code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import unittest from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, slow if is_flax_available(): import jax from transformers.models.auto.modeling_flax_auto import FlaxAutoModel from transformers.models.bert.modeling_flax_bert import FlaxBertModel from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel @require_flax class _a ( unittest.TestCase ): """simple docstring""" @slow def _UpperCAmelCase ( self ) -> str: for model_name in ["bert-base-cased", "bert-large-uncased"]: with self.subTest(UpperCamelCase__ ): UpperCamelCase_ = AutoConfig.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) UpperCamelCase_ = FlaxAutoModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) @slow def _UpperCAmelCase ( self ) -> Any: for model_name in ["roberta-base", "roberta-large"]: with self.subTest(UpperCamelCase__ ): UpperCamelCase_ = AutoConfig.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) UpperCamelCase_ = FlaxAutoModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) @slow def _UpperCAmelCase ( self ) -> List[Any]: for model_name in ["bert-base-cased", "bert-large-uncased"]: UpperCamelCase_ = AutoTokenizer.from_pretrained(UpperCamelCase__ ) UpperCamelCase_ = FlaxBertModel.from_pretrained(UpperCamelCase__ ) UpperCamelCase_ = tokenizer('Do you support jax jitted function?' , return_tensors=TensorType.JAX ) @jax.jit def eval(**_UpperCAmelCase ): return model(**UpperCamelCase__ ) eval(**UpperCamelCase__ ).block_until_ready() @slow def _UpperCAmelCase ( self ) -> Dict: for model_name in ["roberta-base", "roberta-large"]: UpperCamelCase_ = AutoTokenizer.from_pretrained(UpperCamelCase__ ) UpperCamelCase_ = FlaxRobertaModel.from_pretrained(UpperCamelCase__ ) UpperCamelCase_ = tokenizer('Do you support jax jitted function?' , return_tensors=TensorType.JAX ) @jax.jit def eval(**_UpperCAmelCase ): return model(**UpperCamelCase__ ) eval(**UpperCamelCase__ ).block_until_ready() def _UpperCAmelCase ( self ) -> Optional[int]: with self.assertRaisesRegex( UpperCamelCase__ , 'bert-base is not a local folder and is not a valid model identifier' ): UpperCamelCase_ = FlaxAutoModel.from_pretrained('bert-base' ) def _UpperCAmelCase ( self ) -> Tuple: with self.assertRaisesRegex( UpperCamelCase__ , R'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): UpperCamelCase_ = FlaxAutoModel.from_pretrained(UpperCamelCase__ , revision='aaaaaa' ) def _UpperCAmelCase ( self ) -> List[Any]: with self.assertRaisesRegex( UpperCamelCase__ , 'hf-internal-testing/config-no-model does not appear to have a file named flax_model.msgpack' , ): UpperCamelCase_ = FlaxAutoModel.from_pretrained('hf-internal-testing/config-no-model' ) def _UpperCAmelCase ( self ) -> List[Any]: with self.assertRaisesRegex(UpperCamelCase__ , 'Use `from_pt=True` to load this model' ): UpperCamelCase_ = FlaxAutoModel.from_pretrained('hf-internal-testing/tiny-bert-pt-only' )
23
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowerCAmelCase ( a ): """simple docstring""" __lowercase :Optional[int] = ["image_processor", "tokenizer"] __lowercase :int = "ChineseCLIPImageProcessor" __lowercase :Union[str, Any] = ("BertTokenizer", "BertTokenizerFast") def __init__( self , UpperCamelCase__=None , UpperCamelCase__=None , **UpperCamelCase__ ) -> Dict: '''simple docstring''' lowerCamelCase_ = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , UpperCamelCase__ , ) lowerCamelCase_ = kwargs.pop('''feature_extractor''' ) lowerCamelCase_ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase_ = self.image_processor def __call__( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , **UpperCamelCase__ ) -> List[str]: '''simple docstring''' if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: lowerCamelCase_ = self.tokenizer(UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ ) if images is not None: lowerCamelCase_ = self.image_processor(UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ ) if text is not None and images is not None: lowerCamelCase_ = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCamelCase__ ) , tensor_type=UpperCamelCase__ ) def _lowerCAmelCase ( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> List[Any]: '''simple docstring''' return self.tokenizer.batch_decode(*UpperCamelCase__ , **UpperCamelCase__ ) def _lowerCAmelCase ( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> List[str]: '''simple docstring''' return self.tokenizer.decode(*UpperCamelCase__ , **UpperCamelCase__ ) @property def _lowerCAmelCase ( self ) -> List[str]: '''simple docstring''' lowerCamelCase_ = self.tokenizer.model_input_names lowerCamelCase_ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def _lowerCAmelCase ( self ) -> Tuple: '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , UpperCamelCase__ , ) return self.image_processor_class
142
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer lowercase__ : Optional[Any] = logging.get_logger(__name__) lowercase__ : Any = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} lowercase__ : Union[str, Any] = { "vocab_file": { "junnyu/roformer_chinese_small": "https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt", "junnyu/roformer_chinese_base": "https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt", "junnyu/roformer_chinese_char_small": ( "https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt" ), "junnyu/roformer_chinese_char_base": ( "https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt" ), "junnyu/roformer_small_discriminator": ( "https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt" ), "junnyu/roformer_small_generator": ( "https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt" ), } } lowercase__ : List[str] = { "junnyu/roformer_chinese_small": 1536, "junnyu/roformer_chinese_base": 1536, "junnyu/roformer_chinese_char_small": 512, "junnyu/roformer_chinese_char_base": 512, "junnyu/roformer_small_discriminator": 128, "junnyu/roformer_small_generator": 128, } lowercase__ : int = { "junnyu/roformer_chinese_small": {"do_lower_case": True}, "junnyu/roformer_chinese_base": {"do_lower_case": True}, "junnyu/roformer_chinese_char_small": {"do_lower_case": True}, "junnyu/roformer_chinese_char_base": {"do_lower_case": True}, "junnyu/roformer_small_discriminator": {"do_lower_case": True}, "junnyu/roformer_small_generator": {"do_lower_case": True}, } class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = PRETRAINED_INIT_CONFIGURATION lowerCAmelCase_ = RoFormerTokenizer def __init__( self : Optional[int] , __lowercase : List[Any]=None , __lowercase : List[Any]=None , __lowercase : Any=True , __lowercase : Any="[UNK]" , __lowercase : Optional[int]="[SEP]" , __lowercase : List[Any]="[PAD]" , __lowercase : Any="[CLS]" , __lowercase : Union[str, Any]="[MASK]" , __lowercase : int=True , __lowercase : str=None , **__lowercase : List[Any] , ): """simple docstring""" super().__init__( __lowercase , tokenizer_file=__lowercase , do_lower_case=__lowercase , unk_token=__lowercase , sep_token=__lowercase , pad_token=__lowercase , cls_token=__lowercase , mask_token=__lowercase , tokenize_chinese_chars=__lowercase , strip_accents=__lowercase , **__lowercase , ) snake_case_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get("lowercase" , __lowercase ) != do_lower_case or pre_tok_state.get("strip_accents" , __lowercase ) != strip_accents ): snake_case_ = getattr(__lowercase , pre_tok_state.pop("type" ) ) snake_case_ = do_lower_case snake_case_ = strip_accents snake_case_ = pre_tok_class(**__lowercase ) snake_case_ = do_lower_case def __getstate__( self : Optional[Any] ): """simple docstring""" snake_case_ = self.__dict__.copy() snake_case_ = BertPreTokenizer() return state def __setstate__( self : str , __lowercase : Optional[Any] ): """simple docstring""" snake_case_ = d snake_case_ = self.__dict__["_tokenizer"].get_vocab() snake_case_ = PreTokenizer.custom(JiebaPreTokenizer(__lowercase ) ) def snake_case__ ( self : str , __lowercase : Dict , __lowercase : str=None ): """simple docstring""" snake_case_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def snake_case__ ( self : Tuple , __lowercase : List[int] , __lowercase : Optional[List[int]] = None ): """simple docstring""" snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case__ ( self : List[str] , __lowercase : str , __lowercase : Optional[str] = None ): """simple docstring""" snake_case_ = self._tokenizer.model.save(__lowercase , name=__lowercase ) return tuple(__lowercase ) def snake_case__ ( self : Union[str, Any] , __lowercase : str , __lowercase : Tuple=None , __lowercase : Any=None , __lowercase : Dict=False , **__lowercase : Tuple , ): """simple docstring""" snake_case_ = BertPreTokenizer() return super().save_pretrained(__lowercase , __lowercase , __lowercase , __lowercase , **__lowercase )
139
import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class UpperCAmelCase : '''simple docstring''' def __init__( self : List[Any] , __lowercase : Optional[Any] , __lowercase : Optional[int]=13 , __lowercase : str=7 , __lowercase : str=True , __lowercase : Optional[int]=True , __lowercase : Optional[int]=False , __lowercase : str=True , __lowercase : Optional[int]=99 , __lowercase : List[str]=32 , __lowercase : Tuple=5 , __lowercase : int=4 , __lowercase : Union[str, Any]=37 , __lowercase : Union[str, Any]="gelu" , __lowercase : Dict=0.1 , __lowercase : int=0.1 , __lowercase : Optional[Any]=5_12 , __lowercase : Any=16 , __lowercase : int=2 , __lowercase : Dict=0.02 , __lowercase : List[str]=3 , __lowercase : int=4 , __lowercase : str=None , ): """simple docstring""" snake_case_ = parent snake_case_ = batch_size snake_case_ = seq_length snake_case_ = is_training snake_case_ = use_input_mask snake_case_ = use_token_type_ids snake_case_ = use_labels snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = type_vocab_size snake_case_ = type_sequence_label_size snake_case_ = initializer_range snake_case_ = num_labels snake_case_ = num_choices snake_case_ = scope def snake_case__ ( self : Dict ): """simple docstring""" snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ = None if self.use_input_mask: snake_case_ = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ = None if self.use_token_type_ids: snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ = None snake_case_ = None snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case_ = ids_tensor([self.batch_size] , self.num_choices ) snake_case_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__ ( self : Any ): """simple docstring""" return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__lowercase , initializer_range=self.initializer_range , ) def snake_case__ ( self : Union[str, Any] , __lowercase : Union[str, Any] , __lowercase : Union[str, Any] , __lowercase : str , __lowercase : Dict , __lowercase : Any , __lowercase : Dict , __lowercase : Union[str, Any] ): """simple docstring""" snake_case_ = LlamaModel(config=__lowercase ) model.to(__lowercase ) model.eval() snake_case_ = model(__lowercase , attention_mask=__lowercase ) snake_case_ = model(__lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case__ ( self : Tuple , __lowercase : Tuple , __lowercase : Optional[Any] , __lowercase : Any , __lowercase : Optional[int] , __lowercase : int , __lowercase : str , __lowercase : str , __lowercase : List[Any] , __lowercase : Optional[Any] , ): """simple docstring""" snake_case_ = True snake_case_ = LlamaModel(__lowercase ) model.to(__lowercase ) model.eval() snake_case_ = model( __lowercase , attention_mask=__lowercase , encoder_hidden_states=__lowercase , encoder_attention_mask=__lowercase , ) snake_case_ = model( __lowercase , attention_mask=__lowercase , encoder_hidden_states=__lowercase , ) snake_case_ = model(__lowercase , attention_mask=__lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case__ ( self : Dict , __lowercase : Union[str, Any] , __lowercase : Any , __lowercase : Tuple , __lowercase : str , __lowercase : Dict , __lowercase : int , __lowercase : Optional[int] , __lowercase : int , __lowercase : str , ): """simple docstring""" snake_case_ = LlamaForCausalLM(config=__lowercase ) model.to(__lowercase ) model.eval() snake_case_ = model(__lowercase , attention_mask=__lowercase , labels=__lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case__ ( self : str , __lowercase : List[Any] , __lowercase : Optional[Any] , __lowercase : Union[str, Any] , __lowercase : List[str] , __lowercase : List[str] , __lowercase : List[str] , __lowercase : Optional[int] , __lowercase : str , __lowercase : Tuple , ): """simple docstring""" snake_case_ = True snake_case_ = True snake_case_ = LlamaForCausalLM(config=__lowercase ) model.to(__lowercase ) model.eval() # first forward pass snake_case_ = model( __lowercase , attention_mask=__lowercase , encoder_hidden_states=__lowercase , encoder_attention_mask=__lowercase , use_cache=__lowercase , ) snake_case_ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids snake_case_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case_ = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and snake_case_ = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case_ = torch.cat([input_mask, next_mask] , dim=-1 ) snake_case_ = model( __lowercase , attention_mask=__lowercase , encoder_hidden_states=__lowercase , encoder_attention_mask=__lowercase , output_hidden_states=__lowercase , )["hidden_states"][0] snake_case_ = model( __lowercase , attention_mask=__lowercase , encoder_hidden_states=__lowercase , encoder_attention_mask=__lowercase , past_key_values=__lowercase , output_hidden_states=__lowercase , )["hidden_states"][0] # select random slice snake_case_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case_ = output_from_no_past[:, -3:, random_slice_idx].detach() snake_case_ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__lowercase , __lowercase , atol=1E-3 ) ) def snake_case__ ( self : Dict ): """simple docstring""" snake_case_ = self.prepare_config_and_inputs() ( ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ) = config_and_inputs snake_case_ = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class UpperCAmelCase ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () lowerCAmelCase_ = (LlamaForCausalLM,) if is_torch_available() else () lowerCAmelCase_ = ( { '''feature-extraction''': LlamaModel, '''text-classification''': LlamaForSequenceClassification, '''text-generation''': LlamaForCausalLM, '''zero-shot''': LlamaForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase_ = False lowerCAmelCase_ = False def snake_case__ ( self : int ): """simple docstring""" snake_case_ = LlamaModelTester(self ) snake_case_ = ConfigTester(self , config_class=__lowercase , hidden_size=37 ) def snake_case__ ( self : List[Any] ): """simple docstring""" self.config_tester.run_common_tests() def snake_case__ ( self : Optional[Any] ): """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowercase ) def snake_case__ ( self : Optional[int] ): """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: snake_case_ = type self.model_tester.create_and_check_model(*__lowercase ) def snake_case__ ( self : Dict ): """simple docstring""" snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = 3 snake_case_ = input_dict["input_ids"] snake_case_ = input_ids.ne(1 ).to(__lowercase ) snake_case_ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) snake_case_ = LlamaForSequenceClassification(__lowercase ) model.to(__lowercase ) model.eval() snake_case_ = model(__lowercase , attention_mask=__lowercase , labels=__lowercase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def snake_case__ ( self : int ): """simple docstring""" snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = 3 snake_case_ = "single_label_classification" snake_case_ = input_dict["input_ids"] snake_case_ = input_ids.ne(1 ).to(__lowercase ) snake_case_ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) snake_case_ = LlamaForSequenceClassification(__lowercase ) model.to(__lowercase ) model.eval() snake_case_ = model(__lowercase , attention_mask=__lowercase , labels=__lowercase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def snake_case__ ( self : str ): """simple docstring""" snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = 3 snake_case_ = "multi_label_classification" snake_case_ = input_dict["input_ids"] snake_case_ = input_ids.ne(1 ).to(__lowercase ) snake_case_ = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) snake_case_ = LlamaForSequenceClassification(__lowercase ) model.to(__lowercase ) model.eval() snake_case_ = model(__lowercase , attention_mask=__lowercase , labels=__lowercase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("LLaMA buffers include complex numbers, which breaks this test" ) def snake_case__ ( self : Optional[Any] ): """simple docstring""" pass @parameterized.expand([("linear",), ("dynamic",)] ) def snake_case__ ( self : Any , __lowercase : Tuple ): """simple docstring""" snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = ids_tensor([1, 10] , config.vocab_size ) snake_case_ = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights snake_case_ = LlamaModel(__lowercase ) original_model.to(__lowercase ) original_model.eval() snake_case_ = original_model(__lowercase ).last_hidden_state snake_case_ = original_model(__lowercase ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights snake_case_ = {"type": scaling_type, "factor": 10.0} snake_case_ = LlamaModel(__lowercase ) scaled_model.to(__lowercase ) scaled_model.eval() snake_case_ = scaled_model(__lowercase ).last_hidden_state snake_case_ = scaled_model(__lowercase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(__lowercase , __lowercase , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(__lowercase , __lowercase , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(__lowercase , __lowercase , atol=1E-5 ) ) @require_torch class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @unittest.skip("Logits are not exactly the same, once we fix the instabalities somehow, will update!" ) @slow def snake_case__ ( self : Any ): """simple docstring""" snake_case_ = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] snake_case_ = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf" , device_map="auto" ) snake_case_ = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 snake_case_ = torch.tensor([[-6.6550, -4.1227, -4.9859, -3.2406, 0.8262, -3.0033, 1.2964, -3.3699]] ) torch.testing.assert_close(out.mean(-1 ) , __lowercase , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off snake_case_ = torch.tensor([-12.8281, -7.4453, -0.4639, -8.0625, -7.2500, -8.0000, -6.4883, -7.7695, -7.8438, -7.0312, -6.2188, -7.1328, -1.8496, 1.9961, -8.6250, -6.7227, -12.8281, -6.9492, -7.0742, -7.7852, -7.5820, -7.9062, -6.9375, -7.9805, -8.3438, -8.1562, -8.0469, -7.6250, -7.7422, -7.3398,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , __lowercase , atol=1E-5 , rtol=1E-5 ) @unittest.skip("Logits are not exactly the same, once we fix the instabalities somehow, will update!" ) @slow def snake_case__ ( self : Union[str, Any] ): """simple docstring""" snake_case_ = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] snake_case_ = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-13b-hf" , device_map="auto" ) snake_case_ = model(torch.tensor(__lowercase ) ) # Expected mean on dim = -1 snake_case_ = torch.tensor([[-2.0622, -1.2794, -1.1638, -0.9788, -1.4603, -1.0238, -1.7893, -1.4411]] ) torch.testing.assert_close(out.mean(-1 ) , __lowercase , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off snake_case_ = torch.tensor([-8.1406, -8.0547, 2.7461, -1.2344, -0.1448, -1.8262, -1.0020, -1.8154, -1.6895, -1.8516, -2.3574, -0.9277, 3.7598, 6.5742, -1.2998, -0.1177, -8.1406, -2.9688, -2.9199, -3.1699, -3.5254, -2.3555, -2.7988, -3.4141, -2.8262, -4.5195, -3.3379, -3.3164, -2.7832, -3.0273] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , __lowercase , atol=1E-5 , rtol=1E-5 ) @unittest.skip("Logits are not exactly the same, once we fix the instabalities somehow, will update!" ) @slow def snake_case__ ( self : Any ): """simple docstring""" snake_case_ = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] snake_case_ = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-13b-chat-hf" , device_map="auto" ) snake_case_ = model(torch.tensor(__lowercase ) ) # Expected mean on dim = -1 snake_case_ = torch.tensor([[-0.8562, -1.8520, -0.7551, -0.4162, -1.5161, -1.2038, -2.4823, -2.3254]] ) torch.testing.assert_close(out.mean(-1 ) , __lowercase , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off snake_case_ = torch.tensor([-2.2227, 4.8828, 0.9023, -0.4578, -0.7871, -0.1033, -0.6221, -0.5786, -0.7803, -1.0674, -1.2920, -0.1570, 0.8008, 2.0723, -0.9497, 0.2771, -2.2227, -0.7612, -1.4346, -1.2061, -1.6426, -0.3000, -0.7139, -1.1934, -1.8691, -1.6973, -1.5947, -1.2705, -0.3523, -0.5513] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , __lowercase , atol=1E-2 , rtol=1E-2 ) @unittest.skip( "Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test" ) @slow def snake_case__ ( self : Tuple ): """simple docstring""" snake_case_ = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] snake_case_ = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-70b-hf" , device_map="auto" ) snake_case_ = model(torch.tensor(__lowercase ) ) snake_case_ = torch.tensor( [[-4.2327, -3.3360, -4.6665, -4.7631, -1.8180, -3.4170, -1.4211, -3.1810]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , __lowercase , atol=1E-2 , rtol=1E-2 ) # fmt: off snake_case_ = torch.tensor([-9.4922, -3.9551, 1.7998, -5.6758, -5.1055, -5.8984, -4.8320, -6.8086, -6.5391, -5.6172, -5.5820, -5.5352, 1.7881, 3.6289, -6.5117, -3.4785, -9.5000, -6.0352, -6.8125, -6.0195, -6.6836, -5.4727, -6.2812, -6.0391, -7.3398, -7.4297, -7.4844, -6.5820, -5.8789, -5.5312] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , __lowercase , atol=1E-5 , rtol=1E-5 ) @unittest.skip("Model is curently gated" ) @slow def snake_case__ ( self : str ): """simple docstring""" snake_case_ = "Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the \"princi" snake_case_ = "Simply put, the theory of relativity states that " snake_case_ = LlamaTokenizer.from_pretrained("meta-llama/Llama-2-13b-chat-hf" ) snake_case_ = tokenizer.encode(__lowercase , return_tensors="pt" ) snake_case_ = LlamaForCausalLM.from_pretrained( "meta-llama/Llama-2-13b-chat-hf" , device_map="sequential" , use_safetensors=__lowercase ) # greedy generation outputs snake_case_ = model.generate(__lowercase , max_new_tokens=64 , top_p=__lowercase , temperature=1 , do_sample=__lowercase ) snake_case_ = tokenizer.decode(generated_ids[0] , skip_special_tokens=__lowercase ) self.assertEqual(__lowercase , __lowercase )
139
1
"""simple docstring""" from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig _A = logging.get_logger(__name__) # General docstring _A = 'RegNetConfig' # Base docstring _A = 'facebook/regnet-y-040' _A = [1, 1_0_8_8, 7, 7] # Image classification docstring _A = 'facebook/regnet-y-040' _A = 'tabby, tabby cat' _A = [ 'facebook/regnet-y-040', # See all regnet models at https://huggingface.co/models?filter=regnet ] class lowerCamelCase (tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : List[Any] , _snake_case : int , _snake_case : int = 3 , _snake_case : int = 1 , _snake_case : int = 1 , _snake_case : Optional[str] = "relu" , **_snake_case : List[Any] , ) -> Dict: super().__init__(**lowerCamelCase_ ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb SCREAMING_SNAKE_CASE__ = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) SCREAMING_SNAKE_CASE__ = tf.keras.layers.ConvaD( filters=lowerCamelCase_ , kernel_size=lowerCamelCase_ , strides=lowerCamelCase_ , padding="VALID" , groups=lowerCamelCase_ , use_bias=lowerCamelCase_ , name="convolution" , ) SCREAMING_SNAKE_CASE__ = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name="normalization" ) SCREAMING_SNAKE_CASE__ = ACTaFN[activation] if activation is not None else tf.identity def lowerCAmelCase_ ( self : Dict , _snake_case : Union[str, Any] ) -> List[str]: SCREAMING_SNAKE_CASE__ = self.convolution(self.padding(lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE__ = self.normalization(lowerCamelCase_ ) SCREAMING_SNAKE_CASE__ = self.activation(lowerCamelCase_ ) return hidden_state class lowerCamelCase (tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : List[Any] , _snake_case : RegNetConfig , **_snake_case : List[str] ) -> Optional[int]: super().__init__(**lowerCamelCase_ ) SCREAMING_SNAKE_CASE__ = config.num_channels SCREAMING_SNAKE_CASE__ = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name="embedder" , ) def lowerCAmelCase_ ( self : List[str] , _snake_case : Union[str, Any] ) -> str: SCREAMING_SNAKE_CASE__ = shape_list(lowerCamelCase_ )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) SCREAMING_SNAKE_CASE__ = tf.transpose(lowerCamelCase_ , perm=(0, 2, 3, 1) ) SCREAMING_SNAKE_CASE__ = self.embedder(lowerCamelCase_ ) return hidden_state class lowerCamelCase (tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : Any , _snake_case : int , _snake_case : int = 2 , **_snake_case : List[str] ) -> List[Any]: super().__init__(**lowerCamelCase_ ) SCREAMING_SNAKE_CASE__ = tf.keras.layers.ConvaD( filters=lowerCamelCase_ , kernel_size=1 , strides=lowerCamelCase_ , use_bias=lowerCamelCase_ , name="convolution" ) SCREAMING_SNAKE_CASE__ = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name="normalization" ) def lowerCAmelCase_ ( self : Dict , _snake_case : tf.Tensor , _snake_case : bool = False ) -> List[str]: return self.normalization(self.convolution(lowerCamelCase_ ) , training=lowerCamelCase_ ) class lowerCamelCase (tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : str , _snake_case : int , _snake_case : int , **_snake_case : str ) -> List[str]: super().__init__(**lowerCamelCase_ ) SCREAMING_SNAKE_CASE__ = tf.keras.layers.GlobalAveragePoolingaD(keepdims=lowerCamelCase_ , name="pooler" ) SCREAMING_SNAKE_CASE__ = [ tf.keras.layers.ConvaD(filters=lowerCamelCase_ , kernel_size=1 , activation="relu" , name="attention.0" ), tf.keras.layers.ConvaD(filters=lowerCamelCase_ , kernel_size=1 , activation="sigmoid" , name="attention.2" ), ] def lowerCAmelCase_ ( self : List[Any] , _snake_case : int ) -> Tuple: SCREAMING_SNAKE_CASE__ = self.pooler(lowerCamelCase_ ) for layer_module in self.attention: SCREAMING_SNAKE_CASE__ = layer_module(lowerCamelCase_ ) SCREAMING_SNAKE_CASE__ = hidden_state * pooled return hidden_state class lowerCamelCase (tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : int , _snake_case : RegNetConfig , _snake_case : int , _snake_case : int , _snake_case : int = 1 , **_snake_case : Tuple ) -> List[str]: super().__init__(**lowerCamelCase_ ) SCREAMING_SNAKE_CASE__ = in_channels != out_channels or stride != 1 SCREAMING_SNAKE_CASE__ = max(1 , out_channels // config.groups_width ) SCREAMING_SNAKE_CASE__ = ( TFRegNetShortCut(lowerCamelCase_ , stride=lowerCamelCase_ , name="shortcut" ) if should_apply_shortcut else tf.keras.layers.Activation("linear" , name="shortcut" ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. SCREAMING_SNAKE_CASE__ = [ TFRegNetConvLayer(lowerCamelCase_ , kernel_size=1 , activation=config.hidden_act , name="layer.0" ), TFRegNetConvLayer( lowerCamelCase_ , stride=lowerCamelCase_ , groups=lowerCamelCase_ , activation=config.hidden_act , name="layer.1" ), TFRegNetConvLayer(lowerCamelCase_ , kernel_size=1 , activation=lowerCamelCase_ , name="layer.2" ), ] SCREAMING_SNAKE_CASE__ = ACTaFN[config.hidden_act] def lowerCAmelCase_ ( self : Tuple , _snake_case : Optional[Any] ) -> int: SCREAMING_SNAKE_CASE__ = hidden_state for layer_module in self.layers: SCREAMING_SNAKE_CASE__ = layer_module(lowerCamelCase_ ) SCREAMING_SNAKE_CASE__ = self.shortcut(lowerCamelCase_ ) hidden_state += residual SCREAMING_SNAKE_CASE__ = self.activation(lowerCamelCase_ ) return hidden_state class lowerCamelCase (tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : Any , _snake_case : RegNetConfig , _snake_case : int , _snake_case : int , _snake_case : int = 1 , **_snake_case : Union[str, Any] ) -> Union[str, Any]: super().__init__(**lowerCamelCase_ ) SCREAMING_SNAKE_CASE__ = in_channels != out_channels or stride != 1 SCREAMING_SNAKE_CASE__ = max(1 , out_channels // config.groups_width ) SCREAMING_SNAKE_CASE__ = ( TFRegNetShortCut(lowerCamelCase_ , stride=lowerCamelCase_ , name="shortcut" ) if should_apply_shortcut else tf.keras.layers.Activation("linear" , name="shortcut" ) ) SCREAMING_SNAKE_CASE__ = [ TFRegNetConvLayer(lowerCamelCase_ , kernel_size=1 , activation=config.hidden_act , name="layer.0" ), TFRegNetConvLayer( lowerCamelCase_ , stride=lowerCamelCase_ , groups=lowerCamelCase_ , activation=config.hidden_act , name="layer.1" ), TFRegNetSELayer(lowerCamelCase_ , reduced_channels=int(round(in_channels / 4 ) ) , name="layer.2" ), TFRegNetConvLayer(lowerCamelCase_ , kernel_size=1 , activation=lowerCamelCase_ , name="layer.3" ), ] SCREAMING_SNAKE_CASE__ = ACTaFN[config.hidden_act] def lowerCAmelCase_ ( self : Dict , _snake_case : Any ) -> int: SCREAMING_SNAKE_CASE__ = hidden_state for layer_module in self.layers: SCREAMING_SNAKE_CASE__ = layer_module(lowerCamelCase_ ) SCREAMING_SNAKE_CASE__ = self.shortcut(lowerCamelCase_ ) hidden_state += residual SCREAMING_SNAKE_CASE__ = self.activation(lowerCamelCase_ ) return hidden_state class lowerCamelCase (tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : Union[str, Any] , _snake_case : RegNetConfig , _snake_case : int , _snake_case : int , _snake_case : int = 2 , _snake_case : int = 2 , **_snake_case : Optional[int] ) -> Optional[Any]: super().__init__(**lowerCamelCase_ ) SCREAMING_SNAKE_CASE__ = TFRegNetXLayer if config.layer_type == """x""" else TFRegNetYLayer SCREAMING_SNAKE_CASE__ = [ # downsampling is done in the first layer with stride of 2 layer(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , stride=lowerCamelCase_ , name="layers.0" ), *[layer(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , name=F"""layers.{i+1}""" ) for i in range(depth - 1 )], ] def lowerCAmelCase_ ( self : List[str] , _snake_case : Any ) -> int: for layer_module in self.layers: SCREAMING_SNAKE_CASE__ = layer_module(lowerCamelCase_ ) return hidden_state class lowerCamelCase (tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : int , _snake_case : RegNetConfig , **_snake_case : List[str] ) -> int: super().__init__(**lowerCamelCase_ ) SCREAMING_SNAKE_CASE__ = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( lowerCamelCase_ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name="stages.0" , ) ) SCREAMING_SNAKE_CASE__ = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(lowerCamelCase_ , config.depths[1:] ) ): self.stages.append(TFRegNetStage(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , depth=lowerCamelCase_ , name=F"""stages.{i+1}""" ) ) def lowerCAmelCase_ ( self : Optional[Any] , _snake_case : tf.Tensor , _snake_case : bool = False , _snake_case : bool = True ) -> int: SCREAMING_SNAKE_CASE__ = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: SCREAMING_SNAKE_CASE__ = hidden_states + (hidden_state,) SCREAMING_SNAKE_CASE__ = stage_module(lowerCamelCase_ ) if output_hidden_states: SCREAMING_SNAKE_CASE__ = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=lowerCamelCase_ , hidden_states=lowerCamelCase_ ) @keras_serializable class lowerCamelCase (tf.keras.layers.Layer ): '''simple docstring''' a = RegNetConfig def __init__( self : str , _snake_case : int , **_snake_case : str ) -> str: super().__init__(**lowerCamelCase_ ) SCREAMING_SNAKE_CASE__ = config SCREAMING_SNAKE_CASE__ = TFRegNetEmbeddings(lowerCamelCase_ , name="embedder" ) SCREAMING_SNAKE_CASE__ = TFRegNetEncoder(lowerCamelCase_ , name="encoder" ) SCREAMING_SNAKE_CASE__ = tf.keras.layers.GlobalAveragePoolingaD(keepdims=lowerCamelCase_ , name="pooler" ) @unpack_inputs def lowerCAmelCase_ ( self : List[Any] , _snake_case : tf.Tensor , _snake_case : Optional[bool] = None , _snake_case : Optional[bool] = None , _snake_case : bool = False , ) -> Dict: SCREAMING_SNAKE_CASE__ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) SCREAMING_SNAKE_CASE__ = return_dict if return_dict is not None else self.config.use_return_dict SCREAMING_SNAKE_CASE__ = self.embedder(lowerCamelCase_ , training=lowerCamelCase_ ) SCREAMING_SNAKE_CASE__ = self.encoder( lowerCamelCase_ , output_hidden_states=lowerCamelCase_ , return_dict=lowerCamelCase_ , training=lowerCamelCase_ ) SCREAMING_SNAKE_CASE__ = encoder_outputs[0] SCREAMING_SNAKE_CASE__ = self.pooler(lowerCamelCase_ ) # Change to NCHW output format have uniformity in the modules SCREAMING_SNAKE_CASE__ = tf.transpose(lowerCamelCase_ , perm=(0, 3, 1, 2) ) SCREAMING_SNAKE_CASE__ = tf.transpose(lowerCamelCase_ , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: SCREAMING_SNAKE_CASE__ = tuple([tf.transpose(lowerCamelCase_ , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowerCamelCase_ , pooler_output=lowerCamelCase_ , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class lowerCamelCase (lowercase_ ): '''simple docstring''' a = RegNetConfig a = "regnet" a = "pixel_values" @property def lowerCAmelCase_ ( self : Optional[int] ) -> Optional[Any]: return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 224, 224) , dtype=tf.floataa )} _A = R'\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n' _A = R'\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top." , lowercase_ , ) class lowerCamelCase (lowercase_ ): '''simple docstring''' def __init__( self : Dict , _snake_case : RegNetConfig , *_snake_case : Union[str, Any] , **_snake_case : int ) -> List[Any]: super().__init__(lowerCamelCase_ , *lowerCamelCase_ , **lowerCamelCase_ ) SCREAMING_SNAKE_CASE__ = TFRegNetMainLayer(lowerCamelCase_ , name="regnet" ) @unpack_inputs @add_start_docstrings_to_model_forward(lowerCamelCase_ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCamelCase_ , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def lowerCAmelCase_ ( self : Dict , _snake_case : tf.Tensor , _snake_case : Optional[bool] = None , _snake_case : Optional[bool] = None , _snake_case : List[Any]=False , ) -> List[str]: SCREAMING_SNAKE_CASE__ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) SCREAMING_SNAKE_CASE__ = return_dict if return_dict is not None else self.config.use_return_dict SCREAMING_SNAKE_CASE__ = self.regnet( pixel_values=lowerCamelCase_ , output_hidden_states=lowerCamelCase_ , return_dict=lowerCamelCase_ , training=lowerCamelCase_ , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( "\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , lowercase_ , ) class lowerCamelCase (lowercase_ , lowercase_ ): '''simple docstring''' def __init__( self : Optional[int] , _snake_case : RegNetConfig , *_snake_case : Union[str, Any] , **_snake_case : List[Any] ) -> Optional[int]: super().__init__(lowerCamelCase_ , *lowerCamelCase_ , **lowerCamelCase_ ) SCREAMING_SNAKE_CASE__ = config.num_labels SCREAMING_SNAKE_CASE__ = TFRegNetMainLayer(lowerCamelCase_ , name="regnet" ) # classification head SCREAMING_SNAKE_CASE__ = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name="classifier.1" ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(lowerCamelCase_ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCamelCase_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def lowerCAmelCase_ ( self : str , _snake_case : tf.Tensor = None , _snake_case : tf.Tensor = None , _snake_case : bool = None , _snake_case : bool = None , _snake_case : Optional[Any]=False , ) -> Dict: SCREAMING_SNAKE_CASE__ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) SCREAMING_SNAKE_CASE__ = return_dict if return_dict is not None else self.config.use_return_dict SCREAMING_SNAKE_CASE__ = self.regnet( lowerCamelCase_ , output_hidden_states=lowerCamelCase_ , return_dict=lowerCamelCase_ , training=lowerCamelCase_ ) SCREAMING_SNAKE_CASE__ = outputs.pooler_output if return_dict else outputs[1] SCREAMING_SNAKE_CASE__ = self.classifier[0](lowerCamelCase_ ) SCREAMING_SNAKE_CASE__ = self.classifier[1](lowerCamelCase_ ) SCREAMING_SNAKE_CASE__ = None if labels is None else self.hf_compute_loss(labels=lowerCamelCase_ , logits=lowerCamelCase_ ) if not return_dict: SCREAMING_SNAKE_CASE__ = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=lowerCamelCase_ , logits=lowerCamelCase_ , hidden_states=outputs.hidden_states )
159
'''simple docstring''' from math import sqrt def __A ( lowerCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE : str = 0 for i in range(1 , int(sqrt(lowerCamelCase_ ) + 1 ) ): if n % i == 0 and i != sqrt(lowerCamelCase_ ): total += i + n // i elif i == sqrt(lowerCamelCase_ ): total += i return total - n def __A ( lowerCamelCase_ = 1_00_00 ): """simple docstring""" SCREAMING_SNAKE_CASE : str = sum( i for i in range(1 , lowerCamelCase_ ) if sum_of_divisors(sum_of_divisors(lowerCamelCase_ ) ) == i and sum_of_divisors(lowerCamelCase_ ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
379
0
def __lowerCamelCase ( __lowerCAmelCase : str , __lowerCAmelCase : str ) -> int: if len(__lowerCAmelCase ) != len(__lowerCAmelCase ): raise ValueError("""String lengths must match!""" ) __UpperCamelCase : Optional[Any] = 0 for chara, chara in zip(__lowerCAmelCase , __lowerCAmelCase ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
515
def __lowerCamelCase ( __lowerCAmelCase : int , __lowerCAmelCase : int ) -> int: while second != 0: __UpperCamelCase : int = first & second first ^= second __UpperCamelCase : Dict = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase = int(input('Enter the first number: ').strip()) UpperCamelCase = int(input('Enter the second number: ').strip()) print(F"""{add(first, second) = }""")
515
1
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import Callable, Dict, List, Tuple import timm import torch import torch.nn as nn from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf from huggingface_hub import cached_download, hf_hub_url from torch import Tensor from vissl.models.model_helpers import get_trunk_forward_outputs from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger() @dataclass class lowerCAmelCase__ : '''simple docstring''' __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = field(default_factory=a) __SCREAMING_SNAKE_CASE = field(default_factory=a) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) -> str: _A : Any = len(list(m.modules())) == 1 or isinstance(__lowerCamelCase , nn.Convad) or isinstance(__lowerCamelCase , nn.BatchNormad) if has_not_submodules: self.traced.append(__lowerCamelCase) def __call__( self , __lowerCamelCase) -> Optional[int]: for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook)) self.module(__lowerCamelCase) [x.remove() for x in self.handles] return self @property def _lowerCamelCase ( self) -> Union[str, Any]: # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda __lowerCamelCase: len(list(x.state_dict().keys())) > 0 , self.traced)) @dataclass class lowerCAmelCase__ : '''simple docstring''' __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = field(default_factory=a) __SCREAMING_SNAKE_CASE = field(default_factory=a) __SCREAMING_SNAKE_CASE = True def __call__( self , __lowerCamelCase) -> str: _A : str = Tracker(self.dest)(__lowerCamelCase).parametrized _A : List[Any] = Tracker(self.src)(__lowerCamelCase).parametrized _A : str = list(filter(lambda __lowerCamelCase: type(__lowerCamelCase) not in self.src_skip , __lowerCamelCase)) _A : Any = list(filter(lambda __lowerCamelCase: type(__lowerCamelCase) not in self.dest_skip , __lowerCamelCase)) if len(__lowerCamelCase) != len(__lowerCamelCase) and self.raise_if_mismatch: raise Exception( F"Numbers of operations are different. Source module has {len(__lowerCamelCase)} operations while" F" destination module has {len(__lowerCamelCase)}.") for dest_m, src_m in zip(__lowerCamelCase , __lowerCamelCase): dest_m.load_state_dict(src_m.state_dict()) if self.verbose == 1: print(F"Transfered from={src_m} to={dest_m}") class lowerCAmelCase__ ( nn.Module): '''simple docstring''' def __init__( self , __lowerCamelCase) -> int: super().__init__() _A : List[Tuple[str, nn.Module]] = [] # - get the stem feature_blocks.append(("conv1", model.stem)) # - get all the feature blocks for k, v in model.trunk_output.named_children(): assert k.startswith("block"), F"Unexpected layer name {k}" _A : Optional[Any] = len(__lowerCamelCase) + 1 feature_blocks.append((F"res{block_index}", v)) _A : str = nn.ModuleDict(__lowerCamelCase) def _lowerCamelCase ( self , __lowerCamelCase) -> Dict: return get_trunk_forward_outputs( __lowerCamelCase , out_feat_keys=__lowerCamelCase , feature_blocks=self._feature_blocks , ) class lowerCAmelCase__ ( a): '''simple docstring''' def _lowerCamelCase ( self , __lowerCamelCase) -> str: _A : Optional[Any] = x.split("-") return x_split[0] + x_split[1] + "_" + "".join(x_split[2:]) def __getitem__( self , __lowerCamelCase) -> Callable[[], Tuple[nn.Module, Dict]]: # default to timm! if x not in self: _A : Dict = self.convert_name_to_timm(__lowerCamelCase) _A : List[str] = partial(lambda: (timm.create_model(__lowerCamelCase , pretrained=__lowerCamelCase).eval(), None)) else: _A : Dict = super().__getitem__(__lowerCamelCase) return val class lowerCAmelCase__ ( a): '''simple docstring''' def __getitem__( self , __lowerCamelCase) -> Callable[[], nn.Module]: if "seer" in x and "in1k" not in x: _A : Optional[Any] = RegNetModel else: _A : List[Any] = RegNetForImageClassification return val def _UpperCAmelCase (UpperCamelCase__ : List[str] , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[Tuple[str, str]] ): for from_key, to_key in keys: _A : int = from_state_dict[from_key].clone() print(f"Copied key={from_key} to={to_key}" ) return to_state_dict def _UpperCAmelCase (UpperCamelCase__ : str , UpperCamelCase__ : Callable[[], nn.Module] , UpperCamelCase__ : Callable[[], nn.Module] , UpperCamelCase__ : RegNetConfig , UpperCamelCase__ : Path , UpperCamelCase__ : bool = True , ): print(f"Converting {name}..." ) with torch.no_grad(): _A , _A : int = from_model_func() _A : Optional[Any] = our_model_func(UpperCamelCase__ ).eval() _A : Any = ModuleTransfer(src=UpperCamelCase__ , dest=UpperCamelCase__ , raise_if_mismatch=UpperCamelCase__ ) _A : List[str] = torch.randn((1, 3, 224, 224) ) module_transfer(UpperCamelCase__ ) if from_state_dict is not None: _A : int = [] # for seer - in1k finetuned we have to manually copy the head if "seer" in name and "in1k" in name: _A : Optional[int] = [("0.clf.0.weight", "classifier.1.weight"), ("0.clf.0.bias", "classifier.1.bias")] _A : Optional[int] = manually_copy_vissl_head(UpperCamelCase__ , our_model.state_dict() , UpperCamelCase__ ) our_model.load_state_dict(UpperCamelCase__ ) _A : List[Any] = our_model(UpperCamelCase__ , output_hidden_states=UpperCamelCase__ ) _A : Optional[Any] = ( our_outputs.logits if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else our_outputs.last_hidden_state ) _A : List[Any] = from_model(UpperCamelCase__ ) _A : List[str] = from_output[-1] if type(UpperCamelCase__ ) is list else from_output # now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state if "seer" in name and "in1k" in name: _A : Optional[int] = our_outputs.hidden_states[-1] assert torch.allclose(UpperCamelCase__ , UpperCamelCase__ ), "The model logits don't match the original one." if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / name , commit_message="Add model" , use_temp_dir=UpperCamelCase__ , ) _A : List[Any] = 224 if "seer" not in name else 384 # we can use the convnext one _A : List[str] = AutoImageProcessor.from_pretrained("facebook/convnext-base-224-22k-1k" , size=UpperCamelCase__ ) image_processor.push_to_hub( repo_path_or_name=save_directory / name , commit_message="Add image processor" , use_temp_dir=UpperCamelCase__ , ) print(f"Pushed {name}" ) def _UpperCAmelCase (UpperCamelCase__ : Path , UpperCamelCase__ : str = None , UpperCamelCase__ : bool = True ): _A : List[str] = "imagenet-1k-id2label.json" _A : Dict = 1000 _A : int = (1, num_labels) _A : Any = "huggingface/label-files" _A : int = num_labels _A : int = json.load(open(cached_download(hf_hub_url(UpperCamelCase__ , UpperCamelCase__ , repo_type="dataset" ) ) , "r" ) ) _A : int = {int(UpperCamelCase__ ): v for k, v in idalabel.items()} _A : Optional[int] = idalabel _A : Dict = {v: k for k, v in idalabel.items()} _A : Union[str, Any] = partial(UpperCamelCase__ , num_labels=UpperCamelCase__ , idalabel=UpperCamelCase__ , labelaid=UpperCamelCase__ ) _A : str = { "regnet-x-002": ImageNetPreTrainedConfig( depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 152, 368] , groups_width=8 , layer_type="x" ), "regnet-x-004": ImageNetPreTrainedConfig( depths=[1, 2, 7, 12] , hidden_sizes=[32, 64, 160, 384] , groups_width=16 , layer_type="x" ), "regnet-x-006": ImageNetPreTrainedConfig( depths=[1, 3, 5, 7] , hidden_sizes=[48, 96, 240, 528] , groups_width=24 , layer_type="x" ), "regnet-x-008": ImageNetPreTrainedConfig( depths=[1, 3, 7, 5] , hidden_sizes=[64, 128, 288, 672] , groups_width=16 , layer_type="x" ), "regnet-x-016": ImageNetPreTrainedConfig( depths=[2, 4, 10, 2] , hidden_sizes=[72, 168, 408, 912] , groups_width=24 , layer_type="x" ), "regnet-x-032": ImageNetPreTrainedConfig( depths=[2, 6, 15, 2] , hidden_sizes=[96, 192, 432, 1008] , groups_width=48 , layer_type="x" ), "regnet-x-040": ImageNetPreTrainedConfig( depths=[2, 5, 14, 2] , hidden_sizes=[80, 240, 560, 1360] , groups_width=40 , layer_type="x" ), "regnet-x-064": ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[168, 392, 784, 1624] , groups_width=56 , layer_type="x" ), "regnet-x-080": ImageNetPreTrainedConfig( depths=[2, 5, 15, 1] , hidden_sizes=[80, 240, 720, 1920] , groups_width=120 , layer_type="x" ), "regnet-x-120": ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[224, 448, 896, 2240] , groups_width=112 , layer_type="x" ), "regnet-x-160": ImageNetPreTrainedConfig( depths=[2, 6, 13, 1] , hidden_sizes=[256, 512, 896, 2048] , groups_width=128 , layer_type="x" ), "regnet-x-320": ImageNetPreTrainedConfig( depths=[2, 7, 13, 1] , hidden_sizes=[336, 672, 1344, 2520] , groups_width=168 , layer_type="x" ), # y variant "regnet-y-002": ImageNetPreTrainedConfig(depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 152, 368] , groups_width=8 ), "regnet-y-004": ImageNetPreTrainedConfig( depths=[1, 3, 6, 6] , hidden_sizes=[48, 104, 208, 440] , groups_width=8 ), "regnet-y-006": ImageNetPreTrainedConfig( depths=[1, 3, 7, 4] , hidden_sizes=[48, 112, 256, 608] , groups_width=16 ), "regnet-y-008": ImageNetPreTrainedConfig( depths=[1, 3, 8, 2] , hidden_sizes=[64, 128, 320, 768] , groups_width=16 ), "regnet-y-016": ImageNetPreTrainedConfig( depths=[2, 6, 17, 2] , hidden_sizes=[48, 120, 336, 888] , groups_width=24 ), "regnet-y-032": ImageNetPreTrainedConfig( depths=[2, 5, 13, 1] , hidden_sizes=[72, 216, 576, 1512] , groups_width=24 ), "regnet-y-040": ImageNetPreTrainedConfig( depths=[2, 6, 12, 2] , hidden_sizes=[128, 192, 512, 1088] , groups_width=64 ), "regnet-y-064": ImageNetPreTrainedConfig( depths=[2, 7, 14, 2] , hidden_sizes=[144, 288, 576, 1296] , groups_width=72 ), "regnet-y-080": ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[168, 448, 896, 2016] , groups_width=56 ), "regnet-y-120": ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[224, 448, 896, 2240] , groups_width=112 ), "regnet-y-160": ImageNetPreTrainedConfig( depths=[2, 4, 11, 1] , hidden_sizes=[224, 448, 1232, 3024] , groups_width=112 ), "regnet-y-320": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ), # models created by SEER -> https://arxiv.org/abs/2202.08360 "regnet-y-320-seer": RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ), "regnet-y-640-seer": RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[328, 984, 1968, 4920] , groups_width=328 ), "regnet-y-1280-seer": RegNetConfig( depths=[2, 7, 17, 1] , hidden_sizes=[528, 1056, 2904, 7392] , groups_width=264 ), "regnet-y-2560-seer": RegNetConfig( depths=[3, 7, 16, 1] , hidden_sizes=[640, 1696, 2544, 5088] , groups_width=640 ), "regnet-y-10b-seer": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[2020, 4040, 11110, 28280] , groups_width=1010 ), # finetuned on imagenet "regnet-y-320-seer-in1k": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ), "regnet-y-640-seer-in1k": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[328, 984, 1968, 4920] , groups_width=328 ), "regnet-y-1280-seer-in1k": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[528, 1056, 2904, 7392] , groups_width=264 ), "regnet-y-2560-seer-in1k": ImageNetPreTrainedConfig( depths=[3, 7, 16, 1] , hidden_sizes=[640, 1696, 2544, 5088] , groups_width=640 ), "regnet-y-10b-seer-in1k": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[2020, 4040, 11110, 28280] , groups_width=1010 ), } _A : Optional[int] = NameToOurModelFuncMap() _A : List[Any] = NameToFromModelFuncMap() # add seer weights logic def load_using_classy_vision(UpperCamelCase__ : str , UpperCamelCase__ : Callable[[], nn.Module] ) -> Tuple[nn.Module, Dict]: _A : Union[str, Any] = torch.hub.load_state_dict_from_url(UpperCamelCase__ , model_dir=str(UpperCamelCase__ ) , map_location="cpu" ) _A : List[Any] = model_func() # check if we have a head, if yes add it _A : Optional[Any] = files["classy_state_dict"]["base_model"]["model"] _A : Union[str, Any] = model_state_dict["trunk"] model.load_state_dict(UpperCamelCase__ ) return model.eval(), model_state_dict["heads"] # pretrained _A : str = partial( UpperCamelCase__ , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) _A : int = partial( UpperCamelCase__ , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) _A : Optional[int] = partial( UpperCamelCase__ , "https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) _A : Dict = partial( UpperCamelCase__ , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch" , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=1010 , w_a=1744 , w_a=6_20.83 , w_m=2.52 ) ) ) , ) # IN1K finetuned _A : List[Any] = partial( UpperCamelCase__ , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) _A : Optional[int] = partial( UpperCamelCase__ , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) _A : List[Any] = partial( UpperCamelCase__ , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) _A : int = partial( UpperCamelCase__ , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch" , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=1010 , w_a=1744 , w_a=6_20.83 , w_m=2.52 ) ) ) , ) if model_name: convert_weight_and_push( UpperCamelCase__ , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , names_to_config[model_name] , UpperCamelCase__ , UpperCamelCase__ , ) else: for model_name, config in names_to_config.items(): convert_weight_and_push( UpperCamelCase__ , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) return config, expected_shape if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help=( 'The name of the model you wish to convert, it must be one of the supported regnet* architecture,' ' currently: regnetx-*, regnety-*. If `None`, all of them will the converted.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=Path, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', default=True, type=bool, required=False, help='If True, push model and image processor to the hub.', ) lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
503
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCAmelCase__ = logging.get_logger(__name__) class lowerCAmelCase__ ( a): '''simple docstring''' __SCREAMING_SNAKE_CASE = ["pixel_values"] def __init__( self , __lowerCamelCase = True , __lowerCamelCase = None , __lowerCamelCase = PIL.Image.BICUBIC , __lowerCamelCase = True , __lowerCamelCase = None , __lowerCamelCase = 1 / 2_5_5 , __lowerCamelCase = True , __lowerCamelCase = True , __lowerCamelCase = None , __lowerCamelCase = None , **__lowerCamelCase , ) -> None: super().__init__(**__lowerCamelCase) _A : Optional[Any] = size if size is not None else {"height": 2_5_6, "width": 2_5_6} _A : List[Any] = get_size_dict(__lowerCamelCase) _A : str = crop_size if crop_size is not None else {"height": 2_2_4, "width": 2_2_4} _A : int = get_size_dict(__lowerCamelCase , param_name="crop_size") _A : str = do_resize _A : Tuple = size _A : int = resample _A : int = do_center_crop _A : Union[str, Any] = crop_size _A : Any = do_rescale _A : str = rescale_factor _A : Optional[int] = do_normalize _A : Dict = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _A : str = image_std if image_std is not None else IMAGENET_STANDARD_STD def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = PIL.Image.BICUBIC , __lowerCamelCase = None , **__lowerCamelCase , ) -> np.ndarray: _A : List[str] = get_size_dict(__lowerCamelCase) if "height" not in size or "width" not in size: raise ValueError(F"The size dictionary must have keys 'height' and 'width'. Got {size.keys()}") return resize( __lowerCamelCase , size=(size["height"], size["width"]) , resample=__lowerCamelCase , data_format=__lowerCamelCase , **__lowerCamelCase) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = None , **__lowerCamelCase , ) -> np.ndarray: _A : Dict = get_size_dict(__lowerCamelCase) if "height" not in size or "width" not in size: raise ValueError(F"The size dictionary must have keys 'height' and 'width'. Got {size.keys()}") return center_crop(__lowerCamelCase , size=(size["height"], size["width"]) , data_format=__lowerCamelCase , **__lowerCamelCase) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = None , **__lowerCamelCase , ) -> str: return rescale(__lowerCamelCase , scale=__lowerCamelCase , data_format=__lowerCamelCase , **__lowerCamelCase) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = None , **__lowerCamelCase , ) -> np.ndarray: return normalize(__lowerCamelCase , mean=__lowerCamelCase , std=__lowerCamelCase , data_format=__lowerCamelCase , **__lowerCamelCase) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase=None , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = ChannelDimension.FIRST , **__lowerCamelCase , ) -> PIL.Image.Image: _A : int = do_resize if do_resize is not None else self.do_resize _A : Tuple = resample if resample is not None else self.resample _A : str = do_center_crop if do_center_crop is not None else self.do_center_crop _A : List[str] = do_rescale if do_rescale is not None else self.do_rescale _A : Optional[int] = rescale_factor if rescale_factor is not None else self.rescale_factor _A : Any = do_normalize if do_normalize is not None else self.do_normalize _A : Tuple = image_mean if image_mean is not None else self.image_mean _A : Tuple = image_std if image_std is not None else self.image_std _A : Any = size if size is not None else self.size _A : List[Any] = get_size_dict(__lowerCamelCase) _A : List[Any] = crop_size if crop_size is not None else self.crop_size _A : Optional[int] = get_size_dict(__lowerCamelCase , param_name="crop_size") _A : Any = make_list_of_images(__lowerCamelCase) if not valid_images(__lowerCamelCase): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray.") if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True.") if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True.") if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True.") if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True.") # All transformations expect numpy arrays. _A : Dict = [to_numpy_array(__lowerCamelCase) for image in images] if do_resize: _A : List[str] = [self.resize(image=__lowerCamelCase , size=__lowerCamelCase , resample=__lowerCamelCase) for image in images] if do_center_crop: _A : Union[str, Any] = [self.center_crop(image=__lowerCamelCase , size=__lowerCamelCase) for image in images] if do_rescale: _A : str = [self.rescale(image=__lowerCamelCase , scale=__lowerCamelCase) for image in images] if do_normalize: _A : Optional[int] = [self.normalize(image=__lowerCamelCase , mean=__lowerCamelCase , std=__lowerCamelCase) for image in images] _A : Tuple = [to_channel_dimension_format(__lowerCamelCase , __lowerCamelCase) for image in images] _A : List[str] = {"pixel_values": images} return BatchFeature(data=__lowerCamelCase , tensor_type=__lowerCamelCase)
503
1
'''simple docstring''' from __future__ import annotations class UpperCAmelCase : '''simple docstring''' def __init__( self , lowercase__ ) -> None: SCREAMING_SNAKE_CASE : List[Any] = order # a_{0} ... a_{k} SCREAMING_SNAKE_CASE : int = [1.0] + [0.0] * order # b_{0} ... b_{k} SCREAMING_SNAKE_CASE : Optional[Any] = [1.0] + [0.0] * order # x[n-1] ... x[n-k] SCREAMING_SNAKE_CASE : Optional[int] = [0.0] * self.order # y[n-1] ... y[n-k] SCREAMING_SNAKE_CASE : Any = [0.0] * self.order def _UpperCamelCase ( self , lowercase__ , lowercase__ ) -> None: if len(lowercase__ ) < self.order: SCREAMING_SNAKE_CASE : int = [1.0, *a_coeffs] if len(lowercase__ ) != self.order + 1: SCREAMING_SNAKE_CASE : Tuple = ( F"""Expected a_coeffs to have {self.order + 1} elements """ F"""for {self.order}-order filter, got {len(lowercase__ )}""" ) raise ValueError(lowercase__ ) if len(lowercase__ ) != self.order + 1: SCREAMING_SNAKE_CASE : str = ( F"""Expected b_coeffs to have {self.order + 1} elements """ F"""for {self.order}-order filter, got {len(lowercase__ )}""" ) raise ValueError(lowercase__ ) SCREAMING_SNAKE_CASE : Optional[int] = a_coeffs SCREAMING_SNAKE_CASE : Tuple = b_coeffs def _UpperCamelCase ( self , lowercase__ ) -> float: SCREAMING_SNAKE_CASE : Tuple = 0.0 # Start at index 1 and do index 0 at the end. for i in range(1 , self.order + 1 ): result += ( self.b_coeffs[i] * self.input_history[i - 1] - self.a_coeffs[i] * self.output_history[i - 1] ) SCREAMING_SNAKE_CASE : str = (result + self.b_coeffs[0] * sample) / self.a_coeffs[0] SCREAMING_SNAKE_CASE : Tuple = self.input_history[:-1] SCREAMING_SNAKE_CASE : List[str] = self.output_history[:-1] SCREAMING_SNAKE_CASE : List[str] = sample SCREAMING_SNAKE_CASE : int = result return result
179
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional import evaluate import numpy as np import torch from datasets import load_dataset from PIL import Image from torchvision.transforms import ( CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor, ) import transformers from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForImageClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version _lowerCAmelCase :Union[str, Any] = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/image-classification/requirements.txt""") _lowerCAmelCase :List[str] = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys()) _lowerCAmelCase :List[Any] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def __lowerCAmelCase ( a_ ) -> List[str]: '''simple docstring''' with open(a_ , 'rb' ) as f: SCREAMING_SNAKE_CASE : List[str] = Image.open(a_ ) return im.convert('RGB' ) @dataclass class UpperCAmelCase : '''simple docstring''' snake_case__ : Optional[str] = field( default=_SCREAMING_SNAKE_CASE , metadata={ "help": "Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub)." } , ) snake_case__ : Optional[str] = field( default=_SCREAMING_SNAKE_CASE , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) snake_case__ : Optional[str] = field(default=_SCREAMING_SNAKE_CASE , metadata={"help": "A folder containing the training data."} ) snake_case__ : Optional[str] = field(default=_SCREAMING_SNAKE_CASE , metadata={"help": "A folder containing the validation data."} ) snake_case__ : Optional[float] = field( default=0.15 , metadata={"help": "Percent to split off of train for validation."} ) snake_case__ : Optional[int] = field( default=_SCREAMING_SNAKE_CASE , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) snake_case__ : Optional[int] = field( default=_SCREAMING_SNAKE_CASE , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def _UpperCamelCase ( self ) -> Optional[Any]: if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None): raise ValueError( 'You must specify either a dataset name from the hub or a train and/or validation directory.' ) @dataclass class UpperCAmelCase : '''simple docstring''' snake_case__ : str = field( default="google/vit-base-patch16-224-in21k" , metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} , ) snake_case__ : Optional[str] = field( default=_SCREAMING_SNAKE_CASE , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(_SCREAMING_SNAKE_CASE )} , ) snake_case__ : Optional[str] = field( default=_SCREAMING_SNAKE_CASE , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) snake_case__ : Optional[str] = field( default=_SCREAMING_SNAKE_CASE , metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} ) snake_case__ : str = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) snake_case__ : str = field(default=_SCREAMING_SNAKE_CASE , metadata={"help": "Name or path of preprocessor config."} ) snake_case__ : bool = field( default=_SCREAMING_SNAKE_CASE , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) snake_case__ : bool = field( default=_SCREAMING_SNAKE_CASE , metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."} , ) def __lowerCAmelCase ( a_ ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : int = torch.stack([example['pixel_values'] for example in examples] ) SCREAMING_SNAKE_CASE : List[str] = torch.tensor([example['labels'] for example in examples] ) return {"pixel_values": pixel_values, "labels": labels} def __lowerCAmelCase ( ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_image_classification' , a_ , a_ ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() SCREAMING_SNAKE_CASE : List[Any] = training_args.get_process_log_level() logger.setLevel(a_ ) transformers.utils.logging.set_verbosity(a_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. SCREAMING_SNAKE_CASE : List[str] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: SCREAMING_SNAKE_CASE : Union[str, Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # Initialize our dataset and prepare it for the 'image-classification' task. if data_args.dataset_name is not None: SCREAMING_SNAKE_CASE : List[str] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir , task='image-classification' , use_auth_token=True if model_args.use_auth_token else None , ) else: SCREAMING_SNAKE_CASE : Optional[int] = {} if data_args.train_dir is not None: SCREAMING_SNAKE_CASE : Optional[int] = os.path.join(data_args.train_dir , '**' ) if data_args.validation_dir is not None: SCREAMING_SNAKE_CASE : int = os.path.join(data_args.validation_dir , '**' ) SCREAMING_SNAKE_CASE : Optional[Any] = load_dataset( 'imagefolder' , data_files=a_ , cache_dir=model_args.cache_dir , task='image-classification' , ) # If we don't have a validation split, split off a percentage of train as validation. SCREAMING_SNAKE_CASE : Optional[int] = None if 'validation' in dataset.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , a_ ) and data_args.train_val_split > 0.0: SCREAMING_SNAKE_CASE : Optional[int] = dataset['train'].train_test_split(data_args.train_val_split ) SCREAMING_SNAKE_CASE : List[Any] = split['train'] SCREAMING_SNAKE_CASE : Tuple = split['test'] # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. SCREAMING_SNAKE_CASE : List[Any] = dataset['train'].features['labels'].names SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = {}, {} for i, label in enumerate(a_ ): SCREAMING_SNAKE_CASE : List[str] = str(a_ ) SCREAMING_SNAKE_CASE : Dict = label # Load the accuracy metric from the datasets package SCREAMING_SNAKE_CASE : List[Any] = evaluate.load('accuracy' ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(a_ ): return metric.compute(predictions=np.argmax(p.predictions , axis=1 ) , references=p.label_ids ) SCREAMING_SNAKE_CASE : Tuple = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(a_ ) , labelaid=a_ , idalabel=a_ , finetuning_task='image-classification' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) SCREAMING_SNAKE_CASE : str = AutoModelForImageClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=a_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) SCREAMING_SNAKE_CASE : List[str] = AutoImageProcessor.from_pretrained( model_args.image_processor_name or model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Define torchvision transforms to be applied to each image. if "shortest_edge" in image_processor.size: SCREAMING_SNAKE_CASE : Optional[Any] = image_processor.size['shortest_edge'] else: SCREAMING_SNAKE_CASE : Optional[int] = (image_processor.size['height'], image_processor.size['width']) SCREAMING_SNAKE_CASE : Any = Normalize(mean=image_processor.image_mean , std=image_processor.image_std ) SCREAMING_SNAKE_CASE : List[Any] = Compose( [ RandomResizedCrop(a_ ), RandomHorizontalFlip(), ToTensor(), normalize, ] ) SCREAMING_SNAKE_CASE : Dict = Compose( [ Resize(a_ ), CenterCrop(a_ ), ToTensor(), normalize, ] ) def train_transforms(a_ ): SCREAMING_SNAKE_CASE : int = [ _train_transforms(pil_img.convert('RGB' ) ) for pil_img in example_batch['image'] ] return example_batch def val_transforms(a_ ): SCREAMING_SNAKE_CASE : Any = [_val_transforms(pil_img.convert('RGB' ) ) for pil_img in example_batch['image']] return example_batch if training_args.do_train: if "train" not in dataset: raise ValueError('--do_train requires a train dataset' ) if data_args.max_train_samples is not None: SCREAMING_SNAKE_CASE : Optional[int] = ( dataset['train'].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms dataset["train"].set_transform(a_ ) if training_args.do_eval: if "validation" not in dataset: raise ValueError('--do_eval requires a validation dataset' ) if data_args.max_eval_samples is not None: SCREAMING_SNAKE_CASE : int = ( dataset['validation'].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms dataset["validation"].set_transform(a_ ) # Initalize our trainer SCREAMING_SNAKE_CASE : Optional[Any] = Trainer( model=a_ , args=a_ , train_dataset=dataset['train'] if training_args.do_train else None , eval_dataset=dataset['validation'] if training_args.do_eval else None , compute_metrics=a_ , tokenizer=a_ , data_collator=a_ , ) # Training if training_args.do_train: SCREAMING_SNAKE_CASE : int = None if training_args.resume_from_checkpoint is not None: SCREAMING_SNAKE_CASE : Dict = training_args.resume_from_checkpoint elif last_checkpoint is not None: SCREAMING_SNAKE_CASE : Tuple = last_checkpoint SCREAMING_SNAKE_CASE : Optional[int] = trainer.train(resume_from_checkpoint=a_ ) trainer.save_model() trainer.log_metrics('train' , train_result.metrics ) trainer.save_metrics('train' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: SCREAMING_SNAKE_CASE : List[Any] = trainer.evaluate() trainer.log_metrics('eval' , a_ ) trainer.save_metrics('eval' , a_ ) # Write model card and (optionally) push to hub SCREAMING_SNAKE_CASE : Optional[int] = { 'finetuned_from': model_args.model_name_or_path, 'tasks': 'image-classification', 'dataset': data_args.dataset_name, 'tags': ['image-classification', 'vision'], } if training_args.push_to_hub: trainer.push_to_hub(**a_ ) else: trainer.create_model_card(**a_ ) if __name__ == "__main__": main()
179
1
'''simple docstring''' import tensorflow as tf from ...tf_utils import shape_list class __UpperCAmelCase ( tf.keras.layers.Layer ): def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=1 , _lowerCamelCase=False , **_lowerCamelCase ): super().__init__(**_lowerCamelCase ) lowerCAmelCase_ = vocab_size lowerCAmelCase_ = d_embed lowerCAmelCase_ = d_proj lowerCAmelCase_ = cutoffs + [vocab_size] lowerCAmelCase_ = [0] + self.cutoffs lowerCAmelCase_ = div_val lowerCAmelCase_ = self.cutoffs[0] lowerCAmelCase_ = len(self.cutoffs ) - 1 lowerCAmelCase_ = self.shortlist_size + self.n_clusters lowerCAmelCase_ = keep_order lowerCAmelCase_ = [] lowerCAmelCase_ = [] def UpperCAmelCase_ ( self , _lowerCamelCase ): if self.n_clusters > 0: lowerCAmelCase_ = self.add_weight( shape=(self.n_clusters, self.d_embed) , initializer='''zeros''' , trainable=_lowerCamelCase , name='''cluster_weight''' ) lowerCAmelCase_ = self.add_weight( shape=(self.n_clusters,) , initializer='''zeros''' , trainable=_lowerCamelCase , name='''cluster_bias''' ) if self.div_val == 1: for i in range(len(self.cutoffs ) ): if self.d_proj != self.d_embed: lowerCAmelCase_ = self.add_weight( shape=(self.d_embed, self.d_proj) , initializer='''zeros''' , trainable=_lowerCamelCase , name=F'''out_projs_._{i}''' , ) self.out_projs.append(_lowerCamelCase ) else: self.out_projs.append(_lowerCamelCase ) lowerCAmelCase_ = self.add_weight( shape=(self.vocab_size, self.d_embed) , initializer='''zeros''' , trainable=_lowerCamelCase , name=F'''out_layers_._{i}_._weight''' , ) lowerCAmelCase_ = self.add_weight( shape=(self.vocab_size,) , initializer='''zeros''' , trainable=_lowerCamelCase , name=F'''out_layers_._{i}_._bias''' , ) self.out_layers.append((weight, bias) ) else: for i in range(len(self.cutoffs ) ): lowerCAmelCase_ ,lowerCAmelCase_ = self.cutoff_ends[i], self.cutoff_ends[i + 1] lowerCAmelCase_ = self.d_embed // (self.div_val**i) lowerCAmelCase_ = self.add_weight( shape=(d_emb_i, self.d_proj) , initializer='''zeros''' , trainable=_lowerCamelCase , name=F'''out_projs_._{i}''' ) self.out_projs.append(_lowerCamelCase ) lowerCAmelCase_ = self.add_weight( shape=(r_idx - l_idx, d_emb_i) , initializer='''zeros''' , trainable=_lowerCamelCase , name=F'''out_layers_._{i}_._weight''' , ) lowerCAmelCase_ = self.add_weight( shape=(r_idx - l_idx,) , initializer='''zeros''' , trainable=_lowerCamelCase , name=F'''out_layers_._{i}_._bias''' , ) self.out_layers.append((weight, bias) ) super().build(_lowerCamelCase ) @staticmethod def UpperCAmelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ): lowerCAmelCase_ = x if proj is not None: lowerCAmelCase_ = tf.einsum('''ibd,ed->ibe''' , _lowerCamelCase , _lowerCamelCase ) return tf.einsum('''ibd,nd->ibn''' , _lowerCamelCase , _lowerCamelCase ) + b @staticmethod def UpperCAmelCase_ ( _lowerCamelCase , _lowerCamelCase ): lowerCAmelCase_ = shape_list(_lowerCamelCase ) lowerCAmelCase_ = tf.range(lp_size[0] , dtype=target.dtype ) lowerCAmelCase_ = tf.stack([r, target] , 1 ) return tf.gather_nd(_lowerCamelCase , _lowerCamelCase ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=True , _lowerCamelCase=False ): lowerCAmelCase_ = 0 if self.n_clusters == 0: lowerCAmelCase_ = self._logit(_lowerCamelCase , self.out_layers[0][0] , self.out_layers[0][1] , self.out_projs[0] ) if target is not None: lowerCAmelCase_ = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=_lowerCamelCase , logits=_lowerCamelCase ) lowerCAmelCase_ = tf.nn.log_softmax(_lowerCamelCase , axis=-1 ) else: lowerCAmelCase_ = shape_list(_lowerCamelCase ) lowerCAmelCase_ = [] lowerCAmelCase_ = tf.zeros(hidden_sizes[:2] ) for i in range(len(self.cutoffs ) ): lowerCAmelCase_ ,lowerCAmelCase_ = self.cutoff_ends[i], self.cutoff_ends[i + 1] if target is not None: lowerCAmelCase_ = (target >= l_idx) & (target < r_idx) lowerCAmelCase_ = tf.where(_lowerCamelCase ) lowerCAmelCase_ = tf.boolean_mask(_lowerCamelCase , _lowerCamelCase ) - l_idx if self.div_val == 1: lowerCAmelCase_ = self.out_layers[0][0][l_idx:r_idx] lowerCAmelCase_ = self.out_layers[0][1][l_idx:r_idx] else: lowerCAmelCase_ = self.out_layers[i][0] lowerCAmelCase_ = self.out_layers[i][1] if i == 0: lowerCAmelCase_ = tf.concat([cur_W, self.cluster_weight] , 0 ) lowerCAmelCase_ = tf.concat([cur_b, self.cluster_bias] , 0 ) lowerCAmelCase_ = self._logit(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , self.out_projs[0] ) lowerCAmelCase_ = tf.nn.log_softmax(_lowerCamelCase ) out.append(head_logprob[..., : self.cutoffs[0]] ) if target is not None: lowerCAmelCase_ = tf.boolean_mask(_lowerCamelCase , _lowerCamelCase ) lowerCAmelCase_ = self._gather_logprob(_lowerCamelCase , _lowerCamelCase ) else: lowerCAmelCase_ = self._logit(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , self.out_projs[i] ) lowerCAmelCase_ = tf.nn.log_softmax(_lowerCamelCase ) lowerCAmelCase_ = self.cutoffs[0] + i - 1 # No probability for the head cluster lowerCAmelCase_ = head_logprob[..., cluster_prob_idx, None] + tail_logprob out.append(_lowerCamelCase ) if target is not None: lowerCAmelCase_ = tf.boolean_mask(_lowerCamelCase , _lowerCamelCase ) lowerCAmelCase_ = tf.boolean_mask(_lowerCamelCase , _lowerCamelCase ) lowerCAmelCase_ = self._gather_logprob(_lowerCamelCase , _lowerCamelCase ) cur_logprob += cur_head_logprob[:, self.cutoff_ends[1] + i - 1] if target is not None: loss += tf.scatter_nd(_lowerCamelCase , -cur_logprob , shape_list(_lowerCamelCase ) ) lowerCAmelCase_ = tf.concat(_lowerCamelCase , axis=-1 ) if target is not None: if return_mean: lowerCAmelCase_ = tf.reduce_mean(_lowerCamelCase ) # Add the training-time loss value to the layer using `self.add_loss()`. self.add_loss(_lowerCamelCase ) # Log the loss as a metric (we could log arbitrary metrics, # including different metrics for training and inference. self.add_metric(_lowerCamelCase , name=self.name , aggregation='''mean''' if return_mean else '''''' ) return out
