code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' def __snake_case ( _UpperCAmelCase : str): return credit_card_number.startswith(('''34''', '''35''', '''37''', '''4''', '''5''', '''6''')) def __snake_case ( _UpperCAmelCase : str): UpperCamelCase = credit_card_number UpperCamelCase = 0 UpperCamelCase = len(_UpperCAmelCase) - 2 for i in range(_UpperCAmelCase, -1, -2): # double the value of every second digit UpperCamelCase = int(cc_number[i]) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 UpperCamelCase = cc_number[:i] + str(_UpperCAmelCase) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(_UpperCAmelCase) - 1, -1, -2): total += int(cc_number[i]) return total % 10 == 0 def __snake_case ( _UpperCAmelCase : str): UpperCamelCase = f'{credit_card_number} is an invalid credit card number because' if not credit_card_number.isdigit(): print(f'{error_message} it has nonnumerical characters.') return False if not 13 <= len(_UpperCAmelCase) <= 16: print(f'{error_message} of its length.') return False if not validate_initial_digits(_UpperCAmelCase): print(f'{error_message} of its first two digits.') return False if not luhn_validation(_UpperCAmelCase): print(f'{error_message} it fails the Luhn check.') return False print(f'{credit_card_number} is a valid credit card number.') return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number('4111111111111111') validate_credit_card_number('32323')
212
'''simple docstring''' def __snake_case ( _UpperCAmelCase : int): UpperCamelCase = n ** (1 / 3) return (val * val * val) == n if __name__ == "__main__": print(perfect_cube(27)) print(perfect_cube(4))
212
1
'''simple docstring''' from __future__ import annotations def UpperCamelCase__ ( _lowercase : dict , _lowercase : str ) -> str: __UpperCAmelCase, __UpperCAmelCase: Dict = set(snake_case__ ), [start] while stack: __UpperCAmelCase: int = stack.pop() explored.add(snake_case__ ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(snake_case__ ) return explored SCREAMING_SNAKE_CASE_ = { 'A': ['B', 'C', 'D'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F'], 'D': ['B', 'D'], 'E': ['B', 'F'], 'F': ['C', 'E', 'G'], 'G': ['F'], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, 'A'))
700
'''simple docstring''' import argparse import os import torch from transformers.utils import WEIGHTS_NAME SCREAMING_SNAKE_CASE_ = ['small', 'medium', 'large'] SCREAMING_SNAKE_CASE_ = 'lm_head.decoder.weight' SCREAMING_SNAKE_CASE_ = 'lm_head.weight' def UpperCamelCase__ ( _lowercase : str , _lowercase : str ) -> List[str]: __UpperCAmelCase: Tuple = torch.load(_lowercase ) __UpperCAmelCase: Tuple = d.pop(_lowercase ) os.makedirs(_lowercase , exist_ok=_lowercase ) torch.save(_lowercase , os.path.join(_lowercase , _lowercase ) ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() parser.add_argument('--dialogpt_path', default='.', type=str) SCREAMING_SNAKE_CASE_ = parser.parse_args() for MODEL in DIALOGPT_MODELS: SCREAMING_SNAKE_CASE_ = os.path.join(args.dialogpt_path, F"""{MODEL}_ft.pkl""") SCREAMING_SNAKE_CASE_ = F"""./DialoGPT-{MODEL}""" convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
466
0
from __future__ import annotations from bisect import bisect_left from functools import total_ordering from heapq import merge @total_ordering class UpperCamelCase__ ( _UpperCAmelCase ): def __lt__(self : Union[str, Any] , snake_case_ : int ): return self[-1] < other[-1] def __eq__(self : List[str] , snake_case_ : Any ): return self[-1] == other[-1] def __UpperCamelCase ( lowerCAmelCase__ : str ): __a : List[Any] = [] # sort into stacks for element in collection: __a : List[Any] = Stack([element] ) __a : Tuple = bisect_left(_A , _A ) if i != len(_A ): stacks[i].append(_A ) else: stacks.append(_A ) # use a heap-based merge to merge stack efficiently __a : Optional[Any] = merge(*(reversed(_A ) for stack in stacks) ) return collection if __name__ == "__main__": lowercase__ =input('Enter numbers separated by a comma:\n').strip() lowercase__ =[int(item) for item in user_input.split(',')] print(patience_sort(unsorted))
521
import numpy as np def __lowerCAmelCase ( _A ,_A ,_A = 1E-12 ,_A = 100 ,): """simple docstring""" assert np.shape(_A )[0] == np.shape(_A )[1] # Ensure proper dimensionality. assert np.shape(_A )[0] == np.shape(_A )[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(_A ) == np.iscomplexobj(_A ) _lowercase = np.iscomplexobj(_A ) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(_A ,input_matrix.conj().T ) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. _lowercase = False _lowercase = 0 _lowercase = 0 _lowercase = 1E12 while not convergence: # Multiple matrix by the vector. _lowercase = np.dot(_A ,_A ) # Normalize the resulting output vector. _lowercase = w / np.linalg.norm(_A ) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) _lowercase = vector.conj().T if is_complex else vector.T _lowercase = np.dot(_A ,np.dot(_A ,_A ) ) # Check convergence. _lowercase = np.abs(lambda_ - lambda_previous ) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: _lowercase = True _lowercase = lambda_ if is_complex: _lowercase = np.real(lambda_ ) return lambda_, vector def __lowerCAmelCase ( ): """simple docstring""" _lowercase = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]] ) _lowercase = np.array([41, 4, 20] ) _lowercase = real_input_matrix.astype(np.complexaaa ) _lowercase = np.triu(1J * complex_input_matrix ,1 ) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T _lowercase = np.array([41, 4, 20] ).astype(np.complexaaa ) for problem_type in ["real", "complex"]: if problem_type == "real": _lowercase = real_input_matrix _lowercase = real_vector elif problem_type == "complex": _lowercase = complex_input_matrix _lowercase = complex_vector # Our implementation. _lowercase , _lowercase = power_iteration(_A ,_A ) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). _lowercase , _lowercase = np.linalg.eigh(_A ) # Last eigenvalue is the maximum one. _lowercase = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. _lowercase = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max ) <= 1E-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(_A ) - np.abs(_A ) ) <= 1E-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
398
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL _UpperCAmelCase : Optional[int] = logging.get_logger(__name__) class lowercase ( lowercase_ ): __SCREAMING_SNAKE_CASE : Dict = ['''pixel_values'''] def __init__( self , snake_case = True , snake_case = None , snake_case = PILImageResampling.BICUBIC , snake_case = True , snake_case = 1 / 255 , snake_case = True , snake_case = None , snake_case = None , snake_case = True , **snake_case , ): super().__init__(**snake_case ) snake_case_ = size if size is not None else {'height': 384, 'width': 384} snake_case_ = get_size_dict(snake_case , default_to_square=snake_case ) snake_case_ = do_resize snake_case_ = size snake_case_ = resample snake_case_ = do_rescale snake_case_ = rescale_factor snake_case_ = do_normalize snake_case_ = image_mean if image_mean is not None else OPENAI_CLIP_MEAN snake_case_ = image_std if image_std is not None else OPENAI_CLIP_STD snake_case_ = do_convert_rgb def a ( self , snake_case , snake_case , snake_case = PILImageResampling.BICUBIC , snake_case = None , **snake_case , ): snake_case_ = get_size_dict(snake_case , default_to_square=snake_case ) if "height" not in size or "width" not in size: raise ValueError(F'''The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}''' ) snake_case_ = (size['height'], size['width']) return resize(snake_case , size=snake_case , resample=snake_case , data_format=snake_case , **snake_case ) def a ( self , snake_case , snake_case , snake_case = None , **snake_case , ): return rescale(snake_case , scale=snake_case , data_format=snake_case , **snake_case ) def a ( self , snake_case , snake_case , snake_case , snake_case = None , **snake_case , ): return normalize(snake_case , mean=snake_case , std=snake_case , data_format=snake_case , **snake_case ) def a ( self , snake_case , snake_case = None , snake_case = None , snake_case = None , snake_case = None , snake_case = None , snake_case = None , snake_case = None , snake_case = None , snake_case = None , snake_case = None , snake_case = ChannelDimension.FIRST , **snake_case , ): snake_case_ = do_resize if do_resize is not None else self.do_resize snake_case_ = resample if resample is not None else self.resample snake_case_ = do_rescale if do_rescale is not None else self.do_rescale snake_case_ = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case_ = do_normalize if do_normalize is not None else self.do_normalize snake_case_ = image_mean if image_mean is not None else self.image_mean snake_case_ = image_std if image_std is not None else self.image_std snake_case_ = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb snake_case_ = size if size is not None else self.size snake_case_ = get_size_dict(snake_case , default_to_square=snake_case ) snake_case_ = make_list_of_images(snake_case ) if not valid_images(snake_case ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: snake_case_ = [convert_to_rgb(snake_case ) for image in images] # All transformations expect numpy arrays. snake_case_ = [to_numpy_array(snake_case ) for image in images] if do_resize: snake_case_ = [self.resize(image=snake_case , size=snake_case , resample=snake_case ) for image in images] if do_rescale: snake_case_ = [self.rescale(image=snake_case , scale=snake_case ) for image in images] if do_normalize: snake_case_ = [self.normalize(image=snake_case , mean=snake_case , std=snake_case ) for image in images] snake_case_ = [to_channel_dimension_format(snake_case , snake_case ) for image in images] snake_case_ = BatchFeature(data={'pixel_values': images} , tensor_type=snake_case ) return encoded_outputs
108
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetrImageProcessor class lowercase ( unittest.TestCase ): def __init__( self , snake_case , snake_case=7 , snake_case=3 , snake_case=30 , snake_case=400 , snake_case=True , snake_case=None , snake_case=True , snake_case=1 / 255 , snake_case=True , snake_case=[0.5, 0.5, 0.5] , snake_case=[0.5, 0.5, 0.5] , snake_case=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p snake_case_ = size if size is not None else {'shortest_edge': 18, 'longest_edge': 1333} snake_case_ = parent snake_case_ = batch_size snake_case_ = num_channels snake_case_ = min_resolution snake_case_ = max_resolution snake_case_ = do_resize snake_case_ = size snake_case_ = do_rescale snake_case_ = rescale_factor snake_case_ = do_normalize snake_case_ = image_mean snake_case_ = image_std snake_case_ = do_pad def a ( self ): return { "do_resize": self.do_resize, "size": self.size, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_pad": self.do_pad, } def a ( self , snake_case , snake_case=False ): if not batched: snake_case_ = image_inputs[0] if isinstance(snake_case , Image.Image ): snake_case_ , snake_case_ = image.size else: snake_case_ , snake_case_ = image.shape[1], image.shape[2] if w < h: snake_case_ = int(self.size['shortest_edge'] * h / w ) snake_case_ = self.size['shortest_edge'] elif w > h: snake_case_ = self.size['shortest_edge'] snake_case_ = int(self.size['shortest_edge'] * w / h ) else: snake_case_ = self.size['shortest_edge'] snake_case_ = self.size['shortest_edge'] else: snake_case_ = [] for image in image_inputs: snake_case_ , snake_case_ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) snake_case_ = max(snake_case , key=lambda snake_case : item[0] )[0] snake_case_ = max(snake_case , key=lambda snake_case : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowercase ( lowercase_ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : str = DetrImageProcessor if is_vision_available() else None def a ( self ): snake_case_ = DetrImageProcessingTester(self ) @property def a ( self ): return self.image_processor_tester.prepare_image_processor_dict() def a ( self ): snake_case_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case , 'image_mean' ) ) self.assertTrue(hasattr(snake_case , 'image_std' ) ) self.assertTrue(hasattr(snake_case , 'do_normalize' ) ) self.assertTrue(hasattr(snake_case , 'do_rescale' ) ) self.assertTrue(hasattr(snake_case , 'rescale_factor' ) ) self.assertTrue(hasattr(snake_case , 'do_resize' ) ) self.assertTrue(hasattr(snake_case , 'size' ) ) self.assertTrue(hasattr(snake_case , 'do_pad' ) ) def a ( self ): snake_case_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 1333} ) self.assertEqual(image_processor.do_pad , snake_case ) snake_case_ = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=snake_case ) self.assertEqual(image_processor.size , {'shortest_edge': 42, 'longest_edge': 84} ) self.assertEqual(image_processor.do_pad , snake_case ) def a ( self ): pass def a ( self ): # Initialize image_processing snake_case_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case ) for image in image_inputs: self.assertIsInstance(snake_case , Image.Image ) # Test not batched input snake_case_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values snake_case_ , snake_case_ = self.image_processor_tester.get_expected_values(snake_case ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case_ , snake_case_ = self.image_processor_tester.get_expected_values(snake_case , batched=snake_case ) snake_case_ = image_processing(snake_case , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def a ( self ): # Initialize image_processing snake_case_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case , numpify=snake_case ) for image in image_inputs: self.assertIsInstance(snake_case , np.ndarray ) # Test not batched input snake_case_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values snake_case_ , snake_case_ = self.image_processor_tester.get_expected_values(snake_case ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case_ = image_processing(snake_case , return_tensors='pt' ).pixel_values snake_case_ , snake_case_ = self.image_processor_tester.get_expected_values(snake_case , batched=snake_case ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def a ( self ): # Initialize image_processing snake_case_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case , torchify=snake_case ) for image in image_inputs: self.assertIsInstance(snake_case , torch.Tensor ) # Test not batched input snake_case_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values snake_case_ , snake_case_ = self.image_processor_tester.get_expected_values(snake_case ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case_ = image_processing(snake_case , return_tensors='pt' ).pixel_values snake_case_ , snake_case_ = self.image_processor_tester.get_expected_values(snake_case , batched=snake_case ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def a ( self ): # prepare image and target snake_case_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f: snake_case_ = json.loads(f.read() ) snake_case_ = {'image_id': 3_9769, 'annotations': target} # encode them snake_case_ = DetrImageProcessor.from_pretrained('facebook/detr-resnet-50' ) snake_case_ = image_processing(images=snake_case , annotations=snake_case , return_tensors='pt' ) # verify pixel values snake_case_ = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape , snake_case ) snake_case_ = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , snake_case , atol=1e-4 ) ) # verify area snake_case_ = torch.tensor([58_87.96_00, 1_12_50.20_61, 48_93_53.84_38, 83_71_22.75_00, 14_79_67.51_56, 16_57_32.34_38] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , snake_case ) ) # verify boxes snake_case_ = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , snake_case ) snake_case_ = torch.tensor([0.55_03, 0.27_65, 0.06_04, 0.22_15] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , snake_case , atol=1e-3 ) ) # verify image_id snake_case_ = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , snake_case ) ) # verify is_crowd snake_case_ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , snake_case ) ) # verify class_labels snake_case_ = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , snake_case ) ) # verify orig_size snake_case_ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , snake_case ) ) # verify size snake_case_ = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , snake_case ) ) @slow def a ( self ): # prepare image, target and masks_path snake_case_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f: snake_case_ = json.loads(f.read() ) snake_case_ = {'file_name': '000000039769.png', 'image_id': 3_9769, 'segments_info': target} snake_case_ = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' ) # encode them snake_case_ = DetrImageProcessor.from_pretrained('facebook/detr-resnet-50-panoptic' ) snake_case_ = image_processing(images=snake_case , annotations=snake_case , masks_path=snake_case , return_tensors='pt' ) # verify pixel values snake_case_ = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape , snake_case ) snake_case_ = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , snake_case , atol=1e-4 ) ) # verify area snake_case_ = torch.tensor([14_79_79.68_75, 16_55_27.04_69, 48_46_38.59_38, 1_12_92.93_75, 58_79.65_62, 76_34.11_47] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , snake_case ) ) # verify boxes snake_case_ = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , snake_case ) snake_case_ = torch.tensor([0.26_25, 0.54_37, 0.46_88, 0.86_25] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , snake_case , atol=1e-3 ) ) # verify image_id snake_case_ = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , snake_case ) ) # verify is_crowd snake_case_ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , snake_case ) ) # verify class_labels snake_case_ = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , snake_case ) ) # verify masks snake_case_ = 82_2873 self.assertEqual(encoding['labels'][0]['masks'].sum().item() , snake_case ) # verify orig_size snake_case_ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , snake_case ) ) # verify size snake_case_ = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , snake_case ) )
108
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import tensorflow as tf from transformers import AutoTokenizer, TFAutoModelForSeqaSeqLM @require_tf @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @slow def __lowercase ( self : int ): lowerCAmelCase = TFAutoModelForSeqaSeqLM.from_pretrained("""google/mt5-small""" ) lowerCAmelCase = AutoTokenizer.from_pretrained("""google/mt5-small""" ) lowerCAmelCase = tokenizer("""Hello there""" , return_tensors="""tf""" ).input_ids lowerCAmelCase = tokenizer("""Hi I am""" , return_tensors="""tf""" ).input_ids lowerCAmelCase = model(lowerCAmelCase , labels=lowerCAmelCase ).loss lowerCAmelCase = -tf.math.reduce_mean(lowerCAmelCase ).numpy() lowerCAmelCase = -21.22_8168 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 2e-4 )
169
"""simple docstring""" import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class SCREAMING_SNAKE_CASE__ ( _a ): _a = (DDIMParallelScheduler,) _a = (('eta', 0.0), ('num_inference_steps', 50)) def __lowercase ( self : Optional[int] , **lowerCAmelCase : List[str] ): lowerCAmelCase = { """num_train_timesteps""": 1000, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", """clip_sample""": True, } config.update(**lowerCAmelCase ) return config def __lowercase ( self : Any , **lowerCAmelCase : Tuple ): lowerCAmelCase = self.scheduler_classes[0] lowerCAmelCase = self.get_scheduler_config(**lowerCAmelCase ) lowerCAmelCase = scheduler_class(**lowerCAmelCase ) lowerCAmelCase , lowerCAmelCase = 10, 0.0 lowerCAmelCase = self.dummy_model() lowerCAmelCase = self.dummy_sample_deter scheduler.set_timesteps(lowerCAmelCase ) for t in scheduler.timesteps: lowerCAmelCase = model(lowerCAmelCase , lowerCAmelCase ) lowerCAmelCase = scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ).prev_sample return sample def __lowercase ( self : Dict ): for timesteps in [100, 500, 1000]: self.check_over_configs(num_train_timesteps=lowerCAmelCase ) def __lowercase ( self : Dict ): for steps_offset in [0, 1]: self.check_over_configs(steps_offset=lowerCAmelCase ) lowerCAmelCase = self.scheduler_classes[0] lowerCAmelCase = self.get_scheduler_config(steps_offset=1 ) lowerCAmelCase = scheduler_class(**lowerCAmelCase ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps , torch.LongTensor([801, 601, 401, 201, 1] ) ) def __lowercase ( self : int ): for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=lowerCAmelCase , beta_end=lowerCAmelCase ) def __lowercase ( self : Optional[int] ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowerCAmelCase ) def __lowercase ( self : Optional[Any] ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCAmelCase ) def __lowercase ( self : Union[str, Any] ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowerCAmelCase ) def __lowercase ( self : List[str] ): for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=lowerCAmelCase ) def __lowercase ( self : Tuple ): for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=lowerCAmelCase ) def __lowercase ( self : Union[str, Any] ): self.check_over_configs(thresholding=lowerCAmelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=lowerCAmelCase , prediction_type=lowerCAmelCase , sample_max_value=lowerCAmelCase , ) def __lowercase ( self : List[str] ): for t in [1, 10, 49]: self.check_over_forward(time_step=lowerCAmelCase ) def __lowercase ( self : List[str] ): for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 500] ): self.check_over_forward(time_step=lowerCAmelCase , num_inference_steps=lowerCAmelCase ) def __lowercase ( self : Any ): for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ): self.check_over_forward(time_step=lowerCAmelCase , eta=lowerCAmelCase ) def __lowercase ( self : Optional[int] ): lowerCAmelCase = self.scheduler_classes[0] lowerCAmelCase = self.get_scheduler_config() lowerCAmelCase = scheduler_class(**lowerCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(420 , 400 ) - 0.1_4771 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(980 , 960 ) - 0.3_2460 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 , 486 ) - 0.0_0979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 , 998 ) - 0.02 ) ) < 1e-5 def __lowercase ( self : Any ): lowerCAmelCase = self.scheduler_classes[0] lowerCAmelCase = self.get_scheduler_config() lowerCAmelCase = scheduler_class(**lowerCAmelCase ) lowerCAmelCase , lowerCAmelCase = 10, 0.0 scheduler.set_timesteps(lowerCAmelCase ) lowerCAmelCase = self.dummy_model() lowerCAmelCase = self.dummy_sample_deter lowerCAmelCase = self.dummy_sample_deter + 0.1 lowerCAmelCase = self.dummy_sample_deter - 0.1 lowerCAmelCase = samplea.shape[0] lowerCAmelCase = torch.stack([samplea, samplea, samplea] , dim=0 ) lowerCAmelCase = torch.arange(lowerCAmelCase )[0:3, None].repeat(1 , lowerCAmelCase ) lowerCAmelCase = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) lowerCAmelCase = scheduler.batch_step_no_noise(lowerCAmelCase , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , lowerCAmelCase ) lowerCAmelCase = torch.sum(torch.abs(lowerCAmelCase ) ) lowerCAmelCase = torch.mean(torch.abs(lowerCAmelCase ) ) assert abs(result_sum.item() - 1147.7904 ) < 1e-2 assert abs(result_mean.item() - 0.4982 ) < 1e-3 def __lowercase ( self : Optional[int] ): lowerCAmelCase = self.full_loop() lowerCAmelCase = torch.sum(torch.abs(lowerCAmelCase ) ) lowerCAmelCase = torch.mean(torch.abs(lowerCAmelCase ) ) assert abs(result_sum.item() - 172.0067 ) < 1e-2 assert abs(result_mean.item() - 0.22_3967 ) < 1e-3 def __lowercase ( self : Tuple ): lowerCAmelCase = self.full_loop(prediction_type="""v_prediction""" ) lowerCAmelCase = torch.sum(torch.abs(lowerCAmelCase ) ) lowerCAmelCase = torch.mean(torch.abs(lowerCAmelCase ) ) assert abs(result_sum.item() - 52.5302 ) < 1e-2 assert abs(result_mean.item() - 0.0684 ) < 1e-3 def __lowercase ( self : Optional[int] ): # We specify different beta, so that the first alpha is 0.99 lowerCAmelCase = self.full_loop(set_alpha_to_one=lowerCAmelCase , beta_start=0.01 ) lowerCAmelCase = torch.sum(torch.abs(lowerCAmelCase ) ) lowerCAmelCase = torch.mean(torch.abs(lowerCAmelCase ) ) assert abs(result_sum.item() - 149.8295 ) < 1e-2 assert abs(result_mean.item() - 0.1951 ) < 1e-3 def __lowercase ( self : Union[str, Any] ): # We specify different beta, so that the first alpha is 0.99 lowerCAmelCase = self.full_loop(set_alpha_to_one=lowerCAmelCase , beta_start=0.01 ) lowerCAmelCase = torch.sum(torch.abs(lowerCAmelCase ) ) lowerCAmelCase = torch.mean(torch.abs(lowerCAmelCase ) ) assert abs(result_sum.item() - 149.0784 ) < 1e-2 assert abs(result_mean.item() - 0.1941 ) < 1e-3
169
1
"""simple docstring""" import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( "The `inpainting.py` script is outdated. Please use directly `from diffusers import" " StableDiffusionInpaintPipeline` instead." )
595
"""simple docstring""" import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class __lowerCAmelCase : '''simple docstring''' def __init__( self : int , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[str]=13 , UpperCamelCase__ : Optional[Any]=10 , UpperCamelCase__ : int=3 , UpperCamelCase__ : int=2 , UpperCamelCase__ : List[str]=2 , UpperCamelCase__ : Optional[Any]=True , UpperCamelCase__ : List[Any]=True , UpperCamelCase__ : Union[str, Any]=32 , UpperCamelCase__ : Dict=5 , UpperCamelCase__ : Optional[int]=4 , UpperCamelCase__ : Any=37 , UpperCamelCase__ : Optional[Any]="gelu" , UpperCamelCase__ : Any=0.1 , UpperCamelCase__ : Optional[int]=0.1 , UpperCamelCase__ : Any=10 , UpperCamelCase__ : Union[str, Any]=0.02 , UpperCamelCase__ : int="divided_space_time" , UpperCamelCase__ : Tuple=None , ): A__ : str =parent A__ : str =batch_size A__ : Any =image_size A__ : Union[str, Any] =num_channels A__ : str =patch_size A__ : Union[str, Any] =num_frames A__ : Any =is_training A__ : Optional[int] =use_labels A__ : Optional[int] =hidden_size A__ : Union[str, Any] =num_hidden_layers A__ : List[str] =num_attention_heads A__ : Tuple =intermediate_size A__ : List[Any] =hidden_act A__ : str =hidden_dropout_prob A__ : Optional[Any] =attention_probs_dropout_prob A__ : Dict =attention_type A__ : str =initializer_range A__ : str =scope A__ : int =num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token A__ : Optional[Any] =(image_size // patch_size) ** 2 A__ : List[Any] =(num_frames) * self.num_patches_per_frame + 1 def _UpperCAmelCase ( self : str ): A__ : Dict =floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) A__ : List[Any] =None if self.use_labels: A__ : List[str] =ids_tensor([self.batch_size] , self.num_labels ) A__ : List[Any] =self.get_config() return config, pixel_values, labels def _UpperCAmelCase ( self : Tuple ): A__ : Tuple =TimesformerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , ) A__ : Tuple =self.num_labels return config def _UpperCAmelCase ( self : List[str] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : int , UpperCamelCase__ : Optional[Any] ): A__ : Union[str, Any] =TimesformerModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A__ : Union[str, Any] =model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase ( self : List[str] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Union[str, Any] ): A__ : Union[str, Any] =TimesformerForVideoClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A__ : int =model(UpperCamelCase__ ) # verify the logits shape A__ : Optional[int] =torch.Size((self.batch_size, self.num_labels) ) self.parent.assertEqual(result.logits.shape , UpperCamelCase__ ) def _UpperCAmelCase ( self : Optional[int] ): A__ : int =self.prepare_config_and_inputs() A__ , A__ , A__ : Tuple =config_and_inputs A__ : int ={"pixel_values": pixel_values} return config, inputs_dict @require_torch class __lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase): '''simple docstring''' __magic_name__ : Any = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () __magic_name__ : Optional[Any] = ( {"""feature-extraction""": TimesformerModel, """video-classification""": TimesformerForVideoClassification} if is_torch_available() else {} ) __magic_name__ : int = False __magic_name__ : Optional[Any] = False __magic_name__ : int = False __magic_name__ : Tuple = False def _UpperCAmelCase ( self : List[str] ): A__ : Optional[Any] =TimesformerModelTester(self ) A__ : int =ConfigTester( self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ , hidden_size=37 ) def _UpperCAmelCase ( self : str , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : List[str]=False ): A__ : str =copy.deepcopy(UpperCamelCase__ ) if return_labels: if model_class in get_values(UpperCamelCase__ ): A__ : List[str] =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCamelCase__ ) return inputs_dict def _UpperCAmelCase ( self : Any ): self.config_tester.run_common_tests() @unittest.skip(reason="TimeSformer does not use inputs_embeds" ) def _UpperCAmelCase ( self : Union[str, Any] ): pass def _UpperCAmelCase ( self : Tuple ): A__ , A__ : Dict =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ : Dict =model_class(UpperCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A__ : Any =model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase__ , nn.Linear ) ) def _UpperCAmelCase ( self : Union[str, Any] ): A__ , A__ : Dict =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ : Optional[int] =model_class(UpperCamelCase__ ) A__ : Dict =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ : Any =[*signature.parameters.keys()] A__ : Union[str, Any] =["pixel_values"] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def _UpperCAmelCase ( self : Optional[Any] ): A__ : int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def _UpperCAmelCase ( self : List[Any] ): A__ : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*UpperCamelCase__ ) @slow def _UpperCAmelCase ( self : Any ): for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ : Dict =TimesformerModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def _UpperCAmelCase ( self : Dict ): if not self.has_attentions: pass else: A__ , A__ : Any =self.model_tester.prepare_config_and_inputs_for_common() A__ : Optional[Any] =True for model_class in self.all_model_classes: A__ : Tuple =self.model_tester.seq_length A__ : Optional[int] =self.model_tester.num_frames A__ : List[Any] =True A__ : Optional[Any] =False A__ : List[Any] =True A__ : Optional[Any] =model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): A__ : Optional[Any] =model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) A__ : Tuple =outputs.attentions self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] A__ : Any =True A__ : int =model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): A__ : Optional[Any] =model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) A__ : str =outputs.attentions self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) A__ : int =len(UpperCamelCase__ ) # Check attention is always last and order is fine A__ : List[Any] =True A__ : Optional[Any] =True A__ : Optional[Any] =model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): A__ : Any =model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) self.assertEqual(out_len + 1 , len(UpperCamelCase__ ) ) A__ : Optional[int] =outputs.attentions self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) def _UpperCAmelCase ( self : Any ): def check_hidden_states_output(UpperCamelCase__ : Any , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : str ): A__ : Any =model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): A__ : int =model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) A__ : Optional[Any] =outputs.hidden_states A__ : Optional[int] =self.model_tester.num_hidden_layers + 1 self.assertEqual(len(UpperCamelCase__ ) , UpperCamelCase__ ) A__ : List[Any] =self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) A__ , A__ : Any =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ : Any =True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A__ : Optional[int] =True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def lowercase ( ): """simple docstring""" A__ : Any =hf_hub_download( repo_id="hf-internal-testing/spaghetti-video" , filename="eating_spaghetti.npy" , repo_type="dataset" ) A__ : Union[str, Any] =np.load(UpperCamelCase ) return list(UpperCamelCase ) @require_torch @require_vision class __lowerCAmelCase ( unittest.TestCase): '''simple docstring''' @cached_property def _UpperCAmelCase ( self : List[Any] ): # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def _UpperCAmelCase ( self : List[Any] ): A__ : Any =TimesformerForVideoClassification.from_pretrained("facebook/timesformer-base-finetuned-k400" ).to( UpperCamelCase__ ) A__ : Dict =self.default_image_processor A__ : Tuple =prepare_video() A__ : Dict =image_processor(video[:8] , return_tensors="pt" ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): A__ : Optional[int] =model(**UpperCamelCase__ ) # verify the logits A__ : Optional[Any] =torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) A__ : Dict =torch.tensor([-0.3016, -0.7713, -0.4205] ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCamelCase__ , atol=1E-4 ) )
595
1
"""simple docstring""" def snake_case_ ( A_ : int = 1_00_00_00 ): '''simple docstring''' _lowerCamelCase : str = set(range(3, A_, 2 ) ) primes.add(2 ) for p in range(3, A_, 2 ): if p not in primes: continue primes.difference_update(set(range(p * p, A_, A_ ) ) ) _lowerCamelCase : Tuple = [float(A_ ) for n in range(limit + 1 )] for p in primes: for n in range(A_, limit + 1, A_ ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(F"""{solution() = }""")
83
'''simple docstring''' # Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a_ = { 'configuration_cpmant': ['CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CpmAntConfig'], 'tokenization_cpmant': ['CpmAntTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST', 'CpmAntForCausalLM', 'CpmAntModel', 'CpmAntPreTrainedModel', ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
685
0
'''simple docstring''' import os from distutils.util import strtobool def lowercase_ ( lowercase__ , lowercase__ ) ->Optional[Any]: for e in env_keys: _snake_case: List[str] = int(os.environ.get(lowercase__ , -1 ) ) if val >= 0: return val return default def lowercase_ ( lowercase__ , lowercase__=False ) ->List[Any]: _snake_case: Tuple = os.environ.get(lowercase__ , str(lowercase__ ) ) return strtobool(lowercase__ ) == 1 # As its name indicates `strtobool` actually returns an int... def lowercase_ ( lowercase__ , lowercase__="no" ) ->int: _snake_case: List[str] = os.environ.get(lowercase__ , str(lowercase__ ) ) return value
721
'''simple docstring''' from sklearn.metrics import matthews_corrcoef import datasets A : Dict = '\nCompute the Matthews correlation coefficient (MCC)\n\nThe Matthews correlation coefficient is used in machine learning as a\nmeasure of the quality of binary and multiclass classifications. It takes\ninto account true and false positives and negatives and is generally\nregarded as a balanced measure which can be used even if the classes are of\nvery different sizes. The MCC is in essence a correlation coefficient value\nbetween -1 and +1. A coefficient of +1 represents a perfect prediction, 0\nan average random prediction and -1 an inverse prediction. The statistic\nis also known as the phi coefficient. [source: Wikipedia]\n' A : int = '\nArgs:\n predictions (list of int): Predicted labels, as returned by a model.\n references (list of int): Ground truth labels.\n sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`.\nReturns:\n matthews_correlation (dict containing float): Matthews correlation.\nExamples:\n Example 1, a basic example with only predictions and references as inputs:\n >>> matthews_metric = datasets.load_metric("matthews_correlation")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3])\n >>> print(round(results[\'matthews_correlation\'], 2))\n 0.54\n\n Example 2, the same example as above, but also including sample weights:\n >>> matthews_metric = datasets.load_metric("matthews_correlation")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 3, 1, 1, 1, 2])\n >>> print(round(results[\'matthews_correlation\'], 2))\n 0.1\n\n Example 3, the same example as above, but with sample weights that cause a negative correlation:\n >>> matthews_metric = datasets.load_metric("matthews_correlation")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 1, 0, 0, 0, 1])\n >>> print(round(results[\'matthews_correlation\'], 2))\n -0.25\n' A : Dict = '\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase ( datasets.Metric ): def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('int32' ), 'references': datasets.Value('int32' ), } ) , reference_urls=[ 'https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html' ] , ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , __snake_case : int , __snake_case : List[Any] , __snake_case : Union[str, Any]=None ): '''simple docstring''' return { "matthews_correlation": float(matthews_corrcoef(__snake_case , __snake_case , sample_weight=__snake_case ) ), }
273
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig UpperCamelCase__ = { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/config.json''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/config.json''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/config.json''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/config.json''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/config.json''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/config.json''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json''', } class lowerCamelCase_ ( __a ): lowerCAmelCase__ = 'albert' def __init__( self : Any , _A : List[Any]=30_000 , _A : Any=128 , _A : Optional[int]=4_096 , _A : Union[str, Any]=12 , _A : List[Any]=1 , _A : Optional[int]=64 , _A : str=16_384 , _A : Tuple=1 , _A : Any="gelu_new" , _A : Dict=0 , _A : Optional[int]=0 , _A : Dict=512 , _A : str=2 , _A : List[str]=0.0_2 , _A : List[Any]=1e-12 , _A : List[Any]=0.1 , _A : List[str]="absolute" , _A : Optional[Any]=0 , _A : int=2 , _A : Any=3 , **_A : List[Any] , ): '''simple docstring''' super().__init__(pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , **_A ) UpperCAmelCase__ : str = vocab_size UpperCAmelCase__ : List[str] = embedding_size UpperCAmelCase__ : Union[str, Any] = hidden_size UpperCAmelCase__ : Union[str, Any] = num_hidden_layers UpperCAmelCase__ : Dict = num_hidden_groups UpperCAmelCase__ : int = num_attention_heads UpperCAmelCase__ : str = inner_group_num UpperCAmelCase__ : str = hidden_act UpperCAmelCase__ : Dict = intermediate_size UpperCAmelCase__ : Optional[int] = hidden_dropout_prob UpperCAmelCase__ : int = attention_probs_dropout_prob UpperCAmelCase__ : List[str] = max_position_embeddings UpperCAmelCase__ : List[Any] = type_vocab_size UpperCAmelCase__ : Dict = initializer_range UpperCAmelCase__ : Union[str, Any] = layer_norm_eps UpperCAmelCase__ : Tuple = classifier_dropout_prob UpperCAmelCase__ : Optional[int] = position_embedding_type class lowerCamelCase_ ( __a ): @property def lowercase_ ( self : Any ): '''simple docstring''' if self.task == "multiple-choice": UpperCAmelCase__ : Optional[Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: UpperCAmelCase__ : Union[str, Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
75
"""simple docstring""" def a__ ( ) -> list[list[int]]: return [list(range(1_0_0_0 - i , -1_0_0_0 - i , -1 ) ) for i in range(1_0_0_0 )] __A = generate_large_matrix() __A = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def a__ ( __SCREAMING_SNAKE_CASE ) -> None: assert all(row == sorted(__SCREAMING_SNAKE_CASE , reverse=__SCREAMING_SNAKE_CASE ) for row in grid ) assert all(list(__SCREAMING_SNAKE_CASE ) == sorted(__SCREAMING_SNAKE_CASE , reverse=__SCREAMING_SNAKE_CASE ) for col in zip(*__SCREAMING_SNAKE_CASE ) ) def a__ ( __SCREAMING_SNAKE_CASE ) -> int: __lowerCAmelCase: str = 0 __lowerCAmelCase: Tuple = len(__SCREAMING_SNAKE_CASE ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: __lowerCAmelCase: Optional[int] = (left + right) // 2 __lowerCAmelCase: List[Any] = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: __lowerCAmelCase: List[str] = mid + 1 else: __lowerCAmelCase: Dict = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(__SCREAMING_SNAKE_CASE ) def a__ ( __SCREAMING_SNAKE_CASE ) -> int: __lowerCAmelCase: Optional[Any] = 0 __lowerCAmelCase: Optional[int] = len(grid[0] ) for i in range(len(__SCREAMING_SNAKE_CASE ) ): __lowerCAmelCase: Union[str, Any] = find_negative_index(grid[i][:bound] ) total += bound return (len(__SCREAMING_SNAKE_CASE ) * len(grid[0] )) - total def a__ ( __SCREAMING_SNAKE_CASE ) -> int: return len([number for row in grid for number in row if number < 0] ) def a__ ( __SCREAMING_SNAKE_CASE ) -> int: __lowerCAmelCase: List[Any] = 0 for row in grid: for i, number in enumerate(__SCREAMING_SNAKE_CASE ): if number < 0: total += len(__SCREAMING_SNAKE_CASE ) - i break return total def a__ ( ) -> None: from timeit import timeit print("Running benchmarks" ) __lowerCAmelCase: Dict = ( "from __main__ import count_negatives_binary_search, " "count_negatives_brute_force, count_negatives_brute_force_with_break, grid" ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): __lowerCAmelCase: Optional[int] = timeit(F"{func}(grid=grid)" , setup=__SCREAMING_SNAKE_CASE , number=5_0_0 ) print(F"{func}() took {time:0.4f} seconds" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
346
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available A__ : Optional[int] = { "configuration_rag": ["RagConfig"], "retrieval_rag": ["RagRetriever"], "tokenization_rag": ["RagTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Optional[int] = [ "RagModel", "RagPreTrainedModel", "RagSequenceForGeneration", "RagTokenForGeneration", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : List[Any] = [ "TFRagModel", "TFRagPreTrainedModel", "TFRagSequenceForGeneration", "TFRagTokenForGeneration", ] if TYPE_CHECKING: from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever from .tokenization_rag import RagTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rag import ( TFRagModel, TFRagPreTrainedModel, TFRagSequenceForGeneration, TFRagTokenForGeneration, ) else: import sys A__ : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
718
'''simple docstring''' import os import zipfile import pytest from datasets.utils.extract import ( BzipaExtractor, Extractor, GzipExtractor, LzaExtractor, SevenZipExtractor, TarExtractor, XzExtractor, ZipExtractor, ZstdExtractor, ) from .utils import require_lza, require_pyazr, require_zstandard @pytest.mark.parametrize( 'compression_format, is_archive' ,[ ('7z', True), ('bz2', False), ('gzip', False), ('lz4', False), ('tar', True), ('xz', False), ('zip', True), ('zstd', False), ] ,) def a_ ( _UpperCAmelCase : List[str] ,_UpperCAmelCase : List[Any] ,_UpperCAmelCase : List[str] ,_UpperCAmelCase : Optional[int] ,_UpperCAmelCase : str ,_UpperCAmelCase : Optional[Any] ,_UpperCAmelCase : List[str] ,_UpperCAmelCase : Dict ,_UpperCAmelCase : List[Any] ,_UpperCAmelCase : Dict ,_UpperCAmelCase : Optional[Any] ,_UpperCAmelCase : Optional[Any] ,) -> List[str]: __snake_case : Optional[Any] = { '7z': (seven_zip_file, SevenZipExtractor), 'bz2': (bza_file, BzipaExtractor), 'gzip': (gz_file, GzipExtractor), 'lz4': (lza_file, LzaExtractor), 'tar': (tar_file, TarExtractor), 'xz': (xz_file, XzExtractor), 'zip': (zip_file, ZipExtractor), 'zstd': (zstd_file, ZstdExtractor), } __snake_case , __snake_case : Union[str, Any] = input_paths_and_base_extractors[compression_format] if input_path is None: __snake_case : List[Any] = f'''for \'{compression_format}\' compression_format, ''' if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(_UpperCAmelCase ) assert base_extractor.is_extractable(_UpperCAmelCase ) __snake_case : List[Any] = tmp_path / ('extracted' if is_archive else 'extracted.txt') base_extractor.extract(_UpperCAmelCase ,_UpperCAmelCase ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name __snake_case : Any = file_path.read_text(encoding='utf-8' ) else: __snake_case : str = output_path.read_text(encoding='utf-8' ) __snake_case : Any = text_file.read_text(encoding='utf-8' ) assert extracted_file_content == expected_file_content @pytest.mark.parametrize( 'compression_format, is_archive' ,[ ('7z', True), ('bz2', False), ('gzip', False), ('lz4', False), ('tar', True), ('xz', False), ('zip', True), ('zstd', False), ] ,) def a_ ( _UpperCAmelCase : Tuple ,_UpperCAmelCase : List[Any] ,_UpperCAmelCase : List[str] ,_UpperCAmelCase : Any ,_UpperCAmelCase : Optional[int] ,_UpperCAmelCase : Optional[int] ,_UpperCAmelCase : Optional[Any] ,_UpperCAmelCase : Any ,_UpperCAmelCase : Any ,_UpperCAmelCase : Any ,_UpperCAmelCase : Optional[int] ,_UpperCAmelCase : Dict ,) -> List[Any]: __snake_case : List[str] = { '7z': seven_zip_file, 'bz2': bza_file, 'gzip': gz_file, 'lz4': lza_file, 'tar': tar_file, 'xz': xz_file, 'zip': zip_file, 'zstd': zstd_file, } __snake_case : List[Any] = input_paths[compression_format] if input_path is None: __snake_case : Tuple = f'''for \'{compression_format}\' compression_format, ''' if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(_UpperCAmelCase ) __snake_case : Optional[Any] = Extractor.infer_extractor_format(_UpperCAmelCase ) assert extractor_format is not None __snake_case : Union[str, Any] = tmp_path / ('extracted' if is_archive else 'extracted.txt') Extractor.extract(_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name __snake_case : Optional[Any] = file_path.read_text(encoding='utf-8' ) else: __snake_case : List[Any] = output_path.read_text(encoding='utf-8' ) __snake_case : Dict = text_file.read_text(encoding='utf-8' ) assert extracted_file_content == expected_file_content @pytest.fixture def a_ ( _UpperCAmelCase : str ,_UpperCAmelCase : Any ) -> Dict: import tarfile __snake_case : List[str] = tmp_path / 'data_dot_dot' directory.mkdir() __snake_case : Optional[int] = directory / 'tar_file_with_dot_dot.tar' with tarfile.TarFile(_UpperCAmelCase ,'w' ) as f: f.add(_UpperCAmelCase ,arcname=os.path.join('..' ,text_file.name ) ) return path @pytest.fixture def a_ ( _UpperCAmelCase : int ) -> Dict: import tarfile __snake_case : Optional[int] = tmp_path / 'data_sym_link' directory.mkdir() __snake_case : Tuple = directory / 'tar_file_with_sym_link.tar' os.symlink('..' ,directory / 'subdir' ,target_is_directory=_UpperCAmelCase ) with tarfile.TarFile(_UpperCAmelCase ,'w' ) as f: f.add(str(directory / 'subdir' ) ,arcname='subdir' ) # str required by os.readlink on Windows and Python < 3.8 return path @pytest.mark.parametrize( 'insecure_tar_file, error_log' ,[('tar_file_with_dot_dot', 'illegal path'), ('tar_file_with_sym_link', 'Symlink')] ,) def a_ ( _UpperCAmelCase : List[Any] ,_UpperCAmelCase : Any ,_UpperCAmelCase : str ,_UpperCAmelCase : List[Any] ,_UpperCAmelCase : Union[str, Any] ,_UpperCAmelCase : Any ) -> Union[str, Any]: __snake_case : Dict = { 'tar_file_with_dot_dot': tar_file_with_dot_dot, 'tar_file_with_sym_link': tar_file_with_sym_link, } __snake_case : int = insecure_tar_files[insecure_tar_file] __snake_case : Optional[Any] = tmp_path / 'extracted' TarExtractor.extract(_UpperCAmelCase ,_UpperCAmelCase ) assert caplog.text for record in caplog.records: assert record.levelname == "ERROR" assert error_log in record.msg def a_ ( _UpperCAmelCase : Union[str, Any] ) -> Dict: # We should have less false positives than zipfile.is_zipfile # We do that by checking only the magic number __snake_case : Dict = tmpdir / 'not_a_zip_file' # From: https://github.com/python/cpython/pull/5053 __snake_case : str = ( b'\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00' b'\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6\'\x00\x00\x00\x15I' b'DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07' b'\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82' ) with not_a_zip_file.open('wb' ) as f: f.write(_UpperCAmelCase ) assert zipfile.is_zipfile(str(_UpperCAmelCase ) ) # is a false positive for `zipfile` assert not ZipExtractor.is_extractable(_UpperCAmelCase ) # but we're right
124
0
import math from typing import Any, Callable, List, Optional, Tuple, Union import numpy as np import torch from ...models import TaFilmDecoder from ...schedulers import DDPMScheduler from ...utils import is_onnx_available, logging, randn_tensor if is_onnx_available(): from ..onnx_utils import OnnxRuntimeModel from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline from .continous_encoder import SpectrogramContEncoder from .notes_encoder import SpectrogramNotesEncoder lowerCAmelCase__: Tuple = logging.get_logger(__name__) # pylint: disable=invalid-name lowerCAmelCase__: Dict = 256 class snake_case_ ( _UpperCAmelCase ): __lowerCamelCase : List[Any] = ['''melgan'''] def __init__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ): super().__init__() # From MELGAN SCREAMING_SNAKE_CASE_ : List[str] = math.log(1e-5 ) # Matches MelGAN training. SCREAMING_SNAKE_CASE_ : str = 4.0 # Largest value for most examples SCREAMING_SNAKE_CASE_ : str = 128 self.register_modules( notes_encoder=_lowercase , continuous_encoder=_lowercase , decoder=_lowercase , scheduler=_lowercase , melgan=_lowercase , ) def __A ( self , __lowerCAmelCase , __lowerCAmelCase=(-1.0, 1.0) , __lowerCAmelCase=False ): SCREAMING_SNAKE_CASE_ : Optional[int] = output_range if clip: SCREAMING_SNAKE_CASE_ : Tuple = torch.clip(_lowercase , self.min_value , self.max_value ) # Scale to [0, 1]. SCREAMING_SNAKE_CASE_ : List[str] = (features - self.min_value) / (self.max_value - self.min_value) # Scale to [min_out, max_out]. return zero_one * (max_out - min_out) + min_out def __A ( self , __lowerCAmelCase , __lowerCAmelCase=(-1.0, 1.0) , __lowerCAmelCase=False ): SCREAMING_SNAKE_CASE_ : Tuple = input_range SCREAMING_SNAKE_CASE_ : str = torch.clip(_lowercase , _lowercase , _lowercase ) if clip else outputs # Scale to [0, 1]. SCREAMING_SNAKE_CASE_ : int = (outputs - min_out) / (max_out - min_out) # Scale to [self.min_value, self.max_value]. return zero_one * (self.max_value - self.min_value) + self.min_value def __A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : str = input_tokens > 0 SCREAMING_SNAKE_CASE_ : int = self.notes_encoder( encoder_input_tokens=_lowercase , encoder_inputs_mask=_lowercase ) SCREAMING_SNAKE_CASE_ : List[str] = self.continuous_encoder( encoder_inputs=_lowercase , encoder_inputs_mask=_lowercase ) return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)] def __A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : Dict = noise_time if not torch.is_tensor(_lowercase ): SCREAMING_SNAKE_CASE_ : List[str] = torch.tensor([timesteps] , dtype=torch.long , device=input_tokens.device ) elif torch.is_tensor(_lowercase ) and len(timesteps.shape ) == 0: SCREAMING_SNAKE_CASE_ : Any = timesteps[None].to(input_tokens.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML SCREAMING_SNAKE_CASE_ : int = timesteps * torch.ones(input_tokens.shape[0] , dtype=timesteps.dtype , device=timesteps.device ) SCREAMING_SNAKE_CASE_ : Any = self.decoder( encodings_and_masks=_lowercase , decoder_input_tokens=_lowercase , decoder_noise_time=_lowercase ) return logits @torch.no_grad() def __call__( self , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = 100 , __lowerCAmelCase = True , __lowerCAmelCase = "numpy" , __lowerCAmelCase = None , __lowerCAmelCase = 1 , ): if (callback_steps is None) or ( callback_steps is not None and (not isinstance(_lowercase , _lowercase ) or callback_steps <= 0) ): raise ValueError( F'`callback_steps` has to be a positive integer but is {callback_steps} of type' F' {type(_lowercase )}.' ) SCREAMING_SNAKE_CASE_ : Tuple = np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims] , dtype=np.floataa ) SCREAMING_SNAKE_CASE_ : Tuple = np.zeros([1, 0, self.n_dims] , np.floataa ) SCREAMING_SNAKE_CASE_ : Optional[int] = torch.ones((1, TARGET_FEATURE_LENGTH) , dtype=_lowercase , device=self.device ) for i, encoder_input_tokens in enumerate(_lowercase ): if i == 0: SCREAMING_SNAKE_CASE_ : Dict = torch.from_numpy(pred_mel[:1].copy() ).to( device=self.device , dtype=self.decoder.dtype ) # The first chunk has no previous context. SCREAMING_SNAKE_CASE_ : Tuple = torch.zeros((1, TARGET_FEATURE_LENGTH) , dtype=_lowercase , device=self.device ) else: # The full song pipeline does not feed in a context feature, so the mask # will be all 0s after the feature converter. Because we know we're # feeding in a full context chunk from the previous prediction, set it # to all 1s. SCREAMING_SNAKE_CASE_ : Dict = ones SCREAMING_SNAKE_CASE_ : Dict = self.scale_features( _lowercase , output_range=[-1.0, 1.0] , clip=_lowercase ) SCREAMING_SNAKE_CASE_ : List[Any] = self.encode( input_tokens=torch.IntTensor([encoder_input_tokens] ).to(device=self.device ) , continuous_inputs=_lowercase , continuous_mask=_lowercase , ) # Sample encoder_continuous_inputs shaped gaussian noise to begin loop SCREAMING_SNAKE_CASE_ : List[Any] = randn_tensor( shape=encoder_continuous_inputs.shape , generator=_lowercase , device=self.device , dtype=self.decoder.dtype , ) # set step values self.scheduler.set_timesteps(_lowercase ) # Denoising diffusion loop for j, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): SCREAMING_SNAKE_CASE_ : int = self.decode( encodings_and_masks=_lowercase , input_tokens=_lowercase , noise_time=t / self.scheduler.config.num_train_timesteps , ) # Compute previous output: x_t -> x_t-1 SCREAMING_SNAKE_CASE_ : Any = self.scheduler.step(_lowercase , _lowercase , _lowercase , generator=_lowercase ).prev_sample SCREAMING_SNAKE_CASE_ : List[Any] = self.scale_to_features(_lowercase , input_range=[-1.0, 1.0] ) SCREAMING_SNAKE_CASE_ : List[str] = mel[:1] SCREAMING_SNAKE_CASE_ : List[str] = mel.cpu().float().numpy() SCREAMING_SNAKE_CASE_ : Optional[Any] = np.concatenate([full_pred_mel, pred_mel[:1]] , axis=1 ) # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(_lowercase , _lowercase ) logger.info('Generated segment' , _lowercase ) if output_type == "numpy" and not is_onnx_available(): raise ValueError( 'Cannot return output in \'np\' format if ONNX is not available. Make sure to have ONNX installed or set \'output_type\' to \'mel\'.' ) elif output_type == "numpy" and self.melgan is None: raise ValueError( 'Cannot return output in \'np\' format if melgan component is not defined. Make sure to define `self.melgan` or set \'output_type\' to \'mel\'.' ) if output_type == "numpy": SCREAMING_SNAKE_CASE_ : List[Any] = self.melgan(input_features=full_pred_mel.astype(np.floataa ) ) else: SCREAMING_SNAKE_CASE_ : Dict = full_pred_mel if not return_dict: return (output,) return AudioPipelineOutput(audios=_lowercase )
345
import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class lowercase : def __init__( self : Any , _lowercase : List[Any] , _lowercase : Optional[Any]=99 , _lowercase : Optional[int]=13 , _lowercase : Tuple=16 , _lowercase : Union[str, Any]=7 , _lowercase : Optional[Any]=True , _lowercase : int=True , _lowercase : Optional[Any]=True , _lowercase : str=False , _lowercase : Union[str, Any]=True , _lowercase : Tuple=2 , _lowercase : Any=32 , _lowercase : int=4 , _lowercase : Dict=4 , _lowercase : Dict=30 , _lowercase : Union[str, Any]=0 , _lowercase : List[str]=1 , _lowercase : Optional[Any]=2 , _lowercase : Tuple=None , ): SCREAMING_SNAKE_CASE__ : Any = parent SCREAMING_SNAKE_CASE__ : List[Any] = batch_size SCREAMING_SNAKE_CASE__ : List[str] = decoder_seq_length # For common tests SCREAMING_SNAKE_CASE__ : Optional[Any] = self.decoder_seq_length SCREAMING_SNAKE_CASE__ : Optional[int] = is_training SCREAMING_SNAKE_CASE__ : Tuple = use_attention_mask SCREAMING_SNAKE_CASE__ : Any = use_labels SCREAMING_SNAKE_CASE__ : Any = vocab_size SCREAMING_SNAKE_CASE__ : Union[str, Any] = d_model SCREAMING_SNAKE_CASE__ : Tuple = d_model SCREAMING_SNAKE_CASE__ : Optional[int] = decoder_layers SCREAMING_SNAKE_CASE__ : List[str] = decoder_layers SCREAMING_SNAKE_CASE__ : Optional[Any] = decoder_ffn_dim SCREAMING_SNAKE_CASE__ : List[Any] = decoder_attention_heads SCREAMING_SNAKE_CASE__ : Optional[int] = decoder_attention_heads SCREAMING_SNAKE_CASE__ : str = eos_token_id SCREAMING_SNAKE_CASE__ : List[Any] = bos_token_id SCREAMING_SNAKE_CASE__ : str = pad_token_id SCREAMING_SNAKE_CASE__ : str = decoder_start_token_id SCREAMING_SNAKE_CASE__ : Optional[Any] = use_cache SCREAMING_SNAKE_CASE__ : Optional[int] = max_position_embeddings SCREAMING_SNAKE_CASE__ : Tuple = None SCREAMING_SNAKE_CASE__ : int = decoder_seq_length SCREAMING_SNAKE_CASE__ : Optional[int] = 2 SCREAMING_SNAKE_CASE__ : Tuple = 1 def lowercase__ ( self : Dict ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ : Optional[Any] = None if self.use_attention_mask: SCREAMING_SNAKE_CASE__ : List[str] = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = None if self.use_labels: SCREAMING_SNAKE_CASE__ : List[Any] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ : Optional[int] = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def lowercase__ ( self : Dict , _lowercase : Any , _lowercase : Dict , _lowercase : Optional[Any] , _lowercase : Optional[Any] , ): SCREAMING_SNAKE_CASE__ : Dict = True SCREAMING_SNAKE_CASE__ : Optional[int] = TrOCRDecoder(config=_lowercase ).to(_lowercase ).eval() SCREAMING_SNAKE_CASE__ : Optional[int] = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass SCREAMING_SNAKE_CASE__ : Optional[Any] = model(_lowercase , use_cache=_lowercase ) SCREAMING_SNAKE_CASE__ : List[str] = model(_lowercase ) SCREAMING_SNAKE_CASE__ : Tuple = model(_lowercase , use_cache=_lowercase ) self.parent.assertTrue(len(_lowercase ) == len(_lowercase ) ) self.parent.assertTrue(len(_lowercase ) == len(_lowercase ) + 1 ) SCREAMING_SNAKE_CASE__ : int = outputs['''past_key_values'''] # create hypothetical next token and extent to next_input_ids SCREAMING_SNAKE_CASE__ : List[str] = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and SCREAMING_SNAKE_CASE__ : Tuple = torch.cat([input_ids, next_tokens] , dim=-1 ) SCREAMING_SNAKE_CASE__ : int = model(_lowercase )['''last_hidden_state'''] SCREAMING_SNAKE_CASE__ : List[Any] = model(_lowercase , past_key_values=_lowercase )['''last_hidden_state'''] # select random slice SCREAMING_SNAKE_CASE__ : int = ids_tensor((1,) , output_from_past.shape[-1] ).item() SCREAMING_SNAKE_CASE__ : Dict = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() SCREAMING_SNAKE_CASE__ : str = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(_lowercase , _lowercase , atol=1E-3 ) def lowercase__ ( self : Optional[int] ): SCREAMING_SNAKE_CASE__ : Optional[int] = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] = config_and_inputs SCREAMING_SNAKE_CASE__ : int = {'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_torch class lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): lowerCamelCase : List[str] = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () lowerCamelCase : Dict = (TrOCRForCausalLM,) if is_torch_available() else () lowerCamelCase : Tuple = {'''text-generation''': TrOCRForCausalLM} if is_torch_available() else {} lowerCamelCase : Any = True lowerCamelCase : int = False def lowercase__ ( self : List[Any] ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = TrOCRStandaloneDecoderModelTester(self , is_training=_lowercase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = ConfigTester(self , config_class=_lowercase ) def lowercase__ ( self : Optional[Any] ): pass def lowercase__ ( self : List[Any] ): pass def lowercase__ ( self : str ): pass def lowercase__ ( self : Dict ): self.config_tester.run_common_tests() def lowercase__ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*_lowercase ) def lowercase__ ( self : Optional[Any] ): return @unittest.skip('''The model doesn\'t support left padding''' ) # and it's not used enough to be worth fixing :) def lowercase__ ( self : Tuple ): pass
35
0
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_video_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import VivitImageProcessor class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self :Union[str, Any] , lowerCamelCase_ :Any , lowerCamelCase_ :Tuple=7 , lowerCamelCase_ :List[str]=3 , lowerCamelCase_ :Union[str, Any]=1_0 , lowerCamelCase_ :Optional[Any]=1_8 , lowerCamelCase_ :List[str]=3_0 , lowerCamelCase_ :str=4_0_0 , lowerCamelCase_ :Optional[int]=True , lowerCamelCase_ :Tuple=None , lowerCamelCase_ :Any=True , lowerCamelCase_ :Any=[0.5, 0.5, 0.5] , lowerCamelCase_ :int=[0.5, 0.5, 0.5] , lowerCamelCase_ :int=None , ) -> List[str]: """simple docstring""" UpperCamelCase__ = size if size is not None else {"shortest_edge": 1_8} UpperCamelCase__ = crop_size if crop_size is not None else {"height": 1_8, "width": 1_8} UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = num_channels UpperCamelCase__ = num_frames UpperCamelCase__ = image_size UpperCamelCase__ = min_resolution UpperCamelCase__ = max_resolution UpperCamelCase__ = do_resize UpperCamelCase__ = size UpperCamelCase__ = do_normalize UpperCamelCase__ = image_mean UpperCamelCase__ = image_std UpperCamelCase__ = crop_size def lowerCamelCase__ ( self :Union[str, Any] ) -> Optional[Any]: """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class lowerCAmelCase ( __snake_case , unittest.TestCase ): '''simple docstring''' A = VivitImageProcessor if is_vision_available() else None def lowerCamelCase__ ( self :str ) -> Any: """simple docstring""" UpperCamelCase__ = VivitImageProcessingTester(self ) @property def lowerCamelCase__ ( self :str ) -> Tuple: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase__ ( self :int ) -> str: """simple docstring""" UpperCamelCase__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A_ , "image_mean" ) ) self.assertTrue(hasattr(A_ , "image_std" ) ) self.assertTrue(hasattr(A_ , "do_normalize" ) ) self.assertTrue(hasattr(A_ , "do_resize" ) ) self.assertTrue(hasattr(A_ , "do_center_crop" ) ) self.assertTrue(hasattr(A_ , "size" ) ) def lowerCamelCase__ ( self :Tuple ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 1_8} ) self.assertEqual(image_processor.crop_size , {"height": 1_8, "width": 1_8} ) UpperCamelCase__ = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 , crop_size=8_4 ) self.assertEqual(image_processor.size , {"shortest_edge": 4_2} ) self.assertEqual(image_processor.crop_size , {"height": 8_4, "width": 8_4} ) def lowerCamelCase__ ( self :Optional[int] ) -> Optional[int]: """simple docstring""" UpperCamelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL videos UpperCamelCase__ = prepare_video_inputs(self.image_processor_tester , equal_resolution=A_ ) for video in video_inputs: self.assertIsInstance(A_ , A_ ) self.assertIsInstance(video[0] , Image.Image ) # Test not batched input UpperCamelCase__ = image_processing(video_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched UpperCamelCase__ = image_processing(A_ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def lowerCamelCase__ ( self :List[Any] ) -> Any: """simple docstring""" UpperCamelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase__ = prepare_video_inputs(self.image_processor_tester , equal_resolution=A_ , numpify=A_ ) for video in video_inputs: self.assertIsInstance(A_ , A_ ) self.assertIsInstance(video[0] , np.ndarray ) # Test not batched input UpperCamelCase__ = image_processing(video_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched UpperCamelCase__ = image_processing(A_ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def lowerCamelCase__ ( self :int ) -> Tuple: """simple docstring""" UpperCamelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase__ = prepare_video_inputs(self.image_processor_tester , equal_resolution=A_ , torchify=A_ ) for video in video_inputs: self.assertIsInstance(A_ , A_ ) self.assertIsInstance(video[0] , torch.Tensor ) # Test not batched input UpperCamelCase__ = image_processing(video_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched UpperCamelCase__ = image_processing(A_ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
716
"""simple docstring""" from datetime import datetime import matplotlib.pyplot as plt import torch def snake_case__ ( _snake_case : Dict ): """simple docstring""" for param in module.parameters(): UpperCamelCase__ = False def snake_case__ ( ): """simple docstring""" UpperCamelCase__ = "cuda" if torch.cuda.is_available() else "cpu" if torch.backends.mps.is_available() and torch.backends.mps.is_built(): UpperCamelCase__ = "mps" if device == "mps": print( "WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch" " errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues" " with generations." ) return device def snake_case__ ( _snake_case : List[Any] ): """simple docstring""" UpperCamelCase__ = plt.imshow(_snake_case ) fig.axes.get_xaxis().set_visible(_snake_case ) fig.axes.get_yaxis().set_visible(_snake_case ) plt.show() def snake_case__ ( ): """simple docstring""" UpperCamelCase__ = datetime.now() UpperCamelCase__ = current_time.strftime("%H:%M:%S" ) return timestamp
304
0
'''simple docstring''' from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class a : """simple docstring""" __lowerCAmelCase = 42 __lowerCAmelCase = None __lowerCAmelCase = None def UpperCamelCase__ ( ) -> Node | None: __UpperCAmelCase: Any = Node(1 ) __UpperCAmelCase: Optional[int] = Node(2 ) __UpperCAmelCase: str = Node(3 ) __UpperCAmelCase: Optional[int] = Node(4 ) __UpperCAmelCase: int = Node(5 ) return tree def UpperCamelCase__ ( _lowercase : Node | None ) -> list[int]: return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def UpperCamelCase__ ( _lowercase : Node | None ) -> list[int]: return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def UpperCamelCase__ ( _lowercase : Node | None ) -> list[int]: return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def UpperCamelCase__ ( _lowercase : Node | None ) -> int: return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def UpperCamelCase__ ( _lowercase : Node | None ) -> Sequence[Node | None]: __UpperCAmelCase: list[Any] = [] if root is None: return output __UpperCAmelCase: List[Any] = deque([root] ) while process_queue: __UpperCAmelCase: Dict = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def UpperCamelCase__ ( _lowercase : Node | None , _lowercase : int ) -> Sequence[Node | None]: __UpperCAmelCase: list[Any] = [] def populate_output(_lowercase : Node | None , _lowercase : int ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(_lowercase , _lowercase ) return output def UpperCamelCase__ ( _lowercase : Node | None , _lowercase : int ) -> Sequence[Node | None]: __UpperCAmelCase: list[Any] = [] def populate_output(_lowercase : Node | None , _lowercase : int ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(_lowercase , _lowercase ) return output def UpperCamelCase__ ( _lowercase : Node | None ) -> Sequence[Node | None] | list[Any]: if root is None: return [] __UpperCAmelCase: list[Sequence[Node | None]] = [] __UpperCAmelCase: Dict = 0 __UpperCAmelCase: int = height(_lowercase ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(_lowercase , _lowercase ) ) __UpperCAmelCase: int = 1 else: output.append(get_nodes_from_right_to_left(_lowercase , _lowercase ) ) __UpperCAmelCase: List[str] = 0 return output def UpperCamelCase__ ( ) -> None: # Main function for testing. __UpperCAmelCase: str = make_tree() print(F'''In-order Traversal: {inorder(_lowercase )}''' ) print(F'''Pre-order Traversal: {preorder(_lowercase )}''' ) print(F'''Post-order Traversal: {postorder(_lowercase )}''' , """\n""" ) print(F'''Height of Tree: {height(_lowercase )}''' , """\n""" ) print("""Complete Level Order Traversal: """ ) print(level_order(_lowercase ) , """\n""" ) print("""Level-wise order Traversal: """ ) for level in range(1 , height(_lowercase ) + 1 ): print(F'''Level {level}:''' , get_nodes_from_left_to_right(_lowercase , level=_lowercase ) ) print("""\nZigZag order Traversal: """ ) print(zigzag(_lowercase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
523
'''simple docstring''' import argparse import json from tqdm import tqdm def UpperCamelCase__ ( ) -> Optional[Any]: __UpperCAmelCase: Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( """--src_path""" , type=_lowercase , default="""biencoder-nq-dev.json""" , help="""Path to raw DPR training data""" , ) parser.add_argument( """--evaluation_set""" , type=_lowercase , help="""where to store parsed evaluation_set file""" , ) parser.add_argument( """--gold_data_path""" , type=_lowercase , help="""where to store parsed gold_data_path file""" , ) __UpperCAmelCase: Optional[int] = parser.parse_args() with open(args.src_path , """r""" ) as src_file, open(args.evaluation_set , """w""" ) as eval_file, open( args.gold_data_path , """w""" ) as gold_file: __UpperCAmelCase: List[Any] = json.load(_lowercase ) for dpr_record in tqdm(_lowercase ): __UpperCAmelCase: Tuple = dpr_record["""question"""] __UpperCAmelCase: str = [context["""title"""] for context in dpr_record["""positive_ctxs"""]] eval_file.write(question + """\n""" ) gold_file.write("""\t""".join(_lowercase ) + """\n""" ) if __name__ == "__main__": main()
523
1
"""simple docstring""" def lowerCamelCase__ ( __snake_case=2_81_23 ) -> Optional[int]: """simple docstring""" _UpperCamelCase = [1] * (limit + 1) for i in range(2, int(limit**0.5 ) + 1 ): sum_divs[i * i] += i for k in range(i + 1, limit // i + 1 ): sum_divs[k * i] += k + i _UpperCamelCase = set() _UpperCamelCase = 0 for n in range(1, limit + 1 ): if sum_divs[n] > n: abundants.add(__snake_case ) if not any((n - a in abundants) for a in abundants ): res += n return res if __name__ == "__main__": print(solution())
78
"""simple docstring""" from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging _a = logging.get_logger(__name__) class _UpperCAmelCase( lowerCamelCase ): lowercase__ = ['pixel_values'] def __init__( self , __a = True , __a = 1 / 2_55 , __a = True , __a = 8 , **__a , ) -> None: '''simple docstring''' super().__init__(**__a) _UpperCamelCase = do_rescale _UpperCamelCase = rescale_factor _UpperCamelCase = do_pad _UpperCamelCase = pad_size def UpperCAmelCase ( self , __a , __a , __a = None , **__a) -> np.ndarray: '''simple docstring''' return rescale(__a , scale=__a , data_format=__a , **__a) def UpperCAmelCase ( self , __a , __a , __a = None) -> List[Any]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = get_image_size(__a) _UpperCamelCase = (old_height // size + 1) * size - old_height _UpperCamelCase = (old_width // size + 1) * size - old_width return pad(__a , ((0, pad_height), (0, pad_width)) , mode='''symmetric''' , data_format=__a) def UpperCAmelCase ( self , __a , __a = None , __a = None , __a = None , __a = None , __a = None , __a = ChannelDimension.FIRST , **__a , ) -> Tuple: '''simple docstring''' _UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCamelCase = do_pad if do_pad is not None else self.do_pad _UpperCamelCase = pad_size if pad_size is not None else self.pad_size _UpperCamelCase = make_list_of_images(__a) if not valid_images(__a): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''') if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''') # All transformations expect numpy arrays. _UpperCamelCase = [to_numpy_array(__a) for image in images] if do_rescale: _UpperCamelCase = [self.rescale(image=__a , scale=__a) for image in images] if do_pad: _UpperCamelCase = [self.pad(__a , size=__a) for image in images] _UpperCamelCase = [to_channel_dimension_format(__a , __a) for image in images] _UpperCamelCase = {'''pixel_values''': images} return BatchFeature(data=__a , tensor_type=__a)
78
1
import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', } __UpperCAmelCase = { 'vocab_file': {'ctrl': 'https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json'}, 'merges_file': {'ctrl': 'https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt'}, } __UpperCAmelCase = { 'ctrl': 256, } __UpperCAmelCase = { 'Pregnancy': 168629, 'Christianity': 7675, 'Explain': 106423, 'Fitness': 63440, 'Saving': 63163, 'Ask': 27171, 'Ass': 95985, 'Joke': 163509, 'Questions': 45622, 'Thoughts': 49605, 'Retail': 52342, 'Feminism': 164338, 'Writing': 11992, 'Atheism': 192263, 'Netflix': 48616, 'Computing': 39639, 'Opinion': 43213, 'Alone': 44967, 'Funny': 58917, 'Gaming': 40358, 'Human': 4088, 'India': 1331, 'Joker': 77138, 'Diet': 36206, 'Legal': 11859, 'Norman': 4939, 'Tip': 72689, 'Weight': 52343, 'Movies': 46273, 'Running': 23425, 'Science': 2090, 'Horror': 37793, 'Confession': 60572, 'Finance': 12250, 'Politics': 16360, 'Scary': 191985, 'Support': 12654, 'Technologies': 32516, 'Teenage': 66160, 'Event': 32769, 'Learned': 67460, 'Notion': 182770, 'Wikipedia': 37583, 'Books': 6665, 'Extract': 76050, 'Confessions': 102701, 'Conspiracy': 75932, 'Links': 63674, 'Narcissus': 150425, 'Relationship': 54766, 'Relationships': 134796, 'Reviews': 41671, 'News': 4256, 'Translation': 26820, 'multilingual': 128406, } def lowercase__ ( __snake_case : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : Tuple = set() UpperCAmelCase_ : int = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCAmelCase_ : int = char UpperCAmelCase_ : Tuple = set(__snake_case ) return pairs class lowerCamelCase (_snake_case ): '''simple docstring''' _snake_case : Optional[int] = VOCAB_FILES_NAMES _snake_case : Optional[int] = PRETRAINED_VOCAB_FILES_MAP _snake_case : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case : Optional[int] = CONTROL_CODES def __init__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase="<unk>" , **_UpperCamelCase ) -> int: super().__init__(unk_token=_UpperCamelCase , **_UpperCamelCase ) with open(_UpperCamelCase , encoding='utf-8' ) as vocab_handle: UpperCAmelCase_ : int = json.load(_UpperCamelCase ) UpperCAmelCase_ : Any = {v: k for k, v in self.encoder.items()} with open(_UpperCamelCase , encoding='utf-8' ) as merges_handle: UpperCAmelCase_ : List[str] = merges_handle.read().split('\n' )[1:-1] UpperCAmelCase_ : Optional[int] = [tuple(merge.split() ) for merge in merges] UpperCAmelCase_ : List[str] = dict(zip(_UpperCamelCase , range(len(_UpperCamelCase ) ) ) ) UpperCAmelCase_ : Optional[Any] = {} @property def __UpperCAmelCase ( self ) -> int: return len(self.encoder ) def __UpperCAmelCase ( self ) -> Union[str, Any]: return dict(self.encoder , **self.added_tokens_encoder ) def __UpperCAmelCase ( self , _UpperCamelCase ) -> List[str]: if token in self.cache: return self.cache[token] UpperCAmelCase_ : Optional[int] = tuple(_UpperCamelCase ) UpperCAmelCase_ : str = tuple(list(word[:-1] ) + [word[-1] + '</w>'] ) UpperCAmelCase_ : List[str] = get_pairs(_UpperCamelCase ) if not pairs: return token while True: UpperCAmelCase_ : Union[str, Any] = min(_UpperCamelCase , key=lambda _UpperCamelCase : self.bpe_ranks.get(_UpperCamelCase , float('inf' ) ) ) if bigram not in self.bpe_ranks: break UpperCAmelCase_ , UpperCAmelCase_ : List[str] = bigram UpperCAmelCase_ : str = [] UpperCAmelCase_ : int = 0 while i < len(_UpperCamelCase ): try: UpperCAmelCase_ : Optional[int] = word.index(_UpperCamelCase , _UpperCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) UpperCAmelCase_ : Optional[Any] = j if word[i] == first and i < len(_UpperCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCAmelCase_ : Dict = tuple(_UpperCamelCase ) UpperCAmelCase_ : Optional[Any] = new_word if len(_UpperCamelCase ) == 1: break else: UpperCAmelCase_ : str = get_pairs(_UpperCamelCase ) UpperCAmelCase_ : List[Any] = '@@ '.join(_UpperCamelCase ) UpperCAmelCase_ : Union[str, Any] = word[:-4] UpperCAmelCase_ : List[str] = word return word def __UpperCAmelCase ( self , _UpperCamelCase ) -> Any: UpperCAmelCase_ : List[str] = [] UpperCAmelCase_ : Union[str, Any] = re.findall(r'\S+\n?' , _UpperCamelCase ) for token in words: split_tokens.extend(list(self.bpe(_UpperCamelCase ).split(' ' ) ) ) return split_tokens def __UpperCAmelCase ( self , _UpperCamelCase ) -> Any: return self.encoder.get(_UpperCamelCase , self.encoder.get(self.unk_token ) ) def __UpperCAmelCase ( self , _UpperCamelCase ) -> List[str]: return self.decoder.get(_UpperCamelCase , self.unk_token ) def __UpperCAmelCase ( self , _UpperCamelCase ) -> Optional[Any]: UpperCAmelCase_ : List[Any] = ' '.join(_UpperCamelCase ).replace('@@ ' , '' ).strip() return out_string def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = None ) -> Tuple[str]: if not os.path.isdir(_UpperCamelCase ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return UpperCAmelCase_ : int = os.path.join( _UpperCamelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) UpperCAmelCase_ : Optional[int] = os.path.join( _UpperCamelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(_UpperCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=_UpperCamelCase , ensure_ascii=_UpperCamelCase ) + '\n' ) UpperCAmelCase_ : List[str] = 0 with open(_UpperCamelCase , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _UpperCamelCase : kv[1] ): if index != token_index: logger.warning( f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." ' Please check that the tokenizer is not corrupted!' ) UpperCAmelCase_ : Optional[Any] = token_index writer.write(' '.join(_UpperCamelCase ) + '\n' ) index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
406
import argparse import torch from transformers import YosoConfig, YosoForMaskedLM def lowercase__ ( __snake_case : Optional[Any] ): '''simple docstring''' if "model" in orig_key: UpperCAmelCase_ : Optional[int] = orig_key.replace('model.' , '' ) if "norm1" in orig_key: UpperCAmelCase_ : Optional[Any] = orig_key.replace('norm1' , 'attention.output.LayerNorm' ) if "norm2" in orig_key: UpperCAmelCase_ : List[str] = orig_key.replace('norm2' , 'output.LayerNorm' ) if "norm" in orig_key: UpperCAmelCase_ : Dict = orig_key.replace('norm' , 'LayerNorm' ) if "transformer" in orig_key: UpperCAmelCase_ : Any = orig_key.split('.' )[0].split('_' )[-1] UpperCAmelCase_ : Optional[Any] = orig_key.replace(F"transformer_{layer_num}" , F"encoder.layer.{layer_num}" ) if "mha.attn" in orig_key: UpperCAmelCase_ : List[str] = orig_key.replace('mha.attn' , 'attention.self' ) if "mha" in orig_key: UpperCAmelCase_ : Union[str, Any] = orig_key.replace('mha' , 'attention' ) if "W_q" in orig_key: UpperCAmelCase_ : Any = orig_key.replace('W_q' , 'self.query' ) if "W_k" in orig_key: UpperCAmelCase_ : Tuple = orig_key.replace('W_k' , 'self.key' ) if "W_v" in orig_key: UpperCAmelCase_ : List[str] = orig_key.replace('W_v' , 'self.value' ) if "ff1" in orig_key: UpperCAmelCase_ : str = orig_key.replace('ff1' , 'intermediate.dense' ) if "ff2" in orig_key: UpperCAmelCase_ : Dict = orig_key.replace('ff2' , 'output.dense' ) if "ff" in orig_key: UpperCAmelCase_ : Optional[int] = orig_key.replace('ff' , 'output.dense' ) if "mlm_class" in orig_key: UpperCAmelCase_ : Optional[Any] = orig_key.replace('mlm.mlm_class' , 'cls.predictions.decoder' ) if "mlm" in orig_key: UpperCAmelCase_ : Union[str, Any] = orig_key.replace('mlm' , 'cls.predictions.transform' ) if "cls" not in orig_key: UpperCAmelCase_ : List[Any] = 'yoso.' + orig_key return orig_key def lowercase__ ( __snake_case : str , __snake_case : int ): '''simple docstring''' for key in orig_state_dict.copy().keys(): UpperCAmelCase_ : Any = orig_state_dict.pop(__snake_case ) if ("pooler" in key) or ("sen_class" in key): continue else: UpperCAmelCase_ : Union[str, Any] = val UpperCAmelCase_ : List[Any] = orig_state_dict['cls.predictions.decoder.bias'] UpperCAmelCase_ : Tuple = torch.arange(__snake_case ).expand((1, -1) ) + 2 return orig_state_dict def lowercase__ ( __snake_case : List[Any] , __snake_case : Union[str, Any] , __snake_case : List[Any] ): '''simple docstring''' UpperCAmelCase_ : Any = torch.load(__snake_case , map_location='cpu' )['model_state_dict'] UpperCAmelCase_ : Dict = YosoConfig.from_json_file(__snake_case ) UpperCAmelCase_ : str = YosoForMaskedLM(__snake_case ) UpperCAmelCase_ : Dict = convert_checkpoint_helper(config.max_position_embeddings , __snake_case ) print(model.load_state_dict(__snake_case ) ) model.eval() model.save_pretrained(__snake_case ) print(F"Checkpoint successfuly converted. Model saved at {pytorch_dump_path}" ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--pytorch_model_path', default=None, type=str, required=True, help='Path to YOSO pytorch checkpoint.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The json file for YOSO model config.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __UpperCAmelCase = parser.parse_args() convert_yoso_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path)
406
1
"""simple docstring""" from __future__ import annotations def A_ ( __lowercase ): UpperCamelCase_ : List[Any] =0.00 UpperCamelCase_ : Dict =0 for resistor in resistors: if resistor <= 0: UpperCamelCase_ : List[str] =F'''Resistor at index {index} has a negative or zero value!''' raise ValueError(__lowercase ) first_sum += 1 / float(__lowercase ) index += 1 return 1 / first_sum def A_ ( __lowercase ): UpperCamelCase_ : Union[str, Any] =0.00 UpperCamelCase_ : Optional[int] =0 for resistor in resistors: sum_r += resistor if resistor < 0: UpperCamelCase_ : Tuple =F'''Resistor at index {index} has a negative value!''' raise ValueError(__lowercase ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
395
"""simple docstring""" def A_ ( __lowercase ): UpperCamelCase_ : List[str] ='' for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def A_ ( __lowercase ): UpperCamelCase_ : int =[chr(i + 65 ) for i in range(26 )] # Remove duplicate characters from key UpperCamelCase_ : Any =remove_duplicates(key.upper() ) UpperCamelCase_ : int =len(__lowercase ) # First fill cipher with key characters UpperCamelCase_ : Union[str, Any] ={alphabet[i]: char for i, char in enumerate(__lowercase )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(__lowercase ) , 26 ): UpperCamelCase_ : List[Any] =alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 UpperCamelCase_ : str =alphabet[i - offset] UpperCamelCase_ : int =char return cipher_alphabet def A_ ( __lowercase , __lowercase ): return "".join(cipher_map.get(__lowercase , __lowercase ) for ch in message.upper() ) def A_ ( __lowercase , __lowercase ): UpperCamelCase_ : str ={v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(__lowercase , __lowercase ) for ch in message.upper() ) def A_ ( ): UpperCamelCase_ : Tuple =input('Enter message to encode or decode: ' ).strip() UpperCamelCase_ : int =input('Enter keyword: ' ).strip() UpperCamelCase_ : List[Any] =input('Encipher or decipher? E/D:' ).strip()[0].lower() try: UpperCamelCase_ : List[str] ={'e': encipher, 'd': decipher}[option] except KeyError: raise KeyError('invalid input option' ) UpperCamelCase_ : List[Any] =create_cipher_map(__lowercase ) print(func(__lowercase , __lowercase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
395
1
from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch SCREAMING_SNAKE_CASE__ : Union[str, Any] = logging.get_logger(__name__) @add_end_docstrings( __lowerCamelCase , R'\n top_k (`int`, defaults to 5):\n The number of predictions to return.\n targets (`str` or `List[str]`, *optional*):\n When passed, the model will limit the scores to the passed targets instead of looking up in the whole\n vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting\n token will be used (with a warning, and that might be slower).\n\n ' , ) class UpperCAmelCase_ ( __lowerCamelCase ): def __UpperCAmelCase ( self , _lowerCAmelCase ): if self.framework == "tf": UpperCAmelCase__ : str = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": UpperCAmelCase__ : Optional[int] = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=_lowerCAmelCase ) else: raise ValueError("""Unsupported framework""" ) return masked_index def __UpperCAmelCase ( self , _lowerCAmelCase ): UpperCAmelCase__ : Optional[int] = self.get_masked_index(_lowerCAmelCase ) UpperCAmelCase__ : Any = np.prod(masked_index.shape ) if numel < 1: raise PipelineException( """fill-mask""" , self.model.base_model_prefix , f"No mask_token ({self.tokenizer.mask_token}) found on the input" , ) def __UpperCAmelCase ( self , _lowerCAmelCase ): if isinstance(_lowerCAmelCase , _lowerCAmelCase ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input["""input_ids"""][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(_lowerCAmelCase ) def __UpperCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase=None , **_lowerCAmelCase ): if return_tensors is None: UpperCAmelCase__ : Union[str, Any] = self.framework UpperCAmelCase__ : List[Any] = self.tokenizer(_lowerCAmelCase , return_tensors=_lowerCAmelCase ) self.ensure_exactly_one_mask_token(_lowerCAmelCase ) return model_inputs def __UpperCAmelCase ( self , _lowerCAmelCase ): UpperCAmelCase__ : List[str] = self.model(**_lowerCAmelCase ) UpperCAmelCase__ : Union[str, Any] = model_inputs["""input_ids"""] return model_outputs def __UpperCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase=5 , _lowerCAmelCase=None ): # Cap top_k if there are targets if target_ids is not None and target_ids.shape[0] < top_k: UpperCAmelCase__ : List[str] = target_ids.shape[0] UpperCAmelCase__ : Tuple = model_outputs["""input_ids"""][0] UpperCAmelCase__ : int = model_outputs["""logits"""] if self.framework == "tf": UpperCAmelCase__ : Tuple = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] UpperCAmelCase__ : List[str] = outputs.numpy() UpperCAmelCase__ : Optional[Any] = outputs[0, masked_index, :] UpperCAmelCase__ : Tuple = stable_softmax(_lowerCAmelCase , axis=-1 ) if target_ids is not None: UpperCAmelCase__ : Optional[Any] = tf.gather_nd(tf.squeeze(_lowerCAmelCase , 0 ) , target_ids.reshape(-1 , 1 ) ) UpperCAmelCase__ : List[str] = tf.expand_dims(_lowerCAmelCase , 0 ) UpperCAmelCase__ : Optional[int] = tf.math.top_k(_lowerCAmelCase , k=_lowerCAmelCase ) UpperCAmelCase__ , UpperCAmelCase__ : Tuple = topk.values.numpy(), topk.indices.numpy() else: UpperCAmelCase__ : Dict = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=_lowerCAmelCase ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample UpperCAmelCase__ : Optional[Any] = outputs[0, masked_index, :] UpperCAmelCase__ : Tuple = logits.softmax(dim=-1 ) if target_ids is not None: UpperCAmelCase__ : Optional[int] = probs[..., target_ids] UpperCAmelCase__ , UpperCAmelCase__ : Tuple = probs.topk(_lowerCAmelCase ) UpperCAmelCase__ : Optional[int] = [] UpperCAmelCase__ : List[Any] = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist() ) ): UpperCAmelCase__ : Optional[Any] = [] for v, p in zip(_values , _predictions ): # Copy is important since we're going to modify this array in place UpperCAmelCase__ : Tuple = input_ids.numpy().copy() if target_ids is not None: UpperCAmelCase__ : Tuple = target_ids[p].tolist() UpperCAmelCase__ : Tuple = p # Filter padding out: UpperCAmelCase__ : Tuple = tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back UpperCAmelCase__ : Tuple = self.tokenizer.decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase ) UpperCAmelCase__ : List[Any] = {"""score""": v, """token""": p, """token_str""": self.tokenizer.decode([p] ), """sequence""": sequence} row.append(_lowerCAmelCase ) result.append(_lowerCAmelCase ) if single_mask: return result[0] return result def __UpperCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase=None ): if isinstance(_lowerCAmelCase , _lowerCAmelCase ): UpperCAmelCase__ : Any = [targets] try: UpperCAmelCase__ : Optional[Any] = self.tokenizer.get_vocab() except Exception: UpperCAmelCase__ : Optional[int] = {} UpperCAmelCase__ : Dict = [] for target in targets: UpperCAmelCase__ : Tuple = vocab.get(_lowerCAmelCase , _lowerCAmelCase ) if id_ is None: UpperCAmelCase__ : Optional[int] = self.tokenizer( _lowerCAmelCase , add_special_tokens=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , return_token_type_ids=_lowerCAmelCase , max_length=1 , truncation=_lowerCAmelCase , )["""input_ids"""] if len(_lowerCAmelCase ) == 0: logger.warning( f"The specified target token `{target}` does not exist in the model vocabulary. " """We cannot replace it with anything meaningful, ignoring it""" ) continue UpperCAmelCase__ : Tuple = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( f"The specified target token `{target}` does not exist in the model vocabulary. " f"Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`." ) target_ids.append(id_ ) UpperCAmelCase__ : List[Any] = list(set(_lowerCAmelCase ) ) if len(_lowerCAmelCase ) == 0: raise ValueError("""At least one target must be provided when passed.""" ) UpperCAmelCase__ : int = np.array(_lowerCAmelCase ) return target_ids def __UpperCAmelCase ( self , _lowerCAmelCase=None , _lowerCAmelCase=None ): UpperCAmelCase__ : List[str] = {} if targets is not None: UpperCAmelCase__ : Optional[Any] = self.get_target_ids(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase__ : int = target_ids if top_k is not None: UpperCAmelCase__ : Dict = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( """fill-mask""" , self.model.base_model_prefix , """The tokenizer does not define a `mask_token`.""" ) return {}, {}, postprocess_params def __call__( self , _lowerCAmelCase , *_lowerCAmelCase , **_lowerCAmelCase ): UpperCAmelCase__ : List[Any] = super().__call__(_lowerCAmelCase , **_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) and len(_lowerCAmelCase ) == 1: return outputs[0] return outputs
79
'''simple docstring''' import argparse import os import jax as jnp import numpy as onp import torch import torch.nn as nn from music_spectrogram_diffusion import inference from tax import checkpoints from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder lowercase : Tuple = "base_with_context" def SCREAMING_SNAKE_CASE__ ( __A , __A ) -> Optional[Any]: _snake_case = nn.Parameter(torch.FloatTensor(weights['token_embedder']['embedding'] ) ) _snake_case = nn.Parameter( torch.FloatTensor(weights['Embed_0']['embedding'] ) , requires_grad=__A ) for lyr_num, lyr in enumerate(model.encoders ): _snake_case = weights[F'layers_{lyr_num}'] _snake_case = nn.Parameter( torch.FloatTensor(ly_weight['pre_attention_layer_norm']['scale'] ) ) _snake_case = ly_weight['attention'] _snake_case = nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) _snake_case = nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) _snake_case = nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) _snake_case = nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) _snake_case = nn.Parameter(torch.FloatTensor(ly_weight['pre_mlp_layer_norm']['scale'] ) ) _snake_case = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_0']['kernel'].T ) ) _snake_case = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_1']['kernel'].T ) ) _snake_case = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wo']['kernel'].T ) ) _snake_case = nn.Parameter(torch.FloatTensor(weights['encoder_norm']['scale'] ) ) return model def SCREAMING_SNAKE_CASE__ ( __A , __A ) -> List[Any]: _snake_case = nn.Parameter(torch.FloatTensor(weights['input_proj']['kernel'].T ) ) _snake_case = nn.Parameter( torch.FloatTensor(weights['Embed_0']['embedding'] ) , requires_grad=__A ) for lyr_num, lyr in enumerate(model.encoders ): _snake_case = weights[F'layers_{lyr_num}'] _snake_case = ly_weight['attention'] _snake_case = nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) _snake_case = nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) _snake_case = nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) _snake_case = nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) _snake_case = nn.Parameter( torch.FloatTensor(ly_weight['pre_attention_layer_norm']['scale'] ) ) _snake_case = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_0']['kernel'].T ) ) _snake_case = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_1']['kernel'].T ) ) _snake_case = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wo']['kernel'].T ) ) _snake_case = nn.Parameter(torch.FloatTensor(ly_weight['pre_mlp_layer_norm']['scale'] ) ) _snake_case = nn.Parameter(torch.FloatTensor(weights['encoder_norm']['scale'] ) ) return model def SCREAMING_SNAKE_CASE__ ( __A , __A ) -> Optional[Any]: _snake_case = nn.Parameter(torch.FloatTensor(weights['time_emb_dense0']['kernel'].T ) ) _snake_case = nn.Parameter(torch.FloatTensor(weights['time_emb_dense1']['kernel'].T ) ) _snake_case = nn.Parameter( torch.FloatTensor(weights['Embed_0']['embedding'] ) , requires_grad=__A ) _snake_case = nn.Parameter( torch.FloatTensor(weights['continuous_inputs_projection']['kernel'].T ) ) for lyr_num, lyr in enumerate(model.decoders ): _snake_case = weights[F'layers_{lyr_num}'] _snake_case = nn.Parameter( torch.FloatTensor(ly_weight['pre_self_attention_layer_norm']['scale'] ) ) _snake_case = nn.Parameter( torch.FloatTensor(ly_weight['FiLMLayer_0']['DenseGeneral_0']['kernel'].T ) ) _snake_case = ly_weight['self_attention'] _snake_case = nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) _snake_case = nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) _snake_case = nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) _snake_case = nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) _snake_case = ly_weight['MultiHeadDotProductAttention_0'] _snake_case = nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) _snake_case = nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) _snake_case = nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) _snake_case = nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) _snake_case = nn.Parameter( torch.FloatTensor(ly_weight['pre_cross_attention_layer_norm']['scale'] ) ) _snake_case = nn.Parameter(torch.FloatTensor(ly_weight['pre_mlp_layer_norm']['scale'] ) ) _snake_case = nn.Parameter( torch.FloatTensor(ly_weight['FiLMLayer_1']['DenseGeneral_0']['kernel'].T ) ) _snake_case = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_0']['kernel'].T ) ) _snake_case = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_1']['kernel'].T ) ) _snake_case = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wo']['kernel'].T ) ) _snake_case = nn.Parameter(torch.FloatTensor(weights['decoder_norm']['scale'] ) ) _snake_case = nn.Parameter(torch.FloatTensor(weights['spec_out_dense']['kernel'].T ) ) return model def SCREAMING_SNAKE_CASE__ ( __A ) -> Optional[Any]: _snake_case = checkpoints.load_tax_checkpoint(args.checkpoint_path ) _snake_case = jnp.tree_util.tree_map(onp.array , __A ) _snake_case = [ 'from __gin__ import dynamic_registration', 'from music_spectrogram_diffusion.models.diffusion import diffusion_utils', 'diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0', 'diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()', ] _snake_case = os.path.join(args.checkpoint_path , '..' , 'config.gin' ) _snake_case = inference.parse_training_gin_file(__A , __A ) _snake_case = inference.InferenceModel(args.checkpoint_path , __A ) _snake_case = DDPMScheduler(beta_schedule='squaredcos_cap_v2' , variance_type='fixed_large' ) _snake_case = SpectrogramNotesEncoder( max_length=synth_model.sequence_length['inputs'] , vocab_size=synth_model.model.module.config.vocab_size , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj='gated-gelu' , ) _snake_case = SpectrogramContEncoder( input_dims=synth_model.audio_codec.n_dims , targets_context_length=synth_model.sequence_length['targets_context'] , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj='gated-gelu' , ) _snake_case = TaFilmDecoder( input_dims=synth_model.audio_codec.n_dims , targets_length=synth_model.sequence_length['targets_context'] , max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time , d_model=synth_model.model.module.config.emb_dim , num_layers=synth_model.model.module.config.num_decoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , dropout_rate=synth_model.model.module.config.dropout_rate , ) _snake_case = load_notes_encoder(ta_checkpoint['target']['token_encoder'] , __A ) _snake_case = load_continuous_encoder(ta_checkpoint['target']['continuous_encoder'] , __A ) _snake_case = load_decoder(ta_checkpoint['target']['decoder'] , __A ) _snake_case = OnnxRuntimeModel.from_pretrained('kashif/soundstream_mel_decoder' ) _snake_case = SpectrogramDiffusionPipeline( notes_encoder=__A , continuous_encoder=__A , decoder=__A , scheduler=__A , melgan=__A , ) if args.save: pipe.save_pretrained(args.output_path ) if __name__ == "__main__": lowercase : Optional[Any] = argparse.ArgumentParser() parser.add_argument("--output_path", default=None, type=str, required=True, help="Path to the converted model.") parser.add_argument( "--save", default=True, type=bool, required=False, help="Whether to save the converted model or not." ) parser.add_argument( "--checkpoint_path", default=F'''{MODEL}/checkpoint_500000''', type=str, required=False, help="Path to the original jax model checkpoint.", ) lowercase : str = parser.parse_args() main(args)
495
0
import random def a_ ( lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : Union[str, Any] ): __lowerCAmelCase = a[left_index] __lowerCAmelCase = left_index + 1 for j in range(left_index + 1, lowerCAmelCase_ ): if a[j] < pivot: __lowerCAmelCase , __lowerCAmelCase = a[i], a[j] i += 1 __lowerCAmelCase , __lowerCAmelCase = a[i - 1], a[left_index] return i - 1 def a_ ( lowerCAmelCase_ : Tuple, lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : str ): if left < right: __lowerCAmelCase = random.randint(lowerCAmelCase_, right - 1 ) __lowerCAmelCase , __lowerCAmelCase = ( a[left], a[pivot], ) # switches the pivot with the left most bound __lowerCAmelCase = partition(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) quick_sort_random( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) # recursive quicksort to the left of the pivot point quick_sort_random( lowerCAmelCase_, pivot_index + 1, lowerCAmelCase_ ) # recursive quicksort to the right of the pivot point def a_ ( ): __lowerCAmelCase = input('Enter numbers separated by a comma:\n' ).strip() __lowerCAmelCase = [int(lowerCAmelCase_ ) for item in user_input.split(',' )] quick_sort_random(lowerCAmelCase_, 0, len(lowerCAmelCase_ ) ) print(lowerCAmelCase_ ) if __name__ == "__main__": main()
705
