str = vocab_size __SCREAMING_SNAKE_CASE : List[str] = num_clusters __SCREAMING_SNAKE_CASE : Union[str, Any] = do_stable_layer_norm __SCREAMING_SNAKE_CASE : Optional[int] = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" F""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" F""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __SCREAMING_SNAKE_CASE : Tuple = apply_spec_augment __SCREAMING_SNAKE_CASE : str = mask_time_prob __SCREAMING_SNAKE_CASE : List[str] = mask_time_length __SCREAMING_SNAKE_CASE : str = mask_time_min_masks __SCREAMING_SNAKE_CASE : Dict = mask_feature_prob __SCREAMING_SNAKE_CASE : str = mask_feature_length __SCREAMING_SNAKE_CASE : int = mask_feature_min_masks # parameters for pretraining with codevector quantized representations __SCREAMING_SNAKE_CASE : str = num_codevectors_per_group __SCREAMING_SNAKE_CASE : Optional[int] = num_codevector_groups __SCREAMING_SNAKE_CASE : Optional[int] = contrastive_logits_temperature __SCREAMING_SNAKE_CASE : Dict = feat_quantizer_dropout __SCREAMING_SNAKE_CASE : str = num_negatives __SCREAMING_SNAKE_CASE : int = codevector_dim __SCREAMING_SNAKE_CASE : List[str] = proj_codevector_dim __SCREAMING_SNAKE_CASE : Any = diversity_loss_weight # ctc loss __SCREAMING_SNAKE_CASE : str = ctc_loss_reduction __SCREAMING_SNAKE_CASE : Any = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. __SCREAMING_SNAKE_CASE : Optional[Any] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. __SCREAMING_SNAKE_CASE : str = list(UpperCamelCase ) __SCREAMING_SNAKE_CASE : str = list(UpperCamelCase ) __SCREAMING_SNAKE_CASE : Union[str, Any] = list(UpperCamelCase ) __SCREAMING_SNAKE_CASE : Tuple = xvector_output_dim @property def __snake_case ( self : Optional[int] )->Tuple: return functools.reduce(operator.mul , self.conv_stride , 1 )
714
import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from . import compression from .hffilesystem import HfFileSystem _lowerCamelCase = importlib.util.find_spec("""s3fs""") is not None if _has_safs: from .safilesystem import SaFileSystem # noqa: F401 _lowerCamelCase = [ compression.BzaFileSystem, compression.GzipFileSystem, compression.LzaFileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(f'''A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.''') fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) def _lowerCAmelCase ( __lowerCamelCase : str ): """simple docstring""" if "://" in dataset_path: __SCREAMING_SNAKE_CASE : Any = dataset_path.split("://" )[1] return dataset_path def _lowerCAmelCase ( __lowerCamelCase : fsspec.AbstractFileSystem ): """simple docstring""" if fs is not None and fs.protocol != "file": return True else: return False def _lowerCAmelCase ( __lowerCamelCase : fsspec.AbstractFileSystem , __lowerCamelCase : str , __lowerCamelCase : str ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = not is_remote_filesystem(__lowerCamelCase ) if is_local: # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(__lowerCamelCase ) , fs._strip_protocol(__lowerCamelCase ) ) else: fs.mv(__lowerCamelCase , __lowerCamelCase , recursive=__lowerCamelCase ) def _lowerCAmelCase ( ): """simple docstring""" if hasattr(fsspec.asyn , "reset_lock" ): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: __SCREAMING_SNAKE_CASE : Tuple = None __SCREAMING_SNAKE_CASE : Optional[Any] = None __SCREAMING_SNAKE_CASE : Dict = threading.Lock()
447
0
'''simple docstring''' from typing import Callable, List, Optional, Union import PIL import torch from transformers import ( CLIPImageProcessor, CLIPSegForImageSegmentation, CLIPSegProcessor, CLIPTextModel, CLIPTokenizer, ) from diffusers import DiffusionPipeline from diffusers.configuration_utils import FrozenDict from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import deprecate, is_accelerate_available, logging __lowerCamelCase : Optional[int] = logging.get_logger(__name__) # pylint: disable=invalid-name class A_ (a_ ): """simple docstring""" def __init__( self :Dict , lowerCAmelCase__ :CLIPSegForImageSegmentation , lowerCAmelCase__ :CLIPSegProcessor , lowerCAmelCase__ :AutoencoderKL , lowerCAmelCase__ :CLIPTextModel , lowerCAmelCase__ :CLIPTokenizer , lowerCAmelCase__ :UNetaDConditionModel , lowerCAmelCase__ :Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , lowerCAmelCase__ :StableDiffusionSafetyChecker , lowerCAmelCase__ :CLIPImageProcessor , ) -> Optional[Any]: '''simple docstring''' super().__init__() if hasattr(scheduler.config , "steps_offset" ) and scheduler.config.steps_offset != 1: snake_case_ : str = ( F'''The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`''' F''' should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure ''' "to update the config accordingly as leaving `steps_offset` might led to incorrect results" " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub," " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`" " file" ) deprecate("steps_offset!=1" , "1.0.0" , lowerCAmelCase__ , standard_warn=lowerCAmelCase__ ) snake_case_ : List[Any] = dict(scheduler.config ) snake_case_ : Tuple = 1 snake_case_ : int = FrozenDict(lowerCAmelCase__ ) if hasattr(scheduler.config , "skip_prk_steps" ) and scheduler.config.skip_prk_steps is False: snake_case_ : Tuple = ( F'''The configuration file of this scheduler: {scheduler} has not set the configuration''' " `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make" " sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to" " incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face" " Hub, it would be very nice if you could open a Pull request for the" " `scheduler/scheduler_config.json` file" ) deprecate("skip_prk_steps not set" , "1.0.0" , lowerCAmelCase__ , standard_warn=lowerCAmelCase__ ) snake_case_ : Any = dict(scheduler.config ) snake_case_ : Optional[Any] = True snake_case_ : Dict = FrozenDict(lowerCAmelCase__ ) if safety_checker is None: logger.warning( F'''You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure''' " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" " results in services or applications open to the public. Both the diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." ) self.register_modules( segmentation_model=lowerCAmelCase__ , segmentation_processor=lowerCAmelCase__ , vae=lowerCAmelCase__ , text_encoder=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , feature_extractor=lowerCAmelCase__ , ) def _A ( self :str , lowerCAmelCase__ :Optional[Union[str, int]] = "auto" ) -> List[Any]: '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory snake_case_ : Optional[Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowerCAmelCase__ ) def _A ( self :Any ) -> Tuple: '''simple docstring''' self.enable_attention_slicing(lowerCAmelCase__ ) def _A ( self :str ) -> Union[str, Any]: '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) snake_case_ : Optional[Any] = torch.device("cuda" ) for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: if cpu_offloaded_model is not None: cpu_offload(lowerCAmelCase__ , lowerCAmelCase__ ) @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def _A ( self :List[Any] ) -> List[str]: '''simple docstring''' if self.device != torch.device("meta" ) or not hasattr(self.unet , "_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(lowerCAmelCase__ , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() def __call__( self :Optional[Any] , lowerCAmelCase__ :Union[str, List[str]] , lowerCAmelCase__ :Union[torch.FloatTensor, PIL.Image.Image] , lowerCAmelCase__ :str , lowerCAmelCase__ :int = 512 , lowerCAmelCase__ :int = 512 , lowerCAmelCase__ :int = 50 , lowerCAmelCase__ :float = 7.5 , lowerCAmelCase__ :Optional[Union[str, List[str]]] = None , lowerCAmelCase__ :Optional[int] = 1 , lowerCAmelCase__ :float = 0.0 , lowerCAmelCase__ :Optional[torch.Generator] = None , lowerCAmelCase__ :Optional[torch.FloatTensor] = None , lowerCAmelCase__ :Optional[str] = "pil" , lowerCAmelCase__ :bool = True , lowerCAmelCase__ :Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCAmelCase__ :int = 1 , **lowerCAmelCase__ :Optional[int] , ) -> Optional[Any]: '''simple docstring''' snake_case_ : Optional[Any] = self.segmentation_processor( text=[text] , images=[image] , padding="max_length" , return_tensors="pt" ).to(self.device ) snake_case_ : int = self.segmentation_model(**lowerCAmelCase__ ) snake_case_ : str = torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy() snake_case_ : Optional[Any] = self.numpy_to_pil(lowerCAmelCase__ )[0].resize(image.size ) # Run inpainting pipeline with the generated mask snake_case_ : int = StableDiffusionInpaintPipeline( vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , ) return inpainting_pipeline( prompt=lowerCAmelCase__ , image=lowerCAmelCase__ , mask_image=lowerCAmelCase__ , height=lowerCAmelCase__ , width=lowerCAmelCase__ , num_inference_steps=lowerCAmelCase__ , guidance_scale=lowerCAmelCase__ , negative_prompt=lowerCAmelCase__ , num_images_per_prompt=lowerCAmelCase__ , eta=lowerCAmelCase__ , generator=lowerCAmelCase__ , latents=lowerCAmelCase__ , output_type=lowerCAmelCase__ , return_dict=lowerCAmelCase__ , callback=lowerCAmelCase__ , callback_steps=lowerCAmelCase__ , )
653
'''simple docstring''' def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> str: """simple docstring""" if not isinstance(__magic_name__ ,__magic_name__ ): raise ValueError("iterations must be defined as integers" ) if not isinstance(__magic_name__ ,__magic_name__ ) or not number >= 1: raise ValueError( "starting number must be\n and integer and be more than 0" ) if not iterations >= 1: raise ValueError("Iterations must be done more than 0 times to play FizzBuzz" ) snake_case_ : Dict = "" while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(__magic_name__ ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
653
1
from string import ascii_uppercase __SCREAMING_SNAKE_CASE : Tuple ={str(ord(c) - 55): c for c in ascii_uppercase} def UpperCamelCase__ ( lowerCAmelCase__ ,lowerCAmelCase__ ): if isinstance(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): raise TypeError("""int() can\'t convert non-string with explicit base""" ) if num < 0: raise ValueError("""parameter must be positive int""" ) if isinstance(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): raise TypeError("""\'str\' object cannot be interpreted as an integer""" ) if isinstance(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): raise TypeError("""\'float\' object cannot be interpreted as an integer""" ) if base in (0, 1): raise ValueError("""base must be >= 2""" ) if base > 36: raise ValueError("""base must be <= 36""" ) lowercase = '' lowercase = 0 lowercase = 0 while div != 1: lowercase = divmod(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) if base >= 11 and 9 < mod < 36: lowercase = ALPHABET_VALUES[str(SCREAMING_SNAKE_CASE_ )] else: lowercase = str(SCREAMING_SNAKE_CASE_ ) new_value += actual_value lowercase = num // base lowercase = div if div == 0: return str(new_value[::-1] ) elif div == 1: new_value += str(SCREAMING_SNAKE_CASE_ ) return str(new_value[::-1] ) return new_value[::-1] if __name__ == "__main__": import doctest doctest.testmod() for base in range(2, 37): for num in range(1_000): assert int(decimal_to_any(num, base), base) == num, ( num, base, decimal_to_any(num, base), int(decimal_to_any(num, base), base), )
703
import math from ...configuration_utils import PretrainedConfig from ...utils import logging __SCREAMING_SNAKE_CASE : str =logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : str ={ '''facebook/data2vec-base-960h''': '''https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json''', # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class A_ ( __a ): _A :Tuple = '''data2vec-audio''' def __init__( self : Optional[Any] , snake_case__ : List[Any]=32 , snake_case__ : List[Any]=7_68 , snake_case__ : int=12 , snake_case__ : Dict=12 , snake_case__ : List[str]=30_72 , snake_case__ : List[str]="gelu" , snake_case__ : Optional[int]=0.1 , snake_case__ : List[Any]=0.1 , snake_case__ : int=0.1 , snake_case__ : Tuple=0.0 , snake_case__ : Tuple=0.1 , snake_case__ : Any=0.1 , snake_case__ : Dict=0.02 , snake_case__ : List[str]=1E-5 , snake_case__ : Optional[Any]="gelu" , snake_case__ : Union[str, Any]=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , snake_case__ : List[str]=(5, 2, 2, 2, 2, 2, 2) , snake_case__ : str=(10, 3, 3, 3, 3, 2, 2) , snake_case__ : Any=False , snake_case__ : List[str]=16 , snake_case__ : Any=19 , snake_case__ : Optional[Any]=5 , snake_case__ : str=0.05 , snake_case__ : Tuple=10 , snake_case__ : Optional[Any]=2 , snake_case__ : Dict=0.0 , snake_case__ : int=10 , snake_case__ : Any=0 , snake_case__ : int="sum" , snake_case__ : str=False , snake_case__ : str=False , snake_case__ : Optional[int]=2_56 , snake_case__ : List[str]=(5_12, 5_12, 5_12, 5_12, 15_00) , snake_case__ : List[str]=(5, 3, 3, 1, 1) , snake_case__ : int=(1, 2, 3, 1, 1) , snake_case__ : Optional[Any]=5_12 , snake_case__ : Dict=0 , snake_case__ : Optional[Any]=1 , snake_case__ : Tuple=2 , snake_case__ : Tuple=False , snake_case__ : List[str]=3 , snake_case__ : List[str]=2 , snake_case__ : Tuple=3 , snake_case__ : List[str]=None , **snake_case__ : str , ): super().__init__(**snake_case__ , pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ ) lowercase = hidden_size lowercase = feat_extract_activation lowercase = list(snake_case__ ) lowercase = list(snake_case__ ) lowercase = list(snake_case__ ) lowercase = conv_bias lowercase = num_conv_pos_embeddings lowercase = num_conv_pos_embedding_groups lowercase = conv_pos_kernel_size lowercase = len(self.conv_dim ) lowercase = num_hidden_layers lowercase = intermediate_size lowercase = hidden_act lowercase = num_attention_heads lowercase = hidden_dropout lowercase = attention_dropout lowercase = activation_dropout lowercase = feat_proj_dropout lowercase = final_dropout lowercase = layerdrop lowercase = layer_norm_eps lowercase = initializer_range lowercase = vocab_size lowercase = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==""" """ `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =""" F""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" F""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowercase = mask_time_prob lowercase = mask_time_length lowercase = mask_time_min_masks lowercase = mask_feature_prob lowercase = mask_feature_length lowercase = mask_feature_min_masks # ctc loss lowercase = ctc_loss_reduction lowercase = ctc_zero_infinity # adapter lowercase = add_adapter lowercase = adapter_kernel_size lowercase = adapter_stride lowercase = num_adapter_layers lowercase = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. lowercase = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. lowercase = list(snake_case__ ) lowercase = list(snake_case__ ) lowercase = list(snake_case__ ) lowercase = xvector_output_dim @property def SCREAMING_SNAKE_CASE__ ( self : Dict ): return math.prod(self.conv_stride )
72
0
from collections import deque from math import floor from random import random from time import time class __lowerCAmelCase : '''simple docstring''' def __init__( self: Union[str, Any] ): lowercase__ : Optional[int] = {} def snake_case__( self: Any, lowerCamelCase_: int, lowerCamelCase_: List[Any], lowerCamelCase_: Optional[int]=1 ): if self.graph.get(__a ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: lowercase__ : Tuple = [[w, v]] if not self.graph.get(__a ): lowercase__ : Optional[Any] = [] def snake_case__( self: str ): return list(self.graph ) def snake_case__( self: Any, lowerCamelCase_: int, lowerCamelCase_: Any ): if self.graph.get(__a ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(__a ) def snake_case__( self: Optional[int], lowerCamelCase_: str=-2, lowerCamelCase_: Optional[Any]=-1 ): if s == d: return [] lowercase__ : Union[str, Any] = [] lowercase__ : str = [] if s == -2: lowercase__ : List[Any] = list(self.graph )[0] stack.append(__a ) visited.append(__a ) lowercase__ : int = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowercase__ : Optional[Any] = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(__a ) return visited else: stack.append(node[1] ) visited.append(node[1] ) lowercase__ : Any = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(__a ) != 0: lowercase__ : int = stack[len(__a ) - 1] else: lowercase__ : Dict = ss # check if se have reached the starting point if len(__a ) == 0: return visited def snake_case__( self: str, lowerCamelCase_: str=-1 ): if c == -1: lowercase__ : List[str] = floor(random() * 10000 ) + 10 for i in range(__a ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): lowercase__ : Optional[int] = floor(random() * c ) + 1 if n != i: self.add_pair(__a, __a, 1 ) def snake_case__( self: Any, lowerCamelCase_: int=-2 ): lowercase__ : List[Any] = deque() lowercase__ : List[str] = [] if s == -2: lowercase__ : str = list(self.graph )[0] d.append(__a ) visited.append(__a ) while d: lowercase__ : Dict = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def snake_case__( self: Tuple, lowerCamelCase_: Union[str, Any] ): lowercase__ : Optional[int] = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def snake_case__( self: Optional[Any], lowerCamelCase_: Any ): return len(self.graph[u] ) def snake_case__( self: Optional[int], lowerCamelCase_: Tuple=-2 ): lowercase__ : Any = [] lowercase__ : Optional[Any] = [] if s == -2: lowercase__ : List[Any] = list(self.graph )[0] stack.append(__a ) visited.append(__a ) lowercase__ : Tuple = s lowercase__ : List[Any] = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowercase__ : List[str] = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowercase__ : List[str] = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(__a ) != 0: lowercase__ : Dict = stack[len(__a ) - 1] else: lowercase__ : Tuple = ss # check if se have reached the starting point if len(__a ) == 0: return sorted_nodes def snake_case__( self: Dict ): lowercase__ : Any = [] lowercase__ : Union[str, Any] = [] lowercase__ : List[str] = list(self.graph )[0] stack.append(__a ) visited.append(__a ) lowercase__ : Union[str, Any] = -2 lowercase__ : Optional[int] = [] lowercase__ : Optional[int] = s lowercase__ : str = False lowercase__ : Optional[Any] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowercase__ : Any = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): lowercase__ : List[Any] = len(__a ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowercase__ : Union[str, Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() lowercase__ : Optional[int] = True if len(__a ) != 0: lowercase__ : Tuple = stack[len(__a ) - 1] else: lowercase__ : List[str] = False indirect_parents.append(__a ) lowercase__ : Any = s lowercase__ : int = ss # check if se have reached the starting point if len(__a ) == 0: return list(__a ) def snake_case__( self: Any ): lowercase__ : str = [] lowercase__ : Any = [] lowercase__ : List[Any] = list(self.graph )[0] stack.append(__a ) visited.append(__a ) lowercase__ : Any = -2 lowercase__ : Optional[int] = [] lowercase__ : Tuple = s lowercase__ : Tuple = False lowercase__ : Tuple = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowercase__ : Union[str, Any] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): lowercase__ : str = len(__a ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowercase__ : Optional[Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() lowercase__ : List[Any] = True if len(__a ) != 0: lowercase__ : List[str] = stack[len(__a ) - 1] else: lowercase__ : str = False indirect_parents.append(__a ) lowercase__ : Any = s lowercase__ : List[str] = ss # check if se have reached the starting point if len(__a ) == 0: return False def snake_case__( self: Optional[int], lowerCamelCase_: Tuple=-2, lowerCamelCase_: List[Any]=-1 ): lowercase__ : Union[str, Any] = time() self.dfs(__a, __a ) lowercase__ : Tuple = time() return end - begin def snake_case__( self: List[str], lowerCamelCase_: Optional[Any]=-2 ): lowercase__ : str = time() self.bfs(__a ) lowercase__ : Tuple = time() return end - begin class __lowerCAmelCase : '''simple docstring''' def __init__( self: Any ): lowercase__ : List[Any] = {} def snake_case__( self: Tuple, lowerCamelCase_: Any, lowerCamelCase_: int, lowerCamelCase_: List[Any]=1 ): # check if the u exists if self.graph.get(__a ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist lowercase__ : Any = [[w, v]] # add the other way if self.graph.get(__a ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist lowercase__ : Dict = [[w, u]] def snake_case__( self: Tuple, lowerCamelCase_: List[str], lowerCamelCase_: List[str] ): if self.graph.get(__a ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(__a ) # the other way round if self.graph.get(__a ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(__a ) def snake_case__( self: Any, lowerCamelCase_: str=-2, lowerCamelCase_: str=-1 ): if s == d: return [] lowercase__ : Dict = [] lowercase__ : List[Any] = [] if s == -2: lowercase__ : Tuple = list(self.graph )[0] stack.append(__a ) visited.append(__a ) lowercase__ : Any = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowercase__ : Any = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(__a ) return visited else: stack.append(node[1] ) visited.append(node[1] ) lowercase__ : List[str] = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(__a ) != 0: lowercase__ : List[str] = stack[len(__a ) - 1] else: lowercase__ : Union[str, Any] = ss # check if se have reached the starting point if len(__a ) == 0: return visited def snake_case__( self: Any, lowerCamelCase_: Tuple=-1 ): if c == -1: lowercase__ : Any = floor(random() * 10000 ) + 10 for i in range(__a ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): lowercase__ : Union[str, Any] = floor(random() * c ) + 1 if n != i: self.add_pair(__a, __a, 1 ) def snake_case__( self: Tuple, lowerCamelCase_: int=-2 ): lowercase__ : Dict = deque() lowercase__ : int = [] if s == -2: lowercase__ : str = list(self.graph )[0] d.append(__a ) visited.append(__a ) while d: lowercase__ : Optional[Any] = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def snake_case__( self: str, lowerCamelCase_: str ): return len(self.graph[u] ) def snake_case__( self: Any ): lowercase__ : int = [] lowercase__ : Tuple = [] lowercase__ : str = list(self.graph )[0] stack.append(__a ) visited.append(__a ) lowercase__ : List[str] = -2 lowercase__ : Optional[Any] = [] lowercase__ : Optional[Any] = s lowercase__ : List[Any] = False lowercase__ : List[str] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowercase__ : Optional[Any] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): lowercase__ : Any = len(__a ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowercase__ : List[Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() lowercase__ : Any = True if len(__a ) != 0: lowercase__ : Tuple = stack[len(__a ) - 1] else: lowercase__ : Dict = False indirect_parents.append(__a ) lowercase__ : str = s lowercase__ : Any = ss # check if se have reached the starting point if len(__a ) == 0: return list(__a ) def snake_case__( self: Any ): lowercase__ : str = [] lowercase__ : str = [] lowercase__ : str = list(self.graph )[0] stack.append(__a ) visited.append(__a ) lowercase__ : List[str] = -2 lowercase__ : List[str] = [] lowercase__ : Optional[int] = s lowercase__ : Tuple = False lowercase__ : List[Any] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowercase__ : Optional[Any] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): lowercase__ : Tuple = len(__a ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowercase__ : Optional[int] = node[1] break # check if all the children are visited if s == ss: stack.pop() lowercase__ : str = True if len(__a ) != 0: lowercase__ : Optional[int] = stack[len(__a ) - 1] else: lowercase__ : Tuple = False indirect_parents.append(__a ) lowercase__ : List[str] = s lowercase__ : List[Any] = ss # check if se have reached the starting point if len(__a ) == 0: return False def snake_case__( self: Tuple ): return list(self.graph ) def snake_case__( self: Optional[Any], lowerCamelCase_: Dict=-2, lowerCamelCase_: Optional[Any]=-1 ): lowercase__ : List[str] = time() self.dfs(__a, __a ) lowercase__ : Optional[int] = time() return end - begin def snake_case__( self: Union[str, Any], lowerCamelCase_: Optional[Any]=-2 ): lowercase__ : Tuple = time() self.bfs(__a ) lowercase__ : Optional[int] = time() return end - begin
266
"""simple docstring""" import argparse import requests import torch from PIL import Image from torchvision.transforms import Compose, Normalize, Resize, ToTensor from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor def snake_case ( UpperCamelCase__ : int ) -> int: lowerCamelCase : Any = SwinaSRConfig() if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: lowerCamelCase : int = 4 elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: lowerCamelCase : int = 4 lowerCamelCase : Optional[Any] = 48 lowerCamelCase : Union[str, Any] = """pixelshuffle_aux""" elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: lowerCamelCase : Any = [6, 6, 6, 6] lowerCamelCase : Union[str, Any] = 60 lowerCamelCase : List[str] = [6, 6, 6, 6] lowerCamelCase : Dict = """pixelshuffledirect""" elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: lowerCamelCase : Tuple = 4 lowerCamelCase : Any = """nearest+conv""" elif "Swin2SR_Jpeg_dynamic" in checkpoint_url: lowerCamelCase : Optional[int] = 1 lowerCamelCase : Optional[Any] = 1 lowerCamelCase : List[Any] = 126 lowerCamelCase : Optional[Any] = 7 lowerCamelCase : List[str] = 2_5_5.0 lowerCamelCase : List[str] = """""" return config def snake_case ( UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any] ) -> str: if "patch_embed.proj" in name and "layers" not in name: lowerCamelCase : str = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: lowerCamelCase : Dict = name.replace("""patch_embed.norm""" , """embeddings.patch_embeddings.layernorm""" ) if "layers" in name: lowerCamelCase : Tuple = name.replace("""layers""" , """encoder.stages""" ) if "residual_group.blocks" in name: lowerCamelCase : str = name.replace("""residual_group.blocks""" , """layers""" ) if "attn.proj" in name: lowerCamelCase : Tuple = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: lowerCamelCase : Dict = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: lowerCamelCase : Dict = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: lowerCamelCase : Tuple = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: lowerCamelCase : Optional[int] = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: lowerCamelCase : Optional[int] = name.replace("""mlp.fc2""" , """output.dense""" ) if "q_bias" in name: lowerCamelCase : Dict = name.replace("""q_bias""" , """query.bias""" ) if "k_bias" in name: lowerCamelCase : Any = name.replace("""k_bias""" , """key.bias""" ) if "v_bias" in name: lowerCamelCase : int = name.replace("""v_bias""" , """value.bias""" ) if "cpb_mlp" in name: lowerCamelCase : Any = name.replace("""cpb_mlp""" , """continuous_position_bias_mlp""" ) if "patch_embed.proj" in name: lowerCamelCase : Tuple = name.replace("""patch_embed.proj""" , """patch_embed.projection""" ) if name == "norm.weight": lowerCamelCase : int = """layernorm.weight""" if name == "norm.bias": lowerCamelCase : Dict = """layernorm.bias""" if "conv_first" in name: lowerCamelCase : Union[str, Any] = name.replace("""conv_first""" , """first_convolution""" ) if ( "upsample" in name or "conv_before_upsample" in name or "conv_bicubic" in name or "conv_up" in name or "conv_hr" in name or "conv_last" in name or "aux" in name ): # heads if "conv_last" in name: lowerCamelCase : Dict = name.replace("""conv_last""" , """final_convolution""" ) if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]: if "conv_before_upsample.0" in name: lowerCamelCase : List[str] = name.replace("""conv_before_upsample.0""" , """conv_before_upsample""" ) if "upsample.0" in name: lowerCamelCase : List[Any] = name.replace("""upsample.0""" , """upsample.convolution_0""" ) if "upsample.2" in name: lowerCamelCase : int = name.replace("""upsample.2""" , """upsample.convolution_1""" ) lowerCamelCase : List[Any] = """upsample.""" + name elif config.upsampler == "pixelshuffledirect": lowerCamelCase : Union[str, Any] = name.replace("""upsample.0.weight""" , """upsample.conv.weight""" ) lowerCamelCase : Optional[Any] = name.replace("""upsample.0.bias""" , """upsample.conv.bias""" ) else: pass else: lowerCamelCase : Optional[int] = """swin2sr.""" + name return name def snake_case ( UpperCamelCase__ : str , UpperCamelCase__ : Any ) -> Dict: for key in orig_state_dict.copy().keys(): lowerCamelCase : List[Any] = orig_state_dict.pop(UpperCamelCase__ ) if "qkv" in key: lowerCamelCase : Any = key.split(""".""" ) lowerCamelCase : List[Any] = int(key_split[1] ) lowerCamelCase : List[str] = int(key_split[4] ) lowerCamelCase : List[str] = config.embed_dim if "weight" in key: lowerCamelCase : Optional[int] = val[:dim, :] lowerCamelCase : Any = val[dim : dim * 2, :] lowerCamelCase : Optional[Any] = val[-dim:, :] else: lowerCamelCase : int = val[:dim] lowerCamelCase : List[Any] = val[dim : dim * 2] lowerCamelCase : Dict = val[-dim:] pass else: lowerCamelCase : Any = val return orig_state_dict def snake_case ( UpperCamelCase__ : int , UpperCamelCase__ : Dict , UpperCamelCase__ : int ) -> List[Any]: lowerCamelCase : List[Any] = get_config(UpperCamelCase__ ) lowerCamelCase : Tuple = SwinaSRForImageSuperResolution(UpperCamelCase__ ) model.eval() lowerCamelCase : str = torch.hub.load_state_dict_from_url(UpperCamelCase__ , map_location="""cpu""" ) lowerCamelCase : int = convert_state_dict(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase , lowerCamelCase : str = model.load_state_dict(UpperCamelCase__ , strict=UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0: raise ValueError("""Missing keys when converting: {}""".format(UpperCamelCase__ ) ) for key in unexpected_keys: if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key): raise ValueError(F'Unexpected key {key} in state_dict' ) # verify values lowerCamelCase : List[str] = """https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true""" lowerCamelCase : Dict = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw ).convert("""RGB""" ) lowerCamelCase : Optional[Any] = SwinaSRImageProcessor() # pixel_values = processor(image, return_tensors="pt").pixel_values lowerCamelCase : str = 126 if """Jpeg""" in checkpoint_url else 256 lowerCamelCase : Any = Compose( [ Resize((image_size, image_size) ), ToTensor(), Normalize(mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] , std=[0.2_2_9, 0.2_2_4, 0.2_2_5] ), ] ) lowerCamelCase : Optional[Any] = transforms(UpperCamelCase__ ).unsqueeze(0 ) if config.num_channels == 1: lowerCamelCase : Union[str, Any] = pixel_values[:, 0, :, :].unsqueeze(1 ) lowerCamelCase : List[Any] = model(UpperCamelCase__ ) # assert values if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url: lowerCamelCase : str = torch.Size([1, 3, 512, 512] ) lowerCamelCase : Optional[Any] = torch.tensor( [[-0.7_0_8_7, -0.7_1_3_8, -0.6_7_2_1], [-0.8_3_4_0, -0.8_0_9_5, -0.7_2_9_8], [-0.9_1_4_9, -0.8_4_1_4, -0.7_9_4_0]] ) elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: lowerCamelCase : Any = torch.Size([1, 3, 1024, 1024] ) lowerCamelCase : str = torch.tensor( [[-0.7_7_7_5, -0.8_1_0_5, -0.8_9_3_3], [-0.7_7_6_4, -0.8_3_5_6, -0.9_2_2_5], [-0.7_9_7_6, -0.8_6_8_6, -0.9_5_7_9]] ) elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: # TODO values didn't match exactly here lowerCamelCase : Dict = torch.Size([1, 3, 1024, 1024] ) lowerCamelCase : str = torch.tensor( [[-0.8_0_3_5, -0.7_5_0_4, -0.7_4_9_1], [-0.8_5_3_8, -0.8_1_2_4, -0.7_7_8_2], [-0.8_8_0_4, -0.8_6_5_1, -0.8_4_9_3]] ) elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: lowerCamelCase : Any = torch.Size([1, 3, 512, 512] ) lowerCamelCase : Dict = torch.tensor( [[-0.7_6_6_9, -0.8_6_6_2, -0.8_7_6_7], [-0.8_8_1_0, -0.9_9_6_2, -0.9_8_2_0], [-0.9_3_4_0, -1.0_3_2_2, -1.1_1_4_9]] ) elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: lowerCamelCase : str = torch.Size([1, 3, 1024, 1024] ) lowerCamelCase : Optional[int] = torch.tensor( [[-0.5_2_3_8, -0.5_5_5_7, -0.6_3_2_1], [-0.6_0_1_6, -0.5_9_0_3, -0.6_3_9_1], [-0.6_2_4_4, -0.6_3_3_4, -0.6_8_8_9]] ) assert ( outputs.reconstruction.shape == expected_shape ), F'Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}' assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , UpperCamelCase__ , atol=1E-3 ) print("""Looks ok!""" ) lowerCamelCase : Dict = { """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth""": ( """swin2SR-classical-sr-x2-64""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth""": ( """swin2SR-classical-sr-x4-64""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth""": ( """swin2SR-compressed-sr-x4-48""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth""": ( """swin2SR-lightweight-x2-64""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth""": ( """swin2SR-realworld-sr-x4-64-bsrgan-psnr""" ), } lowerCamelCase : List[str] = url_to_name[checkpoint_url] if pytorch_dump_folder_path is not None: print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(UpperCamelCase__ ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(UpperCamelCase__ ) if push_to_hub: model.push_to_hub(F'caidas/{model_name}' ) processor.push_to_hub(F'caidas/{model_name}' ) if __name__ == "__main__": __lowerCamelCase :Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth', type=str, help='URL of the original Swin2SR checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument('--push_to_hub', action='store_true', help='Whether to push the converted model to the hub.') __lowerCamelCase :Optional[Any] = parser.parse_args() convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
222
0
'''simple docstring''' import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class __lowercase : """simple docstring""" def lowerCAmelCase ( self ): torch.manual_seed(0 ) __UpperCamelCase : int = TaEncoderModel.from_pretrained('hf-internal-testing/tiny-random-t5' ) torch.manual_seed(0 ) __UpperCamelCase : Optional[Any] = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-t5' ) torch.manual_seed(0 ) __UpperCamelCase : str = UNetaDConditionModel( sample_size=3_2 , layers_per_block=1 , block_out_channels=[3_2, 6_4] , down_block_types=[ 'ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D', ] , mid_block_type='UNetMidBlock2DSimpleCrossAttn' , up_block_types=['SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'] , in_channels=3 , out_channels=6 , cross_attention_dim=3_2 , encoder_hid_dim=3_2 , attention_head_dim=8 , addition_embed_type='text' , addition_embed_type_num_heads=2 , cross_attention_norm='group_norm' , resnet_time_scale_shift='scale_shift' , act_fn='gelu' , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) __UpperCamelCase : List[str] = DDPMScheduler( num_train_timesteps=1_0_0_0 , beta_schedule='squaredcos_cap_v2' , beta_start=0.0_0_0_1 , beta_end=0.0_2 , thresholding=_lowerCamelCase , dynamic_thresholding_ratio=0.9_5 , sample_max_value=1.0 , prediction_type='epsilon' , variance_type='learned_range' , ) torch.manual_seed(0 ) __UpperCamelCase : Optional[Any] = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def lowerCAmelCase ( self ): torch.manual_seed(0 ) __UpperCamelCase : Any = TaEncoderModel.from_pretrained('hf-internal-testing/tiny-random-t5' ) torch.manual_seed(0 ) __UpperCamelCase : Dict = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-t5' ) torch.manual_seed(0 ) __UpperCamelCase : List[Any] = UNetaDConditionModel( sample_size=3_2 , layers_per_block=[1, 2] , block_out_channels=[3_2, 6_4] , down_block_types=[ 'ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D', ] , mid_block_type='UNetMidBlock2DSimpleCrossAttn' , up_block_types=['SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'] , in_channels=6 , out_channels=6 , cross_attention_dim=3_2 , encoder_hid_dim=3_2 , attention_head_dim=8 , addition_embed_type='text' , addition_embed_type_num_heads=2 , cross_attention_norm='group_norm' , resnet_time_scale_shift='scale_shift' , act_fn='gelu' , class_embed_type='timestep' , mid_block_scale_factor=1.4_1_4 , time_embedding_act_fn='gelu' , time_embedding_dim=3_2 , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) __UpperCamelCase : str = DDPMScheduler( num_train_timesteps=1_0_0_0 , beta_schedule='squaredcos_cap_v2' , beta_start=0.0_0_0_1 , beta_end=0.0_2 , thresholding=_lowerCamelCase , dynamic_thresholding_ratio=0.9_5 , sample_max_value=1.0 , prediction_type='epsilon' , variance_type='learned_range' , ) torch.manual_seed(0 ) __UpperCamelCase : List[Any] = DDPMScheduler( num_train_timesteps=1_0_0_0 , beta_schedule='squaredcos_cap_v2' , beta_start=0.0_0_0_1 , beta_end=0.0_2 , ) torch.manual_seed(0 ) __UpperCamelCase : Tuple = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def lowerCAmelCase ( self ): __UpperCamelCase : Any = self.get_dummy_components() __UpperCamelCase : str = self.pipeline_class(**_lowerCamelCase ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) __UpperCamelCase : Any = self.get_dummy_inputs(_lowerCamelCase ) __UpperCamelCase : Dict = inputs["""prompt"""] __UpperCamelCase : Tuple = inputs["""generator"""] __UpperCamelCase : Tuple = inputs["""num_inference_steps"""] __UpperCamelCase : Tuple = inputs["""output_type"""] if "image" in inputs: __UpperCamelCase : List[str] = inputs["""image"""] else: __UpperCamelCase : Union[str, Any] = None if "mask_image" in inputs: __UpperCamelCase : Optional[Any] = inputs["""mask_image"""] else: __UpperCamelCase : Tuple = None if "original_image" in inputs: __UpperCamelCase : List[str] = inputs["""original_image"""] else: __UpperCamelCase : Optional[int] = None __UpperCamelCase : str = pipe.encode_prompt(_lowerCamelCase ) # inputs with prompt converted to embeddings __UpperCamelCase : Union[str, Any] = { """prompt_embeds""": prompt_embeds, """negative_prompt_embeds""": negative_prompt_embeds, """generator""": generator, """num_inference_steps""": num_inference_steps, """output_type""": output_type, } if image is not None: __UpperCamelCase : int = image if mask_image is not None: __UpperCamelCase : Optional[Any] = mask_image if original_image is not None: __UpperCamelCase : str = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) __UpperCamelCase : Optional[int] = pipe(**_lowerCamelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(_lowerCamelCase ) __UpperCamelCase : Any = self.pipeline_class.from_pretrained(_lowerCamelCase ) pipe_loaded.to(_lowerCamelCase ) pipe_loaded.set_progress_bar_config(disable=_lowerCamelCase ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(_lowerCamelCase , _lowerCamelCase ) is None , f"""`{optional_component}` did not stay set to None after loading.""" , ) __UpperCamelCase : Optional[int] = self.get_dummy_inputs(_lowerCamelCase ) __UpperCamelCase : List[str] = inputs["""generator"""] __UpperCamelCase : List[str] = inputs["""num_inference_steps"""] __UpperCamelCase : List[str] = inputs["""output_type"""] # inputs with prompt converted to embeddings __UpperCamelCase : Dict = { """prompt_embeds""": prompt_embeds, """negative_prompt_embeds""": negative_prompt_embeds, """generator""": generator, """num_inference_steps""": num_inference_steps, """output_type""": output_type, } if image is not None: __UpperCamelCase : Union[str, Any] = image if mask_image is not None: __UpperCamelCase : List[str] = mask_image if original_image is not None: __UpperCamelCase : int = original_image __UpperCamelCase : List[str] = pipe_loaded(**_lowerCamelCase )[0] __UpperCamelCase : Optional[int] = np.abs(to_np(_lowerCamelCase ) - to_np(_lowerCamelCase ) ).max() self.assertLess(_lowerCamelCase , 1E-4 ) def lowerCAmelCase ( self ): __UpperCamelCase : List[str] = self.get_dummy_components() __UpperCamelCase : Any = self.pipeline_class(**_lowerCamelCase ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) __UpperCamelCase : Optional[Any] = self.get_dummy_inputs(_lowerCamelCase ) __UpperCamelCase : List[Any] = pipe(**_lowerCamelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(_lowerCamelCase ) __UpperCamelCase : Tuple = self.pipeline_class.from_pretrained(_lowerCamelCase ) pipe_loaded.to(_lowerCamelCase ) pipe_loaded.set_progress_bar_config(disable=_lowerCamelCase ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests __UpperCamelCase : Tuple = self.get_dummy_inputs(_lowerCamelCase ) __UpperCamelCase : int = pipe_loaded(**_lowerCamelCase )[0] __UpperCamelCase : List[Any] = np.abs(to_np(_lowerCamelCase ) - to_np(_lowerCamelCase ) ).max() self.assertLess(_lowerCamelCase , 1E-4 )
714
'''simple docstring''' class __lowercase : """simple docstring""" def __init__( self ): __UpperCamelCase : Any = 0 __UpperCamelCase : Any = 0 __UpperCamelCase : Any = {} def lowerCAmelCase ( self , _lowerCamelCase ): if vertex not in self.adjacency: __UpperCamelCase : Tuple = {} self.num_vertices += 1 def lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): self.add_vertex(_lowerCamelCase ) self.add_vertex(_lowerCamelCase ) if head == tail: return __UpperCamelCase : List[Any] = weight __UpperCamelCase : Optional[int] = weight def lowerCAmelCase ( self ): __UpperCamelCase : List[str] = self.get_edges() for edge in edges: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : Optional[int] = edge edges.remove((tail, head, weight) ) for i in range(len(_lowerCamelCase ) ): __UpperCamelCase : Union[str, Any] = list(edges[i] ) edges.sort(key=lambda _lowerCamelCase : e[2] ) for i in range(len(_lowerCamelCase ) - 1 ): if edges[i][2] >= edges[i + 1][2]: __UpperCamelCase : Optional[int] = edges[i][2] + 1 for edge in edges: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : Optional[int] = edge __UpperCamelCase : Tuple = weight __UpperCamelCase : Optional[Any] = weight def __str__( self ): __UpperCamelCase : Optional[Any] = '' for tail in self.adjacency: for head in self.adjacency[tail]: __UpperCamelCase : Tuple = self.adjacency[head][tail] string += f"""{head} -> {tail} == {weight}\n""" return string.rstrip('\n' ) def lowerCAmelCase ( self ): __UpperCamelCase : Any = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def lowerCAmelCase ( self ): return self.adjacency.keys() @staticmethod def lowerCAmelCase ( _lowerCamelCase=None , _lowerCamelCase=None ): __UpperCamelCase : Tuple = Graph() if vertices is None: __UpperCamelCase : List[Any] = [] if edges is None: __UpperCamelCase : Optional[int] = [] for vertex in vertices: g.add_vertex(_lowerCamelCase ) for edge in edges: g.add_edge(*_lowerCamelCase ) return g class __lowercase : """simple docstring""" def __init__( self ): __UpperCamelCase : Union[str, Any] = {} __UpperCamelCase : int = {} def __len__( self ): return len(self.parent ) def lowerCAmelCase ( self , _lowerCamelCase ): if item in self.parent: return self.find(_lowerCamelCase ) __UpperCamelCase : Optional[Any] = item __UpperCamelCase : List[str] = 0 return item def lowerCAmelCase ( self , _lowerCamelCase ): if item not in self.parent: return self.make_set(_lowerCamelCase ) if item != self.parent[item]: __UpperCamelCase : int = self.find(self.parent[item] ) return self.parent[item] def lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ): __UpperCamelCase : Tuple = self.find(_lowerCamelCase ) __UpperCamelCase : Any = self.find(_lowerCamelCase ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: __UpperCamelCase : Dict = roota return roota if self.rank[roota] < self.rank[roota]: __UpperCamelCase : Optional[Any] = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 __UpperCamelCase : Dict = roota return roota return None @staticmethod def lowerCAmelCase ( _lowerCamelCase ): __UpperCamelCase : int = graph.num_vertices __UpperCamelCase : str = Graph.UnionFind() __UpperCamelCase : Tuple = [] while num_components > 1: __UpperCamelCase : Dict = {} for vertex in graph.get_vertices(): __UpperCamelCase : str = -1 __UpperCamelCase : int = graph.get_edges() for edge in edges: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : List[str] = edge edges.remove((tail, head, weight) ) for edge in edges: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : Dict = edge __UpperCamelCase : List[Any] = union_find.find(_lowerCamelCase ) __UpperCamelCase : str = union_find.find(_lowerCamelCase ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: __UpperCamelCase : str = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: __UpperCamelCase : str = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : List[str] = cheap_edge[vertex] if union_find.find(_lowerCamelCase ) != union_find.find(_lowerCamelCase ): union_find.union(_lowerCamelCase , _lowerCamelCase ) mst_edges.append(cheap_edge[vertex] ) __UpperCamelCase : int = num_components - 1 __UpperCamelCase : Union[str, Any] = Graph.build(edges=_lowerCamelCase ) return mst
287
0
import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process _snake_case = logging.getLogger(__name__) _snake_case = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) _snake_case = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class lowerCAmelCase : __lowerCamelCase = field( default=lowercase_ , metadata={ 'help': ( 'The model checkpoint for weights initialization. Leave None if you want to train a model from' ' scratch.' ) } , ) __lowerCamelCase = field( default=lowercase_ , metadata={'help': 'If training from scratch, pass a model type from the list: ' + ', '.join(lowercase_ )} , ) __lowerCamelCase = field( default=lowercase_ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __lowerCamelCase = field( default=lowercase_ , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) __lowerCamelCase = field( default=lowercase_ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) @dataclass class lowerCAmelCase : __lowerCamelCase = field( default=lowercase_ , metadata={'help': 'The input training data file (a text file).'} ) __lowerCamelCase = field( default=lowercase_ , metadata={ 'help': ( 'The input training data files (multiple files in glob format). ' 'Very often splitting large files to smaller files can prevent tokenizer going out of memory' ) } , ) __lowerCamelCase = field( default=lowercase_ , metadata={'help': 'An optional input evaluation data file to evaluate the perplexity on (a text file).'} , ) __lowerCamelCase = field( default=lowercase_ , metadata={'help': 'An optional input train ref data file for whole word mask in Chinese.'} , ) __lowerCamelCase = field( default=lowercase_ , metadata={'help': 'An optional input eval ref data file for whole word mask in Chinese.'} , ) __lowerCamelCase = field( default=lowercase_ , metadata={'help': 'Whether distinct lines of text in the dataset are to be handled as distinct sequences.'} , ) __lowerCamelCase = field( default=lowercase_ , metadata={'help': 'Train with masked-language modeling loss instead of language modeling.'} ) __lowerCamelCase = field(default=lowercase_ , metadata={'help': 'Whether ot not to use whole word mask.'} ) __lowerCamelCase = field( default=0.15 , metadata={'help': 'Ratio of tokens to mask for masked language modeling loss'} ) __lowerCamelCase = field( default=1 / 6 , metadata={ 'help': ( 'Ratio of length of a span of masked tokens to surrounding context length for permutation language' ' modeling.' ) } , ) __lowerCamelCase = field( default=5 , metadata={'help': 'Maximum length of a span of masked tokens for permutation language modeling.'} ) __lowerCamelCase = field( default=-1 , metadata={ 'help': ( 'Optional input sequence length after tokenization.' 'The training dataset will be truncated in block of this size for training.' 'Default to the model max input length for single sentence inputs (take into account special tokens).' ) } , ) __lowerCamelCase = field( default=lowercase_ , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) def _A ( __magic_name__ , __magic_name__ , __magic_name__ = False , __magic_name__ = None , ): def _dataset(__magic_name__ , __magic_name__=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError("You need to set world whole masking and mlm to True for Chinese Whole Word Mask" ) return LineByLineWithRefDataset( tokenizer=__magic_name__ , file_path=__magic_name__ , block_size=args.block_size , ref_path=__magic_name__ , ) return LineByLineTextDataset(tokenizer=__magic_name__ , file_path=__magic_name__ , block_size=args.block_size ) else: return TextDataset( tokenizer=__magic_name__ , file_path=__magic_name__ , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=__magic_name__ , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(__magic_name__ ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def _A ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowercase__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) lowercase__ , lowercase__ , lowercase__ = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( "Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file " "or remove the --do_eval argument." ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' " --overwrite_output_dir to overcome." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("Training/evaluation parameters %s" , __magic_name__ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: lowercase__ = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: lowercase__ = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: lowercase__ = CONFIG_MAPPING[model_args.model_type]() logger.warning("You are instantiating a new config instance from scratch." ) if model_args.tokenizer_name: lowercase__ = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: lowercase__ = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( "You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another" " script, save it,and load it from here, using --tokenizer_name" ) if model_args.model_name_or_path: lowercase__ = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=__magic_name__ , cache_dir=model_args.cache_dir , ) else: logger.info("Training new model from scratch" ) lowercase__ = AutoModelWithLMHead.from_config(__magic_name__ ) model.resize_token_embeddings(len(__magic_name__ ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( "BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the" "--mlm flag (masked language modeling)." ) if data_args.block_size <= 0: lowercase__ = tokenizer.max_len # Our input block size will be the max possible for the model else: lowercase__ = min(data_args.block_size , tokenizer.max_len ) # Get datasets lowercase__ = ( get_dataset(__magic_name__ , tokenizer=__magic_name__ , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) lowercase__ = ( get_dataset(__magic_name__ , tokenizer=__magic_name__ , evaluate=__magic_name__ , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": lowercase__ = DataCollatorForPermutationLanguageModeling( tokenizer=__magic_name__ , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: lowercase__ = DataCollatorForWholeWordMask( tokenizer=__magic_name__ , mlm_probability=data_args.mlm_probability ) else: lowercase__ = DataCollatorForLanguageModeling( tokenizer=__magic_name__ , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer lowercase__ = Trainer( model=__magic_name__ , args=__magic_name__ , data_collator=__magic_name__ , train_dataset=__magic_name__ , eval_dataset=__magic_name__ , prediction_loss_only=__magic_name__ , ) # Training if training_args.do_train: lowercase__ = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=__magic_name__ ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation lowercase__ = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) lowercase__ = trainer.evaluate() lowercase__ = math.exp(eval_output["eval_loss"] ) lowercase__ = {"perplexity": perplexity} lowercase__ = os.path.join(training_args.output_dir , "eval_results_lm.txt" ) if trainer.is_world_master(): with open(__magic_name__ , "w" ) as writer: logger.info("***** Eval results *****" ) for key in sorted(result.keys() ): logger.info(" %s = %s" , __magic_name__ , str(result[key] ) ) writer.write("%s = %s\n" % (key, str(result[key] )) ) results.update(__magic_name__ ) return results def _A ( __magic_name__ ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
655
import inspect import unittest class lowerCAmelCase ( unittest.TestCase ): def UpperCAmelCase ( self :int ): '''simple docstring''' try: import diffusers # noqa: F401 except ImportError: assert False def UpperCAmelCase ( self :Optional[Any] ): '''simple docstring''' import diffusers from diffusers.dependency_versions_table import deps lowercase__ = inspect.getmembers(_lowercase , inspect.isclass ) for cls_name, cls_module in all_classes: if "dummy_" in cls_module.__module__: for backend in cls_module._backends: if backend == "k_diffusion": lowercase__ = "k-diffusion" elif backend == "invisible_watermark": lowercase__ = "invisible-watermark" assert backend in deps, f'''{backend} is not in the deps table!'''