274
'''simple docstring''' import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class __UpperCAmelCase ( unittest.TestCase ): def UpperCAmelCase_ ( self , _lowerCamelCase ): for model_result in results.values(): for batch_size, sequence_length in zip(model_result['''bs'''] , model_result['''ss'''] ): lowerCAmelCase_ = model_result['''result'''][batch_size][sequence_length] self.assertIsNotNone(_lowerCamelCase ) def UpperCAmelCase_ ( self ): lowerCAmelCase_ = '''sshleifer/tiny-gpt2''' lowerCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCamelCase , inference=_lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCamelCase , ) lowerCAmelCase_ = PyTorchBenchmark(_lowerCamelCase ) lowerCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCAmelCase_ ( self ): lowerCAmelCase_ = '''sgugger/tiny-distilbert-classification''' lowerCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCamelCase , inference=_lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCamelCase , only_pretrain_model=_lowerCamelCase , ) lowerCAmelCase_ = PyTorchBenchmark(_lowerCamelCase ) lowerCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCAmelCase_ ( self ): lowerCAmelCase_ = '''sshleifer/tiny-gpt2''' lowerCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCamelCase , inference=_lowerCamelCase , torchscript=_lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCamelCase , ) lowerCAmelCase_ = PyTorchBenchmark(_lowerCamelCase ) lowerCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' ) def UpperCAmelCase_ ( self ): lowerCAmelCase_ = '''sshleifer/tiny-gpt2''' lowerCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCamelCase , inference=_lowerCamelCase , fpaa=_lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCamelCase , ) lowerCAmelCase_ = PyTorchBenchmark(_lowerCamelCase ) lowerCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCAmelCase_ ( self ): lowerCAmelCase_ = '''sshleifer/tiny-gpt2''' lowerCAmelCase_ = AutoConfig.from_pretrained(_lowerCamelCase ) # set architectures equal to `None` lowerCAmelCase_ = None lowerCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCamelCase , inference=_lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCamelCase , ) lowerCAmelCase_ = PyTorchBenchmark(_lowerCamelCase , configs=[config] ) lowerCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCAmelCase_ ( self ): lowerCAmelCase_ = '''sshleifer/tiny-gpt2''' lowerCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCamelCase , inference=_lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCamelCase , ) lowerCAmelCase_ = PyTorchBenchmark(_lowerCamelCase ) lowerCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == '''cpu''' , '''Can\'t do half precision''' ) def UpperCAmelCase_ ( self ): lowerCAmelCase_ = '''sshleifer/tiny-gpt2''' lowerCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCamelCase , inference=_lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , fpaa=_lowerCamelCase , multi_process=_lowerCamelCase , ) lowerCAmelCase_ = PyTorchBenchmark(_lowerCamelCase ) lowerCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def UpperCAmelCase_ ( self ): lowerCAmelCase_ = '''sshleifer/tiny-gpt2''' lowerCAmelCase_ = AutoConfig.from_pretrained(_lowerCamelCase ) lowerCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCamelCase , inference=_lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCamelCase , ) lowerCAmelCase_ = PyTorchBenchmark(_lowerCamelCase , configs=[config] ) lowerCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCAmelCase_ ( self ): lowerCAmelCase_ = '''sshleifer/tinier_bart''' lowerCAmelCase_ = AutoConfig.from_pretrained(_lowerCamelCase ) lowerCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCamelCase , inference=_lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCamelCase , ) lowerCAmelCase_ = PyTorchBenchmark(_lowerCamelCase , configs=[config] ) lowerCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCAmelCase_ ( self ): lowerCAmelCase_ = '''sshleifer/tiny-gpt2''' lowerCAmelCase_ = AutoConfig.from_pretrained(_lowerCamelCase ) lowerCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCamelCase , inference=_lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCamelCase , ) lowerCAmelCase_ = PyTorchBenchmark(_lowerCamelCase , configs=[config] ) lowerCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def UpperCAmelCase_ ( self ): lowerCAmelCase_ = '''sshleifer/tinier_bart''' lowerCAmelCase_ = AutoConfig.from_pretrained(_lowerCamelCase ) lowerCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCamelCase , inference=_lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCamelCase , ) lowerCAmelCase_ = PyTorchBenchmark(_lowerCamelCase , configs=[config] ) lowerCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def UpperCAmelCase_ ( self ): lowerCAmelCase_ = '''sshleifer/tiny-gpt2''' with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCamelCase , inference=_lowerCamelCase , save_to_csv=_lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(_lowerCamelCase , '''inf_time.csv''' ) , train_memory_csv_file=os.path.join(_lowerCamelCase , '''train_mem.csv''' ) , inference_memory_csv_file=os.path.join(_lowerCamelCase , '''inf_mem.csv''' ) , train_time_csv_file=os.path.join(_lowerCamelCase , '''train_time.csv''' ) , env_info_csv_file=os.path.join(_lowerCamelCase , '''env.csv''' ) , multi_process=_lowerCamelCase , ) lowerCAmelCase_ = PyTorchBenchmark(_lowerCamelCase ) benchmark.run() self.assertTrue(Path(os.path.join(_lowerCamelCase , '''inf_time.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_lowerCamelCase , '''train_time.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_lowerCamelCase , '''inf_mem.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_lowerCamelCase , '''train_mem.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_lowerCamelCase , '''env.csv''' ) ).exists() ) def UpperCAmelCase_ ( self ): lowerCAmelCase_ = '''sshleifer/tiny-gpt2''' def _check_summary_is_not_empty(_lowerCamelCase ): self.assertTrue(hasattr(_lowerCamelCase , '''sequential''' ) ) self.assertTrue(hasattr(_lowerCamelCase , '''cumulative''' ) ) self.assertTrue(hasattr(_lowerCamelCase , '''current''' ) ) self.assertTrue(hasattr(_lowerCamelCase , '''total''' ) ) with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCamelCase , inference=_lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(_lowerCamelCase , '''log.txt''' ) , log_print=_lowerCamelCase , trace_memory_line_by_line=_lowerCamelCase , multi_process=_lowerCamelCase , ) lowerCAmelCase_ = PyTorchBenchmark(_lowerCamelCase ) lowerCAmelCase_ = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(_lowerCamelCase , '''log.txt''' ) ).exists() )
274
1
from cva import destroyAllWindows, imread, imshow, waitKey def A ( _UpperCAmelCase : Optional[Any] ) -> List[str]: '''simple docstring''' # getting number of pixels in the image _UpperCAmelCase , _UpperCAmelCase = img.shape[0], img.shape[1] # converting each pixel's color to its negative for i in range(_UpperCAmelCase ): for j in range(_UpperCAmelCase ): _UpperCAmelCase = [255, 255, 255] - img[i][j] return img if __name__ == "__main__": # read original image UpperCAmelCase__ = imread("image_data/lena.jpg", 1) # convert to its negative UpperCAmelCase__ = convert_to_negative(img) # show result image imshow("negative of original image", img) waitKey(0) destroyAllWindows()
639
import qiskit def A ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> qiskit.result.counts.Counts: '''simple docstring''' _UpperCAmelCase = qiskit.Aer.get_backend('aer_simulator' ) # Create a Quantum Circuit acting on the q register _UpperCAmelCase = qiskit.QuantumCircuit(_UpperCAmelCase , _UpperCAmelCase ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator _UpperCAmelCase = qiskit.execute(_UpperCAmelCase , _UpperCAmelCase , shots=1_000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(_UpperCAmelCase ) if __name__ == "__main__": UpperCAmelCase__ = single_qubit_measure(2, 2) print(f"""Total count for various states are: {counts}""")
639
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a : List[str] = {'''configuration_sew''': ['''SEW_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SEWConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Union[str, Any] = [ '''SEW_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SEWForCTC''', '''SEWForSequenceClassification''', '''SEWModel''', '''SEWPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_sew import SEW_PRETRAINED_CONFIG_ARCHIVE_MAP, SEWConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_sew import ( SEW_PRETRAINED_MODEL_ARCHIVE_LIST, SEWForCTC, SEWForSequenceClassification, SEWModel, SEWPreTrainedModel, ) else: import sys a : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
633
import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class _UpperCAmelCase : def _lowerCamelCase ( self ): torch.manual_seed(0 ) A_ : Optional[Any] = TaEncoderModel.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) torch.manual_seed(0 ) A_ : Tuple = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) torch.manual_seed(0 ) A_ : Any = UNetaDConditionModel( sample_size=32 , layers_per_block=1 , block_out_channels=[32, 64] , down_block_types=[ """ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D""", ] , mid_block_type="""UNetMidBlock2DSimpleCrossAttn""" , up_block_types=["""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""] , in_channels=3 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="""text""" , addition_embed_type_num_heads=2 , cross_attention_norm="""group_norm""" , resnet_time_scale_shift="""scale_shift""" , act_fn="""gelu""" , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) A_ : str = DDPMScheduler( num_train_timesteps=1000 , beta_schedule="""squaredcos_cap_v2""" , beta_start=0.0001 , beta_end=0.02 , thresholding=a__ , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="""epsilon""" , variance_type="""learned_range""" , ) torch.manual_seed(0 ) A_ : Tuple = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def _lowerCamelCase ( self ): torch.manual_seed(0 ) A_ : Tuple = TaEncoderModel.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) torch.manual_seed(0 ) A_ : Dict = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) torch.manual_seed(0 ) A_ : int = UNetaDConditionModel( sample_size=32 , layers_per_block=[1, 2] , block_out_channels=[32, 64] , down_block_types=[ """ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D""", ] , mid_block_type="""UNetMidBlock2DSimpleCrossAttn""" , up_block_types=["""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""] , in_channels=6 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="""text""" , addition_embed_type_num_heads=2 , cross_attention_norm="""group_norm""" , resnet_time_scale_shift="""scale_shift""" , act_fn="""gelu""" , class_embed_type="""timestep""" , mid_block_scale_factor=1.414 , time_embedding_act_fn="""gelu""" , time_embedding_dim=32 , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) A_ : Union[str, Any] = DDPMScheduler( num_train_timesteps=1000 , beta_schedule="""squaredcos_cap_v2""" , beta_start=0.0001 , beta_end=0.02 , thresholding=a__ , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="""epsilon""" , variance_type="""learned_range""" , ) torch.manual_seed(0 ) A_ : Union[str, Any] = DDPMScheduler( num_train_timesteps=1000 , beta_schedule="""squaredcos_cap_v2""" , beta_start=0.0001 , beta_end=0.02 , ) torch.manual_seed(0 ) A_ : List[Any] = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def _lowerCamelCase ( self ): A_ : str = self.get_dummy_components() A_ : List[Any] = self.pipeline_class(**a__ ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) A_ : Optional[Any] = self.get_dummy_inputs(a__ ) A_ : List[str] = inputs["""prompt"""] A_ : str = inputs["""generator"""] A_ : Tuple = inputs["""num_inference_steps"""] A_ : Optional[int] = inputs["""output_type"""] if "image" in inputs: A_ : List[str] = inputs["""image"""] else: A_ : Optional[int] = None if "mask_image" in inputs: A_ : int = inputs["""mask_image"""] else: A_ : str = None if "original_image" in inputs: A_ : List[Any] = inputs["""original_image"""] else: A_ : int = None A_ , A_ : Optional[int] = pipe.encode_prompt(a__ ) # inputs with prompt converted to embeddings A_ : Optional[int] = { """prompt_embeds""": prompt_embeds, """negative_prompt_embeds""": negative_prompt_embeds, """generator""": generator, """num_inference_steps""": num_inference_steps, """output_type""": output_type, } if image is not None: A_ : str = image if mask_image is not None: A_ : Dict = mask_image if original_image is not None: A_ : Optional[int] = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(a__ , a__ , a__ ) A_ : List[Any] = pipe(**a__ )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(a__ ) A_ : Union[str, Any] = self.pipeline_class.from_pretrained(a__ ) pipe_loaded.to(a__ ) pipe_loaded.set_progress_bar_config(disable=a__ ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(a__ , a__ ) is None , F"""`{optional_component}` did not stay set to None after loading.""" , ) A_ : Optional[int] = self.get_dummy_inputs(a__ ) A_ : int = inputs["""generator"""] A_ : List[Any] = inputs["""num_inference_steps"""] A_ : Dict = inputs["""output_type"""] # inputs with prompt converted to embeddings A_ : Dict = { """prompt_embeds""": prompt_embeds, """negative_prompt_embeds""": negative_prompt_embeds, """generator""": generator, """num_inference_steps""": num_inference_steps, """output_type""": output_type, } if image is not None: A_ : Any = image if mask_image is not None: A_ : Optional[int] = mask_image if original_image is not None: A_ : int = original_image A_ : Optional[Any] = pipe_loaded(**a__ )[0] A_ : Optional[int] = np.abs(to_np(a__ ) - to_np(a__ ) ).max() self.assertLess(a__ , 1E-4 ) def _lowerCamelCase ( self ): A_ : Dict = self.get_dummy_components() A_ : Optional[Any] = self.pipeline_class(**a__ ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) A_ : Any = self.get_dummy_inputs(a__ ) A_ : List[Any] = pipe(**a__ )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(a__ ) A_ : List[Any] = self.pipeline_class.from_pretrained(a__ ) pipe_loaded.to(a__ ) pipe_loaded.set_progress_bar_config(disable=a__ ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests A_ : Optional[Any] = self.get_dummy_inputs(a__ ) A_ : Optional[Any] = pipe_loaded(**a__ )[0] A_ : Union[str, Any] = np.abs(to_np(a__ ) - to_np(a__ ) ).max() self.assertLess(a__ , 1E-4 )
569
0
"""simple docstring""" from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef import datasets UpperCAmelCase__ ="\\n@inproceedings{wang2019glue,\n title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n note={In the Proceedings of ICLR.},\n year={2019}\n}\n" UpperCAmelCase__ ="\\nGLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n" UpperCAmelCase__ ="\nCompute GLUE evaluation metric associated to each GLUE dataset.\nArgs:\n predictions: list of predictions to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\nReturns: depending on the GLUE subset, one or several of:\n \"accuracy\": Accuracy\n \"f1\": F1 score\n \"pearson\": Pearson Correlation\n \"spearmanr\": Spearman Correlation\n \"matthews_correlation\": Matthew Correlation\nExamples:\n\n >>> glue_metric = datasets.load_metric('glue', 'sst2') # 'sst2' or any of [\"mnli\", \"mnli_mismatched\", \"mnli_matched\", \"qnli\", \"rte\", \"wnli\", \"hans\"]\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0}\n\n >>> glue_metric = datasets.load_metric('glue', 'mrpc') # 'mrpc' or 'qqp'\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0, 'f1': 1.0}\n\n >>> glue_metric = datasets.load_metric('glue', 'stsb')\n >>> references = [0., 1., 2., 3., 4., 5.]\n >>> predictions = [0., 1., 2., 3., 4., 5.]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print({\"pearson\": round(results[\"pearson\"], 2), \"spearmanr\": round(results[\"spearmanr\"], 2)})\n {'pearson': 1.0, 'spearmanr': 1.0}\n\n >>> glue_metric = datasets.load_metric('glue', 'cola')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'matthews_correlation': 1.0}\n" def lowerCAmelCase_ ( UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Union[str, Any] ): """simple docstring""" return float((preds == labels).mean() ) def lowerCAmelCase_ ( UpperCamelCase__ : Any , UpperCamelCase__ : List[Any] ): """simple docstring""" __lowercase = simple_accuracy(UpperCamelCase__ , UpperCamelCase__ ) __lowercase = float(fa_score(y_true=UpperCamelCase__ , y_pred=UpperCamelCase__ ) ) return { "accuracy": acc, "f1": fa, } def lowerCAmelCase_ ( UpperCamelCase__ : str , UpperCamelCase__ : int ): """simple docstring""" __lowercase = float(pearsonr(UpperCamelCase__ , UpperCamelCase__ )[0] ) __lowercase = float(spearmanr(UpperCamelCase__ , UpperCamelCase__ )[0] ) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase__ ( datasets.Metric ): def SCREAMING_SNAKE_CASE_ ( self : Any ): '''simple docstring''' if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( """You should supply a configuration name selected in """ """[\"sst2\", \"mnli\", \"mnli_mismatched\", \"mnli_matched\", """ """\"cola\", \"stsb\", \"mrpc\", \"qqp\", \"qnli\", \"rte\", \"wnli\", \"hans\"]""" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""int64""" if self.config_name != """stsb""" else """float32""" ), """references""": datasets.Value("""int64""" if self.config_name != """stsb""" else """float32""" ), } ) , codebase_urls=[] , reference_urls=[] , format="""numpy""" , ) def SCREAMING_SNAKE_CASE_ ( self : Tuple , A_ : str , A_ : int ): '''simple docstring''' if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(A_ , A_ )} elif self.config_name == "stsb": return pearson_and_spearman(A_ , A_ ) elif self.config_name in ["mrpc", "qqp"]: return acc_and_fa(A_ , A_ ) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(A_ , A_ )} else: raise KeyError( """You should supply a configuration name selected in """ """[\"sst2\", \"mnli\", \"mnli_mismatched\", \"mnli_matched\", """ """\"cola\", \"stsb\", \"mrpc\", \"qqp\", \"qnli\", \"rte\", \"wnli\", \"hans\"]""" )
442
"""simple docstring""" import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import MaMaaaTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from transformers.utils import is_sentencepiece_available if is_sentencepiece_available(): from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin if is_sentencepiece_available(): UpperCAmelCase__ =get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right UpperCAmelCase__ =12_8022 UpperCAmelCase__ =12_8028 @require_sentencepiece class lowerCamelCase__ ( _a , unittest.TestCase ): a : Dict = MaMaaaTokenizer a : Optional[int] = False a : str = False a : Any = True def SCREAMING_SNAKE_CASE_ ( self : int ): '''simple docstring''' super().setUp() __lowercase = ["""</s>""", """<unk>""", """▁This""", """▁is""", """▁a""", """▁t""", """est""", """\u0120""", """<pad>"""] __lowercase = dict(zip(A_ , range(len(A_ ) ) ) ) __lowercase = Path(self.tmpdirname ) save_json(A_ , save_dir / VOCAB_FILES_NAMES["""vocab_file"""] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(A_ , save_dir / VOCAB_FILES_NAMES["""spm_file"""] ) __lowercase = MaMaaaTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , **A_ : List[Any] ): '''simple docstring''' return MaMaaaTokenizer.from_pretrained(self.tmpdirname , **A_ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , A_ : Optional[int] ): '''simple docstring''' return ( "This is a test", "This is a test", ) def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' __lowercase = """</s>""" __lowercase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A_ ) , A_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A_ ) , A_ ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' __lowercase = self.get_tokenizer() __lowercase = list(tokenizer.get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """</s>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """<s>""" ) self.assertEqual(len(A_ ) , tokenizer.vocab_size + len(tokenizer.get_added_vocab() ) ) @unittest.skip("""Skip this test while all models are still to be uploaded.""" ) def SCREAMING_SNAKE_CASE_ ( self : int ): '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ ( self : Any ): '''simple docstring''' __lowercase = self.get_tokenizer() __lowercase = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(A_ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(A_ ) , [2, 3, 4, 5, 6] , ) __lowercase = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6] ) self.assertListEqual(A_ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) __lowercase = tokenizer.convert_tokens_to_string(A_ ) self.assertEqual(A_ , """This is a test""" ) @slow def SCREAMING_SNAKE_CASE_ ( self : Dict ): '''simple docstring''' __lowercase = {"""input_ids""": [[1_2_8_0_2_2, 1_1_0_1_0_8, 3_9_7, 1_1, 3_8_2_7_2, 2_2_4_7, 1_2_4_8_1_1, 2_8_5, 1_8_1_0_5, 1_5_8_6, 2_0_7, 7, 3_9_5_3_4, 4_4_2_8, 3_9_7, 1_0_1_9, 1_8_1_0_5, 1_5_8_6, 2_0_7, 7, 4_1_3_3_7, 1_6_7_8_6, 2_4_1, 7, 2_0_2_1_4, 1_7, 1_2_5_6_9_0, 1_0_3_9_8, 7, 4_4_3_7_8, 5_8_0_6_9, 6_8_3_4_2, 7_7_9_8, 7_3_4_3, 1_1, 2_9_9, 3_3_3_1_0, 4, 1_5_8, 3_7_3_5_0, 9_4_0_7_7, 4_5_6_9, 2_9_9, 3_3_3_1_0, 9_0, 4, 5_2_8_4_0, 2_9_0, 4, 3_1_2_7_0, 1_1_2, 2_9_9, 6_8_2, 4, 5_2_8_4_0, 3_9_9_5_3, 1_4_0_7_9, 1_9_3, 5_2_5_1_9, 9_0_8_9_4, 1_7_8_9_4, 1_2_0_6_9_7, 1_1, 4_0_4_4_5, 5_5_1, 1_7, 1_0_1_9, 5_2_5_1_9, 9_0_8_9_4, 1_7_7_5_6, 9_6_3, 1_1, 4_0_4_4_5, 4_8_0, 1_7, 9_7_9_2, 1_1_2_0, 5_1_7_3, 1_3_9_3, 6_2_4_0, 1_6_7_8_6, 2_4_1, 1_2_0_9_9_6, 2_8, 1_2_4_5, 1_3_9_3, 1_1_8_2_4_0, 1_1_1_2_3, 1_0_1_9, 9_3_6_1_2, 2_6_9_1, 1_0_6_1_8, 9_8_0_5_8, 1_2_0_4_0_9, 1_9_2_8, 2_7_9, 4, 4_0_6_8_3, 3_6_7, 1_7_8, 2_0_7, 1_0_1_9, 1_0_3, 1_0_3_1_2_1, 5_0_6, 6_5_2_9_6, 5, 2], [1_2_8_0_2_2, 2_1_2_1_7, 3_6_7, 1_1_7, 1_2_5_4_5_0, 1_2_8, 7_1_9, 7, 7_3_0_8, 4_0, 9_3_6_1_2, 1_2_6_6_9, 1_1_1_6, 1_6_7_0_4, 7_1, 1_7_7_8_5, 3_6_9_9, 1_5_5_9_2, 3_5, 1_4_4, 9_5_8_4, 2_4_1, 1_1_9_4_3, 7_1_3, 9_5_0, 7_9_9, 2_2_4_7, 8_8_4_2_7, 1_5_0, 1_4_9, 1_1_8_8_1_3, 1_2_0_7_0_6, 1_0_1_9, 1_0_6_9_0_6, 8_1_5_1_8, 2_8, 1_2_2_4, 2_2_7_9_9, 3_9_7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1_2_8_0_2_2, 1_6_5_8, 1_2_3_3_1_1, 5_1_5_5, 5_5_7_8, 4_7_2_2, 2_7_9, 1_4_9_4_7, 2_3_6_6, 1_1_2_0, 1_1_9_7, 1_4, 1_3_4_8, 9_2_3_2, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=A_ , model_name="""facebook/m2m100_418M""" , revision="""c168bae485c864188cf9aa0e4108b0b6934dc91e""" , ) @require_torch @require_sentencepiece @require_tokenizers class lowerCamelCase__ ( unittest.TestCase ): a : Optional[int] = """facebook/m2m100_418M""" a : str = [ """In my opinion, there are two levels of response from the French government.""", """NSA Affair Emphasizes Complete Lack of Debate on Intelligence""", ] a : int = [ """Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.""", """L'affaire NSA souligne l'absence totale de débat sur le renseignement""", ] # fmt: off a : Optional[int] = [EN_CODE, 5_93, 19_49, 11_57_81, 4, 7_15_86, 42_34, 6_06_33, 12_62_33, 4_32, 12_38_08, 1_55_92, 11_97, 11_71_32, 12_06_18, 5, 2] @classmethod def SCREAMING_SNAKE_CASE_ ( cls : str ): '''simple docstring''' __lowercase = MaMaaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang="""en""" , tgt_lang="""fr""" ) __lowercase = 1 return cls def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): '''simple docstring''' self.assertEqual(self.tokenizer.get_lang_id("""ar""" ) , 1_2_8_0_0_6 ) self.assertEqual(self.tokenizer.get_lang_id("""en""" ) , 1_2_8_0_2_2 ) self.assertEqual(self.tokenizer.get_lang_id("""ro""" ) , 1_2_8_0_7_6 ) self.assertEqual(self.tokenizer.get_lang_id("""mr""" ) , 1_2_8_0_6_3 ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): '''simple docstring''' __lowercase = self.tokenizer.get_vocab() self.assertEqual(len(A_ ) , self.tokenizer.vocab_size ) self.assertEqual(vocab["""<unk>"""] , 3 ) self.assertIn(self.tokenizer.get_lang_token("""en""" ) , A_ ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' __lowercase = """en""" __lowercase = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , A_ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): '''simple docstring''' self.assertIn(A_ , self.tokenizer.all_special_ids ) # fmt: off __lowercase = [FR_CODE, 5_3_6_4, 8_2, 8_6_4_2, 4, 2_9_4, 4_7, 8, 1_4_0_2_8, 1_3_6, 3_2_8_6, 9_7_0_6, 6, 9_0_7_9_7, 6, 1_4_4_0_1_2, 1_6_2, 8_8_1_2_8, 3_0_0_6_1, 5, 2] # fmt: on __lowercase = self.tokenizer.decode(A_ , skip_special_tokens=A_ ) __lowercase = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=A_ ) self.assertEqual(A_ , A_ ) self.assertNotIn(self.tokenizer.eos_token , A_ ) def SCREAMING_SNAKE_CASE_ ( self : int ): '''simple docstring''' __lowercase = tempfile.mkdtemp() __lowercase = self.tokenizer.lang_token_to_id self.tokenizer.save_pretrained(A_ ) __lowercase = MaMaaaTokenizer.from_pretrained(A_ ) self.assertDictEqual(new_tok.lang_token_to_id , A_ ) @require_torch def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): '''simple docstring''' __lowercase = """en""" __lowercase = """fr""" __lowercase = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=A_ , return_tensors="""pt""" ) __lowercase = shift_tokens_right( batch["""labels"""] , self.tokenizer.pad_token_id , self.tokenizer.eos_token_id ) for k in batch: __lowercase = batch[k].tolist() # batch = {k: v.tolist() for k,v in batch.items()} # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 # batch.decoder_inputs_ids[0][0] == assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == FR_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2] == [2, FR_CODE] @require_torch def SCREAMING_SNAKE_CASE_ ( self : int ): '''simple docstring''' __lowercase = """mr""" self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("""mr""" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) __lowercase = """zh""" self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("""zh""" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) @require_torch def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' __lowercase = """mr""" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("""mr""" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) __lowercase = """zh""" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("""zh""" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) @require_torch def SCREAMING_SNAKE_CASE_ ( self : int ): '''simple docstring''' __lowercase = self.tokenizer._build_translation_inputs("""A test""" , return_tensors="""pt""" , src_lang="""en""" , tgt_lang="""ar""" ) self.assertEqual( nested_simplify(A_ ) , { # en_XX, A, test, EOS """input_ids""": [[1_2_8_0_2_2, 5_8, 4_1_8_3, 2]], """attention_mask""": [[1, 1, 1, 1]], # ar_AR """forced_bos_token_id""": 1_2_8_0_0_6, } , )
442
1
"""simple docstring""" # coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import platform import sys UpperCAmelCase = """3""" print("""Python version:""", sys.version) print("""OS platform:""", platform.platform()) print("""OS architecture:""", platform.machine()) try: import torch print("""Torch version:""", torch.__version__) print("""Cuda available:""", torch.cuda.is_available()) print("""Cuda version:""", torch.version.cuda) print("""CuDNN version:""", torch.backends.cudnn.version()) print("""Number of GPUs available:""", torch.cuda.device_count()) except ImportError: print("""Torch version:""", None) try: import transformers print("""transformers version:""", transformers.__version__) except ImportError: print("""transformers version:""", None)
88
'''simple docstring''' import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import evaluate import numpy as np from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/text-classification/requirements.txt""") lowerCAmelCase = logging.getLogger(__name__) @dataclass class lowerCamelCase : snake_case_ = field( default=128 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) snake_case_ = field( default=_A , metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) snake_case_ = field( default=_A , metadata={ "help": ( "Whether to pad all samples to `max_seq_length`. " "If False, will pad the samples dynamically when batching to the maximum length in the batch." ) } , ) snake_case_ = field( default=_A , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) snake_case_ = field( default=_A , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) snake_case_ = field( default=_A , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of prediction examples to this " "value if set." ) } , ) @dataclass class lowerCamelCase : snake_case_ = field( default=_A , metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) snake_case_ = field( default=_A , metadata={"help": "Evaluation language. Also train language if `train_language` is set to None."} ) snake_case_ = field( default=_A , metadata={"help": "Train language if it is different from the evaluation language."} ) snake_case_ = field( default=_A , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) snake_case_ = field( default=_A , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) snake_case_ = field( default=_A , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) snake_case_ = field( default=_A , metadata={"help": "arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()"} , ) snake_case_ = field( default=_A , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) snake_case_ = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) snake_case_ = field( default=_A , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) snake_case_ = field( default=_A , metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."} , ) def __A ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowerCAmelCase : List[str] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Tuple = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_xnli" ,a_ ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" ,datefmt="%m/%d/%Y %H:%M:%S" ,handlers=[logging.StreamHandler(sys.stdout )] ,) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowerCAmelCase : str = training_args.get_process_log_level() logger.setLevel(a_ ) datasets.utils.logging.set_verbosity(a_ ) transformers.utils.logging.set_verbosity(a_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + f'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(f'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. lowerCAmelCase : Union[str, Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCAmelCase : Dict = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None: logger.info( f'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. # Downloading and loading xnli dataset from the hub. if training_args.do_train: if model_args.train_language is None: lowerCAmelCase : Any = load_dataset( "xnli" ,model_args.language ,split="train" ,cache_dir=model_args.cache_dir ,use_auth_token=True if model_args.use_auth_token else None ,) else: lowerCAmelCase : Union[str, Any] = load_dataset( "xnli" ,model_args.train_language ,split="train" ,cache_dir=model_args.cache_dir ,use_auth_token=True if model_args.use_auth_token else None ,) lowerCAmelCase : int = train_dataset.features["label"].names if training_args.do_eval: lowerCAmelCase : Any = load_dataset( "xnli" ,model_args.language ,split="validation" ,cache_dir=model_args.cache_dir ,use_auth_token=True if model_args.use_auth_token else None ,) lowerCAmelCase : Dict = eval_dataset.features["label"].names if training_args.do_predict: lowerCAmelCase : Optional[Any] = load_dataset( "xnli" ,model_args.language ,split="test" ,cache_dir=model_args.cache_dir ,use_auth_token=True if model_args.use_auth_token else None ,) lowerCAmelCase : List[Any] = predict_dataset.features["label"].names # Labels lowerCAmelCase : Tuple = len(a_ ) # Load pretrained model and tokenizer # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCAmelCase : List[str] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path ,num_labels=a_ ,idalabel={str(a_ ): label for i, label in enumerate(a_ )} ,labelaid={label: i for i, label in enumerate(a_ )} ,finetuning_task="xnli" ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,) lowerCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path ,do_lower_case=model_args.do_lower_case ,cache_dir=model_args.cache_dir ,use_fast=model_args.use_fast_tokenizer ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,) lowerCAmelCase : List[Any] = AutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path ,from_tf=bool(".ckpt" in model_args.model_name_or_path ) ,config=a_ ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,ignore_mismatched_sizes=model_args.ignore_mismatched_sizes ,) # Preprocessing the datasets # Padding strategy if data_args.pad_to_max_length: lowerCAmelCase : int = "max_length" else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch lowerCAmelCase : Union[str, Any] = False def preprocess_function(a_ : Dict ): # Tokenize the texts return tokenizer( examples["premise"] ,examples["hypothesis"] ,padding=a_ ,max_length=data_args.max_seq_length ,truncation=a_ ,) if training_args.do_train: if data_args.max_train_samples is not None: lowerCAmelCase : Tuple = min(len(a_ ) ,data_args.max_train_samples ) lowerCAmelCase : int = train_dataset.select(range(a_ ) ) with training_args.main_process_first(desc="train dataset map pre-processing" ): lowerCAmelCase : Optional[int] = train_dataset.map( a_ ,batched=a_ ,load_from_cache_file=not data_args.overwrite_cache ,desc="Running tokenizer on train dataset" ,) # Log a few random samples from the training set: for index in random.sample(range(len(a_ ) ) ,3 ): logger.info(f'''Sample {index} of the training set: {train_dataset[index]}.''' ) if training_args.do_eval: if data_args.max_eval_samples is not None: lowerCAmelCase : int = min(len(a_ ) ,data_args.max_eval_samples ) lowerCAmelCase : Optional[Any] = eval_dataset.select(range(a_ ) ) with training_args.main_process_first(desc="validation dataset map pre-processing" ): lowerCAmelCase : Optional[Any] = eval_dataset.map( a_ ,batched=a_ ,load_from_cache_file=not data_args.overwrite_cache ,desc="Running tokenizer on validation dataset" ,) if training_args.do_predict: if data_args.max_predict_samples is not None: lowerCAmelCase : Optional[Any] = min(len(a_ ) ,data_args.max_predict_samples ) lowerCAmelCase : Optional[Any] = predict_dataset.select(range(a_ ) ) with training_args.main_process_first(desc="prediction dataset map pre-processing" ): lowerCAmelCase : Tuple = predict_dataset.map( a_ ,batched=a_ ,load_from_cache_file=not data_args.overwrite_cache ,desc="Running tokenizer on prediction dataset" ,) # Get the metric function lowerCAmelCase : str = evaluate.load("xnli" ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(a_ : EvalPrediction ): lowerCAmelCase : Union[str, Any] = p.predictions[0] if isinstance(p.predictions ,a_ ) else p.predictions lowerCAmelCase : Any = np.argmax(a_ ,axis=1 ) return metric.compute(predictions=a_ ,references=p.label_ids ) # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: lowerCAmelCase : Optional[Any] = default_data_collator elif training_args.fpaa: lowerCAmelCase : Union[str, Any] = DataCollatorWithPadding(a_ ,pad_to_multiple_of=8 ) else: lowerCAmelCase : str = None # Initialize our Trainer lowerCAmelCase : Tuple = Trainer( model=a_ ,args=a_ ,train_dataset=train_dataset if training_args.do_train else None ,eval_dataset=eval_dataset if training_args.do_eval else None ,compute_metrics=a_ ,tokenizer=a_ ,data_collator=a_ ,) # Training if training_args.do_train: lowerCAmelCase : str = None if training_args.resume_from_checkpoint is not None: lowerCAmelCase : Any = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowerCAmelCase : List[str] = last_checkpoint lowerCAmelCase : Optional[int] = trainer.train(resume_from_checkpoint=a_ ) lowerCAmelCase : List[Any] = train_result.metrics lowerCAmelCase : Optional[Any] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(a_ ) ) lowerCAmelCase : Any = min(a_ ,len(a_ ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics("train" ,a_ ) trainer.save_metrics("train" ,a_ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) lowerCAmelCase : Optional[int] = trainer.evaluate(eval_dataset=a_ ) lowerCAmelCase : Optional[int] = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(a_ ) lowerCAmelCase : Any = min(a_ ,len(a_ ) ) trainer.log_metrics("eval" ,a_ ) trainer.save_metrics("eval" ,a_ ) # Prediction if training_args.do_predict: logger.info("*** Predict ***" ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Optional[Any] = trainer.predict(a_ ,metric_key_prefix="predict" ) lowerCAmelCase : List[Any] = ( data_args.max_predict_samples if data_args.max_predict_samples is not None else len(a_ ) ) lowerCAmelCase : Any = min(a_ ,len(a_ ) ) trainer.log_metrics("predict" ,a_ ) trainer.save_metrics("predict" ,a_ ) lowerCAmelCase : Optional[int] = np.argmax(a_ ,axis=1 ) lowerCAmelCase : Any = os.path.join(training_args.output_dir ,"predictions.txt" ) if trainer.is_world_process_zero(): with open(a_ ,"w" ) as writer: writer.write("index\tprediction\n" ) for index, item in enumerate(a_ ): lowerCAmelCase : str = label_list[item] writer.write(f'''{index}\t{item}\n''' ) if __name__ == "__main__": main()
525
0
"""simple docstring""" from PIL import Image def _lowerCamelCase( a ): __a , __a = image.size __a = 0 __a = image.load() for i in range(a ): for j in range(a ): __a = pixels[j, i] mean += pixel mean //= width * height for j in range(a ): for i in range(a ): __a = 2_5_5 if pixels[i, j] > mean else 0 return image if __name__ == "__main__": SCREAMING_SNAKE_CASE__:Dict = mean_threshold(Image.open("""path_to_image""").convert("""L""")) image.save("""output_image_path""")
67
"""simple docstring""" import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def _lowerCamelCase( a , a , a ): __a = OmegaConf.load(a ) __a = torch.load(a , map_location="cpu" )["model"] __a = list(state_dict.keys() ) # extract state_dict for VQVAE __a = {} __a = "first_stage_model." for key in keys: if key.startswith(a ): __a = state_dict[key] # extract state_dict for UNetLDM __a = {} __a = "model.diffusion_model." for key in keys: if key.startswith(a ): __a = state_dict[key] __a = config.model.params.first_stage_config.params __a = config.model.params.unet_config.params __a = VQModel(**a ).eval() vqvae.load_state_dict(a ) __a = UNetLDMModel(**a ).eval() unet.load_state_dict(a ) __a = DDIMScheduler( timesteps=config.model.params.timesteps , beta_schedule="scaled_linear" , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=a , ) __a = LDMPipeline(a , a , a ) pipeline.save_pretrained(a ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__:List[Any] = argparse.ArgumentParser() parser.add_argument("""--checkpoint_path""", type=str, required=True) parser.add_argument("""--config_path""", type=str, required=True) parser.add_argument("""--output_path""", type=str, required=True) SCREAMING_SNAKE_CASE__:Union[str, Any] = parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
67
1
"""simple docstring""" from functools import lru_cache def __magic_name__ ( _lowerCamelCase: Union[str, Any] ) -> int: '''simple docstring''' lowerCAmelCase = 2 lowerCAmelCase = set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(SCREAMING_SNAKE_CASE__ ) if n > 1: factors.add(SCREAMING_SNAKE_CASE__ ) return factors @lru_cache def __magic_name__ ( _lowerCamelCase: Tuple ) -> Union[str, Any]: '''simple docstring''' return len(unique_prime_factors(SCREAMING_SNAKE_CASE__ ) ) def __magic_name__ ( _lowerCamelCase: Optional[Any] ) -> Optional[Any]: '''simple docstring''' return len(set(SCREAMING_SNAKE_CASE__ ) ) in (0, 1) def __magic_name__ ( _lowerCamelCase: Union[str, Any] ) -> Any: '''simple docstring''' lowerCAmelCase = 2 while True: # Increment each value of a generated range lowerCAmelCase = [base + i for i in range(SCREAMING_SNAKE_CASE__ )] # Run elements through out unique_prime_factors function # Append our target number to the end. lowerCAmelCase = [upf_len(SCREAMING_SNAKE_CASE__ ) for x in group] checker.append(SCREAMING_SNAKE_CASE__ ) # If all numbers in the list are equal, return the group variable. if equality(SCREAMING_SNAKE_CASE__ ): return group # Increment our base variable by 1 base += 1 def __magic_name__ ( _lowerCamelCase: str = 4 ) -> int: '''simple docstring''' lowerCAmelCase = run(SCREAMING_SNAKE_CASE__ ) return results[0] if len(SCREAMING_SNAKE_CASE__ ) else None if __name__ == "__main__": print(solution())
535
'''simple docstring''' import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class lowercase__ ( _snake_case ): '''simple docstring''' @require_torch def UpperCAmelCase_ ( self ): # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched _SCREAMING_SNAKE_CASE : Optional[int] = """ from transformers import BertConfig, BertModel, BertTokenizer, pipeline """ _SCREAMING_SNAKE_CASE : Dict = """ mname = \"hf-internal-testing/tiny-random-bert\" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task=\"fill-mask\", model=mname) print(\"success\") """ _SCREAMING_SNAKE_CASE : Optional[Any] = """ import socket def offline_socket(*args, **kwargs): raise RuntimeError(\"Offline mode is enabled, we shouldn't access internet\") socket.socket = offline_socket """ # Force fetching the files so that we can use the cache _SCREAMING_SNAKE_CASE : Optional[Any] = """hf-internal-testing/tiny-random-bert""" BertConfig.from_pretrained(__snake_case ) BertModel.from_pretrained(__snake_case ) BertTokenizer.from_pretrained(__snake_case ) pipeline(task="""fill-mask""" , model=__snake_case ) # baseline - just load from_pretrained with normal network _SCREAMING_SNAKE_CASE : Union[str, Any] = [sys.executable, """-c""", """\n""".join([load, run, mock] )] # should succeed _SCREAMING_SNAKE_CASE : Optional[Any] = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _SCREAMING_SNAKE_CASE : int = """1""" _SCREAMING_SNAKE_CASE : str = subprocess.run(__snake_case , env=__snake_case , check=__snake_case , capture_output=__snake_case ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() ) @require_torch def UpperCAmelCase_ ( self ): # python one-liner segments # this must be loaded before socket.socket is monkey-patched _SCREAMING_SNAKE_CASE : Optional[int] = """ from transformers import BertConfig, BertModel, BertTokenizer, pipeline """ _SCREAMING_SNAKE_CASE : Any = """ mname = \"hf-internal-testing/tiny-random-bert\" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task=\"fill-mask\", model=mname) print(\"success\") """ _SCREAMING_SNAKE_CASE : List[Any] = """ import socket def offline_socket(*args, **kwargs): raise socket.error(\"Faking flaky internet\") socket.socket = offline_socket """ # Force fetching the files so that we can use the cache _SCREAMING_SNAKE_CASE : Tuple = """hf-internal-testing/tiny-random-bert""" BertConfig.from_pretrained(__snake_case ) BertModel.from_pretrained(__snake_case ) BertTokenizer.from_pretrained(__snake_case ) pipeline(task="""fill-mask""" , model=__snake_case ) # baseline - just load from_pretrained with normal network _SCREAMING_SNAKE_CASE : Tuple = [sys.executable, """-c""", """\n""".join([load, run, mock] )] # should succeed _SCREAMING_SNAKE_CASE : str = self.get_env() _SCREAMING_SNAKE_CASE : Tuple = subprocess.run(__snake_case , env=__snake_case , check=__snake_case , capture_output=__snake_case ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() ) @require_torch def UpperCAmelCase_ ( self ): # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched _SCREAMING_SNAKE_CASE : Tuple = """ from transformers import BertConfig, BertModel, BertTokenizer """ _SCREAMING_SNAKE_CASE : str = """ mname = \"hf-internal-testing/tiny-random-bert-sharded\" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) print(\"success\") """ _SCREAMING_SNAKE_CASE : List[Any] = """ import socket def offline_socket(*args, **kwargs): raise ValueError(\"Offline mode is enabled\") socket.socket = offline_socket """ # baseline - just load from_pretrained with normal network _SCREAMING_SNAKE_CASE : List[str] = [sys.executable, """-c""", """\n""".join([load, run] )] # should succeed _SCREAMING_SNAKE_CASE : List[str] = self.get_env() _SCREAMING_SNAKE_CASE : Optional[Any] = subprocess.run(__snake_case , env=__snake_case , check=__snake_case , capture_output=__snake_case ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() ) # next emulate no network _SCREAMING_SNAKE_CASE : List[str] = [sys.executable, """-c""", """\n""".join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _SCREAMING_SNAKE_CASE : Dict = """1""" _SCREAMING_SNAKE_CASE : int = subprocess.run(__snake_case , env=__snake_case , check=__snake_case , capture_output=__snake_case ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() ) @require_torch def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : Optional[int] = """ from transformers import pipeline """ _SCREAMING_SNAKE_CASE : int = """ mname = \"hf-internal-testing/tiny-random-bert\" pipe = pipeline(model=mname) """ _SCREAMING_SNAKE_CASE : Any = """ import socket def offline_socket(*args, **kwargs): raise socket.error(\"Offline mode is enabled\") socket.socket = offline_socket """ _SCREAMING_SNAKE_CASE : Dict = self.get_env() _SCREAMING_SNAKE_CASE : Any = """1""" _SCREAMING_SNAKE_CASE : str = [sys.executable, """-c""", """\n""".join([load, mock, run] )] _SCREAMING_SNAKE_CASE : List[Any] = subprocess.run(__snake_case , env=__snake_case , check=__snake_case , capture_output=__snake_case ) self.assertEqual(result.returncode , 1 , result.stderr ) self.assertIn( """You cannot infer task automatically within `pipeline` when using offline mode""" , result.stderr.decode().replace("""\n""" , """""" ) , ) @require_torch def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : Optional[int] = """ from transformers import AutoModel """ _SCREAMING_SNAKE_CASE : Tuple = """ mname = \"hf-internal-testing/test_dynamic_model\" AutoModel.from_pretrained(mname, trust_remote_code=True) print(\"success\") """ # baseline - just load from_pretrained with normal network _SCREAMING_SNAKE_CASE : List[str] = [sys.executable, """-c""", """\n""".join([load, run] )] # should succeed _SCREAMING_SNAKE_CASE : Optional[Any] = self.get_env() _SCREAMING_SNAKE_CASE : List[str] = subprocess.run(__snake_case , env=__snake_case , check=__snake_case , capture_output=__snake_case ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _SCREAMING_SNAKE_CASE : Optional[Any] = """1""" _SCREAMING_SNAKE_CASE : Any = subprocess.run(__snake_case , env=__snake_case , check=__snake_case , capture_output=__snake_case ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() )
533
0
from typing import TYPE_CHECKING from ..utils import _LazyModule __SCREAMING_SNAKE_CASE = { """config""": [ """EXTERNAL_DATA_FORMAT_SIZE_LIMIT""", """OnnxConfig""", """OnnxConfigWithPast""", """OnnxSeq2SeqConfigWithPast""", """PatchingSpec""", ], """convert""": ["""export""", """validate_model_outputs"""], """features""": ["""FeaturesManager"""], """utils""": ["""ParameterFormat""", """compute_serialized_parameters_size"""], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys __SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
701
import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from tensorflow.python.eager import context from tensorflow.python.framework import ops from transformers import GradientAccumulator, create_optimizer @require_tf class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self : Dict , __lowerCamelCase : Tuple , __lowerCamelCase : List[str] , __lowerCamelCase : Union[str, Any] ) -> Optional[int]: self.assertEqual(len(__lowerCamelCase ) , len(__lowerCamelCase ) ) for a, b in zip(__lowerCamelCase , __lowerCamelCase ): self.assertAlmostEqual(__lowerCamelCase , __lowerCamelCase , delta=__lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self : Any ) -> List[Any]: A : List[Any] = GradientAccumulator() accumulator([tf.constant([1.0, 2.0] )] ) accumulator([tf.constant([-2.0, 1.0] )] ) accumulator([tf.constant([-1.0, 2.0] )] ) with self.assertRaises(__lowerCamelCase ): accumulator([tf.constant([1.0, 1.0] ), tf.constant([2.0, 2.0] )] ) self.assertEqual(accumulator.step , 3 ) self.assertEqual(len(accumulator.gradients ) , 1 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [-2.0, 5.0] , tol=1e-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [0.0, 0.0] , tol=1e-2 ) def SCREAMING_SNAKE_CASE__ ( self : str ) -> List[str]: A : Union[str, Any] = None ops.enable_eager_execution_internal() A : Tuple = tf.config.list_physical_devices("CPU" ) if len(__lowerCamelCase ) == 1: tf.config.set_logical_device_configuration( physical_devices[0] , [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()] ) A : Dict = tf.config.list_logical_devices(device_type="CPU" ) A : List[str] = tf.distribute.MirroredStrategy(devices=devices[:2] ) with strategy.scope(): A : Optional[int] = GradientAccumulator() A : Tuple = tf.Variable([4.0, 3.0] ) A , A : List[Any] = create_optimizer(5e-5 , 10 , 5 ) A : List[str] = tf.Variable([0.0, 0.0] , trainable=__lowerCamelCase ) def accumulate_on_replica(__lowerCamelCase : Tuple ): accumulator([gradient] ) def apply_on_replica(): optimizer.apply_gradients(list(zip(accumulator.gradients , [variable] ) ) ) @tf.function def accumulate(__lowerCamelCase : Any , __lowerCamelCase : Optional[int] ): with strategy.scope(): A : int = strategy.experimental_local_results(__lowerCamelCase ) local_variables[0].assign(__lowerCamelCase ) local_variables[1].assign(__lowerCamelCase ) strategy.run(__lowerCamelCase , args=(gradient_placeholder,) ) @tf.function def apply_grad(): with strategy.scope(): strategy.run(__lowerCamelCase ) def _check_local_values(__lowerCamelCase : Optional[int] , __lowerCamelCase : List[Any] ): A : Optional[int] = strategy.experimental_local_results(accumulator._gradients[0] ) self.assertListAlmostEqual(values[0].value() , __lowerCamelCase , tol=1e-2 ) self.assertListAlmostEqual(values[1].value() , __lowerCamelCase , tol=1e-2 ) accumulate([1.0, 2.0] , [-1.0, 1.0] ) accumulate([3.0, -1.0] , [-1.0, -1.0] ) accumulate([-2.0, 2.0] , [3.0, -2.0] ) self.assertEqual(accumulator.step , 3 ) _check_local_values([2.0, 3.0] , [1.0, -2.0] ) apply_grad() self.assertListAlmostEqual(variable.value() , [4.0, 3.0] , tol=1e-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) _check_local_values([0.0, 0.0] , [0.0, 0.0] )
17
0
'''simple docstring''' import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = 'https://openaipublic.azureedge.net/jukebox/models/' __lowerCAmelCase = { 'jukebox-1b-lyrics': [ '5b/vqvae.pth.tar', '5b/prior_level_0.pth.tar', '5b/prior_level_1.pth.tar', '1b_lyrics/prior_level_2.pth.tar', ], 'jukebox-5b-lyrics': [ '5b/vqvae.pth.tar', '5b/prior_level_0.pth.tar', '5b/prior_level_1.pth.tar', '5b_lyrics/prior_level_2.pth.tar', ], } def _UpperCAmelCase ( __A : int ): if key.endswith('''.model.1.bias''' ) and len(key.split('''.''' ) ) > 10: a_ : Dict = key.replace('''.model.1.bias''' , '''.conv1d_1.bias''' ) elif key.endswith('''.model.1.weight''' ) and len(key.split('''.''' ) ) > 10: a_ : str = key.replace('''.model.1.weight''' , '''.conv1d_1.weight''' ) elif key.endswith('''.model.3.bias''' ) and len(key.split('''.''' ) ) > 10: a_ : Any = key.replace('''.model.3.bias''' , '''.conv1d_2.bias''' ) elif key.endswith('''.model.3.weight''' ) and len(key.split('''.''' ) ) > 10: a_ : Dict = key.replace('''.model.3.weight''' , '''.conv1d_2.weight''' ) if "conditioner_blocks.0." in key: a_ : Optional[int] = key.replace('''conditioner_blocks.0''' , '''conditioner_blocks''' ) if "prime_prior" in key: a_ : Any = key.replace('''prime_prior''' , '''encoder''' ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: a_ : Optional[int] = key.replace('''.emb.''' , '''.''' ) if key.endswith('''k''' ): # replace vqvae.X.k with vqvae.X.codebook return key.replace('''.k''' , '''.codebook''' ) if "y_emb." in key: return key.replace('''y_emb.''' , '''metadata_embedding.''' ) if "x_emb.emb." in key: a_ : Any = key.replace('''0.x_emb.emb''' , '''embed_tokens''' ) if "prime_state_ln" in key: return key.replace('''prime_state_ln''' , '''encoder.final_layer_norm''' ) if ".ln" in key: return key.replace('''.ln''' , '''.layer_norm''' ) if "_ln" in key: return key.replace('''_ln''' , '''_layer_norm''' ) if "prime_state_proj" in key: return key.replace('''prime_state_proj''' , '''encoder.proj_in''' ) if "prime_x_out" in key: return key.replace('''prime_x_out''' , '''encoder.lm_head''' ) if "prior.x_out" in key: return key.replace('''x_out''' , '''fc_proj_out''' ) if "x_emb" in key: return key.replace('''x_emb''' , '''embed_tokens''' ) return key def _UpperCAmelCase ( __A : Optional[int] , __A : List[Any] , __A : Dict , __A : List[Any] ): a_ : List[str] = {} import re a_ : Union[str, Any] = re.compile(R'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)''' ) a_ : Union[str, Any] = re.compile( R'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) a_ : Union[str, Any] = re.compile(R'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)''' ) a_ : Dict = re.compile(R'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)''' ) a_ : Union[str, Any] = re.compile( R'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) a_ : Any = re.compile(R'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)''' ) a_ : str = re.compile(R'''conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)''' ) a_ : Union[str, Any] = re.compile( R'''conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) a_ : List[Any] = re.compile(R'''conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)''' ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(__A ): a_ : Dict = re_encoder_block_conv_in.match(__A ) a_ : Union[str, Any] = regex_match.groups() a_ : Tuple = int(groups[2] ) * 2 + int(groups[3] ) a_ : Dict = f'encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}' a_ : Optional[Any] = re_encoder_block_conv_in.sub(__A , __A ) elif re_encoder_block_resnet.fullmatch(__A ): a_ : Optional[int] = re_encoder_block_resnet.match(__A ) a_ : Union[str, Any] = regex_match.groups() a_ : List[Any] = int(groups[2] ) * 2 + int(groups[3] ) a_ : Union[str, Any] = {'''1''': 1, '''3''': 2}[groups[-2]] a_ : int = f'encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.' a_ : Any = f'resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}' a_ : Union[str, Any] = prefix + resnet_block a_ : Dict = re_encoder_block_resnet.sub(__A , __A ) elif re_encoder_block_proj_out.fullmatch(__A ): a_ : Tuple = re_encoder_block_proj_out.match(__A ) a_ : Optional[int] = regex_match.groups() a_ : Any = f'encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}' a_ : Dict = re_encoder_block_proj_out.sub(__A , __A ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(__A ): a_ : Optional[int] = re_decoder_block_conv_out.match(__A ) a_ : Dict = regex_match.groups() a_ : List[Any] = int(groups[2] ) * 2 + int(groups[3] ) - 2 a_ : str = f'decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}' a_ : Any = re_decoder_block_conv_out.sub(__A , __A ) elif re_decoder_block_resnet.fullmatch(__A ): a_ : str = re_decoder_block_resnet.match(__A ) a_ : List[Any] = regex_match.groups() a_ : Optional[int] = int(groups[2] ) * 2 + int(groups[3] ) - 2 a_ : Optional[Any] = {'''1''': 1, '''3''': 2}[groups[-2]] a_ : str = f'decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.' a_ : List[str] = f'resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}' a_ : Optional[Any] = prefix + resnet_block a_ : Any = re_decoder_block_resnet.sub(__A , __A ) elif re_decoder_block_proj_in.fullmatch(__A ): a_ : Optional[int] = re_decoder_block_proj_in.match(__A ) a_ : Tuple = regex_match.groups() a_ : List[Any] = f'decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}' a_ : List[Any] = re_decoder_block_proj_in.sub(__A , __A ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(__A ): a_ : Dict = re_prior_cond_conv_out.match(__A ) a_ : Union[str, Any] = regex_match.groups() a_ : str = int(groups[1] ) * 2 + int(groups[2] ) - 2 a_ : Any = f'conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}' a_ : Optional[int] = re_prior_cond_conv_out.sub(__A , __A ) elif re_prior_cond_resnet.fullmatch(__A ): a_ : int = re_prior_cond_resnet.match(__A ) a_ : int = regex_match.groups() a_ : Optional[int] = int(groups[1] ) * 2 + int(groups[2] ) - 2 a_ : Any = {'''1''': 1, '''3''': 2}[groups[-2]] a_ : str = f'conditioner_blocks.upsampler.upsample_block.{block_index}.' a_ : Optional[Any] = f'resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}' a_ : Dict = prefix + resnet_block a_ : int = re_prior_cond_resnet.sub(__A , __A ) elif re_prior_cond_proj_in.fullmatch(__A ): a_ : Union[str, Any] = re_prior_cond_proj_in.match(__A ) a_ : Dict = regex_match.groups() a_ : str = f'conditioner_blocks.upsampler.proj_in.{groups[-1]}' a_ : List[str] = re_prior_cond_proj_in.sub(__A , __A ) # keep original key else: a_ : Tuple = original_key a_ : Tuple = replace_key(__A ) if f'{key_prefix}.{key}' not in model_state_dict or key is None: print(f'failed converting {original_key} to {key}, does not match' ) # handle missmatched shape elif value.shape != model_state_dict[f'{key_prefix}.{key}'].shape: a_ : str = model_state_dict[f'{key_prefix}.{key}'] print(f'{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match' ) a_ : str = original_key a_ : str = original_key a_ : Tuple = value return new_dict @torch.no_grad() def _UpperCAmelCase ( __A : Optional[Any]=None , __A : Dict=None ): for file in MODEL_MAPPING[model_name]: if not os.path.isfile(f'{pytorch_dump_folder_path}/{file.split("/" )[-1]}' ): a_ : Any = requests.get(f'{PREFIX}{file}' , allow_redirects=__A ) os.makedirs(f'{pytorch_dump_folder_path}/' , exist_ok=__A ) open(f'{pytorch_dump_folder_path}/{file.split("/" )[-1]}' , '''wb''' ).write(r.content ) a_ : Dict = MODEL_MAPPING[model_name.split('''/''' )[-1]] a_ : Dict = JukeboxConfig.from_pretrained(__A ) a_ : List[str] = JukeboxModel(__A ) a_ : int = [] a_ : List[str] = {} for i, dict_name in enumerate(__A ): a_ : Dict = torch.load(f'{pytorch_dump_folder_path}/{dict_name.split("/" )[-1]}' )['''model'''] a_ : Dict = {} for k in old_dic.keys(): if k.endswith('''.b''' ): a_ : str = old_dic[k] elif k.endswith('''.w''' ): a_ : Tuple = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: a_ : List[Any] = old_dic[k] else: a_ : Optional[int] = old_dic[k] a_ : Optional[Any] = '''vqvae''' if i == 0 else f'priors.{3 - i}' a_ : List[str] = fix_jukebox_keys(__A , model.state_dict() , __A , __A ) weight_dict.append(__A ) a_ : Optional[Any] = weight_dict.pop(0 ) model.vqvae.load_state_dict(__A ) for i in range(len(__A ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(__A ).mkdir(exist_ok=__A ) with open(f'{pytorch_dump_folder_path}/mapping.json' , '''w''' ) as txtfile: json.dump(__A , __A ) print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(__A ) return weight_dict if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='jukebox-5b-lyrics', type=str, help='Name of the model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default='jukebox-5b-lyrics-converted', type=str, help='Path to the output PyTorch model directory.', ) __lowerCAmelCase = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
466
'''simple docstring''' import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser __lowerCAmelCase = logging.getLogger(__name__) torch.set_grad_enabled(False) __lowerCAmelCase = 'cuda' if torch.cuda.is_available() else 'cpu' def _UpperCAmelCase ( __A : str , __A : Optional[Any]=1_00 , __A : int=" " ): a_ : Optional[int] = text.split(__A ) return [character.join(text[i : i + n] ).strip() for i in range(0 , len(__A ) , __A )] def _UpperCAmelCase ( __A : dict ): a_ , a_ : List[Any] = [], [] for title, text in zip(documents['''title'''] , documents['''text'''] ): if text is not None: for passage in split_text(__A ): titles.append(title if title is not None else '''''' ) texts.append(__A ) return {"title": titles, "text": texts} def _UpperCAmelCase ( __A : dict , __A : DPRContextEncoder , __A : DPRContextEncoderTokenizerFast ): a_ : int = ctx_tokenizer( documents['''title'''] , documents['''text'''] , truncation=__A , padding='''longest''' , return_tensors='''pt''' )['''input_ids'''] a_ : List[Any] = ctx_encoder(input_ids.to(device=__A ) , return_dict=__A ).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def _UpperCAmelCase ( __A : "RagExampleArguments" , __A : "ProcessingArguments" , __A : "IndexHnswArguments" , ): ###################################### logger.info('''Step 1 - Create the dataset''' ) ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file" # You can load a Dataset object this way a_ : List[str] = load_dataset( '''csv''' , data_files=[rag_example_args.csv_path] , split='''train''' , delimiter='''\t''' , column_names=['''title''', '''text'''] ) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words a_ : Dict = dataset.map(__A , batched=__A , num_proc=processing_args.num_proc ) # And compute the embeddings a_ : str = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=__A ) a_ : Tuple = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ) a_ : Union[str, Any] = Features( {'''text''': Value('''string''' ), '''title''': Value('''string''' ), '''embeddings''': Sequence(Value('''float32''' ) )} ) # optional, save as float32 instead of float64 to save space a_ : Union[str, Any] = dataset.map( partial(__A , ctx_encoder=__A , ctx_tokenizer=__A ) , batched=__A , batch_size=processing_args.batch_size , features=__A , ) # And finally save your dataset a_ : Tuple = os.path.join(rag_example_args.output_dir , '''my_knowledge_dataset''' ) dataset.save_to_disk(__A ) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info('''Step 2 - Index the dataset''' ) ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search a_ : Dict = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT ) dataset.add_faiss_index('''embeddings''' , custom_index=__A ) # And save the index a_ : Optional[Any] = os.path.join(rag_example_args.output_dir , '''my_knowledge_dataset_hnsw_index.faiss''' ) dataset.get_index('''embeddings''' ).save(__A ) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class SCREAMING_SNAKE_CASE : snake_case__ = field( default=str(Path(SCREAMING_SNAKE_CASE_ ).parent / "test_run" / "dummy-kb" / "my_knowledge_dataset.csv" ) , metadata={"help": "Path to a tab-separated csv file with columns 'title' and 'text'"} , ) snake_case__ = field( default=SCREAMING_SNAKE_CASE_ , metadata={"help": "Question that is passed as input to RAG. Default is 'What does Moses' rod turn into ?'."} , ) snake_case__ = field( default="facebook/rag-sequence-nq" , metadata={"help": "The RAG model to use. Either 'facebook/rag-sequence-nq' or 'facebook/rag-token-nq'"} , ) snake_case__ = field( default="facebook/dpr-ctx_encoder-multiset-base" , metadata={ "help": ( "The DPR context encoder model to use. Either 'facebook/dpr-ctx_encoder-single-nq-base' or" " 'facebook/dpr-ctx_encoder-multiset-base'" ) } , ) snake_case__ = field( default=str(Path(SCREAMING_SNAKE_CASE_ ).parent / "test_run" / "dummy-kb" ) , metadata={"help": "Path to a directory where the dataset passages and the index will be saved"} , ) @dataclass class SCREAMING_SNAKE_CASE : snake_case__ = field( default=SCREAMING_SNAKE_CASE_ , metadata={ "help": "The number of processes to use to split the documents into passages. Default is single process." } , ) snake_case__ = field( default=16 , metadata={ "help": "The batch size to use when computing the passages embeddings using the DPR context encoder." } , ) @dataclass class SCREAMING_SNAKE_CASE : snake_case__ = field( default=768 , metadata={"help": "The dimension of the embeddings to pass to the HNSW Faiss index."} , ) snake_case__ = field( default=128 , metadata={ "help": ( "The number of bi-directional links created for every new element during the HNSW index construction." ) } , ) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) __lowerCAmelCase = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: __lowerCAmelCase = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
466
1