import argparse import random import joblib import numpy as np import torch from igf.igf import ( SecondaryLearner, collect_objective_set, compute_perplexity, generate_datasets, load_gpta, recopy_gpta, set_seed, train_secondary_learner, ) from torch.utils.data import DataLoader, RandomSampler from transformers import GPTaLMHeadModel def a_ ( lowerCAmelCase_ : Dict=32, lowerCAmelCase_ : int=10, lowerCAmelCase_ : List[str]=100, lowerCAmelCase_ : Tuple=1026, lowerCAmelCase_ : Optional[Any]=True, lowerCAmelCase_ : Tuple="data/tokenized_stories_train_wikitext103.jbl", lowerCAmelCase_ : Optional[int]="igf_context_pairs.jbl", ): set_seed(3 ) # generate train_data and objective_set __lowerCAmelCase , __lowerCAmelCase = generate_datasets( lowerCAmelCase_, lowerCAmelCase_, number=lowerCAmelCase_, min_len=1026, trim=lowerCAmelCase_ ) # keeps model same across runs set_seed(4 ) # model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights # can we train on GPU? __lowerCAmelCase = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu' ) # load pretrained model __lowerCAmelCase = load_gpta('gpt2' ).to(lowerCAmelCase_ ) print('computing perplexity on objective set' ) __lowerCAmelCase = compute_perplexity(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ).item() print('perplexity on objective set:', lowerCAmelCase_ ) # collect igf pairs and save to file demo.jbl collect_objective_set(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) # clean up, delete model and data we don't need anymore del model, train_data, objective_set torch.cuda.empty_cache() def a_ ( lowerCAmelCase_ : Optional[int], lowerCAmelCase_ : Any=15, lowerCAmelCase_ : Optional[int]=128, lowerCAmelCase_ : Optional[int]=100, lowerCAmelCase_ : Tuple="igf_model.pt", ): set_seed(42 ) # Load pre-trained model __lowerCAmelCase = GPTaLMHeadModel.from_pretrained('gpt2' ) # Initialize secondary learner to use embedding weights of model __lowerCAmelCase = SecondaryLearner(lowerCAmelCase_ ) # Train secondary learner __lowerCAmelCase = train_secondary_learner( lowerCAmelCase_, lowerCAmelCase_, max_epochs=lowerCAmelCase_, batch_size=lowerCAmelCase_, eval_freq=100, igf_model_path=lowerCAmelCase_, ) del model, secondary_learner_train_data torch.cuda.empty_cache() return secondary_learner def a_ ( lowerCAmelCase_ : Tuple, lowerCAmelCase_ : List[Any], lowerCAmelCase_ : List[Any], lowerCAmelCase_ : Tuple=32, lowerCAmelCase_ : Any=1000, lowerCAmelCase_ : Union[str, Any]=16, lowerCAmelCase_ : Any=1.0, lowerCAmelCase_ : Dict=recopy_gpta, lowerCAmelCase_ : Dict=None, lowerCAmelCase_ : Optional[Any]=10, lowerCAmelCase_ : Union[str, Any]="gpt2_finetuned.pt", ): __lowerCAmelCase = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu' ) __lowerCAmelCase = RandomSampler(lowerCAmelCase_ ) __lowerCAmelCase = DataLoader(lowerCAmelCase_, sampler=lowerCAmelCase_ ) __lowerCAmelCase = max_steps // (len(lowerCAmelCase_ )) + 1 __lowerCAmelCase = 0 __lowerCAmelCase = torch.zeros((1, context_len), dtype=torch.long, device=lowerCAmelCase_ ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = recopy_model(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) model.train() if secondary_learner is not None: secondary_learner.to(lowerCAmelCase_ ) secondary_learner.eval() __lowerCAmelCase = [] __lowerCAmelCase = 0 __lowerCAmelCase = [] __lowerCAmelCase = [] # Compute the performance of the transformer model at the beginning __lowerCAmelCase = compute_perplexity(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) test_perps.append(lowerCAmelCase_ ) print('Test perplexity, step', lowerCAmelCase_, ':', lowerCAmelCase_ ) for epoch in range(int(lowerCAmelCase_ ) ): for step, example in enumerate(lowerCAmelCase_ ): torch.cuda.empty_cache() __lowerCAmelCase = random.randint(0, example.size(2 ) - context_len - 1 ) __lowerCAmelCase = example[0, 0, start : start + context_len] lm_optimizer.zero_grad() __lowerCAmelCase = model(lowerCAmelCase_, labels=lowerCAmelCase_ ) __lowerCAmelCase = True if secondary_learner is not None: __lowerCAmelCase = secondary_learner.forward( torch.tensor(lowerCAmelCase_, dtype=torch.long, device=lowerCAmelCase_ ).unsqueeze(0 ) )[0].item() observed_qs.append(float(lowerCAmelCase_ ) ) # Here we implement the simple non-constant threshold for the predicted IG(X) value # We will decay the selectivity of our secondary learner filter from # 1 standard deviation above average to 1 below average after 10 batches. if global_step == 10: __lowerCAmelCase = -1 if predicted_q < threshold: __lowerCAmelCase = False # If we passed the filter, add the context to the batch! if do_backprop: contexts.append(np.array(context.cpu() ) ) __lowerCAmelCase = outputs[0] lm_loss.backward() examples += 1 del outputs # Once the batch is filled with enough contexts, backprop on the batch. if examples == batch_size: torch.cuda.empty_cache() __lowerCAmelCase = 0 # Do LM backprop torch.nn.utils.clip_grad_norm_(model.parameters(), 3.0 ) lm_optimizer.step() lm_scheduler.step() # Update learning rate schedule global_step += 1 # Compute the performance of the transformer model at this batch if global_step % eval_interval == 0: __lowerCAmelCase = compute_perplexity(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) test_perps.append(lowerCAmelCase_ ) print('Test perplexity, step', lowerCAmelCase_, ':', lowerCAmelCase_ ) # Break out of the loop after 60 batches if max_steps > 0 and global_step > 60: break if max_steps > 0 and global_step > 60: break # save finetuned transformer model torch.save(model.state_dict(), lowerCAmelCase_ ) torch.cuda.empty_cache() # Do some cleaning up so we can reinitialize for the next run of this function del lm_optimizer del lm_scheduler return model def a_ ( ): __lowerCAmelCase = argparse.ArgumentParser(description='Fine-tune a transformer model with IGF on a language modeling task' ) # Required parameters parser.add_argument( '--data_dir', default=lowerCAmelCase_, type=lowerCAmelCase_, required=lowerCAmelCase_, help='The input data dir. Should contain data files for WikiText.', ) parser.add_argument( '--model_name_or_path', default=lowerCAmelCase_, type=lowerCAmelCase_, required=lowerCAmelCase_, help='Path to pretrained model or model identifier from huggingface.co/models', ) parser.add_argument( '--data_file', type=lowerCAmelCase_, default=lowerCAmelCase_, help=( 'A jbl file containing tokenized data which can be split as objective dataset, ' 'train_dataset and test_dataset.' ), ) parser.add_argument( '--igf_data_file', type=lowerCAmelCase_, default=lowerCAmelCase_, help='A jbl file containing the context and information gain pairs to train secondary learner.', ) parser.add_argument( '--output_dir', default=lowerCAmelCase_, type=lowerCAmelCase_, required=lowerCAmelCase_, help='The output directory where the final fine-tuned model is stored.', ) parser.add_argument( '--tokenizer_name', default=lowerCAmelCase_, type=lowerCAmelCase_, help='Pretrained tokenizer name or path if not the same as model_name', ) parser.add_argument('--seed', type=lowerCAmelCase_, default=lowerCAmelCase_, help='A seed for reproducible training.' ) parser.add_argument( '--context_len', default=32, type=lowerCAmelCase_, help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ), ) parser.add_argument( '--size_objective_set', default=100, type=lowerCAmelCase_, help='number of articles that are long enough to be used as our objective set', ) parser.add_argument( '--eval_freq', default=100, type=lowerCAmelCase_, help='secondary model evaluation is triggered at eval_freq' ) parser.add_argument('--max_steps', default=1000, type=lowerCAmelCase_, help='To calculate training epochs' ) parser.add_argument( '--secondary_learner_batch_size', default=128, type=lowerCAmelCase_, help='batch size of training data for secondary learner', ) parser.add_argument( '--batch_size', default=16, type=lowerCAmelCase_, help='batch size of training data of language model(gpt2) ' ) parser.add_argument( '--eval_interval', default=10, type=lowerCAmelCase_, help=( 'decay the selectivity of our secondary learner filter from' '1 standard deviation above average to 1 below average after 10 batches' ), ) parser.add_argument( '--number', default=100, type=lowerCAmelCase_, help='The number of examples split to be used as objective_set/test_data' ) parser.add_argument( '--min_len', default=1026, type=lowerCAmelCase_, help='The minimum length of the article to be used as objective set' ) parser.add_argument( '--secondary_learner_max_epochs', default=15, type=lowerCAmelCase_, help='number of epochs to train secondary learner' ) parser.add_argument('--trim', default=lowerCAmelCase_, type=lowerCAmelCase_, help='truncate the example if it exceeds context length' ) parser.add_argument( '--threshold', default=1.0, type=lowerCAmelCase_, help=( 'The threshold value used by secondary learner to filter the train_data and allow only' ' informative data as input to the model' ), ) parser.add_argument('--finetuned_model_name', default='gpt2_finetuned.pt', type=lowerCAmelCase_, help='finetuned_model_name' ) parser.add_argument( '--recopy_model', default=lowerCAmelCase_, type=lowerCAmelCase_, help='Reset the model to the original pretrained GPT-2 weights after each iteration', ) # function calls # Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner generate_n_pairs( context_len=32, max_steps=10, size_objective_set=100, min_len=1026, trim=lowerCAmelCase_, data_file='data/tokenized_stories_train_wikitext103.jbl', igf_data_file='igf_context_pairs.jbl', ) # Load train data for secondary learner __lowerCAmelCase = joblib.load('data/IGF_values.jbl' ) # Train secondary learner __lowerCAmelCase = training_secondary_learner( lowerCAmelCase_, secondary_learner_max_epochs=15, secondary_learner_batch_size=128, eval_freq=100, igf_model_path='igf_model.pt', ) # load pretrained gpt2 model __lowerCAmelCase = GPTaLMHeadModel.from_pretrained('gpt2' ) set_seed(42 ) # Generate train and test data to train and evaluate gpt2 model __lowerCAmelCase , __lowerCAmelCase = generate_datasets( context_len=32, file='data/tokenized_stories_train_wikitext103.jbl', number=100, min_len=1026, trim=lowerCAmelCase_ ) # fine-tuning of the gpt2 model using igf (Information Gain Filtration) finetune( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, context_len=32, max_steps=1000, batch_size=16, threshold=1.0, recopy_model=lowerCAmelCase_, secondary_learner=lowerCAmelCase_, eval_interval=10, finetuned_model_name='gpt2_finetuned.pt', ) if __name__ == "__main__": main()
421
0
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer A__ : List[str] = logging.get_logger(__name__) A__ : Optional[Any] = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} A__ : Any = { """vocab_file""": { """distilbert-base-uncased""": """https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt""", """distilbert-base-uncased-distilled-squad""": ( """https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt""" ), """distilbert-base-cased""": """https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt""", """distilbert-base-cased-distilled-squad""": ( """https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt""" ), """distilbert-base-german-cased""": """https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt""", """distilbert-base-multilingual-cased""": ( """https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """distilbert-base-uncased""": """https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json""", """distilbert-base-uncased-distilled-squad""": ( """https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json""" ), """distilbert-base-cased""": """https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json""", """distilbert-base-cased-distilled-squad""": ( """https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json""" ), """distilbert-base-german-cased""": ( """https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json""" ), """distilbert-base-multilingual-cased""": ( """https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json""" ), }, } A__ : str = { """distilbert-base-uncased""": 512, """distilbert-base-uncased-distilled-squad""": 512, """distilbert-base-cased""": 512, """distilbert-base-cased-distilled-squad""": 512, """distilbert-base-german-cased""": 512, """distilbert-base-multilingual-cased""": 512, } A__ : Any = { """distilbert-base-uncased""": {"""do_lower_case""": True}, """distilbert-base-uncased-distilled-squad""": {"""do_lower_case""": True}, """distilbert-base-cased""": {"""do_lower_case""": False}, """distilbert-base-cased-distilled-squad""": {"""do_lower_case""": False}, """distilbert-base-german-cased""": {"""do_lower_case""": False}, """distilbert-base-multilingual-cased""": {"""do_lower_case""": False}, } class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" lowerCamelCase : List[str] = VOCAB_FILES_NAMES lowerCamelCase : Dict = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : Any = PRETRAINED_INIT_CONFIGURATION lowerCamelCase : Any = ['input_ids', 'attention_mask'] lowerCamelCase : Optional[Any] = DistilBertTokenizer def __init__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_="[UNK]" , SCREAMING_SNAKE_CASE_="[SEP]" , SCREAMING_SNAKE_CASE_="[PAD]" , SCREAMING_SNAKE_CASE_="[CLS]" , SCREAMING_SNAKE_CASE_="[MASK]" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , ) -> Union[str, Any]: super().__init__( SCREAMING_SNAKE_CASE_ , tokenizer_file=SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , tokenize_chinese_chars=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) __lowerCamelCase : List[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , SCREAMING_SNAKE_CASE_ ) != do_lower_case or normalizer_state.get('strip_accents' , SCREAMING_SNAKE_CASE_ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , SCREAMING_SNAKE_CASE_ ) != tokenize_chinese_chars ): __lowerCamelCase : List[Any] = getattr(SCREAMING_SNAKE_CASE_ , normalizer_state.pop('type' ) ) __lowerCamelCase : Optional[Any] = do_lower_case __lowerCamelCase : Dict = strip_accents __lowerCamelCase : Optional[Any] = tokenize_chinese_chars __lowerCamelCase : Tuple = normalizer_class(**SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[int] = do_lower_case def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> Any: __lowerCamelCase : Optional[int] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> List[int]: __lowerCamelCase : Dict = [self.sep_token_id] __lowerCamelCase : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> Tuple[str]: __lowerCamelCase : List[Any] = self._tokenizer.model.save(SCREAMING_SNAKE_CASE_ , name=SCREAMING_SNAKE_CASE_ ) return tuple(SCREAMING_SNAKE_CASE_ )
13
'''simple docstring''' from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch __magic_name__ : Optional[Any] =logging.get_logger(__name__) @add_end_docstrings( A , r''' top_k (`int`, defaults to 5): The number of predictions to return. targets (`str` or `List[str]`, *optional*): When passed, the model will limit the scores to the passed targets instead of looking up in the whole vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting token will be used (with a warning, and that might be slower). ''' , ) class UpperCamelCase_ ( A ): """simple docstring""" def __A ( self : Any , _lowerCamelCase : GenericTensor ) -> np.ndarray: if self.framework == "tf": __magic_name__ = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": __magic_name__ = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=_lowerCamelCase ) else: raise ValueError("Unsupported framework" ) return masked_index def __A ( self : str , _lowerCamelCase : GenericTensor ) -> np.ndarray: __magic_name__ = self.get_masked_index(_lowerCamelCase ) __magic_name__ = np.prod(masked_index.shape ) if numel < 1: raise PipelineException( "fill-mask" , self.model.base_model_prefix , f'No mask_token ({self.tokenizer.mask_token}) found on the input' , ) def __A ( self : int , _lowerCamelCase : GenericTensor ) -> Any: if isinstance(_lowerCamelCase , _lowerCamelCase ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input["input_ids"][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(_lowerCamelCase ) def __A ( self : List[Any] , _lowerCamelCase : str , _lowerCamelCase : Any=None , **_lowerCamelCase : List[str] ) -> Dict[str, GenericTensor]: if return_tensors is None: __magic_name__ = self.framework __magic_name__ = self.tokenizer(_lowerCamelCase , return_tensors=_lowerCamelCase ) self.ensure_exactly_one_mask_token(_lowerCamelCase ) return model_inputs def __A ( self : List[str] , _lowerCamelCase : int ) -> List[Any]: __magic_name__ = self.model(**_lowerCamelCase ) __magic_name__ = model_inputs["input_ids"] return model_outputs def __A ( self : Tuple , _lowerCamelCase : List[str] , _lowerCamelCase : List[Any]=5 , _lowerCamelCase : Dict=None ) -> Dict: # Cap top_k if there are targets if target_ids is not None and target_ids.shape[0] < top_k: __magic_name__ = target_ids.shape[0] __magic_name__ = model_outputs["input_ids"][0] __magic_name__ = model_outputs["logits"] if self.framework == "tf": __magic_name__ = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] __magic_name__ = outputs.numpy() __magic_name__ = outputs[0, masked_index, :] __magic_name__ = stable_softmax(_lowerCamelCase , axis=-1 ) if target_ids is not None: __magic_name__ = tf.gather_nd(tf.squeeze(_lowerCamelCase , 0 ) , target_ids.reshape(-1 , 1 ) ) __magic_name__ = tf.expand_dims(_lowerCamelCase , 0 ) __magic_name__ = tf.math.top_k(_lowerCamelCase , k=_lowerCamelCase ) __magic_name__ , __magic_name__ = topk.values.numpy(), topk.indices.numpy() else: __magic_name__ = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=_lowerCamelCase ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample __magic_name__ = outputs[0, masked_index, :] __magic_name__ = logits.softmax(dim=-1 ) if target_ids is not None: __magic_name__ = probs[..., target_ids] __magic_name__ , __magic_name__ = probs.topk(_lowerCamelCase ) __magic_name__ = [] __magic_name__ = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist() ) ): __magic_name__ = [] for v, p in zip(_values , _predictions ): # Copy is important since we're going to modify this array in place __magic_name__ = input_ids.numpy().copy() if target_ids is not None: __magic_name__ = target_ids[p].tolist() __magic_name__ = p # Filter padding out: __magic_name__ = tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back __magic_name__ = self.tokenizer.decode(_lowerCamelCase , skip_special_tokens=_lowerCamelCase ) __magic_name__ = {"score": v, "token": p, "token_str": self.tokenizer.decode([p] ), "sequence": sequence} row.append(_lowerCamelCase ) result.append(_lowerCamelCase ) if single_mask: return result[0] return result def __A ( self : List[Any] , _lowerCamelCase : Any , _lowerCamelCase : List[Any]=None ) -> List[str]: if isinstance(_lowerCamelCase , _lowerCamelCase ): __magic_name__ = [targets] try: __magic_name__ = self.tokenizer.get_vocab() except Exception: __magic_name__ = {} __magic_name__ = [] for target in targets: __magic_name__ = vocab.get(_lowerCamelCase , _lowerCamelCase ) if id_ is None: __magic_name__ = self.tokenizer( _lowerCamelCase , add_special_tokens=_lowerCamelCase , return_attention_mask=_lowerCamelCase , return_token_type_ids=_lowerCamelCase , max_length=1 , truncation=_lowerCamelCase , )["input_ids"] if len(_lowerCamelCase ) == 0: logger.warning( f'The specified target token `{target}` does not exist in the model vocabulary. ' "We cannot replace it with anything meaningful, ignoring it" ) continue __magic_name__ = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( f'The specified target token `{target}` does not exist in the model vocabulary. ' f'Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`.' ) target_ids.append(id_ ) __magic_name__ = list(set(_lowerCamelCase ) ) if len(_lowerCamelCase ) == 0: raise ValueError("At least one target must be provided when passed." ) __magic_name__ = np.array(_lowerCamelCase ) return target_ids def __A ( self : Optional[Any] , _lowerCamelCase : Any=None , _lowerCamelCase : int=None ) -> Tuple: __magic_name__ = {} if targets is not None: __magic_name__ = self.get_target_ids(_lowerCamelCase , _lowerCamelCase ) __magic_name__ = target_ids if top_k is not None: __magic_name__ = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( "fill-mask" , self.model.base_model_prefix , "The tokenizer does not define a `mask_token`." ) return {}, {}, postprocess_params def __call__( self : int , _lowerCamelCase : Any , *_lowerCamelCase : str , **_lowerCamelCase : int ) -> Optional[int]: __magic_name__ = super().__call__(_lowerCamelCase , **_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) and len(_lowerCamelCase ) == 1: return outputs[0] return outputs
664
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig snake_case__ = { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/config.json''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/config.json''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/config.json''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/config.json''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/config.json''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/config.json''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json''', } class lowerCAmelCase_ ( _a): lowerCamelCase_ = 'albert' def __init__( self : Any , __A : Optional[int]=30000 , __A : List[str]=128 , __A : int=4096 , __A : Any=12 , __A : Union[str, Any]=1 , __A : Optional[int]=64 , __A : Dict=16384 , __A : List[str]=1 , __A : Any="gelu_new" , __A : List[Any]=0 , __A : str=0 , __A : List[str]=512 , __A : Optional[Any]=2 , __A : Tuple=0.02 , __A : int=1E-12 , __A : str=0.1 , __A : Optional[Any]="absolute" , __A : Tuple=0 , __A : str=2 , __A : Union[str, Any]=3 , **__A : Union[str, Any] , ) ->str: """simple docstring""" super().__init__(pad_token_id=__A , bos_token_id=__A , eos_token_id=__A , **__A ) a__ :Tuple = vocab_size a__ :Dict = embedding_size a__ :Union[str, Any] = hidden_size a__ :int = num_hidden_layers a__ :List[Any] = num_hidden_groups a__ :str = num_attention_heads a__ :Optional[Any] = inner_group_num a__ :Any = hidden_act a__ :Optional[int] = intermediate_size a__ :Optional[Any] = hidden_dropout_prob a__ :Optional[int] = attention_probs_dropout_prob a__ :int = max_position_embeddings a__ :List[Any] = type_vocab_size a__ :Dict = initializer_range a__ :Optional[int] = layer_norm_eps a__ :Optional[Any] = classifier_dropout_prob a__ :Optional[Any] = position_embedding_type class lowerCAmelCase_ ( _a): @property def _snake_case ( self : Optional[int] ) ->Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": a__ :List[Any] = {0: "batch", 1: "choice", 2: "sequence"} else: a__ :Dict = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
719
import sys from collections import defaultdict class lowerCAmelCase_ : def __init__( self : Optional[int] ) ->Any: """simple docstring""" a__ :Optional[Any] = [] def _snake_case ( self : Optional[Any] , __A : List[Any] ) ->List[str]: """simple docstring""" return self.node_position[vertex] def _snake_case ( self : Optional[Any] , __A : str , __A : Any ) ->Dict: """simple docstring""" a__ :Dict = pos def _snake_case ( self : str , __A : Union[str, Any] , __A : Union[str, Any] , __A : Optional[Any] , __A : Optional[int] ) ->List[Any]: """simple docstring""" if start > size // 2 - 1: return else: if 2 * start + 2 >= size: a__ :str = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: a__ :Optional[int] = 2 * start + 1 else: a__ :List[Any] = 2 * start + 2 if heap[smallest_child] < heap[start]: a__ , a__ :Optional[Any] = heap[smallest_child], positions[smallest_child] a__ , a__ :int = ( heap[start], positions[start], ) a__ , a__ :List[Any] = temp, tempa a__ :Any = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , __A ) self.top_to_bottom(__A , __A , __A , __A ) def _snake_case ( self : List[str] , __A : Any , __A : List[str] , __A : Any , __A : str ) ->Optional[Any]: """simple docstring""" a__ :Optional[Any] = position[index] while index != 0: a__ :str = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: a__ :int = heap[parent] a__ :Optional[Any] = position[parent] self.set_position(position[parent] , __A ) else: a__ :List[Any] = val a__ :List[Any] = temp self.set_position(__A , __A ) break a__ :Union[str, Any] = parent else: a__ :int = val a__ :Dict = temp self.set_position(__A , 0 ) def _snake_case ( self : Tuple , __A : int , __A : int ) ->Union[str, Any]: """simple docstring""" a__ :Tuple = len(__A ) // 2 - 1 for i in range(__A , -1 , -1 ): self.top_to_bottom(__A , __A , len(__A ) , __A ) def _snake_case ( self : List[Any] , __A : List[Any] , __A : int ) ->Optional[Any]: """simple docstring""" a__ :Any = positions[0] a__ :str = sys.maxsize self.top_to_bottom(__A , 0 , len(__A ) , __A ) return temp def lowerCamelCase__ ( a : Any ) -> Union[str, Any]: """simple docstring""" a__ :Tuple = Heap() a__ :List[Any] = [0] * len(a ) a__ :str = [-1] * len(a ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph a__ :Any = [] # Heap of Distance of vertices from their neighboring vertex a__ :int = [] for vertex in range(len(a ) ): distance_tv.append(sys.maxsize ) positions.append(a ) heap.node_position.append(a ) a__ :Tuple = [] a__ :Any = 1 a__ :int = sys.maxsize for neighbor, distance in adjacency_list[0]: a__ :int = 0 a__ :List[str] = distance heap.heapify(a , a ) for _ in range(1 , len(a ) ): a__ :Dict = heap.delete_minimum(a , a ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) a__ :Optional[int] = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(a )] ): a__ :List[str] = distance heap.bottom_to_top( a , heap.get_position(a ) , a , a ) a__ :str = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > snake_case__ = int(input('''Enter number of edges: ''').strip()) snake_case__ = defaultdict(list) for _ in range(edges_number): snake_case__ = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
373
0
'''simple docstring''' def __snake_case ( SCREAMING_SNAKE_CASE_ : str ) -> Optional[int]: """simple docstring""" return "".join(chr(ord(snake_case__ ) - 32 ) if '''a''' <= char <= '''z''' else char for char in word ) if __name__ == "__main__": from doctest import testmod testmod()
51
'''simple docstring''' def _A ( snake_case__ : list[int] , snake_case__ : list[int] ): snake_case__ : Tuple = len(snake_case__ ) print('''The following activities are selected:''' ) # The first activity is always selected snake_case__ : Optional[Any] = 0 print(snake_case__ , end=''',''' ) # Consider rest of the activities for j in range(snake_case__ ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(snake_case__ , end=''',''' ) snake_case__ : int = j if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase : List[str] = [1, 3, 0, 5, 8, 5] _lowerCAmelCase : Dict = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
261
0
import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class a ( __lowerCAmelCase ): """simple docstring""" lowerCamelCase :Optional[int] = '''microsoft/speecht5_tts''' lowerCamelCase :Optional[int] = ( '''This is a tool that reads an English text out loud. It takes an input named `text` which should contain the ''' '''text to read (in English) and returns a waveform object containing the sound.''' ) lowerCamelCase :int = '''text_reader''' lowerCamelCase :str = SpeechTaProcessor lowerCamelCase :Any = SpeechTaForTextToSpeech lowerCamelCase :int = SpeechTaHifiGan lowerCamelCase :Tuple = ['''text'''] lowerCamelCase :List[Any] = ['''audio'''] def UpperCAmelCase ( self ) -> Any: if self.post_processor is None: _A = 'microsoft/speecht5_hifigan' super().setup() def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=None ) -> Dict: _A = self.pre_processor(text=UpperCamelCase_ , return_tensors="""pt""" , truncation=UpperCamelCase_ ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError("""Datasets needs to be installed if not passing speaker embeddings.""" ) _A = load_dataset("""Matthijs/cmu-arctic-xvectors""" , split="""validation""" ) _A = torch.tensor(embeddings_dataset[73_05]["""xvector"""] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def UpperCAmelCase ( self , lowerCAmelCase_ ) -> Tuple: with torch.no_grad(): return self.model.generate_speech(**UpperCamelCase_ ) def UpperCAmelCase ( self , lowerCAmelCase_ ) -> int: with torch.no_grad(): return self.post_processor(UpperCamelCase_ ).cpu().detach()
704
def snake_case ( snake_case__ :int = 1_000_000) -> int: _A = set(range(3 , snake_case__ , 2)) primes.add(2) for p in range(3 , snake_case__ , 2): if p not in primes: continue primes.difference_update(set(range(p * p , snake_case__ , snake_case__))) _A = [float(snake_case__) for n in range(limit + 1)] for p in primes: for n in range(snake_case__ , limit + 1 , snake_case__): phi[n] *= 1 - 1 / p return int(sum(phi[2:])) if __name__ == "__main__": print(F'''{solution() = }''')
83
0
"""simple docstring""" from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax.numpy as jnp from jax import random from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .scheduling_utils_flax import FlaxSchedulerMixin @flax.struct.dataclass class __a : UpperCamelCase_ : Optional[int] = None UpperCamelCase_ : Optional[jnp.ndarray] = None UpperCamelCase_ : Optional[jnp.ndarray] = None # sigma(t_i) @classmethod def _SCREAMING_SNAKE_CASE ( cls : Any )-> Union[str, Any]: """simple docstring""" return cls() @dataclass class __a ( __UpperCAmelCase ): UpperCamelCase_ : jnp.ndarray UpperCamelCase_ : jnp.ndarray UpperCamelCase_ : KarrasVeSchedulerState class __a ( __UpperCAmelCase , __UpperCAmelCase ): @property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] )-> str: """simple docstring""" return True @register_to_config def __init__( self : List[Any] , UpperCAmelCase_ : Any = 0.02 , UpperCAmelCase_ : int = 100 , UpperCAmelCase_ : Union[str, Any] = 1.007 , UpperCAmelCase_ : Dict = 80 , UpperCAmelCase_ : Optional[int] = 0.05 , UpperCAmelCase_ : int = 50 , )-> List[Any]: """simple docstring""" pass def _SCREAMING_SNAKE_CASE ( self : Optional[int] )-> str: """simple docstring""" return KarrasVeSchedulerState.create() def _SCREAMING_SNAKE_CASE ( self : Dict , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Union[str, Any] = () )-> KarrasVeSchedulerState: """simple docstring""" UpperCamelCase = jnp.arange(0 , UpperCAmelCase_ )[::-1].copy() UpperCamelCase = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in timesteps ] return state.replace( num_inference_steps=UpperCAmelCase_ , schedule=jnp.array(UpperCAmelCase_ , dtype=jnp.floataa ) , timesteps=UpperCAmelCase_ , ) def _SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[int] , )-> Tuple[jnp.ndarray, float]: """simple docstring""" if self.config.s_min <= sigma <= self.config.s_max: UpperCamelCase = min(self.config.s_churn / state.num_inference_steps , 2**0.5 - 1 ) else: UpperCamelCase = 0 # sample eps ~ N(0, S_noise^2 * I) UpperCamelCase = random.split(UpperCAmelCase_ , num=1 ) UpperCamelCase = self.config.s_noise * random.normal(key=UpperCAmelCase_ , shape=sample.shape ) UpperCamelCase = sigma + gamma * sigma UpperCamelCase = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : int , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int] = True , )-> Union[FlaxKarrasVeOutput, Tuple]: """simple docstring""" UpperCamelCase = sample_hat + sigma_hat * model_output UpperCamelCase = (sample_hat - pred_original_sample) / sigma_hat UpperCamelCase = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=UpperCAmelCase_ , derivative=UpperCAmelCase_ , state=UpperCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] = True , )-> Union[FlaxKarrasVeOutput, Tuple]: """simple docstring""" UpperCamelCase = sample_prev + sigma_prev * model_output UpperCamelCase = (sample_prev - pred_original_sample) / sigma_prev UpperCamelCase = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=UpperCAmelCase_ , derivative=UpperCAmelCase_ , state=UpperCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[Any] )-> int: """simple docstring""" raise NotImplementedError()
554
from __future__ import annotations import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTForImageClassification, TFViTModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class A__ : """simple docstring""" def __init__( self , lowercase , lowercase=13 , lowercase=30 , lowercase=2 , lowercase=3 , lowercase=True , lowercase=True , lowercase=32 , lowercase=2 , lowercase=4 , lowercase=37 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=10 , lowercase=0.02 , lowercase=3 , lowercase=None , ) -> Optional[Any]: '''simple docstring''' a__ : Optional[int] = parent a__ : Any = batch_size a__ : Tuple = image_size a__ : Optional[Any] = patch_size a__ : Optional[Any] = num_channels a__ : Dict = is_training a__ : Optional[int] = use_labels a__ : Optional[Any] = hidden_size a__ : Dict = num_hidden_layers a__ : Union[str, Any] = num_attention_heads a__ : Optional[Any] = intermediate_size a__ : Dict = hidden_act a__ : Tuple = hidden_dropout_prob a__ : Any = attention_probs_dropout_prob a__ : List[str] = type_sequence_label_size a__ : Tuple = initializer_range a__ : Any = scope # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) a__ : str = (image_size // patch_size) ** 2 a__ : Union[str, Any] = num_patches + 1 def __lowercase ( self) -> Tuple: '''simple docstring''' a__ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) a__ : List[str] = None if self.use_labels: a__ : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size) a__ : Dict = self.get_config() return config, pixel_values, labels def __lowercase ( self) -> int: '''simple docstring''' return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowercase , initializer_range=self.initializer_range , ) def __lowercase ( self , lowercase , lowercase , lowercase) -> Tuple: '''simple docstring''' a__ : Union[str, Any] = TFViTModel(config=lowercase) a__ : int = model(lowercase , training=lowercase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) # Test with an image with different size than the one specified in config. a__ : Optional[Any] = self.image_size // 2 a__ : List[str] = pixel_values[:, :, :image_size, :image_size] a__ : Union[str, Any] = model(lowercase , interpolate_pos_encoding=lowercase , training=lowercase) a__ : str = (image_size // self.patch_size) ** 2 + 1 self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, seq_length, self.hidden_size)) def __lowercase ( self , lowercase , lowercase , lowercase) -> Optional[Any]: '''simple docstring''' a__ : Any = self.type_sequence_label_size a__ : Dict = TFViTForImageClassification(lowercase) a__ : Tuple = model(lowercase , labels=lowercase , training=lowercase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # Test with an image with different size than the one specified in config. a__ : str = self.image_size // 2 a__ : int = pixel_values[:, :, :image_size, :image_size] a__ : List[str] = model(lowercase , interpolate_pos_encoding=lowercase , training=lowercase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # test greyscale images a__ : List[Any] = 1 a__ : Optional[int] = TFViTForImageClassification(lowercase) a__ : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) a__ : Optional[Any] = model(lowercase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def __lowercase ( self) -> Union[str, Any]: '''simple docstring''' a__ : Any = self.prepare_config_and_inputs() a__ , a__ , a__ : int = config_and_inputs a__ : Any = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class A__ ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): """simple docstring""" __A : List[Any] = (TFViTModel, TFViTForImageClassification) if is_tf_available() else () __A : Optional[int] = ( {'''feature-extraction''': TFViTModel, '''image-classification''': TFViTForImageClassification} if is_tf_available() else {} ) __A : Optional[int] = False __A : Any = False __A : Tuple = False def __lowercase ( self) -> int: '''simple docstring''' a__ : Optional[int] = TFViTModelTester(self) a__ : str = ConfigTester(self , config_class=lowercase , has_text_modality=lowercase , hidden_size=37) def __lowercase ( self) -> Optional[Any]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='ViT does not use inputs_embeds') def __lowercase ( self) -> Any: '''simple docstring''' pass @unittest.skip(reason='ViT does not use inputs_embeds') def __lowercase ( self) -> Optional[Any]: '''simple docstring''' pass def __lowercase ( self) -> Any: '''simple docstring''' a__ , a__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ : int = model_class(lowercase) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer)) a__ : int = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase , tf.keras.layers.Layer)) def __lowercase ( self) -> Dict: '''simple docstring''' a__ , a__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ : List[Any] = model_class(lowercase) a__ : Optional[int] = inspect.signature(model.call) # signature.parameters is an OrderedDict => so arg_names order is deterministic a__ : str = [*signature.parameters.keys()] a__ : Tuple = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowercase) def __lowercase ( self) -> Tuple: '''simple docstring''' a__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase) def __lowercase ( self) -> Any: '''simple docstring''' a__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase) @slow def __lowercase ( self) -> Optional[Any]: '''simple docstring''' a__ : str = TFViTModel.from_pretrained('google/vit-base-patch16-224') self.assertIsNotNone(lowercase) def A_ ( ) -> Any: a__ : Union[str, Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class A__ ( unittest.TestCase ): """simple docstring""" @cached_property def __lowercase ( self) -> int: '''simple docstring''' return ViTImageProcessor.from_pretrained('google/vit-base-patch16-224') if is_vision_available() else None @slow def __lowercase ( self) -> Optional[int]: '''simple docstring''' a__ : int = TFViTForImageClassification.from_pretrained('google/vit-base-patch16-224') a__ : Optional[int] = self.default_image_processor a__ : List[Any] = prepare_img() a__ : Any = image_processor(images=lowercase , return_tensors='tf') # forward pass a__ : Union[str, Any] = model(**lowercase) # verify the logits a__ : Any = tf.TensorShape((1, 1000)) self.assertEqual(outputs.logits.shape , lowercase) a__ : Dict = tf.constant([-0.27_44, 0.82_15, -0.08_36]) tf.debugging.assert_near(outputs.logits[0, :3] , lowercase , atol=1e-4)
302
0
'''simple docstring''' import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _lowercase ( self ): """simple docstring""" super().tearDown() gc.collect() def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) _lowerCAmelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) _lowerCAmelCase = """xvjiarui/stable-diffusion-2-inpainting""" _lowerCAmelCase , _lowerCAmelCase = FlaxStableDiffusionInpaintPipeline.from_pretrained(_lowercase , safety_checker=_lowercase ) _lowerCAmelCase = """Face of a yellow cat, high resolution, sitting on a park bench""" _lowerCAmelCase = jax.random.PRNGKey(0 ) _lowerCAmelCase = 50 _lowerCAmelCase = jax.device_count() _lowerCAmelCase = num_samples * [prompt] _lowerCAmelCase = num_samples * [init_image] _lowerCAmelCase = num_samples * [mask_image] _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = pipeline.prepare_inputs(_lowercase , _lowercase , _lowercase ) # shard inputs and rng _lowerCAmelCase = replicate(_lowercase ) _lowerCAmelCase = jax.random.split(_lowercase , jax.device_count() ) _lowerCAmelCase = shard(_lowercase ) _lowerCAmelCase = shard(_lowercase ) _lowerCAmelCase = shard(_lowercase ) _lowerCAmelCase = pipeline( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , jit=_lowercase ) _lowerCAmelCase = output.images.reshape(_lowercase , 512 , 512 , 3 ) _lowerCAmelCase = images[0, 253:256, 253:256, -1] _lowerCAmelCase = jnp.asarray(jax.device_get(image_slice.flatten() ) ) _lowerCAmelCase = jnp.array( [0.361_1307, 0.3764_9736, 0.375_7408, 0.3821_3953, 0.3929_5167, 0.384_1631, 0.4155_4978, 0.413_7475, 0.421_7084] ) print(F'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
162
'''simple docstring''' import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self , _lowercase , _lowercase=7 , _lowercase=3 , _lowercase=18 , _lowercase=30 , _lowercase=400 , _lowercase=True , _lowercase=None , _lowercase=True , ): """simple docstring""" _lowerCAmelCase = size if size is not None else {"""height""": 18, """width""": 18} _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = num_channels _lowerCAmelCase = image_size _lowerCAmelCase = min_resolution _lowerCAmelCase = max_resolution _lowerCAmelCase = do_resize _lowerCAmelCase = size _lowerCAmelCase = do_normalize def _lowercase ( self ): """simple docstring""" return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.8866_4436_3403_3203, 0.6618_8293_6954_4983, 0.3891_7464_0178_6804], [-0.6042_5591_4688_1104, -0.0_2295_0088_6052_8469, 0.5423_7973_6900_3296], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' _lowercase : Dict = ImageGPTImageProcessor if is_vision_available() else None def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = ImageGPTImageProcessingTester(self ) @property def _lowercase ( self ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowercase , """clusters""" ) ) self.assertTrue(hasattr(_lowercase , """do_resize""" ) ) self.assertTrue(hasattr(_lowercase , """size""" ) ) self.assertTrue(hasattr(_lowercase , """do_normalize""" ) ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) _lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) _lowerCAmelCase = json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(_lowercase , obj[key] ) ) else: self.assertEqual(obj[key] , _lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _lowerCAmelCase = os.path.join(_lowercase , """image_processor.json""" ) image_processor_first.to_json_file(_lowercase ) _lowerCAmelCase = self.image_processing_class.from_json_file(_lowercase ).to_dict() _lowerCAmelCase = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(_lowercase , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , _lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(_lowercase ) _lowerCAmelCase = self.image_processing_class.from_pretrained(_lowercase ).to_dict() _lowerCAmelCase = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(_lowercase , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , _lowercase ) @unittest.skip("""ImageGPT requires clusters at initialization""" ) def _lowercase ( self ): """simple docstring""" pass def A (): _lowerCAmelCase = load_dataset("""hf-internal-testing/fixtures_image_utils""" , split="""test""" ) _lowerCAmelCase = Image.open(dataset[4]["""file"""] ) _lowerCAmelCase = Image.open(dataset[5]["""file"""] ) _lowerCAmelCase = [imagea, imagea] return images @require_vision @require_torch class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = ImageGPTImageProcessor.from_pretrained("""openai/imagegpt-small""" ) _lowerCAmelCase = prepare_images() # test non-batched _lowerCAmelCase = image_processing(images[0] , return_tensors="""pt""" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (1, 1_024) ) _lowerCAmelCase = [306, 191, 191] self.assertEqual(encoding.input_ids[0, :3].tolist() , _lowercase ) # test batched _lowerCAmelCase = image_processing(_lowercase , return_tensors="""pt""" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (2, 1_024) ) _lowerCAmelCase = [303, 13, 13] self.assertEqual(encoding.input_ids[1, -3:].tolist() , _lowercase )
162
1
'''simple docstring''' import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class a__ ( a_ ): '''simple docstring''' def lowerCAmelCase ( self : Optional[int] , lowerCAmelCase_ : str ) -> Any: with open(lowerCAmelCase_ , encoding='utf-8' ) as input_file: __A= re.compile(r'(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)' ) __A= input_file.read() __A= regexp.search(lowerCAmelCase_ ) return match def lowerCAmelCase ( self : List[str] , lowerCAmelCase_ : str ) -> Any: with open(lowerCAmelCase_ , encoding='utf-8' ) as input_file: __A= re.compile(r'#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()' , re.DOTALL ) __A= input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` __A= regexp.finditer(lowerCAmelCase_ ) __A= [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def lowerCAmelCase ( self : str ) -> Optional[int]: __A= Path('./datasets' ) __A= list(dataset_paths.absolute().glob('**/*.py' ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(lowerCAmelCase_ ) ): raise AssertionError(F"""open(...) must use utf-8 encoding in {dataset}""" ) def lowerCAmelCase ( self : Any ) -> Optional[int]: __A= Path('./datasets' ) __A= list(dataset_paths.absolute().glob('**/*.py' ) ) for dataset in dataset_files: if self._no_print_statements(str(lowerCAmelCase_ ) ): raise AssertionError(F"""print statement found in {dataset}. Use datasets.logger/logging instead.""" )
186
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available, is_torch_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, is_pt_tf_cross_test, slow if is_tf_available(): from transformers import ( AutoConfig, BertConfig, GPTaConfig, TaConfig, TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST if is_torch_available(): from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelWithLMHead, BertForMaskedLM, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertModel, GPTaLMHeadModel, RobertaForMaskedLM, TaForConditionalGeneration, ) @is_pt_tf_cross_test class a__ ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase ( self : List[str] ) -> List[Any]: # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: __A= AutoConfig.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) __A= TFAutoModel.from_pretrained(lowerCAmelCase_ , from_pt=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) __A= AutoModel.from_pretrained(lowerCAmelCase_ , from_tf=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) @slow def lowerCAmelCase ( self : Tuple ) -> Optional[Any]: # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: __A= AutoConfig.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) __A= TFAutoModelForPreTraining.from_pretrained(lowerCAmelCase_ , from_pt=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) __A= AutoModelForPreTraining.from_pretrained(lowerCAmelCase_ , from_tf=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) @slow def lowerCAmelCase ( self : int ) -> Optional[int]: for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A= AutoConfig.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) __A= TFAutoModelForCausalLM.from_pretrained(lowerCAmelCase_ , from_pt=lowerCAmelCase_ ) __A, __A= TFAutoModelForCausalLM.from_pretrained( lowerCAmelCase_ , output_loading_info=lowerCAmelCase_ , from_pt=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) __A= AutoModelForCausalLM.from_pretrained(lowerCAmelCase_ , from_tf=lowerCAmelCase_ ) __A, __A= AutoModelForCausalLM.from_pretrained( lowerCAmelCase_ , output_loading_info=lowerCAmelCase_ , from_tf=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) @slow def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A= AutoConfig.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) __A= TFAutoModelWithLMHead.from_pretrained(lowerCAmelCase_ , from_pt=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) __A= AutoModelWithLMHead.from_pretrained(lowerCAmelCase_ , from_tf=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) @slow def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]: for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A= AutoConfig.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) __A= TFAutoModelForMaskedLM.from_pretrained(lowerCAmelCase_ , from_pt=lowerCAmelCase_ ) __A, __A= TFAutoModelForMaskedLM.from_pretrained( lowerCAmelCase_ , output_loading_info=lowerCAmelCase_ , from_pt=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) __A= AutoModelForMaskedLM.from_pretrained(lowerCAmelCase_ , from_tf=lowerCAmelCase_ ) __A, __A= AutoModelForMaskedLM.from_pretrained( lowerCAmelCase_ , output_loading_info=lowerCAmelCase_ , from_tf=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) @slow def lowerCAmelCase ( self : Tuple ) -> Dict: for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A= AutoConfig.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) __A= TFAutoModelForSeqaSeqLM.from_pretrained(lowerCAmelCase_ , from_pt=lowerCAmelCase_ ) __A, __A= TFAutoModelForSeqaSeqLM.from_pretrained( lowerCAmelCase_ , output_loading_info=lowerCAmelCase_ , from_pt=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) __A= AutoModelForSeqaSeqLM.from_pretrained(lowerCAmelCase_ , from_tf=lowerCAmelCase_ ) __A, __A= AutoModelForSeqaSeqLM.from_pretrained( lowerCAmelCase_ , output_loading_info=lowerCAmelCase_ , from_tf=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) @slow def lowerCAmelCase ( self : Optional[Any] ) -> str: # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: __A= AutoConfig.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) __A= TFAutoModelForSequenceClassification.from_pretrained(lowerCAmelCase_ , from_pt=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) __A= AutoModelForSequenceClassification.from_pretrained(lowerCAmelCase_ , from_tf=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) @slow def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: __A= AutoConfig.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) __A= TFAutoModelForQuestionAnswering.from_pretrained(lowerCAmelCase_ , from_pt=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) __A= AutoModelForQuestionAnswering.from_pretrained(lowerCAmelCase_ , from_tf=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) def lowerCAmelCase ( self : int ) -> List[str]: __A= TFAutoModelWithLMHead.from_pretrained(lowerCAmelCase_ , from_pt=lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=lowerCAmelCase_ ) , 14_410 ) __A= AutoModelWithLMHead.from_pretrained(lowerCAmelCase_ , from_tf=lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=lowerCAmelCase_ ) , 14_410 ) def lowerCAmelCase ( self : Optional[Any] ) -> Tuple: __A= TFAutoModelWithLMHead.from_pretrained(lowerCAmelCase_ , from_pt=lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=lowerCAmelCase_ ) , 14_410 ) __A= AutoModelWithLMHead.from_pretrained(lowerCAmelCase_ , from_tf=lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=lowerCAmelCase_ ) , 14_410 )
186
1
'''simple docstring''' import collections import os import re from pathlib import Path __UpperCAmelCase = 'src/transformers' # Matches is_xxx_available() __UpperCAmelCase = re.compile(r'is\_([a-z_]*)_available()') # Catches a one-line _import_struct = {xxx} __UpperCAmelCase = re.compile(r'^_import_structure\s+=\s+\{([^\}]+)\}') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] __UpperCAmelCase = re.compile(r'\s+"\S*":\s+\[([^\]]*)\]') # Catches a line if not is_foo_available __UpperCAmelCase = re.compile(r'^\s*if\s+not\s+is\_[a-z_]*\_available\(\)') # Catches a line _import_struct["bla"].append("foo") __UpperCAmelCase = re.compile(r'^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] __UpperCAmelCase = re.compile(r'^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]') # Catches a line with an object between quotes and a comma: "MyModel", __UpperCAmelCase = re.compile(r'^\s+"([^"]+)",') # Catches a line with objects between brackets only: ["foo", "bar"], __UpperCAmelCase = re.compile(r'^\s+\[([^\]]+)\]') # Catches a line with from foo import bar, bla, boo __UpperCAmelCase = re.compile(r'\s+from\s+\S*\s+import\s+([^\(\s].*)\n') # Catches a line with try: __UpperCAmelCase = re.compile(r'^\s*try:') # Catches a line with else: __UpperCAmelCase = re.compile(r'^\s*else:') def SCREAMING_SNAKE_CASE_ ( snake_case_ : Union[str, Any] ) -> Dict: if _re_test_backend.search(snake_case_ ) is None: return None SCREAMING_SNAKE_CASE : Optional[Any] = [b[0] for b in _re_backend.findall(snake_case_ )] backends.sort() return "_and_".join(snake_case_ ) def SCREAMING_SNAKE_CASE_ ( snake_case_ : Optional[Any] ) -> List[Any]: with open(snake_case_ , 'r' , encoding='utf-8' , newline='\n' ) as f: SCREAMING_SNAKE_CASE : List[str] = f.readlines() SCREAMING_SNAKE_CASE : Optional[Any] = 0 while line_index < len(snake_case_ ) and not lines[line_index].startswith('_import_structure = {' ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(snake_case_ ): return None # First grab the objects without a specific backend in _import_structure SCREAMING_SNAKE_CASE : Tuple = [] while not lines[line_index].startswith('if TYPE_CHECKING' ) and find_backend(lines[line_index] ) is None: SCREAMING_SNAKE_CASE : Optional[Any] = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(snake_case_ ): SCREAMING_SNAKE_CASE : Dict = _re_one_line_import_struct.search(snake_case_ ).groups()[0] SCREAMING_SNAKE_CASE : Union[str, Any] = re.findall(R'\[([^\]]+)\]' , snake_case_ ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(', ' )] ) line_index += 1 continue SCREAMING_SNAKE_CASE : Union[str, Any] = _re_import_struct_key_value.search(snake_case_ ) if single_line_import_search is not None: SCREAMING_SNAKE_CASE : Union[str, Any] = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(', ' ) if len(snake_case_ ) > 0] objects.extend(snake_case_ ) elif line.startswith(' ' * 8 + '"' ): objects.append(line[9:-3] ) line_index += 1 SCREAMING_SNAKE_CASE : List[str] = {'none': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('if TYPE_CHECKING' ): # If the line is an if not is_backend_available, we grab all objects associated. SCREAMING_SNAKE_CASE : List[str] = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: SCREAMING_SNAKE_CASE : Optional[Any] = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 SCREAMING_SNAKE_CASE : Optional[Any] = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 4 ): SCREAMING_SNAKE_CASE : Optional[int] = lines[line_index] if _re_import_struct_add_one.search(snake_case_ ) is not None: objects.append(_re_import_struct_add_one.search(snake_case_ ).groups()[0] ) elif _re_import_struct_add_many.search(snake_case_ ) is not None: SCREAMING_SNAKE_CASE : Tuple = _re_import_struct_add_many.search(snake_case_ ).groups()[0].split(', ' ) SCREAMING_SNAKE_CASE : List[str] = [obj[1:-1] for obj in imports if len(snake_case_ ) > 0] objects.extend(snake_case_ ) elif _re_between_brackets.search(snake_case_ ) is not None: SCREAMING_SNAKE_CASE : str = _re_between_brackets.search(snake_case_ ).groups()[0].split(', ' ) SCREAMING_SNAKE_CASE : str = [obj[1:-1] for obj in imports if len(snake_case_ ) > 0] objects.extend(snake_case_ ) elif _re_quote_object.search(snake_case_ ) is not None: objects.append(_re_quote_object.search(snake_case_ ).groups()[0] ) elif line.startswith(' ' * 8 + '"' ): objects.append(line[9:-3] ) elif line.startswith(' ' * 12 + '"' ): objects.append(line[13:-3] ) line_index += 1 SCREAMING_SNAKE_CASE : Any = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend SCREAMING_SNAKE_CASE : int = [] while ( line_index < len(snake_case_ ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith('else' ) ): SCREAMING_SNAKE_CASE : str = lines[line_index] SCREAMING_SNAKE_CASE : List[Any] = _re_import.search(snake_case_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 8 ): objects.append(line[8:-2] ) line_index += 1 SCREAMING_SNAKE_CASE : Any = {'none': objects} # Let's continue with backend-specific objects while line_index < len(snake_case_ ): # If the line is an if is_backend_available, we grab all objects associated. SCREAMING_SNAKE_CASE : str = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: SCREAMING_SNAKE_CASE : Tuple = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 SCREAMING_SNAKE_CASE : Optional[Any] = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 8 ): SCREAMING_SNAKE_CASE : str = lines[line_index] SCREAMING_SNAKE_CASE : Optional[Any] = _re_import.search(snake_case_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 12 ): objects.append(line[12:-2] ) line_index += 1 SCREAMING_SNAKE_CASE : Tuple = objects else: line_index += 1 return import_dict_objects, type_hint_objects def SCREAMING_SNAKE_CASE_ ( snake_case_ : List[str] , snake_case_ : str ) -> Union[str, Any]: def find_duplicates(snake_case_ : List[Any] ): return [k for k, v in collections.Counter(snake_case_ ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] SCREAMING_SNAKE_CASE : Optional[Any] = [] for key in import_dict_objects.keys(): SCREAMING_SNAKE_CASE : int = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(f"""Duplicate _import_structure definitions for: {duplicate_imports}""" ) SCREAMING_SNAKE_CASE : int = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(f"""Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}""" ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): SCREAMING_SNAKE_CASE : Dict = 'base imports' if key == 'none' else f"""{key} backend""" errors.append(f"""Differences for {name}:""" ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(f""" {a} in TYPE_HINT but not in _import_structure.""" ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(f""" {a} in _import_structure but not in TYPE_HINT.""" ) return errors def SCREAMING_SNAKE_CASE_ ( ) -> str: SCREAMING_SNAKE_CASE : Optional[Any] = [] for root, _, files in os.walk(snake_case_ ): if "__init__.py" in files: SCREAMING_SNAKE_CASE : Any = os.path.join(snake_case_ , '__init__.py' ) SCREAMING_SNAKE_CASE : int = parse_init(snake_case_ ) if objects is not None: SCREAMING_SNAKE_CASE : List[Any] = analyze_results(*snake_case_ ) if len(snake_case_ ) > 0: SCREAMING_SNAKE_CASE : Optional[Any] = f"""Problem in {fname}, both halves do not define the same objects.\n{errors[0]}""" failures.append('\n'.join(snake_case_ ) ) if len(snake_case_ ) > 0: raise ValueError('\n\n'.join(snake_case_ ) ) def SCREAMING_SNAKE_CASE_ ( ) -> Optional[int]: SCREAMING_SNAKE_CASE : int = [] for path, directories, files in os.walk(snake_case_ ): for folder in directories: # Ignore private modules if folder.startswith('_' ): directories.remove(snake_case_ ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(snake_case_ ) / folder).glob('*.py' ) ) ) == 0: continue SCREAMING_SNAKE_CASE : List[str] = str((Path(snake_case_ ) / folder).relative_to(snake_case_ ) ) SCREAMING_SNAKE_CASE : List[str] = short_path.replace(os.path.sep , '.' ) submodules.append(snake_case_ ) for fname in files: if fname == "__init__.py": continue SCREAMING_SNAKE_CASE : Tuple = str((Path(snake_case_ ) / fname).relative_to(snake_case_ ) ) SCREAMING_SNAKE_CASE : int = short_path.replace('.py' , '' ).replace(os.path.sep , '.' ) if len(submodule.split('.' ) ) == 1: submodules.append(snake_case_ ) return submodules __UpperCAmelCase = [ 'convert_pytorch_checkpoint_to_tf2', 'modeling_flax_pytorch_utils', 'models.esm.openfold_utils', ] def SCREAMING_SNAKE_CASE_ ( ) -> int: # This is to make sure the transformers module imported is the one in the repo. from transformers.utils import direct_transformers_import SCREAMING_SNAKE_CASE : Union[str, Any] = direct_transformers_import(snake_case_ ) SCREAMING_SNAKE_CASE : Optional[Any] = set(transformers._import_structure.keys() ) # This contains all the base keys of the _import_structure object defined in the init, but if the user is missing # some optional dependencies, they may not have all of them. Thus we read the init to read all additions and # (potentiall re-) add them. with open(os.path.join(snake_case_ , '__init__.py' ) , 'r' ) as f: SCREAMING_SNAKE_CASE : Dict = f.read() import_structure_keys.update(set(re.findall(R'import_structure\[\"([^\"]*)\"\]' , snake_case_ ) ) ) SCREAMING_SNAKE_CASE : List[str] = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in import_structure_keys ] if len(snake_case_ ) > 0: SCREAMING_SNAKE_CASE : Any = '\n'.join(f"""- {module}""" for module in module_not_registered ) raise ValueError( 'The following submodules are not properly registed in the main init of Transformers:\n' f"""{list_of_modules}\n""" 'Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.' ) if __name__ == "__main__": check_all_inits() check_submodules()
717
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE ) class _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" A = field(default='text-classification' , metadata={'include_in_asdict_even_if_is_default': True} ) A = Features({'text': Value('string' )} ) A = Features({'labels': ClassLabel} ) A = "text" A = "labels" def __a ( self ,__SCREAMING_SNAKE_CASE ): if self.label_column not in features: raise ValueError(f"""Column {self.label_column} is not present in features.""" ) if not isinstance(features[self.label_column] ,__SCREAMING_SNAKE_CASE ): raise ValueError(f"""Column {self.label_column} is not a ClassLabel.""" ) SCREAMING_SNAKE_CASE : Optional[int] = copy.deepcopy(self ) SCREAMING_SNAKE_CASE : Optional[Any] = self.label_schema.copy() SCREAMING_SNAKE_CASE : Union[str, Any] = features[self.label_column] SCREAMING_SNAKE_CASE : int = label_schema return task_template @property def __a ( self ): return { self.text_column: "text", self.label_column: "labels", }
220
0
import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def lowerCamelCase__ ( __A :Optional[int] ): """simple docstring""" __snake_case , __snake_case = image.size __snake_case , __snake_case = (x - x % 3_2 for x in (w, h)) # resize to integer multiple of 32 __snake_case = image.resize((w, h) ,resample=PIL_INTERPOLATION["""lanczos"""] ) __snake_case = np.array(__A ).astype(np.floataa ) / 255.0 __snake_case = image[None].transpose(0 ,3 ,1 ,2 ) __snake_case = torch.from_numpy(__A ) return 2.0 * image - 1.0 class __snake_case ( snake_case__ ): """simple docstring""" def __init__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ) -> Optional[int]: """simple docstring""" super().__init__() self.register_modules(vqvae=_UpperCamelCase , unet=_UpperCamelCase , scheduler=_UpperCamelCase ) @torch.no_grad() def __call__( self , _UpperCamelCase = None , _UpperCamelCase = 1 , _UpperCamelCase = 1_00 , _UpperCamelCase = 0.0 , _UpperCamelCase = None , _UpperCamelCase = "pil" , _UpperCamelCase = True , ) -> Union[Tuple, ImagePipelineOutput]: """simple docstring""" if isinstance(_UpperCamelCase , PIL.Image.Image ): __snake_case = 1 elif isinstance(_UpperCamelCase , torch.Tensor ): __snake_case = image.shape[0] else: raise ValueError(F'`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(_UpperCamelCase )}' ) if isinstance(_UpperCamelCase , PIL.Image.Image ): __snake_case = preprocess(_UpperCamelCase ) __snake_case , __snake_case = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image __snake_case = (batch_size, self.unet.config.in_channels // 2, height, width) __snake_case = next(self.unet.parameters() ).dtype __snake_case = randn_tensor(_UpperCamelCase , generator=_UpperCamelCase , device=self.device , dtype=_UpperCamelCase ) __snake_case = image.to(device=self.device , dtype=_UpperCamelCase ) # set timesteps and move to the correct device self.scheduler.set_timesteps(_UpperCamelCase , device=self.device ) __snake_case = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler __snake_case = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __snake_case = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __snake_case = {} if accepts_eta: __snake_case = eta for t in self.progress_bar(_UpperCamelCase ): # concat latents and low resolution image in the channel dimension. __snake_case = torch.cat([latents, image] , dim=1 ) __snake_case = self.scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase ) # predict the noise residual __snake_case = self.unet(_UpperCamelCase , _UpperCamelCase ).sample # compute the previous noisy sample x_t -> x_t-1 __snake_case = self.scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , **_UpperCamelCase ).prev_sample # decode the image latents with the VQVAE __snake_case = self.vqvae.decode(_UpperCamelCase ).sample __snake_case = torch.clamp(_UpperCamelCase , -1.0 , 1.0 ) __snake_case = image / 2 + 0.5 __snake_case = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __snake_case = self.numpy_to_pil(_UpperCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_UpperCamelCase )
268
from PIL import Image def lowerCamelCase__ ( __A :Image ): """simple docstring""" __snake_case , __snake_case = image.size __snake_case = 0 __snake_case = image.load() for i in range(__A ): for j in range(__A ): __snake_case = pixels[j, i] mean += pixel mean //= width * height for j in range(__A ): for i in range(__A ): __snake_case = 2_5_5 if pixels[i, j] > mean else 0 return image if __name__ == "__main__": UpperCamelCase__ = mean_threshold(Image.open('''path_to_image''').convert('''L''')) image.save('''output_image_path''')
268
1
"""simple docstring""" from __future__ import annotations import typing from collections.abc import Iterable import numpy as np lowercase__ : int = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 lowercase__ : Optional[Any] = typing.Union[np.floataa, int, float] # noqa: UP007 def __lowercase ( _a , _a ): return np.sqrt(np.sum((np.asarray(_a ) - np.asarray(_a )) ** 2 ) ) def __lowercase ( _a , _a ): return sum((va - va) ** 2 for va, va in zip(_a , _a ) ) ** (1 / 2) if __name__ == "__main__": def __lowercase ( ): from timeit import timeit print('''Without Numpy''' ) print( timeit( '''euclidean_distance_no_np([1, 2, 3], [4, 5, 6])''' , number=10_000 , globals=globals() , ) ) print('''With Numpy''' ) print( timeit( '''euclidean_distance([1, 2, 3], [4, 5, 6])''' , number=10_000 , globals=globals() , ) ) benchmark()
485
"""simple docstring""" from argparse import ArgumentParser from datasets.commands.convert import ConvertCommand from datasets.commands.dummy_data import DummyDataCommand from datasets.commands.env import EnvironmentCommand from datasets.commands.run_beam import RunBeamCommand from datasets.commands.test import TestCommand from datasets.utils.logging import set_verbosity_info def __lowercase ( _a ): return {key.lstrip('''-''' ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )} def __lowercase ( ): snake_case_ : List[str] = ArgumentParser( '''HuggingFace Datasets CLI tool''' , usage='''datasets-cli <command> [<args>]''' , allow_abbrev=_a ) snake_case_ : List[Any] = parser.add_subparsers(help='''datasets-cli command helpers''' ) set_verbosity_info() # Register commands ConvertCommand.register_subcommand(_a ) EnvironmentCommand.register_subcommand(_a ) TestCommand.register_subcommand(_a ) RunBeamCommand.register_subcommand(_a ) DummyDataCommand.register_subcommand(_a ) # Parse args snake_case_, snake_case_ : Optional[Any] = parser.parse_known_args() if not hasattr(_a , '''func''' ): parser.print_help() exit(1 ) snake_case_ : Optional[int] = parse_unknown_args(_a ) # Run snake_case_ : Optional[int] = args.func(_a , **_a ) service.run() if __name__ == "__main__": main()
485
1
'''simple docstring''' import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class a_ (_a , unittest.TestCase ): __lowerCAmelCase : Tuple = RoCBertTokenizer __lowerCAmelCase : Optional[Any] = None __lowerCAmelCase : List[Any] = False __lowerCAmelCase : Optional[Any] = True __lowerCAmelCase : Tuple = filter_non_english def __UpperCamelCase ( self ): super().setUp() _lowerCAmelCase : Any = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """你""", """好""", """是""", """谁""", """a""", """b""", """c""", """d"""] _lowerCAmelCase : Optional[int] = {} _lowerCAmelCase : int = {} for i, value in enumerate(snake_case_ ): _lowerCAmelCase : Any = i _lowerCAmelCase : Optional[Any] = i _lowerCAmelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) _lowerCAmelCase : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""word_shape_file"""] ) _lowerCAmelCase : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""word_pronunciation_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) with open(self.word_shape_file , """w""" , encoding="""utf-8""" ) as word_shape_writer: json.dump(snake_case_ , snake_case_ , ensure_ascii=snake_case_ ) with open(self.word_pronunciation_file , """w""" , encoding="""utf-8""" ) as word_pronunciation_writer: json.dump(snake_case_ , snake_case_ , ensure_ascii=snake_case_ ) def __UpperCamelCase ( self ): _lowerCAmelCase : Tuple = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) _lowerCAmelCase : str = tokenizer.tokenize("""你好[SEP]你是谁""" ) self.assertListEqual(snake_case_ , ["""你""", """好""", """[SEP]""", """你""", """是""", """谁"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case_ ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(snake_case_ ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(snake_case_ ) , [5, 6, 2, 5, 7, 8] ) def __UpperCamelCase ( self ): _lowerCAmelCase : int = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize("""ah\u535A\u63A8zz""" ) , ["""ah""", """\u535A""", """\u63A8""", """zz"""] ) def __UpperCamelCase ( self ): _lowerCAmelCase : Dict = RoCBertBasicTokenizer(do_lower_case=snake_case_ ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""hello""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def __UpperCamelCase ( self ): _lowerCAmelCase : Optional[int] = RoCBertBasicTokenizer(do_lower_case=snake_case_ , strip_accents=snake_case_ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hällo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""h\u00E9llo"""] ) def __UpperCamelCase ( self ): _lowerCAmelCase : List[Any] = RoCBertBasicTokenizer(do_lower_case=snake_case_ , strip_accents=snake_case_ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def __UpperCamelCase ( self ): _lowerCAmelCase : List[str] = RoCBertBasicTokenizer(do_lower_case=snake_case_ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def __UpperCamelCase ( self ): _lowerCAmelCase : str = RoCBertBasicTokenizer(do_lower_case=snake_case_ ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def __UpperCamelCase ( self ): _lowerCAmelCase : int = RoCBertBasicTokenizer(do_lower_case=snake_case_ , strip_accents=snake_case_ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HäLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def __UpperCamelCase ( self ): _lowerCAmelCase : str = RoCBertBasicTokenizer(do_lower_case=snake_case_ , strip_accents=snake_case_ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HaLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def __UpperCamelCase ( self ): _lowerCAmelCase : Union[str, Any] = RoCBertBasicTokenizer(do_lower_case=snake_case_ , never_split=["""[UNK]"""] ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? [UNK]""" ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?""", """[UNK]"""] ) def __UpperCamelCase ( self ): _lowerCAmelCase : List[str] = ["""[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing"""] _lowerCAmelCase : List[str] = {} for i, token in enumerate(snake_case_ ): _lowerCAmelCase : List[Any] = i _lowerCAmelCase : Dict = RoCBertWordpieceTokenizer(vocab=snake_case_ , unk_token="""[UNK]""" ) self.assertListEqual(tokenizer.tokenize("""""" ) , [] ) self.assertListEqual(tokenizer.tokenize("""unwanted running""" ) , ["""un""", """##want""", """##ed""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.tokenize("""unwantedX running""" ) , ["""[UNK]""", """runn""", """##ing"""] ) def __UpperCamelCase ( self ): self.assertTrue(_is_whitespace(""" """ ) ) self.assertTrue(_is_whitespace("""\t""" ) ) self.assertTrue(_is_whitespace("""\r""" ) ) self.assertTrue(_is_whitespace("""\n""" ) ) self.assertTrue(_is_whitespace("""\u00A0""" ) ) self.assertFalse(_is_whitespace("""A""" ) ) self.assertFalse(_is_whitespace("""-""" ) ) def __UpperCamelCase ( self ): self.assertTrue(_is_control("""\u0005""" ) ) self.assertFalse(_is_control("""A""" ) ) self.assertFalse(_is_control(""" """ ) ) self.assertFalse(_is_control("""\t""" ) ) self.assertFalse(_is_control("""\r""" ) ) def __UpperCamelCase ( self ): self.assertTrue(_is_punctuation("""-""" ) ) self.assertTrue(_is_punctuation("""$""" ) ) self.assertTrue(_is_punctuation("""`""" ) ) self.assertTrue(_is_punctuation(""".""" ) ) self.assertFalse(_is_punctuation("""A""" ) ) self.assertFalse(_is_punctuation(""" """ ) ) def __UpperCamelCase ( self ): _lowerCAmelCase : Any = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(snake_case_ ) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]] ) if self.test_rust_tokenizer: _lowerCAmelCase : str = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(snake_case_ ) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]] ) def __UpperCamelCase ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): _lowerCAmelCase : Optional[int] = self.rust_tokenizer_class.from_pretrained(snake_case_ , **snake_case_ ) _lowerCAmelCase : Tuple = f'A, naïve {tokenizer_r.mask_token} AllenNLP sentence.' _lowerCAmelCase : Optional[int] = tokenizer_r.encode_plus( snake_case_ , return_attention_mask=snake_case_ , return_token_type_ids=snake_case_ , return_offsets_mapping=snake_case_ , add_special_tokens=snake_case_ , ) _lowerCAmelCase : Dict = tokenizer_r.do_lower_case if hasattr(snake_case_ , """do_lower_case""" ) else False _lowerCAmelCase : int = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """A"""), ((1, 2), ""","""), ((3, 5), """na"""), ((5, 6), """##ï"""), ((6, 8), """##ve"""), ((9, 1_5), tokenizer_r.mask_token), ((1_6, 2_1), """Allen"""), ((2_1, 2_3), """##NL"""), ((2_3, 2_4), """##P"""), ((2_5, 3_3), """sentence"""), ((3_3, 3_4), """."""), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """a"""), ((1, 2), ""","""), ((3, 8), """naive"""), ((9, 1_5), tokenizer_r.mask_token), ((1_6, 2_1), """allen"""), ((2_1, 2_3), """##nl"""), ((2_3, 2_4), """##p"""), ((2_5, 3_3), """sentence"""), ((3_3, 3_4), """."""), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["""input_ids"""] ) ) self.assertEqual([e[0] for e in expected_results] , tokens["""offset_mapping"""] ) def __UpperCamelCase ( self ): _lowerCAmelCase : Dict = ["""的""", """人""", """有"""] _lowerCAmelCase : Dict = """""".join(snake_case_ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): _lowerCAmelCase : Dict = True _lowerCAmelCase : Dict = self.tokenizer_class.from_pretrained(snake_case_ , **snake_case_ ) _lowerCAmelCase : Optional[Any] = self.rust_tokenizer_class.from_pretrained(snake_case_ , **snake_case_ ) _lowerCAmelCase : int = tokenizer_p.encode(snake_case_ , add_special_tokens=snake_case_ ) _lowerCAmelCase : Dict = tokenizer_r.encode(snake_case_ , add_special_tokens=snake_case_ ) _lowerCAmelCase : Tuple = tokenizer_r.convert_ids_to_tokens(snake_case_ ) _lowerCAmelCase : List[str] = tokenizer_p.convert_ids_to_tokens(snake_case_ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(snake_case_ , snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) _lowerCAmelCase : str = False _lowerCAmelCase : str = self.rust_tokenizer_class.from_pretrained(snake_case_ , **snake_case_ ) _lowerCAmelCase : int = self.tokenizer_class.from_pretrained(snake_case_ , **snake_case_ ) _lowerCAmelCase : List[Any] = tokenizer_r.encode(snake_case_ , add_special_tokens=snake_case_ ) _lowerCAmelCase : Optional[Any] = tokenizer_p.encode(snake_case_ , add_special_tokens=snake_case_ ) _lowerCAmelCase : int = tokenizer_r.convert_ids_to_tokens(snake_case_ ) _lowerCAmelCase : Dict = tokenizer_p.convert_ids_to_tokens(snake_case_ ) # it is expected that only the first Chinese character is not preceded by "##". _lowerCAmelCase : Optional[Any] = [ f'##{token}' if idx != 0 else token for idx, token in enumerate(snake_case_ ) ] self.assertListEqual(snake_case_ , snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) @slow def __UpperCamelCase ( self ): _lowerCAmelCase : Any = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) _lowerCAmelCase : Optional[int] = tokenizer.encode("""你好""" , add_special_tokens=snake_case_ ) _lowerCAmelCase : Union[str, Any] = tokenizer.encode("""你是谁""" , add_special_tokens=snake_case_ ) _lowerCAmelCase : List[Any] = tokenizer.build_inputs_with_special_tokens(snake_case_ ) _lowerCAmelCase : Optional[int] = tokenizer.build_inputs_with_special_tokens(snake_case_ , snake_case_ ) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def __UpperCamelCase ( self ): _lowerCAmelCase : Optional[Any] = self.get_tokenizers(do_lower_case=snake_case_ ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): _lowerCAmelCase : int = """你好,你是谁""" _lowerCAmelCase : str = tokenizer.tokenize(snake_case_ ) _lowerCAmelCase : List[str] = tokenizer.convert_tokens_to_ids(snake_case_ ) _lowerCAmelCase : Any = tokenizer.convert_tokens_to_shape_ids(snake_case_ ) _lowerCAmelCase : int = tokenizer.convert_tokens_to_pronunciation_ids(snake_case_ ) _lowerCAmelCase : Optional[Any] = tokenizer.prepare_for_model( snake_case_ , snake_case_ , snake_case_ , add_special_tokens=snake_case_ ) _lowerCAmelCase : Dict = tokenizer.encode_plus(snake_case_ , add_special_tokens=snake_case_ ) self.assertEqual(snake_case_ , snake_case_ )
384
'''simple docstring''' import warnings from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/config.json""", # See all BART models at https://huggingface.co/models?filter=bart } class a_ (_a ): __lowerCAmelCase : List[Any] = """bart""" __lowerCAmelCase : Tuple = ["""past_key_values"""] __lowerCAmelCase : Union[str, Any] = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self , snake_case_=5_0_2_6_5 , snake_case_=1_0_2_4 , snake_case_=1_2 , snake_case_=4_0_9_6 , snake_case_=1_6 , snake_case_=1_2 , snake_case_=4_0_9_6 , snake_case_=1_6 , snake_case_=0.0 , snake_case_=0.0 , snake_case_="gelu" , snake_case_=1_0_2_4 , snake_case_=0.1 , snake_case_=0.0 , snake_case_=0.0 , snake_case_=0.02 , snake_case_=0.0 , snake_case_=False , snake_case_=True , snake_case_=3 , snake_case_=1 , snake_case_=0 , snake_case_=2 , snake_case_=True , snake_case_=2 , snake_case_=2 , **snake_case_ , ): _lowerCAmelCase : str = vocab_size _lowerCAmelCase : Optional[int] = max_position_embeddings _lowerCAmelCase : int = d_model _lowerCAmelCase : Optional[Any] = encoder_ffn_dim _lowerCAmelCase : Union[str, Any] = encoder_layers _lowerCAmelCase : int = encoder_attention_heads _lowerCAmelCase : Optional[Any] = decoder_ffn_dim _lowerCAmelCase : Any = decoder_layers _lowerCAmelCase : Tuple = decoder_attention_heads _lowerCAmelCase : Optional[Any] = dropout _lowerCAmelCase : Any = attention_dropout _lowerCAmelCase : int = activation_dropout _lowerCAmelCase : Dict = activation_function _lowerCAmelCase : Union[str, Any] = init_std _lowerCAmelCase : List[Any] = encoder_layerdrop _lowerCAmelCase : int = decoder_layerdrop _lowerCAmelCase : Optional[int] = classifier_dropout _lowerCAmelCase : Tuple = use_cache _lowerCAmelCase : List[Any] = encoder_layers _lowerCAmelCase : Optional[Any] = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( num_labels=snake_case_ , pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ , is_encoder_decoder=snake_case_ , decoder_start_token_id=snake_case_ , forced_eos_token_id=snake_case_ , **snake_case_ , ) # ensure backward compatibility for BART CNN models if self.forced_bos_token_id is None and kwargs.get("""force_bos_token_to_be_generated""" , snake_case_ ): _lowerCAmelCase : Dict = self.bos_token_id warnings.warn( f'Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ' """The config can simply be saved and uploaded again to be fixed.""" ) class a_ (_a ): @property def __UpperCamelCase ( self ): if self.task in ["default", "seq2seq-lm"]: _lowerCAmelCase : Optional[int] = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: _lowerCAmelCase : List[str] = {0: """batch"""} _lowerCAmelCase : Any = {0: """batch""", 1: """past_decoder_sequence + sequence"""} else: _lowerCAmelCase : Optional[int] = {0: """batch""", 1: """decoder_sequence"""} _lowerCAmelCase : Union[str, Any] = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(snake_case_ , direction="""inputs""" ) elif self.task == "causal-lm": # TODO: figure this case out. _lowerCAmelCase : str = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: _lowerCAmelCase , _lowerCAmelCase : Tuple = self.num_layers for i in range(snake_case_ ): _lowerCAmelCase : str = {0: """batch""", 2: """past_sequence + sequence"""} _lowerCAmelCase : int = {0: """batch""", 2: """past_sequence + sequence"""} else: _lowerCAmelCase : int = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ("""decoder_input_ids""", {0: """batch""", 1: """decoder_sequence"""}), ("""decoder_attention_mask""", {0: """batch""", 1: """decoder_sequence"""}), ] ) return common_inputs @property def __UpperCamelCase ( self ): if self.task in ["default", "seq2seq-lm"]: _lowerCAmelCase : Optional[int] = super().outputs else: _lowerCAmelCase : int = super(snake_case_ , self ).outputs if self.use_past: _lowerCAmelCase , _lowerCAmelCase : str = self.num_layers for i in range(snake_case_ ): _lowerCAmelCase : Optional[int] = {0: """batch""", 2: """past_sequence + sequence"""} _lowerCAmelCase : Any = {0: """batch""", 2: """past_sequence + sequence"""} return common_outputs def __UpperCamelCase ( self , snake_case_ , snake_case_ = -1 , snake_case_ = -1 , snake_case_ = False , snake_case_ = None , ): _lowerCAmelCase : Optional[int] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # Generate decoder inputs _lowerCAmelCase : Union[str, Any] = seq_length if not self.use_past else 1 _lowerCAmelCase : List[Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) _lowerCAmelCase : Optional[int] = {f'decoder_{name}': tensor for name, tensor in decoder_inputs.items()} _lowerCAmelCase : List[str] = dict(**snake_case_ , **snake_case_ ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch _lowerCAmelCase , _lowerCAmelCase : Optional[int] = common_inputs["""input_ids"""].shape _lowerCAmelCase : Tuple = common_inputs["""decoder_input_ids"""].shape[1] _lowerCAmelCase , _lowerCAmelCase : List[Any] = self.num_attention_heads _lowerCAmelCase : int = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) _lowerCAmelCase : List[str] = decoder_seq_length + 3 _lowerCAmelCase : int = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) _lowerCAmelCase : Optional[Any] = torch.cat( [common_inputs["""decoder_attention_mask"""], torch.ones(snake_case_ , snake_case_ )] , dim=1 ) _lowerCAmelCase : List[str] = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = self.num_layers _lowerCAmelCase : List[str] = min(snake_case_ , snake_case_ ) _lowerCAmelCase : Tuple = max(snake_case_ , snake_case_ ) - min_num_layers _lowerCAmelCase : int = """encoder""" if num_encoder_layers > num_decoder_layers else """decoder""" for _ in range(snake_case_ ): common_inputs["past_key_values"].append( ( torch.zeros(snake_case_ ), torch.zeros(snake_case_ ), torch.zeros(snake_case_ ), torch.zeros(snake_case_ ), ) ) # TODO: test this. _lowerCAmelCase : Optional[int] = encoder_shape if remaining_side_name == """encoder""" else decoder_shape for _ in range(snake_case_ , snake_case_ ): common_inputs["past_key_values"].append((torch.zeros(snake_case_ ), torch.zeros(snake_case_ )) ) return common_inputs def __UpperCamelCase ( self , snake_case_ , snake_case_ = -1 , snake_case_ = -1 , snake_case_ = False , snake_case_ = None , ): _lowerCAmelCase : Tuple = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch _lowerCAmelCase , _lowerCAmelCase : Any = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values _lowerCAmelCase : Union[str, Any] = seqlen + 2 _lowerCAmelCase , _lowerCAmelCase : Any = self.num_layers _lowerCAmelCase , _lowerCAmelCase : Optional[int] = self.num_attention_heads _lowerCAmelCase : Tuple = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) _lowerCAmelCase : Optional[Any] = common_inputs["""attention_mask"""].dtype _lowerCAmelCase : List[Any] = torch.cat( [common_inputs["""attention_mask"""], torch.ones(snake_case_ , snake_case_ , dtype=snake_case_ )] , dim=1 ) _lowerCAmelCase : Any = [ (torch.zeros(snake_case_ ), torch.zeros(snake_case_ )) for _ in range(snake_case_ ) ] return common_inputs def __UpperCamelCase ( self , snake_case_ , snake_case_ = -1 , snake_case_ = -1 , snake_case_ = False , snake_case_ = None , ): # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX _lowerCAmelCase : Optional[int] = compute_effective_axis_dimension( snake_case_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX _lowerCAmelCase : Tuple = tokenizer.num_special_tokens_to_add(snake_case_ ) _lowerCAmelCase : List[str] = compute_effective_axis_dimension( snake_case_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=snake_case_ ) # Generate dummy inputs according to compute batch and sequence _lowerCAmelCase : int = [""" """.join([tokenizer.unk_token] ) * seq_length] * batch_size _lowerCAmelCase : Tuple = dict(tokenizer(snake_case_ , return_tensors=snake_case_ ) ) return common_inputs def __UpperCamelCase ( self , snake_case_ , snake_case_ = -1 , snake_case_ = -1 , snake_case_ = False , snake_case_ = None , ): if self.task in ["default", "seq2seq-lm"]: _lowerCAmelCase : List[Any] = self._generate_dummy_inputs_for_default_and_seqaseq_lm( snake_case_ , batch_size=snake_case_ , seq_length=snake_case_ , is_pair=snake_case_ , framework=snake_case_ ) elif self.task == "causal-lm": _lowerCAmelCase : Tuple = self._generate_dummy_inputs_for_causal_lm( snake_case_ , batch_size=snake_case_ , seq_length=snake_case_ , is_pair=snake_case_ , framework=snake_case_ ) else: _lowerCAmelCase : Optional[Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( snake_case_ , batch_size=snake_case_ , seq_length=snake_case_ , is_pair=snake_case_ , framework=snake_case_ ) return common_inputs def __UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): if self.task in ["default", "seq2seq-lm"]: _lowerCAmelCase : Union[str, Any] = super()._flatten_past_key_values_(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) else: _lowerCAmelCase : Optional[Any] = super(snake_case_ , self )._flatten_past_key_values_( snake_case_ , snake_case_ , snake_case_ , snake_case_ )
384
1
import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class lowerCAmelCase_ ( unittest.TestCase ): def __init__( self : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : str=13 , UpperCAmelCase_ : Dict=7 , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Dict=99 , UpperCAmelCase_ : List[Any]=32 , UpperCAmelCase_ : Tuple=5 , UpperCAmelCase_ : List[str]=4 , UpperCAmelCase_ : Any=37 , UpperCAmelCase_ : List[Any]="gelu" , UpperCAmelCase_ : List[Any]=0.1 , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : str=512 , UpperCAmelCase_ : List[Any]=16 , UpperCAmelCase_ : List[Any]=2 , UpperCAmelCase_ : Any=0.02 , UpperCAmelCase_ : List[str]=4 , ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase : List[str] = parent _UpperCAmelCase : List[str] = batch_size _UpperCAmelCase : List[str] = seq_length _UpperCAmelCase : List[Any] = is_training _UpperCAmelCase : Tuple = use_attention_mask _UpperCAmelCase : Any = use_token_type_ids _UpperCAmelCase : Dict = use_labels _UpperCAmelCase : List[str] = vocab_size _UpperCAmelCase : Tuple = hidden_size _UpperCAmelCase : Union[str, Any] = num_hidden_layers _UpperCAmelCase : Optional[int] = num_attention_heads _UpperCAmelCase : List[Any] = intermediate_size _UpperCAmelCase : Union[str, Any] = hidden_act _UpperCAmelCase : List[Any] = hidden_dropout_prob _UpperCAmelCase : str = attention_probs_dropout_prob _UpperCAmelCase : Any = max_position_embeddings _UpperCAmelCase : List[str] = type_vocab_size _UpperCAmelCase : str = type_sequence_label_size _UpperCAmelCase : List[Any] = initializer_range _UpperCAmelCase : str = num_choices def a_ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' _UpperCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase : int = None if self.use_attention_mask: _UpperCAmelCase : Dict = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase : List[str] = None if self.use_token_type_ids: _UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase : Union[str, Any] = RobertaPreLayerNormConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase_ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def a_ ( self : Any ) -> int: '''simple docstring''' _UpperCAmelCase : Any = self.prepare_config_and_inputs() _UpperCAmelCase : int = config_and_inputs _UpperCAmelCase : List[Any] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict def a_ ( self : Optional[Any] ) -> str: '''simple docstring''' _UpperCAmelCase : List[str] = self.prepare_config_and_inputs() _UpperCAmelCase : Optional[int] = config_and_inputs _UpperCAmelCase : Tuple = True _UpperCAmelCase : str = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class lowerCAmelCase_ ( lowercase_ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = True SCREAMING_SNAKE_CASE_ : Union[str, Any] = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def a_ ( self : Dict ) -> Dict: '''simple docstring''' _UpperCAmelCase : int = FlaxRobertaPreLayerNormModelTester(self ) @slow def a_ ( self : List[Any] ) -> Dict: '''simple docstring''' for model_class_name in self.all_model_classes: _UpperCAmelCase : Dict = model_class_name.from_pretrained('''andreasmadsen/efficient_mlm_m0.40''' , from_pt=UpperCAmelCase_ ) _UpperCAmelCase : List[str] = model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCAmelCase_ ) @require_flax class lowerCAmelCase_ ( unittest.TestCase ): @slow def a_ ( self : Optional[int] ) -> str: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained('''andreasmadsen/efficient_mlm_m0.40''' , from_pt=UpperCAmelCase_ ) _UpperCAmelCase : Union[str, Any] = np.array([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] , dtype=jnp.intaa ) _UpperCAmelCase : List[str] = model(UpperCAmelCase_ )[0] _UpperCAmelCase : str = [1, 11, 50265] self.assertEqual(list(output.shape ) , UpperCAmelCase_ ) # compare the actual values for a slice. _UpperCAmelCase : str = np.array( [[[40.4_880, 18.0_199, -5.2_367], [-1.8_877, -4.0_885, 10.7_085], [-2.2_613, -5.6_110, 7.2_665]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , UpperCAmelCase_ , atol=1E-4 ) ) @slow def a_ ( self : Optional[int] ) -> int: '''simple docstring''' _UpperCAmelCase : str = FlaxRobertaPreLayerNormModel.from_pretrained('''andreasmadsen/efficient_mlm_m0.40''' , from_pt=UpperCAmelCase_ ) _UpperCAmelCase : List[str] = np.array([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] , dtype=jnp.intaa ) _UpperCAmelCase : List[str] = model(UpperCAmelCase_ )[0] # compare the actual values for a slice. _UpperCAmelCase : Any = np.array( [[[0.0_208, -0.0_356, 0.0_237], [-0.1_569, -0.0_411, -0.2_626], [0.1_879, 0.0_125, -0.0_089]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , UpperCAmelCase_ , atol=1E-4 ) )
704
from typing import List from .keymap import KEYMAP, get_character def _A ( _UpperCamelCase ): def decorator(_UpperCamelCase ): _UpperCAmelCase : Optional[int] = getattr(_UpperCamelCase , '''handle_key''' , [] ) handle += [key] setattr(_UpperCamelCase , '''handle_key''' , _UpperCamelCase ) return func return decorator def _A ( *_UpperCamelCase ): def decorator(_UpperCamelCase ): _UpperCAmelCase : Any = getattr(_UpperCamelCase , '''handle_key''' , [] ) handle += keys setattr(_UpperCamelCase , '''handle_key''' , _UpperCamelCase ) return func return decorator class lowerCAmelCase_ ( lowercase_ ): def __new__( cls : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase : Optional[int] = super().__new__(cls , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) if not hasattr(UpperCAmelCase_ , '''key_handler''' ): setattr(UpperCAmelCase_ , '''key_handler''' , {} ) setattr(UpperCAmelCase_ , '''handle_input''' , KeyHandler.handle_input ) for value in attrs.values(): _UpperCAmelCase : List[str] = getattr(UpperCAmelCase_ , '''handle_key''' , [] ) for key in handled_keys: _UpperCAmelCase : Optional[Any] = value return new_cls @staticmethod def a_ ( cls : Optional[Any] ) -> int: '''simple docstring''' _UpperCAmelCase : Optional[Any] = get_character() if char != KEYMAP["undefined"]: _UpperCAmelCase : str = ord(UpperCAmelCase_ ) _UpperCAmelCase : str = cls.key_handler.get(UpperCAmelCase_ ) if handler: _UpperCAmelCase : Optional[int] = char return handler(cls ) else: return None def _A ( cls ): return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
416
0
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class _A : def __init__( self : int , _A : Optional[int] , _A : Optional[int]=13 , _A : Union[str, Any]=10 , _A : Tuple=3 , _A : Optional[int]=2 , _A : Optional[int]=2 , _A : List[Any]=True , _A : int=True , _A : Tuple=32 , _A : str=5 , _A : List[Any]=4 , _A : Tuple=37 , _A : Any="gelu" , _A : List[str]=0.1 , _A : List[Any]=0.1 , _A : Union[str, Any]=10 , _A : Optional[int]=0.02 , _A : List[Any]="divided_space_time" , _A : List[Any]=None , ) -> str: """simple docstring""" lowercase : Optional[int] = parent lowercase : List[Any] = batch_size lowercase : int = image_size lowercase : Optional[Any] = num_channels lowercase : Optional[int] = patch_size lowercase : Tuple = num_frames lowercase : List[Any] = is_training lowercase : List[Any] = use_labels lowercase : int = hidden_size lowercase : List[str] = num_hidden_layers lowercase : List[Any] = num_attention_heads lowercase : int = intermediate_size lowercase : List[Any] = hidden_act lowercase : List[Any] = hidden_dropout_prob lowercase : int = attention_probs_dropout_prob lowercase : Tuple = attention_type lowercase : List[str] = initializer_range lowercase : Union[str, Any] = scope lowercase : str = num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token lowercase : Optional[Any] = (image_size // patch_size) ** 2 lowercase : Dict = (num_frames) * self.num_patches_per_frame + 1 def __a ( self : Dict ) -> Optional[int]: """simple docstring""" lowercase : Optional[Any] = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) lowercase : Union[str, Any] = None if self.use_labels: lowercase : str = ids_tensor([self.batch_size] , self.num_labels ) lowercase : int = self.get_config() return config, pixel_values, labels def __a ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" lowercase : Union[str, Any] = TimesformerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , ) lowercase : int = self.num_labels return config def __a ( self : str , _A : List[str] , _A : Optional[int] , _A : Any ) -> Tuple: """simple docstring""" lowercase : Optional[Any] = TimesformerModel(config=_A ) model.to(_A ) model.eval() lowercase : Dict = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self : Union[str, Any] , _A : Optional[Any] , _A : Any , _A : Optional[Any] ) -> List[str]: """simple docstring""" lowercase : Dict = TimesformerForVideoClassification(_A ) model.to(_A ) model.eval() lowercase : int = model(_A ) # verify the logits shape lowercase : Tuple = torch.Size((self.batch_size, self.num_labels) ) self.parent.assertEqual(result.logits.shape , _A ) def __a ( self : Optional[int] ) -> Any: """simple docstring""" lowercase : Optional[int] = self.prepare_config_and_inputs() lowercase , lowercase , lowercase : Optional[Any] = config_and_inputs lowercase : Optional[Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _A ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): _UpperCamelCase : Any = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () _UpperCamelCase : int = ( {'''feature-extraction''': TimesformerModel, '''video-classification''': TimesformerForVideoClassification} if is_torch_available() else {} ) _UpperCamelCase : Optional[int] = False _UpperCamelCase : str = False _UpperCamelCase : int = False _UpperCamelCase : Optional[Any] = False def __a ( self : Dict ) -> str: """simple docstring""" lowercase : str = TimesformerModelTester(self ) lowercase : List[Any] = ConfigTester( self , config_class=_A , has_text_modality=_A , hidden_size=37 ) def __a ( self : List[str] , _A : Any , _A : Any , _A : Tuple=False ) -> Dict: """simple docstring""" lowercase : Union[str, Any] = copy.deepcopy(_A ) if return_labels: if model_class in get_values(_A ): lowercase : Any = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_A ) return inputs_dict def __a ( self : Any ) -> int: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''TimeSformer does not use inputs_embeds''' ) def __a ( self : Tuple ) -> Optional[int]: """simple docstring""" pass def __a ( self : List[str] ) -> List[Any]: """simple docstring""" lowercase , lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase : List[str] = model_class(_A ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_A , nn.Linear ) ) def __a ( self : List[Any] ) -> Dict: """simple docstring""" lowercase , lowercase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase : int = model_class(_A ) lowercase : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase : Tuple = [*signature.parameters.keys()] lowercase : Tuple = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _A ) def __a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def __a ( self : str ) -> Optional[Any]: """simple docstring""" lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*_A ) @slow def __a ( self : Dict ) -> List[Any]: """simple docstring""" for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase : Any = TimesformerModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def __a ( self : str ) -> Optional[Any]: """simple docstring""" if not self.has_attentions: pass else: lowercase , lowercase : str = self.model_tester.prepare_config_and_inputs_for_common() lowercase : Optional[Any] = True for model_class in self.all_model_classes: lowercase : Dict = self.model_tester.seq_length lowercase : Optional[int] = self.model_tester.num_frames lowercase : Union[str, Any] = True lowercase : Optional[Any] = False lowercase : Tuple = True lowercase : List[Any] = model_class(_A ) model.to(_A ) model.eval() with torch.no_grad(): lowercase : int = model(**self._prepare_for_class(_A , _A ) ) lowercase : Optional[int] = outputs.attentions self.assertEqual(len(_A ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowercase : Any = True lowercase : str = model_class(_A ) model.to(_A ) model.eval() with torch.no_grad(): lowercase : Any = model(**self._prepare_for_class(_A , _A ) ) lowercase : Union[str, Any] = outputs.attentions self.assertEqual(len(_A ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) lowercase : int = len(_A ) # Check attention is always last and order is fine lowercase : Optional[int] = True lowercase : int = True lowercase : str = model_class(_A ) model.to(_A ) model.eval() with torch.no_grad(): lowercase : Dict = model(**self._prepare_for_class(_A , _A ) ) self.assertEqual(out_len + 1 , len(_A ) ) lowercase : Dict = outputs.attentions self.assertEqual(len(_A ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) def __a ( self : Tuple ) -> Optional[Any]: """simple docstring""" def check_hidden_states_output(_A : List[Any] , _A : Any , _A : Optional[int] ): lowercase : Any = model_class(_A ) model.to(_A ) model.eval() with torch.no_grad(): lowercase : List[Any] = model(**self._prepare_for_class(_A , _A ) ) lowercase : List[Any] = outputs.hidden_states lowercase : Tuple = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(_A ) , _A ) lowercase : int = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) lowercase , lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase : int = True check_hidden_states_output(_A , _A , _A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase : Optional[int] = True check_hidden_states_output(_A , _A , _A ) def snake_case( ) -> List[str]: '''simple docstring''' lowercase : List[Any] = hf_hub_download( repo_id='''hf-internal-testing/spaghetti-video''' , filename='''eating_spaghetti.npy''' , repo_type='''dataset''' ) lowercase : List[str] = np.load(__magic_name__ ) return list(__magic_name__ ) @require_torch @require_vision class _A ( unittest.TestCase ): @cached_property def __a ( self : List[Any] ) -> int: """simple docstring""" return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def __a ( self : Dict ) -> Tuple: """simple docstring""" lowercase : int = TimesformerForVideoClassification.from_pretrained('''facebook/timesformer-base-finetuned-k400''' ).to( _A ) lowercase : Dict = self.default_image_processor lowercase : List[Any] = prepare_video() lowercase : int = image_processor(video[:8] , return_tensors='''pt''' ).to(_A ) # forward pass with torch.no_grad(): lowercase : Any = model(**_A ) # verify the logits lowercase : List[str] = torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape , _A ) lowercase : List[Any] = torch.tensor([-0.3_016, -0.7_713, -0.4_205] ).to(_A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _A , atol=1E-4 ) )
217
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} lowerCAmelCase_ = { 'vocab_file': { 'gpt2': 'https://huggingface.co/gpt2/resolve/main/vocab.json', 'gpt2-medium': 'https://huggingface.co/gpt2-medium/resolve/main/vocab.json', 'gpt2-large': 'https://huggingface.co/gpt2-large/resolve/main/vocab.json', 'gpt2-xl': 'https://huggingface.co/gpt2-xl/resolve/main/vocab.json', 'distilgpt2': 'https://huggingface.co/distilgpt2/resolve/main/vocab.json', }, 'merges_file': { 'gpt2': 'https://huggingface.co/gpt2/resolve/main/merges.txt', 'gpt2-medium': 'https://huggingface.co/gpt2-medium/resolve/main/merges.txt', 'gpt2-large': 'https://huggingface.co/gpt2-large/resolve/main/merges.txt', 'gpt2-xl': 'https://huggingface.co/gpt2-xl/resolve/main/merges.txt', 'distilgpt2': 'https://huggingface.co/distilgpt2/resolve/main/merges.txt', }, 'tokenizer_file': { 'gpt2': 'https://huggingface.co/gpt2/resolve/main/tokenizer.json', 'gpt2-medium': 'https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json', 'gpt2-large': 'https://huggingface.co/gpt2-large/resolve/main/tokenizer.json', 'gpt2-xl': 'https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json', 'distilgpt2': 'https://huggingface.co/distilgpt2/resolve/main/tokenizer.json', }, } lowerCAmelCase_ = { 'gpt2': 10_24, 'gpt2-medium': 10_24, 'gpt2-large': 10_24, 'gpt2-xl': 10_24, 'distilgpt2': 10_24, } class _A ( _lowerCamelCase ): _UpperCamelCase : str = VOCAB_FILES_NAMES _UpperCamelCase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : List[str] = ['''input_ids''', '''attention_mask'''] _UpperCamelCase : Optional[Any] = GPTaTokenizer def __init__( self : Optional[Any] , _A : Optional[Any]=None , _A : Any=None , _A : Tuple=None , _A : Optional[int]="<|endoftext|>" , _A : List[Any]="<|endoftext|>" , _A : Union[str, Any]="<|endoftext|>" , _A : Any=False , **_A : Optional[int] , ) -> Optional[Any]: """simple docstring""" super().__init__( _A , _A , tokenizer_file=_A , unk_token=_A , bos_token=_A , eos_token=_A , add_prefix_space=_A , **_A , ) lowercase : List[str] = kwargs.pop('''add_bos_token''' , _A ) lowercase : Dict = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , _A ) != add_prefix_space: lowercase : Optional[int] = getattr(_A , pre_tok_state.pop('''type''' ) ) lowercase : List[str] = add_prefix_space lowercase : List[Any] = pre_tok_class(**_A ) lowercase : Dict = add_prefix_space def __a ( self : List[Any] , *_A : Optional[Any] , **_A : Any ) -> BatchEncoding: """simple docstring""" lowercase : List[str] = kwargs.get('''is_split_into_words''' , _A ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*_A , **_A ) def __a ( self : Dict , *_A : List[str] , **_A : Dict ) -> BatchEncoding: """simple docstring""" lowercase : Any = kwargs.get('''is_split_into_words''' , _A ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*_A , **_A ) def __a ( self : str , _A : str , _A : Optional[str] = None ) -> Tuple[str]: """simple docstring""" lowercase : Union[str, Any] = self._tokenizer.model.save(_A , name=_A ) return tuple(_A ) def __a ( self : Dict , _A : "Conversation" ) -> List[int]: """simple docstring""" lowercase : Optional[Any] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(_A , add_special_tokens=_A ) + [self.eos_token_id] ) if len(_A ) > self.model_max_length: lowercase : int = input_ids[-self.model_max_length :] return input_ids
217
1
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class a_ ( _snake_case ): lowercase = ['image_processor', 'tokenizer'] lowercase = 'CLIPImageProcessor' lowercase = ('CLIPTokenizer', 'CLIPTokenizerFast') def __init__( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" UpperCamelCase = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , _SCREAMING_SNAKE_CASE , ) UpperCamelCase = kwargs.pop("""feature_extractor""" ) UpperCamelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __call__( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: UpperCamelCase = self.tokenizer(_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if images is not None: UpperCamelCase = self.image_processor(_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if text is not None and images is not None: UpperCamelCase = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_SCREAMING_SNAKE_CASE ) , tensor_type=_SCREAMING_SNAKE_CASE ) def A__ ( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" return self.tokenizer.batch_decode(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def A__ ( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" return self.tokenizer.decode(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) @property def A__ ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = self.tokenizer.model_input_names UpperCamelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def A__ ( self ) -> Optional[int]: """simple docstring""" warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , _SCREAMING_SNAKE_CASE , ) return self.image_processor_class @property def A__ ( self ) -> Tuple: """simple docstring""" warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , _SCREAMING_SNAKE_CASE , ) return self.image_processor
713
'''simple docstring''' from math import factorial def lowercase__ ( __UpperCamelCase = 20 )-> int: UpperCamelCase = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... UpperCamelCase = n // 2 return int(factorial(__UpperCamelCase ) / (factorial(__UpperCamelCase ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(2_0)) else: try: SCREAMING_SNAKE_CASE__ = int(sys.argv[1]) print(solution(n)) except ValueError: print('Invalid entry - please enter a number.')