655
1
def lowerCamelCase_ ( lowerCAmelCase: list[int] )-> Any: _snake_case : int = len(_SCREAMING_SNAKE_CASE ) for i in range(_SCREAMING_SNAKE_CASE ): for j in range(i + 1 , _SCREAMING_SNAKE_CASE ): if numbers[j] < numbers[i]: _snake_case , _snake_case : Optional[Any] = numbers[j], numbers[i] return numbers if __name__ == "__main__": lowerCAmelCase_ = input("""Enter numbers separated by a comma:\n""").strip() lowerCAmelCase_ = [int(item) for item in user_input.split(""",""")] print(exchange_sort(unsorted))
707
import csv import tweepy # Twitter API credentials lowerCAmelCase_ = """""" lowerCAmelCase_ = """""" lowerCAmelCase_ = """""" lowerCAmelCase_ = """""" def lowerCamelCase_ ( lowerCAmelCase: str )-> None: # authorize twitter, initialize tweepy _snake_case : Optional[Any] = tweepy.OAuthHandler(lowerCAmelCase , lowerCAmelCase ) auth.set_access_token(lowerCAmelCase , lowerCAmelCase ) _snake_case : List[Any] = tweepy.API(lowerCAmelCase ) # initialize a list to hold all the tweepy Tweets _snake_case : Any = [] # make initial request for most recent tweets (200 is the maximum allowed count) _snake_case : List[str] = api.user_timeline(screen_name=lowerCAmelCase , count=2_00 ) # save most recent tweets alltweets.extend(lowerCAmelCase ) # save the id of the oldest tweet less one _snake_case : List[Any] = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(lowerCAmelCase ) > 0: print(F"""getting tweets before {oldest}""" ) # all subsequent requests use the max_id param to prevent duplicates _snake_case : Tuple = api.user_timeline( screen_name=lowerCAmelCase , count=2_00 , max_id=lowerCAmelCase ) # save most recent tweets alltweets.extend(lowerCAmelCase ) # update the id of the oldest tweet less one _snake_case : List[str] = alltweets[-1].id - 1 print(F"""...{len(lowerCAmelCase )} tweets downloaded so far""" ) # transform the tweepy tweets into a 2D array that will populate the csv _snake_case : int = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(F"""new_{screen_name}_tweets.csv""" , 'w' ) as f: _snake_case : Any = csv.writer(lowerCAmelCase ) writer.writerow(['id', 'created_at', 'text'] ) writer.writerows(lowerCAmelCase ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets("""FirePing32""")
669
0
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ : Dict = logging.get_logger(__name__) UpperCAmelCase__ : Union[str, Any] = { '''asapp/sew-tiny-100k''': '''https://huggingface.co/asapp/sew-tiny-100k/resolve/main/config.json''', # See all SEW models at https://huggingface.co/models?filter=sew } class UpperCamelCase_ ( __UpperCamelCase ): '''simple docstring''' UpperCamelCase_ = """sew""" def __init__( self , UpperCamelCase=32 , UpperCamelCase=7_68 , UpperCamelCase=12 , UpperCamelCase=12 , UpperCamelCase=30_72 , UpperCamelCase=2 , UpperCamelCase="gelu" , UpperCamelCase=0.1 , UpperCamelCase=0.1 , UpperCamelCase=0.1 , UpperCamelCase=0.0 , UpperCamelCase=0.1 , UpperCamelCase=0.1 , UpperCamelCase=0.02 , UpperCamelCase=1E-5 , UpperCamelCase="group" , UpperCamelCase="gelu" , UpperCamelCase=(64, 1_28, 1_28, 1_28, 1_28, 2_56, 2_56, 2_56, 2_56, 5_12, 5_12, 5_12, 5_12) , UpperCamelCase=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , UpperCamelCase=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , UpperCamelCase=False , UpperCamelCase=1_28 , UpperCamelCase=16 , UpperCamelCase=True , UpperCamelCase=0.05 , UpperCamelCase=10 , UpperCamelCase=2 , UpperCamelCase=0.0 , UpperCamelCase=10 , UpperCamelCase=0 , UpperCamelCase="mean" , UpperCamelCase=False , UpperCamelCase=False , UpperCamelCase=2_56 , UpperCamelCase=0 , UpperCamelCase=1 , UpperCamelCase=2 , **UpperCamelCase , ) -> int: super().__init__(**__SCREAMING_SNAKE_CASE , pad_token_id=__SCREAMING_SNAKE_CASE , bos_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE) UpperCamelCase__ : str = hidden_size UpperCamelCase__ : Union[str, Any] = feat_extract_norm UpperCamelCase__ : List[str] = feat_extract_activation UpperCamelCase__ : Union[str, Any] = list(__SCREAMING_SNAKE_CASE) UpperCamelCase__ : Any = list(__SCREAMING_SNAKE_CASE) UpperCamelCase__ : List[str] = list(__SCREAMING_SNAKE_CASE) UpperCamelCase__ : str = conv_bias UpperCamelCase__ : Dict = num_conv_pos_embeddings UpperCamelCase__ : Tuple = num_conv_pos_embedding_groups UpperCamelCase__ : List[Any] = len(self.conv_dim) UpperCamelCase__ : Tuple = num_hidden_layers UpperCamelCase__ : Union[str, Any] = intermediate_size UpperCamelCase__ : Optional[Any] = squeeze_factor UpperCamelCase__ : List[str] = hidden_act UpperCamelCase__ : List[Any] = num_attention_heads UpperCamelCase__ : List[str] = hidden_dropout UpperCamelCase__ : Any = attention_dropout UpperCamelCase__ : List[str] = activation_dropout UpperCamelCase__ : int = feat_proj_dropout UpperCamelCase__ : Union[str, Any] = final_dropout UpperCamelCase__ : str = layerdrop UpperCamelCase__ : Optional[Any] = layer_norm_eps UpperCamelCase__ : Any = initializer_range UpperCamelCase__ : Any = vocab_size if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect.' 'It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,' F"""but is `len(config.conv_dim) = {len(self.conv_dim)}`, `len(config.conv_stride)""" F"""= {len(self.conv_stride)}`, `len(config.conv_kernel) = {len(self.conv_kernel)}`.""") # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCamelCase__ : Optional[int] = apply_spec_augment UpperCamelCase__ : str = mask_time_prob UpperCamelCase__ : Tuple = mask_time_length UpperCamelCase__ : List[str] = mask_time_min_masks UpperCamelCase__ : int = mask_feature_prob UpperCamelCase__ : Optional[int] = mask_feature_length UpperCamelCase__ : List[Any] = mask_feature_min_masks # ctc loss UpperCamelCase__ : List[str] = ctc_loss_reduction UpperCamelCase__ : Dict = ctc_zero_infinity # sequence classification UpperCamelCase__ : Any = use_weighted_layer_sum UpperCamelCase__ : Any = classifier_proj_size @property def lowerCAmelCase__ ( self) -> Union[str, Any]: return functools.reduce(operator.mul , self.conv_stride , 1)
410
import math def lowercase_ ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float ): """simple docstring""" return math.pow(SCREAMING_SNAKE_CASE , 2 ) - a def lowercase_ ( SCREAMING_SNAKE_CASE : float ): """simple docstring""" return 2 * x def lowercase_ ( SCREAMING_SNAKE_CASE : float ): """simple docstring""" snake_case__ : Dict =2.0 while start <= a: snake_case__ : List[Any] =math.pow(SCREAMING_SNAKE_CASE , 2 ) return start def lowercase_ ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : int = 99_99 , SCREAMING_SNAKE_CASE : float = 0.00_0000_0000_0001 ): """simple docstring""" if a < 0: raise ValueError('''math domain error''' ) snake_case__ : List[str] =get_initial_point(SCREAMING_SNAKE_CASE ) for _ in range(SCREAMING_SNAKE_CASE ): snake_case__ : Union[str, Any] =value snake_case__ : Any =value - fx(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) / fx_derivative(SCREAMING_SNAKE_CASE ) if abs(prev_value - value ) < tolerance: return value return value if __name__ == "__main__": from doctest import testmod testmod()
381
0
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os from ...utils.constants import SAGEMAKER_PARALLEL_EC2_INSTANCES, TORCH_DYNAMO_MODES from ...utils.dataclasses import ComputeEnvironment, SageMakerDistributedType from ...utils.imports import is_botoa_available from .config_args import SageMakerConfig from .config_utils import ( DYNAMO_BACKENDS, _ask_field, _ask_options, _convert_dynamo_backend, _convert_mixed_precision, _convert_sagemaker_distributed_mode, _convert_yes_no_to_bool, ) if is_botoa_available(): import botoa # noqa: F401 def A__ ( SCREAMING_SNAKE_CASE__) -> Tuple: __snake_case: Tuple = botoa.client("""iam""") __snake_case: Optional[Any] = { """Version""": """2012-10-17""", """Statement""": [ {"""Effect""": """Allow""", """Principal""": {"""Service""": """sagemaker.amazonaws.com"""}, """Action""": """sts:AssumeRole"""} ], } try: # create the role, associated with the chosen trust policy iam_client.create_role( RoleName=SCREAMING_SNAKE_CASE__ , AssumeRolePolicyDocument=json.dumps(SCREAMING_SNAKE_CASE__ , indent=2)) __snake_case: str = { """Version""": """2012-10-17""", """Statement""": [ { """Effect""": """Allow""", """Action""": [ """sagemaker:*""", """ecr:GetDownloadUrlForLayer""", """ecr:BatchGetImage""", """ecr:BatchCheckLayerAvailability""", """ecr:GetAuthorizationToken""", """cloudwatch:PutMetricData""", """cloudwatch:GetMetricData""", """cloudwatch:GetMetricStatistics""", """cloudwatch:ListMetrics""", """logs:CreateLogGroup""", """logs:CreateLogStream""", """logs:DescribeLogStreams""", """logs:PutLogEvents""", """logs:GetLogEvents""", """s3:CreateBucket""", """s3:ListBucket""", """s3:GetBucketLocation""", """s3:GetObject""", """s3:PutObject""", ], """Resource""": """*""", } ], } # attach policy to role iam_client.put_role_policy( RoleName=SCREAMING_SNAKE_CASE__ , PolicyName=F'''{role_name}_policy_permission''' , PolicyDocument=json.dumps(SCREAMING_SNAKE_CASE__ , indent=2) , ) except iam_client.exceptions.EntityAlreadyExistsException: print(F'''role {role_name} already exists. Using existing one''') def A__ ( SCREAMING_SNAKE_CASE__) -> Optional[Any]: __snake_case: int = botoa.client("""iam""") return iam_client.get_role(RoleName=SCREAMING_SNAKE_CASE__)["Role"]["Arn"] def A__ ( ) -> Optional[int]: __snake_case: str = _ask_options( """How do you want to authorize?""" , ["""AWS Profile""", """Credentials (AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY) """] , SCREAMING_SNAKE_CASE__ , ) __snake_case: Optional[int] = None if credentials_configuration == 0: __snake_case: Optional[int] = _ask_field("""Enter your AWS Profile name: [default] """ , default="""default""") __snake_case: Union[str, Any] = aws_profile else: print( """Note you will need to provide AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY when you launch you training script with,""" """`accelerate launch --aws_access_key_id XXX --aws_secret_access_key YYY`""") __snake_case: str = _ask_field("""AWS Access Key ID: """) __snake_case: Optional[int] = aws_access_key_id __snake_case: Dict = _ask_field("""AWS Secret Access Key: """) __snake_case: int = aws_secret_access_key __snake_case: int = _ask_field("""Enter your AWS Region: [us-east-1]""" , default="""us-east-1""") __snake_case: List[str] = aws_region __snake_case: Any = _ask_options( """Do you already have an IAM Role for executing Amazon SageMaker Training Jobs?""" , ["""Provide IAM Role name""", """Create new IAM role using credentials"""] , SCREAMING_SNAKE_CASE__ , ) if role_management == 0: __snake_case: Any = _ask_field("""Enter your IAM role name: """) else: __snake_case: int = """accelerate_sagemaker_execution_role""" print(F'''Accelerate will create an iam role "{iam_role_name}" using the provided credentials''') _create_iam_role_for_sagemaker(SCREAMING_SNAKE_CASE__) __snake_case: Tuple = _ask_field( """Do you want to use custom Docker image? [yes/NO]: """ , _convert_yes_no_to_bool , default=SCREAMING_SNAKE_CASE__ , error_message="""Please enter yes or no.""" , ) __snake_case: Optional[Any] = None if is_custom_docker_image: __snake_case: Optional[int] = _ask_field("""Enter your Docker image: """ , lambda SCREAMING_SNAKE_CASE__: str(SCREAMING_SNAKE_CASE__).lower()) __snake_case: List[Any] = _ask_field( """Do you want to provide SageMaker input channels with data locations? [yes/NO]: """ , _convert_yes_no_to_bool , default=SCREAMING_SNAKE_CASE__ , error_message="""Please enter yes or no.""" , ) __snake_case: List[str] = None if is_sagemaker_inputs_enabled: __snake_case: Union[str, Any] = _ask_field( """Enter the path to the SageMaker inputs TSV file with columns (channel_name, data_location): """ , lambda SCREAMING_SNAKE_CASE__: str(SCREAMING_SNAKE_CASE__).lower() , ) __snake_case: List[Any] = _ask_field( """Do you want to enable SageMaker metrics? [yes/NO]: """ , _convert_yes_no_to_bool , default=SCREAMING_SNAKE_CASE__ , error_message="""Please enter yes or no.""" , ) __snake_case: int = None if is_sagemaker_metrics_enabled: __snake_case: Union[str, Any] = _ask_field( """Enter the path to the SageMaker metrics TSV file with columns (metric_name, metric_regex): """ , lambda SCREAMING_SNAKE_CASE__: str(SCREAMING_SNAKE_CASE__).lower() , ) __snake_case: Optional[Any] = _ask_options( """What is the distributed mode?""" , ["""No distributed training""", """Data parallelism"""] , _convert_sagemaker_distributed_mode , ) __snake_case: Any = {} __snake_case: int = _ask_field( """Do you wish to optimize your script with torch dynamo?[yes/NO]:""" , _convert_yes_no_to_bool , default=SCREAMING_SNAKE_CASE__ , error_message="""Please enter yes or no.""" , ) if use_dynamo: __snake_case: Optional[int] = """dynamo_""" __snake_case: Dict = _ask_options( """Which dynamo backend would you like to use?""" , [x.lower() for x in DYNAMO_BACKENDS] , _convert_dynamo_backend , default=2 , ) __snake_case: Tuple = _ask_field( """Do you want to customize the defaults sent to torch.compile? [yes/NO]: """ , _convert_yes_no_to_bool , default=SCREAMING_SNAKE_CASE__ , error_message="""Please enter yes or no.""" , ) if use_custom_options: __snake_case: Optional[int] = _ask_options( """Which mode do you want to use?""" , SCREAMING_SNAKE_CASE__ , lambda SCREAMING_SNAKE_CASE__: TORCH_DYNAMO_MODES[int(SCREAMING_SNAKE_CASE__)] , default="""default""" , ) __snake_case: Optional[int] = _ask_field( """Do you want the fullgraph mode or it is ok to break model into several subgraphs? [yes/NO]: """ , _convert_yes_no_to_bool , default=SCREAMING_SNAKE_CASE__ , error_message="""Please enter yes or no.""" , ) __snake_case: Tuple = _ask_field( """Do you want to enable dynamic shape tracing? [yes/NO]: """ , _convert_yes_no_to_bool , default=SCREAMING_SNAKE_CASE__ , error_message="""Please enter yes or no.""" , ) __snake_case: List[str] = """Which EC2 instance type you want to use for your training?""" if distributed_type != SageMakerDistributedType.NO: __snake_case: Optional[int] = _ask_options( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , lambda SCREAMING_SNAKE_CASE__: SAGEMAKER_PARALLEL_EC2_INSTANCES[int(SCREAMING_SNAKE_CASE__)]) else: eca_instance_query += "? [ml.p3.2xlarge]:" __snake_case: Tuple = _ask_field(SCREAMING_SNAKE_CASE__ , lambda SCREAMING_SNAKE_CASE__: str(SCREAMING_SNAKE_CASE__).lower() , default="""ml.p3.2xlarge""") __snake_case: Any = 1 if distributed_type in (SageMakerDistributedType.DATA_PARALLEL, SageMakerDistributedType.MODEL_PARALLEL): __snake_case: Optional[int] = _ask_field( """How many machines do you want use? [1]: """ , SCREAMING_SNAKE_CASE__ , default=1 , ) __snake_case: Tuple = _ask_options( """Do you wish to use FP16 or BF16 (mixed precision)?""" , ["""no""", """fp16""", """bf16""", """fp8"""] , _convert_mixed_precision , ) if use_dynamo and mixed_precision == "no": print( """Torch dynamo used without mixed precision requires TF32 to be efficient. Accelerate will enable it by default when launching your scripts.""") return SageMakerConfig( image_uri=SCREAMING_SNAKE_CASE__ , compute_environment=ComputeEnvironment.AMAZON_SAGEMAKER , distributed_type=SCREAMING_SNAKE_CASE__ , use_cpu=SCREAMING_SNAKE_CASE__ , dynamo_config=SCREAMING_SNAKE_CASE__ , eca_instance_type=SCREAMING_SNAKE_CASE__ , profile=SCREAMING_SNAKE_CASE__ , region=SCREAMING_SNAKE_CASE__ , iam_role_name=SCREAMING_SNAKE_CASE__ , mixed_precision=SCREAMING_SNAKE_CASE__ , num_machines=SCREAMING_SNAKE_CASE__ , sagemaker_inputs_file=SCREAMING_SNAKE_CASE__ , sagemaker_metrics_file=SCREAMING_SNAKE_CASE__ , )
155
import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging __UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__) class __snake_case ( __lowerCamelCase ): '''simple docstring''' def __init__( self : Optional[int] , A : Union[List[ControlNetModel], Tuple[ControlNetModel]] ): super().__init__() __snake_case: Tuple = nn.ModuleList(A ) def UpperCAmelCase__ ( self : Union[str, Any] , A : torch.FloatTensor , A : Union[torch.Tensor, float, int] , A : torch.Tensor , A : List[torch.tensor] , A : List[float] , A : Optional[torch.Tensor] = None , A : Optional[torch.Tensor] = None , A : Optional[torch.Tensor] = None , A : Optional[Dict[str, Any]] = None , A : bool = False , A : bool = True , ): for i, (image, scale, controlnet) in enumerate(zip(A , A , self.nets ) ): __snake_case , __snake_case: str = controlnet( A , A , A , A , A , A , A , A , A , A , A , ) # merge samples if i == 0: __snake_case , __snake_case: Optional[int] = down_samples, mid_sample else: __snake_case: Dict = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(A , A ) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def UpperCAmelCase__ ( self : Dict , A : Union[str, os.PathLike] , A : bool = True , A : Callable = None , A : bool = False , A : Optional[str] = None , ): __snake_case: List[str] = 0 __snake_case: Optional[int] = save_directory for controlnet in self.nets: controlnet.save_pretrained( A , is_main_process=A , save_function=A , safe_serialization=A , variant=A , ) idx += 1 __snake_case: List[Any] = model_path_to_save + f'''_{idx}''' @classmethod def UpperCAmelCase__ ( cls : Any , A : Optional[Union[str, os.PathLike]] , **A : str ): __snake_case: str = 0 __snake_case: str = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... __snake_case: Optional[Any] = pretrained_model_path while os.path.isdir(A ): __snake_case: Dict = ControlNetModel.from_pretrained(A , **A ) controlnets.append(A ) idx += 1 __snake_case: Dict = pretrained_model_path + f'''_{idx}''' logger.info(f'''{len(A )} controlnets loaded from {pretrained_model_path}.''' ) if len(A ) == 0: raise ValueError( f'''No ControlNets found under {os.path.dirname(A )}. Expected at least {pretrained_model_path + '_0'}.''' ) return cls(A )
155
1
import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class lowercase__ : """simple docstring""" def __init__( self : str , __a : List[str] , __a : Union[str, Any]=3 , __a : Optional[Any]=3_2 , __a : Dict=3 , __a : Any=1_0 , __a : Optional[Any]=[8, 1_6, 3_2, 6_4] , __a : Dict=[1, 1, 2, 1] , __a : Tuple=True , __a : Optional[Any]=True , __a : Dict="relu" , __a : Any=3 , __a : List[str]=None , __a : Tuple=["stage2", "stage3", "stage4"] , __a : int=[2, 3, 4] , __a : Optional[Any]=1 , ): snake_case__ : Dict = parent snake_case__ : Any = batch_size snake_case__ : Union[str, Any] = image_size snake_case__ : List[Any] = num_channels snake_case__ : Any = embeddings_size snake_case__ : str = hidden_sizes snake_case__ : Optional[int] = depths snake_case__ : Dict = is_training snake_case__ : Optional[Any] = use_labels snake_case__ : List[str] = hidden_act snake_case__ : List[Any] = num_labels snake_case__ : str = scope snake_case__ : Union[str, Any] = len(__a ) snake_case__ : Tuple = out_features snake_case__ : int = out_indices snake_case__ : int = num_groups def lowercase ( self : int ): snake_case__ : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case__ : Union[str, Any] = None if self.use_labels: snake_case__ : Optional[Any] = ids_tensor([self.batch_size] , self.num_labels ) snake_case__ : List[str] = self.get_config() return config, pixel_values, labels def lowercase ( self : Any ): return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def lowercase ( self : int , __a : str , __a : Optional[int] , __a : Dict ): snake_case__ : Optional[int] = BitModel(config=__a ) model.to(__a ) model.eval() snake_case__ : Any = model(__a ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def lowercase ( self : Dict , __a : Optional[Any] , __a : Union[str, Any] , __a : List[str] ): snake_case__ : Dict = self.num_labels snake_case__ : Dict = BitForImageClassification(__a ) model.to(__a ) model.eval() snake_case__ : List[Any] = model(__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase ( self : Union[str, Any] , __a : int , __a : int , __a : Optional[int] ): snake_case__ : int = BitBackbone(config=__a ) model.to(__a ) model.eval() snake_case__ : Dict = model(__a ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None snake_case__ : str = None snake_case__ : Dict = BitBackbone(config=__a ) model.to(__a ) model.eval() snake_case__ : Optional[int] = model(__a ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def lowercase ( self : Optional[Any] ): snake_case__ : Optional[int] = self.prepare_config_and_inputs() snake_case__ , snake_case__ , snake_case__ : Optional[Any] = config_and_inputs snake_case__ : Optional[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowercase__ (__snake_case , __snake_case , unittest.TestCase ): """simple docstring""" __UpperCamelCase : Optional[Any] = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () __UpperCamelCase : List[str] = ( {'feature-extraction': BitModel, 'image-classification': BitForImageClassification} if is_torch_available() else {} ) __UpperCamelCase : List[Any] = False __UpperCamelCase : List[Any] = False __UpperCamelCase : Optional[Any] = False __UpperCamelCase : Tuple = False __UpperCamelCase : int = False def lowercase ( self : List[str] ): snake_case__ : Tuple = BitModelTester(self ) snake_case__ : Any = ConfigTester(self , config_class=__a , has_text_modality=__a ) def lowercase ( self : Union[str, Any] ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase ( self : Optional[int] ): return @unittest.skip(reason="""Bit does not output attentions""" ) def lowercase ( self : Optional[int] ): pass @unittest.skip(reason="""Bit does not use inputs_embeds""" ) def lowercase ( self : Optional[int] ): pass @unittest.skip(reason="""Bit does not support input and output embeddings""" ) def lowercase ( self : Dict ): pass def lowercase ( self : Any ): snake_case__ , snake_case__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : List[Any] = model_class(__a ) snake_case__ : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case__ : List[str] = [*signature.parameters.keys()] snake_case__ : Tuple = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __a ) def lowercase ( self : Any ): snake_case__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def lowercase ( self : Any ): snake_case__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__a ) def lowercase ( self : List[str] ): snake_case__ , snake_case__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : List[str] = model_class(config=__a ) for name, module in model.named_modules(): if isinstance(__a , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) def lowercase ( self : List[str] ): def check_hidden_states_output(__a : List[Any] , __a : List[str] , __a : str ): snake_case__ : Tuple = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): snake_case__ : List[str] = model(**self._prepare_for_class(__a , __a ) ) snake_case__ : Optional[int] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states snake_case__ : Union[str, Any] = self.model_tester.num_stages self.assertEqual(len(__a ) , expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) snake_case__ , snake_case__ : int = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : Union[str, Any] = ["""preactivation""", """bottleneck"""] for model_class in self.all_model_classes: for layer_type in layers_type: snake_case__ : Any = layer_type snake_case__ : Optional[Any] = True check_hidden_states_output(__a , __a , __a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case__ : List[str] = True check_hidden_states_output(__a , __a , __a ) @unittest.skip(reason="""Bit does not use feedforward chunking""" ) def lowercase ( self : Optional[Any] ): pass def lowercase ( self : int ): snake_case__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a ) @slow def lowercase ( self : List[Any] ): for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ : Any = BitModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def _lowercase ( ): """simple docstring""" snake_case__ : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""") return image @require_torch @require_vision class lowercase__ (unittest.TestCase ): """simple docstring""" @cached_property def lowercase ( self : Dict ): return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def lowercase ( self : Optional[int] ): snake_case__ : List[str] = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(__a ) snake_case__ : int = self.default_image_processor snake_case__ : Optional[int] = prepare_img() snake_case__ : Optional[Any] = image_processor(images=__a , return_tensors="""pt""" ).to(__a ) # forward pass with torch.no_grad(): snake_case__ : Dict = model(**__a ) # verify the logits snake_case__ : Any = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , __a ) snake_case__ : str = torch.tensor([[-0.6526, -0.5263, -1.4398]] ).to(__a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1e-4 ) ) @require_torch class lowercase__ (__snake_case , unittest.TestCase ): """simple docstring""" __UpperCamelCase : int = (BitBackbone,) if is_torch_available() else () __UpperCamelCase : Optional[Any] = BitConfig __UpperCamelCase : int = False def lowercase ( self : Optional[int] ): snake_case__ : Optional[int] = BitModelTester(self )
648
import torch from diffusers import DiffusionPipeline class lowercase__ (__snake_case ): """simple docstring""" def __init__( self : List[Any] , __a : Optional[Any] , __a : List[str] ): super().__init__() self.register_modules(unet=__a , scheduler=__a ) def __call__( self : Union[str, Any] ): snake_case__ : int = torch.randn( (1, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , ) snake_case__ : Dict = 1 snake_case__ : str = self.unet(__a , __a ).sample snake_case__ : Tuple = self.scheduler.step(__a , __a , __a ).prev_sample snake_case__ : Optional[int] = scheduler_output - scheduler_output + torch.ones_like(__a ) return result
648
1
"""simple docstring""" from math import isclose, sqrt def lowercase (snake_case__ : float , snake_case__ : float , snake_case__ : float ) -> List[Any]: '''simple docstring''' lowerCAmelCase = point_y / 4 / point_x lowerCAmelCase = 2 * normal_gradient / (1 + normal_gradient * normal_gradient) lowerCAmelCase = (1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) lowerCAmelCase = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 lowerCAmelCase = outgoing_gradient**2 + 4 lowerCAmelCase = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) lowerCAmelCase = (point_y - outgoing_gradient * point_x) ** 2 - 100 lowerCAmelCase = ( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) lowerCAmelCase = ( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point lowerCAmelCase = x_minus if isclose(A__ , A__ ) else x_plus lowerCAmelCase = point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def lowercase (snake_case__ : float = 1.4 , snake_case__ : float = -9.6 ) -> List[str]: '''simple docstring''' lowerCAmelCase = 0 lowerCAmelCase = first_x_coord lowerCAmelCase = first_y_coord lowerCAmelCase = (10.1 - point_y) / (0.0 - point_x) while not (-0.01 <= point_x <= 0.01 and point_y > 0): lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = next_point(A__ , A__ , A__ ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(f"""{solution() = }""")
714
"""simple docstring""" import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class SCREAMING_SNAKE_CASE__ ( nn.Module ): _a = 42 _a = 42 _a = 0.0 _a = 1 _a = 1 _a = True _a = False _a = False _a = False _a = jnp.floataa def __lowercase ( self : List[str] ): lowerCAmelCase = [] lowerCAmelCase = [] for i in range(self.num_layers ): lowerCAmelCase = self.in_channels if i == 0 else self.out_channels lowerCAmelCase = FlaxResnetBlockaD( in_channels=lowerCAmelCase , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(lowerCAmelCase ) lowerCAmelCase = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(lowerCAmelCase ) lowerCAmelCase = resnets lowerCAmelCase = attentions if self.add_downsample: lowerCAmelCase = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Tuple , lowerCAmelCase : str , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Tuple , lowerCAmelCase : int=True ): lowerCAmelCase = () for resnet, attn in zip(self.resnets , self.attentions ): lowerCAmelCase = resnet(lowerCAmelCase , lowerCAmelCase , deterministic=lowerCAmelCase ) lowerCAmelCase = attn(lowerCAmelCase , lowerCAmelCase , deterministic=lowerCAmelCase ) output_states += (hidden_states,) if self.add_downsample: lowerCAmelCase = self.downsamplers_a(lowerCAmelCase ) output_states += (hidden_states,) return hidden_states, output_states class SCREAMING_SNAKE_CASE__ ( nn.Module ): _a = 42 _a = 42 _a = 0.0 _a = 1 _a = True _a = jnp.floataa def __lowercase ( self : Union[str, Any] ): lowerCAmelCase = [] for i in range(self.num_layers ): lowerCAmelCase = self.in_channels if i == 0 else self.out_channels lowerCAmelCase = FlaxResnetBlockaD( in_channels=lowerCAmelCase , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(lowerCAmelCase ) lowerCAmelCase = resnets if self.add_downsample: lowerCAmelCase = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : int , lowerCAmelCase : Any , lowerCAmelCase : Any , lowerCAmelCase : List[str]=True ): lowerCAmelCase = () for resnet in self.resnets: lowerCAmelCase = resnet(lowerCAmelCase , lowerCAmelCase , deterministic=lowerCAmelCase ) output_states += (hidden_states,) if self.add_downsample: lowerCAmelCase = self.downsamplers_a(lowerCAmelCase ) output_states += (hidden_states,) return hidden_states, output_states class SCREAMING_SNAKE_CASE__ ( nn.Module ): _a = 42 _a = 42 _a = 42 _a = 0.0 _a = 1 _a = 1 _a = True _a = False _a = False _a = False _a = jnp.floataa def __lowercase ( self : List[str] ): lowerCAmelCase = [] lowerCAmelCase = [] for i in range(self.num_layers ): lowerCAmelCase = self.in_channels if (i == self.num_layers - 1) else self.out_channels lowerCAmelCase = self.prev_output_channel if i == 0 else self.out_channels lowerCAmelCase = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(lowerCAmelCase ) lowerCAmelCase = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(lowerCAmelCase ) lowerCAmelCase = resnets lowerCAmelCase = attentions if self.add_upsample: lowerCAmelCase = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Optional[Any] , lowerCAmelCase : Tuple , lowerCAmelCase : Dict , lowerCAmelCase : List[Any] , lowerCAmelCase : Any , lowerCAmelCase : Dict=True ): for resnet, attn in zip(self.resnets , self.attentions ): # pop res hidden states lowerCAmelCase = res_hidden_states_tuple[-1] lowerCAmelCase = res_hidden_states_tuple[:-1] lowerCAmelCase = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) lowerCAmelCase = resnet(lowerCAmelCase , lowerCAmelCase , deterministic=lowerCAmelCase ) lowerCAmelCase = attn(lowerCAmelCase , lowerCAmelCase , deterministic=lowerCAmelCase ) if self.add_upsample: lowerCAmelCase = self.upsamplers_a(lowerCAmelCase ) return hidden_states class SCREAMING_SNAKE_CASE__ ( nn.Module ): _a = 42 _a = 42 _a = 42 _a = 0.0 _a = 1 _a = True _a = jnp.floataa def __lowercase ( self : Tuple ): lowerCAmelCase = [] for i in range(self.num_layers ): lowerCAmelCase = self.in_channels if (i == self.num_layers - 1) else self.out_channels lowerCAmelCase = self.prev_output_channel if i == 0 else self.out_channels lowerCAmelCase = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(lowerCAmelCase ) lowerCAmelCase = resnets if self.add_upsample: lowerCAmelCase = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Optional[Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[str] , lowerCAmelCase : List[str] , lowerCAmelCase : Dict=True ): for resnet in self.resnets: # pop res hidden states lowerCAmelCase = res_hidden_states_tuple[-1] lowerCAmelCase = res_hidden_states_tuple[:-1] lowerCAmelCase = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) lowerCAmelCase = resnet(lowerCAmelCase , lowerCAmelCase , deterministic=lowerCAmelCase ) if self.add_upsample: lowerCAmelCase = self.upsamplers_a(lowerCAmelCase ) return hidden_states class SCREAMING_SNAKE_CASE__ ( nn.Module ): _a = 42 _a = 0.0 _a = 1 _a = 1 _a = False _a = False _a = jnp.floataa def __lowercase ( self : List[Any] ): # there is always at least one resnet lowerCAmelCase = [ FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) ] lowerCAmelCase = [] for _ in range(self.num_layers ): lowerCAmelCase = FlaxTransformeraDModel( in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(lowerCAmelCase ) lowerCAmelCase = FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(lowerCAmelCase ) lowerCAmelCase = resnets lowerCAmelCase = attentions def __call__( self : Optional[int] , lowerCAmelCase : List[str] , lowerCAmelCase : int , lowerCAmelCase : Dict , lowerCAmelCase : List[Any]=True ): lowerCAmelCase = self.resnets[0](lowerCAmelCase , lowerCAmelCase ) for attn, resnet in zip(self.attentions , self.resnets[1:] ): lowerCAmelCase = attn(lowerCAmelCase , lowerCAmelCase , deterministic=lowerCAmelCase ) lowerCAmelCase = resnet(lowerCAmelCase , lowerCAmelCase , deterministic=lowerCAmelCase ) return hidden_states
529
0
import json import os from collections import Counter import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch import nn from torch.utils.data import Dataset __lowerCAmelCase ={1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)} class __magic_name__ ( nn.Module): def __init__( self : Any ,__SCREAMING_SNAKE_CASE : Dict ): super().__init__() UpperCAmelCase = torchvision.models.resnetaaa(pretrained=__SCREAMING_SNAKE_CASE ) UpperCAmelCase = list(model.children() )[:-2] UpperCAmelCase = nn.Sequential(*__SCREAMING_SNAKE_CASE ) UpperCAmelCase = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds] ) def _UpperCAmelCase ( self : Union[str, Any] ,__SCREAMING_SNAKE_CASE : Optional[Any] ): # Bx3x224x224 -> Bx2048x7x7 -> Bx2048xN -> BxNx2048 UpperCAmelCase = self.pool(self.model(__SCREAMING_SNAKE_CASE ) ) UpperCAmelCase = torch.flatten(__SCREAMING_SNAKE_CASE ,start_dim=2 ) UpperCAmelCase = out.transpose(1 ,2 ).contiguous() return out # BxNx2048 class __magic_name__ ( _a): def __init__( self : str ,__SCREAMING_SNAKE_CASE : str ,__SCREAMING_SNAKE_CASE : Optional[int] ,__SCREAMING_SNAKE_CASE : str ,__SCREAMING_SNAKE_CASE : Dict ,__SCREAMING_SNAKE_CASE : List[Any] ): UpperCAmelCase = [json.loads(__SCREAMING_SNAKE_CASE ) for l in open(__SCREAMING_SNAKE_CASE )] UpperCAmelCase = os.path.dirname(__SCREAMING_SNAKE_CASE ) UpperCAmelCase = tokenizer UpperCAmelCase = labels UpperCAmelCase = len(__SCREAMING_SNAKE_CASE ) UpperCAmelCase = max_seq_length UpperCAmelCase = transforms def __len__( self : int ): return len(self.data ) def __getitem__( self : Optional[int] ,__SCREAMING_SNAKE_CASE : Any ): UpperCAmelCase = torch.LongTensor(self.tokenizer.encode(self.data[index]["text"] ,add_special_tokens=__SCREAMING_SNAKE_CASE ) ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = sentence[0], sentence[1:-1], sentence[-1] UpperCAmelCase = sentence[: self.max_seq_length] UpperCAmelCase = torch.zeros(self.n_classes ) UpperCAmelCase = 1 UpperCAmelCase = Image.open(os.path.join(self.data_dir ,self.data[index]["img"] ) ).convert("RGB" ) UpperCAmelCase = self.transforms(__SCREAMING_SNAKE_CASE ) return { "image_start_token": start_token, "image_end_token": end_token, "sentence": sentence, "image": image, "label": label, } def _UpperCAmelCase ( self : Union[str, Any] ): UpperCAmelCase = Counter() for row in self.data: label_freqs.update(row["label"] ) return label_freqs def __UpperCamelCase ( _lowerCAmelCase ): """simple docstring""" UpperCAmelCase = [len(row["sentence"] ) for row in batch] UpperCAmelCase , UpperCAmelCase = len(_lowerCAmelCase ), max(_lowerCAmelCase ) UpperCAmelCase = torch.zeros(_lowerCAmelCase , _lowerCAmelCase , dtype=torch.long ) UpperCAmelCase = torch.zeros(_lowerCAmelCase , _lowerCAmelCase , dtype=torch.long ) for i_batch, (input_row, length) in enumerate(zip(_lowerCAmelCase , _lowerCAmelCase ) ): UpperCAmelCase = input_row["sentence"] UpperCAmelCase = 1 UpperCAmelCase = torch.stack([row["image"] for row in batch] ) UpperCAmelCase = torch.stack([row["label"] for row in batch] ) UpperCAmelCase = torch.stack([row["image_start_token"] for row in batch] ) UpperCAmelCase = torch.stack([row["image_end_token"] for row in batch] ) return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor def __UpperCamelCase ( ): """simple docstring""" return [ "Crime", "Drama", "Thriller", "Action", "Comedy", "Romance", "Documentary", "Short", "Mystery", "History", "Family", "Adventure", "Fantasy", "Sci-Fi", "Western", "Horror", "Sport", "War", "Music", "Musical", "Animation", "Biography", "Film-Noir", ] def __UpperCamelCase ( ): """simple docstring""" return transforms.Compose( [ transforms.Resize(2_56 ), transforms.CenterCrop(2_24 ), transforms.ToTensor(), transforms.Normalize( mean=[0.4677_7044, 0.4453_1429, 0.4066_1017] , std=[0.1222_1994, 0.1214_5835, 0.1438_0469] , ), ] )
333
import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class __magic_name__ ( unittest.TestCase): def __init__( self : List[str] ,__SCREAMING_SNAKE_CASE : Tuple ,__SCREAMING_SNAKE_CASE : List[str]=1_3 ,__SCREAMING_SNAKE_CASE : Union[str, Any]=7 ,__SCREAMING_SNAKE_CASE : str=True ,__SCREAMING_SNAKE_CASE : Union[str, Any]=True ,__SCREAMING_SNAKE_CASE : List[Any]=True ,__SCREAMING_SNAKE_CASE : Tuple=True ,__SCREAMING_SNAKE_CASE : Dict=9_9 ,__SCREAMING_SNAKE_CASE : List[Any]=3_2 ,__SCREAMING_SNAKE_CASE : Dict=5 ,__SCREAMING_SNAKE_CASE : Optional[Any]=4 ,__SCREAMING_SNAKE_CASE : Union[str, Any]=3_7 ,__SCREAMING_SNAKE_CASE : Optional[Any]="gelu" ,__SCREAMING_SNAKE_CASE : Union[str, Any]=0.1 ,__SCREAMING_SNAKE_CASE : Any=0.1 ,__SCREAMING_SNAKE_CASE : Union[str, Any]=5_1_2 ,__SCREAMING_SNAKE_CASE : int=1_6 ,__SCREAMING_SNAKE_CASE : Dict=2 ,__SCREAMING_SNAKE_CASE : Dict=0.02 ,__SCREAMING_SNAKE_CASE : Optional[int]=4 ,): UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = seq_length UpperCAmelCase = is_training UpperCAmelCase = use_attention_mask UpperCAmelCase = use_token_type_ids UpperCAmelCase = use_labels UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_act UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = type_sequence_label_size UpperCAmelCase = initializer_range UpperCAmelCase = num_choices def _UpperCAmelCase ( self : Dict ): UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) UpperCAmelCase = None if self.use_attention_mask: UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase = None if self.use_token_type_ids: UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) UpperCAmelCase = RobertaPreLayerNormConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=__SCREAMING_SNAKE_CASE ,initializer_range=self.initializer_range ,) return config, input_ids, token_type_ids, attention_mask def _UpperCAmelCase ( self : Any ): UpperCAmelCase = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = config_and_inputs UpperCAmelCase = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict def _UpperCAmelCase ( self : Any ): UpperCAmelCase = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = config_and_inputs UpperCAmelCase = True UpperCAmelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class __magic_name__ ( _a , unittest.TestCase): _UpperCAmelCase : Optional[int] = True _UpperCAmelCase : str = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def _UpperCAmelCase ( self : Union[str, Any] ): UpperCAmelCase = FlaxRobertaPreLayerNormModelTester(self ) @slow def _UpperCAmelCase ( self : Optional[Any] ): for model_class_name in self.all_model_classes: UpperCAmelCase = model_class_name.from_pretrained("andreasmadsen/efficient_mlm_m0.40" ,from_pt=__SCREAMING_SNAKE_CASE ) UpperCAmelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) @require_flax class __magic_name__ ( unittest.TestCase): @slow def _UpperCAmelCase ( self : Optional[int] ): UpperCAmelCase = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained("andreasmadsen/efficient_mlm_m0.40" ,from_pt=__SCREAMING_SNAKE_CASE ) UpperCAmelCase = np.array([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] ,dtype=jnp.intaa ) UpperCAmelCase = model(__SCREAMING_SNAKE_CASE )[0] UpperCAmelCase = [1, 1_1, 5_0_2_6_5] self.assertEqual(list(output.shape ) ,__SCREAMING_SNAKE_CASE ) # compare the actual values for a slice. UpperCAmelCase = np.array( [[[40.4880, 18.0199, -5.2367], [-1.8877, -4.0885, 10.7085], [-2.2613, -5.6110, 7.2665]]] ,dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] ,__SCREAMING_SNAKE_CASE ,atol=1e-4 ) ) @slow def _UpperCAmelCase ( self : Dict ): UpperCAmelCase = FlaxRobertaPreLayerNormModel.from_pretrained("andreasmadsen/efficient_mlm_m0.40" ,from_pt=__SCREAMING_SNAKE_CASE ) UpperCAmelCase = np.array([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] ,dtype=jnp.intaa ) UpperCAmelCase = model(__SCREAMING_SNAKE_CASE )[0] # compare the actual values for a slice. UpperCAmelCase = np.array( [[[0.0208, -0.0356, 0.0237], [-0.1569, -0.0411, -0.2626], [0.1879, 0.0125, -0.0089]]] ,dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] ,__SCREAMING_SNAKE_CASE ,atol=1e-4 ) )
333
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCamelCase : Dict = logging.get_logger(__name__) _lowerCamelCase : int = { '''google/mobilenet_v1_1.0_224''': '''https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json''', '''google/mobilenet_v1_0.75_192''': '''https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json''', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class lowerCamelCase (__lowerCamelCase ): """simple docstring""" UpperCAmelCase_ = "mobilenet_v1" def __init__( self : Optional[int], _UpperCAmelCase : List[Any]=3, _UpperCAmelCase : Union[str, Any]=2_2_4, _UpperCAmelCase : Optional[int]=1.0, _UpperCAmelCase : int=8, _UpperCAmelCase : List[Any]="relu6", _UpperCAmelCase : Optional[Any]=True, _UpperCAmelCase : List[str]=0.999, _UpperCAmelCase : Optional[int]=0.02, _UpperCAmelCase : Any=0.001, **_UpperCAmelCase : Optional[int], ) -> Dict: """simple docstring""" super().__init__(**_UpperCAmelCase ) if depth_multiplier <= 0: raise ValueError("depth_multiplier must be greater than zero." ) SCREAMING_SNAKE_CASE__ : Dict = num_channels SCREAMING_SNAKE_CASE__ : Tuple = image_size SCREAMING_SNAKE_CASE__ : List[str] = depth_multiplier SCREAMING_SNAKE_CASE__ : List[Any] = min_depth SCREAMING_SNAKE_CASE__ : str = hidden_act SCREAMING_SNAKE_CASE__ : Union[str, Any] = tf_padding SCREAMING_SNAKE_CASE__ : Any = classifier_dropout_prob SCREAMING_SNAKE_CASE__ : Optional[Any] = initializer_range SCREAMING_SNAKE_CASE__ : List[str] = layer_norm_eps class lowerCamelCase (__lowerCamelCase ): """simple docstring""" UpperCAmelCase_ = version.parse("1.11" ) @property def A_ ( self : List[str] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict([("pixel_values", {0: "batch"})] ) @property def A_ ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "image-classification": return OrderedDict([("logits", {0: "batch"})] ) else: return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})] ) @property def A_ ( self : List[Any] ) -> float: """simple docstring""" return 1E-4
708
import math def _a ( SCREAMING_SNAKE_CASE__ : int ) -> bool: '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(SCREAMING_SNAKE_CASE__ ) def _a ( SCREAMING_SNAKE_CASE__ : float = 1 / 1_23_45 ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = 0 SCREAMING_SNAKE_CASE__ : List[Any] = 0 SCREAMING_SNAKE_CASE__ : List[str] = 3 while True: SCREAMING_SNAKE_CASE__ : Optional[int] = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(SCREAMING_SNAKE_CASE__ ): SCREAMING_SNAKE_CASE__ : Any = int(SCREAMING_SNAKE_CASE__ ) total_partitions += 1 if check_partition_perfect(SCREAMING_SNAKE_CASE__ ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(SCREAMING_SNAKE_CASE__ ) integer += 1 if __name__ == "__main__": print(f"{solution() = }")
157
0
import copy import tempfile import unittest from transformers import MaMaaaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from transformers.utils import cached_property from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaTokenizer from transformers.models.mam_aaa.modeling_mam_aaa import MaMaaaDecoder, MaMaaaEncoder def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , ) -> Dict: """simple docstring""" if attention_mask is None: _A = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: _A = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: _A = torch.ones(config.encoder_layers , config.encoder_attention_heads , device=A__ ) if decoder_head_mask is None: _A = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=A__ ) if cross_attn_head_mask is None: _A = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=A__ ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } class lowerCamelCase: '''simple docstring''' def __init__( self , snake_case_ , snake_case_=13 , snake_case_=7 , snake_case_=True , snake_case_=False , snake_case_=99 , snake_case_=16 , snake_case_=2 , snake_case_=4 , snake_case_=4 , snake_case_="relu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=0.0 , snake_case_=0.0 , snake_case_=20 , snake_case_=2 , snake_case_=1 , snake_case_=0 , ): _A = parent _A = batch_size _A = seq_length _A = is_training _A = use_labels _A = vocab_size _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = intermediate_size _A = hidden_act _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = encoder_layerdrop _A = decoder_layerdrop _A = max_position_embeddings _A = eos_token_id _A = pad_token_id _A = bos_token_id def lowerCAmelCase__ ( self ): _A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _A = self.eos_token_id # Eos Token _A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for M2M100 the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input _A = input_ids.clamp(self.pad_token_id + 1 ) _A = decoder_input_ids.clamp(self.pad_token_id + 1 ) _A = self.get_config() _A = prepare_mam_aaa_inputs_dict(_lowercase , _lowercase , _lowercase ) return config, inputs_dict def lowerCAmelCase__ ( self ): return MaMaaaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , encoder_layerdrop=self.encoder_layerdrop , decoder_layerdrop=self.decoder_layerdrop , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , ) def lowerCAmelCase__ ( self ): _A = self.prepare_config_and_inputs() return config, inputs_dict def lowerCAmelCase__ ( self , snake_case_ , snake_case_ ): _A = MaMaaaModel(config=_lowercase ).get_decoder().to(_lowercase ).eval() _A = inputs_dict['''input_ids'''] _A = inputs_dict['''attention_mask'''] _A = inputs_dict['''head_mask'''] # first forward pass _A = model(_lowercase , attention_mask=_lowercase , head_mask=_lowercase , use_cache=_lowercase ) _A = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids _A = ids_tensor((self.batch_size, 3) , config.vocab_size ) _A = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and _A = torch.cat([input_ids, next_tokens] , dim=-1 ) _A = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) _A = model(_lowercase , attention_mask=_lowercase )['''last_hidden_state'''] _A = model(_lowercase , attention_mask=_lowercase , past_key_values=_lowercase )[ '''last_hidden_state''' ] # select random slice _A = ids_tensor((1,) , output_from_past.shape[-1] ).item() _A = output_from_no_past[:, -3:, random_slice_idx].detach() _A = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_lowercase , _lowercase , atol=1E-2 ) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ ): _A = MaMaaaModel(config=_lowercase ).to(_lowercase ).eval() _A = model(**_lowercase ) _A = outputs.encoder_last_hidden_state _A = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: _A = model.get_encoder() encoder.save_pretrained(_lowercase ) _A = MaMaaaEncoder.from_pretrained(_lowercase ).to(_lowercase ) _A = encoder(inputs_dict['input_ids'] , attention_mask=inputs_dict['attention_mask'] )[ 0 ] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 ) with tempfile.TemporaryDirectory() as tmpdirname: _A = model.get_decoder() decoder.save_pretrained(_lowercase ) _A = MaMaaaDecoder.from_pretrained(_lowercase ).to(_lowercase ) _A = decoder( input_ids=inputs_dict['decoder_input_ids'] , attention_mask=inputs_dict['decoder_attention_mask'] , encoder_hidden_states=_lowercase , encoder_attention_mask=inputs_dict['attention_mask'] , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 ) @require_torch class lowerCamelCase( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): '''simple docstring''' __magic_name__ = ( ( MaMaaaModel, MaMaaaForConditionalGeneration, ) if is_torch_available() else () ) __magic_name__ = (MaMaaaForConditionalGeneration,) if is_torch_available() else () __magic_name__ = ( { '''conversational''': MaMaaaForConditionalGeneration, '''feature-extraction''': MaMaaaModel, '''summarization''': MaMaaaForConditionalGeneration, '''text2text-generation''': MaMaaaForConditionalGeneration, '''translation''': MaMaaaForConditionalGeneration, } if is_torch_available() else {} ) __magic_name__ = True __magic_name__ = True __magic_name__ = False __magic_name__ = False def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): if pipeline_test_casse_name == "TranslationPipelineTests": # Get `ValueError: Translation requires a `src_lang` and a `tgt_lang` for this model`. # `M2M100Config` was never used in pipeline tests: cannot create a simple tokenizer. return True return False def lowerCAmelCase__ ( self ): _A = MaMaaaModelTester(self ) _A = ConfigTester(self , config_class=_lowercase ) def lowerCAmelCase__ ( self ): self.config_tester.run_common_tests() def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: _A = model_class(_lowercase ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_lowercase ) _A = model_class.from_pretrained(_lowercase , output_loading_info=_lowercase ) self.assertEqual(info['missing_keys'] , [] ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*_lowercase ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*_lowercase ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in (MaMaaaModel, MaMaaaForConditionalGeneration): _A = model_class(_lowercase ) model.to(_lowercase ) model.eval() _A = copy.deepcopy(self._prepare_for_class(_lowercase , _lowercase ) ) if not self.is_encoder_decoder: _A = inputs['''input_ids'''] del inputs["input_ids"] else: _A = inputs['''input_ids'''] _A = inputs.get('decoder_input_ids' , _lowercase ) del inputs["input_ids"] inputs.pop('decoder_input_ids' , _lowercase ) _A = model.get_input_embeddings() if not self.is_encoder_decoder: _A = wte(_lowercase ) else: _A = wte(_lowercase ) _A = wte(_lowercase ) with torch.no_grad(): model(**_lowercase )[0] def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() _A = input_dict['''input_ids'''] _A = input_ids.ne(1 ).to(_lowercase ) _A = MaMaaaForConditionalGeneration(_lowercase ).eval().to(_lowercase ) if torch_device == "cuda": model.half() model.generate(_lowercase , attention_mask=_lowercase ) model.generate(num_beams=4 , do_sample=_lowercase , early_stopping=_lowercase , num_return_sequences=3 ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" return torch.tensor(A__ , dtype=torch.long , device=A__ ) __A : int = 1E-4 @require_torch @require_sentencepiece @require_tokenizers @slow class lowerCamelCase( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase__ ( self ): return MaMaaaTokenizer.from_pretrained('facebook/m2m100_418M' ) def lowerCAmelCase__ ( self ): _A = MaMaaaModel.from_pretrained('facebook/m2m100_418M' ).to(_lowercase ) _A = _long_tensor([[12_8028, 98, 12, 3_0527, 2732, 159, 7755, 6_1904, 3_9144, 38, 2]] ) _A = _long_tensor([[2, 12_8028, 98, 12, 3_0527, 2732, 159, 7755, 6_1904, 3_9144, 38]] ) _A = prepare_mam_aaa_inputs_dict(model.config , _lowercase , _lowercase ) with torch.no_grad(): _A = model(**_lowercase )[0] _A = torch.Size((1, 11, 1024) ) self.assertEqual(output.shape , _lowercase ) # change to expected output here _A = torch.tensor( [[-0.7780, -0.1676, 0.1038], [-6.7556, -1.3992, 0.0567], [-7.5383, -0.5920, -0.2779]] , device=_lowercase ) self.assertTrue(torch.allclose(output[:, :3, :3] , _lowercase , atol=_lowercase ) ) def lowerCAmelCase__ ( self ): _A = MaMaaaForConditionalGeneration.from_pretrained('facebook/m2m100_418M' ).to(_lowercase ) # change to intended input _A = _long_tensor([[12_8028, 98, 12, 3_0527, 2732, 159, 7755, 6_1904, 3_9144, 38, 2]] ) _A = _long_tensor([[2, 12_8028, 98, 12, 3_0527, 2732, 159, 7755, 6_1904, 3_9144, 38]] ) _A = prepare_mam_aaa_inputs_dict(model.config , _lowercase , _lowercase ) with torch.no_grad(): _A = model(**_lowercase )[0] _A = torch.Size((1, 11, model.config.vocab_size) ) self.assertEqual(output.shape , _lowercase ) # change to expected output here _A = torch.tensor( [[-1.0448, -1.0411, 3.7992], [-3.2191, -3.2386, -1.3451], [-3.6210, -3.5993, 0.4925]] , device=_lowercase ) self.assertTrue(torch.allclose(output[:, :3, :3] , _lowercase , atol=_lowercase ) ) def lowerCAmelCase__ ( self ): _A = MaMaaaForConditionalGeneration.from_pretrained('facebook/m2m100_418M' ).to(_lowercase ) _A = MaMaaaTokenizer.from_pretrained('facebook/m2m100_418M' , src_lang='fr' , tgt_lang='en' ) _A = [ '''L\'affaire NSA souligne l\'absence totale de débat sur le renseignement''', '''Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.''', '''Lorsque François Hollande téléphone à Barack Obama ou quand le ministre des affaires étrangères Laurent''' ''' Fabius convoque l\'ambassadeur des Etats-Unis, ils réagissent à une vraie découverte, qui est celle de''' ''' l\'ampleur de la surveillance américaine sur l\'ensemble des communications en France.''', ] # The below article tests that we don't add any hypotheses outside of the top n_beams _A = tokenizer(_lowercase , padding=_lowercase , return_tensors='pt' ) _A = model.generate( input_ids=dct['input_ids'].to(_lowercase ) , attention_mask=dct['attention_mask'].to(_lowercase ) , num_beams=5 , forced_bos_token_id=tokenizer.get_lang_id('en' ) , ) _A = [ '''The NSA case highlights the total absence of intelligence debate''', '''I think there are two levels of response from the French government.''', '''When François Hollande calls Barack Obama or when Foreign Minister Laurent Fabius calls the U.S.''' ''' Ambassador, they respond to a real discovery, which is that of the scale of U.S. surveillance on all''' ''' communications in France.''', ] _A = tokenizer.batch_decode( hypotheses_batch.tolist() , clean_up_tokenization_spaces=_lowercase , skip_special_tokens=_lowercase ) assert generated == expected_en
27
from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class lowercase ( _UpperCAmelCase ): def lowercase__ ( self : Optional[int] ): return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def lowercase__ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE__ : List[str] = {'''col_1''': [3, 2, 1, 0], '''col_2''': ['''a''', '''b''', '''c''', '''d''']} return Dataset.from_dict(_lowercase ) def lowercase__ ( self : Dict ): SCREAMING_SNAKE_CASE__ : List[Any] = self._create_example_records() SCREAMING_SNAKE_CASE__ : int = Dataset.from_list(_lowercase ) self.assertListEqual(dset.column_names , ['''col_1''', '''col_2'''] ) for i, r in enumerate(_lowercase ): self.assertDictEqual(_lowercase , example_records[i] ) def lowercase__ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ : Dict = self._create_example_records() SCREAMING_SNAKE_CASE__ : Optional[int] = Dataset.from_list(_lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} ) self.assertEqual(dset.info , dset_from_dict.info ) def lowercase__ ( self : List[Any] ): # checks what happens with missing columns SCREAMING_SNAKE_CASE__ : List[str] = [{'''col_1''': 1}, {'''col_2''': '''x'''}] SCREAMING_SNAKE_CASE__ : Union[str, Any] = Dataset.from_list(_lowercase ) self.assertDictEqual(dset[0] , {'''col_1''': 1} ) self.assertDictEqual(dset[1] , {'''col_1''': None} ) # NB: first record is used for columns def lowercase__ ( self : int ): # checks if the type can be inferred from the second record SCREAMING_SNAKE_CASE__ : int = [{'''col_1''': []}, {'''col_1''': [1, 2]}] SCREAMING_SNAKE_CASE__ : int = Dataset.from_list(_lowercase ) self.assertEqual(dset.info.features['''col_1'''] , Sequence(Value('''int64''' ) ) ) def lowercase__ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ : int = Dataset.from_list([] ) self.assertEqual(len(_lowercase ) , 0 ) self.assertListEqual(dset.column_names , [] )
35
0
# Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from packaging import version from .. import __version__ from .constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD from .doc import ( add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, copy_func, replace_return_docstrings, ) from .generic import ( ContextManagers, ExplicitEnum, ModelOutput, PaddingStrategy, TensorType, add_model_info_to_auto_map, cached_property, can_return_loss, expand_dims, find_labels, flatten_dict, infer_framework, is_jax_tensor, is_numpy_array, is_tensor, is_tf_symbolic_tensor, is_tf_tensor, is_torch_device, is_torch_dtype, is_torch_tensor, reshape, squeeze, strtobool, tensor_size, to_numpy, to_py_obj, transpose, working_or_temp_dir, ) from .hub import ( CLOUDFRONT_DISTRIB_PREFIX, DISABLE_TELEMETRY, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, EntryNotFoundError, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, cached_file, default_cache_path, define_sagemaker_information, download_url, extract_commit_hash, get_cached_models, get_file_from_repo, get_full_repo_name, has_file, http_user_agent, is_offline_mode, is_remote_url, move_cache, send_example_telemetry, try_to_load_from_cache, ) from .import_utils import ( ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, TORCH_FX_REQUIRED_VERSION, USE_JAX, USE_TF, USE_TORCH, DummyObject, OptionalDependencyNotAvailable, _LazyModule, ccl_version, direct_transformers_import, get_torch_version, is_accelerate_available, is_apex_available, is_bitsandbytes_available, is_bsa_available, is_coloredlogs_available, is_cython_available, is_datasets_available, is_decord_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_jieba_available, is_jumanpp_available, is_kenlm_available, is_keras_nlp_available, is_librosa_available, is_natten_available, is_ninja_available, is_onnx_available, is_openai_available, is_optimum_available, is_pandas_available, is_peft_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytest_available, is_pytorch_quantization_available, is_rjieba_available, is_sacremoses_available, is_safetensors_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_sudachi_available, is_tensorflow_probability_available, is_tensorflow_text_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_bfaa_cpu_available, is_torch_bfaa_gpu_available, is_torch_compile_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_neuroncore_available, is_torch_tensorrt_fx_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_torchdistx_available, is_torchdynamo_available, is_torchvision_available, is_training_run_on_sagemaker, is_vision_available, requires_backends, torch_only_method, ) __lowerCamelCase = '''pytorch_model.bin''' __lowerCamelCase = '''pytorch_model.bin.index.json''' __lowerCamelCase = '''adapter_config.json''' __lowerCamelCase = '''adapter_model.bin''' __lowerCamelCase = '''adapter_model.safetensors''' __lowerCamelCase = '''tf_model.h5''' __lowerCamelCase = '''tf_model.h5.index.json''' __lowerCamelCase = '''model.ckpt''' __lowerCamelCase = '''flax_model.msgpack''' __lowerCamelCase = '''flax_model.msgpack.index.json''' __lowerCamelCase = '''model.safetensors''' __lowerCamelCase = '''model.safetensors.index.json''' __lowerCamelCase = '''config.json''' __lowerCamelCase = '''preprocessor_config.json''' __lowerCamelCase = FEATURE_EXTRACTOR_NAME __lowerCamelCase = '''generation_config.json''' __lowerCamelCase = '''modelcard.json''' __lowerCamelCase = '''▁''' __lowerCamelCase = SENTENCEPIECE_UNDERLINE # Kept for backward compatibility __lowerCamelCase = [ [[0, 1, 0, 1], [1, 0, 0, 1]] ] * 2 # Needs to have 0s and 1s only since XLM uses it for langs too. __lowerCamelCase = [[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]] __lowerCamelCase = [[1, 1, 1, 1, 1], [1, 1, 1, 0, 0], [0, 0, 0, 1, 1]] def _snake_case ( __snake_case ) -> Dict: '''simple docstring''' if version.parse(__snake_case ) < version.parse(__snake_case ): if "dev" in min_version: UpperCAmelCase_ : int = ( "This example requires a source install from HuggingFace Transformers (see " "`https://huggingface.co/docs/transformers/installation#install-from-source`)," ) else: UpperCAmelCase_ : List[str] = F"""This example requires a minimum version of {min_version},""" error_message += F""" but the version found is {__version__}.\n""" raise ImportError( error_message + "Check out https://github.com/huggingface/transformers/tree/main/examples#important-note for the examples corresponding to other " "versions of HuggingFace Transformers." )
455
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { '''unc-nlp/lxmert-base-uncased''': '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json''', } class snake_case_ (lowercase__ ): """simple docstring""" _lowerCamelCase = """lxmert""" _lowerCamelCase = {} def __init__( self ,lowercase=30522 ,lowercase=768 ,lowercase=12 ,lowercase=9500 ,lowercase=1600 ,lowercase=400 ,lowercase=3072 ,lowercase="gelu" ,lowercase=0.1 ,lowercase=0.1 ,lowercase=512 ,lowercase=2 ,lowercase=0.02 ,lowercase=1E-12 ,lowercase=9 ,lowercase=5 ,lowercase=5 ,lowercase=2048 ,lowercase=4 ,lowercase=6.67 ,lowercase=True ,lowercase=True ,lowercase=True ,lowercase=True ,lowercase=True ,lowercase=True ,lowercase=True ,**lowercase ,): """simple docstring""" UpperCAmelCase_ : List[str] = vocab_size UpperCAmelCase_ : str = hidden_size UpperCAmelCase_ : List[str] = num_attention_heads UpperCAmelCase_ : Dict = hidden_act UpperCAmelCase_ : List[Any] = intermediate_size UpperCAmelCase_ : Tuple = hidden_dropout_prob UpperCAmelCase_ : List[Any] = attention_probs_dropout_prob UpperCAmelCase_ : Any = max_position_embeddings UpperCAmelCase_ : str = type_vocab_size UpperCAmelCase_ : Any = initializer_range UpperCAmelCase_ : Optional[Any] = layer_norm_eps UpperCAmelCase_ : Any = num_qa_labels UpperCAmelCase_ : str = num_object_labels UpperCAmelCase_ : Dict = num_attr_labels UpperCAmelCase_ : Tuple = l_layers UpperCAmelCase_ : Tuple = x_layers UpperCAmelCase_ : int = r_layers UpperCAmelCase_ : Optional[Any] = visual_feat_dim UpperCAmelCase_ : List[Any] = visual_pos_dim UpperCAmelCase_ : int = visual_loss_normalizer UpperCAmelCase_ : str = task_matched UpperCAmelCase_ : str = task_mask_lm UpperCAmelCase_ : int = task_obj_predict UpperCAmelCase_ : List[str] = task_qa UpperCAmelCase_ : Optional[int] = visual_obj_loss UpperCAmelCase_ : List[str] = visual_attr_loss UpperCAmelCase_ : str = visual_feat_loss UpperCAmelCase_ : List[Any] = {"vision": r_layers, "cross_encoder": x_layers, "language": l_layers} super().__init__(**lowercase)