import argparse import os import re import numpy as np import PIL import torch from timm import create_model from torch.optim.lr_scheduler import OneCycleLR from torch.utils.data import DataLoader, Dataset from torchvision.transforms import Compose, RandomResizedCrop, Resize, ToTensor from accelerate import Accelerator def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> List[Any]: lowerCAmelCase__ : Optional[int] = fname.split(os.path.sep )[-1] return re.search(r'^(.*)_\d+\.jpg$' , SCREAMING_SNAKE_CASE_ ).groups()[0] class A__ ( __magic_name__ ): def __init__( self : Optional[int] , a : Dict , a : Tuple=None , a : Tuple=None ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = file_names lowerCAmelCase__ : str = image_transform lowerCAmelCase__ : Tuple = label_to_id def __len__( self : Tuple ): '''simple docstring''' return len(self.file_names ) def __getitem__( self : Optional[int] , a : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Tuple = self.file_names[idx] lowerCAmelCase__ : int = PIL.Image.open(a ) lowerCAmelCase__ : Optional[Any] = raw_image.convert('RGB' ) if self.image_transform is not None: lowerCAmelCase__ : Any = self.image_transform(a ) lowerCAmelCase__ : Dict = extract_label(a ) if self.label_to_id is not None: lowerCAmelCase__ : Optional[Any] = self.label_to_id[label] return {"image": image, "label": label} def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: # Initialize accelerator if args.with_tracking: lowerCAmelCase__ : List[str] = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='all' , project_dir=args.project_dir ) else: lowerCAmelCase__ : List[str] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCAmelCase__ : Union[str, Any] = config['lr'] lowerCAmelCase__ : str = int(config['num_epochs'] ) lowerCAmelCase__ : List[Any] = int(config['seed'] ) lowerCAmelCase__ : Optional[int] = int(config['batch_size'] ) lowerCAmelCase__ : List[str] = config['image_size'] if not isinstance(SCREAMING_SNAKE_CASE_ , (list, tuple) ): lowerCAmelCase__ : str = (image_size, image_size) # Parse out whether we are saving every epoch or after a certain number of batches if hasattr(args.checkpointing_steps , 'isdigit' ): if args.checkpointing_steps == "epoch": lowerCAmelCase__ : List[Any] = args.checkpointing_steps elif args.checkpointing_steps.isdigit(): lowerCAmelCase__ : List[Any] = int(args.checkpointing_steps ) else: raise ValueError( F'''Argument `checkpointing_steps` must be either a number or `epoch`. `{args.checkpointing_steps}` passed.''' ) else: lowerCAmelCase__ : Union[str, Any] = None # We need to initialize the trackers we use, and also store our configuration if args.with_tracking: lowerCAmelCase__ : Optional[Any] = os.path.split(SCREAMING_SNAKE_CASE_ )[-1].split('.' )[0] accelerator.init_trackers(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Grab all the image filenames lowerCAmelCase__ : List[Any] = [os.path.join(args.data_dir , SCREAMING_SNAKE_CASE_ ) for fname in os.listdir(args.data_dir ) if fname.endswith('.jpg' )] # Build the label correspondences lowerCAmelCase__ : Optional[int] = [extract_label(SCREAMING_SNAKE_CASE_ ) for fname in file_names] lowerCAmelCase__ : Tuple = list(set(SCREAMING_SNAKE_CASE_ ) ) id_to_label.sort() lowerCAmelCase__ : int = {lbl: i for i, lbl in enumerate(SCREAMING_SNAKE_CASE_ )} # Set the seed before splitting the data. np.random.seed(SCREAMING_SNAKE_CASE_ ) torch.manual_seed(SCREAMING_SNAKE_CASE_ ) torch.cuda.manual_seed_all(SCREAMING_SNAKE_CASE_ ) # Split our filenames between train and validation lowerCAmelCase__ : Any = np.random.permutation(len(SCREAMING_SNAKE_CASE_ ) ) lowerCAmelCase__ : List[str] = int(0.8 * len(SCREAMING_SNAKE_CASE_ ) ) lowerCAmelCase__ : str = random_perm[:cut] lowerCAmelCase__ : Tuple = random_perm[cut:] # For training we use a simple RandomResizedCrop lowerCAmelCase__ : int = Compose([RandomResizedCrop(SCREAMING_SNAKE_CASE_ , scale=(0.5, 1.0) ), ToTensor()] ) lowerCAmelCase__ : Optional[Any] = PetsDataset( [file_names[i] for i in train_split] , image_transform=SCREAMING_SNAKE_CASE_ , label_to_id=SCREAMING_SNAKE_CASE_ ) # For evaluation, we use a deterministic Resize lowerCAmelCase__ : List[str] = Compose([Resize(SCREAMING_SNAKE_CASE_ ), ToTensor()] ) lowerCAmelCase__ : str = PetsDataset([file_names[i] for i in eval_split] , image_transform=SCREAMING_SNAKE_CASE_ , label_to_id=SCREAMING_SNAKE_CASE_ ) # Instantiate dataloaders. lowerCAmelCase__ : Dict = DataLoader(SCREAMING_SNAKE_CASE_ , shuffle=SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ , num_workers=4 ) lowerCAmelCase__ : Union[str, Any] = DataLoader(SCREAMING_SNAKE_CASE_ , shuffle=SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ , num_workers=4 ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCAmelCase__ : Tuple = create_model('resnet50d' , pretrained=SCREAMING_SNAKE_CASE_ , num_classes=len(SCREAMING_SNAKE_CASE_ ) ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowerCAmelCase__ : List[Any] = model.to(accelerator.device ) # Freezing the base model for param in model.parameters(): lowerCAmelCase__ : Any = False for param in model.get_classifier().parameters(): lowerCAmelCase__ : List[Any] = True # We normalize the batches of images to be a bit faster. lowerCAmelCase__ : Optional[int] = torch.tensor(model.default_cfg['mean'] )[None, :, None, None].to(accelerator.device ) lowerCAmelCase__ : int = torch.tensor(model.default_cfg['std'] )[None, :, None, None].to(accelerator.device ) # Instantiate optimizer lowerCAmelCase__ : Optional[int] = torch.optim.Adam(params=model.parameters() , lr=lr / 25 ) # Instantiate learning rate scheduler lowerCAmelCase__ : str = OneCycleLR(optimizer=SCREAMING_SNAKE_CASE_ , max_lr=SCREAMING_SNAKE_CASE_ , epochs=SCREAMING_SNAKE_CASE_ , steps_per_epoch=len(SCREAMING_SNAKE_CASE_ ) ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : List[str] = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # We need to keep track of how many total steps we have iterated over lowerCAmelCase__ : str = 0 # We also need to keep track of the starting epoch so files are named properly lowerCAmelCase__ : List[str] = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "": accelerator.print(F'''Resumed from checkpoint: {args.resume_from_checkpoint}''' ) accelerator.load_state(args.resume_from_checkpoint ) lowerCAmelCase__ : List[Any] = os.path.basename(args.resume_from_checkpoint ) else: # Get the most recent checkpoint lowerCAmelCase__ : str = [f.name for f in os.scandir(os.getcwd() ) if f.is_dir()] dirs.sort(key=os.path.getctime ) lowerCAmelCase__ : str = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last # Extract `epoch_{i}` or `step_{i}` lowerCAmelCase__ : Optional[int] = os.path.splitext(SCREAMING_SNAKE_CASE_ )[0] if "epoch" in training_difference: lowerCAmelCase__ : Union[str, Any] = int(training_difference.replace('epoch_' , '' ) ) + 1 lowerCAmelCase__ : Tuple = None else: lowerCAmelCase__ : Any = int(training_difference.replace('step_' , '' ) ) lowerCAmelCase__ : int = resume_step // len(SCREAMING_SNAKE_CASE_ ) resume_step -= starting_epoch * len(SCREAMING_SNAKE_CASE_ ) # Now we train the model for epoch in range(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): model.train() if args.with_tracking: lowerCAmelCase__ : Tuple = 0 if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None: # We need to skip steps until we reach the resumed step lowerCAmelCase__ : str = accelerator.skip_first_batches(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) overall_step += resume_step else: # After the first iteration though, we need to go back to the original dataloader lowerCAmelCase__ : List[Any] = train_dataloader for batch in active_dataloader: # We could avoid this line since we set the accelerator with `device_placement=True`. lowerCAmelCase__ : Optional[int] = {k: v.to(accelerator.device ) for k, v in batch.items()} lowerCAmelCase__ : Dict = (batch['image'] - mean) / std lowerCAmelCase__ : Any = model(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Any = torch.nn.functional.cross_entropy(SCREAMING_SNAKE_CASE_ , batch['label'] ) # We keep track of the loss at each epoch if args.with_tracking: total_loss += loss.detach().float() accelerator.backward(SCREAMING_SNAKE_CASE_ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowerCAmelCase__ : Optional[Any] = F'''step_{overall_step}''' if overall_step % checkpointing_steps == 0: if args.output_dir is not None: lowerCAmelCase__ : Union[str, Any] = os.path.join(args.output_dir , SCREAMING_SNAKE_CASE_ ) accelerator.save_state(SCREAMING_SNAKE_CASE_ ) model.eval() lowerCAmelCase__ : Optional[int] = 0 lowerCAmelCase__ : Optional[int] = 0 for step, batch in enumerate(SCREAMING_SNAKE_CASE_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. lowerCAmelCase__ : Tuple = {k: v.to(accelerator.device ) for k, v in batch.items()} lowerCAmelCase__ : str = (batch['image'] - mean) / std with torch.no_grad(): lowerCAmelCase__ : List[str] = model(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Dict = outputs.argmax(dim=-1 ) lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = accelerator.gather_for_metrics((predictions, batch['label']) ) lowerCAmelCase__ : Optional[Any] = predictions == references num_elems += accurate_preds.shape[0] accurate += accurate_preds.long().sum() lowerCAmelCase__ : List[Any] = accurate.item() / num_elems # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}: {100 * eval_metric:.2f}''' ) if args.with_tracking: accelerator.log( { 'accuracy': 100 * eval_metric, 'train_loss': total_loss.item() / len(SCREAMING_SNAKE_CASE_ ), 'epoch': epoch, } , step=SCREAMING_SNAKE_CASE_ , ) if checkpointing_steps == "epoch": lowerCAmelCase__ : List[str] = F'''epoch_{epoch}''' if args.output_dir is not None: lowerCAmelCase__ : int = os.path.join(args.output_dir , SCREAMING_SNAKE_CASE_ ) accelerator.save_state(SCREAMING_SNAKE_CASE_ ) if args.with_tracking: accelerator.end_training() def lowerCAmelCase__ ( ) -> Union[str, Any]: lowerCAmelCase__ : Optional[Any] = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument('--data_dir' , required=SCREAMING_SNAKE_CASE_ , help='The data folder on disk.' ) parser.add_argument('--fp16' , action='store_true' , help='If passed, will use FP16 training.' ) parser.add_argument( '--mixed_precision' , type=SCREAMING_SNAKE_CASE_ , default=SCREAMING_SNAKE_CASE_ , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) parser.add_argument( '--checkpointing_steps' , type=SCREAMING_SNAKE_CASE_ , default=SCREAMING_SNAKE_CASE_ , help='Whether the various states should be saved at the end of every n steps, or \'epoch\' for each epoch.' , ) parser.add_argument( '--output_dir' , type=SCREAMING_SNAKE_CASE_ , default='.' , help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' , ) parser.add_argument( '--resume_from_checkpoint' , type=SCREAMING_SNAKE_CASE_ , default=SCREAMING_SNAKE_CASE_ , help='If the training should continue from a checkpoint folder.' , ) parser.add_argument( '--with_tracking' , action='store_true' , help='Whether to load in all available experiment trackers from the environment and use them for logging.' , ) parser.add_argument( '--project_dir' , type=SCREAMING_SNAKE_CASE_ , default='logs' , help='Location on where to store experiment tracking logs` and relevent project information' , ) lowerCAmelCase__ : Optional[int] = parser.parse_args() lowerCAmelCase__ : List[Any] = {'lr': 3e-2, 'num_epochs': 3, 'seed': 42, 'batch_size': 64, 'image_size': 224} training_function(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": main()
69
import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser lowerCamelCase__ = logging.getLogger(__name__) torch.set_grad_enabled(False) lowerCamelCase__ = """cuda""" if torch.cuda.is_available() else """cpu""" def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=100 , SCREAMING_SNAKE_CASE_=" " ) -> List[str]: lowerCAmelCase__ : Optional[Any] = text.split(SCREAMING_SNAKE_CASE_ ) return [character.join(text[i : i + n] ).strip() for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ )] def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> dict: lowerCAmelCase__ , lowerCAmelCase__ : int = [], [] for title, text in zip(documents['title'] , documents['text'] ): if text is not None: for passage in split_text(SCREAMING_SNAKE_CASE_ ): titles.append(title if title is not None else '' ) texts.append(SCREAMING_SNAKE_CASE_ ) return {"title": titles, "text": texts} def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> dict: lowerCAmelCase__ : List[str] = ctx_tokenizer( documents['title'] , documents['text'] , truncation=SCREAMING_SNAKE_CASE_ , padding='longest' , return_tensors='pt' )['input_ids'] lowerCAmelCase__ : Tuple = ctx_encoder(input_ids.to(device=SCREAMING_SNAKE_CASE_ ) , return_dict=SCREAMING_SNAKE_CASE_ ).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) -> Optional[Any]: ###################################### logger.info('Step 1 - Create the dataset' ) ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file" # You can load a Dataset object this way lowerCAmelCase__ : str = load_dataset( 'csv' , data_files=[rag_example_args.csv_path] , split='train' , delimiter='\t' , column_names=['title', 'text'] ) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words lowerCAmelCase__ : Optional[Any] = dataset.map(SCREAMING_SNAKE_CASE_ , batched=SCREAMING_SNAKE_CASE_ , num_proc=processing_args.num_proc ) # And compute the embeddings lowerCAmelCase__ : List[str] = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : str = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ) lowerCAmelCase__ : List[Any] = Features( {'text': Value('string' ), 'title': Value('string' ), 'embeddings': Sequence(Value('float32' ) )} ) # optional, save as float32 instead of float64 to save space lowerCAmelCase__ : List[Any] = dataset.map( partial(SCREAMING_SNAKE_CASE_ , ctx_encoder=SCREAMING_SNAKE_CASE_ , ctx_tokenizer=SCREAMING_SNAKE_CASE_ ) , batched=SCREAMING_SNAKE_CASE_ , batch_size=processing_args.batch_size , features=SCREAMING_SNAKE_CASE_ , ) # And finally save your dataset lowerCAmelCase__ : Optional[Any] = os.path.join(rag_example_args.output_dir , 'my_knowledge_dataset' ) dataset.save_to_disk(SCREAMING_SNAKE_CASE_ ) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info('Step 2 - Index the dataset' ) ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search lowerCAmelCase__ : Optional[int] = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT ) dataset.add_faiss_index('embeddings' , custom_index=SCREAMING_SNAKE_CASE_ ) # And save the index lowerCAmelCase__ : str = os.path.join(rag_example_args.output_dir , 'my_knowledge_dataset_hnsw_index.faiss' ) dataset.get_index('embeddings' ).save(SCREAMING_SNAKE_CASE_ ) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class A__ : lowercase = field( default=str(Path(__magic_name__ ).parent / 'test_run' / 'dummy-kb' / 'my_knowledge_dataset.csv' ) , metadata={'help': 'Path to a tab-separated csv file with columns \'title\' and \'text\''} , ) lowercase = field( default=__magic_name__ , metadata={'help': 'Question that is passed as input to RAG. Default is \'What does Moses\' rod turn into ?\'.'} , ) lowercase = field( default='facebook/rag-sequence-nq' , metadata={'help': 'The RAG model to use. Either \'facebook/rag-sequence-nq\' or \'facebook/rag-token-nq\''} , ) lowercase = field( default='facebook/dpr-ctx_encoder-multiset-base' , metadata={ 'help': ( 'The DPR context encoder model to use. Either \'facebook/dpr-ctx_encoder-single-nq-base\' or' ' \'facebook/dpr-ctx_encoder-multiset-base\'' ) } , ) lowercase = field( default=str(Path(__magic_name__ ).parent / 'test_run' / 'dummy-kb' ) , metadata={'help': 'Path to a directory where the dataset passages and the index will be saved'} , ) @dataclass class A__ : lowercase = field( default=__magic_name__ , metadata={ 'help': 'The number of processes to use to split the documents into passages. Default is single process.' } , ) lowercase = field( default=16 , metadata={ 'help': 'The batch size to use when computing the passages embeddings using the DPR context encoder.' } , ) @dataclass class A__ : lowercase = field( default=768 , metadata={'help': 'The dimension of the embeddings to pass to the HNSW Faiss index.'} , ) lowercase = field( default=128 , metadata={ 'help': ( 'The number of bi-directional links created for every new element during the HNSW index construction.' ) } , ) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) lowerCamelCase__ = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: lowerCamelCase__ = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
69
1
def lowerCAmelCase__(__snake_case ,__snake_case ) -> List[str]: '''simple docstring''' if not len(A__ ) == len(A__ ) == 3: raise ValueError('''Please enter a valid equation.''' ) if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0: raise ValueError('''Both a & b of two equations can\'t be zero.''' ) # Extract the coefficients lowerCamelCase__ = equationa lowerCamelCase__ = equationa # Calculate the determinants of the matrices lowerCamelCase__ = aa * ba - aa * ba lowerCamelCase__ = ca * ba - ca * ba lowerCamelCase__ = aa * ca - aa * ca # Check if the system of linear equations has a solution (using Cramer's rule) if determinant == 0: if determinant_x == determinant_y == 0: raise ValueError('''Infinite solutions. (Consistent system)''' ) else: raise ValueError('''No solution. (Inconsistent system)''' ) else: if determinant_x == determinant_y == 0: # Trivial solution (Inconsistent system) return (0.0, 0.0) else: lowerCamelCase__ = determinant_x / determinant lowerCamelCase__ = determinant_y / determinant # Non-Trivial Solution (Consistent system) return (x, y)
481
"""simple docstring""" import os import unittest from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, BertTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class UpperCamelCase_ (__A , unittest.TestCase ): __magic_name__ = BertTokenizer __magic_name__ = BertTokenizerFast __magic_name__ = True __magic_name__ = True __magic_name__ = filter_non_english def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[Any]: super().setUp() UpperCAmelCase_ : Optional[int] = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] UpperCAmelCase_ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase_ : List[str] ) -> List[str]: UpperCAmelCase_ : str = "UNwant\u00E9d,running" UpperCAmelCase_ : Optional[int] = "unwanted, running" return input_text, output_text def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Any: UpperCAmelCase_ : Optional[int] = self.tokenizer_class(self.vocab_file ) UpperCAmelCase_ : int = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(lowerCAmelCase_ , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , [9, 6, 7, 12, 10, 11] ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[Any]: if not self.test_rust_tokenizer: return UpperCAmelCase_ : List[Any] = self.get_tokenizer() UpperCAmelCase_ : str = self.get_rust_tokenizer() UpperCAmelCase_ : str = "UNwant\u00E9d,running" UpperCAmelCase_ : Any = tokenizer.tokenize(lowerCAmelCase_ ) UpperCAmelCase_ : List[Any] = rust_tokenizer.tokenize(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : Union[str, Any] = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) UpperCAmelCase_ : List[str] = rust_tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : Dict = self.get_rust_tokenizer() UpperCAmelCase_ : int = tokenizer.encode(lowerCAmelCase_ ) UpperCAmelCase_ : Optional[Any] = rust_tokenizer.encode(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) # With lower casing UpperCAmelCase_ : int = self.get_tokenizer(do_lower_case=lowerCAmelCase_ ) UpperCAmelCase_ : str = self.get_rust_tokenizer(do_lower_case=lowerCAmelCase_ ) UpperCAmelCase_ : Any = "UNwant\u00E9d,running" UpperCAmelCase_ : Dict = tokenizer.tokenize(lowerCAmelCase_ ) UpperCAmelCase_ : Union[str, Any] = rust_tokenizer.tokenize(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : Optional[int] = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) UpperCAmelCase_ : Any = rust_tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : Union[str, Any] = self.get_rust_tokenizer() UpperCAmelCase_ : Dict = tokenizer.encode(lowerCAmelCase_ ) UpperCAmelCase_ : Union[str, Any] = rust_tokenizer.encode(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]: UpperCAmelCase_ : Union[str, Any] = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz" ) , ["ah", "\u535A", "\u63A8", "zz"] ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[int]: UpperCAmelCase_ : Union[str, Any] = BasicTokenizer(do_lower_case=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["hello", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: UpperCAmelCase_ : Dict = BasicTokenizer(do_lower_case=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hällo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["h\u00E9llo"] ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> Any: UpperCAmelCase_ : str = BasicTokenizer(do_lower_case=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[Any]: UpperCAmelCase_ : List[str] = BasicTokenizer(do_lower_case=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[Any]: UpperCAmelCase_ : List[Any] = BasicTokenizer(do_lower_case=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["HeLLo", "!", "how", "Are", "yoU", "?"] ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Union[str, Any]: UpperCAmelCase_ : str = BasicTokenizer(do_lower_case=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HäLLo", "!", "how", "Are", "yoU", "?"] ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> str: UpperCAmelCase_ : Any = BasicTokenizer(do_lower_case=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HaLLo", "!", "how", "Are", "yoU", "?"] ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Dict: UpperCAmelCase_ : Dict = BasicTokenizer(do_lower_case=lowerCAmelCase_ , never_split=["[UNK]"] ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]" ) , ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"] ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Union[str, Any]: UpperCAmelCase_ : Optional[int] = BasicTokenizer() UpperCAmelCase_ : int = "a\n'll !!to?'d of, can't." UpperCAmelCase_ : Union[str, Any] = ["a", "'", "ll", "!", "!", "to", "?", "'", "d", "of", ",", "can", "'", "t", "."] self.assertListEqual(tokenizer.tokenize(lowerCAmelCase_ ) , lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Dict: UpperCAmelCase_ : List[str] = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"] UpperCAmelCase_ : int = {} for i, token in enumerate(lowerCAmelCase_ ): UpperCAmelCase_ : Tuple = i UpperCAmelCase_ : Dict = WordpieceTokenizer(vocab=lowerCAmelCase_ , unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) , [] ) self.assertListEqual(tokenizer.tokenize("unwanted running" ) , ["un", "##want", "##ed", "runn", "##ing"] ) self.assertListEqual(tokenizer.tokenize("unwantedX running" ) , ["[UNK]", "runn", "##ing"] ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Any: self.assertTrue(_is_whitespace(" " ) ) self.assertTrue(_is_whitespace("\t" ) ) self.assertTrue(_is_whitespace("\r" ) ) self.assertTrue(_is_whitespace("\n" ) ) self.assertTrue(_is_whitespace("\u00A0" ) ) self.assertFalse(_is_whitespace("A" ) ) self.assertFalse(_is_whitespace("-" ) ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Any: self.assertTrue(_is_control("\u0005" ) ) self.assertFalse(_is_control("A" ) ) self.assertFalse(_is_control(" " ) ) self.assertFalse(_is_control("\t" ) ) self.assertFalse(_is_control("\r" ) ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> int: self.assertTrue(_is_punctuation("-" ) ) self.assertTrue(_is_punctuation("$" ) ) self.assertTrue(_is_punctuation("`" ) ) self.assertTrue(_is_punctuation("." ) ) self.assertFalse(_is_punctuation("A" ) ) self.assertFalse(_is_punctuation(" " ) ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: UpperCAmelCase_ : List[Any] = self.get_tokenizer() UpperCAmelCase_ : List[Any] = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(lowerCAmelCase_ ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) self.assertListEqual( [rust_tokenizer.tokenize(lowerCAmelCase_ ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) @slow def _SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]: UpperCAmelCase_ : str = self.tokenizer_class.from_pretrained("bert-base-uncased" ) UpperCAmelCase_ : Optional[Any] = tokenizer.encode("sequence builders" , add_special_tokens=lowerCAmelCase_ ) UpperCAmelCase_ : str = tokenizer.encode("multi-sequence build" , add_special_tokens=lowerCAmelCase_ ) UpperCAmelCase_ : str = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase_ ) UpperCAmelCase_ : Tuple = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase_ , lowerCAmelCase_ ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[str]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCAmelCase_ : Optional[int] = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) UpperCAmelCase_ : int = f"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence.""" UpperCAmelCase_ : Dict = tokenizer_r.encode_plus( lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ , return_offsets_mapping=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , ) UpperCAmelCase_ : int = tokenizer_r.do_lower_case if hasattr(lowerCAmelCase_ , "do_lower_case" ) else False UpperCAmelCase_ : Dict = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "A"), ((1, 2), ","), ((3, 5), "na"), ((5, 6), "##ï"), ((6, 8), "##ve"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "Allen"), ((21, 23), "##NL"), ((23, 24), "##P"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "a"), ((1, 2), ","), ((3, 8), "naive"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "allen"), ((21, 23), "##nl"), ((23, 24), "##p"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["input_ids"] ) ) self.assertEqual([e[0] for e in expected_results] , tokens["offset_mapping"] ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: UpperCAmelCase_ : Dict = ["的", "人", "有"] UpperCAmelCase_ : Union[str, Any] = "".join(lowerCAmelCase_ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCAmelCase_ : Tuple = True UpperCAmelCase_ : Optional[Any] = self.tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) UpperCAmelCase_ : Dict = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) UpperCAmelCase_ : Union[str, Any] = tokenizer_p.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) UpperCAmelCase_ : Union[str, Any] = tokenizer_r.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) UpperCAmelCase_ : str = tokenizer_r.convert_ids_to_tokens(lowerCAmelCase_ ) UpperCAmelCase_ : Optional[Any] = tokenizer_p.convert_ids_to_tokens(lowerCAmelCase_ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : int = False UpperCAmelCase_ : str = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) UpperCAmelCase_ : List[str] = self.tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) UpperCAmelCase_ : int = tokenizer_r.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) UpperCAmelCase_ : int = tokenizer_p.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) UpperCAmelCase_ : Optional[Any] = tokenizer_r.convert_ids_to_tokens(lowerCAmelCase_ ) UpperCAmelCase_ : List[str] = tokenizer_p.convert_ids_to_tokens(lowerCAmelCase_ ) # it is expected that only the first Chinese character is not preceded by "##". UpperCAmelCase_ : Dict = [ f"""##{token}""" if idx != 0 else token for idx, token in enumerate(lowerCAmelCase_ ) ] self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ )
95
0
'''simple docstring''' from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _lowerCAmelCase ( UpperCamelCase_ ): """simple docstring""" lowerCAmelCase = ['image_processor', 'tokenizer'] lowerCAmelCase = 'Pix2StructImageProcessor' lowerCAmelCase = ('T5Tokenizer', 'T5TokenizerFast') def __init__( self : Tuple , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[int] ) -> int: """simple docstring""" lowerCAmelCase = False super().__init__(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __call__( self : Any , SCREAMING_SNAKE_CASE : List[str]=None , SCREAMING_SNAKE_CASE : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , SCREAMING_SNAKE_CASE : bool = True , SCREAMING_SNAKE_CASE : Union[bool, str, PaddingStrategy] = False , SCREAMING_SNAKE_CASE : Union[bool, str, TruncationStrategy] = None , SCREAMING_SNAKE_CASE : Optional[int] = None , SCREAMING_SNAKE_CASE : Optional[int] = 2_0_4_8 , SCREAMING_SNAKE_CASE : int = 0 , SCREAMING_SNAKE_CASE : Optional[int] = None , SCREAMING_SNAKE_CASE : Optional[bool] = None , SCREAMING_SNAKE_CASE : bool = False , SCREAMING_SNAKE_CASE : bool = False , SCREAMING_SNAKE_CASE : bool = False , SCREAMING_SNAKE_CASE : bool = False , SCREAMING_SNAKE_CASE : bool = False , SCREAMING_SNAKE_CASE : bool = True , SCREAMING_SNAKE_CASE : Optional[Union[str, TensorType]] = None , **SCREAMING_SNAKE_CASE : int , ) -> BatchEncoding: """simple docstring""" if images is None and text is None: raise ValueError("You have to specify either images or text." ) # Get only text if images is None and not self.image_processor.is_vqa: lowerCAmelCase = self.tokenizer lowerCAmelCase = self.tokenizer( text=SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE , padding=SCREAMING_SNAKE_CASE , truncation=SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , stride=SCREAMING_SNAKE_CASE , pad_to_multiple_of=SCREAMING_SNAKE_CASE , return_attention_mask=SCREAMING_SNAKE_CASE , return_overflowing_tokens=SCREAMING_SNAKE_CASE , return_special_tokens_mask=SCREAMING_SNAKE_CASE , return_offsets_mapping=SCREAMING_SNAKE_CASE , return_token_type_ids=SCREAMING_SNAKE_CASE , return_length=SCREAMING_SNAKE_CASE , verbose=SCREAMING_SNAKE_CASE , return_tensors=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) return text_encoding if not self.image_processor.is_vqa: # add pixel_values lowerCAmelCase = self.image_processor( SCREAMING_SNAKE_CASE , return_tensors=SCREAMING_SNAKE_CASE , max_patches=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) else: # add pixel_values and bbox lowerCAmelCase = self.image_processor( SCREAMING_SNAKE_CASE , return_tensors=SCREAMING_SNAKE_CASE , max_patches=SCREAMING_SNAKE_CASE , header_text=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) if text is not None and not self.image_processor.is_vqa: lowerCAmelCase = self.tokenizer( text=SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE , padding=SCREAMING_SNAKE_CASE , truncation=SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , stride=SCREAMING_SNAKE_CASE , pad_to_multiple_of=SCREAMING_SNAKE_CASE , return_attention_mask=SCREAMING_SNAKE_CASE , return_overflowing_tokens=SCREAMING_SNAKE_CASE , return_special_tokens_mask=SCREAMING_SNAKE_CASE , return_offsets_mapping=SCREAMING_SNAKE_CASE , return_token_type_ids=SCREAMING_SNAKE_CASE , return_length=SCREAMING_SNAKE_CASE , verbose=SCREAMING_SNAKE_CASE , return_tensors=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) if "attention_mask" in text_encoding: lowerCAmelCase = text_encoding.pop("attention_mask" ) if "input_ids" in text_encoding: lowerCAmelCase = text_encoding.pop("input_ids" ) else: lowerCAmelCase = None if text_encoding is not None: encoding_image_processor.update(SCREAMING_SNAKE_CASE ) return encoding_image_processor def __A ( self : Any , *SCREAMING_SNAKE_CASE : Union[str, Any] , **SCREAMING_SNAKE_CASE : Any ) -> Tuple: """simple docstring""" return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def __A ( self : List[Any] , *SCREAMING_SNAKE_CASE : Dict , **SCREAMING_SNAKE_CASE : Optional[Any] ) -> Any: """simple docstring""" return self.tokenizer.decode(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) @property def __A ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" lowerCAmelCase = self.tokenizer.model_input_names lowerCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
705
'''simple docstring''' import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class _lowerCAmelCase : """simple docstring""" def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Any=1_3 , SCREAMING_SNAKE_CASE : Optional[Any]=3_2 , SCREAMING_SNAKE_CASE : str=2 , SCREAMING_SNAKE_CASE : str=3 , SCREAMING_SNAKE_CASE : Tuple=1_6 , SCREAMING_SNAKE_CASE : Any=[1, 2, 1] , SCREAMING_SNAKE_CASE : str=[2, 2, 4] , SCREAMING_SNAKE_CASE : Union[str, Any]=2 , SCREAMING_SNAKE_CASE : str=2.0 , SCREAMING_SNAKE_CASE : Any=True , SCREAMING_SNAKE_CASE : Tuple=0.0 , SCREAMING_SNAKE_CASE : Union[str, Any]=0.0 , SCREAMING_SNAKE_CASE : int=0.1 , SCREAMING_SNAKE_CASE : Optional[int]="gelu" , SCREAMING_SNAKE_CASE : Dict=False , SCREAMING_SNAKE_CASE : Union[str, Any]=True , SCREAMING_SNAKE_CASE : str=0.0_2 , SCREAMING_SNAKE_CASE : Tuple=1E-5 , SCREAMING_SNAKE_CASE : Any=True , SCREAMING_SNAKE_CASE : Union[str, Any]=None , SCREAMING_SNAKE_CASE : Union[str, Any]=True , SCREAMING_SNAKE_CASE : List[str]=1_0 , SCREAMING_SNAKE_CASE : int=8 , SCREAMING_SNAKE_CASE : str=["stage1", "stage2", "stage3"] , SCREAMING_SNAKE_CASE : str=[1, 2, 3] , ) -> Optional[int]: """simple docstring""" lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = image_size lowerCAmelCase = patch_size lowerCAmelCase = num_channels lowerCAmelCase = embed_dim lowerCAmelCase = depths lowerCAmelCase = num_heads lowerCAmelCase = window_size lowerCAmelCase = mlp_ratio lowerCAmelCase = qkv_bias lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = drop_path_rate lowerCAmelCase = hidden_act lowerCAmelCase = use_absolute_embeddings lowerCAmelCase = patch_norm lowerCAmelCase = layer_norm_eps lowerCAmelCase = initializer_range lowerCAmelCase = is_training lowerCAmelCase = scope lowerCAmelCase = use_labels lowerCAmelCase = type_sequence_label_size lowerCAmelCase = encoder_stride lowerCAmelCase = out_features lowerCAmelCase = out_indices def __A ( self : Optional[int] ) -> int: """simple docstring""" lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase = self.get_config() return config, pixel_values, labels def __A ( self : Optional[int] ) -> Tuple: """simple docstring""" return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def __A ( self : Dict , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[Any] ) -> int: """simple docstring""" lowerCAmelCase = MaskFormerSwinModel(config=SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() lowerCAmelCase = model(SCREAMING_SNAKE_CASE ) lowerCAmelCase = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) lowerCAmelCase = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def __A ( self : int , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Tuple ) -> str: """simple docstring""" lowerCAmelCase = MaskFormerSwinBackbone(config=SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() lowerCAmelCase = model(SCREAMING_SNAKE_CASE ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [1_3, 1_6, 1_6, 1_6] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [1_6, 3_2, 6_4] ) # verify ValueError with self.parent.assertRaises(SCREAMING_SNAKE_CASE ): lowerCAmelCase = ["stem"] lowerCAmelCase = MaskFormerSwinBackbone(config=SCREAMING_SNAKE_CASE ) def __A ( self : Union[str, Any] ) -> str: """simple docstring""" lowerCAmelCase = self.prepare_config_and_inputs() lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = config_and_inputs lowerCAmelCase = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): """simple docstring""" lowerCAmelCase = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) lowerCAmelCase = {'feature-extraction': MaskFormerSwinModel} if is_torch_available() else {} lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False def __A ( self : Union[str, Any] ) -> str: """simple docstring""" lowerCAmelCase = MaskFormerSwinModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE , embed_dim=3_7 ) @require_torch_multi_gpu @unittest.skip( reason=( "`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn't work well with" " `nn.DataParallel`" ) ) def __A ( self : Union[str, Any] ) -> str: """simple docstring""" pass def __A ( self : Union[str, Any] ) -> Tuple: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __A ( self : Any ) -> int: """simple docstring""" return def __A ( self : Any ) -> Optional[Any]: """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE ) def __A ( self : Union[str, Any] ) -> Any: """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*SCREAMING_SNAKE_CASE ) @unittest.skip("Swin does not use inputs_embeds" ) def __A ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" pass @unittest.skip("Swin does not support feedforward chunking" ) def __A ( self : Dict ) -> int: """simple docstring""" pass def __A ( self : Dict ) -> int: """simple docstring""" lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase = model_class(SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE , nn.Linear ) ) def __A ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase = model_class(SCREAMING_SNAKE_CASE ) lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase = [*signature.parameters.keys()] lowerCAmelCase = ["pixel_values"] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE ) @unittest.skip(reason="MaskFormerSwin is only used as backbone and doesn't support output_attentions" ) def __A ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip(reason="MaskFormerSwin is only used as an internal backbone" ) def __A ( self : Optional[int] ) -> Any: """simple docstring""" pass def __A ( self : Any , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Optional[int] ) -> Dict: """simple docstring""" lowerCAmelCase = model_class(SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): lowerCAmelCase = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) lowerCAmelCase = outputs.hidden_states lowerCAmelCase = getattr( self.model_tester , "expected_num_hidden_layers" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) # Swin has a different seq_length lowerCAmelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowerCAmelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def __A ( self : List[Any] ) -> List[Any]: """simple docstring""" lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: lowerCAmelCase = True self.check_hidden_states_output(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase = True self.check_hidden_states_output(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __A ( self : Dict ) -> Tuple: """simple docstring""" lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase = 3 lowerCAmelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) lowerCAmelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowerCAmelCase = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) lowerCAmelCase = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: lowerCAmelCase = True self.check_hidden_states_output(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase = True self.check_hidden_states_output(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , (padded_height, padded_width) ) @unittest.skip(reason="MaskFormerSwin doesn't have pretrained checkpoints" ) def __A ( self : List[Any] ) -> Dict: """simple docstring""" pass @unittest.skip(reason="This will be fixed once MaskFormerSwin is replaced by native Swin" ) def __A ( self : Union[str, Any] ) -> Any: """simple docstring""" pass @unittest.skip(reason="This will be fixed once MaskFormerSwin is replaced by native Swin" ) def __A ( self : str ) -> Union[str, Any]: """simple docstring""" pass def __A ( self : str ) -> List[str]: """simple docstring""" lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(SCREAMING_SNAKE_CASE : Optional[int] ): lowerCAmelCase = 0 return t def check_equivalence(SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Tuple={} ): with torch.no_grad(): lowerCAmelCase = model(**SCREAMING_SNAKE_CASE , return_dict=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) lowerCAmelCase = model(**SCREAMING_SNAKE_CASE , return_dict=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).to_tuple() def recursive_check(SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Union[str, Any] ): if isinstance(SCREAMING_SNAKE_CASE , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): recursive_check(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) elif isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(SCREAMING_SNAKE_CASE ) , set_nan_tensor_to_zero(SCREAMING_SNAKE_CASE ) , atol=1E-5 ) , msg=( "Tuple and dict output are not equal. Difference:" f" {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:" f" {torch.isnan(SCREAMING_SNAKE_CASE ).any()} and `inf`: {torch.isinf(SCREAMING_SNAKE_CASE )}. Dict has" f" `nan`: {torch.isnan(SCREAMING_SNAKE_CASE ).any()} and `inf`: {torch.isinf(SCREAMING_SNAKE_CASE )}." ) , ) recursive_check(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for model_class in self.all_model_classes: lowerCAmelCase = model_class(SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() lowerCAmelCase = self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowerCAmelCase = self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) check_equivalence(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowerCAmelCase = self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , return_labels=SCREAMING_SNAKE_CASE ) lowerCAmelCase = self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , return_labels=SCREAMING_SNAKE_CASE ) check_equivalence(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowerCAmelCase = self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowerCAmelCase = self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) check_equivalence(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , {"output_hidden_states": True} ) lowerCAmelCase = self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , return_labels=SCREAMING_SNAKE_CASE ) lowerCAmelCase = self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , return_labels=SCREAMING_SNAKE_CASE ) check_equivalence(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , {"output_hidden_states": True} ) @require_torch class _lowerCAmelCase ( unittest.TestCase , UpperCamelCase_ ): """simple docstring""" lowerCAmelCase = (MaskFormerSwinBackbone,) if is_torch_available() else () lowerCAmelCase = MaskFormerSwinConfig def __A ( self : List[Any] ) -> Any: """simple docstring""" lowerCAmelCase = MaskFormerSwinModelTester(self ) def __A ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase = inputs_dict["pixel_values"].shape[0] for backbone_class in self.all_model_classes: lowerCAmelCase = backbone_class(SCREAMING_SNAKE_CASE ) backbone.to(SCREAMING_SNAKE_CASE ) backbone.eval() lowerCAmelCase = backbone(**SCREAMING_SNAKE_CASE ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , SCREAMING_SNAKE_CASE ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True lowerCAmelCase = backbone(**SCREAMING_SNAKE_CASE , output_hidden_states=SCREAMING_SNAKE_CASE ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: lowerCAmelCase = backbone(**SCREAMING_SNAKE_CASE , output_attentions=SCREAMING_SNAKE_CASE ) self.assertIsNotNone(outputs.attentions )
159
0
import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append(".") def _lowercase ( SCREAMING_SNAKE_CASE_ : Any ): """simple docstring""" UpperCamelCase = test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( """`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got """ f'{test_file} instead.' ) UpperCamelCase = components[-1] if not test_fn.endswith("""py""" ): raise ValueError(f'`test_file` should be a python file. Got {test_fn} instead.' ) if not test_fn.startswith("""test_modeling_""" ): raise ValueError( f'`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.' ) UpperCamelCase = components[:-1] + [test_fn.replace(""".py""" , """""" )] UpperCamelCase = """.""".join(SCREAMING_SNAKE_CASE_ ) return test_module_path def _lowercase ( SCREAMING_SNAKE_CASE_ : List[str] ): """simple docstring""" UpperCamelCase = get_module_path(SCREAMING_SNAKE_CASE_ ) UpperCamelCase = importlib.import_module(SCREAMING_SNAKE_CASE_ ) return test_module def _lowercase ( SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" UpperCamelCase = [] UpperCamelCase = get_test_module(SCREAMING_SNAKE_CASE_ ) for attr in dir(SCREAMING_SNAKE_CASE_ ): if attr.endswith("""ModelTester""" ): tester_classes.append(getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) # sort with class names return sorted(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_ : x.__name__ ) def _lowercase ( SCREAMING_SNAKE_CASE_ : List[str] ): """simple docstring""" UpperCamelCase = [] UpperCamelCase = get_test_module(SCREAMING_SNAKE_CASE_ ) for attr in dir(SCREAMING_SNAKE_CASE_ ): UpperCamelCase = getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). UpperCamelCase = getattr(SCREAMING_SNAKE_CASE_ , """all_model_classes""" , [] ) if len(SCREAMING_SNAKE_CASE_ ) > 0: test_classes.append(SCREAMING_SNAKE_CASE_ ) # sort with class names return sorted(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_ : x.__name__ ) def _lowercase ( SCREAMING_SNAKE_CASE_ : Optional[Any] ): """simple docstring""" UpperCamelCase = get_test_classes(SCREAMING_SNAKE_CASE_ ) UpperCamelCase = set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_ : x.__name__ ) def _lowercase ( SCREAMING_SNAKE_CASE_ : List[Any] ): """simple docstring""" UpperCamelCase = test_class() if hasattr(SCREAMING_SNAKE_CASE_ , """setUp""" ): test.setUp() UpperCamelCase = None if hasattr(SCREAMING_SNAKE_CASE_ , """model_tester""" ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: UpperCamelCase = test.model_tester.__class__ return model_tester def _lowercase ( SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : str ): """simple docstring""" UpperCamelCase = get_test_classes(SCREAMING_SNAKE_CASE_ ) UpperCamelCase = [] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(SCREAMING_SNAKE_CASE_ ) # sort with class names return sorted(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_ : x.__name__ ) def _lowercase ( SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Union[str, Any] ): """simple docstring""" UpperCamelCase = get_test_classes_for_model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase = [] for test_class in test_classes: UpperCamelCase = get_model_tester_from_test_class(SCREAMING_SNAKE_CASE_ ) if tester_class is not None: tester_classes.append(SCREAMING_SNAKE_CASE_ ) # sort with class names return sorted(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_ : x.__name__ ) def _lowercase ( SCREAMING_SNAKE_CASE_ : List[Any] ): """simple docstring""" UpperCamelCase = get_test_classes(SCREAMING_SNAKE_CASE_ ) UpperCamelCase = {test_class: get_model_tester_from_test_class(SCREAMING_SNAKE_CASE_ ) for test_class in test_classes} return test_tester_mapping def _lowercase ( SCREAMING_SNAKE_CASE_ : Tuple ): """simple docstring""" UpperCamelCase = get_model_classes(SCREAMING_SNAKE_CASE_ ) UpperCamelCase = { model_class: get_test_classes_for_model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for model_class in model_classes } return model_test_mapping def _lowercase ( SCREAMING_SNAKE_CASE_ : Dict ): """simple docstring""" UpperCamelCase = get_model_classes(SCREAMING_SNAKE_CASE_ ) UpperCamelCase = { model_class: get_tester_classes_for_model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for model_class in model_classes } return model_to_tester_mapping def _lowercase ( SCREAMING_SNAKE_CASE_ : List[str] ): """simple docstring""" if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return o elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return o.__name__ elif isinstance(SCREAMING_SNAKE_CASE_ , (list, tuple) ): return [to_json(SCREAMING_SNAKE_CASE_ ) for x in o] elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return {to_json(SCREAMING_SNAKE_CASE_ ): to_json(SCREAMING_SNAKE_CASE_ ) for k, v in o.items()} else: return o
386
from __future__ import annotations def _lowercase ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" if partitions <= 0: raise ValueError("""partitions must be a positive number!""" ) if partitions > number_of_bytes: raise ValueError("""partitions can not > number_of_bytes!""" ) UpperCamelCase = number_of_bytes // partitions UpperCamelCase = [] for i in range(SCREAMING_SNAKE_CASE_ ): UpperCamelCase = i * bytes_per_partition + 1 UpperCamelCase = ( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(f'{start_bytes}-{end_bytes}' ) return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
386
1
import heapq def lowerCAmelCase_ ( __a ) -> set[int]: """simple docstring""" lowerCamelCase__: list[list] =[] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(__a , [-1 * len(__a ), (key, value)] ) # chosen_vertices = set of chosen vertices lowerCamelCase__: Optional[int] =set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices lowerCamelCase__: Optional[int] =heapq.heappop(__a )[1][0] chosen_vertices.add(__a ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: lowerCamelCase__: Union[str, Any] =elem[1][1].index(__a ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(__a ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() __A = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(f'Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}')
437
import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast __A = datasets.utils.logging.get_logger(__name__) @dataclass class _SCREAMING_SNAKE_CASE ( datasets.BuilderConfig ): '''simple docstring''' lowercase_ = 1_0000 lowercase_ = None lowercase_ = None class _SCREAMING_SNAKE_CASE ( datasets.ArrowBasedBuilder ): '''simple docstring''' lowercase_ = ParquetConfig def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Any: '''simple docstring''' return datasets.DatasetInfo(features=self.config.features) def SCREAMING_SNAKE_CASE_ (self : Any , UpperCAmelCase_ : Any) ->Any: '''simple docstring''' if not self.config.data_files: raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""") lowerCamelCase__: Optional[Any] =dl_manager.download_and_extract(self.config.data_files) if isinstance(UpperCAmelCase_ , (str, list, tuple)): lowerCamelCase__: Any =data_files if isinstance(UpperCAmelCase_ , UpperCAmelCase_): lowerCamelCase__: Union[str, Any] =[files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive lowerCamelCase__: Optional[int] =[dl_manager.iter_files(UpperCAmelCase_) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files})] lowerCamelCase__: int =[] for split_name, files in data_files.items(): if isinstance(UpperCAmelCase_ , UpperCAmelCase_): lowerCamelCase__: List[Any] =[files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive lowerCamelCase__: str =[dl_manager.iter_files(UpperCAmelCase_) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(UpperCAmelCase_): with open(UpperCAmelCase_ , "rb") as f: lowerCamelCase__: Union[str, Any] =datasets.Features.from_arrow_schema(pq.read_schema(UpperCAmelCase_)) break splits.append(datasets.SplitGenerator(name=UpperCAmelCase_ , gen_kwargs={"files": files})) return splits def SCREAMING_SNAKE_CASE_ (self : Any , UpperCAmelCase_ : pa.Table) ->pa.Table: '''simple docstring''' if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example lowerCamelCase__: str =table_cast(UpperCAmelCase_ , self.info.features.arrow_schema) return pa_table def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : Optional[Any]) ->int: '''simple docstring''' lowerCamelCase__: str =self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema) != sorted(self.config.columns): raise ValueError( F"""Tried to load parquet data with columns '{self.config.columns}' with mismatching features '{self.info.features}'""") for file_idx, file in enumerate(itertools.chain.from_iterable(UpperCAmelCase_)): with open(UpperCAmelCase_ , "rb") as f: lowerCamelCase__: Optional[Any] =pq.ParquetFile(UpperCAmelCase_) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns)): lowerCamelCase__: Optional[Any] =pa.Table.from_batches([record_batch]) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield F"""{file_idx}_{batch_idx}""", self._cast_table(UpperCAmelCase_) except ValueError as e: logger.error(F"""Failed to read file '{file}' with error {type(UpperCAmelCase_)}: {e}""") raise
437
1
__snake_case = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(10_00_00)] def _lowercase ( UpperCamelCase_ ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 100000] number //= 100000 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution __snake_case = [None] * 10_00_00_00 __snake_case = True __snake_case = False def _lowercase ( UpperCamelCase_ ) -> bool: '''simple docstring''' if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore SCREAMING_SNAKE_CASE__ = chain(next_number(UpperCamelCase_ ) ) SCREAMING_SNAKE_CASE__ = number_chain while number < 10000000: SCREAMING_SNAKE_CASE__ = number_chain number *= 10 return number_chain def _lowercase ( UpperCamelCase_ = 10000000 ) -> int: '''simple docstring''' for i in range(1 , UpperCamelCase_ ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(UpperCamelCase_ ) if __name__ == "__main__": import doctest doctest.testmod() print(F"""{solution() = }""")
472
import importlib import inspect import json import os import re import shutil import sys from pathlib import Path from typing import Dict, Optional, Union from urllib import request from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info from packaging import version from .. import __version__ from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging __snake_case = ( """https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py""" ) __snake_case = logging.get_logger(__name__) # pylint: disable=invalid-name def _lowercase ( ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE__ = 'https://pypi.org/pypi/diffusers/json' SCREAMING_SNAKE_CASE__ = json.loads(request.urlopen(UpperCamelCase_ ).read() )['releases'].keys() return sorted(UpperCamelCase_ , key=lambda UpperCamelCase_ : version.Version(UpperCamelCase_ ) ) def _lowercase ( ) -> Union[str, Any]: '''simple docstring''' if HF_MODULES_CACHE in sys.path: return sys.path.append(UpperCamelCase_ ) os.makedirs(UpperCamelCase_ , exist_ok=UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = Path(UpperCamelCase_ ) / '__init__.py' if not init_path.exists(): init_path.touch() def _lowercase ( UpperCamelCase_ ) -> Optional[Any]: '''simple docstring''' init_hf_modules() SCREAMING_SNAKE_CASE__ = Path(UpperCamelCase_ ) / name # If the parent module does not exist yet, recursively create it. if not dynamic_module_path.parent.exists(): create_dynamic_module(dynamic_module_path.parent ) os.makedirs(UpperCamelCase_ , exist_ok=UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = dynamic_module_path / '__init__.py' if not init_path.exists(): init_path.touch() def _lowercase ( UpperCamelCase_ ) -> Optional[int]: '''simple docstring''' with open(UpperCamelCase_ , 'r' , encoding='utf-8' ) as f: SCREAMING_SNAKE_CASE__ = f.read() # Imports of the form `import .xxx` SCREAMING_SNAKE_CASE__ = re.findall('^\s*import\s+\.(\S+)\s*$' , UpperCamelCase_ , flags=re.MULTILINE ) # Imports of the form `from .xxx import yyy` relative_imports += re.findall('^\s*from\s+\.(\S+)\s+import' , UpperCamelCase_ , flags=re.MULTILINE ) # Unique-ify return list(set(UpperCamelCase_ ) ) def _lowercase ( UpperCamelCase_ ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = [module_file] SCREAMING_SNAKE_CASE__ = [] # Let's recurse through all relative imports while not no_change: SCREAMING_SNAKE_CASE__ = [] for f in files_to_check: new_imports.extend(get_relative_imports(UpperCamelCase_ ) ) SCREAMING_SNAKE_CASE__ = Path(UpperCamelCase_ ).parent SCREAMING_SNAKE_CASE__ = [str(module_path / m ) for m in new_imports] SCREAMING_SNAKE_CASE__ = [f for f in new_import_files if f not in all_relative_imports] SCREAMING_SNAKE_CASE__ = [F'{f}.py' for f in new_import_files] SCREAMING_SNAKE_CASE__ = len(UpperCamelCase_ ) == 0 all_relative_imports.extend(UpperCamelCase_ ) return all_relative_imports def _lowercase ( UpperCamelCase_ ) -> Dict: '''simple docstring''' with open(UpperCamelCase_ , 'r' , encoding='utf-8' ) as f: SCREAMING_SNAKE_CASE__ = f.read() # Imports of the form `import xxx` SCREAMING_SNAKE_CASE__ = re.findall('^\s*import\s+(\S+)\s*$' , UpperCamelCase_ , flags=re.MULTILINE ) # Imports of the form `from xxx import yyy` imports += re.findall('^\s*from\s+(\S+)\s+import' , UpperCamelCase_ , flags=re.MULTILINE ) # Only keep the top-level module SCREAMING_SNAKE_CASE__ = [imp.split('.' )[0] for imp in imports if not imp.startswith('.' )] # Unique-ify and test we got them all SCREAMING_SNAKE_CASE__ = list(set(UpperCamelCase_ ) ) SCREAMING_SNAKE_CASE__ = [] for imp in imports: try: importlib.import_module(UpperCamelCase_ ) except ImportError: missing_packages.append(UpperCamelCase_ ) if len(UpperCamelCase_ ) > 0: raise ImportError( 'This modeling file requires the following packages that were not found in your environment: ' F'{", ".join(UpperCamelCase_ )}. Run `pip install {" ".join(UpperCamelCase_ )}`' ) return get_relative_imports(UpperCamelCase_ ) def _lowercase ( UpperCamelCase_ , UpperCamelCase_ ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ = module_path.replace(os.path.sep , '.' ) SCREAMING_SNAKE_CASE__ = importlib.import_module(UpperCamelCase_ ) if class_name is None: return find_pipeline_class(UpperCamelCase_ ) return getattr(UpperCamelCase_ , UpperCamelCase_ ) def _lowercase ( UpperCamelCase_ ) -> str: '''simple docstring''' from ..pipelines import DiffusionPipeline SCREAMING_SNAKE_CASE__ = dict(inspect.getmembers(UpperCamelCase_ , inspect.isclass ) ) SCREAMING_SNAKE_CASE__ = None for cls_name, cls in cls_members.items(): if ( cls_name != DiffusionPipeline.__name__ and issubclass(cls , UpperCamelCase_ ) and cls.__module__.split('.' )[0] != "diffusers" ): if pipeline_class is not None: raise ValueError( F'Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:' F' {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in' F' {loaded_module}.' ) SCREAMING_SNAKE_CASE__ = cls return pipeline_class def _lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = False , UpperCamelCase_ = False , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = False , ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE__ = str(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = os.path.join(UpperCamelCase_ , UpperCamelCase_ ) if os.path.isfile(UpperCamelCase_ ): SCREAMING_SNAKE_CASE__ = module_file_or_url SCREAMING_SNAKE_CASE__ = 'local' elif pretrained_model_name_or_path.count('/' ) == 0: SCREAMING_SNAKE_CASE__ = get_diffusers_versions() # cut ".dev0" SCREAMING_SNAKE_CASE__ = 'v' + '.'.join(__version__.split('.' )[:3] ) # retrieve github version that matches if revision is None: SCREAMING_SNAKE_CASE__ = latest_version if latest_version[1:] in available_versions else 'main' logger.info(F'Defaulting to latest_version: {revision}.' ) elif revision in available_versions: SCREAMING_SNAKE_CASE__ = F'v{revision}' elif revision == "main": SCREAMING_SNAKE_CASE__ = revision else: raise ValueError( F'`custom_revision`: {revision} does not exist. Please make sure to choose one of' F' {", ".join(available_versions + ["main"] )}.' ) # community pipeline on GitHub SCREAMING_SNAKE_CASE__ = COMMUNITY_PIPELINES_URL.format(revision=UpperCamelCase_ , pipeline=UpperCamelCase_ ) try: SCREAMING_SNAKE_CASE__ = cached_download( UpperCamelCase_ , cache_dir=UpperCamelCase_ , force_download=UpperCamelCase_ , proxies=UpperCamelCase_ , resume_download=UpperCamelCase_ , local_files_only=UpperCamelCase_ , use_auth_token=UpperCamelCase_ , ) SCREAMING_SNAKE_CASE__ = 'git' SCREAMING_SNAKE_CASE__ = pretrained_model_name_or_path + '.py' except EnvironmentError: logger.error(F'Could not locate the {module_file} inside {pretrained_model_name_or_path}.' ) raise else: try: # Load from URL or cache if already cached SCREAMING_SNAKE_CASE__ = hf_hub_download( UpperCamelCase_ , UpperCamelCase_ , cache_dir=UpperCamelCase_ , force_download=UpperCamelCase_ , proxies=UpperCamelCase_ , resume_download=UpperCamelCase_ , local_files_only=UpperCamelCase_ , use_auth_token=UpperCamelCase_ , ) SCREAMING_SNAKE_CASE__ = os.path.join('local' , '--'.join(pretrained_model_name_or_path.split('/' ) ) ) except EnvironmentError: logger.error(F'Could not locate the {module_file} inside {pretrained_model_name_or_path}.' ) raise # Check we have all the requirements in our environment SCREAMING_SNAKE_CASE__ = check_imports(UpperCamelCase_ ) # Now we move the module inside our cached dynamic modules. SCREAMING_SNAKE_CASE__ = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule create_dynamic_module(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = Path(UpperCamelCase_ ) / full_submodule if submodule == "local" or submodule == "git": # We always copy local files (we could hash the file to see if there was a change, and give them the name of # that hash, to only copy when there is a modification but it seems overkill for now). # The only reason we do the copy is to avoid putting too many folders in sys.path. shutil.copy(UpperCamelCase_ , submodule_path / module_file ) for module_needed in modules_needed: SCREAMING_SNAKE_CASE__ = F'{module_needed}.py' shutil.copy(os.path.join(UpperCamelCase_ , UpperCamelCase_ ) , submodule_path / module_needed ) else: # Get the commit hash # TODO: we will get this info in the etag soon, so retrieve it from there and not here. if isinstance(UpperCamelCase_ , UpperCamelCase_ ): SCREAMING_SNAKE_CASE__ = use_auth_token elif use_auth_token is True: SCREAMING_SNAKE_CASE__ = HfFolder.get_token() else: SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = model_info(UpperCamelCase_ , revision=UpperCamelCase_ , token=UpperCamelCase_ ).sha # The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the # benefit of versioning. SCREAMING_SNAKE_CASE__ = submodule_path / commit_hash SCREAMING_SNAKE_CASE__ = full_submodule + os.path.sep + commit_hash create_dynamic_module(UpperCamelCase_ ) if not (submodule_path / module_file).exists(): shutil.copy(UpperCamelCase_ , submodule_path / module_file ) # Make sure we also have every file with relative for module_needed in modules_needed: if not (submodule_path / module_needed).exists(): get_cached_module_file( UpperCamelCase_ , F'{module_needed}.py' , cache_dir=UpperCamelCase_ , force_download=UpperCamelCase_ , resume_download=UpperCamelCase_ , proxies=UpperCamelCase_ , use_auth_token=UpperCamelCase_ , revision=UpperCamelCase_ , local_files_only=UpperCamelCase_ , ) return os.path.join(UpperCamelCase_ , UpperCamelCase_ ) def _lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = False , UpperCamelCase_ = False , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = False , **UpperCamelCase_ , ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE__ = get_cached_module_file( UpperCamelCase_ , UpperCamelCase_ , cache_dir=UpperCamelCase_ , force_download=UpperCamelCase_ , resume_download=UpperCamelCase_ , proxies=UpperCamelCase_ , use_auth_token=UpperCamelCase_ , revision=UpperCamelCase_ , local_files_only=UpperCamelCase_ , ) return get_class_in_module(UpperCamelCase_ , final_module.replace('.py' , '' ) )
472
1
import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class _UpperCAmelCase ( unittest.TestCase ): def __init__( self , a__ , a__=7 , a__=3 , a__=1_8 , a__=3_0 , a__=4_0_0 , a__=True , a__=None , a__=True , a__=None , a__=True , a__=[0.5, 0.5, 0.5] , a__=[0.5, 0.5, 0.5] , a__=False , ): A__ = size if size is not None else {'''height''': 2_0, '''width''': 2_0} A__ = crop_size if crop_size is not None else {'''height''': 1_8, '''width''': 1_8} A__ = parent A__ = batch_size A__ = num_channels A__ = image_size A__ = min_resolution A__ = max_resolution A__ = do_resize A__ = size A__ = do_center_crop A__ = crop_size A__ = do_normalize A__ = image_mean A__ = image_std A__ = do_reduce_labels def snake_case_ ( self): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def lowerCAmelCase__ ( )-> Dict: A__ = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' ) A__ = Image.open(dataset[0]['''file'''] ) A__ = Image.open(dataset[1]['''file'''] ) return image, map def lowerCAmelCase__ ( )-> Any: A__ = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' ) A__ = Image.open(ds[0]['''file'''] ) A__ = Image.open(ds[1]['''file'''] ) A__ = Image.open(ds[2]['''file'''] ) A__ = Image.open(ds[3]['''file'''] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class _UpperCAmelCase ( A__ , unittest.TestCase ): UpperCamelCase__ = BeitImageProcessor if is_vision_available() else None def snake_case_ ( self): A__ = BeitImageProcessingTester(self) @property def snake_case_ ( self): return self.image_processor_tester.prepare_image_processor_dict() def snake_case_ ( self): A__ = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(a__ , '''do_resize''')) self.assertTrue(hasattr(a__ , '''size''')) self.assertTrue(hasattr(a__ , '''do_center_crop''')) self.assertTrue(hasattr(a__ , '''center_crop''')) self.assertTrue(hasattr(a__ , '''do_normalize''')) self.assertTrue(hasattr(a__ , '''image_mean''')) self.assertTrue(hasattr(a__ , '''image_std''')) def snake_case_ ( self): A__ = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {'''height''': 2_0, '''width''': 2_0}) self.assertEqual(image_processor.crop_size , {'''height''': 1_8, '''width''': 1_8}) self.assertEqual(image_processor.do_reduce_labels , a__) A__ = self.image_processing_class.from_dict( self.image_processor_dict , size=4_2 , crop_size=8_4 , reduce_labels=a__) self.assertEqual(image_processor.size , {'''height''': 4_2, '''width''': 4_2}) self.assertEqual(image_processor.crop_size , {'''height''': 8_4, '''width''': 8_4}) self.assertEqual(image_processor.do_reduce_labels , a__) def snake_case_ ( self): pass def snake_case_ ( self): # Initialize image_processing A__ = self.image_processing_class(**self.image_processor_dict) # create random PIL images A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=a__) for image in image_inputs: self.assertIsInstance(a__ , Image.Image) # Test not batched input A__ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched A__ = image_processing(a__ , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def snake_case_ ( self): # Initialize image_processing A__ = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=a__ , numpify=a__) for image in image_inputs: self.assertIsInstance(a__ , np.ndarray) # Test not batched input A__ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched A__ = image_processing(a__ , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def snake_case_ ( self): # Initialize image_processing A__ = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=a__ , torchify=a__) for image in image_inputs: self.assertIsInstance(a__ , torch.Tensor) # Test not batched input A__ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched A__ = image_processing(a__ , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def snake_case_ ( self): # Initialize image_processing A__ = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=a__ , torchify=a__) A__ = [] for image in image_inputs: self.assertIsInstance(a__ , torch.Tensor) maps.append(torch.zeros(image.shape[-2:]).long()) # Test not batched input A__ = image_processing(image_inputs[0] , maps[0] , return_tensors='''pt''') self.assertEqual( encoding['''pixel_values'''].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 1, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long) self.assertTrue(encoding['''labels'''].min().item() >= 0) self.assertTrue(encoding['''labels'''].max().item() <= 2_5_5) # Test batched A__ = image_processing(a__ , a__ , return_tensors='''pt''') self.assertEqual( encoding['''pixel_values'''].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long) self.assertTrue(encoding['''labels'''].min().item() >= 0) self.assertTrue(encoding['''labels'''].max().item() <= 2_5_5) # Test not batched input (PIL images) A__ , A__ = prepare_semantic_single_inputs() A__ = image_processing(a__ , a__ , return_tensors='''pt''') self.assertEqual( encoding['''pixel_values'''].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 1, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long) self.assertTrue(encoding['''labels'''].min().item() >= 0) self.assertTrue(encoding['''labels'''].max().item() <= 2_5_5) # Test batched input (PIL images) A__ , A__ = prepare_semantic_batch_inputs() A__ = image_processing(a__ , a__ , return_tensors='''pt''') self.assertEqual( encoding['''pixel_values'''].shape , ( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 2, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long) self.assertTrue(encoding['''labels'''].min().item() >= 0) self.assertTrue(encoding['''labels'''].max().item() <= 2_5_5) def snake_case_ ( self): # Initialize image_processing A__ = self.image_processing_class(**self.image_processor_dict) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 A__ , A__ = prepare_semantic_single_inputs() A__ = image_processing(a__ , a__ , return_tensors='''pt''') self.assertTrue(encoding['''labels'''].min().item() >= 0) self.assertTrue(encoding['''labels'''].max().item() <= 1_5_0) A__ = True A__ = image_processing(a__ , a__ , return_tensors='''pt''') self.assertTrue(encoding['''labels'''].min().item() >= 0) self.assertTrue(encoding['''labels'''].max().item() <= 2_5_5)
526
# Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowercase = { "configuration_cpmant": ["CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP", "CpmAntConfig"], "tokenization_cpmant": ["CpmAntTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ "CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST", "CpmAntForCausalLM", "CpmAntModel", "CpmAntPreTrainedModel", ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
526
1