35
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCAmelCase : Union[str, Any] = { '''configuration_table_transformer''': [ '''TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TableTransformerConfig''', '''TableTransformerOnnxConfig''', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : str = [ '''TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TableTransformerForObjectDetection''', '''TableTransformerModel''', '''TableTransformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TableTransformerConfig, TableTransformerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TableTransformerForObjectDetection, TableTransformerModel, TableTransformerPreTrainedModel, ) else: import sys _lowerCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
46
"""simple docstring""" from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __lowercase( lowercase__ ): '''simple docstring''' __a : List[Any] = ['image_processor', 'tokenizer'] __a : List[Any] = 'BlipImageProcessor' __a : str = ('BertTokenizer', 'BertTokenizerFast') def __init__( self , __a , __a ): __lowerCamelCase : str = False super().__init__(__a , __a ) __lowerCamelCase : Union[str, Any] = self.image_processor def __call__( self , __a = None , __a = None , __a = True , __a = False , __a = None , __a = None , __a = 0 , __a = None , __a = None , __a = False , __a = False , __a = False , __a = False , __a = False , __a = True , __a = None , **__a , ): if images is None and text is None: raise ValueError('You have to specify either images or text.' ) # Get only text if images is None: __lowerCamelCase : List[Any] = self.tokenizer __lowerCamelCase : List[str] = self.tokenizer( text=__a , add_special_tokens=__a , padding=__a , truncation=__a , max_length=__a , stride=__a , pad_to_multiple_of=__a , return_attention_mask=__a , return_overflowing_tokens=__a , return_special_tokens_mask=__a , return_offsets_mapping=__a , return_token_type_ids=__a , return_length=__a , verbose=__a , return_tensors=__a , **__a , ) return text_encoding # add pixel_values __lowerCamelCase : Any = self.image_processor(__a , return_tensors=__a ) if text is not None: __lowerCamelCase : Tuple = self.tokenizer( text=__a , add_special_tokens=__a , padding=__a , truncation=__a , max_length=__a , stride=__a , pad_to_multiple_of=__a , return_attention_mask=__a , return_overflowing_tokens=__a , return_special_tokens_mask=__a , return_offsets_mapping=__a , return_token_type_ids=__a , return_length=__a , verbose=__a , return_tensors=__a , **__a , ) else: __lowerCamelCase : Union[str, Any] = None if text_encoding is not None: encoding_image_processor.update(__a ) return encoding_image_processor def snake_case_ ( self , *__a , **__a ): return self.tokenizer.batch_decode(*__a , **__a ) def snake_case_ ( self , *__a , **__a ): return self.tokenizer.decode(*__a , **__a ) @property def snake_case_ ( self ): __lowerCamelCase : Dict = self.tokenizer.model_input_names __lowerCamelCase : Optional[int] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
594
0
from __future__ import annotations import math def __a ( __UpperCAmelCase : int ) -> Dict: """simple docstring""" if num <= 0: lowerCamelCase_ : List[Any] = f"{num}: Invalid input, please enter a positive integer." raise ValueError(__UpperCAmelCase ) lowerCamelCase_ : str = [True] * (num + 1) lowerCamelCase_ : Tuple = [] lowerCamelCase_ : str = 2 lowerCamelCase_ : Any = int(math.sqrt(__UpperCAmelCase ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(__UpperCAmelCase ) # Set multiples of start be False for i in range(start * start , num + 1 , __UpperCAmelCase ): if sieve[i] is True: lowerCamelCase_ : Union[str, Any] = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(__UpperCAmelCase ) return prime if __name__ == "__main__": print(prime_sieve(int(input("Enter a positive integer: ").strip())))
705
# A Bipartite Graph is a graph whose vertices can be divided into two independent sets, # U and V such that every edge (u, v) either connects a vertex from U to V or a vertex # from V to U. In other words, for every edge (u, v), either u belongs to U and v to V, # or u belongs to V and v to U. We can also say that there is no edge that connects # vertices of same set. def __a ( __UpperCAmelCase : Union[str, Any] ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ : Any = [False] * len(__UpperCAmelCase ) lowerCamelCase_ : Dict = [-1] * len(__UpperCAmelCase ) def dfs(__UpperCAmelCase : Optional[int] , __UpperCAmelCase : int ): lowerCamelCase_ : Optional[int] = True lowerCamelCase_ : int = c for u in graph[v]: if not visited[u]: dfs(__UpperCAmelCase , 1 - c ) for i in range(len(__UpperCAmelCase ) ): if not visited[i]: dfs(__UpperCAmelCase , 0 ) for i in range(len(__UpperCAmelCase ) ): for j in graph[i]: if color[i] == color[j]: return False return True # Adjacency list of graph snake_case_ : Tuple = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []} print(check_bipartite_dfs(graph))
253
0
import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE (UpperCAmelCase , unittest.TestCase ): _UpperCamelCase : str = DiTPipeline _UpperCamelCase : Optional[int] = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS _UpperCamelCase : List[str] = PipelineTesterMixin.required_optional_params - { 'latents', 'num_images_per_prompt', 'callback', 'callback_steps', } _UpperCamelCase : str = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS _UpperCamelCase : Optional[Any] = False def SCREAMING_SNAKE_CASE_ ( self : Any )-> List[Any]: """simple docstring""" torch.manual_seed(0 ) lowercase__ = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=a , activation_fn='gelu-approximate' , num_embeds_ada_norm=1_000 , norm_type='ada_norm_zero' , norm_elementwise_affine=a , ) lowercase__ = AutoencoderKL() lowercase__ = DDIMScheduler() lowercase__ = {'transformer': transformer.eval(), 'vae': vae.eval(), 'scheduler': scheduler} return components def SCREAMING_SNAKE_CASE_ ( self : List[str] , a : int , a : str=0 )-> Union[str, Any]: """simple docstring""" if str(a ).startswith('mps' ): lowercase__ = torch.manual_seed(a ) else: lowercase__ = torch.Generator(device=a ).manual_seed(a ) lowercase__ = { 'class_labels': [1], 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def SCREAMING_SNAKE_CASE_ ( self : Dict )-> List[Any]: """simple docstring""" lowercase__ = 'cpu' lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**a ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowercase__ = self.get_dummy_inputs(a ) lowercase__ = pipe(**a ).images lowercase__ = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) lowercase__ = np.array([0.2946, 0.6601, 0.4329, 0.3296, 0.4144, 0.5319, 0.7273, 0.5013, 0.4457] ) lowercase__ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(a , 1E-3 ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] )-> Union[str, Any]: """simple docstring""" self._test_inference_batch_single_identical(relax_max_difference=a , expected_max_diff=1E-3 ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def SCREAMING_SNAKE_CASE_ ( self : str )-> Union[str, Any]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @require_torch_gpu @slow class SCREAMING_SNAKE_CASE (unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self : Any )-> List[str]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE_ ( self : Dict )-> Union[str, Any]: """simple docstring""" lowercase__ = torch.manual_seed(0 ) lowercase__ = DiTPipeline.from_pretrained('facebook/DiT-XL-2-256' ) pipe.to('cuda' ) lowercase__ = ['vase', 'umbrella', 'white shark', 'white wolf'] lowercase__ = pipe.get_label_ids(a ) lowercase__ = pipe(a , generator=a , num_inference_steps=40 , output_type='np' ).images for word, image in zip(a , a ): lowercase__ = load_numpy( f"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy""" ) assert np.abs((expected_image - image).max() ) < 1E-2 def SCREAMING_SNAKE_CASE_ ( self : List[str] )-> Union[str, Any]: """simple docstring""" lowercase__ = DiTPipeline.from_pretrained('facebook/DiT-XL-2-512' ) lowercase__ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to('cuda' ) lowercase__ = ['vase', 'umbrella'] lowercase__ = pipe.get_label_ids(a ) lowercase__ = torch.manual_seed(0 ) lowercase__ = pipe(a , generator=a , num_inference_steps=25 , output_type='np' ).images for word, image in zip(a , a ): lowercase__ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' f"""/dit/{word}_512.npy""" ) assert np.abs((expected_image - image).max() ) < 1E-1
235
from typing import Dict from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, get_torch_dist_unique_port, require_torch_multi_gpu, require_torch_neuroncore, ) from transformers.training_args import ParallelMode from transformers.utils import logging lowercase_ = logging.get_logger(__name__) if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset from transformers import Trainer class SCREAMING_SNAKE_CASE (UpperCAmelCase ): def __init__( self : str , a : int = 101 )-> List[Any]: """simple docstring""" lowercase__ = length def __len__( self : List[Any] )-> Union[str, Any]: """simple docstring""" return self.length def __getitem__( self : List[Any] , a : Union[str, Any] )-> int: """simple docstring""" return i class SCREAMING_SNAKE_CASE : def __call__( self : str , a : str )-> Optional[Any]: """simple docstring""" return {"input_ids": torch.tensor(a ), "labels": torch.tensor(a )} class SCREAMING_SNAKE_CASE (nn.Module ): def __init__( self : Union[str, Any] )-> Union[str, Any]: """simple docstring""" super().__init__() # Add some (unused) params otherwise DDP will complain. lowercase__ = nn.Linear(120 , 80 ) def SCREAMING_SNAKE_CASE_ ( self : str , a : Tuple , a : Any=None )-> Optional[int]: """simple docstring""" if labels is not None: return torch.tensor(0.0 , device=input_ids.device ), input_ids else: return input_ids class SCREAMING_SNAKE_CASE (UpperCAmelCase ): @require_torch_neuroncore def SCREAMING_SNAKE_CASE_ ( self : Dict )-> Tuple: """simple docstring""" lowercase__ = f"""--nproc_per_node=2 --master_port={get_torch_dist_unique_port()} {self.test_file_dir}/test_trainer_distributed.py """.split() lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = f"""--output_dir {output_dir}""".split() lowercase__ = ['torchrun'] + distributed_args + args execute_subprocess_async(a , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call class SCREAMING_SNAKE_CASE (UpperCAmelCase ): @require_torch_multi_gpu def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> str: """simple docstring""" lowercase__ = f"""--nproc_per_node={torch.cuda.device_count()} --master_port={get_torch_dist_unique_port()} {self.test_file_dir}/test_trainer_distributed.py """.split() lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = f"""--output_dir {output_dir}""".split() lowercase__ = ['torchrun'] + distributed_args + args execute_subprocess_async(a , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call if __name__ == "__main__": # The script below is meant to be run under torch.distributed, on a machine with multiple GPUs: # # PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py lowercase_ = HfArgumentParser((TrainingArguments,)) lowercase_ = parser.parse_args_into_dataclasses()[0] logger.warning( f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, ''' f'''distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}''' ) # Essentially, what we want to verify in the distributed case is that we get all samples back, # in the right order. (this is crucial for prediction for instance) for dataset_length in [101, 40, 7]: lowercase_ = DummyDataset(dataset_length) def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> Dict: lowercase__ = list(range(len(_SCREAMING_SNAKE_CASE ) ) ) lowercase__ = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential if not success and training_args.local_rank == 0: logger.warning( 'Predictions and/or labels do not match expected results:\n - predictions: ' F"""{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}""" ) return {"success": success} lowercase_ = Trainer( model=DummyModel(), args=training_args, data_collator=DummyDataCollator(), eval_dataset=dataset, compute_metrics=compute_metrics, ) lowercase_ = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) lowercase_ = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) lowercase_ = 2 lowercase_ = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) lowercase_ = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) lowercase_ = None
235
1
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to properly calculate the metrics on the # validation dataset when in a distributed system, and builds off the # `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _snake_case = 16 _snake_case = 32 def lowerCAmelCase_ ( snake_case_,snake_case_ = 16 ): '''simple docstring''' _A : List[Any] = AutoTokenizer.from_pretrained("""bert-base-cased""" ) _A : Optional[int] = load_dataset("""glue""","""mrpc""" ) def tokenize_function(snake_case_ ): # max_length=None => use the model max length (it's actually the default) _A : List[Any] = tokenizer(examples["""sentence1"""],examples["""sentence2"""],truncation=A__,max_length=A__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _A : int = datasets.map( A__,batched=A__,remove_columns=["""idx""", """sentence1""", """sentence2"""],) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _A : int = tokenized_datasets.rename_column("""label""","""labels""" ) def collate_fn(snake_case_ ): # On TPU it's best to pad everything to the same length or training will be very slow. _A : str = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _A : Union[str, Any] = 16 elif accelerator.mixed_precision != "no": _A : List[str] = 8 else: _A : Union[str, Any] = None return tokenizer.pad( A__,padding="""longest""",max_length=A__,pad_to_multiple_of=A__,return_tensors="""pt""",) # Instantiate dataloaders. _A : Dict = DataLoader( tokenized_datasets["""train"""],shuffle=A__,collate_fn=A__,batch_size=A__ ) _A : Any = DataLoader( tokenized_datasets["""validation"""],shuffle=A__,collate_fn=A__,batch_size=A__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders _snake_case = mocked_dataloaders # noqa: F811 def lowerCAmelCase_ ( snake_case_,snake_case_ ): '''simple docstring''' if os.environ.get("""TESTING_MOCKED_DATALOADERS""",A__ ) == "1": _A : Optional[Any] = 2 # Initialize accelerator _A : List[Any] = Accelerator(cpu=args.cpu,mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _A : List[Any] = config["""lr"""] _A : Optional[Any] = int(config["""num_epochs"""] ) _A : str = int(config["""seed"""] ) _A : str = int(config["""batch_size"""] ) _A : Optional[int] = evaluate.load("""glue""","""mrpc""" ) # If the batch size is too big we use gradient accumulation _A : str = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: _A : Tuple = batch_size // MAX_GPU_BATCH_SIZE _A : Dict = MAX_GPU_BATCH_SIZE set_seed(A__ ) _A , _A : List[Any] = get_dataloaders(A__,A__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _A : Optional[int] = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""",return_dict=A__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _A : Tuple = model.to(accelerator.device ) # Instantiate optimizer _A : Tuple = AdamW(params=model.parameters(),lr=A__ ) # Instantiate scheduler _A : Optional[Any] = get_linear_schedule_with_warmup( optimizer=A__,num_warmup_steps=100,num_training_steps=(len(A__ ) * num_epochs) // gradient_accumulation_steps,) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _A , _A , _A , _A , _A : Optional[int] = accelerator.prepare( A__,A__,A__,A__,A__ ) # Now we train the model for epoch in range(A__ ): model.train() for step, batch in enumerate(A__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _A : int = model(**A__ ) _A : List[str] = outputs.loss _A : Tuple = loss / gradient_accumulation_steps accelerator.backward(A__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() _A : Union[str, Any] = 0 for step, batch in enumerate(A__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _A : Optional[int] = model(**A__ ) _A : Any = outputs.logits.argmax(dim=-1 ) _A , _A : Optional[int] = accelerator.gather((predictions, batch["""labels"""]) ) # New Code # # First we check if it's a distributed system if accelerator.use_distributed: # Then see if we're on the last batch of our eval dataloader if step == len(A__ ) - 1: # Last batch needs to be truncated on distributed systems as it contains additional samples _A : List[Any] = predictions[: len(eval_dataloader.dataset ) - samples_seen] _A : List[str] = references[: len(eval_dataloader.dataset ) - samples_seen] else: # Otherwise we add the number of samples seen samples_seen += references.shape[0] # All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`: # accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=A__,references=A__,) _A : int = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''',A__ ) def lowerCAmelCase_ ( ): '''simple docstring''' _A : str = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""",type=A__,default=A__,choices=["""no""", """fp16""", """bf16""", """fp8"""],help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""",) parser.add_argument("""--cpu""",action="""store_true""",help="""If passed, will train on the CPU.""" ) _A : List[Any] = parser.parse_args() _A : Union[str, Any] = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(A__,A__ ) if __name__ == "__main__": main()
713
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _snake_case = { "configuration_time_series_transformer": [ "TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TimeSeriesTransformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TimeSeriesTransformerForPrediction", "TimeSeriesTransformerModel", "TimeSeriesTransformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
54
0
'''simple docstring''' import logging import os import threading import time try: import warnings except ImportError: lowercase : Optional[Any] = None try: import msvcrt except ImportError: lowercase : Union[str, Any] = None try: import fcntl except ImportError: lowercase : str = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: lowercase : List[Any] = OSError # Data # ------------------------------------------------ lowercase : Optional[int] = [ 'Timeout', 'BaseFileLock', 'WindowsFileLock', 'UnixFileLock', 'SoftFileLock', 'FileLock', ] lowercase : int = '3.0.12' lowercase : Optional[int] = None def __a ( ) -> Any: global _logger lowerCAmelCase = _logger or logging.getLogger(__name__ ) return _logger class _lowerCAmelCase ( UpperCamelCase_ ): """simple docstring""" def __init__( self : List[str] , SCREAMING_SNAKE_CASE : Union[str, Any] ) -> List[str]: """simple docstring""" lowerCAmelCase = lock_file return None def __str__( self : Union[str, Any] ) -> List[Any]: """simple docstring""" lowerCAmelCase = f"The file lock '{self.lock_file}' could not be acquired." return temp class _lowerCAmelCase : """simple docstring""" def __init__( self : str , SCREAMING_SNAKE_CASE : Any ) -> Optional[int]: """simple docstring""" lowerCAmelCase = lock return None def __enter__( self : List[Any] ) -> str: """simple docstring""" return self.lock def __exit__( self : List[Any] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Tuple ) -> Dict: """simple docstring""" self.lock.release() return None class _lowerCAmelCase : """simple docstring""" def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Optional[int]=-1 , SCREAMING_SNAKE_CASE : Dict=None ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase = max_filename_length if max_filename_length is not None else 2_5_5 # Hash the filename if it's too long lowerCAmelCase = self.hash_filename_if_too_long(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # The path to the lock file. lowerCAmelCase = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. lowerCAmelCase = None # The default timeout value. lowerCAmelCase = timeout # We use this lock primarily for the lock counter. lowerCAmelCase = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. lowerCAmelCase = 0 return None @property def __A ( self : int ) -> Dict: """simple docstring""" return self._lock_file @property def __A ( self : List[Any] ) -> Dict: """simple docstring""" return self._timeout @timeout.setter def __A ( self : Tuple , SCREAMING_SNAKE_CASE : str ) -> int: """simple docstring""" lowerCAmelCase = float(SCREAMING_SNAKE_CASE ) return None def __A ( self : int ) -> List[str]: """simple docstring""" raise NotImplementedError() def __A ( self : Any ) -> int: """simple docstring""" raise NotImplementedError() @property def __A ( self : List[str] ) -> Union[str, Any]: """simple docstring""" return self._lock_file_fd is not None def __A ( self : List[str] , SCREAMING_SNAKE_CASE : Tuple=None , SCREAMING_SNAKE_CASE : List[str]=0.0_5 ) -> int: """simple docstring""" if timeout is None: lowerCAmelCase = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 lowerCAmelCase = id(self ) lowerCAmelCase = self._lock_file lowerCAmelCase = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(f"Attempting to acquire lock {lock_id} on {lock_filename}" ) self._acquire() if self.is_locked: logger().debug(f"Lock {lock_id} acquired on {lock_filename}" ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(f"Timeout on acquiring lock {lock_id} on {lock_filename}" ) raise Timeout(self._lock_file ) else: logger().debug( f"Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ..." ) time.sleep(SCREAMING_SNAKE_CASE ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: lowerCAmelCase = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def __A ( self : Union[str, Any] , SCREAMING_SNAKE_CASE : List[str]=False ) -> Union[str, Any]: """simple docstring""" with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: lowerCAmelCase = id(self ) lowerCAmelCase = self._lock_file logger().debug(f"Attempting to release lock {lock_id} on {lock_filename}" ) self._release() lowerCAmelCase = 0 logger().debug(f"Lock {lock_id} released on {lock_filename}" ) return None def __enter__( self : Any ) -> Optional[int]: """simple docstring""" self.acquire() return self def __exit__( self : str , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : int ) -> Union[str, Any]: """simple docstring""" self.release() return None def __del__( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" self.release(force=SCREAMING_SNAKE_CASE ) return None def __A ( self : List[str] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : int ) -> str: """simple docstring""" lowerCAmelCase = os.path.basename(SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) > max_length and max_length > 0: lowerCAmelCase = os.path.dirname(SCREAMING_SNAKE_CASE ) lowerCAmelCase = str(hash(SCREAMING_SNAKE_CASE ) ) lowerCAmelCase = filename[: max_length - len(SCREAMING_SNAKE_CASE ) - 8] + "..." + hashed_filename + ".lock" return os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: return path class _lowerCAmelCase ( UpperCamelCase_ ): """simple docstring""" def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[int]=-1 , SCREAMING_SNAKE_CASE : Optional[int]=None ) -> Dict: """simple docstring""" from .file_utils import relative_to_absolute_path super().__init__(SCREAMING_SNAKE_CASE , timeout=SCREAMING_SNAKE_CASE , max_filename_length=SCREAMING_SNAKE_CASE ) lowerCAmelCase = "\\\\?\\" + relative_to_absolute_path(self.lock_file ) def __A ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" lowerCAmelCase = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: lowerCAmelCase = os.open(self._lock_file , SCREAMING_SNAKE_CASE ) except OSError: pass else: try: msvcrt.locking(SCREAMING_SNAKE_CASE , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(SCREAMING_SNAKE_CASE ) else: lowerCAmelCase = fd return None def __A ( self : Tuple ) -> str: """simple docstring""" lowerCAmelCase = self._lock_file_fd lowerCAmelCase = None msvcrt.locking(SCREAMING_SNAKE_CASE , msvcrt.LK_UNLCK , 1 ) os.close(SCREAMING_SNAKE_CASE ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class _lowerCAmelCase ( UpperCamelCase_ ): """simple docstring""" def __init__( self : List[Any] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : List[str]=-1 , SCREAMING_SNAKE_CASE : List[Any]=None ) -> Tuple: """simple docstring""" lowerCAmelCase = os.statvfs(os.path.dirname(SCREAMING_SNAKE_CASE ) ).f_namemax super().__init__(SCREAMING_SNAKE_CASE , timeout=SCREAMING_SNAKE_CASE , max_filename_length=SCREAMING_SNAKE_CASE ) def __A ( self : str ) -> List[Any]: """simple docstring""" lowerCAmelCase = os.O_RDWR | os.O_CREAT | os.O_TRUNC lowerCAmelCase = os.open(self._lock_file , SCREAMING_SNAKE_CASE ) try: fcntl.flock(SCREAMING_SNAKE_CASE , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(SCREAMING_SNAKE_CASE ) else: lowerCAmelCase = fd return None def __A ( self : Optional[int] ) -> str: """simple docstring""" lowerCAmelCase = self._lock_file_fd lowerCAmelCase = None fcntl.flock(SCREAMING_SNAKE_CASE , fcntl.LOCK_UN ) os.close(SCREAMING_SNAKE_CASE ) return None class _lowerCAmelCase ( UpperCamelCase_ ): """simple docstring""" def __A ( self : Optional[Any] ) -> str: """simple docstring""" lowerCAmelCase = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: lowerCAmelCase = os.open(self._lock_file , SCREAMING_SNAKE_CASE ) except OSError: pass else: lowerCAmelCase = fd return None def __A ( self : Optional[Any] ) -> List[str]: """simple docstring""" os.close(self._lock_file_fd ) lowerCAmelCase = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None lowercase : Optional[int] = None if msvcrt: lowercase : int = WindowsFileLock elif fcntl: lowercase : str = UnixFileLock else: lowercase : Optional[int] = SoftFileLock if warnings is not None: warnings.warn('only soft file lock is available')
649
'''simple docstring''' def __a ( A__ = 1000 ) -> int: lowerCAmelCase = 3 lowerCAmelCase = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 15 == 0: result -= a a += 1 return result if __name__ == "__main__": print(f"{solution() = }")
649
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase_ = { "configuration_mobilebert": [ "MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MobileBertConfig", "MobileBertOnnxConfig", ], "tokenization_mobilebert": ["MobileBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["MobileBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "MobileBertForMaskedLM", "MobileBertForMultipleChoice", "MobileBertForNextSentencePrediction", "MobileBertForPreTraining", "MobileBertForQuestionAnswering", "MobileBertForSequenceClassification", "MobileBertForTokenClassification", "MobileBertLayer", "MobileBertModel", "MobileBertPreTrainedModel", "load_tf_weights_in_mobilebert", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFMobileBertForMaskedLM", "TFMobileBertForMultipleChoice", "TFMobileBertForNextSentencePrediction", "TFMobileBertForPreTraining", "TFMobileBertForQuestionAnswering", "TFMobileBertForSequenceClassification", "TFMobileBertForTokenClassification", "TFMobileBertMainLayer", "TFMobileBertModel", "TFMobileBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
715
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' __snake_case : int = 1 __snake_case : Any = 2 while i * i <= n: __snake_case : Tuple = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def __lowerCAmelCase ( ): '''simple docstring''' __snake_case : str = 1 __snake_case : Dict = 1 while True: i += 1 t_num += i if count_divisors(__SCREAMING_SNAKE_CASE ) > 5_0_0: break return t_num if __name__ == "__main__": print(solution())
390
0
"""simple docstring""" from scipy.stats import pearsonr import datasets a_ = ''' Pearson correlation coefficient and p-value for testing non-correlation. The Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. ''' a_ = ''' Args: predictions (`list` of `int`): Predicted class labels, as returned by a model. references (`list` of `int`): Ground truth labels. return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`. Returns: pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation. p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities. Examples: Example 1-A simple example using only predictions and references. >>> pearsonr_metric = datasets.load_metric("pearsonr") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5]) >>> print(round(results[\'pearsonr\'], 2)) -0.74 Example 2-The same as Example 1, but that also returns the `p-value`. >>> pearsonr_metric = datasets.load_metric("pearsonr") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True) >>> print(sorted(list(results.keys()))) [\'p-value\', \'pearsonr\'] >>> print(round(results[\'pearsonr\'], 2)) -0.74 >>> print(round(results[\'p-value\'], 2)) 0.15 ''' a_ = ''' @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, Ilhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Antonio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class __lowercase ( datasets.Metric): """simple docstring""" def __UpperCamelCase (self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""float""" ), """references""": datasets.Value("""float""" ), } ) , reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html"""] , ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__=False ): if return_pvalue: snake_case_ : Optional[Any] = pearsonr(lowercase__ , lowercase__ ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(lowercase__ , lowercase__ )[0] )}
480
"""simple docstring""" from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class __lowercase ( _UpperCAmelCase): """simple docstring""" def __init__(self , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = False , lowercase__ = False , lowercase__ = None , **lowercase__ , ): super().__init__( lowercase__ , split=lowercase__ , features=lowercase__ , cache_dir=lowercase__ , keep_in_memory=lowercase__ , streaming=lowercase__ , num_proc=lowercase__ , **lowercase__ , ) snake_case_ : Tuple = path_or_paths if isinstance(lowercase__ , lowercase__ ) else {self.split: path_or_paths} snake_case_ : Dict = Text( cache_dir=lowercase__ , data_files=lowercase__ , features=lowercase__ , **lowercase__ , ) def __UpperCamelCase (self ): # Build iterable dataset if self.streaming: snake_case_ : List[str] = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: snake_case_ : str = None snake_case_ : int = None snake_case_ : int = None snake_case_ : int = None self.builder.download_and_prepare( download_config=lowercase__ , download_mode=lowercase__ , verification_mode=lowercase__ , base_path=lowercase__ , num_proc=self.num_proc , ) snake_case_ : Dict = self.builder.as_dataset( split=self.split , verification_mode=lowercase__ , in_memory=self.keep_in_memory ) return dataset
480
1
"""simple docstring""" import unittest from parameterized import parameterized from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXModel, ) class __UpperCamelCase : def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=13 , lowerCAmelCase__=7 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=99 , lowerCAmelCase__=64 , lowerCAmelCase__=5 , lowerCAmelCase__=4 , lowerCAmelCase__=37 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=512 , lowerCAmelCase__=16 , lowerCAmelCase__=2 , lowerCAmelCase__=0.02 , lowerCAmelCase__=3 , lowerCAmelCase__=4 , lowerCAmelCase__=None , ) -> Optional[Any]: a : str = parent a : Union[str, Any] = batch_size a : Dict = seq_length a : Optional[Any] = is_training a : Optional[int] = use_input_mask a : str = use_token_type_ids a : Optional[int] = use_labels a : Dict = vocab_size a : Dict = hidden_size a : int = num_hidden_layers a : List[str] = num_attention_heads a : Tuple = intermediate_size a : List[Any] = hidden_act a : Optional[int] = hidden_dropout_prob a : Union[str, Any] = attention_probs_dropout_prob a : str = max_position_embeddings a : Optional[int] = type_vocab_size a : Optional[Any] = type_sequence_label_size a : Optional[int] = initializer_range a : List[str] = num_labels a : Any = num_choices a : Dict = scope a : Any = vocab_size - 1 def __a ( self ) -> Any: a : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a : Optional[Any] = None if self.use_input_mask: a : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) a : int = None if self.use_labels: a : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) a : Any = self.get_config() return config, input_ids, input_mask, token_labels def __a ( self ) -> Any: return GPTNeoXConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , pad_token_id=self.pad_token_id , ) def __a ( self ) -> int: a, a, a, a : Optional[int] = self.prepare_config_and_inputs() a : Any = True return config, input_ids, input_mask, token_labels def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[int]: a : Dict = GPTNeoXModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() a : Any = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ ) a : Tuple = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: a : int = True a : List[Any] = GPTNeoXModel(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() a : Optional[int] = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Union[str, Any]: a : List[str] = GPTNeoXForCausalLM(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() a : int = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> str: a : str = self.num_labels a : List[str] = GPTNeoXForQuestionAnswering(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() a : Union[str, Any] = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: a : List[str] = self.num_labels a : Dict = GPTNeoXForSequenceClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() a : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a : List[str] = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Union[str, Any]: a : Any = self.num_labels a : Tuple = GPTNeoXForTokenClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() a : List[str] = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[str]: a : Tuple = True a : int = GPTNeoXForCausalLM(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() # first forward pass a : Tuple = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , use_cache=lowerCAmelCase__ ) a : int = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids a : str = ids_tensor((self.batch_size, 3) , config.vocab_size ) a : Optional[Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and a : str = torch.cat([input_ids, next_tokens] , dim=-1 ) a : Dict = torch.cat([input_mask, next_mask] , dim=-1 ) a : Union[str, Any] = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ ) a : int = output_from_no_past["hidden_states"][0] a : Union[str, Any] = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , past_key_values=lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ , )["hidden_states"][0] # select random slice a : Optional[int] = ids_tensor((1,) , output_from_past.shape[-1] ).item() a : Union[str, Any] = output_from_no_past[:, -3:, random_slice_idx].detach() a : Any = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3 ) ) def __a ( self ) -> Tuple: a : List[str] = self.prepare_config_and_inputs() a, a, a, a : Any = config_and_inputs a : List[str] = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class __UpperCamelCase ( a__ , a__ , a__ , unittest.TestCase ): lowerCamelCase : int =( ( GPTNeoXModel, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, ) if is_torch_available() else () ) lowerCamelCase : str =(GPTNeoXForCausalLM,) if is_torch_available() else () lowerCamelCase : int =( { """feature-extraction""": GPTNeoXModel, """question-answering""": GPTNeoXForQuestionAnswering, """text-classification""": GPTNeoXForSequenceClassification, """text-generation""": GPTNeoXForCausalLM, """token-classification""": GPTNeoXForTokenClassification, """zero-shot""": GPTNeoXForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase : Union[str, Any] =False lowerCamelCase : Optional[Any] =False lowerCamelCase : Union[str, Any] =False lowerCamelCase : str =False def __a ( self ) -> Optional[int]: a : Tuple = GPTNeoXModelTester(self ) a : Dict = ConfigTester(self , config_class=lowerCAmelCase__ , hidden_size=64 , num_attention_heads=8 ) def __a ( self ) -> Optional[Any]: self.config_tester.run_common_tests() def __a ( self ) -> Union[str, Any]: a, a, a, a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def __a ( self ) -> int: a, a, a, a : str = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def __a ( self ) -> Optional[int]: # This regression test was failing with PyTorch < 1.3 a, a, a, a : str = self.model_tester.prepare_config_and_inputs_for_decoder() a : Optional[int] = None self.model_tester.create_and_check_model_as_decoder(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def __a ( self ) -> Union[str, Any]: a, a, a, a : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def __a ( self ) -> List[str]: a : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*lowerCAmelCase__ ) def __a ( self ) -> str: a : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCAmelCase__ ) def __a ( self ) -> List[str]: a : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCAmelCase__ ) def __a ( self ) -> str: a : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCAmelCase__ ) @unittest.skip(reason="Feed forward chunking is not implemented" ) def __a ( self ) -> Union[str, Any]: pass @parameterized.expand([("linear",), ("dynamic",)] ) def __a ( self , lowerCAmelCase__ ) -> str: a, a : Tuple = self.model_tester.prepare_config_and_inputs_for_common() a : Union[str, Any] = ids_tensor([1, 10] , config.vocab_size ) a : Tuple = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights a : List[Any] = GPTNeoXModel(lowerCAmelCase__ ) original_model.to(lowerCAmelCase__ ) original_model.eval() a : Tuple = original_model(lowerCAmelCase__ ).last_hidden_state a : Dict = original_model(lowerCAmelCase__ ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights a : List[Any] = {"type": scaling_type, "factor": 10.0} a : List[Any] = GPTNeoXModel(lowerCAmelCase__ ) scaled_model.to(lowerCAmelCase__ ) scaled_model.eval() a : str = scaled_model(lowerCAmelCase__ ).last_hidden_state a : Optional[int] = scaled_model(lowerCAmelCase__ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-5 ) ) @require_torch class __UpperCamelCase ( unittest.TestCase ): @slow def __a ( self ) -> int: a : Optional[Any] = AutoTokenizer.from_pretrained("EleutherAI/pythia-410m-deduped" ) for checkpointing in [True, False]: a : List[str] = GPTNeoXForCausalLM.from_pretrained("EleutherAI/pythia-410m-deduped" ) if checkpointing: model.gradient_checkpointing_enable() else: model.gradient_checkpointing_disable() model.to(lowerCAmelCase__ ) a : str = tokenizer("My favorite food is" , return_tensors="pt" ).to(lowerCAmelCase__ ) # The hub repo. is updated on 2023-04-04, resulting in poor outputs. # See: https://github.com/huggingface/transformers/pull/24193 a : List[str] = "My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI'm not sure" a : List[str] = model.generate(**lowerCAmelCase__ , do_sample=lowerCAmelCase__ , max_new_tokens=20 ) a : str = tokenizer.batch_decode(lowerCAmelCase__ )[0] self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ )
31
"""simple docstring""" import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal a : Optional[Any] = datasets.utils.logging.get_logger(__name__) a : Union[str, Any] = ['''names''', '''prefix'''] a : Any = ['''warn_bad_lines''', '''error_bad_lines''', '''mangle_dupe_cols'''] a : Any = ['''encoding_errors''', '''on_bad_lines'''] a : List[str] = ['''date_format'''] @dataclass class __UpperCamelCase ( datasets.BuilderConfig ): lowerCamelCase : str ="," lowerCamelCase : Optional[str] =None lowerCamelCase : Optional[Union[int, List[int], str]] ="infer" lowerCamelCase : Optional[List[str]] =None lowerCamelCase : Optional[List[str]] =None lowerCamelCase : Optional[Union[int, str, List[int], List[str]]] =None lowerCamelCase : Optional[Union[List[int], List[str]]] =None lowerCamelCase : Optional[str] =None lowerCamelCase : bool =True lowerCamelCase : Optional[Literal["c", "python", "pyarrow"]] =None lowerCamelCase : Dict[Union[int, str], Callable[[Any], Any]] =None lowerCamelCase : Optional[list] =None lowerCamelCase : Optional[list] =None lowerCamelCase : bool =False lowerCamelCase : Optional[Union[int, List[int]]] =None lowerCamelCase : Optional[int] =None lowerCamelCase : Optional[Union[str, List[str]]] =None lowerCamelCase : bool =True lowerCamelCase : bool =True lowerCamelCase : bool =False lowerCamelCase : bool =True lowerCamelCase : Optional[str] =None lowerCamelCase : str ="." lowerCamelCase : Optional[str] =None lowerCamelCase : str ='"' lowerCamelCase : int =0 lowerCamelCase : Optional[str] =None lowerCamelCase : Optional[str] =None lowerCamelCase : Optional[str] =None lowerCamelCase : Optional[str] =None lowerCamelCase : bool =True lowerCamelCase : bool =True lowerCamelCase : int =0 lowerCamelCase : bool =True lowerCamelCase : bool =False lowerCamelCase : Optional[str] =None lowerCamelCase : int =1_0000 lowerCamelCase : Optional[datasets.Features] =None lowerCamelCase : Optional[str] ="strict" lowerCamelCase : Literal["error", "warn", "skip"] ="error" lowerCamelCase : Optional[str] =None def __a ( self ) -> Dict: if self.delimiter is not None: a : int = self.delimiter if self.column_names is not None: a : Any = self.column_names @property def __a ( self ) -> List[str]: a : Dict = { "sep": self.sep, "header": self.header, "names": self.names, "index_col": self.index_col, "usecols": self.usecols, "prefix": self.prefix, "mangle_dupe_cols": self.mangle_dupe_cols, "engine": self.engine, "converters": self.converters, "true_values": self.true_values, "false_values": self.false_values, "skipinitialspace": self.skipinitialspace, "skiprows": self.skiprows, "nrows": self.nrows, "na_values": self.na_values, "keep_default_na": self.keep_default_na, "na_filter": self.na_filter, "verbose": self.verbose, "skip_blank_lines": self.skip_blank_lines, "thousands": self.thousands, "decimal": self.decimal, "lineterminator": self.lineterminator, "quotechar": self.quotechar, "quoting": self.quoting, "escapechar": self.escapechar, "comment": self.comment, "encoding": self.encoding, "dialect": self.dialect, "error_bad_lines": self.error_bad_lines, "warn_bad_lines": self.warn_bad_lines, "skipfooter": self.skipfooter, "doublequote": self.doublequote, "memory_map": self.memory_map, "float_precision": self.float_precision, "chunksize": self.chunksize, "encoding_errors": self.encoding_errors, "on_bad_lines": self.on_bad_lines, "date_format": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , lowerCAmelCase__ ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class __UpperCamelCase ( datasets.ArrowBasedBuilder ): lowerCamelCase : Union[str, Any] =CsvConfig def __a ( self ) -> Optional[Any]: return datasets.DatasetInfo(features=self.config.features ) def __a ( self , lowerCAmelCase__ ) -> Optional[int]: if not self.config.data_files: raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) a : Optional[Any] = dl_manager.download_and_extract(self.config.data_files ) if isinstance(lowerCAmelCase__ , (str, list, tuple) ): a : Tuple = data_files if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): a : Tuple = [files] a : int = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )] a : int = [] for split_name, files in data_files.items(): if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): a : Any = [files] a : List[str] = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files] splits.append(datasets.SplitGenerator(name=lowerCAmelCase__ , gen_kwargs={"files": files} ) ) return splits def __a ( self , lowerCAmelCase__ ) -> pa.Table: if self.config.features is not None: a : Optional[Any] = self.config.features.arrow_schema if all(not require_storage_cast(lowerCAmelCase__ ) for feature in self.config.features.values() ): # cheaper cast a : Dict = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=lowerCAmelCase__ ) else: # more expensive cast; allows str <-> int/float or str to Audio for example a : Union[str, Any] = table_cast(lowerCAmelCase__ , lowerCAmelCase__ ) return pa_table def __a ( self , lowerCAmelCase__ ) -> Any: a : Tuple = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str a : Any = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(lowerCAmelCase__ ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(lowerCAmelCase__ ) ): a : Tuple = pd.read_csv(lowerCAmelCase__ , iterator=lowerCAmelCase__ , dtype=lowerCAmelCase__ , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(lowerCAmelCase__ ): a : Any = pa.Table.from_pandas(lowerCAmelCase__ ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(lowerCAmelCase__ ) except ValueError as e: logger.error(f"""Failed to read file '{file}' with error {type(lowerCAmelCase__ )}: {e}""" ) raise
31
1
import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _snake_case ( UpperCAmelCase_ , unittest.TestCase ): # FIXME: add fast tests pass @nightly @require_onnxruntime @require_torch_gpu class _snake_case ( unittest.TestCase ): @property def lowercase__ ( self): '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def lowercase__ ( self): '''simple docstring''' lowercase__ : Any = ort.SessionOptions() lowercase__ : Optional[Any] = False return options def lowercase__ ( self): '''simple docstring''' lowercase__ : List[Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo.png""") lowercase__ : Dict = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo_mask.png""") lowercase__ : int = OnnxStableDiffusionInpaintPipeline.from_pretrained( """runwayml/stable-diffusion-inpainting""" , revision="""onnx""" , safety_checker=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_) lowercase__ : Any = """A red cat sitting on a park bench""" lowercase__ : List[str] = np.random.RandomState(0) lowercase__ : Tuple = pipe( prompt=SCREAMING_SNAKE_CASE_ , image=SCREAMING_SNAKE_CASE_ , mask_image=SCREAMING_SNAKE_CASE_ , guidance_scale=7.5 , num_inference_steps=10 , generator=SCREAMING_SNAKE_CASE_ , output_type="""np""" , ) lowercase__ : Dict = output.images lowercase__ : List[Any] = images[0, 2_55:2_58, 2_55:2_58, -1] assert images.shape == (1, 5_12, 5_12, 3) lowercase__ : List[str] = np.array([0.2_5_1_4, 0.3_0_0_7, 0.3_5_1_7, 0.1_7_9_0, 0.2_3_8_2, 0.3_1_6_7, 0.1_9_4_4, 0.2_2_7_3, 0.2_4_6_4]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-3 def lowercase__ ( self): '''simple docstring''' lowercase__ : Optional[int] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo.png""") lowercase__ : Optional[Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo_mask.png""") lowercase__ : Union[str, Any] = LMSDiscreteScheduler.from_pretrained( """runwayml/stable-diffusion-inpainting""" , subfolder="""scheduler""" , revision="""onnx""") lowercase__ : Tuple = OnnxStableDiffusionInpaintPipeline.from_pretrained( """runwayml/stable-diffusion-inpainting""" , revision="""onnx""" , scheduler=SCREAMING_SNAKE_CASE_ , safety_checker=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_) lowercase__ : str = """A red cat sitting on a park bench""" lowercase__ : Optional[int] = np.random.RandomState(0) lowercase__ : Optional[Any] = pipe( prompt=SCREAMING_SNAKE_CASE_ , image=SCREAMING_SNAKE_CASE_ , mask_image=SCREAMING_SNAKE_CASE_ , guidance_scale=7.5 , num_inference_steps=20 , generator=SCREAMING_SNAKE_CASE_ , output_type="""np""" , ) lowercase__ : Optional[int] = output.images lowercase__ : Tuple = images[0, 2_55:2_58, 2_55:2_58, -1] assert images.shape == (1, 5_12, 5_12, 3) lowercase__ : Union[str, Any] = np.array([0.0_0_8_6, 0.0_0_7_7, 0.0_0_8_3, 0.0_0_9_3, 0.0_1_0_7, 0.0_1_3_9, 0.0_0_9_4, 0.0_0_9_7, 0.0_1_2_5]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-3
12
'''simple docstring''' from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig __lowerCAmelCase = logging.get_logger(__name__) # General docstring __lowerCAmelCase = 'MobileNetV1Config' # Base docstring __lowerCAmelCase = 'google/mobilenet_v1_1.0_224' __lowerCAmelCase = [1, 1_024, 7, 7] # Image classification docstring __lowerCAmelCase = 'google/mobilenet_v1_1.0_224' __lowerCAmelCase = 'tabby, tabby cat' __lowerCAmelCase = [ 'google/mobilenet_v1_1.0_224', 'google/mobilenet_v1_0.75_192', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ): _snake_case = {} if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _snake_case = model.mobilenet_va else: _snake_case = model _snake_case = """MobilenetV1/Conv2d_0/""" _snake_case = backbone.conv_stem.convolution.weight _snake_case = backbone.conv_stem.normalization.bias _snake_case = backbone.conv_stem.normalization.weight _snake_case = backbone.conv_stem.normalization.running_mean _snake_case = backbone.conv_stem.normalization.running_var for i in range(13 ): _snake_case = i + 1 _snake_case = i * 2 _snake_case = backbone.layer[pt_index] _snake_case = f"""MobilenetV1/Conv2d_{tf_index}_depthwise/""" _snake_case = pointer.convolution.weight _snake_case = pointer.normalization.bias _snake_case = pointer.normalization.weight _snake_case = pointer.normalization.running_mean _snake_case = pointer.normalization.running_var _snake_case = backbone.layer[pt_index + 1] _snake_case = f"""MobilenetV1/Conv2d_{tf_index}_pointwise/""" _snake_case = pointer.convolution.weight _snake_case = pointer.normalization.bias _snake_case = pointer.normalization.weight _snake_case = pointer.normalization.running_mean _snake_case = pointer.normalization.running_var if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _snake_case = """MobilenetV1/Logits/Conv2d_1c_1x1/""" _snake_case = model.classifier.weight _snake_case = model.classifier.bias return tf_to_pt_map def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): try: import numpy as np import tensorflow as tf except ImportError: logger.error( """Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see """ """https://www.tensorflow.org/install/ for installation instructions.""" ) raise # Load weights from TF model _snake_case = tf.train.list_variables(_SCREAMING_SNAKE_CASE ) _snake_case = {} for name, shape in init_vars: logger.info(f"""Loading TF weight {name} with shape {shape}""" ) _snake_case = tf.train.load_variable(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _snake_case = array # Build TF to PyTorch weights loading map _snake_case = _build_tf_to_pytorch_map(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for name, pointer in tf_to_pt_map.items(): logger.info(f"""Importing {name}""" ) if name not in tf_weights: logger.info(f"""{name} not in tf pre-trained weights, skipping""" ) continue _snake_case = tf_weights[name] if "depthwise_weights" in name: logger.info("""Transposing depthwise""" ) _snake_case = np.transpose(_SCREAMING_SNAKE_CASE , (2, 3, 0, 1) ) elif "weights" in name: logger.info("""Transposing""" ) if len(pointer.shape ) == 2: # copying into linear layer _snake_case = array.squeeze().transpose() else: _snake_case = np.transpose(_SCREAMING_SNAKE_CASE , (3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(f"""Pointer shape {pointer.shape} and array shape {array.shape} mismatched""" ) logger.info(f"""Initialize PyTorch weight {name} {array.shape}""" ) _snake_case = torch.from_numpy(_SCREAMING_SNAKE_CASE ) tf_weights.pop(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) tf_weights.pop(name + """/RMSProp""" , _SCREAMING_SNAKE_CASE ) tf_weights.pop(name + """/RMSProp_1""" , _SCREAMING_SNAKE_CASE ) tf_weights.pop(name + """/ExponentialMovingAverage""" , _SCREAMING_SNAKE_CASE ) logger.info(f"""Weights not copied to PyTorch model: {", ".join(tf_weights.keys() )}""" ) return model def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _snake_case, _snake_case = features.shape[-2:] _snake_case, _snake_case = conv_layer.stride _snake_case, _snake_case = conv_layer.kernel_size if in_height % stride_height == 0: _snake_case = max(kernel_height - stride_height , 0 ) else: _snake_case = max(kernel_height - (in_height % stride_height) , 0 ) if in_width % stride_width == 0: _snake_case = max(kernel_width - stride_width , 0 ) else: _snake_case = max(kernel_width - (in_width % stride_width) , 0 ) _snake_case = pad_along_width // 2 _snake_case = pad_along_width - pad_left _snake_case = pad_along_height // 2 _snake_case = pad_along_height - pad_top _snake_case = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , """constant""" , 0.0 ) class _lowerCAmelCase ( nn.Module ): '''simple docstring''' def __init__(self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = 1 , UpperCAmelCase = 1 , UpperCAmelCase = False , UpperCAmelCase = True , UpperCAmelCase = True , ) -> None: super().__init__() _snake_case = config if in_channels % groups != 0: raise ValueError(f"""Input channels ({in_channels}) are not divisible by {groups} groups.""" ) if out_channels % groups != 0: raise ValueError(f"""Output channels ({out_channels}) are not divisible by {groups} groups.""" ) _snake_case = 0 if config.tf_padding else int((kernel_size - 1) / 2 ) _snake_case = nn.Convad( in_channels=UpperCAmelCase , out_channels=UpperCAmelCase , kernel_size=UpperCAmelCase , stride=UpperCAmelCase , padding=UpperCAmelCase , groups=UpperCAmelCase , bias=UpperCAmelCase , padding_mode="""zeros""" , ) if use_normalization: _snake_case = nn.BatchNormad( num_features=UpperCAmelCase , eps=config.layer_norm_eps , momentum=0.9997 , affine=UpperCAmelCase , track_running_stats=UpperCAmelCase , ) else: _snake_case = None if use_activation: if isinstance(UpperCAmelCase , UpperCAmelCase ): _snake_case = ACTaFN[use_activation] elif isinstance(config.hidden_act , UpperCAmelCase ): _snake_case = ACTaFN[config.hidden_act] else: _snake_case = config.hidden_act else: _snake_case = None def lowercase (self , UpperCAmelCase ) -> torch.Tensor: if self.config.tf_padding: _snake_case = apply_tf_padding(UpperCAmelCase , self.convolution ) _snake_case = self.convolution(UpperCAmelCase ) if self.normalization is not None: _snake_case = self.normalization(UpperCAmelCase ) if self.activation is not None: _snake_case = self.activation(UpperCAmelCase ) return features class _lowerCAmelCase ( __snake_case ): '''simple docstring''' lowerCAmelCase_ = MobileNetVaConfig lowerCAmelCase_ = load_tf_weights_in_mobilenet_va lowerCAmelCase_ = "mobilenet_v1" lowerCAmelCase_ = "pixel_values" lowerCAmelCase_ = False def lowercase (self , UpperCAmelCase ) -> None: if isinstance(UpperCAmelCase , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(UpperCAmelCase , nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) __lowerCAmelCase = r'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' __lowerCAmelCase = r'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`MobileNetV1ImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( "The bare MobileNetV1 model outputting raw hidden-states without any specific head on top." , __snake_case , ) class _lowerCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , UpperCAmelCase , UpperCAmelCase = True ) -> Dict: super().__init__(UpperCAmelCase ) _snake_case = config _snake_case = 32 _snake_case = max(int(depth * config.depth_multiplier ) , config.min_depth ) _snake_case = MobileNetVaConvLayer( UpperCAmelCase , in_channels=config.num_channels , out_channels=UpperCAmelCase , kernel_size=3 , stride=2 , ) _snake_case = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] _snake_case = nn.ModuleList() for i in range(13 ): _snake_case = out_channels if strides[i] == 2 or i == 0: depth *= 2 _snake_case = max(int(depth * config.depth_multiplier ) , config.min_depth ) self.layer.append( MobileNetVaConvLayer( UpperCAmelCase , in_channels=UpperCAmelCase , out_channels=UpperCAmelCase , kernel_size=3 , stride=strides[i] , groups=UpperCAmelCase , ) ) self.layer.append( MobileNetVaConvLayer( UpperCAmelCase , in_channels=UpperCAmelCase , out_channels=UpperCAmelCase , kernel_size=1 , ) ) _snake_case = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def lowercase (self , UpperCAmelCase ) -> Dict: raise NotImplementedError @add_start_docstrings_to_model_forward(UpperCAmelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=UpperCAmelCase , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def lowercase (self , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , ) -> Union[tuple, BaseModelOutputWithPoolingAndNoAttention]: _snake_case = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _snake_case = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("""You have to specify pixel_values""" ) _snake_case = self.conv_stem(UpperCAmelCase ) _snake_case = () if output_hidden_states else None for i, layer_module in enumerate(self.layer ): _snake_case = layer_module(UpperCAmelCase ) if output_hidden_states: _snake_case = all_hidden_states + (hidden_states,) _snake_case = hidden_states if self.pooler is not None: _snake_case = torch.flatten(self.pooler(UpperCAmelCase ) , start_dim=1 ) else: _snake_case = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=UpperCAmelCase , pooler_output=UpperCAmelCase , hidden_states=UpperCAmelCase , ) @add_start_docstrings( "\n MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , __snake_case , ) class _lowerCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , UpperCAmelCase ) -> None: super().__init__(UpperCAmelCase ) _snake_case = config.num_labels _snake_case = MobileNetVaModel(UpperCAmelCase ) _snake_case = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head _snake_case = nn.Dropout(config.classifier_dropout_prob , inplace=UpperCAmelCase ) _snake_case = nn.Linear(UpperCAmelCase , config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UpperCAmelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=UpperCAmelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def lowercase (self , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , ) -> Union[tuple, ImageClassifierOutputWithNoAttention]: _snake_case = return_dict if return_dict is not None else self.config.use_return_dict _snake_case = self.mobilenet_va(UpperCAmelCase , output_hidden_states=UpperCAmelCase , return_dict=UpperCAmelCase ) _snake_case = outputs.pooler_output if return_dict else outputs[1] _snake_case = self.classifier(self.dropout(UpperCAmelCase ) ) _snake_case = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _snake_case = """regression""" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _snake_case = """single_label_classification""" else: _snake_case = """multi_label_classification""" if self.config.problem_type == "regression": _snake_case = MSELoss() if self.num_labels == 1: _snake_case = loss_fct(logits.squeeze() , labels.squeeze() ) else: _snake_case = loss_fct(UpperCAmelCase , UpperCAmelCase ) elif self.config.problem_type == "single_label_classification": _snake_case = CrossEntropyLoss() _snake_case = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": _snake_case = BCEWithLogitsLoss() _snake_case = loss_fct(UpperCAmelCase , UpperCAmelCase ) if not return_dict: _snake_case = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=UpperCAmelCase , logits=UpperCAmelCase , hidden_states=outputs.hidden_states , )
585
0
"""simple docstring""" import logging import math from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union import torch from .tensor_utils import tensor_tree_map, tree_map def UpperCamelCase ( UpperCAmelCase ) ->List[Tuple[int, ...]]: """simple docstring""" a_ = [] if isinstance(__snake_case , __snake_case ): for v in tree.values(): shapes.extend(_fetch_dims(__snake_case ) ) elif isinstance(__snake_case , (list, tuple) ): for t in tree: shapes.extend(_fetch_dims(__snake_case ) ) elif isinstance(__snake_case , torch.Tensor ): shapes.append(tree.shape ) else: raise ValueError("Not supported" ) return shapes @torch.jit.ignore def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ) ->Tuple[int, ...]: """simple docstring""" a_ = [] for d in reversed(__snake_case ): idx.append(flat_idx % d ) a_ = flat_idx // d return tuple(reversed(__snake_case ) ) @torch.jit.ignore def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None , ) ->List[Tuple[slice, ...]]: """simple docstring""" def reduce_edge_list(UpperCAmelCase ) -> None: a_ = True for i in range(len(__snake_case ) ): a_ = -1 * (i + 1) l[reversed_idx] &= tally a_ = l[reversed_idx] if start_edges is None: a_ = [s == 0 for s in start] reduce_edge_list(__snake_case ) if end_edges is None: a_ = [e == (d - 1) for e, d in zip(__snake_case , __snake_case )] reduce_edge_list(__snake_case ) # Base cases. Either start/end are empty and we're done, or the final, # one-dimensional tensor can be simply sliced if len(__snake_case ) == 0: return [()] elif len(__snake_case ) == 1: return [(slice(start[0] , end[0] + 1 ),)] a_ = [] a_ = [] # Dimensions common to start and end can be selected directly for s, e in zip(__snake_case , __snake_case ): if s == e: path_list.append(slice(__snake_case , s + 1 ) ) else: break a_ = tuple(__snake_case ) a_ = len(__snake_case ) # start == end, and we're done if divergence_idx == len(__snake_case ): return [path] def upper() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None a_ = start[divergence_idx] return tuple( path + (slice(__snake_case , sdi + 1 ),) + s for s in _get_minimal_slice_set( start[divergence_idx + 1 :] , [d - 1 for d in dims[divergence_idx + 1 :]] , dims[divergence_idx + 1 :] , start_edges=start_edges[divergence_idx + 1 :] , end_edges=[True for _ in end_edges[divergence_idx + 1 :]] , ) ) def lower() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None a_ = end[divergence_idx] return tuple( path + (slice(__snake_case , edi + 1 ),) + s for s in _get_minimal_slice_set( [0 for _ in start[divergence_idx + 1 :]] , end[divergence_idx + 1 :] , dims[divergence_idx + 1 :] , start_edges=[True for _ in start_edges[divergence_idx + 1 :]] , end_edges=end_edges[divergence_idx + 1 :] , ) ) # If both start and end are at the edges of the subtree rooted at # divergence_idx, we can just select the whole subtree at once if start_edges[divergence_idx] and end_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] + 1 ),) ) # If just start is at the edge, we can grab almost all of the subtree, # treating only the ragged bottom edge as an edge case elif start_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] ),) ) slices.extend(lower() ) # Analogous to the previous case, but the top is ragged this time elif end_edges[divergence_idx]: slices.extend(upper() ) slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] + 1 ),) ) # If both sides of the range are ragged, we need to handle both sides # separately. If there's contiguous meat in between them, we can index it # in one big chunk else: slices.extend(upper() ) a_ = end[divergence_idx] - start[divergence_idx] if middle_ground > 1: slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] ),) ) slices.extend(lower() ) return slices @torch.jit.ignore def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->torch.Tensor: """simple docstring""" a_ = t.shape[:no_batch_dims] a_ = list(_flat_idx_to_idx(__snake_case , __snake_case ) ) # _get_minimal_slice_set is inclusive a_ = list(_flat_idx_to_idx(flat_end - 1 , __snake_case ) ) # Get an ordered list of slices to perform a_ = _get_minimal_slice_set( __snake_case , __snake_case , __snake_case , ) a_ = [t[s] for s in slices] return torch.cat([s.view((-1,) + t.shape[no_batch_dims:] ) for s in sliced_tensors] ) def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = False , ) ->Any: """simple docstring""" if not (len(__snake_case ) > 0): raise ValueError("Must provide at least one input" ) a_ = [shape[:no_batch_dims] for shape in _fetch_dims(__snake_case )] a_ = tuple([max(__snake_case ) for s in zip(*__snake_case )] ) def _prep_inputs(UpperCAmelCase ) -> torch.Tensor: if not low_mem: if not sum(t.shape[:no_batch_dims] ) == no_batch_dims: a_ = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) a_ = t.reshape(-1 , *t.shape[no_batch_dims:] ) else: a_ = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) return t a_ = tensor_tree_map(_prep_inputs , __snake_case ) a_ = None if _out is not None: a_ = tensor_tree_map(lambda UpperCAmelCase : t.view([-1] + list(t.shape[no_batch_dims:] ) ) , _out ) a_ = 1 for d in orig_batch_dims: flat_batch_dim *= d a_ = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0) def _select_chunk(UpperCAmelCase ) -> torch.Tensor: return t[i : i + chunk_size] if t.shape[0] != 1 else t a_ = 0 a_ = prepped_outputs for _ in range(__snake_case ): # Chunk the input if not low_mem: a_ = _select_chunk else: a_ = partial( _chunk_slice , flat_start=__snake_case , flat_end=min(__snake_case , i + chunk_size ) , no_batch_dims=len(__snake_case ) , ) a_ = tensor_tree_map(__snake_case , __snake_case ) # Run the layer on the chunk a_ = layer(**__snake_case ) # Allocate space for the output if out is None: a_ = tensor_tree_map(lambda UpperCAmelCase : t.new_zeros((flat_batch_dim,) + t.shape[1:] ) , __snake_case ) # Put the chunk in its pre-allocated space if isinstance(__snake_case , __snake_case ): def assign(UpperCAmelCase , UpperCAmelCase ) -> None: for k, v in da.items(): if isinstance(__snake_case , __snake_case ): assign(__snake_case , da[k] ) else: if _add_into_out: v[i : i + chunk_size] += da[k] else: a_ = da[k] assign(__snake_case , __snake_case ) elif isinstance(__snake_case , __snake_case ): for xa, xa in zip(__snake_case , __snake_case ): if _add_into_out: xa[i : i + chunk_size] += xa else: a_ = xa elif isinstance(__snake_case , torch.Tensor ): if _add_into_out: out[i : i + chunk_size] += output_chunk else: a_ = output_chunk else: raise ValueError("Not supported" ) i += chunk_size a_ = tensor_tree_map(lambda UpperCAmelCase : t.view(orig_batch_dims + t.shape[1:] ) , __snake_case ) return out class snake_case : def __init__( self , __UpperCAmelCase = 5_12 , ) ->List[Any]: a_ = max_chunk_size a_ = None a_ = None def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) ->int: logging.info("Tuning chunk size...") if min_chunk_size >= self.max_chunk_size: return min_chunk_size a_ = [2**l for l in range(int(math.log(self.max_chunk_size , 2)) + 1)] a_ = [c for c in candidates if c > min_chunk_size] a_ = [min_chunk_size] + candidates candidates[-1] += 4 def test_chunk_size(__UpperCAmelCase) -> bool: try: with torch.no_grad(): fn(*__a , chunk_size=__a) return True except RuntimeError: return False a_ = 0 a_ = len(__a) - 1 while i > min_viable_chunk_size_index: a_ = test_chunk_size(candidates[i]) if not viable: a_ = (min_viable_chunk_size_index + i) // 2 else: a_ = i a_ = (i + len(__a) - 1) // 2 return candidates[min_viable_chunk_size_index] def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase) ->bool: a_ = True for aa, aa in zip(__a , __a): assert type(__a) == type(__a) if isinstance(__a , (list, tuple)): consistent &= self._compare_arg_caches(__a , __a) elif isinstance(__a , __a): a_ = [v for _, v in sorted(aa.items() , key=lambda __UpperCAmelCase: x[0])] a_ = [v for _, v in sorted(aa.items() , key=lambda __UpperCAmelCase: x[0])] consistent &= self._compare_arg_caches(__a , __a) else: consistent &= aa == aa return consistent def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) ->int: a_ = True a_ = tree_map(lambda __UpperCAmelCase: a.shape if isinstance(__a , torch.Tensor) else a , __a , __a) if self.cached_arg_data is not None: # If args have changed shape/value, we need to re-tune assert len(self.cached_arg_data) == len(__a) a_ = self._compare_arg_caches(self.cached_arg_data , __a) else: # Otherwise, we can reuse the precomputed value a_ = False if not consistent: a_ = self._determine_favorable_chunk_size( __a , __a , __a , ) a_ = arg_data assert self.cached_chunk_size is not None return self.cached_chunk_size
712
"""simple docstring""" def UpperCamelCase ( UpperCAmelCase ) ->bool: """simple docstring""" a_ = 0 for ch in input_str: a_ = ord(UpperCAmelCase ) a_ = pow(2 , UpperCAmelCase ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
210
0
import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase): _lowercase : Tuple = IFImgaImgSuperResolutionPipeline _lowercase : Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""width""", """height"""} _lowercase : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"""original_image"""}) _lowercase : int = PipelineTesterMixin.required_optional_params - {"""latents"""} def _lowercase ( self ) -> Dict: '''simple docstring''' return self._get_superresolution_dummy_components() def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__=0 ) -> Optional[int]: '''simple docstring''' if str(lowerCAmelCase__ ).startswith("mps" ): a__ : List[Any] =torch.manual_seed(lowerCAmelCase__ ) else: a__ : str =torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) a__ : Tuple =floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ ) a__ : List[str] =floats_tensor((1, 3, 1_6, 1_6) , rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ ) a__ : Any ={ "prompt": "A painting of a squirrel eating a burger", "image": image, "original_image": original_image, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def _lowercase ( self ) -> int: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" ) def _lowercase ( self ) -> str: '''simple docstring''' super().test_save_load_floataa(expected_max_diff=1E-1 ) def _lowercase ( self ) -> Dict: '''simple docstring''' self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def _lowercase ( self ) -> Tuple: '''simple docstring''' self._test_save_load_local() def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
563
from __future__ import annotations from math import pow, sqrt def _A ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float ): """simple docstring""" if (resistance, reactance, impedance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if resistance == 0: return {"resistance": sqrt(pow(SCREAMING_SNAKE_CASE , 2 ) - pow(SCREAMING_SNAKE_CASE , 2 ) )} elif reactance == 0: return {"reactance": sqrt(pow(SCREAMING_SNAKE_CASE , 2 ) - pow(SCREAMING_SNAKE_CASE , 2 ) )} elif impedance == 0: return {"impedance": sqrt(pow(SCREAMING_SNAKE_CASE , 2 ) + pow(SCREAMING_SNAKE_CASE , 2 ) )} else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
563
1
import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class UpperCAmelCase_ : '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE="resnet50" , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=32 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , ): """simple docstring""" UpperCamelCase : Optional[Any] = parent UpperCamelCase : Dict = out_indices if out_indices is not None else [4] UpperCamelCase : List[str] = stage_names UpperCamelCase : Any = out_features UpperCamelCase : List[Any] = backbone UpperCamelCase : Tuple = batch_size UpperCamelCase : int = image_size UpperCamelCase : Optional[int] = num_channels UpperCamelCase : Optional[int] = use_pretrained_backbone UpperCamelCase : Optional[int] = is_training def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase : List[Any] = self.get_config() return config, pixel_values def _lowercase ( self ): """simple docstring""" return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : int = TimmBackbone(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): UpperCamelCase : int = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : Tuple = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase : List[str] = config_and_inputs UpperCamelCase : Dict = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch @require_timm class UpperCAmelCase_ ( _a, _a, _a, unittest.TestCase): '''simple docstring''' __UpperCamelCase : str = (TimmBackbone,) if is_torch_available() else () __UpperCamelCase : List[str] = {"feature-extraction": TimmBackbone} if is_torch_available() else {} __UpperCamelCase : str = False __UpperCamelCase : Optional[Any] = False __UpperCamelCase : Union[str, Any] = False __UpperCamelCase : Any = False def _lowercase ( self ): """simple docstring""" UpperCamelCase : Any = TimmBackboneModelTester(self ) UpperCamelCase : Tuple = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , has_text_modality=__SCREAMING_SNAKE_CASE ) def _lowercase ( self ): """simple docstring""" self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[Any] = '''resnet18''' UpperCamelCase : List[Any] = '''microsoft/resnet-18''' UpperCamelCase : Optional[Any] = AutoBackbone.from_pretrained(__SCREAMING_SNAKE_CASE , use_timm_backbone=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Any = AutoBackbone.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) UpperCamelCase : Optional[Any] = AutoBackbone.from_pretrained(__SCREAMING_SNAKE_CASE , use_timm_backbone=__SCREAMING_SNAKE_CASE , out_indices=[1, 2, 3] ) UpperCamelCase : str = AutoBackbone.from_pretrained(__SCREAMING_SNAKE_CASE , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip('''TimmBackbone doesn\'t support feed forward chunking''' ) def _lowercase ( self ): """simple docstring""" pass @unittest.skip('''TimmBackbone doesn\'t have num_hidden_layers attribute''' ) def _lowercase ( self ): """simple docstring""" pass @unittest.skip('''TimmBackbone initialization is managed on the timm side''' ) def _lowercase ( self ): """simple docstring""" pass @unittest.skip('''TimmBackbone models doesn\'t have inputs_embeds''' ) def _lowercase ( self ): """simple docstring""" pass @unittest.skip('''TimmBackbone models doesn\'t have inputs_embeds''' ) def _lowercase ( self ): """simple docstring""" pass @unittest.skip('''TimmBackbone model cannot be created without specifying a backbone checkpoint''' ) def _lowercase ( self ): """simple docstring""" pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def _lowercase ( self ): """simple docstring""" pass @unittest.skip('''model weights aren\'t tied in TimmBackbone.''' ) def _lowercase ( self ): """simple docstring""" pass @unittest.skip('''model weights aren\'t tied in TimmBackbone.''' ) def _lowercase ( self ): """simple docstring""" pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def _lowercase ( self ): """simple docstring""" pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def _lowercase ( self ): """simple docstring""" pass @unittest.skip('''TimmBackbone doesn\'t have hidden size info in its configuration.''' ) def _lowercase ( self ): """simple docstring""" pass @unittest.skip('''TimmBackbone doesn\'t support output_attentions.''' ) def _lowercase ( self ): """simple docstring""" pass @unittest.skip('''Safetensors is not supported by timm.''' ) def _lowercase ( self ): """simple docstring""" pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def _lowercase ( self ): """simple docstring""" pass def _lowercase ( self ): """simple docstring""" UpperCamelCase , UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase : Dict = model_class(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase : Tuple = [*signature.parameters.keys()] UpperCamelCase : List[str] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __SCREAMING_SNAKE_CASE ) def _lowercase ( self ): """simple docstring""" UpperCamelCase , UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase : Dict = True UpperCamelCase : Optional[int] = self.has_attentions # no need to test all models as different heads yield the same functionality UpperCamelCase : Optional[Any] = self.all_model_classes[0] UpperCamelCase : Tuple = model_class(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) UpperCamelCase : str = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase : int = model(**__SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = outputs[0][-1] # Encoder-/Decoder-only models UpperCamelCase : List[Any] = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: UpperCamelCase : Union[str, Any] = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def _lowercase ( self ): """simple docstring""" UpperCamelCase , UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase : Dict = model_class(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase : List[Any] = model(**__SCREAMING_SNAKE_CASE ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None UpperCamelCase : Optional[int] = copy.deepcopy(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Dict = None UpperCamelCase : Dict = model_class(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase : Optional[int] = model(**__SCREAMING_SNAKE_CASE ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights UpperCamelCase : int = copy.deepcopy(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Any = False UpperCamelCase : Any = model_class(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase : int = model(**__SCREAMING_SNAKE_CASE )
643
import io import os import unicodedata from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __UpperCAmelCase : Any = logging.get_logger(__name__) __UpperCAmelCase : int = "▁" __UpperCAmelCase : Tuple = {"vocab_file": "vocab.txt", "sentencepiece_model_ckpt": "sentencepiece.bpe.model"} __UpperCAmelCase : Dict = { "sentencepiece_model_file": "sentencepiece.bpe.model", "vocab_file": "vocab.txt", } __UpperCAmelCase : Dict = { "vocab_file": { "ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt", "ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt", }, "sentencepiece_model_file": { "ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model", "ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model", }, } __UpperCAmelCase : str = { "ernie-m-base": 514, "ernie-m-large": 514, } __UpperCAmelCase : Optional[int] = { "ernie-m-base": {"do_lower_case": False}, "ernie-m-large": {"do_lower_case": False}, } class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : List[str] = ["input_ids"] __UpperCamelCase : List[str] = VOCAB_FILES_NAMES __UpperCamelCase : List[Any] = PRETRAINED_INIT_CONFIGURATION __UpperCamelCase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : int = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : List[str] = RESOURCE_FILES_NAMES def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE="utf8" , __SCREAMING_SNAKE_CASE="[UNK]" , __SCREAMING_SNAKE_CASE="[SEP]" , __SCREAMING_SNAKE_CASE="[PAD]" , __SCREAMING_SNAKE_CASE="[CLS]" , __SCREAMING_SNAKE_CASE="[MASK]" , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" UpperCamelCase : int = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , vocab_file=__SCREAMING_SNAKE_CASE , encoding=__SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **__SCREAMING_SNAKE_CASE , ) UpperCamelCase : List[str] = do_lower_case UpperCamelCase : Dict = sentencepiece_model_ckpt UpperCamelCase : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__SCREAMING_SNAKE_CASE ) # to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning if vocab_file is not None: UpperCamelCase : Optional[Any] = self.load_vocab(filepath=__SCREAMING_SNAKE_CASE ) else: UpperCamelCase : int = {self.sp_model.id_to_piece(__SCREAMING_SNAKE_CASE ): id for id in range(self.sp_model.get_piece_size() )} UpperCamelCase : str = {v: k for k, v in self.vocab.items()} def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if text is None: return None UpperCamelCase : str = self.tokenize(__SCREAMING_SNAKE_CASE ) UpperCamelCase , UpperCamelCase : str = '''''', [] for i, ch in enumerate(__SCREAMING_SNAKE_CASE ): if ch in self.SP_CHAR_MAPPING: UpperCamelCase : Optional[int] = self.SP_CHAR_MAPPING.get(__SCREAMING_SNAKE_CASE ) else: UpperCamelCase : Optional[Any] = unicodedata.normalize('''NFKC''' , __SCREAMING_SNAKE_CASE ) if self.is_whitespace(__SCREAMING_SNAKE_CASE ): continue normalized_text += ch char_mapping.extend([i] * len(__SCREAMING_SNAKE_CASE ) ) UpperCamelCase , UpperCamelCase , UpperCamelCase : Tuple = normalized_text, [], 0 if self.do_lower_case: UpperCamelCase : Tuple = text.lower() for token in split_tokens: if token[:1] == "▁": UpperCamelCase : Any = token[1:] UpperCamelCase : Optional[int] = text[offset:].index(__SCREAMING_SNAKE_CASE ) + offset UpperCamelCase : List[Any] = start + len(__SCREAMING_SNAKE_CASE ) token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) ) UpperCamelCase : str = end return token_mapping @property def _lowercase ( self ): """simple docstring""" return len(self.vocab ) def _lowercase ( self ): """simple docstring""" return dict(self.vocab , **self.added_tokens_encoder ) def __getstate__( self ): """simple docstring""" UpperCamelCase : Optional[Any] = self.__dict__.copy() UpperCamelCase : str = None return state def __setstate__( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Tuple = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): UpperCamelCase : Optional[int] = {} UpperCamelCase : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.sentencepiece_model_ckpt ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" return "".join((self.SP_CHAR_MAPPING.get(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for c in text) ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=64 , __SCREAMING_SNAKE_CASE=0.1 ): """simple docstring""" if self.sp_model_kwargs.get('''enable_sampling''' ) is True: UpperCamelCase : List[str] = True if self.sp_model_kwargs.get('''alpha''' ) is not None: UpperCamelCase : Any = self.sp_model_kwargs.get('''alpha''' ) if self.sp_model_kwargs.get('''nbest_size''' ) is not None: UpperCamelCase : Tuple = self.sp_model_kwargs.get('''nbest_size''' ) if not enable_sampling: UpperCamelCase : int = self.sp_model.EncodeAsPieces(__SCREAMING_SNAKE_CASE ) else: UpperCamelCase : Optional[Any] = self.sp_model.SampleEncodeAsPieces(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase : List[str] = [] for pi, piece in enumerate(__SCREAMING_SNAKE_CASE ): if piece == SPIECE_UNDERLINE: if not pieces[pi + 1].startswith(__SCREAMING_SNAKE_CASE ) and pi != 0: new_pieces.append(__SCREAMING_SNAKE_CASE ) continue else: continue UpperCamelCase : Any = 0 for i, chunk in enumerate(__SCREAMING_SNAKE_CASE ): if chunk == SPIECE_UNDERLINE: continue if self.is_ch_char(__SCREAMING_SNAKE_CASE ) or self.is_punct(__SCREAMING_SNAKE_CASE ): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) new_pieces.append(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Dict = i + 1 elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) UpperCamelCase : Union[str, Any] = i elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) UpperCamelCase : Any = i if len(__SCREAMING_SNAKE_CASE ) > lst_i: new_pieces.append(piece[lst_i:] ) return new_pieces def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Optional[int] = ''''''.join(__SCREAMING_SNAKE_CASE ).replace(__SCREAMING_SNAKE_CASE , ''' ''' ).strip() return out_string def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : int = self.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ) UpperCamelCase : int = ''''''.join(__SCREAMING_SNAKE_CASE ).replace(__SCREAMING_SNAKE_CASE , ''' ''' ).strip() return out_string def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" return self.vocab.get(__SCREAMING_SNAKE_CASE , self.vocab.get(self.unk_token ) ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" return self.reverse_vocab.get(__SCREAMING_SNAKE_CASE , self.unk_token ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCamelCase : Any = [self.cls_token_id] UpperCamelCase : str = [self.sep_token_id] return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None ): """simple docstring""" if offset_mapping_a is None: return [(0, 0)] + offset_mapping_a + [(0, 0)] return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)] def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=False ): """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1, 1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" if token_ids_a is None: # [CLS] X [SEP] return (len(__SCREAMING_SNAKE_CASE ) + 2) * [0] # [CLS] A [SEP] [SEP] B [SEP] return [0] * (len(__SCREAMING_SNAKE_CASE ) + 1) + [1] * (len(__SCREAMING_SNAKE_CASE ) + 3) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if "\u4e00" <= char <= "\u9fff": return True return False def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if ("a" <= char <= "z") or ("A" <= char <= "Z"): return True return False def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if char in ",;:.?!~,;:。?!《》【】": return True return False def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if char == " " or char == "\t" or char == "\n" or char == "\r": return True if len(__SCREAMING_SNAKE_CASE ) == 1: UpperCamelCase : Optional[int] = unicodedata.category(__SCREAMING_SNAKE_CASE ) if cat == "Zs": return True return False def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : int = {} with io.open(__SCREAMING_SNAKE_CASE , '''r''' , encoding='''utf-8''' ) as f: for index, line in enumerate(__SCREAMING_SNAKE_CASE ): UpperCamelCase : Tuple = line.rstrip('''\n''' ) UpperCamelCase : List[Any] = int(__SCREAMING_SNAKE_CASE ) return token_to_idx def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" UpperCamelCase : Union[str, Any] = 0 if os.path.isdir(__SCREAMING_SNAKE_CASE ): UpperCamelCase : Dict = os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) else: UpperCamelCase : Union[str, Any] = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory with open(__SCREAMING_SNAKE_CASE , '''w''' , encoding='''utf-8''' ) as writer: for token, token_index in sorted(self.vocab.items() , key=lambda __SCREAMING_SNAKE_CASE : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" ''' Please check that the vocabulary is not corrupted!''' ) UpperCamelCase : List[Any] = token_index writer.write(token + '''\n''' ) index += 1 UpperCamelCase : Tuple = os.path.join(__SCREAMING_SNAKE_CASE , '''sentencepiece.bpe.model''' ) with open(__SCREAMING_SNAKE_CASE , '''wb''' ) as fi: UpperCamelCase : List[Any] = self.sp_model.serialized_model_proto() fi.write(__SCREAMING_SNAKE_CASE ) return (vocab_file,)