455
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A = logging.get_logger(__name__) A = { """hustvl/yolos-small""": """https://huggingface.co/hustvl/yolos-small/resolve/main/config.json""", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class a__ ( __magic_name__ ): lowercase_ = "yolos" def __init__( self : Tuple , UpperCamelCase_ : int=768 , UpperCamelCase_ : Optional[int]=12 , UpperCamelCase_ : str=12 , UpperCamelCase_ : Union[str, Any]=3072 , UpperCamelCase_ : Any="gelu" , UpperCamelCase_ : int=0.0 , UpperCamelCase_ : Any=0.0 , UpperCamelCase_ : Optional[int]=0.02 , UpperCamelCase_ : List[str]=1e-12 , UpperCamelCase_ : Optional[int]=[512, 864] , UpperCamelCase_ : str=16 , UpperCamelCase_ : str=3 , UpperCamelCase_ : Optional[int]=True , UpperCamelCase_ : str=100 , UpperCamelCase_ : str=True , UpperCamelCase_ : Union[str, Any]=False , UpperCamelCase_ : Optional[int]=1 , UpperCamelCase_ : Any=5 , UpperCamelCase_ : Tuple=2 , UpperCamelCase_ : List[Any]=5 , UpperCamelCase_ : List[Any]=2 , UpperCamelCase_ : Optional[Any]=0.1 , **UpperCamelCase_ : Any , ): """simple docstring""" super().__init__(**UpperCamelCase_) __UpperCAmelCase : Tuple = hidden_size __UpperCAmelCase : List[str] = num_hidden_layers __UpperCAmelCase : Tuple = num_attention_heads __UpperCAmelCase : int = intermediate_size __UpperCAmelCase : int = hidden_act __UpperCAmelCase : int = hidden_dropout_prob __UpperCAmelCase : Dict = attention_probs_dropout_prob __UpperCAmelCase : List[Any] = initializer_range __UpperCAmelCase : int = layer_norm_eps __UpperCAmelCase : List[str] = image_size __UpperCAmelCase : Tuple = patch_size __UpperCAmelCase : int = num_channels __UpperCAmelCase : Optional[Any] = qkv_bias __UpperCAmelCase : List[Any] = num_detection_tokens __UpperCAmelCase : Union[str, Any] = use_mid_position_embeddings __UpperCAmelCase : List[str] = auxiliary_loss # Hungarian matcher __UpperCAmelCase : Optional[Any] = class_cost __UpperCAmelCase : Union[str, Any] = bbox_cost __UpperCAmelCase : int = giou_cost # Loss coefficients __UpperCAmelCase : Optional[int] = bbox_loss_coefficient __UpperCAmelCase : Union[str, Any] = giou_loss_coefficient __UpperCAmelCase : Any = eos_coefficient class a__ ( __magic_name__ ): lowercase_ = version.parse("1.11" ) @property def a_ ( self : int): """simple docstring""" return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ]) @property def a_ ( self : List[Any]): """simple docstring""" return 1e-4 @property def a_ ( self : Optional[int]): """simple docstring""" return 12
77
"""simple docstring""" from collections import namedtuple A = namedtuple("""from_to""", """from_ to""") A = { """cubicmeter""": from_to(1, 1), """litre""": from_to(0.001, 1_000), """kilolitre""": from_to(1, 1), """gallon""": from_to(0.00454, 264.172), """cubicyard""": from_to(0.76455, 1.30795), """cubicfoot""": from_to(0.028, 35.3147), """cup""": from_to(0.000236588, 4226.75), } def _UpperCamelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> float: """simple docstring""" if from_type not in METRIC_CONVERSION: raise ValueError( f"Invalid 'from_type' value: {from_type!r} Supported values are:\n" + ", ".join(UpperCamelCase ) ) if to_type not in METRIC_CONVERSION: raise ValueError( f"Invalid 'to_type' value: {to_type!r}. Supported values are:\n" + ", ".join(UpperCamelCase ) ) return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to if __name__ == "__main__": import doctest doctest.testmod()
77
1
'''simple docstring''' import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) _SCREAMING_SNAKE_CASE = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(3_2, (3, 3), input_shape=(6_4, 6_4, 3), activation='''relu''') ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(3_2, (3, 3), activation='''relu''')) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=1_2_8, activation='''relu''')) classifier.add(layers.Dense(units=1, activation='''sigmoid''')) # Compiling the CNN classifier.compile( optimizer='''adam''', loss='''binary_crossentropy''', metrics=['''accuracy'''] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') _SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 2_5_5, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) _SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 2_5_5) _SCREAMING_SNAKE_CASE = train_datagen.flow_from_directory( '''dataset/training_set''', target_size=(6_4, 6_4), batch_size=3_2, class_mode='''binary''' ) _SCREAMING_SNAKE_CASE = test_datagen.flow_from_directory( '''dataset/test_set''', target_size=(6_4, 6_4), batch_size=3_2, class_mode='''binary''' ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=3_0, validation_data=test_set ) classifier.save('''cnn.h5''') # Part 3 - Making new predictions _SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.load_img( '''dataset/single_prediction/image.png''', target_size=(6_4, 6_4) ) _SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.img_to_array(test_image) _SCREAMING_SNAKE_CASE = np.expand_dims(test_image, axis=0) _SCREAMING_SNAKE_CASE = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: _SCREAMING_SNAKE_CASE = '''Normal''' if result[0][0] == 1: _SCREAMING_SNAKE_CASE = '''Abnormality detected'''
714
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _SCREAMING_SNAKE_CASE = {'''configuration_van''': ['''VAN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''VanConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''VAN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''VanForImageClassification''', '''VanModel''', '''VanPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_van import ( VAN_PRETRAINED_MODEL_ARCHIVE_LIST, VanForImageClassification, VanModel, VanPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
56
0
def UpperCamelCase__ ( UpperCAmelCase_ ) -> int: '''simple docstring''' return 1 if digit in (0, 1) else (digit * factorial(digit - 1 )) def UpperCamelCase__ ( UpperCAmelCase_ ) -> bool: '''simple docstring''' _lowercase : Union[str, Any] = 0 _lowercase : Optional[int] = number while duplicate > 0: _lowercase , _lowercase : Optional[int] = divmod(UpperCAmelCase_ , 10 ) fact_sum += factorial(UpperCAmelCase_ ) return fact_sum == number if __name__ == "__main__": print('Program to check whether a number is a Krisnamurthy Number or not.') UpperCamelCase__ = int(input('Enter number: ').strip()) print( F"""{number} is {'' if krishnamurthy(number) else 'not '}a Krishnamurthy Number.""" )
322
from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging UpperCamelCase__ = logging.get_logger(__name__) class UpperCAmelCase__ ( A_ ): '''simple docstring''' UpperCAmelCase_ = ['''pixel_values'''] def __init__( self : List[Any] , UpperCamelCase : bool = True , UpperCamelCase : Union[int, float] = 1 / 2_55 , UpperCamelCase : bool = True , UpperCamelCase : int = 8 , **UpperCamelCase : Dict , ): """simple docstring""" super().__init__(**UpperCamelCase ) _lowercase : str = do_rescale _lowercase : int = rescale_factor _lowercase : Optional[int] = do_pad _lowercase : Optional[int] = pad_size def lowerCAmelCase_ ( self : int , UpperCamelCase : np.ndarray , UpperCamelCase : float , UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase : Optional[Any] ): """simple docstring""" return rescale(UpperCamelCase , scale=UpperCamelCase , data_format=UpperCamelCase , **UpperCamelCase ) def lowerCAmelCase_ ( self : List[str] , UpperCamelCase : np.ndarray , UpperCamelCase : int , UpperCamelCase : Optional[Union[str, ChannelDimension]] = None ): """simple docstring""" _lowercase , _lowercase : Dict = get_image_size(UpperCamelCase ) _lowercase : Optional[int] = (old_height // size + 1) * size - old_height _lowercase : str = (old_width // size + 1) * size - old_width return pad(UpperCamelCase , ((0, pad_height), (0, pad_width)) , mode='''symmetric''' , data_format=UpperCamelCase ) def lowerCAmelCase_ ( self : List[Any] , UpperCamelCase : ImageInput , UpperCamelCase : Optional[bool] = None , UpperCamelCase : Optional[float] = None , UpperCamelCase : Optional[bool] = None , UpperCamelCase : Optional[int] = None , UpperCamelCase : Optional[Union[str, TensorType]] = None , UpperCamelCase : Union[str, ChannelDimension] = ChannelDimension.FIRST , **UpperCamelCase : int , ): """simple docstring""" _lowercase : int = do_rescale if do_rescale is not None else self.do_rescale _lowercase : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor _lowercase : Optional[int] = do_pad if do_pad is not None else self.do_pad _lowercase : Any = pad_size if pad_size is not None else self.pad_size _lowercase : List[Any] = make_list_of_images(UpperCamelCase ) if not valid_images(UpperCamelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) # All transformations expect numpy arrays. _lowercase : Optional[int] = [to_numpy_array(UpperCamelCase ) for image in images] if do_rescale: _lowercase : str = [self.rescale(image=UpperCamelCase , scale=UpperCamelCase ) for image in images] if do_pad: _lowercase : int = [self.pad(UpperCamelCase , size=UpperCamelCase ) for image in images] _lowercase : str = [to_channel_dimension_format(UpperCamelCase , UpperCamelCase ) for image in images] _lowercase : Optional[Any] = {'''pixel_values''': images} return BatchFeature(data=UpperCamelCase , tensor_type=UpperCamelCase )
322
1
'''simple docstring''' from collections.abc import Sequence def _lowerCAmelCase ( __a , __a ) -> float: '''simple docstring''' return sum(c * (x**i) for i, c in enumerate(__a ) ) def _lowerCAmelCase ( __a , __a ) -> float: '''simple docstring''' _UpperCamelCase :Optional[int] =0.0 for coeff in reversed(__a ): _UpperCamelCase :Dict =result * x + coeff return result if __name__ == "__main__": _lowerCamelCase : Optional[Any] = (0.0, 0.0, 5.0, 9.3, 7.0) _lowerCamelCase : int = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
512
'''simple docstring''' def _lowerCAmelCase ( __a , __a ) -> float: '''simple docstring''' def get_matched_characters(__a , __a ) -> str: _UpperCamelCase :Any =[] _UpperCamelCase :List[str] =min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): _UpperCamelCase :int =int(max(0 , i - limit ) ) _UpperCamelCase :List[Any] =int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(__a ) _UpperCamelCase :Optional[int] =F'''{_stra[0:_stra.index(__a )]} {_stra[_stra.index(__a ) + 1:]}''' return "".join(__a ) # matching characters _UpperCamelCase :str =get_matched_characters(__a , __a ) _UpperCamelCase :List[Any] =get_matched_characters(__a , __a ) _UpperCamelCase :List[str] =len(__a ) # transposition _UpperCamelCase :Optional[Any] =( len([(ca, ca) for ca, ca in zip(__a , __a ) if ca != ca] ) // 2 ) if not match_count: _UpperCamelCase :List[str] =0.0 else: _UpperCamelCase :Union[str, Any] =( 1 / 3 * ( match_count / len(__a ) + match_count / len(__a ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters _UpperCamelCase :int =0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler("""hello""", """world"""))
512
1
"""simple docstring""" from collections import defaultdict from math import ceil, sqrt def SCREAMING_SNAKE_CASE ( __UpperCAmelCase = 1_000_000 , __UpperCAmelCase = 10 ) -> int: SCREAMING_SNAKE_CASE__ = defaultdict(__UpperCAmelCase ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: SCREAMING_SNAKE_CASE__ = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: SCREAMING_SNAKE_CASE__ = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(__UpperCAmelCase , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(F'{solution() = }')
159
"""simple docstring""" import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class lowerCamelCase (_SCREAMING_SNAKE_CASE ): '''simple docstring''' def lowerCAmelCase_ ( self : Optional[Any] , _snake_case : str ) -> List[str]: with open(_snake_case , encoding="utf-8" ) as input_file: SCREAMING_SNAKE_CASE__ = re.compile(r"(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)" ) SCREAMING_SNAKE_CASE__ = input_file.read() SCREAMING_SNAKE_CASE__ = regexp.search(_snake_case ) return match def lowerCAmelCase_ ( self : str , _snake_case : str ) -> List[str]: with open(_snake_case , encoding="utf-8" ) as input_file: SCREAMING_SNAKE_CASE__ = re.compile(r"#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()" , re.DOTALL ) SCREAMING_SNAKE_CASE__ = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` SCREAMING_SNAKE_CASE__ = regexp.finditer(_snake_case ) SCREAMING_SNAKE_CASE__ = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def lowerCAmelCase_ ( self : Tuple ) -> str: SCREAMING_SNAKE_CASE__ = Path("./datasets" ) SCREAMING_SNAKE_CASE__ = list(dataset_paths.absolute().glob("**/*.py" ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(_snake_case ) ): raise AssertionError(F"""open(...) must use utf-8 encoding in {dataset}""" ) def lowerCAmelCase_ ( self : int ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = Path("./datasets" ) SCREAMING_SNAKE_CASE__ = list(dataset_paths.absolute().glob("**/*.py" ) ) for dataset in dataset_files: if self._no_print_statements(str(_snake_case ) ): raise AssertionError(F"""print statement found in {dataset}. Use datasets.logger/logging instead.""" )
159
1
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel if is_vision_available(): from transformers import MaskFormerImageProcessor if is_vision_available(): from PIL import Image class lowercase : def __init__( self : Union[str, Any] , _lowercase : Dict , _lowercase : List[Any]=2 , _lowercase : str=True , _lowercase : Tuple=False , _lowercase : Optional[int]=10 , _lowercase : List[str]=3 , _lowercase : int=32 * 4 , _lowercase : Union[str, Any]=32 * 6 , _lowercase : Dict=4 , _lowercase : str=32 , ): SCREAMING_SNAKE_CASE__ : List[Any] = parent SCREAMING_SNAKE_CASE__ : str = batch_size SCREAMING_SNAKE_CASE__ : List[str] = is_training SCREAMING_SNAKE_CASE__ : Union[str, Any] = use_auxiliary_loss SCREAMING_SNAKE_CASE__ : Tuple = num_queries SCREAMING_SNAKE_CASE__ : List[Any] = num_channels SCREAMING_SNAKE_CASE__ : int = min_size SCREAMING_SNAKE_CASE__ : List[Any] = max_size SCREAMING_SNAKE_CASE__ : int = num_labels SCREAMING_SNAKE_CASE__ : Optional[int] = mask_feature_size def lowercase__ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ : str = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( _lowercase ) SCREAMING_SNAKE_CASE__ : str = torch.ones([self.batch_size, self.min_size, self.max_size] , device=_lowercase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=_lowercase ) > 0.5 ).float() SCREAMING_SNAKE_CASE__ : List[Any] = (torch.rand((self.batch_size, self.num_labels) , device=_lowercase ) > 0.5).long() SCREAMING_SNAKE_CASE__ : Any = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def lowercase__ ( self : Any ): return MaskFormerConfig.from_backbone_and_decoder_configs( backbone_config=SwinConfig( depths=[1, 1, 1, 1] , ) , decoder_config=DetrConfig( decoder_ffn_dim=1_28 , num_queries=self.num_queries , decoder_attention_heads=2 , d_model=self.mask_feature_size , ) , mask_feature_size=self.mask_feature_size , fpn_feature_size=self.mask_feature_size , num_channels=self.num_channels , num_labels=self.num_labels , ) def lowercase__ ( self : Tuple ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Dict = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__ : Dict = {'''pixel_values''': pixel_values, '''pixel_mask''': pixel_mask} return config, inputs_dict def lowercase__ ( self : Optional[Any] , _lowercase : str , _lowercase : List[str] ): SCREAMING_SNAKE_CASE__ : List[str] = output.encoder_hidden_states SCREAMING_SNAKE_CASE__ : Any = output.pixel_decoder_hidden_states SCREAMING_SNAKE_CASE__ : int = output.transformer_decoder_hidden_states self.parent.assertTrue(len(_lowercase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_lowercase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_lowercase ) , config.decoder_config.decoder_layers ) def lowercase__ ( self : Any , _lowercase : Union[str, Any] , _lowercase : Union[str, Any] , _lowercase : Optional[int] , _lowercase : str=False ): with torch.no_grad(): SCREAMING_SNAKE_CASE__ : Union[str, Any] = MaskFormerModel(config=_lowercase ) model.to(_lowercase ) model.eval() SCREAMING_SNAKE_CASE__ : Optional[int] = model(pixel_values=_lowercase , pixel_mask=_lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = model(_lowercase , output_hidden_states=_lowercase ) # the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the # encoder and pixel decoder self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.mask_feature_size) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(_lowercase , _lowercase ) def lowercase__ ( self : Any , _lowercase : List[str] , _lowercase : str , _lowercase : str , _lowercase : str , _lowercase : str ): SCREAMING_SNAKE_CASE__ : Tuple = MaskFormerForInstanceSegmentation(config=_lowercase ) model.to(_lowercase ) model.eval() def comm_check_on_output(_lowercase : Optional[Any] ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): SCREAMING_SNAKE_CASE__ : Optional[int] = model(pixel_values=_lowercase , pixel_mask=_lowercase ) SCREAMING_SNAKE_CASE__ : str = model(_lowercase ) comm_check_on_output(_lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] = model( pixel_values=_lowercase , pixel_mask=_lowercase , mask_labels=_lowercase , class_labels=_lowercase ) comm_check_on_output(_lowercase ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class lowercase ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): lowerCamelCase : Tuple = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else () lowerCamelCase : int = ( {'''feature-extraction''': MaskFormerModel, '''image-segmentation''': MaskFormerForInstanceSegmentation} if is_torch_available() else {} ) lowerCamelCase : Optional[int] = False lowerCamelCase : Optional[int] = False lowerCamelCase : List[Any] = False lowerCamelCase : int = False def lowercase__ ( self : str ): SCREAMING_SNAKE_CASE__ : List[Any] = MaskFormerModelTester(self ) SCREAMING_SNAKE_CASE__ : Tuple = ConfigTester(self , config_class=_lowercase , has_text_modality=_lowercase ) def lowercase__ ( self : List[Any] ): self.config_tester.run_common_tests() def lowercase__ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Any = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(_lowercase , **_lowercase , output_hidden_states=_lowercase ) def lowercase__ ( self : List[str] ): SCREAMING_SNAKE_CASE__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*_lowercase ) @unittest.skip(reason='''MaskFormer does not use inputs_embeds''' ) def lowercase__ ( self : Dict ): pass @unittest.skip(reason='''MaskFormer does not have a get_input_embeddings method''' ) def lowercase__ ( self : List[str] ): pass @unittest.skip(reason='''MaskFormer is not a generative model''' ) def lowercase__ ( self : List[str] ): pass @unittest.skip(reason='''MaskFormer does not use token embeddings''' ) def lowercase__ ( self : Optional[Any] ): pass @require_torch_multi_gpu @unittest.skip( reason='''MaskFormer has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def lowercase__ ( self : Union[str, Any] ): pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def lowercase__ ( self : Union[str, Any] ): pass def lowercase__ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : Dict = model_class(_lowercase ) SCREAMING_SNAKE_CASE__ : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE__ : str = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE__ : Optional[int] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _lowercase ) @slow def lowercase__ ( self : List[Any] ): for model_name in ["facebook/maskformer-swin-small-coco"]: SCREAMING_SNAKE_CASE__ : int = MaskFormerModel.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) def lowercase__ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ : Any = (self.model_tester.min_size,) * 2 SCREAMING_SNAKE_CASE__ : str = { '''pixel_values''': torch.randn((2, 3, *size) , device=_lowercase ), '''mask_labels''': torch.randn((2, 10, *size) , device=_lowercase ), '''class_labels''': torch.zeros(2 , 10 , device=_lowercase ).long(), } SCREAMING_SNAKE_CASE__ : Optional[Any] = MaskFormerForInstanceSegmentation(MaskFormerConfig() ).to(_lowercase ) SCREAMING_SNAKE_CASE__ : Tuple = model(**_lowercase ) self.assertTrue(outputs.loss is not None ) def lowercase__ ( self : Dict ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(_lowercase , **_lowercase , output_hidden_states=_lowercase ) def lowercase__ ( self : int ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : Optional[Any] = model_class(_lowercase ).to(_lowercase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = model(**_lowercase , output_attentions=_lowercase ) self.assertTrue(outputs.attentions is not None ) def lowercase__ ( self : Optional[int] ): if not self.model_tester.is_training: return # only MaskFormerForInstanceSegmentation has the loss SCREAMING_SNAKE_CASE__ : Optional[Any] = self.all_model_classes[1] SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Tuple = self.model_tester.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__ : Union[str, Any] = model_class(_lowercase ) model.to(_lowercase ) model.train() SCREAMING_SNAKE_CASE__ : Any = model(_lowercase , mask_labels=_lowercase , class_labels=_lowercase ).loss loss.backward() def lowercase__ ( self : Dict ): # only MaskFormerForInstanceSegmentation has the loss SCREAMING_SNAKE_CASE__ : Any = self.all_model_classes[1] SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : str = self.model_tester.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__ : List[Any] = True SCREAMING_SNAKE_CASE__ : Tuple = True SCREAMING_SNAKE_CASE__ : Union[str, Any] = model_class(_lowercase ) model.to(_lowercase ) model.train() SCREAMING_SNAKE_CASE__ : List[str] = model(_lowercase , mask_labels=_lowercase , class_labels=_lowercase ) SCREAMING_SNAKE_CASE__ : Any = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() SCREAMING_SNAKE_CASE__ : Tuple = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() # we requires_grad=True in inputs_embeds (line 2152), the original implementation don't SCREAMING_SNAKE_CASE__ : int = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() SCREAMING_SNAKE_CASE__ : Dict = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=_lowercase ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) a_ :Optional[int] = 1e-4 def a ( ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_vision @slow class lowercase ( unittest.TestCase ): @cached_property def lowercase__ ( self : List[Any] ): return ( MaskFormerImageProcessor.from_pretrained('''facebook/maskformer-swin-small-coco''' ) if is_vision_available() else None ) def lowercase__ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE__ : int = MaskFormerModel.from_pretrained('''facebook/maskformer-swin-small-coco''' ).to(_lowercase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.default_image_processor SCREAMING_SNAKE_CASE__ : str = prepare_img() SCREAMING_SNAKE_CASE__ : Any = image_processor(_lowercase , return_tensors='''pt''' ).to(_lowercase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_lowercase , (1, 3, 8_00, 10_88) ) with torch.no_grad(): SCREAMING_SNAKE_CASE__ : Any = model(**_lowercase ) SCREAMING_SNAKE_CASE__ : int = torch.tensor( [[-0.0482, 0.9228, 0.4951], [-0.2547, 0.8017, 0.8527], [-0.0069, 0.3385, -0.0089]] ).to(_lowercase ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , _lowercase , atol=_lowercase ) ) SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.tensor( [[-0.8422, -0.8434, -0.9718], [-1.0144, -0.5565, -0.4195], [-1.0038, -0.4484, -0.1961]] ).to(_lowercase ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , _lowercase , atol=_lowercase ) ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.tensor( [[0.2852, -0.0159, 0.9735], [0.6254, 0.1858, 0.8529], [-0.0680, -0.4116, 1.8413]] ).to(_lowercase ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , _lowercase , atol=_lowercase ) ) def lowercase__ ( self : int ): SCREAMING_SNAKE_CASE__ : Optional[Any] = ( MaskFormerForInstanceSegmentation.from_pretrained('''facebook/maskformer-swin-small-coco''' ) .to(_lowercase ) .eval() ) SCREAMING_SNAKE_CASE__ : Dict = self.default_image_processor SCREAMING_SNAKE_CASE__ : Optional[int] = prepare_img() SCREAMING_SNAKE_CASE__ : List[str] = image_processor(_lowercase , return_tensors='''pt''' ).to(_lowercase ) SCREAMING_SNAKE_CASE__ : Dict = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_lowercase , (1, 3, 8_00, 10_88) ) with torch.no_grad(): SCREAMING_SNAKE_CASE__ : List[Any] = model(**_lowercase ) # masks_queries_logits SCREAMING_SNAKE_CASE__ : List[str] = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) SCREAMING_SNAKE_CASE__ : List[Any] = [ [-1.3737124, -1.7724937, -1.9364233], [-1.5977281, -1.9867939, -2.1523695], [-1.5795398, -1.9269832, -2.093942], ] SCREAMING_SNAKE_CASE__ : str = torch.tensor(_lowercase ).to(_lowercase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , _lowercase , atol=_lowercase ) ) # class_queries_logits SCREAMING_SNAKE_CASE__ : Any = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) SCREAMING_SNAKE_CASE__ : List[str] = torch.tensor( [ [1.6_512E00, -5.2_572E00, -3.3_519E00], [3.6_169E-02, -5.9_025E00, -2.9_313E00], [1.0_766E-04, -7.7_630E00, -5.1_263E00], ] ).to(_lowercase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , _lowercase , atol=_lowercase ) ) def lowercase__ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ : int = ( MaskFormerForInstanceSegmentation.from_pretrained('''facebook/maskformer-resnet101-coco-stuff''' ) .to(_lowercase ) .eval() ) SCREAMING_SNAKE_CASE__ : Tuple = self.default_image_processor SCREAMING_SNAKE_CASE__ : Optional[Any] = prepare_img() SCREAMING_SNAKE_CASE__ : List[str] = image_processor(_lowercase , return_tensors='''pt''' ).to(_lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_lowercase , (1, 3, 8_00, 10_88) ) with torch.no_grad(): SCREAMING_SNAKE_CASE__ : Union[str, Any] = model(**_lowercase ) # masks_queries_logits SCREAMING_SNAKE_CASE__ : List[str] = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) SCREAMING_SNAKE_CASE__ : Dict = [[-0.9046, -2.6366, -4.6062], [-3.4179, -5.7890, -8.8057], [-4.9179, -7.6560, -10.7711]] SCREAMING_SNAKE_CASE__ : int = torch.tensor(_lowercase ).to(_lowercase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , _lowercase , atol=_lowercase ) ) # class_queries_logits SCREAMING_SNAKE_CASE__ : Optional[int] = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.tensor( [[4.7188, -3.2585, -2.8857], [6.6871, -2.9181, -1.2487], [7.2449, -2.2764, -2.1874]] ).to(_lowercase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , _lowercase , atol=_lowercase ) ) def lowercase__ ( self : Tuple ): SCREAMING_SNAKE_CASE__ : Dict = ( MaskFormerForInstanceSegmentation.from_pretrained('''facebook/maskformer-swin-small-coco''' ) .to(_lowercase ) .eval() ) SCREAMING_SNAKE_CASE__ : Optional[int] = self.default_image_processor SCREAMING_SNAKE_CASE__ : List[str] = image_processor( [np.zeros((3, 8_00, 13_33) ), np.zeros((3, 8_00, 13_33) )] , segmentation_maps=[np.zeros((3_84, 3_84) ).astype(np.floataa ), np.zeros((3_84, 3_84) ).astype(np.floataa )] , return_tensors='''pt''' , ) SCREAMING_SNAKE_CASE__ : Optional[int] = inputs['''pixel_values'''].to(_lowercase ) SCREAMING_SNAKE_CASE__ : str = [el.to(_lowercase ) for el in inputs['''mask_labels''']] SCREAMING_SNAKE_CASE__ : int = [el.to(_lowercase ) for el in inputs['''class_labels''']] with torch.no_grad(): SCREAMING_SNAKE_CASE__ : str = model(**_lowercase ) self.assertTrue(outputs.loss is not None )
250
import argparse import pathlib import fairseq import torch from fairseq.models.roberta import RobertaModel as FairseqRobertaModel from fairseq.modules import TransformerSentenceEncoderLayer from packaging import version from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.models.roberta.modeling_roberta import RobertaAttention from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('1.0.0a'): raise Exception('requires fairseq >= 1.0.0a') logging.set_verbosity_info() a_ :Tuple = logging.get_logger(__name__) a_ :List[str] = 'Hello world! cécé herlolip' def a ( A__ , A__ , A__ ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = FairseqRobertaModel.from_pretrained(A__ ) roberta.eval() # disable dropout SCREAMING_SNAKE_CASE__ : List[str] = roberta.model.encoder.sentence_encoder SCREAMING_SNAKE_CASE__ : Optional[Any] = XLMRobertaConfig( vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings , hidden_size=roberta.cfg.model.encoder_embed_dim , num_hidden_layers=roberta.cfg.model.encoder_layers , num_attention_heads=roberta.cfg.model.encoder_attention_heads , intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_1_4 , type_vocab_size=1 , layer_norm_eps=1e-5 , ) if classification_head: SCREAMING_SNAKE_CASE__ : List[str] = roberta.model.classification_heads['''mnli'''].out_proj.weight.shape[0] print('''Our RoBERTa config:''' , A__ ) SCREAMING_SNAKE_CASE__ : Tuple = XLMRobertaXLForSequenceClassification(A__ ) if classification_head else XLMRobertaXLForMaskedLM(A__ ) model.eval() # Now let's copy all the weights. # Embeddings SCREAMING_SNAKE_CASE__ : List[str] = roberta_sent_encoder.embed_tokens.weight SCREAMING_SNAKE_CASE__ : List[Any] = roberta_sent_encoder.embed_positions.weight SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them. SCREAMING_SNAKE_CASE__ : int = roberta_sent_encoder.layer_norm.weight SCREAMING_SNAKE_CASE__ : int = roberta_sent_encoder.layer_norm.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer SCREAMING_SNAKE_CASE__ : BertLayer = model.roberta.encoder.layer[i] SCREAMING_SNAKE_CASE__ : TransformerSentenceEncoderLayer = roberta_sent_encoder.layers[i] SCREAMING_SNAKE_CASE__ : RobertaAttention = layer.attention SCREAMING_SNAKE_CASE__ : Optional[Any] = roberta_layer.self_attn_layer_norm.weight SCREAMING_SNAKE_CASE__ : Any = roberta_layer.self_attn_layer_norm.bias # self attention SCREAMING_SNAKE_CASE__ : BertSelfAttention = layer.attention.self assert ( roberta_layer.self_attn.k_proj.weight.data.shape == roberta_layer.self_attn.q_proj.weight.data.shape == roberta_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = roberta_layer.self_attn.q_proj.weight SCREAMING_SNAKE_CASE__ : int = roberta_layer.self_attn.q_proj.bias SCREAMING_SNAKE_CASE__ : Any = roberta_layer.self_attn.k_proj.weight SCREAMING_SNAKE_CASE__ : Optional[Any] = roberta_layer.self_attn.k_proj.bias SCREAMING_SNAKE_CASE__ : List[Any] = roberta_layer.self_attn.v_proj.weight SCREAMING_SNAKE_CASE__ : Dict = roberta_layer.self_attn.v_proj.bias # self-attention output SCREAMING_SNAKE_CASE__ : BertSelfOutput = layer.attention.output assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape SCREAMING_SNAKE_CASE__ : str = roberta_layer.self_attn.out_proj.weight SCREAMING_SNAKE_CASE__ : Union[str, Any] = roberta_layer.self_attn.out_proj.bias # this one is final layer norm SCREAMING_SNAKE_CASE__ : List[Any] = roberta_layer.final_layer_norm.weight SCREAMING_SNAKE_CASE__ : List[str] = roberta_layer.final_layer_norm.bias # intermediate SCREAMING_SNAKE_CASE__ : BertIntermediate = layer.intermediate assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape SCREAMING_SNAKE_CASE__ : List[str] = roberta_layer.fca.weight SCREAMING_SNAKE_CASE__ : Tuple = roberta_layer.fca.bias # output SCREAMING_SNAKE_CASE__ : BertOutput = layer.output assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape SCREAMING_SNAKE_CASE__ : List[str] = roberta_layer.fca.weight SCREAMING_SNAKE_CASE__ : Any = roberta_layer.fca.bias # end of layer if classification_head: SCREAMING_SNAKE_CASE__ : Dict = roberta.model.classification_heads['''mnli'''].dense.weight SCREAMING_SNAKE_CASE__ : Any = roberta.model.classification_heads['''mnli'''].dense.bias SCREAMING_SNAKE_CASE__ : Tuple = roberta.model.classification_heads['''mnli'''].out_proj.weight SCREAMING_SNAKE_CASE__ : Union[str, Any] = roberta.model.classification_heads['''mnli'''].out_proj.bias else: # LM Head SCREAMING_SNAKE_CASE__ : str = roberta.model.encoder.lm_head.dense.weight SCREAMING_SNAKE_CASE__ : List[str] = roberta.model.encoder.lm_head.dense.bias SCREAMING_SNAKE_CASE__ : Tuple = roberta.model.encoder.lm_head.layer_norm.weight SCREAMING_SNAKE_CASE__ : Dict = roberta.model.encoder.lm_head.layer_norm.bias SCREAMING_SNAKE_CASE__ : List[str] = roberta.model.encoder.lm_head.weight SCREAMING_SNAKE_CASE__ : Tuple = roberta.model.encoder.lm_head.bias # Let's check that we get the same results. SCREAMING_SNAKE_CASE__ : torch.Tensor = roberta.encode(A__ ).unsqueeze(0 ) # batch of size 1 SCREAMING_SNAKE_CASE__ : List[str] = model(A__ )[0] if classification_head: SCREAMING_SNAKE_CASE__ : Optional[int] = roberta.model.classification_heads['''mnli'''](roberta.extract_features(A__ ) ) else: SCREAMING_SNAKE_CASE__ : Dict = roberta.model(A__ )[0] print(our_output.shape , their_output.shape ) SCREAMING_SNAKE_CASE__ : List[Any] = torch.max(torch.abs(our_output - their_output ) ).item() print(f"""max_absolute_diff = {max_absolute_diff}""" ) # ~ 1e-7 SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.allclose(A__ , A__ , atol=1e-3 ) print('''Do both models output the same tensors?''' , '''🔥''' if success else '''💩''' ) if not success: raise Exception('''Something went wRoNg''' ) pathlib.Path(A__ ).mkdir(parents=A__ , exist_ok=A__ ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(A__ ) if __name__ == "__main__": a_ :List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--roberta_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--classification_head', action='store_true', help='Whether to convert a final classification head.' ) a_ :str = parser.parse_args() convert_xlm_roberta_xl_checkpoint_to_pytorch( args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
250
1
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SegformerConfig, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowercase : List[Any] = logging.get_logger(__name__) def lowerCAmelCase__ ( _a : List[Any] , _a : Dict=False ): snake_case_ : Any = OrderedDict() for key, value in state_dict.items(): if encoder_only and not key.startswith("head" ): snake_case_ : List[str] = "segformer.encoder." + key if key.startswith("backbone" ): snake_case_ : Any = key.replace("backbone" , "segformer.encoder" ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 snake_case_ : Any = key[key.find("patch_embed" ) + len("patch_embed" )] snake_case_ : Union[str, Any] = key.replace(F'''patch_embed{idx}''' , F'''patch_embeddings.{int(_a )-1}''' ) if "norm" in key: snake_case_ : Optional[int] = key.replace("norm" , "layer_norm" ) if "segformer.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 snake_case_ : int = key[key.find("segformer.encoder.layer_norm" ) + len("segformer.encoder.layer_norm" )] snake_case_ : List[str] = key.replace(F'''layer_norm{idx}''' , F'''layer_norm.{int(_a )-1}''' ) if "layer_norm1" in key: snake_case_ : Union[str, Any] = key.replace("layer_norm1" , "layer_norm_1" ) if "layer_norm2" in key: snake_case_ : Any = key.replace("layer_norm2" , "layer_norm_2" ) if "block" in key: # replace for example block1 by block.0 snake_case_ : int = key[key.find("block" ) + len("block" )] snake_case_ : Tuple = key.replace(F'''block{idx}''' , F'''block.{int(_a )-1}''' ) if "attn.q" in key: snake_case_ : Any = key.replace("attn.q" , "attention.self.query" ) if "attn.proj" in key: snake_case_ : int = key.replace("attn.proj" , "attention.output.dense" ) if "attn" in key: snake_case_ : Optional[Any] = key.replace("attn" , "attention.self" ) if "fc1" in key: snake_case_ : Dict = key.replace("fc1" , "dense1" ) if "fc2" in key: snake_case_ : List[str] = key.replace("fc2" , "dense2" ) if "linear_pred" in key: snake_case_ : Union[str, Any] = key.replace("linear_pred" , "classifier" ) if "linear_fuse" in key: snake_case_ : Tuple = key.replace("linear_fuse.conv" , "linear_fuse" ) snake_case_ : int = key.replace("linear_fuse.bn" , "batch_norm" ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 snake_case_ : List[Any] = key[key.find("linear_c" ) + len("linear_c" )] snake_case_ : List[Any] = key.replace(F'''linear_c{idx}''' , F'''linear_c.{int(_a )-1}''' ) if key.startswith("head" ): snake_case_ : Optional[Any] = key.replace("head" , "classifier" ) snake_case_ : int = value return new_state_dict def lowerCAmelCase__ ( _a : Tuple , _a : Dict ): # for each of the encoder blocks: for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) snake_case_ : int = state_dict.pop(F'''segformer.encoder.block.{i}.{j}.attention.self.kv.weight''' ) snake_case_ : List[str] = state_dict.pop(F'''segformer.encoder.block.{i}.{j}.attention.self.kv.bias''' ) # next, add keys and values (in that order) to the state dict snake_case_ : int = kv_weight[ : config.hidden_sizes[i], : ] snake_case_ : str = kv_bias[: config.hidden_sizes[i]] snake_case_ : Tuple = kv_weight[ config.hidden_sizes[i] :, : ] snake_case_ : str = kv_bias[ config.hidden_sizes[i] : ] def lowerCAmelCase__ ( ): snake_case_ : int = "http://images.cocodataset.org/val2017/000000039769.jpg" snake_case_ : Optional[int] = Image.open(requests.get(_a , stream=_a ).raw ) return image @torch.no_grad() def lowerCAmelCase__ ( _a : Optional[int] , _a : Any , _a : Any ): snake_case_ : List[str] = SegformerConfig() snake_case_ : Optional[Any] = False # set attributes based on model_name snake_case_ : Any = "huggingface/label-files" if "segformer" in model_name: snake_case_ : str = model_name[len("segformer." ) : len("segformer." ) + 2] if "ade" in model_name: snake_case_ : Tuple = 1_50 snake_case_ : List[str] = "ade20k-id2label.json" snake_case_ : Dict = (1, 1_50, 1_28, 1_28) elif "city" in model_name: snake_case_ : Optional[Any] = 19 snake_case_ : Dict = "cityscapes-id2label.json" snake_case_ : Union[str, Any] = (1, 19, 1_28, 1_28) else: raise ValueError(F'''Model {model_name} not supported''' ) elif "mit" in model_name: snake_case_ : Optional[int] = True snake_case_ : Dict = model_name[4:6] snake_case_ : Dict = 10_00 snake_case_ : Any = "imagenet-1k-id2label.json" snake_case_ : Optional[int] = (1, 10_00) else: raise ValueError(F'''Model {model_name} not supported''' ) # set config attributes snake_case_ : Tuple = json.load(open(hf_hub_download(_a , _a , repo_type="dataset" ) , "r" ) ) snake_case_ : Any = {int(_a ): v for k, v in idalabel.items()} snake_case_ : Optional[int] = idalabel snake_case_ : Any = {v: k for k, v in idalabel.items()} if size == "b0": pass elif size == "b1": snake_case_ : Optional[Any] = [64, 1_28, 3_20, 5_12] snake_case_ : List[Any] = 2_56 elif size == "b2": snake_case_ : List[str] = [64, 1_28, 3_20, 5_12] snake_case_ : int = 7_68 snake_case_ : int = [3, 4, 6, 3] elif size == "b3": snake_case_ : Any = [64, 1_28, 3_20, 5_12] snake_case_ : List[Any] = 7_68 snake_case_ : List[str] = [3, 4, 18, 3] elif size == "b4": snake_case_ : Union[str, Any] = [64, 1_28, 3_20, 5_12] snake_case_ : int = 7_68 snake_case_ : Dict = [3, 8, 27, 3] elif size == "b5": snake_case_ : Any = [64, 1_28, 3_20, 5_12] snake_case_ : List[str] = 7_68 snake_case_ : Optional[Any] = [3, 6, 40, 3] else: raise ValueError(F'''Size {size} not supported''' ) # load image processor (only resize + normalize) snake_case_ : List[Any] = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=_a , align=_a , do_random_crop=_a ) # prepare image snake_case_ : Any = prepare_img() snake_case_ : Union[str, Any] = image_processor(images=_a , return_tensors="pt" ).pixel_values logger.info(F'''Converting model {model_name}...''' ) # load original state dict if encoder_only: snake_case_ : List[str] = torch.load(_a , map_location=torch.device("cpu" ) ) else: snake_case_ : Dict = torch.load(_a , map_location=torch.device("cpu" ) )["state_dict"] # rename keys snake_case_ : Tuple = rename_keys(_a , encoder_only=_a ) if not encoder_only: del state_dict["decode_head.conv_seg.weight"] del state_dict["decode_head.conv_seg.bias"] # key and value matrices need special treatment read_in_k_v(_a , _a ) # create HuggingFace model and load state dict if encoder_only: snake_case_ : List[str] = False snake_case_ : Union[str, Any] = SegformerForImageClassification(_a ) else: snake_case_ : int = SegformerForSemanticSegmentation(_a ) model.load_state_dict(_a ) model.eval() # forward pass snake_case_ : int = model(_a ) snake_case_ : List[Any] = outputs.logits # set expected_slice based on model name # ADE20k checkpoints if model_name == "segformer.b0.512x512.ade.160k": snake_case_ : Dict = torch.tensor( [ [[-4.6_310, -5.5_232, -6.2_356], [-5.1_921, -6.1_444, -6.5_996], [-5.4_424, -6.2_790, -6.7_574]], [[-12.1_391, -13.3_122, -13.9_554], [-12.8_732, -13.9_352, -14.3_563], [-12.9_438, -13.8_226, -14.2_513]], [[-12.5_134, -13.4_686, -14.4_915], [-12.8_669, -14.4_343, -14.7_758], [-13.2_523, -14.5_819, -15.0_694]], ] ) elif model_name == "segformer.b1.512x512.ade.160k": snake_case_ : Tuple = torch.tensor( [ [[-7.5_820, -8.7_231, -8.3_215], [-8.0_600, -10.3_529, -10.0_304], [-7.5_208, -9.4_103, -9.6_239]], [[-12.6_918, -13.8_994, -13.7_137], [-13.3_196, -15.7_523, -15.4_789], [-12.9_343, -14.8_757, -14.9_689]], [[-11.1_911, -11.9_421, -11.3_243], [-11.3_342, -13.6_839, -13.3_581], [-10.3_909, -12.1_832, -12.4_858]], ] ) elif model_name == "segformer.b2.512x512.ade.160k": snake_case_ : List[Any] = torch.tensor( [ [[-11.8_173, -14.3_850, -16.3_128], [-14.5_648, -16.5_804, -18.6_568], [-14.7_223, -15.7_387, -18.4_218]], [[-15.7_290, -17.9_171, -19.4_423], [-18.3_105, -19.9_448, -21.4_661], [-17.9_296, -18.6_497, -20.7_910]], [[-15.0_783, -17.0_336, -18.2_789], [-16.8_771, -18.6_870, -20.1_612], [-16.2_454, -17.1_426, -19.5_055]], ] ) elif model_name == "segformer.b3.512x512.ade.160k": snake_case_ : Dict = torch.tensor( [ [[-9.0_878, -10.2_081, -10.1_891], [-9.3_144, -10.7_941, -10.9_843], [-9.2_294, -10.3_855, -10.5_704]], [[-12.2_316, -13.9_068, -13.6_102], [-12.9_161, -14.3_702, -14.3_235], [-12.5_233, -13.7_174, -13.7_932]], [[-14.6_275, -15.2_490, -14.9_727], [-14.3_400, -15.9_687, -16.2_827], [-14.1_484, -15.4_033, -15.8_937]], ] ) elif model_name == "segformer.b4.512x512.ade.160k": snake_case_ : List[str] = torch.tensor( [ [[-12.3_144, -13.2_447, -14.0_802], [-13.3_614, -14.5_816, -15.6_117], [-13.3_340, -14.4_433, -16.2_219]], [[-19.2_781, -20.4_128, -20.7_506], [-20.6_153, -21.6_566, -22.0_998], [-19.9_800, -21.0_430, -22.1_494]], [[-18.8_739, -19.7_804, -21.1_834], [-20.1_233, -21.6_765, -23.2_944], [-20.0_315, -21.2_641, -23.6_944]], ] ) elif model_name == "segformer.b5.640x640.ade.160k": snake_case_ : Optional[Any] = torch.tensor( [ [[-9.5_524, -12.0_835, -11.7_348], [-10.5_229, -13.6_446, -14.5_662], [-9.5_842, -12.8_851, -13.9_414]], [[-15.3_432, -17.5_323, -17.0_818], [-16.3_330, -18.9_255, -19.2_101], [-15.1_340, -17.7_848, -18.3_971]], [[-12.6_072, -14.9_486, -14.6_631], [-13.7_629, -17.0_907, -17.7_745], [-12.7_899, -16.1_695, -17.1_671]], ] ) # Cityscapes checkpoints elif model_name == "segformer.b0.1024x1024.city.160k": snake_case_ : Optional[Any] = torch.tensor( [ [[-11.9_295, -13.4_057, -14.8_106], [-13.3_431, -14.8_179, -15.3_781], [-14.2_836, -15.5_942, -16.1_588]], [[-11.4_906, -12.8_067, -13.6_564], [-13.1_189, -14.0_500, -14.1_543], [-13.8_748, -14.5_136, -14.8_789]], [[0.5_374, 0.1_067, -0.4_742], [0.1_141, -0.2_255, -0.7_099], [-0.3_000, -0.5_924, -1.3_105]], ] ) elif model_name == "segformer.b0.512x1024.city.160k": snake_case_ : Union[str, Any] = torch.tensor( [ [[-7.8_217, -9.8_767, -10.1_717], [-9.4_438, -10.9_058, -11.4_047], [-9.7_939, -12.3_495, -12.1_079]], [[-7.1_514, -9.5_336, -10.0_860], [-9.7_776, -11.6_822, -11.8_439], [-10.1_411, -12.7_655, -12.8_972]], [[0.3_021, 0.0_805, -0.2_310], [-0.0_328, -0.1_605, -0.2_714], [-0.1_408, -0.5_477, -0.6_976]], ] ) elif model_name == "segformer.b0.640x1280.city.160k": snake_case_ : Tuple = torch.tensor( [ [ [-1.1_372E01, -1.2_787E01, -1.3_477E01], [-1.2_536E01, -1.4_194E01, -1.4_409E01], [-1.3_217E01, -1.4_888E01, -1.5_327E01], ], [ [-1.4_791E01, -1.7_122E01, -1.8_277E01], [-1.7_163E01, -1.9_192E01, -1.9_533E01], [-1.7_897E01, -1.9_991E01, -2.0_315E01], ], [ [7.6_723E-01, 4.1_921E-01, -7.7_878E-02], [4.7_772E-01, 9.5_557E-03, -2.8_082E-01], [3.6_032E-01, -2.4_826E-01, -5.1_168E-01], ], ] ) elif model_name == "segformer.b0.768x768.city.160k": snake_case_ : List[Any] = torch.tensor( [ [[-9.4_959, -11.3_087, -11.7_479], [-11.0_025, -12.6_540, -12.3_319], [-11.4_064, -13.0_487, -12.9_905]], [[-9.8_905, -11.3_084, -12.0_854], [-11.1_726, -12.7_698, -12.9_583], [-11.5_985, -13.3_278, -14.1_774]], [[0.2_213, 0.0_192, -0.2_466], [-0.1_731, -0.4_213, -0.4_874], [-0.3_126, -0.6_541, -1.1_389]], ] ) elif model_name == "segformer.b1.1024x1024.city.160k": snake_case_ : Optional[int] = torch.tensor( [ [[-13.5_748, -13.9_111, -12.6_500], [-14.3_500, -15.3_683, -14.2_328], [-14.7_532, -16.0_424, -15.6_087]], [[-17.1_651, -15.8_725, -12.9_653], [-17.2_580, -17.3_718, -14.8_223], [-16.6_058, -16.8_783, -16.7_452]], [[-3.6_456, -3.0_209, -1.4_203], [-3.0_797, -3.1_959, -2.0_000], [-1.8_757, -1.9_217, -1.6_997]], ] ) elif model_name == "segformer.b2.1024x1024.city.160k": snake_case_ : Tuple = torch.tensor( [ [[-16.0_976, -16.4_856, -17.3_962], [-16.6_234, -19.0_342, -19.7_685], [-16.0_900, -18.0_661, -19.1_180]], [[-18.4_750, -18.8_488, -19.5_074], [-19.4_030, -22.1_570, -22.5_977], [-19.1_191, -20.8_486, -22.3_783]], [[-4.5_178, -5.5_037, -6.5_109], [-5.0_884, -7.2_174, -8.0_334], [-4.4_156, -5.8_117, -7.2_970]], ] ) elif model_name == "segformer.b3.1024x1024.city.160k": snake_case_ : List[str] = torch.tensor( [ [[-14.2_081, -14.4_732, -14.1_977], [-14.5_867, -16.4_423, -16.6_356], [-13.4_441, -14.9_685, -16.8_696]], [[-14.4_576, -14.7_073, -15.0_451], [-15.0_816, -17.6_237, -17.9_873], [-14.4_213, -16.0_199, -18.5_992]], [[-4.7_349, -4.9_588, -5.0_966], [-4.3_210, -6.9_325, -7.2_591], [-3.4_312, -4.7_484, -7.1_917]], ] ) elif model_name == "segformer.b4.1024x1024.city.160k": snake_case_ : List[str] = torch.tensor( [ [[-11.7_737, -11.9_526, -11.3_273], [-13.6_692, -14.4_574, -13.8_878], [-13.8_937, -14.6_924, -15.9_345]], [[-14.6_706, -14.5_330, -14.1_306], [-16.1_502, -16.8_180, -16.4_269], [-16.8_338, -17.8_939, -20.1_746]], [[1.0_491, 0.8_289, 1.0_310], [1.1_044, 0.5_219, 0.8_055], [1.0_899, 0.6_926, 0.5_590]], ] ) elif model_name == "segformer.b5.1024x1024.city.160k": snake_case_ : Optional[int] = torch.tensor( [ [[-12.5_641, -13.4_777, -13.0_684], [-13.9_587, -15.8_983, -16.6_557], [-13.3_109, -15.7_350, -16.3_141]], [[-14.7_074, -15.4_352, -14.5_944], [-16.6_353, -18.1_663, -18.6_120], [-15.1_702, -18.0_329, -18.1_547]], [[-1.7_990, -2.0_951, -1.7_784], [-2.6_397, -3.8_245, -3.9_686], [-1.5_264, -2.8_126, -2.9_316]], ] ) else: snake_case_ : Optional[int] = logits.argmax(-1 ).item() print("Predicted class:" , model.config.idalabel[predicted_class_idx] ) # verify logits if not encoder_only: assert logits.shape == expected_shape assert torch.allclose(logits[0, :3, :3, :3] , _a , atol=1E-2 ) # finally, save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(_a ).mkdir(exist_ok=_a ) model.save_pretrained(_a ) image_processor.save_pretrained(_a ) if __name__ == "__main__": lowercase : List[Any] = argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''segformer.b0.512x512.ade.160k''', type=str, help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, help='''Path to the original PyTorch checkpoint (.pth file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) lowercase : int = parser.parse_args() convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
568
def lowerCAmelCase__ ( _a : str ): snake_case_ : List[Any] = "" for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def lowerCAmelCase__ ( _a : str ): snake_case_ : Optional[int] = [chr(i + 65 ) for i in range(26 )] # Remove duplicate characters from key snake_case_ : Optional[Any] = remove_duplicates(key.upper() ) snake_case_ : Union[str, Any] = len(_a ) # First fill cipher with key characters snake_case_ : Union[str, Any] = {alphabet[i]: char for i, char in enumerate(_a )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(_a ) , 26 ): snake_case_ : Any = alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 snake_case_ : Dict = alphabet[i - offset] snake_case_ : Optional[Any] = char return cipher_alphabet def lowerCAmelCase__ ( _a : str , _a : dict[str, str] ): return "".join(cipher_map.get(_a , _a ) for ch in message.upper() ) def lowerCAmelCase__ ( _a : str , _a : dict[str, str] ): snake_case_ : Optional[int] = {v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(_a , _a ) for ch in message.upper() ) def lowerCAmelCase__ ( ): snake_case_ : Optional[Any] = input("Enter message to encode or decode: " ).strip() snake_case_ : Dict = input("Enter keyword: " ).strip() snake_case_ : Optional[Any] = input("Encipher or decipher? E/D:" ).strip()[0].lower() try: snake_case_ : int = {"e": encipher, "d": decipher}[option] except KeyError: raise KeyError("invalid input option" ) snake_case_ : Any = create_cipher_map(_a ) print(func(_a , _a ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
568
1
'''simple docstring''' import math def __lowercase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" __a = len(__SCREAMING_SNAKE_CASE ) __a = int(math.floor(math.sqrt(__SCREAMING_SNAKE_CASE ) ) ) __a = 0 while arr[min(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) - 1] < x: __a = step step += int(math.floor(math.sqrt(__SCREAMING_SNAKE_CASE ) ) ) if prev >= n: return -1 while arr[prev] < x: __a = prev + 1 if prev == min(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): return -1 if arr[prev] == x: return prev return -1 if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = input('Enter numbers separated by a comma:\n').strip() SCREAMING_SNAKE_CASE_ = [int(item) for item in user_input.split(',')] SCREAMING_SNAKE_CASE_ = int(input('Enter the number to be searched:\n')) SCREAMING_SNAKE_CASE_ = jump_search(arr, x) if res == -1: print('Number not found!') else: print(f"""Number {x} is at index {res}""")
709
'''simple docstring''' def __lowercase ( __SCREAMING_SNAKE_CASE = 100_0000 ) -> int: """simple docstring""" __a = 1 __a = 1 __a = {1: 1} for inputa in range(2 , __SCREAMING_SNAKE_CASE ): __a = 0 __a = inputa while True: if number in counters: counter += counters[number] break if number % 2 == 0: number //= 2 counter += 1 else: __a = (3 * number) + 1 counter += 1 if inputa not in counters: __a = counter if counter > pre_counter: __a = inputa __a = counter return largest_number if __name__ == "__main__": print(solution(int(input().strip())))
201
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCAmelCase_ : List[str] = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE ( snake_case_ ): __magic_name__ : str = ['''pixel_values'''] def __init__( self : List[str] , lowercase__ : bool = True , lowercase__ : Dict[str, int] = None , lowercase__ : PILImageResampling = PILImageResampling.BICUBIC , lowercase__ : bool = True , lowercase__ : Union[int, float] = 1 / 255 , lowercase__ : bool = True , lowercase__ : Optional[Union[float, List[float]]] = None , lowercase__ : Optional[Union[float, List[float]]] = None , lowercase__ : bool = True , **lowercase__ : str , ): '''simple docstring''' super().__init__(**lowercase__ ) a_ : Tuple = size if size is not None else {"""height""": 384, """width""": 384} a_ : Tuple = get_size_dict(lowercase__ , default_to_square=lowercase__ ) a_ : Tuple = do_resize a_ : Tuple = size a_ : Optional[Any] = resample a_ : int = do_rescale a_ : int = rescale_factor a_ : Optional[int] = do_normalize a_ : Tuple = image_mean if image_mean is not None else OPENAI_CLIP_MEAN a_ : List[str] = image_std if image_std is not None else OPENAI_CLIP_STD a_ : Optional[Any] = do_convert_rgb def lowercase_ ( self : int , lowercase__ : np.ndarray , lowercase__ : Dict[str, int] , lowercase__ : PILImageResampling = PILImageResampling.BICUBIC , lowercase__ : Optional[Union[str, ChannelDimension]] = None , **lowercase__ : Optional[int] , ): '''simple docstring''' a_ : Any = get_size_dict(lowercase__ , default_to_square=lowercase__ ) if "height" not in size or "width" not in size: raise ValueError(F"The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}" ) a_ : Optional[Any] = (size["""height"""], size["""width"""]) return resize(lowercase__ , size=lowercase__ , resample=lowercase__ , data_format=lowercase__ , **lowercase__ ) def lowercase_ ( self : Optional[int] , lowercase__ : np.ndarray , lowercase__ : Union[int, float] , lowercase__ : Optional[Union[str, ChannelDimension]] = None , **lowercase__ : List[str] , ): '''simple docstring''' return rescale(lowercase__ , scale=lowercase__ , data_format=lowercase__ , **lowercase__ ) def lowercase_ ( self : Tuple , lowercase__ : np.ndarray , lowercase__ : Union[float, List[float]] , lowercase__ : Union[float, List[float]] , lowercase__ : Optional[Union[str, ChannelDimension]] = None , **lowercase__ : List[Any] , ): '''simple docstring''' return normalize(lowercase__ , mean=lowercase__ , std=lowercase__ , data_format=lowercase__ , **lowercase__ ) def lowercase_ ( self : List[Any] , lowercase__ : ImageInput , lowercase__ : Optional[bool] = None , lowercase__ : Optional[Dict[str, int]] = None , lowercase__ : PILImageResampling = None , lowercase__ : Optional[bool] = None , lowercase__ : Optional[float] = None , lowercase__ : Optional[bool] = None , lowercase__ : Optional[Union[float, List[float]]] = None , lowercase__ : Optional[Union[float, List[float]]] = None , lowercase__ : Optional[Union[str, TensorType]] = None , lowercase__ : bool = None , lowercase__ : ChannelDimension = ChannelDimension.FIRST , **lowercase__ : Union[str, Any] , ): '''simple docstring''' a_ : List[Any] = do_resize if do_resize is not None else self.do_resize a_ : int = resample if resample is not None else self.resample a_ : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale a_ : Tuple = rescale_factor if rescale_factor is not None else self.rescale_factor a_ : List[Any] = do_normalize if do_normalize is not None else self.do_normalize a_ : Union[str, Any] = image_mean if image_mean is not None else self.image_mean a_ : int = image_std if image_std is not None else self.image_std a_ : Optional[int] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb a_ : List[str] = size if size is not None else self.size a_ : Tuple = get_size_dict(lowercase__ , default_to_square=lowercase__ ) a_ : Any = make_list_of_images(lowercase__ ) if not valid_images(lowercase__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: a_ : Tuple = [convert_to_rgb(lowercase__ ) for image in images] # All transformations expect numpy arrays. a_ : List[str] = [to_numpy_array(lowercase__ ) for image in images] if do_resize: a_ : int = [self.resize(image=lowercase__ , size=lowercase__ , resample=lowercase__ ) for image in images] if do_rescale: a_ : Any = [self.rescale(image=lowercase__ , scale=lowercase__ ) for image in images] if do_normalize: a_ : Union[str, Any] = [self.normalize(image=lowercase__ , mean=lowercase__ , std=lowercase__ ) for image in images] a_ : str = [to_channel_dimension_format(lowercase__ , lowercase__ ) for image in images] a_ : Optional[int] = BatchFeature(data={"""pixel_values""": images} , tensor_type=lowercase__ ) return encoded_outputs
442
'''simple docstring''' import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase_ : Optional[Any] = get_tests_dir('fixtures/test_sentencepiece.model') lowerCAmelCase_ : int = {'target_lang': 'fi', 'source_lang': 'en'} lowerCAmelCase_ : str = '>>zh<<' lowerCAmelCase_ : List[str] = 'Helsinki-NLP/' if is_torch_available(): lowerCAmelCase_ : Dict = 'pt' elif is_tf_available(): lowerCAmelCase_ : Union[str, Any] = 'tf' else: lowerCAmelCase_ : int = 'jax' @require_sentencepiece class SCREAMING_SNAKE_CASE ( snake_case_ , unittest.TestCase ): __magic_name__ : Dict = MarianTokenizer __magic_name__ : Any = False __magic_name__ : str = True def lowercase_ ( self : Any ): '''simple docstring''' super().setUp() a_ : Optional[Any] = ["""</s>""", """<unk>""", """▁This""", """▁is""", """▁a""", """▁t""", """est""", """\u0120""", """<pad>"""] a_ : Optional[int] = dict(zip(lowercase__ , range(len(lowercase__ ) ) ) ) a_ : List[str] = Path(self.tmpdirname ) save_json(lowercase__ , save_dir / VOCAB_FILES_NAMES["""vocab"""] ) save_json(lowercase__ , save_dir / VOCAB_FILES_NAMES["""tokenizer_config_file"""] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(lowercase__ , save_dir / VOCAB_FILES_NAMES["""source_spm"""] ) copyfile(lowercase__ , save_dir / VOCAB_FILES_NAMES["""target_spm"""] ) a_ : Dict = MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase_ ( self : Tuple , **lowercase__ : int ): '''simple docstring''' return MarianTokenizer.from_pretrained(self.tmpdirname , **lowercase__ ) def lowercase_ ( self : int , lowercase__ : int ): '''simple docstring''' return ( "This is a test", "This is a test", ) def lowercase_ ( self : List[str] ): '''simple docstring''' a_ : Optional[int] = """</s>""" a_ : Optional[int] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase__ ) , lowercase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase__ ) , lowercase__ ) def lowercase_ ( self : Tuple ): '''simple docstring''' a_ : Optional[int] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """</s>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """<pad>""" ) self.assertEqual(len(lowercase__ ) , 9 ) def lowercase_ ( self : List[Any] ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 9 ) def lowercase_ ( self : str ): '''simple docstring''' a_ : str = MarianTokenizer.from_pretrained(F"{ORG_NAME}opus-mt-en-de" ) a_ : Any = en_de_tokenizer(["""I am a small frog"""] , return_tensors=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) a_ : str = [38, 121, 14, 697, 3_8848, 0] self.assertListEqual(lowercase__ , batch.input_ids[0] ) a_ : Union[str, Any] = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(lowercase__ ) a_ : Union[str, Any] = [x.name for x in Path(lowercase__ ).glob("""*""" )] self.assertIn("""source.spm""" , lowercase__ ) MarianTokenizer.from_pretrained(lowercase__ ) def lowercase_ ( self : str ): '''simple docstring''' a_ : int = self.get_tokenizer() a_ : Dict = tok( ["""I am a small frog""" * 1000, """I am a small frog"""] , padding=lowercase__ , truncation=lowercase__ , return_tensors=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) self.assertEqual(batch.input_ids.shape , (2, 512) ) def lowercase_ ( self : Optional[Any] ): '''simple docstring''' a_ : List[str] = self.get_tokenizer() a_ : Dict = tok(["""I am a tiny frog""", """I am a small frog"""] , padding=lowercase__ , return_tensors=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) self.assertEqual(batch_smaller.input_ids.shape , (2, 10) ) @slow def lowercase_ ( self : List[Any] ): '''simple docstring''' a_ : Optional[int] = {"""input_ids""": [[4_3495, 462, 20, 4_2164, 1369, 52, 464, 132, 1703, 492, 13, 7491, 3_8999, 6, 8, 464, 132, 1703, 492, 13, 4669, 3_7867, 13, 7525, 27, 1593, 988, 13, 3_3972, 7029, 6, 20, 8251, 383, 2, 270, 5866, 3788, 2, 2353, 8251, 1_2338, 2, 1_3958, 387, 2, 3629, 6953, 188, 2900, 2, 1_3958, 8011, 1_1501, 23, 8460, 4073, 3_4009, 20, 435, 1_1439, 27, 8, 8460, 4073, 6004, 20, 9988, 375, 27, 33, 266, 1945, 1076, 1350, 3_7867, 3288, 5, 577, 1076, 4374, 8, 5082, 5, 2_6453, 257, 556, 403, 2, 242, 132, 383, 316, 492, 8, 1_0767, 6, 316, 304, 4239, 3, 0], [148, 1_5722, 19, 1839, 12, 1350, 13, 2_2327, 5082, 5418, 4_7567, 3_5938, 59, 318, 1_9552, 108, 2183, 54, 1_4976, 4835, 32, 547, 1114, 8, 315, 2417, 5, 92, 1_9088, 3, 0, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100], [36, 6395, 1_2570, 3_9147, 1_1597, 6, 266, 4, 4_5405, 7296, 3, 0, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowercase__ , model_name="""Helsinki-NLP/opus-mt-en-de""" , revision="""1a8c2263da11e68e50938f97e10cd57820bd504c""" , decode_kwargs={"""use_source_tokenizer""": True} , ) def lowercase_ ( self : int ): '''simple docstring''' a_ : Tuple = MarianTokenizer.from_pretrained("""hf-internal-testing/test-marian-two-vocabs""" ) a_ : Tuple = """Tämä on testi""" a_ : Union[str, Any] = """This is a test""" a_ : Union[str, Any] = [76, 7, 2047, 2] a_ : Optional[int] = [69, 12, 11, 940, 2] a_ : Optional[Any] = tokenizer(lowercase__ ).input_ids self.assertListEqual(lowercase__ , lowercase__ ) a_ : Optional[int] = tokenizer(text_target=lowercase__ ).input_ids self.assertListEqual(lowercase__ , lowercase__ ) a_ : str = tokenizer.decode(lowercase__ , skip_special_tokens=lowercase__ ) self.assertEqual(lowercase__ , lowercase__ )
442
1
# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion # and https://github.com/hojonathanho/diffusion import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class UpperCAmelCase ( __snake_case ): a: torch.FloatTensor a: Optional[torch.FloatTensor] = None def __snake_case ( _UpperCamelCase , _UpperCamelCase=0.9_99 , _UpperCamelCase="cosine" , ) -> List[Any]: if alpha_transform_type == "cosine": def alpha_bar_fn(_UpperCamelCase ): return math.cos((t + 0.0_08) / 1.0_08 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_UpperCamelCase ): return math.exp(t * -12.0 ) else: raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}" ) _a = [] for i in range(_UpperCamelCase ): _a = i / num_diffusion_timesteps _a = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_UpperCamelCase ) / alpha_bar_fn(_UpperCamelCase ) , _UpperCamelCase ) ) return torch.tensor(_UpperCamelCase , dtype=torch.floataa ) class UpperCAmelCase ( __snake_case , __snake_case ): a: Any = 1 @register_to_config def __init__( self: str , __UpperCamelCase: int = 1000 , __UpperCamelCase: float = 0.0_0_0_1 , __UpperCamelCase: float = 0.0_2 , __UpperCamelCase: str = "linear" , __UpperCamelCase: Optional[Union[np.ndarray, List[float]]] = None , __UpperCamelCase: bool = True , __UpperCamelCase: bool = True , __UpperCamelCase: int = 0 , __UpperCamelCase: str = "epsilon" , __UpperCamelCase: float = 1.0 , **__UpperCamelCase: Any , ): if kwargs.get('''set_alpha_to_one''' , __UpperCamelCase ) is not None: _a = ( '''The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead.''' ) deprecate('''set_alpha_to_one''' , '''1.0.0''' , __UpperCamelCase , standard_warn=__UpperCamelCase ) _a = kwargs['''set_alpha_to_one'''] if trained_betas is not None: _a = torch.tensor(__UpperCamelCase , dtype=torch.floataa ) elif beta_schedule == "linear": _a = torch.linspace(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _a = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , __UpperCamelCase , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _a = betas_for_alpha_bar(__UpperCamelCase ) else: raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}" ) _a = 1.0 - self.betas _a = torch.cumprod(self.alphas , dim=0 ) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. _a = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution _a = 1.0 # setable values _a = None _a = torch.from_numpy(np.arange(0 , __UpperCamelCase ).copy().astype(np.intaa ) ) def _A ( self: List[str] , __UpperCamelCase: torch.FloatTensor , __UpperCamelCase: Optional[int] = None ): return sample def _A ( self: Dict , __UpperCamelCase: int , __UpperCamelCase: Union[str, torch.device] = None ): if num_inference_steps > self.config.num_train_timesteps: raise ValueError( f"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:" f" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle" f" maximal {self.config.num_train_timesteps} timesteps." ) _a = num_inference_steps _a = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _a = (np.arange(0 , __UpperCamelCase ) * step_ratio).round().copy().astype(np.intaa ) _a = torch.from_numpy(__UpperCamelCase ).to(__UpperCamelCase ) self.timesteps += self.config.steps_offset def _A ( self: Any , __UpperCamelCase: torch.FloatTensor , __UpperCamelCase: int , __UpperCamelCase: torch.FloatTensor , __UpperCamelCase: float = 0.0 , __UpperCamelCase: bool = False , __UpperCamelCase: Optional[torch.FloatTensor] = None , __UpperCamelCase: bool = True , ): # 1. get previous step value (=t+1) _a = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process _a = self.alphas_cumprod[timestep] _a = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) _a = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": _a = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 _a = model_output elif self.config.prediction_type == "sample": _a = model_output _a = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": _a = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output _a = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or" ''' `v_prediction`''' ) # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: _a = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _a = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _a = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=__UpperCamelCase , pred_original_sample=__UpperCamelCase ) def __len__( self: str ): return self.config.num_train_timesteps
346
from collections.abc import Generator from math import sin def __snake_case ( _UpperCamelCase ) -> bytes: if len(_UpperCamelCase ) != 32: raise ValueError('''Input must be of length 32''' ) _a = b'''''' for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def __snake_case ( _UpperCamelCase ) -> bytes: if i < 0: raise ValueError('''Input must be non-negative''' ) _a = format(_UpperCamelCase , '''08x''' )[-8:] _a = b'''''' for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode('''utf-8''' ) return little_endian_hex def __snake_case ( _UpperCamelCase ) -> bytes: _a = b'''''' for char in message: bit_string += format(_UpperCamelCase , '''08b''' ).encode('''utf-8''' ) _a = format(len(_UpperCamelCase ) , '''064b''' ).encode('''utf-8''' ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(_UpperCamelCase ) % 5_12 != 4_48: bit_string += b"0" bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] ) return bit_string def __snake_case ( _UpperCamelCase ) -> Generator[list[int], None, None]: if len(_UpperCamelCase ) % 5_12 != 0: raise ValueError('''Input must have length that\'s a multiple of 512''' ) for pos in range(0 , len(_UpperCamelCase ) , 5_12 ): _a = bit_string[pos : pos + 5_12] _a = [] for i in range(0 , 5_12 , 32 ): block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) ) yield block_words def __snake_case ( _UpperCamelCase ) -> int: if i < 0: raise ValueError('''Input must be non-negative''' ) _a = format(_UpperCamelCase , '''032b''' ) _a = '''''' for c in i_str: new_str += "1" if c == "0" else "0" return int(_UpperCamelCase , 2 ) def __snake_case ( _UpperCamelCase , _UpperCamelCase ) -> int: return (a + b) % 2**32 def __snake_case ( _UpperCamelCase , _UpperCamelCase ) -> int: if i < 0: raise ValueError('''Input must be non-negative''' ) if shift < 0: raise ValueError('''Shift must be non-negative''' ) return ((i << shift) ^ (i >> (32 - shift))) % 2**32 def __snake_case ( _UpperCamelCase ) -> bytes: _a = preprocess(_UpperCamelCase ) _a = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )] # Starting states _a = 0X67_45_23_01 _a = 0XEF_CD_AB_89 _a = 0X98_BA_DC_FE _a = 0X10_32_54_76 _a = [ 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(_UpperCamelCase ): _a = aa _a = ba _a = ca _a = da # Hash current chunk for i in range(64 ): if i <= 15: # f = (b & c) | (not_32(b) & d) # Alternate definition for f _a = d ^ (b & (c ^ d)) _a = i elif i <= 31: # f = (d & b) | (not_32(d) & c) # Alternate definition for f _a = c ^ (d & (b ^ c)) _a = (5 * i + 1) % 16 elif i <= 47: _a = b ^ c ^ d _a = (3 * i + 5) % 16 else: _a = c ^ (b | not_aa(_UpperCamelCase )) _a = (7 * i) % 16 _a = (f + a + added_consts[i] + block_words[g]) % 2**32 _a = d _a = c _a = b _a = sum_aa(_UpperCamelCase , left_rotate_aa(_UpperCamelCase , shift_amounts[i] ) ) # Add hashed chunk to running total _a = sum_aa(_UpperCamelCase , _UpperCamelCase ) _a = sum_aa(_UpperCamelCase , _UpperCamelCase ) _a = sum_aa(_UpperCamelCase , _UpperCamelCase ) _a = sum_aa(_UpperCamelCase , _UpperCamelCase ) _a = reformat_hex(_UpperCamelCase ) + reformat_hex(_UpperCamelCase ) + reformat_hex(_UpperCamelCase ) + reformat_hex(_UpperCamelCase ) return digest if __name__ == "__main__": import doctest doctest.testmod()
346
1
'''simple docstring''' import numpy as np def a_ ( _UpperCAmelCase : np.ndarray ) -> np.ndarray: return 1 / (1 + np.exp(-vector )) def a_ ( _UpperCAmelCase : np.ndarray ) -> np.ndarray: return vector * sigmoid(_UpperCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
286
'''simple docstring''' import json import os import unittest from typing import Tuple from transformers import WavaVecaPhonemeCTCTokenizer from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.models.wavaveca_phoneme.tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizerOutput from transformers.testing_utils import require_phonemizer from ...test_tokenization_common import TokenizerTesterMixin @require_phonemizer class snake_case__ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): A__ = WavaVecaPhonemeCTCTokenizer A__ = False def A_ ( self : Any ) -> Optional[Any]: '''simple docstring''' super().setUp() __snake_case : Optional[Any] = ( '<s> <pad> </s> <unk> n s t ə l a i k d m ɛ ɾ e ɪ p o ɐ z ð f j v b ɹ ʁ ʊ iː r w ʌ u ɡ æ aɪ ʃ h ɔ ɑː ' 'ŋ ɚ eɪ β uː y ɑ̃ oʊ ᵻ eː θ aʊ ts oː ɔ̃ ɣ ɜ ɑ dʒ əl x ɜː ç ʒ tʃ ɔː ɑːɹ ɛ̃ ʎ ɔːɹ ʋ aː ɕ œ ø oːɹ ɲ yː ' 'ʔ iə i5 s. tɕ ?? nʲ ɛː œ̃ ɭ ɔø ʑ tʲ ɨ ɛɹ ts. rʲ ɪɹ ɭʲ i.5 ɔɪ q sʲ u5 ʊɹ iɜ a5 iɛ5 øː ʕ ja əɜ th ɑ5 ' 'oɪ dʲ ə5 tɕh ts.h mʲ ɯ dʑ vʲ e̞ tʃʲ ei5 o5 onɡ5 ɑu5 iɑ5 ai5 aɪɚ kh ə1 ʐ i2 ʉ ħ t[ aɪə ʲ ju ə2 u2 oɜ ' 'pː iɛɜ ou5 y5 uɜ tː uo5 d[ uoɜ tsh ɑɜ ɵ i̪5 uei5 ɟ aɜ ɑɨ i.ɜ eʊ o2 ɐ̃ ä pʲ kʲ n̩ ɒ ph ɑu2 uɨ əɪ ɫ ɬ ' 'yɜ bʲ ɑ2 s̪ aiɜ χ ɐ̃ʊ̃ 1 ə4 yæɜ a2 ɨː t̪ iouɜ ũ onɡɜ aɨ iɛ2 ɔɨ ɑuɜ o̞ ei2 iou2 c kː y2 ɖ oe dˤ yɛɜ ' 'əʊ S ɡʲ onɡ2 u" eiɜ ʈ ɯᵝ iou5 dZ r̝̊ i.2 tS s^ ʝ yə5 iɑɜ uə5 pf ɨu iɑ2 ou2 ər2 fʲ ai2 r̝ uəɜ ɳ əɨ ' 'ua5 uɪ ɽ bː yu5 uo2 yɛ5 l̩ ɻ ərɜ ʂ i̪2 ouɜ uaɜ a. a.ː yæ5 dː r̩ ee ɪu ər5 i̪ ɜ æi u: i.ː t^ o1 ɪ^ ' 'ai ueiɜ æː ɛɪ eə i. ɴ ie ua2 ɑ1 o4 tʃː o: ɑ: u1 N i̪1 au yæ2 u. qː yəɜ y: kʰ tʃʰ iʊ sx õ uo tʰ ' 'uai5 bʰ u.ː uə2 ʊə d^ s̪ː yiɜ dʰ r. oe: i1 ɟː yu2 nʲʲ i̪4 uei2 tsʲ ɸ ĩ ɑ4 t̪ː eɑ u4 e: tsː ʈʰ ɡʰ ' 'ɯɯ dʒʲ ʂʲ X ɵː uaiɜ tɕʲ ã t^ː ẽː yɛ2 cː i.1 ɛʊ dˤdˤ dʒː i4 ɡː yi ɕʲ ɟʰ pʰ dʑʲ yuɜ ua1 ua4 æiː ɐɐ ' 'ui iou1 ʊː a1 iou4 cʰ iɛ1 yə2 ɖʰ ẽ ʒʲ ää ər4 iːː ɪː iɑ1 ər1 œː øi ɪuː cʰcʰ əː1 iː1 ũ kʰː o̞o̞ xʲ ' 'ou1 iɛ4 e̞e̞ y1 dzː dʲʲ dʰː ɯᵝɯᵝ lː uo1 i.4 i: yɛ5ʲ a4' ).split(' ' ) __snake_case : Tuple = dict(zip(__a , range(len(__a ) ) ) ) __snake_case : List[str] = {'pad_token': '<pad>', 'unk_token': '<unk>', 'bos_token': '<s>', 'eos_token': '</s>'} __snake_case : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(__a ) + '\n' ) def A_ ( self : Tuple , __a : Any , __a : str=False , __a : Tuple=20 , __a : int=5 ) -> Tuple[str, list]: '''simple docstring''' __snake_case : Any = [(i, tokenizer.decode([i] , clean_up_tokenization_spaces=__a )) for i in range(len(__a ) )] __snake_case : Optional[int] = list(filter(lambda __a : [t[0]] == tokenizer.encode(t[1] , do_phonemize=__a ) , __a ) ) if max_length is not None and len(__a ) > max_length: __snake_case : List[str] = toks[:max_length] if min_length is not None and len(__a ) < min_length and len(__a ) > 0: while len(__a ) < min_length: __snake_case : Optional[int] = toks + toks # toks_str = [t[1] for t in toks] __snake_case : List[Any] = [t[0] for t in toks] # Ensure consistency __snake_case : Optional[Any] = tokenizer.decode(__a , clean_up_tokenization_spaces=__a ) if " " not in output_txt and len(__a ) > 1: __snake_case : Tuple = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=__a ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=__a ) ) if with_prefix_space: __snake_case : Tuple = ' ' + output_txt __snake_case : Optional[Any] = tokenizer.encode(__a , add_special_tokens=__a ) return output_txt, output_ids def A_ ( self : Union[str, Any] , **__a : str ) -> int: '''simple docstring''' kwargs.update(self.special_tokens_map ) return WavaVecaPhonemeCTCTokenizer.from_pretrained(self.tmpdirname , **__a ) def A_ ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' __snake_case : Optional[Any] = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) # check adding a single token tokenizer.add_tokens('xxx' ) __snake_case : Optional[Any] = tokenizer('m xxx ɪ' , do_phonemize=__a ).input_ids self.assertEqual(__a , [13, 392, 17] ) # xxx should be last token tokenizer.add_tokens(['aaa', 'bbb', 'ccc'] ) __snake_case : Union[str, Any] = tokenizer('m aaa ɪ ccc' , do_phonemize=__a ).input_ids self.assertEqual(__a , [13, 393, 17, 395] ) # aaa and ccc should be after xxx and 2 after aaa __snake_case : Dict = tokenizer('maɪ c' , do_phonemize=__a ).input_ids self.assertEqual(__a , [3, 200] ) # mai should be <unk> (=3) def A_ ( self : Any ) -> str: '''simple docstring''' __snake_case : List[Any] = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) __snake_case : List[str] = 'Hello how are you' __snake_case : Dict = tokenizer.phonemize(__a , phonemizer_lang='en-us' ) self.assertEqual(__a , 'h ə l oʊ h aʊ ɑːɹ j uː' ) def A_ ( self : Union[str, Any] ) -> Any: '''simple docstring''' __snake_case : Dict = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) __snake_case : Optional[Any] = 'Hello how are you' __snake_case : List[str] = tokenizer.phonemize(__a , phonemizer_lang='en-us' ) self.assertEqual(tokenizer(__a ).input_ids , tokenizer(__a , do_phonemize=__a ).input_ids ) def A_ ( self : Optional[Any] ) -> Dict: '''simple docstring''' __snake_case : Optional[int] = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) __snake_case : Tuple = 'Hello how are you' __snake_case : Tuple = tokenizer.phonemize(__a , phonemizer_lang='en-us' ) __snake_case : str = tokenizer.decode(tokenizer(__a ).input_ids ) self.assertEqual(__a , __a ) def A_ ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' __snake_case : Union[str, Any] = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) __snake_case : Union[str, Any] = [ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98], [24, 22, 5, 24, 22, 5, 77], ] __snake_case : Tuple = tokenizer.decode(sample_ids[0] ) __snake_case : str = tokenizer.batch_decode(__a ) self.assertEqual(__a , batch_tokens[0] ) self.assertEqual(__a , ['k s ɾ ɾ l ɭʲ', 'j ð s j ð s oːɹ'] ) def A_ ( self : Tuple ) -> str: '''simple docstring''' __snake_case : Optional[Any] = self.tokenizer_class.from_pretrained( 'facebook/wav2vec2-lv-60-espeak-cv-ft' , word_delimiter_token='|' ) tokenizer.add_tokens('|' ) __snake_case : Optional[Any] = 'Hello how are you' __snake_case : Union[str, Any] = tokenizer.phonemize(__a , phonemizer_lang='en-us' ) self.assertEqual(__a , 'h ə l oʊ | h aʊ | ɑːɹ | j uː |' ) def A_ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' __snake_case : Any = self.tokenizer_class.from_pretrained( 'facebook/wav2vec2-lv-60-espeak-cv-ft' , word_delimiter_token='|' ) tokenizer.add_tokens('|' ) __snake_case : Tuple = 'Hello how are you' __snake_case : List[str] = tokenizer.phonemize(__a , phonemizer_lang='en-us' ) self.assertEqual(tokenizer(__a ).input_ids , tokenizer(__a , do_phonemize=__a ).input_ids ) def A_ ( self : Tuple ) -> Dict: '''simple docstring''' __snake_case : List[Any] = self.tokenizer_class.from_pretrained( 'facebook/wav2vec2-lv-60-espeak-cv-ft' , word_delimiter_token='|' ) tokenizer.add_tokens('|' ) # fmt: off __snake_case : int = [ [11, 5, 15, tokenizer.pad_token_id, tokenizer.word_delimiter_token_id, 15, 8, tokenizer.word_delimiter_token_id, 98], [tokenizer.word_delimiter_token_id, 24, 22, tokenizer.word_delimiter_token_id, 5, 24, 22, 5, 77], ] # fmt: on # decode with word_del_token filter __snake_case : Dict = tokenizer.decode(sample_ids[0] ) __snake_case : Tuple = tokenizer.batch_decode(__a ) self.assertEqual(__a , batch_tokens[0] ) self.assertEqual(__a , ['k s ɾ ɾ l ɭʲ', 'j ð s j ð s oːɹ'] ) # decode with no word_del_token filter __snake_case : Union[str, Any] = tokenizer.decode(sample_ids[0] , filter_word_delimiter_token=__a ) __snake_case : Optional[int] = tokenizer.batch_decode(__a , filter_word_delimiter_token=__a ) self.assertEqual(__a , batch_tokens[0] ) self.assertEqual(__a , ['k s ɾ | ɾ l | ɭʲ', '| j ð | s j ð s oːɹ'] ) def A_ ( self : Optional[Any] ) -> Tuple: '''simple docstring''' __snake_case : Dict = self.tokenizer_class.from_pretrained( 'facebook/wav2vec2-lv-60-espeak-cv-ft' , word_delimiter_token='|' ) tokenizer.add_tokens('|' ) __snake_case : Any = 'Hello how are you' __snake_case : Optional[int] = tokenizer.phonemize(__a , phonemizer_lang='en-us' ) __snake_case : Union[str, Any] = tokenizer.decode(tokenizer(__a ).input_ids , filter_word_delimiter_token=__a ) self.assertEqual(__a , __a ) def A_ ( self : Dict ) -> List[str]: '''simple docstring''' __snake_case : Optional[Any] = self.tokenizer_class.from_pretrained( 'facebook/wav2vec2-lv-60-espeak-cv-ft' , word_delimiter_token='|' ) tokenizer.add_tokens('|' ) __snake_case : Optional[int] = 'Hello how are you' __snake_case : List[Any] = tokenizer.phonemize(__a , phonemizer_lang='en-us' ) __snake_case : Union[str, Any] = tokenizer.decode(tokenizer(__a ).input_ids , filter_word_delimiter_token=__a ) self.assertEqual(' '.join([p.strip() for p in phonemes.split(' |' )] ).strip() , __a ) def A_ ( self : int ) -> Optional[Any]: '''simple docstring''' __snake_case : Union[str, Any] = self.tokenizer_class.from_pretrained( 'facebook/wav2vec2-lv-60-espeak-cv-ft' , word_delimiter_token=__a ) __snake_case : Any = 'Hello how are you' __snake_case : Union[str, Any] = tokenizer(__a , phonemizer_lang='en-us' ).input_ids __snake_case : Union[str, Any] = tokenizer(__a , phonemizer_lang='fr-fr' ).input_ids self.assertNotEqual(__a , __a ) __snake_case : str = tokenizer.decode(__a ) __snake_case : int = tokenizer.decode(__a ) self.assertEqual(__a , 'h ə l oʊ h aʊ ɑːɹ j uː' ) self.assertEqual(__a , 'ɛ l o h aʊ a ʁ j u' ) def A_ ( self : str ) -> str: '''simple docstring''' __snake_case : Dict = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) __snake_case : List[str] = 'Hello how Are you' __snake_case : Optional[Any] = 'hello how are you' __snake_case : Union[str, Any] = tokenizer(__a ).input_ids __snake_case : Any = tokenizer(__a ).input_ids self.assertEqual(__a , __a ) def A_ ( self : List[Any] ) -> Any: '''simple docstring''' __snake_case : Tuple = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) tokenizer.add_tokens(['!', '?'] ) tokenizer.add_special_tokens({'cls_token': '$$$'} ) # fmt: off __snake_case : List[Any] = [ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98, 392, 392, 393, 392, 392, 393, 394, 394], [24, 22, 5, 24, 22, 5, 77, tokenizer.pad_token_id, 394, 394], ] # fmt: on __snake_case : str = tokenizer.batch_decode(__a ) self.assertEqual(__a , ['k s ɾ ɾ l ɭʲ!?!? $$$', 'j ð s j ð s oːɹ $$$'] ) @staticmethod def A_ ( __a : Any , __a : Dict ) -> Tuple: '''simple docstring''' __snake_case : str = [d[key] for d in offsets] return retrieved_list def A_ ( self : str ) -> Optional[int]: '''simple docstring''' __snake_case : Optional[int] = self.get_tokenizer(word_delimiter_token='|' ) tokenizer.add_tokens('|' ) # fmt: off # ksssɾɾ|ɾɾ<pad>ɾɾ|<pad>ɾlll|ɭʲ -> k s ɾ ɾ | ɾ l | ɭʲ" __snake_case : int = [11, 5, 5, 5, 15, 15, tokenizer.pad_token_id, 15, 15, tokenizer.word_delimiter_token_id, tokenizer.pad_token_id, 15, 8, 8, 8, tokenizer.word_delimiter_token_id, 98] # fmt: on __snake_case : Any = tokenizer.decode(__a , output_char_offsets=__a , filter_word_delimiter_token=__a ) # check Wav2Vec2CTCTokenizerOutput keys for char self.assertEqual(len(outputs.keys() ) , 2 ) self.assertTrue('text' in outputs ) self.assertTrue('char_offsets' in outputs ) self.assertTrue(isinstance(__a , __a ) ) # check that order of chars is correct and identical for both outputs self.assertEqual(' '.join(self.get_from_offsets(outputs['char_offsets'] , 'char' ) ) , outputs.text ) self.assertListEqual( self.get_from_offsets(outputs['char_offsets'] , 'char' ) , ['k', 's', 'ɾ', 'ɾ', '|', 'ɾ', 'l', '|', 'ɭʲ'] ) # check that offsets are actually correct for char # 0-1 is 11, 1-4 is 5, 4-6 is first 15, 6-7 is <pad> (thus not shown), 7-9 is second 15, 9-10 is word_delimiter_token, # 10-11 is <pad> (thus not shown), 11-12 is third 15, 12-15 is 8, 15-16 is word_delimiter_token, 16-17 is 98 self.assertListEqual( self.get_from_offsets(outputs['char_offsets'] , 'start_offset' ) , [0, 1, 4, 7, 9, 11, 12, 15, 16] ) self.assertListEqual( self.get_from_offsets(outputs['char_offsets'] , 'end_offset' ) , [1, 4, 6, 9, 10, 12, 15, 16, 17] ) def A_ ( self : Union[str, Any] ) -> str: '''simple docstring''' __snake_case : Union[str, Any] = self.get_tokenizer(word_delimiter_token='|' ) def check_list_tuples_equal(__a : int , __a : Union[str, Any] ): self.assertTrue(isinstance(__a , __a ) ) self.assertTrue(isinstance(outputs_list[0] , __a ) ) # transform list to ModelOutput __snake_case : Optional[int] = WavaVecaPhonemeCTCTokenizerOutput( {k: [d[k] for d in outputs_list] for k in outputs_list[0]} ) self.assertListEqual(outputs_batch['text'] , outputs_batch_a['text'] ) def recursive_check(__a : Any , __a : str ): if isinstance(__a , __a ): [recursive_check(__a , __a ) for la, la in zip(__a , __a )] self.assertEqual(__a , __a ) if "char_offsets" in outputs_batch: recursive_check(outputs_batch['char_offsets'] , outputs_batch_a['char_offsets'] ) # fmt: off __snake_case : int = [ [11, 5, 15, tokenizer.pad_token_id, 15, 4, 8, 98, 32, 32, 32, 32, 4, 33, tokenizer.word_delimiter_token_id, 32, 32, 33, 34, 34], [24, 22, 5, tokenizer.word_delimiter_token_id, tokenizer.word_delimiter_token_id, 24, 22, 22, 22, 4, 5, 77, tokenizer.pad_token_id, 22, 22, 4, 34, 34, 34, 34], ] # fmt: on # We assume that `decode` works as expected. All we will check now is # the output type is correct and the output is identical to `decode` # char __snake_case : List[str] = tokenizer.batch_decode(__a , output_char_offsets=__a ) __snake_case : str = [tokenizer.decode(__a , output_char_offsets=__a ) for ids in sample_ids] check_list_tuples_equal(__a , __a ) @unittest.skip('Wav2Vec2PhonemeTokenizer always lower cases letters to correctly map to phonemes' ) def A_ ( self : Any ) -> Optional[int]: '''simple docstring''' pass @unittest.skip('Wav2Vec2PhonemeTokenizer always puts spaces between phonemes' ) def A_ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip('encodes to text to ids, but decodes ids to phonemes -> not possible to have internal consistency' ) def A_ ( self : str ) -> Dict: '''simple docstring''' pass @unittest.skip('Wav2Vec2PhonemeModel has no max model length => no testing' ) def A_ ( self : Tuple ) -> Optional[Any]: '''simple docstring''' pass def A_ ( self : Optional[int] ) -> str: '''simple docstring''' __snake_case : int = self.get_tokenizers(do_lower_case=__a ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __snake_case : int = tokenizer.vocab_size __snake_case : List[Any] = len(__a ) self.assertNotEqual(__a , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) __snake_case : Optional[Any] = ['aaaaa bbbbbb', 'cccccccccdddddddd'] __snake_case : Optional[int] = tokenizer.add_tokens(__a ) __snake_case : Optional[int] = tokenizer.vocab_size __snake_case : Tuple = len(__a ) self.assertNotEqual(__a , 0 ) self.assertEqual(__a , __a ) self.assertEqual(__a , len(__a ) ) self.assertEqual(__a , all_size + len(__a ) ) __snake_case : Optional[int] = tokenizer.encode('aaaaa bbbbbb low cccccccccdddddddd l' , add_special_tokens=__a ) self.assertGreaterEqual(len(__a ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) __snake_case : Tuple = {'eos_token': '>>>>|||<||<<|<<', 'pad_token': '<<<<<|||>|>>>>|>'} __snake_case : Optional[Any] = tokenizer.add_special_tokens(__a ) __snake_case : int = tokenizer.vocab_size __snake_case : Any = len(__a ) self.assertNotEqual(__a , 0 ) self.assertEqual(__a , __a ) self.assertEqual(__a , len(__a ) ) self.assertEqual(__a , all_size_a + len(__a ) ) __snake_case : List[str] = tokenizer.encode( '>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l' , add_special_tokens=__a ) self.assertGreaterEqual(len(__a ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) @unittest.skip('The tokenizer shouldn\'t be used to encode input IDs (except for labels), only to decode.' ) def A_ ( self : Dict ) -> List[str]: '''simple docstring''' pass @unittest.skip('The tokenizer shouldn\'t be used to encode input IDs (except for labels), only to decode.' ) def A_ ( self : str ) -> Any: '''simple docstring''' pass def A_ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' # The default common tokenizer tests assumes that the output of `convert_tokens_to_string` is a string which # is not the case for Wav2Vec2PhonemeCTCTokenizer. __snake_case : Optional[int] = self.get_tokenizers(fast=__a , do_lower_case=__a ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __snake_case : Union[str, Any] = ['ð', 'ɪ', 's', 'ɪ', 'z', 'ɐ', 't', 'ɛ', 'k', 's', 't'] __snake_case : List[Any] = tokenizer.convert_tokens_to_string(__a ) self.assertIsInstance(output['text'] , __a )
286
1
import time import warnings from abc import ABC from copy import deepcopy from typing import Optional import torch from ..utils import add_start_docstrings, logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = R""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) scores (`torch.FloatTensor` of shape `(batch_size, config.vocab_size)`): Prediction scores of a language modeling head. These can be scores for each vocabulary token before SoftMax or scores for each vocabulary token after SoftMax. kwargs (`Dict[str, Any]`, *optional*): Additional stopping criteria specific kwargs. Return: `bool`. `False` indicates we should continue, `True` indicates we should stop. """ class _lowerCAmelCase ( _lowercase ): @add_start_docstrings(__UpperCAmelCase ) def __call__( self , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ): raise NotImplementedError('''StoppingCriteria needs to be subclassed''' ) class _lowerCAmelCase ( _lowercase ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase = None ): lowerCAmelCase__ : Dict = max_length lowerCAmelCase__ : Optional[int] = max_position_embeddings @add_start_docstrings(__UpperCAmelCase ) def __call__( self , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ): lowerCAmelCase__ : Dict = input_ids.shape[-1] lowerCAmelCase__ : Any = cur_len >= self.max_length if self.max_position_embeddings is not None and not is_done and cur_len >= self.max_position_embeddings: logger.warning_once( '''This is a friendly reminder - the current text generation call will exceed the model\'s predefined ''' f"""maximum length ({self.max_position_embeddings}). Depending on the model, you may observe """ '''exceptions, performance degradation, or nothing at all.''' ) return is_done class _lowerCAmelCase ( _lowercase ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase ): warnings.warn( '''The class `MaxNewTokensCriteria` is deprecated. ''' f"""Please use `MaxLengthCriteria(max_length={start_length + max_new_tokens})` """ '''with `max_length = start_length + max_new_tokens` instead.''' , __UpperCAmelCase , ) lowerCAmelCase__ : int = start_length lowerCAmelCase__ : List[str] = max_new_tokens lowerCAmelCase__ : Dict = start_length + max_new_tokens @add_start_docstrings(__UpperCAmelCase ) def __call__( self , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ): return input_ids.shape[-1] >= self.max_length class _lowerCAmelCase ( _lowercase ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase = None ): lowerCAmelCase__ : Any = max_time lowerCAmelCase__ : int = time.time() if initial_timestamp is None else initial_timestamp @add_start_docstrings(__UpperCAmelCase ) def __call__( self , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ): return time.time() - self.initial_timestamp > self.max_time class _lowerCAmelCase ( _lowercase ): @add_start_docstrings(__UpperCAmelCase ) def __call__( self , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ): return any(criteria(__UpperCAmelCase , __UpperCAmelCase ) for criteria in self ) @property def __magic_name__( self ): for stopping_criterium in self: if isinstance(__UpperCAmelCase , __UpperCAmelCase ): return stopping_criterium.max_length elif isinstance(__UpperCAmelCase , __UpperCAmelCase ): return stopping_criterium.max_length return None def __lowerCAmelCase ( UpperCamelCase , UpperCamelCase ) -> StoppingCriteriaList: lowerCAmelCase__ : Tuple = stopping_criteria.max_length lowerCAmelCase__ : Optional[int] = deepcopy(SCREAMING_SNAKE_CASE_ ) if stopping_max_length is not None and stopping_max_length != max_length: warnings.warn('''You set different `max_length` for stopping criteria and `max_length` parameter''' , SCREAMING_SNAKE_CASE_ ) elif stopping_max_length is None: new_stopping_criteria.append(MaxLengthCriteria(max_length=SCREAMING_SNAKE_CASE_ ) ) return new_stopping_criteria
703
import baseaa import io import json import os from copy import deepcopy from ..optimizer import AcceleratedOptimizer from ..scheduler import AcceleratedScheduler class _lowerCAmelCase : def __init__( self , __UpperCAmelCase ): if isinstance(__UpperCAmelCase , __UpperCAmelCase ): # Don't modify user's data should they want to reuse it (e.g. in tests), because once we # modified it, it will not be accepted here again, since `auto` values would have been overridden lowerCAmelCase__ : Union[str, Any] = deepcopy(__UpperCAmelCase ) elif os.path.exists(__UpperCAmelCase ): with io.open(__UpperCAmelCase , '''r''' , encoding='''utf-8''' ) as f: lowerCAmelCase__ : int = json.load(__UpperCAmelCase ) else: try: lowerCAmelCase__ : Union[str, Any] = baseaa.urlsafe_baadecode(__UpperCAmelCase ).decode('''utf-8''' ) lowerCAmelCase__ : Optional[int] = json.loads(__UpperCAmelCase ) except (UnicodeDecodeError, AttributeError, ValueError): raise ValueError( f"""Expected a string path to an existing deepspeed config, or a dictionary, or a base64 encoded string. Received: {config_file_or_dict}""" ) lowerCAmelCase__ : Optional[Any] = config self.set_stage_and_offload() def __magic_name__( self ): # zero stage - this is done as early as possible, before model is created, to allow # ``is_deepspeed_zero3_enabled`` query and getting to the early deepspeed config object # during ``zero.Init()`` which needs to know the dtype, and some other hparams. lowerCAmelCase__ : Optional[Any] = self.get_value('''zero_optimization.stage''' , -1 ) # offload lowerCAmelCase__ : Dict = False if self.is_zeroa() or self.is_zeroa(): lowerCAmelCase__ : Dict = set(['''cpu''', '''nvme'''] ) lowerCAmelCase__ : Optional[Any] = set( [ self.get_value('''zero_optimization.offload_optimizer.device''' ), self.get_value('''zero_optimization.offload_param.device''' ), ] ) if len(offload_devices & offload_devices_valid ) > 0: lowerCAmelCase__ : List[Any] = True def __magic_name__( self , __UpperCAmelCase ): lowerCAmelCase__ : int = self.config # find the config node of interest if it exists lowerCAmelCase__ : Tuple = ds_key_long.split('''.''' ) lowerCAmelCase__ : int = nodes.pop() for node in nodes: lowerCAmelCase__ : int = config.get(__UpperCAmelCase ) if config is None: return None, ds_key return config, ds_key def __magic_name__( self , __UpperCAmelCase , __UpperCAmelCase=None ): lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = self.find_config_node(__UpperCAmelCase ) if config is None: return default return config.get(__UpperCAmelCase , __UpperCAmelCase ) def __magic_name__( self , __UpperCAmelCase , __UpperCAmelCase=False ): lowerCAmelCase__ : Dict = self.config # find the config node of interest if it exists lowerCAmelCase__ : str = ds_key_long.split('''.''' ) for node in nodes: lowerCAmelCase__ : Dict = config lowerCAmelCase__ : List[str] = config.get(__UpperCAmelCase ) if config is None: if must_exist: raise ValueError(f"""Can't find {ds_key_long} entry in the config: {self.config}""" ) else: return # if found remove it if parent_config is not None: parent_config.pop(__UpperCAmelCase ) def __magic_name__( self , __UpperCAmelCase ): lowerCAmelCase__ : Union[str, Any] = self.get_value(__UpperCAmelCase ) return False if value is None else bool(__UpperCAmelCase ) def __magic_name__( self , __UpperCAmelCase ): lowerCAmelCase__ : Optional[Any] = self.get_value(__UpperCAmelCase ) return False if value is None else not bool(__UpperCAmelCase ) def __magic_name__( self ): return self._stage == 2 def __magic_name__( self ): return self._stage == 3 def __magic_name__( self ): return self._offload class _lowerCAmelCase : def __init__( self , __UpperCAmelCase ): lowerCAmelCase__ : int = engine def __magic_name__( self , __UpperCAmelCase , **__UpperCAmelCase ): # runs backpropagation and handles mixed precision self.engine.backward(__UpperCAmelCase , **__UpperCAmelCase ) # Deepspeed's `engine.step` performs the following operations: # - gradient accumulation check # - gradient clipping # - optimizer step # - zero grad # - checking overflow # - lr_scheduler step (only if engine.lr_scheduler is not None) self.engine.step() # and this plugin overrides the above calls with no-ops when Accelerate runs under # Deepspeed, but allows normal functionality for non-Deepspeed cases thus enabling a simple # training loop that works transparently under many training regimes. class _lowerCAmelCase ( _lowercase ): def __init__( self , __UpperCAmelCase ): super().__init__(__UpperCAmelCase , device_placement=__UpperCAmelCase , scaler=__UpperCAmelCase ) lowerCAmelCase__ : Optional[int] = hasattr(self.optimizer , '''overflow''' ) def __magic_name__( self , __UpperCAmelCase=None ): pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed def __magic_name__( self ): pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed @property def __magic_name__( self ): if self.__has_overflow__: return self.optimizer.overflow return False class _lowerCAmelCase ( _lowercase ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase ): super().__init__(__UpperCAmelCase , __UpperCAmelCase ) def __magic_name__( self ): pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed class _lowerCAmelCase : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=0.001 , __UpperCAmelCase=0 , **__UpperCAmelCase ): lowerCAmelCase__ : Any = params lowerCAmelCase__ : str = lr lowerCAmelCase__ : List[str] = weight_decay lowerCAmelCase__ : Dict = kwargs class _lowerCAmelCase : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=0 , **__UpperCAmelCase ): lowerCAmelCase__ : Union[str, Any] = optimizer lowerCAmelCase__ : Optional[Any] = total_num_steps lowerCAmelCase__ : str = warmup_num_steps lowerCAmelCase__ : Dict = kwargs
470
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) a_ : str = { '''configuration_speech_to_text''': ['''SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Speech2TextConfig'''], '''processing_speech_to_text''': ['''Speech2TextProcessor'''], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Optional[Any] = ['''Speech2TextTokenizer'''] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Union[str, Any] = ['''Speech2TextFeatureExtractor'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Dict = [ '''TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFSpeech2TextForConditionalGeneration''', '''TFSpeech2TextModel''', '''TFSpeech2TextPreTrainedModel''', ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : str = [ '''SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Speech2TextForConditionalGeneration''', '''Speech2TextModel''', '''Speech2TextPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys a_ : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
594
"""simple docstring""" from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __lowercase( lowercase__ ): '''simple docstring''' __a : List[Any] = ['image_processor', 'tokenizer'] __a : List[Any] = 'BlipImageProcessor' __a : str = ('BertTokenizer', 'BertTokenizerFast') def __init__( self , __a , __a ): __lowerCamelCase : str = False super().__init__(__a , __a ) __lowerCamelCase : Union[str, Any] = self.image_processor def __call__( self , __a = None , __a = None , __a = True , __a = False , __a = None , __a = None , __a = 0 , __a = None , __a = None , __a = False , __a = False , __a = False , __a = False , __a = False , __a = True , __a = None , **__a , ): if images is None and text is None: raise ValueError('You have to specify either images or text.' ) # Get only text if images is None: __lowerCamelCase : List[Any] = self.tokenizer __lowerCamelCase : List[str] = self.tokenizer( text=__a , add_special_tokens=__a , padding=__a , truncation=__a , max_length=__a , stride=__a , pad_to_multiple_of=__a , return_attention_mask=__a , return_overflowing_tokens=__a , return_special_tokens_mask=__a , return_offsets_mapping=__a , return_token_type_ids=__a , return_length=__a , verbose=__a , return_tensors=__a , **__a , ) return text_encoding # add pixel_values __lowerCamelCase : Any = self.image_processor(__a , return_tensors=__a ) if text is not None: __lowerCamelCase : Tuple = self.tokenizer( text=__a , add_special_tokens=__a , padding=__a , truncation=__a , max_length=__a , stride=__a , pad_to_multiple_of=__a , return_attention_mask=__a , return_overflowing_tokens=__a , return_special_tokens_mask=__a , return_offsets_mapping=__a , return_token_type_ids=__a , return_length=__a , verbose=__a , return_tensors=__a , **__a , ) else: __lowerCamelCase : Union[str, Any] = None if text_encoding is not None: encoding_image_processor.update(__a ) return encoding_image_processor def snake_case_ ( self , *__a , **__a ): return self.tokenizer.batch_decode(*__a , **__a ) def snake_case_ ( self , *__a , **__a ): return self.tokenizer.decode(*__a , **__a ) @property def snake_case_ ( self ): __lowerCamelCase : Dict = self.tokenizer.model_input_names __lowerCamelCase : Optional[int] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
594
1
"""simple docstring""" from collections import deque from .hash_table import HashTable class __A (_UpperCAmelCase): '''simple docstring''' def __init__( self : Union[str, Any] , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Tuple ) ->Dict: """simple docstring""" super().__init__(*lowercase_ , **lowercase_ ) def lowerCAmelCase ( self : List[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : int ) ->Union[str, Any]: """simple docstring""" snake_case_ = deque([] ) if self.values[key] is None else self.values[key] self.values[key].appendleft(lowercase_ ) snake_case_ = self.values[key] def lowerCAmelCase ( self : Tuple ) ->Dict: """simple docstring""" return ( sum(self.charge_factor - len(lowercase_ ) for slot in self.values ) / self.size_table * self.charge_factor ) def lowerCAmelCase ( self : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : str=None ) ->Dict: """simple docstring""" if not ( len(self.values[key] ) == self.charge_factor and self.values.count(lowercase_ ) == 0 ): return key return super()._collision_resolution(lowercase_ , lowercase_ )
707
"""simple docstring""" import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __A : '''simple docstring''' def __init__( self : Optional[int] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[int]=13 , UpperCAmelCase_ : str=32 , UpperCAmelCase_ : List[Any]=3 , UpperCAmelCase_ : Optional[Any]=4 , UpperCAmelCase_ : Dict=[10, 20, 30, 40] , UpperCAmelCase_ : List[Any]=[2, 2, 3, 2] , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Any=37 , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : Optional[int]=10 , UpperCAmelCase_ : Dict=0.02 , UpperCAmelCase_ : int=["stage2", "stage3", "stage4"] , UpperCAmelCase_ : Optional[int]=[2, 3, 4] , UpperCAmelCase_ : List[str]=None , ) ->Union[str, Any]: """simple docstring""" snake_case_ = parent snake_case_ = batch_size snake_case_ = image_size snake_case_ = num_channels snake_case_ = num_stages snake_case_ = hidden_sizes snake_case_ = depths snake_case_ = is_training snake_case_ = use_labels snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = num_labels snake_case_ = initializer_range snake_case_ = out_features snake_case_ = out_indices snake_case_ = scope def lowerCAmelCase ( self : List[str] ) ->str: """simple docstring""" snake_case_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size] , self.num_labels ) snake_case_ = self.get_config() return config, pixel_values, labels def lowerCAmelCase ( self : Dict ) ->Optional[int]: """simple docstring""" return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=UpperCAmelCase_ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def lowerCAmelCase ( self : List[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any] ) ->List[Any]: """simple docstring""" snake_case_ = ConvNextVaModel(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() snake_case_ = model(UpperCAmelCase_ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowerCAmelCase ( self : List[str] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[Any] ) ->Any: """simple docstring""" snake_case_ = ConvNextVaForImageClassification(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() snake_case_ = model(UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase ( self : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[str, Any] ) ->Tuple: """simple docstring""" snake_case_ = ConvNextVaBackbone(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() snake_case_ = model(UpperCAmelCase_ ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None snake_case_ = None snake_case_ = ConvNextVaBackbone(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() snake_case_ = model(UpperCAmelCase_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def lowerCAmelCase ( self : Optional[int] ) ->List[str]: """simple docstring""" snake_case_ = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ = config_and_inputs snake_case_ = {"""pixel_values""": pixel_values} return config, inputs_dict def lowerCAmelCase ( self : List[str] ) ->Union[str, Any]: """simple docstring""" snake_case_ = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ = config_and_inputs snake_case_ = {"""pixel_values""": pixel_values, """labels""": labels} return config, inputs_dict @require_torch class __A (snake_case__ , snake_case__ , unittest.TestCase): '''simple docstring''' __lowercase: Optional[Any] = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) __lowercase: Union[str, Any] = ( {"""feature-extraction""": ConvNextVaModel, """image-classification""": ConvNextVaForImageClassification} if is_torch_available() else {} ) __lowercase: Union[str, Any] = False __lowercase: Optional[Any] = False __lowercase: Any = False __lowercase: Union[str, Any] = False __lowercase: Dict = False def lowerCAmelCase ( self : Union[str, Any] ) ->Tuple: """simple docstring""" snake_case_ = ConvNextVaModelTester(self ) snake_case_ = ConfigTester(self , config_class=UpperCAmelCase_ , has_text_modality=UpperCAmelCase_ , hidden_size=37 ) def lowerCAmelCase ( self : List[Any] ) ->Optional[Any]: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCAmelCase ( self : str ) ->Optional[Any]: """simple docstring""" return @unittest.skip(reason="""ConvNextV2 does not use inputs_embeds""" ) def lowerCAmelCase ( self : Optional[int] ) ->Union[str, Any]: """simple docstring""" pass @unittest.skip(reason="""ConvNextV2 does not support input and output embeddings""" ) def lowerCAmelCase ( self : Optional[Any] ) ->List[str]: """simple docstring""" pass @unittest.skip(reason="""ConvNextV2 does not use feedforward chunking""" ) def lowerCAmelCase ( self : Optional[int] ) ->List[str]: """simple docstring""" pass def lowerCAmelCase ( self : Dict ) ->Optional[int]: """simple docstring""" if not self.model_tester.is_training: return for model_class in self.all_model_classes: snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_with_labels() snake_case_ = True if model_class.__name__ in [ *get_values(UpperCAmelCase_ ), *get_values(UpperCAmelCase_ ), ]: continue snake_case_ = model_class(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.train() snake_case_ = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ , return_labels=UpperCAmelCase_ ) snake_case_ = model(**UpperCAmelCase_ ).loss loss.backward() def lowerCAmelCase ( self : Optional[int] ) ->Any: """simple docstring""" if not self.model_tester.is_training: return for model_class in self.all_model_classes: snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_with_labels() snake_case_ = False snake_case_ = True if ( model_class.__name__ in [*get_values(UpperCAmelCase_ ), *get_values(UpperCAmelCase_ )] or not model_class.supports_gradient_checkpointing ): continue snake_case_ = model_class(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.gradient_checkpointing_enable() model.train() snake_case_ = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ , return_labels=UpperCAmelCase_ ) snake_case_ = model(**UpperCAmelCase_ ).loss loss.backward() def lowerCAmelCase ( self : List[Any] ) ->Union[str, Any]: """simple docstring""" snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = model_class(UpperCAmelCase_ ) snake_case_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case_ = [*signature.parameters.keys()] snake_case_ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCAmelCase_ ) def lowerCAmelCase ( self : Optional[int] ) ->Union[str, Any]: """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def lowerCAmelCase ( self : Optional[Any] ) ->Dict: """simple docstring""" def check_hidden_states_output(UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : str ): snake_case_ = model_class(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() with torch.no_grad(): snake_case_ = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) ) snake_case_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states snake_case_ = self.model_tester.num_stages self.assertEqual(len(UpperCAmelCase_ ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = True check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case_ = True check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) def lowerCAmelCase ( self : Union[str, Any] ) ->Dict: """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase_ ) @slow def lowerCAmelCase ( self : Tuple ) ->str: """simple docstring""" for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ = ConvNextVaModel.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) def _a ( ) -> str: snake_case_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class __A (unittest.TestCase): '''simple docstring''' @cached_property def lowerCAmelCase ( self : Union[str, Any] ) ->Optional[int]: """simple docstring""" return AutoImageProcessor.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ) if is_vision_available() else None @slow def lowerCAmelCase ( self : Tuple ) ->int: """simple docstring""" snake_case_ = ConvNextVaForImageClassification.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ).to(UpperCAmelCase_ ) snake_case_ = self.default_image_processor snake_case_ = prepare_img() snake_case_ = preprocessor(images=UpperCAmelCase_ , return_tensors="""pt""" ).to(UpperCAmelCase_ ) # forward pass with torch.no_grad(): snake_case_ = model(**UpperCAmelCase_ ) # verify the logits snake_case_ = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase_ ) snake_case_ = torch.tensor([0.9_996, 0.1_966, -0.4_386] ).to(UpperCAmelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase_ , atol=1E-4 ) )
2
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = '▁' __UpperCAmelCase = {'vocab_file': 'sentencepiece.bpe.model'} __UpperCAmelCase = { 'vocab_file': { 'facebook/mbart-large-en-ro': ( 'https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model' ), 'facebook/mbart-large-cc25': ( 'https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model' ), } } __UpperCAmelCase = { 'facebook/mbart-large-en-ro': 1024, 'facebook/mbart-large-cc25': 1024, } # fmt: off __UpperCAmelCase = ['ar_AR', 'cs_CZ', 'de_DE', 'en_XX', 'es_XX', 'et_EE', 'fi_FI', 'fr_XX', 'gu_IN', 'hi_IN', 'it_IT', 'ja_XX', 'kk_KZ', 'ko_KR', 'lt_LT', 'lv_LV', 'my_MM', 'ne_NP', 'nl_XX', 'ro_RO', 'ru_RU', 'si_LK', 'tr_TR', 'vi_VN', 'zh_CN'] class lowerCamelCase (_snake_case ): '''simple docstring''' _snake_case : List[str] = VOCAB_FILES_NAMES _snake_case : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP _snake_case : int = ['''input_ids''', '''attention_mask'''] _snake_case : List[int] = [] _snake_case : List[int] = [] def __init__( self , _UpperCamelCase , _UpperCamelCase="<s>" , _UpperCamelCase="</s>" , _UpperCamelCase="</s>" , _UpperCamelCase="<s>" , _UpperCamelCase="<unk>" , _UpperCamelCase="<pad>" , _UpperCamelCase="<mask>" , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase = None , _UpperCamelCase=None , **_UpperCamelCase , ) -> Tuple: # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase_ : str = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else mask_token UpperCAmelCase_ : Any = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_UpperCamelCase , eos_token=_UpperCamelCase , unk_token=_UpperCamelCase , sep_token=_UpperCamelCase , cls_token=_UpperCamelCase , pad_token=_UpperCamelCase , mask_token=_UpperCamelCase , tokenizer_file=_UpperCamelCase , src_lang=_UpperCamelCase , tgt_lang=_UpperCamelCase , additional_special_tokens=_UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCamelCase , ) UpperCAmelCase_ : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_UpperCamelCase ) ) UpperCAmelCase_ : Any = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token UpperCAmelCase_ : Optional[Any] = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab UpperCAmelCase_ : List[str] = 1 UpperCAmelCase_ : Union[str, Any] = len(self.sp_model ) UpperCAmelCase_ : Optional[int] = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(_UpperCamelCase ) } UpperCAmelCase_ : Dict = {v: k for k, v in self.lang_code_to_id.items()} UpperCAmelCase_ : List[str] = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) UpperCAmelCase_ : Optional[int] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} UpperCAmelCase_ : Optional[int] = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) UpperCAmelCase_ : Optional[int] = src_lang if src_lang is not None else 'en_XX' UpperCAmelCase_ : Dict = self.lang_code_to_id[self._src_lang] UpperCAmelCase_ : int = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self ) -> Union[str, Any]: UpperCAmelCase_ : List[str] = self.__dict__.copy() UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Optional[Any] = self.sp_model.serialized_model_proto() return state def __setstate__( self , _UpperCamelCase ) -> Union[str, Any]: UpperCAmelCase_ : Union[str, Any] = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): UpperCAmelCase_ : Any = {} UpperCAmelCase_ : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def __UpperCAmelCase ( self ) -> List[str]: return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def __UpperCAmelCase ( self ) -> str: return self._src_lang @src_lang.setter def __UpperCAmelCase ( self , _UpperCamelCase ) -> None: UpperCAmelCase_ : Optional[Any] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCamelCase , token_ids_a=_UpperCamelCase , already_has_special_tokens=_UpperCamelCase ) UpperCAmelCase_ : int = [1] * len(self.prefix_tokens ) UpperCAmelCase_ : Tuple = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(_UpperCamelCase )) + suffix_ones return prefix_ones + ([0] * len(_UpperCamelCase )) + ([0] * len(_UpperCamelCase )) + suffix_ones def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = None ) -> List[int]: UpperCAmelCase_ : Optional[int] = [self.sep_token_id] UpperCAmelCase_ : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , **_UpperCamelCase ) -> Optional[Any]: if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) UpperCAmelCase_ : Any = src_lang UpperCAmelCase_ : int = self(_UpperCamelCase , add_special_tokens=_UpperCamelCase , return_tensors=_UpperCamelCase , **_UpperCamelCase ) UpperCAmelCase_ : Any = self.convert_tokens_to_ids(_UpperCamelCase ) UpperCAmelCase_ : Union[str, Any] = tgt_lang_id return inputs def __UpperCAmelCase ( self ) -> str: UpperCAmelCase_ : Tuple = {self.convert_ids_to_tokens(_UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __UpperCAmelCase ( self , _UpperCamelCase ) -> List[str]: return self.sp_model.encode(_UpperCamelCase , out_type=_UpperCamelCase ) def __UpperCAmelCase ( self , _UpperCamelCase ) -> Dict: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCAmelCase_ : List[Any] = self.sp_model.PieceToId(_UpperCamelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __UpperCAmelCase ( self , _UpperCamelCase ) -> Union[str, Any]: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __UpperCAmelCase ( self , _UpperCamelCase ) -> int: UpperCAmelCase_ : Tuple = ''.join(_UpperCamelCase ).replace(_UpperCamelCase , ' ' ).strip() return out_string def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = None ) -> Tuple[str]: if not os.path.isdir(_UpperCamelCase ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return UpperCAmelCase_ : List[str] = os.path.join( _UpperCamelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_UpperCamelCase , 'wb' ) as fi: UpperCAmelCase_ : int = self.sp_model.serialized_model_proto() fi.write(_UpperCamelCase ) return (out_vocab_file,) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = "en_XX" , _UpperCamelCase = None , _UpperCamelCase = "ro_RO" , **_UpperCamelCase , ) -> BatchEncoding: UpperCAmelCase_ : List[str] = src_lang UpperCAmelCase_ : List[Any] = tgt_lang return super().prepare_seqaseq_batch(_UpperCamelCase , _UpperCamelCase , **_UpperCamelCase ) def __UpperCAmelCase ( self ) -> Union[str, Any]: return self.set_src_lang_special_tokens(self.src_lang ) def __UpperCAmelCase ( self ) -> List[str]: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __UpperCAmelCase ( self , _UpperCamelCase ) -> None: UpperCAmelCase_ : Optional[Any] = self.lang_code_to_id[src_lang] UpperCAmelCase_ : int = [] UpperCAmelCase_ : Optional[int] = [self.eos_token_id, self.cur_lang_code] def __UpperCAmelCase ( self , _UpperCamelCase ) -> None: UpperCAmelCase_ : List[str] = self.lang_code_to_id[lang] UpperCAmelCase_ : List[str] = [] UpperCAmelCase_ : Any = [self.eos_token_id, self.cur_lang_code]
406
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCAmelCase = { 'configuration_table_transformer': [ 'TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TableTransformerConfig', 'TableTransformerOnnxConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TableTransformerForObjectDetection', 'TableTransformerModel', 'TableTransformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TableTransformerConfig, TableTransformerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TableTransformerForObjectDetection, TableTransformerModel, TableTransformerPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
406
1
'''simple docstring''' import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch a_ = logging.get_logger(__name__) class UpperCAmelCase_ : def __init__( self , lowercase_ = None , lowercase_ = None , lowercase_=None , lowercase_=None): if not conversation_id: snake_case_ : Union[str, Any] = uuid.uuida() if past_user_inputs is None: snake_case_ : Tuple = [] if generated_responses is None: snake_case_ : str = [] snake_case_ : uuid.UUID = conversation_id snake_case_ : List[str] = past_user_inputs snake_case_ : List[str] = generated_responses snake_case_ : Optional[str] = text def __eq__( self , lowercase_): if not isinstance(lowercase_ , lowercase_): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def snake_case__ ( self , lowercase_ , lowercase_ = False): if self.new_user_input: if overwrite: logger.warning( F'User input added while unprocessed input was existing: "{self.new_user_input}" was overwritten ' F'with: "{text}".') snake_case_ : Union[str, Any] = text else: logger.warning( F'User input added while unprocessed input was existing: "{self.new_user_input}" new input ' F'ignored: "{text}". Set `overwrite` to True to overwrite unprocessed user input') else: snake_case_ : Dict = text def snake_case__ ( self): if self.new_user_input: self.past_user_inputs.append(self.new_user_input) snake_case_ : Tuple = None def snake_case__ ( self , lowercase_): self.generated_responses.append(lowercase_) def snake_case__ ( self): for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self): snake_case_ : int = F'Conversation id: {self.uuid} \n' for is_user, text in self.iter_texts(): snake_case_ : Optional[int] = "user" if is_user else "bot" output += F'{name} >> {text} \n' return output @add_end_docstrings( snake_case__ , R""" min_length_for_response (`int`, *optional*, defaults to 32): The minimum length (in number of tokens) for a response. minimum_tokens (`int`, *optional*, defaults to 10): The minimum length of tokens to leave for a response. """ , ) class UpperCAmelCase_ ( snake_case__ ): def __init__( self , *lowercase_ , **lowercase_): super().__init__(*lowercase_ , **lowercase_) if self.tokenizer.pad_token_id is None: snake_case_ : Any = self.tokenizer.eos_token def snake_case__ ( self , lowercase_=None , lowercase_=None , lowercase_=None , **lowercase_): snake_case_ : int = {} snake_case_ : Optional[Any] = {} snake_case_ : List[str] = {} if min_length_for_response is not None: snake_case_ : List[Any] = min_length_for_response if minimum_tokens is not None: snake_case_ : Optional[int] = minimum_tokens if "max_length" in generate_kwargs: snake_case_ : str = generate_kwargs["max_length"] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: snake_case_ : Union[str, Any] = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(lowercase_) return preprocess_params, forward_params, postprocess_params def __call__( self , lowercase_ , lowercase_=0 , **lowercase_): snake_case_ : Optional[Any] = super().__call__(lowercase_ , num_workers=lowercase_ , **lowercase_) if isinstance(lowercase_ , lowercase_) and len(lowercase_) == 1: return outputs[0] return outputs def snake_case__ ( self , lowercase_ , lowercase_=32): if not isinstance(lowercase_ , lowercase_): raise ValueError("ConversationalPipeline, expects Conversation as inputs") if conversation.new_user_input is None: raise ValueError( F'Conversation with UUID {type(conversation.uuid)} does not contain new user input to process. ' "Add user inputs with the conversation's `add_user_input` method") if hasattr(self.tokenizer , "_build_conversation_input_ids"): snake_case_ : List[Any] = self.tokenizer._build_conversation_input_ids(lowercase_) else: # If the tokenizer cannot handle conversations, we default to only the old version snake_case_ : Union[str, Any] = self._legacy_parse_and_tokenize(lowercase_) if self.framework == "pt": snake_case_ : Any = torch.LongTensor([input_ids]) elif self.framework == "tf": snake_case_ : Any = tf.constant([input_ids]) return {"input_ids": input_ids, "conversation": conversation} def snake_case__ ( self , lowercase_ , lowercase_=10 , **lowercase_): snake_case_ : Tuple = generate_kwargs.get("max_length" , self.model.config.max_length) snake_case_ : str = model_inputs["input_ids"].shape[1] if max_length - minimum_tokens < n: logger.warning(F'Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})') snake_case_ : Optional[int] = max_length - minimum_tokens snake_case_ : List[str] = model_inputs["input_ids"][:, -trim:] if "attention_mask" in model_inputs: snake_case_ : Optional[Any] = model_inputs["attention_mask"][:, -trim:] snake_case_ : List[str] = model_inputs.pop("conversation") snake_case_ : Optional[Any] = max_length snake_case_ : Tuple = self.model.generate(**lowercase_ , **lowercase_) if self.model.config.is_encoder_decoder: snake_case_ : str = 1 else: snake_case_ : int = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def snake_case__ ( self , lowercase_ , lowercase_=True): snake_case_ : List[Any] = model_outputs["output_ids"] snake_case_ : str = self.tokenizer.decode( output_ids[0] , skip_special_tokens=lowercase_ , clean_up_tokenization_spaces=lowercase_ , ) snake_case_ : Tuple = model_outputs["conversation"] conversation.mark_processed() conversation.append_response(lowercase_) return conversation def snake_case__ ( self , lowercase_): snake_case_ : str = self.tokenizer.eos_token_id snake_case_ : Optional[int] = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(lowercase_ , add_special_tokens=lowercase_) + [eos_token_id]) else: input_ids.extend(self.tokenizer.encode(lowercase_ , add_special_tokens=lowercase_)) if len(lowercase_) > self.tokenizer.model_max_length: snake_case_ : Optional[int] = input_ids[-self.tokenizer.model_max_length :] return input_ids
92
'''simple docstring''' from __future__ import annotations from collections.abc import Callable from typing import Generic, TypeVar a_ = TypeVar("T") a_ = TypeVar("U") class UpperCAmelCase_ ( Generic[T, U] ): def __init__( self , lowercase_ , lowercase_): snake_case_ : Any = key snake_case_ : List[Any] = val snake_case_ : DoubleLinkedListNode[T, U] | None = None snake_case_ : DoubleLinkedListNode[T, U] | None = None def __repr__( self): return ( F'Node: key: {self.key}, val: {self.val}, ' F'has next: {bool(self.next)}, has prev: {bool(self.prev)}' ) class UpperCAmelCase_ ( Generic[T, U] ): def __init__( self): snake_case_ : DoubleLinkedListNode[T, U] = DoubleLinkedListNode(lowercase_ , lowercase_) snake_case_ : DoubleLinkedListNode[T, U] = DoubleLinkedListNode(lowercase_ , lowercase_) snake_case_ , snake_case_ : Union[str, Any] = self.rear, self.head def __repr__( self): snake_case_ : Dict = ["DoubleLinkedList"] snake_case_ : Dict = self.head while node.next is not None: rep.append(str(lowercase_)) snake_case_ : List[str] = node.next rep.append(str(self.rear)) return ",\n ".join(lowercase_) def snake_case__ ( self , lowercase_): snake_case_ : List[str] = self.rear.prev # All nodes other than self.head are guaranteed to have non-None previous assert previous is not None snake_case_ : Tuple = node snake_case_ : str = previous snake_case_ : Optional[Any] = node snake_case_ : Any = self.rear def snake_case__ ( self , lowercase_): if node.prev is None or node.next is None: return None snake_case_ : Union[str, Any] = node.next snake_case_ : Optional[int] = node.prev snake_case_ : str = None snake_case_ : int = None return node class UpperCAmelCase_ ( Generic[T, U] ): UpperCAmelCase_ = {} def __init__( self , lowercase_): snake_case_ : DoubleLinkedList[T, U] = DoubleLinkedList() snake_case_ : List[str] = capacity snake_case_ : Any = 0 snake_case_ : Dict = 0 snake_case_ : Union[str, Any] = 0 snake_case_ : dict[T, DoubleLinkedListNode[T, U]] = {} def __repr__( self): return ( F'CacheInfo(hits={self.hits}, misses={self.miss}, ' F'capacity={self.capacity}, current size={self.num_keys})' ) def __contains__( self , lowercase_): return key in self.cache def snake_case__ ( self , lowercase_): # Note: pythonic interface would throw KeyError rather than return None if key in self.cache: self.hits += 1 snake_case_ : DoubleLinkedListNode[T, U] = self.cache[key] snake_case_ : Optional[Any] = self.list.remove(self.cache[key]) assert node == value_node # node is guaranteed not None because it is in self.cache assert node is not None self.list.add(lowercase_) return node.val self.miss += 1 return None def snake_case__ ( self , lowercase_ , lowercase_): if key not in self.cache: if self.num_keys >= self.capacity: # delete first node (oldest) when over capacity snake_case_ : Optional[Any] = self.list.head.next # guaranteed to have a non-None first node when num_keys > 0 # explain to type checker via assertions assert first_node is not None assert first_node.key is not None assert ( self.list.remove(lowercase_) is not None ) # node guaranteed to be in list assert node.key is not None del self.cache[first_node.key] self.num_keys -= 1 snake_case_ : Dict = DoubleLinkedListNode(lowercase_ , lowercase_) self.list.add(self.cache[key]) self.num_keys += 1 else: # bump node to the end of the list, update value snake_case_ : List[Any] = self.list.remove(self.cache[key]) assert node is not None # node guaranteed to be in list snake_case_ : Optional[Any] = value self.list.add(lowercase_) @classmethod def snake_case__ ( cls , lowercase_ = 1_28): def cache_decorator_inner(lowercase_) -> Callable[..., U]: def cache_decorator_wrapper(*lowercase_) -> U: if func not in cls.decorator_function_to_instance_map: snake_case_ : List[str] = LRUCache(lowercase_) snake_case_ : Optional[Any] = cls.decorator_function_to_instance_map[func].get(args[0]) if result is None: snake_case_ : Any = func(*lowercase_) cls.decorator_function_to_instance_map[func].put(args[0] , lowercase_) return result def cache_info() -> LRUCache[T, U]: return cls.decorator_function_to_instance_map[func] setattr(lowercase_ , "cache_info" , lowercase_) # noqa: B010 return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