from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = OrderedDict( [ # Base model mapping ("""albert""", """FlaxAlbertModel"""), ("""bart""", """FlaxBartModel"""), ("""beit""", """FlaxBeitModel"""), ("""bert""", """FlaxBertModel"""), ("""big_bird""", """FlaxBigBirdModel"""), ("""blenderbot""", """FlaxBlenderbotModel"""), ("""blenderbot-small""", """FlaxBlenderbotSmallModel"""), ("""clip""", """FlaxCLIPModel"""), ("""distilbert""", """FlaxDistilBertModel"""), ("""electra""", """FlaxElectraModel"""), ("""gpt-sw3""", """FlaxGPT2Model"""), ("""gpt2""", """FlaxGPT2Model"""), ("""gpt_neo""", """FlaxGPTNeoModel"""), ("""gptj""", """FlaxGPTJModel"""), ("""longt5""", """FlaxLongT5Model"""), ("""marian""", """FlaxMarianModel"""), ("""mbart""", """FlaxMBartModel"""), ("""mt5""", """FlaxMT5Model"""), ("""opt""", """FlaxOPTModel"""), ("""pegasus""", """FlaxPegasusModel"""), ("""regnet""", """FlaxRegNetModel"""), ("""resnet""", """FlaxResNetModel"""), ("""roberta""", """FlaxRobertaModel"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormModel"""), ("""roformer""", """FlaxRoFormerModel"""), ("""t5""", """FlaxT5Model"""), ("""vision-text-dual-encoder""", """FlaxVisionTextDualEncoderModel"""), ("""vit""", """FlaxViTModel"""), ("""wav2vec2""", """FlaxWav2Vec2Model"""), ("""whisper""", """FlaxWhisperModel"""), ("""xglm""", """FlaxXGLMModel"""), ("""xlm-roberta""", """FlaxXLMRobertaModel"""), ] ) _lowerCAmelCase = OrderedDict( [ # Model for pre-training mapping ("""albert""", """FlaxAlbertForPreTraining"""), ("""bart""", """FlaxBartForConditionalGeneration"""), ("""bert""", """FlaxBertForPreTraining"""), ("""big_bird""", """FlaxBigBirdForPreTraining"""), ("""electra""", """FlaxElectraForPreTraining"""), ("""longt5""", """FlaxLongT5ForConditionalGeneration"""), ("""mbart""", """FlaxMBartForConditionalGeneration"""), ("""mt5""", """FlaxMT5ForConditionalGeneration"""), ("""roberta""", """FlaxRobertaForMaskedLM"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForMaskedLM"""), ("""roformer""", """FlaxRoFormerForMaskedLM"""), ("""t5""", """FlaxT5ForConditionalGeneration"""), ("""wav2vec2""", """FlaxWav2Vec2ForPreTraining"""), ("""whisper""", """FlaxWhisperForConditionalGeneration"""), ("""xlm-roberta""", """FlaxXLMRobertaForMaskedLM"""), ] ) _lowerCAmelCase = OrderedDict( [ # Model for Masked LM mapping ("""albert""", """FlaxAlbertForMaskedLM"""), ("""bart""", """FlaxBartForConditionalGeneration"""), ("""bert""", """FlaxBertForMaskedLM"""), ("""big_bird""", """FlaxBigBirdForMaskedLM"""), ("""distilbert""", """FlaxDistilBertForMaskedLM"""), ("""electra""", """FlaxElectraForMaskedLM"""), ("""mbart""", """FlaxMBartForConditionalGeneration"""), ("""roberta""", """FlaxRobertaForMaskedLM"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForMaskedLM"""), ("""roformer""", """FlaxRoFormerForMaskedLM"""), ("""xlm-roberta""", """FlaxXLMRobertaForMaskedLM"""), ] ) _lowerCAmelCase = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ("""bart""", """FlaxBartForConditionalGeneration"""), ("""blenderbot""", """FlaxBlenderbotForConditionalGeneration"""), ("""blenderbot-small""", """FlaxBlenderbotSmallForConditionalGeneration"""), ("""encoder-decoder""", """FlaxEncoderDecoderModel"""), ("""longt5""", """FlaxLongT5ForConditionalGeneration"""), ("""marian""", """FlaxMarianMTModel"""), ("""mbart""", """FlaxMBartForConditionalGeneration"""), ("""mt5""", """FlaxMT5ForConditionalGeneration"""), ("""pegasus""", """FlaxPegasusForConditionalGeneration"""), ("""t5""", """FlaxT5ForConditionalGeneration"""), ] ) _lowerCAmelCase = OrderedDict( [ # Model for Image-classsification ("""beit""", """FlaxBeitForImageClassification"""), ("""regnet""", """FlaxRegNetForImageClassification"""), ("""resnet""", """FlaxResNetForImageClassification"""), ("""vit""", """FlaxViTForImageClassification"""), ] ) _lowerCAmelCase = OrderedDict( [ ("""vision-encoder-decoder""", """FlaxVisionEncoderDecoderModel"""), ] ) _lowerCAmelCase = OrderedDict( [ # Model for Causal LM mapping ("""bart""", """FlaxBartForCausalLM"""), ("""bert""", """FlaxBertForCausalLM"""), ("""big_bird""", """FlaxBigBirdForCausalLM"""), ("""electra""", """FlaxElectraForCausalLM"""), ("""gpt-sw3""", """FlaxGPT2LMHeadModel"""), ("""gpt2""", """FlaxGPT2LMHeadModel"""), ("""gpt_neo""", """FlaxGPTNeoForCausalLM"""), ("""gptj""", """FlaxGPTJForCausalLM"""), ("""opt""", """FlaxOPTForCausalLM"""), ("""roberta""", """FlaxRobertaForCausalLM"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForCausalLM"""), ("""xglm""", """FlaxXGLMForCausalLM"""), ("""xlm-roberta""", """FlaxXLMRobertaForCausalLM"""), ] ) _lowerCAmelCase = OrderedDict( [ # Model for Sequence Classification mapping ("""albert""", """FlaxAlbertForSequenceClassification"""), ("""bart""", """FlaxBartForSequenceClassification"""), ("""bert""", """FlaxBertForSequenceClassification"""), ("""big_bird""", """FlaxBigBirdForSequenceClassification"""), ("""distilbert""", """FlaxDistilBertForSequenceClassification"""), ("""electra""", """FlaxElectraForSequenceClassification"""), ("""mbart""", """FlaxMBartForSequenceClassification"""), ("""roberta""", """FlaxRobertaForSequenceClassification"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForSequenceClassification"""), ("""roformer""", """FlaxRoFormerForSequenceClassification"""), ("""xlm-roberta""", """FlaxXLMRobertaForSequenceClassification"""), ] ) _lowerCAmelCase = OrderedDict( [ # Model for Question Answering mapping ("""albert""", """FlaxAlbertForQuestionAnswering"""), ("""bart""", """FlaxBartForQuestionAnswering"""), ("""bert""", """FlaxBertForQuestionAnswering"""), ("""big_bird""", """FlaxBigBirdForQuestionAnswering"""), ("""distilbert""", """FlaxDistilBertForQuestionAnswering"""), ("""electra""", """FlaxElectraForQuestionAnswering"""), ("""mbart""", """FlaxMBartForQuestionAnswering"""), ("""roberta""", """FlaxRobertaForQuestionAnswering"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForQuestionAnswering"""), ("""roformer""", """FlaxRoFormerForQuestionAnswering"""), ("""xlm-roberta""", """FlaxXLMRobertaForQuestionAnswering"""), ] ) _lowerCAmelCase = OrderedDict( [ # Model for Token Classification mapping ("""albert""", """FlaxAlbertForTokenClassification"""), ("""bert""", """FlaxBertForTokenClassification"""), ("""big_bird""", """FlaxBigBirdForTokenClassification"""), ("""distilbert""", """FlaxDistilBertForTokenClassification"""), ("""electra""", """FlaxElectraForTokenClassification"""), ("""roberta""", """FlaxRobertaForTokenClassification"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForTokenClassification"""), ("""roformer""", """FlaxRoFormerForTokenClassification"""), ("""xlm-roberta""", """FlaxXLMRobertaForTokenClassification"""), ] ) _lowerCAmelCase = OrderedDict( [ # Model for Multiple Choice mapping ("""albert""", """FlaxAlbertForMultipleChoice"""), ("""bert""", """FlaxBertForMultipleChoice"""), ("""big_bird""", """FlaxBigBirdForMultipleChoice"""), ("""distilbert""", """FlaxDistilBertForMultipleChoice"""), ("""electra""", """FlaxElectraForMultipleChoice"""), ("""roberta""", """FlaxRobertaForMultipleChoice"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForMultipleChoice"""), ("""roformer""", """FlaxRoFormerForMultipleChoice"""), ("""xlm-roberta""", """FlaxXLMRobertaForMultipleChoice"""), ] ) _lowerCAmelCase = OrderedDict( [ ("""bert""", """FlaxBertForNextSentencePrediction"""), ] ) _lowerCAmelCase = OrderedDict( [ ("""speech-encoder-decoder""", """FlaxSpeechEncoderDecoderModel"""), ("""whisper""", """FlaxWhisperForConditionalGeneration"""), ] ) _lowerCAmelCase = OrderedDict( [ ("""whisper""", """FlaxWhisperForAudioClassification"""), ] ) _lowerCAmelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) _lowerCAmelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) _lowerCAmelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) _lowerCAmelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) _lowerCAmelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) _lowerCAmelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) _lowerCAmelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) _lowerCAmelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) _lowerCAmelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) _lowerCAmelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) _lowerCAmelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) _lowerCAmelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) _lowerCAmelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) _lowerCAmelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class _UpperCAmelCase ( _BaseAutoModelClass ): a = FLAX_MODEL_MAPPING _lowerCAmelCase = auto_class_update(FlaxAutoModel) class _UpperCAmelCase ( _BaseAutoModelClass ): a = FLAX_MODEL_FOR_PRETRAINING_MAPPING _lowerCAmelCase = auto_class_update(FlaxAutoModelForPreTraining, head_doc="""pretraining""") class _UpperCAmelCase ( _BaseAutoModelClass ): a = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING _lowerCAmelCase = auto_class_update(FlaxAutoModelForCausalLM, head_doc="""causal language modeling""") class _UpperCAmelCase ( _BaseAutoModelClass ): a = FLAX_MODEL_FOR_MASKED_LM_MAPPING _lowerCAmelCase = auto_class_update(FlaxAutoModelForMaskedLM, head_doc="""masked language modeling""") class _UpperCAmelCase ( _BaseAutoModelClass ): a = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING _lowerCAmelCase = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc="""sequence-to-sequence language modeling""", checkpoint_for_example="""t5-base""" ) class _UpperCAmelCase ( _BaseAutoModelClass ): a = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING _lowerCAmelCase = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc="""sequence classification""" ) class _UpperCAmelCase ( _BaseAutoModelClass ): a = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING _lowerCAmelCase = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc="""question answering""") class _UpperCAmelCase ( _BaseAutoModelClass ): a = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING _lowerCAmelCase = auto_class_update( FlaxAutoModelForTokenClassification, head_doc="""token classification""" ) class _UpperCAmelCase ( _BaseAutoModelClass ): a = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING _lowerCAmelCase = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc="""multiple choice""") class _UpperCAmelCase ( _BaseAutoModelClass ): a = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING _lowerCAmelCase = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc="""next sentence prediction""" ) class _UpperCAmelCase ( _BaseAutoModelClass ): a = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING _lowerCAmelCase = auto_class_update( FlaxAutoModelForImageClassification, head_doc="""image classification""" ) class _UpperCAmelCase ( _BaseAutoModelClass ): a = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING _lowerCAmelCase = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc="""vision-to-text modeling""") class _UpperCAmelCase ( _BaseAutoModelClass ): a = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING _lowerCAmelCase = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc="""sequence-to-sequence speech-to-text modeling""" )
569
import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor __SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) class lowercase_ ( __snake_case ): def __init__( self , *lowercase_ , **lowercase_ ): warnings.warn( "The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use LayoutLMv2ImageProcessor instead." , lowercase_ , ) super().__init__(*lowercase_ , **lowercase_ )
670
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowerCamelCase : List[str] = { """configuration_funnel""": ["""FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FunnelConfig"""], """convert_funnel_original_tf_checkpoint_to_pytorch""": [], """tokenization_funnel""": ["""FunnelTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : str = ["""FunnelTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : List[Any] = [ """FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST""", """FunnelBaseModel""", """FunnelForMaskedLM""", """FunnelForMultipleChoice""", """FunnelForPreTraining""", """FunnelForQuestionAnswering""", """FunnelForSequenceClassification""", """FunnelForTokenClassification""", """FunnelModel""", """FunnelPreTrainedModel""", """load_tf_weights_in_funnel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Dict = [ """TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFFunnelBaseModel""", """TFFunnelForMaskedLM""", """TFFunnelForMultipleChoice""", """TFFunnelForPreTraining""", """TFFunnelForQuestionAnswering""", """TFFunnelForSequenceClassification""", """TFFunnelForTokenClassification""", """TFFunnelModel""", """TFFunnelPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys __lowerCamelCase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
705
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib __lowerCamelCase : Optional[int] = get_logger() __lowerCamelCase : Optional[dict] = None class SCREAMING_SNAKE_CASE__ ( TensorFormatter[Mapping, "jax.Array", Mapping] ): """simple docstring""" def __init__( self : Optional[Any] , __A : Dict=None , __A : List[str]=None , **__A : str ): super().__init__(features=__A ) import jax from jaxlib.xla_client import Device if isinstance(__A , __A ): raise ValueError( f'''Expected {device} to be a `str` not {type(__A )}, as `jaxlib.xla_extension.Device` ''' "is not serializable neither with `pickle` nor with `dill`. Instead you can surround " "the device with `str()` to get its string identifier that will be internally mapped " "to the actual `jaxlib.xla_extension.Device`." ) snake_case__ : List[Any] = device if isinstance(__A , __A ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: snake_case__ : Any = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( f'''Device with string identifier {self.device} not listed among the available ''' f'''devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default ''' f'''device: {str(jax.devices()[0] )}.''' ) snake_case__ : str = str(jax.devices()[0] ) snake_case__ : str = jnp_array_kwargs @staticmethod def _lowercase ( ): import jax return {str(__A ): device for device in jax.devices()} def _lowercase ( self : Optional[Any] , __A : str ): import jax import jax.numpy as jnp if isinstance(__A , __A ) and column: if all( isinstance(__A , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(__A , axis=0 ) return column def _lowercase ( self : int , __A : Tuple ): import jax import jax.numpy as jnp if isinstance(__A , (str, bytes, type(__A )) ): return value elif isinstance(__A , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() snake_case__ : Optional[int] = {} if isinstance(__A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: snake_case__ : Any = {"dtype": jnp.intaa} else: snake_case__ : Tuple = {"dtype": jnp.intaa} elif isinstance(__A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): snake_case__ : str = {"dtype": jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(__A , PIL.Image.Image ): snake_case__ : Optional[Any] = np.asarray(__A ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: snake_case__ : int = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(__A , **{**default_dtype, **self.jnp_array_kwargs} ) def _lowercase ( self : Union[str, Any] , __A : Optional[int] ): import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(__A , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(__A , "__array__" ) and not isinstance(__A , jax.Array ): snake_case__ : Union[str, Any] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(__A , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(__A ) for substruct in data_struct] ) elif isinstance(__A , (list, tuple) ): return self._consolidate([self.recursive_tensorize(__A ) for substruct in data_struct] ) return self._tensorize(__A ) def _lowercase ( self : Tuple , __A : dict ): return map_nested(self._recursive_tensorize , __A , map_list=__A ) def _lowercase ( self : Optional[int] , __A : pa.Table ): snake_case__ : int = self.numpy_arrow_extractor().extract_row(__A ) snake_case__ : Tuple = self.python_features_decoder.decode_row(__A ) return self.recursive_tensorize(__A ) def _lowercase ( self : Optional[Any] , __A : pa.Table ): snake_case__ : Any = self.numpy_arrow_extractor().extract_column(__A ) snake_case__ : Optional[int] = self.python_features_decoder.decode_column(__A , pa_table.column_names[0] ) snake_case__ : List[Any] = self.recursive_tensorize(__A ) snake_case__ : Dict = self._consolidate(__A ) return column def _lowercase ( self : str , __A : pa.Table ): snake_case__ : Any = self.numpy_arrow_extractor().extract_batch(__A ) snake_case__ : int = self.python_features_decoder.decode_batch(__A ) snake_case__ : List[Any] = self.recursive_tensorize(__A ) for column_name in batch: snake_case__ : Any = self._consolidate(batch[column_name] ) return batch
25
0
import sys import turtle def snake_case_ (__A : tuple[float, float] , __A : tuple[float, float] ) -> tuple[float, float]: return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2 def snake_case_ (__A : tuple[float, float] , __A : tuple[float, float] , __A : tuple[float, float] , __A : int , ) -> None: my_pen.up() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.down() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) if depth == 0: return triangle(__A , get_mid(__A , __A ) , get_mid(__A , __A ) , depth - 1 ) triangle(__A , get_mid(__A , __A ) , get_mid(__A , __A ) , depth - 1 ) triangle(__A , get_mid(__A , __A ) , get_mid(__A , __A ) , depth - 1 ) if __name__ == "__main__": if len(sys.argv) != 2: raise ValueError( """Correct format for using this script: """ """python fractals.py <int:depth_for_fractal>""" ) __UpperCAmelCase = turtle.Turtle() my_pen.ht() my_pen.speed(5) my_pen.pencolor("""red""") __UpperCAmelCase = [(-175, -125), (0, 175), (175, -125)] # vertices of triangle triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
651
import logging import os import sys from pathlib import Path from unittest.mock import patch from parameterized import parameterized from run_eval import run_generate from run_eval_search import run_search from transformers.testing_utils import CaptureStdout, TestCasePlus, slow from utils import ROUGE_KEYS logging.basicConfig(level=logging.DEBUG) __UpperCAmelCase = logging.getLogger() def snake_case_ (__A : Path , __A : list ) -> List[Any]: __lowerCAmelCase : Any = """\n""".join(__A ) Path(__A ).open("""w""" ).writelines(__A ) __UpperCAmelCase = """patrickvonplaten/t5-tiny-random""" __UpperCAmelCase = """sshleifer/bart-tiny-random""" __UpperCAmelCase = """sshleifer/tiny-mbart""" __UpperCAmelCase = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase : Tuple ) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : Tuple = Path(self.get_auto_remove_tmp_dir() ) / """utest_input.source""" __lowerCAmelCase : str = input_file_name.parent / """utest_output.txt""" assert not output_file_name.exists() __lowerCAmelCase : str = [""" New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County."""] _dump_articles(lowerCAmelCase , lowerCAmelCase ) __lowerCAmelCase : Any = str(Path(self.get_auto_remove_tmp_dir() ) / """scores.json""" ) __lowerCAmelCase : Optional[Any] = """translation_en_to_de""" if model == T5_TINY else """summarization""" __lowerCAmelCase : Any = f''' run_eval_search.py {model} {input_file_name} {output_file_name} --score_path {score_path} --task {task} --num_beams 2 --length_penalty 2.0 '''.split() with patch.object(lowerCAmelCase , """argv""" , lowerCAmelCase ): run_generate() assert Path(lowerCAmelCase ).exists() # os.remove(Path(output_file_name)) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: """simple docstring""" self.run_eval_tester(lowerCAmelCase ) @parameterized.expand([BART_TINY, MBART_TINY] ) @slow def SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase : Optional[int] ) -> Union[str, Any]: """simple docstring""" self.run_eval_tester(lowerCAmelCase ) @parameterized.expand([T5_TINY, MBART_TINY] ) @slow def SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase : Optional[Any] ) -> Any: """simple docstring""" __lowerCAmelCase : Optional[int] = Path(self.get_auto_remove_tmp_dir() ) / """utest_input.source""" __lowerCAmelCase : List[str] = input_file_name.parent / """utest_output.txt""" assert not output_file_name.exists() __lowerCAmelCase : Union[str, Any] = { """en""": ["""Machine learning is great, isn't it?""", """I like to eat bananas""", """Tomorrow is another great day!"""], """de""": [ """Maschinelles Lernen ist großartig, oder?""", """Ich esse gerne Bananen""", """Morgen ist wieder ein toller Tag!""", ], } __lowerCAmelCase : List[str] = Path(self.get_auto_remove_tmp_dir() ) __lowerCAmelCase : List[str] = str(tmp_dir / """scores.json""" ) __lowerCAmelCase : Dict = str(tmp_dir / """val.target""" ) _dump_articles(lowerCAmelCase , text["""en"""] ) _dump_articles(lowerCAmelCase , text["""de"""] ) __lowerCAmelCase : List[Any] = """translation_en_to_de""" if model == T5_TINY else """summarization""" __lowerCAmelCase : Dict = f''' run_eval_search.py {model} {str(lowerCAmelCase )} {str(lowerCAmelCase )} --score_path {score_path} --reference_path {reference_path} --task {task} '''.split() testargs.extend(["""--search""", """num_beams=1:2 length_penalty=0.9:1.0"""] ) with patch.object(lowerCAmelCase , """argv""" , lowerCAmelCase ): with CaptureStdout() as cs: run_search() __lowerCAmelCase : Any = [""" num_beams | length_penalty""", model, """Best score args"""] __lowerCAmelCase : Tuple = ["""Info"""] if "translation" in task: expected_strings.append("""bleu""" ) else: expected_strings.extend(lowerCAmelCase ) for w in expected_strings: assert w in cs.out for w in un_expected_strings: assert w not in cs.out assert Path(lowerCAmelCase ).exists() os.remove(Path(lowerCAmelCase ) )
651
1
"""simple docstring""" from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import BaseOutput, is_torch_available, is_transformers_available @dataclass class a ( lowercase ): UpperCamelCase = 42 UpperCamelCase = 42 if is_transformers_available() and is_torch_available(): from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
700
"""simple docstring""" from __future__ import annotations import unittest from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel @require_tf class a : UpperCamelCase : str = BlenderbotConfig UpperCamelCase : int = {} UpperCamelCase : Tuple = """gelu""" def __init__( self , UpperCamelCase_ , UpperCamelCase_=13 , UpperCamelCase_=7 , UpperCamelCase_=True , UpperCamelCase_=False , UpperCamelCase_=99 , UpperCamelCase_=32 , UpperCamelCase_=2 , UpperCamelCase_=4 , UpperCamelCase_=37 , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=20 , UpperCamelCase_=2 , UpperCamelCase_=1 , UpperCamelCase_=0 , ): UpperCAmelCase__ : int = parent UpperCAmelCase__ : Dict = batch_size UpperCAmelCase__ : Optional[Any] = seq_length UpperCAmelCase__ : Any = is_training UpperCAmelCase__ : Optional[int] = use_labels UpperCAmelCase__ : Optional[Any] = vocab_size UpperCAmelCase__ : List[Any] = hidden_size UpperCAmelCase__ : List[str] = num_hidden_layers UpperCAmelCase__ : int = num_attention_heads UpperCAmelCase__ : Union[str, Any] = intermediate_size UpperCAmelCase__ : int = hidden_dropout_prob UpperCAmelCase__ : int = attention_probs_dropout_prob UpperCAmelCase__ : Tuple = max_position_embeddings UpperCAmelCase__ : Dict = eos_token_id UpperCAmelCase__ : int = pad_token_id UpperCAmelCase__ : Union[str, Any] = bos_token_id def __snake_case ( self ): UpperCAmelCase__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCAmelCase__ : Dict = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCAmelCase__ : Dict = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCAmelCase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase__ : Optional[Any] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCAmelCase__ : List[Any] = prepare_blenderbot_inputs_dict(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) return config, inputs_dict def __snake_case ( self , UpperCamelCase_ , UpperCamelCase_ ): UpperCAmelCase__ : Tuple = TFBlenderbotModel(config=UpperCamelCase_ ).get_decoder() UpperCAmelCase__ : Any = inputs_dict['input_ids'] UpperCAmelCase__ : Optional[int] = input_ids[:1, :] UpperCAmelCase__ : str = inputs_dict['attention_mask'][:1, :] UpperCAmelCase__ : str = inputs_dict['head_mask'] UpperCAmelCase__ : List[Any] = 1 # first forward pass UpperCAmelCase__ : Optional[Any] = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , head_mask=UpperCamelCase_ , use_cache=UpperCamelCase_ ) UpperCAmelCase__ , UpperCAmelCase__ : int = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids UpperCAmelCase__ : List[str] = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase__ : Union[str, Any] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and UpperCAmelCase__ : Optional[Any] = tf.concat([input_ids, next_tokens] , axis=-1 ) UpperCAmelCase__ : Any = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) UpperCAmelCase__ : Tuple = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ )[0] UpperCAmelCase__ : Optional[Any] = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , past_key_values=UpperCamelCase_ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice UpperCAmelCase__ : Tuple = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) UpperCAmelCase__ : Tuple = output_from_no_past[:, -3:, random_slice_idx] UpperCAmelCase__ : Optional[Any] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(UpperCamelCase_ , UpperCamelCase_ , rtol=1E-3 ) def lowerCamelCase ( _snake_case ,_snake_case ,_snake_case ,_snake_case=None ,_snake_case=None ,_snake_case=None ,_snake_case=None ,_snake_case=None ,): if attention_mask is None: UpperCAmelCase__ : Tuple = tf.cast(tf.math.not_equal(_snake_case ,config.pad_token_id ) ,tf.inta ) if decoder_attention_mask is None: UpperCAmelCase__ : List[str] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape ,dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] ,config.pad_token_id ) ,tf.inta ), ] ,axis=-1 ,) if head_mask is None: UpperCAmelCase__ : List[str] = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCAmelCase__ : List[Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCAmelCase__ : Tuple = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class a ( lowercase , lowercase , unittest.TestCase ): UpperCamelCase : int = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else () UpperCamelCase : Dict = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else () UpperCamelCase : Union[str, Any] = ( { """conversational""": TFBlenderbotForConditionalGeneration, """feature-extraction""": TFBlenderbotModel, """summarization""": TFBlenderbotForConditionalGeneration, """text2text-generation""": TFBlenderbotForConditionalGeneration, """translation""": TFBlenderbotForConditionalGeneration, } if is_tf_available() else {} ) UpperCamelCase : Optional[int] = True UpperCamelCase : List[Any] = False UpperCamelCase : Union[str, Any] = False def __snake_case ( self ): UpperCAmelCase__ : List[Any] = TFBlenderbotModelTester(self ) UpperCAmelCase__ : Tuple = ConfigTester(self , config_class=UpperCamelCase_ ) def __snake_case ( self ): self.config_tester.run_common_tests() def __snake_case ( self ): UpperCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*UpperCamelCase_ ) @require_tokenizers @require_tf class a ( unittest.TestCase ): UpperCamelCase : List[Any] = ["""My friends are cool but they eat too many carbs."""] UpperCamelCase : List[str] = """facebook/blenderbot-400M-distill""" @cached_property def __snake_case ( self ): return BlenderbotTokenizer.from_pretrained(self.model_name ) @cached_property def __snake_case ( self ): UpperCAmelCase__ : Optional[Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def __snake_case ( self ): UpperCAmelCase__ : int = self.tokenizer(self.src_text , return_tensors='tf' ) UpperCAmelCase__ : int = self.model.generate( model_inputs.input_ids , ) UpperCAmelCase__ : str = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=UpperCamelCase_ )[0] assert ( generated_words == " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?" )
254
0
'''simple docstring''' import argparse import json import logging import os import shutil import sys import tempfile import unittest from unittest import mock import torch from accelerate.utils import write_basic_config from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device from transformers.utils import is_apex_available logging.basicConfig(level=logging.DEBUG) UpperCamelCase_ = logging.getLogger() def _lowerCAmelCase ( ) -> Optional[int]: lowercase : Union[str, Any] =argparse.ArgumentParser() parser.add_argument('''-f''' ) lowercase : Dict =parser.parse_args() return args.f def _lowerCAmelCase ( __magic_name__ : Dict ) -> int: lowercase : int ={} lowercase : List[Any] =os.path.join(SCREAMING_SNAKE_CASE__ , '''all_results.json''' ) if os.path.exists(SCREAMING_SNAKE_CASE__ ): with open(SCREAMING_SNAKE_CASE__ , '''r''' ) as f: lowercase : Tuple =json.load(SCREAMING_SNAKE_CASE__ ) else: raise ValueError(f'''can\'t find {path}''' ) return results def _lowerCAmelCase ( ) -> Union[str, Any]: lowercase : Optional[int] =torch.cuda.is_available() and torch_device == '''cuda''' return is_using_cuda and is_apex_available() UpperCamelCase_ = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class __SCREAMING_SNAKE_CASE ( __A ): @classmethod def lowerCamelCase_ ( cls : Tuple ): '''simple docstring''' # Write Accelerate config, will pick up on CPU, GPU, and multi-GPU lowercase : List[Any] =tempfile.mkdtemp() lowercase : List[Any] =os.path.join(cls.tmpdir , '''default_config.yml''' ) write_basic_config(save_location=cls.configPath ) lowercase : int =['''accelerate''', '''launch''', '''--config_file''', cls.configPath] @classmethod def lowerCamelCase_ ( cls : List[Any] ): '''simple docstring''' shutil.rmtree(cls.tmpdir ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' lowercase : Union[str, Any] =self.get_auto_remove_tmp_dir() lowercase : List[Any] =F''' {self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --seed=42 --checkpointing_steps epoch --with_tracking '''.split() if is_cuda_and_apex_available(): testargs.append('''--fp16''' ) run_command(self._launch_args + testargs ) lowercase : Optional[Any] =get_results(_UpperCamelCase ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , '''glue_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' lowercase : Dict =self.get_auto_remove_tmp_dir() lowercase : Any =F''' {self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --block_size 128 --per_device_train_batch_size 5 --per_device_eval_batch_size 5 --num_train_epochs 2 --output_dir {tmp_dir} --checkpointing_steps epoch --with_tracking '''.split() if torch.cuda.device_count() > 1: # Skipping because there are not enough batches to train the model + would need a drop_last to work. return run_command(self._launch_args + testargs ) lowercase : str =get_results(_UpperCamelCase ) self.assertLess(result['''perplexity'''] , 100 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , '''clm_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' lowercase : Any =self.get_auto_remove_tmp_dir() lowercase : List[Any] =F''' {self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --num_train_epochs=1 --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) lowercase : List[str] =get_results(_UpperCamelCase ) self.assertLess(result['''perplexity'''] , 42 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , '''mlm_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu lowercase : Tuple =7 if get_gpu_count() > 1 else 2 lowercase : int =self.get_auto_remove_tmp_dir() lowercase : List[Any] =F''' {self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) lowercase : int =get_results(_UpperCamelCase ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) self.assertLess(result['''train_loss'''] , 0.5 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , '''ner_no_trainer''' ) ) ) @unittest.skip(reason='''Fix me @muellerzr''' ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' lowercase : List[str] =self.get_auto_remove_tmp_dir() lowercase : Any =F''' {self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --seed=42 --max_train_steps=10 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) lowercase : Any =get_results(_UpperCamelCase ) # Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics. self.assertGreaterEqual(result['''eval_f1'''] , 28 ) self.assertGreaterEqual(result['''eval_exact'''] , 28 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , '''qa_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self : int ): '''simple docstring''' lowercase : Tuple =self.get_auto_remove_tmp_dir() lowercase : int =F''' {self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/swag/sample.json --validation_file tests/fixtures/tests_samples/swag/sample.json --output_dir {tmp_dir} --max_train_steps=20 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --with_tracking '''.split() run_command(self._launch_args + testargs ) lowercase : str =get_results(_UpperCamelCase ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.8 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , '''swag_no_trainer''' ) ) ) @slow @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' lowercase : Any =self.get_auto_remove_tmp_dir() lowercase : Optional[int] =F''' {self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --max_train_steps=50 --num_warmup_steps=8 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) lowercase : Dict =get_results(_UpperCamelCase ) self.assertGreaterEqual(result['''eval_rouge1'''] , 10 ) self.assertGreaterEqual(result['''eval_rouge2'''] , 2 ) self.assertGreaterEqual(result['''eval_rougeL'''] , 7 ) self.assertGreaterEqual(result['''eval_rougeLsum'''] , 7 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , '''summarization_no_trainer''' ) ) ) @slow @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' lowercase : Any =self.get_auto_remove_tmp_dir() lowercase : Optional[int] =F''' {self.examples_dir}/pytorch/translation/run_translation_no_trainer.py --model_name_or_path sshleifer/student_marian_en_ro_6_1 --source_lang en --target_lang ro --train_file tests/fixtures/tests_samples/wmt16/sample.json --validation_file tests/fixtures/tests_samples/wmt16/sample.json --output_dir {tmp_dir} --max_train_steps=50 --num_warmup_steps=8 --num_beams=6 --learning_rate=3e-3 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --source_lang en_XX --target_lang ro_RO --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) lowercase : str =get_results(_UpperCamelCase ) self.assertGreaterEqual(result['''eval_bleu'''] , 30 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , '''translation_no_trainer''' ) ) ) @slow def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' lowercase : List[str] =logging.StreamHandler(sys.stdout ) logger.addHandler(_UpperCamelCase ) lowercase : List[Any] =self.get_auto_remove_tmp_dir() lowercase : List[Any] =F''' {self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py --dataset_name huggingface/semantic-segmentation-test-sample --output_dir {tmp_dir} --max_train_steps=10 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch '''.split() run_command(self._launch_args + testargs ) lowercase : Optional[Any] =get_results(_UpperCamelCase ) self.assertGreaterEqual(result['''eval_overall_accuracy'''] , 0.10 ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' lowercase : Optional[Any] =self.get_auto_remove_tmp_dir() lowercase : Optional[int] =F''' {self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py --model_name_or_path google/vit-base-patch16-224-in21k --dataset_name hf-internal-testing/cats_vs_dogs_sample --learning_rate 1e-4 --per_device_train_batch_size 2 --per_device_eval_batch_size 1 --max_train_steps 2 --train_val_split 0.1 --seed 42 --output_dir {tmp_dir} --with_tracking --checkpointing_steps 1 '''.split() if is_cuda_and_apex_available(): testargs.append('''--fp16''' ) run_command(self._launch_args + testargs ) lowercase : Dict =get_results(_UpperCamelCase ) # The base model scores a 25% self.assertGreaterEqual(result['''eval_accuracy'''] , 0.6 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , '''step_1''' ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , '''image_classification_no_trainer''' ) ) )
92
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { '''Intel/dpt-large''': '''https://huggingface.co/Intel/dpt-large/resolve/main/config.json''', # See all DPT models at https://huggingface.co/models?filter=dpt } class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = "dpt" def __init__( self : Optional[Any] , _UpperCamelCase : Tuple=7_6_8 , _UpperCamelCase : Dict=1_2 , _UpperCamelCase : Union[str, Any]=1_2 , _UpperCamelCase : List[Any]=3_0_7_2 , _UpperCamelCase : Dict="gelu" , _UpperCamelCase : Union[str, Any]=0.0 , _UpperCamelCase : Optional[int]=0.0 , _UpperCamelCase : Optional[int]=0.02 , _UpperCamelCase : List[str]=1e-12 , _UpperCamelCase : Any=3_8_4 , _UpperCamelCase : int=1_6 , _UpperCamelCase : Any=3 , _UpperCamelCase : Dict=False , _UpperCamelCase : str=True , _UpperCamelCase : Union[str, Any]=[2, 5, 8, 1_1] , _UpperCamelCase : List[str]="project" , _UpperCamelCase : Optional[int]=[4, 2, 1, 0.5] , _UpperCamelCase : Dict=[9_6, 1_9_2, 3_8_4, 7_6_8] , _UpperCamelCase : Dict=2_5_6 , _UpperCamelCase : Optional[Any]=-1 , _UpperCamelCase : int=False , _UpperCamelCase : Optional[int]=True , _UpperCamelCase : str=0.4 , _UpperCamelCase : Tuple=2_5_5 , _UpperCamelCase : Union[str, Any]=0.1 , _UpperCamelCase : Tuple=[1, 1_0_2_4, 2_4, 2_4] , _UpperCamelCase : List[str]=[0, 1] , _UpperCamelCase : List[Any]=None , **_UpperCamelCase : Dict , ) ->Any: super().__init__(**_UpperCamelCase ) snake_case_ = hidden_size snake_case_ = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info('''Initializing the config with a `BiT` backbone.''' ) snake_case_ = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, } snake_case_ = BitConfig(**_UpperCamelCase ) elif isinstance(_UpperCamelCase , _UpperCamelCase ): logger.info('''Initializing the config with a `BiT` backbone.''' ) snake_case_ = BitConfig(**_UpperCamelCase ) elif isinstance(_UpperCamelCase , _UpperCamelCase ): snake_case_ = backbone_config else: raise ValueError( f'''backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.''' ) snake_case_ = backbone_featmap_shape snake_case_ = neck_ignore_stages if readout_type != "project": raise ValueError('''Readout type must be \'project\' when using `DPT-hybrid` mode.''' ) else: snake_case_ = None snake_case_ = None snake_case_ = [] snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = initializer_range snake_case_ = layer_norm_eps snake_case_ = image_size snake_case_ = patch_size snake_case_ = num_channels snake_case_ = qkv_bias snake_case_ = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError('''Readout_type must be one of [\'ignore\', \'add\', \'project\']''' ) snake_case_ = readout_type snake_case_ = reassemble_factors snake_case_ = neck_hidden_sizes snake_case_ = fusion_hidden_size snake_case_ = head_in_index snake_case_ = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) snake_case_ = use_auxiliary_head snake_case_ = auxiliary_loss_weight snake_case_ = semantic_loss_ignore_index snake_case_ = semantic_classifier_dropout def snake_case__( self : List[str] ) ->List[Any]: snake_case_ = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: snake_case_ = self.backbone_config.to_dict() snake_case_ = self.__class__.model_type return output
39
0
from __future__ import annotations import copy import tempfile import unittest from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tensorflow_probability, require_tf, slow, ) from ..bert.test_modeling_bert import BertModelTester if is_tf_available(): from transformers import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFFunnelBaseModel, TFFunnelModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, TFTapasForQuestionAnswering, ) from transformers.models.auto.modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST class lowercase__ ( __SCREAMING_SNAKE_CASE ): A__= 'new-model' if is_tf_available(): class lowercase__ ( __SCREAMING_SNAKE_CASE ): A__= NewModelConfig @require_tf class lowercase__ ( unittest.TestCase ): @slow def _UpperCAmelCase ( self : Optional[Any] ): """simple docstring""" UpperCAmelCase__ = "bert-base-cased" UpperCAmelCase__ = AutoConfig.from_pretrained(__A ) self.assertIsNotNone(__A ) self.assertIsInstance(__A , __A ) UpperCAmelCase__ = TFAutoModel.from_pretrained(__A ) self.assertIsNotNone(__A ) self.assertIsInstance(__A , __A ) @slow def _UpperCAmelCase ( self : Optional[int] ): """simple docstring""" UpperCAmelCase__ = "bert-base-cased" UpperCAmelCase__ = AutoConfig.from_pretrained(__A ) self.assertIsNotNone(__A ) self.assertIsInstance(__A , __A ) UpperCAmelCase__ = TFAutoModelForPreTraining.from_pretrained(__A ) self.assertIsNotNone(__A ) self.assertIsInstance(__A , __A ) @slow def _UpperCAmelCase ( self : Dict ): """simple docstring""" for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ = AutoConfig.from_pretrained(__A ) self.assertIsNotNone(__A ) self.assertIsInstance(__A , __A ) UpperCAmelCase__ = TFAutoModelForCausalLM.from_pretrained(__A ) UpperCAmelCase__ , UpperCAmelCase__ = TFAutoModelForCausalLM.from_pretrained(__A , output_loading_info=__A ) self.assertIsNotNone(__A ) self.assertIsInstance(__A , __A ) @slow def _UpperCAmelCase ( self : Tuple ): """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ = AutoConfig.from_pretrained(__A ) self.assertIsNotNone(__A ) self.assertIsInstance(__A , __A ) UpperCAmelCase__ = TFAutoModelWithLMHead.from_pretrained(__A ) self.assertIsNotNone(__A ) self.assertIsInstance(__A , __A ) @slow def _UpperCAmelCase ( self : int ): """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ = AutoConfig.from_pretrained(__A ) self.assertIsNotNone(__A ) self.assertIsInstance(__A , __A ) UpperCAmelCase__ = TFAutoModelForMaskedLM.from_pretrained(__A ) UpperCAmelCase__ , UpperCAmelCase__ = TFAutoModelForMaskedLM.from_pretrained(__A , output_loading_info=__A ) self.assertIsNotNone(__A ) self.assertIsInstance(__A , __A ) @slow def _UpperCAmelCase ( self : str ): """simple docstring""" for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ = AutoConfig.from_pretrained(__A ) self.assertIsNotNone(__A ) self.assertIsInstance(__A , __A ) UpperCAmelCase__ = TFAutoModelForSeqaSeqLM.from_pretrained(__A ) UpperCAmelCase__ , UpperCAmelCase__ = TFAutoModelForSeqaSeqLM.from_pretrained(__A , output_loading_info=__A ) self.assertIsNotNone(__A ) self.assertIsInstance(__A , __A ) @slow def _UpperCAmelCase ( self : Union[str, Any] ): """simple docstring""" for model_name in ["bert-base-uncased"]: UpperCAmelCase__ = AutoConfig.from_pretrained(__A ) self.assertIsNotNone(__A ) self.assertIsInstance(__A , __A ) UpperCAmelCase__ = TFAutoModelForSequenceClassification.from_pretrained(__A ) self.assertIsNotNone(__A ) self.assertIsInstance(__A , __A ) @slow def _UpperCAmelCase ( self : Optional[int] ): """simple docstring""" for model_name in ["bert-base-uncased"]: UpperCAmelCase__ = AutoConfig.from_pretrained(__A ) self.assertIsNotNone(__A ) self.assertIsInstance(__A , __A ) UpperCAmelCase__ = TFAutoModelForQuestionAnswering.from_pretrained(__A ) self.assertIsNotNone(__A ) self.assertIsInstance(__A , __A ) @slow @require_tensorflow_probability def _UpperCAmelCase ( self : Any ): """simple docstring""" for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: UpperCAmelCase__ = AutoConfig.from_pretrained(__A ) self.assertIsNotNone(__A ) self.assertIsInstance(__A , __A ) UpperCAmelCase__ = TFAutoModelForTableQuestionAnswering.from_pretrained(__A ) UpperCAmelCase__ , UpperCAmelCase__ = TFAutoModelForTableQuestionAnswering.from_pretrained( __A , output_loading_info=__A ) self.assertIsNotNone(__A ) self.assertIsInstance(__A , __A ) def _UpperCAmelCase ( self : List[str] ): """simple docstring""" UpperCAmelCase__ = TFAutoModelWithLMHead.from_pretrained(__A ) self.assertIsInstance(__A , __A ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=__A ) , 1_44_10 ) def _UpperCAmelCase ( self : Union[str, Any] ): """simple docstring""" UpperCAmelCase__ = TFAutoModelWithLMHead.from_pretrained(__A ) self.assertIsInstance(__A , __A ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=__A ) , 1_44_10 ) def _UpperCAmelCase ( self : Optional[Any] ): """simple docstring""" UpperCAmelCase__ = TFAutoModel.from_pretrained("sgugger/funnel-random-tiny" ) self.assertIsInstance(__A , __A ) UpperCAmelCase__ = copy.deepcopy(model.config ) UpperCAmelCase__ = ["FunnelBaseModel"] UpperCAmelCase__ = TFAutoModel.from_config(__A ) self.assertIsInstance(__A , __A ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(__A ) UpperCAmelCase__ = TFAutoModel.from_pretrained(__A ) self.assertIsInstance(__A , __A ) def _UpperCAmelCase ( self : Optional[Any] ): """simple docstring""" try: AutoConfig.register("new-model" , __A ) UpperCAmelCase__ = [ TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ] for auto_class in auto_classes: with self.subTest(auto_class.__name__ ): # Wrong config class will raise an error with self.assertRaises(__A ): auto_class.register(__A , __A ) auto_class.register(__A , __A ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__A ): auto_class.register(__A , __A ) # Now that the config is registered, it can be used as any other config with the auto-API UpperCAmelCase__ = BertModelTester(self ).get_config() UpperCAmelCase__ = NewModelConfig(**tiny_config.to_dict() ) UpperCAmelCase__ = auto_class.from_config(__A ) self.assertIsInstance(__A , __A ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(__A ) UpperCAmelCase__ = auto_class.from_pretrained(__A ) self.assertIsInstance(__A , __A ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] for mapping in ( TF_MODEL_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, ): if NewModelConfig in mapping._extra_content: del mapping._extra_content[NewModelConfig] def _UpperCAmelCase ( self : Optional[Any] ): """simple docstring""" with self.assertRaisesRegex( __A , "bert-base is not a local folder and is not a valid model identifier" ): UpperCAmelCase__ = TFAutoModel.from_pretrained("bert-base" ) def _UpperCAmelCase ( self : List[str] ): """simple docstring""" with self.assertRaisesRegex( __A , r"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): UpperCAmelCase__ = TFAutoModel.from_pretrained(__A , revision="aaaaaa" ) def _UpperCAmelCase ( self : Tuple ): """simple docstring""" with self.assertRaisesRegex( __A , "hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin" , ): UpperCAmelCase__ = TFAutoModel.from_pretrained("hf-internal-testing/config-no-model" ) def _UpperCAmelCase ( self : int ): """simple docstring""" with self.assertRaisesRegex(__A , "Use `from_pt=True` to load this model" ): UpperCAmelCase__ = TFAutoModel.from_pretrained("hf-internal-testing/tiny-bert-pt-only" ) def _UpperCAmelCase ( self : List[str] ): """simple docstring""" UpperCAmelCase__ = TFAutoModel.from_pretrained("hf-internal-testing/tiny-random-bert" ) with RequestCounter() as counter: UpperCAmelCase__ = TFAutoModel.from_pretrained("hf-internal-testing/tiny-random-bert" ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 ) # With a sharded checkpoint UpperCAmelCase__ = TFAutoModel.from_pretrained("ArthurZ/tiny-random-bert-sharded" ) with RequestCounter() as counter: UpperCAmelCase__ = TFAutoModel.from_pretrained("ArthurZ/tiny-random-bert-sharded" ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
718
import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch A = logging.get_logger(__name__) class lowercase__ : def __init__( self : List[str] , _lowercase : str = None , _lowercase : uuid.UUID = None , _lowercase : Dict=None , _lowercase : Any=None ): """simple docstring""" if not conversation_id: UpperCAmelCase__ = uuid.uuida() if past_user_inputs is None: UpperCAmelCase__ = [] if generated_responses is None: UpperCAmelCase__ = [] UpperCAmelCase__ = conversation_id UpperCAmelCase__ = past_user_inputs UpperCAmelCase__ = generated_responses UpperCAmelCase__ = text def __eq__( self : Any , _lowercase : str ): """simple docstring""" if not isinstance(_lowercase , _lowercase ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def _UpperCAmelCase ( self : Any , _lowercase : str , _lowercase : bool = False ): """simple docstring""" if self.new_user_input: if overwrite: logger.warning( F"""User input added while unprocessed input was existing: \"{self.new_user_input}\" was overwritten """ F"""with: \"{text}\".""" ) UpperCAmelCase__ = text else: logger.warning( F"""User input added while unprocessed input was existing: \"{self.new_user_input}\" new input """ F"""ignored: \"{text}\". Set `overwrite` to True to overwrite unprocessed user input""" ) else: UpperCAmelCase__ = text def _UpperCAmelCase ( self : int ): """simple docstring""" if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) UpperCAmelCase__ = None def _UpperCAmelCase ( self : List[str] , _lowercase : str ): """simple docstring""" self.generated_responses.append(_lowercase ) def _UpperCAmelCase ( self : List[str] ): """simple docstring""" for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self : List[Any] ): """simple docstring""" UpperCAmelCase__ = F"""Conversation id: {self.uuid} \n""" for is_user, text in self.iter_texts(): UpperCAmelCase__ = "user" if is_user else "bot" output += F"""{name} >> {text} \n""" return output @add_end_docstrings( __SCREAMING_SNAKE_CASE , R'\n min_length_for_response (`int`, *optional*, defaults to 32):\n The minimum length (in number of tokens) for a response.\n minimum_tokens (`int`, *optional*, defaults to 10):\n The minimum length of tokens to leave for a response.\n ' , ) class lowercase__ ( __SCREAMING_SNAKE_CASE ): def __init__( self : str , *_lowercase : Union[str, Any] , **_lowercase : Any ): """simple docstring""" super().__init__(*_lowercase , **_lowercase ) if self.tokenizer.pad_token_id is None: UpperCAmelCase__ = self.tokenizer.eos_token def _UpperCAmelCase ( self : List[str] , _lowercase : int=None , _lowercase : Any=None , _lowercase : List[str]=None , **_lowercase : Dict ): """simple docstring""" UpperCAmelCase__ = {} UpperCAmelCase__ = {} UpperCAmelCase__ = {} if min_length_for_response is not None: UpperCAmelCase__ = min_length_for_response if minimum_tokens is not None: UpperCAmelCase__ = minimum_tokens if "max_length" in generate_kwargs: UpperCAmelCase__ = generate_kwargs["max_length"] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: UpperCAmelCase__ = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(_lowercase ) return preprocess_params, forward_params, postprocess_params def __call__( self : Dict , _lowercase : Union[Conversation, List[Conversation]] , _lowercase : List[str]=0 , **_lowercase : Optional[int] ): """simple docstring""" UpperCAmelCase__ = super().__call__(_lowercase , num_workers=_lowercase , **_lowercase ) if isinstance(_lowercase , _lowercase ) and len(_lowercase ) == 1: return outputs[0] return outputs def _UpperCAmelCase ( self : Optional[Any] , _lowercase : Conversation , _lowercase : List[Any]=32 ): """simple docstring""" if not isinstance(_lowercase , _lowercase ): raise ValueError("ConversationalPipeline, expects Conversation as inputs" ) if conversation.new_user_input is None: raise ValueError( F"""Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. """ "Add user inputs with the conversation's `add_user_input` method" ) if hasattr(self.tokenizer , "_build_conversation_input_ids" ): UpperCAmelCase__ = self.tokenizer._build_conversation_input_ids(_lowercase ) else: # If the tokenizer cannot handle conversations, we default to only the old version UpperCAmelCase__ = self._legacy_parse_and_tokenize(_lowercase ) if self.framework == "pt": UpperCAmelCase__ = torch.LongTensor([input_ids] ) elif self.framework == "tf": UpperCAmelCase__ = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def _UpperCAmelCase ( self : Optional[Any] , _lowercase : List[Any] , _lowercase : List[Any]=10 , **_lowercase : Optional[Any] ): """simple docstring""" UpperCAmelCase__ = generate_kwargs.get("max_length" , self.model.config.max_length ) UpperCAmelCase__ = model_inputs["input_ids"].shape[1] if max_length - minimum_tokens < n: logger.warning(F"""Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})""" ) UpperCAmelCase__ = max_length - minimum_tokens UpperCAmelCase__ = model_inputs["input_ids"][:, -trim:] if "attention_mask" in model_inputs: UpperCAmelCase__ = model_inputs["attention_mask"][:, -trim:] UpperCAmelCase__ = model_inputs.pop("conversation" ) UpperCAmelCase__ = max_length UpperCAmelCase__ = self.model.generate(**_lowercase , **_lowercase ) if self.model.config.is_encoder_decoder: UpperCAmelCase__ = 1 else: UpperCAmelCase__ = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def _UpperCAmelCase ( self : Tuple , _lowercase : Union[str, Any] , _lowercase : Optional[Any]=True ): """simple docstring""" UpperCAmelCase__ = model_outputs["output_ids"] UpperCAmelCase__ = self.tokenizer.decode( output_ids[0] , skip_special_tokens=_lowercase , clean_up_tokenization_spaces=_lowercase , ) UpperCAmelCase__ = model_outputs["conversation"] conversation.mark_processed() conversation.append_response(_lowercase ) return conversation def _UpperCAmelCase ( self : List[str] , _lowercase : Conversation ): """simple docstring""" UpperCAmelCase__ = self.tokenizer.eos_token_id UpperCAmelCase__ = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) ) if len(_lowercase ) > self.tokenizer.model_max_length: UpperCAmelCase__ = input_ids[-self.tokenizer.model_max_length :] return input_ids
277
0
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable lowercase__ ={'configuration_gpt_neox': ['GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GPTNeoXConfig']} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ =['GPTNeoXTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ =[ 'GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST', 'GPTNeoXForCausalLM', 'GPTNeoXForQuestionAnswering', 'GPTNeoXForSequenceClassification', 'GPTNeoXForTokenClassification', 'GPTNeoXLayer', 'GPTNeoXModel', 'GPTNeoXPreTrainedModel', ] if TYPE_CHECKING: from .configuration_gpt_neox import GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_neox_fast import GPTNeoXTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox import ( GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXLayer, GPTNeoXModel, GPTNeoXPreTrainedModel, ) else: import sys lowercase__ =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
521
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase__ =logging.get_logger(__name__) lowercase__ ={ 'junnyu/roformer_chinese_small': 'https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json', 'junnyu/roformer_chinese_base': 'https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json', 'junnyu/roformer_chinese_char_small': ( 'https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json' ), 'junnyu/roformer_chinese_char_base': ( 'https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json' ), 'junnyu/roformer_small_discriminator': ( 'https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json' ), 'junnyu/roformer_small_generator': ( 'https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json' ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class UpperCamelCase__ ( __lowercase ): _SCREAMING_SNAKE_CASE : Optional[Any] = "roformer" def __init__(self : Dict , snake_case_ : Optional[Any]=5_0_0_0_0 , snake_case_ : Optional[Any]=None , snake_case_ : Optional[Any]=7_6_8 , snake_case_ : Dict=1_2 , snake_case_ : Optional[int]=1_2 , snake_case_ : Optional[Any]=3_0_7_2 , snake_case_ : Union[str, Any]="gelu" , snake_case_ : List[Any]=0.1 , snake_case_ : Optional[int]=0.1 , snake_case_ : Optional[Any]=1_5_3_6 , snake_case_ : Any=2 , snake_case_ : Optional[int]=0.02 , snake_case_ : int=1E-12 , snake_case_ : Union[str, Any]=0 , snake_case_ : Any=False , snake_case_ : Dict=True , **snake_case_ : Union[str, Any] , ): super().__init__(pad_token_id=snake_case_ , **snake_case_ ) __a : Dict = vocab_size __a : Optional[Any] = hidden_size if embedding_size is None else embedding_size __a : Optional[Any] = hidden_size __a : Any = num_hidden_layers __a : Optional[Any] = num_attention_heads __a : List[Any] = hidden_act __a : List[Any] = intermediate_size __a : List[str] = hidden_dropout_prob __a : List[Any] = attention_probs_dropout_prob __a : Dict = max_position_embeddings __a : List[Any] = type_vocab_size __a : List[Any] = initializer_range __a : Dict = layer_norm_eps __a : List[str] = rotary_value __a : Optional[Any] = use_cache class UpperCamelCase__ ( __lowercase ): @property def lowerCAmelCase (self : Union[str, Any] ): if self.task == "multiple-choice": __a : str = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __a : Optional[int] = {0: '''batch''', 1: '''sequence'''} __a : Optional[Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
521
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { """facebook/data2vec-vision-base-ft""": ( """https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json""" ), } class UpperCamelCase_ ( lowercase_ ): '''simple docstring''' a :List[Any] = '''data2vec-vision''' def __init__( self , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3_072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1E-12 , _UpperCAmelCase=224 , _UpperCAmelCase=16 , _UpperCAmelCase=3 , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=True , _UpperCAmelCase=[3, 5, 7, 11] , _UpperCAmelCase=[1, 2, 3, 6] , _UpperCAmelCase=True , _UpperCAmelCase=0.4 , _UpperCAmelCase=256 , _UpperCAmelCase=1 , _UpperCAmelCase=False , _UpperCAmelCase=255 , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase) lowerCAmelCase_ = hidden_size lowerCAmelCase_ = num_hidden_layers lowerCAmelCase_ = num_attention_heads lowerCAmelCase_ = intermediate_size lowerCAmelCase_ = hidden_act lowerCAmelCase_ = hidden_dropout_prob lowerCAmelCase_ = attention_probs_dropout_prob lowerCAmelCase_ = initializer_range lowerCAmelCase_ = layer_norm_eps lowerCAmelCase_ = image_size lowerCAmelCase_ = patch_size lowerCAmelCase_ = num_channels lowerCAmelCase_ = use_mask_token lowerCAmelCase_ = use_absolute_position_embeddings lowerCAmelCase_ = use_relative_position_bias lowerCAmelCase_ = use_shared_relative_position_bias lowerCAmelCase_ = layer_scale_init_value lowerCAmelCase_ = drop_path_rate lowerCAmelCase_ = use_mean_pooling # decode head attributes (semantic segmentation) lowerCAmelCase_ = out_indices lowerCAmelCase_ = pool_scales # auxiliary head attributes (semantic segmentation) lowerCAmelCase_ = use_auxiliary_head lowerCAmelCase_ = auxiliary_loss_weight lowerCAmelCase_ = auxiliary_channels lowerCAmelCase_ = auxiliary_num_convs lowerCAmelCase_ = auxiliary_concat_input lowerCAmelCase_ = semantic_loss_ignore_index class UpperCamelCase_ ( lowercase_ ): '''simple docstring''' a :Optional[int] = version.parse('1.11' ) @property def lowercase__ ( self): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ]) @property def lowercase__ ( self): return 1E-4
720
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/config.json", "umberto-commoncrawl-cased-v1": ( "https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json" ), "umberto-wikipedia-uncased-v1": ( "https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json" ), } class UpperCamelCase_ ( A ): '''simple docstring''' a :Optional[Any] = 'camembert' def __init__( self , _UpperCAmelCase=30_522 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3_072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1E-12 , _UpperCAmelCase=1 , _UpperCAmelCase=0 , _UpperCAmelCase=2 , _UpperCAmelCase="absolute" , _UpperCAmelCase=True , _UpperCAmelCase=None , **_UpperCAmelCase , ): super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase) lowerCAmelCase_ = vocab_size lowerCAmelCase_ = hidden_size lowerCAmelCase_ = num_hidden_layers lowerCAmelCase_ = num_attention_heads lowerCAmelCase_ = hidden_act lowerCAmelCase_ = intermediate_size lowerCAmelCase_ = hidden_dropout_prob lowerCAmelCase_ = attention_probs_dropout_prob lowerCAmelCase_ = max_position_embeddings lowerCAmelCase_ = type_vocab_size lowerCAmelCase_ = initializer_range lowerCAmelCase_ = layer_norm_eps lowerCAmelCase_ = position_embedding_type lowerCAmelCase_ = use_cache lowerCAmelCase_ = classifier_dropout class UpperCamelCase_ ( A ): '''simple docstring''' @property def lowercase__ ( self): if self.task == "multiple-choice": lowerCAmelCase_ = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowerCAmelCase_ = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ])
413
0
"""simple docstring""" import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class UpperCamelCase_ (__A ): __magic_name__ = '''''' __magic_name__ = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) __magic_name__ = None # compression type in fsspec. ex: "gzip" __magic_name__ = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self : List[Any] , lowerCAmelCase_ : str = "" , lowerCAmelCase_ : Optional[str] = None , lowerCAmelCase_ : Optional[dict] = None , **lowerCAmelCase_ : List[str] ) -> List[Any]: super().__init__(self , **lowerCAmelCase_ ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode UpperCAmelCase_ : Dict = fsspec.open( lowerCAmelCase_ , mode="rb" , protocol=lowerCAmelCase_ , compression=self.compression , client_kwargs={ "requote_redirect_url": False, # see https://github.com/huggingface/datasets/pull/5459 "trust_env": True, # Enable reading proxy env variables. **(target_options or {}).pop("client_kwargs" , {} ), # To avoid issues if it was already passed. } , **(target_options or {}) , ) UpperCAmelCase_ : Optional[int] = os.path.basename(self.file.path.split("::" )[0] ) UpperCAmelCase_ : Any = ( self.compressed_name[: self.compressed_name.rindex("." )] if "." in self.compressed_name else self.compressed_name ) UpperCAmelCase_ : Any = None @classmethod def _SCREAMING_SNAKE_CASE ( cls : Optional[Any] , lowerCAmelCase_ : List[str] ) -> Any: # compressed file paths are always relative to the archive root return super()._strip_protocol(lowerCAmelCase_ ).lstrip("/" ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[str]: if self.dir_cache is None: UpperCAmelCase_ : Optional[Any] = {**self.file.fs.info(self.file.path ), "name": self.uncompressed_name} UpperCAmelCase_ : str = {f["name"]: f} def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase_ : str ) -> Any: return self.file.open().read() def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : str = "rb" , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : int=None , **lowerCAmelCase_ : Tuple , ) -> Tuple: UpperCAmelCase_ : List[str] = self._strip_protocol(lowerCAmelCase_ ) if mode != "rb": raise ValueError(f"""Tried to read with mode {mode} on file {self.file.path} opened with mode 'rb'""" ) return self.file.open() class UpperCamelCase_ (__A ): __magic_name__ = '''bz2''' __magic_name__ = '''bz2''' __magic_name__ = '''.bz2''' class UpperCamelCase_ (__A ): __magic_name__ = '''gzip''' __magic_name__ = '''gzip''' __magic_name__ = '''.gz''' class UpperCamelCase_ (__A ): __magic_name__ = '''lz4''' __magic_name__ = '''lz4''' __magic_name__ = '''.lz4''' class UpperCamelCase_ (__A ): __magic_name__ = '''xz''' __magic_name__ = '''xz''' __magic_name__ = '''.xz''' class UpperCamelCase_ (__A ): __magic_name__ = '''zstd''' __magic_name__ = '''zstd''' __magic_name__ = '''.zst''' def __init__( self : Tuple , lowerCAmelCase_ : str , lowerCAmelCase_ : str = "rb" , lowerCAmelCase_ : Optional[str] = None , lowerCAmelCase_ : Optional[dict] = None , lowerCAmelCase_ : int = DEFAULT_BLOCK_SIZE , **lowerCAmelCase_ : List[Any] , ) -> Dict: super().__init__( fo=lowerCAmelCase_ , mode=lowerCAmelCase_ , target_protocol=lowerCAmelCase_ , target_options=lowerCAmelCase_ , block_size=lowerCAmelCase_ , **lowerCAmelCase_ , ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 UpperCAmelCase_ : Optional[Any] = self.file.__enter__ class UpperCamelCase_ : def __init__( self : Tuple , lowerCAmelCase_ : List[Any] ) -> List[Any]: UpperCAmelCase_ : Optional[int] = file_ def __enter__( self : Tuple ) -> List[Any]: self._file.__enter__() return self def __exit__( self : Union[str, Any] , *lowerCAmelCase_ : int , **lowerCAmelCase_ : int ) -> Optional[int]: self._file.__exit__(*lowerCAmelCase_ , **lowerCAmelCase_ ) def __iter__( self : Optional[int] ) -> int: return iter(self._file ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> int: return next(self._file ) def __getattr__( self : Optional[int] , lowerCAmelCase_ : Optional[Any] ) -> List[Any]: return getattr(self._file , lowerCAmelCase_ ) def fixed_enter(*lowerCAmelCase_ : int , **lowerCAmelCase_ : Optional[Any] ): return WrappedFile(_enter(*lowerCAmelCase_ , **lowerCAmelCase_ ) ) UpperCAmelCase_ : List[Any] = fixed_enter
95
from typing import TYPE_CHECKING from ...utils import _LazyModule __SCREAMING_SNAKE_CASE = {'tokenization_bertweet': ['BertweetTokenizer']} if TYPE_CHECKING: from .tokenization_bertweet import BertweetTokenizer else: import sys __SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
220
0
import qiskit def __lowercase ( UpperCAmelCase__ = 2 ): """simple docstring""" __lowerCAmelCase = qubits # Using Aer's simulator __lowerCAmelCase = qiskit.Aer.get_backend('aer_simulator' ) # Creating a Quantum Circuit acting on the q register __lowerCAmelCase = qiskit.QuantumCircuit(UpperCAmelCase__ , UpperCAmelCase__ ) # Adding a H gate on qubit 0 (now q0 in superposition) circuit.h(0 ) for i in range(1 , UpperCAmelCase__ ): # Adding CX (CNOT) gate circuit.cx(i - 1 , UpperCAmelCase__ ) # Mapping the quantum measurement to the classical bits circuit.measure(list(range(UpperCAmelCase__ ) ) , list(range(UpperCAmelCase__ ) ) ) # Now measuring any one qubit would affect other qubits to collapse # their super position and have same state as the measured one. # Executing the circuit on the simulator __lowerCAmelCase = qiskit.execute(UpperCAmelCase__ , UpperCAmelCase__ , shots=1_000 ) return job.result().get_counts(UpperCAmelCase__ ) if __name__ == "__main__": print(F'''Total count for various states are: {quantum_entanglement(3)}''')
703
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class snake_case_ ( _a ): """simple docstring""" __UpperCAmelCase ="""facebook/bart-large-mnli""" __UpperCAmelCase =( """This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which """ """should be the text to classify, and `labels`, which should be the list of labels to use for classification. """ """It returns the most likely label in the list of provided `labels` for the input text.""" ) __UpperCAmelCase ="""text_classifier""" __UpperCAmelCase =AutoTokenizer __UpperCAmelCase =AutoModelForSequenceClassification __UpperCAmelCase =["""text""", ["""text"""]] __UpperCAmelCase =["""text"""] def A__ ( self ): super().setup() __lowerCAmelCase = self.model.config __lowerCAmelCase = -1 for idx, label in config.idalabel.items(): if label.lower().startswith('entail' ): __lowerCAmelCase = int(_A ) if self.entailment_id == -1: raise ValueError('Could not determine the entailment ID from the model config, please pass it at init.' ) def A__ ( self , _A , _A ): __lowerCAmelCase = labels return self.pre_processor( [text] * len(_A ) , [F"""This example is {label}""" for label in labels] , return_tensors='pt' , padding='max_length' , ) def A__ ( self , _A ): __lowerCAmelCase = outputs.logits __lowerCAmelCase = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
102
0
'''simple docstring''' import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class __SCREAMING_SNAKE_CASE : """simple docstring""" @staticmethod def _a ( *UpperCamelCase__ , **UpperCamelCase__ ): """simple docstring""" pass def __UpperCamelCase ( lowercase_ : List[str] ): """simple docstring""" return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. __lowerCAmelCase = ( "https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png" ) @is_pipeline_test @require_torch @require_vision class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" _a : Tuple = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def _a ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" a_ = pipeline( 'document-question-answering' , model=A_ , tokenizer=A_ , image_processor=A_ ) a_ = INVOICE_URL a_ = list(zip(*apply_tesseract(load_image(A_ ) , A_ , '' ) ) ) a_ = 'What is the placebo?' a_ = [ { 'image': load_image(A_ ), 'question': question, }, { 'image': image, 'question': question, }, { 'image': image, 'question': question, 'word_boxes': word_boxes, }, ] return dqa_pipeline, examples def _a ( self , UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" a_ = dqa_pipeline(A_ , top_k=2 ) self.assertEqual( A_ , [ [ {'score': ANY(A_ ), 'answer': ANY(A_ ), 'start': ANY(A_ ), 'end': ANY(A_ )}, {'score': ANY(A_ ), 'answer': ANY(A_ ), 'start': ANY(A_ ), 'end': ANY(A_ )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def _a ( self ): """simple docstring""" a_ = pipeline('document-question-answering' , model='hf-internal-testing/tiny-random-layoutlmv2' ) a_ = INVOICE_URL a_ = 'How many cats are there?' a_ = [ {'score': 0.0_001, 'answer': 'oy 2312/2019', 'start': 38, 'end': 39}, {'score': 0.0_001, 'answer': 'oy 2312/2019 DUE', 'start': 38, 'end': 40}, ] a_ = dqa_pipeline(image=A_ , question=A_ , top_k=2 ) self.assertEqual(nested_simplify(A_ , decimals=4 ) , A_ ) a_ = dqa_pipeline({'image': image, 'question': question} , top_k=2 ) self.assertEqual(nested_simplify(A_ , decimals=4 ) , A_ ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably a_ = './tests/fixtures/tests_samples/COCO/000000039769.png' a_ = dqa_pipeline(image=A_ , question=A_ , top_k=2 ) self.assertEqual(A_ , [] ) # We can optionnally pass directly the words and bounding boxes a_ = './tests/fixtures/tests_samples/COCO/000000039769.png' a_ = [] a_ = [] a_ = dqa_pipeline(image=A_ , question=A_ , words=A_ , boxes=A_ , top_k=2 ) self.assertEqual(A_ , [] ) @slow @require_torch @require_detectrona @require_pytesseract def _a ( self ): """simple docstring""" a_ = pipeline( 'document-question-answering' , model='tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa' , revision='9977165' , ) a_ = INVOICE_URL a_ = 'What is the invoice number?' a_ = dqa_pipeline(image=A_ , question=A_ , top_k=2 ) self.assertEqual( nested_simplify(A_ , decimals=4 ) , [ {'score': 0.9_944, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.0_009, 'answer': 'us-001', 'start': 16, 'end': 16}, ] , ) a_ = dqa_pipeline({'image': image, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(A_ , decimals=4 ) , [ {'score': 0.9_944, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.0_009, 'answer': 'us-001', 'start': 16, 'end': 16}, ] , ) a_ = dqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] , top_k=2 ) self.assertEqual( nested_simplify(A_ , decimals=4 ) , [ [ {'score': 0.9_944, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.0_009, 'answer': 'us-001', 'start': 16, 'end': 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def _a ( self ): """simple docstring""" a_ = pipeline( 'document-question-answering' , model='tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa' , revision='9977165' , max_seq_len=50 , ) a_ = INVOICE_URL a_ = 'What is the invoice number?' a_ = dqa_pipeline(image=A_ , question=A_ , top_k=2 ) self.assertEqual( nested_simplify(A_ , decimals=4 ) , [ {'score': 0.9_974, 'answer': '1110212019', 'start': 23, 'end': 23}, {'score': 0.9_948, 'answer': 'us-001', 'start': 16, 'end': 16}, ] , ) a_ = dqa_pipeline({'image': image, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(A_ , decimals=4 ) , [ {'score': 0.9_974, 'answer': '1110212019', 'start': 23, 'end': 23}, {'score': 0.9_948, 'answer': 'us-001', 'start': 16, 'end': 16}, ] , ) a_ = dqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] , top_k=2 ) self.assertEqual( nested_simplify(A_ , decimals=4 ) , [ [ {'score': 0.9_974, 'answer': '1110212019', 'start': 23, 'end': 23}, {'score': 0.9_948, 'answer': 'us-001', 'start': 16, 'end': 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def _a ( self ): """simple docstring""" a_ = AutoTokenizer.from_pretrained( 'impira/layoutlm-document-qa' , revision='3dc6de3' , add_prefix_space=A_ ) a_ = pipeline( 'document-question-answering' , model='impira/layoutlm-document-qa' , tokenizer=A_ , revision='3dc6de3' , ) a_ = INVOICE_URL a_ = 'What is the invoice number?' a_ = dqa_pipeline(image=A_ , question=A_ , top_k=2 ) self.assertEqual( nested_simplify(A_ , decimals=4 ) , [ {'score': 0.4_251, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.0_819, 'answer': '1110212019', 'start': 23, 'end': 23}, ] , ) a_ = dqa_pipeline({'image': image, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(A_ , decimals=4 ) , [ {'score': 0.4_251, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.0_819, 'answer': '1110212019', 'start': 23, 'end': 23}, ] , ) a_ = dqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] , top_k=2 ) self.assertEqual( nested_simplify(A_ , decimals=4 ) , [ [ {'score': 0.4_251, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.0_819, 'answer': '1110212019', 'start': 23, 'end': 23}, ] ] * 2 , ) a_ = list(zip(*apply_tesseract(load_image(A_ ) , A_ , '' ) ) ) # This model should also work if `image` is set to None a_ = dqa_pipeline({'image': None, 'word_boxes': word_boxes, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(A_ , decimals=4 ) , [ {'score': 0.4_251, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.0_819, 'answer': '1110212019', 'start': 23, 'end': 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def _a ( self ): """simple docstring""" a_ = AutoTokenizer.from_pretrained( 'impira/layoutlm-document-qa' , revision='3dc6de3' , add_prefix_space=A_ ) a_ = pipeline( 'document-question-answering' , model='impira/layoutlm-document-qa' , tokenizer=A_ , revision='3dc6de3' , max_seq_len=50 , ) a_ = INVOICE_URL a_ = 'What is the invoice number?' a_ = dqa_pipeline(image=A_ , question=A_ , top_k=2 ) self.assertEqual( nested_simplify(A_ , decimals=4 ) , [ {'score': 0.9_999, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.9_998, 'answer': 'us-001', 'start': 16, 'end': 16}, ] , ) a_ = dqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] , top_k=2 ) self.assertEqual( nested_simplify(A_ , decimals=4 ) , [ [ {'score': 0.9_999, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.9_998, 'answer': 'us-001', 'start': 16, 'end': 16}, ] ] * 2 , ) a_ = list(zip(*apply_tesseract(load_image(A_ ) , A_ , '' ) ) ) # This model should also work if `image` is set to None a_ = dqa_pipeline({'image': None, 'word_boxes': word_boxes, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(A_ , decimals=4 ) , [ {'score': 0.9_999, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.9_998, 'answer': 'us-001', 'start': 16, 'end': 16}, ] , ) @slow @require_torch def _a ( self ): """simple docstring""" a_ = pipeline( 'document-question-answering' , model='naver-clova-ix/donut-base-finetuned-docvqa' , tokenizer=AutoTokenizer.from_pretrained('naver-clova-ix/donut-base-finetuned-docvqa' ) , feature_extractor='naver-clova-ix/donut-base-finetuned-docvqa' , ) a_ = INVOICE_URL a_ = 'What is the invoice number?' a_ = dqa_pipeline(image=A_ , question=A_ , top_k=2 ) self.assertEqual(nested_simplify(A_ , decimals=4 ) , [{'answer': 'us-001'}] ) @require_tf @unittest.skip('Document question answering not implemented in TF' ) def _a ( self ): """simple docstring""" pass