643
1
import cmath import math def UpperCAmelCase__ ( __magic_name__ : float , __magic_name__ : float , __magic_name__ : float , __magic_name__ : float ): '''simple docstring''' lowerCAmelCase : Tuple = math.radians(_A ) lowerCAmelCase : int = math.radians(_A ) # Convert voltage and current to rectangular form lowerCAmelCase : Dict = cmath.rect(_A , _A ) lowerCAmelCase : str = cmath.rect(_A , _A ) # Calculate apparent power return voltage_rect * current_rect if __name__ == "__main__": import doctest doctest.testmod()
348
import argparse import json import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( VideoMAEConfig, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEImageProcessor, ) def UpperCamelCase__ ( _A: Tuple ): '''simple docstring''' __lowerCamelCase = VideoMAEConfig() set_architecture_configs(_A , _A ) if "finetuned" not in model_name: __lowerCamelCase = False if "finetuned" in model_name: __lowerCamelCase = """huggingface/label-files""" if "kinetics" in model_name: __lowerCamelCase = 400 __lowerCamelCase = """kinetics400-id2label.json""" elif "ssv2" in model_name: __lowerCamelCase = 174 __lowerCamelCase = """something-something-v2-id2label.json""" else: raise ValueError("""Model name should either contain 'kinetics' or 'ssv2' in case it's fine-tuned.""" ) __lowerCamelCase = json.load(open(hf_hub_download(_A , _A , repo_type="""dataset""" ) , """r""" ) ) __lowerCamelCase = {int(_A ): v for k, v in idalabel.items()} __lowerCamelCase = idalabel __lowerCamelCase = {v: k for k, v in idalabel.items()} return config def UpperCamelCase__ ( _A: Optional[int] , _A: List[str] ): '''simple docstring''' if "small" in model_name: __lowerCamelCase = 384 __lowerCamelCase = 1536 __lowerCamelCase = 12 __lowerCamelCase = 16 __lowerCamelCase = 12 __lowerCamelCase = 3 __lowerCamelCase = 192 __lowerCamelCase = 768 elif "large" in model_name: __lowerCamelCase = 1024 __lowerCamelCase = 4096 __lowerCamelCase = 24 __lowerCamelCase = 16 __lowerCamelCase = 12 __lowerCamelCase = 8 __lowerCamelCase = 512 __lowerCamelCase = 2048 elif "huge" in model_name: __lowerCamelCase = 1280 __lowerCamelCase = 5120 __lowerCamelCase = 32 __lowerCamelCase = 16 __lowerCamelCase = 12 __lowerCamelCase = 8 __lowerCamelCase = 640 __lowerCamelCase = 2560 elif "base" not in model_name: raise ValueError("""Model name should include either \"small\", \"base\", \"large\", or \"huge\"""" ) def UpperCamelCase__ ( _A: Tuple ): '''simple docstring''' if "encoder." in name: __lowerCamelCase = name.replace("""encoder.""" , """""" ) if "cls_token" in name: __lowerCamelCase = name.replace("""cls_token""" , """videomae.embeddings.cls_token""" ) if "decoder_pos_embed" in name: __lowerCamelCase = name.replace("""decoder_pos_embed""" , """decoder.decoder_pos_embed""" ) if "pos_embed" in name and "decoder" not in name: __lowerCamelCase = name.replace("""pos_embed""" , """videomae.embeddings.position_embeddings""" ) if "patch_embed.proj" in name: __lowerCamelCase = name.replace("""patch_embed.proj""" , """videomae.embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: __lowerCamelCase = name.replace("""patch_embed.norm""" , """videomae.embeddings.norm""" ) if "decoder.blocks" in name: __lowerCamelCase = name.replace("""decoder.blocks""" , """decoder.decoder_layers""" ) if "blocks" in name: __lowerCamelCase = name.replace("""blocks""" , """videomae.encoder.layer""" ) if "attn.proj" in name: __lowerCamelCase = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name and "bias" not in name: __lowerCamelCase = name.replace("""attn""" , """attention.self""" ) if "attn" in name: __lowerCamelCase = name.replace("""attn""" , """attention.attention""" ) if "norm1" in name: __lowerCamelCase = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: __lowerCamelCase = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: __lowerCamelCase = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: __lowerCamelCase = name.replace("""mlp.fc2""" , """output.dense""" ) if "decoder_embed" in name: __lowerCamelCase = name.replace("""decoder_embed""" , """decoder.decoder_embed""" ) if "decoder_norm" in name: __lowerCamelCase = name.replace("""decoder_norm""" , """decoder.decoder_norm""" ) if "decoder_pred" in name: __lowerCamelCase = name.replace("""decoder_pred""" , """decoder.decoder_pred""" ) if "norm.weight" in name and "decoder" not in name and "fc" not in name: __lowerCamelCase = name.replace("""norm.weight""" , """videomae.layernorm.weight""" ) if "norm.bias" in name and "decoder" not in name and "fc" not in name: __lowerCamelCase = name.replace("""norm.bias""" , """videomae.layernorm.bias""" ) if "head" in name and "decoder" not in name: __lowerCamelCase = name.replace("""head""" , """classifier""" ) return name def UpperCamelCase__ ( _A: List[str] , _A: Any ): '''simple docstring''' for key in orig_state_dict.copy().keys(): __lowerCamelCase = orig_state_dict.pop(_A ) if key.startswith("""encoder.""" ): __lowerCamelCase = key.replace("""encoder.""" , """""" ) if "qkv" in key: __lowerCamelCase = key.split(""".""" ) if key.startswith("""decoder.blocks""" ): __lowerCamelCase = config.decoder_hidden_size __lowerCamelCase = int(key_split[2] ) __lowerCamelCase = """decoder.decoder_layers.""" if "weight" in key: __lowerCamelCase = val[:dim, :] __lowerCamelCase = val[dim : dim * 2, :] __lowerCamelCase = val[-dim:, :] else: __lowerCamelCase = config.hidden_size __lowerCamelCase = int(key_split[1] ) __lowerCamelCase = """videomae.encoder.layer.""" if "weight" in key: __lowerCamelCase = val[:dim, :] __lowerCamelCase = val[dim : dim * 2, :] __lowerCamelCase = val[-dim:, :] else: __lowerCamelCase = val return orig_state_dict def UpperCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = hf_hub_download( repo_id="""hf-internal-testing/spaghetti-video""" , filename="""eating_spaghetti.npy""" , repo_type="""dataset""" ) __lowerCamelCase = np.load(_A ) return list(_A ) def UpperCamelCase__ ( _A: Dict , _A: Optional[Any] , _A: Tuple , _A: int ): '''simple docstring''' __lowerCamelCase = get_videomae_config(_A ) if "finetuned" in model_name: __lowerCamelCase = VideoMAEForVideoClassification(_A ) else: __lowerCamelCase = VideoMAEForPreTraining(_A ) # download original checkpoint, hosted on Google Drive __lowerCamelCase = """pytorch_model.bin""" gdown.cached_download(_A , _A , quiet=_A ) __lowerCamelCase = torch.load(_A , map_location="""cpu""" ) if "model" in files: __lowerCamelCase = files["""model"""] else: __lowerCamelCase = files["""module"""] __lowerCamelCase = convert_state_dict(_A , _A ) model.load_state_dict(_A ) model.eval() # verify model on basic input __lowerCamelCase = VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) __lowerCamelCase = prepare_video() __lowerCamelCase = image_processor(_A , return_tensors="""pt""" ) if "finetuned" not in model_name: __lowerCamelCase = hf_hub_download(repo_id="""hf-internal-testing/bool-masked-pos""" , filename="""bool_masked_pos.pt""" ) __lowerCamelCase = torch.load(_A ) __lowerCamelCase = model(**_A ) __lowerCamelCase = outputs.logits __lowerCamelCase = [ """videomae-small-finetuned-kinetics""", """videomae-small-finetuned-ssv2""", # Kinetics-400 checkpoints (short = pretrained only for 800 epochs instead of 1600) """videomae-base-short""", """videomae-base-short-finetuned-kinetics""", """videomae-base""", """videomae-base-finetuned-kinetics""", """videomae-large""", """videomae-large-finetuned-kinetics""", """videomae-huge-finetuned-kinetics""", # Something-Something-v2 checkpoints (short = pretrained only for 800 epochs instead of 2400) """videomae-base-short-ssv2""", """videomae-base-short-finetuned-ssv2""", """videomae-base-ssv2""", """videomae-base-finetuned-ssv2""", ] # NOTE: logits were tested with image_mean and image_std equal to [0.5, 0.5, 0.5] and [0.5, 0.5, 0.5] if model_name == "videomae-small-finetuned-kinetics": __lowerCamelCase = torch.Size([1, 400] ) __lowerCamelCase = torch.tensor([-0.9291, -0.4061, -0.9307] ) elif model_name == "videomae-small-finetuned-ssv2": __lowerCamelCase = torch.Size([1, 174] ) __lowerCamelCase = torch.tensor([0.2671, -0.4689, -0.8235] ) elif model_name == "videomae-base": __lowerCamelCase = torch.Size([1, 1408, 1536] ) __lowerCamelCase = torch.tensor([[0.7739, 0.7968, 0.7089], [0.6701, 0.7487, 0.6209], [0.4287, 0.5158, 0.4773]] ) elif model_name == "videomae-base-short": __lowerCamelCase = torch.Size([1, 1408, 1536] ) __lowerCamelCase = torch.tensor([[0.7994, 0.9612, 0.8508], [0.7401, 0.8958, 0.8302], [0.5862, 0.7468, 0.7325]] ) # we verified the loss both for normalized and unnormalized targets for this one __lowerCamelCase = torch.tensor([0.5142] ) if config.norm_pix_loss else torch.tensor([0.6469] ) elif model_name == "videomae-large": __lowerCamelCase = torch.Size([1, 1408, 1536] ) __lowerCamelCase = torch.tensor([[0.7149, 0.7997, 0.6966], [0.6768, 0.7869, 0.6948], [0.5139, 0.6221, 0.5605]] ) elif model_name == "videomae-large-finetuned-kinetics": __lowerCamelCase = torch.Size([1, 400] ) __lowerCamelCase = torch.tensor([0.0771, 0.0011, -0.3625] ) elif model_name == "videomae-huge-finetuned-kinetics": __lowerCamelCase = torch.Size([1, 400] ) __lowerCamelCase = torch.tensor([0.2433, 0.1632, -0.4894] ) elif model_name == "videomae-base-short-finetuned-kinetics": __lowerCamelCase = torch.Size([1, 400] ) __lowerCamelCase = torch.tensor([0.6588, 0.0990, -0.2493] ) elif model_name == "videomae-base-finetuned-kinetics": __lowerCamelCase = torch.Size([1, 400] ) __lowerCamelCase = torch.tensor([0.3669, -0.0688, -0.2421] ) elif model_name == "videomae-base-short-ssv2": __lowerCamelCase = torch.Size([1, 1408, 1536] ) __lowerCamelCase = torch.tensor([[0.4712, 0.5296, 0.5786], [0.2278, 0.2729, 0.4026], [0.0352, 0.0730, 0.2506]] ) elif model_name == "videomae-base-short-finetuned-ssv2": __lowerCamelCase = torch.Size([1, 174] ) __lowerCamelCase = torch.tensor([-0.0537, -0.1539, -0.3266] ) elif model_name == "videomae-base-ssv2": __lowerCamelCase = torch.Size([1, 1408, 1536] ) __lowerCamelCase = torch.tensor([[0.8131, 0.8727, 0.8546], [0.7366, 0.9377, 0.8870], [0.5935, 0.8874, 0.8564]] ) elif model_name == "videomae-base-finetuned-ssv2": __lowerCamelCase = torch.Size([1, 174] ) __lowerCamelCase = torch.tensor([0.1961, -0.8337, -0.6389] ) else: raise ValueError(f'''Model name not supported. Should be one of {model_names}''' ) # verify logits assert logits.shape == expected_shape if "finetuned" in model_name: assert torch.allclose(logits[0, :3] , _A , atol=1e-4 ) else: print("""Logits:""" , logits[0, :3, :3] ) assert torch.allclose(logits[0, :3, :3] , _A , atol=1e-4 ) print("""Logits ok!""" ) # verify loss, if applicable if model_name == "videomae-base-short": __lowerCamelCase = outputs.loss assert torch.allclose(_A , _A , atol=1e-4 ) print("""Loss ok!""" ) if pytorch_dump_folder_path is not None: print(f'''Saving model and image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_A ) model.save_pretrained(_A ) if push_to_hub: print("""Pushing to the hub...""" ) model.push_to_hub(_A , organization="""nielsr""" ) if __name__ == "__main__": _a : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://drive.google.com/u/1/uc?id=1tEhLyskjb755TJ65ptsrafUG2llSwQE1&amp;export=download&amp;confirm=t&amp;uuid=aa3276eb-fb7e-482a-adec-dc7171df14c4', type=str, help=( 'URL of the original PyTorch checkpoint (on Google Drive) you\'d like to convert. Should be a direct' ' download link.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default='/Users/nielsrogge/Documents/VideoMAE/Test', type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument('--model_name', default='videomae-base', type=str, help='Name of the model.') parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) _a : List[str] = parser.parse_args() convert_videomae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
479
0
import warnings from typing import Dict import numpy as np from ..utils import ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : List[Any] ): return 1.0 / (1.0 + np.exp(-_outputs )) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : str ): __UpperCamelCase =np.max(_outputs , axis=-1 , keepdims=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =np.exp(_outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=SCREAMING_SNAKE_CASE__ ) class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Optional[int] = "sigmoid" UpperCAmelCase__ : List[Any] = "softmax" UpperCAmelCase__ : Tuple = "none" @add_end_docstrings( A_ , r"\n return_all_scores (`bool`, *optional*, defaults to `False`):\n Whether to return all prediction scores or just the one of the predicted class.\n function_to_apply (`str`, *optional*, defaults to `\"default\"`):\n The function to apply to the model outputs in order to retrieve the scores. Accepts four different values:\n\n - `\"default\"`: if the model has a single label, will apply the sigmoid function on the output. If the model\n has several labels, will apply the softmax function on the output.\n - `\"sigmoid\"`: Applies the sigmoid function on the output.\n - `\"softmax\"`: Applies the softmax function on the output.\n - `\"none\"`: Does not apply any function on the output.\n " , ) class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = False UpperCAmelCase__ : int = ClassificationFunction.NONE def __init__( self , **A_ ) -> Optional[int]: super().__init__(**A_ ) self.check_model_type( TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING ) def _a ( self , A_=None , A_=None , A_="" , **A_ ) -> Tuple: # Using "" as default argument because we're going to use `top_k=None` in user code to declare # "No top_k" __UpperCamelCase =tokenizer_kwargs __UpperCamelCase ={} if hasattr(self.model.config , 'return_all_scores' ) and return_all_scores is None: __UpperCamelCase =self.model.config.return_all_scores if isinstance(A_ , A_ ) or top_k is None: __UpperCamelCase =top_k __UpperCamelCase =False elif return_all_scores is not None: warnings.warn( '`return_all_scores` is now deprecated, if want a similar functionality use `top_k=None` instead of' ' `return_all_scores=True` or `top_k=1` instead of `return_all_scores=False`.' , A_ , ) if return_all_scores: __UpperCamelCase =None else: __UpperCamelCase =1 if isinstance(A_ , A_ ): __UpperCamelCase =ClassificationFunction[function_to_apply.upper()] if function_to_apply is not None: __UpperCamelCase =function_to_apply return preprocess_params, {}, postprocess_params def __call__( self , *A_ , **A_ ) -> Optional[int]: __UpperCamelCase =super().__call__(*A_ , **A_ ) # TODO try and retrieve it in a nicer way from _sanitize_parameters. __UpperCamelCase ='top_k' not in kwargs if isinstance(args[0] , A_ ) and _legacy: # This pipeline is odd, and return a list when single item is run return [result] else: return result def _a ( self , A_ , **A_ ) -> Dict[str, GenericTensor]: __UpperCamelCase =self.framework if isinstance(A_ , A_ ): return self.tokenizer(**A_ , return_tensors=A_ , **A_ ) elif isinstance(A_ , A_ ) and len(A_ ) == 1 and isinstance(inputs[0] , A_ ) and len(inputs[0] ) == 2: # It used to be valid to use a list of list of list for text pairs, keeping this path for BC return self.tokenizer( text=inputs[0][0] , text_pair=inputs[0][1] , return_tensors=A_ , **A_ ) elif isinstance(A_ , A_ ): # This is likely an invalid usage of the pipeline attempting to pass text pairs. raise ValueError( 'The pipeline received invalid inputs, if you are trying to send text pairs, you can try to send a' ' dictionary `{"text": "My text", "text_pair": "My pair"}` in order to send a text pair.' ) return self.tokenizer(A_ , return_tensors=A_ , **A_ ) def _a ( self , A_ ) -> Union[str, Any]: return self.model(**A_ ) def _a ( self , A_ , A_=None , A_=1 , A_=True ) -> Optional[Any]: # `_legacy` is used to determine if we're running the naked pipeline and in backward # compatibility mode, or if running the pipeline with `pipeline(..., top_k=1)` we're running # the more natural result containing the list. # Default value before `set_parameters` if function_to_apply is None: if self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1: __UpperCamelCase =ClassificationFunction.SIGMOID elif self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels > 1: __UpperCamelCase =ClassificationFunction.SOFTMAX elif hasattr(self.model.config , 'function_to_apply' ) and function_to_apply is None: __UpperCamelCase =self.model.config.function_to_apply else: __UpperCamelCase =ClassificationFunction.NONE __UpperCamelCase =model_outputs['logits'][0] __UpperCamelCase =outputs.numpy() if function_to_apply == ClassificationFunction.SIGMOID: __UpperCamelCase =sigmoid(A_ ) elif function_to_apply == ClassificationFunction.SOFTMAX: __UpperCamelCase =softmax(A_ ) elif function_to_apply == ClassificationFunction.NONE: __UpperCamelCase =outputs else: raise ValueError(f'Unrecognized `function_to_apply` argument: {function_to_apply}' ) if top_k == 1 and _legacy: return {"label": self.model.config.idalabel[scores.argmax().item()], "score": scores.max().item()} __UpperCamelCase =[ {'label': self.model.config.idalabel[i], 'score': score.item()} for i, score in enumerate(A_ ) ] if not _legacy: dict_scores.sort(key=lambda A_ : x["score"] , reverse=A_ ) if top_k is not None: __UpperCamelCase =dict_scores[:top_k] return dict_scores
682
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Optional[Any]=None ): if subparsers is not None: __UpperCamelCase =subparsers.add_parser('test' ) else: __UpperCamelCase =argparse.ArgumentParser('Accelerate test command' ) parser.add_argument( '--config_file' , default=SCREAMING_SNAKE_CASE__ , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , ) if subparsers is not None: parser.set_defaults(func=SCREAMING_SNAKE_CASE__ ) return parser def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Any ): __UpperCamelCase =os.path.sep.join(__file__.split(os.path.sep )[:-2] + ['test_utils', 'scripts', 'test_script.py'] ) if args.config_file is None: __UpperCamelCase =script_name else: __UpperCamelCase =F'--config_file={args.config_file} {script_name}' __UpperCamelCase =['accelerate-launch'] + test_args.split() __UpperCamelCase =execute_subprocess_async(SCREAMING_SNAKE_CASE__ , env=os.environ.copy() ) if result.returncode == 0: print('Test is a success! You are ready for your distributed training!' ) def _UpperCAmelCase ( ): __UpperCamelCase =test_command_parser() __UpperCamelCase =parser.parse_args() test_command(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": main()
682
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json" ), "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json" ), "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json" ), } class lowercase_ (snake_case_ ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = 'dpr' def __init__( self : List[str] ,lowercase__ : List[Any]=3_0_5_2_2 ,lowercase__ : List[str]=7_6_8 ,lowercase__ : int=1_2 ,lowercase__ : List[str]=1_2 ,lowercase__ : Optional[int]=3_0_7_2 ,lowercase__ : Union[str, Any]="gelu" ,lowercase__ : Any=0.1 ,lowercase__ : Optional[int]=0.1 ,lowercase__ : int=5_1_2 ,lowercase__ : Dict=2 ,lowercase__ : List[Any]=0.0_2 ,lowercase__ : Optional[Any]=1e-1_2 ,lowercase__ : Any=0 ,lowercase__ : Any="absolute" ,lowercase__ : int = 0 ,**lowercase__ : Optional[Any] ,): super().__init__(pad_token_id=__UpperCamelCase ,**__UpperCamelCase ) __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = hidden_act __lowercase = intermediate_size __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = projection_dim __lowercase = position_embedding_type
41
'''simple docstring''' import baseaa import io import json import os from copy import deepcopy from ..optimizer import AcceleratedOptimizer from ..scheduler import AcceleratedScheduler class _snake_case : '''simple docstring''' def __init__( self: Any , __UpperCamelCase: List[Any] ) -> Dict: if isinstance(__UpperCamelCase , __UpperCamelCase ): # Don't modify user's data should they want to reuse it (e.g. in tests), because once we # modified it, it will not be accepted here again, since `auto` values would have been overridden __magic_name__ : Optional[int] = deepcopy(__UpperCamelCase ) elif os.path.exists(__UpperCamelCase ): with io.open(__UpperCamelCase , "r" , encoding="utf-8" ) as f: __magic_name__ : Optional[int] = json.load(__UpperCamelCase ) else: try: __magic_name__ : str = baseaa.urlsafe_baadecode(__UpperCamelCase ).decode("utf-8" ) __magic_name__ : int = json.loads(__UpperCamelCase ) except (UnicodeDecodeError, AttributeError, ValueError): raise ValueError( f"""Expected a string path to an existing deepspeed config, or a dictionary, or a base64 encoded string. Received: {config_file_or_dict}""" ) __magic_name__ : Optional[Any] = config self.set_stage_and_offload() def lowerCAmelCase__ ( self: str ) -> Optional[Any]: # zero stage - this is done as early as possible, before model is created, to allow # ``is_deepspeed_zero3_enabled`` query and getting to the early deepspeed config object # during ``zero.Init()`` which needs to know the dtype, and some other hparams. __magic_name__ : List[str] = self.get_value("zero_optimization.stage" , -1 ) # offload __magic_name__ : Tuple = False if self.is_zeroa() or self.is_zeroa(): __magic_name__ : List[str] = set(["cpu", "nvme"] ) __magic_name__ : Dict = set( [ self.get_value("zero_optimization.offload_optimizer.device" ), self.get_value("zero_optimization.offload_param.device" ), ] ) if len(offload_devices & offload_devices_valid ) > 0: __magic_name__ : List[str] = True def lowerCAmelCase__ ( self: Optional[Any] , __UpperCamelCase: str ) -> Optional[int]: __magic_name__ : Tuple = self.config # find the config node of interest if it exists __magic_name__ : int = ds_key_long.split("." ) __magic_name__ : List[Any] = nodes.pop() for node in nodes: __magic_name__ : List[Any] = config.get(__UpperCamelCase ) if config is None: return None, ds_key return config, ds_key def lowerCAmelCase__ ( self: str , __UpperCamelCase: Dict , __UpperCamelCase: int=None ) -> Union[str, Any]: __magic_name__ , __magic_name__ : int = self.find_config_node(__UpperCamelCase ) if config is None: return default return config.get(__UpperCamelCase , __UpperCamelCase ) def lowerCAmelCase__ ( self: str , __UpperCamelCase: Optional[int] , __UpperCamelCase: Tuple=False ) -> Tuple: __magic_name__ : List[str] = self.config # find the config node of interest if it exists __magic_name__ : Any = ds_key_long.split("." ) for node in nodes: __magic_name__ : Dict = config __magic_name__ : Union[str, Any] = config.get(__UpperCamelCase ) if config is None: if must_exist: raise ValueError(f"""Can't find {ds_key_long} entry in the config: {self.config}""" ) else: return # if found remove it if parent_config is not None: parent_config.pop(__UpperCamelCase ) def lowerCAmelCase__ ( self: Dict , __UpperCamelCase: Optional[Any] ) -> List[Any]: __magic_name__ : List[Any] = self.get_value(__UpperCamelCase ) return False if value is None else bool(__UpperCamelCase ) def lowerCAmelCase__ ( self: Dict , __UpperCamelCase: List[str] ) -> Tuple: __magic_name__ : List[Any] = self.get_value(__UpperCamelCase ) return False if value is None else not bool(__UpperCamelCase ) def lowerCAmelCase__ ( self: Union[str, Any] ) -> Optional[int]: return self._stage == 2 def lowerCAmelCase__ ( self: Union[str, Any] ) -> List[Any]: return self._stage == 3 def lowerCAmelCase__ ( self: Union[str, Any] ) -> str: return self._offload class _snake_case : '''simple docstring''' def __init__( self: List[str] , __UpperCamelCase: Union[str, Any] ) -> Tuple: __magic_name__ : Tuple = engine def lowerCAmelCase__ ( self: Optional[int] , __UpperCamelCase: int , **__UpperCamelCase: Union[str, Any] ) -> Tuple: # runs backpropagation and handles mixed precision self.engine.backward(__UpperCamelCase , **__UpperCamelCase ) # Deepspeed's `engine.step` performs the following operations: # - gradient accumulation check # - gradient clipping # - optimizer step # - zero grad # - checking overflow # - lr_scheduler step (only if engine.lr_scheduler is not None) self.engine.step() # and this plugin overrides the above calls with no-ops when Accelerate runs under # Deepspeed, but allows normal functionality for non-Deepspeed cases thus enabling a simple # training loop that works transparently under many training regimes. class _snake_case ( snake_case_ ): '''simple docstring''' def __init__( self: List[str] , __UpperCamelCase: Optional[int] ) -> List[Any]: super().__init__(__UpperCamelCase , device_placement=__UpperCamelCase , scaler=__UpperCamelCase ) __magic_name__ : Any = hasattr(self.optimizer , "overflow" ) def lowerCAmelCase__ ( self: List[str] , __UpperCamelCase: List[str]=None ) -> Union[str, Any]: pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed def lowerCAmelCase__ ( self: Union[str, Any] ) -> Optional[int]: pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed @property def lowerCAmelCase__ ( self: Optional[Any] ) -> List[str]: if self.__has_overflow__: return self.optimizer.overflow return False class _snake_case ( snake_case_ ): '''simple docstring''' def __init__( self: List[Any] , __UpperCamelCase: str , __UpperCamelCase: Dict ) -> Any: super().__init__(__UpperCamelCase , __UpperCamelCase ) def lowerCAmelCase__ ( self: int ) -> Dict: pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed class _snake_case : '''simple docstring''' def __init__( self: Optional[Any] , __UpperCamelCase: Optional[Any] , __UpperCamelCase: str=0.0_0_1 , __UpperCamelCase: List[Any]=0 , **__UpperCamelCase: List[str] ) -> Union[str, Any]: __magic_name__ : List[Any] = params __magic_name__ : List[Any] = lr __magic_name__ : List[str] = weight_decay __magic_name__ : Any = kwargs class _snake_case : '''simple docstring''' def __init__( self: List[str] , __UpperCamelCase: List[Any] , __UpperCamelCase: int=None , __UpperCamelCase: int=0 , **__UpperCamelCase: Optional[Any] ) -> str: __magic_name__ : Optional[int] = optimizer __magic_name__ : Any = total_num_steps __magic_name__ : int = warmup_num_steps __magic_name__ : Dict = kwargs
436
0
from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def __UpperCamelCase ( _A ): lowerCAmelCase_ , lowerCAmelCase_ = analyze_text(_A ) lowerCAmelCase_ = list(''' ''' + ascii_lowercase ) # what is our total sum of probabilities. lowerCAmelCase_ = sum(single_char_strings.values() ) # one length string lowerCAmelCase_ = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: lowerCAmelCase_ = single_char_strings[ch] lowerCAmelCase_ = my_str / all_sum my_fir_sum += prob * math.loga(_A ) # entropy formula. # print entropy print(f"{round(-1 * my_fir_sum ):.1f}" ) # two len string lowerCAmelCase_ = sum(two_char_strings.values() ) lowerCAmelCase_ = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: lowerCAmelCase_ = cha + cha if sequence in two_char_strings: lowerCAmelCase_ = two_char_strings[sequence] lowerCAmelCase_ = int(_A ) / all_sum my_sec_sum += prob * math.loga(_A ) # print second entropy print(f"{round(-1 * my_sec_sum ):.1f}" ) # print the difference between them print(f"{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}" ) def __UpperCamelCase ( _A ): lowerCAmelCase_ = Counter() # type: ignore lowerCAmelCase_ = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 , len(_A ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def __UpperCamelCase ( ): import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
710
def __UpperCamelCase ( _A ): lowerCAmelCase_ = [int(_A ) for i in ip_va_address.split('''.''' ) if i.isdigit()] return len(_A ) == 4 and all(0 <= int(_A ) <= 254 for octet in octets ) if __name__ == "__main__": _A = input().strip() _A = '''valid''' if is_ip_va_address_valid(ip) else '''invalid''' print(f"{ip} is a {valid_or_invalid} IP v4 address.")
325
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_squeezebert import SqueezeBertTokenizer UpperCAmelCase__ : int = logging.get_logger(__name__) UpperCAmelCase__ : Optional[int] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} UpperCAmelCase__ : Any = { 'vocab_file': { 'squeezebert/squeezebert-uncased': ( 'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt' ), 'squeezebert/squeezebert-mnli': 'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt', 'squeezebert/squeezebert-mnli-headless': ( 'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'squeezebert/squeezebert-uncased': ( 'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json' ), 'squeezebert/squeezebert-mnli': ( 'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json' ), 'squeezebert/squeezebert-mnli-headless': ( 'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json' ), }, } UpperCAmelCase__ : Optional[int] = { 'squeezebert/squeezebert-uncased': 512, 'squeezebert/squeezebert-mnli': 512, 'squeezebert/squeezebert-mnli-headless': 512, } UpperCAmelCase__ : Optional[int] = { 'squeezebert/squeezebert-uncased': {'do_lower_case': True}, 'squeezebert/squeezebert-mnli': {'do_lower_case': True}, 'squeezebert/squeezebert-mnli-headless': {'do_lower_case': True}, } class UpperCamelCase_ ( UpperCamelCase_ ): '''simple docstring''' UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_INIT_CONFIGURATION UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = SqueezeBertTokenizer def __init__( self , UpperCamelCase=None , UpperCamelCase=None , UpperCamelCase=True , UpperCamelCase="[UNK]" , UpperCamelCase="[SEP]" , UpperCamelCase="[PAD]" , UpperCamelCase="[CLS]" , UpperCamelCase="[MASK]" , UpperCamelCase=True , UpperCamelCase=None , **UpperCamelCase , ) -> Tuple: super().__init__( UpperCamelCase__ , tokenizer_file=UpperCamelCase__ , do_lower_case=UpperCamelCase__ , unk_token=UpperCamelCase__ , sep_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , cls_token=UpperCamelCase__ , mask_token=UpperCamelCase__ , tokenize_chinese_chars=UpperCamelCase__ , strip_accents=UpperCamelCase__ , **UpperCamelCase__ , ) UpperCamelCase__ : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( normalizer_state.get('lowercase' , UpperCamelCase__) != do_lower_case or normalizer_state.get('strip_accents' , UpperCamelCase__) != strip_accents or normalizer_state.get('handle_chinese_chars' , UpperCamelCase__) != tokenize_chinese_chars ): UpperCamelCase__ : Dict = getattr(UpperCamelCase__ , normalizer_state.pop('type')) UpperCamelCase__ : str = do_lower_case UpperCamelCase__ : Optional[Any] = strip_accents UpperCamelCase__ : Tuple = tokenize_chinese_chars UpperCamelCase__ : List[Any] = normalizer_class(**UpperCamelCase__) UpperCamelCase__ : Union[str, Any] = do_lower_case def lowerCAmelCase__ ( self , UpperCamelCase , UpperCamelCase=None) -> Tuple: UpperCamelCase__ : str = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCAmelCase__ ( self , UpperCamelCase , UpperCamelCase = None) -> List[Any]: UpperCamelCase__ : Any = [self.sep_token_id] UpperCamelCase__ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def lowerCAmelCase__ ( self , UpperCamelCase , UpperCamelCase = None) -> Any: UpperCamelCase__ : List[str] = self._tokenizer.model.save(UpperCamelCase__ , name=UpperCamelCase__) return tuple(UpperCamelCase__)
410
from statistics import mean, stdev def A ( _lowercase , _lowercase = 3 ): SCREAMING_SNAKE_CASE : int = min(_lowercase ) SCREAMING_SNAKE_CASE : Optional[Any] = max(_lowercase ) # normalize data return [round((x - x_min) / (x_max - x_min) , _lowercase ) for x in data] def A ( _lowercase , _lowercase = 3 ): SCREAMING_SNAKE_CASE : Optional[Any] = mean(_lowercase ) SCREAMING_SNAKE_CASE : Any = stdev(_lowercase ) # standardize data return [round((x - mu) / (sigma) , _lowercase ) for x in data]
248
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import importlib.metadata import json import os from dataclasses import dataclass from typing import Any, Dict, Union from packaging import version from ..utils import is_torch_available, logging if is_torch_available(): import torch SCREAMING_SNAKE_CASE : Optional[int] = logging.get_logger(__name__) @dataclass class UpperCamelCase : '''simple docstring''' def __init__( self , UpperCamelCase_=False , UpperCamelCase_=False , UpperCamelCase_=6.0 , UpperCamelCase_=None , UpperCamelCase_=False , UpperCamelCase_=False , UpperCamelCase_=None , UpperCamelCase_="fp4" , UpperCamelCase_=False , **UpperCamelCase_ , ): lowercase_ :Union[str, Any] = load_in_abit lowercase_ :Any = load_in_abit lowercase_ :Dict = llm_inta_threshold lowercase_ :Union[str, Any] = llm_inta_skip_modules lowercase_ :str = llm_inta_enable_fpaa_cpu_offload lowercase_ :List[str] = llm_inta_has_fpaa_weight lowercase_ :Union[str, Any] = bnb_abit_quant_type lowercase_ :Tuple = bnb_abit_use_double_quant if bnb_abit_compute_dtype is None: lowercase_ :Dict = torch.floataa elif isinstance(UpperCamelCase_ , UpperCamelCase_ ): lowercase_ :Tuple = getattr(UpperCamelCase_ , UpperCamelCase_ ) elif isinstance(UpperCamelCase_ , torch.dtype ): lowercase_ :Any = bnb_abit_compute_dtype else: raise ValueError('''bnb_4bit_compute_dtype must be a string or a torch.dtype''' ) self.post_init() def UpperCamelCase ( self ): if not isinstance(self.llm_inta_threshold , UpperCamelCase_ ): raise ValueError('''llm_int8_threshold must be a float''' ) if self.llm_inta_skip_modules is not None and not isinstance(self.llm_inta_skip_modules , UpperCamelCase_ ): raise ValueError('''llm_int8_skip_modules must be a list of strings''' ) if not isinstance(self.llm_inta_enable_fpaa_cpu_offload , UpperCamelCase_ ): raise ValueError('''llm_int8_enable_fp32_cpu_offload must be a boolean''' ) if not isinstance(self.llm_inta_has_fpaa_weight , UpperCamelCase_ ): raise ValueError('''llm_int8_has_fp16_weight must be a boolean''' ) if self.bnb_abit_compute_dtype is not None and not isinstance(self.bnb_abit_compute_dtype , torch.dtype ): raise ValueError('''bnb_4bit_compute_dtype must be torch.dtype''' ) if not isinstance(self.bnb_abit_quant_type , UpperCamelCase_ ): raise ValueError('''bnb_4bit_quant_type must be a string''' ) if not isinstance(self.bnb_abit_use_double_quant , UpperCamelCase_ ): raise ValueError('''bnb_4bit_use_double_quant must be a boolean''' ) if self.load_in_abit and not version.parse(importlib.metadata.version('''bitsandbytes''' ) ) >= version.parse( '''0.39.0''' ): raise ValueError( '''4 bit quantization requires bitsandbytes>=0.39.0 - please upgrade your bitsandbytes version''' ) def UpperCamelCase ( self ): return self.load_in_abit or self.load_in_abit def UpperCamelCase ( self ): if self.load_in_abit: return "llm_int8" elif self.load_in_abit and self.bnb_abit_quant_type == "fp4": return "fp4" elif self.load_in_abit and self.bnb_abit_quant_type == "nf4": return "nf4" else: return None @classmethod def UpperCamelCase ( cls , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ): lowercase_ :Any = cls(**UpperCamelCase_ ) lowercase_ :str = [] for key, value in kwargs.items(): if hasattr(UpperCamelCase_ , UpperCamelCase_ ): setattr(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) to_remove.append(UpperCamelCase_ ) for key in to_remove: kwargs.pop(UpperCamelCase_ , UpperCamelCase_ ) if return_unused_kwargs: return config, kwargs else: return config def UpperCamelCase ( self , UpperCamelCase_ ): with open(UpperCamelCase_ , '''w''' , encoding='''utf-8''' ) as writer: lowercase_ :Optional[Any] = self.to_dict() lowercase_ :Union[str, Any] = json.dumps(UpperCamelCase_ , indent=2 , sort_keys=UpperCamelCase_ ) + '''\n''' writer.write(UpperCamelCase_ ) def UpperCamelCase ( self ): lowercase_ :Tuple = copy.deepcopy(self.__dict__ ) lowercase_ :Dict = str(output['''bnb_4bit_compute_dtype'''] ).split('''.''' )[1] return output def __repr__( self ): return f"{self.__class__.__name__} {self.to_json_string()}" def UpperCamelCase ( self , UpperCamelCase_ = True ): if use_diff is True: lowercase_ :Optional[int] = self.to_diff_dict() else: lowercase_ :List[Any] = self.to_dict() return json.dumps(UpperCamelCase_ , indent=2 , sort_keys=UpperCamelCase_ ) + "\n" def UpperCamelCase ( self ): lowercase_ :Dict = self.to_dict() # get the default config dict lowercase_ :Any = BitsAndBytesConfig().to_dict() lowercase_ :Optional[int] = {} # only serialize values that differ from the default config for key, value in config_dict.items(): if value != default_config_dict[key]: lowercase_ :int = value return serializable_config_dict
441
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu SCREAMING_SNAKE_CASE : int = False class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCamelCase ( self ): return 12 @property def UpperCamelCase ( self ): return 12 @property def UpperCamelCase ( self ): return 32 @property def UpperCamelCase ( self ): torch.manual_seed(0 ) lowercase_ :List[Any] = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , ) return model @property def UpperCamelCase ( self ): lowercase_ :Optional[Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def UpperCamelCase ( self ): torch.manual_seed(0 ) lowercase_ :int = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModel(UpperCamelCase_ ) @property def UpperCamelCase ( self ): torch.manual_seed(0 ) lowercase_ :int = 12 lowercase_ :List[Any] = 12 lowercase_ :Dict = { '''attention_bias''': True, '''cross_attention_dim''': 32, '''attention_head_dim''': height * width, '''num_attention_heads''': 1, '''num_vector_embeds''': self.num_embed, '''num_embeds_ada_norm''': self.num_embeds_ada_norm, '''norm_num_groups''': 32, '''sample_size''': width, '''activation_fn''': '''geglu-approximate''', } lowercase_ :int = TransformeraDModel(**UpperCamelCase_ ) return model def UpperCamelCase ( self ): lowercase_ :List[str] = '''cpu''' lowercase_ :int = self.dummy_vqvae lowercase_ :int = self.dummy_text_encoder lowercase_ :Any = self.dummy_tokenizer lowercase_ :Optional[int] = self.dummy_transformer lowercase_ :List[str] = VQDiffusionScheduler(self.num_embed ) lowercase_ :int = LearnedClassifierFreeSamplingEmbeddings(learnable=UpperCamelCase_ ) lowercase_ :List[Any] = VQDiffusionPipeline( vqvae=UpperCamelCase_ , text_encoder=UpperCamelCase_ , tokenizer=UpperCamelCase_ , transformer=UpperCamelCase_ , scheduler=UpperCamelCase_ , learned_classifier_free_sampling_embeddings=UpperCamelCase_ , ) lowercase_ :Union[str, Any] = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) lowercase_ :Dict = '''teddy bear playing in the pool''' lowercase_ :Dict = torch.Generator(device=UpperCamelCase_ ).manual_seed(0 ) lowercase_ :Optional[int] = pipe([prompt] , generator=UpperCamelCase_ , num_inference_steps=2 , output_type='''np''' ) lowercase_ :Any = output.images lowercase_ :Tuple = torch.Generator(device=UpperCamelCase_ ).manual_seed(0 ) lowercase_ :str = pipe( [prompt] , generator=UpperCamelCase_ , output_type='''np''' , return_dict=UpperCamelCase_ , num_inference_steps=2 )[0] lowercase_ :Optional[Any] = image[0, -3:, -3:, -1] lowercase_ :Tuple = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) lowercase_ :str = np.array([0.6551, 0.6168, 0.5008, 0.5676, 0.5659, 0.4295, 0.6073, 0.5599, 0.4992] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase ( self ): lowercase_ :int = '''cpu''' lowercase_ :Dict = self.dummy_vqvae lowercase_ :str = self.dummy_text_encoder lowercase_ :List[Any] = self.dummy_tokenizer lowercase_ :Any = self.dummy_transformer lowercase_ :Optional[Any] = VQDiffusionScheduler(self.num_embed ) lowercase_ :List[str] = LearnedClassifierFreeSamplingEmbeddings( learnable=UpperCamelCase_ , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length ) lowercase_ :Optional[int] = VQDiffusionPipeline( vqvae=UpperCamelCase_ , text_encoder=UpperCamelCase_ , tokenizer=UpperCamelCase_ , transformer=UpperCamelCase_ , scheduler=UpperCamelCase_ , learned_classifier_free_sampling_embeddings=UpperCamelCase_ , ) lowercase_ :Dict = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) lowercase_ :int = '''teddy bear playing in the pool''' lowercase_ :Tuple = torch.Generator(device=UpperCamelCase_ ).manual_seed(0 ) lowercase_ :Optional[int] = pipe([prompt] , generator=UpperCamelCase_ , num_inference_steps=2 , output_type='''np''' ) lowercase_ :Optional[Any] = output.images lowercase_ :Optional[int] = torch.Generator(device=UpperCamelCase_ ).manual_seed(0 ) lowercase_ :Dict = pipe( [prompt] , generator=UpperCamelCase_ , output_type='''np''' , return_dict=UpperCamelCase_ , num_inference_steps=2 )[0] lowercase_ :List[str] = image[0, -3:, -3:, -1] lowercase_ :Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) lowercase_ :Dict = np.array([0.6693, 0.6075, 0.4959, 0.5701, 0.5583, 0.4333, 0.6171, 0.5684, 0.4988] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self ): lowercase_ :List[str] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy''' ) lowercase_ :int = VQDiffusionPipeline.from_pretrained('''microsoft/vq-diffusion-ithq''' ) lowercase_ :Tuple = pipeline.to(UpperCamelCase_ ) pipeline.set_progress_bar_config(disable=UpperCamelCase_ ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though lowercase_ :Dict = torch.Generator(device=UpperCamelCase_ ).manual_seed(0 ) lowercase_ :int = pipeline( '''teddy bear playing in the pool''' , num_images_per_prompt=1 , generator=UpperCamelCase_ , output_type='''np''' , ) lowercase_ :List[str] = output.images[0] assert image.shape == (256, 256, 3) assert np.abs(expected_image - image ).max() < 2.0
441
1
from collections import deque def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> Union[str, Any]: snake_case__ = len(__lowerCAmelCase ) snake_case__ = deque() snake_case__ = [False for _ in range(__lowerCAmelCase )] snake_case__ = [-1 for _ in range(__lowerCAmelCase )] snake_case__ = index_of[:] def strong_connect(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): snake_case__ = index # the number when this node is seen snake_case__ = index # lowest rank node reachable from here index += 1 stack.append(__lowerCAmelCase ) snake_case__ = True for w in g[v]: if index_of[w] == -1: snake_case__ = strong_connect(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) snake_case__ = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) elif on_stack[w]: snake_case__ = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) if lowlink_of[v] == index_of[v]: snake_case__ = [] snake_case__ = stack.pop() snake_case__ = False component.append(__lowerCAmelCase ) while w != v: snake_case__ = stack.pop() snake_case__ = False component.append(__lowerCAmelCase ) components.append(__lowerCAmelCase ) return index snake_case__ = [] for v in range(__lowerCAmelCase ): if index_of[v] == -1: strong_connect(__lowerCAmelCase , 0 , __lowerCAmelCase ) return components def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]: snake_case__ = [[] for _ in range(__lowerCAmelCase )] for u, v in edges: g[u].append(__lowerCAmelCase ) return g if __name__ == "__main__": # Test lowerCamelCase__ : Tuple = 7 lowerCamelCase__ : Optional[Any] = [0, 0, 1, 2, 3, 3, 4, 4, 6] lowerCamelCase__ : Optional[int] = [1, 3, 2, 0, 1, 4, 5, 6, 5] lowerCamelCase__ : int = [(u, v) for u, v in zip(source, target)] lowerCamelCase__ : List[str] = create_graph(n_vertices, edges) assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
33
import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=99 , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE="last" , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , ) -> List[Any]: snake_case_ : List[str] = parent snake_case_ : List[str] = batch_size snake_case_ : List[Any] = seq_length snake_case_ : Optional[int] = is_training snake_case_ : List[Any] = use_input_lengths snake_case_ : Optional[Any] = use_token_type_ids snake_case_ : Optional[Any] = use_labels snake_case_ : Tuple = gelu_activation snake_case_ : Optional[Any] = sinusoidal_embeddings snake_case_ : str = causal snake_case_ : Dict = asm snake_case_ : Optional[Any] = n_langs snake_case_ : Optional[int] = vocab_size snake_case_ : Tuple = n_special snake_case_ : int = hidden_size snake_case_ : str = num_hidden_layers snake_case_ : Any = num_attention_heads snake_case_ : Tuple = hidden_dropout_prob snake_case_ : str = attention_probs_dropout_prob snake_case_ : Tuple = max_position_embeddings snake_case_ : Dict = type_vocab_size snake_case_ : Optional[int] = type_sequence_label_size snake_case_ : List[str] = initializer_range snake_case_ : str = num_labels snake_case_ : Optional[int] = num_choices snake_case_ : List[Any] = summary_type snake_case_ : Optional[int] = use_proj snake_case_ : Union[str, Any] = scope def _lowerCAmelCase ( self ) -> int: snake_case_ : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ : Union[str, Any] = None if self.use_input_lengths: snake_case_ : List[Any] = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length snake_case_ : List[str] = None if self.use_token_type_ids: snake_case_ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) snake_case_ : Any = None snake_case_ : Union[str, Any] = None snake_case_ : Dict = None if self.use_labels: snake_case_ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case_ : Optional[int] = ids_tensor([self.batch_size] , 2 ).float() snake_case_ : Tuple = ids_tensor([self.batch_size] , self.num_choices ) snake_case_ : List[Any] = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _lowerCAmelCase ( self ) -> List[str]: return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) -> List[str]: snake_case_ : List[Any] = FlaubertModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() snake_case_ : Optional[int] = model(_SCREAMING_SNAKE_CASE , lengths=_SCREAMING_SNAKE_CASE , langs=_SCREAMING_SNAKE_CASE ) snake_case_ : Tuple = model(_SCREAMING_SNAKE_CASE , langs=_SCREAMING_SNAKE_CASE ) snake_case_ : Dict = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) -> Tuple: snake_case_ : List[Any] = FlaubertWithLMHeadModel(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() snake_case_ : Optional[Any] = model(_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) -> Optional[Any]: snake_case_ : Optional[Any] = FlaubertForQuestionAnsweringSimple(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() snake_case_ : Tuple = model(_SCREAMING_SNAKE_CASE ) snake_case_ : int = model(_SCREAMING_SNAKE_CASE , start_positions=_SCREAMING_SNAKE_CASE , end_positions=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) -> List[Any]: snake_case_ : int = FlaubertForQuestionAnswering(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() snake_case_ : Tuple = model(_SCREAMING_SNAKE_CASE ) snake_case_ : Any = model( _SCREAMING_SNAKE_CASE , start_positions=_SCREAMING_SNAKE_CASE , end_positions=_SCREAMING_SNAKE_CASE , cls_index=_SCREAMING_SNAKE_CASE , is_impossible=_SCREAMING_SNAKE_CASE , p_mask=_SCREAMING_SNAKE_CASE , ) snake_case_ : Dict = model( _SCREAMING_SNAKE_CASE , start_positions=_SCREAMING_SNAKE_CASE , end_positions=_SCREAMING_SNAKE_CASE , cls_index=_SCREAMING_SNAKE_CASE , is_impossible=_SCREAMING_SNAKE_CASE , ) ((snake_case_) , ) : List[str] = result_with_labels.to_tuple() snake_case_ : Optional[int] = model(_SCREAMING_SNAKE_CASE , start_positions=_SCREAMING_SNAKE_CASE , end_positions=_SCREAMING_SNAKE_CASE ) ((snake_case_) , ) : Tuple = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) -> Tuple: snake_case_ : Tuple = FlaubertForSequenceClassification(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() snake_case_ : Optional[int] = model(_SCREAMING_SNAKE_CASE ) snake_case_ : Union[str, Any] = model(_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) -> Dict: snake_case_ : int = self.num_labels snake_case_ : List[str] = FlaubertForTokenClassification(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() snake_case_ : Dict = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) -> Dict: snake_case_ : str = self.num_choices snake_case_ : Any = FlaubertForMultipleChoice(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() snake_case_ : Optional[int] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case_ : Union[str, Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case_ : Any = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case_ : int = model( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowerCAmelCase ( self ) -> Union[str, Any]: snake_case_ : Dict = self.prepare_config_and_inputs() ( ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ) : str = config_and_inputs snake_case_ : List[str] = { "input_ids": input_ids, "token_type_ids": token_type_ids, "lengths": input_lengths, "attention_mask": input_mask, } return config, inputs_dict @require_torch class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' A : List[Any] = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) A : Tuple = ( { 'feature-extraction': FlaubertModel, 'fill-mask': FlaubertWithLMHeadModel, 'question-answering': FlaubertForQuestionAnsweringSimple, 'text-classification': FlaubertForSequenceClassification, 'token-classification': FlaubertForTokenClassification, 'zero-shot': FlaubertForSequenceClassification, } if is_torch_available() else {} ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("Fast" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) -> Dict: snake_case_ : Tuple = super()._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": snake_case_ : Tuple = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_SCREAMING_SNAKE_CASE ) snake_case_ : Dict = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_SCREAMING_SNAKE_CASE ) return inputs_dict def _lowerCAmelCase ( self ) -> Any: snake_case_ : Optional[Any] = FlaubertModelTester(self ) snake_case_ : Dict = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , emb_dim=37 ) def _lowerCAmelCase ( self ) -> Union[str, Any]: self.config_tester.run_common_tests() def _lowerCAmelCase ( self ) -> List[str]: snake_case_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self ) -> Tuple: snake_case_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self ) -> str: snake_case_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self ) -> Optional[int]: snake_case_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self ) -> Tuple: snake_case_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self ) -> Dict: snake_case_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self ) -> List[Any]: snake_case_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*_SCREAMING_SNAKE_CASE ) @slow def _lowerCAmelCase ( self ) -> List[str]: for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ : Optional[int] = FlaubertModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) @slow @require_torch_gpu def _lowerCAmelCase ( self ) -> Optional[int]: snake_case_ , snake_case_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return snake_case_ : Optional[int] = True snake_case_ : str = model_class(config=_SCREAMING_SNAKE_CASE ) snake_case_ : str = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) snake_case_ : int = torch.jit.trace( _SCREAMING_SNAKE_CASE , (inputs_dict["input_ids"].to("cpu" ), inputs_dict["attention_mask"].to("cpu" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(_SCREAMING_SNAKE_CASE , os.path.join(_SCREAMING_SNAKE_CASE , "traced_model.pt" ) ) snake_case_ : Tuple = torch.jit.load(os.path.join(_SCREAMING_SNAKE_CASE , "traced_model.pt" ) , map_location=_SCREAMING_SNAKE_CASE ) loaded(inputs_dict["input_ids"].to(_SCREAMING_SNAKE_CASE ) , inputs_dict["attention_mask"].to(_SCREAMING_SNAKE_CASE ) ) @require_torch class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def _lowerCAmelCase ( self ) -> Tuple: snake_case_ : Optional[Any] = FlaubertModel.from_pretrained("flaubert/flaubert_base_cased" ) snake_case_ : List[Any] = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) with torch.no_grad(): snake_case_ : Union[str, Any] = model(_SCREAMING_SNAKE_CASE )[0] snake_case_ : List[Any] = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , _SCREAMING_SNAKE_CASE ) snake_case_ : List[str] = torch.tensor( [[[-2.6251, -1.4298, -0.0227], [-2.8510, -1.6387, 0.2258], [-2.8114, -1.1832, -0.3066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4 ) )
568
0
'''simple docstring''' import enum import os from hashlib import shaaaa from typing import Optional from .. import config from .logging import get_logger a : Optional[int] = get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( enum.Enum ): __SCREAMING_SNAKE_CASE = """all_checks""" __SCREAMING_SNAKE_CASE = """basic_checks""" __SCREAMING_SNAKE_CASE = """no_checks""" class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): pass class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): pass class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): pass class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): pass def __UpperCAmelCase ( _UpperCAmelCase : Optional[dict] , _UpperCAmelCase : dict , _UpperCAmelCase : int=None ) -> Union[str, Any]: if expected_checksums is None: logger.info("Unable to verify checksums." ) return if len(set(_UpperCAmelCase ) - set(_UpperCAmelCase ) ) > 0: raise ExpectedMoreDownloadedFiles(str(set(_UpperCAmelCase ) - set(_UpperCAmelCase ) ) ) if len(set(_UpperCAmelCase ) - set(_UpperCAmelCase ) ) > 0: raise UnexpectedDownloadedFile(str(set(_UpperCAmelCase ) - set(_UpperCAmelCase ) ) ) __snake_case = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]] __snake_case = " for " + verification_name if verification_name is not None else "" if len(_UpperCAmelCase ) > 0: raise NonMatchingChecksumError( F'''Checksums didn\'t match{for_verification_name}:\n''' F'''{bad_urls}\n''' "Set `verification_mode='no_checks'` to skip checksums verification and ignore this error" ) logger.info("All the checksums matched successfully" + for_verification_name ) class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): pass class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): pass class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): pass class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): pass def __UpperCAmelCase ( _UpperCAmelCase : Optional[dict] , _UpperCAmelCase : dict ) -> List[str]: if expected_splits is None: logger.info("Unable to verify splits sizes." ) return if len(set(_UpperCAmelCase ) - set(_UpperCAmelCase ) ) > 0: raise ExpectedMoreSplits(str(set(_UpperCAmelCase ) - set(_UpperCAmelCase ) ) ) if len(set(_UpperCAmelCase ) - set(_UpperCAmelCase ) ) > 0: raise UnexpectedSplits(str(set(_UpperCAmelCase ) - set(_UpperCAmelCase ) ) ) __snake_case = [ {"expected": expected_splits[name], "recorded": recorded_splits[name]} for name in expected_splits if expected_splits[name].num_examples != recorded_splits[name].num_examples ] if len(_UpperCAmelCase ) > 0: raise NonMatchingSplitsSizesError(str(_UpperCAmelCase ) ) logger.info("All the splits matched successfully." ) def __UpperCAmelCase ( _UpperCAmelCase : str , _UpperCAmelCase : bool = True ) -> dict: if record_checksum: __snake_case = shaaaa() with open(_UpperCAmelCase , "rb" ) as f: for chunk in iter(lambda: f.read(1 << 20 ) , B"" ): m.update(_UpperCAmelCase ) __snake_case = m.hexdigest() else: __snake_case = None return {"num_bytes": os.path.getsize(_UpperCAmelCase ), "checksum": checksum} def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] ) -> Dict: if dataset_size and config.IN_MEMORY_MAX_SIZE: return dataset_size < config.IN_MEMORY_MAX_SIZE else: return False
680
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a : Union[str, Any] = logging.get_logger(__name__) a : List[Any] = { '''facebook/data2vec-text-base''': '''https://huggingface.co/data2vec/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = """data2vec-text""" def __init__( self : List[str] , a_ : str=30_522 , a_ : Optional[int]=768 , a_ : Dict=12 , a_ : int=12 , a_ : Dict=3_072 , a_ : Dict="gelu" , a_ : Optional[Any]=0.1 , a_ : List[str]=0.1 , a_ : int=512 , a_ : Any=2 , a_ : int=0.02 , a_ : Dict=1e-12 , a_ : Dict=1 , a_ : Any=0 , a_ : Dict=2 , a_ : Optional[int]="absolute" , a_ : List[Any]=True , a_ : Dict=None , **a_ : List[str] , ): """simple docstring""" super().__init__(pad_token_id=a_ , bos_token_id=a_ , eos_token_id=a_ , **a_ ) __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = hidden_act __snake_case = intermediate_size __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = type_vocab_size __snake_case = initializer_range __snake_case = layer_norm_eps __snake_case = position_embedding_type __snake_case = use_cache __snake_case = classifier_dropout class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): @property def A ( self : Any ): """simple docstring""" if self.task == "multiple-choice": __snake_case = {0: "batch", 1: "choice", 2: "sequence"} else: __snake_case = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
680
1
"""simple docstring""" def lowercase__(A ) ->list: """simple docstring""" if len(A ) <= 1: return lst lowercase__ : Any= 1 while i < len(A ): if lst[i - 1] <= lst[i]: i += 1 else: lowercase__, lowercase__ : Any= lst[i], lst[i - 1] i -= 1 if i == 0: lowercase__ : Any= 1 return lst if __name__ == "__main__": a : Optional[int] = input("""Enter numbers separated by a comma:\n""").strip() a : List[Any] = [int(item) for item in user_input.split(""",""")] print(gnome_sort(unsorted))
218
"""simple docstring""" from __future__ import annotations from decimal import Decimal from numpy import array def lowercase__(A ) ->list[list[float]]: """simple docstring""" lowercase__ : str= Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(A ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix lowercase__ : int= float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError("This matrix has no inverse." ) # Creates a copy of the matrix with swapped positions of the elements lowercase__ : Tuple= [[0.0, 0.0], [0.0, 0.0]] lowercase__, lowercase__ : Dict= matrix[1][1], matrix[0][0] lowercase__, lowercase__ : Dict= -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(A ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(A ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule lowercase__ : str= float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError("This matrix has no inverse." ) # Creating cofactor matrix lowercase__ : List[str]= [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] lowercase__ : Union[str, Any]= (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) lowercase__ : Optional[int]= -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) lowercase__ : List[str]= (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) lowercase__ : Union[str, Any]= -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) lowercase__ : Optional[Any]= (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) lowercase__ : Union[str, Any]= -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) lowercase__ : Dict= (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) lowercase__ : Tuple= -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) lowercase__ : Tuple= (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) lowercase__ : Dict= array(A ) for i in range(3 ): for j in range(3 ): lowercase__ : int= cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix lowercase__ : str= array(A ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(A ) # Calculate the inverse of the matrix return [[float(d(A ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError("Please provide a matrix of size 2x2 or 3x3." )
218
1
'''simple docstring''' import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class A ( unittest.TestCase ): '''simple docstring''' def a_ (self ) -> Union[str, Any]: __UpperCamelCase : str = 1_0 def a_ (self ) -> Optional[int]: __UpperCamelCase : Optional[int] = [1, 2, 3, 4] __UpperCamelCase : Tuple = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(_UpperCAmelCase , self.block_size , 0 ) , _UpperCAmelCase ) def a_ (self ) -> str: __UpperCamelCase : int = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0] __UpperCamelCase : str = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0] self.assertEqual(truncate_or_pad(_UpperCAmelCase , self.block_size , 0 ) , _UpperCAmelCase ) def a_ (self ) -> int: __UpperCamelCase : Optional[Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0, 1_1, 1_2, 1_3] __UpperCamelCase : Any = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0] self.assertEqual(truncate_or_pad(_UpperCAmelCase , self.block_size , 0 ) , _UpperCAmelCase ) def a_ (self ) -> Optional[int]: __UpperCamelCase : Dict = "It was the year of Our Lord one thousand seven hundred and\n seventy-five.\n\nSpiritual revelations were conceded to England at that\n favoured period, as at this." __UpperCamelCase , __UpperCamelCase : List[Any] = process_story(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , [] ) def a_ (self ) -> Dict: __UpperCamelCase : Tuple = "" __UpperCamelCase , __UpperCamelCase : Tuple = process_story(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , [] ) self.assertEqual(_UpperCAmelCase , [] ) def a_ (self ) -> List[Any]: __UpperCamelCase : Tuple = ( "It was the year of Our Lord one thousand seven hundred and " "seventy-five\n\nSpiritual revelations were conceded to England " "at that favoured period, as at this.\n@highlight\n\nIt was the best of times" ) __UpperCamelCase , __UpperCamelCase : Optional[Any] = process_story(_UpperCAmelCase ) __UpperCamelCase : Union[str, Any] = [ "It was the year of Our Lord one thousand seven hundred and seventy-five.", "Spiritual revelations were conceded to England at that favoured period, as at this.", ] self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) __UpperCamelCase : str = ["It was the best of times."] self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def a_ (self ) -> List[Any]: __UpperCamelCase : str = torch.tensor([1, 2, 3, 4] ) __UpperCamelCase : Any = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(_UpperCAmelCase , 0 ).numpy() , expected.numpy() ) def a_ (self ) -> Dict: __UpperCamelCase : Any = torch.tensor([1, 2, 3, 4, 2_3, 2_3, 2_3] ) __UpperCamelCase : List[str] = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(_UpperCAmelCase , 2_3 ).numpy() , expected.numpy() ) def a_ (self ) -> List[Any]: __UpperCamelCase : Union[str, Any] = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) __UpperCamelCase : List[Any] = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(_UpperCAmelCase , 1 ).numpy() , expected.numpy() ) def a_ (self ) -> Optional[Any]: __UpperCamelCase : Optional[Any] = 1_0_1 __UpperCamelCase : Union[str, Any] = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 1_0_1, 5, 6], [1, 1_0_1, 3, 4, 1_0_1, 6]] ) __UpperCamelCase : Optional[int] = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) __UpperCamelCase : Dict = compute_token_type_ids(_UpperCAmelCase , _UpperCAmelCase ) np.testing.assert_array_equal(_UpperCAmelCase , _UpperCAmelCase )
399
'''simple docstring''' def __lowerCAmelCase ( snake_case__ ): return [ txt[:a] + txt[a].upper() + txt[a + 1 :] for a in range(len(snake_case__ ) ) if txt[a].isalpha() ] if __name__ == "__main__": __import__('''doctest''').testmod()
399
1
'''simple docstring''' def __lowerCAmelCase ( a_ ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : str = set() # To detect a back edge, keep track of vertices currently in the recursion stack SCREAMING_SNAKE_CASE : List[Any] = set() return any( node not in visited and depth_first_search(a_ , a_ , a_ , a_ ) for node in graph ) def __lowerCAmelCase ( a_ , a_ , a_ , a_ ) -> int: '''simple docstring''' visited.add(a_ ) rec_stk.add(a_ ) for node in graph[vertex]: if node not in visited: if depth_first_search(a_ , a_ , a_ , a_ ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(a_ ) return False if __name__ == "__main__": from doctest import testmod testmod()
251
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) _SCREAMING_SNAKE_CASE : List[Any] = { "configuration_funnel": ["FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP", "FunnelConfig"], "convert_funnel_original_tf_checkpoint_to_pytorch": [], "tokenization_funnel": ["FunnelTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Optional[int] = ["FunnelTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : List[Any] = [ "FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST", "FunnelBaseModel", "FunnelForMaskedLM", "FunnelForMultipleChoice", "FunnelForPreTraining", "FunnelForQuestionAnswering", "FunnelForSequenceClassification", "FunnelForTokenClassification", "FunnelModel", "FunnelPreTrainedModel", "load_tf_weights_in_funnel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Dict = [ "TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST", "TFFunnelBaseModel", "TFFunnelForMaskedLM", "TFFunnelForMultipleChoice", "TFFunnelForPreTraining", "TFFunnelForQuestionAnswering", "TFFunnelForSequenceClassification", "TFFunnelForTokenClassification", "TFFunnelModel", "TFFunnelPreTrainedModel", ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
400
0
"""simple docstring""" def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' lowerCAmelCase = word.split() def justify(SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : List[Any] ) -> str: lowerCAmelCase = max_width - width lowerCAmelCase = len(_lowercase ) if len(_lowercase ) == 1: # if there is only word in line # just insert overall_spaces_count for the remainder of line return line[0] + " " * overall_spaces_count else: lowerCAmelCase = words_count - 1 # num_spaces_between_words_list[i] : tells you to insert # num_spaces_between_words_list[i] spaces # after word on line[i] lowerCAmelCase = spaces_to_insert_between_words * [ overall_spaces_count // spaces_to_insert_between_words ] lowerCAmelCase = ( overall_spaces_count % spaces_to_insert_between_words ) # distribute spaces via round robin to the left words for i in range(_lowercase ): num_spaces_between_words_list[i] += 1 lowerCAmelCase = [] for i in range(_lowercase ): # add the word aligned_words_list.append(line[i] ) # add the spaces to insert aligned_words_list.append(num_spaces_between_words_list[i] * """ """ ) # just add the last word to the sentence aligned_words_list.append(line[-1] ) # join the aligned words list to form a justified line return "".join(_lowercase ) lowerCAmelCase = [] lowerCAmelCase = [] lowerCAmelCase = 0 for word in words: if width + len(_lowercase ) + len(_lowercase ) <= max_width: # keep adding words until we can fill out max_width # width = sum of length of all words (without overall_spaces_count) # len(word) = length of current word # len(line) = number of overall_spaces_count to insert between words line.append(_lowercase ) width += len(_lowercase ) else: # justify the line and add it to result answer.append(justify(_lowercase , _lowercase , _lowercase ) ) # reset new line and new width lowerCAmelCase , lowerCAmelCase = [word], len(_lowercase ) lowerCAmelCase = max_width - width - len(_lowercase ) answer.append(""" """.join(_lowercase ) + (remaining_spaces + 1) * """ """ ) return answer if __name__ == "__main__": from doctest import testmod testmod()
718
"""simple docstring""" import os import sys import unittest SCREAMING_SNAKE_CASE__ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path SCREAMING_SNAKE_CASE__ = os.path.join(git_repo_path, "src", "transformers") SCREAMING_SNAKE_CASE__ = "\n{0} = None\n" SCREAMING_SNAKE_CASE__ = "\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n" SCREAMING_SNAKE_CASE__ = "\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n" class lowercase ( unittest.TestCase ): def _snake_case ( self ) -> List[Any]: lowerCAmelCase = find_backend(""" _import_structure[\"models.albert\"].append(\"AlbertTokenizerFast\")""" ) self.assertIsNone(lowercase ) lowerCAmelCase = find_backend(""" if not is_tokenizers_available():""" ) self.assertEqual(lowercase , """tokenizers""" ) lowerCAmelCase = find_backend(""" if not is_tensorflow_text_available():""" ) self.assertEqual(lowercase , """tensorflow_text""" ) lowerCAmelCase = find_backend(""" if not (is_sentencepiece_available() and is_tokenizers_available()):""" ) self.assertEqual(lowercase , """sentencepiece_and_tokenizers""" ) lowerCAmelCase = find_backend( """ if not (is_sentencepiece_available() and is_tensorflow_text_available()):""" ) self.assertEqual(lowercase , """sentencepiece_and_tensorflow_text""" ) lowerCAmelCase = find_backend( """ if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):""" ) self.assertEqual(lowercase , """sentencepiece_and_tokenizers_and_vision""" ) def _snake_case ( self ) -> str: lowerCAmelCase = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("""torch""" , lowercase ) self.assertIn("""tensorflow_text""" , lowercase ) self.assertIn("""sentencepiece_and_tokenizers""" , lowercase ) # Likewise, we can't assert on the exact content of a key self.assertIn("""BertModel""" , objects["""torch"""] ) self.assertIn("""TFBertModel""" , objects["""tf"""] ) self.assertIn("""FlaxBertModel""" , objects["""flax"""] ) self.assertIn("""BertModel""" , objects["""torch"""] ) self.assertIn("""TFBertTokenizer""" , objects["""tensorflow_text"""] ) self.assertIn("""convert_slow_tokenizer""" , objects["""sentencepiece_and_tokenizers"""] ) def _snake_case ( self ) -> int: lowerCAmelCase = create_dummy_object("""CONSTANT""" , """'torch'""" ) self.assertEqual(lowercase , """\nCONSTANT = None\n""" ) lowerCAmelCase = create_dummy_object("""function""" , """'torch'""" ) self.assertEqual( lowercase , """\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n""" ) lowerCAmelCase = """ class FakeClass(metaclass=DummyObject): _backends = 'torch' def __init__(self, *args, **kwargs): requires_backends(self, 'torch') """ lowerCAmelCase = create_dummy_object("""FakeClass""" , """'torch'""" ) self.assertEqual(lowercase , lowercase ) def _snake_case ( self ) -> Dict: lowerCAmelCase = """# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, [\"torch\"]) class FakeClass(metaclass=DummyObject): _backends = [\"torch\"] def __init__(self, *args, **kwargs): requires_backends(self, [\"torch\"]) """ lowerCAmelCase = create_dummy_files({"""torch""": ["""CONSTANT""", """function""", """FakeClass"""]} ) self.assertEqual(dummy_files["""torch"""] , lowercase )
393
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { '''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/config.json''', '''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/config.json''', '''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/config.json''', '''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/config.json''', '''bert-base-multilingual-uncased''': '''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json''', '''bert-base-multilingual-cased''': '''https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json''', '''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/config.json''', '''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/config.json''', '''bert-large-uncased-whole-word-masking''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json''' ), '''bert-large-cased-whole-word-masking''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json''' ), '''bert-large-uncased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json''' ), '''bert-large-cased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json''' ), '''bert-base-cased-finetuned-mrpc''': '''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json''', '''bert-base-german-dbmdz-cased''': '''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json''', '''bert-base-german-dbmdz-uncased''': '''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json''', '''cl-tohoku/bert-base-japanese''': '''https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json''', '''cl-tohoku/bert-base-japanese-whole-word-masking''': ( '''https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json''' ), '''cl-tohoku/bert-base-japanese-char''': ( '''https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json''' ), '''cl-tohoku/bert-base-japanese-char-whole-word-masking''': ( '''https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json''' ), '''TurkuNLP/bert-base-finnish-cased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json''' ), '''TurkuNLP/bert-base-finnish-uncased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json''' ), '''wietsedv/bert-base-dutch-cased''': '''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json''', # See all BERT models at https://huggingface.co/models?filter=bert } class lowerCAmelCase_ ( a__ ): UpperCAmelCase__ : Dict = "bert" def __init__( self, SCREAMING_SNAKE_CASE_=3_0522, SCREAMING_SNAKE_CASE_=768, SCREAMING_SNAKE_CASE_=12, SCREAMING_SNAKE_CASE_=12, SCREAMING_SNAKE_CASE_=3072, SCREAMING_SNAKE_CASE_="gelu", SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=512, SCREAMING_SNAKE_CASE_=2, SCREAMING_SNAKE_CASE_=0.02, SCREAMING_SNAKE_CASE_=1e-12, SCREAMING_SNAKE_CASE_=0, SCREAMING_SNAKE_CASE_="absolute", SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=None, **SCREAMING_SNAKE_CASE_, ) -> Optional[Any]: super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = vocab_size UpperCamelCase : Tuple = hidden_size UpperCamelCase : Tuple = num_hidden_layers UpperCamelCase : str = num_attention_heads UpperCamelCase : str = hidden_act UpperCamelCase : Union[str, Any] = intermediate_size UpperCamelCase : List[str] = hidden_dropout_prob UpperCamelCase : Optional[Any] = attention_probs_dropout_prob UpperCamelCase : Optional[Any] = max_position_embeddings UpperCamelCase : List[str] = type_vocab_size UpperCamelCase : Union[str, Any] = initializer_range UpperCamelCase : int = layer_norm_eps UpperCamelCase : str = position_embedding_type UpperCamelCase : List[str] = use_cache UpperCamelCase : Union[str, Any] = classifier_dropout class lowerCAmelCase_ ( a__ ): @property def snake_case_ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": UpperCamelCase : str = {0: 'batch', 1: 'choice', 2: 'sequence'} else: UpperCamelCase : Optional[int] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
40
import math import random def UpperCamelCase ( snake_case__ : float , snake_case__ : bool = False ) -> float: if deriv: return value * (1 - value) return 1 / (1 + math.exp(-value )) # Initial Value __UpperCAmelCase = 0.02 def UpperCamelCase ( snake_case__ : int , snake_case__ : int ) -> float: UpperCamelCase : Optional[Any] = float(2 * (random.randint(1 , 100 )) - 1 ) for _ in range(snake_case__ ): # Forward propagation UpperCamelCase : str = sigmoid_function(INITIAL_VALUE * weight ) # How much did we miss? UpperCamelCase : int = (expected / 100) - layer_a # Error delta UpperCamelCase : List[str] = layer_1_error * sigmoid_function(snake_case__ , snake_case__ ) # Update weight weight += INITIAL_VALUE * layer_1_delta return layer_a * 100 if __name__ == "__main__": import doctest doctest.testmod() __UpperCAmelCase = int(input('''Expected value: ''')) __UpperCAmelCase = int(input('''Number of propagations: ''')) print(forward_propagation(expected, number_propagations))
40
1
import cmath import math def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =math.radians(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE =math.radians(SCREAMING_SNAKE_CASE_ ) # Convert voltage and current to rectangular form SCREAMING_SNAKE_CASE =cmath.rect(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE =cmath.rect(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) # Calculate apparent power return voltage_rect * current_rect if __name__ == "__main__": import doctest doctest.testmod()
703
import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class a_ ( unittest.TestCase ): """simple docstring""" def __init__( self : List[Any] ,snake_case : Tuple ,snake_case : Tuple=13 ,snake_case : Any=7 ,snake_case : Dict=True ,snake_case : str=True ,snake_case : Optional[Any]=True ,snake_case : Optional[int]=True ,snake_case : List[Any]=99 ,snake_case : Optional[int]=32 ,snake_case : str=5 ,snake_case : Union[str, Any]=4 ,snake_case : str=37 ,snake_case : List[str]="gelu" ,snake_case : Union[str, Any]=0.1 ,snake_case : Optional[int]=0.1 ,snake_case : Optional[Any]=512 ,snake_case : Optional[Any]=16 ,snake_case : str=2 ,snake_case : int=0.02 ,snake_case : int=4 ,): SCREAMING_SNAKE_CASE =parent SCREAMING_SNAKE_CASE =batch_size SCREAMING_SNAKE_CASE =seq_length SCREAMING_SNAKE_CASE =is_training SCREAMING_SNAKE_CASE =use_attention_mask SCREAMING_SNAKE_CASE =use_token_type_ids SCREAMING_SNAKE_CASE =use_labels SCREAMING_SNAKE_CASE =vocab_size SCREAMING_SNAKE_CASE =hidden_size SCREAMING_SNAKE_CASE =num_hidden_layers SCREAMING_SNAKE_CASE =num_attention_heads SCREAMING_SNAKE_CASE =intermediate_size SCREAMING_SNAKE_CASE =hidden_act SCREAMING_SNAKE_CASE =hidden_dropout_prob SCREAMING_SNAKE_CASE =attention_probs_dropout_prob SCREAMING_SNAKE_CASE =max_position_embeddings SCREAMING_SNAKE_CASE =type_vocab_size SCREAMING_SNAKE_CASE =type_sequence_label_size SCREAMING_SNAKE_CASE =initializer_range SCREAMING_SNAKE_CASE =num_choices def _lowerCAmelCase ( self : Any ): SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) SCREAMING_SNAKE_CASE =None if self.use_attention_mask: SCREAMING_SNAKE_CASE =random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE =DistilBertConfig( vocab_size=self.vocab_size ,dim=self.hidden_size ,n_layers=self.num_hidden_layers ,n_heads=self.num_attention_heads ,hidden_dim=self.intermediate_size ,hidden_act=self.hidden_act ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,tie_weights_=snake_case ,) return config, input_ids, attention_mask def _lowerCAmelCase ( self : Any ): SCREAMING_SNAKE_CASE =self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =config_and_inputs SCREAMING_SNAKE_CASE ={'input_ids': input_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_flax class a_ ( lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def _lowerCAmelCase ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE =FlaxDistilBertModelTester(self ) @slow def _lowerCAmelCase ( self : Optional[int] ): for model_class_name in self.all_model_classes: SCREAMING_SNAKE_CASE =model_class_name.from_pretrained('distilbert-base-uncased' ) SCREAMING_SNAKE_CASE =model(np.ones((1, 1) ) ) self.assertIsNotNone(snake_case ) @require_flax class a_ ( unittest.TestCase ): """simple docstring""" @slow def _lowerCAmelCase ( self : Any ): SCREAMING_SNAKE_CASE =FlaxDistilBertModel.from_pretrained('distilbert-base-uncased' ) SCREAMING_SNAKE_CASE =np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) SCREAMING_SNAKE_CASE =np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) SCREAMING_SNAKE_CASE =model(snake_case ,attention_mask=snake_case )[0] SCREAMING_SNAKE_CASE =(1, 11, 768) self.assertEqual(output.shape ,snake_case ) SCREAMING_SNAKE_CASE =np.array([[[-0.1_639, 0.3_299, 0.1_648], [-0.1_746, 0.3_289, 0.1_710], [-0.1_884, 0.3_357, 0.1_810]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] ,snake_case ,atol=1e-4 ) )
252
0
"""simple docstring""" import json import re from typing import TYPE_CHECKING, List, Optional, Tuple, Union import numpy as np from ...utils import is_tf_available, is_torch_available, logging if TYPE_CHECKING: if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_codegen import CodeGenTokenizer A : Optional[Any] = logging.get_logger(__name__) A : Optional[int] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} A : Any = { 'vocab_file': { 'Salesforce/codegen-350M-mono': 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json', }, 'merges_file': { 'Salesforce/codegen-350M-mono': 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt', }, 'tokenizer_file': { 'Salesforce/codegen-350M-mono': ( 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json' ), }, } A : int = { 'Salesforce/codegen-350M-mono': 2_048, } class lowerCAmelCase ( _UpperCAmelCase ): '''simple docstring''' A = VOCAB_FILES_NAMES A = PRETRAINED_VOCAB_FILES_MAP A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A = ['input_ids', 'attention_mask'] A = CodeGenTokenizer def __init__( self :Union[str, Any] , lowerCamelCase_ :Tuple=None , lowerCamelCase_ :int=None , lowerCamelCase_ :List[str]=None , lowerCamelCase_ :str="<|endoftext|>" , lowerCamelCase_ :Any="<|endoftext|>" , lowerCamelCase_ :List[Any]="<|endoftext|>" , lowerCamelCase_ :Union[str, Any]=False , **lowerCamelCase_ :List[Any] , ) -> List[str]: """simple docstring""" super().__init__( lowercase__ , lowercase__ , tokenizer_file=lowercase__ , unk_token=lowercase__ , bos_token=lowercase__ , eos_token=lowercase__ , add_prefix_space=lowercase__ , **lowercase__ , ) if kwargs.pop("add_bos_token" , lowercase__ ): UpperCamelCase__ = kwargs.pop("name_or_path" , "" ) raise ValueError( "Currenty GPT2's fast tokenizer does NOT support adding a BOS token." "Instead you should use GPT2's slow tokenizer class `CodeGenTokenizer` as follows: \n" f'`CodeGenTokenizer.from_pretrained(\'{model_id}\')`\nor\n' f'`AutoTokenizer.from_pretrained(\'{model_id}\', use_fast=False)`\n' "This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005." " so that the fast tokenizer works correctly." ) UpperCamelCase__ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , lowercase__ ) != add_prefix_space: UpperCamelCase__ = getattr(lowercase__ , pre_tok_state.pop("type" ) ) UpperCamelCase__ = add_prefix_space UpperCamelCase__ = pre_tok_class(**lowercase__ ) UpperCamelCase__ = add_prefix_space def lowerCamelCase__ ( self :Union[str, Any] , *lowerCamelCase_ :Any , **lowerCamelCase_ :Tuple ) -> Optional[int]: """simple docstring""" UpperCamelCase__ = kwargs.get("is_split_into_words" , lowercase__ ) assert self.add_prefix_space or not is_split_into_words, ( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*lowercase__ , **lowercase__ ) def lowerCamelCase__ ( self :int , *lowerCamelCase_ :int , **lowerCamelCase_ :Union[str, Any] ) -> Optional[Any]: """simple docstring""" UpperCamelCase__ = kwargs.get("is_split_into_words" , lowercase__ ) assert self.add_prefix_space or not is_split_into_words, ( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*lowercase__ , **lowercase__ ) def lowerCamelCase__ ( self :List[str] , lowerCamelCase_ :int , lowerCamelCase_ :List[Any] = None ) -> int: """simple docstring""" UpperCamelCase__ = self._tokenizer.model.save(lowercase__ , name=lowercase__ ) return tuple(lowercase__ ) def lowerCamelCase__ ( self :str , lowerCamelCase_ :List[Any] , lowerCamelCase_ :Any = False , lowerCamelCase_ :List[Any] = None , lowerCamelCase_ :Optional[Any] = None , **lowerCamelCase_ :Optional[Any] , ) -> Optional[Any]: """simple docstring""" UpperCamelCase__ = super().decode( token_ids=lowercase__ , skip_special_tokens=lowercase__ , clean_up_tokenization_spaces=lowercase__ , **lowercase__ , ) if truncate_before_pattern is not None and len(lowercase__ ) > 0: UpperCamelCase__ = self.truncate(lowercase__ , lowercase__ ) return decoded_text def lowerCamelCase__ ( self :List[str] , lowerCamelCase_ :List[str] , lowerCamelCase_ :str ) -> Union[str, Any]: """simple docstring""" def find_re(lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Union[str, Any] ): UpperCamelCase__ = pattern.search(lowercase__ , lowercase__ ) return m.start() if m else -1 UpperCamelCase__ = [re.compile(lowercase__ , re.MULTILINE ) for pattern in truncate_before_pattern] UpperCamelCase__ = list(re.finditer("^print" , lowercase__ , re.MULTILINE ) ) if len(lowercase__ ) > 1: UpperCamelCase__ = completion[: prints[1].start()] UpperCamelCase__ = list(re.finditer("^def" , lowercase__ , re.MULTILINE ) ) if len(lowercase__ ) > 1: UpperCamelCase__ = completion[: defs[1].start()] UpperCamelCase__ = 0 UpperCamelCase__ = [ pos for pos in [find_re(lowercase__ , lowercase__ , lowercase__ ) for terminal in terminals] if pos != -1 ] if len(lowercase__ ) > 0: return completion[: min(lowercase__ )] else: return completion