92
1
from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
475
import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _UpperCAmelCase ( lowerCAmelCase, unittest.TestCase ): '''simple docstring''' __A = DDIMPipeline __A = UNCONDITIONAL_IMAGE_GENERATION_PARAMS __A = PipelineTesterMixin.required_optional_params - { '''num_images_per_prompt''', '''latents''', '''callback''', '''callback_steps''', } __A = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS __A = False def __UpperCAmelCase ( self : int) -> List[str]: """simple docstring""" torch.manual_seed(0) _UpperCamelCase = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , ) _UpperCamelCase = DDIMScheduler() _UpperCamelCase = {"unet": unet, "scheduler": scheduler} return components def __UpperCAmelCase ( self : int , lowercase_ : List[str] , lowercase_ : Optional[Any]=0) -> Optional[Any]: """simple docstring""" if str(lowercase_).startswith("mps"): _UpperCamelCase = torch.manual_seed(lowercase_) else: _UpperCamelCase = torch.Generator(device=lowercase_).manual_seed(lowercase_) _UpperCamelCase = { "batch_size": 1, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def __UpperCAmelCase ( self : Dict) -> Tuple: """simple docstring""" _UpperCamelCase = "cpu" _UpperCamelCase = self.get_dummy_components() _UpperCamelCase = self.pipeline_class(**lowercase_) pipe.to(lowercase_) pipe.set_progress_bar_config(disable=lowercase_) _UpperCamelCase = self.get_dummy_inputs(lowercase_) _UpperCamelCase = pipe(**lowercase_).images _UpperCamelCase = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 32, 32, 3)) _UpperCamelCase = np.array( [1.0_0_0e0_0, 5.7_1_7e-0_1, 4.7_1_7e-0_1, 1.0_0_0e0_0, 0.0_0_0e0_0, 1.0_0_0e0_0, 3.0_0_0e-0_4, 0.0_0_0e0_0, 9.0_0_0e-0_4]) _UpperCamelCase = np.abs(image_slice.flatten() - expected_slice).max() self.assertLessEqual(lowercase_ , 1e-3) def __UpperCAmelCase ( self : Optional[int]) -> Union[str, Any]: """simple docstring""" super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3) def __UpperCAmelCase ( self : List[Any]) -> Union[str, Any]: """simple docstring""" super().test_save_load_local(expected_max_difference=3e-3) def __UpperCAmelCase ( self : int) -> str: """simple docstring""" super().test_save_load_optional_components(expected_max_difference=3e-3) def __UpperCAmelCase ( self : List[Any]) -> Dict: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3e-3) @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self : List[Any]) -> str: """simple docstring""" _UpperCamelCase = "google/ddpm-cifar10-32" _UpperCamelCase = UNetaDModel.from_pretrained(lowercase_) _UpperCamelCase = DDIMScheduler() _UpperCamelCase = DDIMPipeline(unet=lowercase_ , scheduler=lowercase_) ddim.to(lowercase_) ddim.set_progress_bar_config(disable=lowercase_) _UpperCamelCase = torch.manual_seed(0) _UpperCamelCase = ddim(generator=lowercase_ , eta=0.0 , output_type="numpy").images _UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _UpperCamelCase = np.array([0.17_23, 0.16_17, 0.16_00, 0.16_26, 0.14_97, 0.15_13, 0.15_05, 0.14_42, 0.14_53]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def __UpperCAmelCase ( self : Tuple) -> Tuple: """simple docstring""" _UpperCamelCase = "google/ddpm-ema-bedroom-256" _UpperCamelCase = UNetaDModel.from_pretrained(lowercase_) _UpperCamelCase = DDIMScheduler.from_pretrained(lowercase_) _UpperCamelCase = DDIMPipeline(unet=lowercase_ , scheduler=lowercase_) ddpm.to(lowercase_) ddpm.set_progress_bar_config(disable=lowercase_) _UpperCamelCase = torch.manual_seed(0) _UpperCamelCase = ddpm(generator=lowercase_ , output_type="numpy").images _UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) _UpperCamelCase = np.array([0.00_60, 0.02_01, 0.03_44, 0.00_24, 0.00_18, 0.00_02, 0.00_22, 0.00_00, 0.00_69]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
547
0
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ConditionalDetrImageProcessor class a__( unittest.TestCase ): def __init__( self , _UpperCAmelCase , _UpperCAmelCase=7 , _UpperCAmelCase=3 , _UpperCAmelCase=30 , _UpperCAmelCase=400 , _UpperCAmelCase=True , _UpperCAmelCase=None , _UpperCAmelCase=True , _UpperCAmelCase=[0.5, 0.5, 0.5] , _UpperCAmelCase=[0.5, 0.5, 0.5] , _UpperCAmelCase=True , _UpperCAmelCase=1 / 255 , _UpperCAmelCase=True , ) -> Optional[Any]: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p snake_case__ =size if size is not None else {'shortest_edge': 18, 'longest_edge': 1333} snake_case__ =parent snake_case__ =batch_size snake_case__ =num_channels snake_case__ =min_resolution snake_case__ =max_resolution snake_case__ =do_resize snake_case__ =size snake_case__ =do_normalize snake_case__ =image_mean snake_case__ =image_std snake_case__ =do_rescale snake_case__ =rescale_factor snake_case__ =do_pad def _lowercase ( self ) -> Optional[int]: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def _lowercase ( self , _UpperCAmelCase , _UpperCAmelCase=False ) -> int: if not batched: snake_case__ =image_inputs[0] if isinstance(_UpperCAmelCase , Image.Image ): snake_case__ , snake_case__ =image.size else: snake_case__ , snake_case__ =image.shape[1], image.shape[2] if w < h: snake_case__ =int(self.size['shortest_edge'] * h / w ) snake_case__ =self.size['shortest_edge'] elif w > h: snake_case__ =self.size['shortest_edge'] snake_case__ =int(self.size['shortest_edge'] * w / h ) else: snake_case__ =self.size['shortest_edge'] snake_case__ =self.size['shortest_edge'] else: snake_case__ =[] for image in image_inputs: snake_case__ , snake_case__ =self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) snake_case__ =max(_UpperCAmelCase , key=lambda _UpperCAmelCase : item[0] )[0] snake_case__ =max(_UpperCAmelCase , key=lambda _UpperCAmelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class a__( snake_case__ , unittest.TestCase ): a_ : Optional[int] = ConditionalDetrImageProcessor if is_vision_available() else None def _lowercase ( self ) -> Tuple: snake_case__ =ConditionalDetrImageProcessingTester(self ) @property def _lowercase ( self ) -> Union[str, Any]: return self.image_processor_tester.prepare_image_processor_dict() def _lowercase ( self ) -> List[Any]: snake_case__ =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCAmelCase , 'image_mean' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'image_std' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'do_normalize' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'do_resize' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'size' ) ) def _lowercase ( self ) -> Any: snake_case__ =self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 1333} ) self.assertEqual(image_processor.do_pad , _UpperCAmelCase ) snake_case__ =self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=_UpperCAmelCase ) self.assertEqual(image_processor.size , {'shortest_edge': 42, 'longest_edge': 84} ) self.assertEqual(image_processor.do_pad , _UpperCAmelCase ) def _lowercase ( self ) -> str: pass def _lowercase ( self ) -> Union[str, Any]: # Initialize image_processing snake_case__ =self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case__ =prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , Image.Image ) # Test not batched input snake_case__ =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values snake_case__ , snake_case__ =self.image_processor_tester.get_expected_values(_UpperCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__ , snake_case__ =self.image_processor_tester.get_expected_values(_UpperCAmelCase , batched=_UpperCAmelCase ) snake_case__ =image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowercase ( self ) -> Any: # Initialize image_processing snake_case__ =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case__ =prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , numpify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , np.ndarray ) # Test not batched input snake_case__ =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values snake_case__ , snake_case__ =self.image_processor_tester.get_expected_values(_UpperCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__ =image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values snake_case__ , snake_case__ =self.image_processor_tester.get_expected_values(_UpperCAmelCase , batched=_UpperCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowercase ( self ) -> Optional[int]: # Initialize image_processing snake_case__ =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case__ =prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , torch.Tensor ) # Test not batched input snake_case__ =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values snake_case__ , snake_case__ =self.image_processor_tester.get_expected_values(_UpperCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__ =image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values snake_case__ , snake_case__ =self.image_processor_tester.get_expected_values(_UpperCAmelCase , batched=_UpperCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _lowercase ( self ) -> Any: # prepare image and target snake_case__ =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f: snake_case__ =json.loads(f.read() ) snake_case__ ={'image_id': 3_9769, 'annotations': target} # encode them snake_case__ =ConditionalDetrImageProcessor.from_pretrained('microsoft/conditional-detr-resnet-50' ) snake_case__ =image_processing(images=_UpperCAmelCase , annotations=_UpperCAmelCase , return_tensors='pt' ) # verify pixel values snake_case__ =torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape , _UpperCAmelCase ) snake_case__ =torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , _UpperCAmelCase , atol=1E-4 ) ) # verify area snake_case__ =torch.tensor([5887.9600, 1_1250.2061, 48_9353.8438, 83_7122.7500, 14_7967.5156, 16_5732.3438] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , _UpperCAmelCase ) ) # verify boxes snake_case__ =torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , _UpperCAmelCase ) snake_case__ =torch.tensor([0.5_503, 0.2_765, 0.0_604, 0.2_215] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , _UpperCAmelCase , atol=1E-3 ) ) # verify image_id snake_case__ =torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , _UpperCAmelCase ) ) # verify is_crowd snake_case__ =torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , _UpperCAmelCase ) ) # verify class_labels snake_case__ =torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , _UpperCAmelCase ) ) # verify orig_size snake_case__ =torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , _UpperCAmelCase ) ) # verify size snake_case__ =torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , _UpperCAmelCase ) ) @slow def _lowercase ( self ) -> Optional[int]: # prepare image, target and masks_path snake_case__ =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f: snake_case__ =json.loads(f.read() ) snake_case__ ={'file_name': '000000039769.png', 'image_id': 3_9769, 'segments_info': target} snake_case__ =pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' ) # encode them snake_case__ =ConditionalDetrImageProcessor(format='coco_panoptic' ) snake_case__ =image_processing(images=_UpperCAmelCase , annotations=_UpperCAmelCase , masks_path=_UpperCAmelCase , return_tensors='pt' ) # verify pixel values snake_case__ =torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape , _UpperCAmelCase ) snake_case__ =torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , _UpperCAmelCase , atol=1E-4 ) ) # verify area snake_case__ =torch.tensor([14_7979.6875, 16_5527.0469, 48_4638.5938, 1_1292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , _UpperCAmelCase ) ) # verify boxes snake_case__ =torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , _UpperCAmelCase ) snake_case__ =torch.tensor([0.2_625, 0.5_437, 0.4_688, 0.8_625] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , _UpperCAmelCase , atol=1E-3 ) ) # verify image_id snake_case__ =torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , _UpperCAmelCase ) ) # verify is_crowd snake_case__ =torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , _UpperCAmelCase ) ) # verify class_labels snake_case__ =torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , _UpperCAmelCase ) ) # verify masks snake_case__ =82_2873 self.assertEqual(encoding['labels'][0]['masks'].sum().item() , _UpperCAmelCase ) # verify orig_size snake_case__ =torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , _UpperCAmelCase ) ) # verify size snake_case__ =torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , _UpperCAmelCase ) )
718
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ : Tuple = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : List[str] = { '''google/pix2struct-textcaps-base''': ( '''https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json''' ), } class a__( snake_case__ ): a_ : Dict = '''pix2struct_text_model''' a_ : Optional[int] = ['''past_key_values'''] a_ : int = { '''hidden_size''': '''hidden_size''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , _UpperCAmelCase=5_0244 , _UpperCAmelCase=768 , _UpperCAmelCase=64 , _UpperCAmelCase=2048 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=32 , _UpperCAmelCase=128 , _UpperCAmelCase=0.1 , _UpperCAmelCase=1E-6 , _UpperCAmelCase=1.0 , _UpperCAmelCase="gelu_new" , _UpperCAmelCase=0 , _UpperCAmelCase=False , _UpperCAmelCase=0 , _UpperCAmelCase=1 , _UpperCAmelCase=False , _UpperCAmelCase=True , **_UpperCAmelCase , ) -> int: snake_case__ =vocab_size snake_case__ =hidden_size snake_case__ =d_kv snake_case__ =d_ff snake_case__ =num_layers snake_case__ =num_heads snake_case__ =relative_attention_num_buckets snake_case__ =relative_attention_max_distance snake_case__ =dropout_rate snake_case__ =layer_norm_epsilon snake_case__ =initializer_factor snake_case__ =use_cache snake_case__ =eos_token_id snake_case__ =decoder_start_token_id # for backwards compatibility snake_case__ =dense_act_fn super().__init__( pad_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , decoder_start_token_id=_UpperCAmelCase , tie_word_embeddings=_UpperCAmelCase , is_decoder=_UpperCAmelCase , **_UpperCAmelCase , ) @classmethod def _lowercase ( cls , _UpperCAmelCase , **_UpperCAmelCase ) -> "PretrainedConfig": cls._set_token_in_kwargs(_UpperCAmelCase ) snake_case__ , snake_case__ =cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get('model_type' ) == "pix2struct": snake_case__ =config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class a__( snake_case__ ): a_ : List[Any] = '''pix2struct_vision_model''' def __init__( self , _UpperCAmelCase=768 , _UpperCAmelCase=768 , _UpperCAmelCase=2048 , _UpperCAmelCase=64 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase="gelu_new" , _UpperCAmelCase=1E-6 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=1E-10 , _UpperCAmelCase=1.0 , _UpperCAmelCase=4096 , _UpperCAmelCase=32 , _UpperCAmelCase=128 , **_UpperCAmelCase , ) -> int: super().__init__(**_UpperCAmelCase ) snake_case__ =hidden_size snake_case__ =patch_embed_hidden_size snake_case__ =d_ff snake_case__ =dropout_rate snake_case__ =num_hidden_layers snake_case__ =num_attention_heads snake_case__ =initializer_range snake_case__ =initializer_factor snake_case__ =attention_dropout snake_case__ =layer_norm_eps snake_case__ =dense_act_fn snake_case__ =seq_len snake_case__ =relative_attention_num_buckets snake_case__ =relative_attention_max_distance snake_case__ =d_kv @classmethod def _lowercase ( cls , _UpperCAmelCase , **_UpperCAmelCase ) -> "PretrainedConfig": cls._set_token_in_kwargs(_UpperCAmelCase ) snake_case__ , snake_case__ =cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get('model_type' ) == "pix2struct": snake_case__ =config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class a__( snake_case__ ): a_ : Dict = '''pix2struct''' a_ : Optional[int] = True def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=1.0 , _UpperCAmelCase=0.02 , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=True , **_UpperCAmelCase , ) -> int: super().__init__(tie_word_embeddings=_UpperCAmelCase , is_encoder_decoder=_UpperCAmelCase , **_UpperCAmelCase ) if text_config is None: snake_case__ ={} logger.info('text_config is None. Initializing the Pix2StructTextConfig with default values.' ) if vision_config is None: snake_case__ ={} logger.info('vision_config is None. Initializing the Pix2StructVisionConfig with default values.' ) snake_case__ =PixaStructTextConfig(**_UpperCAmelCase ) snake_case__ =PixaStructVisionConfig(**_UpperCAmelCase ) snake_case__ =self.text_config.decoder_start_token_id snake_case__ =self.text_config.pad_token_id snake_case__ =self.text_config.eos_token_id snake_case__ =initializer_factor snake_case__ =initializer_range snake_case__ =self.initializer_range snake_case__ =self.initializer_range snake_case__ =is_vqa @classmethod def _lowercase ( cls , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ) -> Any: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **_UpperCAmelCase ) def _lowercase ( self ) -> Optional[int]: snake_case__ =copy.deepcopy(self.__dict__ ) snake_case__ =self.text_config.to_dict() snake_case__ =self.vision_config.to_dict() snake_case__ =self.__class__.model_type return output
581
0
"""simple docstring""" import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging A = '''\ ''' A = ''' Perplexity (PPL) is one of the most common metrics for evaluating language models. It is defined as the exponentiated average negative log-likelihood of a sequence. For more information, see https://huggingface.co/docs/transformers/perplexity ''' A = ''' Args: model_id (str): model used for calculating Perplexity NOTE: Perplexity can only be calculated for causal language models. This includes models such as gpt2, causal variations of bert, causal versions of t5, and more (the full list can be found in the AutoModelForCausalLM documentation here: https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM ) input_texts (list of str): input text, each separate text snippet is one list entry. batch_size (int): the batch size to run texts through the model. Defaults to 16. add_start_token (bool): whether to add the start token to the texts, so the perplexity can include the probability of the first word. Defaults to True. device (str): device to run on, defaults to \'cuda\' when available Returns: perplexity: dictionary containing the perplexity scores for the texts in the input list, as well as the mean perplexity. If one of the input texts is longer than the max input length of the model, then it is truncated to the max length for the perplexity computation. Examples: Example 1: >>> perplexity = datasets.load_metric("perplexity") >>> input_texts = ["lorem ipsum", "Happy Birthday!", "Bienvenue"] >>> results = perplexity.compute(model_id=\'gpt2\', ... add_start_token=False, ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) [\'perplexities\', \'mean_perplexity\'] >>> print(round(results["mean_perplexity"], 2)) 78.22 >>> print(round(results["perplexities"][0], 2)) 11.11 Example 2: >>> perplexity = datasets.load_metric("perplexity") >>> input_texts = datasets.load_dataset("wikitext", ... "wikitext-2-raw-v1", ... split="test")["text"][:50] # doctest:+ELLIPSIS [...] >>> input_texts = [s for s in input_texts if s!=\'\'] >>> results = perplexity.compute(model_id=\'gpt2\', ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) [\'perplexities\', \'mean_perplexity\'] >>> print(round(results["mean_perplexity"], 2)) 60.35 >>> print(round(results["perplexities"][0], 2)) 81.12 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowercase ( datasets.Metric ): '''simple docstring''' def _lowerCamelCase ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''input_texts''': datasets.Value('''string''' ), } ) , reference_urls=['''https://huggingface.co/docs/transformers/perplexity'''] , ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 16 , _UpperCAmelCase = True , _UpperCAmelCase=None ): if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": __a : str = '''cuda''' else: __a : str = '''cuda''' if torch.cuda.is_available() else '''cpu''' __a : Any = AutoModelForCausalLM.from_pretrained(_UpperCAmelCase ) __a : Union[str, Any] = model.to(_UpperCAmelCase ) __a : str = AutoTokenizer.from_pretrained(_UpperCAmelCase ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: __a : Optional[int] = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(_UpperCAmelCase ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({'''pad_token''': existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" __a : List[str] = model.config.max_length - 1 else: __a : Optional[int] = model.config.max_length __a : int = tokenizer( _UpperCAmelCase , add_special_tokens=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , return_tensors='''pt''' , return_attention_mask=_UpperCAmelCase , ).to(_UpperCAmelCase ) __a : List[Any] = encodings['''input_ids'''] __a : Tuple = encodings['''attention_mask'''] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." __a : Any = [] __a : int = CrossEntropyLoss(reduction='''none''' ) for start_index in logging.tqdm(range(0 , len(_UpperCAmelCase ) , _UpperCAmelCase ) ): __a : List[Any] = min(start_index + batch_size , len(_UpperCAmelCase ) ) __a : Optional[int] = encoded_texts[start_index:end_index] __a : Dict = attn_masks[start_index:end_index] if add_start_token: __a : Dict = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(_UpperCAmelCase ) __a : List[str] = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 ) __a : Tuple = torch.cat( [torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(_UpperCAmelCase ), attn_mask] , dim=1 ) __a : List[str] = encoded_batch with torch.no_grad(): __a : Union[str, Any] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase ).logits __a : Optional[int] = out_logits[..., :-1, :].contiguous() __a : Tuple = labels[..., 1:].contiguous() __a : Tuple = attn_mask[..., 1:].contiguous() __a : int = torch.expa( (loss_fct(shift_logits.transpose(1 , 2 ) , _UpperCAmelCase ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(_UpperCAmelCase )}
52
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class UpperCAmelCase_ ( _a , unittest.TestCase): lowerCamelCase__ : Optional[Any] = DiTPipeline lowerCamelCase__ : Dict = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS lowerCamelCase__ : Union[str, Any] = PipelineTesterMixin.required_optional_params - { "latents", "num_images_per_prompt", "callback", "callback_steps", } lowerCamelCase__ : Dict = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS lowerCamelCase__ : Optional[Any] = False def _UpperCAmelCase ( self ) -> Any: torch.manual_seed(0 ) lowercase__ : Dict = TransformeraDModel( sample_size=1_6 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=a , activation_fn='gelu-approximate' , num_embeds_ada_norm=1_0_0_0 , norm_type='ada_norm_zero' , norm_elementwise_affine=a , ) lowercase__ : int = AutoencoderKL() lowercase__ : Dict = DDIMScheduler() lowercase__ : List[str] = {'transformer': transformer.eval(), 'vae': vae.eval(), 'scheduler': scheduler} return components def _UpperCAmelCase ( self , a , a=0 ) -> Dict: if str(a ).startswith('mps' ): lowercase__ : Union[str, Any] = torch.manual_seed(a ) else: lowercase__ : List[str] = torch.Generator(device=a ).manual_seed(a ) lowercase__ : Optional[int] = { 'class_labels': [1], 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : str = 'cpu' lowercase__ : Any = self.get_dummy_components() lowercase__ : List[Any] = self.pipeline_class(**a ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowercase__ : str = self.get_dummy_inputs(a ) lowercase__ : List[str] = pipe(**a ).images lowercase__ : int = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 1_6, 1_6, 3) ) lowercase__ : Any = np.array([0.2_946, 0.6_601, 0.4_329, 0.3_296, 0.4_144, 0.5_319, 0.7_273, 0.5_013, 0.4_457] ) lowercase__ : Dict = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(a , 1e-3 ) def _UpperCAmelCase ( self ) -> Any: self._test_inference_batch_single_identical(relax_max_difference=a , expected_max_diff=1e-3 ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def _UpperCAmelCase ( self ) -> int: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @require_torch_gpu @slow class UpperCAmelCase_ ( unittest.TestCase): def _UpperCAmelCase ( self ) -> Any: super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCAmelCase ( self ) -> Dict: lowercase__ : Optional[int] = torch.manual_seed(0 ) lowercase__ : Any = DiTPipeline.from_pretrained('facebook/DiT-XL-2-256' ) pipe.to('cuda' ) lowercase__ : List[Any] = ['vase', 'umbrella', 'white shark', 'white wolf'] lowercase__ : Optional[int] = pipe.get_label_ids(a ) lowercase__ : Optional[int] = pipe(a , generator=a , num_inference_steps=4_0 , output_type='np' ).images for word, image in zip(a , a ): lowercase__ : Tuple = load_numpy( f"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy""" ) assert np.abs((expected_image - image).max() ) < 1e-2 def _UpperCAmelCase ( self ) -> Dict: lowercase__ : List[Any] = DiTPipeline.from_pretrained('facebook/DiT-XL-2-512' ) lowercase__ : Dict = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to('cuda' ) lowercase__ : Tuple = ['vase', 'umbrella'] lowercase__ : List[str] = pipe.get_label_ids(a ) lowercase__ : Optional[Any] = torch.manual_seed(0 ) lowercase__ : Optional[Any] = pipe(a , generator=a , num_inference_steps=2_5 , output_type='np' ).images for word, image in zip(a , a ): lowercase__ : int = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' f"""/dit/{word}_512.npy""" ) assert np.abs((expected_image - image).max() ) < 1e-1
599
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __SCREAMING_SNAKE_CASE = { """configuration_chinese_clip""": [ """CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ChineseCLIPConfig""", """ChineseCLIPOnnxConfig""", """ChineseCLIPTextConfig""", """ChineseCLIPVisionConfig""", ], """processing_chinese_clip""": ["""ChineseCLIPProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE = ["""ChineseCLIPFeatureExtractor"""] __SCREAMING_SNAKE_CASE = ["""ChineseCLIPImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE = [ """CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """ChineseCLIPModel""", """ChineseCLIPPreTrainedModel""", """ChineseCLIPTextModel""", """ChineseCLIPVisionModel""", ] if TYPE_CHECKING: from .configuration_chinese_clip import ( CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, ChineseCLIPConfig, ChineseCLIPOnnxConfig, ChineseCLIPTextConfig, ChineseCLIPVisionConfig, ) from .processing_chinese_clip import ChineseCLIPProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_chinese_clip import ChineseCLIPFeatureExtractor, ChineseCLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_chinese_clip import ( CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, ChineseCLIPModel, ChineseCLIPPreTrainedModel, ChineseCLIPTextModel, ChineseCLIPVisionModel, ) else: import sys __SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
721
import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase ): A : Optional[Any] = RobertaPreLayerNormConfig.from_pretrained( _lowerCamelCase , architectures=["RobertaPreLayerNormForMaskedLM"] ) # convert state_dict A : List[Any] = torch.load(hf_hub_download(repo_id=_lowerCamelCase , filename="pytorch_model.bin" ) ) A : Union[str, Any] = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith("roberta." ): A : int = "roberta_prelayernorm." + tensor_key[len("roberta." ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith(".self.LayerNorm.weight" ) or tensor_key.endswith(".self.LayerNorm.bias" ): continue A : Any = tensor_value A : Optional[int] = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=_lowerCamelCase , config=_lowerCamelCase , state_dict=_lowerCamelCase ) model.save_pretrained(_lowerCamelCase ) # convert tokenizer A : Optional[Any] = AutoTokenizer.from_pretrained(_lowerCamelCase ) tokenizer.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint-repo""", default=None, type=str, required=True, help="""Path the official PyTorch dump, e.g. 'andreasmadsen/efficient_mlm_m0.40'.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) __SCREAMING_SNAKE_CASE = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
17
0
def __A ( __lowerCamelCase , __lowerCamelCase ) -> float: _validate_point(__lowerCamelCase ) _validate_point(__lowerCamelCase ) if len(__lowerCamelCase ) != len(__lowerCamelCase ): raise ValueError("""Both points must be in the same n-dimensional space""" ) return float(sum(abs(a - b ) for a, b in zip(__lowerCamelCase , __lowerCamelCase ) ) ) def __A ( __lowerCamelCase ) -> None: if point: if isinstance(__lowerCamelCase , __lowerCamelCase ): for item in point: if not isinstance(__lowerCamelCase , (int, float) ): a = ( """Expected a list of numbers as input, found """ f'{type(__lowerCamelCase ).__name__}' ) raise TypeError(__lowerCamelCase ) else: a = f'Expected a list of numbers as input, found {type(__lowerCamelCase ).__name__}' raise TypeError(__lowerCamelCase ) else: raise ValueError("""Missing an input""" ) def __A ( __lowerCamelCase , __lowerCamelCase ) -> float: _validate_point(__lowerCamelCase ) _validate_point(__lowerCamelCase ) if len(__lowerCamelCase ) != len(__lowerCamelCase ): raise ValueError("""Both points must be in the same n-dimensional space""" ) return float(sum(abs(x - y ) for x, y in zip(__lowerCamelCase , __lowerCamelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
468
import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase : Optional[Any] = logging.get_logger(__name__) def __A ( __lowerCamelCase , __lowerCamelCase ) -> Dict: a = RobertaPreLayerNormConfig.from_pretrained( __lowerCamelCase , architectures=["""RobertaPreLayerNormForMaskedLM"""] ) # convert state_dict a = torch.load(hf_hub_download(repo_id=__lowerCamelCase , filename="""pytorch_model.bin""" ) ) a = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith("""roberta.""" ): a = """roberta_prelayernorm.""" + tensor_key[len("""roberta.""" ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith(""".self.LayerNorm.weight""" ) or tensor_key.endswith(""".self.LayerNorm.bias""" ): continue a = tensor_value a = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=__lowerCamelCase , config=__lowerCamelCase , state_dict=__lowerCamelCase ) model.save_pretrained(__lowerCamelCase ) # convert tokenizer a = AutoTokenizer.from_pretrained(__lowerCamelCase ) tokenizer.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": __UpperCamelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint-repo", default=None, type=str, required=True, help="Path the official PyTorch dump, e.g. 'andreasmadsen/efficient_mlm_m0.40'.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __UpperCamelCase : Any = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
468
1
from __future__ import annotations from typing import Generic, TypeVar lowerCAmelCase = TypeVar("""T""") class lowerCamelCase ( Generic[T] ): def __init__( self , lowercase__): __UpperCAmelCase : Optional[int] = data __UpperCAmelCase : str = self __UpperCAmelCase : Optional[Any] = 0 class lowerCamelCase ( Generic[T] ): def __init__( self): # map from node name to the node object __UpperCAmelCase : dict[T, DisjointSetTreeNode[T]] = {} def A( self , lowercase__): # create a new set with x as its member __UpperCAmelCase : Union[str, Any] = DisjointSetTreeNode(lowercase__) def A( self , lowercase__): # find the set x belongs to (with path-compression) __UpperCAmelCase : Optional[int] = self.map[data] if elem_ref != elem_ref.parent: __UpperCAmelCase : Any = self.find_set(elem_ref.parent.data) return elem_ref.parent def A( self , lowercase__ , lowercase__): # helper function for union operation if nodea.rank > nodea.rank: __UpperCAmelCase : Dict = nodea else: __UpperCAmelCase : Tuple = nodea if nodea.rank == nodea.rank: nodea.rank += 1 def A( self , lowercase__ , lowercase__): # merge 2 disjoint sets self.link(self.find_set(lowercase__) , self.find_set(lowercase__)) class lowerCamelCase ( Generic[T] ): def __init__( self): # connections: map from the node to the neighbouring nodes (with weights) __UpperCAmelCase : dict[T, dict[T, int]] = {} def A( self , lowercase__): # add a node ONLY if its not present in the graph if node not in self.connections: __UpperCAmelCase : str = {} def A( self , lowercase__ , lowercase__ , lowercase__): # add an edge with the given weight self.add_node(lowercase__) self.add_node(lowercase__) __UpperCAmelCase : Tuple = weight __UpperCAmelCase : Dict = weight def A( self): __UpperCAmelCase : Optional[int] = [] __UpperCAmelCase : List[Any] = set() for start in self.connections: for end in self.connections[start]: if (start, end) not in seen: seen.add((end, start)) edges.append((start, end, self.connections[start][end])) edges.sort(key=lambda lowercase__: x[2]) # creating the disjoint set __UpperCAmelCase : Tuple = DisjointSetTree[T]() for node in self.connections: disjoint_set.make_set(lowercase__) # MST generation __UpperCAmelCase : Any = 0 __UpperCAmelCase : Dict = 0 __UpperCAmelCase : Tuple = GraphUndirectedWeighted[T]() while num_edges < len(self.connections) - 1: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = edges[index] index += 1 __UpperCAmelCase : List[str] = disjoint_set.find_set(lowercase__) __UpperCAmelCase : int = disjoint_set.find_set(lowercase__) if parent_u != parent_v: num_edges += 1 graph.add_edge(lowercase__ , lowercase__ , lowercase__) disjoint_set.union(lowercase__ , lowercase__) return graph
675
from __future__ import annotations def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' if not nums: return 0 __UpperCAmelCase : int = nums[0] __UpperCAmelCase : Optional[Any] = 0 for num in nums[1:]: __UpperCAmelCase , __UpperCAmelCase : int = ( max_excluding + num, max(lowercase_ , lowercase_ ), ) return max(lowercase_ , lowercase_ ) if __name__ == "__main__": import doctest doctest.testmod()
675
1
import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class _a ( unittest.TestCase ): def lowerCamelCase_ ( self: Dict ) -> int: """simple docstring""" lowercase__ = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowercase__ = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(UpperCamelCase_ ) lowercase__ = -1 lowercase__ = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCamelCase_ ) lowercase__ = model.generate(UpperCamelCase_ , max_new_tokens=10 , do_sample=UpperCamelCase_ ) lowercase__ = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: lowercase__ = TextStreamer(UpperCamelCase_ ) model.generate(UpperCamelCase_ , max_new_tokens=10 , do_sample=UpperCamelCase_ , streamer=UpperCamelCase_ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer lowercase__ = cs.out[:-1] self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase_ ( self: str ) -> int: """simple docstring""" lowercase__ = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowercase__ = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(UpperCamelCase_ ) lowercase__ = -1 lowercase__ = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCamelCase_ ) lowercase__ = model.generate(UpperCamelCase_ , max_new_tokens=10 , do_sample=UpperCamelCase_ ) lowercase__ = tokenizer.decode(greedy_ids[0] ) lowercase__ = TextIteratorStreamer(UpperCamelCase_ ) lowercase__ = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} lowercase__ = Thread(target=model.generate , kwargs=UpperCamelCase_ ) thread.start() lowercase__ = '''''' for new_text in streamer: streamer_text += new_text self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase_ ( self: str ) -> List[str]: """simple docstring""" lowercase__ = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowercase__ = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(UpperCamelCase_ ) lowercase__ = -1 lowercase__ = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCamelCase_ ) lowercase__ = model.generate(UpperCamelCase_ , max_new_tokens=10 , do_sample=UpperCamelCase_ ) lowercase__ = greedy_ids[:, input_ids.shape[1] :] lowercase__ = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: lowercase__ = TextStreamer(UpperCamelCase_ , skip_prompt=UpperCamelCase_ ) model.generate(UpperCamelCase_ , max_new_tokens=10 , do_sample=UpperCamelCase_ , streamer=UpperCamelCase_ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer lowercase__ = cs.out[:-1] self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase_ ( self: Union[str, Any] ) -> str: """simple docstring""" lowercase__ = AutoTokenizer.from_pretrained('''distilgpt2''' ) lowercase__ = AutoModelForCausalLM.from_pretrained('''distilgpt2''' ).to(UpperCamelCase_ ) lowercase__ = -1 lowercase__ = torch.ones((1, 5) , device=UpperCamelCase_ ).long() * model.config.bos_token_id with CaptureStdout() as cs: lowercase__ = TextStreamer(UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ ) model.generate(UpperCamelCase_ , max_new_tokens=1 , do_sample=UpperCamelCase_ , streamer=UpperCamelCase_ ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token lowercase__ = cs.out[:-1] # Remove the final "\n" lowercase__ = tokenizer(UpperCamelCase_ , return_tensors='''pt''' ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def lowerCamelCase_ ( self: List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowercase__ = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(UpperCamelCase_ ) lowercase__ = -1 lowercase__ = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCamelCase_ ) lowercase__ = TextIteratorStreamer(UpperCamelCase_ , timeout=0.001 ) lowercase__ = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} lowercase__ = Thread(target=model.generate , kwargs=UpperCamelCase_ ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(UpperCamelCase_ ): lowercase__ = '''''' for new_text in streamer: streamer_text += new_text
43
"""simple docstring""" A_ = 2_56 # Modulus to hash a string A_ = 1_00_00_03 def UpperCAmelCase__ (snake_case__ : str , snake_case__ : str ): """simple docstring""" _snake_case : Any = len(snake_case__ ) _snake_case : Tuple = len(snake_case__ ) if p_len > t_len: return False _snake_case : str = 0 _snake_case : Tuple = 0 _snake_case : Tuple = 1 # Calculating the hash of pattern and substring of text for i in range(snake_case__ ): _snake_case : Optional[int] = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus _snake_case : int = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue _snake_case : Any = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash _snake_case : List[str] = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def UpperCAmelCase__ (): """simple docstring""" _snake_case : List[Any] = """abc1abc12""" _snake_case : Tuple = """alskfjaldsabc1abc1abc12k23adsfabcabc""" _snake_case : Optional[Any] = """alskfjaldsk23adsfabcabc""" assert rabin_karp(snake_case__ , snake_case__ ) and not rabin_karp(snake_case__ , snake_case__ ) # Test 2) _snake_case : Tuple = """ABABX""" _snake_case : Optional[Any] = """ABABZABABYABABX""" assert rabin_karp(snake_case__ , snake_case__ ) # Test 3) _snake_case : Union[str, Any] = """AAAB""" _snake_case : str = """ABAAAAAB""" assert rabin_karp(snake_case__ , snake_case__ ) # Test 4) _snake_case : List[str] = """abcdabcy""" _snake_case : Optional[int] = """abcxabcdabxabcdabcdabcy""" assert rabin_karp(snake_case__ , snake_case__ ) # Test 5) _snake_case : Union[str, Any] = """Lü""" _snake_case : Optional[int] = """Lüsai""" assert rabin_karp(snake_case__ , snake_case__ ) _snake_case : Any = """Lue""" assert not rabin_karp(snake_case__ , snake_case__ ) print("""Success.""" ) if __name__ == "__main__": test_rabin_karp()
609
0
from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCamelCase_ : def __init__( self , __lowerCAmelCase , __lowerCAmelCase=3 , __lowerCAmelCase=3_2 , __lowerCAmelCase=3 , __lowerCAmelCase=1_0 , __lowerCAmelCase=[1_0, 2_0, 3_0, 4_0] , __lowerCAmelCase=[1, 1, 2, 1] , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase="relu" , __lowerCAmelCase=3 , __lowerCAmelCase=None , ): """simple docstring""" __magic_name__ :Tuple = parent __magic_name__ :Optional[int] = batch_size __magic_name__ :str = image_size __magic_name__ :List[str] = num_channels __magic_name__ :Union[str, Any] = embeddings_size __magic_name__ :List[Any] = hidden_sizes __magic_name__ :List[Any] = depths __magic_name__ :Any = is_training __magic_name__ :Tuple = use_labels __magic_name__ :str = hidden_act __magic_name__ :List[str] = num_labels __magic_name__ :Optional[int] = scope __magic_name__ :List[Any] = len(__lowerCAmelCase ) def A ( self ): """simple docstring""" __magic_name__ :Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __magic_name__ :Dict = None if self.use_labels: __magic_name__ :Tuple = ids_tensor([self.batch_size] , self.num_labels ) __magic_name__ :List[str] = self.get_config() return config, pixel_values, labels def A ( self ): """simple docstring""" return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" __magic_name__ :List[str] = TFResNetModel(config=__lowerCAmelCase ) __magic_name__ :Optional[int] = model(__lowerCAmelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" __magic_name__ :Dict = self.num_labels __magic_name__ :Tuple = TFResNetForImageClassification(__lowerCAmelCase ) __magic_name__ :List[Any] = model(__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A ( self ): """simple docstring""" __magic_name__ :Union[str, Any] = self.prepare_config_and_inputs() __magic_name__ :List[str] = config_and_inputs __magic_name__ :Dict = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class lowerCamelCase_ ( lowerCamelCase , lowerCamelCase , unittest.TestCase ): a__ = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () a__ = ( {'''feature-extraction''': TFResNetModel, '''image-classification''': TFResNetForImageClassification} if is_tf_available() else {} ) a__ = False a__ = False a__ = False a__ = False a__ = False def A ( self ): """simple docstring""" __magic_name__ :Any = TFResNetModelTester(self ) __magic_name__ :int = ConfigTester(self , config_class=__lowerCAmelCase , has_text_modality=__lowerCAmelCase ) def A ( self ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A ( self ): """simple docstring""" return @unittest.skip(reason='''ResNet does not use inputs_embeds''' ) def A ( self ): """simple docstring""" pass @unittest.skip(reason='''ResNet does not support input and output embeddings''' ) def A ( self ): """simple docstring""" pass def A ( self ): """simple docstring""" __magic_name__ :Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ :Optional[int] = model_class(__lowerCAmelCase ) __magic_name__ :str = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __magic_name__ :str = [*signature.parameters.keys()] __magic_name__ :Any = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __lowerCAmelCase ) def A ( self ): """simple docstring""" __magic_name__ :str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase ) def A ( self ): """simple docstring""" def check_hidden_states_output(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): __magic_name__ :Tuple = model_class(__lowerCAmelCase ) __magic_name__ :int = model(**self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase ) ) __magic_name__ :Union[str, Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __magic_name__ :Dict = self.model_tester.num_stages self.assertEqual(len(__lowerCAmelCase ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __magic_name__ :Tuple = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ :int = ['''basic''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: __magic_name__ :Tuple = layer_type __magic_name__ :Union[str, Any] = True check_hidden_states_output(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __magic_name__ :Any = True check_hidden_states_output(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def A ( self ): """simple docstring""" __magic_name__ :Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCAmelCase ) @slow def A ( self ): """simple docstring""" for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ :Tuple = TFResNetModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) def __lowercase ( ): """simple docstring""" __magic_name__ :Optional[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class lowerCamelCase_ ( unittest.TestCase ): @cached_property def A ( self ): """simple docstring""" return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def A ( self ): """simple docstring""" __magic_name__ :Union[str, Any] = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) __magic_name__ :List[str] = self.default_image_processor __magic_name__ :Optional[Any] = prepare_img() __magic_name__ :List[str] = image_processor(images=__lowerCAmelCase , return_tensors='''tf''' ) # forward pass __magic_name__ :Tuple = model(**__lowerCAmelCase ) # verify the logits __magic_name__ :str = tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , __lowerCAmelCase ) __magic_name__ :str = tf.constant([-11.1069, -9.7877, -8.3777] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , __lowerCAmelCase , atol=1E-4 ) )
701
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ : List[str] = logging.get_logger(__name__) def __lowercase ( snake_case ): """simple docstring""" __magic_name__ :Optional[Any] = DPTConfig() if "large" in checkpoint_url: __magic_name__ :str = 1_0_2_4 __magic_name__ :Tuple = 4_0_9_6 __magic_name__ :Union[str, Any] = 2_4 __magic_name__ :int = 1_6 __magic_name__ :Dict = [5, 1_1, 1_7, 2_3] __magic_name__ :Optional[int] = [2_5_6, 5_1_2, 1_0_2_4, 1_0_2_4] __magic_name__ :Union[str, Any] = (1, 3_8_4, 3_8_4) if "ade" in checkpoint_url: __magic_name__ :Tuple = True __magic_name__ :int = 1_5_0 __magic_name__ :List[Any] = '''huggingface/label-files''' __magic_name__ :Dict = '''ade20k-id2label.json''' __magic_name__ :str = json.load(open(cached_download(hf_hub_url(snake_case, snake_case, repo_type='''dataset''' ) ), '''r''' ) ) __magic_name__ :Optional[int] = {int(snake_case ): v for k, v in idalabel.items()} __magic_name__ :Any = idalabel __magic_name__ :List[str] = {v: k for k, v in idalabel.items()} __magic_name__ :Optional[Any] = [1, 1_5_0, 4_8_0, 4_8_0] return config, expected_shape def __lowercase ( snake_case ): """simple docstring""" __magic_name__ :Optional[Any] = ['''pretrained.model.head.weight''', '''pretrained.model.head.bias'''] for k in ignore_keys: state_dict.pop(snake_case, snake_case ) def __lowercase ( snake_case ): """simple docstring""" if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): __magic_name__ :int = name.replace('''pretrained.model''', '''dpt.encoder''' ) if "pretrained.model" in name: __magic_name__ :str = name.replace('''pretrained.model''', '''dpt.embeddings''' ) if "patch_embed" in name: __magic_name__ :Optional[Any] = name.replace('''patch_embed''', '''patch_embeddings''' ) if "pos_embed" in name: __magic_name__ :List[Any] = name.replace('''pos_embed''', '''position_embeddings''' ) if "attn.proj" in name: __magic_name__ :List[Any] = name.replace('''attn.proj''', '''attention.output.dense''' ) if "proj" in name and "project" not in name: __magic_name__ :Dict = name.replace('''proj''', '''projection''' ) if "blocks" in name: __magic_name__ :str = name.replace('''blocks''', '''layer''' ) if "mlp.fc1" in name: __magic_name__ :Dict = name.replace('''mlp.fc1''', '''intermediate.dense''' ) if "mlp.fc2" in name: __magic_name__ :Tuple = name.replace('''mlp.fc2''', '''output.dense''' ) if "norm1" in name: __magic_name__ :List[Any] = name.replace('''norm1''', '''layernorm_before''' ) if "norm2" in name: __magic_name__ :Union[str, Any] = name.replace('''norm2''', '''layernorm_after''' ) if "scratch.output_conv" in name: __magic_name__ :Any = name.replace('''scratch.output_conv''', '''head''' ) if "scratch" in name: __magic_name__ :str = name.replace('''scratch''', '''neck''' ) if "layer1_rn" in name: __magic_name__ :Union[str, Any] = name.replace('''layer1_rn''', '''convs.0''' ) if "layer2_rn" in name: __magic_name__ :int = name.replace('''layer2_rn''', '''convs.1''' ) if "layer3_rn" in name: __magic_name__ :str = name.replace('''layer3_rn''', '''convs.2''' ) if "layer4_rn" in name: __magic_name__ :Optional[Any] = name.replace('''layer4_rn''', '''convs.3''' ) if "refinenet" in name: __magic_name__ :int = int(name[len('''neck.refinenet''' ) : len('''neck.refinenet''' ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 __magic_name__ :List[Any] = name.replace(f'''refinenet{layer_idx}''', f'''fusion_stage.layers.{abs(layer_idx-4 )}''' ) if "out_conv" in name: __magic_name__ :str = name.replace('''out_conv''', '''projection''' ) if "resConfUnit1" in name: __magic_name__ :Dict = name.replace('''resConfUnit1''', '''residual_layer1''' ) if "resConfUnit2" in name: __magic_name__ :int = name.replace('''resConfUnit2''', '''residual_layer2''' ) if "conv1" in name: __magic_name__ :str = name.replace('''conv1''', '''convolution1''' ) if "conv2" in name: __magic_name__ :Union[str, Any] = name.replace('''conv2''', '''convolution2''' ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: __magic_name__ :Optional[int] = name.replace('''pretrained.act_postprocess1.0.project.0''', '''neck.reassemble_stage.readout_projects.0.0''' ) if "pretrained.act_postprocess2.0.project.0" in name: __magic_name__ :int = name.replace('''pretrained.act_postprocess2.0.project.0''', '''neck.reassemble_stage.readout_projects.1.0''' ) if "pretrained.act_postprocess3.0.project.0" in name: __magic_name__ :Optional[int] = name.replace('''pretrained.act_postprocess3.0.project.0''', '''neck.reassemble_stage.readout_projects.2.0''' ) if "pretrained.act_postprocess4.0.project.0" in name: __magic_name__ :str = name.replace('''pretrained.act_postprocess4.0.project.0''', '''neck.reassemble_stage.readout_projects.3.0''' ) # resize blocks if "pretrained.act_postprocess1.3" in name: __magic_name__ :Any = name.replace('''pretrained.act_postprocess1.3''', '''neck.reassemble_stage.layers.0.projection''' ) if "pretrained.act_postprocess1.4" in name: __magic_name__ :Any = name.replace('''pretrained.act_postprocess1.4''', '''neck.reassemble_stage.layers.0.resize''' ) if "pretrained.act_postprocess2.3" in name: __magic_name__ :Dict = name.replace('''pretrained.act_postprocess2.3''', '''neck.reassemble_stage.layers.1.projection''' ) if "pretrained.act_postprocess2.4" in name: __magic_name__ :Optional[Any] = name.replace('''pretrained.act_postprocess2.4''', '''neck.reassemble_stage.layers.1.resize''' ) if "pretrained.act_postprocess3.3" in name: __magic_name__ :List[str] = name.replace('''pretrained.act_postprocess3.3''', '''neck.reassemble_stage.layers.2.projection''' ) if "pretrained.act_postprocess4.3" in name: __magic_name__ :Optional[Any] = name.replace('''pretrained.act_postprocess4.3''', '''neck.reassemble_stage.layers.3.projection''' ) if "pretrained.act_postprocess4.4" in name: __magic_name__ :Optional[Any] = name.replace('''pretrained.act_postprocess4.4''', '''neck.reassemble_stage.layers.3.resize''' ) if "pretrained" in name: __magic_name__ :Any = name.replace('''pretrained''', '''dpt''' ) if "bn" in name: __magic_name__ :int = name.replace('''bn''', '''batch_norm''' ) if "head" in name: __magic_name__ :str = name.replace('''head''', '''head.head''' ) if "encoder.norm" in name: __magic_name__ :Union[str, Any] = name.replace('''encoder.norm''', '''layernorm''' ) if "auxlayer" in name: __magic_name__ :Dict = name.replace('''auxlayer''', '''auxiliary_head.head''' ) return name def __lowercase ( snake_case, snake_case ): """simple docstring""" for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __magic_name__ :int = state_dict.pop(f'''dpt.encoder.layer.{i}.attn.qkv.weight''' ) __magic_name__ :Union[str, Any] = state_dict.pop(f'''dpt.encoder.layer.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict __magic_name__ :Optional[Any] = in_proj_weight[: config.hidden_size, :] __magic_name__ :str = in_proj_bias[: config.hidden_size] __magic_name__ :List[str] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __magic_name__ :Optional[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __magic_name__ :int = in_proj_weight[ -config.hidden_size :, : ] __magic_name__ :Union[str, Any] = in_proj_bias[-config.hidden_size :] def __lowercase ( ): """simple docstring""" __magic_name__ :Union[str, Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __magic_name__ :Union[str, Any] = Image.open(requests.get(snake_case, stream=snake_case ).raw ) return im @torch.no_grad() def __lowercase ( snake_case, snake_case, snake_case, snake_case ): """simple docstring""" __magic_name__ , __magic_name__ :Any = get_dpt_config(snake_case ) # load original state_dict from URL __magic_name__ :List[str] = torch.hub.load_state_dict_from_url(snake_case, map_location='''cpu''' ) # remove certain keys remove_ignore_keys_(snake_case ) # rename keys for key in state_dict.copy().keys(): __magic_name__ :int = state_dict.pop(snake_case ) __magic_name__ :Tuple = val # read in qkv matrices read_in_q_k_v(snake_case, snake_case ) # load HuggingFace model __magic_name__ :int = DPTForSemanticSegmentation(snake_case ) if '''ade''' in checkpoint_url else DPTForDepthEstimation(snake_case ) model.load_state_dict(snake_case ) model.eval() # Check outputs on an image __magic_name__ :Union[str, Any] = 4_8_0 if '''ade''' in checkpoint_url else 3_8_4 __magic_name__ :int = DPTImageProcessor(size=snake_case ) __magic_name__ :Dict = prepare_img() __magic_name__ :List[str] = image_processor(snake_case, return_tensors='''pt''' ) # forward pass __magic_name__ :Dict = model(**snake_case ).logits if '''ade''' in checkpoint_url else model(**snake_case ).predicted_depth # Assert logits __magic_name__ :int = torch.tensor([[6.3199, 6.3629, 6.4148], [6.3850, 6.3615, 6.4166], [6.3519, 6.3176, 6.3575]] ) if "ade" in checkpoint_url: __magic_name__ :Any = torch.tensor([[4.0480, 4.2420, 4.4360], [4.3124, 4.5693, 4.8261], [4.5768, 4.8965, 5.2163]] ) assert outputs.shape == torch.Size(snake_case ) assert ( torch.allclose(outputs[0, 0, :3, :3], snake_case, atol=1E-4 ) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3], snake_case ) ) Path(snake_case ).mkdir(exist_ok=snake_case ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(snake_case ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(snake_case ) if push_to_hub: print('''Pushing model to hub...''' ) model.push_to_hub( repo_path_or_name=Path(snake_case, snake_case ), organization='''nielsr''', commit_message='''Add model''', use_temp_dir=snake_case, ) image_processor.push_to_hub( repo_path_or_name=Path(snake_case, snake_case ), organization='''nielsr''', commit_message='''Add image processor''', use_temp_dir=snake_case, ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt""", type=str, help="""URL of the original DPT checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", ) parser.add_argument( """--model_name""", default="""dpt-large""", type=str, help="""Name of the model, in case you're pushing to the hub.""", ) SCREAMING_SNAKE_CASE__ : int = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
180
0
'''simple docstring''' import unittest from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, slow if is_flax_available(): import jax from transformers.models.auto.modeling_flax_auto import FlaxAutoModel from transformers.models.bert.modeling_flax_bert import FlaxBertModel from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel @require_flax class __lowerCAmelCase ( unittest.TestCase ): @slow def snake_case_ (self ): for model_name in ["bert-base-cased", "bert-large-uncased"]: with self.subTest(lowerCAmelCase__ ): _UpperCAmelCase : Tuple = AutoConfig.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Tuple = FlaxAutoModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) @slow def snake_case_ (self ): for model_name in ["roberta-base", "roberta-large"]: with self.subTest(lowerCAmelCase__ ): _UpperCAmelCase : Any = AutoConfig.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = FlaxAutoModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) @slow def snake_case_ (self ): for model_name in ["bert-base-cased", "bert-large-uncased"]: _UpperCAmelCase : Optional[int] = AutoTokenizer.from_pretrained(lowerCAmelCase__ ) _UpperCAmelCase : int = FlaxBertModel.from_pretrained(lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = tokenizer("""Do you support jax jitted function?""" , return_tensors=TensorType.JAX ) @jax.jit def eval(**lowerCAmelCase__ ): return model(**lowerCAmelCase__ ) eval(**lowerCAmelCase__ ).block_until_ready() @slow def snake_case_ (self ): for model_name in ["roberta-base", "roberta-large"]: _UpperCAmelCase : int = AutoTokenizer.from_pretrained(lowerCAmelCase__ ) _UpperCAmelCase : Any = FlaxRobertaModel.from_pretrained(lowerCAmelCase__ ) _UpperCAmelCase : List[str] = tokenizer("""Do you support jax jitted function?""" , return_tensors=TensorType.JAX ) @jax.jit def eval(**lowerCAmelCase__ ): return model(**lowerCAmelCase__ ) eval(**lowerCAmelCase__ ).block_until_ready() def snake_case_ (self ): with self.assertRaisesRegex( lowerCAmelCase__ , """bert-base is not a local folder and is not a valid model identifier""" ): _UpperCAmelCase : str = FlaxAutoModel.from_pretrained("""bert-base""" ) def snake_case_ (self ): with self.assertRaisesRegex( lowerCAmelCase__ , r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): _UpperCAmelCase : str = FlaxAutoModel.from_pretrained(lowerCAmelCase__ , revision="""aaaaaa""" ) def snake_case_ (self ): with self.assertRaisesRegex( lowerCAmelCase__ , """hf-internal-testing/config-no-model does not appear to have a file named flax_model.msgpack""" , ): _UpperCAmelCase : Dict = FlaxAutoModel.from_pretrained("""hf-internal-testing/config-no-model""" ) def snake_case_ (self ): with self.assertRaisesRegex(lowerCAmelCase__ , """Use `from_pt=True` to load this model""" ): _UpperCAmelCase : Optional[int] = FlaxAutoModel.from_pretrained("""hf-internal-testing/tiny-bert-pt-only""" )
414
'''simple docstring''' from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING lowerCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) @add_end_docstrings(__a ) class __lowerCAmelCase ( __a ): def __init__(self , *lowerCAmelCase__ , **lowerCAmelCase__ ): super().__init__(*lowerCAmelCase__ , **lowerCAmelCase__ ) requires_backends(self , """vision""" ) self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == """tf""" else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING ) def snake_case_ (self , lowerCAmelCase__=None ): _UpperCAmelCase : Any = {} if top_k is not None: _UpperCAmelCase : Tuple = top_k return {}, {}, postprocess_params def __call__(self , lowerCAmelCase__ , **lowerCAmelCase__ ): return super().__call__(lowerCAmelCase__ , **lowerCAmelCase__ ) def snake_case_ (self , lowerCAmelCase__ ): _UpperCAmelCase : Union[str, Any] = load_image(lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = self.image_processor(images=lowerCAmelCase__ , return_tensors=self.framework ) return model_inputs def snake_case_ (self , lowerCAmelCase__ ): _UpperCAmelCase : Any = self.model(**lowerCAmelCase__ ) return model_outputs def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__=5 ): if top_k > self.model.config.num_labels: _UpperCAmelCase : Dict = self.model.config.num_labels if self.framework == "pt": _UpperCAmelCase : Tuple = model_outputs.logits.softmax(-1 )[0] _UpperCAmelCase , _UpperCAmelCase : Dict = probs.topk(lowerCAmelCase__ ) elif self.framework == "tf": _UpperCAmelCase : Dict = stable_softmax(model_outputs.logits , axis=-1 )[0] _UpperCAmelCase : Any = tf.math.top_k(lowerCAmelCase__ , k=lowerCAmelCase__ ) _UpperCAmelCase , _UpperCAmelCase : str = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(F"Unsupported framework: {self.framework}" ) _UpperCAmelCase : str = scores.tolist() _UpperCAmelCase : Tuple = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(lowerCAmelCase__ , lowerCAmelCase__ )]
414
1