536
import os import unittest from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, BertTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class A( UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = BertTokenizer UpperCamelCase = BertTokenizerFast UpperCamelCase = True UpperCamelCase = True UpperCamelCase = filter_non_english def a__ ( self : List[Any] ) -> int: """simple docstring""" super().setUp() lowerCamelCase_ = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def a__ ( self : Tuple , A_ : List[str] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = 'UNwant\u00E9d,running' lowerCamelCase_ = 'unwanted, running' return input_text, output_text def a__ ( self : Any ) -> Tuple: """simple docstring""" lowerCamelCase_ = self.tokenizer_class(self.vocab_file ) lowerCamelCase_ = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(A_ , ['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A_ ) , [9, 6, 7, 12, 10, 11] ) def a__ ( self : Tuple ) -> List[str]: """simple docstring""" if not self.test_rust_tokenizer: return lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = self.get_rust_tokenizer() lowerCamelCase_ = 'UNwant\u00E9d,running' lowerCamelCase_ = tokenizer.tokenize(A_ ) lowerCamelCase_ = rust_tokenizer.tokenize(A_ ) self.assertListEqual(A_ , A_ ) lowerCamelCase_ = tokenizer.encode(A_ , add_special_tokens=A_ ) lowerCamelCase_ = rust_tokenizer.encode(A_ , add_special_tokens=A_ ) self.assertListEqual(A_ , A_ ) lowerCamelCase_ = self.get_rust_tokenizer() lowerCamelCase_ = tokenizer.encode(A_ ) lowerCamelCase_ = rust_tokenizer.encode(A_ ) self.assertListEqual(A_ , A_ ) # With lower casing lowerCamelCase_ = self.get_tokenizer(do_lower_case=A_ ) lowerCamelCase_ = self.get_rust_tokenizer(do_lower_case=A_ ) lowerCamelCase_ = 'UNwant\u00E9d,running' lowerCamelCase_ = tokenizer.tokenize(A_ ) lowerCamelCase_ = rust_tokenizer.tokenize(A_ ) self.assertListEqual(A_ , A_ ) lowerCamelCase_ = tokenizer.encode(A_ , add_special_tokens=A_ ) lowerCamelCase_ = rust_tokenizer.encode(A_ , add_special_tokens=A_ ) self.assertListEqual(A_ , A_ ) lowerCamelCase_ = self.get_rust_tokenizer() lowerCamelCase_ = tokenizer.encode(A_ ) lowerCamelCase_ = rust_tokenizer.encode(A_ ) self.assertListEqual(A_ , A_ ) def a__ ( self : Any ) -> Dict: """simple docstring""" lowerCamelCase_ = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) , ['ah', '\u535A', '\u63A8', 'zz'] ) def a__ ( self : Dict ) -> int: """simple docstring""" lowerCamelCase_ = BasicTokenizer(do_lower_case=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def a__ ( self : str ) -> int: """simple docstring""" lowerCamelCase_ = BasicTokenizer(do_lower_case=A_ , strip_accents=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hällo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['h\u00E9llo'] ) def a__ ( self : Optional[int] ) -> Any: """simple docstring""" lowerCamelCase_ = BasicTokenizer(do_lower_case=A_ , strip_accents=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def a__ ( self : Tuple ) -> str: """simple docstring""" lowerCamelCase_ = BasicTokenizer(do_lower_case=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def a__ ( self : int ) -> List[Any]: """simple docstring""" lowerCamelCase_ = BasicTokenizer(do_lower_case=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def a__ ( self : str ) -> List[str]: """simple docstring""" lowerCamelCase_ = BasicTokenizer(do_lower_case=A_ , strip_accents=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HäLLo', '!', 'how', 'Are', 'yoU', '?'] ) def a__ ( self : Dict ) -> Any: """simple docstring""" lowerCamelCase_ = BasicTokenizer(do_lower_case=A_ , strip_accents=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] ) def a__ ( self : int ) -> Any: """simple docstring""" lowerCamelCase_ = BasicTokenizer(do_lower_case=A_ , never_split=['[UNK]'] ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] ) def a__ ( self : List[Any] ) -> int: """simple docstring""" lowerCamelCase_ = BasicTokenizer() lowerCamelCase_ = 'a\n\'ll !!to?\'d of, can\'t.' lowerCamelCase_ = ['a', '\'', 'll', '!', '!', 'to', '?', '\'', 'd', 'of', ',', 'can', '\'', 't', '.'] self.assertListEqual(tokenizer.tokenize(A_ ) , A_ ) def a__ ( self : Optional[int] ) -> Dict: """simple docstring""" lowerCamelCase_ = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] lowerCamelCase_ = {} for i, token in enumerate(A_ ): lowerCamelCase_ = i lowerCamelCase_ = WordpieceTokenizer(vocab=A_ , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('unwanted running' ) , ['un', '##want', '##ed', 'runn', '##ing'] ) self.assertListEqual(tokenizer.tokenize('unwantedX running' ) , ['[UNK]', 'runn', '##ing'] ) def a__ ( self : Optional[Any] ) -> str: """simple docstring""" self.assertTrue(_is_whitespace(' ' ) ) self.assertTrue(_is_whitespace('\t' ) ) self.assertTrue(_is_whitespace('\r' ) ) self.assertTrue(_is_whitespace('\n' ) ) self.assertTrue(_is_whitespace('\u00A0' ) ) self.assertFalse(_is_whitespace('A' ) ) self.assertFalse(_is_whitespace('-' ) ) def a__ ( self : List[Any] ) -> int: """simple docstring""" self.assertTrue(_is_control('\u0005' ) ) self.assertFalse(_is_control('A' ) ) self.assertFalse(_is_control(' ' ) ) self.assertFalse(_is_control('\t' ) ) self.assertFalse(_is_control('\r' ) ) def a__ ( self : List[str] ) -> Optional[Any]: """simple docstring""" self.assertTrue(_is_punctuation('-' ) ) self.assertTrue(_is_punctuation('$' ) ) self.assertTrue(_is_punctuation('`' ) ) self.assertTrue(_is_punctuation('.' ) ) self.assertFalse(_is_punctuation('A' ) ) self.assertFalse(_is_punctuation(' ' ) ) def a__ ( self : int ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(A_ ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) self.assertListEqual( [rust_tokenizer.tokenize(A_ ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) @slow def a__ ( self : Any ) -> int: """simple docstring""" lowerCamelCase_ = self.tokenizer_class.from_pretrained('bert-base-uncased' ) lowerCamelCase_ = tokenizer.encode('sequence builders' , add_special_tokens=A_ ) lowerCamelCase_ = tokenizer.encode('multi-sequence build' , add_special_tokens=A_ ) lowerCamelCase_ = tokenizer.build_inputs_with_special_tokens(A_ ) lowerCamelCase_ = tokenizer.build_inputs_with_special_tokens(A_ , A_ ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def a__ ( self : str ) -> str: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained(A_ , **A_ ) lowerCamelCase_ = f"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence.""" lowerCamelCase_ = tokenizer_r.encode_plus( A_ , return_attention_mask=A_ , return_token_type_ids=A_ , return_offsets_mapping=A_ , add_special_tokens=A_ , ) lowerCamelCase_ = tokenizer_r.do_lower_case if hasattr(A_ , 'do_lower_case' ) else False lowerCamelCase_ = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'A'), ((1, 2), ','), ((3, 5), 'na'), ((5, 6), '##ï'), ((6, 8), '##ve'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'Allen'), ((21, 23), '##NL'), ((23, 24), '##P'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'a'), ((1, 2), ','), ((3, 8), 'naive'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'allen'), ((21, 23), '##nl'), ((23, 24), '##p'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['input_ids'] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['offset_mapping'] ) def a__ ( self : List[Any] ) -> Dict: """simple docstring""" lowerCamelCase_ = ['的', '人', '有'] lowerCamelCase_ = ''.join(A_ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowerCamelCase_ = True lowerCamelCase_ = self.tokenizer_class.from_pretrained(A_ , **A_ ) lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained(A_ , **A_ ) lowerCamelCase_ = tokenizer_p.encode(A_ , add_special_tokens=A_ ) lowerCamelCase_ = tokenizer_r.encode(A_ , add_special_tokens=A_ ) lowerCamelCase_ = tokenizer_r.convert_ids_to_tokens(A_ ) lowerCamelCase_ = tokenizer_p.convert_ids_to_tokens(A_ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(A_ , A_ ) self.assertListEqual(A_ , A_ ) lowerCamelCase_ = False lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained(A_ , **A_ ) lowerCamelCase_ = self.tokenizer_class.from_pretrained(A_ , **A_ ) lowerCamelCase_ = tokenizer_r.encode(A_ , add_special_tokens=A_ ) lowerCamelCase_ = tokenizer_p.encode(A_ , add_special_tokens=A_ ) lowerCamelCase_ = tokenizer_r.convert_ids_to_tokens(A_ ) lowerCamelCase_ = tokenizer_p.convert_ids_to_tokens(A_ ) # it is expected that only the first Chinese character is not preceded by "##". lowerCamelCase_ = [ f"""##{token}""" if idx != 0 else token for idx, token in enumerate(A_ ) ] self.assertListEqual(A_ , A_ ) self.assertListEqual(A_ , A_ )
70
0
'''simple docstring''' import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def lowerCAmelCase_ ( ): '''simple docstring''' snake_case: Optional[int] = 'https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png' snake_case: str = Image.open(requests.get(__A , stream=__A ).raw ).convert('RGB' ) return image def lowerCAmelCase_ ( __A : Dict ): '''simple docstring''' snake_case: List[Any] = [] # fmt: off # vision encoder rename_keys.append(('visual_encoder.cls_token', 'vision_model.embeddings.class_embedding') ) rename_keys.append(('visual_encoder.pos_embed', 'vision_model.embeddings.position_embedding') ) rename_keys.append(('visual_encoder.patch_embed.proj.weight', 'vision_model.embeddings.patch_embedding.weight') ) rename_keys.append(('visual_encoder.patch_embed.proj.bias', 'vision_model.embeddings.patch_embedding.bias') ) rename_keys.append(('ln_vision.weight', 'vision_model.post_layernorm.weight') ) rename_keys.append(('ln_vision.bias', 'vision_model.post_layernorm.bias') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((f"""visual_encoder.blocks.{i}.norm1.weight""", f"""vision_model.encoder.layers.{i}.layer_norm1.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.norm1.bias""", f"""vision_model.encoder.layers.{i}.layer_norm1.bias""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.norm2.weight""", f"""vision_model.encoder.layers.{i}.layer_norm2.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.norm2.bias""", f"""vision_model.encoder.layers.{i}.layer_norm2.bias""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.attn.qkv.weight""", f"""vision_model.encoder.layers.{i}.self_attn.qkv.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.attn.proj.weight""", f"""vision_model.encoder.layers.{i}.self_attn.projection.weight""",) ) rename_keys.append((f"""visual_encoder.blocks.{i}.attn.proj.bias""", f"""vision_model.encoder.layers.{i}.self_attn.projection.bias""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.mlp.fc1.weight""", f"""vision_model.encoder.layers.{i}.mlp.fc1.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.mlp.fc1.bias""", f"""vision_model.encoder.layers.{i}.mlp.fc1.bias""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.mlp.fc2.weight""", f"""vision_model.encoder.layers.{i}.mlp.fc2.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.mlp.fc2.bias""", f"""vision_model.encoder.layers.{i}.mlp.fc2.bias""") ) # QFormer rename_keys.append(('Qformer.bert.embeddings.LayerNorm.weight', 'qformer.layernorm.weight') ) rename_keys.append(('Qformer.bert.embeddings.LayerNorm.bias', 'qformer.layernorm.bias') ) # fmt: on return rename_keys def lowerCAmelCase_ ( __A : str , __A : List[str] , __A : Dict ): '''simple docstring''' snake_case: List[Any] = dct.pop(__A ) snake_case: int = val def lowerCAmelCase_ ( __A : Union[str, Any] , __A : List[Any] ): '''simple docstring''' for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases snake_case: List[Any] = state_dict.pop(f"""visual_encoder.blocks.{i}.attn.q_bias""" ) snake_case: Dict = state_dict.pop(f"""visual_encoder.blocks.{i}.attn.v_bias""" ) # next, set bias in the state dict snake_case: Dict = torch.cat((q_bias, torch.zeros_like(__A , requires_grad=__A ), v_bias) ) snake_case: Union[str, Any] = qkv_bias def lowerCAmelCase_ ( __A : Any , __A : Tuple ): '''simple docstring''' snake_case: str = 3_64 if 'coco' in model_name else 2_24 snake_case: Optional[Any] = BlipaVisionConfig(image_size=__A ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: snake_case: Any = OPTConfig.from_pretrained('facebook/opt-2.7b' , eos_token_id=__A ).to_dict() elif "opt-6.7b" in model_name: snake_case: List[str] = OPTConfig.from_pretrained('facebook/opt-6.7b' , eos_token_id=__A ).to_dict() elif "t5-xl" in model_name: snake_case: Optional[int] = TaConfig.from_pretrained('google/flan-t5-xl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: snake_case: Optional[int] = TaConfig.from_pretrained('google/flan-t5-xxl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() snake_case: Optional[Any] = BlipaConfig(vision_config=__A , text_config=__A ) return config, image_size @torch.no_grad() def lowerCAmelCase_ ( __A : List[str] , __A : str=None , __A : List[Any]=False ): '''simple docstring''' snake_case: Optional[Any] = ( AutoTokenizer.from_pretrained('facebook/opt-2.7b' ) if 'opt' in model_name else AutoTokenizer.from_pretrained('google/flan-t5-xl' ) ) snake_case: Optional[int] = tokenizer('\n' , add_special_tokens=__A ).input_ids[0] snake_case: str = get_blipa_config(__A , eos_token_id=__A ) snake_case: Union[str, Any] = BlipaForConditionalGeneration(__A ).eval() snake_case: List[Any] = { 'blip2-opt-2.7b': ('blip2_opt', 'pretrain_opt2.7b'), 'blip2-opt-6.7b': ('blip2_opt', 'pretrain_opt6.7b'), 'blip2-opt-2.7b-coco': ('blip2_opt', 'caption_coco_opt2.7b'), 'blip2-opt-6.7b-coco': ('blip2_opt', 'caption_coco_opt6.7b'), 'blip2-flan-t5-xl': ('blip2_t5', 'pretrain_flant5xl'), 'blip2-flan-t5-xl-coco': ('blip2_t5', 'caption_coco_flant5xl'), 'blip2-flan-t5-xxl': ('blip2_t5', 'pretrain_flant5xxl'), } snake_case: Optional[int] = model_name_to_original[model_name] # load original model print('Loading original model...' ) snake_case: List[Any] = 'cuda' if torch.cuda.is_available() else 'cpu' snake_case: Union[str, Any] = load_model_and_preprocess( name=__A , model_type=__A , is_eval=__A , device=__A ) original_model.eval() print('Done!' ) # update state dict keys snake_case: Optional[int] = original_model.state_dict() snake_case: List[str] = create_rename_keys(__A ) for src, dest in rename_keys: rename_key(__A , __A , __A ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): snake_case: Union[str, Any] = state_dict.pop(__A ) if key.startswith('Qformer.bert' ): snake_case: str = key.replace('Qformer.bert' , 'qformer' ) if "attention.self" in key: snake_case: Optional[Any] = key.replace('self' , 'attention' ) if "opt_proj" in key: snake_case: Tuple = key.replace('opt_proj' , 'language_projection' ) if "t5_proj" in key: snake_case: List[Any] = key.replace('t5_proj' , 'language_projection' ) if key.startswith('opt' ): snake_case: List[Any] = key.replace('opt' , 'language' ) if key.startswith('t5' ): snake_case: List[Any] = key.replace('t5' , 'language' ) snake_case: Tuple = val # read in qv biases read_in_q_v_bias(__A , __A ) snake_case: Optional[int] = hf_model.load_state_dict(__A , strict=__A ) assert len(__A ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] snake_case: Union[str, Any] = load_demo_image() snake_case: Tuple = vis_processors['eval'](__A ).unsqueeze(0 ).to(__A ) snake_case: Optional[Any] = tokenizer(['\n'] , return_tensors='pt' ).input_ids.to(__A ) # create processor snake_case: Dict = BlipImageProcessor( size={'height': image_size, 'width': image_size} , image_mean=__A , image_std=__A ) snake_case: Any = BlipaProcessor(image_processor=__A , tokenizer=__A ) snake_case: str = processor(images=__A , return_tensors='pt' ).pixel_values.to(__A ) # make sure processor creates exact same pixel values assert torch.allclose(__A , __A ) original_model.to(__A ) hf_model.to(__A ) with torch.no_grad(): if "opt" in model_name: snake_case: Dict = original_model({'image': original_pixel_values, 'text_input': ['']} ).logits snake_case: List[Any] = hf_model(__A , __A ).logits else: snake_case: List[str] = original_model( {'image': original_pixel_values, 'text_input': ['\n'], 'text_output': ['\n']} ).logits snake_case: Dict = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -1_00 ) snake_case: str = hf_model(__A , __A , labels=__A ).logits assert original_logits.shape == logits.shape print('First values of original logits:' , original_logits[0, :3, :3] ) print('First values of HF logits:' , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": snake_case: List[str] = torch.tensor( [[-41.58_50, -4.44_40, -8.99_22], [-47.43_22, -5.91_43, -1.73_40]] , device=__A ) assert torch.allclose(logits[0, :3, :3] , __A , atol=1E-4 ) elif model_name == "blip2-flan-t5-xl-coco": snake_case: str = torch.tensor( [[-57.01_09, -9.89_67, -12.62_80], [-68.65_78, -12.71_91, -10.50_65]] , device=__A ) else: # cast to same type snake_case: Tuple = logits.dtype assert torch.allclose(original_logits.to(__A ) , __A , atol=1E-2 ) print('Looks ok!' ) print('Generating a caption...' ) snake_case: Optional[int] = '' snake_case: Union[str, Any] = tokenizer(__A , return_tensors='pt' ).input_ids.to(__A ) snake_case: List[Any] = original_model.generate({'image': original_pixel_values} ) snake_case: Optional[Any] = hf_model.generate( __A , __A , do_sample=__A , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print('Original generation:' , __A ) snake_case: List[str] = input_ids.shape[1] snake_case: Dict = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=__A ) snake_case: Any = [text.strip() for text in output_text] print('HF generation:' , __A ) if pytorch_dump_folder_path is not None: processor.save_pretrained(__A ) hf_model.save_pretrained(__A ) if push_to_hub: processor.push_to_hub(f"""nielsr/{model_name}""" ) hf_model.push_to_hub(f"""nielsr/{model_name}""" ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() __UpperCAmelCase = [ "blip2-opt-2.7b", "blip2-opt-6.7b", "blip2-opt-2.7b-coco", "blip2-opt-6.7b-coco", "blip2-flan-t5-xl", "blip2-flan-t5-xl-coco", "blip2-flan-t5-xxl", ] parser.add_argument( "--model_name", default="blip2-opt-2.7b", choices=choices, type=str, help="Path to hf config.json of model to convert", ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model and processor to the hub after converting", ) __UpperCAmelCase = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
711
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = "▁" __UpperCAmelCase = {"vocab_file": "sentencepiece.bpe.model"} __UpperCAmelCase = { "vocab_file": { "facebook/xglm-564M": "https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model", } } __UpperCAmelCase = { "facebook/xglm-564M": 2_048, } class SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = ["input_ids", "attention_mask"] def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__="<s>" , SCREAMING_SNAKE_CASE__="</s>" , SCREAMING_SNAKE_CASE__="</s>" , SCREAMING_SNAKE_CASE__="<s>" , SCREAMING_SNAKE_CASE__="<unk>" , SCREAMING_SNAKE_CASE__="<pad>" , SCREAMING_SNAKE_CASE__ = None , **SCREAMING_SNAKE_CASE__ , ): '''simple docstring''' snake_case: Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer snake_case: Optional[Any] = 7 snake_case: List[str] = [F"""<madeupword{i}>""" for i in range(self.num_madeup_words )] snake_case: str = kwargs.get('additional_special_tokens' , [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , cls_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , sp_model_kwargs=self.sp_model_kwargs , **SCREAMING_SNAKE_CASE__ , ) snake_case: int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(SCREAMING_SNAKE_CASE__ ) ) snake_case: int = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab snake_case: Tuple = 1 # Mimic fairseq token-to-id alignment for the first 4 token snake_case: Optional[Any] = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} snake_case: Union[str, Any] = len(self.sp_model ) snake_case: str = {F"""<madeupword{i}>""": sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(SCREAMING_SNAKE_CASE__ ) snake_case: Union[str, Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ): '''simple docstring''' snake_case: List[Any] = self.__dict__.copy() snake_case: Union[str, Any] = None snake_case: Union[str, Any] = self.sp_model.serialized_model_proto() return state def __setstate__( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Optional[int] = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): snake_case: Union[str, Any] = {} snake_case: Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ): '''simple docstring''' if token_ids_a is None: return [self.sep_token_id] + token_ids_a snake_case: Optional[Any] = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE__ , token_ids_a=SCREAMING_SNAKE_CASE__ , already_has_special_tokens=SCREAMING_SNAKE_CASE__ ) if token_ids_a is None: return [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) return [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1, 1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ): '''simple docstring''' snake_case: int = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def _UpperCamelCase ( self ): '''simple docstring''' return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return self.sp_model.encode(SCREAMING_SNAKE_CASE__ , out_type=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] snake_case: Dict = self.sp_model.PieceToId(SCREAMING_SNAKE_CASE__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Optional[Any] = ''.join(SCREAMING_SNAKE_CASE__ ).replace(SCREAMING_SNAKE_CASE__ , ' ' ).strip() return out_string def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ): '''simple docstring''' if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case: List[str] = os.path.join( SCREAMING_SNAKE_CASE__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE__ ) elif not os.path.isfile(self.vocab_file ): with open(SCREAMING_SNAKE_CASE__ , 'wb' ) as fi: snake_case: int = self.sp_model.serialized_model_proto() fi.write(SCREAMING_SNAKE_CASE__ ) return (out_vocab_file,)
692
0
"""simple docstring""" from __future__ import annotations import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTForImageClassification, TFViTModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __lowerCAmelCase : '''simple docstring''' def __init__( self , _a , _a=13 , _a=30 , _a=2 , _a=3 , _a=True , _a=True , _a=32 , _a=2 , _a=4 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=10 , _a=0.02 , _a=3 , _a=None , ): __a = parent __a = batch_size __a = image_size __a = patch_size __a = num_channels __a = is_training __a = use_labels __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = intermediate_size __a = hidden_act __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = type_sequence_label_size __a = initializer_range __a = scope # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __a = (image_size // patch_size) ** 2 __a = num_patches + 1 def __UpperCAmelCase ( self ): __a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __a = None if self.use_labels: __a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __a = self.get_config() return config, pixel_values, labels def __UpperCAmelCase ( self ): return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case_ , initializer_range=self.initializer_range , ) def __UpperCAmelCase ( self , _a , _a , _a ): __a = TFViTModel(config=snake_case_ ) __a = model(snake_case_ , training=snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # Test with an image with different size than the one specified in config. __a = self.image_size // 2 __a = pixel_values[:, :, :image_size, :image_size] __a = model(snake_case_ , interpolate_pos_encoding=snake_case_ , training=snake_case_ ) __a = (image_size // self.patch_size) ** 2 + 1 self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, seq_length, self.hidden_size) ) def __UpperCAmelCase ( self , _a , _a , _a ): __a = self.type_sequence_label_size __a = TFViTForImageClassification(snake_case_ ) __a = model(snake_case_ , labels=snake_case_ , training=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # Test with an image with different size than the one specified in config. __a = self.image_size // 2 __a = pixel_values[:, :, :image_size, :image_size] __a = model(snake_case_ , interpolate_pos_encoding=snake_case_ , training=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __a = 1 __a = TFViTForImageClassification(snake_case_ ) __a = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __a = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __UpperCAmelCase ( self ): __a = self.prepare_config_and_inputs() __a , __a , __a = config_and_inputs __a = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : str = (TFViTModel, TFViTForImageClassification) if is_tf_available() else () __UpperCAmelCase : Optional[Any] = ( {'feature-extraction': TFViTModel, 'image-classification': TFViTForImageClassification} if is_tf_available() else {} ) __UpperCAmelCase : List[str] = False __UpperCAmelCase : List[str] = False __UpperCAmelCase : List[str] = False def __UpperCAmelCase ( self ): __a = TFViTModelTester(self ) __a = ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ , hidden_size=37 ) def __UpperCAmelCase ( self ): self.config_tester.run_common_tests() @unittest.skip(reason='''ViT does not use inputs_embeds''' ) def __UpperCAmelCase ( self ): pass @unittest.skip(reason='''ViT does not use inputs_embeds''' ) def __UpperCAmelCase ( self ): pass def __UpperCAmelCase ( self ): __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a = model_class(snake_case_ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) __a = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case_ , tf.keras.layers.Layer ) ) def __UpperCAmelCase ( self ): __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a = model_class(snake_case_ ) __a = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __a = [*signature.parameters.keys()] __a = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , snake_case_ ) def __UpperCAmelCase ( self ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def __UpperCAmelCase ( self ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case_ ) @slow def __UpperCAmelCase ( self ): __a = TFViTModel.from_pretrained('''google/vit-base-patch16-224''' ) self.assertIsNotNone(snake_case_ ) def lowercase ( ) -> Tuple: __a = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def __UpperCAmelCase ( self ): return ViTImageProcessor.from_pretrained('''google/vit-base-patch16-224''' ) if is_vision_available() else None @slow def __UpperCAmelCase ( self ): __a = TFViTForImageClassification.from_pretrained('''google/vit-base-patch16-224''' ) __a = self.default_image_processor __a = prepare_img() __a = image_processor(images=snake_case_ , return_tensors='''tf''' ) # forward pass __a = model(**snake_case_ ) # verify the logits __a = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , snake_case_ ) __a = tf.constant([-0.2744, 0.8215, -0.0836] ) tf.debugging.assert_near(outputs.logits[0, :3] , snake_case_ , atol=1E-4 )
695
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class __a : def __init__( self : List[Any] , snake_case_ : Union[str, Any] , snake_case_ : Tuple=13 , snake_case_ : Optional[int]=10 , snake_case_ : str=3 , snake_case_ : Optional[int]=2 , snake_case_ : List[Any]=2 , snake_case_ : int=2 , snake_case_ : Any=True , snake_case_ : Optional[Any]=True , snake_case_ : List[str]=32 , snake_case_ : Any=5 , snake_case_ : List[Any]=4 , snake_case_ : Optional[Any]=37 , snake_case_ : Tuple="gelu" , snake_case_ : str=0.1 , snake_case_ : Any=0.1 , snake_case_ : List[Any]=10 , snake_case_ : Tuple=0.0_2 , snake_case_ : List[str]=0.9 , snake_case_ : List[Any]=None , )-> Tuple: __lowerCAmelCase =parent __lowerCAmelCase =batch_size __lowerCAmelCase =image_size __lowerCAmelCase =num_channels __lowerCAmelCase =patch_size __lowerCAmelCase =tubelet_size __lowerCAmelCase =num_frames __lowerCAmelCase =is_training __lowerCAmelCase =use_labels __lowerCAmelCase =hidden_size __lowerCAmelCase =num_hidden_layers __lowerCAmelCase =num_attention_heads __lowerCAmelCase =intermediate_size __lowerCAmelCase =hidden_act __lowerCAmelCase =hidden_dropout_prob __lowerCAmelCase =attention_probs_dropout_prob __lowerCAmelCase =type_sequence_label_size __lowerCAmelCase =initializer_range __lowerCAmelCase =mask_ratio __lowerCAmelCase =scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame __lowerCAmelCase =(image_size // patch_size) ** 2 __lowerCAmelCase =(num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos __lowerCAmelCase =int(mask_ratio * self.seq_length) def UpperCamelCase ( self : Any)-> int: __lowerCAmelCase =floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size]) __lowerCAmelCase =None if self.use_labels: __lowerCAmelCase =ids_tensor([self.batch_size] , self.type_sequence_label_size) __lowerCAmelCase =self.get_config() return config, pixel_values, labels def UpperCamelCase ( self : Optional[int])-> List[str]: return VideoMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , tubelet_size=self.tubelet_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case_ , initializer_range=self.initializer_range , ) def UpperCamelCase ( self : Optional[Any] , snake_case_ : str , snake_case_ : List[Any] , snake_case_ : Union[str, Any])-> Union[str, Any]: __lowerCAmelCase =VideoMAEModel(config=snake_case_) model.to(snake_case_) model.eval() __lowerCAmelCase =model(snake_case_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def UpperCamelCase ( self : Any , snake_case_ : Union[str, Any] , snake_case_ : List[Any] , snake_case_ : Tuple)-> Optional[int]: __lowerCAmelCase =VideoMAEForPreTraining(snake_case_) model.to(snake_case_) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch __lowerCAmelCase =torch.ones((self.num_masks,)) __lowerCAmelCase =torch.cat([mask, torch.zeros(self.seq_length - mask.size(0))]) __lowerCAmelCase =mask.expand(self.batch_size , -1).bool() __lowerCAmelCase =model(snake_case_ , snake_case_) # model only returns predictions for masked patches __lowerCAmelCase =mask.sum().item() __lowerCAmelCase =3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_masked_patches, decoder_num_labels)) def UpperCamelCase ( self : List[Any])-> List[str]: __lowerCAmelCase =self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase =config_and_inputs __lowerCAmelCase ={"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): SCREAMING_SNAKE_CASE = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) SCREAMING_SNAKE_CASE = ( {"feature-extraction": VideoMAEModel, "video-classification": VideoMAEForVideoClassification} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False def UpperCamelCase ( self : List[Any])-> List[Any]: __lowerCAmelCase =VideoMAEModelTester(self) __lowerCAmelCase =ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ , hidden_size=37) def UpperCamelCase ( self : Tuple , snake_case_ : str , snake_case_ : Tuple , snake_case_ : List[str]=False)-> Tuple: __lowerCAmelCase =copy.deepcopy(snake_case_) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch __lowerCAmelCase =torch.ones((self.model_tester.num_masks,)) __lowerCAmelCase =torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0))]) __lowerCAmelCase =mask.expand(self.model_tester.batch_size , -1).bool() __lowerCAmelCase =bool_masked_pos.to(snake_case_) if return_labels: if model_class in [ *get_values(snake_case_), ]: __lowerCAmelCase =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case_) return inputs_dict def UpperCamelCase ( self : List[str])-> Any: self.config_tester.run_common_tests() @unittest.skip(reason="""VideoMAE does not use inputs_embeds""") def UpperCamelCase ( self : Dict)-> str: pass def UpperCamelCase ( self : Union[str, Any])-> Tuple: __lowerCAmelCase , __lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase =model_class(snake_case_) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) __lowerCAmelCase =model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case_ , nn.Linear)) def UpperCamelCase ( self : Optional[int])-> List[str]: __lowerCAmelCase , __lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase =model_class(snake_case_) __lowerCAmelCase =inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase =[*signature.parameters.keys()] __lowerCAmelCase =["""pixel_values"""] self.assertListEqual(arg_names[:1] , snake_case_) def UpperCamelCase ( self : str)-> List[Any]: __lowerCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_) def UpperCamelCase ( self : List[Any])-> Any: __lowerCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*snake_case_) @slow def UpperCamelCase ( self : List[Any])-> Any: for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase =VideoMAEModel.from_pretrained(snake_case_) self.assertIsNotNone(snake_case_) def UpperCamelCase ( self : List[Any])-> List[str]: if not self.has_attentions: pass else: __lowerCAmelCase , __lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase =True for model_class in self.all_model_classes: __lowerCAmelCase =self.model_tester.seq_length - self.model_tester.num_masks __lowerCAmelCase =( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) __lowerCAmelCase =True __lowerCAmelCase =False __lowerCAmelCase =True __lowerCAmelCase =model_class(snake_case_) model.to(snake_case_) model.eval() with torch.no_grad(): __lowerCAmelCase =model(**self._prepare_for_class(snake_case_ , snake_case_)) __lowerCAmelCase =outputs.attentions self.assertEqual(len(snake_case_) , self.model_tester.num_hidden_layers) # check that output_attentions also work using config del inputs_dict["output_attentions"] __lowerCAmelCase =True __lowerCAmelCase =model_class(snake_case_) model.to(snake_case_) model.eval() with torch.no_grad(): __lowerCAmelCase =model(**self._prepare_for_class(snake_case_ , snake_case_)) __lowerCAmelCase =outputs.attentions self.assertEqual(len(snake_case_) , self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) __lowerCAmelCase =len(snake_case_) # Check attention is always last and order is fine __lowerCAmelCase =True __lowerCAmelCase =True __lowerCAmelCase =model_class(snake_case_) model.to(snake_case_) model.eval() with torch.no_grad(): __lowerCAmelCase =model(**self._prepare_for_class(snake_case_ , snake_case_)) self.assertEqual(out_len + 1 , len(snake_case_)) __lowerCAmelCase =outputs.attentions self.assertEqual(len(snake_case_) , self.model_tester.num_hidden_layers) self.assertListEqual( list(self_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def UpperCamelCase ( self : Tuple)-> Any: def check_hidden_states_output(snake_case_ : Tuple , snake_case_ : Tuple , snake_case_ : int): __lowerCAmelCase =model_class(snake_case_) model.to(snake_case_) model.eval() with torch.no_grad(): __lowerCAmelCase =model(**self._prepare_for_class(snake_case_ , snake_case_)) __lowerCAmelCase =outputs.hidden_states __lowerCAmelCase =self.model_tester.num_hidden_layers + 1 self.assertEqual(len(snake_case_) , snake_case_) __lowerCAmelCase =self.model_tester.seq_length - self.model_tester.num_masks __lowerCAmelCase =num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:]) , [seq_length, self.model_tester.hidden_size] , ) __lowerCAmelCase , __lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase =True check_hidden_states_output(snake_case_ , snake_case_ , snake_case_) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCAmelCase =True check_hidden_states_output(snake_case_ , snake_case_ , snake_case_) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""") def UpperCamelCase ( self : Optional[Any])-> int: pass def __lowerCAmelCase ( ) -> Any: __lowerCAmelCase =hf_hub_download( repo_id="""hf-internal-testing/spaghetti-video""" , filename="""eating_spaghetti.npy""" , repo_type="""dataset""" ) __lowerCAmelCase =np.load(__lowerCamelCase ) return list(__lowerCamelCase ) @require_torch @require_vision class __a ( unittest.TestCase ): @cached_property def UpperCamelCase ( self : str)-> List[str]: # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5]) if is_vision_available() else None ) @slow def UpperCamelCase ( self : Optional[Any])-> Tuple: __lowerCAmelCase =VideoMAEForVideoClassification.from_pretrained("""MCG-NJU/videomae-base-finetuned-kinetics""").to( snake_case_) __lowerCAmelCase =self.default_image_processor __lowerCAmelCase =prepare_video() __lowerCAmelCase =image_processor(snake_case_ , return_tensors="""pt""").to(snake_case_) # forward pass with torch.no_grad(): __lowerCAmelCase =model(**snake_case_) # verify the logits __lowerCAmelCase =torch.Size((1, 4_00)) self.assertEqual(outputs.logits.shape , snake_case_) __lowerCAmelCase =torch.tensor([0.3_6_6_9, -0.0_6_8_8, -0.2_4_2_1]).to(snake_case_) self.assertTrue(torch.allclose(outputs.logits[0, :3] , snake_case_ , atol=1e-4)) @slow def UpperCamelCase ( self : str)-> str: __lowerCAmelCase =VideoMAEForPreTraining.from_pretrained("""MCG-NJU/videomae-base-short""").to(snake_case_) __lowerCAmelCase =self.default_image_processor __lowerCAmelCase =prepare_video() __lowerCAmelCase =image_processor(snake_case_ , return_tensors="""pt""").to(snake_case_) # add boolean mask, indicating which patches to mask __lowerCAmelCase =hf_hub_download(repo_id="""hf-internal-testing/bool-masked-pos""" , filename="""bool_masked_pos.pt""") __lowerCAmelCase =torch.load(snake_case_) # forward pass with torch.no_grad(): __lowerCAmelCase =model(**snake_case_) # verify the logits __lowerCAmelCase =torch.Size([1, 14_08, 15_36]) __lowerCAmelCase =torch.tensor( [[0.7_9_9_4, 0.9_6_1_2, 0.8_5_0_8], [0.7_4_0_1, 0.8_9_5_8, 0.8_3_0_2], [0.5_8_6_2, 0.7_4_6_8, 0.7_3_2_5]] , device=snake_case_) self.assertEqual(outputs.logits.shape , snake_case_) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , snake_case_ , atol=1e-4)) # verify the loss (`config.norm_pix_loss` = `True`) __lowerCAmelCase =torch.tensor([0.5_1_4_2] , device=snake_case_) self.assertTrue(torch.allclose(outputs.loss , snake_case_ , atol=1e-4)) # verify the loss (`config.norm_pix_loss` = `False`) __lowerCAmelCase =VideoMAEForPreTraining.from_pretrained("""MCG-NJU/videomae-base-short""" , norm_pix_loss=snake_case_).to( snake_case_) with torch.no_grad(): __lowerCAmelCase =model(**snake_case_) __lowerCAmelCase =torch.tensor(torch.tensor([0.6_4_6_9]) , device=snake_case_) self.assertTrue(torch.allclose(outputs.loss , snake_case_ , atol=1e-4))
354
0
'''simple docstring''' import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 UpperCAmelCase : Dict =sys.version_info >= (3, 10) def _lowerCAmelCase (_lowerCAmelCase=None , _lowerCAmelCase=None): return field(default_factory=lambda: default , metadata=_lowerCAmelCase) @dataclass class _lowercase : '''simple docstring''' lowercase__ = 42 lowercase__ = 42 lowercase__ = 42 lowercase__ = 42 @dataclass class _lowercase : '''simple docstring''' lowercase__ = 42 lowercase__ = field(default="""toto""" , metadata={"""help""": """help message"""} ) @dataclass class _lowercase : '''simple docstring''' lowercase__ = False lowercase__ = True lowercase__ = None class _lowercase (a_ ): '''simple docstring''' lowercase__ = """titi""" lowercase__ = """toto""" class _lowercase (a_ ): '''simple docstring''' lowercase__ = """titi""" lowercase__ = """toto""" lowercase__ = 42 @dataclass class _lowercase : '''simple docstring''' lowercase__ = """toto""" def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = BasicEnum(self.foo ) @dataclass class _lowercase : '''simple docstring''' lowercase__ = """toto""" def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = MixedTypeEnum(self.foo ) @dataclass class _lowercase : '''simple docstring''' lowercase__ = None lowercase__ = field(default=a_ , metadata={"""help""": """help message"""} ) lowercase__ = None lowercase__ = list_field(default=[] ) lowercase__ = list_field(default=[] ) @dataclass class _lowercase : '''simple docstring''' lowercase__ = list_field(default=[] ) lowercase__ = list_field(default=[1, 2, 3] ) lowercase__ = list_field(default=["""Hallo""", """Bonjour""", """Hello"""] ) lowercase__ = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class _lowercase : '''simple docstring''' lowercase__ = field() lowercase__ = field() lowercase__ = field() def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = BasicEnum(self.required_enum ) @dataclass class _lowercase : '''simple docstring''' lowercase__ = 42 lowercase__ = field() lowercase__ = None lowercase__ = field(default="""toto""" , metadata={"""help""": """help message"""} ) lowercase__ = list_field(default=["""Hallo""", """Bonjour""", """Hello"""] ) if is_python_no_less_than_3_10: @dataclass class _lowercase : '''simple docstring''' lowercase__ = False lowercase__ = True lowercase__ = None @dataclass class _lowercase : '''simple docstring''' lowercase__ = None lowercase__ = field(default=a_ , metadata={"""help""": """help message"""} ) lowercase__ = None lowercase__ = list_field(default=[] ) lowercase__ = list_field(default=[] ) class _lowercase (unittest.TestCase ): '''simple docstring''' def _lowerCamelCase ( self , snake_case__ , snake_case__ ): '''simple docstring''' self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): UpperCamelCase_ = {k: v for k, v in vars(snake_case__ ).items() if k != "container"} UpperCamelCase_ = {k: v for k, v in vars(snake_case__ ).items() if k != "container"} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get("choices" , snake_case__ ) and yy.get("choices" , snake_case__ ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx["type"](snake_case__ ) , yy["type"](snake_case__ ) ) del xx["type"], yy["type"] self.assertEqual(snake_case__ , snake_case__ ) def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = HfArgumentParser(snake_case__ ) UpperCamelCase_ = argparse.ArgumentParser() expected.add_argument("--foo" , type=snake_case__ , required=snake_case__ ) expected.add_argument("--bar" , type=snake_case__ , required=snake_case__ ) expected.add_argument("--baz" , type=snake_case__ , required=snake_case__ ) expected.add_argument("--flag" , type=snake_case__ , default=snake_case__ , const=snake_case__ , nargs="?" ) self.argparsersEqual(snake_case__ , snake_case__ ) UpperCamelCase_ = ["--foo", "1", "--baz", "quux", "--bar", "0.5"] ((UpperCamelCase_ ) , ) = parser.parse_args_into_dataclasses(snake_case__ , look_for_args_file=snake_case__ ) self.assertFalse(example.flag ) def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = HfArgumentParser(snake_case__ ) UpperCamelCase_ = argparse.ArgumentParser() expected.add_argument("--foo" , default=42 , type=snake_case__ ) expected.add_argument("--baz" , default="toto" , type=snake_case__ , help="help message" ) self.argparsersEqual(snake_case__ , snake_case__ ) def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = argparse.ArgumentParser() expected.add_argument("--foo" , type=snake_case__ , default=snake_case__ , const=snake_case__ , nargs="?" ) expected.add_argument("--baz" , type=snake_case__ , default=snake_case__ , const=snake_case__ , nargs="?" ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument("--no_baz" , action="store_false" , default=snake_case__ , dest="baz" ) expected.add_argument("--opt" , type=snake_case__ , default=snake_case__ ) UpperCamelCase_ = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(snake_case__ ) for dataclass_type in dataclass_types: UpperCamelCase_ = HfArgumentParser(snake_case__ ) self.argparsersEqual(snake_case__ , snake_case__ ) UpperCamelCase_ = parser.parse_args([] ) self.assertEqual(snake_case__ , Namespace(foo=snake_case__ , baz=snake_case__ , opt=snake_case__ ) ) UpperCamelCase_ = parser.parse_args(["--foo", "--no_baz"] ) self.assertEqual(snake_case__ , Namespace(foo=snake_case__ , baz=snake_case__ , opt=snake_case__ ) ) UpperCamelCase_ = parser.parse_args(["--foo", "--baz"] ) self.assertEqual(snake_case__ , Namespace(foo=snake_case__ , baz=snake_case__ , opt=snake_case__ ) ) UpperCamelCase_ = parser.parse_args(["--foo", "True", "--baz", "True", "--opt", "True"] ) self.assertEqual(snake_case__ , Namespace(foo=snake_case__ , baz=snake_case__ , opt=snake_case__ ) ) UpperCamelCase_ = parser.parse_args(["--foo", "False", "--baz", "False", "--opt", "False"] ) self.assertEqual(snake_case__ , Namespace(foo=snake_case__ , baz=snake_case__ , opt=snake_case__ ) ) def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = HfArgumentParser(snake_case__ ) UpperCamelCase_ = argparse.ArgumentParser() expected.add_argument( "--foo" , default="toto" , choices=["titi", "toto", 42] , type=make_choice_type_function(["titi", "toto", 42] ) , ) self.argparsersEqual(snake_case__ , snake_case__ ) UpperCamelCase_ = parser.parse_args([] ) self.assertEqual(args.foo , "toto" ) UpperCamelCase_ = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) UpperCamelCase_ = parser.parse_args(["--foo", "titi"] ) self.assertEqual(args.foo , "titi" ) UpperCamelCase_ = parser.parse_args_into_dataclasses(["--foo", "titi"] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) UpperCamelCase_ = parser.parse_args(["--foo", "42"] ) self.assertEqual(args.foo , 42 ) UpperCamelCase_ = parser.parse_args_into_dataclasses(["--foo", "42"] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def _lowerCamelCase ( self ): '''simple docstring''' @dataclass class _lowercase : '''simple docstring''' lowercase__ = """toto""" UpperCamelCase_ = HfArgumentParser(snake_case__ ) UpperCamelCase_ = argparse.ArgumentParser() expected.add_argument( "--foo" , default="toto" , choices=("titi", "toto", 42) , type=make_choice_type_function(["titi", "toto", 42] ) , ) self.argparsersEqual(snake_case__ , snake_case__ ) UpperCamelCase_ = parser.parse_args([] ) self.assertEqual(args.foo , "toto" ) UpperCamelCase_ = parser.parse_args(["--foo", "titi"] ) self.assertEqual(args.foo , "titi" ) UpperCamelCase_ = parser.parse_args(["--foo", "42"] ) self.assertEqual(args.foo , 42 ) def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = HfArgumentParser(snake_case__ ) UpperCamelCase_ = argparse.ArgumentParser() expected.add_argument("--foo_int" , nargs="+" , default=[] , type=snake_case__ ) expected.add_argument("--bar_int" , nargs="+" , default=[1, 2, 3] , type=snake_case__ ) expected.add_argument("--foo_str" , nargs="+" , default=["Hallo", "Bonjour", "Hello"] , type=snake_case__ ) expected.add_argument("--foo_float" , nargs="+" , default=[0.1, 0.2, 0.3] , type=snake_case__ ) self.argparsersEqual(snake_case__ , snake_case__ ) UpperCamelCase_ = parser.parse_args([] ) self.assertEqual( snake_case__ , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=["Hallo", "Bonjour", "Hello"] , foo_float=[0.1, 0.2, 0.3] ) , ) UpperCamelCase_ = parser.parse_args("--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7".split() ) self.assertEqual(snake_case__ , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=["a", "b", "c"] , foo_float=[0.1, 0.7] ) ) def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = argparse.ArgumentParser() expected.add_argument("--foo" , default=snake_case__ , type=snake_case__ ) expected.add_argument("--bar" , default=snake_case__ , type=snake_case__ , help="help message" ) expected.add_argument("--baz" , default=snake_case__ , type=snake_case__ ) expected.add_argument("--ces" , nargs="+" , default=[] , type=snake_case__ ) expected.add_argument("--des" , nargs="+" , default=[] , type=snake_case__ ) UpperCamelCase_ = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(snake_case__ ) for dataclass_type in dataclass_types: UpperCamelCase_ = HfArgumentParser(snake_case__ ) self.argparsersEqual(snake_case__ , snake_case__ ) UpperCamelCase_ = parser.parse_args([] ) self.assertEqual(snake_case__ , Namespace(foo=snake_case__ , bar=snake_case__ , baz=snake_case__ , ces=[] , des=[] ) ) UpperCamelCase_ = parser.parse_args("--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3".split() ) self.assertEqual(snake_case__ , Namespace(foo=12 , bar=3.14 , baz="42" , ces=["a", "b", "c"] , des=[1, 2, 3] ) ) def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = HfArgumentParser(snake_case__ ) UpperCamelCase_ = argparse.ArgumentParser() expected.add_argument("--required_list" , nargs="+" , type=snake_case__ , required=snake_case__ ) expected.add_argument("--required_str" , type=snake_case__ , required=snake_case__ ) expected.add_argument( "--required_enum" , type=make_choice_type_function(["titi", "toto"] ) , choices=["titi", "toto"] , required=snake_case__ , ) self.argparsersEqual(snake_case__ , snake_case__ ) def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = HfArgumentParser(snake_case__ ) UpperCamelCase_ = argparse.ArgumentParser() expected.add_argument("--foo" , type=snake_case__ , required=snake_case__ ) expected.add_argument( "--required_enum" , type=make_choice_type_function(["titi", "toto"] ) , choices=["titi", "toto"] , required=snake_case__ , ) expected.add_argument("--opt" , type=snake_case__ , default=snake_case__ ) expected.add_argument("--baz" , default="toto" , type=snake_case__ , help="help message" ) expected.add_argument("--foo_str" , nargs="+" , default=["Hallo", "Bonjour", "Hello"] , type=snake_case__ ) self.argparsersEqual(snake_case__ , snake_case__ ) def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = HfArgumentParser(snake_case__ ) UpperCamelCase_ = { "foo": 12, "bar": 3.14, "baz": "42", "flag": True, } UpperCamelCase_ = parser.parse_dict(snake_case__ )[0] UpperCamelCase_ = BasicExample(**snake_case__ ) self.assertEqual(snake_case__ , snake_case__ ) def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = HfArgumentParser(snake_case__ ) UpperCamelCase_ = { "foo": 12, "bar": 3.14, "baz": "42", "flag": True, "extra": 42, } self.assertRaises(snake_case__ , parser.parse_dict , snake_case__ , allow_extra_keys=snake_case__ ) def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = HfArgumentParser(snake_case__ ) UpperCamelCase_ = { "foo": 12, "bar": 3.14, "baz": "42", "flag": True, } with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase_ = os.path.join(snake_case__ , "temp_json" ) os.mkdir(snake_case__ ) with open(temp_local_path + ".json" , "w+" ) as f: json.dump(snake_case__ , snake_case__ ) UpperCamelCase_ = parser.parse_yaml_file(Path(temp_local_path + ".json" ) )[0] UpperCamelCase_ = BasicExample(**snake_case__ ) self.assertEqual(snake_case__ , snake_case__ ) def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = HfArgumentParser(snake_case__ ) UpperCamelCase_ = { "foo": 12, "bar": 3.14, "baz": "42", "flag": True, } with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase_ = os.path.join(snake_case__ , "temp_yaml" ) os.mkdir(snake_case__ ) with open(temp_local_path + ".yaml" , "w+" ) as f: yaml.dump(snake_case__ , snake_case__ ) UpperCamelCase_ = parser.parse_yaml_file(Path(temp_local_path + ".yaml" ) )[0] UpperCamelCase_ = BasicExample(**snake_case__ ) self.assertEqual(snake_case__ , snake_case__ ) def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = HfArgumentParser(snake_case__ ) self.assertIsNotNone(snake_case__ )
704
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _lowercase (a_ , a_ , unittest.TestCase ): '''simple docstring''' lowercase__ = StableDiffusionXLImgaImgPipeline lowercase__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width"""} lowercase__ = PipelineTesterMixin.required_optional_params - {"""latents"""} lowercase__ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS lowercase__ = IMAGE_TO_IMAGE_IMAGE_PARAMS lowercase__ = IMAGE_TO_IMAGE_IMAGE_PARAMS def _lowerCamelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) UpperCamelCase_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , attention_head_dim=(2, 4) , use_linear_projection=snake_case__ , addition_embed_type="text_time" , addition_time_embed_dim=8 , transformer_layers_per_block=(1, 2) , projection_class_embeddings_input_dim=80 , cross_attention_dim=64 , ) UpperCamelCase_ = EulerDiscreteScheduler( beta_start=0.00_085 , beta_end=0.012 , steps_offset=1 , beta_schedule="scaled_linear" , timestep_spacing="leading" , ) torch.manual_seed(0 ) UpperCamelCase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) UpperCamelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="gelu" , projection_dim=32 , ) UpperCamelCase_ = CLIPTextModel(snake_case__ ) UpperCamelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" , local_files_only=snake_case__ ) UpperCamelCase_ = CLIPTextModelWithProjection(snake_case__ ) UpperCamelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" , local_files_only=snake_case__ ) UpperCamelCase_ = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "text_encoder_2": text_encoder_a, "tokenizer_2": tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def _lowerCamelCase ( self , snake_case__ , snake_case__=0 ): '''simple docstring''' UpperCamelCase_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) UpperCamelCase_ = image / 2 + 0.5 if str(snake_case__ ).startswith("mps" ): UpperCamelCase_ = torch.manual_seed(snake_case__ ) else: UpperCamelCase_ = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) UpperCamelCase_ = { "prompt": "A painting of a squirrel eating a burger", "image": image, "generator": generator, "num_inference_steps": 2, "guidance_scale": 5.0, "output_type": "numpy", "strength": 0.75, } return inputs def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCamelCase_ = self.get_dummy_components() UpperCamelCase_ = StableDiffusionXLImgaImgPipeline(**snake_case__ ) UpperCamelCase_ = sd_pipe.to(snake_case__ ) sd_pipe.set_progress_bar_config(disable=snake_case__ ) UpperCamelCase_ = self.get_dummy_inputs(snake_case__ ) UpperCamelCase_ = sd_pipe(**snake_case__ ).images UpperCamelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCamelCase_ = np.array([0.4_656, 0.4_840, 0.4_439, 0.6_698, 0.5_574, 0.4_524, 0.5_799, 0.5_943, 0.5_165] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _lowerCamelCase ( self ): '''simple docstring''' super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 ) def _lowerCamelCase ( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def _lowerCamelCase ( self ): '''simple docstring''' pass def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = self.get_dummy_components() UpperCamelCase_ = StableDiffusionXLImgaImgPipeline(**snake_case__ ) UpperCamelCase_ = sd_pipe.to(snake_case__ ) UpperCamelCase_ = sd_pipe.to(snake_case__ ) sd_pipe.set_progress_bar_config(disable=snake_case__ ) # forward without prompt embeds UpperCamelCase_ = self.get_dummy_inputs(snake_case__ ) UpperCamelCase_ = 3 * ["this is a negative prompt"] UpperCamelCase_ = negative_prompt UpperCamelCase_ = 3 * [inputs["prompt"]] UpperCamelCase_ = sd_pipe(**snake_case__ ) UpperCamelCase_ = output.images[0, -3:, -3:, -1] # forward with prompt embeds UpperCamelCase_ = self.get_dummy_inputs(snake_case__ ) UpperCamelCase_ = 3 * ["this is a negative prompt"] UpperCamelCase_ = 3 * [inputs.pop("prompt" )] ( ( UpperCamelCase_ ) , ( UpperCamelCase_ ) , ( UpperCamelCase_ ) , ( UpperCamelCase_ ) , ) = sd_pipe.encode_prompt(snake_case__ , negative_prompt=snake_case__ ) UpperCamelCase_ = sd_pipe( **snake_case__ , prompt_embeds=snake_case__ , negative_prompt_embeds=snake_case__ , pooled_prompt_embeds=snake_case__ , negative_pooled_prompt_embeds=snake_case__ , ) UpperCamelCase_ = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 @slow @require_torch_gpu class _lowercase (unittest.TestCase ): '''simple docstring''' def _lowerCamelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self , snake_case__ , snake_case__="cpu" , snake_case__=torch.floataa , snake_case__=0 ): '''simple docstring''' UpperCamelCase_ = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) UpperCamelCase_ = np.random.RandomState(snake_case__ ).standard_normal((1, 4, 64, 64) ) UpperCamelCase_ = torch.from_numpy(snake_case__ ).to(device=snake_case__ , dtype=snake_case__ ) UpperCamelCase_ = { "prompt": "a photograph of an astronaut riding a horse", "latents": latents, "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-base" ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) UpperCamelCase_ = self.get_inputs(snake_case__ ) UpperCamelCase_ = pipe(**snake_case__ ).images UpperCamelCase_ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) UpperCamelCase_ = np.array([0.49_493, 0.47_896, 0.40_798, 0.54_214, 0.53_212, 0.48_202, 0.47_656, 0.46_329, 0.48_506] ) assert np.abs(image_slice - expected_slice ).max() < 7e-3
504
0
from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> list[float]: '''simple docstring''' lowercase__ , lowercase__ : Optional[Any] = coefficient_matrix.shape lowercase__ , lowercase__ : str = constant_matrix.shape if rowsa != colsa: lowercase__ : Optional[int] = F'Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}' raise ValueError(lowercase_ ) if colsa != 1: lowercase__ : List[str] = F'Constant matrix must be nx1 but received {rowsa}x{colsa}' raise ValueError(lowercase_ ) if rowsa != rowsa: lowercase__ : List[str] = ( """Coefficient and constant matrices dimensions must be nxn and nx1 but """ F'received {rowsa}x{colsa} and {rowsa}x{colsa}' ) raise ValueError(lowercase_ ) if len(lowercase_ ) != rowsa: lowercase__ : Dict = ( """Number of initial values must be equal to number of rows in coefficient """ F'matrix but received {len(lowercase_ )} and {rowsa}' ) raise ValueError(lowercase_ ) if iterations <= 0: raise ValueError("""Iterations must be at least 1""" ) lowercase__ : NDArray[floataa] = np.concatenate( (coefficient_matrix, constant_matrix) , axis=1 ) lowercase__ , lowercase__ : Dict = table.shape strictly_diagonally_dominant(lowercase_ ) # Iterates the whole matrix for given number of times for _ in range(lowercase_ ): lowercase__ : List[Any] = [] for row in range(lowercase_ ): lowercase__ : Optional[int] = 0 for col in range(lowercase_ ): if col == row: lowercase__ : Optional[int] = table[row][col] elif col == cols - 1: lowercase__ : Optional[Any] = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] lowercase__ : Dict = (temp + val) / denom new_val.append(lowercase_ ) lowercase__ : Any = new_val return [float(lowercase_ ) for i in new_val] def UpperCamelCase ( lowercase_ ) -> bool: '''simple docstring''' lowercase__ , lowercase__ : Any = table.shape lowercase__ : str = True for i in range(0 , lowercase_ ): lowercase__ : List[Any] = 0 for j in range(0 , cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError("""Coefficient matrix is not strictly diagonally dominant""" ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
12
'''simple docstring''' import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": UpperCAmelCase = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( '--original_config_file', default=None, type=str, help='The YAML config file corresponding to the original architecture.', ) parser.add_argument( '--num_in_channels', default=None, type=int, help='The number of input channels. If `None` number of input channels will be automatically inferred.', ) parser.add_argument( '--scheduler_type', default='pndm', type=str, help='Type of scheduler to use. Should be one of [\'pndm\', \'lms\', \'ddim\', \'euler\', \'euler-ancestral\', \'dpm\']', ) parser.add_argument( '--pipeline_type', default=None, type=str, help=( 'The pipeline type. One of \'FrozenOpenCLIPEmbedder\', \'FrozenCLIPEmbedder\', \'PaintByExample\'' '. If `None` pipeline will be automatically inferred.' ), ) parser.add_argument( '--image_size', default=None, type=int, help=( 'The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2' ' Base. Use 768 for Stable Diffusion v2.' ), ) parser.add_argument( '--prediction_type', default=None, type=str, help=( 'The prediction type that the model was trained on. Use \'epsilon\' for Stable Diffusion v1.X and Stable' ' Diffusion v2 Base. Use \'v_prediction\' for Stable Diffusion v2.' ), ) parser.add_argument( '--extract_ema', action='store_true', help=( 'Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights' ' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield' ' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.' ), ) parser.add_argument( '--upcast_attention', action='store_true', help=( 'Whether the attention computation should always be upcasted. This is necessary when running stable' ' diffusion 2.1.' ), ) parser.add_argument( '--from_safetensors', action='store_true', help='If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.', ) parser.add_argument( '--to_safetensors', action='store_true', help='Whether to store pipeline in safetensors format or not.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)') parser.add_argument( '--stable_unclip', type=str, default=None, required=False, help='Set if this is a stable unCLIP model. One of \'txt2img\' or \'img2img\'.', ) parser.add_argument( '--stable_unclip_prior', type=str, default=None, required=False, help='Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.', ) parser.add_argument( '--clip_stats_path', type=str, help='Path to the clip stats file. Only required if the stable unclip model\'s config specifies `model.params.noise_aug_config.params.clip_stats_path`.', required=False, ) parser.add_argument( '--controlnet', action='store_true', default=None, help='Set flag if this is a controlnet checkpoint.' ) parser.add_argument('--half', action='store_true', help='Save weights in half precision.') parser.add_argument( '--vae_path', type=str, default=None, required=False, help='Set to a path, hub id to an already converted vae to not convert it again.', ) UpperCAmelCase = parser.parse_args() UpperCAmelCase = download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
433
0
import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase : int , lowerCAmelCase : int ) -> List[Any]: """simple docstring""" __lowerCAmelCase : str = jnp.ones((batch_size, length) ) / length return scores def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : int = None __lowerCAmelCase : Dict = 20 __lowerCAmelCase : Union[str, Any] = self._get_uniform_logits(batch_size=2 , length=lowerCAmelCase ) # tweak scores to not be uniform anymore __lowerCAmelCase : Optional[Any] = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch __lowerCAmelCase : List[str] = scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch # compute softmax __lowerCAmelCase : Any = jax.nn.softmax(lowerCAmelCase , axis=-1 ) __lowerCAmelCase : Tuple = FlaxTemperatureLogitsWarper(temperature=0.5 ) __lowerCAmelCase : Optional[int] = FlaxTemperatureLogitsWarper(temperature=1.3 ) __lowerCAmelCase : Tuple = jax.nn.softmax(temp_dist_warper_sharper(lowerCAmelCase , scores.copy() , cur_len=lowerCAmelCase ) , axis=-1 ) __lowerCAmelCase : str = jax.nn.softmax(temp_dist_warper_smoother(lowerCAmelCase , scores.copy() , cur_len=lowerCAmelCase ) , axis=-1 ) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1e-3 ) ) self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1e-3 ) ) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max() ) self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min() ) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max() ) self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min() ) def SCREAMING_SNAKE_CASE ( self : str ) -> int: """simple docstring""" __lowerCAmelCase : Any = None __lowerCAmelCase : List[Any] = 10 __lowerCAmelCase : List[Any] = 2 # create ramp distribution __lowerCAmelCase : List[Any] = np.broadcast_to(np.arange(lowerCAmelCase )[None, :] , (batch_size, vocab_size) ).copy() __lowerCAmelCase : Union[str, Any] = ramp_logits[1:, : vocab_size // 2] + vocab_size __lowerCAmelCase : Dict = FlaxTopKLogitsWarper(3 ) __lowerCAmelCase : Dict = top_k_warp(lowerCAmelCase , lowerCAmelCase , cur_len=lowerCAmelCase ) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0] ).tolist() , 7 * [True] + 3 * [False] ) self.assertListEqual(jnp.isinf(scores[1] ).tolist() , 2 * [True] + 3 * [False] + 5 * [True] ) # check special case __lowerCAmelCase : int = 5 __lowerCAmelCase : Optional[Any] = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3 ) __lowerCAmelCase : Tuple = np.broadcast_to(np.arange(lowerCAmelCase )[None, :] , (batch_size, length) ).copy() __lowerCAmelCase : List[Any] = top_k_warp_safety_check(lowerCAmelCase , lowerCAmelCase , cur_len=lowerCAmelCase ) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() , [2, 2] ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : Any = None __lowerCAmelCase : Optional[int] = 10 __lowerCAmelCase : Union[str, Any] = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) __lowerCAmelCase : Union[str, Any] = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]] ) ) __lowerCAmelCase : str = FlaxTopPLogitsWarper(0.8 ) __lowerCAmelCase : List[Any] = np.exp(top_p_warp(lowerCAmelCase , lowerCAmelCase , cur_len=lowerCAmelCase ) ) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 __lowerCAmelCase : List[str] = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]] ) self.assertTrue(np.allclose(lowerCAmelCase , lowerCAmelCase , atol=1e-3 ) ) # check edge cases with negative and extreme logits __lowerCAmelCase : List[str] = np.broadcast_to(np.arange(lowerCAmelCase )[None, :] , (batch_size, vocab_size) ).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme __lowerCAmelCase : int = ramp_logits[1] * 100.0 # make sure at least 2 tokens are kept __lowerCAmelCase : List[Any] = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0 ) __lowerCAmelCase : Any = top_p_warp(lowerCAmelCase , lowerCAmelCase , cur_len=lowerCAmelCase ) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() , [3, 2] ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[int]: """simple docstring""" __lowerCAmelCase : int = 20 __lowerCAmelCase : Dict = 4 __lowerCAmelCase : Dict = 0 __lowerCAmelCase : List[Any] = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=lowerCAmelCase ) # check that min length is applied at length 5 __lowerCAmelCase : int = ids_tensor((batch_size, 20) , vocab_size=20 ) __lowerCAmelCase : Union[str, Any] = 5 __lowerCAmelCase : List[Any] = self._get_uniform_logits(lowerCAmelCase , lowerCAmelCase ) __lowerCAmelCase : Any = min_dist_processor(lowerCAmelCase , lowerCAmelCase , cur_len=lowerCAmelCase ) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float("""inf""" )] ) # check that min length is not applied anymore at length 15 __lowerCAmelCase : Tuple = self._get_uniform_logits(lowerCAmelCase , lowerCAmelCase ) __lowerCAmelCase : Optional[int] = 15 __lowerCAmelCase : int = min_dist_processor(lowerCAmelCase , lowerCAmelCase , cur_len=lowerCAmelCase ) self.assertFalse(jnp.isinf(lowerCAmelCase ).any() ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[Any]: """simple docstring""" __lowerCAmelCase : Optional[Any] = 20 __lowerCAmelCase : int = 4 __lowerCAmelCase : Union[str, Any] = 0 __lowerCAmelCase : Optional[Any] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowerCAmelCase ) # check that all scores are -inf except the bos_token_id score __lowerCAmelCase : Tuple = ids_tensor((batch_size, 1) , vocab_size=20 ) __lowerCAmelCase : Optional[int] = 1 __lowerCAmelCase : Tuple = self._get_uniform_logits(lowerCAmelCase , lowerCAmelCase ) __lowerCAmelCase : Tuple = logits_processor(lowerCAmelCase , lowerCAmelCase , cur_len=lowerCAmelCase ) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0] ) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 __lowerCAmelCase : int = 3 __lowerCAmelCase : Union[str, Any] = self._get_uniform_logits(lowerCAmelCase , lowerCAmelCase ) __lowerCAmelCase : List[Any] = logits_processor(lowerCAmelCase , lowerCAmelCase , cur_len=lowerCAmelCase ) self.assertFalse(jnp.isinf(lowerCAmelCase ).any() ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> str: """simple docstring""" __lowerCAmelCase : Optional[int] = 20 __lowerCAmelCase : str = 4 __lowerCAmelCase : int = 0 __lowerCAmelCase : List[str] = 5 __lowerCAmelCase : int = FlaxForcedEOSTokenLogitsProcessor(max_length=lowerCAmelCase , eos_token_id=lowerCAmelCase ) # check that all scores are -inf except the eos_token_id when max_length is reached __lowerCAmelCase : List[str] = ids_tensor((batch_size, 4) , vocab_size=20 ) __lowerCAmelCase : Union[str, Any] = 4 __lowerCAmelCase : Any = self._get_uniform_logits(lowerCAmelCase , lowerCAmelCase ) __lowerCAmelCase : Union[str, Any] = logits_processor(lowerCAmelCase , lowerCAmelCase , cur_len=lowerCAmelCase ) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0] ) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached __lowerCAmelCase : int = 3 __lowerCAmelCase : Tuple = self._get_uniform_logits(lowerCAmelCase , lowerCAmelCase ) __lowerCAmelCase : Tuple = logits_processor(lowerCAmelCase , lowerCAmelCase , cur_len=lowerCAmelCase ) self.assertFalse(jnp.isinf(lowerCAmelCase ).any() ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" __lowerCAmelCase : Union[str, Any] = 4 __lowerCAmelCase : Union[str, Any] = 10 __lowerCAmelCase : Dict = 15 __lowerCAmelCase : List[Any] = 2 __lowerCAmelCase : Optional[Any] = 1 __lowerCAmelCase : List[Any] = 15 # dummy input_ids and scores __lowerCAmelCase : Tuple = ids_tensor((batch_size, sequence_length) , lowerCAmelCase ) __lowerCAmelCase : int = input_ids.copy() __lowerCAmelCase : Optional[int] = self._get_uniform_logits(lowerCAmelCase , lowerCAmelCase ) __lowerCAmelCase : int = scores.copy() # instantiate all dist processors __lowerCAmelCase : List[Any] = FlaxTemperatureLogitsWarper(temperature=0.5 ) __lowerCAmelCase : List[Any] = FlaxTopKLogitsWarper(3 ) __lowerCAmelCase : List[str] = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors __lowerCAmelCase : List[Any] = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=lowerCAmelCase ) __lowerCAmelCase : int = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowerCAmelCase ) __lowerCAmelCase : List[Any] = FlaxForcedEOSTokenLogitsProcessor(max_length=lowerCAmelCase , eos_token_id=lowerCAmelCase ) __lowerCAmelCase : int = 10 # no processor list __lowerCAmelCase : List[str] = temp_dist_warp(lowerCAmelCase , lowerCAmelCase , cur_len=lowerCAmelCase ) __lowerCAmelCase : Dict = top_k_warp(lowerCAmelCase , lowerCAmelCase , cur_len=lowerCAmelCase ) __lowerCAmelCase : str = top_p_warp(lowerCAmelCase , lowerCAmelCase , cur_len=lowerCAmelCase ) __lowerCAmelCase : int = min_dist_proc(lowerCAmelCase , lowerCAmelCase , cur_len=lowerCAmelCase ) __lowerCAmelCase : Union[str, Any] = bos_dist_proc(lowerCAmelCase , lowerCAmelCase , cur_len=lowerCAmelCase ) __lowerCAmelCase : int = eos_dist_proc(lowerCAmelCase , lowerCAmelCase , cur_len=lowerCAmelCase ) # with processor list __lowerCAmelCase : str = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) __lowerCAmelCase : List[str] = processor(lowerCAmelCase , lowerCAmelCase , cur_len=lowerCAmelCase ) # scores should be equal self.assertTrue(jnp.allclose(lowerCAmelCase , lowerCAmelCase , atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[int]: """simple docstring""" __lowerCAmelCase : str = 4 __lowerCAmelCase : List[Any] = 10 __lowerCAmelCase : str = 15 __lowerCAmelCase : List[Any] = 2 __lowerCAmelCase : Optional[Any] = 1 __lowerCAmelCase : Union[str, Any] = 15 # dummy input_ids and scores __lowerCAmelCase : str = ids_tensor((batch_size, sequence_length) , lowerCAmelCase ) __lowerCAmelCase : List[Any] = input_ids.copy() __lowerCAmelCase : int = self._get_uniform_logits(lowerCAmelCase , lowerCAmelCase ) __lowerCAmelCase : List[str] = scores.copy() # instantiate all dist processors __lowerCAmelCase : List[str] = FlaxTemperatureLogitsWarper(temperature=0.5 ) __lowerCAmelCase : Optional[Any] = FlaxTopKLogitsWarper(3 ) __lowerCAmelCase : Optional[Any] = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors __lowerCAmelCase : Dict = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=lowerCAmelCase ) __lowerCAmelCase : Optional[int] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowerCAmelCase ) __lowerCAmelCase : Dict = FlaxForcedEOSTokenLogitsProcessor(max_length=lowerCAmelCase , eos_token_id=lowerCAmelCase ) __lowerCAmelCase : str = 10 # no processor list def run_no_processor_list(lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : str ): __lowerCAmelCase : List[Any] = temp_dist_warp(lowerCAmelCase , lowerCAmelCase , cur_len=lowerCAmelCase ) __lowerCAmelCase : List[str] = top_k_warp(lowerCAmelCase , lowerCAmelCase , cur_len=lowerCAmelCase ) __lowerCAmelCase : Optional[Any] = top_p_warp(lowerCAmelCase , lowerCAmelCase , cur_len=lowerCAmelCase ) __lowerCAmelCase : Dict = min_dist_proc(lowerCAmelCase , lowerCAmelCase , cur_len=lowerCAmelCase ) __lowerCAmelCase : Dict = bos_dist_proc(lowerCAmelCase , lowerCAmelCase , cur_len=lowerCAmelCase ) __lowerCAmelCase : Tuple = eos_dist_proc(lowerCAmelCase , lowerCAmelCase , cur_len=lowerCAmelCase ) return scores # with processor list def run_processor_list(lowerCAmelCase : List[Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Tuple ): __lowerCAmelCase : Dict = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) __lowerCAmelCase : Tuple = processor(lowerCAmelCase , lowerCAmelCase , cur_len=lowerCAmelCase ) return scores __lowerCAmelCase : int = jax.jit(lowerCAmelCase ) __lowerCAmelCase : Optional[int] = jax.jit(lowerCAmelCase ) __lowerCAmelCase : Optional[int] = jitted_run_no_processor_list(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) __lowerCAmelCase : Any = jitted_run_processor_list(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # scores should be equal self.assertTrue(jnp.allclose(lowerCAmelCase , lowerCAmelCase , atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() )