516
'''simple docstring''' import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def __lowerCamelCase ( SCREAMING_SNAKE_CASE_ : dict ) -> tuple: """simple docstring""" return (data["data"], data["target"]) def __lowerCamelCase ( SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : np.ndarray ) -> np.ndarray: """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = XGBRegressor(verbosity=0 , random_state=4_2 ) xgb.fit(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Predict target for test data SCREAMING_SNAKE_CASE_ : Optional[Any] = xgb.predict(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ : List[str] = predictions.reshape(len(SCREAMING_SNAKE_CASE_ ) , 1 ) return predictions def __lowerCamelCase ( ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = fetch_california_housing() SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ : List[Any] = data_handling(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ : Dict = train_test_split( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , test_size=0.25 , random_state=1 ) SCREAMING_SNAKE_CASE_ : int = xgboost(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Error printing print(F"Mean Absolute Error : {mean_absolute_error(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )}" ) print(F"Mean Square Error : {mean_squared_error(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )}" ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
421
0
import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError('At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training') # TF training parameters _lowerCamelCase = False _lowerCamelCase = False def __UpperCAmelCase( lowercase_ ): return TrainCommand(lowercase_ ) class __A ( lowerCamelCase__ ): """simple docstring""" @staticmethod def __snake_case ( a__): """simple docstring""" _lowerCamelCase : Any = parser.add_parser('''train''' , help='''CLI tool to train a model on a task.''') train_parser.add_argument( '''--train_data''' , type=a__ , required=a__ , help='''path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences.''' , ) train_parser.add_argument( '''--column_label''' , type=a__ , default=0 , help='''Column of the dataset csv file with example labels.''') train_parser.add_argument( '''--column_text''' , type=a__ , default=1 , help='''Column of the dataset csv file with example texts.''') train_parser.add_argument( '''--column_id''' , type=a__ , default=2 , help='''Column of the dataset csv file with example ids.''') train_parser.add_argument( '''--skip_first_row''' , action='''store_true''' , help='''Skip the first row of the csv file (headers).''') train_parser.add_argument('''--validation_data''' , type=a__ , default='''''' , help='''path to validation dataset.''') train_parser.add_argument( '''--validation_split''' , type=a__ , default=0.1 , help='''if validation dataset is not provided, fraction of train dataset to use as validation dataset.''' , ) train_parser.add_argument('''--output''' , type=a__ , default='''./''' , help='''path to saved the trained model.''') train_parser.add_argument( '''--task''' , type=a__ , default='''text_classification''' , help='''Task to train the model on.''') train_parser.add_argument( '''--model''' , type=a__ , default='''bert-base-uncased''' , help='''Model\'s name or path to stored model.''') train_parser.add_argument('''--train_batch_size''' , type=a__ , default=32 , help='''Batch size for training.''') train_parser.add_argument('''--valid_batch_size''' , type=a__ , default=64 , help='''Batch size for validation.''') train_parser.add_argument('''--learning_rate''' , type=a__ , default=3e-5 , help='''Learning rate.''') train_parser.add_argument('''--adam_epsilon''' , type=a__ , default=1e-08 , help='''Epsilon for Adam optimizer.''') train_parser.set_defaults(func=a__) def __init__( self , a__): """simple docstring""" _lowerCamelCase : int = logging.get_logger('''transformers-cli/training''') _lowerCamelCase : Tuple = '''tf''' if is_tf_available() else '''torch''' os.makedirs(args.output , exist_ok=a__) _lowerCamelCase : List[Any] = args.output _lowerCamelCase : List[str] = args.column_label _lowerCamelCase : Optional[int] = args.column_text _lowerCamelCase : Optional[Any] = args.column_id self.logger.info(F"""Loading {args.task} pipeline for {args.model}""") if args.task == "text_classification": _lowerCamelCase : str = TextClassificationPipeline.from_pretrained(args.model) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(F"""Loading dataset from {args.train_data}""") _lowerCamelCase : Union[str, Any] = Processor.create_from_csv( args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) _lowerCamelCase : str = None if args.validation_data: self.logger.info(F"""Loading validation dataset from {args.validation_data}""") _lowerCamelCase : Union[str, Any] = Processor.create_from_csv( args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) _lowerCamelCase : List[str] = args.validation_split _lowerCamelCase : Optional[Any] = args.train_batch_size _lowerCamelCase : int = args.valid_batch_size _lowerCamelCase : List[str] = args.learning_rate _lowerCamelCase : Any = args.adam_epsilon def __snake_case ( self): """simple docstring""" if self.framework == "tf": return self.run_tf() return self.run_torch() def __snake_case ( self): """simple docstring""" raise NotImplementedError def __snake_case ( self): """simple docstring""" self.pipeline.fit( self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , ) # Save trained pipeline self.pipeline.save_pretrained(self.output)
613
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter _lowerCamelCase = 'Create a default config file for Accelerate with only a few flags set.' def __UpperCAmelCase( lowercase_="no" , lowercase_ = default_json_config_file , lowercase_ = False ): _lowerCamelCase : List[str] = Path(lowercase_ ) path.parent.mkdir(parents=lowercase_ , exist_ok=lowercase_ ) if path.exists(): print( F"""Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.""" ) return False _lowerCamelCase : List[Any] = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( F"""`mixed_precision` should be one of 'no', 'fp16', 'bf16', or 'fp8'. Received {mixed_precision}""" ) _lowerCamelCase : Optional[int] = { '''compute_environment''': '''LOCAL_MACHINE''', '''mixed_precision''': mixed_precision, } if torch.cuda.is_available(): _lowerCamelCase : Any = torch.cuda.device_count() _lowerCamelCase : str = num_gpus _lowerCamelCase : Union[str, Any] = False if num_gpus > 1: _lowerCamelCase : str = '''MULTI_GPU''' else: _lowerCamelCase : List[str] = '''NO''' elif is_xpu_available() and use_xpu: _lowerCamelCase : Union[str, Any] = torch.xpu.device_count() _lowerCamelCase : int = num_xpus _lowerCamelCase : Dict = False if num_xpus > 1: _lowerCamelCase : List[str] = '''MULTI_XPU''' else: _lowerCamelCase : Any = '''NO''' elif is_npu_available(): _lowerCamelCase : List[str] = torch.npu.device_count() _lowerCamelCase : Optional[int] = num_npus _lowerCamelCase : str = False if num_npus > 1: _lowerCamelCase : List[Any] = '''MULTI_NPU''' else: _lowerCamelCase : str = '''NO''' else: _lowerCamelCase : Tuple = 0 _lowerCamelCase : Optional[Any] = True _lowerCamelCase : List[str] = 1 _lowerCamelCase : Union[str, Any] = '''NO''' _lowerCamelCase : Any = ClusterConfig(**lowercase_ ) config.to_json_file(lowercase_ ) return path def __UpperCAmelCase( lowercase_ , lowercase_ ): _lowerCamelCase : List[str] = parser.add_parser('''default''' , parents=lowercase_ , help=lowercase_ , formatter_class=lowercase_ ) parser.add_argument( '''--config_file''' , default=lowercase_ , help=( '''The path to use to store the config file. Will default to a file named default_config.yaml in the cache ''' '''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ''' '''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ''' '''with \'huggingface\'.''' ) , dest='''save_location''' , ) parser.add_argument( '''--mixed_precision''' , choices=['''no''', '''fp16''', '''bf16'''] , type=lowercase_ , help='''Whether or not to use mixed precision training. ''' '''Choose between FP16 and BF16 (bfloat16) training. ''' '''BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.''' , default='''no''' , ) parser.set_defaults(func=lowercase_ ) return parser def __UpperCAmelCase( lowercase_ ): _lowerCamelCase : str = write_basic_config(args.mixed_precision , args.save_location ) if config_file: print(F"""accelerate configuration saved at {config_file}""" )
613
1
"""simple docstring""" import re import string import numpy as np import datasets a__ : Dict = """ Returns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list. """ a__ : List[str] = """ Args: predictions: List of predicted texts. references: List of reference texts. regexes_to_ignore: List, defaults to None. Regex expressions of characters to ignore when calculating the exact matches. Note: these regexes are removed from the input data before the changes based on the options below (e.g. ignore_case, ignore_punctuation, ignore_numbers) are applied. ignore_case: Boolean, defaults to False. If true, turns everything to lowercase so that capitalization differences are ignored. ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. Returns: exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive. Examples: >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results[\"exact_match\"], 1)) 25.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\"], ignore_case=True, ignore_punctuation=True) >>> print(round(results[\"exact_match\"], 1)) 50.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True) >>> print(round(results[\"exact_match\"], 1)) 75.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True) >>> print(round(results[\"exact_match\"], 1)) 100.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"The cat sat on the mat.\", \"Theaters are great.\", \"It's like comparing oranges and apples.\"] >>> preds = [\"The cat sat on the mat?\", \"Theaters are great.\", \"It's like comparing apples and oranges.\"] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results[\"exact_match\"], 1)) 33.3 """ a__ : int = """ """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class __magic_name__ ( datasets.Metric ): def _lowerCamelCase ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , reference_urls=[] , ) def _lowerCamelCase ( self , __magic_name__ , __magic_name__ , __magic_name__=None , __magic_name__=False , __magic_name__=False , __magic_name__=False , ): """simple docstring""" if regexes_to_ignore is not None: for s in regexes_to_ignore: _lowerCAmelCase = np.array([re.sub(__magic_name__ , '' , __magic_name__ ) for x in predictions] ) _lowerCAmelCase = np.array([re.sub(__magic_name__ , '' , __magic_name__ ) for x in references] ) else: _lowerCAmelCase = np.asarray(__magic_name__ ) _lowerCAmelCase = np.asarray(__magic_name__ ) if ignore_case: _lowerCAmelCase = np.char.lower(__magic_name__ ) _lowerCAmelCase = np.char.lower(__magic_name__ ) if ignore_punctuation: _lowerCAmelCase = string.punctuation.maketrans('' , '' , string.punctuation ) _lowerCAmelCase = np.char.translate(__magic_name__ , table=__magic_name__ ) _lowerCAmelCase = np.char.translate(__magic_name__ , table=__magic_name__ ) if ignore_numbers: _lowerCAmelCase = string.digits.maketrans('' , '' , string.digits ) _lowerCAmelCase = np.char.translate(__magic_name__ , table=__magic_name__ ) _lowerCAmelCase = np.char.translate(__magic_name__ , table=__magic_name__ ) _lowerCAmelCase = predictions == references return {"exact_match": np.mean(__magic_name__ ) * 1_0_0}
589
"""simple docstring""" from string import ascii_uppercase a__ : Any = {char: i for i, char in enumerate(ascii_uppercase)} a__ : str = dict(enumerate(ascii_uppercase)) def A__ ( __lowerCamelCase, __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = len(__lowerCamelCase ) _lowerCAmelCase = 0 while True: if x == i: _lowerCAmelCase = 0 if len(__lowerCamelCase ) == len(__lowerCamelCase ): break key += key[i] i += 1 return key def A__ ( __lowerCamelCase, __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = '' _lowerCAmelCase = 0 for letter in message: if letter == " ": cipher_text += " " else: _lowerCAmelCase = (dicta[letter] - dicta[key_new[i]]) % 2_6 i += 1 cipher_text += dicta[x] return cipher_text def A__ ( __lowerCamelCase, __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = '' _lowerCAmelCase = 0 for letter in cipher_text: if letter == " ": or_txt += " " else: _lowerCAmelCase = (dicta[letter] + dicta[key_new[i]] + 2_6) % 2_6 i += 1 or_txt += dicta[x] return or_txt def A__ ( ): """simple docstring""" _lowerCAmelCase = 'THE GERMAN ATTACK' _lowerCAmelCase = 'SECRET' _lowerCAmelCase = generate_key(__lowerCamelCase, __lowerCamelCase ) _lowerCAmelCase = cipher_text(__lowerCamelCase, __lowerCamelCase ) print(F'''Encrypted Text = {s}''' ) print(F'''Original Text = {original_text(__lowerCamelCase, __lowerCamelCase )}''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
589
1
"""simple docstring""" import argparse import json from tqdm import tqdm def lowerCamelCase_( ) -> Any: '''simple docstring''' _lowerCamelCase : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( "--src_path" , type=_lowerCamelCase , default="biencoder-nq-dev.json" , help="Path to raw DPR training data" , ) parser.add_argument( "--evaluation_set" , type=_lowerCamelCase , help="where to store parsed evaluation_set file" , ) parser.add_argument( "--gold_data_path" , type=_lowerCamelCase , help="where to store parsed gold_data_path file" , ) _lowerCamelCase : Tuple = parser.parse_args() with open(args.src_path , "r" ) as src_file, open(args.evaluation_set , "w" ) as eval_file, open( args.gold_data_path , "w" ) as gold_file: _lowerCamelCase : Union[str, Any] = json.load(_lowerCamelCase ) for dpr_record in tqdm(_lowerCamelCase ): _lowerCamelCase : Tuple = dpr_record["question"] _lowerCamelCase : List[str] = [context["title"] for context in dpr_record["positive_ctxs"]] eval_file.write(question + "\n" ) gold_file.write("\t".join(_lowerCamelCase ) + "\n" ) if __name__ == "__main__": main()
386
"""simple docstring""" import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class A_ ( _a , _a , unittest.TestCase ): lowerCAmelCase__ = IFInpaintingPipeline lowerCAmelCase__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'width', 'height'} lowerCAmelCase__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS lowerCAmelCase__ = PipelineTesterMixin.required_optional_params - {'latents'} def _lowercase ( self: Tuple ): '''simple docstring''' return self._get_dummy_components() def _lowercase ( self: int ,__lowerCAmelCase: List[str] ,__lowerCAmelCase: Optional[Any]=0 ): '''simple docstring''' if str(__lowerCAmelCase ).startswith("mps" ): _lowerCamelCase : Dict = torch.manual_seed(__lowerCAmelCase ) else: _lowerCamelCase : Dict = torch.Generator(device=__lowerCAmelCase ).manual_seed(__lowerCAmelCase ) _lowerCamelCase : Dict = floats_tensor((1, 3, 32, 32) ,rng=random.Random(__lowerCAmelCase ) ).to(__lowerCAmelCase ) _lowerCamelCase : Tuple = floats_tensor((1, 3, 32, 32) ,rng=random.Random(__lowerCAmelCase ) ).to(__lowerCAmelCase ) _lowerCamelCase : Optional[int] = { "prompt": "A painting of a squirrel eating a burger", "image": image, "mask_image": mask_image, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() ,reason="XFormers attention is only available with CUDA and `xformers` installed" ,) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def _lowercase ( self: List[str] ): '''simple docstring''' self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" ,reason="float16 requires CUDA" ) def _lowercase ( self: Dict ): '''simple docstring''' super().test_save_load_floataa(expected_max_diff=1e-1 ) def _lowercase ( self: Dict ): '''simple docstring''' self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def _lowercase ( self: int ): '''simple docstring''' self._test_save_load_local() def _lowercase ( self: Optional[int] ): '''simple docstring''' self._test_inference_batch_single_identical( expected_max_diff=1e-2 ,)
386
1
'''simple docstring''' import unittest import torch from diffusers import VQModel from diffusers.utils import floats_tensor, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class _SCREAMING_SNAKE_CASE( snake_case__ , snake_case__ , unittest.TestCase ): A_ : Optional[int] = VQModel A_ : str = "sample" @property def __lowerCamelCase ( self : Optional[int] , UpperCamelCase_ : List[Any]=(32, 32) ) -> str: SCREAMING_SNAKE_CASE__ :Optional[Any] = 4 SCREAMING_SNAKE_CASE__ :Tuple = 3 SCREAMING_SNAKE_CASE__ :Union[str, Any] = floats_tensor((batch_size, num_channels) + sizes ).to(snake_case__ ) return {"sample": image} @property def __lowerCamelCase ( self : Optional[int] ) -> int: return (3, 32, 32) @property def __lowerCamelCase ( self : str ) -> Optional[Any]: return (3, 32, 32) def __lowerCamelCase ( self : Optional[int] ) -> Optional[int]: SCREAMING_SNAKE_CASE__ :Any = { "block_out_channels": [32, 64], "in_channels": 3, "out_channels": 3, "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"], "latent_channels": 3, } SCREAMING_SNAKE_CASE__ :int = self.dummy_input return init_dict, inputs_dict def __lowerCamelCase ( self : int ) -> Dict: pass def __lowerCamelCase ( self : Tuple ) -> List[Any]: pass def __lowerCamelCase ( self : str ) -> Any: SCREAMING_SNAKE_CASE__ :List[str] = VQModel.from_pretrained('fusing/vqgan-dummy' , output_loading_info=snake_case__ ) self.assertIsNotNone(snake_case__ ) self.assertEqual(len(loading_info['missing_keys'] ) , 0 ) model.to(snake_case__ ) SCREAMING_SNAKE_CASE__ :List[Any] = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def __lowerCamelCase ( self : Tuple ) -> List[str]: SCREAMING_SNAKE_CASE__ :str = VQModel.from_pretrained('fusing/vqgan-dummy' ) model.to(snake_case__ ).eval() torch.manual_seed(0 ) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0 ) SCREAMING_SNAKE_CASE__ :List[Any] = torch.randn(1 , model.config.in_channels , model.config.sample_size , model.config.sample_size ) SCREAMING_SNAKE_CASE__ :Dict = image.to(snake_case__ ) with torch.no_grad(): SCREAMING_SNAKE_CASE__ :str = model(snake_case__ ).sample SCREAMING_SNAKE_CASE__ :int = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off SCREAMING_SNAKE_CASE__ :Union[str, Any] = torch.tensor([-0.0153, -0.4044, -0.1880, -0.5161, -0.2418, -0.4072, -0.1612, -0.0633, -0.0143] ) # fmt: on self.assertTrue(torch.allclose(snake_case__ , snake_case__ , atol=1e-3 ) )
209
"""simple docstring""" from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig A__ : Optional[Any] = logging.get_logger(__name__) # General docstring A__ : List[str] = 'RegNetConfig' # Base docstring A__ : List[Any] = 'facebook/regnet-y-040' A__ : Any = [1, 1_088, 7, 7] # Image classification docstring A__ : Any = 'facebook/regnet-y-040' A__ : int = 'tabby, tabby cat' A__ : Any = [ 'facebook/regnet-y-040', # See all regnet models at https://huggingface.co/models?filter=regnet ] class lowercase__ ( tf.keras.layers.Layer ): def __init__( self : Optional[Any] , snake_case__ : int , snake_case__ : int = 3 , snake_case__ : int = 1 , snake_case__ : int = 1 , snake_case__ : Optional[str] = "relu" , **snake_case__ : Optional[int] , ): super().__init__(**snake_case__ ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb lowerCamelCase_ : Tuple =tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) lowerCamelCase_ : Optional[Any] =tf.keras.layers.ConvaD( filters=snake_case__ , kernel_size=snake_case__ , strides=snake_case__ , padding="VALID" , groups=snake_case__ , use_bias=snake_case__ , name="convolution" , ) lowerCamelCase_ : List[str] =tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name="normalization" ) lowerCamelCase_ : List[Any] =ACTaFN[activation] if activation is not None else tf.identity def UpperCAmelCase__ ( self : Optional[Any] , snake_case__ : str ): lowerCamelCase_ : str =self.convolution(self.padding(snake_case__ ) ) lowerCamelCase_ : int =self.normalization(snake_case__ ) lowerCamelCase_ : int =self.activation(snake_case__ ) return hidden_state class lowercase__ ( tf.keras.layers.Layer ): def __init__( self : List[str] , snake_case__ : RegNetConfig , **snake_case__ : List[Any] ): super().__init__(**snake_case__ ) lowerCamelCase_ : Union[str, Any] =config.num_channels lowerCamelCase_ : str =TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name="embedder" , ) def UpperCAmelCase__ ( self : Union[str, Any] , snake_case__ : str ): lowerCamelCase_ : str =shape_list(snake_case__ )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) lowerCamelCase_ : str =tf.transpose(snake_case__ , perm=(0, 2, 3, 1) ) lowerCamelCase_ : List[str] =self.embedder(snake_case__ ) return hidden_state class lowercase__ ( tf.keras.layers.Layer ): def __init__( self : List[str] , snake_case__ : int , snake_case__ : int = 2 , **snake_case__ : Tuple ): super().__init__(**snake_case__ ) lowerCamelCase_ : Optional[int] =tf.keras.layers.ConvaD( filters=snake_case__ , kernel_size=1 , strides=snake_case__ , use_bias=snake_case__ , name="convolution" ) lowerCamelCase_ : List[str] =tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name="normalization" ) def UpperCAmelCase__ ( self : str , snake_case__ : tf.Tensor , snake_case__ : bool = False ): return self.normalization(self.convolution(snake_case__ ) , training=snake_case__ ) class lowercase__ ( tf.keras.layers.Layer ): def __init__( self : List[str] , snake_case__ : int , snake_case__ : int , **snake_case__ : Optional[int] ): super().__init__(**snake_case__ ) lowerCamelCase_ : int =tf.keras.layers.GlobalAveragePoolingaD(keepdims=snake_case__ , name="pooler" ) lowerCamelCase_ : Tuple =[ tf.keras.layers.ConvaD(filters=snake_case__ , kernel_size=1 , activation="relu" , name="attention.0" ), tf.keras.layers.ConvaD(filters=snake_case__ , kernel_size=1 , activation="sigmoid" , name="attention.2" ), ] def UpperCAmelCase__ ( self : Tuple , snake_case__ : Tuple ): # [batch_size, h, w, num_channels] -> [batch_size, 1, 1, num_channels] lowerCamelCase_ : Any =self.pooler(snake_case__ ) for layer_module in self.attention: lowerCamelCase_ : List[str] =layer_module(snake_case__ ) lowerCamelCase_ : str =hidden_state * pooled return hidden_state class lowercase__ ( tf.keras.layers.Layer ): def __init__( self : str , snake_case__ : RegNetConfig , snake_case__ : int , snake_case__ : int , snake_case__ : int = 1 , **snake_case__ : Tuple ): super().__init__(**snake_case__ ) lowerCamelCase_ : Any =in_channels != out_channels or stride != 1 lowerCamelCase_ : str =max(1 , out_channels // config.groups_width ) lowerCamelCase_ : Union[str, Any] =( TFRegNetShortCut(snake_case__ , stride=snake_case__ , name="shortcut" ) if should_apply_shortcut else tf.keras.layers.Activation("linear" , name="shortcut" ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. lowerCamelCase_ : int =[ TFRegNetConvLayer(snake_case__ , kernel_size=1 , activation=config.hidden_act , name="layer.0" ), TFRegNetConvLayer( snake_case__ , stride=snake_case__ , groups=snake_case__ , activation=config.hidden_act , name="layer.1" ), TFRegNetConvLayer(snake_case__ , kernel_size=1 , activation=snake_case__ , name="layer.2" ), ] lowerCamelCase_ : Tuple =ACTaFN[config.hidden_act] def UpperCAmelCase__ ( self : Optional[Any] , snake_case__ : Optional[Any] ): lowerCamelCase_ : Dict =hidden_state for layer_module in self.layers: lowerCamelCase_ : List[str] =layer_module(snake_case__ ) lowerCamelCase_ : str =self.shortcut(snake_case__ ) hidden_state += residual lowerCamelCase_ : Optional[int] =self.activation(snake_case__ ) return hidden_state class lowercase__ ( tf.keras.layers.Layer ): def __init__( self : Union[str, Any] , snake_case__ : RegNetConfig , snake_case__ : int , snake_case__ : int , snake_case__ : int = 1 , **snake_case__ : str ): super().__init__(**snake_case__ ) lowerCamelCase_ : str =in_channels != out_channels or stride != 1 lowerCamelCase_ : Union[str, Any] =max(1 , out_channels // config.groups_width ) lowerCamelCase_ : Any =( TFRegNetShortCut(snake_case__ , stride=snake_case__ , name="shortcut" ) if should_apply_shortcut else tf.keras.layers.Activation("linear" , name="shortcut" ) ) lowerCamelCase_ : Dict =[ TFRegNetConvLayer(snake_case__ , kernel_size=1 , activation=config.hidden_act , name="layer.0" ), TFRegNetConvLayer( snake_case__ , stride=snake_case__ , groups=snake_case__ , activation=config.hidden_act , name="layer.1" ), TFRegNetSELayer(snake_case__ , reduced_channels=int(round(in_channels / 4 ) ) , name="layer.2" ), TFRegNetConvLayer(snake_case__ , kernel_size=1 , activation=snake_case__ , name="layer.3" ), ] lowerCamelCase_ : Tuple =ACTaFN[config.hidden_act] def UpperCAmelCase__ ( self : Tuple , snake_case__ : List[Any] ): lowerCamelCase_ : str =hidden_state for layer_module in self.layers: lowerCamelCase_ : List[Any] =layer_module(snake_case__ ) lowerCamelCase_ : Dict =self.shortcut(snake_case__ ) hidden_state += residual lowerCamelCase_ : List[Any] =self.activation(snake_case__ ) return hidden_state class lowercase__ ( tf.keras.layers.Layer ): def __init__( self : str , snake_case__ : RegNetConfig , snake_case__ : int , snake_case__ : int , snake_case__ : int = 2 , snake_case__ : int = 2 , **snake_case__ : Any ): super().__init__(**snake_case__ ) lowerCamelCase_ : List[Any] =TFRegNetXLayer if config.layer_type == "x" else TFRegNetYLayer lowerCamelCase_ : str =[ # downsampling is done in the first layer with stride of 2 layer(snake_case__ , snake_case__ , snake_case__ , stride=snake_case__ , name="layers.0" ), *[layer(snake_case__ , snake_case__ , snake_case__ , name=F"""layers.{i+1}""" ) for i in range(depth - 1 )], ] def UpperCAmelCase__ ( self : Optional[Any] , snake_case__ : Optional[Any] ): for layer_module in self.layers: lowerCamelCase_ : int =layer_module(snake_case__ ) return hidden_state class lowercase__ ( tf.keras.layers.Layer ): def __init__( self : Optional[Any] , snake_case__ : RegNetConfig , **snake_case__ : Union[str, Any] ): super().__init__(**snake_case__ ) lowerCamelCase_ : Dict =[] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( snake_case__ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name="stages.0" , ) ) lowerCamelCase_ : Optional[Any] =zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(snake_case__ , config.depths[1:] ) ): self.stages.append(TFRegNetStage(snake_case__ , snake_case__ , snake_case__ , depth=snake_case__ , name=F"""stages.{i+1}""" ) ) def UpperCAmelCase__ ( self : Optional[int] , snake_case__ : tf.Tensor , snake_case__ : bool = False , snake_case__ : bool = True ): lowerCamelCase_ : List[Any] =() if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: lowerCamelCase_ : Optional[int] =hidden_states + (hidden_state,) lowerCamelCase_ : Dict =stage_module(snake_case__ ) if output_hidden_states: lowerCamelCase_ : Dict =hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=snake_case__ , hidden_states=snake_case__ ) @keras_serializable class lowercase__ ( tf.keras.layers.Layer ): _UpperCAmelCase :Any = RegNetConfig def __init__( self : Optional[Any] , snake_case__ : Union[str, Any] , **snake_case__ : Union[str, Any] ): super().__init__(**snake_case__ ) lowerCamelCase_ : List[str] =config lowerCamelCase_ : List[str] =TFRegNetEmbeddings(snake_case__ , name="embedder" ) lowerCamelCase_ : Union[str, Any] =TFRegNetEncoder(snake_case__ , name="encoder" ) lowerCamelCase_ : Union[str, Any] =tf.keras.layers.GlobalAveragePoolingaD(keepdims=snake_case__ , name="pooler" ) @unpack_inputs def UpperCAmelCase__ ( self : List[str] , snake_case__ : tf.Tensor , snake_case__ : Optional[bool] = None , snake_case__ : Optional[bool] = None , snake_case__ : bool = False , ): lowerCamelCase_ : List[Any] =( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCamelCase_ : Tuple =return_dict if return_dict is not None else self.config.use_return_dict lowerCamelCase_ : str =self.embedder(snake_case__ , training=snake_case__ ) lowerCamelCase_ : Dict =self.encoder( snake_case__ , output_hidden_states=snake_case__ , return_dict=snake_case__ , training=snake_case__ ) lowerCamelCase_ : Optional[int] =encoder_outputs[0] lowerCamelCase_ : List[Any] =self.pooler(snake_case__ ) # Change to NCHW output format have uniformity in the modules lowerCamelCase_ : str =tf.transpose(snake_case__ , perm=(0, 3, 1, 2) ) lowerCamelCase_ : Any =tf.transpose(snake_case__ , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: lowerCamelCase_ : Optional[int] =tuple([tf.transpose(snake_case__ , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=snake_case__ , pooler_output=snake_case__ , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class lowercase__ ( snake_case__ ): _UpperCAmelCase :Union[str, Any] = RegNetConfig _UpperCAmelCase :str = "regnet" _UpperCAmelCase :List[Any] = "pixel_values" @property def UpperCAmelCase__ ( self : int ): return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 224, 224) , dtype=tf.floataa )} A__ : Dict = r'\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n' A__ : List[str] = r'\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top.", snake_case__, ) class lowercase__ ( snake_case__ ): def __init__( self : List[str] , snake_case__ : RegNetConfig , *snake_case__ : str , **snake_case__ : Dict ): super().__init__(snake_case__ , *snake_case__ , **snake_case__ ) lowerCamelCase_ : Union[str, Any] =TFRegNetMainLayer(snake_case__ , name="regnet" ) @unpack_inputs @add_start_docstrings_to_model_forward(snake_case__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=snake_case__ , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def UpperCAmelCase__ ( self : Optional[int] , snake_case__ : tf.Tensor , snake_case__ : Optional[bool] = None , snake_case__ : Optional[bool] = None , snake_case__ : Any=False , ): lowerCamelCase_ : Optional[Any] =( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCamelCase_ : List[Any] =return_dict if return_dict is not None else self.config.use_return_dict lowerCamelCase_ : Optional[int] =self.regnet( pixel_values=snake_case__ , output_hidden_states=snake_case__ , return_dict=snake_case__ , training=snake_case__ , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( "\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ", snake_case__, ) class lowercase__ ( snake_case__, snake_case__ ): def __init__( self : int , snake_case__ : RegNetConfig , *snake_case__ : Optional[Any] , **snake_case__ : Optional[int] ): super().__init__(snake_case__ , *snake_case__ , **snake_case__ ) lowerCamelCase_ : Tuple =config.num_labels lowerCamelCase_ : Any =TFRegNetMainLayer(snake_case__ , name="regnet" ) # classification head lowerCamelCase_ : Tuple =[ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name="classifier.1" ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(snake_case__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=snake_case__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def UpperCAmelCase__ ( self : Any , snake_case__ : tf.Tensor = None , snake_case__ : tf.Tensor = None , snake_case__ : bool = None , snake_case__ : bool = None , snake_case__ : List[str]=False , ): lowerCamelCase_ : List[Any] =( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCamelCase_ : str =return_dict if return_dict is not None else self.config.use_return_dict lowerCamelCase_ : int =self.regnet( snake_case__ , output_hidden_states=snake_case__ , return_dict=snake_case__ , training=snake_case__ ) lowerCamelCase_ : str =outputs.pooler_output if return_dict else outputs[1] lowerCamelCase_ : Dict =self.classifier[0](snake_case__ ) lowerCamelCase_ : Optional[int] =self.classifier[1](snake_case__ ) lowerCamelCase_ : Any =None if labels is None else self.hf_compute_loss(labels=snake_case__ , logits=snake_case__ ) if not return_dict: lowerCamelCase_ : Optional[int] =(logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=snake_case__ , logits=snake_case__ , hidden_states=outputs.hidden_states )
153
0
import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: lowerCamelCase__ : Union[str, Any] = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class _snake_case ( unittest.TestCase ): def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=18 , SCREAMING_SNAKE_CASE_=30 , SCREAMING_SNAKE_CASE_=4_00 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , ): '''simple docstring''' lowercase__ : int = size if size is not None else {"""height""": 20, """width""": 20} lowercase__ : int = parent lowercase__ : Any = batch_size lowercase__ : str = num_channels lowercase__ : Union[str, Any] = image_size lowercase__ : Tuple = min_resolution lowercase__ : Any = max_resolution lowercase__ : Tuple = size lowercase__ : Any = do_normalize lowercase__ : Optional[int] = do_convert_rgb lowercase__ : Optional[Any] = [5_12, 10_24, 20_48, 40_96] lowercase__ : str = patch_size if patch_size is not None else {"""height""": 16, """width""": 16} def lowercase__ ( self): '''simple docstring''' return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def lowercase__ ( self): '''simple docstring''' lowercase__ : Optional[Any] = """https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg""" lowercase__ : Dict = Image.open(requests.get(SCREAMING_SNAKE_CASE_ , stream=SCREAMING_SNAKE_CASE_).raw).convert("""RGB""") return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='`Pix2StructImageProcessor` requires `torch>=1.11.0`.' , ) @require_torch @require_vision class _snake_case ( UpperCAmelCase_ , unittest.TestCase ): __lowerCAmelCase : Tuple = PixaStructImageProcessor if is_vision_available() else None def lowercase__ ( self): '''simple docstring''' lowercase__ : Any = PixaStructImageProcessingTester(self) @property def lowercase__ ( self): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowercase__ ( self): '''simple docstring''' lowercase__ : List[Any] = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """do_normalize""")) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """do_convert_rgb""")) def lowercase__ ( self): '''simple docstring''' lowercase__ : Any = self.image_processor_tester.prepare_dummy_image() lowercase__ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict) lowercase__ : Optional[Any] = 20_48 lowercase__ : int = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors="""pt""" , max_patches=SCREAMING_SNAKE_CASE_) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0_6_0_6) , atol=1E-3 , rtol=1E-3)) def lowercase__ ( self): '''simple docstring''' lowercase__ : Tuple = self.image_processing_class(**self.image_processor_dict) # create random PIL images lowercase__ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE_) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_ , Image.Image) # Test not batched input lowercase__ : Optional[Any] = ( (self.image_processor_tester.patch_size["""height"""] * self.image_processor_tester.patch_size["""width"""]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input lowercase__ : str = image_processor( image_inputs[0] , return_tensors="""pt""" , max_patches=SCREAMING_SNAKE_CASE_).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched lowercase__ : Tuple = image_processor( SCREAMING_SNAKE_CASE_ , return_tensors="""pt""" , max_patches=SCREAMING_SNAKE_CASE_).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def lowercase__ ( self): '''simple docstring''' lowercase__ : Tuple = self.image_processing_class(**self.image_processor_dict) # create random PIL images lowercase__ : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE_) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_ , Image.Image) # Test not batched input lowercase__ : List[Any] = ( (self.image_processor_tester.patch_size["""height"""] * self.image_processor_tester.patch_size["""width"""]) * self.image_processor_tester.num_channels ) + 2 lowercase__ : List[Any] = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(SCREAMING_SNAKE_CASE_): lowercase__ : Optional[int] = image_processor( image_inputs[0] , return_tensors="""pt""" , max_patches=SCREAMING_SNAKE_CASE_).flattened_patches lowercase__ : Any = """Hello""" lowercase__ : List[Any] = image_processor( image_inputs[0] , return_tensors="""pt""" , max_patches=SCREAMING_SNAKE_CASE_ , header_text=SCREAMING_SNAKE_CASE_).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched lowercase__ : Dict = image_processor( SCREAMING_SNAKE_CASE_ , return_tensors="""pt""" , max_patches=SCREAMING_SNAKE_CASE_ , header_text=SCREAMING_SNAKE_CASE_).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def lowercase__ ( self): '''simple docstring''' lowercase__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors lowercase__ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE_ , numpify=SCREAMING_SNAKE_CASE_) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_ , np.ndarray) lowercase__ : Optional[Any] = ( (self.image_processor_tester.patch_size["""height"""] * self.image_processor_tester.patch_size["""width"""]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input lowercase__ : Optional[int] = image_processor( image_inputs[0] , return_tensors="""pt""" , max_patches=SCREAMING_SNAKE_CASE_).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched lowercase__ : List[Any] = image_processor( SCREAMING_SNAKE_CASE_ , return_tensors="""pt""" , max_patches=SCREAMING_SNAKE_CASE_).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def lowercase__ ( self): '''simple docstring''' lowercase__ : str = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors lowercase__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE_ , torchify=SCREAMING_SNAKE_CASE_) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_ , torch.Tensor) # Test not batched input lowercase__ : int = ( (self.image_processor_tester.patch_size["""height"""] * self.image_processor_tester.patch_size["""width"""]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input lowercase__ : Dict = image_processor( image_inputs[0] , return_tensors="""pt""" , max_patches=SCREAMING_SNAKE_CASE_).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched lowercase__ : str = image_processor( SCREAMING_SNAKE_CASE_ , return_tensors="""pt""" , max_patches=SCREAMING_SNAKE_CASE_).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='`Pix2StructImageProcessor` requires `torch>=1.11.0`.' , ) @require_torch @require_vision class _snake_case ( UpperCAmelCase_ , unittest.TestCase ): __lowerCAmelCase : List[str] = PixaStructImageProcessor if is_vision_available() else None def lowercase__ ( self): '''simple docstring''' lowercase__ : Any = PixaStructImageProcessingTester(self , num_channels=4) lowercase__ : Optional[Any] = 3 @property def lowercase__ ( self): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowercase__ ( self): '''simple docstring''' lowercase__ : Any = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """do_normalize""")) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """do_convert_rgb""")) def lowercase__ ( self): '''simple docstring''' lowercase__ : Optional[int] = self.image_processing_class(**self.image_processor_dict) # create random PIL images lowercase__ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE_) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_ , Image.Image) # Test not batched input lowercase__ : List[str] = ( (self.image_processor_tester.patch_size["""height"""] * self.image_processor_tester.patch_size["""width"""]) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input lowercase__ : Any = image_processor( image_inputs[0] , return_tensors="""pt""" , max_patches=SCREAMING_SNAKE_CASE_).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched lowercase__ : Optional[Any] = image_processor( SCREAMING_SNAKE_CASE_ , return_tensors="""pt""" , max_patches=SCREAMING_SNAKE_CASE_).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
495
def UpperCamelCase ( lowercase_ = 10_00 ) -> int: '''simple docstring''' return sum(2 * a * ((a - 1) // 2) for a in range(3 , n + 1 ) ) if __name__ == "__main__": print(solution())
495
1
'''simple docstring''' from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class SCREAMING_SNAKE_CASE (a__ ): def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[Any] = SMALL_MODEL_IDENTIFIER __A : Optional[Any] = 'pt' __A : Optional[int] = 'tf' def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : Optional[Any] = AutoModel.from_pretrained(self.test_model) model_pt.save_pretrained(_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : Any = TFAutoModel.from_pretrained(self.test_model , from_pt=_UpperCAmelCase) model_tf.save_pretrained(_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : str = 'mock_framework' # Framework provided - return whatever the user provides __A : int = FeaturesManager.determine_framework(self.test_model , _UpperCAmelCase) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(_UpperCAmelCase) __A : List[str] = FeaturesManager.determine_framework(_UpperCAmelCase , _UpperCAmelCase) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(_UpperCAmelCase) __A : str = FeaturesManager.determine_framework(_UpperCAmelCase , _UpperCAmelCase) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(_UpperCAmelCase) __A : str = FeaturesManager.determine_framework(_UpperCAmelCase) self.assertEqual(_UpperCAmelCase , self.framework_pt) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(_UpperCAmelCase) __A : Union[str, Any] = FeaturesManager.determine_framework(_UpperCAmelCase) self.assertEqual(_UpperCAmelCase , self.framework_tf) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(_UpperCAmelCase): __A : Tuple = FeaturesManager.determine_framework(_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Any = MagicMock(return_value=_UpperCAmelCase) with patch('transformers.onnx.features.is_tf_available' , _UpperCAmelCase): __A : Union[str, Any] = FeaturesManager.determine_framework(self.test_model) self.assertEqual(_UpperCAmelCase , self.framework_pt) # PyTorch not in environment -> use TensorFlow __A : int = MagicMock(return_value=_UpperCAmelCase) with patch('transformers.onnx.features.is_torch_available' , _UpperCAmelCase): __A : Any = FeaturesManager.determine_framework(self.test_model) self.assertEqual(_UpperCAmelCase , self.framework_tf) # Both in environment -> use PyTorch __A : List[Any] = MagicMock(return_value=_UpperCAmelCase) __A : Tuple = MagicMock(return_value=_UpperCAmelCase) with patch('transformers.onnx.features.is_tf_available' , _UpperCAmelCase), patch( 'transformers.onnx.features.is_torch_available' , _UpperCAmelCase): __A : Union[str, Any] = FeaturesManager.determine_framework(self.test_model) self.assertEqual(_UpperCAmelCase , self.framework_pt) # Both not in environment -> raise error __A : Tuple = MagicMock(return_value=_UpperCAmelCase) __A : Tuple = MagicMock(return_value=_UpperCAmelCase) with patch('transformers.onnx.features.is_tf_available' , _UpperCAmelCase), patch( 'transformers.onnx.features.is_torch_available' , _UpperCAmelCase): with self.assertRaises(_UpperCAmelCase): __A : Optional[int] = FeaturesManager.determine_framework(self.test_model)
8
'''simple docstring''' from __future__ import annotations def _lowerCAmelCase ( __snake_case : list[int] , __snake_case : list[int] , __snake_case : int ) -> tuple[float, list[float]]: __A : int = list(range(len(__snake_case ) ) ) __A : Optional[Any] = [v / w for v, w in zip(__snake_case , __snake_case )] index.sort(key=lambda __snake_case : ratio[i] , reverse=__snake_case ) __A : float = 0 __A : list[float] = [0] * len(__snake_case ) for i in index: if weight[i] <= capacity: __A : Optional[int] = 1 max_value += value[i] capacity -= weight[i] else: __A : List[Any] = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
8
1
import os # Precomputes a list of the 100 first triangular numbers __lowerCamelCase = [int(0.5 * n * (n + 1)) for n in range(1, 101)] def UpperCamelCase__ ( ) -> List[Any]: """simple docstring""" _a : Optional[Any] = os.path.dirname(os.path.realpath(UpperCAmelCase ) ) _a : Union[str, Any] = os.path.join(UpperCAmelCase , '''words.txt''' ) _a : int = '''''' with open(UpperCAmelCase ) as f: _a : Tuple = f.readline() _a : Dict = [word.strip('''"''' ) for word in words.strip('''\r\n''' ).split(''',''' )] _a : List[Any] = [ word for word in [sum(ord(UpperCAmelCase ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(UpperCAmelCase ) if __name__ == "__main__": print(solution())
307
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig __lowerCamelCase = logging.get_logger(__name__) # General docstring __lowerCamelCase = 'ResNetConfig' # Base docstring __lowerCamelCase = 'microsoft/resnet-50' __lowerCamelCase = [1, 2_048, 7, 7] # Image classification docstring __lowerCamelCase = 'microsoft/resnet-50' __lowerCamelCase = 'tiger cat' __lowerCamelCase = [ 'microsoft/resnet-50', # See all resnet models at https://huggingface.co/models?filter=resnet ] class UpperCamelCase_ ( nn.Module ): def __init__( self , lowercase , lowercase , lowercase = 3 , lowercase = 1 , lowercase = "relu" ) -> str: super().__init__() _a : str = nn.Convad( lowercase , lowercase , kernel_size=lowercase , stride=lowercase , padding=kernel_size // 2 , bias=lowercase ) _a : Optional[Any] = nn.BatchNormad(lowercase ) _a : int = ACTaFN[activation] if activation is not None else nn.Identity() def snake_case__( self , lowercase ) -> Tensor: _a : Union[str, Any] = self.convolution(lowercase ) _a : List[str] = self.normalization(lowercase ) _a : List[str] = self.activation(lowercase ) return hidden_state class UpperCamelCase_ ( nn.Module ): def __init__( self , lowercase ) -> Optional[int]: super().__init__() _a : int = ResNetConvLayer( config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act ) _a : Union[str, Any] = nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1 ) _a : Union[str, Any] = config.num_channels def snake_case__( self , lowercase ) -> Tensor: _a : Any = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( '''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' ) _a : Any = self.embedder(lowercase ) _a : Optional[int] = self.pooler(lowercase ) return embedding class UpperCamelCase_ ( nn.Module ): def __init__( self , lowercase , lowercase , lowercase = 2 ) -> Dict: super().__init__() _a : str = nn.Convad(lowercase , lowercase , kernel_size=1 , stride=lowercase , bias=lowercase ) _a : Union[str, Any] = nn.BatchNormad(lowercase ) def snake_case__( self , lowercase ) -> Tensor: _a : Optional[int] = self.convolution(lowercase ) _a : Any = self.normalization(lowercase ) return hidden_state class UpperCamelCase_ ( nn.Module ): def __init__( self , lowercase , lowercase , lowercase = 1 , lowercase = "relu" ) -> List[str]: super().__init__() _a : List[str] = in_channels != out_channels or stride != 1 _a : List[Any] = ( ResNetShortCut(lowercase , lowercase , stride=lowercase ) if should_apply_shortcut else nn.Identity() ) _a : List[str] = nn.Sequential( ResNetConvLayer(lowercase , lowercase , stride=lowercase ) , ResNetConvLayer(lowercase , lowercase , activation=lowercase ) , ) _a : Dict = ACTaFN[activation] def snake_case__( self , lowercase ) -> Optional[int]: _a : List[Any] = hidden_state _a : Optional[Any] = self.layer(lowercase ) _a : int = self.shortcut(lowercase ) hidden_state += residual _a : Dict = self.activation(lowercase ) return hidden_state class UpperCamelCase_ ( nn.Module ): def __init__( self , lowercase , lowercase , lowercase = 1 , lowercase = "relu" , lowercase = 4 ) -> Dict: super().__init__() _a : Union[str, Any] = in_channels != out_channels or stride != 1 _a : Union[str, Any] = out_channels // reduction _a : List[str] = ( ResNetShortCut(lowercase , lowercase , stride=lowercase ) if should_apply_shortcut else nn.Identity() ) _a : Dict = nn.Sequential( ResNetConvLayer(lowercase , lowercase , kernel_size=1 ) , ResNetConvLayer(lowercase , lowercase , stride=lowercase ) , ResNetConvLayer(lowercase , lowercase , kernel_size=1 , activation=lowercase ) , ) _a : List[str] = ACTaFN[activation] def snake_case__( self , lowercase ) -> str: _a : List[str] = hidden_state _a : Optional[int] = self.layer(lowercase ) _a : Any = self.shortcut(lowercase ) hidden_state += residual _a : Union[str, Any] = self.activation(lowercase ) return hidden_state class UpperCamelCase_ ( nn.Module ): def __init__( self , lowercase , lowercase , lowercase , lowercase = 2 , lowercase = 2 , ) -> Optional[int]: super().__init__() _a : List[str] = ResNetBottleNeckLayer if config.layer_type == '''bottleneck''' else ResNetBasicLayer _a : str = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(lowercase , lowercase , stride=lowercase , activation=config.hidden_act ) , *[layer(lowercase , lowercase , activation=config.hidden_act ) for _ in range(depth - 1 )] , ) def snake_case__( self , lowercase ) -> Tensor: _a : Optional[int] = input for layer in self.layers: _a : Any = layer(lowercase ) return hidden_state class UpperCamelCase_ ( nn.Module ): def __init__( self , lowercase ) -> Any: super().__init__() _a : Tuple = nn.ModuleList([] ) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( lowercase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) _a : str = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(lowercase , config.depths[1:] ): self.stages.append(ResNetStage(lowercase , lowercase , lowercase , depth=lowercase ) ) def snake_case__( self , lowercase , lowercase = False , lowercase = True ) -> BaseModelOutputWithNoAttention: _a : str = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _a : Dict = hidden_states + (hidden_state,) _a : List[str] = stage_module(lowercase ) if output_hidden_states: _a : Tuple = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention( last_hidden_state=lowercase , hidden_states=lowercase , ) class UpperCamelCase_ ( UpperCamelCase ): lowercase = ResNetConfig lowercase = '''resnet''' lowercase = '''pixel_values''' lowercase = True def snake_case__( self , lowercase ) -> Any: if isinstance(lowercase , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode='''fan_out''' , nonlinearity='''relu''' ) elif isinstance(lowercase , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def snake_case__( self , lowercase , lowercase=False ) -> int: if isinstance(lowercase , lowercase ): _a : List[str] = value __lowerCamelCase = R'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`ResNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' __lowerCamelCase = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( '''The bare ResNet model outputting raw features without any specific head on top.''' , UpperCamelCase , ) class UpperCamelCase_ ( UpperCamelCase ): def __init__( self , lowercase ) -> int: super().__init__(lowercase ) _a : Any = config _a : Optional[int] = ResNetEmbeddings(lowercase ) _a : Any = ResNetEncoder(lowercase ) _a : Dict = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowercase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowercase , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def snake_case__( self , lowercase , lowercase = None , lowercase = None ) -> BaseModelOutputWithPoolingAndNoAttention: _a : List[str] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _a : Optional[int] = return_dict if return_dict is not None else self.config.use_return_dict _a : Optional[Any] = self.embedder(lowercase ) _a : Tuple = self.encoder( lowercase , output_hidden_states=lowercase , return_dict=lowercase ) _a : str = encoder_outputs[0] _a : str = self.pooler(lowercase ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowercase , pooler_output=lowercase , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( ''' ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. ''' , UpperCamelCase , ) class UpperCamelCase_ ( UpperCamelCase ): def __init__( self , lowercase ) -> str: super().__init__(lowercase ) _a : str = config.num_labels _a : List[str] = ResNetModel(lowercase ) # classification head _a : Optional[int] = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowercase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowercase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def snake_case__( self , lowercase = None , lowercase = None , lowercase = None , lowercase = None , ) -> ImageClassifierOutputWithNoAttention: _a : Dict = return_dict if return_dict is not None else self.config.use_return_dict _a : str = self.resnet(lowercase , output_hidden_states=lowercase , return_dict=lowercase ) _a : int = outputs.pooler_output if return_dict else outputs[1] _a : str = self.classifier(lowercase ) _a : Dict = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _a : Any = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _a : Optional[Any] = '''single_label_classification''' else: _a : Optional[Any] = '''multi_label_classification''' if self.config.problem_type == "regression": _a : Optional[Any] = MSELoss() if self.num_labels == 1: _a : Union[str, Any] = loss_fct(logits.squeeze() , labels.squeeze() ) else: _a : List[str] = loss_fct(lowercase , lowercase ) elif self.config.problem_type == "single_label_classification": _a : str = CrossEntropyLoss() _a : Any = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": _a : List[Any] = BCEWithLogitsLoss() _a : List[Any] = loss_fct(lowercase , lowercase ) if not return_dict: _a : str = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=lowercase , logits=lowercase , hidden_states=outputs.hidden_states ) @add_start_docstrings( ''' ResNet backbone, to be used with frameworks like DETR and MaskFormer. ''' , UpperCamelCase , ) class UpperCamelCase_ ( UpperCamelCase , UpperCamelCase ): def __init__( self , lowercase ) -> str: super().__init__(lowercase ) super()._init_backbone(lowercase ) _a : Optional[int] = [config.embedding_size] + config.hidden_sizes _a : Any = ResNetEmbeddings(lowercase ) _a : List[str] = ResNetEncoder(lowercase ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowercase ) @replace_return_docstrings(output_type=lowercase , config_class=_CONFIG_FOR_DOC ) def snake_case__( self , lowercase , lowercase = None , lowercase = None ) -> BackboneOutput: _a : Tuple = return_dict if return_dict is not None else self.config.use_return_dict _a : Tuple = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _a : List[Any] = self.embedder(lowercase ) _a : Tuple = self.encoder(lowercase , output_hidden_states=lowercase , return_dict=lowercase ) _a : str = outputs.hidden_states _a : Tuple = () for idx, stage in enumerate(self.stage_names ): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: _a : Dict = (feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=lowercase , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=lowercase , )
307
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCamelCase__ = { """configuration_mvp""": ["""MVP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MvpConfig""", """MvpOnnxConfig"""], """tokenization_mvp""": ["""MvpTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["""MvpTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """MVP_PRETRAINED_MODEL_ARCHIVE_LIST""", """MvpForCausalLM""", """MvpForConditionalGeneration""", """MvpForQuestionAnswering""", """MvpForSequenceClassification""", """MvpModel""", """MvpPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig from .tokenization_mvp import MvpTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mvp_fast import MvpTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mvp import ( MVP_PRETRAINED_MODEL_ARCHIVE_LIST, MvpForCausalLM, MvpForConditionalGeneration, MvpForQuestionAnswering, MvpForSequenceClassification, MvpModel, MvpPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
225
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available lowerCamelCase__ = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["""GPTSw3Tokenizer"""] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
225
1
'''simple docstring''' import operator def snake_case ( snake_case : list , snake_case : bool = False , snake_case : list | None = None ) -> list: """simple docstring""" lowerCAmelCase = operator.lt if reverse else operator.gt lowerCAmelCase = solution or [] if not arr: return solution lowerCAmelCase = [arr.pop(0 )] for i, item in enumerate(snake_case ): if _operator(snake_case , sublist[-1] ): sublist.append(snake_case ) arr.pop(snake_case ) # merging sublist into solution list if not solution: solution.extend(snake_case ) else: while sublist: lowerCAmelCase = sublist.pop(0 ) for i, xx in enumerate(snake_case ): if not _operator(snake_case , snake_case ): solution.insert(snake_case , snake_case ) break else: solution.append(snake_case ) strand_sort(snake_case , snake_case , snake_case ) return solution if __name__ == "__main__": assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5] assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
719
'''simple docstring''' import torch def snake_case ( ) -> List[str]: """simple docstring""" if torch.cuda.is_available(): lowerCAmelCase = torch.cuda.device_count() else: lowerCAmelCase = 0 print(F'Successfully ran on {num_gpus} GPUs' ) if __name__ == "__main__": main()
514
0
"""simple docstring""" import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger('''transformers.models.speecht5''') __UpperCAmelCase = { '''speech_encoder_prenet.layer_norm''': '''speecht5.encoder.prenet.feature_projection.layer_norm''', '''speech_encoder_prenet.post_extract_proj''': '''speecht5.encoder.prenet.feature_projection.projection''', '''speech_encoder_prenet.pos_conv.0''': '''speecht5.encoder.prenet.pos_conv_embed.conv''', '''speech_encoder_prenet.mask_emb''': '''speecht5.encoder.prenet.masked_spec_embed''', } __UpperCAmelCase = { '''text_encoder_prenet.encoder_prenet.0''': '''speecht5.encoder.prenet.embed_tokens''', '''text_encoder_prenet.encoder_prenet.1.alpha''': '''speecht5.encoder.prenet.encode_positions.alpha''', } __UpperCAmelCase = { '''speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0''': '''speecht5.decoder.prenet.layers.0''', '''speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0''': '''speecht5.decoder.prenet.layers.1''', '''speech_decoder_prenet.decoder_prenet.0.1''': '''speecht5.decoder.prenet.final_layer''', '''speech_decoder_prenet.decoder_prenet.1.alpha''': '''speecht5.decoder.prenet.encode_positions.alpha''', '''speech_decoder_prenet.spkembs_layer.0''': '''speecht5.decoder.prenet.speaker_embeds_layer''', } __UpperCAmelCase = { '''speech_decoder_postnet.feat_out''': '''speech_decoder_postnet.feat_out''', '''speech_decoder_postnet.prob_out''': '''speech_decoder_postnet.prob_out''', '''speech_decoder_postnet.postnet.postnet.0.0''': '''speech_decoder_postnet.layers.0.conv''', '''speech_decoder_postnet.postnet.postnet.0.1''': '''speech_decoder_postnet.layers.0.batch_norm''', '''speech_decoder_postnet.postnet.postnet.1.0''': '''speech_decoder_postnet.layers.1.conv''', '''speech_decoder_postnet.postnet.postnet.1.1''': '''speech_decoder_postnet.layers.1.batch_norm''', '''speech_decoder_postnet.postnet.postnet.2.0''': '''speech_decoder_postnet.layers.2.conv''', '''speech_decoder_postnet.postnet.postnet.2.1''': '''speech_decoder_postnet.layers.2.batch_norm''', '''speech_decoder_postnet.postnet.postnet.3.0''': '''speech_decoder_postnet.layers.3.conv''', '''speech_decoder_postnet.postnet.postnet.3.1''': '''speech_decoder_postnet.layers.3.batch_norm''', '''speech_decoder_postnet.postnet.postnet.4.0''': '''speech_decoder_postnet.layers.4.conv''', '''speech_decoder_postnet.postnet.postnet.4.1''': '''speech_decoder_postnet.layers.4.batch_norm''', } __UpperCAmelCase = { '''text_decoder_prenet.embed_tokens''': '''speecht5.decoder.prenet.embed_tokens''', } __UpperCAmelCase = { '''text_decoder_postnet.output_projection''': '''text_decoder_postnet.lm_head''', } __UpperCAmelCase = { '''encoder.layers.*.self_attn.k_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj''', '''encoder.layers.*.self_attn.v_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj''', '''encoder.layers.*.self_attn.q_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj''', '''encoder.layers.*.self_attn.out_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj''', '''encoder.layers.*.self_attn_layer_norm''': '''speecht5.encoder.wrapped_encoder.layers.*.layer_norm''', '''encoder.layers.*.fc1''': '''speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense''', '''encoder.layers.*.fc2''': '''speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense''', '''encoder.layers.*.final_layer_norm''': '''speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''speecht5.encoder.wrapped_encoder.layer_norm''', '''encoder.pos_emb.pe_k''': '''speecht5.encoder.wrapped_encoder.embed_positions.pe_k''', } __UpperCAmelCase = { '''decoder.layers.*.self_attn.k_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj''', '''decoder.layers.*.self_attn.v_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj''', '''decoder.layers.*.self_attn.q_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj''', '''decoder.layers.*.self_attn.out_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj''', '''decoder.layers.*.self_attn_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm''', '''decoder.layers.*.encoder_attn.k_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj''', '''decoder.layers.*.encoder_attn.v_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj''', '''decoder.layers.*.encoder_attn.q_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj''', '''decoder.layers.*.encoder_attn.out_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj''', '''decoder.layers.*.encoder_attn_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm''', '''decoder.layers.*.fc1''': '''speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense''', '''decoder.layers.*.fc2''': '''speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense''', '''decoder.layers.*.final_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm''', } __UpperCAmelCase = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } __UpperCAmelCase = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } __UpperCAmelCase = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } __UpperCAmelCase = [] __UpperCAmelCase = [ '''encoder.version''', '''encoder.layers.*.norm_k.weight''', '''encoder.layers.*.norm_k.bias''', '''decoder.version''', '''decoder.layers.*.norm_k.weight''', '''decoder.layers.*.norm_k.bias''', '''decoder.pos_emb.pe_k''', '''speech_encoder_prenet.embed_positions._float_tensor''', '''text_decoder_prenet.embed_positions._float_tensor''', ] __UpperCAmelCase = IGNORE_KEYS + [ '''encoder.proj''', '''text_encoder_prenet.*''', '''speech_decoder_prenet.*''', '''speech_decoder_postnet.*''', ] __UpperCAmelCase = IGNORE_KEYS + [ '''encoder.proj''', '''speech_encoder_prenet.*''', '''text_decoder_prenet.*''', '''text_decoder_postnet.*''', ] __UpperCAmelCase = IGNORE_KEYS + [ '''encoder.proj''', '''text_encoder_prenet.*''', '''text_decoder_prenet.*''', '''text_decoder_postnet.*''', ] def lowercase__ ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Any , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Tuple ) -> Tuple: '''simple docstring''' for attribute in key.split("." ): a__ : int = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) if weight_type is not None: a__ : Dict = getattr(lowerCAmelCase__ , lowerCAmelCase__ ).shape else: a__ : Dict = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" F" {value.shape} for {full_name}" ) if weight_type == "weight": a__ : Union[str, Any] = value elif weight_type == "weight_g": a__ : int = value elif weight_type == "weight_v": a__ : List[str] = value elif weight_type == "bias": a__ : int = value elif weight_type == "running_mean": a__ : Tuple = value elif weight_type == "running_var": a__ : List[str] = value elif weight_type == "num_batches_tracked": a__ : Optional[Any] = value else: a__ : Tuple = value logger.info(F"{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}." ) def lowercase__ ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Any ) -> List[str]: '''simple docstring''' for key in ignore_keys: if key.endswith(".*" ): if name.startswith(key[:-1] ): return True elif ".*." in key: a__ , a__ : int = key.split(".*." ) if prefix in name and suffix in name: return True elif key in name: return True return False def lowercase__ ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : Union[str, Any] ) -> Dict: '''simple docstring''' a__ : Optional[int] = [] if task == "s2t": a__ : int = hf_model.speechta.encoder.prenet.feature_encoder a__ : List[Any] = MAPPING_S2T a__ : Tuple = IGNORE_KEYS_S2T elif task == "t2s": a__ : str = None a__ : List[str] = MAPPING_T2S a__ : str = IGNORE_KEYS_T2S elif task == "s2s": a__ : int = hf_model.speechta.encoder.prenet.feature_encoder a__ : Optional[int] = MAPPING_S2S a__ : List[str] = IGNORE_KEYS_S2S else: raise ValueError(F"Unsupported task: {task}" ) for name, value in fairseq_dict.items(): if should_ignore(lowerCAmelCase__ , lowerCAmelCase__ ): logger.info(F"{name} was ignored" ) continue a__ : Union[str, Any] = False if "conv_layers" in name: load_conv_layer( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , hf_model.config.feat_extract_norm == "group" , ) a__ : List[Any] = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: a__ , a__ : Union[str, Any] = key.split(".*." ) if prefix in name and suffix in name: a__ : Optional[Any] = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: a__ : Tuple = True if "*" in mapped_key: a__ : Optional[Any] = name.split(lowerCAmelCase__ )[0].split("." )[-2] a__ : Optional[Any] = mapped_key.replace("*" , lowerCAmelCase__ ) if "weight_g" in name: a__ : List[str] = "weight_g" elif "weight_v" in name: a__ : List[Any] = "weight_v" elif "bias" in name: a__ : Any = "bias" elif "weight" in name: a__ : Any = "weight" elif "running_mean" in name: a__ : Optional[Any] = "running_mean" elif "running_var" in name: a__ : Optional[int] = "running_var" elif "num_batches_tracked" in name: a__ : Optional[int] = "num_batches_tracked" else: a__ : int = None set_recursively(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) continue if not is_used: unused_weights.append(lowerCAmelCase__ ) logger.warning(F"Unused weights: {unused_weights}" ) def lowercase__ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Any , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' a__ : Optional[Any] = full_name.split("conv_layers." )[-1] a__ : List[Any] = name.split("." ) a__ : Dict = int(items[0] ) a__ : int = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) a__ : List[Any] = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) a__ : Union[str, Any] = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found." ) a__ : Optional[int] = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found." ) a__ : List[Any] = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(lowerCAmelCase__ ) @torch.no_grad() def lowercase__ ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : str=None , lowerCAmelCase__ : Optional[Any]=None , lowerCAmelCase__ : Dict=None , ) -> Tuple: '''simple docstring''' if config_path is not None: a__ : Any = SpeechTaConfig.from_pretrained(lowerCAmelCase__ ) else: a__ : Any = SpeechTaConfig() if task == "s2t": a__ : int = config.max_text_positions a__ : Dict = SpeechTaForSpeechToText(lowerCAmelCase__ ) elif task == "t2s": a__ : Any = 1_8_7_6 a__ : Optional[int] = 6_0_0 a__ : Optional[int] = config.max_speech_positions a__ : Any = SpeechTaForTextToSpeech(lowerCAmelCase__ ) elif task == "s2s": a__ : Dict = 1_8_7_6 a__ : int = config.max_speech_positions a__ : str = SpeechTaForSpeechToSpeech(lowerCAmelCase__ ) else: raise ValueError(F"Unknown task name: {task}" ) if vocab_path: a__ : Tuple = SpeechTaTokenizer(lowerCAmelCase__ , model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it a__ : Dict = AddedToken("<mask>" , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) a__ : Optional[Any] = mask_token tokenizer.add_special_tokens({"mask_token": mask_token} ) tokenizer.add_tokens(["<ctc_blank>"] ) a__ : Dict = SpeechTaFeatureExtractor() a__ : Optional[Any] = SpeechTaProcessor(tokenizer=lowerCAmelCase__ , feature_extractor=lowerCAmelCase__ ) processor.save_pretrained(lowerCAmelCase__ ) a__ : Optional[int] = torch.load(lowerCAmelCase__ ) recursively_load_weights(fairseq_checkpoint["model"] , lowerCAmelCase__ , lowerCAmelCase__ ) model.save_pretrained(lowerCAmelCase__ ) if repo_id: print("Pushing to the hub..." ) processor.push_to_hub(lowerCAmelCase__ ) model.push_to_hub(lowerCAmelCase__ ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument( '''--task''', default='''s2t''', type=str, help='''Type of the SpeechT5 model you\'d like to convert. Should be one of \'s2t\', \'t2s\', \'s2s\'.''', ) parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--vocab_path''', default=None, type=str, help='''Path to SentencePiece model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) __UpperCAmelCase = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
642
"""simple docstring""" from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline __UpperCAmelCase = logging.get_logger(__name__) class __UpperCAmelCase ( _UpperCamelCase ): def UpperCAmelCase ( self : int , a_ : List[Any] ) -> Optional[Any]: '''simple docstring''' if isinstance(a_ , a_ ): a__ : Any = [label.strip() for label in labels.split("," ) if label.strip()] return labels def __call__( self : Union[str, Any] , a_ : Tuple , a_ : Optional[Any] , a_ : List[str] ) -> Optional[Any]: '''simple docstring''' if len(a_ ) == 0 or len(a_ ) == 0: raise ValueError("You must include at least one label and at least one sequence." ) if hypothesis_template.format(labels[0] ) == hypothesis_template: raise ValueError( ( "The provided hypothesis_template \"{}\" was not able to be formatted with the target labels. " "Make sure the passed template includes formatting syntax such as {{}} where the label should go." ).format(a_ ) ) if isinstance(a_ , a_ ): a__ : str = [sequences] a__ : Optional[int] = [] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(a_ )] for label in labels] ) return sequence_pairs, sequences @add_end_docstrings(_UpperCamelCase ) class __UpperCAmelCase ( _UpperCamelCase ): def __init__( self : str , a_ : Optional[Any]=ZeroShotClassificationArgumentHandler() , *a_ : Tuple , **a_ : str ) -> Optional[int]: '''simple docstring''' a__ : List[Any] = args_parser super().__init__(*a_ , **a_ ) if self.entailment_id == -1: logger.warning( "Failed to determine 'entailment' label id from the label2id mapping in the model config. Setting to " "-1. Define a descriptive label2id mapping in the model config to ensure correct outputs." ) @property def UpperCAmelCase ( self : Tuple ) -> str: '''simple docstring''' for label, ind in self.model.config.labelaid.items(): if label.lower().startswith("entail" ): return ind return -1 def UpperCAmelCase ( self : Optional[int] , a_ : List[Any] , a_ : int=True , a_ : Tuple=True , a_ : Tuple=TruncationStrategy.ONLY_FIRST , **a_ : Dict ) -> List[Any]: '''simple docstring''' a__ : str = self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( "Tokenizer was not supporting padding necessary for zero-shot, attempting to use " " `pad_token=eos_token`" ) a__ : List[str] = self.tokenizer.eos_token try: a__ : List[str] = self.tokenizer( a_ , add_special_tokens=a_ , return_tensors=a_ , padding=a_ , truncation=a_ , ) except Exception as e: if "too short" in str(a_ ): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. a__ : List[str] = self.tokenizer( a_ , add_special_tokens=a_ , return_tensors=a_ , padding=a_ , truncation=TruncationStrategy.DO_NOT_TRUNCATE , ) else: raise e return inputs def UpperCAmelCase ( self : Tuple , **a_ : Tuple ) -> Optional[int]: '''simple docstring''' if kwargs.get("multi_class" , a_ ) is not None: a__ : str = kwargs["multi_class"] logger.warning( "The `multi_class` argument has been deprecated and renamed to `multi_label`. " "`multi_class` will be removed in a future version of Transformers." ) a__ : Tuple = {} if "candidate_labels" in kwargs: a__ : Any = self._args_parser._parse_labels(kwargs["candidate_labels"] ) if "hypothesis_template" in kwargs: a__ : str = kwargs["hypothesis_template"] a__ : Tuple = {} if "multi_label" in kwargs: a__ : Dict = kwargs["multi_label"] return preprocess_params, {}, postprocess_params def __call__( self : str , a_ : Union[str, List[str]] , *a_ : List[str] , **a_ : List[Any] , ) -> Tuple: '''simple docstring''' if len(a_ ) == 0: pass elif len(a_ ) == 1 and "candidate_labels" not in kwargs: a__ : Any = args[0] else: raise ValueError(F"Unable to understand extra arguments {args}" ) return super().__call__(a_ , **a_ ) def UpperCAmelCase ( self : Optional[int] , a_ : Tuple , a_ : Any=None , a_ : Dict="This example is {}." ) -> Optional[int]: '''simple docstring''' a__ , a__ : Optional[Any] = self._args_parser(a_ , a_ , a_ ) for i, (candidate_label, sequence_pair) in enumerate(zip(a_ , a_ ) ): a__ : Union[str, Any] = self._parse_and_tokenize([sequence_pair] ) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(a_ ) - 1, **model_input, } def UpperCAmelCase ( self : Optional[int] , a_ : Optional[Any] ) -> List[Any]: '''simple docstring''' a__ : Dict = inputs["candidate_label"] a__ : Optional[int] = inputs["sequence"] a__ : Optional[int] = {k: inputs[k] for k in self.tokenizer.model_input_names} a__ : int = self.model(**a_ ) a__ : Optional[int] = { "candidate_label": candidate_label, "sequence": sequence, "is_last": inputs["is_last"], **outputs, } return model_outputs def UpperCAmelCase ( self : Dict , a_ : Any , a_ : List[str]=False ) -> Union[str, Any]: '''simple docstring''' a__ : int = [outputs["candidate_label"] for outputs in model_outputs] a__ : Optional[int] = [outputs["sequence"] for outputs in model_outputs] a__ : Union[str, Any] = np.concatenate([output["logits"].numpy() for output in model_outputs] ) a__ : List[str] = logits.shape[0] a__ : Optional[int] = len(a_ ) a__ : List[str] = N // n a__ : int = logits.reshape((num_sequences, n, -1) ) if multi_label or len(a_ ) == 1: # softmax over the entailment vs. contradiction dim for each label independently a__ : str = self.entailment_id a__ : str = -1 if entailment_id == 0 else 0 a__ : str = reshaped_outputs[..., [contradiction_id, entailment_id]] a__ : List[Any] = np.exp(a_ ) / np.exp(a_ ).sum(-1 , keepdims=a_ ) a__ : str = scores[..., 1] else: # softmax the "entailment" logits over all candidate labels a__ : str = reshaped_outputs[..., self.entailment_id] a__ : Optional[int] = np.exp(a_ ) / np.exp(a_ ).sum(-1 , keepdims=a_ ) a__ : List[str] = list(reversed(scores[0].argsort() ) ) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), }
642
1
'''simple docstring''' from __future__ import annotations def UpperCamelCase ( lowercase_ : str , lowercase_ : List[str] , lowercase_ : Tuple , lowercase_ : int ) -> List[str]: '''simple docstring''' lowercase =[] lowercase , lowercase =input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0 ) ) lowercase =result + left + right return input_list def UpperCamelCase ( lowercase_ : str ) -> Dict: '''simple docstring''' if len(lowerCAmelCase__ ) <= 1: return input_list lowercase =list(lowerCAmelCase__ ) # iteration for two-way merging lowercase =2 while p <= len(lowerCAmelCase__ ): # getting low, high and middle value for merge-sort of single list for i in range(0 , len(lowerCAmelCase__ ) , lowerCAmelCase__ ): lowercase =i lowercase =i + p - 1 lowercase =(low + high + 1) // 2 lowercase =merge(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # final merge of last two parts if p * 2 >= len(lowerCAmelCase__ ): lowercase =i lowercase =merge(lowerCAmelCase__ , 0 , lowerCAmelCase__ , len(lowerCAmelCase__ ) - 1 ) break p *= 2 return input_list if __name__ == "__main__": _UpperCAmelCase : List[Any] = input('''Enter numbers separated by a comma:\n''').strip() if user_input == "": _UpperCAmelCase : List[str] = [] else: _UpperCAmelCase : List[str] = [int(item.strip()) for item in user_input.split(''',''')] print(iter_merge_sort(unsorted))
714
'''simple docstring''' import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def UpperCamelCase ( lowercase_ : List[str] , lowercase_ : Optional[Any] , lowercase_ : Dict ) -> Optional[int]: '''simple docstring''' lowercase =1.5 lowercase =int(factor * num_class_images ) lowercase =ClipClient( url='''https://knn.laion.ai/knn-service''' , indice_name='''laion_400m''' , num_images=lowercase_ , aesthetic_weight=0.1 ) os.makedirs(f'{class_data_dir}/images' , exist_ok=lowercase_ ) if len(list(Path(f'{class_data_dir}/images' ).iterdir() ) ) >= num_class_images: return while True: lowercase =client.query(text=lowercase_ ) if len(lowercase_ ) >= factor * num_class_images or num_images > 1E4: break else: lowercase =int(factor * num_images ) lowercase =ClipClient( url='''https://knn.laion.ai/knn-service''' , indice_name='''laion_400m''' , num_images=lowercase_ , aesthetic_weight=0.1 , ) lowercase =0 lowercase =0 lowercase =tqdm(desc='''downloading real regularization images''' , total=lowercase_ ) with open(f'{class_data_dir}/caption.txt' , '''w''' ) as fa, open(f'{class_data_dir}/urls.txt' , '''w''' ) as fa, open( f'{class_data_dir}/images.txt' , '''w''' ) as fa: while total < num_class_images: lowercase =class_images[count] count += 1 try: lowercase =requests.get(images['''url'''] ) if img.status_code == 2_0_0: lowercase =Image.open(BytesIO(img.content ) ) with open(f'{class_data_dir}/images/{total}.jpg' , '''wb''' ) as f: f.write(img.content ) fa.write(images['''caption'''] + '''\n''' ) fa.write(images['''url'''] + '''\n''' ) fa.write(f'{class_data_dir}/images/{total}.jpg' + '''\n''' ) total += 1 pbar.update(1 ) else: continue except Exception: continue return def UpperCamelCase ( ) -> Dict: '''simple docstring''' lowercase =argparse.ArgumentParser('''''' , add_help=lowercase_ ) parser.add_argument('''--class_prompt''' , help='''text prompt to retrieve images''' , required=lowercase_ , type=lowercase_ ) parser.add_argument('''--class_data_dir''' , help='''path to save images''' , required=lowercase_ , type=lowercase_ ) parser.add_argument('''--num_class_images''' , help='''number of images to download''' , default=2_0_0 , type=lowercase_ ) return parser.parse_args() if __name__ == "__main__": _UpperCAmelCase : Optional[int] = parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
145
0
'''simple docstring''' from ..utils import DummyObject, requires_backends class __UpperCamelCase ( metaclass=lowerCAmelCase_ ): A_ = ["transformers", "torch", "note_seq"] def __init__( self , *__a , **__a ): '''simple docstring''' requires_backends(self , ['transformers', 'torch', 'note_seq'] ) @classmethod def __UpperCAmelCase ( cls , *__a , **__a ): '''simple docstring''' requires_backends(cls , ['transformers', 'torch', 'note_seq'] ) @classmethod def __UpperCAmelCase ( cls , *__a , **__a ): '''simple docstring''' requires_backends(cls , ['transformers', 'torch', 'note_seq'] )
476
'''simple docstring''' import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class __UpperCamelCase ( unittest.TestCase ): @property def __UpperCAmelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) __a : Tuple = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model @property def __UpperCAmelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) __a : Union[str, Any] = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=3 , ) return model @property def __UpperCAmelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) __a : List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModel(__a ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Tuple = self.dummy_uncond_unet __a : Any = DDIMScheduler() __a : Optional[int] = self.dummy_vq_model __a : List[str] = LDMPipeline(unet=__a , vqvae=__a , scheduler=__a ) ldm.to(__a ) ldm.set_progress_bar_config(disable=__a ) __a : Dict = torch.manual_seed(0 ) __a : Dict = ldm(generator=__a , num_inference_steps=2 , output_type='numpy' ).images __a : str = torch.manual_seed(0 ) __a : List[Any] = ldm(generator=__a , num_inference_steps=2 , output_type='numpy' , return_dict=__a )[0] __a : Optional[Any] = image[0, -3:, -3:, -1] __a : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __a : List[str] = np.array([0.8512, 0.818, 0.6411, 0.6808, 0.4465, 0.5618, 0.46, 0.6231, 0.5172] ) __a : Optional[Any] = 1E-2 if torch_device != 'mps' else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class __UpperCamelCase ( unittest.TestCase ): def __UpperCAmelCase ( self ): '''simple docstring''' __a : str = LDMPipeline.from_pretrained('CompVis/ldm-celebahq-256' ) ldm.to(__a ) ldm.set_progress_bar_config(disable=__a ) __a : str = torch.manual_seed(0 ) __a : List[Any] = ldm(generator=__a , num_inference_steps=5 , output_type='numpy' ).images __a : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) __a : Any = np.array([0.4399, 0.44975, 0.46825, 0.474, 0.4359, 0.4581, 0.45095, 0.4341, 0.4447] ) __a : Dict = 1E-2 if torch_device != 'mps' else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
476
1