import os import tempfile import unittest from transformers import NezhaConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, ) from transformers.models.nezha.modeling_nezha import NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST class __magic_name__ : def __init__( self , _a , _a=13 , _a=7 , _a=True , _a=True , _a=True , _a=True , _a=99 , _a=32 , _a=5 , _a=4 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=128 , _a=32 , _a=16 , _a=2 , _a=0.0_2 , _a=3 , _a=4 , _a=None , ) -> int: lowerCAmelCase_ = parent lowerCAmelCase_ = batch_size lowerCAmelCase_ = seq_length lowerCAmelCase_ = is_training lowerCAmelCase_ = use_input_mask lowerCAmelCase_ = use_token_type_ids lowerCAmelCase_ = use_labels lowerCAmelCase_ = vocab_size lowerCAmelCase_ = hidden_size lowerCAmelCase_ = num_hidden_layers lowerCAmelCase_ = num_attention_heads lowerCAmelCase_ = intermediate_size lowerCAmelCase_ = hidden_act lowerCAmelCase_ = hidden_dropout_prob lowerCAmelCase_ = attention_probs_dropout_prob lowerCAmelCase_ = max_position_embeddings lowerCAmelCase_ = type_vocab_size lowerCAmelCase_ = type_sequence_label_size lowerCAmelCase_ = initializer_range lowerCAmelCase_ = num_labels lowerCAmelCase_ = num_choices lowerCAmelCase_ = scope def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase_ = None if self.use_input_mask: lowerCAmelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase_ = None if self.use_token_type_ids: lowerCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase_ = None lowerCAmelCase_ = None lowerCAmelCase_ = None if self.use_labels: lowerCAmelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase_ = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __a ( self ) -> str: return NezhaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCamelCase , initializer_range=self.initializer_range , ) def __a ( self ) -> int: ( ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ) = self.prepare_config_and_inputs() lowerCAmelCase_ = True lowerCAmelCase_ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowerCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def __a ( self , _a , _a , _a , _a , _a , _a , _a ) -> List[Any]: lowerCAmelCase_ = NezhaModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() lowerCAmelCase_ = model(_lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase ) lowerCAmelCase_ = model(_lowerCamelCase , token_type_ids=_lowerCamelCase ) lowerCAmelCase_ = model(_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __a ( self , _a , _a , _a , _a , _a , _a , _a , _a , _a , ) -> Union[str, Any]: lowerCAmelCase_ = True lowerCAmelCase_ = NezhaModel(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() lowerCAmelCase_ = model( _lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , encoder_hidden_states=_lowerCamelCase , encoder_attention_mask=_lowerCamelCase , ) lowerCAmelCase_ = model( _lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , encoder_hidden_states=_lowerCamelCase , ) lowerCAmelCase_ = model(_lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __a ( self , _a , _a , _a , _a , _a , _a , _a ) -> Dict: lowerCAmelCase_ = NezhaForMaskedLM(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() lowerCAmelCase_ = model(_lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __a ( self , _a , _a , _a , _a , _a , _a , _a ) -> Tuple: lowerCAmelCase_ = NezhaForNextSentencePrediction(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() lowerCAmelCase_ = model( _lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , labels=_lowerCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def __a ( self , _a , _a , _a , _a , _a , _a , _a ) -> Dict: lowerCAmelCase_ = NezhaForPreTraining(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() lowerCAmelCase_ = model( _lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , labels=_lowerCamelCase , next_sentence_label=_lowerCamelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def __a ( self , _a , _a , _a , _a , _a , _a , _a ) -> Optional[int]: lowerCAmelCase_ = NezhaForQuestionAnswering(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() lowerCAmelCase_ = model( _lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , start_positions=_lowerCamelCase , end_positions=_lowerCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __a ( self , _a , _a , _a , _a , _a , _a , _a ) -> List[Any]: lowerCAmelCase_ = self.num_labels lowerCAmelCase_ = NezhaForSequenceClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() lowerCAmelCase_ = model(_lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __a ( self , _a , _a , _a , _a , _a , _a , _a ) -> Optional[int]: lowerCAmelCase_ = self.num_labels lowerCAmelCase_ = NezhaForTokenClassification(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() lowerCAmelCase_ = model(_lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __a ( self , _a , _a , _a , _a , _a , _a , _a ) -> str: lowerCAmelCase_ = self.num_choices lowerCAmelCase_ = NezhaForMultipleChoice(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() lowerCAmelCase_ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase_ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase_ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase_ = model( _lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , labels=_lowerCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __a ( self ) -> Optional[Any]: lowerCAmelCase_ = self.prepare_config_and_inputs() ( ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ) = config_and_inputs lowerCAmelCase_ = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class __magic_name__ (__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): lowerCamelCase__ = ( ( NezhaModel, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, ) if is_torch_available() else () ) lowerCamelCase__ = ( { "feature-extraction": NezhaModel, "fill-mask": NezhaForMaskedLM, "question-answering": NezhaForQuestionAnswering, "text-classification": NezhaForSequenceClassification, "token-classification": NezhaForTokenClassification, "zero-shot": NezhaForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ = True def __a ( self , _a , _a , _a=False ) -> Union[str, Any]: lowerCAmelCase_ = super()._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) if return_labels: if model_class in get_values(_lowerCamelCase ): lowerCAmelCase_ = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_lowerCamelCase ) lowerCAmelCase_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_lowerCamelCase ) return inputs_dict def __a ( self ) -> List[Any]: lowerCAmelCase_ = NezhaModelTester(self ) lowerCAmelCase_ = ConfigTester(self , config_class=_lowerCamelCase , hidden_size=37 ) def __a ( self ) -> int: self.config_tester.run_common_tests() def __a ( self ) -> Optional[int]: lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*_lowerCamelCase ) def __a ( self ) -> Dict: # This regression test was failing with PyTorch < 1.3 ( ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ) = self.model_tester.prepare_config_and_inputs_for_decoder() lowerCAmelCase_ = None self.model_tester.create_and_check_model_as_decoder( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ) def __a ( self ) -> str: lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_lowerCamelCase ) def __a ( self ) -> int: lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_lowerCamelCase ) def __a ( self ) -> int: lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_next_sequence_prediction(*_lowerCamelCase ) def __a ( self ) -> List[str]: lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_lowerCamelCase ) def __a ( self ) -> List[Any]: lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_lowerCamelCase ) def __a ( self ) -> Dict: lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_lowerCamelCase ) def __a ( self ) -> List[str]: lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_lowerCamelCase ) @slow def __a ( self ) -> Dict: for model_name in NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase_ = NezhaModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) @slow @require_torch_gpu def __a ( self ) -> List[Any]: lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # NezhaForMultipleChoice behaves incorrectly in JIT environments. if model_class == NezhaForMultipleChoice: return lowerCAmelCase_ = True lowerCAmelCase_ = model_class(config=_lowerCamelCase ) lowerCAmelCase_ = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) lowerCAmelCase_ = torch.jit.trace( _lowerCamelCase , (inputs_dict["input_ids"].to("cpu" ), inputs_dict["attention_mask"].to("cpu" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(_lowerCamelCase , os.path.join(_lowerCamelCase , "bert.pt" ) ) lowerCAmelCase_ = torch.jit.load(os.path.join(_lowerCamelCase , "bert.pt" ) , map_location=_lowerCamelCase ) loaded(inputs_dict["input_ids"].to(_lowerCamelCase ) , inputs_dict["attention_mask"].to(_lowerCamelCase ) ) @require_torch class __magic_name__ (unittest.TestCase ): @slow def __a ( self ) -> List[Any]: lowerCAmelCase_ = NezhaModel.from_pretrained("sijunhe/nezha-cn-base" ) lowerCAmelCase_ = torch.tensor([[0, 1, 2, 3, 4, 5]] ) lowerCAmelCase_ = torch.tensor([[0, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowerCAmelCase_ = model(_lowerCamelCase , attention_mask=_lowerCamelCase )[0] lowerCAmelCase_ = torch.Size((1, 6, 768) ) self.assertEqual(output.shape , _lowerCamelCase ) lowerCAmelCase_ = torch.tensor([[[0.0_6_8_5, 0.2_4_4_1, 0.1_1_0_2], [0.0_6_0_0, 0.1_9_0_6, 0.1_3_4_9], [0.0_2_2_1, 0.0_8_1_9, 0.0_5_8_6]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _lowerCamelCase , atol=1E-4 ) ) @slow def __a ( self ) -> Tuple: lowerCAmelCase_ = NezhaForMaskedLM.from_pretrained("sijunhe/nezha-cn-base" ) lowerCAmelCase_ = torch.tensor([[0, 1, 2, 3, 4, 5]] ) lowerCAmelCase_ = torch.tensor([[1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowerCAmelCase_ = model(_lowerCamelCase , attention_mask=_lowerCamelCase )[0] lowerCAmelCase_ = torch.Size((1, 6, 21128) ) self.assertEqual(output.shape , _lowerCamelCase ) lowerCAmelCase_ = torch.tensor( [[-2.7_9_3_9, -1.7_9_0_2, -2.2_1_8_9], [-2.8_5_8_5, -1.8_9_0_8, -2.3_7_2_3], [-2.6_4_9_9, -1.7_7_5_0, -2.2_5_5_8]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _lowerCamelCase , atol=1E-4 ) )
701
import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class __magic_name__ (__lowercase ): lowerCamelCase__ = '''''' lowerCamelCase__ = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) lowerCamelCase__ = None # compression type in fsspec. ex: "gzip" lowerCamelCase__ = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self , _a = "" , _a = None , _a = None , **_a ) -> Any: super().__init__(self , **_a ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode lowerCAmelCase_ = fsspec.open( _a , mode="rb" , protocol=_a , compression=self.compression , client_kwargs={ "requote_redirect_url": False, # see https://github.com/huggingface/datasets/pull/5459 "trust_env": True, # Enable reading proxy env variables. **(target_options or {}).pop("client_kwargs" , {} ), # To avoid issues if it was already passed. } , **(target_options or {}) , ) lowerCAmelCase_ = os.path.basename(self.file.path.split("::" )[0] ) lowerCAmelCase_ = ( self.compressed_name[: self.compressed_name.rindex("." )] if "." in self.compressed_name else self.compressed_name ) lowerCAmelCase_ = None @classmethod def __a ( cls , _a ) -> List[Any]: # compressed file paths are always relative to the archive root return super()._strip_protocol(_a ).lstrip("/" ) def __a ( self ) -> Union[str, Any]: if self.dir_cache is None: lowerCAmelCase_ = {**self.file.fs.info(self.file.path ), "name": self.uncompressed_name} lowerCAmelCase_ = {f["name"]: f} def __a ( self , _a ) -> Dict: return self.file.open().read() def __a ( self , _a , _a = "rb" , _a=None , _a=True , _a=None , **_a , ) -> Optional[Any]: lowerCAmelCase_ = self._strip_protocol(_a ) if mode != "rb": raise ValueError(f"Tried to read with mode {mode} on file {self.file.path} opened with mode 'rb'" ) return self.file.open() class __magic_name__ (__lowercase ): lowerCamelCase__ = '''bz2''' lowerCamelCase__ = '''bz2''' lowerCamelCase__ = '''.bz2''' class __magic_name__ (__lowercase ): lowerCamelCase__ = '''gzip''' lowerCamelCase__ = '''gzip''' lowerCamelCase__ = '''.gz''' class __magic_name__ (__lowercase ): lowerCamelCase__ = '''lz4''' lowerCamelCase__ = '''lz4''' lowerCamelCase__ = '''.lz4''' class __magic_name__ (__lowercase ): lowerCamelCase__ = '''xz''' lowerCamelCase__ = '''xz''' lowerCamelCase__ = '''.xz''' class __magic_name__ (__lowercase ): lowerCamelCase__ = '''zstd''' lowerCamelCase__ = '''zstd''' lowerCamelCase__ = '''.zst''' def __init__( self , _a , _a = "rb" , _a = None , _a = None , _a = DEFAULT_BLOCK_SIZE , **_a , ) -> Tuple: super().__init__( fo=_a , mode=_a , target_protocol=_a , target_options=_a , block_size=_a , **_a , ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 lowerCAmelCase_ = self.file.__enter__ class __magic_name__ : def __init__( self , _a ) -> List[str]: lowerCAmelCase_ = file_ def __enter__( self ) -> int: self._file.__enter__() return self def __exit__( self , *_a , **_a ) -> Dict: self._file.__exit__(*_a , **_a ) def __iter__( self ) -> List[Any]: return iter(self._file ) def __a ( self ) -> List[Any]: return next(self._file ) def __getattr__( self , _a ) -> Tuple: return getattr(self._file , _a ) def fixed_enter(*_a , **_a ): return WrappedFile(_enter(*_a , **_a ) ) lowerCAmelCase_ = fixed_enter
226
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A_ : str ={"configuration_ibert": ["IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "IBertConfig", "IBertOnnxConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : int =[ "IBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "IBertForMaskedLM", "IBertForMultipleChoice", "IBertForQuestionAnswering", "IBertForSequenceClassification", "IBertForTokenClassification", "IBertModel", "IBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ibert import ( IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, IBertForMaskedLM, IBertForMultipleChoice, IBertForQuestionAnswering, IBertForSequenceClassification, IBertForTokenClassification, IBertModel, IBertPreTrainedModel, ) else: import sys A_ : List[Any] =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
274
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetrImageProcessor class A__ ( unittest.TestCase ): """simple docstring""" def __init__( self , __snake_case , __snake_case=7 , __snake_case=3 , __snake_case=3_0 , __snake_case=4_0_0 , __snake_case=True , __snake_case=None , __snake_case=True , __snake_case=1 / 2_5_5 , __snake_case=True , __snake_case=[0.5, 0.5, 0.5] , __snake_case=[0.5, 0.5, 0.5] , __snake_case=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p snake_case = size if size is not None else {'''shortest_edge''': 1_8, '''longest_edge''': 1_3_3_3} snake_case = parent snake_case = batch_size snake_case = num_channels snake_case = min_resolution snake_case = max_resolution snake_case = do_resize snake_case = size snake_case = do_rescale snake_case = rescale_factor snake_case = do_normalize snake_case = image_mean snake_case = image_std snake_case = do_pad def a_ ( self ): return { "do_resize": self.do_resize, "size": self.size, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_pad": self.do_pad, } def a_ ( self , __snake_case , __snake_case=False ): if not batched: snake_case = image_inputs[0] if isinstance(__snake_case , Image.Image ): snake_case , snake_case = image.size else: snake_case , snake_case = image.shape[1], image.shape[2] if w < h: snake_case = int(self.size['''shortest_edge'''] * h / w ) snake_case = self.size['''shortest_edge'''] elif w > h: snake_case = self.size['''shortest_edge'''] snake_case = int(self.size['''shortest_edge'''] * w / h ) else: snake_case = self.size['''shortest_edge'''] snake_case = self.size['''shortest_edge'''] else: snake_case = [] for image in image_inputs: snake_case , snake_case = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) snake_case = max(__snake_case , key=lambda __snake_case : item[0] )[0] snake_case = max(__snake_case , key=lambda __snake_case : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class A__ ( snake_case__ , unittest.TestCase ): """simple docstring""" __magic_name__ = DetrImageProcessor if is_vision_available() else None def a_ ( self ): snake_case = DetrImageProcessingTester(self ) @property def a_ ( self ): return self.image_processor_tester.prepare_image_processor_dict() def a_ ( self ): snake_case = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__snake_case , '''image_mean''' ) ) self.assertTrue(hasattr(__snake_case , '''image_std''' ) ) self.assertTrue(hasattr(__snake_case , '''do_normalize''' ) ) self.assertTrue(hasattr(__snake_case , '''do_rescale''' ) ) self.assertTrue(hasattr(__snake_case , '''rescale_factor''' ) ) self.assertTrue(hasattr(__snake_case , '''do_resize''' ) ) self.assertTrue(hasattr(__snake_case , '''size''' ) ) self.assertTrue(hasattr(__snake_case , '''do_pad''' ) ) def a_ ( self ): snake_case = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 1_8, '''longest_edge''': 1_3_3_3} ) self.assertEqual(image_processor.do_pad , __snake_case ) snake_case = self.image_processing_class.from_dict( self.image_processor_dict , size=4_2 , max_size=8_4 , pad_and_return_pixel_mask=__snake_case ) self.assertEqual(image_processor.size , {'''shortest_edge''': 4_2, '''longest_edge''': 8_4} ) self.assertEqual(image_processor.do_pad , __snake_case ) def a_ ( self ): pass def a_ ( self ): # Initialize image_processing snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , Image.Image ) # Test not batched input snake_case = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values snake_case , snake_case = self.image_processor_tester.get_expected_values(__snake_case ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case , snake_case = self.image_processor_tester.get_expected_values(__snake_case , batched=__snake_case ) snake_case = image_processing(__snake_case , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def a_ ( self ): # Initialize image_processing snake_case = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case , numpify=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , np.ndarray ) # Test not batched input snake_case = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values snake_case , snake_case = self.image_processor_tester.get_expected_values(__snake_case ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case = image_processing(__snake_case , return_tensors='''pt''' ).pixel_values snake_case , snake_case = self.image_processor_tester.get_expected_values(__snake_case , batched=__snake_case ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def a_ ( self ): # Initialize image_processing snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case , torchify=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , torch.Tensor ) # Test not batched input snake_case = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values snake_case , snake_case = self.image_processor_tester.get_expected_values(__snake_case ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case = image_processing(__snake_case , return_tensors='''pt''' ).pixel_values snake_case , snake_case = self.image_processor_tester.get_expected_values(__snake_case , batched=__snake_case ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def a_ ( self ): # prepare image and target snake_case = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: snake_case = json.loads(f.read() ) snake_case = {'''image_id''': 3_9_7_6_9, '''annotations''': target} # encode them snake_case = DetrImageProcessor.from_pretrained('''facebook/detr-resnet-50''' ) snake_case = image_processing(images=__snake_case , annotations=__snake_case , return_tensors='''pt''' ) # verify pixel values snake_case = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding['''pixel_values'''].shape , __snake_case ) snake_case = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , __snake_case , atol=1E-4 ) ) # verify area snake_case = torch.tensor([5887.9600, 1_1250.2061, 48_9353.8438, 83_7122.7500, 14_7967.5156, 16_5732.3438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , __snake_case ) ) # verify boxes snake_case = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , __snake_case ) snake_case = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , __snake_case , atol=1E-3 ) ) # verify image_id snake_case = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , __snake_case ) ) # verify is_crowd snake_case = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , __snake_case ) ) # verify class_labels snake_case = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , __snake_case ) ) # verify orig_size snake_case = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , __snake_case ) ) # verify size snake_case = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , __snake_case ) ) @slow def a_ ( self ): # prepare image, target and masks_path snake_case = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: snake_case = json.loads(f.read() ) snake_case = {'''file_name''': '''000000039769.png''', '''image_id''': 3_9_7_6_9, '''segments_info''': target} snake_case = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them snake_case = DetrImageProcessor.from_pretrained('''facebook/detr-resnet-50-panoptic''' ) snake_case = image_processing(images=__snake_case , annotations=__snake_case , masks_path=__snake_case , return_tensors='''pt''' ) # verify pixel values snake_case = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding['''pixel_values'''].shape , __snake_case ) snake_case = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , __snake_case , atol=1E-4 ) ) # verify area snake_case = torch.tensor([14_7979.6875, 16_5527.0469, 48_4638.5938, 1_1292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , __snake_case ) ) # verify boxes snake_case = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , __snake_case ) snake_case = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , __snake_case , atol=1E-3 ) ) # verify image_id snake_case = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , __snake_case ) ) # verify is_crowd snake_case = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , __snake_case ) ) # verify class_labels snake_case = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , __snake_case ) ) # verify masks snake_case = 8_2_2_8_7_3 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , __snake_case ) # verify orig_size snake_case = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , __snake_case ) ) # verify size snake_case = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , __snake_case ) )
550
0
'''simple docstring''' import glob import os import random from string import ascii_lowercase, digits import cva import numpy as np # Parrameters snake_case_ = (7_2_0, 1_2_8_0) # Height, Width snake_case_ = (0.4, 0.6) # if height or width lower than this scale, drop it. snake_case_ = 1 / 1_0_0 snake_case_ = '' snake_case_ = '' snake_case_ = '' snake_case_ = 2_5_0 def __lowerCamelCase ( ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ : Tuple = get_dataset(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for index in range(SCREAMING_SNAKE_CASE_ ): SCREAMING_SNAKE_CASE_ : str = random.sample(range(len(SCREAMING_SNAKE_CASE_ ) ) , 4 ) SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ : Tuple = update_image_and_anno( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , filter_scale=SCREAMING_SNAKE_CASE_ , ) # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' SCREAMING_SNAKE_CASE_ : int = random_chars(3_2 ) SCREAMING_SNAKE_CASE_ : List[str] = path.split(os.sep )[-1].rsplit("." , 1 )[0] SCREAMING_SNAKE_CASE_ : Optional[int] = F"{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}" cva.imwrite(F"{file_root}.jpg" , SCREAMING_SNAKE_CASE_ , [cva.IMWRITE_JPEG_QUALITY, 8_5] ) print(F"Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}" ) SCREAMING_SNAKE_CASE_ : List[str] = [] for anno in new_annos: SCREAMING_SNAKE_CASE_ : Dict = anno[3] - anno[1] SCREAMING_SNAKE_CASE_ : Optional[int] = anno[4] - anno[2] SCREAMING_SNAKE_CASE_ : Optional[Any] = anno[1] + width / 2 SCREAMING_SNAKE_CASE_ : Tuple = anno[2] + height / 2 SCREAMING_SNAKE_CASE_ : int = F"{anno[0]} {x_center} {y_center} {width} {height}" annos_list.append(SCREAMING_SNAKE_CASE_ ) with open(F"{file_root}.txt" , "w" ) as outfile: outfile.write("\n".join(line for line in annos_list ) ) def __lowerCamelCase ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str ) -> tuple[list, list]: """simple docstring""" SCREAMING_SNAKE_CASE_ : int = [] SCREAMING_SNAKE_CASE_ : Any = [] for label_file in glob.glob(os.path.join(SCREAMING_SNAKE_CASE_ , "*.txt" ) ): SCREAMING_SNAKE_CASE_ : List[str] = label_file.split(os.sep )[-1].rsplit("." , 1 )[0] with open(SCREAMING_SNAKE_CASE_ ) as in_file: SCREAMING_SNAKE_CASE_ : Union[str, Any] = in_file.readlines() SCREAMING_SNAKE_CASE_ : List[str] = os.path.join(SCREAMING_SNAKE_CASE_ , F"{label_name}.jpg" ) SCREAMING_SNAKE_CASE_ : int = [] for obj_list in obj_lists: SCREAMING_SNAKE_CASE_ : Optional[Any] = obj_list.rstrip("\n" ).split(" " ) SCREAMING_SNAKE_CASE_ : Tuple = float(obj[1] ) - float(obj[3] ) / 2 SCREAMING_SNAKE_CASE_ : List[Any] = float(obj[2] ) - float(obj[4] ) / 2 SCREAMING_SNAKE_CASE_ : Any = float(obj[1] ) + float(obj[3] ) / 2 SCREAMING_SNAKE_CASE_ : Any = float(obj[2] ) + float(obj[4] ) / 2 boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] ) if not boxes: continue img_paths.append(SCREAMING_SNAKE_CASE_ ) labels.append(SCREAMING_SNAKE_CASE_ ) return img_paths, labels def __lowerCamelCase ( SCREAMING_SNAKE_CASE_ : list , SCREAMING_SNAKE_CASE_ : list , SCREAMING_SNAKE_CASE_ : list[int] , SCREAMING_SNAKE_CASE_ : tuple[int, int] , SCREAMING_SNAKE_CASE_ : tuple[float, float] , SCREAMING_SNAKE_CASE_ : float = 0.0 , ) -> tuple[list, list, str]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) SCREAMING_SNAKE_CASE_ : Optional[int] = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) SCREAMING_SNAKE_CASE_ : Any = int(scale_x * output_size[1] ) SCREAMING_SNAKE_CASE_ : str = int(scale_y * output_size[0] ) SCREAMING_SNAKE_CASE_ : Dict = [] SCREAMING_SNAKE_CASE_ : List[str] = [] for i, index in enumerate(SCREAMING_SNAKE_CASE_ ): SCREAMING_SNAKE_CASE_ : List[Any] = all_img_list[index] path_list.append(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ : Tuple = all_annos[index] SCREAMING_SNAKE_CASE_ : int = cva.imread(SCREAMING_SNAKE_CASE_ ) if i == 0: # top-left SCREAMING_SNAKE_CASE_ : Optional[Any] = cva.resize(SCREAMING_SNAKE_CASE_ , (divid_point_x, divid_point_y) ) SCREAMING_SNAKE_CASE_ : int = img for bbox in img_annos: SCREAMING_SNAKE_CASE_ : Union[str, Any] = bbox[1] * scale_x SCREAMING_SNAKE_CASE_ : List[str] = bbox[2] * scale_y SCREAMING_SNAKE_CASE_ : Union[str, Any] = bbox[3] * scale_x SCREAMING_SNAKE_CASE_ : Tuple = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 1: # top-right SCREAMING_SNAKE_CASE_ : Tuple = cva.resize(SCREAMING_SNAKE_CASE_ , (output_size[1] - divid_point_x, divid_point_y) ) SCREAMING_SNAKE_CASE_ : Tuple = img for bbox in img_annos: SCREAMING_SNAKE_CASE_ : Any = scale_x + bbox[1] * (1 - scale_x) SCREAMING_SNAKE_CASE_ : Optional[Any] = bbox[2] * scale_y SCREAMING_SNAKE_CASE_ : Optional[int] = scale_x + bbox[3] * (1 - scale_x) SCREAMING_SNAKE_CASE_ : Dict = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 2: # bottom-left SCREAMING_SNAKE_CASE_ : List[str] = cva.resize(SCREAMING_SNAKE_CASE_ , (divid_point_x, output_size[0] - divid_point_y) ) SCREAMING_SNAKE_CASE_ : int = img for bbox in img_annos: SCREAMING_SNAKE_CASE_ : Union[str, Any] = bbox[1] * scale_x SCREAMING_SNAKE_CASE_ : Optional[Any] = scale_y + bbox[2] * (1 - scale_y) SCREAMING_SNAKE_CASE_ : List[Any] = bbox[3] * scale_x SCREAMING_SNAKE_CASE_ : Union[str, Any] = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) else: # bottom-right SCREAMING_SNAKE_CASE_ : Optional[Any] = cva.resize( SCREAMING_SNAKE_CASE_ , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) ) SCREAMING_SNAKE_CASE_ : int = img for bbox in img_annos: SCREAMING_SNAKE_CASE_ : int = scale_x + bbox[1] * (1 - scale_x) SCREAMING_SNAKE_CASE_ : List[Any] = scale_y + bbox[2] * (1 - scale_y) SCREAMING_SNAKE_CASE_ : Optional[Any] = scale_x + bbox[3] * (1 - scale_x) SCREAMING_SNAKE_CASE_ : List[Any] = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) # Remove bounding box small than scale of filter if filter_scale > 0: SCREAMING_SNAKE_CASE_ : Any = [ anno for anno in new_anno if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2]) ] return output_img, new_anno, path_list[0] def __lowerCamelCase ( SCREAMING_SNAKE_CASE_ : int ) -> str: """simple docstring""" assert number_char > 1, "The number of character should greater than 1" SCREAMING_SNAKE_CASE_ : Tuple = ascii_lowercase + digits return "".join(random.choice(SCREAMING_SNAKE_CASE_ ) for _ in range(SCREAMING_SNAKE_CASE_ ) ) if __name__ == "__main__": main() print('DONE ✅')
68
'''simple docstring''' from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def __lowerCamelCase ( SCREAMING_SNAKE_CASE_ : NDArray[floataa] , SCREAMING_SNAKE_CASE_ : NDArray[floataa] , SCREAMING_SNAKE_CASE_ : list[int] , SCREAMING_SNAKE_CASE_ : int , ) -> list[float]: """simple docstring""" SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ : str = coefficient_matrix.shape SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ : List[Any] = constant_matrix.shape if rowsa != colsa: SCREAMING_SNAKE_CASE_ : Union[str, Any] = F"Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}" raise ValueError(SCREAMING_SNAKE_CASE_ ) if colsa != 1: SCREAMING_SNAKE_CASE_ : List[Any] = F"Constant matrix must be nx1 but received {rowsa}x{colsa}" raise ValueError(SCREAMING_SNAKE_CASE_ ) if rowsa != rowsa: SCREAMING_SNAKE_CASE_ : Any = ( "Coefficient and constant matrices dimensions must be nxn and nx1 but " F"received {rowsa}x{colsa} and {rowsa}x{colsa}" ) raise ValueError(SCREAMING_SNAKE_CASE_ ) if len(SCREAMING_SNAKE_CASE_ ) != rowsa: SCREAMING_SNAKE_CASE_ : int = ( "Number of initial values must be equal to number of rows in coefficient " F"matrix but received {len(SCREAMING_SNAKE_CASE_ )} and {rowsa}" ) raise ValueError(SCREAMING_SNAKE_CASE_ ) if iterations <= 0: raise ValueError("Iterations must be at least 1" ) SCREAMING_SNAKE_CASE_ : NDArray[floataa] = np.concatenate( (coefficient_matrix, constant_matrix) , axis=1 ) SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ : Any = table.shape strictly_diagonally_dominant(SCREAMING_SNAKE_CASE_ ) # Iterates the whole matrix for given number of times for _ in range(SCREAMING_SNAKE_CASE_ ): SCREAMING_SNAKE_CASE_ : Tuple = [] for row in range(SCREAMING_SNAKE_CASE_ ): SCREAMING_SNAKE_CASE_ : Any = 0 for col in range(SCREAMING_SNAKE_CASE_ ): if col == row: SCREAMING_SNAKE_CASE_ : Any = table[row][col] elif col == cols - 1: SCREAMING_SNAKE_CASE_ : Dict = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] SCREAMING_SNAKE_CASE_ : Optional[Any] = (temp + val) / denom new_val.append(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = new_val return [float(SCREAMING_SNAKE_CASE_ ) for i in new_val] def __lowerCamelCase ( SCREAMING_SNAKE_CASE_ : NDArray[floataa] ) -> bool: """simple docstring""" SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ : Dict = table.shape SCREAMING_SNAKE_CASE_ : Tuple = True for i in range(0 , SCREAMING_SNAKE_CASE_ ): SCREAMING_SNAKE_CASE_ : int = 0 for j in range(0 , cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError("Coefficient matrix is not strictly diagonally dominant" ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
68
1
from __future__ import annotations lowerCamelCase_ : int = """Muhammad Umer Farooq""" lowerCamelCase_ : Optional[int] = """MIT""" lowerCamelCase_ : List[str] = """1.0.0""" lowerCamelCase_ : Tuple = """Muhammad Umer Farooq""" lowerCamelCase_ : List[Any] = """[email protected]""" lowerCamelCase_ : Dict = """Alpha""" import re from html.parser import HTMLParser from urllib import parse import requests class a__ ( __snake_case ): def __init__( self , UpperCAmelCase ) -> None: super().__init__() __a = [] __a = domain def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase , UpperCAmelCase ) -> None: # Only parse the 'anchor' tag. if tag == "a": # Check the list of defined attributes. for name, value in attrs: # If href is defined, and not empty nor # print it. if name == "href" and value != "#" and value != "": # If not already in urls. if value not in self.urls: __a = parse.urljoin(self.domain , UpperCAmelCase ) self.urls.append(UpperCAmelCase ) def lowerCAmelCase( __lowerCamelCase ): return ".".join(get_sub_domain_name(__lowerCamelCase ).split('.' )[-2:] ) def lowerCAmelCase( __lowerCamelCase ): return parse.urlparse(__lowerCamelCase ).netloc def lowerCAmelCase( __lowerCamelCase = "https://github.com" ): __a = get_domain_name(__lowerCamelCase ) # Initialize the parser __a = Parser(__lowerCamelCase ) try: # Open URL __a = requests.get(__lowerCamelCase ) # pass the raw HTML to the parser to get links parser.feed(r.text ) # Get links and loop through __a = set() for link in parser.urls: # open URL. # read = requests.get(link) try: __a = requests.get(__lowerCamelCase ) # Get the valid email. __a = re.findall('[a-zA-Z0-9]+@' + domain , read.text ) # If not in list then append it. for email in emails: valid_emails.add(__lowerCamelCase ) except ValueError: pass except ValueError: raise SystemExit(1 ) # Finally return a sorted list of email addresses with no duplicates. return sorted(__lowerCamelCase ) if __name__ == "__main__": lowerCamelCase_ : Optional[Any] = emails_from_url("""https://github.com""") print(F'''{len(emails)} emails found:''') print("""\n""".join(sorted(emails)))
559
def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase ): # Check if the input is valid if not len(__lowerCamelCase ) == len(__lowerCamelCase ) == 3: raise ValueError('Please enter a valid equation.' ) if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0: raise ValueError('Both a & b of two equations can\'t be zero.' ) # Extract the coefficients __a , __a , __a = equationa __a , __a , __a = equationa # Calculate the determinants of the matrices __a = aa * ba - aa * ba __a = ca * ba - ca * ba __a = aa * ca - aa * ca # Check if the system of linear equations has a solution (using Cramer's rule) if determinant == 0: if determinant_x == determinant_y == 0: raise ValueError('Infinite solutions. (Consistent system)' ) else: raise ValueError('No solution. (Inconsistent system)' ) else: if determinant_x == determinant_y == 0: # Trivial solution (Inconsistent system) return (0.0, 0.0) else: __a = determinant_x / determinant __a = determinant_y / determinant # Non-Trivial Solution (Consistent system) return (x, y)
559
1
def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : str , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Union[str, Any] ) -> str: global f # a global dp table for knapsack if f[i][j] < 0: if j < wt[i - 1]: SCREAMING_SNAKE_CASE_ : int =mf_knapsack(i - 1 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) else: SCREAMING_SNAKE_CASE_ : Any =max( mf_knapsack(i - 1 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , mf_knapsack(i - 1 , _lowerCamelCase , _lowerCamelCase , j - wt[i - 1] ) + val[i - 1] , ) SCREAMING_SNAKE_CASE_ : List[Any] =val return f[i][j] def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Any , UpperCAmelCase_ : Union[str, Any] ) -> List[str]: SCREAMING_SNAKE_CASE_ : str =[[0] * (w + 1) for _ in range(n + 1 )] for i in range(1 , n + 1 ): for w_ in range(1 , w + 1 ): if wt[i - 1] <= w_: SCREAMING_SNAKE_CASE_ : Union[str, Any] =max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] ) else: SCREAMING_SNAKE_CASE_ : Any =dp[i - 1][w_] return dp[n][w_], dp def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[int] ) -> List[Any]: if not (isinstance(_lowerCamelCase , (list, tuple) ) and isinstance(_lowerCamelCase , (list, tuple) )): raise ValueError( '''Both the weights and values vectors must be either lists or tuples''' ) SCREAMING_SNAKE_CASE_ : List[str] =len(_lowerCamelCase ) if num_items != len(_lowerCamelCase ): SCREAMING_SNAKE_CASE_ : List[Any] =( "The number of weights must be the same as the number of values.\n" f'But got {num_items} weights and {len(_lowerCamelCase )} values' ) raise ValueError(_lowerCamelCase ) for i in range(_lowerCamelCase ): if not isinstance(wt[i] , _lowerCamelCase ): SCREAMING_SNAKE_CASE_ : str =( "All weights must be integers but got weight of " f'type {type(wt[i] )} at index {i}' ) raise TypeError(_lowerCamelCase ) SCREAMING_SNAKE_CASE_ : Optional[Any] =knapsack(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE_ : set =set() _construct_solution(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) return optimal_val, example_optional_set def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any , UpperCAmelCase_ : int , UpperCAmelCase_ : Union[str, Any] ) -> Tuple: # for the current item i at a maximum weight j to be part of an optimal subset, # the optimal value at (i, j) must be greater than the optimal value at (i-1, j). # where i - 1 means considering only the previous items at the given maximum weight if i > 0 and j > 0: if dp[i - 1][j] == dp[i][j]: _construct_solution(_lowerCamelCase , _lowerCamelCase , i - 1 , _lowerCamelCase , _lowerCamelCase ) else: optimal_set.add(_lowerCamelCase ) _construct_solution(_lowerCamelCase , _lowerCamelCase , i - 1 , j - wt[i - 1] , _lowerCamelCase ) if __name__ == "__main__": _lowercase = [3, 2, 4, 4] _lowercase = [4, 3, 2, 3] _lowercase = 4 _lowercase = 6 _lowercase = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)] _lowercase , _lowercase = knapsack(w, wt, val, n) print(optimal_solution) print(mf_knapsack(n, wt, val, w)) # switched the n and w # testing the dynamic programming problem with example # the optimal subset for the above example are items 3 and 4 _lowercase , _lowercase = knapsack_with_example_solution(w, wt, val) assert optimal_solution == 8 assert optimal_subset == {3, 4} print("""optimal_value = """, optimal_solution) print("""An optimal subset corresponding to the optimal value""", optimal_subset)
717
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. _lowercase = abspath(join(dirname(__file__), """src""")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="""ignore""", category=FutureWarning) def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : Union[str, Any] ) -> Optional[int]: config.addinivalue_line( '''markers''' , '''is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested''' ) config.addinivalue_line( '''markers''' , '''is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested''' ) config.addinivalue_line('''markers''' , '''is_pipeline_test: mark test to run only when pipelines are tested''' ) config.addinivalue_line('''markers''' , '''is_staging_test: mark test to run only in the staging environment''' ) config.addinivalue_line('''markers''' , '''accelerate_tests: mark test that require accelerate''' ) config.addinivalue_line('''markers''' , '''tool_tests: mark the tool tests that are run on their specific schedule''' ) def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : List[Any] ) -> List[str]: from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(UpperCAmelCase_ ) def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : Dict ) -> Optional[int]: from transformers.testing_utils import pytest_terminal_summary_main SCREAMING_SNAKE_CASE_ : List[Any] =terminalreporter.config.getoption('''--make-reports''' ) if make_reports: pytest_terminal_summary_main(UpperCAmelCase_ , id=UpperCAmelCase_ ) def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[int] ) -> int: # If no tests are collected, pytest exists with code 5, which makes the CI fail. if exitstatus == 5: SCREAMING_SNAKE_CASE_ : Union[str, Any] =0 # Doctest custom flag to ignore output. _lowercase = doctest.register_optionflag("""IGNORE_RESULT""") _lowercase = doctest.OutputChecker class lowercase_ ( A ): def _snake_case ( self , __A , __A , __A ) -> List[Any]: if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self , __A , __A , __A ) _lowercase = CustomOutputChecker _lowercase = HfDoctestModule _lowercase = HfDocTestParser
431
0
from __future__ import annotations import math def _lowercase ( UpperCamelCase_ ) -> bool: '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(UpperCamelCase_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _lowercase ( UpperCamelCase_ ) -> list[int]: '''simple docstring''' SCREAMING_SNAKE_CASE__ = str(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = [n] for i in range(1 , len(UpperCamelCase_ ) ): list_nums.append(int(str_num[i:] ) ) list_nums.append(int(str_num[:-i] ) ) return list_nums def _lowercase ( UpperCamelCase_ ) -> bool: '''simple docstring''' if len(str(UpperCamelCase_ ) ) > 3: if not is_prime(int(str(UpperCamelCase_ )[-3:] ) ) or not is_prime(int(str(UpperCamelCase_ )[:3] ) ): return False return True def _lowercase ( UpperCamelCase_ = 11 ) -> list[int]: '''simple docstring''' SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = 13 while len(UpperCamelCase_ ) != count: if validate(UpperCamelCase_ ): SCREAMING_SNAKE_CASE__ = list_truncated_nums(UpperCamelCase_ ) if all(is_prime(UpperCamelCase_ ) for i in list_nums ): list_truncated_primes.append(UpperCamelCase_ ) num += 2 return list_truncated_primes def _lowercase ( ) -> int: '''simple docstring''' return sum(compute_truncated_primes(11 ) ) if __name__ == "__main__": print(F"""{sum(compute_truncated_primes(11)) = }""")
472
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging __snake_case = logging.get_logger(__name__) __snake_case = {"""vocab_file""": """spiece.model"""} __snake_case = { """vocab_file""": { """xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model""", """xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model""", } } __snake_case = { """xlnet-base-cased""": None, """xlnet-large-cased""": None, } # Segments (not really needed) __snake_case = 0 __snake_case = 1 __snake_case = 2 __snake_case = 3 __snake_case = 4 class lowercase__ ( _UpperCAmelCase ): A__ : Union[str, Any] =VOCAB_FILES_NAMES A__ : int =PRETRAINED_VOCAB_FILES_MAP A__ : Any =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ : List[str] ="""left""" def __init__( self : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int]=False , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : Union[str, Any]=False , UpperCAmelCase_ : str="<s>" , UpperCAmelCase_ : List[str]="</s>" , UpperCAmelCase_ : List[Any]="<unk>" , UpperCAmelCase_ : Any="<sep>" , UpperCAmelCase_ : Dict="<pad>" , UpperCAmelCase_ : List[str]="<cls>" , UpperCAmelCase_ : List[str]="<mask>" , UpperCAmelCase_ : str=["<eop>", "<eod>"] , UpperCAmelCase_ : Optional[Dict[str, Any]] = None , **UpperCAmelCase_ : Optional[Any] , ): # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE__ = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else mask_token SCREAMING_SNAKE_CASE__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=UpperCAmelCase_ , remove_space=UpperCAmelCase_ , keep_accents=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , additional_special_tokens=UpperCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase_ , ) SCREAMING_SNAKE_CASE__ = 3 SCREAMING_SNAKE_CASE__ = do_lower_case SCREAMING_SNAKE_CASE__ = remove_space SCREAMING_SNAKE_CASE__ = keep_accents SCREAMING_SNAKE_CASE__ = vocab_file SCREAMING_SNAKE_CASE__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(UpperCAmelCase_ ) @property def A_ ( self : List[Any] ): return len(self.sp_model ) def A_ ( self : Tuple ): SCREAMING_SNAKE_CASE__ = {self.convert_ids_to_tokens(UpperCAmelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : List[Any] ): SCREAMING_SNAKE_CASE__ = self.__dict__.copy() SCREAMING_SNAKE_CASE__ = None return state def __setstate__( self : Optional[Any] , UpperCAmelCase_ : Union[str, Any] ): SCREAMING_SNAKE_CASE__ = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): SCREAMING_SNAKE_CASE__ = {} SCREAMING_SNAKE_CASE__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def A_ ( self : Optional[Any] , UpperCAmelCase_ : int ): if self.remove_space: SCREAMING_SNAKE_CASE__ = ' '.join(inputs.strip().split() ) else: SCREAMING_SNAKE_CASE__ = inputs SCREAMING_SNAKE_CASE__ = outputs.replace('``' , '"' ).replace('\'\'' , '"' ) if not self.keep_accents: SCREAMING_SNAKE_CASE__ = unicodedata.normalize('NFKD' , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = ''.join([c for c in outputs if not unicodedata.combining(UpperCAmelCase_ )] ) if self.do_lower_case: SCREAMING_SNAKE_CASE__ = outputs.lower() return outputs def A_ ( self : List[str] , UpperCAmelCase_ : str ): SCREAMING_SNAKE_CASE__ = self.preprocess_text(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = self.sp_model.encode(UpperCAmelCase_ , out_type=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = [] for piece in pieces: if len(UpperCAmelCase_ ) > 1 and piece[-1] == str(',' ) and piece[-2].isdigit(): SCREAMING_SNAKE_CASE__ = self.sp_model.EncodeAsPieces(piece[:-1].replace(UpperCAmelCase_ , '' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: SCREAMING_SNAKE_CASE__ = cur_pieces[1:] else: SCREAMING_SNAKE_CASE__ = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(UpperCAmelCase_ ) else: new_pieces.append(UpperCAmelCase_ ) return new_pieces def A_ ( self : Any , UpperCAmelCase_ : Optional[Any] ): return self.sp_model.PieceToId(UpperCAmelCase_ ) def A_ ( self : Tuple , UpperCAmelCase_ : Any ): return self.sp_model.IdToPiece(UpperCAmelCase_ ) def A_ ( self : Any , UpperCAmelCase_ : Tuple ): SCREAMING_SNAKE_CASE__ = ''.join(UpperCAmelCase_ ).replace(UpperCAmelCase_ , ' ' ).strip() return out_string def A_ ( self : Dict , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = None , UpperCAmelCase_ : bool = True , **UpperCAmelCase_ : Optional[Any] , ): SCREAMING_SNAKE_CASE__ = kwargs.pop('use_source_tokenizer' , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = self.convert_ids_to_tokens(UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(UpperCAmelCase_ ) ) SCREAMING_SNAKE_CASE__ = [] sub_texts.append(UpperCAmelCase_ ) else: current_sub_text.append(UpperCAmelCase_ ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(UpperCAmelCase_ ) ) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens SCREAMING_SNAKE_CASE__ = ''.join(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: SCREAMING_SNAKE_CASE__ = self.clean_up_tokenization(UpperCAmelCase_ ) return clean_text else: return text def A_ ( self : List[Any] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None ): SCREAMING_SNAKE_CASE__ = [self.sep_token_id] SCREAMING_SNAKE_CASE__ = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def A_ ( self : List[str] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None , UpperCAmelCase_ : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_ ) if token_ids_a is not None: return ([0] * len(UpperCAmelCase_ )) + [1] + ([0] * len(UpperCAmelCase_ )) + [1, 1] return ([0] * len(UpperCAmelCase_ )) + [1, 1] def A_ ( self : Tuple , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None ): SCREAMING_SNAKE_CASE__ = [self.sep_token_id] SCREAMING_SNAKE_CASE__ = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def A_ ( self : Optional[int] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None ): if not os.path.isdir(UpperCAmelCase_ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return SCREAMING_SNAKE_CASE__ = os.path.join( UpperCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCAmelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCAmelCase_ , 'wb' ) as fi: SCREAMING_SNAKE_CASE__ = self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase_ ) return (out_vocab_file,)
472
1
def a__ ( A_ = 200 ): '''simple docstring''' __magic_name__ = [1, 2, 5, 10, 20, 50, 100, 200] __magic_name__ = [0] * (pence + 1) __magic_name__ = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(lowerCAmelCase__, pence + 1, 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(200) == 73682
708
import collections import importlib.util import os import re from pathlib import Path __lowerCAmelCase : int = 'src/transformers' # Matches is_xxx_available() __lowerCAmelCase : Optional[int] = re.compile(R'is\_([a-z_]*)_available()') # Catches a one-line _import_struct = {xxx} __lowerCAmelCase : Dict = re.compile(R'^_import_structure\s+=\s+\{([^\}]+)\}') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] __lowerCAmelCase : int = re.compile(R'\s+"\S*":\s+\[([^\]]*)\]') # Catches a line if not is_foo_available __lowerCAmelCase : Optional[Any] = re.compile(R'^\s*if\s+not\s+is\_[a-z_]*\_available\(\)') # Catches a line _import_struct["bla"].append("foo") __lowerCAmelCase : Optional[Any] = re.compile(R'^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] __lowerCAmelCase : Dict = re.compile(R'^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]') # Catches a line with an object between quotes and a comma: "MyModel", __lowerCAmelCase : List[str] = re.compile('^\s+"([^"]+)",') # Catches a line with objects between brackets only: ["foo", "bar"], __lowerCAmelCase : Optional[int] = re.compile('^\s+\[([^\]]+)\]') # Catches a line with from foo import bar, bla, boo __lowerCAmelCase : List[str] = re.compile(R'\s+from\s+\S*\s+import\s+([^\(\s].*)\n') # Catches a line with try: __lowerCAmelCase : int = re.compile(R'^\s*try:') # Catches a line with else: __lowerCAmelCase : Tuple = re.compile(R'^\s*else:') def a__ ( A_ ): '''simple docstring''' if _re_test_backend.search(A_ ) is None: return None __magic_name__ = [b[0] for b in _re_backend.findall(A_ )] backends.sort() return "_and_".join(A_ ) def a__ ( A_ ): '''simple docstring''' with open(A_, """r""", encoding="""utf-8""", newline="""\n""" ) as f: __magic_name__ = f.readlines() __magic_name__ = 0 while line_index < len(A_ ) and not lines[line_index].startswith("""_import_structure = {""" ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(A_ ): return None # First grab the objects without a specific backend in _import_structure __magic_name__ = [] while not lines[line_index].startswith("""if TYPE_CHECKING""" ) and find_backend(lines[line_index] ) is None: __magic_name__ = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(A_ ): __magic_name__ = _re_one_line_import_struct.search(A_ ).groups()[0] __magic_name__ = re.findall("""\[([^\]]+)\]""", A_ ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(""", """ )] ) line_index += 1 continue __magic_name__ = _re_import_struct_key_value.search(A_ ) if single_line_import_search is not None: __magic_name__ = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(""", """ ) if len(A_ ) > 0] objects.extend(A_ ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) line_index += 1 __magic_name__ = {"""none""": objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith("""if TYPE_CHECKING""" ): # If the line is an if not is_backend_available, we grab all objects associated. __magic_name__ = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: __magic_name__ = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 __magic_name__ = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 4 ): __magic_name__ = lines[line_index] if _re_import_struct_add_one.search(A_ ) is not None: objects.append(_re_import_struct_add_one.search(A_ ).groups()[0] ) elif _re_import_struct_add_many.search(A_ ) is not None: __magic_name__ = _re_import_struct_add_many.search(A_ ).groups()[0].split(""", """ ) __magic_name__ = [obj[1:-1] for obj in imports if len(A_ ) > 0] objects.extend(A_ ) elif _re_between_brackets.search(A_ ) is not None: __magic_name__ = _re_between_brackets.search(A_ ).groups()[0].split(""", """ ) __magic_name__ = [obj[1:-1] for obj in imports if len(A_ ) > 0] objects.extend(A_ ) elif _re_quote_object.search(A_ ) is not None: objects.append(_re_quote_object.search(A_ ).groups()[0] ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) elif line.startswith(""" """ * 12 + """\"""" ): objects.append(line[13:-3] ) line_index += 1 __magic_name__ = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend __magic_name__ = [] while ( line_index < len(A_ ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith("""else""" ) ): __magic_name__ = lines[line_index] __magic_name__ = _re_import.search(A_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 8 ): objects.append(line[8:-2] ) line_index += 1 __magic_name__ = {"""none""": objects} # Let's continue with backend-specific objects while line_index < len(A_ ): # If the line is an if is_backend_available, we grab all objects associated. __magic_name__ = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: __magic_name__ = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 __magic_name__ = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 8 ): __magic_name__ = lines[line_index] __magic_name__ = _re_import.search(A_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 12 ): objects.append(line[12:-2] ) line_index += 1 __magic_name__ = objects else: line_index += 1 return import_dict_objects, type_hint_objects def a__ ( A_, A_ ): '''simple docstring''' def find_duplicates(A_ ): return [k for k, v in collections.Counter(A_ ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] __magic_name__ = [] for key in import_dict_objects.keys(): __magic_name__ = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(f'''Duplicate _import_structure definitions for: {duplicate_imports}''' ) __magic_name__ = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(f'''Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}''' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): __magic_name__ = """base imports""" if key == """none""" else f'''{key} backend''' errors.append(f'''Differences for {name}:''' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(f''' {a} in TYPE_HINT but not in _import_structure.''' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(f''' {a} in _import_structure but not in TYPE_HINT.''' ) return errors def a__ ( ): '''simple docstring''' __magic_name__ = [] for root, _, files in os.walk(A_ ): if "__init__.py" in files: __magic_name__ = os.path.join(A_, """__init__.py""" ) __magic_name__ = parse_init(A_ ) if objects is not None: __magic_name__ = analyze_results(*A_ ) if len(A_ ) > 0: __magic_name__ = f'''Problem in {fname}, both halves do not define the same objects.\n{errors[0]}''' failures.append("""\n""".join(A_ ) ) if len(A_ ) > 0: raise ValueError("""\n\n""".join(A_ ) ) def a__ ( ): '''simple docstring''' __magic_name__ = [] for path, directories, files in os.walk(A_ ): for folder in directories: # Ignore private modules if folder.startswith("""_""" ): directories.remove(A_ ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(A_ ) / folder).glob("""*.py""" ) ) ) == 0: continue __magic_name__ = str((Path(A_ ) / folder).relative_to(A_ ) ) __magic_name__ = short_path.replace(os.path.sep, """.""" ) submodules.append(A_ ) for fname in files: if fname == "__init__.py": continue __magic_name__ = str((Path(A_ ) / fname).relative_to(A_ ) ) __magic_name__ = short_path.replace(""".py""", """""" ).replace(os.path.sep, """.""" ) if len(submodule.split(""".""" ) ) == 1: submodules.append(A_ ) return submodules __lowerCAmelCase : Dict = [ 'convert_pytorch_checkpoint_to_tf2', 'modeling_flax_pytorch_utils', ] def a__ ( ): '''simple docstring''' __magic_name__ = importlib.util.spec_from_file_location( """transformers""", os.path.join(A_, """__init__.py""" ), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) __magic_name__ = spec.loader.load_module() __magic_name__ = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(A_ ) > 0: __magic_name__ = """\n""".join(f'''- {module}''' for module in module_not_registered ) raise ValueError( """The following submodules are not properly registered in the main init of Transformers:\n""" f'''{list_of_modules}\n''' """Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.""" ) if __name__ == "__main__": check_all_inits() check_submodules()
76
0
import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class snake_case__ ( unittest.TestCase ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=7 , lowerCAmelCase__=3 , lowerCAmelCase__=18 , lowerCAmelCase__=30 , lowerCAmelCase__=4_00 , lowerCAmelCase__=True , lowerCAmelCase__=None , lowerCAmelCase__=True , lowerCAmelCase__=[0.5, 0.5, 0.5] , lowerCAmelCase__=[0.5, 0.5, 0.5] , ) -> str: __magic_name__ : Optional[int] = size if size is not None else {"""height""": 18, """width""": 18} __magic_name__ : Any = parent __magic_name__ : List[str] = batch_size __magic_name__ : Optional[Any] = num_channels __magic_name__ : Union[str, Any] = image_size __magic_name__ : Optional[Any] = min_resolution __magic_name__ : Any = max_resolution __magic_name__ : Any = do_resize __magic_name__ : Optional[int] = size __magic_name__ : Optional[int] = do_normalize __magic_name__ : Optional[int] = image_mean __magic_name__ : Any = image_std def __magic_name__ ( self ) -> Dict: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class snake_case__ ( _lowerCAmelCase , unittest.TestCase ): lowercase__ : Union[str, Any] = DPTImageProcessor if is_vision_available() else None def __magic_name__ ( self ) -> int: __magic_name__ : str = DPTImageProcessingTester(self ) @property def __magic_name__ ( self ) -> Optional[Any]: return self.image_processor_tester.prepare_image_processor_dict() def __magic_name__ ( self ) -> List[Any]: __magic_name__ : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , """image_mean""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """image_std""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """do_normalize""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """do_resize""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """size""" ) ) def __magic_name__ ( self ) -> Optional[int]: __magic_name__ : Any = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) __magic_name__ : Tuple = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def __magic_name__ ( self ) -> Optional[int]: # Initialize image_processing __magic_name__ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __magic_name__ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input __magic_name__ : str = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched __magic_name__ : Dict = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def __magic_name__ ( self ) -> List[Any]: # Initialize image_processing __magic_name__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __magic_name__ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , np.ndarray ) # Test not batched input __magic_name__ : Dict = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched __magic_name__ : Union[str, Any] = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def __magic_name__ ( self ) -> Optional[Any]: # Initialize image_processing __magic_name__ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __magic_name__ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , torch.Tensor ) # Test not batched input __magic_name__ : Optional[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched __magic_name__ : int = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , )
324
import argparse import json import subprocess def UpperCamelCase ( _A, _A ): """simple docstring""" __magic_name__ : Union[str, Any] = [] __magic_name__ : Optional[int] = ( f'curl -H "Accept: application/vnd.github+json" -H "Authorization: Bearer {token}"' """ https://api.github.com/repos/huggingface/transformers/actions/runners""" ) __magic_name__ : Any = subprocess.run(_A, shell=_A, stdout=subprocess.PIPE ) __magic_name__ : int = output.stdout.decode("""utf-8""" ) __magic_name__ : Optional[int] = json.loads(_A ) __magic_name__ : Tuple = status["""runners"""] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(_A ) # save the result so we can report them on Slack with open("""offline_runners.txt""", """w""" ) as fp: fp.write(json.dumps(_A ) ) if len(_A ) > 0: __magic_name__ : Optional[Any] = """\n""".join([x["""name"""] for x in offline_runners] ) raise ValueError(f'The following runners are offline:\n{failed}' ) if __name__ == "__main__": def UpperCamelCase ( _A ): """simple docstring""" return values.split(""",""" ) __magic_name__: List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--target_runners", default=None, type=list_str, required=True, help="Comma-separated list of runners to check status.", ) parser.add_argument( "--token", default=None, type=str, required=True, help="A token that has actions:read permission." ) __magic_name__: Dict = parser.parse_args() get_runner_status(args.target_runners, args.token)
324
1
"""simple docstring""" from argparse import ArgumentParser from .add_new_model import AddNewModelCommand from .add_new_model_like import AddNewModelLikeCommand from .convert import ConvertCommand from .download import DownloadCommand from .env import EnvironmentCommand from .lfs import LfsCommands from .pt_to_tf import PTtoTFCommand from .run import RunCommand from .serving import ServeCommand from .user import UserCommands def A__ ( ) -> Any: '''simple docstring''' _UpperCAmelCase = ArgumentParser("Transformers CLI tool" , usage="transformers-cli <command> [<args>]" ) _UpperCAmelCase = parser.add_subparsers(help="transformers-cli command helpers" ) # Register commands ConvertCommand.register_subcommand(A__ ) DownloadCommand.register_subcommand(A__ ) EnvironmentCommand.register_subcommand(A__ ) RunCommand.register_subcommand(A__ ) ServeCommand.register_subcommand(A__ ) UserCommands.register_subcommand(A__ ) AddNewModelCommand.register_subcommand(A__ ) AddNewModelLikeCommand.register_subcommand(A__ ) LfsCommands.register_subcommand(A__ ) PTtoTFCommand.register_subcommand(A__ ) # Let's go _UpperCAmelCase = parser.parse_args() if not hasattr(A__ , "func" ): parser.print_help() exit(1 ) # Run _UpperCAmelCase = args.func(A__ ) service.run() if __name__ == "__main__": main()