720
from __future__ import annotations import csv import requests from bsa import BeautifulSoup def snake_case_ (__A : str = "" ) -> dict[str, float]: __lowerCAmelCase : str = url or """https://www.imdb.com/chart/top/?ref_=nv_mv_250""" __lowerCAmelCase : Union[str, Any] = BeautifulSoup(requests.get(__A ).text , """html.parser""" ) __lowerCAmelCase : int = soup.find_all("""td""" , attrs="""titleColumn""" ) __lowerCAmelCase : int = soup.find_all("""td""" , class_="""ratingColumn imdbRating""" ) return { title.a.text: float(rating.strong.text ) for title, rating in zip(__A , __A ) } def snake_case_ (__A : str = "IMDb_Top_250_Movies.csv" ) -> None: __lowerCAmelCase : int = get_imdb_top_aaa_movies() with open(__A , """w""" , newline="""""" ) as out_file: __lowerCAmelCase : Dict = csv.writer(__A ) writer.writerow(["""Movie title""", """IMDb rating"""] ) for title, rating in movies.items(): writer.writerow([title, rating] ) if __name__ == "__main__": write_movies()
218
0
"""simple docstring""" from ... import PretrainedConfig SCREAMING_SNAKE_CASE = { """sijunhe/nezha-cn-base""": """https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json""", } class __a ( _lowerCAmelCase ): UpperCamelCase_ : Dict = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP UpperCamelCase_ : List[str] = '''nezha''' def __init__( self : List[str] , UpperCAmelCase_ : Union[str, Any]=21_128 , UpperCAmelCase_ : List[str]=768 , UpperCAmelCase_ : List[Any]=12 , UpperCAmelCase_ : Dict=12 , UpperCAmelCase_ : Dict=3_072 , UpperCAmelCase_ : Optional[Any]="gelu" , UpperCAmelCase_ : Tuple=0.1 , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Optional[Any]=512 , UpperCAmelCase_ : Union[str, Any]=64 , UpperCAmelCase_ : Dict=2 , UpperCAmelCase_ : str=0.02 , UpperCAmelCase_ : List[str]=1e-12 , UpperCAmelCase_ : List[Any]=0.1 , UpperCAmelCase_ : Optional[Any]=0 , UpperCAmelCase_ : str=2 , UpperCAmelCase_ : List[str]=3 , UpperCAmelCase_ : Tuple=True , **UpperCAmelCase_ : Union[str, Any] , )-> Tuple: """simple docstring""" super().__init__(pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , **UpperCAmelCase_ ) UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = hidden_act UpperCamelCase = intermediate_size UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = max_relative_position UpperCamelCase = type_vocab_size UpperCamelCase = initializer_range UpperCamelCase = layer_norm_eps UpperCamelCase = classifier_dropout UpperCamelCase = use_cache
554
"""simple docstring""" def lowerCamelCase__ ( UpperCAmelCase_ = 60_08_51_47_51_43 )-> int: """simple docstring""" try: UpperCamelCase = int(UpperCAmelCase_ ) except (TypeError, ValueError): raise TypeError("Parameter n must be int or castable to int." ) if n <= 0: raise ValueError("Parameter n must be greater than or equal to one." ) UpperCamelCase = 2 UpperCamelCase = 0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 UpperCamelCase = i while n % i == 0: UpperCamelCase = n // i i += 1 return int(UpperCAmelCase_ ) if __name__ == "__main__": print(F'''{solution() = }''')
554
1
import collections import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowerCamelCase : Dict = logging.get_logger(__name__) _lowerCamelCase : List[Any] = '''▁''' _lowerCamelCase : Optional[int] = {'''vocab_file''': '''prophetnet.tokenizer'''} _lowerCamelCase : str = { '''vocab_file''': { '''microsoft/xprophetnet-large-wiki100-cased''': ( '''https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/prophetnet.tokenizer''' ), } } _lowerCamelCase : Optional[Any] = { '''microsoft/xprophetnet-large-wiki100-cased''': {'''do_lower_case''': False}, } _lowerCamelCase : Optional[Any] = { '''microsoft/xprophetnet-large-wiki100-cased''': 5_12, } def __lowerCamelCase (UpperCAmelCase__ : Optional[Any] ): SCREAMING_SNAKE_CASE = collections.OrderedDict() with open(UpperCAmelCase__ , "r" , encoding="utf-8" ) as reader: SCREAMING_SNAKE_CASE = reader.readlines() for index, token in enumerate(UpperCAmelCase__ ): SCREAMING_SNAKE_CASE = token.rstrip("\n" ) SCREAMING_SNAKE_CASE = index return vocab class lowercase ( a ): lowercase__ : Optional[int] = VOCAB_FILES_NAMES lowercase__ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP lowercase__ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ : Any = ["""input_ids""", """attention_mask"""] def __init__( self : Optional[int] , _UpperCamelCase : List[str] , _UpperCamelCase : str="[SEP]" , _UpperCamelCase : str="[SEP]" , _UpperCamelCase : Dict="[SEP]" , _UpperCamelCase : Tuple="[UNK]" , _UpperCamelCase : Dict="[PAD]" , _UpperCamelCase : Any="[CLS]" , _UpperCamelCase : Optional[Any]="[MASK]" , _UpperCamelCase : Optional[Dict[str, Any]] = None , **_UpperCamelCase : Dict , ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_UpperCamelCase , eos_token=_UpperCamelCase , sep_token=_UpperCamelCase , unk_token=_UpperCamelCase , pad_token=_UpperCamelCase , cls_token=_UpperCamelCase , mask_token=_UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCamelCase , ) try: import sentencepiece as spm except ImportError: logger.warning( "You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece" " pip install sentencepiece" ) raise SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_UpperCamelCase ) ) SCREAMING_SNAKE_CASE = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # put special tokens and [unused] tokens into the vocab SCREAMING_SNAKE_CASE = {"[PAD]": 0, "[CLS]": 1, "[SEP]": 2, "[UNK]": 3, "[MASK]": 4} for i in range(10 ): SCREAMING_SNAKE_CASE = F"[unused{i}]" SCREAMING_SNAKE_CASE = 5 + i # The first "real" token "," has position 15 in the embedding vocab and position 3 in the spm vocab SCREAMING_SNAKE_CASE = 12 SCREAMING_SNAKE_CASE = {v: k for k, v in self.fairseq_tokens_to_ids.items()} for k in self.fairseq_tokens_to_ids.keys(): self.unique_no_split_tokens.append(_UpperCamelCase ) def __getstate__( self : Dict ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = self.__dict__.copy() SCREAMING_SNAKE_CASE = None return state def __setstate__( self : List[Any] , _UpperCamelCase : Union[str, Any] ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = d try: import sentencepiece as spm except ImportError: logger.warning( "You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece" " pip install sentencepiece" ) raise # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): SCREAMING_SNAKE_CASE = {} SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __snake_case( self : Dict , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None , _UpperCamelCase : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCamelCase , token_ids_a=_UpperCamelCase , already_has_special_tokens=_UpperCamelCase ) if token_ids_a is None: return ([0] * len(_UpperCamelCase )) + [1] return ([0] * len(_UpperCamelCase )) + [1] + ([0] * len(_UpperCamelCase )) + [1] def __snake_case( self : str , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = [self.sep_token_id] if token_ids_a is None: return len(token_ids_a + sep ) * [0] return len(token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def __snake_case( self : Dict ) -> Optional[Any]: '''simple docstring''' return len(self.sp_model ) + self.fairseq_offset def __snake_case( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = {self.convert_ids_to_tokens(_UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __snake_case( self : Union[str, Any] , _UpperCamelCase : str ) -> str: '''simple docstring''' return self.sp_model.encode(_UpperCamelCase , out_type=_UpperCamelCase ) def __snake_case( self : Optional[Any] , _UpperCamelCase : List[Any] ) -> List[str]: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] SCREAMING_SNAKE_CASE = self.sp_model.PieceToId(_UpperCamelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __snake_case( self : str , _UpperCamelCase : str ) -> int: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __snake_case( self : List[str] , _UpperCamelCase : Dict ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = "".join(_UpperCamelCase ).replace(_UpperCamelCase , " " ).strip() return out_string def __snake_case( self : Optional[Any] , _UpperCamelCase : str , _UpperCamelCase : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(_UpperCamelCase ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return SCREAMING_SNAKE_CASE = os.path.join( _UpperCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_UpperCamelCase , "wb" ) as fi: SCREAMING_SNAKE_CASE = self.sp_model.serialized_model_proto() fi.write(_UpperCamelCase ) return (out_vocab_file,) def __snake_case( self : Optional[Any] , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.sep_token_id] return token_ids_a + sep + token_ids_a + sep
707
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowerCamelCase : Optional[int] = { '''configuration_blenderbot''': [ '''BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BlenderbotConfig''', '''BlenderbotOnnxConfig''', ], '''tokenization_blenderbot''': ['''BlenderbotTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : List[Any] = ['''BlenderbotTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Tuple = [ '''BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BlenderbotForCausalLM''', '''BlenderbotForConditionalGeneration''', '''BlenderbotModel''', '''BlenderbotPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : List[str] = [ '''TFBlenderbotForConditionalGeneration''', '''TFBlenderbotModel''', '''TFBlenderbotPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[int] = [ '''FlaxBlenderbotForConditionalGeneration''', '''FlaxBlenderbotModel''', '''FlaxBlenderbotPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys _lowerCamelCase : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
647
0
'''simple docstring''' import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class UpperCAmelCase ( a_ , a_ ): """simple docstring""" @register_to_config def __init__( self , _snake_case = 128 , _snake_case = 256 , _snake_case = 2_000.0 , _snake_case = 768 , _snake_case = 12 , _snake_case = 12 , _snake_case = 64 , _snake_case = 2048 , _snake_case = 0.1 , ) -> Tuple: super().__init__() _UpperCamelCase : Optional[Any] = nn.Sequential( nn.Linear(_snake_case , d_model * 4 , bias=_snake_case ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=_snake_case ) , nn.SiLU() , ) _UpperCamelCase : List[Any] = nn.Embedding(_snake_case , _snake_case ) _UpperCamelCase : Union[str, Any] = False _UpperCamelCase : Optional[int] = nn.Linear(_snake_case , _snake_case , bias=_snake_case ) _UpperCamelCase : Optional[int] = nn.Dropout(p=_snake_case ) _UpperCamelCase : int = nn.ModuleList() for lyr_num in range(_snake_case ): # FiLM conditional T5 decoder _UpperCamelCase : Tuple = DecoderLayer(d_model=_snake_case , d_kv=_snake_case , num_heads=_snake_case , d_ff=_snake_case , dropout_rate=_snake_case ) self.decoders.append(_snake_case ) _UpperCamelCase : List[str] = TaLayerNorm(_snake_case ) _UpperCamelCase : List[str] = nn.Dropout(p=_snake_case ) _UpperCamelCase : Any = nn.Linear(_snake_case , _snake_case , bias=_snake_case ) def _lowercase ( self , _snake_case , _snake_case ) -> Union[str, Any]: _UpperCamelCase : Any = torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def _lowercase ( self , _snake_case , _snake_case , _snake_case ) -> str: _UpperCamelCase, _UpperCamelCase, _UpperCamelCase : Optional[int] = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. _UpperCamelCase : Dict = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) _UpperCamelCase : Any = self.conditioning_emb(_snake_case ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) _UpperCamelCase : Optional[Any] = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. _UpperCamelCase : Union[str, Any] = torch.broadcast_to( torch.arange(_snake_case , device=decoder_input_tokens.device ) , (batch, seq_length) , ) _UpperCamelCase : Union[str, Any] = self.position_encoding(_snake_case ) _UpperCamelCase : List[Any] = self.continuous_inputs_projection(_snake_case ) inputs += position_encodings _UpperCamelCase : Tuple = self.dropout(_snake_case ) # decoder: No padding present. _UpperCamelCase : Optional[int] = torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. _UpperCamelCase : Optional[int] = [(x, self.encoder_decoder_mask(_snake_case , _snake_case )) for x, y in encodings_and_masks] # cross attend style: concat encodings _UpperCamelCase : Optional[Any] = torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) _UpperCamelCase : str = torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: _UpperCamelCase : Optional[int] = lyr( _snake_case , conditioning_emb=_snake_case , encoder_hidden_states=_snake_case , encoder_attention_mask=_snake_case , )[0] _UpperCamelCase : List[str] = self.decoder_norm(_snake_case ) _UpperCamelCase : int = self.post_dropout(_snake_case ) _UpperCamelCase : Dict = self.spec_out(_snake_case ) return spec_out class UpperCAmelCase ( nn.Module ): """simple docstring""" def __init__( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case=1E-6 ) -> str: super().__init__() _UpperCamelCase : int = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=_snake_case , d_kv=_snake_case , num_heads=_snake_case , dropout_rate=_snake_case ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=_snake_case , d_kv=_snake_case , num_heads=_snake_case , dropout_rate=_snake_case , layer_norm_epsilon=_snake_case , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=_snake_case , d_ff=_snake_case , dropout_rate=_snake_case , layer_norm_epsilon=_snake_case ) ) def _lowercase ( self , _snake_case , _snake_case=None , _snake_case=None , _snake_case=None , _snake_case=None , _snake_case=None , ) -> Optional[Any]: _UpperCamelCase : int = self.layer[0]( _snake_case , conditioning_emb=_snake_case , attention_mask=_snake_case , ) if encoder_hidden_states is not None: _UpperCamelCase : Optional[int] = torch.where(encoder_attention_mask > 0 , 0 , -1E10 ).to( encoder_hidden_states.dtype ) _UpperCamelCase : int = self.layer[1]( _snake_case , key_value_states=_snake_case , attention_mask=_snake_case , ) # Apply Film Conditional Feed Forward layer _UpperCamelCase : Dict = self.layer[-1](_snake_case , _snake_case ) return (hidden_states,) class UpperCAmelCase ( nn.Module ): """simple docstring""" def __init__( self , _snake_case , _snake_case , _snake_case , _snake_case ) -> List[Any]: super().__init__() _UpperCamelCase : Any = TaLayerNorm(_snake_case ) _UpperCamelCase : int = TaFiLMLayer(in_features=d_model * 4 , out_features=_snake_case ) _UpperCamelCase : Dict = Attention(query_dim=_snake_case , heads=_snake_case , dim_head=_snake_case , out_bias=_snake_case , scale_qk=_snake_case ) _UpperCamelCase : List[Any] = nn.Dropout(_snake_case ) def _lowercase ( self , _snake_case , _snake_case=None , _snake_case=None , ) -> List[str]: # pre_self_attention_layer_norm _UpperCamelCase : Optional[Any] = self.layer_norm(_snake_case ) if conditioning_emb is not None: _UpperCamelCase : Optional[int] = self.FiLMLayer(_snake_case , _snake_case ) # Self-attention block _UpperCamelCase : str = self.attention(_snake_case ) _UpperCamelCase : List[Any] = hidden_states + self.dropout(_snake_case ) return hidden_states class UpperCAmelCase ( nn.Module ): """simple docstring""" def __init__( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) -> List[str]: super().__init__() _UpperCamelCase : Tuple = Attention(query_dim=_snake_case , heads=_snake_case , dim_head=_snake_case , out_bias=_snake_case , scale_qk=_snake_case ) _UpperCamelCase : str = TaLayerNorm(_snake_case , eps=_snake_case ) _UpperCamelCase : Tuple = nn.Dropout(_snake_case ) def _lowercase ( self , _snake_case , _snake_case=None , _snake_case=None , ) -> List[Any]: _UpperCamelCase : Tuple = self.layer_norm(_snake_case ) _UpperCamelCase : Tuple = self.attention( _snake_case , encoder_hidden_states=_snake_case , attention_mask=attention_mask.squeeze(1 ) , ) _UpperCamelCase : Union[str, Any] = hidden_states + self.dropout(_snake_case ) return layer_output class UpperCAmelCase ( nn.Module ): """simple docstring""" def __init__( self , _snake_case , _snake_case , _snake_case , _snake_case ) -> Any: super().__init__() _UpperCamelCase : int = TaDenseGatedActDense(d_model=_snake_case , d_ff=_snake_case , dropout_rate=_snake_case ) _UpperCamelCase : Union[str, Any] = TaFiLMLayer(in_features=d_model * 4 , out_features=_snake_case ) _UpperCamelCase : Any = TaLayerNorm(_snake_case , eps=_snake_case ) _UpperCamelCase : Dict = nn.Dropout(_snake_case ) def _lowercase ( self , _snake_case , _snake_case=None ) -> Any: _UpperCamelCase : List[Any] = self.layer_norm(_snake_case ) if conditioning_emb is not None: _UpperCamelCase : List[str] = self.film(_snake_case , _snake_case ) _UpperCamelCase : Union[str, Any] = self.DenseReluDense(_snake_case ) _UpperCamelCase : Any = hidden_states + self.dropout(_snake_case ) return hidden_states class UpperCAmelCase ( nn.Module ): """simple docstring""" def __init__( self , _snake_case , _snake_case , _snake_case ) -> Dict: super().__init__() _UpperCamelCase : Tuple = nn.Linear(_snake_case , _snake_case , bias=_snake_case ) _UpperCamelCase : int = nn.Linear(_snake_case , _snake_case , bias=_snake_case ) _UpperCamelCase : Dict = nn.Linear(_snake_case , _snake_case , bias=_snake_case ) _UpperCamelCase : int = nn.Dropout(_snake_case ) _UpperCamelCase : Optional[int] = NewGELUActivation() def _lowercase ( self , _snake_case ) -> Dict: _UpperCamelCase : int = self.act(self.wi_a(_snake_case ) ) _UpperCamelCase : List[Any] = self.wi_a(_snake_case ) _UpperCamelCase : Any = hidden_gelu * hidden_linear _UpperCamelCase : Optional[Any] = self.dropout(_snake_case ) _UpperCamelCase : Tuple = self.wo(_snake_case ) return hidden_states class UpperCAmelCase ( nn.Module ): """simple docstring""" def __init__( self , _snake_case , _snake_case=1E-6 ) -> Optional[Any]: super().__init__() _UpperCamelCase : Dict = nn.Parameter(torch.ones(_snake_case ) ) _UpperCamelCase : int = eps def _lowercase ( self , _snake_case ) -> int: # T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean # Square Layer Normalization https://arxiv.org/abs/1910.07467 thus variance is calculated # w/o mean and there is no bias. Additionally we want to make sure that the accumulation for # half-precision inputs is done in fp32 _UpperCamelCase : List[str] = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=_snake_case ) _UpperCamelCase : Any = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: _UpperCamelCase : Any = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class UpperCAmelCase ( nn.Module ): """simple docstring""" def _lowercase ( self , _snake_case ) -> torch.Tensor: return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.044_715 * torch.pow(_snake_case , 3.0 )) )) class UpperCAmelCase ( nn.Module ): """simple docstring""" def __init__( self , _snake_case , _snake_case ) -> str: super().__init__() _UpperCamelCase : Tuple = nn.Linear(_snake_case , out_features * 2 , bias=_snake_case ) def _lowercase ( self , _snake_case , _snake_case ) -> Optional[int]: _UpperCamelCase : Tuple = self.scale_bias(_snake_case ) _UpperCamelCase, _UpperCamelCase : Any = torch.chunk(_snake_case , 2 , -1 ) _UpperCamelCase : str = x * (1 + scale) + shift return x
683
'''simple docstring''' from collections.abc import Iterable from typing import Any class UpperCAmelCase : """simple docstring""" def __init__( self , _snake_case = None ) -> Optional[int]: _UpperCamelCase : int = value _UpperCamelCase : Node | None = None # Added in order to delete a node easier _UpperCamelCase : Node | None = None _UpperCamelCase : Node | None = None def __repr__( self ) -> str: from pprint import pformat if self.left is None and self.right is None: return str(self.value ) return pformat({F'''{self.value}''': (self.left, self.right)} , indent=1 ) class UpperCAmelCase : """simple docstring""" def __init__( self , _snake_case = None ) -> List[Any]: _UpperCamelCase : str = root def __str__( self ) -> str: return str(self.root ) def _lowercase ( self , _snake_case , _snake_case ) -> None: if new_children is not None: # reset its kids _UpperCamelCase : Union[str, Any] = node.parent if node.parent is not None: # reset its parent if self.is_right(_snake_case ): # If it is the right children _UpperCamelCase : str = new_children else: _UpperCamelCase : Any = new_children else: _UpperCamelCase : Any = new_children def _lowercase ( self , _snake_case ) -> bool: if node.parent and node.parent.right: return node == node.parent.right return False def _lowercase ( self ) -> bool: return self.root is None def _lowercase ( self , _snake_case ) -> None: _UpperCamelCase : List[Any] = Node(_snake_case ) # create a new Node if self.empty(): # if Tree is empty _UpperCamelCase : Optional[Any] = new_node # set its root else: # Tree is not empty _UpperCamelCase : int = self.root # from root if parent_node is None: return while True: # While we don't get to a leaf if value < parent_node.value: # We go left if parent_node.left is None: _UpperCamelCase : Union[str, Any] = new_node # We insert the new node in a leaf break else: _UpperCamelCase : Union[str, Any] = parent_node.left else: if parent_node.right is None: _UpperCamelCase : Any = new_node break else: _UpperCamelCase : str = parent_node.right _UpperCamelCase : Any = parent_node def _lowercase ( self , *_snake_case ) -> None: for value in values: self.__insert(_snake_case ) def _lowercase ( self , _snake_case ) -> Node | None: if self.empty(): raise IndexError('''Warning: Tree is empty! please use another.''' ) else: _UpperCamelCase : List[str] = self.root # use lazy evaluation here to avoid NoneType Attribute error while node is not None and node.value is not value: _UpperCamelCase : Optional[Any] = node.left if value < node.value else node.right return node def _lowercase ( self , _snake_case = None ) -> Node | None: if node is None: if self.root is None: return None _UpperCamelCase : Dict = self.root if not self.empty(): while node.right is not None: _UpperCamelCase : Tuple = node.right return node def _lowercase ( self , _snake_case = None ) -> Node | None: if node is None: _UpperCamelCase : Optional[Any] = self.root if self.root is None: return None if not self.empty(): _UpperCamelCase : Optional[int] = self.root while node.left is not None: _UpperCamelCase : List[str] = node.left return node def _lowercase ( self , _snake_case ) -> None: _UpperCamelCase : str = self.search(_snake_case ) # Look for the node with that label if node is not None: if node.left is None and node.right is None: # If it has no children self.__reassign_nodes(_snake_case , _snake_case ) elif node.left is None: # Has only right children self.__reassign_nodes(_snake_case , node.right ) elif node.right is None: # Has only left children self.__reassign_nodes(_snake_case , node.left ) else: _UpperCamelCase : List[str] = self.get_max( node.left ) # Gets the max value of the left branch self.remove(tmp_node.value ) # type: ignore _UpperCamelCase : int = ( tmp_node.value # type: ignore ) # Assigns the value to the node to delete and keep tree structure def _lowercase ( self , _snake_case ) -> Iterable: if node is not None: yield node # Preorder Traversal yield from self.preorder_traverse(node.left ) yield from self.preorder_traverse(node.right ) def _lowercase ( self , _snake_case=None ) -> Any: if traversal_function is None: return self.preorder_traverse(self.root ) else: return traversal_function(self.root ) def _lowercase ( self , _snake_case , _snake_case ) -> None: if node: self.inorder(_snake_case , node.left ) arr.append(node.value ) self.inorder(_snake_case , node.right ) def _lowercase ( self , _snake_case , _snake_case ) -> int: _UpperCamelCase : list[int] = [] self.inorder(_snake_case , _snake_case ) # append all values to list using inorder traversal return arr[k - 1] def snake_case__ ( UpperCamelCase ) -> list[Node]: _UpperCamelCase : int = [] if curr_node is not None: _UpperCamelCase : Any = postorder(curr_node.left ) + postorder(curr_node.right ) + [curr_node] return node_list def snake_case__ ( ) -> None: _UpperCamelCase : Any = (8, 3, 6, 1, 10, 14, 13, 4, 7) _UpperCamelCase : Tuple = BinarySearchTree() for i in testlist: t.insert(UpperCamelCase ) # Prints all the elements of the list in order traversal print(UpperCamelCase ) if t.search(6 ) is not None: print('''The value 6 exists''' ) else: print('''The value 6 doesn\'t exist''' ) if t.search(-1 ) is not None: print('''The value -1 exists''' ) else: print('''The value -1 doesn\'t exist''' ) if not t.empty(): print('''Max Value: ''' ,t.get_max().value ) # type: ignore print('''Min Value: ''' ,t.get_min().value ) # type: ignore for i in testlist: t.remove(UpperCamelCase ) print(UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
683
1
import os import unittest from transformers import BatchEncoding from transformers.models.bert.tokenization_bert import ( BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer from transformers.testing_utils import require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin class a ( _UpperCAmelCase ,unittest.TestCase ): UpperCAmelCase__ : List[Any] = ProphetNetTokenizer UpperCAmelCase__ : Dict = False def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): super().setUp() __lowerCamelCase: List[Any] = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] __lowerCamelCase: str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def SCREAMING_SNAKE_CASE__ ( self : str , SCREAMING_SNAKE_CASE_ : Tuple ): __lowerCamelCase: Dict = """UNwant\u00E9d,running""" __lowerCamelCase: str = """unwanted, running""" return input_text, output_text def SCREAMING_SNAKE_CASE__ ( self : Tuple ): __lowerCamelCase: Optional[int] = self.tokenizer_class(self.vocab_file ) __lowerCamelCase: int = tokenizer.tokenize("""UNwant\u00E9d,running""" ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) , [9, 6, 7, 12, 10, 11] ) def SCREAMING_SNAKE_CASE__ ( self : int ): __lowerCamelCase: List[str] = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("""ah\u535A\u63A8zz""" ) , ["""ah""", """\u535A""", """\u63A8""", """zz"""] ) def SCREAMING_SNAKE_CASE__ ( self : Dict ): __lowerCamelCase: int = BasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""hello""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): __lowerCamelCase: Optional[Any] = BasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hällo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""h\u00E9llo"""] ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ): __lowerCamelCase: str = BasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def SCREAMING_SNAKE_CASE__ ( self : Dict ): __lowerCamelCase: List[Any] = BasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): __lowerCamelCase: Optional[int] = BasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): __lowerCamelCase: Optional[Any] = BasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HäLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): __lowerCamelCase: Dict = BasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HaLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def SCREAMING_SNAKE_CASE__ ( self : Dict ): __lowerCamelCase: int = BasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , never_split=["""[UNK]"""] ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? [UNK]""" ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?""", """[UNK]"""] ) def SCREAMING_SNAKE_CASE__ ( self : int ): __lowerCamelCase: Optional[int] = ["""[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing"""] __lowerCamelCase: Optional[Any] = {} for i, token in enumerate(SCREAMING_SNAKE_CASE_ ): __lowerCamelCase: Any = i __lowerCamelCase: List[Any] = WordpieceTokenizer(vocab=SCREAMING_SNAKE_CASE_ , unk_token="""[UNK]""" ) self.assertListEqual(tokenizer.tokenize("""""" ) , [] ) self.assertListEqual(tokenizer.tokenize("""unwanted running""" ) , ["""un""", """##want""", """##ed""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.tokenize("""unwantedX running""" ) , ["""[UNK]""", """runn""", """##ing"""] ) @require_torch def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): __lowerCamelCase: Any = self.tokenizer_class.from_pretrained("""microsoft/prophetnet-large-uncased""" ) __lowerCamelCase: Tuple = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] __lowerCamelCase: List[str] = [1037, 2146, 20423, 2005, 7680, 7849, 3989, 1012, 102] __lowerCamelCase: List[str] = tokenizer(SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , return_tensors="""pt""" ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase: Optional[int] = list(batch.input_ids.numpy()[0] ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) def SCREAMING_SNAKE_CASE__ ( self : int ): self.assertTrue(_is_whitespace(""" """ ) ) self.assertTrue(_is_whitespace("""\t""" ) ) self.assertTrue(_is_whitespace("""\r""" ) ) self.assertTrue(_is_whitespace("""\n""" ) ) self.assertTrue(_is_whitespace("""\u00A0""" ) ) self.assertFalse(_is_whitespace("""A""" ) ) self.assertFalse(_is_whitespace("""-""" ) ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): self.assertTrue(_is_control("""\u0005""" ) ) self.assertFalse(_is_control("""A""" ) ) self.assertFalse(_is_control(""" """ ) ) self.assertFalse(_is_control("""\t""" ) ) self.assertFalse(_is_control("""\r""" ) ) def SCREAMING_SNAKE_CASE__ ( self : Dict ): self.assertTrue(_is_punctuation("""-""" ) ) self.assertTrue(_is_punctuation("""$""" ) ) self.assertTrue(_is_punctuation("""`""" ) ) self.assertTrue(_is_punctuation(""".""" ) ) self.assertFalse(_is_punctuation("""A""" ) ) self.assertFalse(_is_punctuation(""" """ ) ) @slow def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): __lowerCamelCase: Any = self.tokenizer_class.from_pretrained("""microsoft/prophetnet-large-uncased""" ) __lowerCamelCase: Optional[int] = tokenizer.encode("""sequence builders""" , add_special_tokens=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase: Tuple = tokenizer.encode("""multi-sequence build""" , add_special_tokens=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase: List[str] = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase: str = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) assert encoded_sentence == text + [102] assert encoded_pair == text + [102] + text_a + [102]
189
from __future__ import annotations _A : List[str] = { '''A''': ['''B''', '''C''', '''E'''], '''B''': ['''A''', '''D''', '''E'''], '''C''': ['''A''', '''F''', '''G'''], '''D''': ['''B'''], '''E''': ['''A''', '''B''', '''D'''], '''F''': ['''C'''], '''G''': ['''C'''], } class a : def __init__( self : Any , SCREAMING_SNAKE_CASE_ : dict[str, list[str]] , SCREAMING_SNAKE_CASE_ : str ): __lowerCamelCase: Dict = graph # mapping node to its parent in resulting breadth first tree __lowerCamelCase: dict[str, str | None] = {} __lowerCamelCase: str = source_vertex def SCREAMING_SNAKE_CASE__ ( self : int ): __lowerCamelCase: Optional[int] = {self.source_vertex} __lowerCamelCase: Optional[int] = None __lowerCamelCase: Optional[int] = [self.source_vertex] # first in first out queue while queue: __lowerCamelCase: int = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase: Dict = vertex queue.append(SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : str ): if target_vertex == self.source_vertex: return self.source_vertex __lowerCamelCase: List[str] = self.parent.get(SCREAMING_SNAKE_CASE_ ) if target_vertex_parent is None: __lowerCamelCase: Optional[int] = ( F'No path from vertex: {self.source_vertex} to vertex: {target_vertex}' ) raise ValueError(SCREAMING_SNAKE_CASE_ ) return self.shortest_path(SCREAMING_SNAKE_CASE_ ) + F'->{target_vertex}' if __name__ == "__main__": _A : int = Graph(graph, '''G''') g.breath_first_search() print(g.shortest_path('''D''')) print(g.shortest_path('''G''')) print(g.shortest_path('''Foo'''))
189
1
'''simple docstring''' import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class lowercase__ ( UpperCAmelCase_ ): '''simple docstring''' A_ : Union[str, Any] = (CMStochasticIterativeScheduler,) A_ : int = 10 def UpperCAmelCase_ ( self , **__snake_case ): _SCREAMING_SNAKE_CASE : Optional[int] = { 'num_train_timesteps': 201, 'sigma_min': 0.002, 'sigma_max': 80.0, } config.update(**__snake_case ) return config def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : List[Any] = 10 _SCREAMING_SNAKE_CASE : str = self.get_scheduler_config() _SCREAMING_SNAKE_CASE : List[Any] = self.scheduler_classes[0](**__snake_case ) scheduler.set_timesteps(__snake_case ) _SCREAMING_SNAKE_CASE : Tuple = scheduler.timesteps[0] _SCREAMING_SNAKE_CASE : List[Any] = scheduler.timesteps[1] _SCREAMING_SNAKE_CASE : int = self.dummy_sample _SCREAMING_SNAKE_CASE : str = 0.1 * sample _SCREAMING_SNAKE_CASE : Optional[int] = scheduler.step(__snake_case , __snake_case , __snake_case ).prev_sample _SCREAMING_SNAKE_CASE : Tuple = scheduler.step(__snake_case , __snake_case , __snake_case ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def UpperCAmelCase_ ( self ): for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=__snake_case ) def UpperCAmelCase_ ( self ): for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=__snake_case ) def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : int = self.scheduler_classes[0] _SCREAMING_SNAKE_CASE : Optional[Any] = self.get_scheduler_config() _SCREAMING_SNAKE_CASE : Any = scheduler_class(**__snake_case ) _SCREAMING_SNAKE_CASE : Optional[int] = 1 scheduler.set_timesteps(__snake_case ) _SCREAMING_SNAKE_CASE : List[str] = scheduler.timesteps _SCREAMING_SNAKE_CASE : Optional[int] = torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE : Union[str, Any] = self.dummy_model() _SCREAMING_SNAKE_CASE : str = self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(__snake_case ): # 1. scale model input _SCREAMING_SNAKE_CASE : Optional[Any] = scheduler.scale_model_input(__snake_case , __snake_case ) # 2. predict noise residual _SCREAMING_SNAKE_CASE : Optional[int] = model(__snake_case , __snake_case ) # 3. predict previous sample x_t-1 _SCREAMING_SNAKE_CASE : List[Any] = scheduler.step(__snake_case , __snake_case , __snake_case , generator=__snake_case ).prev_sample _SCREAMING_SNAKE_CASE : str = pred_prev_sample _SCREAMING_SNAKE_CASE : int = torch.sum(torch.abs(__snake_case ) ) _SCREAMING_SNAKE_CASE : Dict = torch.mean(torch.abs(__snake_case ) ) assert abs(result_sum.item() - 192.7614 ) < 1e-2 assert abs(result_mean.item() - 0.2510 ) < 1e-3 def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : Any = self.scheduler_classes[0] _SCREAMING_SNAKE_CASE : List[Any] = self.get_scheduler_config() _SCREAMING_SNAKE_CASE : Dict = scheduler_class(**__snake_case ) _SCREAMING_SNAKE_CASE : str = [106, 0] scheduler.set_timesteps(timesteps=__snake_case ) _SCREAMING_SNAKE_CASE : Any = scheduler.timesteps _SCREAMING_SNAKE_CASE : Any = torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE : str = self.dummy_model() _SCREAMING_SNAKE_CASE : int = self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input _SCREAMING_SNAKE_CASE : List[str] = scheduler.scale_model_input(__snake_case , __snake_case ) # 2. predict noise residual _SCREAMING_SNAKE_CASE : List[Any] = model(__snake_case , __snake_case ) # 3. predict previous sample x_t-1 _SCREAMING_SNAKE_CASE : Tuple = scheduler.step(__snake_case , __snake_case , __snake_case , generator=__snake_case ).prev_sample _SCREAMING_SNAKE_CASE : List[Any] = pred_prev_sample _SCREAMING_SNAKE_CASE : int = torch.sum(torch.abs(__snake_case ) ) _SCREAMING_SNAKE_CASE : List[str] = torch.mean(torch.abs(__snake_case ) ) assert abs(result_sum.item() - 347.6357 ) < 1e-2 assert abs(result_mean.item() - 0.4527 ) < 1e-3 def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : Union[str, Any] = self.scheduler_classes[0] _SCREAMING_SNAKE_CASE : Dict = self.get_scheduler_config() _SCREAMING_SNAKE_CASE : Optional[Any] = scheduler_class(**__snake_case ) _SCREAMING_SNAKE_CASE : int = [39, 30, 12, 15, 0] with self.assertRaises(__snake_case , msg="""`timesteps` must be in descending order.""" ): scheduler.set_timesteps(timesteps=__snake_case ) def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : str = self.scheduler_classes[0] _SCREAMING_SNAKE_CASE : Dict = self.get_scheduler_config() _SCREAMING_SNAKE_CASE : List[Any] = scheduler_class(**__snake_case ) _SCREAMING_SNAKE_CASE : Union[str, Any] = [39, 30, 12, 1, 0] _SCREAMING_SNAKE_CASE : List[Any] = len(__snake_case ) with self.assertRaises(__snake_case , msg="""Can only pass one of `num_inference_steps` or `timesteps`.""" ): scheduler.set_timesteps(num_inference_steps=__snake_case , timesteps=__snake_case ) def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : Union[str, Any] = self.scheduler_classes[0] _SCREAMING_SNAKE_CASE : Tuple = self.get_scheduler_config() _SCREAMING_SNAKE_CASE : Optional[Any] = scheduler_class(**__snake_case ) _SCREAMING_SNAKE_CASE : Dict = [scheduler.config.num_train_timesteps] with self.assertRaises( __snake_case , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ): scheduler.set_timesteps(timesteps=__snake_case )
533
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) lowerCAmelCase_ = { """configuration_clip""": [ """CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CLIPConfig""", """CLIPOnnxConfig""", """CLIPTextConfig""", """CLIPVisionConfig""", ], """processing_clip""": ["""CLIPProcessor"""], """tokenization_clip""": ["""CLIPTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ["""CLIPTokenizerFast"""] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ["""CLIPFeatureExtractor"""] lowerCAmelCase_ = ["""CLIPImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ """CLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """CLIPModel""", """CLIPPreTrainedModel""", """CLIPTextModel""", """CLIPTextModelWithProjection""", """CLIPVisionModel""", """CLIPVisionModelWithProjection""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ """TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFCLIPModel""", """TFCLIPPreTrainedModel""", """TFCLIPTextModel""", """TFCLIPVisionModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ """FlaxCLIPModel""", """FlaxCLIPPreTrainedModel""", """FlaxCLIPTextModel""", """FlaxCLIPTextPreTrainedModel""", """FlaxCLIPVisionModel""", """FlaxCLIPVisionPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
411
0
"""simple docstring""" from __future__ import annotations class _lowerCamelCase : def __init__( self : Any , lowerCamelCase_ : list[list[int]] ): """simple docstring""" _lowercase : Tuple = TypeError( 'Matrices must be formed from a list of zero or more lists containing at ' 'least one and the same number of values, each of which must be of type ' 'int or float.' ) if len(lowerCamelCase_ ) != 0: _lowercase : Dict = len(rows[0] ) if cols == 0: raise error for row in rows: if len(lowerCamelCase_ ) != cols: raise error for value in row: if not isinstance(lowerCamelCase_ , (int, float) ): raise error _lowercase : int = rows else: _lowercase : Optional[Any] = [] def __UpperCAmelCase ( self : List[str] ): """simple docstring""" return [[row[i] for row in self.rows] for i in range(len(self.rows[0] ) )] @property def __UpperCAmelCase ( self : List[str] ): """simple docstring""" return len(self.rows ) @property def __UpperCAmelCase ( self : int ): """simple docstring""" return len(self.rows[0] ) @property def __UpperCAmelCase ( self : Tuple ): """simple docstring""" return (self.num_rows, self.num_columns) @property def __UpperCAmelCase ( self : List[str] ): """simple docstring""" return self.order[0] == self.order[1] def __UpperCAmelCase ( self : Optional[Any] ): """simple docstring""" _lowercase : Optional[int] = [ [0 if column_num != row_num else 1 for column_num in range(self.num_rows )] for row_num in range(self.num_rows ) ] return Matrix(lowerCamelCase_ ) def __UpperCAmelCase ( self : Dict ): """simple docstring""" if not self.is_square: return 0 if self.order == (0, 0): return 1 if self.order == (1, 1): return int(self.rows[0][0] ) if self.order == (2, 2): return int( (self.rows[0][0] * self.rows[1][1]) - (self.rows[0][1] * self.rows[1][0]) ) else: return sum( self.rows[0][column] * self.cofactors().rows[0][column] for column in range(self.num_columns ) ) def __UpperCAmelCase ( self : Union[str, Any] ): """simple docstring""" return bool(self.determinant() ) def __UpperCAmelCase ( self : int , lowerCamelCase_ : int , lowerCamelCase_ : int ): """simple docstring""" _lowercase : List[str] = [ [ self.rows[other_row][other_column] for other_column in range(self.num_columns ) if other_column != column ] for other_row in range(self.num_rows ) if other_row != row ] return Matrix(lowerCamelCase_ ).determinant() def __UpperCAmelCase ( self : str , lowerCamelCase_ : int , lowerCamelCase_ : int ): """simple docstring""" if (row + column) % 2 == 0: return self.get_minor(lowerCamelCase_ , lowerCamelCase_ ) return -1 * self.get_minor(lowerCamelCase_ , lowerCamelCase_ ) def __UpperCAmelCase ( self : Dict ): """simple docstring""" return Matrix( [ [self.get_minor(lowerCamelCase_ , lowerCamelCase_ ) for column in range(self.num_columns )] for row in range(self.num_rows ) ] ) def __UpperCAmelCase ( self : Tuple ): """simple docstring""" return Matrix( [ [ self.minors().rows[row][column] if (row + column) % 2 == 0 else self.minors().rows[row][column] * -1 for column in range(self.minors().num_columns ) ] for row in range(self.minors().num_rows ) ] ) def __UpperCAmelCase ( self : Tuple ): """simple docstring""" _lowercase : str = [ [self.cofactors().rows[column][row] for column in range(self.num_columns )] for row in range(self.num_rows ) ] return Matrix(lowerCamelCase_ ) def __UpperCAmelCase ( self : Union[str, Any] ): """simple docstring""" _lowercase : Dict = self.determinant() if not determinant: raise TypeError('Only matrices with a non-zero determinant have an inverse' ) return self.adjugate() * (1 / determinant) def __repr__( self : List[str] ): """simple docstring""" return str(self.rows ) def __str__( self : str ): """simple docstring""" if self.num_rows == 0: return "[]" if self.num_rows == 1: return "[[" + ". ".join(str(self.rows[0] ) ) + "]]" return ( "[" + "\n ".join( [ '[' + '. '.join([str(lowerCamelCase_ ) for value in row] ) + '.]' for row in self.rows ] ) + "]" ) def __UpperCAmelCase ( self : Union[str, Any] , lowerCamelCase_ : list[int] , lowerCamelCase_ : int | None = None ): """simple docstring""" _lowercase : Union[str, Any] = TypeError('Row must be a list containing all ints and/or floats' ) if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise type_error for value in row: if not isinstance(lowerCamelCase_ , (int, float) ): raise type_error if len(lowerCamelCase_ ) != self.num_columns: raise ValueError( 'Row must be equal in length to the other rows in the matrix' ) if position is None: self.rows.append(lowerCamelCase_ ) else: _lowercase : Any = self.rows[0:position] + [row] + self.rows[position:] def __UpperCAmelCase ( self : str , lowerCamelCase_ : list[int] , lowerCamelCase_ : int | None = None ): """simple docstring""" _lowercase : Tuple = TypeError( 'Column must be a list containing all ints and/or floats' ) if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise type_error for value in column: if not isinstance(lowerCamelCase_ , (int, float) ): raise type_error if len(lowerCamelCase_ ) != self.num_rows: raise ValueError( 'Column must be equal in length to the other columns in the matrix' ) if position is None: _lowercase : List[Any] = [self.rows[i] + [column[i]] for i in range(self.num_rows )] else: _lowercase : Any = [ self.rows[i][0:position] + [column[i]] + self.rows[i][position:] for i in range(self.num_rows ) ] def __eq__( self : Union[str, Any] , lowerCamelCase_ : object ): """simple docstring""" if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): return NotImplemented return self.rows == other.rows def __ne__( self : Any , lowerCamelCase_ : object ): """simple docstring""" return not self == other def __neg__( self : int ): """simple docstring""" return self * -1 def __add__( self : Optional[int] , lowerCamelCase_ : Matrix ): """simple docstring""" if self.order != other.order: raise ValueError('Addition requires matrices of the same order' ) return Matrix( [ [self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __sub__( self : str , lowerCamelCase_ : Matrix ): """simple docstring""" if self.order != other.order: raise ValueError('Subtraction requires matrices of the same order' ) return Matrix( [ [self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __mul__( self : Optional[Any] , lowerCamelCase_ : Matrix | int | float ): """simple docstring""" if isinstance(lowerCamelCase_ , (int, float) ): return Matrix( [[int(element * other ) for element in row] for row in self.rows] ) elif isinstance(lowerCamelCase_ , lowerCamelCase_ ): if self.num_columns != other.num_rows: raise ValueError( 'The number of columns in the first matrix must ' 'be equal to the number of rows in the second' ) return Matrix( [ [Matrix.dot_product(lowerCamelCase_ , lowerCamelCase_ ) for column in other.columns()] for row in self.rows ] ) else: raise TypeError( 'A Matrix can only be multiplied by an int, float, or another matrix' ) def __pow__( self : Optional[Any] , lowerCamelCase_ : int ): """simple docstring""" if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise TypeError('A Matrix can only be raised to the power of an int' ) if not self.is_square: raise ValueError('Only square matrices can be raised to a power' ) if other == 0: return self.identity() if other < 0: if self.is_invertable(): return self.inverse() ** (-other) raise ValueError( 'Only invertable matrices can be raised to a negative power' ) _lowercase : str = self for _ in range(other - 1 ): result *= self return result @classmethod def __UpperCAmelCase ( cls : str , lowerCamelCase_ : list[int] , lowerCamelCase_ : list[int] ): """simple docstring""" return sum(row[i] * column[i] for i in range(len(lowerCamelCase_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
283
"""simple docstring""" import re import time from typing import Optional import IPython.display as disp from ..trainer_callback import TrainerCallback from ..trainer_utils import IntervalStrategy, has_length def __lowerCAmelCase( __UpperCAmelCase ): """simple docstring""" _lowercase : Optional[int] = int(__UpperCAmelCase ) _lowercase , _lowercase , _lowercase : Union[str, Any] = t // 3_600, (t // 60) % 60, t % 60 return F'''{h}:{m:02d}:{s:02d}''' if h != 0 else F'''{m:02d}:{s:02d}''' def __lowerCAmelCase( __UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase=300 ): """simple docstring""" return F''' <div> {prefix} <progress value=\'{value}\' max=\'{total}\' style=\'width:{width}px; height:20px; vertical-align: middle;\'></progress> {label} </div> ''' def __lowerCAmelCase( __UpperCAmelCase ): """simple docstring""" _lowercase : List[Any] = '<table border="1" class="dataframe">\n' html_code += """ <thead>\n <tr style="text-align: left;">\n""" for i in items[0]: html_code += F''' <th>{i}</th>\n''' html_code += " </tr>\n </thead>\n <tbody>\n" for line in items[1:]: html_code += " <tr>\n" for elt in line: _lowercase : Optional[Any] = F'''{elt:.6f}''' if isinstance(__UpperCAmelCase ,__UpperCAmelCase ) else str(__UpperCAmelCase ) html_code += F''' <td>{elt}</td>\n''' html_code += " </tr>\n" html_code += " </tbody>\n</table><p>" return html_code class _lowerCamelCase : _snake_case = 5 _snake_case = 0.2 def __init__( self : List[str] , lowerCamelCase_ : int , lowerCamelCase_ : Optional[str] = None , lowerCamelCase_ : bool = True , lowerCamelCase_ : Optional["NotebookTrainingTracker"] = None , lowerCamelCase_ : int = 3_0_0 , ): """simple docstring""" _lowercase : int = total _lowercase : Dict = '' if prefix is None else prefix _lowercase : List[Any] = leave _lowercase : Dict = parent _lowercase : str = width _lowercase : Any = None _lowercase : Optional[int] = None _lowercase : Union[str, Any] = None def __UpperCAmelCase ( self : Dict , lowerCamelCase_ : int , lowerCamelCase_ : bool = False , lowerCamelCase_ : str = None ): """simple docstring""" _lowercase : Dict = value if comment is not None: _lowercase : List[str] = comment if self.last_value is None: _lowercase : List[Any] = time.time() _lowercase : str = value _lowercase : Any = None _lowercase : List[Any] = self.warmup _lowercase : Union[str, Any] = 1 self.update_bar(lowerCamelCase_ ) elif value <= self.last_value and not force_update: return elif force_update or self.first_calls > 0 or value >= min(self.last_value + self.wait_for , self.total ): if self.first_calls > 0: self.first_calls -= 1 _lowercase : Tuple = time.time() _lowercase : List[str] = current_time - self.start_time # We could have value = self.start_value if the update is called twixe with the same start value. if value > self.start_value: _lowercase : List[Any] = self.elapsed_time / (value - self.start_value) else: _lowercase : List[Any] = None if value >= self.total: _lowercase : Optional[Any] = self.total _lowercase : str = None if not self.leave: self.close() elif self.average_time_per_item is not None: _lowercase : int = self.average_time_per_item * (self.total - value) self.update_bar(lowerCamelCase_ ) _lowercase : Optional[int] = value _lowercase : Dict = current_time if self.average_time_per_item is None: _lowercase : Union[str, Any] = 1 else: _lowercase : Optional[Any] = max(int(self.update_every / self.average_time_per_item ) , 1 ) def __UpperCAmelCase ( self : str , lowerCamelCase_ : int , lowerCamelCase_ : Optional[Any]=None ): """simple docstring""" _lowercase : str = ' ' * (len(str(self.total ) ) - len(str(lowerCamelCase_ ) )) + str(lowerCamelCase_ ) if self.elapsed_time is None: _lowercase : Dict = F'''[{spaced_value}/{self.total} : < :''' elif self.predicted_remaining is None: _lowercase : Optional[int] = F'''[{spaced_value}/{self.total} {format_time(self.elapsed_time )}''' else: _lowercase : int = ( F'''[{spaced_value}/{self.total} {format_time(self.elapsed_time )} <''' F''' {format_time(self.predicted_remaining )}''' ) self.label += F''', {1/self.average_time_per_item:.2f} it/s''' self.label += "]" if self.comment is None or len(self.comment ) == 0 else F''', {self.comment}]''' self.display() def __UpperCAmelCase ( self : int ): """simple docstring""" _lowercase : int = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.parent is not None: # If this is a child bar, the parent will take care of the display. self.parent.display() return if self.output is None: _lowercase : List[str] = disp.display(disp.HTML(self.html_code ) , display_id=lowerCamelCase_ ) else: self.output.update(disp.HTML(self.html_code ) ) def __UpperCAmelCase ( self : Any ): """simple docstring""" if self.parent is None and self.output is not None: self.output.update(disp.HTML('' ) ) class _lowerCamelCase (__lowerCamelCase ): def __init__( self : Optional[int] , lowerCamelCase_ : Any , lowerCamelCase_ : Tuple=None ): """simple docstring""" super().__init__(lowerCamelCase_ ) _lowercase : Tuple = None if column_names is None else [column_names] _lowercase : Optional[int] = None def __UpperCAmelCase ( self : Optional[Any] ): """simple docstring""" _lowercase : Union[str, Any] = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.inner_table is not None: self.html_code += text_to_html_table(self.inner_table ) if self.child_bar is not None: self.html_code += self.child_bar.html_code if self.output is None: _lowercase : Dict = disp.display(disp.HTML(self.html_code ) , display_id=lowerCamelCase_ ) else: self.output.update(disp.HTML(self.html_code ) ) def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : Optional[int] ): """simple docstring""" if self.inner_table is None: _lowercase : Optional[int] = [list(values.keys() ), list(values.values() )] else: _lowercase : str = self.inner_table[0] if len(self.inner_table ) == 1: # We give a chance to update the column names at the first iteration for key in values.keys(): if key not in columns: columns.append(lowerCamelCase_ ) _lowercase : List[Any] = columns self.inner_table.append([values[c] for c in columns] ) def __UpperCAmelCase ( self : List[Any] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Union[str, Any]=None , lowerCamelCase_ : int=3_0_0 ): """simple docstring""" _lowercase : List[str] = NotebookProgressBar(lowerCamelCase_ , prefix=lowerCamelCase_ , parent=self , width=lowerCamelCase_ ) return self.child_bar def __UpperCAmelCase ( self : Any ): """simple docstring""" _lowercase : Any = None self.display() class _lowerCamelCase (__lowerCamelCase ): def __init__( self : Optional[Any] ): """simple docstring""" _lowercase : int = None _lowercase : Any = None _lowercase : Optional[int] = False def __UpperCAmelCase ( self : Any , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : int , lowerCamelCase_ : List[Any] , **lowerCamelCase_ : Union[str, Any] ): """simple docstring""" _lowercase : Any = 'Epoch' if args.evaluation_strategy == IntervalStrategy.EPOCH else 'Step' _lowercase : Dict = 0 _lowercase : Optional[Any] = 0 _lowercase : Union[str, Any] = [self.first_column] + ['Training Loss'] if args.evaluation_strategy != IntervalStrategy.NO: column_names.append('Validation Loss' ) _lowercase : Tuple = NotebookTrainingTracker(state.max_steps , lowerCamelCase_ ) def __UpperCAmelCase ( self : Union[str, Any] , lowerCamelCase_ : Any , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Union[str, Any] , **lowerCamelCase_ : Dict ): """simple docstring""" _lowercase : Optional[Any] = int(state.epoch ) if int(state.epoch ) == state.epoch else F'''{state.epoch:.2f}''' self.training_tracker.update( state.global_step + 1 , comment=F'''Epoch {epoch}/{state.num_train_epochs}''' , force_update=self._force_next_update , ) _lowercase : Tuple = False def __UpperCAmelCase ( self : int , lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Union[str, Any]=None , **lowerCamelCase_ : str ): """simple docstring""" if not has_length(lowerCamelCase_ ): return if self.prediction_bar is None: if self.training_tracker is not None: _lowercase : Tuple = self.training_tracker.add_child(len(lowerCamelCase_ ) ) else: _lowercase : Optional[Any] = NotebookProgressBar(len(lowerCamelCase_ ) ) self.prediction_bar.update(1 ) else: self.prediction_bar.update(self.prediction_bar.value + 1 ) def __UpperCAmelCase ( self : Tuple , lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Dict , **lowerCamelCase_ : List[str] ): """simple docstring""" if self.prediction_bar is not None: self.prediction_bar.close() _lowercase : Union[str, Any] = None def __UpperCAmelCase ( self : List[str] , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : str , lowerCamelCase_ : int=None , **lowerCamelCase_ : List[Any] ): """simple docstring""" if args.evaluation_strategy == IntervalStrategy.NO and "loss" in logs: _lowercase : Any = {'Training Loss': logs['loss']} # First column is necessarily Step sine we're not in epoch eval strategy _lowercase : Any = state.global_step self.training_tracker.write_line(lowerCamelCase_ ) def __UpperCAmelCase ( self : int , lowerCamelCase_ : List[Any] , lowerCamelCase_ : int , lowerCamelCase_ : List[str] , lowerCamelCase_ : str=None , **lowerCamelCase_ : List[Any] ): """simple docstring""" if self.training_tracker is not None: _lowercase : List[str] = {'Training Loss': 'No log', 'Validation Loss': 'No log'} for log in reversed(state.log_history ): if "loss" in log: _lowercase : Union[str, Any] = log['loss'] break if self.first_column == "Epoch": _lowercase : Optional[int] = int(state.epoch ) else: _lowercase : Optional[Any] = state.global_step _lowercase : int = 'eval' for k in metrics: if k.endswith('_loss' ): _lowercase : Tuple = re.sub(r'\_loss$' , '' , lowerCamelCase_ ) _lowercase : Optional[Any] = metrics.pop('total_flos' , lowerCamelCase_ ) _lowercase : List[str] = metrics.pop('epoch' , lowerCamelCase_ ) _lowercase : List[Any] = metrics.pop(F'''{metric_key_prefix}_runtime''' , lowerCamelCase_ ) _lowercase : Tuple = metrics.pop(F'''{metric_key_prefix}_samples_per_second''' , lowerCamelCase_ ) _lowercase : Any = metrics.pop(F'''{metric_key_prefix}_steps_per_second''' , lowerCamelCase_ ) _lowercase : Union[str, Any] = metrics.pop(F'''{metric_key_prefix}_jit_compilation_time''' , lowerCamelCase_ ) for k, v in metrics.items(): if k == F'''{metric_key_prefix}_loss''': _lowercase : Optional[Any] = v else: _lowercase : Tuple = k.split('_' ) _lowercase : List[Any] = ' '.join([part.capitalize() for part in splits[1:]] ) _lowercase : List[Any] = v self.training_tracker.write_line(lowerCamelCase_ ) self.training_tracker.remove_child() _lowercase : Any = None # Evaluation takes a long time so we should force the next update. _lowercase : Dict = True def __UpperCAmelCase ( self : Optional[int] , lowerCamelCase_ : Tuple , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Union[str, Any] , **lowerCamelCase_ : Any ): """simple docstring""" self.training_tracker.update( state.global_step , comment=F'''Epoch {int(state.epoch )}/{state.num_train_epochs}''' , force_update=lowerCamelCase_ ) _lowercase : List[Any] = None
283
1
from __future__ import annotations def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' if (direction == 1 and array[indexa] > array[indexa]) or ( direction == 0 and array[indexa] < array[indexa] ): __lowercase , __lowercase = array[indexa], array[indexa] def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' if length > 1: __lowercase = int(length / 2 ) for i in range(lowerCamelCase , low + middle ): comp_and_swap(lowerCamelCase , lowerCamelCase , i + middle , lowerCamelCase ) bitonic_merge(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) bitonic_merge(lowerCamelCase , low + middle , lowerCamelCase , lowerCamelCase ) def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' if length > 1: __lowercase = int(length / 2 ) bitonic_sort(lowerCamelCase , lowerCamelCase , lowerCamelCase , 1 ) bitonic_sort(lowerCamelCase , low + middle , lowerCamelCase , 0 ) bitonic_merge(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) if __name__ == "__main__": __UpperCamelCase : Tuple = input("""Enter numbers separated by a comma:\n""").strip() __UpperCamelCase : int = [int(item.strip()) for item in user_input.split(""",""")] bitonic_sort(unsorted, 0, len(unsorted), 1) print("""\nSorted array in ascending order is: """, end="""""") print(*unsorted, sep=""", """) bitonic_merge(unsorted, 0, len(unsorted), 0) print("""Sorted array in descending order is: """, end="""""") print(*unsorted, sep=""", """)
80
def snake_case ( lowerCamelCase = 2_000_000 ): '''simple docstring''' __lowercase = [0 for i in range(n + 1 )] __lowercase = 1 __lowercase = 1 for i in range(2 , int(n**0.5 ) + 1 ): if primality_list[i] == 0: for j in range(i * i , n + 1 , lowerCamelCase ): __lowercase = 1 __lowercase = 0 for i in range(lowerCamelCase ): if primality_list[i] == 0: sum_of_primes += i return sum_of_primes if __name__ == "__main__": print(F'''{solution() = }''')
80
1
import re import subprocess import sys __UpperCAmelCase = subprocess.check_output('git merge-base main HEAD'.split()).decode('utf-8') __UpperCAmelCase = subprocess.check_output(f"""git diff --name-only {fork_point_sha}""".split()).decode('utf-8').split() __UpperCAmelCase = '|'.join(sys.argv[1:]) __UpperCAmelCase = re.compile(rf"""^({joined_dirs}).*?\.py$""") __UpperCAmelCase = [x for x in modified_files if regex.match(x)] print(' '.join(relevant_modified_files), end='')
719
'''simple docstring''' from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, flip_channel_order, get_resize_output_image_size, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging if is_vision_available(): import PIL if is_torch_available(): import torch __UpperCAmelCase = logging.get_logger(__name__) class _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" A = ['pixel_values'] def __init__( self ,__SCREAMING_SNAKE_CASE = True ,__SCREAMING_SNAKE_CASE = None ,__SCREAMING_SNAKE_CASE = PILImageResampling.BILINEAR ,__SCREAMING_SNAKE_CASE = True ,__SCREAMING_SNAKE_CASE = 1 / 255 ,__SCREAMING_SNAKE_CASE = True ,__SCREAMING_SNAKE_CASE = None ,__SCREAMING_SNAKE_CASE = True ,**__SCREAMING_SNAKE_CASE ,): super().__init__(**__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Tuple = size if size is not None else {'shortest_edge': 224} SCREAMING_SNAKE_CASE : Union[str, Any] = get_size_dict(__SCREAMING_SNAKE_CASE ,default_to_square=__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Any = crop_size if crop_size is not None else {'height': 256, 'width': 256} SCREAMING_SNAKE_CASE : str = get_size_dict(__SCREAMING_SNAKE_CASE ,param_name='crop_size' ) SCREAMING_SNAKE_CASE : str = do_resize SCREAMING_SNAKE_CASE : Dict = size SCREAMING_SNAKE_CASE : int = resample SCREAMING_SNAKE_CASE : List[str] = do_rescale SCREAMING_SNAKE_CASE : List[Any] = rescale_factor SCREAMING_SNAKE_CASE : Optional[Any] = do_center_crop SCREAMING_SNAKE_CASE : Any = crop_size SCREAMING_SNAKE_CASE : List[str] = do_flip_channel_order def __a ( self ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = PIL.Image.BILINEAR ,__SCREAMING_SNAKE_CASE = None ,**__SCREAMING_SNAKE_CASE ,): SCREAMING_SNAKE_CASE : int = get_size_dict(__SCREAMING_SNAKE_CASE ,default_to_square=__SCREAMING_SNAKE_CASE ) if "shortest_edge" not in size: raise ValueError(f"""The `size` dictionary must contain the key `shortest_edge`. Got {size.keys()}""" ) SCREAMING_SNAKE_CASE : str = get_resize_output_image_size(__SCREAMING_SNAKE_CASE ,size=size['shortest_edge'] ,default_to_square=__SCREAMING_SNAKE_CASE ) return resize(__SCREAMING_SNAKE_CASE ,size=__SCREAMING_SNAKE_CASE ,resample=__SCREAMING_SNAKE_CASE ,data_format=__SCREAMING_SNAKE_CASE ,**__SCREAMING_SNAKE_CASE ) def __a ( self ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = None ,**__SCREAMING_SNAKE_CASE ,): SCREAMING_SNAKE_CASE : List[Any] = get_size_dict(__SCREAMING_SNAKE_CASE ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}""" ) return center_crop(__SCREAMING_SNAKE_CASE ,size=(size['height'], size['width']) ,data_format=__SCREAMING_SNAKE_CASE ,**__SCREAMING_SNAKE_CASE ) def __a ( self ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = None ,**__SCREAMING_SNAKE_CASE ,): return rescale(__SCREAMING_SNAKE_CASE ,scale=__SCREAMING_SNAKE_CASE ,data_format=__SCREAMING_SNAKE_CASE ,**__SCREAMING_SNAKE_CASE ) def __a ( self ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = None ): return flip_channel_order(__SCREAMING_SNAKE_CASE ,data_format=__SCREAMING_SNAKE_CASE ) def __a ( self ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = None ,__SCREAMING_SNAKE_CASE = None ,__SCREAMING_SNAKE_CASE = None ,__SCREAMING_SNAKE_CASE = None ,__SCREAMING_SNAKE_CASE = None ,__SCREAMING_SNAKE_CASE = None ,__SCREAMING_SNAKE_CASE = None ,__SCREAMING_SNAKE_CASE = None ,__SCREAMING_SNAKE_CASE = None ,__SCREAMING_SNAKE_CASE = ChannelDimension.FIRST ,**__SCREAMING_SNAKE_CASE ,): SCREAMING_SNAKE_CASE : Tuple = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE : Dict = resample if resample is not None else self.resample SCREAMING_SNAKE_CASE : int = do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE : List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor SCREAMING_SNAKE_CASE : Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop SCREAMING_SNAKE_CASE : Union[str, Any] = ( do_flip_channel_order if do_flip_channel_order is not None else self.do_flip_channel_order ) SCREAMING_SNAKE_CASE : Optional[int] = size if size is not None else self.size SCREAMING_SNAKE_CASE : Dict = get_size_dict(__SCREAMING_SNAKE_CASE ,default_to_square=__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : List[str] = crop_size if crop_size is not None else self.crop_size SCREAMING_SNAKE_CASE : Tuple = get_size_dict(__SCREAMING_SNAKE_CASE ,param_name='crop_size' ) SCREAMING_SNAKE_CASE : Union[str, Any] = make_list_of_images(__SCREAMING_SNAKE_CASE ) if not valid_images(__SCREAMING_SNAKE_CASE ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE : Optional[Any] = [to_numpy_array(__SCREAMING_SNAKE_CASE ) for image in images] if do_resize: SCREAMING_SNAKE_CASE : Tuple = [self.resize(image=__SCREAMING_SNAKE_CASE ,size=__SCREAMING_SNAKE_CASE ,resample=__SCREAMING_SNAKE_CASE ) for image in images] if do_center_crop: SCREAMING_SNAKE_CASE : List[str] = [self.center_crop(image=__SCREAMING_SNAKE_CASE ,size=__SCREAMING_SNAKE_CASE ) for image in images] if do_rescale: SCREAMING_SNAKE_CASE : Dict = [self.rescale(image=__SCREAMING_SNAKE_CASE ,scale=__SCREAMING_SNAKE_CASE ) for image in images] # the pretrained checkpoints assume images are BGR, not RGB if do_flip_channel_order: SCREAMING_SNAKE_CASE : Optional[int] = [self.flip_channel_order(image=__SCREAMING_SNAKE_CASE ) for image in images] SCREAMING_SNAKE_CASE : Dict = [to_channel_dimension_format(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) for image in images] SCREAMING_SNAKE_CASE : Optional[int] = {'pixel_values': images} return BatchFeature(data=__SCREAMING_SNAKE_CASE ,tensor_type=__SCREAMING_SNAKE_CASE ) def __a ( self ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = None ): SCREAMING_SNAKE_CASE : Tuple = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(__SCREAMING_SNAKE_CASE ) != len(__SCREAMING_SNAKE_CASE ): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits' ) if is_torch_tensor(__SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE : Tuple = target_sizes.numpy() SCREAMING_SNAKE_CASE : Optional[Any] = [] for idx in range(len(__SCREAMING_SNAKE_CASE ) ): SCREAMING_SNAKE_CASE : Optional[Any] = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) ,size=target_sizes[idx] ,mode='bilinear' ,align_corners=__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : str = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(__SCREAMING_SNAKE_CASE ) else: SCREAMING_SNAKE_CASE : Union[str, Any] = logits.argmax(dim=1 ) SCREAMING_SNAKE_CASE : Dict = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
220
0