'''simple docstring''' from .imports import is_tqdm_available if is_tqdm_available(): from tqdm.auto import tqdm as _tqdm from ..state import PartialState def a__ ( lowerCAmelCase__ = True , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Union[str, Any]: if not is_tqdm_available(): raise ImportError('''Accelerate\'s `tqdm` module requires `tqdm` to be installed. Please run `pip install tqdm`.''' ) UpperCAmelCase__ : List[str] = False if main_process_only: UpperCAmelCase__ : Tuple = PartialState().local_process_index == 0 return _tqdm(*lowerCAmelCase__ , **lowerCAmelCase__ , disable=lowerCAmelCase__ )
312
'''simple docstring''' import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCamelCase_ ( __a , unittest.TestCase ): lowerCAmelCase__ = MgpstrTokenizer lowerCAmelCase__ = False lowerCAmelCase__ = {} lowerCAmelCase__ = False def lowercase_ ( self : List[str] ): '''simple docstring''' super().setUp() # fmt: off UpperCAmelCase__ : str = ['''[GO]''', '''[s]''', '''0''', '''1''', '''2''', '''3''', '''4''', '''5''', '''6''', '''7''', '''8''', '''9''', '''a''', '''b''', '''c''', '''d''', '''e''', '''f''', '''g''', '''h''', '''i''', '''j''', '''k''', '''l''', '''m''', '''n''', '''o''', '''p''', '''q''', '''r''', '''s''', '''t''', '''u''', '''v''', '''w''', '''x''', '''y''', '''z'''] # fmt: on UpperCAmelCase__ : Dict = dict(zip(_A , range(len(_A ) ) ) ) UpperCAmelCase__ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_A ) + '''\n''' ) def lowercase_ ( self : List[str] , **_A : Dict ): '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_A ) def lowercase_ ( self : str , _A : Any ): '''simple docstring''' UpperCAmelCase__ : Dict = '''tester''' UpperCAmelCase__ : Tuple = '''tester''' return input_text, output_text @unittest.skip('''MGP-STR always lower cases letters.''' ) def lowercase_ ( self : Tuple ): '''simple docstring''' pass def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Any = self.get_tokenizers(do_lower_case=_A ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): UpperCAmelCase__ : str = '''[SPECIAL_TOKEN]''' tokenizer.add_special_tokens({'''cls_token''': special_token} ) UpperCAmelCase__ : int = tokenizer.encode([special_token] , add_special_tokens=_A ) self.assertEqual(len(_A ) , 1 ) UpperCAmelCase__ : Any = tokenizer.decode(_A , skip_special_tokens=_A ) self.assertTrue(special_token not in decoded ) def lowercase_ ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = self.get_input_output_texts(_A ) UpperCAmelCase__ : Dict = tokenizer.tokenize(_A ) UpperCAmelCase__ : str = tokenizer.convert_tokens_to_ids(_A ) UpperCAmelCase__ : Tuple = tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) UpperCAmelCase__ : int = tokenizer.convert_ids_to_tokens(_A ) self.assertNotEqual(len(_A ) , 0 ) UpperCAmelCase__ : List[Any] = tokenizer.decode(_A ) self.assertIsInstance(_A , _A ) self.assertEqual(text_a.replace(''' ''' , '''''' ) , _A ) @unittest.skip('''MGP-STR tokenizer only handles one sequence.''' ) def lowercase_ ( self : List[str] ): '''simple docstring''' pass @unittest.skip('''inputs cannot be pretokenized in MgpstrTokenizer''' ) def lowercase_ ( self : Optional[Any] ): '''simple docstring''' pass
312
1
import importlib import inspect import json import os import re import shutil import sys from pathlib import Path from typing import Dict, Optional, Union from urllib import request from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info from packaging import version from .. import __version__ from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging UpperCAmelCase_ = ( 'https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py' ) UpperCAmelCase_ = logging.get_logger(__name__) # pylint: disable=invalid-name def lowerCAmelCase_ ( ) -> List[str]: UpperCamelCase__ : str = '''https://pypi.org/pypi/diffusers/json''' UpperCamelCase__ : Dict = json.loads(request.urlopen(__UpperCAmelCase ).read() )['''releases'''].keys() return sorted(__UpperCAmelCase , key=lambda __UpperCAmelCase : version.Version(__UpperCAmelCase ) ) def lowerCAmelCase_ ( ) -> Tuple: # This function has already been executed if HF_MODULES_CACHE already is in the Python path. if HF_MODULES_CACHE in sys.path: return sys.path.append(__UpperCAmelCase ) os.makedirs(__UpperCAmelCase , exist_ok=__UpperCAmelCase ) UpperCamelCase__ : int = Path(__UpperCAmelCase ) / '''__init__.py''' if not init_path.exists(): init_path.touch() def lowerCAmelCase_ ( __UpperCAmelCase: Union[str, os.PathLike] ) -> Union[str, Any]: init_hf_modules() UpperCamelCase__ : Tuple = Path(__UpperCAmelCase ) / name # If the parent module does not exist yet, recursively create it. if not dynamic_module_path.parent.exists(): create_dynamic_module(dynamic_module_path.parent ) os.makedirs(__UpperCAmelCase , exist_ok=__UpperCAmelCase ) UpperCamelCase__ : Any = dynamic_module_path / '''__init__.py''' if not init_path.exists(): init_path.touch() def lowerCAmelCase_ ( __UpperCAmelCase: List[Any] ) -> str: with open(__UpperCAmelCase , '''r''' , encoding='''utf-8''' ) as f: UpperCamelCase__ : Optional[Any] = f.read() # Imports of the form `import .xxx` UpperCamelCase__ : Optional[Any] = re.findall('''^\s*import\s+\.(\S+)\s*$''' , __UpperCAmelCase , flags=re.MULTILINE ) # Imports of the form `from .xxx import yyy` relative_imports += re.findall('''^\s*from\s+\.(\S+)\s+import''' , __UpperCAmelCase , flags=re.MULTILINE ) # Unique-ify return list(set(__UpperCAmelCase ) ) def lowerCAmelCase_ ( __UpperCAmelCase: List[str] ) -> str: UpperCamelCase__ : Dict = False UpperCamelCase__ : Any = [module_file] UpperCamelCase__ : Tuple = [] # Let's recurse through all relative imports while not no_change: UpperCamelCase__ : int = [] for f in files_to_check: new_imports.extend(get_relative_imports(__UpperCAmelCase ) ) UpperCamelCase__ : List[str] = Path(__UpperCAmelCase ).parent UpperCamelCase__ : List[str] = [str(module_path / m ) for m in new_imports] UpperCamelCase__ : str = [f for f in new_import_files if f not in all_relative_imports] UpperCamelCase__ : List[Any] = [f"{f}.py" for f in new_import_files] UpperCamelCase__ : List[Any] = len(__UpperCAmelCase ) == 0 all_relative_imports.extend(__UpperCAmelCase ) return all_relative_imports def lowerCAmelCase_ ( __UpperCAmelCase: List[Any] ) -> Union[str, Any]: with open(__UpperCAmelCase , '''r''' , encoding='''utf-8''' ) as f: UpperCamelCase__ : Dict = f.read() # Imports of the form `import xxx` UpperCamelCase__ : str = re.findall('''^\s*import\s+(\S+)\s*$''' , __UpperCAmelCase , flags=re.MULTILINE ) # Imports of the form `from xxx import yyy` imports += re.findall('''^\s*from\s+(\S+)\s+import''' , __UpperCAmelCase , flags=re.MULTILINE ) # Only keep the top-level module UpperCamelCase__ : str = [imp.split('''.''' )[0] for imp in imports if not imp.startswith('''.''' )] # Unique-ify and test we got them all UpperCamelCase__ : List[str] = list(set(__UpperCAmelCase ) ) UpperCamelCase__ : Optional[int] = [] for imp in imports: try: importlib.import_module(__UpperCAmelCase ) except ImportError: missing_packages.append(__UpperCAmelCase ) if len(__UpperCAmelCase ) > 0: raise ImportError( '''This modeling file requires the following packages that were not found in your environment: ''' f"{', '.join(__UpperCAmelCase )}. Run `pip install {' '.join(__UpperCAmelCase )}`" ) return get_relative_imports(__UpperCAmelCase ) def lowerCAmelCase_ ( __UpperCAmelCase: Dict , __UpperCAmelCase: Union[str, Any] ) -> Dict: UpperCamelCase__ : Optional[Any] = module_path.replace(os.path.sep , '''.''' ) UpperCamelCase__ : int = importlib.import_module(__UpperCAmelCase ) if class_name is None: return find_pipeline_class(__UpperCAmelCase ) return getattr(__UpperCAmelCase , __UpperCAmelCase ) def lowerCAmelCase_ ( __UpperCAmelCase: int ) -> Dict: from ..pipelines import DiffusionPipeline UpperCamelCase__ : Any = dict(inspect.getmembers(__UpperCAmelCase , inspect.isclass ) ) UpperCamelCase__ : str = None for cls_name, cls in cls_members.items(): if ( cls_name != DiffusionPipeline.__name__ and issubclass(cls , __UpperCAmelCase ) and cls.__module__.split('''.''' )[0] != "diffusers" ): if pipeline_class is not None: raise ValueError( f"Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:" f" {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in" f" {loaded_module}." ) UpperCamelCase__ : Optional[int] = cls return pipeline_class def lowerCAmelCase_ ( __UpperCAmelCase: Union[str, os.PathLike] , __UpperCAmelCase: str , __UpperCAmelCase: Optional[Union[str, os.PathLike]] = None , __UpperCAmelCase: bool = False , __UpperCAmelCase: bool = False , __UpperCAmelCase: Optional[Dict[str, str]] = None , __UpperCAmelCase: Optional[Union[bool, str]] = None , __UpperCAmelCase: Optional[str] = None , __UpperCAmelCase: bool = False , ) -> int: UpperCamelCase__ : Tuple = str(__UpperCAmelCase ) UpperCamelCase__ : int = os.path.join(__UpperCAmelCase , __UpperCAmelCase ) if os.path.isfile(__UpperCAmelCase ): UpperCamelCase__ : Optional[int] = module_file_or_url UpperCamelCase__ : Union[str, Any] = '''local''' elif pretrained_model_name_or_path.count('''/''' ) == 0: UpperCamelCase__ : Tuple = get_diffusers_versions() # cut ".dev0" UpperCamelCase__ : int = '''v''' + '''.'''.join(__version__.split('''.''' )[:3] ) # retrieve github version that matches if revision is None: UpperCamelCase__ : Optional[int] = latest_version if latest_version[1:] in available_versions else '''main''' logger.info(f"Defaulting to latest_version: {revision}." ) elif revision in available_versions: UpperCamelCase__ : str = f"v{revision}" elif revision == "main": UpperCamelCase__ : Optional[int] = revision else: raise ValueError( f"`custom_revision`: {revision} does not exist. Please make sure to choose one of" f" {', '.join(available_versions + ['main'] )}." ) # community pipeline on GitHub UpperCamelCase__ : Dict = COMMUNITY_PIPELINES_URL.format(revision=__UpperCAmelCase , pipeline=__UpperCAmelCase ) try: UpperCamelCase__ : str = cached_download( __UpperCAmelCase , cache_dir=__UpperCAmelCase , force_download=__UpperCAmelCase , proxies=__UpperCAmelCase , resume_download=__UpperCAmelCase , local_files_only=__UpperCAmelCase , use_auth_token=__UpperCAmelCase , ) UpperCamelCase__ : Union[str, Any] = '''git''' UpperCamelCase__ : List[Any] = pretrained_model_name_or_path + '''.py''' except EnvironmentError: logger.error(f"Could not locate the {module_file} inside {pretrained_model_name_or_path}." ) raise else: try: # Load from URL or cache if already cached UpperCamelCase__ : str = hf_hub_download( __UpperCAmelCase , __UpperCAmelCase , cache_dir=__UpperCAmelCase , force_download=__UpperCAmelCase , proxies=__UpperCAmelCase , resume_download=__UpperCAmelCase , local_files_only=__UpperCAmelCase , use_auth_token=__UpperCAmelCase , ) UpperCamelCase__ : Any = os.path.join('''local''' , '''--'''.join(pretrained_model_name_or_path.split('''/''' ) ) ) except EnvironmentError: logger.error(f"Could not locate the {module_file} inside {pretrained_model_name_or_path}." ) raise # Check we have all the requirements in our environment UpperCamelCase__ : List[str] = check_imports(__UpperCAmelCase ) # Now we move the module inside our cached dynamic modules. UpperCamelCase__ : Union[str, Any] = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule create_dynamic_module(__UpperCAmelCase ) UpperCamelCase__ : List[str] = Path(__UpperCAmelCase ) / full_submodule if submodule == "local" or submodule == "git": # We always copy local files (we could hash the file to see if there was a change, and give them the name of # that hash, to only copy when there is a modification but it seems overkill for now). # The only reason we do the copy is to avoid putting too many folders in sys.path. shutil.copy(__UpperCAmelCase , submodule_path / module_file ) for module_needed in modules_needed: UpperCamelCase__ : List[Any] = f"{module_needed}.py" shutil.copy(os.path.join(__UpperCAmelCase , __UpperCAmelCase ) , submodule_path / module_needed ) else: # Get the commit hash # TODO: we will get this info in the etag soon, so retrieve it from there and not here. if isinstance(__UpperCAmelCase , __UpperCAmelCase ): UpperCamelCase__ : str = use_auth_token elif use_auth_token is True: UpperCamelCase__ : int = HfFolder.get_token() else: UpperCamelCase__ : Dict = None UpperCamelCase__ : Optional[int] = model_info(__UpperCAmelCase , revision=__UpperCAmelCase , token=__UpperCAmelCase ).sha # The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the # benefit of versioning. UpperCamelCase__ : int = submodule_path / commit_hash UpperCamelCase__ : Union[str, Any] = full_submodule + os.path.sep + commit_hash create_dynamic_module(__UpperCAmelCase ) if not (submodule_path / module_file).exists(): shutil.copy(__UpperCAmelCase , submodule_path / module_file ) # Make sure we also have every file with relative for module_needed in modules_needed: if not (submodule_path / module_needed).exists(): get_cached_module_file( __UpperCAmelCase , f"{module_needed}.py" , cache_dir=__UpperCAmelCase , force_download=__UpperCAmelCase , resume_download=__UpperCAmelCase , proxies=__UpperCAmelCase , use_auth_token=__UpperCAmelCase , revision=__UpperCAmelCase , local_files_only=__UpperCAmelCase , ) return os.path.join(__UpperCAmelCase , __UpperCAmelCase ) def lowerCAmelCase_ ( __UpperCAmelCase: Union[str, os.PathLike] , __UpperCAmelCase: str , __UpperCAmelCase: Optional[str] = None , __UpperCAmelCase: Optional[Union[str, os.PathLike]] = None , __UpperCAmelCase: bool = False , __UpperCAmelCase: bool = False , __UpperCAmelCase: Optional[Dict[str, str]] = None , __UpperCAmelCase: Optional[Union[bool, str]] = None , __UpperCAmelCase: Optional[str] = None , __UpperCAmelCase: bool = False , **__UpperCAmelCase: str , ) -> List[Any]: UpperCamelCase__ : Tuple = get_cached_module_file( __UpperCAmelCase , __UpperCAmelCase , cache_dir=__UpperCAmelCase , force_download=__UpperCAmelCase , resume_download=__UpperCAmelCase , proxies=__UpperCAmelCase , use_auth_token=__UpperCAmelCase , revision=__UpperCAmelCase , local_files_only=__UpperCAmelCase , ) return get_class_in_module(__UpperCAmelCase , final_module.replace('''.py''' , '''''' ) )
253
import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class lowercase__ : '''simple docstring''' def UpperCamelCase__ ( self ) -> List[str]: """simple docstring""" torch.manual_seed(0 ) UpperCamelCase__ : List[str] = TaEncoderModel.from_pretrained('''hf-internal-testing/tiny-random-t5''' ) torch.manual_seed(0 ) UpperCamelCase__ : Tuple = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-t5''' ) torch.manual_seed(0 ) UpperCamelCase__ : Optional[Any] = UNetaDConditionModel( sample_size=32, layers_per_block=1, block_out_channels=[32, 64], down_block_types=[ '''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D''', ], mid_block_type='''UNetMidBlock2DSimpleCrossAttn''', up_block_types=['''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''], in_channels=3, out_channels=6, cross_attention_dim=32, encoder_hid_dim=32, attention_head_dim=8, addition_embed_type='''text''', addition_embed_type_num_heads=2, cross_attention_norm='''group_norm''', resnet_time_scale_shift='''scale_shift''', act_fn='''gelu''', ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) UpperCamelCase__ : Dict = DDPMScheduler( num_train_timesteps=1000, beta_schedule='''squaredcos_cap_v2''', beta_start=0.0001, beta_end=0.02, thresholding=__magic_name__, dynamic_thresholding_ratio=0.95, sample_max_value=1.0, prediction_type='''epsilon''', variance_type='''learned_range''', ) torch.manual_seed(0 ) UpperCamelCase__ : Optional[int] = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def UpperCamelCase__ ( self ) -> List[str]: """simple docstring""" torch.manual_seed(0 ) UpperCamelCase__ : Dict = TaEncoderModel.from_pretrained('''hf-internal-testing/tiny-random-t5''' ) torch.manual_seed(0 ) UpperCamelCase__ : int = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-t5''' ) torch.manual_seed(0 ) UpperCamelCase__ : List[Any] = UNetaDConditionModel( sample_size=32, layers_per_block=[1, 2], block_out_channels=[32, 64], down_block_types=[ '''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D''', ], mid_block_type='''UNetMidBlock2DSimpleCrossAttn''', up_block_types=['''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''], in_channels=6, out_channels=6, cross_attention_dim=32, encoder_hid_dim=32, attention_head_dim=8, addition_embed_type='''text''', addition_embed_type_num_heads=2, cross_attention_norm='''group_norm''', resnet_time_scale_shift='''scale_shift''', act_fn='''gelu''', class_embed_type='''timestep''', mid_block_scale_factor=1.414, time_embedding_act_fn='''gelu''', time_embedding_dim=32, ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) UpperCamelCase__ : Optional[int] = DDPMScheduler( num_train_timesteps=1000, beta_schedule='''squaredcos_cap_v2''', beta_start=0.0001, beta_end=0.02, thresholding=__magic_name__, dynamic_thresholding_ratio=0.95, sample_max_value=1.0, prediction_type='''epsilon''', variance_type='''learned_range''', ) torch.manual_seed(0 ) UpperCamelCase__ : Optional[Any] = DDPMScheduler( num_train_timesteps=1000, beta_schedule='''squaredcos_cap_v2''', beta_start=0.0001, beta_end=0.02, ) torch.manual_seed(0 ) UpperCamelCase__ : str = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def UpperCamelCase__ ( self ) -> Dict: """simple docstring""" UpperCamelCase__ : str = self.get_dummy_components() UpperCamelCase__ : List[str] = self.pipeline_class(**__magic_name__ ) pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) UpperCamelCase__ : Any = self.get_dummy_inputs(__magic_name__ ) UpperCamelCase__ : Tuple = inputs['''prompt'''] UpperCamelCase__ : Optional[Any] = inputs['''generator'''] UpperCamelCase__ : Union[str, Any] = inputs['''num_inference_steps'''] UpperCamelCase__ : Dict = inputs['''output_type'''] if "image" in inputs: UpperCamelCase__ : Optional[int] = inputs['''image'''] else: UpperCamelCase__ : Any = None if "mask_image" in inputs: UpperCamelCase__ : List[str] = inputs['''mask_image'''] else: UpperCamelCase__ : Union[str, Any] = None if "original_image" in inputs: UpperCamelCase__ : List[Any] = inputs['''original_image'''] else: UpperCamelCase__ : Tuple = None UpperCamelCase__ ,UpperCamelCase__ : List[Any] = pipe.encode_prompt(__magic_name__ ) # inputs with prompt converted to embeddings UpperCamelCase__ : Any = { '''prompt_embeds''': prompt_embeds, '''negative_prompt_embeds''': negative_prompt_embeds, '''generator''': generator, '''num_inference_steps''': num_inference_steps, '''output_type''': output_type, } if image is not None: UpperCamelCase__ : int = image if mask_image is not None: UpperCamelCase__ : List[Any] = mask_image if original_image is not None: UpperCamelCase__ : Optional[Any] = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(__magic_name__, __magic_name__, __magic_name__ ) UpperCamelCase__ : Union[str, Any] = pipe(**__magic_name__ )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(__magic_name__ ) UpperCamelCase__ : Any = self.pipeline_class.from_pretrained(__magic_name__ ) pipe_loaded.to(__magic_name__ ) pipe_loaded.set_progress_bar_config(disable=__magic_name__ ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(__magic_name__, __magic_name__ ) is None, f"`{optional_component}` did not stay set to None after loading.", ) UpperCamelCase__ : List[str] = self.get_dummy_inputs(__magic_name__ ) UpperCamelCase__ : int = inputs['''generator'''] UpperCamelCase__ : Union[str, Any] = inputs['''num_inference_steps'''] UpperCamelCase__ : Union[str, Any] = inputs['''output_type'''] # inputs with prompt converted to embeddings UpperCamelCase__ : Optional[Any] = { '''prompt_embeds''': prompt_embeds, '''negative_prompt_embeds''': negative_prompt_embeds, '''generator''': generator, '''num_inference_steps''': num_inference_steps, '''output_type''': output_type, } if image is not None: UpperCamelCase__ : List[Any] = image if mask_image is not None: UpperCamelCase__ : List[str] = mask_image if original_image is not None: UpperCamelCase__ : str = original_image UpperCamelCase__ : str = pipe_loaded(**__magic_name__ )[0] UpperCamelCase__ : Optional[int] = np.abs(to_np(__magic_name__ ) - to_np(__magic_name__ ) ).max() self.assertLess(__magic_name__, 1E-4 ) def UpperCamelCase__ ( self ) -> Any: """simple docstring""" UpperCamelCase__ : List[str] = self.get_dummy_components() UpperCamelCase__ : Optional[Any] = self.pipeline_class(**__magic_name__ ) pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) UpperCamelCase__ : Optional[int] = self.get_dummy_inputs(__magic_name__ ) UpperCamelCase__ : Dict = pipe(**__magic_name__ )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(__magic_name__ ) UpperCamelCase__ : Optional[Any] = self.pipeline_class.from_pretrained(__magic_name__ ) pipe_loaded.to(__magic_name__ ) pipe_loaded.set_progress_bar_config(disable=__magic_name__ ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests UpperCamelCase__ : str = self.get_dummy_inputs(__magic_name__ ) UpperCamelCase__ : Optional[Any] = pipe_loaded(**__magic_name__ )[0] UpperCamelCase__ : str = np.abs(to_np(__magic_name__ ) - to_np(__magic_name__ ) ).max() self.assertLess(__magic_name__, 1E-4 )
253
1
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_video_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import VivitImageProcessor class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __init__( self : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : str=7 , UpperCAmelCase_ : str=3 , UpperCAmelCase_ : Optional[Any]=10 , UpperCAmelCase_ : Tuple=18 , UpperCAmelCase_ : int=30 , UpperCAmelCase_ : Dict=400 , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : Optional[int]=[0.5, 0.5, 0.5] , UpperCAmelCase_ : Any=[0.5, 0.5, 0.5] , UpperCAmelCase_ : Tuple=None , ) -> Optional[Any]: """simple docstring""" _lowerCAmelCase = size if size is not None else {'shortest_edge': 18} _lowerCAmelCase = crop_size if crop_size is not None else {'height': 18, 'width': 18} _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = num_channels _lowerCAmelCase = num_frames _lowerCAmelCase = image_size _lowerCAmelCase = min_resolution _lowerCAmelCase = max_resolution _lowerCAmelCase = do_resize _lowerCAmelCase = size _lowerCAmelCase = do_normalize _lowerCAmelCase = image_mean _lowerCAmelCase = image_std _lowerCAmelCase = crop_size def __lowerCamelCase ( self : Dict ) -> List[Any]: """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class _SCREAMING_SNAKE_CASE ( UpperCAmelCase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_: Optional[int] = VivitImageProcessor if is_vision_available() else None def __lowerCamelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" _lowerCAmelCase = VivitImageProcessingTester(self ) @property def __lowerCamelCase ( self : List[Any] ) -> Tuple: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def __lowerCamelCase ( self : List[Any] ) -> Dict: """simple docstring""" _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase_ , 'image_mean' ) ) self.assertTrue(hasattr(UpperCAmelCase_ , 'image_std' ) ) self.assertTrue(hasattr(UpperCAmelCase_ , 'do_normalize' ) ) self.assertTrue(hasattr(UpperCAmelCase_ , 'do_resize' ) ) self.assertTrue(hasattr(UpperCAmelCase_ , 'do_center_crop' ) ) self.assertTrue(hasattr(UpperCAmelCase_ , 'size' ) ) def __lowerCamelCase ( self : List[str] ) -> int: """simple docstring""" _lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 18} ) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} ) _lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def __lowerCamelCase ( self : Tuple ) -> Dict: """simple docstring""" _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL videos _lowerCAmelCase = prepare_video_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ ) for video in video_inputs: self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) self.assertIsInstance(video[0] , Image.Image ) # Test not batched input _lowerCAmelCase = image_processing(video_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _lowerCAmelCase = image_processing(UpperCAmelCase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def __lowerCamelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCAmelCase = prepare_video_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , numpify=UpperCAmelCase_ ) for video in video_inputs: self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) self.assertIsInstance(video[0] , np.ndarray ) # Test not batched input _lowerCAmelCase = image_processing(video_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _lowerCAmelCase = image_processing(UpperCAmelCase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def __lowerCamelCase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCAmelCase = prepare_video_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , torchify=UpperCAmelCase_ ) for video in video_inputs: self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) self.assertIsInstance(video[0] , torch.Tensor ) # Test not batched input _lowerCAmelCase = image_processing(video_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _lowerCAmelCase = image_processing(UpperCAmelCase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
491
"""simple docstring""" def __snake_case ( SCREAMING_SNAKE_CASE: str ): """simple docstring""" _lowerCAmelCase = 0 # if input_string is "aba" than new_input_string become "a|b|a" _lowerCAmelCase = '' _lowerCAmelCase = '' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(SCREAMING_SNAKE_CASE ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring _lowerCAmelCase , _lowerCAmelCase = 0, 0 # length[i] shows the length of palindromic substring with center i _lowerCAmelCase = [1 for i in range(len(SCREAMING_SNAKE_CASE ) )] # for each character in new_string find corresponding palindromic string _lowerCAmelCase = 0 for j in range(len(SCREAMING_SNAKE_CASE ) ): _lowerCAmelCase = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(SCREAMING_SNAKE_CASE ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 _lowerCAmelCase = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: _lowerCAmelCase = j - k + 1 # noqa: E741 _lowerCAmelCase = j + k - 1 # update max_length and start position if max_length < length[j]: _lowerCAmelCase = length[j] _lowerCAmelCase = j # create that string _lowerCAmelCase = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
491
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _snake_case : Optional[int] = logging.get_logger(__name__) _snake_case : List[str] = { 'google/mobilenet_v1_1.0_224': 'https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json', 'google/mobilenet_v1_0.75_192': 'https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class A ( _a ): lowercase_ = 'mobilenet_v1' def __init__( self : Any , lowerCAmelCase_ : Union[str, Any]=3 , lowerCAmelCase_ : Any=2_24 , lowerCAmelCase_ : Tuple=1.0 , lowerCAmelCase_ : int=8 , lowerCAmelCase_ : str="relu6" , lowerCAmelCase_ : Dict=True , lowerCAmelCase_ : Any=0.9_9_9 , lowerCAmelCase_ : List[Any]=0.0_2 , lowerCAmelCase_ : List[Any]=0.0_0_1 , **lowerCAmelCase_ : Optional[Any] , ) -> Optional[int]: """simple docstring""" super().__init__(**lowerCAmelCase_ ) if depth_multiplier <= 0: raise ValueError('''depth_multiplier must be greater than zero.''' ) _a = num_channels _a = image_size _a = depth_multiplier _a = min_depth _a = hidden_act _a = tf_padding _a = classifier_dropout_prob _a = initializer_range _a = layer_norm_eps class A ( _a ): lowercase_ = version.parse('1.11' ) @property def __lowerCAmelCase ( self : Dict ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict([('''pixel_values''', {0: '''batch'''})] ) @property def __lowerCAmelCase ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "image-classification": return OrderedDict([('''logits''', {0: '''batch'''})] ) else: return OrderedDict([('''last_hidden_state''', {0: '''batch'''}), ('''pooler_output''', {0: '''batch'''})] ) @property def __lowerCAmelCase ( self : List[Any] ) -> float: """simple docstring""" return 1e-4
22
'''simple docstring''' from collections.abc import Generator from math import sin def snake_case_ (UpperCamelCase : bytes ): '''simple docstring''' if len(UpperCamelCase ) != 32: raise ValueError('''Input must be of length 32''' ) _a = B'''''' for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def snake_case_ (UpperCamelCase : int ): '''simple docstring''' if i < 0: raise ValueError('''Input must be non-negative''' ) _a = format(UpperCamelCase , '''08x''' )[-8:] _a = B'''''' for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode('''utf-8''' ) return little_endian_hex def snake_case_ (UpperCamelCase : bytes ): '''simple docstring''' _a = B'''''' for char in message: bit_string += format(UpperCamelCase , '''08b''' ).encode('''utf-8''' ) _a = format(len(UpperCamelCase ) , '''064b''' ).encode('''utf-8''' ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(UpperCamelCase ) % 512 != 448: bit_string += b"0" bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] ) return bit_string def snake_case_ (UpperCamelCase : bytes ): '''simple docstring''' if len(UpperCamelCase ) % 512 != 0: raise ValueError('''Input must have length that\'s a multiple of 512''' ) for pos in range(0 , len(UpperCamelCase ) , 512 ): _a = bit_string[pos : pos + 512] _a = [] for i in range(0 , 512 , 32 ): block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) ) yield block_words def snake_case_ (UpperCamelCase : int ): '''simple docstring''' if i < 0: raise ValueError('''Input must be non-negative''' ) _a = format(UpperCamelCase , '''032b''' ) _a = '''''' for c in i_str: new_str += "1" if c == "0" else "0" return int(UpperCamelCase , 2 ) def snake_case_ (UpperCamelCase : int , UpperCamelCase : int ): '''simple docstring''' return (a + b) % 2**32 def snake_case_ (UpperCamelCase : int , UpperCamelCase : int ): '''simple docstring''' if i < 0: raise ValueError('''Input must be non-negative''' ) if shift < 0: raise ValueError('''Shift must be non-negative''' ) return ((i << shift) ^ (i >> (32 - shift))) % 2**32 def snake_case_ (UpperCamelCase : bytes ): '''simple docstring''' _a = preprocess(UpperCamelCase ) _a = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )] # Starting states _a = 0X67452301 _a = 0Xefcdab89 _a = 0X98badcfe _a = 0X10325476 _a = [ 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(UpperCamelCase ): _a = aa _a = ba _a = ca _a = da # Hash current chunk for i in range(64 ): if i <= 15: # f = (b & c) | (not_32(b) & d) # Alternate definition for f _a = d ^ (b & (c ^ d)) _a = i elif i <= 31: # f = (d & b) | (not_32(d) & c) # Alternate definition for f _a = c ^ (d & (b ^ c)) _a = (5 * i + 1) % 16 elif i <= 47: _a = b ^ c ^ d _a = (3 * i + 5) % 16 else: _a = c ^ (b | not_aa(UpperCamelCase )) _a = (7 * i) % 16 _a = (f + a + added_consts[i] + block_words[g]) % 2**32 _a = d _a = c _a = b _a = sum_aa(UpperCamelCase , left_rotate_aa(UpperCamelCase , shift_amounts[i] ) ) # Add hashed chunk to running total _a = sum_aa(UpperCamelCase , UpperCamelCase ) _a = sum_aa(UpperCamelCase , UpperCamelCase ) _a = sum_aa(UpperCamelCase , UpperCamelCase ) _a = sum_aa(UpperCamelCase , UpperCamelCase ) _a = reformat_hex(UpperCamelCase ) + reformat_hex(UpperCamelCase ) + reformat_hex(UpperCamelCase ) + reformat_hex(UpperCamelCase ) return digest if __name__ == "__main__": import doctest doctest.testmod()
22
1
"""simple docstring""" from collections.abc import Sequence from queue import Queue class a_ : def __init__( self : List[Any] , snake_case__ : Any , snake_case__ : Optional[int] , snake_case__ : Optional[int] , snake_case__ : str=None , snake_case__ : str=None ): lowerCAmelCase__ = start lowerCAmelCase__ = end lowerCAmelCase__ = val lowerCAmelCase__ = (start + end) // 2 lowerCAmelCase__ = left lowerCAmelCase__ = right def __repr__( self : str ): return F"""SegmentTreeNode(start={self.start}, end={self.end}, val={self.val})""" class a_ : def __init__( self : Optional[int] , snake_case__ : Sequence , snake_case__ : List[Any] ): lowerCAmelCase__ = collection lowerCAmelCase__ = function if self.collection: lowerCAmelCase__ = self._build_tree(0 , len(snake_case__ ) - 1 ) def _SCREAMING_SNAKE_CASE ( self : List[str] , snake_case__ : Dict , snake_case__ : Optional[Any] ): self._update_tree(self.root , snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : int , snake_case__ : str , snake_case__ : List[str] ): return self._query_range(self.root , snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Tuple , snake_case__ : Union[str, Any] , snake_case__ : Optional[Any] ): if start == end: return SegmentTreeNode(snake_case__ , snake_case__ , self.collection[start] ) lowerCAmelCase__ = (start + end) // 2 lowerCAmelCase__ = self._build_tree(snake_case__ , snake_case__ ) lowerCAmelCase__ = self._build_tree(mid + 1 , snake_case__ ) return SegmentTreeNode(snake_case__ , snake_case__ , self.fn(left.val , right.val ) , snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Dict , snake_case__ : Union[str, Any] , snake_case__ : List[Any] , snake_case__ : Union[str, Any] ): if node.start == i and node.end == i: lowerCAmelCase__ = val return if i <= node.mid: self._update_tree(node.left , snake_case__ , snake_case__ ) else: self._update_tree(node.right , snake_case__ , snake_case__ ) lowerCAmelCase__ = self.fn(node.left.val , node.right.val ) def _SCREAMING_SNAKE_CASE ( self : str , snake_case__ : List[Any] , snake_case__ : Optional[int] , snake_case__ : Any ): if node.start == i and node.end == j: return node.val if i <= node.mid: if j <= node.mid: # range in left child tree return self._query_range(node.left , snake_case__ , snake_case__ ) else: # range in left child tree and right child tree return self.fn( self._query_range(node.left , snake_case__ , node.mid ) , self._query_range(node.right , node.mid + 1 , snake_case__ ) , ) else: # range in right child tree return self._query_range(node.right , snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : List[str] ): if self.root is not None: lowerCAmelCase__ = Queue() queue.put(self.root ) while not queue.empty(): lowerCAmelCase__ = queue.get() yield node if node.left is not None: queue.put(node.left ) if node.right is not None: queue.put(node.right ) if __name__ == "__main__": import operator for fn in [operator.add, max, min]: print("*" * 50) __lowerCAmelCase : str = SegmentTree([2, 1, 5, 3, 4], fn) for node in arr.traverse(): print(node) print() arr.update(1, 5) for node in arr.traverse(): print(node) print() print(arr.query_range(3, 4)) # 7 print(arr.query_range(2, 2)) # 5 print(arr.query_range(1, 3)) # 13 print()
674
"""simple docstring""" import copy import os import cva import numpy as np from matplotlib import pyplot as plt class a_ : def __init__( self : Optional[int] ): lowerCAmelCase__ = """""" lowerCAmelCase__ = """""" lowerCAmelCase__ = [] lowerCAmelCase__ = 0 lowerCAmelCase__ = 256 lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 def _SCREAMING_SNAKE_CASE ( self : List[Any] , snake_case__ : Union[str, Any] ): lowerCAmelCase__ = cva.imread(snake_case__ , 0 ) lowerCAmelCase__ = copy.deepcopy(self.img ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = plt.hist(self.img.ravel() , 256 , [0, 256] , label="""x""" ) lowerCAmelCase__ = np.sum(snake_case__ ) for i in range(len(snake_case__ ) ): lowerCAmelCase__ = x[i] / self.k self.sk += prk lowerCAmelCase__ = (self.L - 1) * self.sk if self.rem != 0: lowerCAmelCase__ = int(last % last ) lowerCAmelCase__ = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(snake_case__ ) lowerCAmelCase__ = int(np.ma.count(self.img ) / self.img[1].size ) lowerCAmelCase__ = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): lowerCAmelCase__ = self.img[j][i] if num != self.last_list[num]: lowerCAmelCase__ = self.last_list[num] cva.imwrite("""output_data/output.jpg""" , self.img ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): plt.hist(self.img.ravel() , 256 , [0, 256] ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): cva.imshow("""Output-Image""" , self.img ) cva.imshow("""Input-Image""" , self.original_image ) cva.waitKey(5000 ) cva.destroyAllWindows() if __name__ == "__main__": __lowerCAmelCase : Dict = os.path.join(os.path.basename(__file__), "image_data/input.jpg") __lowerCAmelCase : Optional[int] = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
674
1
import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , A_ , A_ , A_ = None , A_ = None , A_ = False , **A_ , ): '''simple docstring''' super().__init__(features=A_ , cache_dir=A_ , keep_in_memory=A_ , **A_ ) SCREAMING_SNAKE_CASE__ = Sql( cache_dir=A_ , features=A_ , sql=A_ , con=A_ , **A_ , ) def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None self.builder.download_and_prepare( download_config=A_ , download_mode=A_ , verification_mode=A_ , base_path=A_ , ) # Build dataset for splits SCREAMING_SNAKE_CASE__ = self.builder.as_dataset( split='''train''' , verification_mode=A_ , in_memory=self.keep_in_memory ) return dataset class __snake_case : '''simple docstring''' def __init__( self , A_ , A_ , A_ , A_ = None , A_ = None , **A_ , ): '''simple docstring''' if num_proc is not None and num_proc <= 0: raise ValueError(f'''num_proc {num_proc} must be an integer > 0.''' ) SCREAMING_SNAKE_CASE__ = dataset SCREAMING_SNAKE_CASE__ = name SCREAMING_SNAKE_CASE__ = con SCREAMING_SNAKE_CASE__ = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE SCREAMING_SNAKE_CASE__ = num_proc SCREAMING_SNAKE_CASE__ = to_sql_kwargs def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = self.to_sql_kwargs.pop('''sql''' , A_ ) SCREAMING_SNAKE_CASE__ = self.to_sql_kwargs.pop('''con''' , A_ ) SCREAMING_SNAKE_CASE__ = self.to_sql_kwargs.pop('''index''' , A_ ) SCREAMING_SNAKE_CASE__ = self._write(index=A_ , **self.to_sql_kwargs ) return written def lowercase_ ( self , A_ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = args SCREAMING_SNAKE_CASE__ = {**to_sql_kwargs, '''if_exists''': '''append'''} if offset > 0 else to_sql_kwargs SCREAMING_SNAKE_CASE__ = query_table( table=self.dataset.data , key=slice(A_ , offset + self.batch_size ) , indices=self.dataset._indices , ) SCREAMING_SNAKE_CASE__ = batch.to_pandas() SCREAMING_SNAKE_CASE__ = df.to_sql(self.name , self.con , index=A_ , **A_ ) return num_rows or len(A_ ) def lowercase_ ( self , A_ , **A_ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , A_ , A_ )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ): written += num_rows return written
100
"""simple docstring""" import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class __magic_name__ : @staticmethod def _lowerCamelCase ( *__magic_name__ , **__magic_name__ ): """simple docstring""" pass def A__ ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = hashlib.mda(image.tobytes() ) return m.hexdigest()[:1_0] def A__ ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = np.array(__lowerCamelCase ) _lowerCAmelCase = npimg.shape return {"hash": hashimage(__lowerCamelCase ), "shape": shape} @is_pipeline_test @require_vision @require_torch class __magic_name__ ( unittest.TestCase ): UpperCamelCase : Tuple = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) UpperCamelCase : Union[str, Any] = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def _lowerCamelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ ): """simple docstring""" _lowerCAmelCase = MaskGenerationPipeline(model=__magic_name__ , image_processor=__magic_name__ ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def _lowerCamelCase ( self , __magic_name__ , __magic_name__ ): """simple docstring""" pass @require_tf @unittest.skip('Image segmentation not implemented in TF' ) def _lowerCamelCase ( self ): """simple docstring""" pass @slow @require_torch def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = pipeline('mask-generation' , model='facebook/sam-vit-huge' ) _lowerCAmelCase = image_segmenter('http://images.cocodataset.org/val2017/000000039769.jpg' , points_per_batch=2_5_6 ) # Shortening by hashing _lowerCAmelCase = [] for i, o in enumerate(outputs['masks'] ): new_outupt += [{"mask": mask_to_test_readable(__magic_name__ ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(__magic_name__ , decimals=4 ) , [ {'mask': {'hash': '115ad19f5f', 'shape': (4_8_0, 6_4_0)}, 'scores': 1.04_44}, {'mask': {'hash': '6affa964c6', 'shape': (4_8_0, 6_4_0)}, 'scores': 1.0_21}, {'mask': {'hash': 'dfe28a0388', 'shape': (4_8_0, 6_4_0)}, 'scores': 1.01_67}, {'mask': {'hash': 'c0a5f4a318', 'shape': (4_8_0, 6_4_0)}, 'scores': 1.01_32}, {'mask': {'hash': 'fe8065c197', 'shape': (4_8_0, 6_4_0)}, 'scores': 1.00_53}, {'mask': {'hash': 'e2d0b7a0b7', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.99_67}, {'mask': {'hash': '453c7844bd', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.9_93}, {'mask': {'hash': '3d44f2926d', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.99_09}, {'mask': {'hash': '64033ddc3f', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.98_79}, {'mask': {'hash': '801064ff79', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.98_34}, {'mask': {'hash': '6172f276ef', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.97_16}, {'mask': {'hash': 'b49e60e084', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.96_12}, {'mask': {'hash': 'a811e775fd', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.95_99}, {'mask': {'hash': 'a6a8ebcf4b', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.95_52}, {'mask': {'hash': '9d8257e080', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.95_32}, {'mask': {'hash': '32de6454a8', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.95_16}, {'mask': {'hash': 'af3d4af2c8', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.94_99}, {'mask': {'hash': '3c6db475fb', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.94_83}, {'mask': {'hash': 'c290813fb9', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.94_64}, {'mask': {'hash': 'b6f0b8f606', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.9_43}, {'mask': {'hash': '92ce16bfdf', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.9_43}, {'mask': {'hash': 'c749b25868', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.94_08}, {'mask': {'hash': 'efb6cab859', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.93_35}, {'mask': {'hash': '1ff2eafb30', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.93_26}, {'mask': {'hash': '788b798e24', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.92_62}, {'mask': {'hash': 'abea804f0e', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.89_99}, {'mask': {'hash': '7b9e8ddb73', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.89_86}, {'mask': {'hash': 'cd24047c8a', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.89_84}, {'mask': {'hash': '6943e6bcbd', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.88_73}, {'mask': {'hash': 'b5f47c9191', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.88_71} ] , ) # fmt: on @require_torch @slow def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = 'facebook/sam-vit-huge' _lowerCAmelCase = pipeline('mask-generation' , model=__magic_name__ ) _lowerCAmelCase = image_segmenter( 'http://images.cocodataset.org/val2017/000000039769.jpg' , pred_iou_thresh=1 , points_per_batch=2_5_6 ) # Shortening by hashing _lowerCAmelCase = [] for i, o in enumerate(outputs['masks'] ): new_outupt += [{"mask": mask_to_test_readable(__magic_name__ ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(__magic_name__ , decimals=4 ) , [ {'mask': {'hash': '115ad19f5f', 'shape': (4_8_0, 6_4_0)}, 'scores': 1.04_44}, {'mask': {'hash': '6affa964c6', 'shape': (4_8_0, 6_4_0)}, 'scores': 1.02_10}, {'mask': {'hash': 'dfe28a0388', 'shape': (4_8_0, 6_4_0)}, 'scores': 1.01_67}, {'mask': {'hash': 'c0a5f4a318', 'shape': (4_8_0, 6_4_0)}, 'scores': 1.01_32}, {'mask': {'hash': 'fe8065c197', 'shape': (4_8_0, 6_4_0)}, 'scores': 1.00_53}, ] , )
589
0
import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class SCREAMING_SNAKE_CASE__ : '''simple docstring''' def __init__( self : str , lowerCamelCase : str = "cpu" , lowerCamelCase : str = "openai/clip-vit-large-patch14" ) -> None: """simple docstring""" _UpperCAmelCase = device _UpperCAmelCase = CLIPTokenizerFast.from_pretrained(lowerCamelCase ) _UpperCAmelCase = [0.4814_5466, 0.457_8275, 0.4082_1073] _UpperCAmelCase = [0.2686_2954, 0.2613_0258, 0.2757_7711] _UpperCAmelCase = torchvision.transforms.Normalize(self.image_mean , self.image_std ) _UpperCAmelCase = torchvision.transforms.Resize(224 ) _UpperCAmelCase = torchvision.transforms.CenterCrop(224 ) def lowerCamelCase ( self : Dict , lowerCamelCase : List[Any] ) -> Dict: """simple docstring""" _UpperCAmelCase = self.resize(lowerCamelCase ) _UpperCAmelCase = self.center_crop(lowerCamelCase ) _UpperCAmelCase = self.normalize(lowerCamelCase ) return images def __call__( self : List[str] , lowerCamelCase : Union[str, Any]=None , lowerCamelCase : List[str]=None , **lowerCamelCase : int ) -> Dict: """simple docstring""" _UpperCAmelCase = self.tokenizer(text=lowerCamelCase , **lowerCamelCase ) _UpperCAmelCase = self.preprocess_img(lowerCamelCase ) _UpperCAmelCase = {key: value.to(self.device ) for (key, value) in encoding.items()} return encoding class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : str , lowerCamelCase : Dict=10 , lowerCamelCase : Tuple=0.01 , lowerCamelCase : int=None , lowerCamelCase : Optional[int]=None , lowerCamelCase : List[str]=None , lowerCamelCase : str=None , lowerCamelCase : Tuple=None , lowerCamelCase : List[str]=None , lowerCamelCase : str=False , lowerCamelCase : Union[str, Any]=True , lowerCamelCase : int="image" , lowerCamelCase : str=True , lowerCamelCase : int=False , lowerCamelCase : Dict=False , lowerCamelCase : Union[str, Any]=False , ) -> None: """simple docstring""" super().__init__() _UpperCAmelCase = None _UpperCAmelCase = device if device else get_device() if vqgan: _UpperCAmelCase = vqgan else: _UpperCAmelCase = load_vqgan(self.device , conf_path=lowerCamelCase , ckpt_path=lowerCamelCase ) self.vqgan.eval() if clip: _UpperCAmelCase = clip else: _UpperCAmelCase = CLIPModel.from_pretrained("""openai/clip-vit-base-patch32""" ) self.clip.to(self.device ) _UpperCAmelCase = ProcessorGradientFlow(device=self.device ) _UpperCAmelCase = iterations _UpperCAmelCase = lr _UpperCAmelCase = log _UpperCAmelCase = make_grid _UpperCAmelCase = return_val _UpperCAmelCase = quantize _UpperCAmelCase = self.vqgan.decoder.z_shape def lowerCamelCase ( self : Optional[int] , lowerCamelCase : int=None , lowerCamelCase : List[Any]=None , lowerCamelCase : Optional[Any]=5 , lowerCamelCase : Dict=True ) -> Dict: """simple docstring""" _UpperCAmelCase = [] if output_path is None: _UpperCAmelCase = """./animation.gif""" if input_path is None: _UpperCAmelCase = self.save_path _UpperCAmelCase = sorted(glob(input_path + """/*""" ) ) if not len(lowerCamelCase ): raise ValueError( """No images found in save path, aborting (did you pass save_intermediate=True to the generate""" """ function?)""" ) if len(lowerCamelCase ) == 1: print("""Only one image found in save path, (did you pass save_intermediate=True to the generate function?)""" ) _UpperCAmelCase = total_duration / len(lowerCamelCase ) _UpperCAmelCase = [frame_duration] * len(lowerCamelCase ) if extend_frames: _UpperCAmelCase = 1.5 _UpperCAmelCase = 3 for file_name in paths: if file_name.endswith(""".png""" ): images.append(imageio.imread(lowerCamelCase ) ) imageio.mimsave(lowerCamelCase , lowerCamelCase , duration=lowerCamelCase ) print(f"""gif saved to {output_path}""" ) def lowerCamelCase ( self : Optional[Any] , lowerCamelCase : Tuple=None , lowerCamelCase : Optional[int]=None ) -> Tuple: """simple docstring""" if not (path or img): raise ValueError("""Input either path or tensor""" ) if img is not None: raise NotImplementedError _UpperCAmelCase = preprocess(Image.open(lowerCamelCase ) , target_image_size=256 ).to(self.device ) _UpperCAmelCase = preprocess_vqgan(lowerCamelCase ) _UpperCAmelCase , *_UpperCAmelCase = self.vqgan.encode(lowerCamelCase ) return z def lowerCamelCase ( self : Optional[Any] , lowerCamelCase : Any ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = self.latent.detach().requires_grad_() _UpperCAmelCase = base_latent + transform_vector if self.quantize: _UpperCAmelCase , *_UpperCAmelCase = self.vqgan.quantize(lowerCamelCase ) else: _UpperCAmelCase = trans_latent return self.vqgan.decode(lowerCamelCase ) def lowerCamelCase ( self : Tuple , lowerCamelCase : Tuple , lowerCamelCase : List[Any] , lowerCamelCase : str=None ) -> List[Any]: """simple docstring""" _UpperCAmelCase = self.clip_preprocessor(text=lowerCamelCase , images=lowerCamelCase , return_tensors="""pt""" , padding=lowerCamelCase ) _UpperCAmelCase = self.clip(**lowerCamelCase ) _UpperCAmelCase = clip_outputs.logits_per_image if weights is not None: _UpperCAmelCase = similarity_logits * weights return similarity_logits.sum() def lowerCamelCase ( self : List[Any] , lowerCamelCase : Any , lowerCamelCase : List[str] , lowerCamelCase : str ) -> List[Any]: """simple docstring""" _UpperCAmelCase = self._get_clip_similarity(pos_prompts["""prompts"""] , lowerCamelCase , weights=(1 / pos_prompts["""weights"""]) ) if neg_prompts: _UpperCAmelCase = self._get_clip_similarity(neg_prompts["""prompts"""] , lowerCamelCase , weights=neg_prompts["""weights"""] ) else: _UpperCAmelCase = torch.tensor([1] , device=self.device ) _UpperCAmelCase = -torch.log(lowerCamelCase ) + torch.log(lowerCamelCase ) return loss def lowerCamelCase ( self : Any , lowerCamelCase : Optional[Any] , lowerCamelCase : Optional[int] , lowerCamelCase : List[Any] ) -> List[Any]: """simple docstring""" _UpperCAmelCase = torch.randn_like(self.latent , requires_grad=lowerCamelCase , device=self.device ) _UpperCAmelCase = torch.optim.Adam([vector] , lr=self.lr ) for i in range(self.iterations ): optim.zero_grad() _UpperCAmelCase = self._add_vector(lowerCamelCase ) _UpperCAmelCase = loop_post_process(lowerCamelCase ) _UpperCAmelCase = self._get_CLIP_loss(lowerCamelCase , lowerCamelCase , lowerCamelCase ) print("""CLIP loss""" , lowerCamelCase ) if self.log: wandb.log({"""CLIP Loss""": clip_loss} ) clip_loss.backward(retain_graph=lowerCamelCase ) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0] ) else: yield vector def lowerCamelCase ( self : str , lowerCamelCase : str , lowerCamelCase : List[str] , lowerCamelCase : str ) -> str: """simple docstring""" wandb.init(reinit=lowerCamelCase , project="""face-editor""" ) wandb.config.update({"""Positive Prompts""": positive_prompts} ) wandb.config.update({"""Negative Prompts""": negative_prompts} ) wandb.config.update({"""lr""": self.lr, """iterations""": self.iterations} ) if image_path: _UpperCAmelCase = Image.open(lowerCamelCase ) _UpperCAmelCase = image.resize((256, 256) ) wandb.log("""Original Image""" , wandb.Image(lowerCamelCase ) ) def lowerCamelCase ( self : Dict , lowerCamelCase : Union[str, Any] ) -> int: """simple docstring""" if not prompts: return [] _UpperCAmelCase = [] _UpperCAmelCase = [] if isinstance(lowerCamelCase , lowerCamelCase ): _UpperCAmelCase = [prompt.strip() for prompt in prompts.split("""|""" )] for prompt in prompts: if isinstance(lowerCamelCase , (tuple, list) ): _UpperCAmelCase = prompt[0] _UpperCAmelCase = float(prompt[1] ) elif ":" in prompt: _UpperCAmelCase , _UpperCAmelCase = prompt.split(""":""" ) _UpperCAmelCase = float(lowerCamelCase ) else: _UpperCAmelCase = prompt _UpperCAmelCase = 1.0 processed_prompts.append(lowerCamelCase ) weights.append(lowerCamelCase ) return { "prompts": processed_prompts, "weights": torch.tensor(lowerCamelCase , device=self.device ), } def lowerCamelCase ( self : List[str] , lowerCamelCase : int , lowerCamelCase : Dict=None , lowerCamelCase : int=None , lowerCamelCase : Union[str, Any]=True , lowerCamelCase : Optional[int]=False , lowerCamelCase : Any=True , lowerCamelCase : Optional[int]=True , lowerCamelCase : Tuple=None , ) -> int: """simple docstring""" if image_path: _UpperCAmelCase = self._get_latent(lowerCamelCase ) else: _UpperCAmelCase = torch.randn(self.latent_dim , device=self.device ) if self.log: self._init_logging(lowerCamelCase , lowerCamelCase , lowerCamelCase ) assert pos_prompts, "You must provide at least one positive prompt." _UpperCAmelCase = self.process_prompts(lowerCamelCase ) _UpperCAmelCase = self.process_prompts(lowerCamelCase ) if save_final and save_path is None: _UpperCAmelCase = os.path.join("""./outputs/""" , """_""".join(pos_prompts["""prompts"""] ) ) if not os.path.exists(lowerCamelCase ): os.makedirs(lowerCamelCase ) else: _UpperCAmelCase = save_path + """_""" + get_timestamp() os.makedirs(lowerCamelCase ) _UpperCAmelCase = save_path _UpperCAmelCase = self.vqgan.decode(self.latent )[0] if show_intermediate: print("""Original Image""" ) show_pil(custom_to_pil(lowerCamelCase ) ) _UpperCAmelCase = loop_post_process(lowerCamelCase ) for iter, transformed_img in enumerate(self._optimize_CLIP(lowerCamelCase , lowerCamelCase , lowerCamelCase ) ): if show_intermediate: show_pil(lowerCamelCase ) if save_intermediate: transformed_img.save(os.path.join(self.save_path , f"""iter_{iter:03d}.png""" ) ) if self.log: wandb.log({"""Image""": wandb.Image(lowerCamelCase )} ) if show_final: show_pil(lowerCamelCase ) if save_final: transformed_img.save(os.path.join(self.save_path , f"""iter_{iter:03d}_final.png""" ) )
402
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __a: Optional[Any] = logging.get_logger(__name__) __a: str = { '''google/bit-50''': '''https://huggingface.co/google/bit-50/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase , UpperCAmelCase ): '''simple docstring''' _lowerCamelCase = '''bit''' _lowerCamelCase = ['''preactivation''', '''bottleneck'''] _lowerCamelCase = ['''SAME''', '''VALID'''] def __init__( self : List[Any] , lowerCamelCase : Dict=3 , lowerCamelCase : str=64 , lowerCamelCase : Union[str, Any]=[256, 512, 1024, 2048] , lowerCamelCase : Union[str, Any]=[3, 4, 6, 3] , lowerCamelCase : Optional[int]="preactivation" , lowerCamelCase : Optional[int]="relu" , lowerCamelCase : Optional[int]=None , lowerCamelCase : List[Any]=32 , lowerCamelCase : Tuple=0.0 , lowerCamelCase : Optional[int]=False , lowerCamelCase : Any=32 , lowerCamelCase : Tuple=1 , lowerCamelCase : Optional[int]=None , lowerCamelCase : str=None , **lowerCamelCase : Any , ) -> Optional[int]: """simple docstring""" super().__init__(**lowerCamelCase ) if layer_type not in self.layer_types: raise ValueError(f"""layer_type={layer_type} is not one of {",".join(self.layer_types )}""" ) if global_padding is not None: if global_padding.upper() in self.supported_padding: _UpperCAmelCase = global_padding.upper() else: raise ValueError(f"""Padding strategy {global_padding} not supported""" ) _UpperCAmelCase = num_channels _UpperCAmelCase = embedding_size _UpperCAmelCase = hidden_sizes _UpperCAmelCase = depths _UpperCAmelCase = layer_type _UpperCAmelCase = hidden_act _UpperCAmelCase = global_padding _UpperCAmelCase = num_groups _UpperCAmelCase = drop_path_rate _UpperCAmelCase = embedding_dynamic_padding _UpperCAmelCase = output_stride _UpperCAmelCase = width_factor _UpperCAmelCase = ["""stem"""] + [f"""stage{idx}""" for idx in range(1 , len(lowerCamelCase ) + 1 )] _UpperCAmelCase , _UpperCAmelCase = get_aligned_output_features_output_indices( out_features=lowerCamelCase , out_indices=lowerCamelCase , stage_names=self.stage_names )
402
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __A ( UpperCamelCase_ , unittest.TestCase ): a__ : Tuple = KandinskyInpaintPipeline a__ : Tuple = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image"""] a__ : Union[str, Any] = [ """prompt""", """negative_prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image""", ] a__ : Any = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """negative_prompt""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] a__ : Tuple = False @property def _lowercase (self : int ): return 32 @property def _lowercase (self : Any ): return 32 @property def _lowercase (self : Dict ): return self.time_input_dim @property def _lowercase (self : Union[str, Any] ): return self.time_input_dim * 4 @property def _lowercase (self : List[str] ): return 100 @property def _lowercase (self : List[str] ): UpperCAmelCase_ = XLMRobertaTokenizerFast.from_pretrained("YiYiXu/tiny-random-mclip-base" ) return tokenizer @property def _lowercase (self : Union[str, Any] ): torch.manual_seed(0 ) UpperCAmelCase_ = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1005 , ) UpperCAmelCase_ = MultilingualCLIP(__A ) UpperCAmelCase_ = text_encoder.eval() return text_encoder @property def _lowercase (self : str ): torch.manual_seed(0 ) UpperCAmelCase_ = { "in_channels": 9, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "text_image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "text_image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } UpperCAmelCase_ = UNetaDConditionModel(**__A ) return model @property def _lowercase (self : Dict ): return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def _lowercase (self : Union[str, Any] ): torch.manual_seed(0 ) UpperCAmelCase_ = VQModel(**self.dummy_movq_kwargs ) return model def _lowercase (self : Optional[int] ): UpperCAmelCase_ = self.dummy_text_encoder UpperCAmelCase_ = self.dummy_tokenizer UpperCAmelCase_ = self.dummy_unet UpperCAmelCase_ = self.dummy_movq UpperCAmelCase_ = DDIMScheduler( num_train_timesteps=1000 , beta_schedule="linear" , beta_start=0.0_00_85 , beta_end=0.0_12 , clip_sample=__A , set_alpha_to_one=__A , steps_offset=1 , prediction_type="epsilon" , thresholding=__A , ) UpperCAmelCase_ = { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "movq": movq, } return components def _lowercase (self : Any , __a : Union[str, Any] , __a : int=0 ): UpperCAmelCase_ = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(__A ) ).to(__A ) UpperCAmelCase_ = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(__A ) # create init_image UpperCAmelCase_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(__A ) ).to(__A ) UpperCAmelCase_ = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase_ = Image.fromarray(np.uinta(__A ) ).convert("RGB" ).resize((256, 256) ) # create mask UpperCAmelCase_ = np.ones((64, 64) , dtype=np.floataa ) UpperCAmelCase_ = 0 if str(__A ).startswith("mps" ): UpperCAmelCase_ = torch.manual_seed(__A ) else: UpperCAmelCase_ = torch.Generator(device=__A ).manual_seed(__A ) UpperCAmelCase_ = { "prompt": "horse", "image": init_image, "mask_image": mask, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 64, "width": 64, "num_inference_steps": 2, "guidance_scale": 4.0, "output_type": "np", } return inputs def _lowercase (self : Optional[int] ): UpperCAmelCase_ = "cpu" UpperCAmelCase_ = self.get_dummy_components() UpperCAmelCase_ = self.pipeline_class(**__A ) UpperCAmelCase_ = pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) UpperCAmelCase_ = pipe(**self.get_dummy_inputs(__A ) ) UpperCAmelCase_ = output.images UpperCAmelCase_ = pipe( **self.get_dummy_inputs(__A ) , return_dict=__A , )[0] UpperCAmelCase_ = image[0, -3:, -3:, -1] UpperCAmelCase_ = image_from_tuple[0, -3:, -3:, -1] print(f"""image.shape {image.shape}""" ) assert image.shape == (1, 64, 64, 3) UpperCAmelCase_ = np.array( [0.8_32_69_19, 0.73_79_04_67, 0.20_91_85_81, 0.9_30_96_12, 0.5_51_17_91, 0.43_71_33_28, 0.5_51_33_21, 0.49_92_29_34, 0.59_49_77_86] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" def _lowercase (self : str ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __A ( unittest.TestCase ): def _lowercase (self : Any ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase (self : Union[str, Any] ): UpperCAmelCase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy" ) UpperCAmelCase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) UpperCAmelCase_ = np.ones((768, 768) , dtype=np.floataa ) UpperCAmelCase_ = 0 UpperCAmelCase_ = "a hat" UpperCAmelCase_ = KandinskyPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1-prior" , torch_dtype=torch.floataa ) pipe_prior.to(__A ) UpperCAmelCase_ = KandinskyInpaintPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1-inpaint" , torch_dtype=torch.floataa ) UpperCAmelCase_ = pipeline.to(__A ) pipeline.set_progress_bar_config(disable=__A ) UpperCAmelCase_ = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase_ = pipe_prior( __A , generator=__A , num_inference_steps=5 , negative_prompt="" , ).to_tuple() UpperCAmelCase_ = pipeline( __A , image=__A , mask_image=__A , image_embeds=__A , negative_image_embeds=__A , generator=__A , num_inference_steps=100 , height=768 , width=768 , output_type="np" , ) UpperCAmelCase_ = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(__A , __A )
78
import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer __lowerCamelCase : Dict = """bart""" __lowerCamelCase : Union[str, Any] = True @st.cache(allow_output_mutation=snake_case_ ) def SCREAMING_SNAKE_CASE ( ): if LOAD_DENSE_INDEX: snake_case__ : Optional[Any] = AutoTokenizer.from_pretrained("yjernite/retribert-base-uncased" ) snake_case__ : str = AutoModel.from_pretrained("yjernite/retribert-base-uncased" ).to("cuda:0" ) snake_case__ : Dict = qar_model.eval() else: snake_case__, snake_case__ : str = (None, None) if MODEL_TYPE == "bart": snake_case__ : str = AutoTokenizer.from_pretrained("yjernite/bart_eli5" ) snake_case__ : int = AutoModelForSeqaSeqLM.from_pretrained("yjernite/bart_eli5" ).to("cuda:0" ) snake_case__ : str = torch.load("seq2seq_models/eli5_bart_model_blm_2.pth" ) sas_model.load_state_dict(save_dict["model"] ) snake_case__ : List[Any] = sas_model.eval() else: snake_case__, snake_case__ : Any = make_qa_sas_model( model_name="t5-small" , from_file="seq2seq_models/eli5_t5_model_1024_4.pth" , device="cuda:0" ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=snake_case_ ) def SCREAMING_SNAKE_CASE ( ): if LOAD_DENSE_INDEX: snake_case__ : Optional[int] = faiss.StandardGpuResources() snake_case__ : int = datasets.load_dataset(path="wiki_snippets" , name="wiki40b_en_100_0" )["train"] snake_case__ : Tuple = np.memmap( "wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat" , dtype="float32" , mode="r" , shape=(wikiaab_passages.num_rows, 128) , ) snake_case__ : int = faiss.IndexFlatIP(128 ) snake_case__ : Dict = faiss.index_cpu_to_gpu(snake_case_ , 1 , snake_case_ ) wikiaab_gpu_index_flat.add(snake_case_ ) # TODO fix for larger GPU else: snake_case__, snake_case__ : int = (None, None) snake_case__ : Tuple = Elasticsearch([{"host": "localhost", "port": "9200"}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=snake_case_ ) def SCREAMING_SNAKE_CASE ( ): snake_case__ : Any = datasets.load_dataset("eli5" , name="LFQA_reddit" ) snake_case__ : Dict = elia["train_eli5"] snake_case__ : Optional[int] = np.memmap( "eli5_questions_reps.dat" , dtype="float32" , mode="r" , shape=(elia_train.num_rows, 128) ) snake_case__ : List[str] = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(snake_case_ ) return (elia_train, eli5_train_q_index) __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : int = load_indexes() __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Optional[int] = load_models() __lowerCamelCase , __lowerCamelCase : List[str] = load_train_data() def SCREAMING_SNAKE_CASE ( snake_case_ : List[Any] , snake_case_ : Optional[int]=10 ): snake_case__ : Optional[Any] = embed_questions_for_retrieval([question] , snake_case_ , snake_case_ ) snake_case__, snake_case__ : int = eli5_train_q_index.search(snake_case_ , snake_case_ ) snake_case__ : Optional[int] = [elia_train[int(snake_case_ )] for i in I[0]] return nn_examples def SCREAMING_SNAKE_CASE ( snake_case_ : Optional[Any] , snake_case_ : List[Any]="wiki40b" , snake_case_ : Optional[int]="dense" , snake_case_ : List[str]=10 ): if source == "none": snake_case__, snake_case__ : Tuple = (" <P> ".join(["" for _ in range(11 )] ).strip(), []) else: if method == "dense": snake_case__, snake_case__ : Tuple = query_qa_dense_index( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) else: snake_case__, snake_case__ : Dict = query_es_index( snake_case_ , snake_case_ , index_name="english_wiki40b_snippets_100w" , n_results=snake_case_ , ) snake_case__ : Optional[Any] = [ (res["article_title"], res["section_title"].strip(), res["score"], res["passage_text"]) for res in hit_lst ] snake_case__ : int = "question: {} context: {}".format(snake_case_ , snake_case_ ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda snake_case_ : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda snake_case_ : None), } ) def SCREAMING_SNAKE_CASE ( snake_case_ : Union[str, Any] , snake_case_ : Optional[Any] , snake_case_ : Union[str, Any] , snake_case_ : Optional[Any]=64 , snake_case_ : List[str]=256 , snake_case_ : Union[str, Any]=False , snake_case_ : Optional[Any]=2 , snake_case_ : str=0.95 , snake_case_ : Optional[Any]=0.8 ): with torch.no_grad(): snake_case__ : List[str] = qa_sas_generate( snake_case_ , snake_case_ , snake_case_ , num_answers=1 , num_beams=snake_case_ , min_len=snake_case_ , max_len=snake_case_ , do_sample=snake_case_ , temp=snake_case_ , top_p=snake_case_ , top_k=snake_case_ , max_input_length=1024 , device="cuda:0" , )[0] return (answer, support_list) st.title("""Long Form Question Answering with ELI5""") # Start sidebar __lowerCamelCase : Dict = """<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>""" __lowerCamelCase : Dict = """ <html> <head> <style> .img-container { padding-left: 90px; padding-right: 90px; padding-top: 50px; padding-bottom: 50px; background-color: #f0f3f9; } </style> </head> <body> <span class=\"img-container\"> <!-- Inline parent element --> %s </span> </body> </html> """ % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia __lowerCamelCase : List[Any] = """ This demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html). First, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset, a pre-processed fixed snapshot of Wikipedia. """ st.sidebar.markdown(description, unsafe_allow_html=True) __lowerCamelCase : Optional[int] = [ """Answer the question""", """View the retrieved document only""", """View the most similar ELI5 question and answer""", """Show me everything, please!""", ] __lowerCamelCase : Dict = st.sidebar.checkbox("""Demo options""") if demo_options: __lowerCamelCase : Tuple = st.sidebar.selectbox( """""", action_list, index=3, ) __lowerCamelCase : Optional[Any] = action_list.index(action_st) __lowerCamelCase : int = st.sidebar.selectbox( """""", ["""Show full text of passages""", """Show passage section titles"""], index=0, ) __lowerCamelCase : List[Any] = show_type == """Show full text of passages""" else: __lowerCamelCase : Any = 3 __lowerCamelCase : str = True __lowerCamelCase : Optional[Any] = st.sidebar.checkbox("""Retrieval options""") if retrieval_options: __lowerCamelCase : Any = """ ### Information retriever options The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs. The answer is then generated by sequence to sequence model which takes the question and retrieved document as input. """ st.sidebar.markdown(retriever_info) __lowerCamelCase : List[str] = st.sidebar.selectbox("""Which Wikipedia format should the model use?""", ["""wiki40b""", """none"""]) __lowerCamelCase : int = st.sidebar.selectbox("""Which Wikipedia indexer should the model use?""", ["""dense""", """sparse""", """mixed"""]) else: __lowerCamelCase : Optional[int] = """wiki40b""" __lowerCamelCase : Optional[Any] = """dense""" __lowerCamelCase : int = """beam""" __lowerCamelCase : Optional[Any] = 2 __lowerCamelCase : Any = 64 __lowerCamelCase : List[str] = 256 __lowerCamelCase : Optional[int] = None __lowerCamelCase : int = None __lowerCamelCase : Any = st.sidebar.checkbox("""Generation options""") if generate_options: __lowerCamelCase : Optional[Any] = """ ### Answer generation options The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large) weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with **beam** search, or **sample** from the decoder's output probabilities. """ st.sidebar.markdown(generate_info) __lowerCamelCase : Optional[Any] = st.sidebar.selectbox("""Would you like to use beam search or sample an answer?""", ["""beam""", """sampled"""]) __lowerCamelCase : Optional[Any] = st.sidebar.slider( """Minimum generation length""", min_value=8, max_value=256, value=64, step=8, format=None, key=None ) __lowerCamelCase : List[str] = st.sidebar.slider( """Maximum generation length""", min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": __lowerCamelCase : Optional[Any] = st.sidebar.slider("""Beam size""", min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: __lowerCamelCase : List[str] = st.sidebar.slider( """Nucleus sampling p""", min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) __lowerCamelCase : str = st.sidebar.slider( """Temperature""", min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) __lowerCamelCase : Any = None # start main text __lowerCamelCase : Any = [ """<MY QUESTION>""", """How do people make chocolate?""", """Why do we get a fever when we are sick?""", """How can different animals perceive different colors?""", """What is natural language processing?""", """What's the best way to treat a sunburn?""", """What exactly are vitamins ?""", """How does nuclear energy provide electricity?""", """What's the difference between viruses and bacteria?""", """Why are flutes classified as woodwinds when most of them are made out of metal ?""", """Why do people like drinking coffee even though it tastes so bad?""", """What happens when wine ages? How does it make the wine taste better?""", """If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?""", """How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?""", """How does New Zealand have so many large bird predators?""", ] __lowerCamelCase : Dict = st.selectbox( """What would you like to ask? ---- select <MY QUESTION> to enter a new query""", questions_list, index=1, ) if question_s == "<MY QUESTION>": __lowerCamelCase : Optional[Any] = st.text_input("""Enter your question here:""", """""") else: __lowerCamelCase : List[str] = question_s if st.button("""Show me!"""): if action in [0, 1, 3]: if index_type == "mixed": __lowerCamelCase , __lowerCamelCase : Tuple = make_support(question, source=wiki_source, method="""dense""", n_results=10) __lowerCamelCase , __lowerCamelCase : Optional[Any] = make_support(question, source=wiki_source, method="""sparse""", n_results=10) __lowerCamelCase : int = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] __lowerCamelCase : List[str] = support_list[:10] __lowerCamelCase : Tuple = """<P> """ + """ <P> """.join([res[-1] for res in support_list]) else: __lowerCamelCase , __lowerCamelCase : Union[str, Any] = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: __lowerCamelCase , __lowerCamelCase : List[str] = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == """sampled"""), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown("""### The model generated answer is:""") st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown("""--- \n ### The model is drawing information from the following Wikipedia passages:""") for i, res in enumerate(support_list): __lowerCamelCase : List[str] = """https://en.wikipedia.org/wiki/{}""".format(res[0].replace(""" """, """_""")) __lowerCamelCase : str = res[1].strip() if sec_titles == "": __lowerCamelCase : Union[str, Any] = """[{}]({})""".format(res[0], wiki_url) else: __lowerCamelCase : List[str] = sec_titles.split(""" & """) __lowerCamelCase : Dict = """ & """.join( ["""[{}]({}#{})""".format(sec.strip(), wiki_url, sec.strip().replace(""" """, """_""")) for sec in sec_list] ) st.markdown( """{0:02d} - **Article**: {1:<18} <br> _Section_: {2}""".format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( """> <span style=\"font-family:arial; font-size:10pt;\">""" + res[-1] + """</span>""", unsafe_allow_html=True ) if action in [2, 3]: __lowerCamelCase : Optional[Any] = find_nearest_training(question) __lowerCamelCase : Optional[Any] = nn_train_list[0] st.markdown( """--- \n ### The most similar question in the ELI5 training set was: \n\n {}""".format(train_exple["""title"""]) ) __lowerCamelCase : Union[str, Any] = [ """{}. {}""".format(i + 1, """ \n""".join([line.strip() for line in ans.split("""\n""") if line.strip() != """"""])) for i, (ans, sc) in enumerate(zip(train_exple["""answers"""]["""text"""], train_exple["""answers"""]["""score"""])) if i == 0 or sc > 2 ] st.markdown("""##### Its answers were: \n\n {}""".format("""\n""".join(answers_st))) __lowerCamelCase : List[str] = """ --- **Disclaimer** *The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system. Evaluating biases of such a model and ensuring factual generations are still very much open research problems. Therefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.* """ st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
297
0
from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging A : str = logging.get_logger(__name__) A : str = { '''deepmind/language-perceiver''': '''https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json''', # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class A (SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCamelCase : Optional[Any] = '''perceiver''' def __init__( self : Tuple , __lowerCAmelCase : Optional[Any]=2_56 , __lowerCAmelCase : List[str]=12_80 , __lowerCAmelCase : Dict=7_68 , __lowerCAmelCase : str=1 , __lowerCAmelCase : str=26 , __lowerCAmelCase : List[Any]=8 , __lowerCAmelCase : Tuple=8 , __lowerCAmelCase : Optional[Any]=None , __lowerCAmelCase : str=None , __lowerCAmelCase : str="kv" , __lowerCAmelCase : Optional[int]=1 , __lowerCAmelCase : List[Any]=1 , __lowerCAmelCase : List[str]="gelu" , __lowerCAmelCase : int=0.1 , __lowerCAmelCase : str=0.0_2 , __lowerCAmelCase : Dict=1e-12 , __lowerCAmelCase : List[Any]=True , __lowerCAmelCase : List[Any]=2_62 , __lowerCAmelCase : Tuple=20_48 , __lowerCAmelCase : str=56 , __lowerCAmelCase : Union[str, Any]=[3_68, 4_96] , __lowerCAmelCase : str=16 , __lowerCAmelCase : str=19_20 , __lowerCAmelCase : Tuple=16 , __lowerCAmelCase : List[Any]=[1, 16, 2_24, 2_24] , **__lowerCAmelCase : Any , ) -> List[Any]: """simple docstring""" super().__init__(**__lowerCAmelCase ) A__ = num_latents A__ = d_latents A__ = d_model A__ = num_blocks A__ = num_self_attends_per_block A__ = num_self_attention_heads A__ = num_cross_attention_heads A__ = qk_channels A__ = v_channels A__ = cross_attention_shape_for_attention A__ = self_attention_widening_factor A__ = cross_attention_widening_factor A__ = hidden_act A__ = attention_probs_dropout_prob A__ = initializer_range A__ = layer_norm_eps A__ = use_query_residual # masked language modeling attributes A__ = vocab_size A__ = max_position_embeddings # image classification attributes A__ = image_size # flow attributes A__ = train_size # multimodal autoencoding attributes A__ = num_frames A__ = audio_samples_per_frame A__ = samples_per_patch A__ = output_shape class A (SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def a_ ( self : str ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": A__ = {0: """batch""", 1: """choice""", 2: """sequence"""} else: A__ = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""inputs""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] ) @property def a_ ( self : List[Any] ) -> float: """simple docstring""" return 1e-4 def a_ ( self : int , __lowerCAmelCase : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , __lowerCAmelCase : int = -1 , __lowerCAmelCase : int = -1 , __lowerCAmelCase : int = -1 , __lowerCAmelCase : bool = False , __lowerCAmelCase : Optional[TensorType] = None , __lowerCAmelCase : int = 3 , __lowerCAmelCase : int = 40 , __lowerCAmelCase : int = 40 , ) -> Mapping[str, Any]: """simple docstring""" if isinstance(__lowerCAmelCase , __lowerCAmelCase ): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX A__ = compute_effective_axis_dimension( __lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX A__ = preprocessor.num_special_tokens_to_add(__lowerCAmelCase ) A__ = compute_effective_axis_dimension( __lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__lowerCAmelCase ) # Generate dummy inputs according to compute batch and sequence A__ = [""" """.join(["""a"""] ) * seq_length] * batch_size A__ = dict(preprocessor(__lowerCAmelCase , return_tensors=__lowerCAmelCase ) ) A__ = inputs.pop("""input_ids""" ) return inputs elif isinstance(__lowerCAmelCase , __lowerCAmelCase ) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX A__ = compute_effective_axis_dimension(__lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch ) A__ = self._generate_dummy_images(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) A__ = dict(preprocessor(images=__lowerCAmelCase , return_tensors=__lowerCAmelCase ) ) A__ = inputs.pop("""pixel_values""" ) return inputs else: raise ValueError( """Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor.""" )
700
# limitations under the License. from typing import Optional, Tuple, Union import torch from diffusers import DiffusionPipeline, ImagePipelineOutput class A (SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Optional[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Any ) -> Union[str, Any]: """simple docstring""" super().__init__() self.register_modules(unet=__lowerCAmelCase , scheduler=__lowerCAmelCase ) @torch.no_grad() def __call__( self : Optional[Any] , __lowerCAmelCase : int = 1 , __lowerCAmelCase : Optional[torch.Generator] = None , __lowerCAmelCase : int = 50 , __lowerCAmelCase : Optional[str] = "pil" , __lowerCAmelCase : bool = True , **__lowerCAmelCase : List[str] , ) -> Union[ImagePipelineOutput, Tuple]: """simple docstring""" A__ = torch.randn( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=__lowerCAmelCase , ) A__ = image.to(self.device ) # set step values self.scheduler.set_timesteps(__lowerCAmelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output A__ = self.unet(__lowerCAmelCase , __lowerCAmelCase ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 A__ = self.scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ).prev_sample A__ = (image / 2 + 0.5).clamp(0 , 1 ) A__ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": A__ = self.numpy_to_pil(__lowerCAmelCase ) if not return_dict: return (image,), "This is a local test" return ImagePipelineOutput(images=__lowerCAmelCase ), "This is a local test"
247
0
"""simple docstring""" from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = ['''image_processor''', '''tokenizer'''] _lowerCamelCase = '''AutoImageProcessor''' _lowerCamelCase = '''AutoTokenizer''' def __init__( self , _lowercase , _lowercase ) -> Optional[Any]: '''simple docstring''' super().__init__(_lowercase , _lowercase ) snake_case_ : List[Any] = self.image_processor def __call__( self , _lowercase=None , _lowercase=None , _lowercase=None , **_lowercase ) -> Tuple: '''simple docstring''' if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: snake_case_ : List[str] = self.tokenizer(_lowercase , return_tensors=_lowercase , **_lowercase ) if images is not None: snake_case_ : Optional[int] = self.image_processor(_lowercase , return_tensors=_lowercase , **_lowercase ) if text is not None and images is not None: snake_case_ : List[Any] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_lowercase ) , tensor_type=_lowercase ) def UpperCAmelCase__ ( self , *_lowercase , **_lowercase ) -> Tuple: '''simple docstring''' return self.tokenizer.batch_decode(*_lowercase , **_lowercase ) def UpperCAmelCase__ ( self , *_lowercase , **_lowercase ) -> int: '''simple docstring''' return self.tokenizer.decode(*_lowercase , **_lowercase ) @property def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' return ["input_ids", "attention_mask", "pixel_values"]
58