579
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { '''studio-ousia/luke-base''': '''https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json''', '''studio-ousia/luke-large''': '''https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json''', } class a ( _SCREAMING_SNAKE_CASE ): """simple docstring""" A__ : int = "luke" def __init__( self , snake_case_=50267 , snake_case_=500000 , snake_case_=768 , snake_case_=256 , snake_case_=12 , snake_case_=12 , snake_case_=3072 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=2 , snake_case_=0.02 , snake_case_=1e-1_2 , snake_case_=True , snake_case_=None , snake_case_=1 , snake_case_=0 , snake_case_=2 , **snake_case_ , ) -> Any: super().__init__(pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ , **snake_case_ ) _UpperCAmelCase = vocab_size _UpperCAmelCase = entity_vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = entity_emb_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = hidden_act _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = use_entity_aware_attention _UpperCAmelCase = classifier_dropout
579
1
'''simple docstring''' import numpy as np import torch from torch.utils.data import Dataset from utils import logger class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]: '''simple docstring''' lowerCamelCase_ = params lowerCamelCase_ = np.array(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = np.array([len(SCREAMING_SNAKE_CASE_ ) for t in data] ) self.check() self.remove_long_sequences() self.remove_empty_sequences() self.remove_unknown_sequences() self.check() self.print_statistics() def __getitem__( self , SCREAMING_SNAKE_CASE_ ) -> List[str]: '''simple docstring''' return (self.token_ids[index], self.lengths[index]) def __len__( self ) -> Any: '''simple docstring''' return len(self.lengths ) def UpperCamelCase( self ) -> Tuple: '''simple docstring''' assert len(self.token_ids ) == len(self.lengths ) assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) ) def UpperCamelCase( self ) -> Tuple: '''simple docstring''' lowerCamelCase_ = self.params.max_model_input_size lowerCamelCase_ = self.lengths > max_len logger.info(f'''Splitting {sum(SCREAMING_SNAKE_CASE_ )} too long sequences.''' ) def divide_chunks(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return [l[i : i + n] for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ )] lowerCamelCase_ = [] lowerCamelCase_ = [] if self.params.mlm: lowerCamelCase_ ,lowerCamelCase_ = self.params.special_tok_ids['cls_token'], self.params.special_tok_ids['sep_token'] else: lowerCamelCase_ ,lowerCamelCase_ = self.params.special_tok_ids['bos_token'], self.params.special_tok_ids['eos_token'] for seq_, len_ in zip(self.token_ids , self.lengths ): assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_ if len_ <= max_len: new_tok_ids.append(seq_ ) new_lengths.append(len_ ) else: lowerCamelCase_ = [] for sub_s in divide_chunks(seq_ , max_len - 2 ): if sub_s[0] != cls_id: lowerCamelCase_ = np.insert(SCREAMING_SNAKE_CASE_ , 0 , SCREAMING_SNAKE_CASE_ ) if sub_s[-1] != sep_id: lowerCamelCase_ = np.insert(SCREAMING_SNAKE_CASE_ , len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) assert len(SCREAMING_SNAKE_CASE_ ) <= max_len assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s sub_seqs.append(SCREAMING_SNAKE_CASE_ ) new_tok_ids.extend(SCREAMING_SNAKE_CASE_ ) new_lengths.extend([len(SCREAMING_SNAKE_CASE_ ) for l in sub_seqs] ) lowerCamelCase_ = np.array(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = np.array(SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' lowerCamelCase_ = len(self ) lowerCamelCase_ = self.lengths > 11 lowerCamelCase_ = self.token_ids[indices] lowerCamelCase_ = self.lengths[indices] lowerCamelCase_ = len(self ) logger.info(f'''Remove {init_size - new_size} too short (<=11 tokens) sequences.''' ) def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' if "unk_token" not in self.params.special_tok_ids: return else: lowerCamelCase_ = self.params.special_tok_ids['unk_token'] lowerCamelCase_ = len(self ) lowerCamelCase_ = np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] ) lowerCamelCase_ = (unk_occs / self.lengths) < 0.5 lowerCamelCase_ = self.token_ids[indices] lowerCamelCase_ = self.lengths[indices] lowerCamelCase_ = len(self ) logger.info(f'''Remove {init_size - new_size} sequences with a high level of unknown tokens (50%).''' ) def UpperCamelCase( self ) -> List[str]: '''simple docstring''' if not self.params.is_master: return logger.info(f'''{len(self )} sequences''' ) # data_len = sum(self.lengths) # nb_unique_tokens = len(Counter(list(chain(*self.token_ids)))) # logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)') # unk_idx = self.params.special_tok_ids['unk_token'] # nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids]) # logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)') def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ ) -> str: '''simple docstring''' lowerCamelCase_ = [t[0] for t in batch] lowerCamelCase_ = [t[1] for t in batch] assert len(SCREAMING_SNAKE_CASE_ ) == len(SCREAMING_SNAKE_CASE_ ) # Max for paddings lowerCamelCase_ = max(SCREAMING_SNAKE_CASE_ ) # Pad token ids if self.params.mlm: lowerCamelCase_ = self.params.special_tok_ids['pad_token'] else: lowerCamelCase_ = self.params.special_tok_ids['unk_token'] lowerCamelCase_ = [list(t.astype(SCREAMING_SNAKE_CASE_ ) ) + [pad_idx] * (max_seq_len_ - len(SCREAMING_SNAKE_CASE_ )) for t in token_ids] assert len(tk_ ) == len(SCREAMING_SNAKE_CASE_ ) assert all(len(SCREAMING_SNAKE_CASE_ ) == max_seq_len_ for t in tk_ ) lowerCamelCase_ = torch.tensor(tk_ ) # (bs, max_seq_len_) lowerCamelCase_ = torch.tensor(SCREAMING_SNAKE_CASE_ ) # (bs) return tk_t, lg_t
42
from __future__ import annotations def __snake_case ( _lowerCAmelCase : list[int] , _lowerCAmelCase : int ) -> list[list[int]]: A_ : list[list[int]] = [] A_ : list[int] = [] A_ : Dict = 0 A_ : str = sum(_lowerCAmelCase ) create_state_space_tree(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return result def __snake_case ( _lowerCAmelCase : list[int] , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : list[int] , _lowerCAmelCase : list[list[int]] , _lowerCAmelCase : int , ) -> None: if sum(_lowerCAmelCase ) > max_sum or (remaining_nums_sum + sum(_lowerCAmelCase )) < max_sum: return if sum(_lowerCAmelCase ) == max_sum: result.append(_lowerCAmelCase ) return for index in range(_lowerCAmelCase , len(_lowerCAmelCase ) ): create_state_space_tree( _lowerCAmelCase , _lowerCAmelCase , index + 1 , [*path, nums[index]] , _lowerCAmelCase , remaining_nums_sum - nums[index] , ) _lowerCAmelCase : List[Any] = [3, 34, 4, 12, 5, 2] _lowerCAmelCase : Dict = 9 _lowerCAmelCase : Dict = generate_sum_of_subsets_soln(nums, max_sum) print(*result)
454
0
"""simple docstring""" import contextlib import copy import random from typing import Any, Dict, Iterable, Optional, Union import numpy as np import torch from .utils import deprecate, is_transformers_available if is_transformers_available(): import transformers def A__ ( UpperCamelCase ): random.seed(UpperCamelCase ) np.random.seed(UpperCamelCase ) torch.manual_seed(UpperCamelCase ) torch.cuda.manual_seed_all(UpperCamelCase ) # ^^ safe to call this function even if cuda is not available class _UpperCAmelCase : def __init__( self :int , __UpperCamelCase :Iterable[torch.nn.Parameter] , __UpperCamelCase :float = 0.9_999 , __UpperCamelCase :float = 0.0 , __UpperCamelCase :int = 0 , __UpperCamelCase :bool = False , __UpperCamelCase :Union[float, int] = 1.0 , __UpperCamelCase :Union[float, int] = 2 / 3 , __UpperCamelCase :Optional[Any] = None , __UpperCamelCase :Dict[str, Any] = None , **__UpperCamelCase :Any , ): if isinstance(__UpperCamelCase , torch.nn.Module ): A = ( "Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. " "Please pass the parameters of the module instead." ) deprecate( "passing a `torch.nn.Module` to `ExponentialMovingAverage`" , "1.0.0" , __UpperCamelCase , standard_warn=__UpperCamelCase , ) A = parameters.parameters() # set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility A = True if kwargs.get("max_value" , __UpperCamelCase ) is not None: A = "The `max_value` argument is deprecated. Please use `decay` instead." deprecate("max_value" , "1.0.0" , __UpperCamelCase , standard_warn=__UpperCamelCase ) A = kwargs["max_value"] if kwargs.get("min_value" , __UpperCamelCase ) is not None: A = "The `min_value` argument is deprecated. Please use `min_decay` instead." deprecate("min_value" , "1.0.0" , __UpperCamelCase , standard_warn=__UpperCamelCase ) A = kwargs["min_value"] A = list(__UpperCamelCase ) A = [p.clone().detach() for p in parameters] if kwargs.get("device" , __UpperCamelCase ) is not None: A = "The `device` argument is deprecated. Please use `to` instead." deprecate("device" , "1.0.0" , __UpperCamelCase , standard_warn=__UpperCamelCase ) self.to(device=kwargs["device"] ) A = None A = decay A = min_decay A = update_after_step A = use_ema_warmup A = inv_gamma A = power A = 0 A = None # set in `step()` A = model_cls A = model_config @classmethod def lowerCamelCase ( cls :Any , __UpperCamelCase :int , __UpperCamelCase :Tuple ): A, A = model_cls.load_config(__UpperCamelCase , return_unused_kwargs=__UpperCamelCase ) A = model_cls.from_pretrained(__UpperCamelCase ) A = cls(model.parameters() , model_cls=__UpperCamelCase , model_config=model.config ) ema_model.load_state_dict(__UpperCamelCase ) return ema_model def lowerCamelCase ( self :List[str] , __UpperCamelCase :Optional[int] ): if self.model_cls is None: raise ValueError("`save_pretrained` can only be used if `model_cls` was defined at __init__." ) if self.model_config is None: raise ValueError("`save_pretrained` can only be used if `model_config` was defined at __init__." ) A = self.model_cls.from_config(self.model_config ) A = self.state_dict() state_dict.pop("shadow_params" , __UpperCamelCase ) model.register_to_config(**__UpperCamelCase ) self.copy_to(model.parameters() ) model.save_pretrained(__UpperCamelCase ) def lowerCamelCase ( self :Any , __UpperCamelCase :int ): A = max(0 , optimization_step - self.update_after_step - 1 ) if step <= 0: return 0.0 if self.use_ema_warmup: A = 1 - (1 + step / self.inv_gamma) ** -self.power else: A = (1 + step) / (10 + step) A = min(__UpperCamelCase , self.decay ) # make sure decay is not smaller than min_decay A = max(__UpperCamelCase , self.min_decay ) return cur_decay_value @torch.no_grad() def lowerCamelCase ( self :Optional[Any] , __UpperCamelCase :Iterable[torch.nn.Parameter] ): if isinstance(__UpperCamelCase , torch.nn.Module ): A = ( "Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. " "Please pass the parameters of the module instead." ) deprecate( "passing a `torch.nn.Module` to `ExponentialMovingAverage.step`" , "1.0.0" , __UpperCamelCase , standard_warn=__UpperCamelCase , ) A = parameters.parameters() A = list(__UpperCamelCase ) self.optimization_step += 1 # Compute the decay factor for the exponential moving average. A = self.get_decay(self.optimization_step ) A = decay A = 1 - decay A = contextlib.nullcontext if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): import deepspeed for s_param, param in zip(self.shadow_params , __UpperCamelCase ): if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): A = deepspeed.zero.GatheredParameters(__UpperCamelCase , modifier_rank=__UpperCamelCase ) with context_manager(): if param.requires_grad: s_param.sub_(one_minus_decay * (s_param - param) ) else: s_param.copy_(__UpperCamelCase ) def lowerCamelCase ( self :Union[str, Any] , __UpperCamelCase :Iterable[torch.nn.Parameter] ): A = list(__UpperCamelCase ) for s_param, param in zip(self.shadow_params , __UpperCamelCase ): param.data.copy_(s_param.to(param.device ).data ) def lowerCamelCase ( self :List[str] , __UpperCamelCase :Union[str, Any]=None , __UpperCamelCase :Union[str, Any]=None ): A = [ p.to(device=__UpperCamelCase , dtype=__UpperCamelCase ) if p.is_floating_point() else p.to(device=__UpperCamelCase ) for p in self.shadow_params ] def lowerCamelCase ( self :str ): return { "decay": self.decay, "min_decay": self.min_decay, "optimization_step": self.optimization_step, "update_after_step": self.update_after_step, "use_ema_warmup": self.use_ema_warmup, "inv_gamma": self.inv_gamma, "power": self.power, "shadow_params": self.shadow_params, } def lowerCamelCase ( self :List[str] , __UpperCamelCase :Iterable[torch.nn.Parameter] ): A = [param.detach().cpu().clone() for param in parameters] def lowerCamelCase ( self :Optional[Any] , __UpperCamelCase :Iterable[torch.nn.Parameter] ): if self.temp_stored_params is None: raise RuntimeError("This ExponentialMovingAverage has no `store()`ed weights " "to `restore()`" ) for c_param, param in zip(self.temp_stored_params , __UpperCamelCase ): param.data.copy_(c_param.data ) # Better memory-wise. A = None def lowerCamelCase ( self :List[str] , __UpperCamelCase :dict ): A = copy.deepcopy(__UpperCamelCase ) A = state_dict.get("decay" , self.decay ) if self.decay < 0.0 or self.decay > 1.0: raise ValueError("Decay must be between 0 and 1" ) A = state_dict.get("min_decay" , self.min_decay ) if not isinstance(self.min_decay , __UpperCamelCase ): raise ValueError("Invalid min_decay" ) A = state_dict.get("optimization_step" , self.optimization_step ) if not isinstance(self.optimization_step , __UpperCamelCase ): raise ValueError("Invalid optimization_step" ) A = state_dict.get("update_after_step" , self.update_after_step ) if not isinstance(self.update_after_step , __UpperCamelCase ): raise ValueError("Invalid update_after_step" ) A = state_dict.get("use_ema_warmup" , self.use_ema_warmup ) if not isinstance(self.use_ema_warmup , __UpperCamelCase ): raise ValueError("Invalid use_ema_warmup" ) A = state_dict.get("inv_gamma" , self.inv_gamma ) if not isinstance(self.inv_gamma , (float, int) ): raise ValueError("Invalid inv_gamma" ) A = state_dict.get("power" , self.power ) if not isinstance(self.power , (float, int) ): raise ValueError("Invalid power" ) A = state_dict.get("shadow_params" , __UpperCamelCase ) if shadow_params is not None: A = shadow_params if not isinstance(self.shadow_params , __UpperCamelCase ): raise ValueError("shadow_params must be a list" ) if not all(isinstance(__UpperCamelCase , torch.Tensor ) for p in self.shadow_params ): raise ValueError("shadow_params must all be Tensors" )
524
"""simple docstring""" import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class _UpperCAmelCase ( lowercase_ ): UpperCamelCase = 42 UpperCamelCase = jnp.floataa UpperCamelCase = True def lowerCamelCase ( self :Optional[int] ): super().setup() A = nn.Dense(5 , dtype=self.dtype ) def __call__( self :Tuple , *__UpperCamelCase :str , **__UpperCamelCase :List[Any] ): A = super().__call__(*__UpperCamelCase , **__UpperCamelCase ) A = self.cls(outputs[2] ) return outputs[:2] + (cls_out,) class _UpperCAmelCase ( lowercase_ ): UpperCamelCase = FlaxBigBirdForNaturalQuestionsModule def A__ ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ): def cross_entropy(UpperCamelCase , UpperCamelCase , UpperCamelCase=None ): A = logits.shape[-1] A = (labels[..., None] == jnp.arange(UpperCamelCase )[None]).astype("f4" ) A = jax.nn.log_softmax(UpperCamelCase , axis=-1 ) A = -jnp.sum(labels * logits , axis=-1 ) if reduction is not None: A = reduction(UpperCamelCase ) return loss A = partial(UpperCamelCase , reduction=jnp.mean ) A = cross_entropy(UpperCamelCase , UpperCamelCase ) A = cross_entropy(UpperCamelCase , UpperCamelCase ) A = cross_entropy(UpperCamelCase , UpperCamelCase ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class _UpperCAmelCase : UpperCamelCase = "google/bigbird-roberta-base" UpperCamelCase = 3_0_0_0 UpperCamelCase = 1_0_5_0_0 UpperCamelCase = 1_2_8 UpperCamelCase = 3 UpperCamelCase = 1 UpperCamelCase = 5 # tx_args UpperCamelCase = 3e-5 UpperCamelCase = 0.0 UpperCamelCase = 2_0_0_0_0 UpperCamelCase = 0.0095 UpperCamelCase = "bigbird-roberta-natural-questions" UpperCamelCase = "training-expt" UpperCamelCase = "data/nq-training.jsonl" UpperCamelCase = "data/nq-validation.jsonl" def lowerCamelCase ( self :Optional[Any] ): os.makedirs(self.base_dir , exist_ok=__UpperCamelCase ) A = os.path.join(self.base_dir , self.save_dir ) A = self.batch_size_per_device * jax.device_count() @dataclass class _UpperCAmelCase : UpperCamelCase = 42 UpperCamelCase = 4_0_9_6 # no dynamic padding on TPUs def __call__( self :List[Any] , __UpperCamelCase :Union[str, Any] ): A = self.collate_fn(__UpperCamelCase ) A = jax.tree_util.tree_map(__UpperCamelCase , __UpperCamelCase ) return batch def lowerCamelCase ( self :Tuple , __UpperCamelCase :Tuple ): A, A = self.fetch_inputs(features["input_ids"] ) A = { "input_ids": jnp.array(__UpperCamelCase , dtype=jnp.intaa ), "attention_mask": jnp.array(__UpperCamelCase , dtype=jnp.intaa ), "start_labels": jnp.array(features["start_token"] , dtype=jnp.intaa ), "end_labels": jnp.array(features["end_token"] , dtype=jnp.intaa ), "pooled_labels": jnp.array(features["category"] , dtype=jnp.intaa ), } return batch def lowerCamelCase ( self :int , __UpperCamelCase :list ): A = [self._fetch_inputs(__UpperCamelCase ) for ids in input_ids] return zip(*__UpperCamelCase ) def lowerCamelCase ( self :Union[str, Any] , __UpperCamelCase :list ): A = [1 for _ in range(len(__UpperCamelCase ) )] while len(__UpperCamelCase ) < self.max_length: input_ids.append(self.pad_id ) attention_mask.append(0 ) return input_ids, attention_mask def A__ ( UpperCamelCase , UpperCamelCase , UpperCamelCase=None ): if seed is not None: A = dataset.shuffle(seed=UpperCamelCase ) for i in range(len(UpperCamelCase ) // batch_size ): A = dataset[i * batch_size : (i + 1) * batch_size] yield dict(UpperCamelCase ) @partial(jax.pmap , axis_name="batch" ) def A__ ( UpperCamelCase , UpperCamelCase , **UpperCamelCase ): def loss_fn(UpperCamelCase ): A = model_inputs.pop("start_labels" ) A = model_inputs.pop("end_labels" ) A = model_inputs.pop("pooled_labels" ) A = state.apply_fn(**UpperCamelCase , params=UpperCamelCase , dropout_rng=UpperCamelCase , train=UpperCamelCase ) A, A, A = outputs return state.loss_fn( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , ) A, A = jax.random.split(UpperCamelCase ) A = jax.value_and_grad(UpperCamelCase ) A, A = grad_fn(state.params ) A = jax.lax.pmean({"loss": loss} , axis_name="batch" ) A = jax.lax.pmean(UpperCamelCase , "batch" ) A = state.apply_gradients(grads=UpperCamelCase ) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name="batch" ) def A__ ( UpperCamelCase , **UpperCamelCase ): A = model_inputs.pop("start_labels" ) A = model_inputs.pop("end_labels" ) A = model_inputs.pop("pooled_labels" ) A = state.apply_fn(**UpperCamelCase , params=state.params , train=UpperCamelCase ) A, A, A = outputs A = state.loss_fn(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) A = jax.lax.pmean({"loss": loss} , axis_name="batch" ) return metrics class _UpperCAmelCase ( train_state.TrainState ): UpperCamelCase = struct.field(pytree_node=lowercase_ ) @dataclass class _UpperCAmelCase : UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = None def lowerCamelCase ( self :List[Any] , __UpperCamelCase :Optional[int] , __UpperCamelCase :List[str] , __UpperCamelCase :Any , __UpperCamelCase :int=None ): A = model.params A = TrainState.create( apply_fn=model.__call__ , params=__UpperCamelCase , tx=__UpperCamelCase , loss_fn=__UpperCamelCase , ) if ckpt_dir is not None: A, A, A, A, A = restore_checkpoint(__UpperCamelCase , __UpperCamelCase ) A = { "lr": args.lr, "init_lr": args.init_lr, "warmup_steps": args.warmup_steps, "num_train_steps": num_train_steps, "weight_decay": args.weight_decay, } A, A = build_tx(**__UpperCamelCase ) A = train_state.TrainState( step=__UpperCamelCase , apply_fn=model.__call__ , params=__UpperCamelCase , tx=__UpperCamelCase , opt_state=__UpperCamelCase , ) A = args A = data_collator A = lr A = params A = jax_utils.replicate(__UpperCamelCase ) return state def lowerCamelCase ( self :List[str] , __UpperCamelCase :List[Any] , __UpperCamelCase :List[Any] , __UpperCamelCase :Optional[int] ): A = self.args A = len(__UpperCamelCase ) // args.batch_size A = jax.random.PRNGKey(0 ) A = jax.random.split(__UpperCamelCase , jax.device_count() ) for epoch in range(args.max_epochs ): A = jnp.array(0 , dtype=jnp.floataa ) A = get_batched_dataset(__UpperCamelCase , args.batch_size , seed=__UpperCamelCase ) A = 0 for batch in tqdm(__UpperCamelCase , total=__UpperCamelCase , desc=f"Running EPOCH-{epoch}" ): A = self.data_collator(__UpperCamelCase ) A, A, A = self.train_step_fn(__UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ) running_loss += jax_utils.unreplicate(metrics["loss"] ) i += 1 if i % args.logging_steps == 0: A = jax_utils.unreplicate(state.step ) A = running_loss.item() / i A = self.scheduler_fn(state_step - 1 ) A = self.evaluate(__UpperCamelCase , __UpperCamelCase ) A = { "step": state_step.item(), "eval_loss": eval_loss.item(), "tr_loss": tr_loss, "lr": lr.item(), } tqdm.write(str(__UpperCamelCase ) ) self.logger.log(__UpperCamelCase , commit=__UpperCamelCase ) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + f"-e{epoch}-s{i}" , state=__UpperCamelCase ) def lowerCamelCase ( self :int , __UpperCamelCase :Optional[Any] , __UpperCamelCase :List[Any] ): A = get_batched_dataset(__UpperCamelCase , self.args.batch_size ) A = len(__UpperCamelCase ) // self.args.batch_size A = jnp.array(0 , dtype=jnp.floataa ) A = 0 for batch in tqdm(__UpperCamelCase , total=__UpperCamelCase , desc="Evaluating ... " ): A = self.data_collator(__UpperCamelCase ) A = self.val_step_fn(__UpperCamelCase , **__UpperCamelCase ) running_loss += jax_utils.unreplicate(metrics["loss"] ) i += 1 return running_loss / i def lowerCamelCase ( self :List[str] , __UpperCamelCase :List[str] , __UpperCamelCase :Optional[int] ): A = jax_utils.unreplicate(__UpperCamelCase ) print(f"SAVING CHECKPOINT IN {save_dir}" , end=" ... " ) self.model_save_fn(__UpperCamelCase , params=state.params ) with open(os.path.join(__UpperCamelCase , "opt_state.msgpack" ) , "wb" ) as f: f.write(to_bytes(state.opt_state ) ) joblib.dump(self.args , os.path.join(__UpperCamelCase , "args.joblib" ) ) joblib.dump(self.data_collator , os.path.join(__UpperCamelCase , "data_collator.joblib" ) ) with open(os.path.join(__UpperCamelCase , "training_state.json" ) , "w" ) as f: json.dump({"step": state.step.item()} , __UpperCamelCase ) print("DONE" ) def A__ ( UpperCamelCase , UpperCamelCase ): print(F"RESTORING CHECKPOINT FROM {save_dir}" , end=" ... " ) with open(os.path.join(UpperCamelCase , "flax_model.msgpack" ) , "rb" ) as f: A = from_bytes(state.params , f.read() ) with open(os.path.join(UpperCamelCase , "opt_state.msgpack" ) , "rb" ) as f: A = from_bytes(state.opt_state , f.read() ) A = joblib.load(os.path.join(UpperCamelCase , "args.joblib" ) ) A = joblib.load(os.path.join(UpperCamelCase , "data_collator.joblib" ) ) with open(os.path.join(UpperCamelCase , "training_state.json" ) , "r" ) as f: A = json.load(UpperCamelCase ) A = training_state["step"] print("DONE" ) return params, opt_state, step, args, data_collator def A__ ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ): A = num_train_steps - warmup_steps A = optax.linear_schedule(init_value=UpperCamelCase , end_value=UpperCamelCase , transition_steps=UpperCamelCase ) A = optax.linear_schedule(init_value=UpperCamelCase , end_value=1E-7 , transition_steps=UpperCamelCase ) A = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] ) return lr def A__ ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ): def weight_decay_mask(UpperCamelCase ): A = traverse_util.flatten_dict(UpperCamelCase ) A = {k: (v[-1] != "bias" and v[-2:] != ("LayerNorm", "scale")) for k, v in params.items()} return traverse_util.unflatten_dict(UpperCamelCase ) A = scheduler_fn(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) A = optax.adamw(learning_rate=UpperCamelCase , weight_decay=UpperCamelCase , mask=UpperCamelCase ) return tx, lr
524
1
def _a ( lowerCAmelCase = 1000 )-> Tuple: SCREAMING_SNAKE_CASE_ = -1 SCREAMING_SNAKE_CASE_ = 0 for a in range(1 , n // 3 ): # Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c SCREAMING_SNAKE_CASE_ = (n * n - 2 * a * n) // (2 * n - 2 * a) SCREAMING_SNAKE_CASE_ = n - a - b if c * c == (a * a + b * b): SCREAMING_SNAKE_CASE_ = a * b * c if candidate >= product: SCREAMING_SNAKE_CASE_ = candidate return product if __name__ == "__main__": print(f"""{solution() = }""")
360
'''simple docstring''' def lowerCamelCase__ ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Union[str, Any] ): # "extended trapezoidal rule" # int(f) = dx/2 * (f1 + 2f2 + ... + fn) UpperCAmelCase = (boundary[1] - boundary[0]) / steps UpperCAmelCase = boundary[0] UpperCAmelCase = boundary[1] UpperCAmelCase = make_points(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCAmelCase = 0.0 y += (h / 2.0) * f(SCREAMING_SNAKE_CASE ) for i in x_i: # print(i) y += h * f(SCREAMING_SNAKE_CASE ) y += (h / 2.0) * f(SCREAMING_SNAKE_CASE ) return y def lowerCamelCase__ ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Tuple ): UpperCAmelCase = a + h while x < (b - h): yield x UpperCAmelCase = x + h def lowerCamelCase__ ( SCREAMING_SNAKE_CASE : Optional[Any] ): # enter your function here UpperCAmelCase = (x - 0) * (x - 0) return y def lowerCamelCase__ ( ): UpperCAmelCase = 0.0 # Lower bound of integration UpperCAmelCase = 1.0 # Upper bound of integration UpperCAmelCase = 10.0 # define number of steps or resolution UpperCAmelCase = [a, b] # define boundary of integration UpperCAmelCase = method_a(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) print(f'''y = {y}''' ) if __name__ == "__main__": main()
447
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase_ : str = { "configuration_mobilebert": [ "MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MobileBertConfig", "MobileBertOnnxConfig", ], "tokenization_mobilebert": ["MobileBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : str = ["MobileBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Optional[int] = [ "MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "MobileBertForMaskedLM", "MobileBertForMultipleChoice", "MobileBertForNextSentencePrediction", "MobileBertForPreTraining", "MobileBertForQuestionAnswering", "MobileBertForSequenceClassification", "MobileBertForTokenClassification", "MobileBertLayer", "MobileBertModel", "MobileBertPreTrainedModel", "load_tf_weights_in_mobilebert", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Any = [ "TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFMobileBertForMaskedLM", "TFMobileBertForMultipleChoice", "TFMobileBertForNextSentencePrediction", "TFMobileBertForPreTraining", "TFMobileBertForQuestionAnswering", "TFMobileBertForSequenceClassification", "TFMobileBertForTokenClassification", "TFMobileBertMainLayer", "TFMobileBertModel", "TFMobileBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys lowerCamelCase_ : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
712
from __future__ import annotations import time import numpy as np lowerCamelCase_ : Any = [8, 5, 9, 7] lowerCamelCase_ : int = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] lowerCamelCase_ : int = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class _lowerCamelCase : def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ): __snake_case = claim_vector __snake_case = allocated_resources_table __snake_case = maximum_claim_table def __lowerCamelCase ( self ): return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def __lowerCamelCase ( self ): return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def __lowerCamelCase ( self ): return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(SCREAMING_SNAKE_CASE_ ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def __lowerCamelCase ( self ): return {self.__need().index(SCREAMING_SNAKE_CASE_ ): i for i in self.__need()} def __lowerCamelCase ( self , **SCREAMING_SNAKE_CASE_ ): __snake_case = self.__need() __snake_case = self.__allocated_resources_table __snake_case = self.__available_resources() __snake_case = self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print('_' * 50 + '\n' ) while need_list: __snake_case = False for each_need in need_list: __snake_case = True for index, need in enumerate(SCREAMING_SNAKE_CASE_ ): if need > available_resources[index]: __snake_case = False break if execution: __snake_case = True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: __snake_case = original_need_index print(f'''Process {process_number + 1} is executing.''' ) # remove the process run from stack need_list.remove(SCREAMING_SNAKE_CASE_ ) # update available/freed resources stack __snake_case = np.array(SCREAMING_SNAKE_CASE_ ) + np.array( alloc_resources_table[process_number] ) print( 'Updated available resource stack for processes: ' + ' '.join([str(SCREAMING_SNAKE_CASE_ ) for x in available_resources] ) ) break if safe: print('The process is in a safe state.\n' ) else: print('System in unsafe state. Aborting...\n' ) break def __lowerCamelCase ( self ): print(' ' * 9 + 'Allocated Resource Table' ) for item in self.__allocated_resources_table: print( f'''P{self.__allocated_resources_table.index(SCREAMING_SNAKE_CASE_ ) + 1}''' + ' '.join(f'''{it:>8}''' for it in item ) + '\n' ) print(' ' * 9 + 'System Resource Table' ) for item in self.__maximum_claim_table: print( f'''P{self.__maximum_claim_table.index(SCREAMING_SNAKE_CASE_ ) + 1}''' + ' '.join(f'''{it:>8}''' for it in item ) + '\n' ) print( 'Current Usage by Active Processes: ' + ' '.join(str(SCREAMING_SNAKE_CASE_ ) for x in self.__claim_vector ) ) print( 'Initial Available Resources: ' + ' '.join(str(SCREAMING_SNAKE_CASE_ ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
345
0
'''simple docstring''' from numpy import exp, pi, sqrt def __UpperCAmelCase ( a_: List[str], a_: float = 0.0, a_: float = 1.0 ): return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
494
import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin SCREAMING_SNAKE_CASE__ : Optional[int] = '▁' SCREAMING_SNAKE_CASE__ : Optional[Any] = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece class _SCREAMING_SNAKE_CASE ( A , unittest.TestCase ): __SCREAMING_SNAKE_CASE = BertGenerationTokenizer __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = True def __snake_case( self ): super().setUp() _UpperCAmelCase : Optional[int] = BertGenerationTokenizer(A_ , keep_accents=A_ ) tokenizer.save_pretrained(self.tmpdirname ) def __snake_case( self ): _UpperCAmelCase : Optional[int] = """<s>""" _UpperCAmelCase : Any = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A_ ) , A_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A_ ) , A_ ) def __snake_case( self ): _UpperCAmelCase : Optional[int] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<unk>""" ) self.assertEqual(vocab_keys[1] , """<s>""" ) self.assertEqual(vocab_keys[-1] , """<pad>""" ) self.assertEqual(len(A_ ) , 10_02 ) def __snake_case( self ): self.assertEqual(self.get_tokenizer().vocab_size , 10_00 ) def __snake_case( self ): _UpperCAmelCase : Union[str, Any] = BertGenerationTokenizer(A_ , keep_accents=A_ ) _UpperCAmelCase : List[Any] = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(A_ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(A_ ) , [2_85, 46, 10, 1_70, 3_82] , ) _UpperCAmelCase : int = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( A_ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) _UpperCAmelCase : List[str] = tokenizer.convert_tokens_to_ids(A_ ) self.assertListEqual( A_ , [8, 21, 84, 55, 24, 19, 7, 0, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) _UpperCAmelCase : Tuple = tokenizer.convert_ids_to_tokens(A_ ) self.assertListEqual( A_ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) @cached_property def __snake_case( self ): return BertGenerationTokenizer.from_pretrained("""google/bert_for_seq_generation_L-24_bbc_encoder""" ) @slow def __snake_case( self ): _UpperCAmelCase : Optional[Any] = """Hello World!""" _UpperCAmelCase : str = [1_85_36, 22_60, 1_01] self.assertListEqual(A_ , self.big_tokenizer.encode(A_ ) ) @slow def __snake_case( self ): _UpperCAmelCase : List[str] = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth""" ) _UpperCAmelCase : List[Any] = [ 8_71, 4_19, 3_58, 9_46, 9_91, 25_21, 4_52, 3_58, 13_57, 3_87, 77_51, 35_36, 1_12, 9_85, 4_56, 1_26, 8_65, 9_38, 54_00, 57_34, 4_58, 13_68, 4_67, 7_86, 24_62, 52_46, 11_59, 6_33, 8_65, 45_19, 4_57, 5_82, 8_52, 25_57, 4_27, 9_16, 5_08, 4_05, 3_43_24, 4_97, 3_91, 4_08, 1_13_42, 12_44, 3_85, 1_00, 9_38, 9_85, 4_56, 5_74, 3_62, 1_25_97, 32_00, 31_29, 11_72, ] self.assertListEqual(A_ , self.big_tokenizer.encode(A_ ) ) @require_torch @slow def __snake_case( self ): import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence _UpperCAmelCase : Optional[Any] = list(self.big_tokenizer.get_vocab().keys() )[:10] _UpperCAmelCase : Tuple = """ """.join(A_ ) _UpperCAmelCase : List[Any] = self.big_tokenizer.encode_plus(A_ , return_tensors="""pt""" , return_token_type_ids=A_ ) _UpperCAmelCase : Any = self.big_tokenizer.batch_encode_plus( [sequence + """ """ + sequence] , return_tensors="""pt""" , return_token_type_ids=A_ ) _UpperCAmelCase : int = BertGenerationConfig() _UpperCAmelCase : Dict = BertGenerationEncoder(A_ ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**A_ ) model(**A_ ) @slow def __snake_case( self ): # fmt: off _UpperCAmelCase : Optional[int] = {"""input_ids""": [[3_92_86, 4_58, 3_63_35, 20_01, 4_56, 1_30_73, 1_32_66, 4_55, 1_13, 77_46, 17_41, 1_11_57, 3_91, 1_30_73, 1_32_66, 4_55, 1_13, 39_67, 3_54_12, 1_13, 49_36, 1_09, 38_70, 23_77, 1_13, 3_00_84, 4_57_20, 4_58, 1_34, 1_74_96, 1_12, 5_03, 1_16_72, 1_13, 1_18, 1_12, 56_65, 1_33_47, 3_86_87, 1_12, 14_96, 3_13_89, 1_12, 32_68, 4_72_64, 1_34, 9_62, 1_12, 1_63_77, 80_35, 2_31_30, 4_30, 1_21_69, 1_55_18, 2_85_92, 4_58, 1_46, 4_16_97, 1_09, 3_91, 1_21_69, 1_55_18, 1_66_89, 4_58, 1_46, 4_13_58, 1_09, 4_52, 7_26, 40_34, 1_11, 7_63, 3_54_12, 50_82, 3_88, 19_03, 1_11, 90_51, 3_91, 28_70, 4_89_18, 19_00, 11_23, 5_50, 9_98, 1_12, 95_86, 1_59_85, 4_55, 3_91, 4_10, 2_29_55, 3_76_36, 1_14], [4_48, 1_74_96, 4_19, 36_63, 3_85, 7_63, 1_13, 2_75_33, 28_70, 32_83, 1_30_43, 16_39, 2_47_13, 5_23, 6_56, 2_40_13, 1_85_50, 25_21, 5_17, 2_70_14, 2_12_44, 4_20, 12_12, 14_65, 3_91, 9_27, 48_33, 3_88, 5_78, 1_17_86, 1_14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4_84, 21_69, 76_87, 2_19_32, 1_81_46, 7_26, 3_63, 1_70_32, 33_91, 1_14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=A_ , model_name="""google/bert_for_seq_generation_L-24_bbc_encoder""" , revision="""c817d1fd1be2ffa69431227a1fe320544943d4db""" , )
643
0
def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase ) -> List[str]: return x if y == 0 else greatest_common_divisor(lowercase__ , x % y ) def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase ) -> int: return (x * y) // greatest_common_divisor(lowercase__ , lowercase__ ) def SCREAMING_SNAKE_CASE_ (UpperCamelCase = 20 ) -> Tuple: lowerCamelCase__ : Optional[Any] = 1 for i in range(1 , n + 1 ): lowerCamelCase__ : Optional[Any] = lcm(lowercase__ , lowercase__ ) return g if __name__ == "__main__": print(F'{solution() = }')
702
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _A : Union[str, Any] =logging.get_logger(__name__) _A : List[str] ={ '''MIT/ast-finetuned-audioset-10-10-0.4593''': ( '''https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json''' ), } class _lowercase ( _lowercase ): a = """audio-spectrogram-transformer""" def __init__( self: str , UpperCamelCase__: Any=768 , UpperCamelCase__: Union[str, Any]=12 , UpperCamelCase__: List[Any]=12 , UpperCamelCase__: int=3_072 , UpperCamelCase__: Optional[Any]="gelu" , UpperCamelCase__: Optional[int]=0.0 , UpperCamelCase__: Tuple=0.0 , UpperCamelCase__: Union[str, Any]=0.02 , UpperCamelCase__: Dict=1e-12 , UpperCamelCase__: List[str]=16 , UpperCamelCase__: List[str]=True , UpperCamelCase__: Any=10 , UpperCamelCase__: List[str]=10 , UpperCamelCase__: Any=1_024 , UpperCamelCase__: Optional[Any]=128 , **UpperCamelCase__: Union[str, Any] , ): super().__init__(**UpperCamelCase__ ) lowerCamelCase__ : List[Any] = hidden_size lowerCamelCase__ : int = num_hidden_layers lowerCamelCase__ : List[str] = num_attention_heads lowerCamelCase__ : Optional[int] = intermediate_size lowerCamelCase__ : List[Any] = hidden_act lowerCamelCase__ : List[Any] = hidden_dropout_prob lowerCamelCase__ : str = attention_probs_dropout_prob lowerCamelCase__ : Dict = initializer_range lowerCamelCase__ : List[str] = layer_norm_eps lowerCamelCase__ : List[Any] = patch_size lowerCamelCase__ : List[str] = qkv_bias lowerCamelCase__ : Dict = frequency_stride lowerCamelCase__ : List[Any] = time_stride lowerCamelCase__ : str = max_length lowerCamelCase__ : Dict = num_mel_bins
631
0
'''simple docstring''' import math def UpperCAmelCase_ ( A ): '''simple docstring''' if not isinstance(a_ , a_ ): _a : Tuple = f'''Input value of [number={number}] must be an integer''' raise TypeError(a_ ) if number < 1: _a : Optional[int] = f'''Input value of [number={number}] must be > 0''' raise ValueError(a_ ) elif number == 1: return 3 elif number == 2: return 5 else: _a : Tuple = int(math.log(number // 3 , 2 ) ) + 2 _a : str = [3, 5] _a : int = 2 _a : List[Any] = 3 for block in range(1 , a_ ): for _ in range(a_ ): proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1] ) proth_index += 1 increment *= 2 return proth_list[number - 1] if __name__ == "__main__": import doctest doctest.testmod() for number in range(11): UpperCAmelCase_ : Tuple = 0 try: UpperCAmelCase_ : Any = proth(number) except ValueError: print(f'''ValueError: there is no {number}th Proth number''') continue print(f'''The {number}th Proth number: {value}''')
120
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase = { '''configuration_blenderbot''': [ '''BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BlenderbotConfig''', '''BlenderbotOnnxConfig''', ], '''tokenization_blenderbot''': ['''BlenderbotTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = ['''BlenderbotTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ '''BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BlenderbotForCausalLM''', '''BlenderbotForConditionalGeneration''', '''BlenderbotModel''', '''BlenderbotPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ '''TFBlenderbotForConditionalGeneration''', '''TFBlenderbotModel''', '''TFBlenderbotPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ '''FlaxBlenderbotForConditionalGeneration''', '''FlaxBlenderbotModel''', '''FlaxBlenderbotPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
677
0
'''simple docstring''' __snake_case : Dict = { "Pillow": "Pillow<10.0.0", "accelerate": "accelerate>=0.20.3", "av": "av==9.2.0", "beautifulsoup4": "beautifulsoup4", "black": "black~=23.1", "codecarbon": "codecarbon==1.2.0", "cookiecutter": "cookiecutter==1.7.3", "dataclasses": "dataclasses", "datasets": "datasets!=2.5.0", "decord": "decord==0.6.0", "deepspeed": "deepspeed>=0.9.3", "diffusers": "diffusers", "dill": "dill<0.3.5", "evaluate": "evaluate>=0.2.0", "fairscale": "fairscale>0.3", "faiss-cpu": "faiss-cpu", "fastapi": "fastapi", "filelock": "filelock", "flax": "flax>=0.4.1,<=0.7.0", "ftfy": "ftfy", "fugashi": "fugashi>=1.0", "GitPython": "GitPython<3.1.19", "hf-doc-builder": "hf-doc-builder>=0.3.0", "huggingface-hub": "huggingface-hub>=0.14.1,<1.0", "importlib_metadata": "importlib_metadata", "ipadic": "ipadic>=1.0.0,<2.0", "isort": "isort>=5.5.4", "jax": "jax>=0.2.8,!=0.3.2,<=0.4.13", "jaxlib": "jaxlib>=0.1.65,<=0.4.13", "jieba": "jieba", "kenlm": "kenlm", "keras-nlp": "keras-nlp>=0.3.1", "librosa": "librosa", "nltk": "nltk", "natten": "natten>=0.14.6", "numpy": "numpy>=1.17", "onnxconverter-common": "onnxconverter-common", "onnxruntime-tools": "onnxruntime-tools>=1.4.2", "onnxruntime": "onnxruntime>=1.4.0", "opencv-python": "opencv-python", "optuna": "optuna", "optax": "optax>=0.0.8,<=0.1.4", "packaging": "packaging>=20.0", "parameterized": "parameterized", "phonemizer": "phonemizer", "protobuf": "protobuf", "psutil": "psutil", "pyyaml": "pyyaml>=5.1", "pydantic": "pydantic<2", "pytest": "pytest>=7.2.0", "pytest-timeout": "pytest-timeout", "pytest-xdist": "pytest-xdist", "python": "python>=3.8.0", "ray[tune]": "ray[tune]", "regex": "regex!=2019.12.17", "requests": "requests", "rhoknp": "rhoknp>=1.1.0,<1.3.1", "rjieba": "rjieba", "rouge-score": "rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1", "ruff": "ruff>=0.0.241,<=0.0.259", "sacrebleu": "sacrebleu>=1.4.12,<2.0.0", "sacremoses": "sacremoses", "safetensors": "safetensors>=0.3.1", "sagemaker": "sagemaker>=2.31.0", "scikit-learn": "scikit-learn", "sentencepiece": "sentencepiece>=0.1.91,!=0.1.92", "sigopt": "sigopt", "starlette": "starlette", "sudachipy": "sudachipy>=0.6.6", "sudachidict_core": "sudachidict_core>=20220729", "tensorflow-cpu": "tensorflow-cpu>=2.6,<2.14", "tensorflow": "tensorflow>=2.6,<2.14", "tensorflow-text": "tensorflow-text<2.14", "tf2onnx": "tf2onnx", "timeout-decorator": "timeout-decorator", "timm": "timm", "tokenizers": "tokenizers>=0.11.1,!=0.11.3,<0.14", "torch": "torch>=1.9,!=1.12.0", "torchaudio": "torchaudio", "torchvision": "torchvision", "pyctcdecode": "pyctcdecode>=0.4.0", "tqdm": "tqdm>=4.27", "unidic": "unidic>=1.0.2", "unidic_lite": "unidic_lite>=1.0.7", "urllib3": "urllib3<2.0.0", "uvicorn": "uvicorn", }
691
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings __snake_case : Optional[int] = R"\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `\" / \"`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `\" // \"`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `\"wiki_dpr\"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `\"train\"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `\"compressed\"`)\n The index name of the index associated with the `dataset`. One can choose between `\"legacy\"`, `\"exact\"` and\n `\"compressed\"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a \"dummy\" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n" @add_start_docstrings(a ) class A ( a ): __UpperCAmelCase : Dict = """rag""" __UpperCAmelCase : Dict = True def __init__( self , snake_case_=None , snake_case_=True , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_=" / " , snake_case_=" // " , snake_case_=5 , snake_case_=3_0_0 , snake_case_=7_6_8 , snake_case_=8 , snake_case_="wiki_dpr" , snake_case_="train" , snake_case_="compressed" , snake_case_=None , snake_case_=None , snake_case_=False , snake_case_=False , snake_case_=0.0 , snake_case_=True , snake_case_=False , snake_case_=False , snake_case_=False , snake_case_=True , snake_case_=None , **snake_case_ , ) -> Optional[Any]: super().__init__( bos_token_id=snake_case_ , pad_token_id=snake_case_ , eos_token_id=snake_case_ , decoder_start_token_id=snake_case_ , forced_eos_token_id=snake_case_ , is_encoder_decoder=snake_case_ , prefix=snake_case_ , vocab_size=snake_case_ , **snake_case_ , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" _a = kwargs.pop("question_encoder" ) _a = question_encoder_config.pop("model_type" ) _a = kwargs.pop("generator" ) _a = decoder_config.pop("model_type" ) from ..auto.configuration_auto import AutoConfig _a = AutoConfig.for_model(snake_case_ , **snake_case_ ) _a = AutoConfig.for_model(snake_case_ , **snake_case_ ) _a = reduce_loss _a = label_smoothing _a = exclude_bos_score _a = do_marginalize _a = title_sep _a = doc_sep _a = n_docs _a = max_combined_length _a = dataset _a = dataset_split _a = index_name _a = retrieval_vector_size _a = retrieval_batch_size _a = passages_path _a = index_path _a = use_dummy_dataset _a = output_retrieved _a = do_deduplication _a = use_cache if self.forced_eos_token_id is None: _a = getattr(self.generator , "forced_eos_token_id" , snake_case_ ) @classmethod def __lowerCAmelCase ( cls , snake_case_ , snake_case_ , **snake_case_ ) -> PretrainedConfig: return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **snake_case_ ) def __lowerCAmelCase ( self ) -> Optional[int]: _a = copy.deepcopy(self.__dict__ ) _a = self.question_encoder.to_dict() _a = self.generator.to_dict() _a = self.__class__.model_type return output
691
1
'''simple docstring''' import os import sys import unittest __magic_name__ : Dict = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path __magic_name__ : str = os.path.join(git_repo_path, """src""", """transformers""") __magic_name__ : str = """ {0} = None """ __magic_name__ : Tuple = """ class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) """ __magic_name__ : Optional[Any] = """ def {0}(*args, **kwargs): requires_backends({0}, {1}) """ class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase( self ): _snake_case = find_backend(" _import_structure[\"models.albert\"].append(\"AlbertTokenizerFast\")" ) self.assertIsNone(lowerCamelCase ) _snake_case = find_backend(" if not is_tokenizers_available():" ) self.assertEqual(lowerCamelCase , "tokenizers" ) _snake_case = find_backend(" if not is_tensorflow_text_available():" ) self.assertEqual(lowerCamelCase , "tensorflow_text" ) _snake_case = find_backend(" if not (is_sentencepiece_available() and is_tokenizers_available()):" ) self.assertEqual(lowerCamelCase , "sentencepiece_and_tokenizers" ) _snake_case = find_backend( " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" ) self.assertEqual(lowerCamelCase , "sentencepiece_and_tensorflow_text" ) _snake_case = find_backend( " if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):" ) self.assertEqual(lowerCamelCase , "sentencepiece_and_tokenizers_and_vision" ) def UpperCamelCase( self ): _snake_case = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("torch" , lowerCamelCase ) self.assertIn("tensorflow_text" , lowerCamelCase ) self.assertIn("sentencepiece_and_tokenizers" , lowerCamelCase ) # Likewise, we can't assert on the exact content of a key self.assertIn("BertModel" , objects["torch"] ) self.assertIn("TFBertModel" , objects["tf"] ) self.assertIn("FlaxBertModel" , objects["flax"] ) self.assertIn("BertModel" , objects["torch"] ) self.assertIn("TFBertTokenizer" , objects["tensorflow_text"] ) self.assertIn("convert_slow_tokenizer" , objects["sentencepiece_and_tokenizers"] ) def UpperCamelCase( self ): _snake_case = create_dummy_object("CONSTANT" , "'torch'" ) self.assertEqual(lowerCamelCase , "\nCONSTANT = None\n" ) _snake_case = create_dummy_object("function" , "'torch'" ) self.assertEqual( lowerCamelCase , "\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n" ) _snake_case = "\nclass FakeClass(metaclass=DummyObject):\n _backends = 'torch'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, 'torch')\n" _snake_case = create_dummy_object("FakeClass" , "'torch'" ) self.assertEqual(lowerCamelCase , lowerCamelCase ) def UpperCamelCase( self ): _snake_case = "# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, [\"torch\"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = [\"torch\"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, [\"torch\"])\n" _snake_case = create_dummy_files({"torch": ["CONSTANT", "function", "FakeClass"]} ) self.assertEqual(dummy_files["torch"] , lowerCamelCase )
672
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __magic_name__ : Optional[int] = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE ( __UpperCamelCase ): '''simple docstring''' UpperCAmelCase__ : List[str] = ['''pixel_values'''] def __init__( self , lowerCamelCase = True , lowerCamelCase = None , lowerCamelCase = PILImageResampling.BILINEAR , lowerCamelCase = True , lowerCamelCase = None , lowerCamelCase = True , lowerCamelCase = 1 / 255 , lowerCamelCase = True , lowerCamelCase = None , lowerCamelCase = None , **lowerCamelCase , ): super().__init__(**lowerCamelCase ) _snake_case = size if size is not None else {"shortest_edge": 256} _snake_case = get_size_dict(lowerCamelCase , default_to_square=lowerCamelCase ) _snake_case = crop_size if crop_size is not None else {"height": 224, "width": 224} _snake_case = get_size_dict(lowerCamelCase ) _snake_case = do_resize _snake_case = size _snake_case = resample _snake_case = do_center_crop _snake_case = crop_size _snake_case = do_rescale _snake_case = rescale_factor _snake_case = do_normalize _snake_case = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _snake_case = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCamelCase( self , lowerCamelCase , lowerCamelCase , lowerCamelCase = PILImageResampling.BICUBIC , lowerCamelCase = None , **lowerCamelCase , ): _snake_case = get_size_dict(lowerCamelCase , default_to_square=lowerCamelCase ) if "shortest_edge" not in size: raise ValueError(F'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) _snake_case = get_resize_output_image_size(lowerCamelCase , size=size["shortest_edge"] , default_to_square=lowerCamelCase ) return resize(lowerCamelCase , size=lowerCamelCase , resample=lowerCamelCase , data_format=lowerCamelCase , **lowerCamelCase ) def UpperCamelCase( self , lowerCamelCase , lowerCamelCase , lowerCamelCase = None , **lowerCamelCase , ): _snake_case = get_size_dict(lowerCamelCase ) return center_crop(lowerCamelCase , size=(size["height"], size["width"]) , data_format=lowerCamelCase , **lowerCamelCase ) def UpperCamelCase( self , lowerCamelCase , lowerCamelCase , lowerCamelCase = None , **lowerCamelCase ): return rescale(lowerCamelCase , scale=lowerCamelCase , data_format=lowerCamelCase , **lowerCamelCase ) def UpperCamelCase( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = None , **lowerCamelCase , ): return normalize(lowerCamelCase , mean=lowerCamelCase , std=lowerCamelCase , data_format=lowerCamelCase , **lowerCamelCase ) def UpperCamelCase( self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = ChannelDimension.FIRST , **lowerCamelCase , ): _snake_case = do_resize if do_resize is not None else self.do_resize _snake_case = size if size is not None else self.size _snake_case = get_size_dict(lowerCamelCase , default_to_square=lowerCamelCase ) _snake_case = resample if resample is not None else self.resample _snake_case = do_center_crop if do_center_crop is not None else self.do_center_crop _snake_case = crop_size if crop_size is not None else self.crop_size _snake_case = get_size_dict(lowerCamelCase ) _snake_case = do_rescale if do_rescale is not None else self.do_rescale _snake_case = rescale_factor if rescale_factor is not None else self.rescale_factor _snake_case = do_normalize if do_normalize is not None else self.do_normalize _snake_case = image_mean if image_mean is not None else self.image_mean _snake_case = image_std if image_std is not None else self.image_std _snake_case = make_list_of_images(lowerCamelCase ) if not valid_images(lowerCamelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. _snake_case = [to_numpy_array(lowerCamelCase ) for image in images] if do_resize: _snake_case = [self.resize(image=lowerCamelCase , size=lowerCamelCase , resample=lowerCamelCase ) for image in images] if do_center_crop: _snake_case = [self.center_crop(image=lowerCamelCase , size=lowerCamelCase ) for image in images] if do_rescale: _snake_case = [self.rescale(image=lowerCamelCase , scale=lowerCamelCase ) for image in images] if do_normalize: _snake_case = [self.normalize(image=lowerCamelCase , mean=lowerCamelCase , std=lowerCamelCase ) for image in images] _snake_case = [to_channel_dimension_format(lowerCamelCase , lowerCamelCase ) for image in images] _snake_case = {"pixel_values": images} return BatchFeature(data=lowerCamelCase , tensor_type=lowerCamelCase )
672
1
from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging a__ : List[str] = logging.get_logger(__name__) def _lowerCAmelCase ( A__ ): if isinstance(A__ , np.ndarray ): return list(tensor.shape ) lowercase__ = tf.shape(A__ ) if tensor.shape == tf.TensorShape(A__ ): return dynamic lowercase__ = tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(A__ )] def _lowerCAmelCase ( A__ , A__ = None , A__ = None ): return tf.nn.softmax(logits=logits + 1E-9 , axis=A__ , name=A__ ) def _lowerCAmelCase ( A__ , A__ , A__ , A__=1E-5 , A__=-1 ): # This is a very simplified functional layernorm, designed to duplicate # the functionality of PyTorch nn.functional.layer_norm when this is needed to port # models in Transformers. if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(A__ , A__ ): raise NotImplementedError('Only 1D weight and bias tensors are supported for now, with only a single axis.' ) # Get mean and variance on the axis to be normalized lowercase__, lowercase__ = tf.nn.moments(A__ , axes=[axis] , keepdims=A__ ) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis lowercase__ = [1] * inputs.shape.rank lowercase__ = shape_list(A__ )[axis] lowercase__ = tf.reshape(A__ , A__ ) lowercase__ = tf.reshape(A__ , A__ ) # Compute layer normalization using the batch_normalization # function. lowercase__ = tf.nn.batch_normalization( A__ , A__ , A__ , offset=A__ , scale=A__ , variance_epsilon=A__ , ) return outputs def _lowerCAmelCase ( A__ , A__=0 , A__=-1 ): # Replicates the behavior of torch.flatten in TF # If end_dim or start_dim is negative, count them from the end if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input lowercase__ = tf.shape(A__ ) lowercase__ = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] ) lowercase__ = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 ) return tf.reshape(A__ , A__ ) def _lowerCAmelCase ( A__ ): if not isinstance(A__ , tf.Tensor ): lowercase__ = tf.convert_to_tensor(A__ ) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: lowercase__ = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: lowercase__ = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) lowercase__ = ( tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def _lowerCAmelCase ( A__ , A__ , A__ = "input_ids" ): tf.debugging.assert_less( A__ , tf.cast(A__ , dtype=tensor.dtype ) , message=( F'''The maximum value of {tensor_name} ({tf.math.reduce_max(A__ )}) must be smaller than the embedding ''' F'''layer\'s input dimension ({embed_dim}). The likely cause is some problem at tokenization time.''' ) , ) def _lowerCAmelCase ( A__ , A__ , A__ ): lowercase__ = 64_512 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. lowercase__ = [x for x in data if len(A__ ) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( 'The following attributes cannot be saved to HDF5 file because ' F'''they are larger than {HDF5_OBJECT_HEADER_LIMIT} ''' F'''bytes: {bad_attributes}''' ) lowercase__ = np.asarray(A__ ) lowercase__ = 1 lowercase__ = np.array_split(A__ , A__ ) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ): num_chunks += 1 lowercase__ = np.array_split(A__ , A__ ) if num_chunks > 1: for chunk_id, chunk_data in enumerate(A__ ): lowercase__ = chunk_data else: lowercase__ = data def _lowerCAmelCase ( A__ , A__ ): if name in group.attrs: lowercase__ = [n.decode('utf8' ) if hasattr(A__ , 'decode' ) else n for n in group.attrs[name]] else: lowercase__ = [] lowercase__ = 0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode('utf8' ) if hasattr(A__ , 'decode' ) else n for n in group.attrs['%s%d' % (name, chunk_id)]] ) chunk_id += 1 return data def _lowerCAmelCase ( A__ ): def _expand_single_ad_tensor(A__ ): if isinstance(A__ , tf.Tensor ) and t.shape.rank == 1: return tf.expand_dims(A__ , axis=-1 ) return t return tf.nest.map_structure(_expand_single_ad_tensor , A__ )
642
import math import sys def _lowerCAmelCase ( A__ ): lowercase__ = '' try: with open(A__ , 'rb' ) as binary_file: lowercase__ = binary_file.read() for dat in data: lowercase__ = F'''{dat:08b}''' result += curr_byte return result except OSError: print('File not accessible' ) sys.exit() def _lowerCAmelCase ( A__ ): lowercase__ = {'0': '0', '1': '1'} lowercase__, lowercase__ = '', '' lowercase__ = len(A__ ) for i in range(len(A__ ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue lowercase__ = lexicon[curr_string] result += last_match_id lowercase__ = last_match_id + '0' if math.loga(A__ ).is_integer(): lowercase__ = {} for curr_key in list(A__ ): lowercase__ = lexicon.pop(A__ ) lowercase__ = new_lex lowercase__ = last_match_id + '1' index += 1 lowercase__ = '' return result def _lowerCAmelCase ( A__ , A__ ): lowercase__ = 8 try: with open(A__ , 'wb' ) as opened_file: lowercase__ = [ to_write[i : i + byte_length] for i in range(0 , len(A__ ) , A__ ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('10000000' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(A__ , 2 ).to_bytes(1 , byteorder='big' ) ) except OSError: print('File not accessible' ) sys.exit() def _lowerCAmelCase ( A__ ): lowercase__ = 0 for letter in data_bits: if letter == "1": break counter += 1 lowercase__ = data_bits[counter:] lowercase__ = data_bits[counter + 1 :] return data_bits def _lowerCAmelCase ( A__ , A__ ): lowercase__ = read_file_binary(A__ ) lowercase__ = remove_prefix(A__ ) lowercase__ = decompress_data(A__ ) write_file_binary(A__ , A__ ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
642
1
"""simple docstring""" import argparse import os import re import torch from flax.traverse_util import flatten_dict from tax import checkpoints from transformers import ( AutoTokenizer, PixaStructConfig, PixaStructForConditionalGeneration, PixaStructImageProcessor, PixaStructProcessor, PixaStructTextConfig, PixaStructVisionConfig, ) def SCREAMING_SNAKE_CASE_ ( snake_case : List[str] )-> Optional[Any]: _lowerCamelCase = checkpoints.load_tax_checkpoint(snake_case ) _lowerCamelCase = flatten_dict(snake_case ) return flax_params def SCREAMING_SNAKE_CASE_ ( snake_case : str )-> int: _lowerCamelCase = {} _lowerCamelCase = { 'token_embedder': 'embeddings', 'encoder_norm': 'layernorm', 'kernel': 'weight', '.out': '.output', 'scale': 'weight', 'embedders_0.pos_embedding': 'row_embedder.weight', 'embedders_1.pos_embedding': 'column_embedder.weight', } _lowerCamelCase = { 'query': 'attention.query', 'key': 'attention.key', 'value': 'attention.value', 'output.dense': 'output', 'encoder_decoder_attention.o': 'encoder_decoder_attention.attention.o', 'pre_self_attention_layer_norm': 'self_attention.layer_norm', 'pre_cross_attention_layer_norm': 'encoder_decoder_attention.layer_norm', 'mlp.': 'mlp.DenseReluDense.', 'pre_mlp_layer_norm': 'mlp.layer_norm', 'self_attention.o': 'self_attention.attention.o', 'decoder.embeddings.embedding': 'decoder.embed_tokens.weight', 'decoder.relpos_bias.rel_embedding': 'decoder.layer.0.self_attention.attention.relative_attention_bias.weight', 'decoder.decoder_norm.weight': 'decoder.final_layer_norm.weight', 'decoder.logits_dense.weight': 'decoder.lm_head.weight', } for key in flax_dict.keys(): if "target" in key: # remove the first prefix from the key _lowerCamelCase = '.'.join(key[1:] ) # rename the key for old, new in CONVERSION_MAPPING.items(): _lowerCamelCase = new_key.replace(snake_case , snake_case ) if "decoder" in new_key: for old, new in DECODER_CONVERSION_MAPPING.items(): _lowerCamelCase = new_key.replace(snake_case , snake_case ) if "layers" in new_key and "decoder" not in new_key: # use regex to replace the layer number _lowerCamelCase = re.sub(r'layers_(\d+)' , r'layer.\1' , snake_case ) _lowerCamelCase = new_key.replace('encoder' , 'encoder.encoder' ) elif "layers" in new_key and "decoder" in new_key: # use regex to replace the layer number _lowerCamelCase = re.sub(r'layers_(\d+)' , r'layer.\1' , snake_case ) _lowerCamelCase = flax_dict[key] _lowerCamelCase = {} # convert converted_dict into torch format for key in converted_dict.keys(): if ("embed_tokens" not in key) and ("embedder" not in key): _lowerCamelCase = torch.from_numpy(converted_dict[key].T ) else: _lowerCamelCase = torch.from_numpy(converted_dict[key] ) return converted_torch_dict def SCREAMING_SNAKE_CASE_ ( snake_case : List[Any] , snake_case : Optional[int] , snake_case : str=False , snake_case : int=False )-> Dict: _lowerCamelCase = get_flax_param(snake_case ) if not use_large: _lowerCamelCase = PixaStructVisionConfig() _lowerCamelCase = PixaStructTextConfig() else: _lowerCamelCase = PixaStructVisionConfig( hidden_size=1_536 , d_ff=3_968 , num_attention_heads=24 , num_hidden_layers=18 ) _lowerCamelCase = PixaStructTextConfig(hidden_size=1_536 , d_ff=3_968 , num_heads=24 , num_layers=18 ) _lowerCamelCase = PixaStructConfig( vision_config=encoder_config.to_dict() , text_config=decoder_config.to_dict() , is_vqa=snake_case ) _lowerCamelCase = PixaStructForConditionalGeneration(snake_case ) _lowerCamelCase = rename_and_convert_flax_params(snake_case ) model.load_state_dict(snake_case ) _lowerCamelCase = AutoTokenizer.from_pretrained('ybelkada/test-pix2struct-tokenizer' ) _lowerCamelCase = PixaStructImageProcessor() _lowerCamelCase = PixaStructProcessor(image_processor=snake_case , tokenizer=snake_case ) if use_large: _lowerCamelCase = 4_096 _lowerCamelCase = True # mkdir if needed os.makedirs(snake_case , exist_ok=snake_case ) model.save_pretrained(snake_case ) processor.save_pretrained(snake_case ) print('Model saved in {}'.format(snake_case ) ) if __name__ == "__main__": A_ : Union[str, Any] =argparse.ArgumentParser() parser.add_argument("""--t5x_checkpoint_path""", default=None, type=str, help="""Path to the original T5x checkpoint.""") parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--use_large""", action="""store_true""", help="""Use large model.""") parser.add_argument("""--is_vqa""", action="""store_true""", help="""Use large model.""") A_ : List[str] =parser.parse_args() convert_pixastruct_original_pytorch_checkpoint_to_hf( args.tax_checkpoint_path, args.pytorch_dump_folder_path, args.use_large )