'''simple docstring''' from pathlib import Path import fire def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): UpperCAmelCase__ : List[str] = Path(UpperCamelCase__ ) UpperCAmelCase__ : Optional[int] = Path(UpperCamelCase__ ) dest_dir.mkdir(exist_ok=UpperCamelCase__ ) for path in src_dir.iterdir(): UpperCAmelCase__ : int = [x.rstrip() for x in list(path.open().readlines() )][:n] UpperCAmelCase__ : Tuple = dest_dir.joinpath(path.name ) print(UpperCamelCase__ ) dest_path.open("""w""" ).write("""\n""".join(UpperCamelCase__ ) ) if __name__ == "__main__": fire.Fire(minify)
407
'''simple docstring''' import numpy as np def _UpperCamelCase ( UpperCamelCase__ ): return 1 / (1 + np.exp(-vector )) if __name__ == "__main__": import doctest doctest.testmod()
407
1
'''simple docstring''' from ...processing_utils import ProcessorMixin class _lowercase ( _lowercase ): a = """SpeechT5FeatureExtractor""" a = """SpeechT5Tokenizer""" def __init__( self: List[str] , UpperCamelCase__: str , UpperCamelCase__: str ): super().__init__(UpperCamelCase__ , UpperCamelCase__ ) def __call__( self: Tuple , *UpperCamelCase__: Dict , **UpperCamelCase__: List[Any] ): lowerCamelCase__ : str = kwargs.pop("""audio""" , UpperCamelCase__ ) lowerCamelCase__ : Any = kwargs.pop("""text""" , UpperCamelCase__ ) lowerCamelCase__ : Optional[Any] = kwargs.pop("""text_target""" , UpperCamelCase__ ) lowerCamelCase__ : Union[str, Any] = kwargs.pop("""audio_target""" , UpperCamelCase__ ) lowerCamelCase__ : int = kwargs.pop("""sampling_rate""" , UpperCamelCase__ ) if audio is not None and text is not None: raise ValueError( """Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?""" ) if audio_target is not None and text_target is not None: raise ValueError( """Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?""" ) if audio is None and audio_target is None and text is None and text_target is None: raise ValueError( """You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.""" ) if audio is not None: lowerCamelCase__ : Tuple = self.feature_extractor(UpperCamelCase__ , *UpperCamelCase__ , sampling_rate=UpperCamelCase__ , **UpperCamelCase__ ) elif text is not None: lowerCamelCase__ : Any = self.tokenizer(UpperCamelCase__ , **UpperCamelCase__ ) else: lowerCamelCase__ : List[Any] = None if audio_target is not None: lowerCamelCase__ : Optional[Any] = self.feature_extractor(audio_target=UpperCamelCase__ , *UpperCamelCase__ , sampling_rate=UpperCamelCase__ , **UpperCamelCase__ ) lowerCamelCase__ : Optional[Any] = targets["""input_values"""] elif text_target is not None: lowerCamelCase__ : Dict = self.tokenizer(UpperCamelCase__ , **UpperCamelCase__ ) lowerCamelCase__ : List[Any] = targets["""input_ids"""] else: lowerCamelCase__ : Optional[Any] = None if inputs is None: return targets if targets is not None: lowerCamelCase__ : str = labels lowerCamelCase__ : Any = targets.get("""attention_mask""" ) if decoder_attention_mask is not None: lowerCamelCase__ : int = decoder_attention_mask return inputs def lowerCamelCase_ ( self: List[Any] , *UpperCamelCase__: Dict , **UpperCamelCase__: int ): lowerCamelCase__ : Union[str, Any] = kwargs.pop("""input_values""" , UpperCamelCase__ ) lowerCamelCase__ : Optional[int] = kwargs.pop("""input_ids""" , UpperCamelCase__ ) lowerCamelCase__ : Union[str, Any] = kwargs.pop("""labels""" , UpperCamelCase__ ) if input_values is not None and input_ids is not None: raise ValueError("""Cannot process both `input_values` and `input_ids` inputs.""" ) if input_values is None and input_ids is None and labels is None: raise ValueError( """You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.""" ) if input_values is not None: lowerCamelCase__ : int = self.feature_extractor.pad(UpperCamelCase__ , *UpperCamelCase__ , **UpperCamelCase__ ) elif input_ids is not None: lowerCamelCase__ : Union[str, Any] = self.tokenizer.pad(UpperCamelCase__ , **UpperCamelCase__ ) else: lowerCamelCase__ : List[Any] = None if labels is not None: if "input_ids" in labels or (isinstance(UpperCamelCase__ , UpperCamelCase__ ) and "input_ids" in labels[0]): lowerCamelCase__ : Dict = self.tokenizer.pad(UpperCamelCase__ , **UpperCamelCase__ ) lowerCamelCase__ : Optional[int] = targets["""input_ids"""] else: lowerCamelCase__ : int = self.feature_extractor.feature_size lowerCamelCase__ : Union[str, Any] = self.feature_extractor.num_mel_bins lowerCamelCase__ : Optional[Any] = self.feature_extractor.pad(UpperCamelCase__ , *UpperCamelCase__ , **UpperCamelCase__ ) lowerCamelCase__ : List[Any] = feature_size_hack lowerCamelCase__ : List[str] = targets["""input_values"""] else: lowerCamelCase__ : List[str] = None if inputs is None: return targets if targets is not None: lowerCamelCase__ : str = labels lowerCamelCase__ : Optional[Any] = targets.get("""attention_mask""" ) if decoder_attention_mask is not None: lowerCamelCase__ : List[Any] = decoder_attention_mask return inputs def lowerCamelCase_ ( self: List[Any] , *UpperCamelCase__: Tuple , **UpperCamelCase__: Tuple ): return self.tokenizer.batch_decode(*UpperCamelCase__ , **UpperCamelCase__ ) def lowerCamelCase_ ( self: str , *UpperCamelCase__: int , **UpperCamelCase__: Tuple ): return self.tokenizer.decode(*UpperCamelCase__ , **UpperCamelCase__ )
631
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _A : Optional[Any] =logging.get_logger(__name__) _A : Optional[int] ={ '''RWKV/rwkv-4-169m-pile''': '''https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-430m-pile''': '''https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-1b5-pile''': '''https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json''', '''RWKV/rwkv-4-3b-pile''': '''https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-7b-pile''': '''https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-14b-pile''': '''https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json''', '''RWKV/rwkv-raven-1b5''': '''https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json''', '''RWKV/rwkv-raven-3b''': '''https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json''', '''RWKV/rwkv-raven-7b''': '''https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json''', '''RWKV/rwkv-raven-14b''': '''https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json''', } class _lowercase ( _lowercase ): a = """rwkv""" a = {"""max_position_embeddings""": """context_length"""} def __init__( self: Tuple , UpperCamelCase__: Optional[Any]=50_277 , UpperCamelCase__: Union[str, Any]=1_024 , UpperCamelCase__: Tuple=4_096 , UpperCamelCase__: List[Any]=32 , UpperCamelCase__: Dict=None , UpperCamelCase__: Dict=None , UpperCamelCase__: int=1e-5 , UpperCamelCase__: Any=0 , UpperCamelCase__: str=0 , UpperCamelCase__: Union[str, Any]=6 , UpperCamelCase__: Optional[int]=False , UpperCamelCase__: Dict=True , **UpperCamelCase__: Dict , ): lowerCamelCase__ : Dict = vocab_size lowerCamelCase__ : Optional[Any] = context_length lowerCamelCase__ : Optional[Any] = hidden_size lowerCamelCase__ : Any = num_hidden_layers lowerCamelCase__ : int = attention_hidden_size if attention_hidden_size is not None else hidden_size lowerCamelCase__ : Union[str, Any] = intermediate_size if intermediate_size is not None else 4 * hidden_size lowerCamelCase__ : List[str] = layer_norm_epsilon lowerCamelCase__ : int = rescale_every lowerCamelCase__ : Optional[int] = use_cache lowerCamelCase__ : Dict = bos_token_id lowerCamelCase__ : Any = eos_token_id super().__init__( tie_word_embeddings=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , **UpperCamelCase__ )
631
1
'''simple docstring''' from datetime import datetime import matplotlib.pyplot as plt import torch def __UpperCAmelCase ( a_: List[Any] ): for param in module.parameters(): _UpperCAmelCase : Union[str, Any] = False def __UpperCAmelCase ( ): _UpperCAmelCase : List[Any] = "cuda" if torch.cuda.is_available() else "cpu" if torch.backends.mps.is_available() and torch.backends.mps.is_built(): _UpperCAmelCase : Tuple = "mps" if device == "mps": print( "WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch" " errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues" " with generations." ) return device def __UpperCAmelCase ( a_: Any ): _UpperCAmelCase : List[Any] = plt.imshow(a_ ) fig.axes.get_xaxis().set_visible(a_ ) fig.axes.get_yaxis().set_visible(a_ ) plt.show() def __UpperCAmelCase ( ): _UpperCAmelCase : Optional[Any] = datetime.now() _UpperCAmelCase : List[str] = current_time.strftime("%H:%M:%S" ) return timestamp
494
'''simple docstring''' def __UpperCAmelCase ( ): _UpperCAmelCase : List[str] = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] _UpperCAmelCase : Optional[Any] = 6 _UpperCAmelCase : Union[str, Any] = 1 _UpperCAmelCase : Optional[int] = 1_901 _UpperCAmelCase : str = 0 while year < 2_001: day += 7 if (year % 4 == 0 and year % 100 != 0) or (year % 400 == 0): if day > days_per_month[month - 1] and month != 2: month += 1 _UpperCAmelCase : List[str] = day - days_per_month[month - 2] elif day > 29 and month == 2: month += 1 _UpperCAmelCase : Dict = day - 29 else: if day > days_per_month[month - 1]: month += 1 _UpperCAmelCase : int = day - days_per_month[month - 2] if month > 12: year += 1 _UpperCAmelCase : int = 1 if year < 2_001 and day == 1: sundays += 1 return sundays if __name__ == "__main__": print(solution())
494
1
'''simple docstring''' from __future__ import annotations def snake_case_ (UpperCamelCase : List[str] , UpperCamelCase : Optional[int] ): '''simple docstring''' if len(UpperCamelCase ) <= 1 or n <= 1: return insert_next(UpperCamelCase , n - 1 ) rec_insertion_sort(UpperCamelCase , n - 1 ) def snake_case_ (UpperCamelCase : Union[str, Any] , UpperCamelCase : Any ): '''simple docstring''' if index >= len(UpperCamelCase ) or collection[index - 1] <= collection[index]: return # Swaps adjacent elements since they are not in ascending order _a = ( collection[index], collection[index - 1], ) insert_next(UpperCamelCase , index + 1 ) if __name__ == "__main__": _snake_case : Any = input('Enter integers separated by spaces: ') _snake_case : list[int] = [int(num) for num in numbers.split()] rec_insertion_sort(number_list, len(number_list)) print(number_list)
711
'''simple docstring''' _snake_case : Any = tuple[float, float, float] _snake_case : Optional[int] = tuple[float, float, float] def snake_case_ (UpperCamelCase : Pointad , UpperCamelCase : Pointad ): '''simple docstring''' _a = end_pointa[0] - end_pointa[0] _a = end_pointa[1] - end_pointa[1] _a = end_pointa[2] - end_pointa[2] return (x, y, z) def snake_case_ (UpperCamelCase : Vectorad , UpperCamelCase : Vectorad ): '''simple docstring''' _a = ab[1] * ac[2] - ab[2] * ac[1] # *i _a = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j _a = ab[0] * ac[1] - ab[1] * ac[0] # *k return (x, y, z) def snake_case_ (UpperCamelCase : Vectorad , UpperCamelCase : int ): '''simple docstring''' return tuple(round(UpperCamelCase , UpperCamelCase ) for x in vector ) == (0, 0, 0) def snake_case_ (UpperCamelCase : Pointad , UpperCamelCase : Pointad , UpperCamelCase : Pointad , UpperCamelCase : int = 10 ): '''simple docstring''' _a = create_vector(UpperCamelCase , UpperCamelCase ) _a = create_vector(UpperCamelCase , UpperCamelCase ) return is_zero_vector(get_ad_vectors_cross(UpperCamelCase , UpperCamelCase ) , UpperCamelCase )
377
0
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer __lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) __lowerCamelCase : Tuple = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __lowerCamelCase : int = { "vocab_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } __lowerCamelCase : Optional[Any] = { "vocab_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } __lowerCamelCase : str = { "vocab_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json" ), }, } __lowerCamelCase : Optional[int] = { "facebook/dpr-ctx_encoder-single-nq-base": 512, "facebook/dpr-ctx_encoder-multiset-base": 512, } __lowerCamelCase : Dict = { "facebook/dpr-question_encoder-single-nq-base": 512, "facebook/dpr-question_encoder-multiset-base": 512, } __lowerCamelCase : Any = { "facebook/dpr-reader-single-nq-base": 512, "facebook/dpr-reader-multiset-base": 512, } __lowerCamelCase : Any = { "facebook/dpr-ctx_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-ctx_encoder-multiset-base": {"do_lower_case": True}, } __lowerCamelCase : Dict = { "facebook/dpr-question_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-question_encoder-multiset-base": {"do_lower_case": True}, } __lowerCamelCase : Optional[int] = { "facebook/dpr-reader-single-nq-base": {"do_lower_case": True}, "facebook/dpr-reader-multiset-base": {"do_lower_case": True}, } class __magic_name__ ( A__ ): lowercase : Optional[int] =VOCAB_FILES_NAMES lowercase : Tuple =CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowercase : Optional[int] =CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : Optional[Any] =CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION lowercase : Tuple =DPRContextEncoderTokenizer class __magic_name__ ( A__ ): lowercase : List[Any] =VOCAB_FILES_NAMES lowercase : int =QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowercase : Dict =QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : List[Any] =QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION lowercase : Union[str, Any] =DPRQuestionEncoderTokenizer __lowerCamelCase : Optional[Any] = collections.namedtuple( "DPRSpanPrediction", ["span_score", "relevance_score", "doc_id", "start_index", "end_index", "text"] ) __lowerCamelCase : List[Any] = collections.namedtuple("DPRReaderOutput", ["start_logits", "end_logits", "relevance_logits"]) __lowerCamelCase : Any = r"\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `'tf'`: Return TensorFlow `tf.constant` objects.\n - `'pt'`: Return PyTorch `torch.Tensor` objects.\n - `'np'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer's default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Return:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n " @add_start_docstrings(A__ ) class __magic_name__ : def __call__( self : Any , UpperCamelCase__ : str , UpperCamelCase__ : Optional[str] = None , UpperCamelCase__ : Optional[str] = None , UpperCamelCase__ : Union[bool, str] = False , UpperCamelCase__ : Union[bool, str] = False , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : Optional[Union[str, TensorType]] = None , UpperCamelCase__ : Optional[bool] = None , **UpperCamelCase__ : List[Any] , ) -> BatchEncoding: '''simple docstring''' if titles is None and texts is None: return super().__call__( UpperCamelCase__ , padding=UpperCamelCase__ , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , return_tensors=UpperCamelCase__ , return_attention_mask=UpperCamelCase__ , **UpperCamelCase__ , ) elif titles is None or texts is None: UpperCAmelCase = titles if texts is None else texts return super().__call__( UpperCamelCase__ , UpperCamelCase__ , padding=UpperCamelCase__ , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , return_tensors=UpperCamelCase__ , return_attention_mask=UpperCamelCase__ , **UpperCamelCase__ , ) UpperCAmelCase = titles if not isinstance(UpperCamelCase__ , UpperCamelCase__ ) else [titles] UpperCAmelCase = texts if not isinstance(UpperCamelCase__ , UpperCamelCase__ ) else [texts] UpperCAmelCase = len(UpperCamelCase__ ) UpperCAmelCase = questions if not isinstance(UpperCamelCase__ , UpperCamelCase__ ) else [questions] * n_passages assert len(UpperCamelCase__ ) == len( UpperCamelCase__ ), F'There should be as many titles than texts but got {len(UpperCamelCase__ )} titles and {len(UpperCamelCase__ )} texts.' UpperCAmelCase = super().__call__(UpperCamelCase__ , UpperCamelCase__ , padding=UpperCamelCase__ , truncation=UpperCamelCase__ )["input_ids"] UpperCAmelCase = super().__call__(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , padding=UpperCamelCase__ , truncation=UpperCamelCase__ )["input_ids"] UpperCAmelCase = { "input_ids": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(UpperCamelCase__ , UpperCamelCase__ ) ] } if return_attention_mask is not False: UpperCAmelCase = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) UpperCAmelCase = attention_mask return self.pad(UpperCamelCase__ , padding=UpperCamelCase__ , max_length=UpperCamelCase__ , return_tensors=UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self : Any , UpperCamelCase__ : BatchEncoding , UpperCamelCase__ : DPRReaderOutput , UpperCamelCase__ : int = 16 , UpperCamelCase__ : int = 64 , UpperCamelCase__ : int = 4 , ) -> List[DPRSpanPrediction]: '''simple docstring''' UpperCAmelCase = reader_input["input_ids"] UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = reader_output[:3] UpperCAmelCase = len(UpperCamelCase__ ) UpperCAmelCase = sorted(range(UpperCamelCase__ ) , reverse=UpperCamelCase__ , key=relevance_logits.__getitem__ ) UpperCAmelCase = [] for doc_id in sorted_docs: UpperCAmelCase = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence UpperCAmelCase = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: UpperCAmelCase = sequence_ids.index(self.pad_token_id ) else: UpperCAmelCase = len(UpperCamelCase__ ) UpperCAmelCase = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=UpperCamelCase__ , top_spans=UpperCamelCase__ , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=UpperCamelCase__ , start_index=UpperCamelCase__ , end_index=UpperCamelCase__ , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(UpperCamelCase__ ) >= num_spans: break return nbest_spans_predictions[:num_spans] def SCREAMING_SNAKE_CASE_ ( self : Dict , UpperCamelCase__ : List[int] , UpperCamelCase__ : List[int] , UpperCamelCase__ : int , UpperCamelCase__ : int , ) -> List[DPRSpanPrediction]: '''simple docstring''' UpperCAmelCase = [] for start_index, start_score in enumerate(UpperCamelCase__ ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) UpperCAmelCase = sorted(UpperCamelCase__ , key=lambda UpperCamelCase__ : x[1] , reverse=UpperCamelCase__ ) UpperCAmelCase = [] for (start_index, end_index), score in scores: assert start_index <= end_index, F'Wrong span indices: [{start_index}:{end_index}]' UpperCAmelCase = end_index - start_index + 1 assert length <= max_answer_length, F'Span is too long: {length} > {max_answer_length}' if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(UpperCamelCase__ ) == top_spans: break return chosen_span_intervals @add_end_docstrings(A__ ) class __magic_name__ ( A__, A__ ): lowercase : Dict =VOCAB_FILES_NAMES lowercase : Optional[Any] =READER_PRETRAINED_VOCAB_FILES_MAP lowercase : Tuple =READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : Any =READER_PRETRAINED_INIT_CONFIGURATION lowercase : Any =['''input_ids''', '''attention_mask'''] lowercase : Dict =DPRReaderTokenizer
323
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys __lowerCamelCase : List[Any] = subprocess.check_output("git merge-base main HEAD".split()).decode("utf-8") __lowerCamelCase : int = subprocess.check_output(F'''git diff --name-only {fork_point_sha}'''.split()).decode("utf-8").split() __lowerCamelCase : Optional[int] = "|".join(sys.argv[1:]) __lowerCamelCase : Dict = re.compile(rF'''^({joined_dirs}).*?\.py$''') __lowerCamelCase : List[Any] = [x for x in modified_files if regex.match(x)] print(" ".join(relevant_modified_files), end="")
323
1
import argparse import os import shutil from pathlib import Path import onnx import torch from packaging import version from torch.onnx import export from diffusers import OnnxRuntimeModel, OnnxStableDiffusionPipeline, StableDiffusionPipeline _lowerCamelCase =version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11") def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_=False, ): """simple docstring""" output_path.parent.mkdir(parents=lowerCAmelCase_, exist_ok=lowerCAmelCase_ ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( lowerCAmelCase_, lowerCAmelCase_, f=output_path.as_posix(), input_names=lowerCAmelCase_, output_names=lowerCAmelCase_, dynamic_axes=lowerCAmelCase_, do_constant_folding=lowerCAmelCase_, use_external_data_format=lowerCAmelCase_, enable_onnx_checker=lowerCAmelCase_, opset_version=lowerCAmelCase_, ) else: export( lowerCAmelCase_, lowerCAmelCase_, f=output_path.as_posix(), input_names=lowerCAmelCase_, output_names=lowerCAmelCase_, dynamic_axes=lowerCAmelCase_, do_constant_folding=lowerCAmelCase_, opset_version=lowerCAmelCase_, ) @torch.no_grad() def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ = False ): """simple docstring""" SCREAMING_SNAKE_CASE =torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): SCREAMING_SNAKE_CASE ='cuda' elif fpaa and not torch.cuda.is_available(): raise ValueError('`float16` model export is only supported on GPUs with CUDA' ) else: SCREAMING_SNAKE_CASE ='cpu' SCREAMING_SNAKE_CASE =StableDiffusionPipeline.from_pretrained(lowerCAmelCase_, torch_dtype=lowerCAmelCase_ ).to(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =Path(lowerCAmelCase_ ) # TEXT ENCODER SCREAMING_SNAKE_CASE =pipeline.text_encoder.config.max_position_embeddings SCREAMING_SNAKE_CASE =pipeline.text_encoder.config.hidden_size SCREAMING_SNAKE_CASE =pipeline.tokenizer( 'A sample prompt', padding='max_length', max_length=pipeline.tokenizer.model_max_length, truncation=lowerCAmelCase_, return_tensors='pt', ) onnx_export( pipeline.text_encoder, model_args=(text_input.input_ids.to(device=lowerCAmelCase_, dtype=torch.intaa )), output_path=output_path / 'text_encoder' / 'model.onnx', ordered_input_names=['input_ids'], output_names=['last_hidden_state', 'pooler_output'], dynamic_axes={ 'input_ids': {0: 'batch', 1: 'sequence'}, }, opset=lowerCAmelCase_, ) del pipeline.text_encoder # UNET SCREAMING_SNAKE_CASE =pipeline.unet.config.in_channels SCREAMING_SNAKE_CASE =pipeline.unet.config.sample_size SCREAMING_SNAKE_CASE =output_path / 'unet' / 'model.onnx' onnx_export( pipeline.unet, model_args=( torch.randn(2, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ).to(device=lowerCAmelCase_, dtype=lowerCAmelCase_ ), torch.randn(2 ).to(device=lowerCAmelCase_, dtype=lowerCAmelCase_ ), torch.randn(2, lowerCAmelCase_, lowerCAmelCase_ ).to(device=lowerCAmelCase_, dtype=lowerCAmelCase_ ), False, ), output_path=lowerCAmelCase_, ordered_input_names=['sample', 'timestep', 'encoder_hidden_states', 'return_dict'], output_names=['out_sample'], dynamic_axes={ 'sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, 'timestep': {0: 'batch'}, 'encoder_hidden_states': {0: 'batch', 1: 'sequence'}, }, opset=lowerCAmelCase_, use_external_data_format=lowerCAmelCase_, ) SCREAMING_SNAKE_CASE =str(unet_path.absolute().as_posix() ) SCREAMING_SNAKE_CASE =os.path.dirname(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =onnx.load(lowerCAmelCase_ ) # clean up existing tensor files shutil.rmtree(lowerCAmelCase_ ) os.mkdir(lowerCAmelCase_ ) # collate external tensor files into one onnx.save_model( lowerCAmelCase_, lowerCAmelCase_, save_as_external_data=lowerCAmelCase_, all_tensors_to_one_file=lowerCAmelCase_, location='weights.pb', convert_attribute=lowerCAmelCase_, ) del pipeline.unet # VAE ENCODER SCREAMING_SNAKE_CASE =pipeline.vae SCREAMING_SNAKE_CASE =vae_encoder.config.in_channels SCREAMING_SNAKE_CASE =vae_encoder.config.sample_size # need to get the raw tensor output (sample) from the encoder SCREAMING_SNAKE_CASE =lambda lowerCAmelCase_, lowerCAmelCase_ : vae_encoder.encode(lowerCAmelCase_, lowerCAmelCase_ )[0].sample() onnx_export( lowerCAmelCase_, model_args=( torch.randn(1, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ).to(device=lowerCAmelCase_, dtype=lowerCAmelCase_ ), False, ), output_path=output_path / 'vae_encoder' / 'model.onnx', ordered_input_names=['sample', 'return_dict'], output_names=['latent_sample'], dynamic_axes={ 'sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, }, opset=lowerCAmelCase_, ) # VAE DECODER SCREAMING_SNAKE_CASE =pipeline.vae SCREAMING_SNAKE_CASE =vae_decoder.config.latent_channels SCREAMING_SNAKE_CASE =vae_decoder.config.out_channels # forward only through the decoder part SCREAMING_SNAKE_CASE =vae_encoder.decode onnx_export( lowerCAmelCase_, model_args=( torch.randn(1, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ).to(device=lowerCAmelCase_, dtype=lowerCAmelCase_ ), False, ), output_path=output_path / 'vae_decoder' / 'model.onnx', ordered_input_names=['latent_sample', 'return_dict'], output_names=['sample'], dynamic_axes={ 'latent_sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, }, opset=lowerCAmelCase_, ) del pipeline.vae # SAFETY CHECKER if pipeline.safety_checker is not None: SCREAMING_SNAKE_CASE =pipeline.safety_checker SCREAMING_SNAKE_CASE =safety_checker.config.vision_config.num_channels SCREAMING_SNAKE_CASE =safety_checker.config.vision_config.image_size SCREAMING_SNAKE_CASE =safety_checker.forward_onnx onnx_export( pipeline.safety_checker, model_args=( torch.randn( 1, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, ).to(device=lowerCAmelCase_, dtype=lowerCAmelCase_ ), torch.randn(1, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ).to(device=lowerCAmelCase_, dtype=lowerCAmelCase_ ), ), output_path=output_path / 'safety_checker' / 'model.onnx', ordered_input_names=['clip_input', 'images'], output_names=['out_images', 'has_nsfw_concepts'], dynamic_axes={ 'clip_input': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, 'images': {0: 'batch', 1: 'height', 2: 'width', 3: 'channels'}, }, opset=lowerCAmelCase_, ) del pipeline.safety_checker SCREAMING_SNAKE_CASE =OnnxRuntimeModel.from_pretrained(output_path / 'safety_checker' ) SCREAMING_SNAKE_CASE =pipeline.feature_extractor else: SCREAMING_SNAKE_CASE =None SCREAMING_SNAKE_CASE =None SCREAMING_SNAKE_CASE =OnnxStableDiffusionPipeline( vae_encoder=OnnxRuntimeModel.from_pretrained(output_path / 'vae_encoder' ), vae_decoder=OnnxRuntimeModel.from_pretrained(output_path / 'vae_decoder' ), text_encoder=OnnxRuntimeModel.from_pretrained(output_path / 'text_encoder' ), tokenizer=pipeline.tokenizer, unet=OnnxRuntimeModel.from_pretrained(output_path / 'unet' ), scheduler=pipeline.scheduler, safety_checker=lowerCAmelCase_, feature_extractor=lowerCAmelCase_, requires_safety_checker=safety_checker is not None, ) onnx_pipeline.save_pretrained(lowerCAmelCase_ ) print('ONNX pipeline saved to', lowerCAmelCase_ ) del pipeline del onnx_pipeline SCREAMING_SNAKE_CASE =OnnxStableDiffusionPipeline.from_pretrained(lowerCAmelCase_, provider='CPUExecutionProvider' ) print('ONNX pipeline is loadable' ) if __name__ == "__main__": _lowerCamelCase =argparse.ArgumentParser() parser.add_argument( "--model_path", type=str, required=True, help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).", ) parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.") parser.add_argument( "--opset", default=14, type=int, help="The version of the ONNX operator set to use.", ) parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode") _lowerCamelCase =parser.parse_args() convert_models(args.model_path, args.output_path, args.opset, args.fpaa)
705
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" if not len(lowerCAmelCase_ ) == len(lowerCAmelCase_ ) == 3: raise ValueError('Please enter a valid equation.' ) if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0: raise ValueError('Both a & b of two equations can\'t be zero.' ) # Extract the coefficients SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =equationa SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =equationa # Calculate the determinants of the matrices SCREAMING_SNAKE_CASE =aa * ba - aa * ba SCREAMING_SNAKE_CASE =ca * ba - ca * ba SCREAMING_SNAKE_CASE =aa * ca - aa * ca # Check if the system of linear equations has a solution (using Cramer's rule) if determinant == 0: if determinant_x == determinant_y == 0: raise ValueError('Infinite solutions. (Consistent system)' ) else: raise ValueError('No solution. (Inconsistent system)' ) else: if determinant_x == determinant_y == 0: # Trivial solution (Inconsistent system) return (0.0, 0.0) else: SCREAMING_SNAKE_CASE =determinant_x / determinant SCREAMING_SNAKE_CASE =determinant_y / determinant # Non-Trivial Solution (Consistent system) return (x, y)
252
0
import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class _a ( snake_case_ ): """simple docstring""" _lowerCamelCase : Tuple = (IPNDMScheduler,) _lowerCamelCase : List[str] = (('num_inference_steps', 5_0),) def __A ( self : Optional[Any] , **UpperCAmelCase : str ): A_ = {"num_train_timesteps": 1000} config.update(**UpperCAmelCase ) return config def __A ( self : List[str] , UpperCAmelCase : Dict=0 , **UpperCAmelCase : List[Any] ): A_ = dict(self.forward_default_kwargs ) A_ = kwargs.pop("num_inference_steps" , UpperCAmelCase ) A_ = self.dummy_sample A_ = 0.1 * sample A_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: A_ = self.get_scheduler_config(**UpperCAmelCase ) A_ = scheduler_class(**UpperCAmelCase ) scheduler.set_timesteps(UpperCAmelCase ) # copy over dummy past residuals A_ = dummy_past_residuals[:] if time_step is None: A_ = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCAmelCase ) A_ = scheduler_class.from_pretrained(UpperCAmelCase ) new_scheduler.set_timesteps(UpperCAmelCase ) # copy over dummy past residuals A_ = dummy_past_residuals[:] A_ = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ).prev_sample A_ = new_scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" A_ = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ).prev_sample A_ = new_scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def __A ( self : Tuple ): pass def __A ( self : Optional[int] , UpperCAmelCase : List[Any]=0 , **UpperCAmelCase : str ): A_ = dict(self.forward_default_kwargs ) A_ = kwargs.pop("num_inference_steps" , UpperCAmelCase ) A_ = self.dummy_sample A_ = 0.1 * sample A_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: A_ = self.get_scheduler_config() A_ = scheduler_class(**UpperCAmelCase ) scheduler.set_timesteps(UpperCAmelCase ) # copy over dummy past residuals (must be after setting timesteps) A_ = dummy_past_residuals[:] if time_step is None: A_ = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCAmelCase ) A_ = scheduler_class.from_pretrained(UpperCAmelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(UpperCAmelCase ) # copy over dummy past residual (must be after setting timesteps) A_ = dummy_past_residuals[:] A_ = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ).prev_sample A_ = new_scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" A_ = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ).prev_sample A_ = new_scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def __A ( self : Optional[int] , **UpperCAmelCase : List[str] ): A_ = self.scheduler_classes[0] A_ = self.get_scheduler_config(**UpperCAmelCase ) A_ = scheduler_class(**UpperCAmelCase ) A_ = 10 A_ = self.dummy_model() A_ = self.dummy_sample_deter scheduler.set_timesteps(UpperCAmelCase ) for i, t in enumerate(scheduler.timesteps ): A_ = model(UpperCAmelCase , UpperCAmelCase ) A_ = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ).prev_sample for i, t in enumerate(scheduler.timesteps ): A_ = model(UpperCAmelCase , UpperCAmelCase ) A_ = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ).prev_sample return sample def __A ( self : int ): A_ = dict(self.forward_default_kwargs ) A_ = kwargs.pop("num_inference_steps" , UpperCAmelCase ) for scheduler_class in self.scheduler_classes: A_ = self.get_scheduler_config() A_ = scheduler_class(**UpperCAmelCase ) A_ = self.dummy_sample A_ = 0.1 * sample if num_inference_steps is not None and hasattr(UpperCAmelCase , "set_timesteps" ): scheduler.set_timesteps(UpperCAmelCase ) elif num_inference_steps is not None and not hasattr(UpperCAmelCase , "set_timesteps" ): A_ = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) A_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] A_ = dummy_past_residuals[:] A_ = scheduler.timesteps[5] A_ = scheduler.timesteps[6] A_ = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ).prev_sample A_ = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) A_ = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ).prev_sample A_ = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def __A ( self : Any ): for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=UpperCAmelCase , time_step=UpperCAmelCase ) def __A ( self : Tuple ): for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=UpperCAmelCase , time_step=UpperCAmelCase ) def __A ( self : Optional[Any] ): A_ = self.full_loop() A_ = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_mean.item() - 2540529 ) < 10
86
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __a :Dict = {'configuration_xglm': ['XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XGLMConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a :Dict = ['XGLMTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a :str = ['XGLMTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a :Tuple = [ 'XGLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'XGLMForCausalLM', 'XGLMModel', 'XGLMPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a :List[Any] = [ 'FlaxXGLMForCausalLM', 'FlaxXGLMModel', 'FlaxXGLMPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a :Any = [ 'TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXGLMForCausalLM', 'TFXGLMModel', 'TFXGLMPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys __a :List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure)
86
1
"""simple docstring""" def _a ( _SCREAMING_SNAKE_CASE ) -> int: snake_case_ = len(_SCREAMING_SNAKE_CASE ) snake_case_ = len(matrix[0] ) snake_case_ = min(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for row in range(_SCREAMING_SNAKE_CASE ): # Check if diagonal element is not zero if matrix[row][row] != 0: # Eliminate all the elements below the diagonal for col in range(row + 1 , _SCREAMING_SNAKE_CASE ): snake_case_ = matrix[col][row] / matrix[row][row] for i in range(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): matrix[col][i] -= multiplier * matrix[row][i] else: # Find a non-zero diagonal element to swap rows snake_case_ = True for i in range(row + 1 , _SCREAMING_SNAKE_CASE ): if matrix[i][row] != 0: snake_case_ , snake_case_ = matrix[i], matrix[row] snake_case_ = False break if reduce: rank -= 1 for i in range(_SCREAMING_SNAKE_CASE ): snake_case_ = matrix[i][rank] # Reduce the row pointer by one to stay on the same row row -= 1 return rank if __name__ == "__main__": import doctest doctest.testmod()
715
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __SCREAMING_SNAKE_CASE : Optional[Any] = { 'configuration_biogpt': ['BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BioGptConfig'], 'tokenization_biogpt': ['BioGptTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Optional[Any] = [ 'BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BioGptForCausalLM', 'BioGptForTokenClassification', 'BioGptForSequenceClassification', 'BioGptModel', 'BioGptPreTrainedModel', ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
2
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE_ = { 'configuration_blip_2': [ 'BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Blip2Config', 'Blip2QFormerConfig', 'Blip2VisionConfig', ], 'processing_blip_2': ['Blip2Processor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ 'BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST', 'Blip2Model', 'Blip2QFormerModel', 'Blip2PreTrainedModel', 'Blip2ForConditionalGeneration', 'Blip2VisionModel', ] if TYPE_CHECKING: from .configuration_blip_a import ( BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipaConfig, BlipaQFormerConfig, BlipaVisionConfig, ) from .processing_blip_a import BlipaProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip_a import ( BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST, BlipaForConditionalGeneration, BlipaModel, BlipaPreTrainedModel, BlipaQFormerModel, BlipaVisionModel, ) else: import sys SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
582
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { 'microsoft/resnet-50': 'https://huggingface.co/microsoft/resnet-50/blob/main/config.json', } class lowerCAmelCase_ ( snake_case__ , snake_case__ ): """simple docstring""" a_ :Tuple ="""resnet""" a_ :int =["""basic""", """bottleneck"""] def __init__( self : Any , SCREAMING_SNAKE_CASE__ : List[str]=3 , SCREAMING_SNAKE_CASE__ : Tuple=6_4 , SCREAMING_SNAKE_CASE__ : Dict=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , SCREAMING_SNAKE_CASE__ : Optional[int]=[3, 4, 6, 3] , SCREAMING_SNAKE_CASE__ : Optional[Any]="bottleneck" , SCREAMING_SNAKE_CASE__ : str="relu" , SCREAMING_SNAKE_CASE__ : int=False , SCREAMING_SNAKE_CASE__ : str=None , SCREAMING_SNAKE_CASE__ : Tuple=None , **SCREAMING_SNAKE_CASE__ : Optional[Any] , ): '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE__ ) if layer_type not in self.layer_types: raise ValueError(f'''layer_type={layer_type} is not one of {','.join(self.layer_types )}''' ) __a = num_channels __a = embedding_size __a = hidden_sizes __a = depths __a = layer_type __a = hidden_act __a = downsample_in_first_stage __a = ["""stem"""] + [f'''stage{idx}''' for idx in range(1 , len(SCREAMING_SNAKE_CASE__ ) + 1 )] __a , __a = get_aligned_output_features_output_indices( out_features=SCREAMING_SNAKE_CASE__ , out_indices=SCREAMING_SNAKE_CASE__ , stage_names=self.stage_names ) class lowerCAmelCase_ ( snake_case__ ): """simple docstring""" a_ :Any =version.parse("""1.11""" ) @property def __a ( self : List[Any] ): '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def __a ( self : Optional[int] ): '''simple docstring''' return 1E-3
582
1
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig A = logging.get_logger(__name__) # General docstring A = "RegNetConfig" # Base docstring A = "facebook/regnet-y-040" A = [1, 1088, 7, 7] # Image classification docstring A = "facebook/regnet-y-040" A = "tabby, tabby cat" A = [ "facebook/regnet-y-040", # See all regnet models at https://huggingface.co/models?filter=regnet ] class __a ( nn.Module ): '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = 3 , UpperCamelCase__ = 1 , UpperCamelCase__ = 1 , UpperCamelCase__ = "relu" , ): super().__init__() SCREAMING_SNAKE_CASE_ : List[Any] = nn.Convad( lowercase_ , lowercase_ , kernel_size=lowercase_ , stride=lowercase_ , padding=kernel_size // 2 , groups=lowercase_ , bias=lowercase_ , ) SCREAMING_SNAKE_CASE_ : str = nn.BatchNormad(lowercase_ ) SCREAMING_SNAKE_CASE_ : Optional[int] = ACTaFN[activation] if activation is not None else nn.Identity() def __snake_case ( self , UpperCamelCase__ ): SCREAMING_SNAKE_CASE_ : Dict = self.convolution(lowercase_ ) SCREAMING_SNAKE_CASE_ : str = self.normalization(lowercase_ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = self.activation(lowercase_ ) return hidden_state class __a ( nn.Module ): '''simple docstring''' def __init__( self , UpperCamelCase__ ): super().__init__() SCREAMING_SNAKE_CASE_ : str = RegNetConvLayer( config.num_channels , config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act ) SCREAMING_SNAKE_CASE_ : Any = config.num_channels def __snake_case ( self , UpperCamelCase__ ): SCREAMING_SNAKE_CASE_ : List[str] = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( 'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' ) SCREAMING_SNAKE_CASE_ : Any = self.embedder(lowercase_ ) return hidden_state class __a ( nn.Module ): '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = 2 ): super().__init__() SCREAMING_SNAKE_CASE_ : Optional[Any] = nn.Convad(lowercase_ , lowercase_ , kernel_size=1 , stride=lowercase_ , bias=lowercase_ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = nn.BatchNormad(lowercase_ ) def __snake_case ( self , UpperCamelCase__ ): SCREAMING_SNAKE_CASE_ : Tuple = self.convolution(lowercase_ ) SCREAMING_SNAKE_CASE_ : str = self.normalization(lowercase_ ) return hidden_state class __a ( nn.Module ): '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__ ): super().__init__() SCREAMING_SNAKE_CASE_ : int = nn.AdaptiveAvgPoolad((1, 1) ) SCREAMING_SNAKE_CASE_ : int = nn.Sequential( nn.Convad(lowercase_ , lowercase_ , kernel_size=1 ) , nn.ReLU() , nn.Convad(lowercase_ , lowercase_ , kernel_size=1 ) , nn.Sigmoid() , ) def __snake_case ( self , UpperCamelCase__ ): # b c h w -> b c 1 1 SCREAMING_SNAKE_CASE_ : List[str] = self.pooler(lowercase_ ) SCREAMING_SNAKE_CASE_ : Optional[int] = self.attention(lowercase_ ) SCREAMING_SNAKE_CASE_ : Any = hidden_state * attention return hidden_state class __a ( nn.Module ): '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = 1 ): super().__init__() SCREAMING_SNAKE_CASE_ : List[Any] = in_channels != out_channels or stride != 1 SCREAMING_SNAKE_CASE_ : Optional[int] = max(1 , out_channels // config.groups_width ) SCREAMING_SNAKE_CASE_ : Dict = ( RegNetShortCut(lowercase_ , lowercase_ , stride=lowercase_ ) if should_apply_shortcut else nn.Identity() ) SCREAMING_SNAKE_CASE_ : List[Any] = nn.Sequential( RegNetConvLayer(lowercase_ , lowercase_ , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(lowercase_ , lowercase_ , stride=lowercase_ , groups=lowercase_ , activation=config.hidden_act ) , RegNetConvLayer(lowercase_ , lowercase_ , kernel_size=1 , activation=lowercase_ ) , ) SCREAMING_SNAKE_CASE_ : int = ACTaFN[config.hidden_act] def __snake_case ( self , UpperCamelCase__ ): SCREAMING_SNAKE_CASE_ : Any = hidden_state SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.layer(lowercase_ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.shortcut(lowercase_ ) hidden_state += residual SCREAMING_SNAKE_CASE_ : str = self.activation(lowercase_ ) return hidden_state class __a ( nn.Module ): '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = 1 ): super().__init__() SCREAMING_SNAKE_CASE_ : str = in_channels != out_channels or stride != 1 SCREAMING_SNAKE_CASE_ : int = max(1 , out_channels // config.groups_width ) SCREAMING_SNAKE_CASE_ : int = ( RegNetShortCut(lowercase_ , lowercase_ , stride=lowercase_ ) if should_apply_shortcut else nn.Identity() ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = nn.Sequential( RegNetConvLayer(lowercase_ , lowercase_ , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(lowercase_ , lowercase_ , stride=lowercase_ , groups=lowercase_ , activation=config.hidden_act ) , RegNetSELayer(lowercase_ , reduced_channels=int(round(in_channels / 4 ) ) ) , RegNetConvLayer(lowercase_ , lowercase_ , kernel_size=1 , activation=lowercase_ ) , ) SCREAMING_SNAKE_CASE_ : Optional[int] = ACTaFN[config.hidden_act] def __snake_case ( self , UpperCamelCase__ ): SCREAMING_SNAKE_CASE_ : Optional[int] = hidden_state SCREAMING_SNAKE_CASE_ : str = self.layer(lowercase_ ) SCREAMING_SNAKE_CASE_ : int = self.shortcut(lowercase_ ) hidden_state += residual SCREAMING_SNAKE_CASE_ : Optional[Any] = self.activation(lowercase_ ) return hidden_state class __a ( nn.Module ): '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = 2 , UpperCamelCase__ = 2 , ): super().__init__() SCREAMING_SNAKE_CASE_ : str = RegNetXLayer if config.layer_type == """x""" else RegNetYLayer SCREAMING_SNAKE_CASE_ : str = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( lowercase_ , lowercase_ , lowercase_ , stride=lowercase_ , ) , *[layer(lowercase_ , lowercase_ , lowercase_ ) for _ in range(depth - 1 )] , ) def __snake_case ( self , UpperCamelCase__ ): SCREAMING_SNAKE_CASE_ : Tuple = self.layers(lowercase_ ) return hidden_state class __a ( nn.Module ): '''simple docstring''' def __init__( self , UpperCamelCase__ ): super().__init__() SCREAMING_SNAKE_CASE_ : Optional[Any] = nn.ModuleList([] ) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( lowercase_ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) SCREAMING_SNAKE_CASE_ : Optional[Any] = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(lowercase_ , config.depths[1:] ): self.stages.append(RegNetStage(lowercase_ , lowercase_ , lowercase_ , depth=lowercase_ ) ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ = False , UpperCamelCase__ = True ): SCREAMING_SNAKE_CASE_ : Tuple = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: SCREAMING_SNAKE_CASE_ : Union[str, Any] = hidden_states + (hidden_state,) SCREAMING_SNAKE_CASE_ : Dict = stage_module(lowercase_ ) if output_hidden_states: SCREAMING_SNAKE_CASE_ : Optional[Any] = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=lowercase_ , hidden_states=lowercase_ ) class __a ( _UpperCAmelCase ): '''simple docstring''' UpperCAmelCase__ : int = RegNetConfig UpperCAmelCase__ : List[str] = """regnet""" UpperCAmelCase__ : Any = """pixel_values""" UpperCAmelCase__ : str = True def __snake_case ( self , UpperCamelCase__ ): if isinstance(lowercase_ , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode='fan_out' , nonlinearity='relu' ) elif isinstance(lowercase_ , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__=False ): if isinstance(lowercase_ , lowercase_ ): SCREAMING_SNAKE_CASE_ : List[str] = value A = r"\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n" A = r"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( """The bare RegNet model outputting raw features without any specific head on top.""" , _UpperCAmelCase , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class __a ( _UpperCAmelCase ): '''simple docstring''' def __init__( self , UpperCamelCase__ ): super().__init__(lowercase_ ) SCREAMING_SNAKE_CASE_ : List[str] = config SCREAMING_SNAKE_CASE_ : Union[str, Any] = RegNetEmbeddings(lowercase_ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = RegNetEncoder(lowercase_ ) SCREAMING_SNAKE_CASE_ : str = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowercase_ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowercase_ , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = None ): SCREAMING_SNAKE_CASE_ : List[Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) SCREAMING_SNAKE_CASE_ : Tuple = return_dict if return_dict is not None else self.config.use_return_dict SCREAMING_SNAKE_CASE_ : str = self.embedder(lowercase_ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = self.encoder( lowercase_ , output_hidden_states=lowercase_ , return_dict=lowercase_ ) SCREAMING_SNAKE_CASE_ : List[Any] = encoder_outputs[0] SCREAMING_SNAKE_CASE_ : str = self.pooler(lowercase_ ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowercase_ , pooler_output=lowercase_ , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( """ RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """ , _UpperCAmelCase , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class __a ( _UpperCAmelCase ): '''simple docstring''' def __init__( self , UpperCamelCase__ ): super().__init__(lowercase_ ) SCREAMING_SNAKE_CASE_ : Any = config.num_labels SCREAMING_SNAKE_CASE_ : List[str] = RegNetModel(lowercase_ ) # classification head SCREAMING_SNAKE_CASE_ : Any = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowercase_ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowercase_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def __snake_case ( self , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = return_dict if return_dict is not None else self.config.use_return_dict SCREAMING_SNAKE_CASE_ : Optional[int] = self.regnet(lowercase_ , output_hidden_states=lowercase_ , return_dict=lowercase_ ) SCREAMING_SNAKE_CASE_ : Optional[int] = outputs.pooler_output if return_dict else outputs[1] SCREAMING_SNAKE_CASE_ : List[Any] = self.classifier(lowercase_ ) SCREAMING_SNAKE_CASE_ : Optional[int] = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: SCREAMING_SNAKE_CASE_ : Optional[int] = """regression""" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): SCREAMING_SNAKE_CASE_ : str = """single_label_classification""" else: SCREAMING_SNAKE_CASE_ : str = """multi_label_classification""" if self.config.problem_type == "regression": SCREAMING_SNAKE_CASE_ : str = MSELoss() if self.num_labels == 1: SCREAMING_SNAKE_CASE_ : List[Any] = loss_fct(logits.squeeze() , labels.squeeze() ) else: SCREAMING_SNAKE_CASE_ : List[str] = loss_fct(lowercase_ , lowercase_ ) elif self.config.problem_type == "single_label_classification": SCREAMING_SNAKE_CASE_ : Optional[int] = CrossEntropyLoss() SCREAMING_SNAKE_CASE_ : Union[str, Any] = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": SCREAMING_SNAKE_CASE_ : Dict = BCEWithLogitsLoss() SCREAMING_SNAKE_CASE_ : Tuple = loss_fct(lowercase_ , lowercase_ ) if not return_dict: SCREAMING_SNAKE_CASE_ : Tuple = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=lowercase_ , logits=lowercase_ , hidden_states=outputs.hidden_states )
708
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class __a ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self ): SCREAMING_SNAKE_CASE_ : Optional[int] = tempfile.mkdtemp() SCREAMING_SNAKE_CASE_ : List[str] = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] SCREAMING_SNAKE_CASE_ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) SCREAMING_SNAKE_CASE_ : Tuple = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], 'image_std': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], } SCREAMING_SNAKE_CASE_ : str = os.path.join(self.tmpdirname , UpperCamelCase__ ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self , **UpperCamelCase__ ): return BertTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def __snake_case ( self , **UpperCamelCase__ ): return BertTokenizerFast.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def __snake_case ( self , **UpperCamelCase__ ): return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def __snake_case ( self ): shutil.rmtree(self.tmpdirname ) def __snake_case ( self ): SCREAMING_SNAKE_CASE_ : List[Any] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] SCREAMING_SNAKE_CASE_ : Optional[Any] = [Image.fromarray(np.moveaxis(UpperCamelCase__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def __snake_case ( self ): SCREAMING_SNAKE_CASE_ : Tuple = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : Dict = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE_ : Dict = self.get_image_processor() SCREAMING_SNAKE_CASE_ : Optional[int] = AlignProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) processor_slow.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCamelCase__ ) SCREAMING_SNAKE_CASE_ : List[Any] = AlignProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) processor_fast.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , UpperCamelCase__ ) self.assertIsInstance(processor_fast.tokenizer , UpperCamelCase__ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , UpperCamelCase__ ) self.assertIsInstance(processor_fast.image_processor , UpperCamelCase__ ) def __snake_case ( self ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE_ : Optional[Any] = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) SCREAMING_SNAKE_CASE_ : int = self.get_image_processor(do_normalize=UpperCamelCase__ , padding_value=1.0 ) SCREAMING_SNAKE_CASE_ : List[Any] = AlignProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=UpperCamelCase__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCamelCase__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCamelCase__ ) def __snake_case ( self ): SCREAMING_SNAKE_CASE_ : int = self.get_image_processor() SCREAMING_SNAKE_CASE_ : str = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : str = AlignProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.prepare_image_inputs() SCREAMING_SNAKE_CASE_ : int = image_processor(UpperCamelCase__ , return_tensors='np' ) SCREAMING_SNAKE_CASE_ : Dict = processor(images=UpperCamelCase__ , return_tensors='np' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __snake_case ( self ): SCREAMING_SNAKE_CASE_ : List[str] = self.get_image_processor() SCREAMING_SNAKE_CASE_ : Optional[Any] = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : List[str] = AlignProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) SCREAMING_SNAKE_CASE_ : Tuple = 'lower newer' SCREAMING_SNAKE_CASE_ : Tuple = processor(text=UpperCamelCase__ ) SCREAMING_SNAKE_CASE_ : int = tokenizer(UpperCamelCase__ , padding='max_length' , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __snake_case ( self ): SCREAMING_SNAKE_CASE_ : Dict = self.get_image_processor() SCREAMING_SNAKE_CASE_ : List[Any] = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : str = AlignProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) SCREAMING_SNAKE_CASE_ : str = 'lower newer' SCREAMING_SNAKE_CASE_ : Optional[int] = self.prepare_image_inputs() SCREAMING_SNAKE_CASE_ : Optional[int] = processor(text=UpperCamelCase__ , images=UpperCamelCase__ ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'token_type_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(UpperCamelCase__ ): processor() def __snake_case ( self ): SCREAMING_SNAKE_CASE_ : List[str] = self.get_image_processor() SCREAMING_SNAKE_CASE_ : List[str] = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : Union[str, Any] = AlignProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) SCREAMING_SNAKE_CASE_ : Tuple = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] SCREAMING_SNAKE_CASE_ : List[str] = processor.batch_decode(UpperCamelCase__ ) SCREAMING_SNAKE_CASE_ : Any = tokenizer.batch_decode(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): SCREAMING_SNAKE_CASE_ : Dict = self.get_image_processor() SCREAMING_SNAKE_CASE_ : int = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : Union[str, Any] = AlignProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) SCREAMING_SNAKE_CASE_ : str = 'lower newer' SCREAMING_SNAKE_CASE_ : List[str] = self.prepare_image_inputs() SCREAMING_SNAKE_CASE_ : List[Any] = processor(text=UpperCamelCase__ , images=UpperCamelCase__ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
97
0
"""simple docstring""" import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed UpperCamelCase = logging.getLogger(__name__) def _lowerCamelCase ( UpperCAmelCase_ : Optional[Any]=2, UpperCAmelCase_ : List[str]=3, UpperCAmelCase_ : List[str]=16, UpperCAmelCase_ : int = 10, UpperCAmelCase_ : int = 2 ) -> int: """simple docstring""" def get_dataset(UpperCAmelCase_ : Optional[Any] ): A__ = torch.randn(batch_size * n_batches, 1 ) return TensorDataset(UpperCAmelCase_, a * x + b + 0.1 * torch.randn(batch_size * n_batches, 1 ) ) A__ = get_dataset(UpperCAmelCase_ ) A__ = get_dataset(UpperCAmelCase_ ) A__ = DataLoader(UpperCAmelCase_, shuffle=UpperCAmelCase_, batch_size=UpperCAmelCase_, num_workers=4 ) A__ = DataLoader(UpperCAmelCase_, shuffle=UpperCAmelCase_, batch_size=UpperCAmelCase_, num_workers=4 ) return (train_dataloader, valid_dataloader) def _lowerCamelCase ( UpperCAmelCase_ : str, UpperCAmelCase_ : Dict, UpperCAmelCase_ : Tuple, UpperCAmelCase_ : List[Any], UpperCAmelCase_ : Any, UpperCAmelCase_ : Dict=None ) -> Union[str, Any]: """simple docstring""" A__ = [] for epoch in range(UpperCAmelCase_ ): # Train quickly model.train() for batch in dataloader: A__ , A__ = batch A__ = model(UpperCAmelCase_ ) A__ = torch.nn.functional.mse_loss(UpperCAmelCase_, UpperCAmelCase_ ) accelerator.backward(UpperCAmelCase_ ) optimizer.step() optimizer.zero_grad() rands.append(random.random() ) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class UpperCamelCase__ ( nn.Module ): """simple docstring""" def __init__( self ) -> int: super().__init__() A__ = nn.Parameter(torch.randn(1 ) ) A__ = nn.Parameter(torch.randn(1 ) ) def snake_case__ ( self , SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: return x * self.a + self.b class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def snake_case__ ( self ) -> str: with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) A__ = DummyModel() A__ = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) A__ , A__ = dummy_dataloaders() A__ = ProjectConfiguration(total_limit=1 , project_dir=SCREAMING_SNAKE_CASE__ , automatic_checkpoint_naming=SCREAMING_SNAKE_CASE__ ) # Train baseline A__ = Accelerator(project_config=SCREAMING_SNAKE_CASE__ ) A__ , A__ , A__ , A__ = accelerator.prepare( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ) , 1 ) def snake_case__ ( self ) -> Optional[int]: with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) A__ = DummyModel() A__ = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) A__ , A__ = dummy_dataloaders() # Train baseline A__ = Accelerator() A__ , A__ , A__ , A__ = accelerator.prepare( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Save initial A__ = os.path.join(SCREAMING_SNAKE_CASE__ , "initial" ) accelerator.save_state(SCREAMING_SNAKE_CASE__ ) ((A__) , (A__)) = model.a.item(), model.b.item() A__ = optimizer.state_dict() A__ = train(3 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ((A__) , (A__)) = model.a.item(), model.b.item() A__ = optimizer.state_dict() # Train partially set_seed(42 ) A__ = DummyModel() A__ = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) A__ , A__ = dummy_dataloaders() A__ = Accelerator() A__ , A__ , A__ , A__ = accelerator.prepare( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) accelerator.load_state(SCREAMING_SNAKE_CASE__ ) ((A__) , (A__)) = model.a.item(), model.b.item() A__ = optimizer.state_dict() self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) A__ = train(2 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Save everything A__ = os.path.join(SCREAMING_SNAKE_CASE__ , "checkpoint" ) accelerator.save_state(SCREAMING_SNAKE_CASE__ ) # Load everything back in and make sure all states work accelerator.load_state(SCREAMING_SNAKE_CASE__ ) test_rands += train(1 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ((A__) , (A__)) = model.a.item(), model.b.item() A__ = optimizer.state_dict() self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def snake_case__ ( self ) -> Union[str, Any]: with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) A__ = DummyModel() A__ = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) A__ , A__ = dummy_dataloaders() A__ = ProjectConfiguration(automatic_checkpoint_naming=SCREAMING_SNAKE_CASE__ ) # Train baseline A__ = Accelerator(project_dir=SCREAMING_SNAKE_CASE__ , project_config=SCREAMING_SNAKE_CASE__ ) A__ , A__ , A__ , A__ = accelerator.prepare( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Save initial accelerator.save_state() ((A__) , (A__)) = model.a.item(), model.b.item() A__ = optimizer.state_dict() A__ = train(3 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ((A__) , (A__)) = model.a.item(), model.b.item() A__ = optimizer.state_dict() # Train partially set_seed(42 ) A__ = DummyModel() A__ = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) A__ , A__ = dummy_dataloaders() A__ = ProjectConfiguration(iteration=1 , automatic_checkpoint_naming=SCREAMING_SNAKE_CASE__ ) A__ = Accelerator(project_dir=SCREAMING_SNAKE_CASE__ , project_config=SCREAMING_SNAKE_CASE__ ) A__ , A__ , A__ , A__ = accelerator.prepare( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) accelerator.load_state(os.path.join(SCREAMING_SNAKE_CASE__ , "checkpoints" , "checkpoint_0" ) ) ((A__) , (A__)) = model.a.item(), model.b.item() A__ = optimizer.state_dict() self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) A__ = train(2 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(SCREAMING_SNAKE_CASE__ , "checkpoints" , "checkpoint_1" ) ) test_rands += train(1 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ((A__) , (A__)) = model.a.item(), model.b.item() A__ = optimizer.state_dict() self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def snake_case__ ( self ) -> str: A__ = torch.tensor([1, 2, 3] ) A__ = torch.tensor([2, 3, 4] ) A__ = DummyModel() A__ = torch.optim.Adam(net.parameters() ) A__ = Accelerator() with self.assertRaises(SCREAMING_SNAKE_CASE__ ) as ve: accelerator.register_for_checkpointing(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) A__ = str(ve.exception ) self.assertTrue("Item at index 0" in message ) self.assertTrue("Item at index 1" in message ) self.assertFalse("Item at index 2" in message ) self.assertFalse("Item at index 3" in message ) def snake_case__ ( self ) -> List[str]: with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) A__ = DummyModel() A__ = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) A__ = torch.optim.lr_scheduler.StepLR(SCREAMING_SNAKE_CASE__ , step_size=1 , gamma=0.9_9 ) A__ , A__ = dummy_dataloaders() A__ = ProjectConfiguration(automatic_checkpoint_naming=SCREAMING_SNAKE_CASE__ ) # Train baseline A__ = Accelerator(project_dir=SCREAMING_SNAKE_CASE__ , project_config=SCREAMING_SNAKE_CASE__ ) A__ , A__ , A__ , A__ , A__ = accelerator.prepare( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Save initial accelerator.save_state() A__ = scheduler.state_dict() train(3 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertNotEqual(SCREAMING_SNAKE_CASE__ , scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(SCREAMING_SNAKE_CASE__ , "checkpoints" , "checkpoint_0" ) ) self.assertEqual(SCREAMING_SNAKE_CASE__ , scheduler.state_dict() ) def snake_case__ ( self ) -> List[Any]: with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) A__ = DummyModel() A__ = ProjectConfiguration(automatic_checkpoint_naming=SCREAMING_SNAKE_CASE__ , total_limit=2 ) # Train baseline A__ = Accelerator(project_dir=SCREAMING_SNAKE_CASE__ , project_config=SCREAMING_SNAKE_CASE__ ) A__ = accelerator.prepare(SCREAMING_SNAKE_CASE__ ) # Save 3 states: for _ in range(11 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(SCREAMING_SNAKE_CASE__ , "checkpoints" , "checkpoint_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(SCREAMING_SNAKE_CASE__ , "checkpoints" , "checkpoint_9" ) ) ) self.assertTrue(os.path.exists(os.path.join(SCREAMING_SNAKE_CASE__ , "checkpoints" , "checkpoint_10" ) ) ) @require_cuda def snake_case__ ( self ) -> int: A__ = ["torchrun", f"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )] execute_subprocess_async(SCREAMING_SNAKE_CASE__ , env=os.environ.copy() ) if __name__ == "__main__": UpperCamelCase = """/tmp/accelerate/state_checkpointing""" UpperCamelCase = DummyModel() UpperCamelCase = torch.optim.Adam(params=model.parameters(), lr=1E-3) UpperCamelCase = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.99) UpperCamelCase , UpperCamelCase = dummy_dataloaders() UpperCamelCase = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline UpperCamelCase = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision="""no""") if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) UpperCamelCase , UpperCamelCase = accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: UpperCamelCase = group["""params"""][0].device break assert param_device.type == accelerator.device.type UpperCamelCase = model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, """checkpoints""", """checkpoint_0"""), map_location="""cpu""") for group in optimizer.param_groups: UpperCamelCase = group["""params"""][0].device break assert ( param_device.type == torch.device("""cpu""").type ), f"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, """checkpoints""", """checkpoint_0"""), map_location="""on_device""") for group in optimizer.param_groups: UpperCamelCase = group["""params"""][0].device break assert ( param_device.type == accelerator.device.type ), f"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match="""Unsupported optimizer map location passed"""): accelerator.load_state(os.path.join(savedir, """checkpoints""", """checkpoint_0"""), map_location="""invalid""") accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
104
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE = { """CarlCochet/trajectory-transformer-halfcheetah-medium-v2""": ( """https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json""" ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class __snake_case ( _SCREAMING_SNAKE_CASE ): """simple docstring""" lowerCAmelCase_ : int = 'trajectory_transformer' lowerCAmelCase_ : Dict = ['past_key_values'] lowerCAmelCase_ : Optional[int] = { 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self :Optional[Any] , UpperCamelCase__ :Any=100 , UpperCamelCase__ :Optional[Any]=5 , UpperCamelCase__ :int=1 , UpperCamelCase__ :List[str]=1 , UpperCamelCase__ :Optional[int]=249 , UpperCamelCase__ :Union[str, Any]=6 , UpperCamelCase__ :Optional[int]=17 , UpperCamelCase__ :Tuple=25 , UpperCamelCase__ :int=4 , UpperCamelCase__ :int=4 , UpperCamelCase__ :Dict=128 , UpperCamelCase__ :str=0.1 , UpperCamelCase__ :Tuple=0.1 , UpperCamelCase__ :Tuple=0.1 , UpperCamelCase__ :Dict=0.0006 , UpperCamelCase__ :int=512 , UpperCamelCase__ :Tuple=0.02 , UpperCamelCase__ :Optional[int]=1E-12 , UpperCamelCase__ :Optional[int]=1 , UpperCamelCase__ :Any=True , UpperCamelCase__ :Any=1 , UpperCamelCase__ :Any=50_256 , UpperCamelCase__ :str=50_256 , **UpperCamelCase__ :Optional[Any] , ): _a = vocab_size _a = action_weight _a = reward_weight _a = value_weight _a = max_position_embeddings _a = block_size _a = action_dim _a = observation_dim _a = transition_dim _a = learning_rate _a = n_layer _a = n_head _a = n_embd _a = embd_pdrop _a = attn_pdrop _a = resid_pdrop _a = initializer_range _a = layer_norm_eps _a = kaiming_initializer_range _a = use_cache super().__init__(pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , **UpperCamelCase__ )
388
0
'''simple docstring''' import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCAmelCase_ : def __init__( self , _lowerCAmelCase , _lowerCAmelCase=13 , _lowerCAmelCase=32 , _lowerCAmelCase=2 , _lowerCAmelCase=3 , _lowerCAmelCase=16 , _lowerCAmelCase=[1, 2, 1] , _lowerCAmelCase=[2, 2, 4] , _lowerCAmelCase=2 , _lowerCAmelCase=2.0 , _lowerCAmelCase=True , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.1 , _lowerCAmelCase="gelu" , _lowerCAmelCase=False , _lowerCAmelCase=True , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-5 , _lowerCAmelCase=True , _lowerCAmelCase=None , _lowerCAmelCase=True , _lowerCAmelCase=10 , _lowerCAmelCase=8 , ) -> int: _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = image_size _lowerCAmelCase = patch_size _lowerCAmelCase = num_channels _lowerCAmelCase = embed_dim _lowerCAmelCase = depths _lowerCAmelCase = num_heads _lowerCAmelCase = window_size _lowerCAmelCase = mlp_ratio _lowerCAmelCase = qkv_bias _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = drop_path_rate _lowerCAmelCase = hidden_act _lowerCAmelCase = use_absolute_embeddings _lowerCAmelCase = patch_norm _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = initializer_range _lowerCAmelCase = is_training _lowerCAmelCase = scope _lowerCAmelCase = use_labels _lowerCAmelCase = type_sequence_label_size _lowerCAmelCase = encoder_stride def _snake_case ( self ) -> Dict: _lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase = None if self.use_labels: _lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase = self.get_config() return config, pixel_values, labels def _snake_case ( self ) -> str: return SwinvaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Dict: _lowerCAmelCase = SwinvaModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model(_lowerCAmelCase ) _lowerCAmelCase = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) _lowerCAmelCase = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> int: _lowerCAmelCase = SwinvaForMaskedImageModeling(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model(_lowerCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images _lowerCAmelCase = 1 _lowerCAmelCase = SwinvaForMaskedImageModeling(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCAmelCase = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Tuple: _lowerCAmelCase = self.type_sequence_label_size _lowerCAmelCase = SwinvaForImageClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model(_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _snake_case ( self ) -> List[str]: _lowerCAmelCase = self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = config_and_inputs _lowerCAmelCase = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase_ ( __magic_name__ ,__magic_name__ ,unittest.TestCase ): __lowerCamelCase : List[str] = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) __lowerCamelCase : Tuple = ( {"feature-extraction": SwinvaModel, "image-classification": SwinvaForImageClassification} if is_torch_available() else {} ) __lowerCamelCase : Optional[int] = False __lowerCamelCase : Any = False __lowerCamelCase : Any = False __lowerCamelCase : Dict = False def _snake_case ( self ) -> Optional[int]: _lowerCAmelCase = SwinvaModelTester(self ) _lowerCAmelCase = ConfigTester(self , config_class=_lowerCAmelCase , embed_dim=37 ) def _snake_case ( self ) -> int: self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _snake_case ( self ) -> str: _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) @unittest.skip(reason="Got `CUDA error: misaligned address` with PyTorch 2.0.0." ) def _snake_case ( self ) -> Tuple: pass @unittest.skip(reason="Swinv2 does not use inputs_embeds" ) def _snake_case ( self ) -> str: pass def _snake_case ( self ) -> Dict: _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase = model_class(_lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _lowerCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCAmelCase , nn.Linear ) ) def _snake_case ( self ) -> Optional[int]: _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase = model_class(_lowerCAmelCase ) _lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase = [*signature.parameters.keys()] _lowerCAmelCase = ["pixel_values"] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def _snake_case ( self ) -> List[Any]: _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase = True for model_class in self.all_model_classes: _lowerCAmelCase = True _lowerCAmelCase = False _lowerCAmelCase = True _lowerCAmelCase = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() with torch.no_grad(): _lowerCAmelCase = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) _lowerCAmelCase = outputs.attentions _lowerCAmelCase = len(self.model_tester.depths ) self.assertEqual(len(_lowerCAmelCase ) , _lowerCAmelCase ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _lowerCAmelCase = True _lowerCAmelCase = config.window_size**2 _lowerCAmelCase = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() with torch.no_grad(): _lowerCAmelCase = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) _lowerCAmelCase = outputs.attentions self.assertEqual(len(_lowerCAmelCase ) , _lowerCAmelCase ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) _lowerCAmelCase = len(_lowerCAmelCase ) # Check attention is always last and order is fine _lowerCAmelCase = True _lowerCAmelCase = True _lowerCAmelCase = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() with torch.no_grad(): _lowerCAmelCase = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) if hasattr(self.model_tester , "num_hidden_states_types" ): _lowerCAmelCase = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states _lowerCAmelCase = 2 self.assertEqual(out_len + added_hidden_states , len(_lowerCAmelCase ) ) _lowerCAmelCase = outputs.attentions self.assertEqual(len(_lowerCAmelCase ) , _lowerCAmelCase ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]: _lowerCAmelCase = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() with torch.no_grad(): _lowerCAmelCase = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) _lowerCAmelCase = outputs.hidden_states _lowerCAmelCase = getattr( self.model_tester , "expected_num_hidden_layers" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_lowerCAmelCase ) , _lowerCAmelCase ) # Swinv2 has a different seq_length _lowerCAmelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _lowerCAmelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) _lowerCAmelCase = outputs.reshaped_hidden_states self.assertEqual(len(_lowerCAmelCase ) , _lowerCAmelCase ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = reshaped_hidden_states[0].shape _lowerCAmelCase = ( reshaped_hidden_states[0].view(_lowerCAmelCase , _lowerCAmelCase , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def _snake_case ( self ) -> Optional[Any]: _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: _lowerCAmelCase = True self.check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase = True self.check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def _snake_case ( self ) -> str: _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase = 3 _lowerCAmelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) _lowerCAmelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _lowerCAmelCase = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _lowerCAmelCase = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: _lowerCAmelCase = True self.check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase = True self.check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , (padded_height, padded_width) ) def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_lowerCAmelCase ) def _snake_case ( self ) -> List[str]: _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase ) @slow def _snake_case ( self ) -> str: for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase = SwinvaModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) def _snake_case ( self ) -> List[str]: _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase = _config_zero_init(_lowerCAmelCase ) for model_class in self.all_model_classes: _lowerCAmelCase = model_class(config=_lowerCAmelCase ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @require_vision @require_torch class lowerCAmelCase_ ( unittest.TestCase ): @cached_property def _snake_case ( self ) -> Union[str, Any]: return ( AutoImageProcessor.from_pretrained("microsoft/swinv2-tiny-patch4-window8-256" ) if is_vision_available() else None ) @slow def _snake_case ( self ) -> List[str]: _lowerCAmelCase = SwinvaForImageClassification.from_pretrained("microsoft/swinv2-tiny-patch4-window8-256" ).to( _lowerCAmelCase ) _lowerCAmelCase = self.default_image_processor _lowerCAmelCase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) _lowerCAmelCase = image_processor(images=_lowerCAmelCase , return_tensors="pt" ).to(_lowerCAmelCase ) # forward pass with torch.no_grad(): _lowerCAmelCase = model(**_lowerCAmelCase ) # verify the logits _lowerCAmelCase = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) _lowerCAmelCase = torch.tensor([-0.3947, -0.4306, 0.0026] ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1E-4 ) )