from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig a =logging.get_logger(__name__) # General docstring a ="""RegNetConfig""" # Base docstring a ="""facebook/regnet-y-040""" a =[1, 1088, 7, 7] # Image classification docstring a ="""facebook/regnet-y-040""" a ="""tabby, tabby cat""" a =[ """facebook/regnet-y-040""", # See all regnet models at https://huggingface.co/models?filter=regnet ] class A_ ( tf.keras.layers.Layer ): def __init__( self : Optional[Any] ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : int = 3 ,SCREAMING_SNAKE_CASE__ : int = 1 ,SCREAMING_SNAKE_CASE__ : int = 1 ,SCREAMING_SNAKE_CASE__ : Optional[str] = "relu" ,**SCREAMING_SNAKE_CASE__ : Optional[int] ,): super().__init__(**SCREAMING_SNAKE_CASE__) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb __lowerCamelCase : Optional[Any] = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2) __lowerCamelCase : Union[str, Any] = tf.keras.layers.ConvaD( filters=SCREAMING_SNAKE_CASE__ ,kernel_size=SCREAMING_SNAKE_CASE__ ,strides=SCREAMING_SNAKE_CASE__ ,padding='VALID' ,groups=SCREAMING_SNAKE_CASE__ ,use_bias=SCREAMING_SNAKE_CASE__ ,name='convolution' ,) __lowerCamelCase : int = tf.keras.layers.BatchNormalization(epsilon=1E-5 ,momentum=0.9 ,name='normalization') __lowerCamelCase : Union[str, Any] = ACTaFN[activation] if activation is not None else tf.identity def lowerCAmelCase ( self : Any ,SCREAMING_SNAKE_CASE__ : List[str]): __lowerCamelCase : List[Any] = self.convolution(self.padding(SCREAMING_SNAKE_CASE__)) __lowerCamelCase : Union[str, Any] = self.normalization(SCREAMING_SNAKE_CASE__) __lowerCamelCase : List[Any] = self.activation(SCREAMING_SNAKE_CASE__) return hidden_state class A_ ( tf.keras.layers.Layer ): def __init__( self : str ,SCREAMING_SNAKE_CASE__ : RegNetConfig ,**SCREAMING_SNAKE_CASE__ : Dict): super().__init__(**SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[int] = config.num_channels __lowerCamelCase : Dict = TFRegNetConvLayer( out_channels=config.embedding_size ,kernel_size=3 ,stride=2 ,activation=config.hidden_act ,name='embedder' ,) def lowerCAmelCase ( self : Tuple ,SCREAMING_SNAKE_CASE__ : List[Any]): __lowerCamelCase : Optional[int] = shape_list(SCREAMING_SNAKE_CASE__)[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( 'Make sure that the channel dimension of the pixel values match with the one set in the configuration.') # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) __lowerCamelCase : Optional[int] = tf.transpose(SCREAMING_SNAKE_CASE__ ,perm=(0, 2, 3, 1)) __lowerCamelCase : List[Any] = self.embedder(SCREAMING_SNAKE_CASE__) return hidden_state class A_ ( tf.keras.layers.Layer ): def __init__( self : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : int = 2 ,**SCREAMING_SNAKE_CASE__ : Tuple): super().__init__(**SCREAMING_SNAKE_CASE__) __lowerCamelCase : Any = tf.keras.layers.ConvaD( filters=SCREAMING_SNAKE_CASE__ ,kernel_size=1 ,strides=SCREAMING_SNAKE_CASE__ ,use_bias=SCREAMING_SNAKE_CASE__ ,name='convolution') __lowerCamelCase : Optional[Any] = tf.keras.layers.BatchNormalization(epsilon=1E-5 ,momentum=0.9 ,name='normalization') def lowerCAmelCase ( self : Dict ,SCREAMING_SNAKE_CASE__ : tf.Tensor ,SCREAMING_SNAKE_CASE__ : bool = False): return self.normalization(self.convolution(SCREAMING_SNAKE_CASE__) ,training=SCREAMING_SNAKE_CASE__) class A_ ( tf.keras.layers.Layer ): def __init__( self : int ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : int ,**SCREAMING_SNAKE_CASE__ : Any): super().__init__(**SCREAMING_SNAKE_CASE__) __lowerCamelCase : int = tf.keras.layers.GlobalAveragePoolingaD(keepdims=SCREAMING_SNAKE_CASE__ ,name='pooler') __lowerCamelCase : Dict = [ tf.keras.layers.ConvaD(filters=SCREAMING_SNAKE_CASE__ ,kernel_size=1 ,activation='relu' ,name='attention.0'), tf.keras.layers.ConvaD(filters=SCREAMING_SNAKE_CASE__ ,kernel_size=1 ,activation='sigmoid' ,name='attention.2'), ] def lowerCAmelCase ( self : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : int): # [batch_size, h, w, num_channels] -> [batch_size, 1, 1, num_channels] __lowerCamelCase : Optional[Any] = self.pooler(SCREAMING_SNAKE_CASE__) for layer_module in self.attention: __lowerCamelCase : Any = layer_module(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[int] = hidden_state * pooled return hidden_state class A_ ( tf.keras.layers.Layer ): def __init__( self : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : RegNetConfig ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : int = 1 ,**SCREAMING_SNAKE_CASE__ : List[Any]): super().__init__(**SCREAMING_SNAKE_CASE__) __lowerCamelCase : Tuple = in_channels != out_channels or stride != 1 __lowerCamelCase : Union[str, Any] = max(1 ,out_channels // config.groups_width) __lowerCamelCase : Dict = ( TFRegNetShortCut(SCREAMING_SNAKE_CASE__ ,stride=SCREAMING_SNAKE_CASE__ ,name='shortcut') if should_apply_shortcut else tf.keras.layers.Activation('linear' ,name='shortcut') ) # `self.layers` instead of `self.layer` because that is a reserved argument. __lowerCamelCase : Optional[int] = [ TFRegNetConvLayer(SCREAMING_SNAKE_CASE__ ,kernel_size=1 ,activation=config.hidden_act ,name='layer.0'), TFRegNetConvLayer( SCREAMING_SNAKE_CASE__ ,stride=SCREAMING_SNAKE_CASE__ ,groups=SCREAMING_SNAKE_CASE__ ,activation=config.hidden_act ,name='layer.1'), TFRegNetConvLayer(SCREAMING_SNAKE_CASE__ ,kernel_size=1 ,activation=SCREAMING_SNAKE_CASE__ ,name='layer.2'), ] __lowerCamelCase : Dict = ACTaFN[config.hidden_act] def lowerCAmelCase ( self : List[str] ,SCREAMING_SNAKE_CASE__ : Optional[int]): __lowerCamelCase : int = hidden_state for layer_module in self.layers: __lowerCamelCase : List[str] = layer_module(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[int] = self.shortcut(SCREAMING_SNAKE_CASE__) hidden_state += residual __lowerCamelCase : int = self.activation(SCREAMING_SNAKE_CASE__) return hidden_state class A_ ( tf.keras.layers.Layer ): def __init__( self : Optional[Any] ,SCREAMING_SNAKE_CASE__ : RegNetConfig ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : int = 1 ,**SCREAMING_SNAKE_CASE__ : List[str]): super().__init__(**SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[Any] = in_channels != out_channels or stride != 1 __lowerCamelCase : Tuple = max(1 ,out_channels // config.groups_width) __lowerCamelCase : int = ( TFRegNetShortCut(SCREAMING_SNAKE_CASE__ ,stride=SCREAMING_SNAKE_CASE__ ,name='shortcut') if should_apply_shortcut else tf.keras.layers.Activation('linear' ,name='shortcut') ) __lowerCamelCase : Optional[int] = [ TFRegNetConvLayer(SCREAMING_SNAKE_CASE__ ,kernel_size=1 ,activation=config.hidden_act ,name='layer.0'), TFRegNetConvLayer( SCREAMING_SNAKE_CASE__ ,stride=SCREAMING_SNAKE_CASE__ ,groups=SCREAMING_SNAKE_CASE__ ,activation=config.hidden_act ,name='layer.1'), TFRegNetSELayer(SCREAMING_SNAKE_CASE__ ,reduced_channels=int(round(in_channels / 4)) ,name='layer.2'), TFRegNetConvLayer(SCREAMING_SNAKE_CASE__ ,kernel_size=1 ,activation=SCREAMING_SNAKE_CASE__ ,name='layer.3'), ] __lowerCamelCase : List[Any] = ACTaFN[config.hidden_act] def lowerCAmelCase ( self : Any ,SCREAMING_SNAKE_CASE__ : str): __lowerCamelCase : Optional[int] = hidden_state for layer_module in self.layers: __lowerCamelCase : Dict = layer_module(SCREAMING_SNAKE_CASE__) __lowerCamelCase : List[Any] = self.shortcut(SCREAMING_SNAKE_CASE__) hidden_state += residual __lowerCamelCase : Any = self.activation(SCREAMING_SNAKE_CASE__) return hidden_state class A_ ( tf.keras.layers.Layer ): def __init__( self : int ,SCREAMING_SNAKE_CASE__ : RegNetConfig ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : int = 2 ,SCREAMING_SNAKE_CASE__ : int = 2 ,**SCREAMING_SNAKE_CASE__ : Tuple): super().__init__(**SCREAMING_SNAKE_CASE__) __lowerCamelCase : Any = TFRegNetXLayer if config.layer_type == 'x' else TFRegNetYLayer __lowerCamelCase : Tuple = [ # downsampling is done in the first layer with stride of 2 layer(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,stride=SCREAMING_SNAKE_CASE__ ,name='layers.0'), *[layer(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,name=F"layers.{i+1}") for i in range(depth - 1)], ] def lowerCAmelCase ( self : Any ,SCREAMING_SNAKE_CASE__ : List[Any]): for layer_module in self.layers: __lowerCamelCase : Any = layer_module(SCREAMING_SNAKE_CASE__) return hidden_state class A_ ( tf.keras.layers.Layer ): def __init__( self : Optional[int] ,SCREAMING_SNAKE_CASE__ : RegNetConfig ,**SCREAMING_SNAKE_CASE__ : Any): super().__init__(**SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[Any] = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( SCREAMING_SNAKE_CASE__ ,config.embedding_size ,config.hidden_sizes[0] ,stride=2 if config.downsample_in_first_stage else 1 ,depth=config.depths[0] ,name='stages.0' ,)) __lowerCamelCase : Optional[int] = zip(config.hidden_sizes ,config.hidden_sizes[1:]) for i, ((in_channels, out_channels), depth) in enumerate(zip(SCREAMING_SNAKE_CASE__ ,config.depths[1:])): self.stages.append(TFRegNetStage(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,depth=SCREAMING_SNAKE_CASE__ ,name=F"stages.{i+1}")) def lowerCAmelCase ( self : Dict ,SCREAMING_SNAKE_CASE__ : tf.Tensor ,SCREAMING_SNAKE_CASE__ : bool = False ,SCREAMING_SNAKE_CASE__ : bool = True): __lowerCamelCase : Optional[Any] = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: __lowerCamelCase : Optional[Any] = hidden_states + (hidden_state,) __lowerCamelCase : str = stage_module(SCREAMING_SNAKE_CASE__) if output_hidden_states: __lowerCamelCase : Tuple = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None) return TFBaseModelOutputWithNoAttention(last_hidden_state=SCREAMING_SNAKE_CASE__ ,hidden_states=SCREAMING_SNAKE_CASE__) @keras_serializable class A_ ( tf.keras.layers.Layer ): _UpperCAmelCase : List[Any] = RegNetConfig def __init__( self : List[Any] ,SCREAMING_SNAKE_CASE__ : int ,**SCREAMING_SNAKE_CASE__ : Optional[int]): super().__init__(**SCREAMING_SNAKE_CASE__) __lowerCamelCase : List[Any] = config __lowerCamelCase : Optional[int] = TFRegNetEmbeddings(SCREAMING_SNAKE_CASE__ ,name='embedder') __lowerCamelCase : Union[str, Any] = TFRegNetEncoder(SCREAMING_SNAKE_CASE__ ,name='encoder') __lowerCamelCase : int = tf.keras.layers.GlobalAveragePoolingaD(keepdims=SCREAMING_SNAKE_CASE__ ,name='pooler') @unpack_inputs def lowerCAmelCase ( self : Optional[Any] ,SCREAMING_SNAKE_CASE__ : tf.Tensor ,SCREAMING_SNAKE_CASE__ : Optional[bool] = None ,SCREAMING_SNAKE_CASE__ : Optional[bool] = None ,SCREAMING_SNAKE_CASE__ : bool = False ,): __lowerCamelCase : Dict = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __lowerCamelCase : Optional[Any] = return_dict if return_dict is not None else self.config.use_return_dict __lowerCamelCase : Union[str, Any] = self.embedder(SCREAMING_SNAKE_CASE__ ,training=SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[Any] = self.encoder( SCREAMING_SNAKE_CASE__ ,output_hidden_states=SCREAMING_SNAKE_CASE__ ,return_dict=SCREAMING_SNAKE_CASE__ ,training=SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[int] = encoder_outputs[0] __lowerCamelCase : int = self.pooler(SCREAMING_SNAKE_CASE__) # Change to NCHW output format have uniformity in the modules __lowerCamelCase : Union[str, Any] = tf.transpose(SCREAMING_SNAKE_CASE__ ,perm=(0, 3, 1, 2)) __lowerCamelCase : str = tf.transpose(SCREAMING_SNAKE_CASE__ ,perm=(0, 3, 1, 2)) # Change the other hidden state outputs to NCHW as well if output_hidden_states: __lowerCamelCase : Union[str, Any] = tuple([tf.transpose(SCREAMING_SNAKE_CASE__ ,perm=(0, 3, 1, 2)) for h in encoder_outputs[1]]) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=SCREAMING_SNAKE_CASE__ ,pooler_output=SCREAMING_SNAKE_CASE__ ,hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states ,) class A_ ( SCREAMING_SNAKE_CASE ): _UpperCAmelCase : Any = RegNetConfig _UpperCAmelCase : Optional[int] = '''regnet''' _UpperCAmelCase : List[Any] = '''pixel_values''' @property def lowerCAmelCase ( self : int): return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 2_2_4, 2_2_4) ,dtype=tf.floataa)} a =r""" Parameters: This model is a Tensorflow [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and behavior. config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. """ a =r""" Args: pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConveNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( '''The bare RegNet model outputting raw features without any specific head on top.''' , SCREAMING_SNAKE_CASE , ) class A_ ( SCREAMING_SNAKE_CASE ): def __init__( self : List[Any] ,SCREAMING_SNAKE_CASE__ : RegNetConfig ,*SCREAMING_SNAKE_CASE__ : Tuple ,**SCREAMING_SNAKE_CASE__ : Tuple): super().__init__(SCREAMING_SNAKE_CASE__ ,*SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__) __lowerCamelCase : List[str] = TFRegNetMainLayer(SCREAMING_SNAKE_CASE__ ,name='regnet') @unpack_inputs @add_start_docstrings_to_model_forward(SCREAMING_SNAKE_CASE__) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC ,output_type=SCREAMING_SNAKE_CASE__ ,config_class=_CONFIG_FOR_DOC ,modality='vision' ,expected_output=_EXPECTED_OUTPUT_SHAPE ,) def lowerCAmelCase ( self : List[str] ,SCREAMING_SNAKE_CASE__ : tf.Tensor ,SCREAMING_SNAKE_CASE__ : Optional[bool] = None ,SCREAMING_SNAKE_CASE__ : Optional[bool] = None ,SCREAMING_SNAKE_CASE__ : int=False ,): __lowerCamelCase : List[Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __lowerCamelCase : Optional[int] = return_dict if return_dict is not None else self.config.use_return_dict __lowerCamelCase : Tuple = self.regnet( pixel_values=SCREAMING_SNAKE_CASE__ ,output_hidden_states=SCREAMING_SNAKE_CASE__ ,return_dict=SCREAMING_SNAKE_CASE__ ,training=SCREAMING_SNAKE_CASE__ ,) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state ,pooler_output=outputs.pooler_output ,hidden_states=outputs.hidden_states ,) @add_start_docstrings( ''' RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. ''' , SCREAMING_SNAKE_CASE , ) class A_ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): def __init__( self : Any ,SCREAMING_SNAKE_CASE__ : RegNetConfig ,*SCREAMING_SNAKE_CASE__ : List[str] ,**SCREAMING_SNAKE_CASE__ : str): super().__init__(SCREAMING_SNAKE_CASE__ ,*SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__) __lowerCamelCase : Union[str, Any] = config.num_labels __lowerCamelCase : Union[str, Any] = TFRegNetMainLayer(SCREAMING_SNAKE_CASE__ ,name='regnet') # classification head __lowerCamelCase : Optional[Any] = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels ,name='classifier.1') if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(SCREAMING_SNAKE_CASE__) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT ,output_type=SCREAMING_SNAKE_CASE__ ,config_class=_CONFIG_FOR_DOC ,expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT ,) def lowerCAmelCase ( self : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : tf.Tensor = None ,SCREAMING_SNAKE_CASE__ : tf.Tensor = None ,SCREAMING_SNAKE_CASE__ : bool = None ,SCREAMING_SNAKE_CASE__ : bool = None ,SCREAMING_SNAKE_CASE__ : Any=False ,): __lowerCamelCase : Any = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __lowerCamelCase : Tuple = return_dict if return_dict is not None else self.config.use_return_dict __lowerCamelCase : str = self.regnet( SCREAMING_SNAKE_CASE__ ,output_hidden_states=SCREAMING_SNAKE_CASE__ ,return_dict=SCREAMING_SNAKE_CASE__ ,training=SCREAMING_SNAKE_CASE__) __lowerCamelCase : List[Any] = outputs.pooler_output if return_dict else outputs[1] __lowerCamelCase : Optional[Any] = self.classifier[0](SCREAMING_SNAKE_CASE__) __lowerCamelCase : Dict = self.classifier[1](SCREAMING_SNAKE_CASE__) __lowerCamelCase : List[str] = None if labels is None else self.hf_compute_loss(labels=SCREAMING_SNAKE_CASE__ ,logits=SCREAMING_SNAKE_CASE__) if not return_dict: __lowerCamelCase : Union[str, Any] = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=SCREAMING_SNAKE_CASE__ ,logits=SCREAMING_SNAKE_CASE__ ,hidden_states=outputs.hidden_states)
652
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaInpaintPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _snake_case ( a_ , unittest.TestCase ): SCREAMING_SNAKE_CASE : Union[str, Any] = KandinskyVaaInpaintPipeline SCREAMING_SNAKE_CASE : Optional[int] = ['''image_embeds''', '''negative_image_embeds''', '''image''', '''mask_image'''] SCREAMING_SNAKE_CASE : List[Any] = [ '''image_embeds''', '''negative_image_embeds''', '''image''', '''mask_image''', ] SCREAMING_SNAKE_CASE : Any = [ '''generator''', '''height''', '''width''', '''latents''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] SCREAMING_SNAKE_CASE : List[Any] = False @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return 32 @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return 32 @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return self.time_input_dim @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return self.time_input_dim * 4 @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return 1_00 @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase = { 'in_channels': 9, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } lowerCAmelCase = UNetaDConditionModel(**_SCREAMING_SNAKE_CASE ) return model @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase = VQModel(**self.dummy_movq_kwargs ) return model def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = self.dummy_unet lowerCAmelCase = self.dummy_movq lowerCAmelCase = DDIMScheduler( num_train_timesteps=10_00 , beta_schedule='linear' , beta_start=0.00_085 , beta_end=0.012 , clip_sample=_SCREAMING_SNAKE_CASE , set_alpha_to_one=_SCREAMING_SNAKE_CASE , steps_offset=1 , prediction_type='epsilon' , thresholding=_SCREAMING_SNAKE_CASE , ) lowerCAmelCase = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def _SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=0 ): '''simple docstring''' lowerCAmelCase = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_SCREAMING_SNAKE_CASE ) ).to(_SCREAMING_SNAKE_CASE ) lowerCAmelCase = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _SCREAMING_SNAKE_CASE ) # create init_image lowerCAmelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(_SCREAMING_SNAKE_CASE ) ).to(_SCREAMING_SNAKE_CASE ) lowerCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCAmelCase = Image.fromarray(np.uinta(_SCREAMING_SNAKE_CASE ) ).convert('RGB' ).resize((2_56, 2_56) ) # create mask lowerCAmelCase = np.ones((64, 64) , dtype=np.floataa ) lowerCAmelCase = 0 if str(_SCREAMING_SNAKE_CASE ).startswith('mps' ): lowerCAmelCase = torch.manual_seed(_SCREAMING_SNAKE_CASE ) else: lowerCAmelCase = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(_SCREAMING_SNAKE_CASE ) lowerCAmelCase = { 'image': init_image, 'mask_image': mask, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 64, 'width': 64, 'num_inference_steps': 2, 'guidance_scale': 4.0, 'output_type': 'np', } return inputs def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = 'cpu' lowerCAmelCase = self.get_dummy_components() lowerCAmelCase = self.pipeline_class(**_SCREAMING_SNAKE_CASE ) lowerCAmelCase = pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) lowerCAmelCase = pipe(**self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ) ) lowerCAmelCase = output.images lowerCAmelCase = pipe( **self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ) , return_dict=_SCREAMING_SNAKE_CASE , )[0] lowerCAmelCase = image[0, -3:, -3:, -1] lowerCAmelCase = image_from_tuple[0, -3:, -3:, -1] print(F'image.shape {image.shape}' ) assert image.shape == (1, 64, 64, 3) lowerCAmelCase = np.array( [0.50_775_903, 0.49_527_195, 0.48_824_543, 0.50_192_237, 0.48_644_906, 0.49_373_814, 0.4_780_598, 0.47_234_827, 0.48_327_848] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class _snake_case ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_inpaint_cat_with_hat_fp16.npy' ) lowerCAmelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) lowerCAmelCase = np.ones((7_68, 7_68) , dtype=np.floataa ) lowerCAmelCase = 0 lowerCAmelCase = 'a hat' lowerCAmelCase = KandinskyVaaPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa ) pipe_prior.to(_SCREAMING_SNAKE_CASE ) lowerCAmelCase = KandinskyVaaInpaintPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-decoder-inpaint' , torch_dtype=torch.floataa ) lowerCAmelCase = pipeline.to(_SCREAMING_SNAKE_CASE ) pipeline.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) lowerCAmelCase = torch.Generator(device='cpu' ).manual_seed(0 ) lowerCAmelCase , lowerCAmelCase = pipe_prior( _SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , num_inference_steps=5 , negative_prompt='' , ).to_tuple() lowerCAmelCase = pipeline( image=_SCREAMING_SNAKE_CASE , mask_image=_SCREAMING_SNAKE_CASE , image_embeds=_SCREAMING_SNAKE_CASE , negative_image_embeds=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , num_inference_steps=1_00 , height=7_68 , width=7_68 , output_type='np' , ) lowerCAmelCase = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
514
'''simple docstring''' def snake_case ( snake_case : int ) -> Tuple: """simple docstring""" lowerCAmelCase = 0 lowerCAmelCase = len(snake_case ) for i in range(n - 1 ): for j in range(i + 1 , snake_case ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def snake_case ( snake_case : List[Any] ) -> Optional[Any]: """simple docstring""" if len(snake_case ) <= 1: return arr, 0 lowerCAmelCase = len(snake_case ) // 2 lowerCAmelCase = arr[0:mid] lowerCAmelCase = arr[mid:] lowerCAmelCase , lowerCAmelCase = count_inversions_recursive(snake_case ) lowerCAmelCase , lowerCAmelCase = count_inversions_recursive(snake_case ) lowerCAmelCase , lowerCAmelCase = _count_cross_inversions(snake_case , snake_case ) lowerCAmelCase = inversion_p + inversions_q + cross_inversions return c, num_inversions def snake_case ( snake_case : Union[str, Any] , snake_case : int ) -> Optional[Any]: """simple docstring""" lowerCAmelCase = [] lowerCAmelCase = lowerCAmelCase = lowerCAmelCase = 0 while i < len(snake_case ) and j < len(snake_case ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(snake_case ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(snake_case ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def snake_case ( ) -> Optional[int]: """simple docstring""" lowerCAmelCase = [10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) lowerCAmelCase = count_inversions_bf(snake_case ) lowerCAmelCase , lowerCAmelCase = count_inversions_recursive(snake_case ) assert num_inversions_bf == num_inversions_recursive == 8 print('number of inversions = ' , snake_case ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() lowerCAmelCase = count_inversions_bf(snake_case ) lowerCAmelCase , lowerCAmelCase = count_inversions_recursive(snake_case ) assert num_inversions_bf == num_inversions_recursive == 0 print('number of inversions = ' , snake_case ) # an empty list should also have zero inversions lowerCAmelCase = [] lowerCAmelCase = count_inversions_bf(snake_case ) lowerCAmelCase , lowerCAmelCase = count_inversions_recursive(snake_case ) assert num_inversions_bf == num_inversions_recursive == 0 print('number of inversions = ' , snake_case ) if __name__ == "__main__": main()
514
1
def lowerCamelCase__ ( _lowercase , _lowercase = " " ): '''simple docstring''' UpperCAmelCase_ : int = [] UpperCAmelCase_ : List[str] = 0 for index, char in enumerate(_UpperCamelCase ): if char == separator: split_words.append(string[last_index:index] ) UpperCAmelCase_ : List[Any] = index + 1 elif index + 1 == len(_UpperCamelCase ): split_words.append(string[last_index : index + 1] ) return split_words if __name__ == "__main__": from doctest import testmod testmod()
30
"""simple docstring""" from argparse import ArgumentParser from .env import EnvironmentCommand def lowerCamelCase ( ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Any = ArgumentParser("""Diffusers CLI tool""" , usage="""diffusers-cli <command> [<args>]""" ) __UpperCAmelCase : Any = parser.add_subparsers(help="""diffusers-cli command helpers""" ) # Register commands EnvironmentCommand.register_subcommand(_UpperCamelCase ) # Let's go __UpperCAmelCase : int = parser.parse_args() if not hasattr(_UpperCamelCase , """func""" ): parser.print_help() exit(1 ) # Run __UpperCAmelCase : List[str] = args.func(_UpperCamelCase ) service.run() if __name__ == "__main__": main()
139
0
from __future__ import annotations import typing from collections.abc import Iterable import numpy as np lowercase__ : Union[str, Any] = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 lowercase__ : Optional[Any] = typing.Union[np.floataa, int, float] # noqa: UP007 def lowerCamelCase__ ( _A , _A ): '''simple docstring''' return np.sqrt(np.sum((np.asarray(_A ) - np.asarray(_A )) ** 2 ) ) def lowerCamelCase__ ( _A , _A ): '''simple docstring''' return sum((va - va) ** 2 for va, va in zip(_A , _A ) ) ** (1 / 2) if __name__ == "__main__": def lowerCamelCase__ ( ): '''simple docstring''' from timeit import timeit print("Without Numpy" ) print( timeit( "euclidean_distance_no_np([1, 2, 3], [4, 5, 6])" , number=10000 , globals=globals() , ) ) print("With Numpy" ) print( timeit( "euclidean_distance([1, 2, 3], [4, 5, 6])" , number=10000 , globals=globals() , ) ) benchmark()
139
import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCAmelCase : '''simple docstring''' def __init__( self : Union[str, Any] , __lowercase : Union[str, Any] , __lowercase : Optional[Any]=13 , __lowercase : List[Any]=7 , __lowercase : List[str]=True , __lowercase : Optional[Any]=True , __lowercase : Any=True , __lowercase : Optional[int]=True , __lowercase : int=99 , __lowercase : str=24 , __lowercase : Tuple=2 , __lowercase : Union[str, Any]=6 , __lowercase : List[str]=37 , __lowercase : int="gelu" , __lowercase : List[Any]=0.1 , __lowercase : Optional[Any]=0.1 , __lowercase : Any=5_12 , __lowercase : Optional[int]=16 , __lowercase : int=2 , __lowercase : Tuple=0.02 , __lowercase : int=3 , __lowercase : Union[str, Any]=None , __lowercase : List[str]=10_00 , ): """simple docstring""" snake_case_ = parent snake_case_ = batch_size snake_case_ = seq_length snake_case_ = is_training snake_case_ = use_input_mask snake_case_ = use_token_type_ids snake_case_ = use_labels snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = type_vocab_size snake_case_ = type_sequence_label_size snake_case_ = initializer_range snake_case_ = num_labels snake_case_ = scope snake_case_ = range_bbox def snake_case__ ( self : Union[str, Any] ): """simple docstring""" snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: snake_case_ = bbox[i, j, 3] snake_case_ = bbox[i, j, 1] snake_case_ = t if bbox[i, j, 2] < bbox[i, j, 0]: snake_case_ = bbox[i, j, 2] snake_case_ = bbox[i, j, 0] snake_case_ = t snake_case_ = None if self.use_input_mask: snake_case_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) snake_case_ = None if self.use_token_type_ids: snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ = None snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case_ = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def snake_case__ ( self : str ): """simple docstring""" return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def snake_case__ ( self : List[str] , __lowercase : Any , __lowercase : Tuple , __lowercase : str , __lowercase : int , __lowercase : Optional[Any] , __lowercase : Optional[int] , __lowercase : int , ): """simple docstring""" snake_case_ = LiltModel(config=__lowercase ) model.to(__lowercase ) model.eval() snake_case_ = model(__lowercase , bbox=__lowercase , attention_mask=__lowercase , token_type_ids=__lowercase ) snake_case_ = model(__lowercase , bbox=__lowercase , token_type_ids=__lowercase ) snake_case_ = model(__lowercase , bbox=__lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def snake_case__ ( self : Optional[int] , __lowercase : Dict , __lowercase : int , __lowercase : List[Any] , __lowercase : str , __lowercase : List[str] , __lowercase : Dict , __lowercase : Optional[Any] , ): """simple docstring""" snake_case_ = self.num_labels snake_case_ = LiltForTokenClassification(config=__lowercase ) model.to(__lowercase ) model.eval() snake_case_ = model( __lowercase , bbox=__lowercase , attention_mask=__lowercase , token_type_ids=__lowercase , labels=__lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case__ ( self : Optional[int] , __lowercase : Union[str, Any] , __lowercase : int , __lowercase : Optional[int] , __lowercase : List[str] , __lowercase : Any , __lowercase : int , __lowercase : Optional[Any] , ): """simple docstring""" snake_case_ = LiltForQuestionAnswering(config=__lowercase ) model.to(__lowercase ) model.eval() snake_case_ = model( __lowercase , bbox=__lowercase , attention_mask=__lowercase , token_type_ids=__lowercase , start_positions=__lowercase , end_positions=__lowercase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case__ ( self : Tuple ): """simple docstring""" snake_case_ = self.prepare_config_and_inputs() ( ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ) = config_and_inputs snake_case_ = { "input_ids": input_ids, "bbox": bbox, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_torch class UpperCAmelCase ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) lowerCAmelCase_ = ( { '''feature-extraction''': LiltModel, '''question-answering''': LiltForQuestionAnswering, '''text-classification''': LiltForSequenceClassification, '''token-classification''': LiltForTokenClassification, '''zero-shot''': LiltForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase_ = False lowerCAmelCase_ = False def snake_case__ ( self : List[Any] , __lowercase : Dict , __lowercase : Union[str, Any] , __lowercase : List[str] , __lowercase : List[Any] , __lowercase : int ): """simple docstring""" return True def snake_case__ ( self : List[Any] ): """simple docstring""" snake_case_ = LiltModelTester(self ) snake_case_ = ConfigTester(self , config_class=__lowercase , hidden_size=37 ) def snake_case__ ( self : Dict ): """simple docstring""" self.config_tester.run_common_tests() def snake_case__ ( self : Optional[Any] ): """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowercase ) def snake_case__ ( self : Dict ): """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: snake_case_ = type self.model_tester.create_and_check_model(*__lowercase ) def snake_case__ ( self : Any ): """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__lowercase ) def snake_case__ ( self : Dict ): """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__lowercase ) @slow def snake_case__ ( self : Any ): """simple docstring""" for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ = LiltModel.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) @require_torch @slow class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def snake_case__ ( self : List[Any] ): """simple docstring""" snake_case_ = LiltModel.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base" ).to(__lowercase ) snake_case_ = torch.tensor([[1, 2]] , device=__lowercase ) snake_case_ = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=__lowercase ) # forward pass with torch.no_grad(): snake_case_ = model(input_ids=__lowercase , bbox=__lowercase ) snake_case_ = torch.Size([1, 2, 7_68] ) snake_case_ = torch.tensor( [[-0.0653, 0.0950, -0.0061], [-0.0545, 0.0926, -0.0324]] , device=__lowercase , ) self.assertTrue(outputs.last_hidden_state.shape , __lowercase ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , __lowercase , atol=1E-3 ) )
139
1
from __future__ import annotations def lowercase ( _lowerCAmelCase ): # preprocessing the first row for i in range(1 , len(matrix[0] ) ): matrix[0][i] += matrix[0][i - 1] # preprocessing the first column for i in range(1 , len(_lowerCAmelCase ) ): matrix[i][0] += matrix[i - 1][0] # updating the path cost for current position for i in range(1 , len(_lowerCAmelCase ) ): for j in range(1 , len(matrix[0] ) ): matrix[i][j] += min(matrix[i - 1][j] , matrix[i][j - 1] ) return matrix[-1][-1] if __name__ == "__main__": import doctest doctest.testmod()
392
import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential if __name__ == "__main__": snake_case__ : Tuple = pd.read_csv('''sample_data.csv''', header=None) snake_case__ : List[str] = df.shape[:1][0] # If you're using some other dataset input the target column snake_case__ : Dict = df.iloc[:, 1:2] snake_case__ : List[str] = actual_data.values.reshape(len_data, 1) snake_case__ : Union[str, Any] = MinMaxScaler().fit_transform(actual_data) snake_case__ : Tuple = 1_0 snake_case__ : str = 5 snake_case__ : Any = 2_0 snake_case__ : Union[str, Any] = len_data - periods * look_back snake_case__ : Union[str, Any] = actual_data[:division] snake_case__ : Optional[Any] = actual_data[division - look_back :] snake_case__ , snake_case__ : Dict = [], [] snake_case__ , snake_case__ : Dict = [], [] for i in range(0, len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(0, len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) snake_case__ : int = np.array(train_x) snake_case__ : List[str] = np.array(test_x) snake_case__ : Optional[Any] = np.array([list(i.ravel()) for i in train_y]) snake_case__ : int = np.array([list(i.ravel()) for i in test_y]) snake_case__ : List[Any] = Sequential() model.add(LSTM(1_2_8, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(6_4, input_shape=(1_2_8, 1))) model.add(Dense(forward_days)) model.compile(loss='''mean_squared_error''', optimizer='''adam''') snake_case__ : List[str] = model.fit( x_train, y_train, epochs=1_5_0, verbose=1, shuffle=True, batch_size=4 ) snake_case__ : Optional[int] = model.predict(x_test)
392
1
_lowerCAmelCase : Union[str, Any] = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/" def UpperCAmelCase_ ( snake_case__ ) -> bytes: """simple docstring""" if not isinstance(snake_case__ , snake_case__ ): lowerCAmelCase__ = f'a bytes-like object is required, not \'{data.__class__.__name__}\'' raise TypeError(snake_case__ ) lowerCAmelCase__ = ''.join(bin(snake_case__ )[2:].zfill(8 ) for byte in data ) lowerCAmelCase__ = len(snake_case__ ) % 6 != 0 if padding_needed: # The padding that will be added later lowerCAmelCase__ = B'=' * ((6 - len(snake_case__ ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(snake_case__ ) % 6) else: lowerCAmelCase__ = B'' # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6] , 2 )] for index in range(0 , len(snake_case__ ) , 6 ) ).encode() + padding ) def UpperCAmelCase_ ( snake_case__ ) -> bytes: """simple docstring""" if not isinstance(snake_case__ , snake_case__ ) and not isinstance(snake_case__ , snake_case__ ): lowerCAmelCase__ = ( 'argument should be a bytes-like object or ASCII string, ' f'not \'{encoded_data.__class__.__name__}\'' ) raise TypeError(snake_case__ ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(snake_case__ , snake_case__ ): try: lowerCAmelCase__ = encoded_data.decode('utf-8' ) except UnicodeDecodeError: raise ValueError('base64 encoded data should only contain ASCII characters' ) lowerCAmelCase__ = encoded_data.count('=' ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(snake_case__ ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one lowerCAmelCase__ = encoded_data[:-padding] lowerCAmelCase__ = ''.join( bin(B64_CHARSET.index(snake_case__ ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: lowerCAmelCase__ = ''.join( bin(B64_CHARSET.index(snake_case__ ) )[2:].zfill(6 ) for char in encoded_data ) lowerCAmelCase__ = [ int(binary_stream[index : index + 8] , 2 ) for index in range(0 , len(snake_case__ ) , 8 ) ] return bytes(snake_case__ ) if __name__ == "__main__": import doctest doctest.testmod()
604
from __future__ import annotations import os import tempfile import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import is_tensorflow_text_available, is_tf_available from transformers.testing_utils import require_tensorflow_text, require_tf, slow from ..test_modeling_tf_common import floats_tensor from .test_framework_agnostic import GenerationIntegrationTestsMixin if is_tf_available(): import tensorflow as tf from transformers import ( AutoTokenizer, TFAutoModelForCausalLM, TFAutoModelForSeqaSeqLM, TFAutoModelForSpeechSeqaSeq, TFAutoModelForVisionaSeq, TFBartForConditionalGeneration, TFLogitsProcessorList, TFMinLengthLogitsProcessor, tf_top_k_top_p_filtering, ) if is_tensorflow_text_available(): import tensorflow_text as text @require_tf class __snake_case ( unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = tf.convert_to_tensor( [ [ 8.2220991, # 3rd highest value; idx. 0 -0.5620044, 5.23229752, 4.0386393, -6.8798378, -0.54785802, -3.2012153, 2.92777176, 1.88171953, 7.35341276, # 5th highest value; idx. 9 8.43207833, # 2nd highest value; idx. 10 -9.85711836, -5.96209236, -1.13039161, -7.1115294, -0.8369633, -5.3186408, 7.06427407, 0.81369344, -0.82023817, -5.9179796, 0.58813443, -6.99778438, 4.71551189, -0.18771637, 7.44020759, # 4th highest value; idx. 25 9.38450987, # 1st highest value; idx. 26 2.12662941, -9.32562038, 2.35652522, ], # cummulative prob of 5 highest values <= 0.6 [ 0.58425518, 4.53139238, -5.57510464, -6.28030699, -7.19529503, -4.02122551, 1.39337037, -6.06707057, 1.59480517, -9.643119, 0.03907799, 0.67231762, -8.88206726, 6.27115922, # 4th highest value; idx. 13 2.28520723, 4.82767506, 4.30421368, 8.8275313, # 2nd highest value; idx. 17 5.44029958, # 5th highest value; idx. 18 -4.4735794, 7.38579536, # 3rd highest value; idx. 20 -2.91051663, 2.61946077, -2.5674762, -9.48959302, -4.02922645, -1.35416918, 9.67702323, # 1st highest value; idx. 27 -5.89478553, 1.85370467, ], # cummulative prob of 5 highest values <= 0.6 ] ,dtype=tf.floataa ,) lowerCAmelCase__ = tf.convert_to_tensor( [[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]] ,dtype=tf.intaa ,) # expected non filtered idx as noted above lowerCAmelCase__ = tf.convert_to_tensor( [8.222099, 7.3534126, 8.432078, 7.4402075, 9.38451, 6.271159, 8.827531, 5.4402995, 7.3857956, 9.677023] ,dtype=tf.floataa ,) # expected non filtered values as noted above lowerCAmelCase__ = tf_top_k_top_p_filtering(a_ ,top_k=10 ,top_p=0.6 ,min_tokens_to_keep=4 ) lowerCAmelCase__ = output[output != -float('inf' )] lowerCAmelCase__ = tf.cast( tf.where(tf.not_equal(a_ ,tf.constant(-float('inf' ) ,dtype=tf.floataa ) ) ) ,dtype=tf.intaa ,) tf.debugging.assert_near(a_ ,a_ ,rtol=1e-1_2 ) tf.debugging.assert_equal(a_ ,a_ ) @require_tf class __snake_case ( unittest.TestCase , SCREAMING_SNAKE_CASE ): # setting framework_dependent_parameters needs to be gated, just like its contents' imports if is_tf_available(): SCREAMING_SNAKE_CASE__ = { 'AutoModelForCausalLM': TFAutoModelForCausalLM, 'AutoModelForSpeechSeq2Seq': TFAutoModelForSpeechSeqaSeq, 'AutoModelForSeq2SeqLM': TFAutoModelForSeqaSeqLM, 'AutoModelForVision2Seq': TFAutoModelForVisionaSeq, 'LogitsProcessorList': TFLogitsProcessorList, 'MinLengthLogitsProcessor': TFMinLengthLogitsProcessor, 'create_tensor_fn': tf.convert_to_tensor, 'floats_tensor': floats_tensor, 'return_tensors': 'tf', } @slow def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" # TF-only test: tf.saved_model export lowerCAmelCase__ = TFAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) lowerCAmelCase__ = 2 lowerCAmelCase__ = 2 class __snake_case ( tf.Module ): def __init__( self ,a_ ): """simple docstring""" super(a_ ,self ).__init__() lowerCAmelCase__ = model @tf.function( input_signature=( tf.TensorSpec((None, input_length) ,tf.intaa ,name='input_ids' ), tf.TensorSpec((None, input_length) ,tf.intaa ,name='attention_mask' ), ) ,jit_compile=a_ ,) def SCREAMING_SNAKE_CASE_ ( self ,a_ ,a_ ): """simple docstring""" lowerCAmelCase__ = self.model.generate( input_ids=a_ ,attention_mask=a_ ,max_new_tokens=a_ ,return_dict_in_generate=a_ ,) return {"sequences": outputs["sequences"]} lowerCAmelCase__ = [[2, 0], [102, 103]] lowerCAmelCase__ = [[1, 0], [1, 1]] lowerCAmelCase__ = DummyModel(model=a_ ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(a_ ,a_ ,signatures={'serving_default': dummy_model.serving} ) lowerCAmelCase__ = tf.saved_model.load(a_ ).signatures['serving_default'] for batch_size in range(1 ,len(a_ ) + 1 ): lowerCAmelCase__ = { 'input_ids': tf.constant(dummy_input_ids[:batch_size] ), 'attention_mask': tf.constant(dummy_attention_masks[:batch_size] ), } lowerCAmelCase__ = serving_func(**a_ )['sequences'] lowerCAmelCase__ = test_model.generate(**a_ ,max_new_tokens=a_ ) tf.debugging.assert_equal(a_ ,a_ ) @slow def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" # TF-only test: tf.saved_model export lowerCAmelCase__ = TFAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) lowerCAmelCase__ = 1 lowerCAmelCase__ = 2 class __snake_case ( tf.Module ): def __init__( self ,a_ ): """simple docstring""" super(a_ ,self ).__init__() lowerCAmelCase__ = model @tf.function( input_signature=( tf.TensorSpec((batch_size, None) ,tf.intaa ,name='input_ids' ), tf.TensorSpec((batch_size, None) ,tf.intaa ,name='attention_mask' ), ) ,jit_compile=a_ ,) def SCREAMING_SNAKE_CASE_ ( self ,a_ ,a_ ): """simple docstring""" lowerCAmelCase__ = self.model.generate( input_ids=a_ ,attention_mask=a_ ,max_new_tokens=a_ ,return_dict_in_generate=a_ ,) return {"sequences": outputs["sequences"]} lowerCAmelCase__ = [[2], [102, 103]] lowerCAmelCase__ = [[1], [1, 1]] lowerCAmelCase__ = DummyModel(model=a_ ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(a_ ,a_ ,signatures={'serving_default': dummy_model.serving} ) lowerCAmelCase__ = tf.saved_model.load(a_ ).signatures['serving_default'] for input_row in range(len(a_ ) ): lowerCAmelCase__ = { 'input_ids': tf.constant([dummy_input_ids[input_row]] ), 'attention_mask': tf.constant([dummy_attention_masks[input_row]] ), } lowerCAmelCase__ = serving_func(**a_ )['sequences'] lowerCAmelCase__ = test_model.generate(**a_ ,max_new_tokens=a_ ) tf.debugging.assert_equal(a_ ,a_ ) @slow @require_tensorflow_text def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" # TF-only test: tf.saved_model export with tempfile.TemporaryDirectory() as tmp_dir: # file needed to load the TF tokenizer hf_hub_download(repo_id='google/flan-t5-small' ,filename='spiece.model' ,local_dir=a_ ) class __snake_case ( tf.keras.layers.Layer ): def __init__( self ): """simple docstring""" super().__init__() lowerCAmelCase__ = text.SentencepieceTokenizer( model=tf.io.gfile.GFile(os.path.join(a_ ,'spiece.model' ) ,'rb' ).read() ) lowerCAmelCase__ = TFAutoModelForSeqaSeqLM.from_pretrained('hf-internal-testing/tiny-random-t5' ) def SCREAMING_SNAKE_CASE_ ( self ,a_ ,*a_ ,**a_ ): """simple docstring""" lowerCAmelCase__ = self.tokenizer.tokenize(a_ ) lowerCAmelCase__ , lowerCAmelCase__ = text.pad_model_inputs( a_ ,max_seq_length=64 ,pad_value=self.model.config.pad_token_id ) lowerCAmelCase__ = self.model.generate(input_ids=a_ ,attention_mask=a_ ) return self.tokenizer.detokenize(a_ ) lowerCAmelCase__ = CompleteSentenceTransformer() lowerCAmelCase__ = tf.keras.layers.Input(shape=(1,) ,dtype=tf.string ,name='inputs' ) lowerCAmelCase__ = complete_model(a_ ) lowerCAmelCase__ = tf.keras.Model(a_ ,a_ ) keras_model.save(a_ ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" # Has PT equivalent: this test relies on random sampling lowerCAmelCase__ = { 'do_sample': True, 'num_beams': 1, 'top_p': 0.7, 'top_k': 10, 'temperature': 0.7, } lowerCAmelCase__ = 14 lowerCAmelCase__ = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) lowerCAmelCase__ = 'Hello, my dog is cute and' lowerCAmelCase__ = tokenizer(a_ ,return_tensors='tf' ) lowerCAmelCase__ = TFAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) lowerCAmelCase__ = 638 # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(':/CPU:0' ): tf.random.set_seed(0 ) lowerCAmelCase__ = model.generate(**a_ ,eos_token_id=a_ ,**a_ ) self.assertTrue(expectation == len(generated_tokens[0] ) ) lowerCAmelCase__ = [638, 198] with tf.device(':/CPU:0' ): tf.random.set_seed(0 ) lowerCAmelCase__ = model.generate(**a_ ,eos_token_id=a_ ,**a_ ) self.assertTrue(expectation == len(generated_tokens[0] ) ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" # Has PT equivalent: ample use of framework-specific code lowerCAmelCase__ = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-bart' ) lowerCAmelCase__ = 'Hugging Face is a technology company based in New York and Paris.' lowerCAmelCase__ = bart_tokenizer(a_ ,return_tensors='tf' ).input_ids lowerCAmelCase__ = TFBartForConditionalGeneration.from_pretrained('hf-internal-testing/tiny-random-bart' ) lowerCAmelCase__ = bart_model.generate(a_ ).numpy() class __snake_case ( SCREAMING_SNAKE_CASE ): def SCREAMING_SNAKE_CASE_ ( self ,a_ ,a_=None ,**a_ ): """simple docstring""" return super().call(a_ ,**a_ ) lowerCAmelCase__ = FakeBart.from_pretrained('hf-internal-testing/tiny-random-bart' ) lowerCAmelCase__ = bart_model.generate(a_ ,foo='bar' ).numpy() self.assertTrue(np.array_equal(a_ ,a_ ) ) class __snake_case ( bart_model.model.encoder.__class__ ): def SCREAMING_SNAKE_CASE_ ( self ,a_ ,**a_ ): """simple docstring""" return super().call(a_ ,**a_ ) lowerCAmelCase__ = FakeEncoder(bart_model.config ,bart_model.model.shared ) lowerCAmelCase__ = fake_encoder # Normal generation still works (the output will be different because the encoder weights are different) lowerCAmelCase__ = bart_model.generate(a_ ).numpy() with self.assertRaises(a_ ): # FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo" bart_model.generate(a_ ,foo='bar' )
604
1
"""simple docstring""" from __future__ import annotations class a : def __init__( self : Optional[int] , __lowerCAmelCase : list[list[int]] ): _UpperCAmelCase = TypeError( """Matrices must be formed from a list of zero or more lists containing at """ """least one and the same number of values, each of which must be of type """ """int or float.""" ) if len(__lowerCAmelCase ) != 0: _UpperCAmelCase = len(rows[0] ) if cols == 0: raise error for row in rows: if len(__lowerCAmelCase ) != cols: raise error for value in row: if not isinstance(__lowerCAmelCase , (int, float) ): raise error _UpperCAmelCase = rows else: _UpperCAmelCase = [] def lowerCAmelCase_ ( self : Union[str, Any] ): return [[row[i] for row in self.rows] for i in range(len(self.rows[0] ) )] @property def lowerCAmelCase_ ( self : Optional[int] ): return len(self.rows ) @property def lowerCAmelCase_ ( self : str ): return len(self.rows[0] ) @property def lowerCAmelCase_ ( self : Any ): return (self.num_rows, self.num_columns) @property def lowerCAmelCase_ ( self : Optional[Any] ): return self.order[0] == self.order[1] def lowerCAmelCase_ ( self : Union[str, Any] ): _UpperCAmelCase = [ [0 if column_num != row_num else 1 for column_num in range(self.num_rows )] for row_num in range(self.num_rows ) ] return Matrix(__lowerCAmelCase ) def lowerCAmelCase_ ( self : Optional[int] ): if not self.is_square: return 0 if self.order == (0, 0): return 1 if self.order == (1, 1): return int(self.rows[0][0] ) if self.order == (2, 2): return int( (self.rows[0][0] * self.rows[1][1]) - (self.rows[0][1] * self.rows[1][0]) ) else: return sum( self.rows[0][column] * self.cofactors().rows[0][column] for column in range(self.num_columns ) ) def lowerCAmelCase_ ( self : str ): return bool(self.determinant() ) def lowerCAmelCase_ ( self : Tuple , __lowerCAmelCase : int , __lowerCAmelCase : int ): _UpperCAmelCase = [ [ self.rows[other_row][other_column] for other_column in range(self.num_columns ) if other_column != column ] for other_row in range(self.num_rows ) if other_row != row ] return Matrix(__lowerCAmelCase ).determinant() def lowerCAmelCase_ ( self : Optional[int] , __lowerCAmelCase : int , __lowerCAmelCase : int ): if (row + column) % 2 == 0: return self.get_minor(__lowerCAmelCase , __lowerCAmelCase ) return -1 * self.get_minor(__lowerCAmelCase , __lowerCAmelCase ) def lowerCAmelCase_ ( self : Dict ): return Matrix( [ [self.get_minor(__lowerCAmelCase , __lowerCAmelCase ) for column in range(self.num_columns )] for row in range(self.num_rows ) ] ) def lowerCAmelCase_ ( self : List[Any] ): return Matrix( [ [ self.minors().rows[row][column] if (row + column) % 2 == 0 else self.minors().rows[row][column] * -1 for column in range(self.minors().num_columns ) ] for row in range(self.minors().num_rows ) ] ) def lowerCAmelCase_ ( self : List[str] ): _UpperCAmelCase = [ [self.cofactors().rows[column][row] for column in range(self.num_columns )] for row in range(self.num_rows ) ] return Matrix(__lowerCAmelCase ) def lowerCAmelCase_ ( self : Tuple ): _UpperCAmelCase = self.determinant() if not determinant: raise TypeError("""Only matrices with a non-zero determinant have an inverse""" ) return self.adjugate() * (1 / determinant) def __repr__( self : Any ): return str(self.rows ) def __str__( self : Dict ): if self.num_rows == 0: return "[]" if self.num_rows == 1: return "[[" + ". ".join(str(self.rows[0] ) ) + "]]" return ( "[" + "\n ".join( [ """[""" + """. """.join([str(__lowerCAmelCase ) for value in row] ) + """.]""" for row in self.rows ] ) + "]" ) def lowerCAmelCase_ ( self : Dict , __lowerCAmelCase : list[int] , __lowerCAmelCase : int | None = None ): _UpperCAmelCase = TypeError("""Row must be a list containing all ints and/or floats""" ) if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise type_error for value in row: if not isinstance(__lowerCAmelCase , (int, float) ): raise type_error if len(__lowerCAmelCase ) != self.num_columns: raise ValueError( """Row must be equal in length to the other rows in the matrix""" ) if position is None: self.rows.append(__lowerCAmelCase ) else: _UpperCAmelCase = self.rows[0:position] + [row] + self.rows[position:] def lowerCAmelCase_ ( self : List[Any] , __lowerCAmelCase : list[int] , __lowerCAmelCase : int | None = None ): _UpperCAmelCase = TypeError( """Column must be a list containing all ints and/or floats""" ) if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise type_error for value in column: if not isinstance(__lowerCAmelCase , (int, float) ): raise type_error if len(__lowerCAmelCase ) != self.num_rows: raise ValueError( """Column must be equal in length to the other columns in the matrix""" ) if position is None: _UpperCAmelCase = [self.rows[i] + [column[i]] for i in range(self.num_rows )] else: _UpperCAmelCase = [ self.rows[i][0:position] + [column[i]] + self.rows[i][position:] for i in range(self.num_rows ) ] def __eq__( self : Any , __lowerCAmelCase : object ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): return NotImplemented return self.rows == other.rows def __ne__( self : Tuple , __lowerCAmelCase : object ): return not self == other def __neg__( self : List[str] ): return self * -1 def __add__( self : str , __lowerCAmelCase : Matrix ): if self.order != other.order: raise ValueError("""Addition requires matrices of the same order""" ) return Matrix( [ [self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __sub__( self : Optional[int] , __lowerCAmelCase : Matrix ): if self.order != other.order: raise ValueError("""Subtraction requires matrices of the same order""" ) return Matrix( [ [self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __mul__( self : List[str] , __lowerCAmelCase : Matrix | int | float ): if isinstance(__lowerCAmelCase , (int, float) ): return Matrix( [[int(element * other ) for element in row] for row in self.rows] ) elif isinstance(__lowerCAmelCase , __lowerCAmelCase ): if self.num_columns != other.num_rows: raise ValueError( """The number of columns in the first matrix must """ """be equal to the number of rows in the second""" ) return Matrix( [ [Matrix.dot_product(__lowerCAmelCase , __lowerCAmelCase ) for column in other.columns()] for row in self.rows ] ) else: raise TypeError( """A Matrix can only be multiplied by an int, float, or another matrix""" ) def __pow__( self : Optional[int] , __lowerCAmelCase : int ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError("""A Matrix can only be raised to the power of an int""" ) if not self.is_square: raise ValueError("""Only square matrices can be raised to a power""" ) if other == 0: return self.identity() if other < 0: if self.is_invertable(): return self.inverse() ** (-other) raise ValueError( """Only invertable matrices can be raised to a negative power""" ) _UpperCAmelCase = self for _ in range(other - 1 ): result *= self return result @classmethod def lowerCAmelCase_ ( cls : Optional[Any] , __lowerCAmelCase : list[int] , __lowerCAmelCase : list[int] ): return sum(row[i] * column[i] for i in range(len(__lowerCAmelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
277
"""simple docstring""" from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer UpperCAmelCase__ = logging.get_logger(__name__) # pylint: disable=invalid-name UpperCAmelCase__ = """ Examples: ```py >>> from PIL import Image >>> import torch >>> from diffusers import DiffusionPipeline >>> from diffusers.utils import export_to_gif, load_image >>> device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\") >>> repo = \"openai/shap-e-img2img\" >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16) >>> pipe = pipe.to(device) >>> guidance_scale = 3.0 >>> image_url = \"https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png\" >>> image = load_image(image_url).convert(\"RGB\") >>> images = pipe( ... image, ... guidance_scale=guidance_scale, ... num_inference_steps=64, ... frame_size=256, ... ).images >>> gif_path = export_to_gif(images[0], \"corgi_3d.gif\") ``` """ @dataclass class a ( lowerCAmelCase_ ): _snake_case : Union[PIL.Image.Image, np.ndarray] class a ( lowerCAmelCase_ ): def __init__( self : Dict , __lowerCAmelCase : PriorTransformer , __lowerCAmelCase : CLIPVisionModel , __lowerCAmelCase : CLIPImageProcessor , __lowerCAmelCase : HeunDiscreteScheduler , __lowerCAmelCase : ShapERenderer , ): super().__init__() self.register_modules( prior=__lowerCAmelCase , image_encoder=__lowerCAmelCase , image_processor=__lowerCAmelCase , scheduler=__lowerCAmelCase , renderer=__lowerCAmelCase , ) def lowerCAmelCase_ ( self : List[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : str , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : List[Any] ): if latents is None: _UpperCAmelCase = randn_tensor(__lowerCAmelCase , generator=__lowerCAmelCase , device=__lowerCAmelCase , dtype=__lowerCAmelCase ) else: if latents.shape != shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {shape}''' ) _UpperCAmelCase = latents.to(__lowerCAmelCase ) _UpperCAmelCase = latents * scheduler.init_noise_sigma return latents def lowerCAmelCase_ ( self : str , __lowerCAmelCase : List[str]=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) _UpperCAmelCase = torch.device(f'''cuda:{gpu_id}''' ) _UpperCAmelCase = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(__lowerCAmelCase , __lowerCAmelCase ) @property def lowerCAmelCase_ ( self : List[str] ): if self.device != torch.device("""meta""" ) or not hasattr(self.image_encoder , """_hf_hook""" ): return self.device for module in self.image_encoder.modules(): if ( hasattr(__lowerCAmelCase , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def lowerCAmelCase_ ( self : int , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Any , __lowerCAmelCase : int , __lowerCAmelCase : Any , ): if isinstance(__lowerCAmelCase , __lowerCAmelCase ) and isinstance(image[0] , torch.Tensor ): _UpperCAmelCase = torch.cat(__lowerCAmelCase , axis=0 ) if image[0].ndim == 4 else torch.stack(__lowerCAmelCase , axis=0 ) if not isinstance(__lowerCAmelCase , torch.Tensor ): _UpperCAmelCase = self.image_processor(__lowerCAmelCase , return_tensors="""pt""" ).pixel_values[0].unsqueeze(0 ) _UpperCAmelCase = image.to(dtype=self.image_encoder.dtype , device=__lowerCAmelCase ) _UpperCAmelCase = self.image_encoder(__lowerCAmelCase )["""last_hidden_state"""] _UpperCAmelCase = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 _UpperCAmelCase = image_embeds.repeat_interleave(__lowerCAmelCase , dim=0 ) if do_classifier_free_guidance: _UpperCAmelCase = torch.zeros_like(__lowerCAmelCase ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _UpperCAmelCase = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(__lowerCAmelCase ) def __call__( self : Union[str, Any] , __lowerCAmelCase : Union[PIL.Image.Image, List[PIL.Image.Image]] , __lowerCAmelCase : int = 1 , __lowerCAmelCase : int = 25 , __lowerCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __lowerCAmelCase : Optional[torch.FloatTensor] = None , __lowerCAmelCase : float = 4.0 , __lowerCAmelCase : int = 64 , __lowerCAmelCase : Optional[str] = "pil" , __lowerCAmelCase : bool = True , ): if isinstance(__lowerCAmelCase , PIL.Image.Image ): _UpperCAmelCase = 1 elif isinstance(__lowerCAmelCase , torch.Tensor ): _UpperCAmelCase = image.shape[0] elif isinstance(__lowerCAmelCase , __lowerCAmelCase ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ): _UpperCAmelCase = len(__lowerCAmelCase ) else: raise ValueError( f'''`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(__lowerCAmelCase )}''' ) _UpperCAmelCase = self._execution_device _UpperCAmelCase = batch_size * num_images_per_prompt _UpperCAmelCase = guidance_scale > 1.0 _UpperCAmelCase = self._encode_image(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # prior self.scheduler.set_timesteps(__lowerCAmelCase , device=__lowerCAmelCase ) _UpperCAmelCase = self.scheduler.timesteps _UpperCAmelCase = self.prior.config.num_embeddings _UpperCAmelCase = self.prior.config.embedding_dim _UpperCAmelCase = self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim _UpperCAmelCase = latents.reshape(latents.shape[0] , __lowerCAmelCase , __lowerCAmelCase ) for i, t in enumerate(self.progress_bar(__lowerCAmelCase ) ): # expand the latents if we are doing classifier free guidance _UpperCAmelCase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _UpperCAmelCase = self.scheduler.scale_model_input(__lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase = self.prior( __lowerCAmelCase , timestep=__lowerCAmelCase , proj_embedding=__lowerCAmelCase , ).predicted_image_embedding # remove the variance _UpperCAmelCase , _UpperCAmelCase = noise_pred.split( scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: _UpperCAmelCase , _UpperCAmelCase = noise_pred.chunk(2 ) _UpperCAmelCase = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) _UpperCAmelCase = self.scheduler.step( __lowerCAmelCase , timestep=__lowerCAmelCase , sample=__lowerCAmelCase , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=__lowerCAmelCase ) _UpperCAmelCase = [] for i, latent in enumerate(__lowerCAmelCase ): print() _UpperCAmelCase = self.renderer.decode( latent[None, :] , __lowerCAmelCase , size=__lowerCAmelCase , ray_batch_size=4096 , n_coarse_samples=64 , n_fine_samples=128 , ) images.append(__lowerCAmelCase ) _UpperCAmelCase = torch.stack(__lowerCAmelCase ) if output_type not in ["np", "pil"]: raise ValueError(f'''Only the output types `pil` and `np` are supported not output_type={output_type}''' ) _UpperCAmelCase = images.cpu().numpy() if output_type == "pil": _UpperCAmelCase = [self.numpy_to_pil(__lowerCAmelCase ) for image in images] # Offload last model to CPU if hasattr(self , """final_offload_hook""" ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=__lowerCAmelCase )
277
1
_SCREAMING_SNAKE_CASE : Any = { '''Pillow''': '''Pillow<10.0.0''', '''accelerate''': '''accelerate>=0.20.3''', '''av''': '''av==9.2.0''', '''beautifulsoup4''': '''beautifulsoup4''', '''black''': '''black~=23.1''', '''codecarbon''': '''codecarbon==1.2.0''', '''cookiecutter''': '''cookiecutter==1.7.3''', '''dataclasses''': '''dataclasses''', '''datasets''': '''datasets!=2.5.0''', '''decord''': '''decord==0.6.0''', '''deepspeed''': '''deepspeed>=0.9.3''', '''diffusers''': '''diffusers''', '''dill''': '''dill<0.3.5''', '''evaluate''': '''evaluate>=0.2.0''', '''fairscale''': '''fairscale>0.3''', '''faiss-cpu''': '''faiss-cpu''', '''fastapi''': '''fastapi''', '''filelock''': '''filelock''', '''flax''': '''flax>=0.4.1,<=0.7.0''', '''ftfy''': '''ftfy''', '''fugashi''': '''fugashi>=1.0''', '''GitPython''': '''GitPython<3.1.19''', '''hf-doc-builder''': '''hf-doc-builder>=0.3.0''', '''huggingface-hub''': '''huggingface-hub>=0.14.1,<1.0''', '''importlib_metadata''': '''importlib_metadata''', '''ipadic''': '''ipadic>=1.0.0,<2.0''', '''isort''': '''isort>=5.5.4''', '''jax''': '''jax>=0.2.8,!=0.3.2,<=0.4.13''', '''jaxlib''': '''jaxlib>=0.1.65,<=0.4.13''', '''jieba''': '''jieba''', '''kenlm''': '''kenlm''', '''keras-nlp''': '''keras-nlp>=0.3.1''', '''librosa''': '''librosa''', '''nltk''': '''nltk''', '''natten''': '''natten>=0.14.6''', '''numpy''': '''numpy>=1.17''', '''onnxconverter-common''': '''onnxconverter-common''', '''onnxruntime-tools''': '''onnxruntime-tools>=1.4.2''', '''onnxruntime''': '''onnxruntime>=1.4.0''', '''opencv-python''': '''opencv-python''', '''optuna''': '''optuna''', '''optax''': '''optax>=0.0.8,<=0.1.4''', '''packaging''': '''packaging>=20.0''', '''parameterized''': '''parameterized''', '''phonemizer''': '''phonemizer''', '''protobuf''': '''protobuf''', '''psutil''': '''psutil''', '''pyyaml''': '''pyyaml>=5.1''', '''pydantic''': '''pydantic<2''', '''pytest''': '''pytest>=7.2.0''', '''pytest-timeout''': '''pytest-timeout''', '''pytest-xdist''': '''pytest-xdist''', '''python''': '''python>=3.8.0''', '''ray[tune]''': '''ray[tune]''', '''regex''': '''regex!=2019.12.17''', '''requests''': '''requests''', '''rhoknp''': '''rhoknp>=1.1.0,<1.3.1''', '''rjieba''': '''rjieba''', '''rouge-score''': '''rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1''', '''ruff''': '''ruff>=0.0.241,<=0.0.259''', '''sacrebleu''': '''sacrebleu>=1.4.12,<2.0.0''', '''sacremoses''': '''sacremoses''', '''safetensors''': '''safetensors>=0.3.1''', '''sagemaker''': '''sagemaker>=2.31.0''', '''scikit-learn''': '''scikit-learn''', '''sentencepiece''': '''sentencepiece>=0.1.91,!=0.1.92''', '''sigopt''': '''sigopt''', '''starlette''': '''starlette''', '''sudachipy''': '''sudachipy>=0.6.6''', '''sudachidict_core''': '''sudachidict_core>=20220729''', '''tensorflow-cpu''': '''tensorflow-cpu>=2.6,<2.14''', '''tensorflow''': '''tensorflow>=2.6,<2.14''', '''tensorflow-text''': '''tensorflow-text<2.14''', '''tf2onnx''': '''tf2onnx''', '''timeout-decorator''': '''timeout-decorator''', '''timm''': '''timm''', '''tokenizers''': '''tokenizers>=0.11.1,!=0.11.3,<0.14''', '''torch''': '''torch>=1.9,!=1.12.0''', '''torchaudio''': '''torchaudio''', '''torchvision''': '''torchvision''', '''pyctcdecode''': '''pyctcdecode>=0.4.0''', '''tqdm''': '''tqdm>=4.27''', '''unidic''': '''unidic>=1.0.2''', '''unidic_lite''': '''unidic_lite>=1.0.7''', '''urllib3''': '''urllib3<2.0.0''', '''uvicorn''': '''uvicorn''', }
472
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPanoramaPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() @skip_mps class UpperCAmelCase__ ( A__ , A__ , unittest.TestCase ): """simple docstring""" a = StableDiffusionPanoramaPipeline a = TEXT_TO_IMAGE_PARAMS a = TEXT_TO_IMAGE_BATCH_PARAMS a = TEXT_TO_IMAGE_IMAGE_PARAMS a = TEXT_TO_IMAGE_IMAGE_PARAMS def lowercase_ ( self : Union[str, Any] ) -> List[str]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) SCREAMING_SNAKE_CASE__ = DDIMScheduler() torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) SCREAMING_SNAKE_CASE__ = CLIPTextModel(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) SCREAMING_SNAKE_CASE__ = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def lowercase_ ( self : Union[str, Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[str]=0 ) -> Any: SCREAMING_SNAKE_CASE__ = torch.manual_seed(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = { '''prompt''': '''a photo of the dolomites''', '''generator''': generator, # Setting height and width to None to prevent OOMs on CPU. '''height''': None, '''width''': None, '''num_inference_steps''': 1, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def lowercase_ ( self : Optional[int] ) -> List[str]: SCREAMING_SNAKE_CASE__ = '''cpu''' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE__ = self.get_dummy_components() SCREAMING_SNAKE_CASE__ = StableDiffusionPanoramaPipeline(**__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = sd_pipe.to(__lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.get_dummy_inputs(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = sd_pipe(**__lowerCamelCase ).images SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE__ = np.array([0.6186, 0.5374, 0.4915, 0.4135, 0.4114, 0.4563, 0.5128, 0.4977, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase_ ( self : Any ) -> Optional[Any]: super().test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowercase_ ( self : List[Any] ) -> List[Any]: super().test_inference_batch_single_identical(batch_size=2 , expected_max_diff=3.25e-3 ) def lowercase_ ( self : Union[str, Any] ) -> str: SCREAMING_SNAKE_CASE__ = '''cpu''' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE__ = self.get_dummy_components() SCREAMING_SNAKE_CASE__ = StableDiffusionPanoramaPipeline(**__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = sd_pipe.to(__lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.get_dummy_inputs(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = '''french fries''' SCREAMING_SNAKE_CASE__ = sd_pipe(**__lowerCamelCase , negative_prompt=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = output.images SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE__ = np.array([0.6187, 0.5375, 0.4915, 0.4136, 0.4114, 0.4563, 0.5128, 0.4976, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase_ ( self : Tuple ) -> Dict: SCREAMING_SNAKE_CASE__ = '''cpu''' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE__ = self.get_dummy_components() SCREAMING_SNAKE_CASE__ = StableDiffusionPanoramaPipeline(**__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = sd_pipe.to(__lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.get_dummy_inputs(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = sd_pipe(**__lowerCamelCase , view_batch_size=2 ) SCREAMING_SNAKE_CASE__ = output.images SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE__ = np.array([0.6187, 0.5375, 0.4915, 0.4136, 0.4114, 0.4563, 0.5128, 0.4976, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase_ ( self : Optional[Any] ) -> Any: SCREAMING_SNAKE_CASE__ = '''cpu''' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE__ = self.get_dummy_components() SCREAMING_SNAKE_CASE__ = EulerAncestralDiscreteScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='''scaled_linear''' ) SCREAMING_SNAKE_CASE__ = StableDiffusionPanoramaPipeline(**__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = sd_pipe.to(__lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.get_dummy_inputs(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = sd_pipe(**__lowerCamelCase ).images SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE__ = np.array([0.4024, 0.6510, 0.4901, 0.5378, 0.5813, 0.5622, 0.4795, 0.4467, 0.4952] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase_ ( self : Optional[int] ) -> List[str]: SCREAMING_SNAKE_CASE__ = '''cpu''' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE__ = self.get_dummy_components() SCREAMING_SNAKE_CASE__ = PNDMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , skip_prk_steps=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = StableDiffusionPanoramaPipeline(**__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = sd_pipe.to(__lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.get_dummy_inputs(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = sd_pipe(**__lowerCamelCase ).images SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE__ = np.array([0.6391, 0.6291, 0.4861, 0.5134, 0.5552, 0.4578, 0.5032, 0.5023, 0.4539] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self : Tuple ) -> str: super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self : Any , __lowerCamelCase : Dict=0 ) -> Dict: SCREAMING_SNAKE_CASE__ = torch.manual_seed(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = { '''prompt''': '''a photo of the dolomites''', '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def lowercase_ ( self : Union[str, Any] ) -> List[Any]: SCREAMING_SNAKE_CASE__ = '''stabilityai/stable-diffusion-2-base''' SCREAMING_SNAKE_CASE__ = DDIMScheduler.from_pretrained(__lowerCamelCase , subfolder='''scheduler''' ) SCREAMING_SNAKE_CASE__ = StableDiffusionPanoramaPipeline.from_pretrained(__lowerCamelCase , scheduler=__lowerCamelCase , safety_checker=__lowerCamelCase ) pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE__ = self.get_inputs() SCREAMING_SNAKE_CASE__ = pipe(**__lowerCamelCase ).images SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) SCREAMING_SNAKE_CASE__ = np.array( [ 0.36968392, 0.27025372, 0.32446766, 0.28379387, 0.36363274, 0.30733347, 0.27100027, 0.27054125, 0.25536096, ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-2 def lowercase_ ( self : Optional[Any] ) -> Dict: SCREAMING_SNAKE_CASE__ = StableDiffusionPanoramaPipeline.from_pretrained( '''stabilityai/stable-diffusion-2-base''' , safety_checker=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE__ = self.get_inputs() SCREAMING_SNAKE_CASE__ = pipe(**__lowerCamelCase ).images SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) SCREAMING_SNAKE_CASE__ = np.array( [ [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def lowercase_ ( self : List[str] ) -> List[str]: SCREAMING_SNAKE_CASE__ = 0 def callback_fn(__lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : torch.FloatTensor ) -> None: SCREAMING_SNAKE_CASE__ = True nonlocal number_of_steps number_of_steps += 1 if step == 1: SCREAMING_SNAKE_CASE__ = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) SCREAMING_SNAKE_CASE__ = latents[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE__ = np.array( [ 0.18681869, 0.33907816, 0.5361276, 0.14432865, -0.02856611, -0.73941123, 0.23397987, 0.47322682, -0.37823164, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: SCREAMING_SNAKE_CASE__ = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) SCREAMING_SNAKE_CASE__ = latents[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE__ = np.array( [ 0.18539645, 0.33987248, 0.5378559, 0.14437142, -0.02455261, -0.7338317, 0.23990755, 0.47356272, -0.3786505, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = '''stabilityai/stable-diffusion-2-base''' SCREAMING_SNAKE_CASE__ = DDIMScheduler.from_pretrained(__lowerCamelCase , subfolder='''scheduler''' ) SCREAMING_SNAKE_CASE__ = StableDiffusionPanoramaPipeline.from_pretrained(__lowerCamelCase , scheduler=__lowerCamelCase , safety_checker=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE__ = self.get_inputs() pipe(**__lowerCamelCase , callback=__lowerCamelCase , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def lowercase_ ( self : Tuple ) -> Tuple: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() SCREAMING_SNAKE_CASE__ = '''stabilityai/stable-diffusion-2-base''' SCREAMING_SNAKE_CASE__ = DDIMScheduler.from_pretrained(__lowerCamelCase , subfolder='''scheduler''' ) SCREAMING_SNAKE_CASE__ = StableDiffusionPanoramaPipeline.from_pretrained(__lowerCamelCase , scheduler=__lowerCamelCase , safety_checker=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() SCREAMING_SNAKE_CASE__ = self.get_inputs() SCREAMING_SNAKE_CASE__ = pipe(**__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = torch.cuda.max_memory_allocated() # make sure that less than 5.2 GB is allocated assert mem_bytes < 5.5 * 10**9
472
1
import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class lowercase_ (lowercase__ , unittest.TestCase ): snake_case =DebertaTokenizer snake_case =True snake_case =DebertaTokenizerFast def __UpperCamelCase ( self) -> Tuple: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt a__ =[ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '[UNK]', ] a__ =dict(zip(lowercase_ , range(len(lowercase_)))) a__ =['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] a__ ={'unk_token': '[UNK]'} a__ =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) a__ =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as fp: fp.write(json.dumps(lowercase_) + '\n') with open(self.merges_file , 'w' , encoding='utf-8') as fp: fp.write('\n'.join(lowercase_)) def __UpperCamelCase ( self , **lowercase_) -> int: kwargs.update(self.special_tokens_map) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowercase_) def __UpperCamelCase ( self , lowercase_) -> Optional[int]: a__ ='lower newer' a__ ='lower newer' return input_text, output_text def __UpperCamelCase ( self) -> str: a__ =self.get_tokenizer() a__ ='lower newer' a__ =['l', 'o', 'w', 'er', '\u0120', 'n', 'e', 'w', 'er'] a__ =tokenizer.tokenize(lowercase_) self.assertListEqual(lowercase_ , lowercase_) a__ =tokens + [tokenizer.unk_token] a__ =[0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase_) , lowercase_) def __UpperCamelCase ( self) -> List[str]: a__ =self.get_tokenizer() a__ =tokenizer('Hello' , 'World') a__ =[0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd['token_type_ids'] , lowercase_) @slow def __UpperCamelCase ( self) -> int: a__ =self.tokenizer_class.from_pretrained('microsoft/deberta-base') a__ =tokenizer.encode('sequence builders' , add_special_tokens=lowercase_) a__ =tokenizer.encode('multi-sequence build' , add_special_tokens=lowercase_) a__ =tokenizer.encode( 'sequence builders' , add_special_tokens=lowercase_ , add_prefix_space=lowercase_) a__ =tokenizer.encode( 'sequence builders' , 'multi-sequence build' , add_special_tokens=lowercase_ , add_prefix_space=lowercase_) a__ =tokenizer.build_inputs_with_special_tokens(lowercase_) a__ =tokenizer.build_inputs_with_special_tokens(lowercase_ , lowercase_) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def __UpperCamelCase ( self) -> str: a__ =[self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class) for tokenizer_class in tokenizer_classes: a__ =tokenizer_class.from_pretrained('microsoft/deberta-base') a__ =[ 'ALBERT: A Lite BERT for Self-supervised Learning of Language Representations', 'ALBERT incorporates two parameter reduction techniques', 'The first one is a factorized embedding parameterization. By decomposing the large vocabulary' ' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of' ' vocabulary embedding.', ] a__ =tokenizer(lowercase_ , padding=lowercase_) a__ =[tokenizer.decode(lowercase_ , skip_special_tokens=lowercase_) for seq in encoding['input_ids']] # fmt: off a__ ={ 'input_ids': [ [1, 2118, 11126, 565, 35, 83, 25191, 163, 18854, 13, 12156, 12, 16101, 25376, 13807, 9, 22205, 27893, 1635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2118, 11126, 565, 24536, 80, 43797, 4878, 7373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 133, 78, 65, 16, 10, 3724, 1538, 33183, 11303, 43797, 1938, 4, 870, 24165, 29105, 5, 739, 32644, 33183, 11303, 36173, 88, 80, 650, 7821, 45940, 6, 52, 2559, 5, 1836, 9, 5, 7397, 13171, 31, 5, 1836, 9, 32644, 33183, 11303, 4, 2] ], 'token_type_ids': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], 'attention_mask': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on a__ =[ 'ALBERT: A Lite BERT for Self-supervised Learning of Language Representations', 'ALBERT incorporates two parameter reduction techniques', 'The first one is a factorized embedding parameterization. By decomposing the large vocabulary' ' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of' ' vocabulary embedding.', ] self.assertDictEqual(encoding.data , lowercase_) for expected, decoded in zip(lowercase_ , lowercase_): self.assertEqual(lowercase_ , lowercase_)
20
from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split snake_case = datasets.load_iris() snake_case = np.array(data["""data"""]) snake_case = np.array(data["""target"""]) snake_case = data["""target_names"""] snake_case , snake_case , snake_case , snake_case = train_test_split(X, y) def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" return np.linalg.norm(np.array(lowercase ) - np.array(lowercase ) ) def lowerCamelCase__ ( lowercase , lowercase , lowercase , lowercase , lowercase=5 ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = zip(lowercase , lowercase ) # List of distances of all points from the point to be classified SCREAMING_SNAKE_CASE : Optional[int] = [] for data_point in data: SCREAMING_SNAKE_CASE : Tuple = euclidean_distance(data_point[0] , lowercase ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. SCREAMING_SNAKE_CASE : List[Any] = [i[1] for i in sorted(lowercase )[:k]] # Most commonly occurring class among them # is the class into which the point is classified SCREAMING_SNAKE_CASE : List[Any] = Counter(lowercase ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
62
0
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( ImageTextPipelineOutput, UniDiffuserPipeline, ) else: from .modeling_text_decoder import UniDiffuserTextDecoder from .modeling_uvit import UniDiffuserModel, UTransformeraDModel from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
701
"""simple docstring""" from __future__ import annotations from collections import Counter from random import random class snake_case__ : def __init__( self : Any ): '''simple docstring''' UpperCAmelCase : List[Any] = {} def __lowerCAmelCase ( self : List[Any] , lowercase : str ): '''simple docstring''' UpperCAmelCase : Optional[int] = {} def __lowerCAmelCase ( self : Optional[int] , lowercase : str , lowercase : str , lowercase : float ): '''simple docstring''' if nodea not in self.connections: self.add_node(lowercase ) if nodea not in self.connections: self.add_node(lowercase ) UpperCAmelCase : int = probability def __lowerCAmelCase ( self : List[Any] ): '''simple docstring''' return list(self.connections ) def __lowerCAmelCase ( self : int , lowercase : str ): '''simple docstring''' UpperCAmelCase : int = 0 UpperCAmelCase : Union[str, Any] = random() for dest in self.connections[node]: current_probability += self.connections[node][dest] if current_probability > random_value: return dest return "" def lowercase_ ( _lowercase : str , _lowercase : list[tuple[str, str, float]] , _lowercase : int ): '''simple docstring''' UpperCAmelCase : int = MarkovChainGraphUndirectedUnweighted() for nodea, nodea, probability in transitions: graph.add_transition_probability(_lowercase , _lowercase , _lowercase ) UpperCAmelCase : List[Any] = Counter(graph.get_nodes() ) UpperCAmelCase : List[Any] = start for _ in range(_lowercase ): UpperCAmelCase : Optional[Any] = graph.transition(_lowercase ) visited[node] += 1 return visited if __name__ == "__main__": import doctest doctest.testmod()
292
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase_ = { 'configuration_xlm_roberta_xl': [ 'XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLMRobertaXLConfig', 'XLMRobertaXLOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLMRobertaXLForCausalLM', 'XLMRobertaXLForMaskedLM', 'XLMRobertaXLForMultipleChoice', 'XLMRobertaXLForQuestionAnswering', 'XLMRobertaXLForSequenceClassification', 'XLMRobertaXLForTokenClassification', 'XLMRobertaXLModel', 'XLMRobertaXLPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaXLConfig, XLMRobertaXLOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaXLForCausalLM, XLMRobertaXLForMaskedLM, XLMRobertaXLForMultipleChoice, XLMRobertaXLForQuestionAnswering, XLMRobertaXLForSequenceClassification, XLMRobertaXLForTokenClassification, XLMRobertaXLModel, XLMRobertaXLPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
560
"""simple docstring""" import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class __A : '''simple docstring''' @staticmethod def UpperCAmelCase ( *_snake_case : Any ,**_snake_case : List[str] ) -> List[str]: """simple docstring""" pass def __UpperCAmelCase ( __lowerCamelCase ) -> str: lowercase__ : Optional[Any] = hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class __A ( unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Optional[int] = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def UpperCAmelCase ( self : str ,_snake_case : Union[str, Any] ,_snake_case : Union[str, Any] ,_snake_case : Union[str, Any] ) -> str: """simple docstring""" lowercase__ : List[str] = DepthEstimationPipeline(model=_snake_case ,image_processor=_snake_case ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def UpperCAmelCase ( self : str ,_snake_case : Optional[Any] ,_snake_case : Optional[Any] ) -> Any: """simple docstring""" lowercase__ : int = depth_estimator('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) self.assertEqual({'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )} ,_snake_case ) import datasets lowercase__ : str = datasets.load_dataset('''hf-internal-testing/fixtures_image_utils''' ,'''image''' ,split='''test''' ) lowercase__ : Union[str, Any] = depth_estimator( [ Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ), '''http://images.cocodataset.org/val2017/000000039769.jpg''', # RGBA dataset[0]['''file'''], # LA dataset[1]['''file'''], # L dataset[2]['''file'''], ] ) self.assertEqual( [ {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, ] ,_snake_case ,) @require_tf @unittest.skip('''Depth estimation is not implemented in TF''' ) def UpperCAmelCase ( self : str ) -> List[Any]: """simple docstring""" pass @slow @require_torch def UpperCAmelCase ( self : int ) -> Dict: """simple docstring""" lowercase__ : int = '''Intel/dpt-large''' lowercase__ : Tuple = pipeline('''depth-estimation''' ,model=_snake_case ) lowercase__ : Dict = depth_estimator('''http://images.cocodataset.org/val2017/000000039769.jpg''' ) lowercase__ : Dict = hashimage(outputs['''depth'''] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs['''predicted_depth'''].max().item() ) ,29.304 ) self.assertEqual(nested_simplify(outputs['''predicted_depth'''].min().item() ) ,2.662 ) @require_torch def UpperCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" self.skipTest('''There is not hf-internal-testing tiny model for either GLPN nor DPT''' )
560
1
'''simple docstring''' import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class UpperCAmelCase__ : def __init__( self , UpperCamelCase , UpperCamelCase=99 , UpperCamelCase=13 , UpperCamelCase=7 , UpperCamelCase=9 , UpperCamelCase=True , UpperCamelCase=True , UpperCamelCase=False , UpperCamelCase=32 , UpperCamelCase=5 , UpperCamelCase=4 , UpperCamelCase=37 , UpperCamelCase=8 , UpperCamelCase=0.1 , UpperCamelCase=0.0_02 , UpperCamelCase=1 , UpperCamelCase=0 , UpperCamelCase=0 , UpperCamelCase=None , UpperCamelCase=None , ) -> Any: __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = encoder_seq_length __lowerCAmelCase = decoder_seq_length # For common tests __lowerCAmelCase = self.decoder_seq_length __lowerCAmelCase = is_training __lowerCAmelCase = use_attention_mask __lowerCAmelCase = use_labels __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = d_ff __lowerCAmelCase = relative_attention_num_buckets __lowerCAmelCase = dropout_rate __lowerCAmelCase = initializer_factor __lowerCAmelCase = eos_token_id __lowerCAmelCase = pad_token_id __lowerCAmelCase = decoder_start_token_id __lowerCAmelCase = None __lowerCAmelCase = decoder_layers def UpperCAmelCase_ ( self ) -> Optional[Any]: return TaConfig.from_pretrained("google/umt5-base" ) def UpperCAmelCase_ ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase=None , UpperCamelCase=None , UpperCamelCase=None , UpperCamelCase=None , UpperCamelCase=None , ) -> List[Any]: if attention_mask is None: __lowerCAmelCase = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: __lowerCAmelCase = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: __lowerCAmelCase = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=UpperCamelCase ) if decoder_head_mask is None: __lowerCAmelCase = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=UpperCamelCase ) if cross_attn_head_mask is None: __lowerCAmelCase = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=UpperCamelCase ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def UpperCAmelCase_ ( self ) -> Optional[Any]: __lowerCAmelCase = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size ) __lowerCAmelCase = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input __lowerCAmelCase = input_ids.clamp(self.pad_token_id + 1 ) __lowerCAmelCase = decoder_input_ids.clamp(self.pad_token_id + 1 ) __lowerCAmelCase = self.get_config() __lowerCAmelCase = config.num_attention_heads __lowerCAmelCase = self.prepare_inputs_dict(UpperCamelCase , UpperCamelCase , UpperCamelCase ) return config, input_dict def UpperCAmelCase_ ( self ) -> List[str]: __lowerCAmelCase , __lowerCAmelCase = self.prepare_config_and_inputs() return config, inputs_dict def UpperCAmelCase_ ( self ) -> Optional[Any]: return TaConfig( vocab_size=166 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def UpperCAmelCase_ ( self ) -> Optional[int]: return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def UpperCAmelCase_ ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , ) -> str: __lowerCAmelCase = UMTaModel(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() __lowerCAmelCase = model( input_ids=UpperCamelCase , decoder_input_ids=UpperCamelCase , attention_mask=UpperCamelCase , decoder_attention_mask=UpperCamelCase , ) __lowerCAmelCase = model(input_ids=UpperCamelCase , decoder_input_ids=UpperCamelCase ) __lowerCAmelCase = result.last_hidden_state __lowerCAmelCase = result.past_key_values __lowerCAmelCase = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(UpperCamelCase ) , config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) , 4 ) def UpperCAmelCase_ ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , ) -> Tuple: __lowerCAmelCase = UMTaModel(config=UpperCamelCase ).get_decoder().to(UpperCamelCase ).eval() # first forward pass __lowerCAmelCase = model(UpperCamelCase , use_cache=UpperCamelCase ) __lowerCAmelCase = model(UpperCamelCase ) __lowerCAmelCase = model(UpperCamelCase , use_cache=UpperCamelCase ) self.parent.assertTrue(len(UpperCamelCase ) == len(UpperCamelCase ) ) self.parent.assertTrue(len(UpperCamelCase ) == len(UpperCamelCase ) + 1 ) __lowerCAmelCase , __lowerCAmelCase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __lowerCAmelCase = ids_tensor((self.batch_size, 1) , config.vocab_size ) # append to next input_ids and __lowerCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) __lowerCAmelCase = model(UpperCamelCase )["last_hidden_state"] __lowerCAmelCase = model(UpperCamelCase , past_key_values=UpperCamelCase )["last_hidden_state"] # select random slice __lowerCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() __lowerCAmelCase = output_from_no_past[:, -1, random_slice_idx].detach() __lowerCAmelCase = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCamelCase , UpperCamelCase , atol=1E-3 ) ) def UpperCAmelCase_ ( self , UpperCamelCase , UpperCamelCase , ) -> int: __lowerCAmelCase = UMTaModel(config=UpperCamelCase ).to(UpperCamelCase ).half().eval() __lowerCAmelCase = model(**UpperCamelCase )["last_hidden_state"] self.parent.assertFalse(torch.isnan(UpperCamelCase ).any().item() ) @require_torch class UpperCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): a : List[Any] = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) a : Tuple = (UMTaForConditionalGeneration,) if is_torch_available() else () a : Any = ( { """conversational""": UMTaForConditionalGeneration, """feature-extraction""": UMTaModel, """summarization""": UMTaForConditionalGeneration, """text2text-generation""": UMTaForConditionalGeneration, """translation""": UMTaForConditionalGeneration, """question-answering""": UMTaForQuestionAnswering, } if is_torch_available() else {} ) a : Union[str, Any] = True a : Optional[int] = False a : Optional[int] = False a : Tuple = True a : Tuple = True # The small UMT5 model needs higher percentages for CPU/MP tests a : str = [0.8, 0.9] def UpperCAmelCase_ ( self ) -> Optional[int]: __lowerCAmelCase = UMTaModelTester(self ) @unittest.skip("Test has a segmentation fault on torch 1.8.0" ) def UpperCAmelCase_ ( self ) -> Tuple: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() __lowerCAmelCase = UMTaModel(config_and_inputs[0] ).to(UpperCamelCase ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( UpperCamelCase , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , F'''{tmpdirname}/t5_test.onnx''' , export_params=UpperCamelCase , opset_version=9 , input_names=["input_ids", "decoder_input_ids"] , ) @unittest.skipIf(torch_device == "cpu" , "Cant do half precision" ) def UpperCAmelCase_ ( self ) -> Dict: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*UpperCamelCase ) def UpperCAmelCase_ ( self ) -> Any: __lowerCAmelCase = ["encoder_attentions", "decoder_attentions", "cross_attentions"] __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() __lowerCAmelCase = config_and_inputs[0] __lowerCAmelCase = UMTaForConditionalGeneration(UpperCamelCase ).eval() model.to(UpperCamelCase ) __lowerCAmelCase = { "head_mask": torch.zeros(config.num_layers , config.num_heads , device=UpperCamelCase ), "decoder_head_mask": torch.zeros(config.num_decoder_layers , config.num_heads , device=UpperCamelCase ), "cross_attn_head_mask": torch.zeros(config.num_decoder_layers , config.num_heads , device=UpperCamelCase ), } for attn_name, (name, mask) in zip(UpperCamelCase , head_masking.items() ): __lowerCAmelCase = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": __lowerCAmelCase = torch.ones( config.num_decoder_layers , config.num_heads , device=UpperCamelCase ) __lowerCAmelCase = model.generate( config_and_inputs[1]["input_ids"] , num_beams=1 , max_length=3 , output_attentions=UpperCamelCase , return_dict_in_generate=UpperCamelCase , **UpperCamelCase , ) # We check the state of decoder_attentions and cross_attentions just from the last step __lowerCAmelCase = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 ) @unittest.skip("Does not work on the tiny model as we keep hitting edge cases." ) def UpperCAmelCase_ ( self ) -> Optional[int]: pass @require_torch @require_sentencepiece @require_tokenizers class UpperCAmelCase__ ( unittest.TestCase ): @slow @unittest.skip( "Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged" ) def UpperCAmelCase_ ( self ) -> Any: __lowerCAmelCase = UMTaForConditionalGeneration.from_pretrained("google/umt5-small" , return_dict=UpperCamelCase ).to(UpperCamelCase ) __lowerCAmelCase = AutoTokenizer.from_pretrained("google/umt5-small" , use_fast=UpperCamelCase , legacy=UpperCamelCase ) __lowerCAmelCase = [ "Bonjour monsieur <extra_id_0> bien <extra_id_1>.", "No se como puedo <extra_id_0>.", "This is the reason why we <extra_id_0> them.", "The <extra_id_0> walks in <extra_id_1>, seats", "A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.", ] __lowerCAmelCase = tokenizer(UpperCamelCase , return_tensors="pt" , padding=UpperCamelCase ).input_ids # fmt: off __lowerCAmelCase = torch.tensor( [ [ 3_8530, 21_0703, 25_6299, 1410, 25_6298, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 826, 321, 671, 2_5922, 25_6299, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 1460, 339, 312, 1_9014, 1_0620, 758, 25_6299, 2355,274, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 517, 25_6299, 1_4869, 281, 301, 25_6298, 275, 11_9983,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 320, 25_6299, 1_4869, 281, 2234, 289, 2275, 333,6_1391, 289, 25_6298, 543, 25_6297, 16_8714, 329, 25_6296,274, 1], ] ) # fmt: on torch.testing.assert_allclose(UpperCamelCase , UpperCamelCase ) __lowerCAmelCase = model.generate(input_ids.to(UpperCamelCase ) ) __lowerCAmelCase = [ "<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>", "<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>", "<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>", "<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>", "<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>", ] __lowerCAmelCase = tokenizer.batch_decode(UpperCamelCase ) self.assertEqual(UpperCamelCase , UpperCamelCase )