650
"""simple docstring""" import json import os import re import sys import urllib.request import requests from bsa import BeautifulSoup A_ : Union[str, Any] ={ """User-Agent""": """Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36""" """ (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582""" } def SCREAMING_SNAKE_CASE_ ( snake_case : str = "dhaka" , snake_case : int = 5 )-> int: _lowerCamelCase = min(snake_case , 50 ) # Prevent abuse! _lowerCamelCase = { 'q': query, 'tbm': 'isch', 'hl': 'en', 'ijn': '0', } _lowerCamelCase = requests.get('https://www.google.com/search' , params=snake_case , headers=snake_case ) _lowerCamelCase = BeautifulSoup(html.text , 'html.parser' ) _lowerCamelCase = ''.join( re.findall(r'AF_initDataCallback\(([^<]+)\);' , str(soup.select('script' ) ) ) ) _lowerCamelCase = json.dumps(snake_case ) _lowerCamelCase = json.loads(snake_case ) _lowerCamelCase = re.findall( r'\[\"GRID_STATE0\",null,\[\[1,\[0,\".*?\",(.*),\"All\",' , snake_case , ) if not matched_google_image_data: return 0 _lowerCamelCase = re.sub( r'\[\"(https\:\/\/encrypted-tbn0\.gstatic\.com\/images\?.*?)\",\d+,\d+\]' , '' , str(snake_case ) , ) _lowerCamelCase = re.findall( r'(?:\'|,),\[\"(https:|http.*?)\",\d+,\d+\]' , snake_case , ) for index, fixed_full_res_image in enumerate(snake_case ): if index >= max_images: return index _lowerCamelCase = bytes(snake_case , 'ascii' ).decode( 'unicode-escape' ) _lowerCamelCase = bytes(snake_case , 'ascii' ).decode( 'unicode-escape' ) _lowerCamelCase = urllib.request.build_opener() _lowerCamelCase = [ ( 'User-Agent', 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36' ' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582', ) ] urllib.request.install_opener(snake_case ) _lowerCamelCase = f'query_{query.replace(" " , "_" )}' if not os.path.exists(snake_case ): os.makedirs(snake_case ) urllib.request.urlretrieve( # noqa: S310 snake_case , f'{path_name}/original_size_img_{index}.jpg' ) return index if __name__ == "__main__": try: A_ : Any =download_images_from_google_query(sys.argv[1]) print(f'{image_count} images were downloaded to disk.') except IndexError: print("""Please provide a search term.""") raise
650
1
from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class __UpperCAmelCase ( __A ): """simple docstring""" _lowerCamelCase = 42 class __UpperCAmelCase ( __A , __A ): """simple docstring""" @register_to_config def __init__( self , __A = 32 , __A = 64 , __A = 20 , __A = 768 , __A=77 , __A=4 , __A = 0.0 , __A = "silu" , __A = None , __A = None , __A = "linear" , __A = "prd" , __A = None , __A = None , __A = None , ): super().__init__() __a = num_attention_heads __a = attention_head_dim __a = num_attention_heads * attention_head_dim __a = additional_embeddings __a = time_embed_dim or inner_dim __a = embedding_proj_dim or embedding_dim __a = clip_embed_dim or embedding_dim __a = Timesteps(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , 0 ) __a = TimestepEmbedding(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , out_dim=_SCREAMING_SNAKE_CASE , act_fn=_SCREAMING_SNAKE_CASE ) __a = nn.Linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if embedding_proj_norm_type is None: __a = None elif embedding_proj_norm_type == "layer": __a = nn.LayerNorm(_SCREAMING_SNAKE_CASE ) else: raise ValueError(f'''unsupported embedding_proj_norm_type: {embedding_proj_norm_type}''' ) __a = nn.Linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if encoder_hid_proj_type is None: __a = None elif encoder_hid_proj_type == "linear": __a = nn.Linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: raise ValueError(f'''unsupported encoder_hid_proj_type: {encoder_hid_proj_type}''' ) __a = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , _SCREAMING_SNAKE_CASE ) ) if added_emb_type == "prd": __a = nn.Parameter(torch.zeros(1 , 1 , _SCREAMING_SNAKE_CASE ) ) elif added_emb_type is None: __a = None else: raise ValueError( f'''`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `\'prd\'` or `None`.''' ) __a = nn.ModuleList( [ BasicTransformerBlock( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , dropout=_SCREAMING_SNAKE_CASE , activation_fn="""gelu""" , attention_bias=_SCREAMING_SNAKE_CASE , ) for d in range(_SCREAMING_SNAKE_CASE ) ] ) if norm_in_type == "layer": __a = nn.LayerNorm(_SCREAMING_SNAKE_CASE ) elif norm_in_type is None: __a = None else: raise ValueError(f'''Unsupported norm_in_type: {norm_in_type}.''' ) __a = nn.LayerNorm(_SCREAMING_SNAKE_CASE ) __a = nn.Linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __a = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -10000.0 ) causal_attention_mask.triu_(1 ) __a = causal_attention_mask[None, ...] self.register_buffer("""causal_attention_mask""" , _SCREAMING_SNAKE_CASE , persistent=_SCREAMING_SNAKE_CASE ) __a = nn.Parameter(torch.zeros(1 , _SCREAMING_SNAKE_CASE ) ) __a = nn.Parameter(torch.zeros(1 , _SCREAMING_SNAKE_CASE ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def snake_case_ ( self ): __a = {} def fn_recursive_add_processors(__A , __A , __A ): if hasattr(_SCREAMING_SNAKE_CASE , """set_processor""" ): __a = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f'''{name}.{sub_name}''' , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return processors for name, module in self.named_children(): fn_recursive_add_processors(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return processors def snake_case_ ( self , __A ): __a = len(self.attn_processors.keys() ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and len(_SCREAMING_SNAKE_CASE ) != count: raise ValueError( f'''A dict of processors was passed, but the number of processors {len(_SCREAMING_SNAKE_CASE )} does not match the''' f''' number of attention layers: {count}. Please make sure to pass {count} processor classes.''' ) def fn_recursive_attn_processor(__A , __A , __A ): if hasattr(_SCREAMING_SNAKE_CASE , """set_processor""" ): if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): module.set_processor(_SCREAMING_SNAKE_CASE ) else: module.set_processor(processor.pop(f'''{name}.processor''' ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f'''{name}.{sub_name}''' , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for name, module in self.named_children(): fn_recursive_attn_processor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def snake_case_ ( self ): self.set_attn_processor(AttnProcessor() ) def snake_case_ ( self , __A , __A , __A , __A = None , __A = None , __A = True , ): __a = hidden_states.shape[0] __a = timestep if not torch.is_tensor(_SCREAMING_SNAKE_CASE ): __a = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(_SCREAMING_SNAKE_CASE ) and len(timesteps.shape ) == 0: __a = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __a = timesteps * torch.ones(_SCREAMING_SNAKE_CASE , dtype=timesteps.dtype , device=timesteps.device ) __a = self.time_proj(_SCREAMING_SNAKE_CASE ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. __a = timesteps_projected.to(dtype=self.dtype ) __a = self.time_embedding(_SCREAMING_SNAKE_CASE ) if self.embedding_proj_norm is not None: __a = self.embedding_proj_norm(_SCREAMING_SNAKE_CASE ) __a = self.embedding_proj(_SCREAMING_SNAKE_CASE ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: __a = self.encoder_hidden_states_proj(_SCREAMING_SNAKE_CASE ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError("""`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set""" ) __a = self.proj_in(_SCREAMING_SNAKE_CASE ) __a = self.positional_embedding.to(hidden_states.dtype ) __a = [] __a = 0 if encoder_hidden_states is not None: additional_embeds.append(_SCREAMING_SNAKE_CASE ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: __a = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: __a = hidden_states[:, None, :] __a = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: __a = self.prd_embedding.to(hidden_states.dtype ).expand(_SCREAMING_SNAKE_CASE , -1 , -1 ) additional_embeds.append(_SCREAMING_SNAKE_CASE ) __a = torch.cat( _SCREAMING_SNAKE_CASE , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens __a = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: __a = F.pad( _SCREAMING_SNAKE_CASE , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) __a = hidden_states + positional_embeddings if attention_mask is not None: __a = (1 - attention_mask.to(hidden_states.dtype )) * -10000.0 __a = F.pad(_SCREAMING_SNAKE_CASE , (0, self.additional_embeddings) , value=0.0 ) __a = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) __a = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: __a = self.norm_in(_SCREAMING_SNAKE_CASE ) for block in self.transformer_blocks: __a = block(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE ) __a = self.norm_out(_SCREAMING_SNAKE_CASE ) if self.prd_embedding is not None: __a = hidden_states[:, -1] else: __a = hidden_states[:, additional_embeddings_len:] __a = self.proj_to_clip_embeddings(_SCREAMING_SNAKE_CASE ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=_SCREAMING_SNAKE_CASE ) def snake_case_ ( self , __A ): __a = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
713
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os from ...utils.constants import SAGEMAKER_PARALLEL_EC2_INSTANCES, TORCH_DYNAMO_MODES from ...utils.dataclasses import ComputeEnvironment, SageMakerDistributedType from ...utils.imports import is_botoa_available from .config_args import SageMakerConfig from .config_utils import ( DYNAMO_BACKENDS, _ask_field, _ask_options, _convert_dynamo_backend, _convert_mixed_precision, _convert_sagemaker_distributed_mode, _convert_yes_no_to_bool, ) if is_botoa_available(): import botoa # noqa: F401 def a (lowerCAmelCase__ ): __a = botoa.client("""iam""" ) __a = { """Version""": """2012-10-17""", """Statement""": [ {"""Effect""": """Allow""", """Principal""": {"""Service""": """sagemaker.amazonaws.com"""}, """Action""": """sts:AssumeRole"""} ], } try: # create the role, associated with the chosen trust policy iam_client.create_role( RoleName=lowerCAmelCase__ , AssumeRolePolicyDocument=json.dumps(lowerCAmelCase__ , indent=2 ) ) __a = { """Version""": """2012-10-17""", """Statement""": [ { """Effect""": """Allow""", """Action""": [ """sagemaker:*""", """ecr:GetDownloadUrlForLayer""", """ecr:BatchGetImage""", """ecr:BatchCheckLayerAvailability""", """ecr:GetAuthorizationToken""", """cloudwatch:PutMetricData""", """cloudwatch:GetMetricData""", """cloudwatch:GetMetricStatistics""", """cloudwatch:ListMetrics""", """logs:CreateLogGroup""", """logs:CreateLogStream""", """logs:DescribeLogStreams""", """logs:PutLogEvents""", """logs:GetLogEvents""", """s3:CreateBucket""", """s3:ListBucket""", """s3:GetBucketLocation""", """s3:GetObject""", """s3:PutObject""", ], """Resource""": """*""", } ], } # attach policy to role iam_client.put_role_policy( RoleName=lowerCAmelCase__ , PolicyName=f'''{role_name}_policy_permission''' , PolicyDocument=json.dumps(lowerCAmelCase__ , indent=2 ) , ) except iam_client.exceptions.EntityAlreadyExistsException: print(f'''role {role_name} already exists. Using existing one''' ) def a (lowerCAmelCase__ ): __a = botoa.client("""iam""" ) return iam_client.get_role(RoleName=lowerCAmelCase__ )["Role"]["Arn"] def a (): __a = _ask_options( """How do you want to authorize?""" , ["""AWS Profile""", """Credentials (AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY) """] , lowerCAmelCase__ , ) __a = None if credentials_configuration == 0: __a = _ask_field("""Enter your AWS Profile name: [default] """ , default="""default""" ) __a = aws_profile else: print( """Note you will need to provide AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY when you launch you training script with,""" """`accelerate launch --aws_access_key_id XXX --aws_secret_access_key YYY`""" ) __a = _ask_field("""AWS Access Key ID: """ ) __a = aws_access_key_id __a = _ask_field("""AWS Secret Access Key: """ ) __a = aws_secret_access_key __a = _ask_field("""Enter your AWS Region: [us-east-1]""" , default="""us-east-1""" ) __a = aws_region __a = _ask_options( """Do you already have an IAM Role for executing Amazon SageMaker Training Jobs?""" , ["""Provide IAM Role name""", """Create new IAM role using credentials"""] , lowerCAmelCase__ , ) if role_management == 0: __a = _ask_field("""Enter your IAM role name: """ ) else: __a = """accelerate_sagemaker_execution_role""" print(f'''Accelerate will create an iam role "{iam_role_name}" using the provided credentials''' ) _create_iam_role_for_sagemaker(lowerCAmelCase__ ) __a = _ask_field( """Do you want to use custom Docker image? [yes/NO]: """ , _convert_yes_no_to_bool , default=lowerCAmelCase__ , error_message="""Please enter yes or no.""" , ) __a = None if is_custom_docker_image: __a = _ask_field("""Enter your Docker image: """ , lambda lowerCAmelCase__ : str(lowerCAmelCase__ ).lower() ) __a = _ask_field( """Do you want to provide SageMaker input channels with data locations? [yes/NO]: """ , _convert_yes_no_to_bool , default=lowerCAmelCase__ , error_message="""Please enter yes or no.""" , ) __a = None if is_sagemaker_inputs_enabled: __a = _ask_field( """Enter the path to the SageMaker inputs TSV file with columns (channel_name, data_location): """ , lambda lowerCAmelCase__ : str(lowerCAmelCase__ ).lower() , ) __a = _ask_field( """Do you want to enable SageMaker metrics? [yes/NO]: """ , _convert_yes_no_to_bool , default=lowerCAmelCase__ , error_message="""Please enter yes or no.""" , ) __a = None if is_sagemaker_metrics_enabled: __a = _ask_field( """Enter the path to the SageMaker metrics TSV file with columns (metric_name, metric_regex): """ , lambda lowerCAmelCase__ : str(lowerCAmelCase__ ).lower() , ) __a = _ask_options( """What is the distributed mode?""" , ["""No distributed training""", """Data parallelism"""] , _convert_sagemaker_distributed_mode , ) __a = {} __a = _ask_field( """Do you wish to optimize your script with torch dynamo?[yes/NO]:""" , _convert_yes_no_to_bool , default=lowerCAmelCase__ , error_message="""Please enter yes or no.""" , ) if use_dynamo: __a = """dynamo_""" __a = _ask_options( """Which dynamo backend would you like to use?""" , [x.lower() for x in DYNAMO_BACKENDS] , _convert_dynamo_backend , default=2 , ) __a = _ask_field( """Do you want to customize the defaults sent to torch.compile? [yes/NO]: """ , _convert_yes_no_to_bool , default=lowerCAmelCase__ , error_message="""Please enter yes or no.""" , ) if use_custom_options: __a = _ask_options( """Which mode do you want to use?""" , lowerCAmelCase__ , lambda lowerCAmelCase__ : TORCH_DYNAMO_MODES[int(lowerCAmelCase__ )] , default="""default""" , ) __a = _ask_field( """Do you want the fullgraph mode or it is ok to break model into several subgraphs? [yes/NO]: """ , _convert_yes_no_to_bool , default=lowerCAmelCase__ , error_message="""Please enter yes or no.""" , ) __a = _ask_field( """Do you want to enable dynamic shape tracing? [yes/NO]: """ , _convert_yes_no_to_bool , default=lowerCAmelCase__ , error_message="""Please enter yes or no.""" , ) __a = """Which EC2 instance type you want to use for your training?""" if distributed_type != SageMakerDistributedType.NO: __a = _ask_options( lowerCAmelCase__ , lowerCAmelCase__ , lambda lowerCAmelCase__ : SAGEMAKER_PARALLEL_EC2_INSTANCES[int(lowerCAmelCase__ )] ) else: eca_instance_query += "? [ml.p3.2xlarge]:" __a = _ask_field(lowerCAmelCase__ , lambda lowerCAmelCase__ : str(lowerCAmelCase__ ).lower() , default="""ml.p3.2xlarge""" ) __a = 1 if distributed_type in (SageMakerDistributedType.DATA_PARALLEL, SageMakerDistributedType.MODEL_PARALLEL): __a = _ask_field( """How many machines do you want use? [1]: """ , lowerCAmelCase__ , default=1 , ) __a = _ask_options( """Do you wish to use FP16 or BF16 (mixed precision)?""" , ["""no""", """fp16""", """bf16""", """fp8"""] , _convert_mixed_precision , ) if use_dynamo and mixed_precision == "no": print( """Torch dynamo used without mixed precision requires TF32 to be efficient. Accelerate will enable it by default when launching your scripts.""" ) return SageMakerConfig( image_uri=lowerCAmelCase__ , compute_environment=ComputeEnvironment.AMAZON_SAGEMAKER , distributed_type=lowerCAmelCase__ , use_cpu=lowerCAmelCase__ , dynamo_config=lowerCAmelCase__ , eca_instance_type=lowerCAmelCase__ , profile=lowerCAmelCase__ , region=lowerCAmelCase__ , iam_role_name=lowerCAmelCase__ , mixed_precision=lowerCAmelCase__ , num_machines=lowerCAmelCase__ , sagemaker_inputs_file=lowerCAmelCase__ , sagemaker_metrics_file=lowerCAmelCase__ , )
209
0
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetrImageProcessor class A_ ( unittest.TestCase ): def __init__( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Dict=7 , __SCREAMING_SNAKE_CASE : List[Any]=3 , __SCREAMING_SNAKE_CASE : Dict=30 , __SCREAMING_SNAKE_CASE : List[Any]=4_00 , __SCREAMING_SNAKE_CASE : str=True , __SCREAMING_SNAKE_CASE : Optional[Any]=None , __SCREAMING_SNAKE_CASE : Dict=True , __SCREAMING_SNAKE_CASE : Dict=1 / 2_55 , __SCREAMING_SNAKE_CASE : Any=True , __SCREAMING_SNAKE_CASE : Dict=[0.5, 0.5, 0.5] , __SCREAMING_SNAKE_CASE : Union[str, Any]=[0.5, 0.5, 0.5] , __SCREAMING_SNAKE_CASE : Tuple=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p __a = size if size is not None else {"shortest_edge": 18, "longest_edge": 13_33} __a = parent __a = batch_size __a = num_channels __a = min_resolution __a = max_resolution __a = do_resize __a = size __a = do_rescale __a = rescale_factor __a = do_normalize __a = image_mean __a = image_std __a = do_pad def _UpperCAmelCase ( self : Optional[int] ): return { "do_resize": self.do_resize, "size": self.size, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_pad": self.do_pad, } def _UpperCAmelCase ( self : List[str] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[Any]=False ): if not batched: __a = image_inputs[0] if isinstance(UpperCAmelCase_ , Image.Image ): __a , __a = image.size else: __a , __a = image.shape[1], image.shape[2] if w < h: __a = int(self.size["shortest_edge"] * h / w ) __a = self.size["shortest_edge"] elif w > h: __a = self.size["shortest_edge"] __a = int(self.size["shortest_edge"] * w / h ) else: __a = self.size["shortest_edge"] __a = self.size["shortest_edge"] else: __a = [] for image in image_inputs: __a , __a = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __a = max(UpperCAmelCase_ , key=lambda __SCREAMING_SNAKE_CASE : item[0] )[0] __a = max(UpperCAmelCase_ , key=lambda __SCREAMING_SNAKE_CASE : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class A_ ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): _SCREAMING_SNAKE_CASE = DetrImageProcessor if is_vision_available() else None def _UpperCAmelCase ( self : Tuple ): __a = DetrImageProcessingTester(self ) @property def _UpperCAmelCase ( self : str ): return self.image_processor_tester.prepare_image_processor_dict() def _UpperCAmelCase ( self : int ): __a = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase_ , "image_mean" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , "image_std" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , "do_normalize" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , "do_rescale" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , "rescale_factor" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , "do_resize" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , "size" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , "do_pad" ) ) def _UpperCAmelCase ( self : Union[str, Any] ): __a = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 18, "longest_edge": 13_33} ) self.assertEqual(image_processor.do_pad , UpperCAmelCase_ ) __a = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=UpperCAmelCase_ ) self.assertEqual(image_processor.size , {"shortest_edge": 42, "longest_edge": 84} ) self.assertEqual(image_processor.do_pad , UpperCAmelCase_ ) def _UpperCAmelCase ( self : str ): pass def _UpperCAmelCase ( self : Any ): # Initialize image_processing __a = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __a = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , Image.Image ) # Test not batched input __a = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values __a , __a = self.image_processor_tester.get_expected_values(UpperCAmelCase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __a , __a = self.image_processor_tester.get_expected_values(UpperCAmelCase_ , batched=UpperCAmelCase_ ) __a = image_processing(UpperCAmelCase_ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _UpperCAmelCase ( self : int ): # Initialize image_processing __a = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __a = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , numpify=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , np.ndarray ) # Test not batched input __a = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values __a , __a = self.image_processor_tester.get_expected_values(UpperCAmelCase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __a = image_processing(UpperCAmelCase_ , return_tensors="pt" ).pixel_values __a , __a = self.image_processor_tester.get_expected_values(UpperCAmelCase_ , batched=UpperCAmelCase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _UpperCAmelCase ( self : Optional[int] ): # Initialize image_processing __a = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __a = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , torchify=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , torch.Tensor ) # Test not batched input __a = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values __a , __a = self.image_processor_tester.get_expected_values(UpperCAmelCase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __a = image_processing(UpperCAmelCase_ , return_tensors="pt" ).pixel_values __a , __a = self.image_processor_tester.get_expected_values(UpperCAmelCase_ , batched=UpperCAmelCase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _UpperCAmelCase ( self : int ): # prepare image and target __a = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f: __a = json.loads(f.read() ) __a = {"image_id": 3_97_69, "annotations": target} # encode them __a = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50" ) __a = image_processing(images=UpperCAmelCase_ , annotations=UpperCAmelCase_ , return_tensors="pt" ) # verify pixel values __a = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding["pixel_values"].shape , UpperCAmelCase_ ) __a = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , UpperCAmelCase_ , atol=1E-4 ) ) # verify area __a = torch.tensor([58_87.96_00, 1_12_50.20_61, 48_93_53.84_38, 83_71_22.75_00, 14_79_67.51_56, 16_57_32.34_38] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , UpperCAmelCase_ ) ) # verify boxes __a = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , UpperCAmelCase_ ) __a = torch.tensor([0.55_03, 0.27_65, 0.06_04, 0.22_15] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , UpperCAmelCase_ , atol=1E-3 ) ) # verify image_id __a = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , UpperCAmelCase_ ) ) # verify is_crowd __a = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , UpperCAmelCase_ ) ) # verify class_labels __a = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , UpperCAmelCase_ ) ) # verify orig_size __a = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , UpperCAmelCase_ ) ) # verify size __a = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , UpperCAmelCase_ ) ) @slow def _UpperCAmelCase ( self : Optional[int] ): # prepare image, target and masks_path __a = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f: __a = json.loads(f.read() ) __a = {"file_name": "000000039769.png", "image_id": 3_97_69, "segments_info": target} __a = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them __a = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50-panoptic" ) __a = image_processing(images=UpperCAmelCase_ , annotations=UpperCAmelCase_ , masks_path=UpperCAmelCase_ , return_tensors="pt" ) # verify pixel values __a = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding["pixel_values"].shape , UpperCAmelCase_ ) __a = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , UpperCAmelCase_ , atol=1E-4 ) ) # verify area __a = torch.tensor([14_79_79.68_75, 16_55_27.04_69, 48_46_38.59_38, 1_12_92.93_75, 58_79.65_62, 76_34.11_47] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , UpperCAmelCase_ ) ) # verify boxes __a = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , UpperCAmelCase_ ) __a = torch.tensor([0.26_25, 0.54_37, 0.46_88, 0.86_25] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , UpperCAmelCase_ , atol=1E-3 ) ) # verify image_id __a = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , UpperCAmelCase_ ) ) # verify is_crowd __a = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , UpperCAmelCase_ ) ) # verify class_labels __a = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , UpperCAmelCase_ ) ) # verify masks __a = 82_28_73 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , UpperCAmelCase_ ) # verify orig_size __a = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , UpperCAmelCase_ ) ) # verify size __a = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , UpperCAmelCase_ ) )
197
'''simple docstring''' import socket def __snake_case ( ): snake_case_ = socket.socket(socket.AF_INET , socket.SOCK_STREAM ) snake_case_ = socket.gethostname() snake_case_ = 12_312 sock.connect((host, port) ) sock.send(b"Hello server!" ) with open("Received_file" , "wb" ) as out_file: print("File opened" ) print("Receiving data..." ) while True: snake_case_ = sock.recv(1_024 ) if not data: break out_file.write(lowercase ) print("Successfully received the file" ) sock.close() print("Connection closed" ) if __name__ == "__main__": main()
508
0
from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class _SCREAMING_SNAKE_CASE : def __init__( self , lowerCamelCase , lowerCamelCase=12 , lowerCamelCase=7 , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=99 , lowerCamelCase=32 , lowerCamelCase=32 , lowerCamelCase=2 , lowerCamelCase=4 , lowerCamelCase=37 , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=5_12 , lowerCamelCase=0.0_2 , lowerCamelCase=0 , lowerCamelCase=None , ): snake_case__ = parent snake_case__ = batch_size snake_case__ = seq_length snake_case__ = is_training snake_case__ = use_input_mask snake_case__ = use_labels snake_case__ = vocab_size snake_case__ = hidden_size snake_case__ = projection_dim snake_case__ = num_hidden_layers snake_case__ = num_attention_heads snake_case__ = intermediate_size snake_case__ = dropout snake_case__ = attention_dropout snake_case__ = max_position_embeddings snake_case__ = initializer_range snake_case__ = scope snake_case__ = bos_token_id def A_ ( self ): snake_case__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case__ = None if self.use_input_mask: snake_case__ = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: snake_case__ = input_mask.numpy() snake_case__ , snake_case__ = input_mask.shape snake_case__ = np.random.randint(1 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(lowerCamelCase ): snake_case__ = 1 snake_case__ = 0 snake_case__ = self.get_config() return config, input_ids, tf.convert_to_tensor(lowerCamelCase ) def A_ ( self ): return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def A_ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): snake_case__ = TFBlipTextModel(config=lowerCamelCase ) snake_case__ = model(lowerCamelCase , attention_mask=lowerCamelCase , training=lowerCamelCase ) snake_case__ = model(lowerCamelCase , training=lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def A_ ( self ): snake_case__ = self.prepare_config_and_inputs() snake_case__ , snake_case__ , snake_case__ = config_and_inputs snake_case__ = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class _SCREAMING_SNAKE_CASE ( __UpperCamelCase , unittest.TestCase ): _A : Dict = (TFBlipTextModel,) if is_tf_available() else () _A : int = False _A : Tuple = False _A : int = False def A_ ( self ): snake_case__ = BlipTextModelTester(self ) snake_case__ = ConfigTester(self , config_class=lowerCamelCase , hidden_size=37 ) def A_ ( self ): self.config_tester.run_common_tests() def A_ ( self ): snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) def A_ ( self ): pass def A_ ( self ): pass @unittest.skip(reason="Blip does not use inputs_embeds" ) def A_ ( self ): pass @unittest.skip(reason="BlipTextModel has no base class and is not available in MODEL_MAPPING" ) def A_ ( self ): pass @unittest.skip(reason="BlipTextModel has no base class and is not available in MODEL_MAPPING" ) def A_ ( self ): pass @slow def A_ ( self ): for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ = TFBlipTextModel.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) def A_ ( self , lowerCamelCase=True ): super().test_pt_tf_model_equivalence(allow_missing_keys=lowerCamelCase )
711
import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): # prepare kernel # the kernel size have to be odd if (ksize % 2) == 0: snake_case__ = ksize + 1 snake_case__ = np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(__lowerCAmelCase ): for x in range(__lowerCAmelCase ): # distance from center snake_case__ = x - ksize // 2 snake_case__ = y - ksize // 2 # degree to radiant snake_case__ = theta / 180 * np.pi snake_case__ = np.cos(_theta ) snake_case__ = np.sin(_theta ) # get kernel x snake_case__ = cos_theta * px + sin_theta * py # get kernel y snake_case__ = -sin_theta * px + cos_theta * py # fill kernel snake_case__ = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image __magic_name__ = imread('''../image_data/lena.jpg''') # turn image in gray scale value __magic_name__ = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges __magic_name__ = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 120, 150]: __magic_name__ = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) __magic_name__ = out / out.max() * 255 __magic_name__ = out.astype(np.uinta) imshow('''Original''', gray) imshow('''Gabor filter with 20x20 mask and 6 directions''', out) waitKey(0)
530
0
"""simple docstring""" from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging lowercase__ : Tuple = logging.get_logger(__name__) lowercase__ : str = { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json''', # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class _UpperCAmelCase ( lowerCAmelCase__): _lowerCAmelCase : str = """blenderbot-small""" _lowerCAmelCase : Tuple = ["""past_key_values"""] _lowerCAmelCase : Tuple = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : str , lowercase_ : List[str]=50265 , lowercase_ : Tuple=512 , lowercase_ : Optional[int]=8 , lowercase_ : List[str]=2048 , lowercase_ : List[str]=16 , lowercase_ : Tuple=8 , lowercase_ : List[Any]=2048 , lowercase_ : int=16 , lowercase_ : Any=0.0 , lowercase_ : List[str]=0.0 , lowercase_ : Optional[Any]=True , lowercase_ : Dict=True , lowercase_ : List[Any]="gelu" , lowercase_ : List[Any]=512 , lowercase_ : List[str]=0.1 , lowercase_ : Tuple=0.0 , lowercase_ : str=0.0 , lowercase_ : Union[str, Any]=0.02 , lowercase_ : Union[str, Any]=1 , lowercase_ : int=False , lowercase_ : Union[str, Any]=0 , lowercase_ : str=1 , lowercase_ : Any=2 , lowercase_ : int=2 , **lowercase_ : Optional[int] , ): snake_case_ : Optional[int] = vocab_size snake_case_ : Union[str, Any] = max_position_embeddings snake_case_ : Optional[Any] = d_model snake_case_ : List[Any] = encoder_ffn_dim snake_case_ : List[str] = encoder_layers snake_case_ : Any = encoder_attention_heads snake_case_ : List[str] = decoder_ffn_dim snake_case_ : str = decoder_layers snake_case_ : Optional[int] = decoder_attention_heads snake_case_ : Optional[int] = dropout snake_case_ : int = attention_dropout snake_case_ : List[str] = activation_dropout snake_case_ : int = activation_function snake_case_ : Any = init_std snake_case_ : Dict = encoder_layerdrop snake_case_ : Optional[Any] = decoder_layerdrop snake_case_ : Any = use_cache snake_case_ : Tuple = encoder_layers snake_case_ : int = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , is_encoder_decoder=lowercase_ , decoder_start_token_id=lowercase_ , forced_eos_token_id=lowercase_ , **lowercase_ , ) class _UpperCAmelCase ( lowerCAmelCase__): @property def _snake_case ( self : Dict ): if self.task in ["default", "seq2seq-lm"]: snake_case_ : Optional[int] = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: snake_case_ : Optional[int] = {0: '''batch'''} snake_case_ : Tuple = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: snake_case_ : str = {0: '''batch''', 1: '''decoder_sequence'''} snake_case_ : List[Any] = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(lowercase_ , direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. snake_case_ : Dict = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: snake_case_, snake_case_ : Any = self.num_layers for i in range(lowercase_ ): snake_case_ : Tuple = {0: '''batch''', 2: '''past_sequence + sequence'''} snake_case_ : str = {0: '''batch''', 2: '''past_sequence + sequence'''} else: snake_case_ : int = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property def _snake_case ( self : Optional[Any] ): if self.task in ["default", "seq2seq-lm"]: snake_case_ : Optional[Any] = super().outputs else: snake_case_ : Optional[Any] = super(lowercase_ , self ).outputs if self.use_past: snake_case_, snake_case_ : Any = self.num_layers for i in range(lowercase_ ): snake_case_ : List[str] = {0: '''batch''', 2: '''past_sequence + sequence'''} snake_case_ : int = {0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def _snake_case ( self : List[str] , lowercase_ : PreTrainedTokenizer , lowercase_ : int = -1 , lowercase_ : int = -1 , lowercase_ : bool = False , lowercase_ : Optional[TensorType] = None , ): snake_case_ : Optional[int] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) # Generate decoder inputs snake_case_ : Any = seq_length if not self.use_past else 1 snake_case_ : str = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) snake_case_ : Optional[Any] = {f"decoder_{name}": tensor for name, tensor in decoder_inputs.items()} snake_case_ : List[Any] = dict(**lowercase_ , **lowercase_ ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch snake_case_, snake_case_ : Dict = common_inputs['''input_ids'''].shape snake_case_ : Optional[Any] = common_inputs['''decoder_input_ids'''].shape[1] snake_case_, snake_case_ : int = self.num_attention_heads snake_case_ : Dict = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) snake_case_ : List[Any] = decoder_seq_length + 3 snake_case_ : List[Any] = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) snake_case_ : Union[str, Any] = torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(lowercase_ , lowercase_ )] , dim=1 ) snake_case_ : Dict = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered snake_case_, snake_case_ : Optional[Any] = self.num_layers snake_case_ : Union[str, Any] = min(lowercase_ , lowercase_ ) snake_case_ : str = max(lowercase_ , lowercase_ ) - min_num_layers snake_case_ : Optional[int] = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(lowercase_ ): common_inputs["past_key_values"].append( ( torch.zeros(lowercase_ ), torch.zeros(lowercase_ ), torch.zeros(lowercase_ ), torch.zeros(lowercase_ ), ) ) # TODO: test this. snake_case_ : Any = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(lowercase_ , lowercase_ ): common_inputs["past_key_values"].append((torch.zeros(lowercase_ ), torch.zeros(lowercase_ )) ) return common_inputs def _snake_case ( self : Union[str, Any] , lowercase_ : PreTrainedTokenizer , lowercase_ : int = -1 , lowercase_ : int = -1 , lowercase_ : bool = False , lowercase_ : Optional[TensorType] = None , ): snake_case_ : Union[str, Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch snake_case_, snake_case_ : List[str] = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values snake_case_ : Optional[int] = seqlen + 2 snake_case_, snake_case_ : Any = self.num_layers snake_case_, snake_case_ : Optional[int] = self.num_attention_heads snake_case_ : Optional[int] = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) snake_case_ : Any = common_inputs['''attention_mask'''].dtype snake_case_ : Tuple = torch.cat( [common_inputs['''attention_mask'''], torch.ones(lowercase_ , lowercase_ , dtype=lowercase_ )] , dim=1 ) snake_case_ : Tuple = [ (torch.zeros(lowercase_ ), torch.zeros(lowercase_ )) for _ in range(lowercase_ ) ] return common_inputs def _snake_case ( self : Union[str, Any] , lowercase_ : PreTrainedTokenizer , lowercase_ : int = -1 , lowercase_ : int = -1 , lowercase_ : bool = False , lowercase_ : Optional[TensorType] = None , ): # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX snake_case_ : Dict = compute_effective_axis_dimension( lowercase_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX snake_case_ : Optional[Any] = tokenizer.num_special_tokens_to_add(lowercase_ ) snake_case_ : Optional[Any] = compute_effective_axis_dimension( lowercase_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowercase_ ) # Generate dummy inputs according to compute batch and sequence snake_case_ : Dict = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size snake_case_ : str = dict(tokenizer(lowercase_ , return_tensors=lowercase_ ) ) return common_inputs def _snake_case ( self : str , lowercase_ : PreTrainedTokenizer , lowercase_ : int = -1 , lowercase_ : int = -1 , lowercase_ : bool = False , lowercase_ : Optional[TensorType] = None , ): if self.task in ["default", "seq2seq-lm"]: snake_case_ : Tuple = self._generate_dummy_inputs_for_default_and_seqaseq_lm( lowercase_ , batch_size=lowercase_ , seq_length=lowercase_ , is_pair=lowercase_ , framework=lowercase_ ) elif self.task == "causal-lm": snake_case_ : int = self._generate_dummy_inputs_for_causal_lm( lowercase_ , batch_size=lowercase_ , seq_length=lowercase_ , is_pair=lowercase_ , framework=lowercase_ ) else: snake_case_ : Optional[int] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase_ , batch_size=lowercase_ , seq_length=lowercase_ , is_pair=lowercase_ , framework=lowercase_ ) return common_inputs def _snake_case ( self : Dict , lowercase_ : Optional[Any] , lowercase_ : Optional[Any] , lowercase_ : str , lowercase_ : List[str] ): if self.task in ["default", "seq2seq-lm"]: snake_case_ : Optional[int] = super()._flatten_past_key_values_(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) else: snake_case_ : List[str] = super(lowercase_ , self )._flatten_past_key_values_( lowercase_ , lowercase_ , lowercase_ , lowercase_ )
123
"""simple docstring""" import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets lowercase__ : str = datasets.logging.get_logger(__name__) lowercase__ : List[Any] = '''\ @InProceedings{moosavi2019minimum, author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube}, title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection}, year = {2019}, booktitle = {Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)}, publisher = {Association for Computational Linguistics}, address = {Florence, Italy}, } @inproceedings{10.3115/1072399.1072405, author = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette}, title = {A Model-Theoretic Coreference Scoring Scheme}, year = {1995}, isbn = {1558604022}, publisher = {Association for Computational Linguistics}, address = {USA}, url = {https://doi.org/10.3115/1072399.1072405}, doi = {10.3115/1072399.1072405}, booktitle = {Proceedings of the 6th Conference on Message Understanding}, pages = {45–52}, numpages = {8}, location = {Columbia, Maryland}, series = {MUC6 ’95} } @INPROCEEDINGS{Bagga98algorithmsfor, author = {Amit Bagga and Breck Baldwin}, title = {Algorithms for Scoring Coreference Chains}, booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference}, year = {1998}, pages = {563--566} } @INPROCEEDINGS{Luo05oncoreference, author = {Xiaoqiang Luo}, title = {On coreference resolution performance metrics}, booktitle = {In Proc. of HLT/EMNLP}, year = {2005}, pages = {25--32}, publisher = {URL} } @inproceedings{moosavi-strube-2016-coreference, title = "Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric", author = "Moosavi, Nafise Sadat and Strube, Michael", booktitle = "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)", month = aug, year = "2016", address = "Berlin, Germany", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/P16-1060", doi = "10.18653/v1/P16-1060", pages = "632--642", } ''' lowercase__ : Optional[Any] = '''\ CoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which implements of the common evaluation metrics including MUC [Vilain et al, 1995], B-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005], LEA [Moosavi and Strube, 2016] and the averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) [Denis and Baldridge, 2009a; Pradhan et al., 2011]. This wrapper of CoVal currently only work with CoNLL line format: The CoNLL format has one word per line with all the annotation for this word in column separated by spaces: Column Type Description 1 Document ID This is a variation on the document filename 2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc. 3 Word number 4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release. 5 Part-of-Speech 6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the "([pos] [word])" string (or leaf) and concatenating the items in the rows of that column. 7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a "-" 8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7. 9 Word sense This is the word sense of the word in Column 3. 10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data. 11 Named Entities These columns identifies the spans representing various named entities. 12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7. N Coreference Coreference chain information encoded in a parenthesis structure. More informations on the format can be found here (section "*_conll File Format"): http://www.conll.cemantix.org/2012/data.html Details on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md CoVal code was written by @ns-moosavi. Some parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py The test suite is taken from https://github.com/conll/reference-coreference-scorers/ Mention evaluation and the test suite are added by @andreasvc. Parsing CoNLL files is developed by Leo Born. ''' lowercase__ : str = ''' Calculates coreference evaluation metrics. Args: predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format. Each prediction is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format. Each reference is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. keep_singletons: After extracting all mentions of key or system files, mentions whose corresponding coreference chain is of size one, are considered as singletons. The default evaluation mode will include singletons in evaluations if they are included in the key or the system files. By setting \'keep_singletons=False\', all singletons in the key and system files will be excluded from the evaluation. NP_only: Most of the recent coreference resolvers only resolve NP mentions and leave out the resolution of VPs. By setting the \'NP_only\' option, the scorer will only evaluate the resolution of NPs. min_span: By setting \'min_span\', the scorer reports the results based on automatically detected minimum spans. Minimum spans are determined using the MINA algorithm. Returns: \'mentions\': mentions \'muc\': MUC metric [Vilain et al, 1995] \'bcub\': B-cubed [Bagga and Baldwin, 1998] \'ceafe\': CEAFe [Luo et al., 2005] \'lea\': LEA [Moosavi and Strube, 2016] \'conll_score\': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) Examples: >>> coval = datasets.load_metric(\'coval\') >>> words = [\'bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -\', ... \'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)\', ... \'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)\', ... \'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -\', ... \'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -\', ... \'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -\'] >>> references = [words] >>> predictions = [words] >>> results = coval.compute(predictions=predictions, references=references) >>> print(results) # doctest:+ELLIPSIS {\'mentions/recall\': 1.0,[...] \'conll_score\': 100.0} ''' def __lowercase ( _a , _a , _a=False , _a=False , _a=True , _a=False , _a="dummy_doc" ): snake_case_ : Union[str, Any] = {doc: key_lines} snake_case_ : int = {doc: sys_lines} snake_case_ : Optional[Any] = {} snake_case_ : Dict = 0 snake_case_ : List[Any] = 0 snake_case_ : str = 0 snake_case_ : Dict = 0 snake_case_ : Optional[Any] = 0 snake_case_ : Any = 0 snake_case_, snake_case_ : Dict = reader.get_doc_mentions(_a , key_doc_lines[doc] , _a ) key_singletons_num += singletons_num if NP_only or min_span: snake_case_ : List[Any] = reader.set_annotated_parse_trees(_a , key_doc_lines[doc] , _a , _a ) snake_case_, snake_case_ : str = reader.get_doc_mentions(_a , sys_doc_lines[doc] , _a ) sys_singletons_num += singletons_num if NP_only or min_span: snake_case_ : Optional[Any] = reader.set_annotated_parse_trees(_a , key_doc_lines[doc] , _a , _a ) if remove_nested: snake_case_, snake_case_ : Union[str, Any] = reader.remove_nested_coref_mentions(_a , _a ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters snake_case_, snake_case_ : Optional[int] = reader.remove_nested_coref_mentions(_a , _a ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters snake_case_ : List[Any] = reader.get_mention_assignments(_a , _a ) snake_case_ : Optional[Any] = reader.get_mention_assignments(_a , _a ) snake_case_ : List[Any] = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( '''Number of removed nested coreferring mentions in the key ''' f"annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}" ) logger.info( '''Number of resulting singleton clusters in the key ''' f"annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}" ) if not keep_singletons: logger.info( f"{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system " '''files, respectively''' ) return doc_coref_infos def __lowercase ( _a , _a , _a , _a , _a , _a , _a ): snake_case_ : str = get_coref_infos(_a , _a , _a , _a , _a , _a ) snake_case_ : Any = {} snake_case_ : List[str] = 0 snake_case_ : Any = 0 for name, metric in metrics: snake_case_, snake_case_, snake_case_ : Union[str, Any] = evaluator.evaluate_documents(_a , _a , beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({f"{name}/recall": recall, f"{name}/precision": precision, f"{name}/f1": fa} ) logger.info( name.ljust(10 ) , f"Recall: {recall * 100:.2f}" , f" Precision: {precision * 100:.2f}" , f" F1: {fa * 100:.2f}" , ) if conll_subparts_num == 3: snake_case_ : Optional[Any] = (conll / 3) * 100 logger.info(f"CoNLL score: {conll:.2f}" ) output_scores.update({'''conll_score''': conll} ) return output_scores def __lowercase ( _a ): snake_case_ : Any = False for line in key_lines: if not line.startswith('''#''' ): if len(line.split() ) > 6: snake_case_ : List[str] = line.split()[5] if not parse_col == "-": snake_case_ : Optional[int] = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class _UpperCAmelCase ( datasets.Metric): def _snake_case ( self : int ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' ) ), '''references''': datasets.Sequence(datasets.Value('''string''' ) ), } ) , codebase_urls=['''https://github.com/ns-moosavi/coval'''] , reference_urls=[ '''https://github.com/ns-moosavi/coval''', '''https://www.aclweb.org/anthology/P16-1060''', '''http://www.conll.cemantix.org/2012/data.html''', ] , ) def _snake_case ( self : str , lowercase_ : Dict , lowercase_ : Any , lowercase_ : List[Any]=True , lowercase_ : Tuple=False , lowercase_ : Any=False , lowercase_ : List[Any]=False ): snake_case_ : Optional[int] = [ ('''mentions''', evaluator.mentions), ('''muc''', evaluator.muc), ('''bcub''', evaluator.b_cubed), ('''ceafe''', evaluator.ceafe), ('''lea''', evaluator.lea), ] if min_span: snake_case_ : str = util.check_gold_parse_annotation(lowercase_ ) if not has_gold_parse: raise NotImplementedError('''References should have gold parse annotation to use \'min_span\'.''' ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" snake_case_ : Optional[Any] = evaluate( key_lines=lowercase_ , sys_lines=lowercase_ , metrics=lowercase_ , NP_only=lowercase_ , remove_nested=lowercase_ , keep_singletons=lowercase_ , min_span=lowercase_ , ) return score
123
1
'''simple docstring''' import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors UpperCamelCase_ = logging.getLogger(__name__) class __UpperCAmelCase ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = "sequence-classification" def __init__( self , _UpperCAmelCase ): if type(_UpperCAmelCase ) == dict: UpperCAmelCase__ : Any = Namespace(**_UpperCAmelCase ) UpperCAmelCase__ : int = glue_output_modes[hparams.task] UpperCAmelCase__ : Any = glue_tasks_num_labels[hparams.task] super().__init__(_UpperCAmelCase , _UpperCAmelCase , self.mode ) def lowerCamelCase ( self , **_UpperCAmelCase ): return self.model(**_UpperCAmelCase ) def lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase ): UpperCAmelCase__ : Optional[int] = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: UpperCAmelCase__ : str = batch[2] if self.config.model_type in ['''bert''', '''xlnet''', '''albert'''] else None UpperCAmelCase__ : Union[str, Any] = self(**_UpperCAmelCase ) UpperCAmelCase__ : List[Any] = outputs[0] UpperCAmelCase__ : str = self.trainer.lr_schedulers[0]['''scheduler'''] UpperCAmelCase__ : Union[str, Any] = {'''loss''': loss, '''rate''': lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def lowerCamelCase ( self ): UpperCAmelCase__ : Union[str, Any] = self.hparams UpperCAmelCase__ : str = processors[args.task]() UpperCAmelCase__ : Optional[int] = processor.get_labels() for mode in ["train", "dev"]: UpperCAmelCase__ : List[str] = self._feature_file(_UpperCAmelCase ) if os.path.exists(_UpperCAmelCase ) and not args.overwrite_cache: logger.info('''Loading features from cached file %s''' , _UpperCAmelCase ) else: logger.info('''Creating features from dataset file at %s''' , args.data_dir ) UpperCAmelCase__ : Optional[int] = ( processor.get_dev_examples(args.data_dir ) if mode == '''dev''' else processor.get_train_examples(args.data_dir ) ) UpperCAmelCase__ : Optional[int] = convert_examples_to_features( _UpperCAmelCase , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info('''Saving features into cached file %s''' , _UpperCAmelCase ) torch.save(_UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = False ): UpperCAmelCase__ : Tuple = '''dev''' if mode == '''test''' else mode UpperCAmelCase__ : Any = self._feature_file(_UpperCAmelCase ) logger.info('''Loading features from cached file %s''' , _UpperCAmelCase ) UpperCAmelCase__ : Optional[Any] = torch.load(_UpperCAmelCase ) UpperCAmelCase__ : int = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) UpperCAmelCase__ : str = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) UpperCAmelCase__ : Tuple = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) if self.hparams.glue_output_mode == "classification": UpperCAmelCase__ : int = torch.tensor([f.label for f in features] , dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": UpperCAmelCase__ : int = torch.tensor([f.label for f in features] , dtype=torch.float ) return DataLoader( TensorDataset(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) , batch_size=_UpperCAmelCase , shuffle=_UpperCAmelCase , ) def lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase ): UpperCAmelCase__ : Any = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: UpperCAmelCase__ : Any = batch[2] if self.config.model_type in ['''bert''', '''xlnet''', '''albert'''] else None UpperCAmelCase__ : Union[str, Any] = self(**_UpperCAmelCase ) UpperCAmelCase__ : List[Any] = outputs[:2] UpperCAmelCase__ : Union[str, Any] = logits.detach().cpu().numpy() UpperCAmelCase__ : int = inputs['''labels'''].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def lowerCamelCase ( self , _UpperCAmelCase ): UpperCAmelCase__ : Optional[Any] = torch.stack([x['''val_loss'''] for x in outputs] ).mean().detach().cpu().item() UpperCAmelCase__ : List[str] = np.concatenate([x['''pred'''] for x in outputs] , axis=0 ) if self.hparams.glue_output_mode == "classification": UpperCAmelCase__ : Optional[Any] = np.argmax(_UpperCAmelCase , axis=1 ) elif self.hparams.glue_output_mode == "regression": UpperCAmelCase__ : int = np.squeeze(_UpperCAmelCase ) UpperCAmelCase__ : Any = np.concatenate([x['''target'''] for x in outputs] , axis=0 ) UpperCAmelCase__ : int = [[] for _ in range(out_label_ids.shape[0] )] UpperCAmelCase__ : Tuple = [[] for _ in range(out_label_ids.shape[0] )] UpperCAmelCase__ : Any = {**{'''val_loss''': val_loss_mean}, **compute_metrics(self.hparams.task , _UpperCAmelCase , _UpperCAmelCase )} UpperCAmelCase__ : Optional[Any] = dict(results.items() ) UpperCAmelCase__ : str = results return ret, preds_list, out_label_list def lowerCamelCase ( self , _UpperCAmelCase ): UpperCAmelCase__ : Dict = self._eval_end(_UpperCAmelCase ) UpperCAmelCase__ : Any = ret['''log'''] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def lowerCamelCase ( self , _UpperCAmelCase ): UpperCAmelCase__ : Union[str, Any] = self._eval_end(_UpperCAmelCase ) UpperCAmelCase__ : Optional[Any] = ret['''log'''] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def lowerCamelCase ( _UpperCAmelCase , _UpperCAmelCase ): BaseTransformer.add_model_specific_args(_UpperCAmelCase , _UpperCAmelCase ) parser.add_argument( '''--max_seq_length''' , default=128 , type=_UpperCAmelCase , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--task''' , default='''''' , type=_UpperCAmelCase , required=_UpperCAmelCase , help='''The GLUE task to run''' , ) parser.add_argument( '''--gpus''' , default=0 , type=_UpperCAmelCase , help='''The number of GPUs allocated for this, it is by default 0 meaning none''' , ) parser.add_argument( '''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''' ) return parser def lowerCAmelCase__ ( ) -> Union[str, Any]: UpperCAmelCase__ : Tuple = argparse.ArgumentParser() add_generic_args(__A , os.getcwd() ) UpperCAmelCase__ : Any = GLUETransformer.add_model_specific_args(__A , os.getcwd() ) UpperCAmelCase__ : Optional[Any] = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: UpperCAmelCase__ : Tuple = os.path.join( '''./results''' , f"""{args.task}_{time.strftime("%Y%m%d_%H%M%S" )}""" , ) os.makedirs(args.output_dir ) UpperCAmelCase__ : str = GLUETransformer(__A ) UpperCAmelCase__ : Any = generic_train(__A , __A ) # Optionally, predict on dev set and write to output_dir if args.do_predict: UpperCAmelCase__ : Tuple = sorted(glob.glob(os.path.join(args.output_dir , '''checkpoint-epoch=*.ckpt''' ) , recursive=__A ) ) UpperCAmelCase__ : int = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(__A ) if __name__ == "__main__": main()
708
'''simple docstring''' import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __UpperCAmelCase : '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=3 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=224 , _UpperCAmelCase=1000 , _UpperCAmelCase=[3, 3, 6, 4] , _UpperCAmelCase=[48, 56, 112, 220] , ): UpperCAmelCase__ : List[str] = parent UpperCAmelCase__ : Union[str, Any] = batch_size UpperCAmelCase__ : Tuple = num_channels UpperCAmelCase__ : Tuple = is_training UpperCAmelCase__ : Union[str, Any] = use_labels UpperCAmelCase__ : List[Any] = hidden_dropout_prob UpperCAmelCase__ : Optional[Any] = attention_probs_dropout_prob UpperCAmelCase__ : Optional[int] = num_labels UpperCAmelCase__ : Optional[Any] = image_size UpperCAmelCase__ : int = layer_depths UpperCAmelCase__ : List[str] = embed_dims def lowerCamelCase ( self ): UpperCAmelCase__ : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase__ : Union[str, Any] = None if self.use_labels: UpperCAmelCase__ : Tuple = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase__ : Optional[int] = self.get_config() return config, pixel_values, labels def lowerCamelCase ( self ): return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act='''gelu''' , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=_UpperCAmelCase , layer_scale_init_value=1E-5 , ) def lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): UpperCAmelCase__ : List[str] = SwiftFormerModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase__ : List[Any] = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): UpperCAmelCase__ : List[str] = self.num_labels UpperCAmelCase__ : str = SwiftFormerForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase__ : Optional[Any] = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) UpperCAmelCase__ : Optional[Any] = SwiftFormerForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase__ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase__ : Optional[int] = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase ( self ): ((UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__)) : Tuple = self.prepare_config_and_inputs() UpperCAmelCase__ : Dict = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () SCREAMING_SNAKE_CASE : Union[str, Any] = ( {"feature-extraction": SwiftFormerModel, "image-classification": SwiftFormerForImageClassification} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE : int = False SCREAMING_SNAKE_CASE : int = False SCREAMING_SNAKE_CASE : Any = False SCREAMING_SNAKE_CASE : str = False SCREAMING_SNAKE_CASE : List[Any] = False def lowerCamelCase ( self ): UpperCAmelCase__ : Tuple = SwiftFormerModelTester(self ) UpperCAmelCase__ : Any = ConfigTester( self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , ) def lowerCamelCase ( self ): self.config_tester.run_common_tests() @unittest.skip(reason='''SwiftFormer does not use inputs_embeds''' ) def lowerCamelCase ( self ): pass def lowerCamelCase ( self ): UpperCAmelCase__ , UpperCAmelCase__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : Optional[Any] = model_class(_UpperCAmelCase ) UpperCAmelCase__ : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCAmelCase , nn.Linear ) ) def lowerCamelCase ( self ): UpperCAmelCase__ , UpperCAmelCase__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : Union[str, Any] = model_class(_UpperCAmelCase ) UpperCAmelCase__ : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ : Union[str, Any] = [*signature.parameters.keys()] UpperCAmelCase__ : Union[str, Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def lowerCamelCase ( self ): UpperCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def lowerCamelCase ( self ): UpperCAmelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) @slow def lowerCamelCase ( self ): for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : List[Any] = SwiftFormerModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) @unittest.skip(reason='''SwiftFormer does not output attentions''' ) def lowerCamelCase ( self ): pass def lowerCamelCase ( self ): def check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): UpperCAmelCase__ : str = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): UpperCAmelCase__ : str = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) UpperCAmelCase__ : Optional[int] = outputs.hidden_states UpperCAmelCase__ : Optional[Any] = 8 self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(_UpperCAmelCase ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) UpperCAmelCase__ , UpperCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : Optional[Any] = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase__ : int = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase ( self ): def _config_zero_init(_UpperCAmelCase ): UpperCAmelCase__ : str = copy.deepcopy(_UpperCAmelCase ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(_UpperCAmelCase , _UpperCAmelCase , 1E-10 ) if isinstance(getattr(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) , _UpperCAmelCase ): UpperCAmelCase__ : Union[str, Any] = _config_zero_init(getattr(_UpperCAmelCase , _UpperCAmelCase ) ) setattr(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return configs_no_init UpperCAmelCase__ , UpperCAmelCase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ : Optional[Any] = _config_zero_init(_UpperCAmelCase ) for model_class in self.all_model_classes: UpperCAmelCase__ : str = model_class(config=_UpperCAmelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9) / 1E9).round().item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def lowerCamelCase ( self ): pass def lowerCAmelCase__ ( ) -> Optional[int]: UpperCAmelCase__ : Union[str, Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCamelCase ( self ): return ViTImageProcessor.from_pretrained('''MBZUAI/swiftformer-xs''' ) if is_vision_available() else None @slow def lowerCamelCase ( self ): UpperCAmelCase__ : int = SwiftFormerForImageClassification.from_pretrained('''MBZUAI/swiftformer-xs''' ).to(_UpperCAmelCase ) UpperCAmelCase__ : Tuple = self.default_image_processor UpperCAmelCase__ : str = prepare_img() UpperCAmelCase__ : Tuple = image_processor(images=_UpperCAmelCase , return_tensors='''pt''' ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase__ : Optional[Any] = model(**_UpperCAmelCase ) # verify the logits UpperCAmelCase__ : Optional[Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) UpperCAmelCase__ : List[str] = torch.tensor([[-2.1703E00, 2.1107E00, -2.0811E00]] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1E-4 ) )
599
0