39
'''simple docstring''' import os import sys import unittest lowerCAmelCase : str = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) lowerCAmelCase : Tuple = os.path.join('''tests''', '''models''', '''bert''', '''test_modeling_bert.py''') lowerCAmelCase : Tuple = os.path.join('''tests''', '''models''', '''blip''', '''test_modeling_blip.py''') class UpperCAmelCase__ ( unittest.TestCase ): def UpperCAmelCase_ ( self ) -> str: __lowerCAmelCase = get_test_to_tester_mapping(UpperCamelCase ) __lowerCAmelCase = get_test_to_tester_mapping(UpperCamelCase ) __lowerCAmelCase = {"BertModelTest": "BertModelTester"} __lowerCAmelCase = { "BlipModelTest": "BlipModelTester", "BlipTextImageModelTest": "BlipTextImageModelsModelTester", "BlipTextModelTest": "BlipTextModelTester", "BlipTextRetrievalModelTest": "BlipTextRetrievalModelTester", "BlipVQAModelTest": "BlipVQAModelTester", "BlipVisionModelTest": "BlipVisionModelTester", } self.assertEqual(get_test_info.to_json(UpperCamelCase ) , UpperCamelCase ) self.assertEqual(get_test_info.to_json(UpperCamelCase ) , UpperCamelCase ) def UpperCAmelCase_ ( self ) -> List[Any]: __lowerCAmelCase = get_model_to_test_mapping(UpperCamelCase ) __lowerCAmelCase = get_model_to_test_mapping(UpperCamelCase ) __lowerCAmelCase = { "BertForMaskedLM": ["BertModelTest"], "BertForMultipleChoice": ["BertModelTest"], "BertForNextSentencePrediction": ["BertModelTest"], "BertForPreTraining": ["BertModelTest"], "BertForQuestionAnswering": ["BertModelTest"], "BertForSequenceClassification": ["BertModelTest"], "BertForTokenClassification": ["BertModelTest"], "BertLMHeadModel": ["BertModelTest"], "BertModel": ["BertModelTest"], } __lowerCAmelCase = { "BlipForConditionalGeneration": ["BlipTextImageModelTest"], "BlipForImageTextRetrieval": ["BlipTextRetrievalModelTest"], "BlipForQuestionAnswering": ["BlipVQAModelTest"], "BlipModel": ["BlipModelTest"], "BlipTextModel": ["BlipTextModelTest"], "BlipVisionModel": ["BlipVisionModelTest"], } self.assertEqual(get_test_info.to_json(UpperCamelCase ) , UpperCamelCase ) self.assertEqual(get_test_info.to_json(UpperCamelCase ) , UpperCamelCase ) def UpperCAmelCase_ ( self ) -> str: __lowerCAmelCase = get_model_to_tester_mapping(UpperCamelCase ) __lowerCAmelCase = get_model_to_tester_mapping(UpperCamelCase ) __lowerCAmelCase = { "BertForMaskedLM": ["BertModelTester"], "BertForMultipleChoice": ["BertModelTester"], "BertForNextSentencePrediction": ["BertModelTester"], "BertForPreTraining": ["BertModelTester"], "BertForQuestionAnswering": ["BertModelTester"], "BertForSequenceClassification": ["BertModelTester"], "BertForTokenClassification": ["BertModelTester"], "BertLMHeadModel": ["BertModelTester"], "BertModel": ["BertModelTester"], } __lowerCAmelCase = { "BlipForConditionalGeneration": ["BlipTextImageModelsModelTester"], "BlipForImageTextRetrieval": ["BlipTextRetrievalModelTester"], "BlipForQuestionAnswering": ["BlipVQAModelTester"], "BlipModel": ["BlipModelTester"], "BlipTextModel": ["BlipTextModelTester"], "BlipVisionModel": ["BlipVisionModelTester"], } self.assertEqual(get_test_info.to_json(UpperCamelCase ) , UpperCamelCase ) self.assertEqual(get_test_info.to_json(UpperCamelCase ) , UpperCamelCase )
39
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase :int = logging.get_logger(__name__) _lowerCAmelCase :Optional[Any] = { """YituTech/conv-bert-base""": """https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json""", """YituTech/conv-bert-medium-small""": ( """https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json""" ), """YituTech/conv-bert-small""": """https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json""", # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class UpperCAmelCase ( __UpperCamelCase ): '''simple docstring''' snake_case__ : Optional[Any] = 'convbert' def __init__( self , lowercase__=30_522 , lowercase__=768 , lowercase__=12 , lowercase__=12 , lowercase__=3_072 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=512 , lowercase__=2 , lowercase__=0.0_2 , lowercase__=1E-12 , lowercase__=1 , lowercase__=0 , lowercase__=2 , lowercase__=768 , lowercase__=2 , lowercase__=9 , lowercase__=1 , lowercase__=None , **lowercase__ , ) -> Union[str, Any]: super().__init__( pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__ , **lowercase__ , ) SCREAMING_SNAKE_CASE : Dict = vocab_size SCREAMING_SNAKE_CASE : Dict = hidden_size SCREAMING_SNAKE_CASE : Tuple = num_hidden_layers SCREAMING_SNAKE_CASE : List[str] = num_attention_heads SCREAMING_SNAKE_CASE : Union[str, Any] = intermediate_size SCREAMING_SNAKE_CASE : Any = hidden_act SCREAMING_SNAKE_CASE : Optional[Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE : Optional[int] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Dict = max_position_embeddings SCREAMING_SNAKE_CASE : List[Any] = type_vocab_size SCREAMING_SNAKE_CASE : Any = initializer_range SCREAMING_SNAKE_CASE : List[Any] = layer_norm_eps SCREAMING_SNAKE_CASE : Optional[Any] = embedding_size SCREAMING_SNAKE_CASE : Tuple = head_ratio SCREAMING_SNAKE_CASE : List[Any] = conv_kernel_size SCREAMING_SNAKE_CASE : List[str] = num_groups SCREAMING_SNAKE_CASE : Any = classifier_dropout class UpperCAmelCase ( __UpperCamelCase ): '''simple docstring''' @property def _UpperCamelCase ( self ) -> Optional[int]: if self.task == "multiple-choice": SCREAMING_SNAKE_CASE : Optional[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: SCREAMING_SNAKE_CASE : Union[str, Any] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
251
import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', } __magic_name__ = { '''vocab_file''': {'''ctrl''': '''https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json'''}, '''merges_file''': {'''ctrl''': '''https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt'''}, } __magic_name__ = { '''ctrl''': 256, } __magic_name__ = { '''Pregnancy''': 168_629, '''Christianity''': 7_675, '''Explain''': 106_423, '''Fitness''': 63_440, '''Saving''': 63_163, '''Ask''': 27_171, '''Ass''': 95_985, '''Joke''': 163_509, '''Questions''': 45_622, '''Thoughts''': 49_605, '''Retail''': 52_342, '''Feminism''': 164_338, '''Writing''': 11_992, '''Atheism''': 192_263, '''Netflix''': 48_616, '''Computing''': 39_639, '''Opinion''': 43_213, '''Alone''': 44_967, '''Funny''': 58_917, '''Gaming''': 40_358, '''Human''': 4_088, '''India''': 1_331, '''Joker''': 77_138, '''Diet''': 36_206, '''Legal''': 11_859, '''Norman''': 4_939, '''Tip''': 72_689, '''Weight''': 52_343, '''Movies''': 46_273, '''Running''': 23_425, '''Science''': 2_090, '''Horror''': 37_793, '''Confession''': 60_572, '''Finance''': 12_250, '''Politics''': 16_360, '''Scary''': 191_985, '''Support''': 12_654, '''Technologies''': 32_516, '''Teenage''': 66_160, '''Event''': 32_769, '''Learned''': 67_460, '''Notion''': 182_770, '''Wikipedia''': 37_583, '''Books''': 6_665, '''Extract''': 76_050, '''Confessions''': 102_701, '''Conspiracy''': 75_932, '''Links''': 63_674, '''Narcissus''': 150_425, '''Relationship''': 54_766, '''Relationships''': 134_796, '''Reviews''': 41_671, '''News''': 4_256, '''Translation''': 26_820, '''multilingual''': 128_406, } def SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase ): snake_case__ = set() snake_case__ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) snake_case__ = char snake_case__ = set(__lowerCAmelCase ) return pairs class _SCREAMING_SNAKE_CASE ( __UpperCamelCase ): _A : Tuple = VOCAB_FILES_NAMES _A : str = PRETRAINED_VOCAB_FILES_MAP _A : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A : List[Any] = CONTROL_CODES def __init__( self , lowerCamelCase , lowerCamelCase , lowerCamelCase="<unk>" , **lowerCamelCase ): super().__init__(unk_token=lowerCamelCase , **lowerCamelCase ) with open(lowerCamelCase , encoding="utf-8" ) as vocab_handle: snake_case__ = json.load(lowerCamelCase ) snake_case__ = {v: k for k, v in self.encoder.items()} with open(lowerCamelCase , encoding="utf-8" ) as merges_handle: snake_case__ = merges_handle.read().split("\n" )[1:-1] snake_case__ = [tuple(merge.split() ) for merge in merges] snake_case__ = dict(zip(lowerCamelCase , range(len(lowerCamelCase ) ) ) ) snake_case__ = {} @property def A_ ( self ): return len(self.encoder ) def A_ ( self ): return dict(self.encoder , **self.added_tokens_encoder ) def A_ ( self , lowerCamelCase ): if token in self.cache: return self.cache[token] snake_case__ = tuple(lowerCamelCase ) snake_case__ = tuple(list(word[:-1] ) + [word[-1] + "</w>"] ) snake_case__ = get_pairs(lowerCamelCase ) if not pairs: return token while True: snake_case__ = min(lowerCamelCase , key=lambda lowerCamelCase : self.bpe_ranks.get(lowerCamelCase , float("inf" ) ) ) if bigram not in self.bpe_ranks: break snake_case__ , snake_case__ = bigram snake_case__ = [] snake_case__ = 0 while i < len(lowerCamelCase ): try: snake_case__ = word.index(lowerCamelCase , lowerCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) snake_case__ = j if word[i] == first and i < len(lowerCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 snake_case__ = tuple(lowerCamelCase ) snake_case__ = new_word if len(lowerCamelCase ) == 1: break else: snake_case__ = get_pairs(lowerCamelCase ) snake_case__ = "@@ ".join(lowerCamelCase ) snake_case__ = word[:-4] snake_case__ = word return word def A_ ( self , lowerCamelCase ): snake_case__ = [] snake_case__ = re.findall(r"\S+\n?" , lowerCamelCase ) for token in words: split_tokens.extend(list(self.bpe(lowerCamelCase ).split(" " ) ) ) return split_tokens def A_ ( self , lowerCamelCase ): return self.encoder.get(lowerCamelCase , self.encoder.get(self.unk_token ) ) def A_ ( self , lowerCamelCase ): return self.decoder.get(lowerCamelCase , self.unk_token ) def A_ ( self , lowerCamelCase ): snake_case__ = " ".join(lowerCamelCase ).replace("@@ " , "" ).strip() return out_string def A_ ( self , lowerCamelCase , lowerCamelCase = None ): if not os.path.isdir(lowerCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case__ = os.path.join( lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) snake_case__ = os.path.join( lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCamelCase , ensure_ascii=lowerCamelCase ) + "\n" ) snake_case__ = 0 with open(lowerCamelCase , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCamelCase : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" " Please check that the tokenizer is not corrupted!" ) snake_case__ = token_index writer.write(" ".join(lowerCamelCase ) + "\n" ) index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
276
0
'''simple docstring''' def _A ( _lowerCAmelCase = 1_000 ): """simple docstring""" return sum(2 * a * ((a - 1) // 2) for a in range(3 , n + 1 ) ) if __name__ == "__main__": print(solution())
454
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule lowerCamelCase = {"""tokenization_bertweet""": ["""BertweetTokenizer"""]} if TYPE_CHECKING: from .tokenization_bertweet import BertweetTokenizer else: import sys lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
454
1
from ....configuration_utils import PretrainedConfig from ....utils import logging UpperCamelCase__ : Any = logging.get_logger(__name__) UpperCamelCase__ : Any = { '''Visual-Attention-Network/van-base''': ( '''https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json''' ), } class lowerCAmelCase_ ( lowerCamelCase_ ): __a : List[Any] = "van" def __init__( self ,snake_case__=224 ,snake_case__=3 ,snake_case__=[7, 3, 3, 3] ,snake_case__=[4, 2, 2, 2] ,snake_case__=[64, 128, 320, 512] ,snake_case__=[3, 3, 12, 3] ,snake_case__=[8, 8, 4, 4] ,snake_case__="gelu" ,snake_case__=0.02 ,snake_case__=1E-6 ,snake_case__=1E-2 ,snake_case__=0.0 ,snake_case__=0.0 ,**snake_case__ ,): super().__init__(**snake_case__ ) SCREAMING_SNAKE_CASE_ : Tuple = image_size SCREAMING_SNAKE_CASE_ : List[str] = num_channels SCREAMING_SNAKE_CASE_ : Dict = patch_sizes SCREAMING_SNAKE_CASE_ : str = strides SCREAMING_SNAKE_CASE_ : str = hidden_sizes SCREAMING_SNAKE_CASE_ : str = depths SCREAMING_SNAKE_CASE_ : Optional[Any] = mlp_ratios SCREAMING_SNAKE_CASE_ : Optional[int] = hidden_act SCREAMING_SNAKE_CASE_ : Optional[int] = initializer_range SCREAMING_SNAKE_CASE_ : Optional[int] = layer_norm_eps SCREAMING_SNAKE_CASE_ : int = layer_scale_init_value SCREAMING_SNAKE_CASE_ : Union[str, Any] = drop_path_rate SCREAMING_SNAKE_CASE_ : List[str] = dropout_rate
105
import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class lowerCAmelCase_ ( unittest.TestCase ): def snake_case ( self ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : int = jnp.ones((batch_size, length) ) / length return scores def snake_case ( self ): SCREAMING_SNAKE_CASE_ : str = None SCREAMING_SNAKE_CASE_ : int = 20 SCREAMING_SNAKE_CASE_ : int = self._get_uniform_logits(batch_size=2 ,length=snake_case__ ) # tweak scores to not be uniform anymore SCREAMING_SNAKE_CASE_ : Any = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch SCREAMING_SNAKE_CASE_ : Dict = scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch # compute softmax SCREAMING_SNAKE_CASE_ : int = jax.nn.softmax(snake_case__ ,axis=-1 ) SCREAMING_SNAKE_CASE_ : Optional[int] = FlaxTemperatureLogitsWarper(temperature=0.5 ) SCREAMING_SNAKE_CASE_ : Dict = FlaxTemperatureLogitsWarper(temperature=1.3 ) SCREAMING_SNAKE_CASE_ : Any = jax.nn.softmax(temp_dist_warper_sharper(snake_case__ ,scores.copy() ,cur_len=snake_case__ ) ,axis=-1 ) SCREAMING_SNAKE_CASE_ : Optional[int] = jax.nn.softmax(temp_dist_warper_smoother(snake_case__ ,scores.copy() ,cur_len=snake_case__ ) ,axis=-1 ) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] ,warped_prob_sharp[0, :] ,atol=1E-3 ) ) self.assertTrue(jnp.allclose(probs[0, :] ,warped_prob_smooth[0, :] ,atol=1E-3 ) ) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() ,warped_prob_sharp[1, :].max() ) self.assertGreater(probs[1, :].min() ,warped_prob_sharp[1, :].min() ) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() ,warped_prob_smooth[1, :].max() ) self.assertLess(probs[1, :].min() ,warped_prob_smooth[1, :].min() ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Any = None SCREAMING_SNAKE_CASE_ : Optional[Any] = 10 SCREAMING_SNAKE_CASE_ : int = 2 # create ramp distribution SCREAMING_SNAKE_CASE_ : Optional[Any] = np.broadcast_to(np.arange(snake_case__ )[None, :] ,(batch_size, vocab_size) ).copy() SCREAMING_SNAKE_CASE_ : Optional[int] = ramp_logits[1:, : vocab_size // 2] + vocab_size SCREAMING_SNAKE_CASE_ : List[str] = FlaxTopKLogitsWarper(3 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = top_k_warp(snake_case__ ,snake_case__ ,cur_len=snake_case__ ) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0] ).tolist() ,7 * [True] + 3 * [False] ) self.assertListEqual(jnp.isinf(scores[1] ).tolist() ,2 * [True] + 3 * [False] + 5 * [True] ) # check special case SCREAMING_SNAKE_CASE_ : int = 5 SCREAMING_SNAKE_CASE_ : Any = FlaxTopKLogitsWarper(top_k=1 ,filter_value=0.0 ,min_tokens_to_keep=3 ) SCREAMING_SNAKE_CASE_ : Optional[Any] = np.broadcast_to(np.arange(snake_case__ )[None, :] ,(batch_size, length) ).copy() SCREAMING_SNAKE_CASE_ : Union[str, Any] = top_k_warp_safety_check(snake_case__ ,snake_case__ ,cur_len=snake_case__ ) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() ,[2, 2] ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Optional[Any] = None SCREAMING_SNAKE_CASE_ : str = 10 SCREAMING_SNAKE_CASE_ : Union[str, Any] = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) SCREAMING_SNAKE_CASE_ : Any = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]] ) ) SCREAMING_SNAKE_CASE_ : Dict = FlaxTopPLogitsWarper(0.8 ) SCREAMING_SNAKE_CASE_ : Optional[int] = np.exp(top_p_warp(snake_case__ ,snake_case__ ,cur_len=snake_case__ ) ) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 SCREAMING_SNAKE_CASE_ : str = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]] ) self.assertTrue(np.allclose(snake_case__ ,snake_case__ ,atol=1E-3 ) ) # check edge cases with negative and extreme logits SCREAMING_SNAKE_CASE_ : List[Any] = np.broadcast_to(np.arange(snake_case__ )[None, :] ,(batch_size, vocab_size) ).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme SCREAMING_SNAKE_CASE_ : Any = ramp_logits[1] * 100.0 # make sure at least 2 tokens are kept SCREAMING_SNAKE_CASE_ : List[Any] = FlaxTopPLogitsWarper(0.9 ,min_tokens_to_keep=2 ,filter_value=0.0 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = top_p_warp(snake_case__ ,snake_case__ ,cur_len=snake_case__ ) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() ,[3, 2] ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : int = 20 SCREAMING_SNAKE_CASE_ : Union[str, Any] = 4 SCREAMING_SNAKE_CASE_ : str = 0 SCREAMING_SNAKE_CASE_ : str = FlaxMinLengthLogitsProcessor(min_length=10 ,eos_token_id=snake_case__ ) # check that min length is applied at length 5 SCREAMING_SNAKE_CASE_ : Dict = ids_tensor((batch_size, 20) ,vocab_size=20 ) SCREAMING_SNAKE_CASE_ : Optional[int] = 5 SCREAMING_SNAKE_CASE_ : List[str] = self._get_uniform_logits(snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Any = min_dist_processor(snake_case__ ,snake_case__ ,cur_len=snake_case__ ) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() ,4 * [-float('inf' )] ) # check that min length is not applied anymore at length 15 SCREAMING_SNAKE_CASE_ : Optional[int] = self._get_uniform_logits(snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : int = 15 SCREAMING_SNAKE_CASE_ : Any = min_dist_processor(snake_case__ ,snake_case__ ,cur_len=snake_case__ ) self.assertFalse(jnp.isinf(snake_case__ ).any() ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : str = 20 SCREAMING_SNAKE_CASE_ : List[Any] = 4 SCREAMING_SNAKE_CASE_ : Dict = 0 SCREAMING_SNAKE_CASE_ : int = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=snake_case__ ) # check that all scores are -inf except the bos_token_id score SCREAMING_SNAKE_CASE_ : List[Any] = ids_tensor((batch_size, 1) ,vocab_size=20 ) SCREAMING_SNAKE_CASE_ : Optional[int] = 1 SCREAMING_SNAKE_CASE_ : str = self._get_uniform_logits(snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Dict = logits_processor(snake_case__ ,snake_case__ ,cur_len=snake_case__ ) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, bos_token_id].tolist() ,4 * [0] ) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 SCREAMING_SNAKE_CASE_ : Dict = 3 SCREAMING_SNAKE_CASE_ : Dict = self._get_uniform_logits(snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = logits_processor(snake_case__ ,snake_case__ ,cur_len=snake_case__ ) self.assertFalse(jnp.isinf(snake_case__ ).any() ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Dict = 20 SCREAMING_SNAKE_CASE_ : Any = 4 SCREAMING_SNAKE_CASE_ : int = 0 SCREAMING_SNAKE_CASE_ : Tuple = 5 SCREAMING_SNAKE_CASE_ : List[Any] = FlaxForcedEOSTokenLogitsProcessor(max_length=snake_case__ ,eos_token_id=snake_case__ ) # check that all scores are -inf except the eos_token_id when max_length is reached SCREAMING_SNAKE_CASE_ : Any = ids_tensor((batch_size, 4) ,vocab_size=20 ) SCREAMING_SNAKE_CASE_ : List[Any] = 4 SCREAMING_SNAKE_CASE_ : Dict = self._get_uniform_logits(snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Dict = logits_processor(snake_case__ ,snake_case__ ,cur_len=snake_case__ ) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, eos_token_id].tolist() ,4 * [0] ) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached SCREAMING_SNAKE_CASE_ : List[Any] = 3 SCREAMING_SNAKE_CASE_ : int = self._get_uniform_logits(snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : List[Any] = logits_processor(snake_case__ ,snake_case__ ,cur_len=snake_case__ ) self.assertFalse(jnp.isinf(snake_case__ ).any() ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Dict = 4 SCREAMING_SNAKE_CASE_ : Dict = 10 SCREAMING_SNAKE_CASE_ : int = 15 SCREAMING_SNAKE_CASE_ : Union[str, Any] = 2 SCREAMING_SNAKE_CASE_ : Optional[int] = 1 SCREAMING_SNAKE_CASE_ : Optional[Any] = 15 # dummy input_ids and scores SCREAMING_SNAKE_CASE_ : Any = ids_tensor((batch_size, sequence_length) ,snake_case__ ) SCREAMING_SNAKE_CASE_ : int = input_ids.copy() SCREAMING_SNAKE_CASE_ : str = self._get_uniform_logits(snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Dict = scores.copy() # instantiate all dist processors SCREAMING_SNAKE_CASE_ : int = FlaxTemperatureLogitsWarper(temperature=0.5 ) SCREAMING_SNAKE_CASE_ : int = FlaxTopKLogitsWarper(3 ) SCREAMING_SNAKE_CASE_ : Dict = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors SCREAMING_SNAKE_CASE_ : Any = FlaxMinLengthLogitsProcessor(min_length=10 ,eos_token_id=snake_case__ ) SCREAMING_SNAKE_CASE_ : Any = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=snake_case__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = FlaxForcedEOSTokenLogitsProcessor(max_length=snake_case__ ,eos_token_id=snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = 10 # no processor list SCREAMING_SNAKE_CASE_ : Optional[int] = temp_dist_warp(snake_case__ ,snake_case__ ,cur_len=snake_case__ ) SCREAMING_SNAKE_CASE_ : List[str] = top_k_warp(snake_case__ ,snake_case__ ,cur_len=snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = top_p_warp(snake_case__ ,snake_case__ ,cur_len=snake_case__ ) SCREAMING_SNAKE_CASE_ : str = min_dist_proc(snake_case__ ,snake_case__ ,cur_len=snake_case__ ) SCREAMING_SNAKE_CASE_ : List[Any] = bos_dist_proc(snake_case__ ,snake_case__ ,cur_len=snake_case__ ) SCREAMING_SNAKE_CASE_ : Tuple = eos_dist_proc(snake_case__ ,snake_case__ ,cur_len=snake_case__ ) # with processor list SCREAMING_SNAKE_CASE_ : Union[str, Any] = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) SCREAMING_SNAKE_CASE_ : Any = processor(snake_case__ ,snake_case__ ,cur_len=snake_case__ ) # scores should be equal self.assertTrue(jnp.allclose(snake_case__ ,snake_case__ ,atol=1E-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() ,input_ids_comp.tolist() ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = 4 SCREAMING_SNAKE_CASE_ : Optional[Any] = 10 SCREAMING_SNAKE_CASE_ : Dict = 15 SCREAMING_SNAKE_CASE_ : Dict = 2 SCREAMING_SNAKE_CASE_ : Tuple = 1 SCREAMING_SNAKE_CASE_ : Union[str, Any] = 15 # dummy input_ids and scores SCREAMING_SNAKE_CASE_ : List[Any] = ids_tensor((batch_size, sequence_length) ,snake_case__ ) SCREAMING_SNAKE_CASE_ : int = input_ids.copy() SCREAMING_SNAKE_CASE_ : List[Any] = self._get_uniform_logits(snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = scores.copy() # instantiate all dist processors SCREAMING_SNAKE_CASE_ : str = FlaxTemperatureLogitsWarper(temperature=0.5 ) SCREAMING_SNAKE_CASE_ : List[str] = FlaxTopKLogitsWarper(3 ) SCREAMING_SNAKE_CASE_ : int = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors SCREAMING_SNAKE_CASE_ : Tuple = FlaxMinLengthLogitsProcessor(min_length=10 ,eos_token_id=snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=snake_case__ ) SCREAMING_SNAKE_CASE_ : str = FlaxForcedEOSTokenLogitsProcessor(max_length=snake_case__ ,eos_token_id=snake_case__ ) SCREAMING_SNAKE_CASE_ : List[str] = 10 # no processor list def run_no_processor_list(snake_case__ ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : int = temp_dist_warp(snake_case__ ,snake_case__ ,cur_len=snake_case__ ) SCREAMING_SNAKE_CASE_ : int = top_k_warp(snake_case__ ,snake_case__ ,cur_len=snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = top_p_warp(snake_case__ ,snake_case__ ,cur_len=snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = min_dist_proc(snake_case__ ,snake_case__ ,cur_len=snake_case__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = bos_dist_proc(snake_case__ ,snake_case__ ,cur_len=snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = eos_dist_proc(snake_case__ ,snake_case__ ,cur_len=snake_case__ ) return scores # with processor list def run_processor_list(snake_case__ ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : List[Any] = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) SCREAMING_SNAKE_CASE_ : List[str] = processor(snake_case__ ,snake_case__ ,cur_len=snake_case__ ) return scores SCREAMING_SNAKE_CASE_ : Tuple = jax.jit(snake_case__ ) SCREAMING_SNAKE_CASE_ : Any = jax.jit(snake_case__ ) SCREAMING_SNAKE_CASE_ : int = jitted_run_no_processor_list(snake_case__ ,snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : List[str] = jitted_run_processor_list(snake_case__ ,snake_case__ ,snake_case__ ) # scores should be equal self.assertTrue(jnp.allclose(snake_case__ ,snake_case__ ,atol=1E-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() ,input_ids_comp.tolist() )
105
1
from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class SCREAMING_SNAKE_CASE : '''simple docstring''' UpperCamelCase_ : Optional[Any] = LEDConfig UpperCamelCase_ : int = {} UpperCamelCase_ : Union[str, Any] = '''gelu''' def __init__( self : Optional[int] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : int=13 , UpperCAmelCase_ : Optional[int]=7 , UpperCAmelCase_ : str=True , UpperCAmelCase_ : Dict=False , UpperCAmelCase_ : List[str]=99 , UpperCAmelCase_ : Dict=32 , UpperCAmelCase_ : Union[str, Any]=2 , UpperCAmelCase_ : int=4 , UpperCAmelCase_ : List[str]=37 , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : Union[str, Any]=20 , UpperCAmelCase_ : List[str]=2 , UpperCAmelCase_ : Tuple=1 , UpperCAmelCase_ : Union[str, Any]=0 , UpperCAmelCase_ : Tuple=4 , ): SCREAMING_SNAKE_CASE : List[str] = parent SCREAMING_SNAKE_CASE : Dict = batch_size SCREAMING_SNAKE_CASE : List[str] = seq_length SCREAMING_SNAKE_CASE : Union[str, Any] = is_training SCREAMING_SNAKE_CASE : Dict = use_labels SCREAMING_SNAKE_CASE : List[Any] = vocab_size SCREAMING_SNAKE_CASE : Tuple = hidden_size SCREAMING_SNAKE_CASE : Optional[Any] = num_hidden_layers SCREAMING_SNAKE_CASE : Any = num_attention_heads SCREAMING_SNAKE_CASE : Any = intermediate_size SCREAMING_SNAKE_CASE : Dict = hidden_dropout_prob SCREAMING_SNAKE_CASE : Union[str, Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Union[str, Any] = max_position_embeddings SCREAMING_SNAKE_CASE : str = eos_token_id SCREAMING_SNAKE_CASE : List[Any] = pad_token_id SCREAMING_SNAKE_CASE : List[str] = bos_token_id SCREAMING_SNAKE_CASE : Dict = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after SCREAMING_SNAKE_CASE : Any = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests SCREAMING_SNAKE_CASE : str = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def _A ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) SCREAMING_SNAKE_CASE : int = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) SCREAMING_SNAKE_CASE : int = tf.concat([input_ids, eos_tensor] , axis=1 ) SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) SCREAMING_SNAKE_CASE : List[str] = prepare_led_inputs_dict(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = tf.concat( [tf.zeros_like(UpperCAmelCase_ )[:, :-1], tf.ones_like(UpperCAmelCase_ )[:, -1:]] , axis=-1 , ) SCREAMING_SNAKE_CASE : Optional[int] = global_attention_mask return config, inputs_dict def _A ( self : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any] ): SCREAMING_SNAKE_CASE : Dict = TFLEDModel(config=UpperCAmelCase_ ).get_decoder() SCREAMING_SNAKE_CASE : Dict = inputs_dict["input_ids"] SCREAMING_SNAKE_CASE : Tuple = input_ids[:1, :] SCREAMING_SNAKE_CASE : Optional[Any] = inputs_dict["attention_mask"][:1, :] SCREAMING_SNAKE_CASE : Optional[int] = 1 # first forward pass SCREAMING_SNAKE_CASE : Optional[int] = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , use_cache=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor((self.batch_size, 3) , config.vocab_size ) SCREAMING_SNAKE_CASE : List[str] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and SCREAMING_SNAKE_CASE : List[str] = tf.concat([input_ids, next_tokens] , axis=-1 ) SCREAMING_SNAKE_CASE : Tuple = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) SCREAMING_SNAKE_CASE : Optional[int] = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ )[0] SCREAMING_SNAKE_CASE : Optional[Any] = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , past_key_values=UpperCAmelCase_ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice SCREAMING_SNAKE_CASE : Optional[Any] = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = output_from_no_past[:, -3:, random_slice_idx] SCREAMING_SNAKE_CASE : List[Any] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(UpperCAmelCase_ , UpperCAmelCase_ , rtol=1E-3 ) def lowerCamelCase__ ( lowercase , lowercase , lowercase , lowercase=None , lowercase=None , lowercase=None , lowercase=None , ): """simple docstring""" if attention_mask is None: SCREAMING_SNAKE_CASE : Dict = tf.cast(tf.math.not_equal(lowercase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: SCREAMING_SNAKE_CASE : Dict = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: SCREAMING_SNAKE_CASE : Any = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: SCREAMING_SNAKE_CASE : Optional[int] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class SCREAMING_SNAKE_CASE ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase_ : Optional[Any] = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () UpperCamelCase_ : Optional[Any] = (TFLEDForConditionalGeneration,) if is_tf_available() else () UpperCamelCase_ : str = ( { '''conversational''': TFLEDForConditionalGeneration, '''feature-extraction''': TFLEDModel, '''summarization''': TFLEDForConditionalGeneration, '''text2text-generation''': TFLEDForConditionalGeneration, '''translation''': TFLEDForConditionalGeneration, } if is_tf_available() else {} ) UpperCamelCase_ : int = True UpperCamelCase_ : str = False UpperCamelCase_ : Tuple = False UpperCamelCase_ : str = False def _A ( self : Dict ): SCREAMING_SNAKE_CASE : List[str] = TFLEDModelTester(self ) SCREAMING_SNAKE_CASE : List[str] = ConfigTester(self , config_class=UpperCAmelCase_ ) def _A ( self : List[Any] ): self.config_tester.run_common_tests() def _A ( self : Any ): SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*UpperCAmelCase_ ) def _A ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : Union[str, Any] = tf.zeros_like(inputs_dict["attention_mask"] ) SCREAMING_SNAKE_CASE : str = 2 SCREAMING_SNAKE_CASE : Optional[int] = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict["global_attention_mask"] , ) SCREAMING_SNAKE_CASE : List[Any] = True SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.seq_length SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.encoder_seq_length def check_decoder_attentions_output(UpperCAmelCase_ : str ): SCREAMING_SNAKE_CASE : Dict = outputs.decoder_attentions self.assertEqual(len(UpperCAmelCase_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(UpperCAmelCase_ : Optional[int] ): SCREAMING_SNAKE_CASE : Optional[int] = [t.numpy() for t in outputs.encoder_attentions] SCREAMING_SNAKE_CASE : Optional[Any] = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(UpperCAmelCase_ ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(UpperCAmelCase_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Tuple = True SCREAMING_SNAKE_CASE : List[Any] = False SCREAMING_SNAKE_CASE : Dict = False SCREAMING_SNAKE_CASE : Any = model_class(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Any = model(self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) ) SCREAMING_SNAKE_CASE : List[str] = len(UpperCAmelCase_ ) self.assertEqual(config.output_hidden_states , UpperCAmelCase_ ) check_encoder_attentions_output(UpperCAmelCase_ ) if self.is_encoder_decoder: SCREAMING_SNAKE_CASE : Optional[int] = model_class(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = model(self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) ) self.assertEqual(config.output_hidden_states , UpperCAmelCase_ ) check_decoder_attentions_output(UpperCAmelCase_ ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] SCREAMING_SNAKE_CASE : int = True SCREAMING_SNAKE_CASE : Union[str, Any] = model_class(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = model(self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) ) self.assertEqual(config.output_hidden_states , UpperCAmelCase_ ) check_encoder_attentions_output(UpperCAmelCase_ ) # Check attention is always last and order is fine SCREAMING_SNAKE_CASE : List[str] = True SCREAMING_SNAKE_CASE : Optional[Any] = True SCREAMING_SNAKE_CASE : Optional[Any] = model_class(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Dict = model(self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(UpperCAmelCase_ ) ) self.assertEqual(model.config.output_hidden_states , UpperCAmelCase_ ) check_encoder_attentions_output(UpperCAmelCase_ ) @unittest.skip("LED keeps using potentially symbolic tensors in conditionals and breaks tracing." ) def _A ( self : int ): pass def _A ( self : str ): # TODO: Head-masking not yet implement pass def lowerCamelCase__ ( lowercase ): """simple docstring""" return tf.constant(lowercase , dtype=tf.intaa ) snake_case = 1e-4 @slow @require_tf class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _A ( self : Optional[Any] ): SCREAMING_SNAKE_CASE : str = TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384" ).led # change to intended input here SCREAMING_SNAKE_CASE : Optional[Any] = _long_tensor([512 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] ) SCREAMING_SNAKE_CASE : int = _long_tensor([128 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] ) SCREAMING_SNAKE_CASE : List[Any] = prepare_led_inputs_dict(model.config , UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Tuple = model(**UpperCAmelCase_ )[0] SCREAMING_SNAKE_CASE : int = (1, 1024, 768) self.assertEqual(output.shape , UpperCAmelCase_ ) # change to expected output here SCREAMING_SNAKE_CASE : List[str] = tf.convert_to_tensor( [[2.3_050, 2.8_279, 0.6_531], [-1.8_457, -0.1_455, -3.5_661], [-1.0_186, 0.4_586, -2.2_043]] , ) tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase_ , atol=1E-3 ) def _A ( self : List[str] ): SCREAMING_SNAKE_CASE : str = TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384" ) # change to intended input here SCREAMING_SNAKE_CASE : Optional[Any] = _long_tensor([512 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] ) SCREAMING_SNAKE_CASE : str = _long_tensor([128 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] ) SCREAMING_SNAKE_CASE : Tuple = prepare_led_inputs_dict(model.config , UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = model(**UpperCAmelCase_ )[0] SCREAMING_SNAKE_CASE : Dict = (1, 1024, model.config.vocab_size) self.assertEqual(output.shape , UpperCAmelCase_ ) # change to expected output here SCREAMING_SNAKE_CASE : Optional[int] = tf.convert_to_tensor( [[33.6_507, 6.4_572, 16.8_089], [5.8_739, -2.4_238, 11.2_902], [-3.2_139, -4.3_149, 4.2_783]] , ) tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase_ , atol=1E-3 , rtol=1E-3 )
488
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter snake_case = """Create a default config file for Accelerate with only a few flags set.""" def lowerCamelCase__ ( lowercase="no" , lowercase = default_json_config_file , lowercase = False ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = Path(lowercase ) path.parent.mkdir(parents=lowercase , exist_ok=lowercase ) if path.exists(): print( F'''Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.''' ) return False SCREAMING_SNAKE_CASE : int = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( F'''`mixed_precision` should be one of \'no\', \'fp16\', \'bf16\', or \'fp8\'. Received {mixed_precision}''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = { "compute_environment": "LOCAL_MACHINE", "mixed_precision": mixed_precision, } if torch.cuda.is_available(): SCREAMING_SNAKE_CASE : Union[str, Any] = torch.cuda.device_count() SCREAMING_SNAKE_CASE : int = num_gpus SCREAMING_SNAKE_CASE : Union[str, Any] = False if num_gpus > 1: SCREAMING_SNAKE_CASE : Tuple = "MULTI_GPU" else: SCREAMING_SNAKE_CASE : Optional[Any] = "NO" elif is_xpu_available() and use_xpu: SCREAMING_SNAKE_CASE : List[str] = torch.xpu.device_count() SCREAMING_SNAKE_CASE : str = num_xpus SCREAMING_SNAKE_CASE : Union[str, Any] = False if num_xpus > 1: SCREAMING_SNAKE_CASE : Any = "MULTI_XPU" else: SCREAMING_SNAKE_CASE : str = "NO" elif is_npu_available(): SCREAMING_SNAKE_CASE : List[Any] = torch.npu.device_count() SCREAMING_SNAKE_CASE : Optional[Any] = num_npus SCREAMING_SNAKE_CASE : Union[str, Any] = False if num_npus > 1: SCREAMING_SNAKE_CASE : str = "MULTI_NPU" else: SCREAMING_SNAKE_CASE : int = "NO" else: SCREAMING_SNAKE_CASE : Dict = 0 SCREAMING_SNAKE_CASE : List[Any] = True SCREAMING_SNAKE_CASE : Dict = 1 SCREAMING_SNAKE_CASE : int = "NO" SCREAMING_SNAKE_CASE : Dict = ClusterConfig(**lowercase ) config.to_json_file(lowercase ) return path def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = parser.add_parser("default" , parents=lowercase , help=lowercase , formatter_class=lowercase ) parser.add_argument( "--config_file" , default=lowercase , help=( "The path to use to store the config file. Will default to a file named default_config.yaml in the cache " "location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have " "such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed " "with 'huggingface'." ) , dest="save_location" , ) parser.add_argument( "--mixed_precision" , choices=["no", "fp16", "bf16"] , type=lowercase , help="Whether or not to use mixed precision training. " "Choose between FP16 and BF16 (bfloat16) training. " "BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later." , default="no" , ) parser.set_defaults(func=lowercase ) return parser def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = write_basic_config(args.mixed_precision , args.save_location ) if config_file: print(F'''accelerate configuration saved at {config_file}''' )
488
1
"""simple docstring""" def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int | float | str ) -> tuple[int, int]: try: _lowerCAmelCase : List[str] = float(_lowerCamelCase ) except ValueError: raise ValueError("""Please enter a valid number""" ) _lowerCAmelCase : int = decimal - int(_lowerCamelCase ) if fractional_part == 0: return int(_lowerCamelCase ), 1 else: _lowerCAmelCase : str = len(str(_lowerCamelCase ).split(""".""" )[1] ) _lowerCAmelCase : Any = int(decimal * (10**number_of_frac_digits) ) _lowerCAmelCase : List[Any] = 10**number_of_frac_digits _lowerCAmelCase , _lowerCAmelCase : str = denominator, numerator while True: _lowerCAmelCase : int = dividend % divisor if remainder == 0: break _lowerCAmelCase , _lowerCAmelCase : List[str] = divisor, remainder _lowerCAmelCase , _lowerCAmelCase : int = numerator / divisor, denominator / divisor return int(_lowerCamelCase ), int(_lowerCamelCase ) if __name__ == "__main__": print(F"""{decimal_to_fraction(2) = }""") print(F"""{decimal_to_fraction(89.0) = }""") print(F"""{decimal_to_fraction("67") = }""") print(F"""{decimal_to_fraction("45.0") = }""") print(F"""{decimal_to_fraction(1.5) = }""") print(F"""{decimal_to_fraction("6.25") = }""") print(F"""{decimal_to_fraction("78td") = }""")
213
"""simple docstring""" # Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################################################################### # # Note: If when running this conversion script you're getting an exception: # ModuleNotFoundError: No module named 'megatron.model.enums' # you need to tell python where to find the clone of Megatron-LM, e.g.: # # cd /tmp # git clone https://github.com/NVIDIA/Megatron-LM # PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ... # # if you already have it cloned elsewhere, simply adjust the path to the existing path # # If the training was done using a Megatron-LM fork, e.g., # https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one # in your path, i.e., /path/to/Megatron-DeepSpeed/ # import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Tuple ,_lowerCamelCase : Union[str, Any] ,_lowerCamelCase : int=0 ) -> List[str]: # Format the message. if name is None: _lowerCAmelCase : Optional[Any] = None else: _lowerCAmelCase : int = """.""" * max(0 ,spaces - 2 ) + """# {:""" + str(50 - spaces ) + """s}""" _lowerCAmelCase : int = fmt.format(_lowerCamelCase ) # Print and recurse (if needed). if isinstance(_lowerCamelCase ,_lowerCamelCase ): if msg is not None: print(_lowerCamelCase ) for k in val.keys(): recursive_print(_lowerCamelCase ,val[k] ,spaces + 2 ) elif isinstance(_lowerCamelCase ,torch.Tensor ): print(_lowerCamelCase ,""":""" ,val.size() ) else: print(_lowerCamelCase ,""":""" ,_lowerCamelCase ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Any ,_lowerCamelCase : Optional[int] ,_lowerCamelCase : Any ,_lowerCamelCase : Tuple ,_lowerCamelCase : Optional[Any] ) -> int: # Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :] # for compatibility with later versions of NVIDIA Megatron-LM. # The inverse operation is performed inside Megatron-LM to read checkpoints: # https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209 # If param is the weight tensor of the self-attention block, the returned tensor # will have to be transposed one more time to be read by HuggingFace GPT2. _lowerCAmelCase : str = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] _lowerCAmelCase : int = (num_heads, hidden_size, num_splits) + input_shape[1:] _lowerCAmelCase : Tuple = param.view(*_lowerCamelCase ) _lowerCAmelCase : str = param.transpose(0 ,2 ) _lowerCAmelCase : str = param.transpose(1 ,2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] _lowerCAmelCase : List[str] = (num_heads, num_splits, hidden_size) + input_shape[1:] _lowerCAmelCase : str = param.view(*_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = param.transpose(0 ,1 ).contiguous() _lowerCAmelCase : Optional[Any] = param.view(*_lowerCamelCase ) return param def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Tuple ,_lowerCamelCase : Union[str, Any] ,_lowerCamelCase : str ) -> Any: # The converted output model. _lowerCAmelCase : Optional[int] = {} # old versions did not store training args _lowerCAmelCase : Dict = input_state_dict.get("""args""" ,_lowerCamelCase ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) _lowerCAmelCase : Optional[Any] = ds_args.padded_vocab_size _lowerCAmelCase : Tuple = ds_args.max_position_embeddings _lowerCAmelCase : Optional[Any] = ds_args.hidden_size _lowerCAmelCase : Union[str, Any] = ds_args.num_layers _lowerCAmelCase : Dict = ds_args.num_attention_heads _lowerCAmelCase : Optional[Any] = ds_args.ffn_hidden_size # pprint(config) # The number of heads. _lowerCAmelCase : List[str] = config.n_head # The hidden_size per head. _lowerCAmelCase : Any = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): _lowerCAmelCase : Tuple = input_state_dict["""checkpoint_version"""] else: _lowerCAmelCase : Union[str, Any] = 0.0 # The model. _lowerCAmelCase : Any = input_state_dict["""model"""] # The language model. _lowerCAmelCase : Any = model["""language_model"""] # The embeddings. _lowerCAmelCase : Union[str, Any] = lm["""embedding"""] # The word embeddings. _lowerCAmelCase : int = embeddings["""word_embeddings"""]["""weight"""] # Truncate the embedding table to vocab_size rows. _lowerCAmelCase : Dict = word_embeddings[: config.vocab_size, :] _lowerCAmelCase : Optional[int] = word_embeddings # The position embeddings. _lowerCAmelCase : Tuple = embeddings["""position_embeddings"""]["""weight"""] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] _lowerCAmelCase : Union[str, Any] = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( f"pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don't match" ) # Store the position embeddings. _lowerCAmelCase : Optional[Any] = pos_embeddings # The transformer. _lowerCAmelCase : Optional[Any] = lm["""transformer"""] if """transformer""" in lm.keys() else lm["""encoder"""] # The regex to extract layer names. _lowerCAmelCase : Any = re.compile(r"""layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)""" ) # The simple map of names for "automated" rules. _lowerCAmelCase : Optional[Any] = { """attention.dense""": """.attn.c_proj.""", """self_attention.dense""": """.attn.c_proj.""", """mlp.dense_h_to_4h""": """.mlp.c_fc.""", """mlp.dense_4h_to_h""": """.mlp.c_proj.""", } # Extract the layers. for key, val in transformer.items(): # Match the name. _lowerCAmelCase : Tuple = layer_re.match(_lowerCamelCase ) # Stop if that's not a layer if m is None: break # The index of the layer. _lowerCAmelCase : Optional[int] = int(m.group(1 ) ) # The name of the operation. _lowerCAmelCase : Tuple = m.group(2 ) # Is it a weight or a bias? _lowerCAmelCase : List[Any] = m.group(3 ) # The name of the layer. _lowerCAmelCase : str = f"transformer.h.{layer_idx}" # For layernorm(s), simply store the layer norm. if op_name.endswith("""layernorm""" ): _lowerCAmelCase : Optional[Any] = """ln_1""" if op_name.startswith("""input""" ) else """ln_2""" _lowerCAmelCase : List[Any] = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. _lowerCAmelCase : Optional[int] = torch.tril(torch.ones((n_positions, n_positions) ,dtype=torch.floataa ) ).view( 1 ,1 ,_lowerCamelCase ,_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = causal_mask # Insert a "dummy" tensor for masked_bias. _lowerCAmelCase : Dict = torch.tensor(-1e4 ,dtype=torch.floataa ) _lowerCAmelCase : Dict = masked_bias _lowerCAmelCase : List[Any] = fix_query_key_value_ordering(_lowerCamelCase ,_lowerCamelCase ,3 ,_lowerCamelCase ,_lowerCamelCase ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. _lowerCAmelCase : int = out_val.transpose(0 ,1 ).contiguous() # Store. _lowerCAmelCase : List[str] = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": _lowerCAmelCase : Union[str, Any] = fix_query_key_value_ordering(_lowerCamelCase ,_lowerCamelCase ,3 ,_lowerCamelCase ,_lowerCamelCase ) # Store. No change of shape. _lowerCAmelCase : str = out_val # Transpose the weights. elif weight_or_bias == "weight": _lowerCAmelCase : Any = megatron_to_transformers[op_name] _lowerCAmelCase : Optional[Any] = val.transpose(0 ,1 ) # Copy the bias. elif weight_or_bias == "bias": _lowerCAmelCase : str = megatron_to_transformers[op_name] _lowerCAmelCase : Union[str, Any] = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. _lowerCAmelCase : int = transformer["""final_layernorm.weight"""] _lowerCAmelCase : Union[str, Any] = transformer["""final_layernorm.bias"""] # For LM head, transformers' wants the matrix to weight embeddings. _lowerCAmelCase : int = word_embeddings # It should be done! return output_state_dict def SCREAMING_SNAKE_CASE ( ) -> List[str]: # Create the argument parser. _lowerCAmelCase : int = argparse.ArgumentParser() parser.add_argument("""--print-checkpoint-structure""" ,action="""store_true""" ) parser.add_argument( """path_to_checkpoint""" ,type=_lowerCamelCase ,help="""Path to the checkpoint file (.zip archive or direct .pt file)""" ,) parser.add_argument( """--config_file""" ,default="""""" ,type=_lowerCamelCase ,help="""An optional config json file describing the pre-trained model.""" ,) _lowerCAmelCase : List[Any] = parser.parse_args() # Extract the basename. _lowerCAmelCase : Optional[int] = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(f"Extracting PyTorch state dictionary from {args.path_to_checkpoint}" ) if args.path_to_checkpoint.endswith(""".zip""" ): with zipfile.ZipFile(args.path_to_checkpoint ,"""r""" ) as checkpoint: with checkpoint.open("""release/mp_rank_00/model_optim_rng.pt""" ) as pytorch_dict: _lowerCAmelCase : Any = torch.load(_lowerCamelCase ,map_location="""cpu""" ) else: _lowerCAmelCase : Optional[int] = torch.load(args.path_to_checkpoint ,map_location="""cpu""" ) _lowerCAmelCase : Optional[int] = input_state_dict.get("""args""" ,_lowerCamelCase ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: _lowerCAmelCase : Optional[Any] = """gelu_fast""" elif ds_args.openai_gelu: _lowerCAmelCase : Any = """gelu_new""" else: _lowerCAmelCase : str = """gelu""" else: # in the very early days this used to be "gelu_new" _lowerCAmelCase : Any = """gelu_new""" # Spell out all parameters in case the defaults change. _lowerCAmelCase : Tuple = GPTaConfig( vocab_size=50257 ,n_positions=1024 ,n_embd=1024 ,n_layer=24 ,n_head=16 ,n_inner=4096 ,activation_function=_lowerCamelCase ,resid_pdrop=0.1 ,embd_pdrop=0.1 ,attn_pdrop=0.1 ,layer_norm_epsilon=1e-5 ,initializer_range=0.02 ,summary_type="""cls_index""" ,summary_use_proj=_lowerCamelCase ,summary_activation=_lowerCamelCase ,summary_proj_to_labels=_lowerCamelCase ,summary_first_dropout=0.1 ,scale_attn_weights=_lowerCamelCase ,use_cache=_lowerCamelCase ,bos_token_id=50256 ,eos_token_id=50256 ,) else: _lowerCAmelCase : Optional[Any] = GPTaConfig.from_json_file(args.config_file ) _lowerCAmelCase : Tuple = ["""GPT2LMHeadModel"""] # Convert. print("""Converting""" ) _lowerCAmelCase : Tuple = convert_megatron_checkpoint(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(_lowerCamelCase ,_lowerCamelCase ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: _lowerCAmelCase : Optional[Any] = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": _lowerCAmelCase : Dict = """gpt2""" elif tokenizer_type == "PretrainedFromHF": _lowerCAmelCase : List[str] = ds_args.tokenizer_name_or_path else: raise ValueError(f"Unrecognized tokenizer_type {tokenizer_type}" ) else: _lowerCAmelCase : Optional[Any] = """gpt2""" _lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = type(_lowerCamelCase ).__name__ _lowerCAmelCase : Dict = tokenizer_class # Store the config to file. print("""Saving config""" ) config.save_pretrained(_lowerCamelCase ) # Save tokenizer based on args print(f"Adding {tokenizer_class} tokenizer files" ) tokenizer.save_pretrained(_lowerCamelCase ) # Store the state_dict to file. _lowerCAmelCase : List[str] = os.path.join(_lowerCamelCase ,"""pytorch_model.bin""" ) print(f"Saving checkpoint to \"{output_checkpoint_file}\"" ) torch.save(_lowerCamelCase ,_lowerCamelCase ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
213
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { """edbeeching/decision-transformer-gym-hopper-medium""": ( """https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json""" ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class lowerCamelCase_ ( lowercase ): __lowercase : Any = "decision_transformer" __lowercase : int = ["past_key_values"] __lowercase : Tuple = { "max_position_embeddings": "n_positions", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , lowerCamelCase_=17 , lowerCamelCase_=4 , lowerCamelCase_=1_28 , lowerCamelCase_=40_96 , lowerCamelCase_=True , lowerCamelCase_=1 , lowerCamelCase_=10_24 , lowerCamelCase_=3 , lowerCamelCase_=1 , lowerCamelCase_=None , lowerCamelCase_="relu" , lowerCamelCase_=0.1 , lowerCamelCase_=0.1 , lowerCamelCase_=0.1 , lowerCamelCase_=1E-5 , lowerCamelCase_=0.02 , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=5_02_56 , lowerCamelCase_=5_02_56 , lowerCamelCase_=False , lowerCamelCase_=False , **lowerCamelCase_ , ) -> Tuple: """simple docstring""" _UpperCamelCase = state_dim _UpperCamelCase = act_dim _UpperCamelCase = hidden_size _UpperCamelCase = max_ep_len _UpperCamelCase = action_tanh _UpperCamelCase = vocab_size _UpperCamelCase = n_positions _UpperCamelCase = n_layer _UpperCamelCase = n_head _UpperCamelCase = n_inner _UpperCamelCase = activation_function _UpperCamelCase = resid_pdrop _UpperCamelCase = embd_pdrop _UpperCamelCase = attn_pdrop _UpperCamelCase = layer_norm_epsilon _UpperCamelCase = initializer_range _UpperCamelCase = scale_attn_weights _UpperCamelCase = use_cache _UpperCamelCase = scale_attn_by_inverse_layer_idx _UpperCamelCase = reorder_and_upcast_attn _UpperCamelCase = bos_token_id _UpperCamelCase = eos_token_id super().__init__(bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , **lowerCamelCase_ )
589
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __lowerCAmelCase = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class lowerCamelCase_ ( lowercase , unittest.TestCase ): __lowercase : Dict = XLMRobertaTokenizer __lowercase : List[Any] = XLMRobertaTokenizerFast __lowercase : Dict = True __lowercase : Union[str, Any] = True def lowercase ( self ) -> List[str]: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing _UpperCamelCase = XLMRobertaTokenizer(lowerCamelCase_ , keep_accents=lowerCamelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase ( self ) -> List[str]: """simple docstring""" _UpperCamelCase = "<pad>" _UpperCamelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase_ ) , lowerCamelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase_ ) , lowerCamelCase_ ) def lowercase ( self ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-1] , "<mask>" ) self.assertEqual(len(lowerCamelCase_ ) , 10_02 ) def lowercase ( self ) -> int: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 10_02 ) def lowercase ( self ) -> List[Any]: """simple docstring""" _UpperCamelCase = XLMRobertaTokenizer(lowerCamelCase_ , keep_accents=lowerCamelCase_ ) _UpperCamelCase = tokenizer.tokenize("This is a test" ) self.assertListEqual(lowerCamelCase_ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) _UpperCamelCase = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( lowerCamelCase_ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) _UpperCamelCase = tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) self.assertListEqual( lowerCamelCase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(lowerCamelCase_ ) self.assertListEqual( lowerCamelCase_ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) def lowercase ( self ) -> str: """simple docstring""" if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return _UpperCamelCase = (self.rust_tokenizer_class, "hf-internal-testing/tiny-xlm-roberta", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _UpperCamelCase = self.rust_tokenizer_class.from_pretrained(lowerCamelCase_ , **lowerCamelCase_ ) _UpperCamelCase = self.tokenizer_class.from_pretrained(lowerCamelCase_ , **lowerCamelCase_ ) _UpperCamelCase = tempfile.mkdtemp() _UpperCamelCase = tokenizer_r.save_pretrained(lowerCamelCase_ ) _UpperCamelCase = tokenizer_p.save_pretrained(lowerCamelCase_ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) _UpperCamelCase = tuple(f for f in tokenizer_r_files if "tokenizer.json" not in f ) self.assertSequenceEqual(lowerCamelCase_ , lowerCamelCase_ ) # Checks everything loads correctly in the same way _UpperCamelCase = tokenizer_r.from_pretrained(lowerCamelCase_ ) _UpperCamelCase = tokenizer_p.from_pretrained(lowerCamelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase_ , lowerCamelCase_ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(lowerCamelCase_ ) # Save tokenizer rust, legacy_format=True _UpperCamelCase = tempfile.mkdtemp() _UpperCamelCase = tokenizer_r.save_pretrained(lowerCamelCase_ , legacy_format=lowerCamelCase_ ) _UpperCamelCase = tokenizer_p.save_pretrained(lowerCamelCase_ ) # Checks it save with the same files self.assertSequenceEqual(lowerCamelCase_ , lowerCamelCase_ ) # Checks everything loads correctly in the same way _UpperCamelCase = tokenizer_r.from_pretrained(lowerCamelCase_ ) _UpperCamelCase = tokenizer_p.from_pretrained(lowerCamelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase_ , lowerCamelCase_ ) ) shutil.rmtree(lowerCamelCase_ ) # Save tokenizer rust, legacy_format=False _UpperCamelCase = tempfile.mkdtemp() _UpperCamelCase = tokenizer_r.save_pretrained(lowerCamelCase_ , legacy_format=lowerCamelCase_ ) _UpperCamelCase = tokenizer_p.save_pretrained(lowerCamelCase_ ) # Checks it saved the tokenizer.json file self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way _UpperCamelCase = tokenizer_r.from_pretrained(lowerCamelCase_ ) _UpperCamelCase = tokenizer_p.from_pretrained(lowerCamelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase_ , lowerCamelCase_ ) ) shutil.rmtree(lowerCamelCase_ ) @cached_property def lowercase ( self ) -> str: """simple docstring""" return XLMRobertaTokenizer.from_pretrained("xlm-roberta-base" ) def lowercase ( self ) -> str: """simple docstring""" with tempfile.NamedTemporaryFile() as f: shutil.copyfile(lowerCamelCase_ , f.name ) _UpperCamelCase = XLMRobertaTokenizer(f.name , keep_accents=lowerCamelCase_ ) _UpperCamelCase = pickle.dumps(lowerCamelCase_ ) pickle.loads(lowerCamelCase_ ) def lowercase ( self ) -> Optional[Any]: """simple docstring""" if not self.test_rust_tokenizer: return _UpperCamelCase = self.get_tokenizer() _UpperCamelCase = self.get_rust_tokenizer() _UpperCamelCase = "I was born in 92000, and this is falsé." _UpperCamelCase = tokenizer.tokenize(lowerCamelCase_ ) _UpperCamelCase = rust_tokenizer.tokenize(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) _UpperCamelCase = tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) _UpperCamelCase = rust_tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) _UpperCamelCase = self.get_rust_tokenizer() _UpperCamelCase = tokenizer.encode(lowerCamelCase_ ) _UpperCamelCase = rust_tokenizer.encode(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) @slow def lowercase ( self ) -> Optional[int]: """simple docstring""" _UpperCamelCase = "Hello World!" _UpperCamelCase = [0, 3_53_78, 66_61, 38, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(lowerCamelCase_ , self.big_tokenizer.encode(lowerCamelCase_ ) ) @slow def lowercase ( self ) -> List[Any]: """simple docstring""" _UpperCamelCase = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth" ) _UpperCamelCase = [ 0, 32_93, 83, 10, 45_52, 49_89, 79_86, 6_78, 10, 59_15, 1_11, 17_94_59, 12_48_50, 4, 60_44, 2_37, 12, 6, 5, 6, 4, 67_80, 7_05, 15, 13_88, 44, 3_78, 1_01_14, 7_11, 1_52, 20, 6, 5, 2_23_76, 6_42, 12_21, 1_51_90, 3_41_53, 4_50, 56_08, 9_59, 11_19, 5_77_02, 1_36, 1_86, 47, 10_98, 2_93_67, 47, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 60_44, 2_37, 62_84, 5_09_01, 5_28, 31, 90, 34, 9_27, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(lowerCamelCase_ , self.big_tokenizer.encode(lowerCamelCase_ ) ) @slow def lowercase ( self ) -> str: """simple docstring""" _UpperCamelCase = {"input_ids": [[0, 1_10_62, 8_27_72, 7, 15, 8_27_72, 5_38, 5_15_29, 2_37, 1_71_98, 12_90, 2_06, 9, 21_51_75, 13_14, 1_36, 1_71_98, 12_90, 2_06, 9, 5_63_59, 42, 12_20_09, 9, 1_64_66, 16, 8_73_44, 45_37, 9, 47_17, 7_83_81, 6, 15_99_58, 7, 15, 2_44_80, 6_18, 4, 5_27, 2_26_93, 54_28, 4, 27_77, 2_44_80, 98_74, 4, 4_35_23, 5_94, 4, 8_03, 1_83_92, 3_31_89, 18, 4, 4_35_23, 2_44_47, 1_23_99, 1_00, 2_49_55, 8_36_58, 96_26, 14_40_57, 15, 8_39, 2_23_35, 16, 1_36, 2_49_55, 8_36_58, 8_34_79, 15, 3_91_02, 7_24, 16, 6_78, 6_45, 27_89, 13_28, 45_89, 42, 12_20_09, 11_57_74, 23, 8_05, 13_28, 4_68_76, 7, 1_36, 5_38_94, 19_40, 4_22_27, 4_11_59, 1_77_21, 8_23, 4_25, 4, 2_75_12, 9_87_22, 2_06, 1_36, 55_31, 49_70, 9_19, 1_73_36, 5, 2], [0, 2_00_80, 6_18, 83, 8_27_75, 47, 4_79, 9, 15_17, 73, 5_38_94, 3_33, 8_05_81, 11_01_17, 1_88_11, 52_56, 12_95, 51, 15_25_26, 2_97, 79_86, 3_90, 12_44_16, 5_38, 3_54_31, 2_14, 98, 1_50_44, 2_57_37, 1_36, 71_08, 4_37_01, 23, 7_56, 13_53_55, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 5_81, 6_37_73, 11_94_55, 6, 14_77_97, 8_82_03, 7, 6_45, 70, 21, 32_85, 1_02_69, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase_ , model_name="xlm-roberta-base" , revision="d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3" , )
589
1
'''simple docstring''' def _a( UpperCamelCase__ : list, UpperCamelCase__ : list, UpperCamelCase__ : int ): '''simple docstring''' if len(UpperCamelCase__ ) != len(UpperCamelCase__ ): raise ValueError('''The length of profit and weight must be same.''' ) if max_weight <= 0: raise ValueError('''max_weight must greater than zero.''' ) if any(p < 0 for p in profit ): raise ValueError('''Profit can not be negative.''' ) if any(w < 0 for w in weight ): raise ValueError('''Weight can not be negative.''' ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. SCREAMING_SNAKE_CASE__ : Optional[Any] =[p / w for p, w in zip(UpperCamelCase__, UpperCamelCase__ )] # Creating a copy of the list and sorting profit/weight in ascending order SCREAMING_SNAKE_CASE__ : List[str] =sorted(UpperCamelCase__ ) # declaring useful variables SCREAMING_SNAKE_CASE__ : List[Any] =len(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Optional[int] =0 SCREAMING_SNAKE_CASE__ : str =0 SCREAMING_SNAKE_CASE__ : str =0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight SCREAMING_SNAKE_CASE__ : Dict =sorted_profit_by_weight[length - i - 1] SCREAMING_SNAKE_CASE__ : Optional[int] =profit_by_weight.index(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : int =-1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( 'Input profits, weights, and then max_weight (all positive ints) separated by ' 'spaces.' ) a_ = [int(x) for x in input('Input profits separated by spaces: ').split()] a_ = [int(x) for x in input('Input weights separated by spaces: ').split()] a_ = int(input('Max weight allowed: ')) # Function Call calc_profit(profit, weight, max_weight)
296
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __init__( self : List[Any] , __lowercase : Tuple , __lowercase : Tuple=7 , __lowercase : List[str]=3 , __lowercase : List[Any]=18 , __lowercase : int=30 , __lowercase : Any=4_00 , __lowercase : Dict=True , __lowercase : Dict=None , __lowercase : Union[str, Any]=True , ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ : List[Any] =size if size is not None else {'''height''': 18, '''width''': 18} SCREAMING_SNAKE_CASE__ : Union[str, Any] =parent SCREAMING_SNAKE_CASE__ : List[str] =batch_size SCREAMING_SNAKE_CASE__ : Dict =num_channels SCREAMING_SNAKE_CASE__ : Optional[int] =image_size SCREAMING_SNAKE_CASE__ : Optional[Any] =min_resolution SCREAMING_SNAKE_CASE__ : Dict =max_resolution SCREAMING_SNAKE_CASE__ : Optional[Any] =do_resize SCREAMING_SNAKE_CASE__ : Optional[int] =size SCREAMING_SNAKE_CASE__ : Tuple =apply_ocr def __magic_name__ ( self : Tuple ) -> List[Any]: return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class __SCREAMING_SNAKE_CASE ( lowerCamelCase , unittest.TestCase ): snake_case_ = LayoutLMvaImageProcessor if is_pytesseract_available() else None def __magic_name__ ( self : List[str] ) -> Optional[int]: SCREAMING_SNAKE_CASE__ : Optional[Any] =LayoutLMvaImageProcessingTester(self ) @property def __magic_name__ ( self : Union[str, Any] ) -> List[str]: return self.image_processor_tester.prepare_image_processor_dict() def __magic_name__ ( self : Dict ) -> List[str]: SCREAMING_SNAKE_CASE__ : str =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowercase , '''do_resize''' ) ) self.assertTrue(hasattr(__lowercase , '''size''' ) ) self.assertTrue(hasattr(__lowercase , '''apply_ocr''' ) ) def __magic_name__ ( self : List[str] ) -> List[Any]: SCREAMING_SNAKE_CASE__ : Any =self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 18} ) SCREAMING_SNAKE_CASE__ : Optional[int] =self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) def __magic_name__ ( self : int ) -> Optional[int]: pass def __magic_name__ ( self : str ) -> Optional[int]: # Initialize image_processing SCREAMING_SNAKE_CASE__ : Optional[Any] =self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE__ : Optional[Any] =prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE__ : int =image_processing(image_inputs[0] , return_tensors='''pt''' ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) self.assertIsInstance(encoding.words , __lowercase ) self.assertIsInstance(encoding.boxes , __lowercase ) # Test batched SCREAMING_SNAKE_CASE__ : Optional[Any] =image_processing(__lowercase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def __magic_name__ ( self : Union[str, Any] ) -> Any: # Initialize image_processing SCREAMING_SNAKE_CASE__ : List[str] =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE__ : List[Any] =prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowercase , numpify=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase , np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE__ : Any =image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched SCREAMING_SNAKE_CASE__ : Dict =image_processing(__lowercase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def __magic_name__ ( self : Dict ) -> Optional[Any]: # Initialize image_processing SCREAMING_SNAKE_CASE__ : Optional[Any] =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE__ : Optional[Any] =prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowercase , torchify=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase , torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE__ : str =image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched SCREAMING_SNAKE_CASE__ : Optional[Any] =image_processing(__lowercase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def __magic_name__ ( self : Tuple ) -> List[Any]: # with apply_OCR = True SCREAMING_SNAKE_CASE__ : int =LayoutLMvaImageProcessor() from datasets import load_dataset SCREAMING_SNAKE_CASE__ : Tuple =load_dataset('''hf-internal-testing/fixtures_docvqa''' , split='''test''' ) SCREAMING_SNAKE_CASE__ : int =Image.open(ds[0]['''file'''] ).convert('''RGB''' ) SCREAMING_SNAKE_CASE__ : Tuple =image_processing(__lowercase , return_tensors='''pt''' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 SCREAMING_SNAKE_CASE__ : Any =[['''11:14''', '''to''', '''11:39''', '''a.m''', '''11:39''', '''to''', '''11:44''', '''a.m.''', '''11:44''', '''a.m.''', '''to''', '''12:25''', '''p.m.''', '''12:25''', '''to''', '''12:58''', '''p.m.''', '''12:58''', '''to''', '''4:00''', '''p.m.''', '''2:00''', '''to''', '''5:00''', '''p.m.''', '''Coffee''', '''Break''', '''Coffee''', '''will''', '''be''', '''served''', '''for''', '''men''', '''and''', '''women''', '''in''', '''the''', '''lobby''', '''adjacent''', '''to''', '''exhibit''', '''area.''', '''Please''', '''move''', '''into''', '''exhibit''', '''area.''', '''(Exhibits''', '''Open)''', '''TRRF''', '''GENERAL''', '''SESSION''', '''(PART''', '''|)''', '''Presiding:''', '''Lee''', '''A.''', '''Waller''', '''TRRF''', '''Vice''', '''President''', '''“Introductory''', '''Remarks”''', '''Lee''', '''A.''', '''Waller,''', '''TRRF''', '''Vice''', '''Presi-''', '''dent''', '''Individual''', '''Interviews''', '''with''', '''TRRF''', '''Public''', '''Board''', '''Members''', '''and''', '''Sci-''', '''entific''', '''Advisory''', '''Council''', '''Mem-''', '''bers''', '''Conducted''', '''by''', '''TRRF''', '''Treasurer''', '''Philip''', '''G.''', '''Kuehn''', '''to''', '''get''', '''answers''', '''which''', '''the''', '''public''', '''refrigerated''', '''warehousing''', '''industry''', '''is''', '''looking''', '''for.''', '''Plus''', '''questions''', '''from''', '''the''', '''floor.''', '''Dr.''', '''Emil''', '''M.''', '''Mrak,''', '''University''', '''of''', '''Cal-''', '''ifornia,''', '''Chairman,''', '''TRRF''', '''Board;''', '''Sam''', '''R.''', '''Cecil,''', '''University''', '''of''', '''Georgia''', '''College''', '''of''', '''Agriculture;''', '''Dr.''', '''Stanley''', '''Charm,''', '''Tufts''', '''University''', '''School''', '''of''', '''Medicine;''', '''Dr.''', '''Robert''', '''H.''', '''Cotton,''', '''ITT''', '''Continental''', '''Baking''', '''Company;''', '''Dr.''', '''Owen''', '''Fennema,''', '''University''', '''of''', '''Wis-''', '''consin;''', '''Dr.''', '''Robert''', '''E.''', '''Hardenburg,''', '''USDA.''', '''Questions''', '''and''', '''Answers''', '''Exhibits''', '''Open''', '''Capt.''', '''Jack''', '''Stoney''', '''Room''', '''TRRF''', '''Scientific''', '''Advisory''', '''Council''', '''Meeting''', '''Ballroom''', '''Foyer''']] # noqa: E231 SCREAMING_SNAKE_CASE__ : Optional[Any] =[[[1_41, 57, 2_14, 69], [2_28, 58, 2_52, 69], [1_41, 75, 2_16, 88], [2_30, 79, 2_80, 88], [1_42, 2_60, 2_18, 2_73], [2_30, 2_61, 2_55, 2_73], [1_43, 2_79, 2_18, 2_90], [2_31, 2_82, 2_90, 2_91], [1_43, 3_42, 2_18, 3_54], [2_31, 3_45, 2_89, 3_55], [2_02, 3_62, 2_27, 3_73], [1_43, 3_79, 2_20, 3_92], [2_31, 3_82, 2_91, 3_94], [1_44, 7_14, 2_20, 7_26], [2_31, 7_15, 2_56, 7_26], [1_44, 7_32, 2_20, 7_45], [2_32, 7_36, 2_91, 7_47], [1_44, 7_69, 2_18, 7_82], [2_31, 7_70, 2_56, 7_82], [1_41, 7_88, 2_02, 8_01], [2_15, 7_91, 2_74, 8_04], [1_43, 8_26, 2_04, 8_38], [2_15, 8_26, 2_40, 8_38], [1_42, 8_44, 2_02, 8_57], [2_15, 8_47, 2_74, 8_59], [3_34, 57, 4_27, 69], [4_40, 57, 5_22, 69], [3_69, 75, 4_61, 88], [4_69, 75, 5_16, 88], [5_28, 76, 5_62, 88], [5_70, 76, 6_67, 88], [6_75, 75, 7_11, 87], [7_21, 79, 7_78, 88], [7_89, 75, 8_40, 88], [3_69, 97, 4_70, 1_07], [4_84, 94, 5_07, 1_06], [5_18, 94, 5_62, 1_07], [5_76, 94, 6_55, 1_10], [6_68, 94, 7_92, 1_09], [8_04, 95, 8_29, 1_07], [3_69, 1_13, 4_65, 1_25], [4_77, 1_16, 5_47, 1_25], [5_62, 1_13, 6_58, 1_25], [6_71, 1_16, 7_48, 1_25], [7_61, 1_13, 8_11, 1_25], [3_69, 1_31, 4_65, 1_43], [4_77, 1_33, 5_48, 1_43], [5_63, 1_30, 6_98, 1_45], [7_10, 1_30, 8_02, 1_46], [3_36, 1_71, 4_12, 1_83], [4_23, 1_71, 5_72, 1_83], [5_82, 1_70, 7_16, 1_84], [7_28, 1_71, 8_17, 1_87], [8_29, 1_71, 8_44, 1_86], [3_38, 1_97, 4_82, 2_12], [5_07, 1_96, 5_57, 2_09], [5_69, 1_96, 5_95, 2_08], [6_10, 1_96, 7_02, 2_09], [5_05, 2_14, 5_83, 2_26], [5_95, 2_14, 6_56, 2_27], [6_70, 2_15, 8_07, 2_27], [3_35, 2_59, 5_43, 2_74], [5_56, 2_59, 7_08, 2_72], [3_72, 2_79, 4_22, 2_91], [4_35, 2_79, 4_60, 2_91], [4_74, 2_79, 5_74, 2_92], [5_87, 2_78, 6_64, 2_91], [6_76, 2_78, 7_38, 2_91], [7_51, 2_79, 8_34, 2_91], [3_72, 2_98, 4_34, 3_10], [3_35, 3_41, 4_83, 3_54], [4_97, 3_41, 6_55, 3_54], [6_67, 3_41, 7_28, 3_54], [7_40, 3_41, 8_25, 3_54], [3_35, 3_60, 4_30, 3_72], [4_42, 3_60, 5_34, 3_72], [5_45, 3_59, 6_87, 3_72], [6_97, 3_60, 7_54, 3_72], [7_65, 3_60, 8_23, 3_73], [3_34, 3_78, 4_28, 3_91], [4_40, 3_78, 5_77, 3_94], [5_90, 3_78, 7_05, 3_91], [7_20, 3_78, 8_01, 3_91], [3_34, 3_97, 4_00, 4_09], [3_70, 4_16, 5_29, 4_29], [5_44, 4_16, 5_76, 4_32], [5_87, 4_16, 6_65, 4_28], [6_77, 4_16, 8_14, 4_29], [3_72, 4_35, 4_52, 4_50], [4_65, 4_34, 4_95, 4_47], [5_11, 4_34, 6_00, 4_47], [6_11, 4_36, 6_37, 4_47], [6_49, 4_36, 6_94, 4_51], [7_05, 4_38, 8_24, 4_47], [3_69, 4_53, 4_52, 4_66], [4_64, 4_54, 5_09, 4_66], [5_22, 4_53, 6_11, 4_69], [6_25, 4_53, 7_92, 4_69], [3_70, 4_72, 5_56, 4_88], [5_70, 4_72, 6_84, 4_87], [6_97, 4_72, 7_18, 4_85], [7_32, 4_72, 8_35, 4_88], [3_69, 4_90, 4_11, 5_03], [4_25, 4_90, 4_84, 5_03], [4_96, 4_90, 6_35, 5_06], [6_45, 4_90, 7_07, 5_03], [7_18, 4_91, 7_61, 5_03], [7_71, 4_90, 8_40, 5_03], [3_36, 5_10, 3_74, 5_21], [3_88, 5_10, 4_47, 5_22], [4_60, 5_10, 4_89, 5_21], [5_03, 5_10, 5_80, 5_22], [5_92, 5_09, 7_36, 5_25], [7_45, 5_09, 7_70, 5_22], [7_81, 5_09, 8_40, 5_22], [3_38, 5_28, 4_34, 5_41], [4_48, 5_28, 5_96, 5_41], [6_09, 5_27, 6_87, 5_40], [7_00, 5_28, 7_92, 5_41], [3_36, 5_46, 3_97, 5_59], [4_07, 5_46, 4_31, 5_59], [4_43, 5_46, 5_25, 5_60], [5_37, 5_46, 6_80, 5_62], [6_88, 5_46, 7_14, 5_59], [7_22, 5_46, 8_37, 5_62], [3_36, 5_65, 4_49, 5_81], [4_61, 5_65, 4_85, 5_77], [4_97, 5_65, 6_65, 5_81], [6_81, 5_65, 7_18, 5_77], [7_32, 5_65, 8_37, 5_80], [3_37, 5_84, 4_38, 5_97], [4_52, 5_83, 5_21, 5_96], [5_35, 5_84, 6_77, 5_99], [6_90, 5_83, 7_87, 5_96], [8_01, 5_83, 8_25, 5_96], [3_38, 6_02, 4_78, 6_15], [4_92, 6_02, 5_30, 6_14], [5_43, 6_02, 6_38, 6_15], [6_50, 6_02, 6_76, 6_14], [6_88, 6_02, 7_88, 6_15], [8_02, 6_02, 8_43, 6_14], [3_37, 6_21, 5_02, 6_33], [5_16, 6_21, 6_15, 6_37], [6_29, 6_21, 7_74, 6_36], [7_89, 6_21, 8_27, 6_33], [3_37, 6_39, 4_18, 6_52], [4_32, 6_40, 5_71, 6_53], [5_87, 6_39, 7_31, 6_55], [7_43, 6_39, 7_69, 6_52], [7_80, 6_39, 8_41, 6_52], [3_38, 6_58, 4_40, 6_73], [4_55, 6_58, 4_91, 6_70], [5_08, 6_58, 6_02, 6_71], [6_16, 6_58, 6_38, 6_70], [6_54, 6_58, 8_35, 6_74], [3_37, 6_77, 4_29, 6_89], [3_37, 7_14, 4_82, 7_26], [4_95, 7_14, 5_48, 7_26], [5_61, 7_14, 6_83, 7_26], [3_38, 7_70, 4_61, 7_82], [4_74, 7_69, 5_54, 7_85], [4_89, 7_88, 5_62, 8_03], [5_76, 7_88, 6_43, 8_01], [6_56, 7_87, 7_51, 8_04], [7_64, 7_88, 8_44, 8_01], [3_34, 8_25, 4_21, 8_38], [4_30, 8_24, 5_74, 8_38], [5_84, 8_24, 7_23, 8_41], [3_35, 8_44, 4_50, 8_57], [4_64, 8_43, 5_83, 8_60], [6_28, 8_62, 7_55, 8_75], [7_69, 8_61, 8_48, 8_78]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , __lowercase ) self.assertListEqual(encoding.boxes , __lowercase ) # with apply_OCR = False SCREAMING_SNAKE_CASE__ : Dict =LayoutLMvaImageProcessor(apply_ocr=__lowercase ) SCREAMING_SNAKE_CASE__ : Dict =image_processing(__lowercase , return_tensors='''pt''' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) )
296
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFXLMRobertaModel @require_tf @require_sentencepiece @require_tokenizers class UpperCamelCase_ ( unittest.TestCase ): @slow def _lowercase( self ) -> str: UpperCAmelCase : Optional[Any] = TFXLMRobertaModel.from_pretrained("""jplu/tf-xlm-roberta-base""" ) UpperCAmelCase : str = { """input_ids""": tf.convert_to_tensor([[0, 2646, 10269, 83, 99942, 2]] , dtype=tf.intaa ), # "My dog is cute" """attention_mask""": tf.convert_to_tensor([[1, 1, 1, 1, 1, 1]] , dtype=tf.intaa ), } UpperCAmelCase : Union[str, Any] = model(A )["""last_hidden_state"""] UpperCAmelCase : int = tf.TensorShape((1, 6, 768) ) self.assertEqual(output.shape , A ) # compare the actual values for a slice. UpperCAmelCase : Optional[int] = tf.convert_to_tensor( [ [ [0.0_6_8_1_7_6_2, 0.1_0_8_9_4_4_5_1, 0.0_6_7_7_2_5_0_4], [-0.0_6_4_2_3_6_6_8, 0.0_2_3_6_6_6_1_5, 0.0_4_3_2_9_3_4_4], [-0.0_6_0_5_7_2_9_5, 0.0_9_9_7_4_1_3_5, -0.0_0_0_7_0_5_8_4], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
672
'''simple docstring''' from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline a : List[str] = logging.get_logger(__name__) class UpperCamelCase_ ( __magic_name__ ): def _lowercase( self , A ) -> Optional[int]: if isinstance(A , A ): UpperCAmelCase : Union[str, Any] = [label.strip() for label in labels.split(""",""" ) if label.strip()] return labels def __call__( self , A , A , A ) -> str: if len(A ) == 0 or len(A ) == 0: raise ValueError("""You must include at least one label and at least one sequence.""" ) if hypothesis_template.format(labels[0] ) == hypothesis_template: raise ValueError( ( """The provided hypothesis_template \"{}\" was not able to be formatted with the target labels. """ """Make sure the passed template includes formatting syntax such as {{}} where the label should go.""" ).format(A ) ) if isinstance(A , A ): UpperCAmelCase : Tuple = [sequences] UpperCAmelCase : Optional[Any] = [] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(A )] for label in labels] ) return sequence_pairs, sequences @add_end_docstrings(__magic_name__ ) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A=ZeroShotClassificationArgumentHandler() , *A , **A ) -> Optional[int]: UpperCAmelCase : Tuple = args_parser super().__init__(*A , **A ) if self.entailment_id == -1: logger.warning( """Failed to determine 'entailment' label id from the label2id mapping in the model config. Setting to """ """-1. Define a descriptive label2id mapping in the model config to ensure correct outputs.""" ) @property def _lowercase( self ) -> List[Any]: for label, ind in self.model.config.labelaid.items(): if label.lower().startswith("""entail""" ): return ind return -1 def _lowercase( self , A , A=True , A=True , A=TruncationStrategy.ONLY_FIRST , **A ) -> str: UpperCAmelCase : Tuple = self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( """Tokenizer was not supporting padding necessary for zero-shot, attempting to use """ """ `pad_token=eos_token`""" ) UpperCAmelCase : Any = self.tokenizer.eos_token try: UpperCAmelCase : Tuple = self.tokenizer( A , add_special_tokens=A , return_tensors=A , padding=A , truncation=A , ) except Exception as e: if "too short" in str(A ): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. UpperCAmelCase : List[str] = self.tokenizer( A , add_special_tokens=A , return_tensors=A , padding=A , truncation=TruncationStrategy.DO_NOT_TRUNCATE , ) else: raise e return inputs def _lowercase( self , **A ) -> Tuple: if kwargs.get("""multi_class""" , A ) is not None: UpperCAmelCase : Any = kwargs["""multi_class"""] logger.warning( """The `multi_class` argument has been deprecated and renamed to `multi_label`. """ """`multi_class` will be removed in a future version of Transformers.""" ) UpperCAmelCase : int = {} if "candidate_labels" in kwargs: UpperCAmelCase : Tuple = self._args_parser._parse_labels(kwargs["""candidate_labels"""] ) if "hypothesis_template" in kwargs: UpperCAmelCase : List[Any] = kwargs["""hypothesis_template"""] UpperCAmelCase : Dict = {} if "multi_label" in kwargs: UpperCAmelCase : Union[str, Any] = kwargs["""multi_label"""] return preprocess_params, {}, postprocess_params def __call__( self , A , *A , **A , ) -> Tuple: if len(A ) == 0: pass elif len(A ) == 1 and "candidate_labels" not in kwargs: UpperCAmelCase : Optional[Any] = args[0] else: raise ValueError(f'''Unable to understand extra arguments {args}''' ) return super().__call__(A , **A ) def _lowercase( self , A , A=None , A="This example is {}." ) -> List[Any]: UpperCAmelCase , UpperCAmelCase : List[Any] = self._args_parser(A , A , A ) for i, (candidate_label, sequence_pair) in enumerate(zip(A , A ) ): UpperCAmelCase : Any = self._parse_and_tokenize([sequence_pair] ) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(A ) - 1, **model_input, } def _lowercase( self , A ) -> Optional[int]: UpperCAmelCase : Optional[Any] = inputs["""candidate_label"""] UpperCAmelCase : Tuple = inputs["""sequence"""] UpperCAmelCase : List[Any] = {k: inputs[k] for k in self.tokenizer.model_input_names} UpperCAmelCase : Tuple = self.model(**A ) UpperCAmelCase : Optional[int] = { """candidate_label""": candidate_label, """sequence""": sequence, """is_last""": inputs["""is_last"""], **outputs, } return model_outputs def _lowercase( self , A , A=False ) -> List[str]: UpperCAmelCase : Dict = [outputs["""candidate_label"""] for outputs in model_outputs] UpperCAmelCase : List[Any] = [outputs["""sequence"""] for outputs in model_outputs] UpperCAmelCase : List[Any] = np.concatenate([output["""logits"""].numpy() for output in model_outputs] ) UpperCAmelCase : Optional[Any] = logits.shape[0] UpperCAmelCase : int = len(A ) UpperCAmelCase : List[Any] = N // n UpperCAmelCase : int = logits.reshape((num_sequences, n, -1) ) if multi_label or len(A ) == 1: # softmax over the entailment vs. contradiction dim for each label independently UpperCAmelCase : str = self.entailment_id UpperCAmelCase : str = -1 if entailment_id == 0 else 0 UpperCAmelCase : Optional[Any] = reshaped_outputs[..., [contradiction_id, entailment_id]] UpperCAmelCase : int = np.exp(A ) / np.exp(A ).sum(-1 , keepdims=A ) UpperCAmelCase : int = scores[..., 1] else: # softmax the "entailment" logits over all candidate labels UpperCAmelCase : Dict = reshaped_outputs[..., self.entailment_id] UpperCAmelCase : Optional[int] = np.exp(A ) / np.exp(A ).sum(-1 , keepdims=A ) UpperCAmelCase : int = list(reversed(scores[0].argsort() ) ) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), }
672
1