489
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _SCREAMING_SNAKE_CASE = { "configuration_bigbird_pegasus": [ "BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP", "BigBirdPegasusConfig", "BigBirdPegasusOnnxConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ "BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST", "BigBirdPegasusForCausalLM", "BigBirdPegasusForConditionalGeneration", "BigBirdPegasusForQuestionAnswering", "BigBirdPegasusForSequenceClassification", "BigBirdPegasusModel", "BigBirdPegasusPreTrainedModel", ] if TYPE_CHECKING: from .configuration_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdPegasusConfig, BigBirdPegasusOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST, BigBirdPegasusForCausalLM, BigBirdPegasusForConditionalGeneration, BigBirdPegasusForQuestionAnswering, BigBirdPegasusForSequenceClassification, BigBirdPegasusModel, BigBirdPegasusPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
489
1
# We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation import warnings from .state import AcceleratorState, GradientState warnings.filterwarnings('''ignore''', category=UserWarning, module='''torch.optim.lr_scheduler''') class UpperCAmelCase_ : """simple docstring""" def __init__( self , _a , _a , _a = True , _a = False ) -> Optional[Any]: _a : Tuple = scheduler _a : List[Any] = optimizers if isinstance(_a , (list, tuple) ) else [optimizers] _a : Any = split_batches _a : Dict = step_with_optimizer _a : Tuple = GradientState() def __lowercase ( self , *_a , **_a ) -> int: if not self.step_with_optimizer: # No link between scheduler and optimizer -> just step self.scheduler.step(*_a , **_a ) return # Otherwise, first make sure the optimizer was stepped. if not self.gradient_state.sync_gradients: if self.gradient_state.adjust_scheduler: self.scheduler._step_count += 1 return for opt in self.optimizers: if opt.step_was_skipped: return if self.split_batches: # Split batches -> the training dataloader batch size is not changed so one step per training step self.scheduler.step(*_a , **_a ) else: # Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do # num_processes steps per training step _a : Tuple = AcceleratorState().num_processes for _ in range(_a ): # Special case when using OneCycle and `drop_last` was not used if hasattr(self.scheduler , '''total_steps''' ): if self.scheduler._step_count <= self.scheduler.total_steps: self.scheduler.step(*_a , **_a ) else: self.scheduler.step(*_a , **_a ) def __lowercase ( self ) -> int: return self.scheduler.get_last_lr() def __lowercase ( self ) -> Optional[int]: return self.scheduler.state_dict() def __lowercase ( self , _a ) -> Dict: self.scheduler.load_state_dict(_a ) def __lowercase ( self ) -> str: return self.scheduler.get_lr() def __lowercase ( self , *_a , **_a ) -> List[str]: return self.scheduler.print_lr(*_a , **_a )
14
class A__ : def __init__( self : List[str] ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE ={} def __UpperCamelCase ( self : Any , _a : Union[str, Any] ) -> Optional[Any]: """simple docstring""" if vertex not in self.adjacency: _SCREAMING_SNAKE_CASE ={} self.num_vertices += 1 def __UpperCamelCase ( self : Optional[int] , _a : Tuple , _a : Tuple , _a : Dict ) -> Union[str, Any]: """simple docstring""" self.add_vertex(_a ) self.add_vertex(_a ) if head == tail: return _SCREAMING_SNAKE_CASE =weight _SCREAMING_SNAKE_CASE =weight def __UpperCamelCase ( self : Dict ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_edges() for edge in edges: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =edge edges.remove((tail, head, weight) ) for i in range(len(_a ) ): _SCREAMING_SNAKE_CASE =list(edges[i] ) edges.sort(key=lambda _a : e[2] ) for i in range(len(_a ) - 1 ): if edges[i][2] >= edges[i + 1][2]: _SCREAMING_SNAKE_CASE =edges[i][2] + 1 for edge in edges: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =edge _SCREAMING_SNAKE_CASE =weight _SCREAMING_SNAKE_CASE =weight def __str__( self : str ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE ='''''' for tail in self.adjacency: for head in self.adjacency[tail]: _SCREAMING_SNAKE_CASE =self.adjacency[head][tail] string += f"{head} -> {tail} == {weight}\n" return string.rstrip('''\n''' ) def __UpperCamelCase ( self : int ) -> Optional[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =[] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def __UpperCamelCase ( self : Any ) -> Any: """simple docstring""" return self.adjacency.keys() @staticmethod def __UpperCamelCase ( _a : List[str]=None , _a : Optional[int]=None ) -> Optional[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =Graph() if vertices is None: _SCREAMING_SNAKE_CASE =[] if edges is None: _SCREAMING_SNAKE_CASE =[] for vertex in vertices: g.add_vertex(_a ) for edge in edges: g.add_edge(*_a ) return g class A__ : def __init__( self : List[Any] ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE ={} _SCREAMING_SNAKE_CASE ={} def __len__( self : Optional[int] ) -> Tuple: """simple docstring""" return len(self.parent ) def __UpperCamelCase ( self : Dict , _a : Optional[Any] ) -> int: """simple docstring""" if item in self.parent: return self.find(_a ) _SCREAMING_SNAKE_CASE =item _SCREAMING_SNAKE_CASE =0 return item def __UpperCamelCase ( self : str , _a : Tuple ) -> Union[str, Any]: """simple docstring""" if item not in self.parent: return self.make_set(_a ) if item != self.parent[item]: _SCREAMING_SNAKE_CASE =self.find(self.parent[item] ) return self.parent[item] def __UpperCamelCase ( self : Dict , _a : Optional[int] , _a : List[Any] ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.find(_a ) _SCREAMING_SNAKE_CASE =self.find(_a ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: _SCREAMING_SNAKE_CASE =roota return roota if self.rank[roota] < self.rank[roota]: _SCREAMING_SNAKE_CASE =roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 _SCREAMING_SNAKE_CASE =roota return roota return None @staticmethod def __UpperCamelCase ( _a : int ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =graph.num_vertices _SCREAMING_SNAKE_CASE =Graph.UnionFind() _SCREAMING_SNAKE_CASE =[] while num_components > 1: _SCREAMING_SNAKE_CASE ={} for vertex in graph.get_vertices(): _SCREAMING_SNAKE_CASE =-1 _SCREAMING_SNAKE_CASE =graph.get_edges() for edge in edges: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =edge edges.remove((tail, head, weight) ) for edge in edges: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =edge _SCREAMING_SNAKE_CASE =union_find.find(_a ) _SCREAMING_SNAKE_CASE =union_find.find(_a ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _SCREAMING_SNAKE_CASE =[head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _SCREAMING_SNAKE_CASE =[head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =cheap_edge[vertex] if union_find.find(_a ) != union_find.find(_a ): union_find.union(_a , _a ) mst_edges.append(cheap_edge[vertex] ) _SCREAMING_SNAKE_CASE =num_components - 1 _SCREAMING_SNAKE_CASE =Graph.build(edges=_a ) return mst
691
0
'''simple docstring''' from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers _snake_case : Any = [ """python""", """tqdm""", """regex""", """requests""", """packaging""", """filelock""", """numpy""", """tokenizers""", """huggingface-hub""", """safetensors""", """accelerate""", """pyyaml""", ] for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed elif pkg == "accelerate": # must be loaded here, or else tqdm check may fail from .utils import is_accelerate_available # Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of # Transformers with PyTorch if not is_accelerate_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F"can't find {pkg} in {deps.keys()}, check dependency_versions_table.py") def _a ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : List[str]=None ): require_version(deps[pkg] , _SCREAMING_SNAKE_CASE )
493
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _snake_case : Optional[Any] = { """configuration_rag""": ["""RagConfig"""], """retrieval_rag""": ["""RagRetriever"""], """tokenization_rag""": ["""RagTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : int = [ """RagModel""", """RagPreTrainedModel""", """RagSequenceForGeneration""", """RagTokenForGeneration""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : Dict = [ """TFRagModel""", """TFRagPreTrainedModel""", """TFRagSequenceForGeneration""", """TFRagTokenForGeneration""", ] if TYPE_CHECKING: from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever from .tokenization_rag import RagTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rag import ( TFRagModel, TFRagPreTrainedModel, TFRagSequenceForGeneration, TFRagTokenForGeneration, ) else: import sys _snake_case : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
493
1
'''simple docstring''' from collections.abc import Callable class A__ : def __init__( self : Any , _a : Callable | None = None ) -> Any: '''simple docstring''' _SCREAMING_SNAKE_CASE =[] # Stores indexes of each item for supporting updates and deletion. _SCREAMING_SNAKE_CASE ={} # Stores current size of heap. _SCREAMING_SNAKE_CASE =0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. _SCREAMING_SNAKE_CASE =key or (lambda _a : x) def A ( self : Union[str, Any] , _a : int ) -> Dict: '''simple docstring''' return int((i - 1) / 2 ) if i > 0 else None def A ( self : Optional[Any] , _a : int ) -> int: '''simple docstring''' _SCREAMING_SNAKE_CASE =int(2 * i + 1 ) return left if 0 < left < self.size else None def A ( self : Any , _a : int ) -> str: '''simple docstring''' _SCREAMING_SNAKE_CASE =int(2 * i + 2 ) return right if 0 < right < self.size else None def A ( self : str , _a : int , _a : int ) -> Tuple: '''simple docstring''' _SCREAMING_SNAKE_CASE =( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. _SCREAMING_SNAKE_CASE =self.arr[j], self.arr[i] def A ( self : Tuple , _a : int , _a : int ) -> Optional[Any]: '''simple docstring''' return self.arr[i][1] < self.arr[j][1] def A ( self : Optional[Any] , _a : int ) -> Union[str, Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =self._left(snake_case_ ) _SCREAMING_SNAKE_CASE =self._right(snake_case_ ) _SCREAMING_SNAKE_CASE =i if left is not None and not self._cmp(snake_case_ , snake_case_ ): _SCREAMING_SNAKE_CASE =left if right is not None and not self._cmp(snake_case_ , snake_case_ ): _SCREAMING_SNAKE_CASE =right return valid_parent def A ( self : List[Any] , _a : int ) -> Tuple: '''simple docstring''' _SCREAMING_SNAKE_CASE =self._parent(snake_case_ ) while parent is not None and not self._cmp(snake_case_ , snake_case_ ): self._swap(snake_case_ , snake_case_ ) _SCREAMING_SNAKE_CASE =parent, self._parent(snake_case_ ) def A ( self : List[str] , _a : int ) -> Tuple: '''simple docstring''' _SCREAMING_SNAKE_CASE =self._get_valid_parent(snake_case_ ) while valid_parent != index: self._swap(snake_case_ , snake_case_ ) _SCREAMING_SNAKE_CASE =valid_parent, self._get_valid_parent(snake_case_ ) def A ( self : int , _a : int , _a : int ) -> Any: '''simple docstring''' if item not in self.pos_map: return _SCREAMING_SNAKE_CASE =self.pos_map[item] _SCREAMING_SNAKE_CASE =[item, self.key(snake_case_ )] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(snake_case_ ) self._heapify_down(snake_case_ ) def A ( self : str , _a : int ) -> int: '''simple docstring''' if item not in self.pos_map: return _SCREAMING_SNAKE_CASE =self.pos_map[item] del self.pos_map[item] _SCREAMING_SNAKE_CASE =self.arr[self.size - 1] _SCREAMING_SNAKE_CASE =index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(snake_case_ ) self._heapify_down(snake_case_ ) def A ( self : List[str] , _a : int , _a : int ) -> int: '''simple docstring''' _SCREAMING_SNAKE_CASE =len(self.arr ) if arr_len == self.size: self.arr.append([item, self.key(snake_case_ )] ) else: _SCREAMING_SNAKE_CASE =[item, self.key(snake_case_ )] _SCREAMING_SNAKE_CASE =self.size self.size += 1 self._heapify_up(self.size - 1 ) def A ( self : str ) -> Tuple: '''simple docstring''' return self.arr[0] if self.size else None def A ( self : Optional[int] ) -> int: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0] ) return top_item_tuple def _lowerCAmelCase ( ) -> Any: """simple docstring""" pass if __name__ == "__main__": import doctest doctest.testmod()
405
def __UpperCamelCase ( lowerCAmelCase__ : int = 4_0_0_0_0_0_0 ): __a : Tuple = [0, 1] __a : str = 0 while fib[i] <= n: fib.append(fib[i] + fib[i + 1] ) if fib[i + 2] > n: break i += 1 __a : int = 0 for j in range(len(lowerCAmelCase__ ) - 1 ): if fib[j] % 2 == 0: total += fib[j] return total if __name__ == "__main__": print(F"""{solution() = }""")
521
0
import logging import os import sys from dataclasses import dataclass, field from importlib import import_module from typing import Dict, List, Optional, Tuple import numpy as np from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch import nn from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask import transformers from transformers import ( AutoConfig, AutoModelForTokenClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process __snake_case : List[Any] = logging.getLogger(__name__) @dataclass class __SCREAMING_SNAKE_CASE : _SCREAMING_SNAKE_CASE : str = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''}) _SCREAMING_SNAKE_CASE : Optional[str] = field( default=__lowercase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''}) _SCREAMING_SNAKE_CASE : Optional[str] = field( default='''NER''' , metadata={'''help''': '''Task type to fine tune in training (e.g. NER, POS, etc)'''}) _SCREAMING_SNAKE_CASE : Optional[str] = field( default=__lowercase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''}) _SCREAMING_SNAKE_CASE : bool = field(default=__lowercase , metadata={'''help''': '''Set this flag to use fast tokenization.'''}) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. _SCREAMING_SNAKE_CASE : Optional[str] = field( default=__lowercase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) @dataclass class __SCREAMING_SNAKE_CASE : _SCREAMING_SNAKE_CASE : str = field( metadata={'''help''': '''The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task.'''}) _SCREAMING_SNAKE_CASE : Optional[str] = field( default=__lowercase , metadata={'''help''': '''Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.'''} , ) _SCREAMING_SNAKE_CASE : int = field( default=128 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) _SCREAMING_SNAKE_CASE : bool = field( default=__lowercase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''}) def _UpperCamelCase ( ) -> List[str]: """simple docstring""" lowerCAmelCase__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. Use" ' --overwrite_output_dir to overcome.' ) lowerCAmelCase__ = import_module('tasks' ) try: lowerCAmelCase__ = getattr(UpperCamelCase_ , model_args.task_type ) lowerCAmelCase__ = token_classification_task_clazz() except AttributeError: raise ValueError( F"Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. " F"Available tasks classes are: {TokenClassificationTask.__subclasses__()}" ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , UpperCamelCase_ ) # Set seed set_seed(training_args.seed ) # Prepare CONLL-2003 task lowerCAmelCase__ = token_classification_task.get_labels(data_args.labels ) lowerCAmelCase__ = dict(enumerate(UpperCamelCase_ ) ) lowerCAmelCase__ = len(UpperCamelCase_ ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCAmelCase__ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=UpperCamelCase_ , idalabel=UpperCamelCase_ , labelaid={label: i for i, label in enumerate(UpperCamelCase_ )} , cache_dir=model_args.cache_dir , ) lowerCAmelCase__ = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , ) lowerCAmelCase__ = AutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=UpperCamelCase_ , cache_dir=model_args.cache_dir , ) # Get datasets lowerCAmelCase__ = ( TokenClassificationDataset( token_classification_task=UpperCamelCase_ , data_dir=data_args.data_dir , tokenizer=UpperCamelCase_ , labels=UpperCamelCase_ , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) lowerCAmelCase__ = ( TokenClassificationDataset( token_classification_task=UpperCamelCase_ , data_dir=data_args.data_dir , tokenizer=UpperCamelCase_ , labels=UpperCamelCase_ , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def align_predictions(UpperCamelCase_ : np.ndarray , UpperCamelCase_ : np.ndarray ) -> Tuple[List[int], List[int]]: lowerCAmelCase__ = np.argmax(UpperCamelCase_ , axis=2 ) lowerCAmelCase__ , lowerCAmelCase__ = preds.shape lowerCAmelCase__ = [[] for _ in range(UpperCamelCase_ )] lowerCAmelCase__ = [[] for _ in range(UpperCamelCase_ )] for i in range(UpperCamelCase_ ): for j in range(UpperCamelCase_ ): if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: out_label_list[i].append(label_map[label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) return preds_list, out_label_list def compute_metrics(UpperCamelCase_ : EvalPrediction ) -> Dict: lowerCAmelCase__ , lowerCAmelCase__ = align_predictions(p.predictions , p.label_ids ) return { "accuracy_score": accuracy_score(UpperCamelCase_ , UpperCamelCase_ ), "precision": precision_score(UpperCamelCase_ , UpperCamelCase_ ), "recall": recall_score(UpperCamelCase_ , UpperCamelCase_ ), "f1": fa_score(UpperCamelCase_ , UpperCamelCase_ ), } # Data collator lowerCAmelCase__ = DataCollatorWithPadding(UpperCamelCase_ , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer lowerCAmelCase__ = Trainer( model=UpperCamelCase_ , args=UpperCamelCase_ , train_dataset=UpperCamelCase_ , eval_dataset=UpperCamelCase_ , compute_metrics=UpperCamelCase_ , data_collator=UpperCamelCase_ , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation lowerCAmelCase__ = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) lowerCAmelCase__ = trainer.evaluate() lowerCAmelCase__ = os.path.join(training_args.output_dir , 'eval_results.txt' ) if trainer.is_world_process_zero(): with open(UpperCamelCase_ , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in result.items(): logger.info(' %s = %s' , UpperCamelCase_ , UpperCamelCase_ ) writer.write('%s = %s\n' % (key, value) ) results.update(UpperCamelCase_ ) # Predict if training_args.do_predict: lowerCAmelCase__ = TokenClassificationDataset( token_classification_task=UpperCamelCase_ , data_dir=data_args.data_dir , tokenizer=UpperCamelCase_ , labels=UpperCamelCase_ , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = trainer.predict(UpperCamelCase_ ) lowerCAmelCase__ , lowerCAmelCase__ = align_predictions(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ = os.path.join(training_args.output_dir , 'test_results.txt' ) if trainer.is_world_process_zero(): with open(UpperCamelCase_ , 'w' ) as writer: for key, value in metrics.items(): logger.info(' %s = %s' , UpperCamelCase_ , UpperCamelCase_ ) writer.write('%s = %s\n' % (key, value) ) # Save predictions lowerCAmelCase__ = os.path.join(training_args.output_dir , 'test_predictions.txt' ) if trainer.is_world_process_zero(): with open(UpperCamelCase_ , 'w' ) as writer: with open(os.path.join(data_args.data_dir , 'test.txt' ) , 'r' ) as f: token_classification_task.write_predictions_to_file(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) return results def _UpperCamelCase ( UpperCamelCase_ : Dict ) -> Union[str, Any]: """simple docstring""" main() if __name__ == "__main__": main()
365
import argparse import os from pathlib import Path import torch from bark.generation import _load_model as _bark_load_model from huggingface_hub import hf_hub_download from transformers import EncodecConfig, EncodecModel, set_seed from transformers.models.bark.configuration_bark import ( BarkCoarseConfig, BarkConfig, BarkFineConfig, BarkSemanticConfig, ) from transformers.models.bark.generation_configuration_bark import ( BarkCoarseGenerationConfig, BarkFineGenerationConfig, BarkGenerationConfig, BarkSemanticGenerationConfig, ) from transformers.models.bark.modeling_bark import BarkCoarseModel, BarkFineModel, BarkModel, BarkSemanticModel from transformers.utils import logging logging.set_verbosity_info() __snake_case : Any = logging.get_logger(__name__) set_seed(7_70) __snake_case : Union[str, Any] = { """c_attn""": """att_proj""", """c_proj""": """out_proj""", """c_fc""": """in_proj""", """transformer.""": """""", """h.""": """layers.""", """ln_1""": """layernorm_1""", """ln_2""": """layernorm_2""", """ln_f""": """layernorm_final""", """wpe""": """position_embeds_layer""", """wte""": """input_embeds_layer""", } __snake_case : int = { """text_small""": { """repo_id""": """suno/bark""", """file_name""": """text.pt""", }, """coarse_small""": { """repo_id""": """suno/bark""", """file_name""": """coarse.pt""", }, """fine_small""": { """repo_id""": """suno/bark""", """file_name""": """fine.pt""", }, """text""": { """repo_id""": """suno/bark""", """file_name""": """text_2.pt""", }, """coarse""": { """repo_id""": """suno/bark""", """file_name""": """coarse_2.pt""", }, """fine""": { """repo_id""": """suno/bark""", """file_name""": """fine_2.pt""", }, } __snake_case : Optional[int] = os.path.dirname(os.path.abspath(__file__)) __snake_case : Union[str, Any] = os.path.join(os.path.expanduser("""~"""), """.cache""") __snake_case : Any = os.path.join(os.getenv("""XDG_CACHE_HOME""", default_cache_dir), """suno""", """bark_v0""") def _UpperCamelCase ( UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : int=False ) -> Dict: """simple docstring""" lowerCAmelCase__ = model_type if use_small: key += "_small" return os.path.join(UpperCamelCase_ , REMOTE_MODEL_PATHS[key]['file_name'] ) def _UpperCamelCase ( UpperCamelCase_ : str , UpperCamelCase_ : Optional[int] ) -> Union[str, Any]: """simple docstring""" os.makedirs(UpperCamelCase_ , exist_ok=UpperCamelCase_ ) hf_hub_download(repo_id=UpperCamelCase_ , filename=UpperCamelCase_ , local_dir=UpperCamelCase_ ) def _UpperCamelCase ( UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Any=False , UpperCamelCase_ : Union[str, Any]="text" ) -> Optional[Any]: """simple docstring""" if model_type == "text": lowerCAmelCase__ = BarkSemanticModel lowerCAmelCase__ = BarkSemanticConfig lowerCAmelCase__ = BarkSemanticGenerationConfig elif model_type == "coarse": lowerCAmelCase__ = BarkCoarseModel lowerCAmelCase__ = BarkCoarseConfig lowerCAmelCase__ = BarkCoarseGenerationConfig elif model_type == "fine": lowerCAmelCase__ = BarkFineModel lowerCAmelCase__ = BarkFineConfig lowerCAmelCase__ = BarkFineGenerationConfig else: raise NotImplementedError() lowerCAmelCase__ = F"{model_type}_small" if use_small else model_type lowerCAmelCase__ = REMOTE_MODEL_PATHS[model_key] if not os.path.exists(UpperCamelCase_ ): logger.info(F"{model_type} model not found, downloading into `{CACHE_DIR}`." ) _download(model_info['repo_id'] , model_info['file_name'] ) lowerCAmelCase__ = torch.load(UpperCamelCase_ , map_location=UpperCamelCase_ ) # this is a hack lowerCAmelCase__ = checkpoint['model_args'] if "input_vocab_size" not in model_args: lowerCAmelCase__ = model_args['vocab_size'] lowerCAmelCase__ = model_args['vocab_size'] del model_args["vocab_size"] # convert Bark model arguments to HF Bark model arguments lowerCAmelCase__ = model_args.pop('n_head' ) lowerCAmelCase__ = model_args.pop('n_embd' ) lowerCAmelCase__ = model_args.pop('n_layer' ) lowerCAmelCase__ = ConfigClass(**checkpoint['model_args'] ) lowerCAmelCase__ = ModelClass(config=UpperCamelCase_ ) lowerCAmelCase__ = GenerationConfigClass() lowerCAmelCase__ = model_generation_config lowerCAmelCase__ = checkpoint['model'] # fixup checkpoint lowerCAmelCase__ = '_orig_mod.' for k, v in list(state_dict.items() ): if k.startswith(UpperCamelCase_ ): # replace part of the key with corresponding layer name in HF implementation lowerCAmelCase__ = k[len(UpperCamelCase_ ) :] for old_layer_name in new_layer_name_dict: lowerCAmelCase__ = new_k.replace(UpperCamelCase_ , new_layer_name_dict[old_layer_name] ) lowerCAmelCase__ = state_dict.pop(UpperCamelCase_ ) lowerCAmelCase__ = set(state_dict.keys() ) - set(model.state_dict().keys() ) lowerCAmelCase__ = {k for k in extra_keys if not k.endswith('.attn.bias' )} lowerCAmelCase__ = set(model.state_dict().keys() ) - set(state_dict.keys() ) lowerCAmelCase__ = {k for k in missing_keys if not k.endswith('.attn.bias' )} if len(UpperCamelCase_ ) != 0: raise ValueError(F"extra keys found: {extra_keys}" ) if len(UpperCamelCase_ ) != 0: raise ValueError(F"missing keys: {missing_keys}" ) model.load_state_dict(UpperCamelCase_ , strict=UpperCamelCase_ ) lowerCAmelCase__ = model.num_parameters(exclude_embeddings=UpperCamelCase_ ) lowerCAmelCase__ = checkpoint['best_val_loss'].item() logger.info(F"model loaded: {round(n_params/1e6 , 1 )}M params, {round(UpperCamelCase_ , 3 )} loss" ) model.eval() model.to(UpperCamelCase_ ) del checkpoint, state_dict return model def _UpperCamelCase ( UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Any=False , UpperCamelCase_ : Optional[int]="text" ) -> Dict: """simple docstring""" if model_type not in ("text", "coarse", "fine"): raise NotImplementedError() lowerCAmelCase__ = 'cpu' # do conversion on cpu lowerCAmelCase__ = _get_ckpt_path(UpperCamelCase_ , use_small=UpperCamelCase_ ) lowerCAmelCase__ = _load_model(UpperCamelCase_ , UpperCamelCase_ , model_type=UpperCamelCase_ , use_small=UpperCamelCase_ ) # load bark initial model lowerCAmelCase__ = _bark_load_model(UpperCamelCase_ , 'cpu' , model_type=UpperCamelCase_ , use_small=UpperCamelCase_ ) if model_type == "text": lowerCAmelCase__ = bark_model['model'] if model.num_parameters(exclude_embeddings=UpperCamelCase_ ) != bark_model.get_num_params(): raise ValueError('initial and new models don\'t have the same number of parameters' ) # check if same output as the bark model lowerCAmelCase__ = 5 lowerCAmelCase__ = 10 if model_type in ["text", "coarse"]: lowerCAmelCase__ = torch.randint(256 , (batch_size, sequence_length) , dtype=torch.int ) lowerCAmelCase__ = bark_model(UpperCamelCase_ )[0] lowerCAmelCase__ = model(UpperCamelCase_ ) # take last logits lowerCAmelCase__ = output_new_model_total.logits[:, [-1], :] else: lowerCAmelCase__ = 3 lowerCAmelCase__ = 8 lowerCAmelCase__ = torch.randint(256 , (batch_size, sequence_length, n_codes_total) , dtype=torch.int ) lowerCAmelCase__ = model(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ = bark_model(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ = output_new_model_total.logits # output difference should come from the difference of self-attention implementation design if output_new_model.shape != output_old_model.shape: raise ValueError('initial and new outputs don\'t have the same shape' ) if (output_new_model - output_old_model).abs().max().item() > 1e-3: raise ValueError('initial and new outputs are not equal' ) Path(UpperCamelCase_ ).mkdir(exist_ok=UpperCamelCase_ ) model.save_pretrained(UpperCamelCase_ ) def _UpperCamelCase ( UpperCamelCase_ : int , UpperCamelCase_ : Dict , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Tuple , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Union[str, Any] , ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ = os.path.join(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ = BarkSemanticConfig.from_pretrained(os.path.join(UpperCamelCase_ , 'config.json' ) ) lowerCAmelCase__ = BarkCoarseConfig.from_pretrained(os.path.join(UpperCamelCase_ , 'config.json' ) ) lowerCAmelCase__ = BarkFineConfig.from_pretrained(os.path.join(UpperCamelCase_ , 'config.json' ) ) lowerCAmelCase__ = EncodecConfig.from_pretrained('facebook/encodec_24khz' ) lowerCAmelCase__ = BarkSemanticModel.from_pretrained(UpperCamelCase_ ) lowerCAmelCase__ = BarkCoarseModel.from_pretrained(UpperCamelCase_ ) lowerCAmelCase__ = BarkFineModel.from_pretrained(UpperCamelCase_ ) lowerCAmelCase__ = EncodecModel.from_pretrained('facebook/encodec_24khz' ) lowerCAmelCase__ = BarkConfig.from_sub_model_configs( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ = BarkGenerationConfig.from_sub_model_configs( semantic.generation_config , coarseAcoustic.generation_config , fineAcoustic.generation_config ) lowerCAmelCase__ = BarkModel(UpperCamelCase_ ) lowerCAmelCase__ = semantic lowerCAmelCase__ = coarseAcoustic lowerCAmelCase__ = fineAcoustic lowerCAmelCase__ = codec lowerCAmelCase__ = bark_generation_config Path(UpperCamelCase_ ).mkdir(exist_ok=UpperCamelCase_ ) bark.save_pretrained(UpperCamelCase_ , repo_id=UpperCamelCase_ , push_to_hub=UpperCamelCase_ ) if __name__ == "__main__": __snake_case : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("""model_type""", type=str, help="""text, coarse or fine.""") parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--is_small""", action="""store_true""", help="""convert the small version instead of the large.""") __snake_case : str = parser.parse_args() load_model(args.pytorch_dump_folder_path, model_type=args.model_type, use_small=args.is_small)
365
1
'''simple docstring''' import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.esm.modeling_esmfold import EsmForProteinFolding class __A : '''simple docstring''' def __init__(self , A , A=13 , A=7 , A=False , A=True , A=False , A=False , A=19 , A=32 , A=5 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=16 , A=2 , A=0.02 , A=3 , A=4 , A=None , ) -> str: """simple docstring""" _a = parent _a = batch_size _a = seq_length _a = is_training _a = use_input_mask _a = use_token_type_ids _a = use_labels _a = vocab_size _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = max_position_embeddings _a = type_vocab_size _a = type_sequence_label_size _a = initializer_range _a = num_labels _a = num_choices _a = scope def a__ (self ) -> List[str]: """simple docstring""" _a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a = None if self.use_input_mask: _a = random_attention_mask([self.batch_size, self.seq_length] ) _a = None _a = None _a = None if self.use_labels: _a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _a = ids_tensor([self.batch_size] , self.num_choices ) _a = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def a__ (self ) -> Tuple: """simple docstring""" _a = EsmConfig( vocab_size=33 , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , is_folding_model=A , esmfold_config={'''trunk''': {'''num_blocks''': 2}, '''fp16_esm''': False} , ) return config def a__ (self , A , A , A , A , A , A ) -> Dict: """simple docstring""" _a = EsmForProteinFolding(config=A ).float() model.to(A ) model.eval() _a = model(A , attention_mask=A ) _a = model(A ) _a = model(A ) self.parent.assertEqual(result.positions.shape , (8, self.batch_size, self.seq_length, 14, 3) ) self.parent.assertEqual(result.angles.shape , (8, self.batch_size, self.seq_length, 7, 2) ) def a__ (self ) -> int: """simple docstring""" _a = self.prepare_config_and_inputs() ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) = config_and_inputs _a = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __A ( A , A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Tuple = False __lowerCamelCase : Union[str, Any] = (EsmForProteinFolding,) if is_torch_available() else () __lowerCamelCase : Union[str, Any] = () __lowerCamelCase : Union[str, Any] = {} if is_torch_available() else {} __lowerCamelCase : List[str] = False def a__ (self ) -> List[str]: """simple docstring""" _a = EsmFoldModelTester(self ) _a = ConfigTester(self , config_class=A , hidden_size=37 ) def a__ (self ) -> int: """simple docstring""" self.config_tester.run_common_tests() def a__ (self ) -> int: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) @unittest.skip('''Does not support attention outputs''' ) def a__ (self ) -> Tuple: """simple docstring""" pass @unittest.skip def a__ (self ) -> Tuple: """simple docstring""" pass @unittest.skip('''Esm does not support embedding resizing''' ) def a__ (self ) -> Optional[int]: """simple docstring""" pass @unittest.skip('''Esm does not support embedding resizing''' ) def a__ (self ) -> List[str]: """simple docstring""" pass @unittest.skip('''ESMFold does not support passing input embeds!''' ) def a__ (self ) -> Tuple: """simple docstring""" pass @unittest.skip('''ESMFold does not support head pruning.''' ) def a__ (self ) -> int: """simple docstring""" pass @unittest.skip('''ESMFold does not support head pruning.''' ) def a__ (self ) -> str: """simple docstring""" pass @unittest.skip('''ESMFold does not support head pruning.''' ) def a__ (self ) -> Optional[int]: """simple docstring""" pass @unittest.skip('''ESMFold does not support head pruning.''' ) def a__ (self ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip('''ESMFold does not support head pruning.''' ) def a__ (self ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip('''ESMFold does not output hidden states in the normal way.''' ) def a__ (self ) -> Tuple: """simple docstring""" pass @unittest.skip('''ESMfold does not output hidden states in the normal way.''' ) def a__ (self ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip('''ESMFold only has one output format.''' ) def a__ (self ) -> Dict: """simple docstring""" pass @unittest.skip('''This test doesn\'t work for ESMFold and doesn\'t test core functionality''' ) def a__ (self ) -> List[str]: """simple docstring""" pass @unittest.skip('''ESMFold does not support input chunking.''' ) def a__ (self ) -> str: """simple docstring""" pass @unittest.skip('''ESMFold doesn\'t respect you and it certainly doesn\'t respect your initialization arguments.''' ) def a__ (self ) -> List[str]: """simple docstring""" pass @unittest.skip('''ESMFold doesn\'t support torchscript compilation.''' ) def a__ (self ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip('''ESMFold doesn\'t support torchscript compilation.''' ) def a__ (self ) -> str: """simple docstring""" pass @unittest.skip('''ESMFold doesn\'t support torchscript compilation.''' ) def a__ (self ) -> Optional[Any]: """simple docstring""" pass @unittest.skip('''ESMFold doesn\'t support data parallel.''' ) def a__ (self ) -> List[Any]: """simple docstring""" pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def a__ (self ) -> Optional[Any]: """simple docstring""" pass @require_torch class __A ( A ): '''simple docstring''' @slow def a__ (self ) -> Optional[Any]: """simple docstring""" _a = EsmForProteinFolding.from_pretrained('''facebook/esmfold_v1''' ).float() model.eval() _a = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) _a = model(A )['''positions'''] _a = torch.tensor([2.5828, 0.7993, -10.9334] , dtype=torch.floataa ) self.assertTrue(torch.allclose(position_outputs[0, 0, 0, 0] , A , atol=1E-4 ) )
11
'''simple docstring''' def lowerCAmelCase (__A): """simple docstring""" return credit_card_number.startswith(('''34''', '''35''', '''37''', '''4''', '''5''', '''6''')) def lowerCAmelCase (__A): """simple docstring""" _a = credit_card_number _a = 0 _a = len(__A) - 2 for i in range(__A , -1 , -2): # double the value of every second digit _a = int(cc_number[i]) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 _a = cc_number[:i] + str(__A) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(__A) - 1 , -1 , -2): total += int(cc_number[i]) return total % 10 == 0 def lowerCAmelCase (__A): """simple docstring""" _a = F'''{credit_card_number} is an invalid credit card number because''' if not credit_card_number.isdigit(): print(F'''{error_message} it has nonnumerical characters.''') return False if not 13 <= len(__A) <= 16: print(F'''{error_message} of its length.''') return False if not validate_initial_digits(__A): print(F'''{error_message} of its first two digits.''') return False if not luhn_validation(__A): print(F'''{error_message} it fails the Luhn check.''') return False print(F'''{credit_card_number} is a valid credit card number.''') return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number("4111111111111111") validate_credit_card_number("32323")
11
1
import re def A__ ( _a : Union[str, Any] ): '''simple docstring''' snake_case__ : Tuple =re.compile( R"""^(?:0|94|\+94|0{2}94)""" R"""7(0|1|2|4|5|6|7|8)""" R"""(-| |)""" R"""\d{7}$""" ) return bool(re.search(_a , _a ) ) if __name__ == "__main__": __lowerCamelCase : List[str] = """0094702343221""" print(is_sri_lankan_phone_number(phone))
701
from string import ascii_uppercase __lowerCamelCase : List[Any] = {str(ord(c) - 55): c for c in ascii_uppercase} def A__ ( _a : int , _a : int ): '''simple docstring''' if isinstance(_a , _a ): raise TypeError("""int() can't convert non-string with explicit base""" ) if num < 0: raise ValueError("""parameter must be positive int""" ) if isinstance(_a , _a ): raise TypeError("""'str' object cannot be interpreted as an integer""" ) if isinstance(_a , _a ): raise TypeError("""'float' object cannot be interpreted as an integer""" ) if base in (0, 1): raise ValueError("""base must be >= 2""" ) if base > 36: raise ValueError("""base must be <= 36""" ) snake_case__ : Union[str, Any] ="""""" snake_case__ : List[str] =0 snake_case__ : List[Any] =0 while div != 1: snake_case__ , snake_case__ : Union[str, Any] =divmod(_a , _a ) if base >= 11 and 9 < mod < 36: snake_case__ : Dict =ALPHABET_VALUES[str(_a )] else: snake_case__ : Optional[Any] =str(_a ) new_value += actual_value snake_case__ : Dict =num // base snake_case__ : Tuple =div if div == 0: return str(new_value[::-1] ) elif div == 1: new_value += str(_a ) return str(new_value[::-1] ) return new_value[::-1] if __name__ == "__main__": import doctest doctest.testmod() for base in range(2, 37): for num in range(10_00): assert int(decimal_to_any(num, base), base) == num, ( num, base, decimal_to_any(num, base), int(decimal_to_any(num, base), base), )
448
0
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def lowercase (SCREAMING_SNAKE_CASE_ : Any ) -> Optional[Any]: # vision encoder if "img_encoder.pos_embed" in name: SCREAMING_SNAKE_CASE = name.replace('img_encoder.pos_embed' , 'vision_model.embeddings.position_embeddings' ) if "img_encoder.patch_embed.proj" in name: SCREAMING_SNAKE_CASE = name.replace('img_encoder.patch_embed.proj' , 'vision_model.embeddings.patch_embeddings.projection' ) if "img_encoder.patch_embed.norm" in name: SCREAMING_SNAKE_CASE = name.replace('img_encoder.patch_embed.norm' , 'vision_model.embeddings.layernorm' ) if "img_encoder.layers" in name: SCREAMING_SNAKE_CASE = name.replace('img_encoder.layers' , 'vision_model.encoder.stages' ) if "blocks" in name and "res" not in name: SCREAMING_SNAKE_CASE = name.replace('blocks' , 'layers' ) if "attn" in name and "pre_assign" not in name: SCREAMING_SNAKE_CASE = name.replace('attn' , 'self_attn' ) if "proj" in name and "self_attn" in name and "text" not in name: SCREAMING_SNAKE_CASE = name.replace('proj' , 'out_proj' ) if "pre_assign_attn.attn.proj" in name: SCREAMING_SNAKE_CASE = name.replace('pre_assign_attn.attn.proj' , 'pre_assign_attn.attn.out_proj' ) if "norm1" in name: SCREAMING_SNAKE_CASE = name.replace('norm1' , 'layer_norm1' ) if "norm2" in name and "pre_assign" not in name: SCREAMING_SNAKE_CASE = name.replace('norm2' , 'layer_norm2' ) if "img_encoder.norm" in name: SCREAMING_SNAKE_CASE = name.replace('img_encoder.norm' , 'vision_model.layernorm' ) # text encoder if "text_encoder.token_embedding" in name: SCREAMING_SNAKE_CASE = name.replace('text_encoder.token_embedding' , 'text_model.embeddings.token_embedding' ) if "text_encoder.positional_embedding" in name: SCREAMING_SNAKE_CASE = name.replace('text_encoder.positional_embedding' , 'text_model.embeddings.position_embedding.weight' ) if "text_encoder.transformer.resblocks." in name: SCREAMING_SNAKE_CASE = name.replace('text_encoder.transformer.resblocks.' , 'text_model.encoder.layers.' ) if "ln_1" in name: SCREAMING_SNAKE_CASE = name.replace('ln_1' , 'layer_norm1' ) if "ln_2" in name: SCREAMING_SNAKE_CASE = name.replace('ln_2' , 'layer_norm2' ) if "c_fc" in name: SCREAMING_SNAKE_CASE = name.replace('c_fc' , 'fc1' ) if "c_proj" in name: SCREAMING_SNAKE_CASE = name.replace('c_proj' , 'fc2' ) if "text_encoder" in name: SCREAMING_SNAKE_CASE = name.replace('text_encoder' , 'text_model' ) if "ln_final" in name: SCREAMING_SNAKE_CASE = name.replace('ln_final' , 'final_layer_norm' ) # projection layers if "img_projector.linear_hidden." in name: SCREAMING_SNAKE_CASE = name.replace('img_projector.linear_hidden.' , 'visual_projection.' ) if "img_projector.linear_out." in name: SCREAMING_SNAKE_CASE = name.replace('img_projector.linear_out.' , 'visual_projection.3.' ) if "text_projector.linear_hidden" in name: SCREAMING_SNAKE_CASE = name.replace('text_projector.linear_hidden' , 'text_projection' ) if "text_projector.linear_out" in name: SCREAMING_SNAKE_CASE = name.replace('text_projector.linear_out' , 'text_projection.3' ) return name def lowercase (SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Union[str, Any]: for key in orig_state_dict.copy().keys(): SCREAMING_SNAKE_CASE = orig_state_dict.pop(SCREAMING_SNAKE_CASE_ ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors SCREAMING_SNAKE_CASE = key.split('.' ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = int(key_split[2] ), int(key_split[4] ) SCREAMING_SNAKE_CASE = config.vision_config.hidden_size if "weight" in key: SCREAMING_SNAKE_CASE = val[:dim, :] SCREAMING_SNAKE_CASE = val[dim : dim * 2, :] SCREAMING_SNAKE_CASE = val[-dim:, :] else: SCREAMING_SNAKE_CASE = val[:dim] SCREAMING_SNAKE_CASE = val[dim : dim * 2] SCREAMING_SNAKE_CASE = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors SCREAMING_SNAKE_CASE = key.split('.' ) SCREAMING_SNAKE_CASE = int(key_split[3] ) SCREAMING_SNAKE_CASE = config.text_config.hidden_size if "weight" in key: SCREAMING_SNAKE_CASE = val[:dim, :] SCREAMING_SNAKE_CASE = val[ dim : dim * 2, : ] SCREAMING_SNAKE_CASE = val[-dim:, :] else: SCREAMING_SNAKE_CASE = val[:dim] SCREAMING_SNAKE_CASE = val[dim : dim * 2] SCREAMING_SNAKE_CASE = val[-dim:] else: SCREAMING_SNAKE_CASE = rename_key(SCREAMING_SNAKE_CASE_ ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): SCREAMING_SNAKE_CASE = val.squeeze_() else: SCREAMING_SNAKE_CASE = val return orig_state_dict def lowercase () -> List[str]: SCREAMING_SNAKE_CASE = 'http://images.cocodataset.org/val2017/000000039769.jpg' SCREAMING_SNAKE_CASE = Image.open(requests.get(SCREAMING_SNAKE_CASE_ , stream=SCREAMING_SNAKE_CASE_ ).raw ) return im @torch.no_grad() def lowercase (SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Optional[Any]="groupvit-gcc-yfcc" , SCREAMING_SNAKE_CASE_ : List[str]=False ) -> Any: SCREAMING_SNAKE_CASE = GroupViTConfig() SCREAMING_SNAKE_CASE = GroupViTModel(SCREAMING_SNAKE_CASE_ ).eval() SCREAMING_SNAKE_CASE = torch.load(SCREAMING_SNAKE_CASE_ , map_location='cpu' )['model'] SCREAMING_SNAKE_CASE = convert_state_dict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = model.load_state_dict(SCREAMING_SNAKE_CASE_ , strict=SCREAMING_SNAKE_CASE_ ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(SCREAMING_SNAKE_CASE_ ) == 0) # verify result SCREAMING_SNAKE_CASE = CLIPProcessor.from_pretrained('openai/clip-vit-base-patch32' ) SCREAMING_SNAKE_CASE = prepare_img() SCREAMING_SNAKE_CASE = processor(text=['a photo of a cat', 'a photo of a dog'] , images=SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , return_tensors='pt' ) with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**SCREAMING_SNAKE_CASE_ ) if model_name == "groupvit-gcc-yfcc": SCREAMING_SNAKE_CASE = torch.tensor([[13.35_23, 6.36_29]] ) elif model_name == "groupvit-gcc-redcaps": SCREAMING_SNAKE_CASE = torch.tensor([[16.18_73, 8.62_30]] ) else: raise ValueError(F'Model name {model_name} not supported.' ) assert torch.allclose(outputs.logits_per_image , SCREAMING_SNAKE_CASE_ , atol=1E-3 ) processor.save_pretrained(SCREAMING_SNAKE_CASE_ ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) print('Successfully saved processor and model to' , SCREAMING_SNAKE_CASE_ ) if push_to_hub: print('Pushing to the hub...' ) processor.push_to_hub(SCREAMING_SNAKE_CASE_ , organization='nielsr' ) model.push_to_hub(SCREAMING_SNAKE_CASE_ , organization='nielsr' ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to dump the processor and PyTorch model.''' ) parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to GroupViT checkpoint''') parser.add_argument( '''--model_name''', default='''groupvit-gccy-fcc''', type=str, help='''Name of the model. Expecting either \'groupvit-gcc-yfcc\' or \'groupvit-gcc-redcaps\'''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.''', ) __UpperCamelCase = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
247
"""simple docstring""" import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase ( lowerCamelCase_ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = LongformerTokenizer SCREAMING_SNAKE_CASE_ : List[str] = True SCREAMING_SNAKE_CASE_ : List[str] = LongformerTokenizerFast SCREAMING_SNAKE_CASE_ : Optional[int] = True def __A ( self ) -> Optional[Any]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt SCREAMING_SNAKE_CASE = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] SCREAMING_SNAKE_CASE = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) SCREAMING_SNAKE_CASE = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] SCREAMING_SNAKE_CASE = {'unk_token': '<unk>'} SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(lowerCAmelCase__ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(lowerCAmelCase__ ) ) def __A ( self , **lowerCAmelCase__ ) -> str: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def __A ( self , **lowerCAmelCase__ ) -> List[Any]: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def __A ( self , lowerCAmelCase__ ) -> Dict: SCREAMING_SNAKE_CASE = 'lower newer' SCREAMING_SNAKE_CASE = 'lower newer' return input_text, output_text def __A ( self ) -> str: SCREAMING_SNAKE_CASE = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) SCREAMING_SNAKE_CASE = 'lower newer' SCREAMING_SNAKE_CASE = ['l', 'o', 'w', 'er', '\u0120', 'n', 'e', 'w', 'er'] SCREAMING_SNAKE_CASE = tokenizer.tokenize(lowerCAmelCase__ ) # , add_prefix_space=True) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = tokens + [tokenizer.unk_token] SCREAMING_SNAKE_CASE = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , lowerCAmelCase__ ) def __A ( self ) -> Tuple: SCREAMING_SNAKE_CASE = self.get_tokenizer() self.assertListEqual(tokenizer.encode('Hello world!' , add_special_tokens=lowerCAmelCase__ ) , [0, 31_414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode('Hello world! cécé herlolip 418' , add_special_tokens=lowerCAmelCase__ ) , [0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2] , ) @slow def __A ( self ) -> List[Any]: SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained('allenai/longformer-base-4096' ) SCREAMING_SNAKE_CASE = tokenizer.encode('sequence builders' , add_special_tokens=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = tokenizer.encode('multi-sequence build' , add_special_tokens=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = tokenizer.encode( 'sequence builders' , add_special_tokens=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = tokenizer.encode( 'sequence builders' , 'multi-sequence build' , add_special_tokens=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__ , lowerCAmelCase__ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def __A ( self ) -> List[Any]: SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = 'Encode this sequence.' SCREAMING_SNAKE_CASE = tokenizer.byte_encoder[' '.encode('utf-8' )[0]] # Testing encoder arguments SCREAMING_SNAKE_CASE = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) tokenizer.add_special_tokens({'bos_token': '<s>'} ) SCREAMING_SNAKE_CASE = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(lowerCAmelCase__ , lowerCAmelCase__ ) # Testing spaces after special tokens SCREAMING_SNAKE_CASE = '<mask>' tokenizer.add_special_tokens( {'mask_token': AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ )} ) # mask token has a left space SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = 'Encode <mask> sequence' SCREAMING_SNAKE_CASE = 'Encode <mask>sequence' SCREAMING_SNAKE_CASE = tokenizer.encode(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = encoded.index(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = tokenizer.encode(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = encoded.index(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def __A ( self ) -> Dict: pass def __A ( self ) -> Union[str, Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = 'A, <mask> AllenNLP sentence.' SCREAMING_SNAKE_CASE = tokenizer_r.encode_plus(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = tokenizer_p.encode_plus(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['token_type_ids'] ) , sum(tokens_p['token_type_ids'] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) , sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) , ) SCREAMING_SNAKE_CASE = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) SCREAMING_SNAKE_CASE = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['input_ids'] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual( lowerCAmelCase__ , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( lowerCAmelCase__ , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) def __A ( self ) -> Union[str, Any]: for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , trim_offsets=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) SCREAMING_SNAKE_CASE = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['add_prefix_space'] , lowerCAmelCase__ ) self.assertEqual(post_processor_state['add_prefix_space'] , lowerCAmelCase__ ) self.assertEqual(post_processor_state['trim_offsets'] , lowerCAmelCase__ ) def __A ( self ) -> Dict: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): SCREAMING_SNAKE_CASE = 'hello' # `hello` is a token in the vocabulary of `pretrained_name` SCREAMING_SNAKE_CASE = F'{text_of_1_token} {text_of_1_token}' SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained( lowerCAmelCase__ , use_fast=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , trim_offsets=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = tokenizer_r(lowerCAmelCase__ , return_offsets_mapping=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowerCAmelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowerCAmelCase__ ) + 1, len(lowerCAmelCase__ ) + 1 + len(lowerCAmelCase__ )) , ) SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained( lowerCAmelCase__ , use_fast=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , trim_offsets=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = tokenizer_r(lowerCAmelCase__ , return_offsets_mapping=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowerCAmelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowerCAmelCase__ ) + 1, len(lowerCAmelCase__ ) + 1 + len(lowerCAmelCase__ )) , ) SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained( lowerCAmelCase__ , use_fast=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , trim_offsets=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = tokenizer_r(lowerCAmelCase__ , return_offsets_mapping=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowerCAmelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowerCAmelCase__ ), len(lowerCAmelCase__ ) + 1 + len(lowerCAmelCase__ )) , ) SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained( lowerCAmelCase__ , use_fast=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , trim_offsets=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = tokenizer_r(lowerCAmelCase__ , return_offsets_mapping=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowerCAmelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowerCAmelCase__ ), len(lowerCAmelCase__ ) + 1 + len(lowerCAmelCase__ )) , ) SCREAMING_SNAKE_CASE = F' {text}' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained( lowerCAmelCase__ , use_fast=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , trim_offsets=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = tokenizer_r(lowerCAmelCase__ , return_offsets_mapping=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(lowerCAmelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowerCAmelCase__ ) + 1, 1 + len(lowerCAmelCase__ ) + 1 + len(lowerCAmelCase__ )) , ) SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained( lowerCAmelCase__ , use_fast=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , trim_offsets=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = tokenizer_r(lowerCAmelCase__ , return_offsets_mapping=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowerCAmelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowerCAmelCase__ ), 1 + len(lowerCAmelCase__ ) + 1 + len(lowerCAmelCase__ )) , ) SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained( lowerCAmelCase__ , use_fast=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , trim_offsets=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = tokenizer_r(lowerCAmelCase__ , return_offsets_mapping=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowerCAmelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowerCAmelCase__ ), 1 + len(lowerCAmelCase__ ) + 1 + len(lowerCAmelCase__ )) , )
247
1
from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __snake_case : List[str] = logging.get_logger(__name__) class __UpperCAmelCase ( _UpperCAmelCase ): '''simple docstring''' __lowercase : Tuple = ['pixel_values'] def __init__( self , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = PILImageResampling.BICUBIC , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = 1 / 255 , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = IMAGENET_DEFAULT_MEAN , _SCREAMING_SNAKE_CASE = IMAGENET_DEFAULT_STD , **_SCREAMING_SNAKE_CASE , ) -> None: super().__init__(**lowerCamelCase_ ) A_ = size if size is not None else {'''shortest_edge''': 224} A_ = get_size_dict(lowerCamelCase_ , default_to_square=lowerCamelCase_ ) A_ = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} A_ = get_size_dict(lowerCamelCase_ , param_name='''crop_size''' ) A_ = do_resize A_ = size A_ = resample A_ = do_center_crop A_ = crop_size A_ = do_rescale A_ = rescale_factor A_ = do_normalize A_ = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN A_ = image_std if image_std is not None else IMAGENET_DEFAULT_STD def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = PILImageResampling.BICUBIC , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> np.ndarray: A_ = get_size_dict(lowerCamelCase_ , default_to_square=lowerCamelCase_ ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: A_ = int((256 / 224) * size['''shortest_edge'''] ) A_ = get_resize_output_image_size(lowerCamelCase_ , size=lowerCamelCase_ , default_to_square=lowerCamelCase_ ) A_ = {'''height''': output_size[0], '''width''': output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( F'''Size dict must have keys \'height\' and \'width\' or \'shortest_edge\'. Got {size_dict.keys()}''' ) return resize( lowerCamelCase_ , size=(size_dict['''height'''], size_dict['''width''']) , resample=lowerCamelCase_ , data_format=lowerCamelCase_ , **lowerCamelCase_ ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> np.ndarray: A_ = get_size_dict(lowerCamelCase_ ) if "height" not in size or "width" not in size: raise ValueError(F'''Size dict must have keys \'height\' and \'width\'. Got {size.keys()}''' ) return center_crop(lowerCamelCase_ , size=(size['''height'''], size['''width''']) , data_format=lowerCamelCase_ , **lowerCamelCase_ ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> np.ndarray: return rescale(lowerCamelCase_ , scale=lowerCamelCase_ , data_format=lowerCamelCase_ , **lowerCamelCase_ ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> np.ndarray: return normalize(lowerCamelCase_ , mean=lowerCamelCase_ , std=lowerCamelCase_ , data_format=lowerCamelCase_ , **lowerCamelCase_ ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = ChannelDimension.FIRST , **_SCREAMING_SNAKE_CASE , ) -> BatchFeature: A_ = do_resize if do_resize is not None else self.do_resize A_ = resample if resample is not None else self.resample A_ = do_center_crop if do_center_crop is not None else self.do_center_crop A_ = do_rescale if do_rescale is not None else self.do_rescale A_ = rescale_factor if rescale_factor is not None else self.rescale_factor A_ = do_normalize if do_normalize is not None else self.do_normalize A_ = image_mean if image_mean is not None else self.image_mean A_ = image_std if image_std is not None else self.image_std A_ = size if size is not None else self.size A_ = get_size_dict(lowerCamelCase_ , default_to_square=lowerCamelCase_ ) A_ = crop_size if crop_size is not None else self.crop_size A_ = get_size_dict(lowerCamelCase_ , param_name='''crop_size''' ) A_ = make_list_of_images(lowerCamelCase_ ) if not valid_images(lowerCamelCase_ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. A_ = [to_numpy_array(lowerCamelCase_ ) for image in images] if do_resize: A_ = [self.resize(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) for image in images] if do_center_crop: A_ = [self.center_crop(lowerCamelCase_ , lowerCamelCase_ ) for image in images] if do_rescale: A_ = [self.rescale(lowerCamelCase_ , lowerCamelCase_ ) for image in images] if do_normalize: A_ = [self.normalize(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) for image in images] A_ = [to_channel_dimension_format(lowerCamelCase_ , lowerCamelCase_ ) for image in images] A_ = {'''pixel_values''': images} return BatchFeature(data=lowerCamelCase_ , tensor_type=lowerCamelCase_ )
718
'''simple docstring''' from __future__ import annotations __snake_case : str = { 'A': ['B', 'C', 'E'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F', 'G'], 'D': ['B'], 'E': ['A', 'B', 'D'], 'F': ['C'], 'G': ['C'], } class __UpperCAmelCase : '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> None: A_ = graph # mapping node to its parent in resulting breadth first tree A_ = {} A_ = source_vertex def __A ( self ) -> None: A_ = {self.source_vertex} A_ = None A_ = [self.source_vertex] # first in first out queue while queue: A_ = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(_SCREAMING_SNAKE_CASE ) A_ = vertex queue.append(_SCREAMING_SNAKE_CASE ) def __A ( self , _SCREAMING_SNAKE_CASE ) -> str: if target_vertex == self.source_vertex: return self.source_vertex A_ = self.parent.get(_SCREAMING_SNAKE_CASE ) if target_vertex_parent is None: A_ = ( F'''No path from vertex: {self.source_vertex} to vertex: {target_vertex}''' ) raise ValueError(_SCREAMING_SNAKE_CASE ) return self.shortest_path(_SCREAMING_SNAKE_CASE ) + F'''->{target_vertex}''' if __name__ == "__main__": __snake_case : List[Any] = Graph(graph, 'G') g.breath_first_search() print(g.shortest_path('D')) print(g.shortest_path('G')) print(g.shortest_path('Foo'))
174
0
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class UpperCAmelCase__ ( A__ ): """simple docstring""" a = (DEISMultistepScheduler,) a = (("num_inference_steps", 25),) def lowercase_ ( self : List[str] , **__lowerCamelCase : List[str] ) -> Tuple: SCREAMING_SNAKE_CASE__ = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''solver_order''': 2, } config.update(**__lowerCamelCase ) return config def lowercase_ ( self : Dict , __lowerCamelCase : Dict=0 , **__lowerCamelCase : int ) -> int: SCREAMING_SNAKE_CASE__ = dict(self.forward_default_kwargs ) SCREAMING_SNAKE_CASE__ = kwargs.pop('''num_inference_steps''' , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.dummy_sample SCREAMING_SNAKE_CASE__ = 0.1 * sample SCREAMING_SNAKE_CASE__ = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE__ = self.get_scheduler_config(**__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = scheduler_class(**__lowerCamelCase ) scheduler.set_timesteps(__lowerCamelCase ) # copy over dummy past residuals SCREAMING_SNAKE_CASE__ = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = scheduler_class.from_pretrained(__lowerCamelCase ) new_scheduler.set_timesteps(__lowerCamelCase ) # copy over dummy past residuals SCREAMING_SNAKE_CASE__ = dummy_past_residuals[: new_scheduler.config.solver_order] SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = sample, sample for t in range(__lowerCamelCase , time_step + scheduler.config.solver_order + 1 ): SCREAMING_SNAKE_CASE__ = scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ).prev_sample SCREAMING_SNAKE_CASE__ = new_scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def lowercase_ ( self : List[str] ) -> Dict: pass def lowercase_ ( self : Tuple , __lowerCamelCase : str=0 , **__lowerCamelCase : int ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = dict(self.forward_default_kwargs ) SCREAMING_SNAKE_CASE__ = kwargs.pop('''num_inference_steps''' , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.dummy_sample SCREAMING_SNAKE_CASE__ = 0.1 * sample SCREAMING_SNAKE_CASE__ = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE__ = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ = scheduler_class(**__lowerCamelCase ) scheduler.set_timesteps(__lowerCamelCase ) # copy over dummy past residuals (must be after setting timesteps) SCREAMING_SNAKE_CASE__ = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = scheduler_class.from_pretrained(__lowerCamelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(__lowerCamelCase ) # copy over dummy past residual (must be after setting timesteps) SCREAMING_SNAKE_CASE__ = dummy_past_residuals[: new_scheduler.config.solver_order] SCREAMING_SNAKE_CASE__ = scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ).prev_sample SCREAMING_SNAKE_CASE__ = new_scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def lowercase_ ( self : int , __lowerCamelCase : Any=None , **__lowerCamelCase : Dict ) -> Tuple: if scheduler is None: SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ = self.get_scheduler_config(**__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = scheduler_class(**__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ = self.get_scheduler_config(**__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = scheduler_class(**__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = 10 SCREAMING_SNAKE_CASE__ = self.dummy_model() SCREAMING_SNAKE_CASE__ = self.dummy_sample_deter scheduler.set_timesteps(__lowerCamelCase ) for i, t in enumerate(scheduler.timesteps ): SCREAMING_SNAKE_CASE__ = model(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ).prev_sample return sample def lowercase_ ( self : Union[str, Any] ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = dict(self.forward_default_kwargs ) SCREAMING_SNAKE_CASE__ = kwargs.pop('''num_inference_steps''' , __lowerCamelCase ) for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE__ = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ = scheduler_class(**__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.dummy_sample SCREAMING_SNAKE_CASE__ = 0.1 * sample if num_inference_steps is not None and hasattr(__lowerCamelCase , '''set_timesteps''' ): scheduler.set_timesteps(__lowerCamelCase ) elif num_inference_steps is not None and not hasattr(__lowerCamelCase , '''set_timesteps''' ): SCREAMING_SNAKE_CASE__ = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) SCREAMING_SNAKE_CASE__ = [residual + 0.2, residual + 0.15, residual + 0.10] SCREAMING_SNAKE_CASE__ = dummy_past_residuals[: scheduler.config.solver_order] SCREAMING_SNAKE_CASE__ = scheduler.timesteps[5] SCREAMING_SNAKE_CASE__ = scheduler.timesteps[6] SCREAMING_SNAKE_CASE__ = scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ).prev_sample SCREAMING_SNAKE_CASE__ = scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def lowercase_ ( self : Tuple ) -> List[str]: # make sure that iterating over schedulers with same config names gives same results # for defaults SCREAMING_SNAKE_CASE__ = DEISMultistepScheduler(**self.get_scheduler_config() ) SCREAMING_SNAKE_CASE__ = self.full_loop(scheduler=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_mean.item() - 0.23916 ) < 1e-3 SCREAMING_SNAKE_CASE__ = DPMSolverSinglestepScheduler.from_config(scheduler.config ) SCREAMING_SNAKE_CASE__ = DPMSolverMultistepScheduler.from_config(scheduler.config ) SCREAMING_SNAKE_CASE__ = UniPCMultistepScheduler.from_config(scheduler.config ) SCREAMING_SNAKE_CASE__ = DEISMultistepScheduler.from_config(scheduler.config ) SCREAMING_SNAKE_CASE__ = self.full_loop(scheduler=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_mean.item() - 0.23916 ) < 1e-3 def lowercase_ ( self : Any ) -> Tuple: for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=__lowerCamelCase ) def lowercase_ ( self : int ) -> List[Any]: self.check_over_configs(thresholding=__lowerCamelCase ) for order in [1, 2, 3]: for solver_type in ["logrho"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=__lowerCamelCase , prediction_type=__lowerCamelCase , sample_max_value=__lowerCamelCase , algorithm_type='''deis''' , solver_order=__lowerCamelCase , solver_type=__lowerCamelCase , ) def lowercase_ ( self : str ) -> Any: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__lowerCamelCase ) def lowercase_ ( self : Union[str, Any] ) -> str: for algorithm_type in ["deis"]: for solver_type in ["logrho"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=__lowerCamelCase , solver_type=__lowerCamelCase , prediction_type=__lowerCamelCase , algorithm_type=__lowerCamelCase , ) SCREAMING_SNAKE_CASE__ = self.full_loop( solver_order=__lowerCamelCase , solver_type=__lowerCamelCase , prediction_type=__lowerCamelCase , algorithm_type=__lowerCamelCase , ) assert not torch.isnan(__lowerCamelCase ).any(), "Samples have nan numbers" def lowercase_ ( self : Tuple ) -> Dict: self.check_over_configs(lower_order_final=__lowerCamelCase ) self.check_over_configs(lower_order_final=__lowerCamelCase ) def lowercase_ ( self : str ) -> Any: for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=__lowerCamelCase , time_step=0 ) def lowercase_ ( self : Any ) -> Tuple: SCREAMING_SNAKE_CASE__ = self.full_loop() SCREAMING_SNAKE_CASE__ = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_mean.item() - 0.23916 ) < 1e-3 def lowercase_ ( self : List[str] ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = self.full_loop(prediction_type='''v_prediction''' ) SCREAMING_SNAKE_CASE__ = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_mean.item() - 0.091 ) < 1e-3 def lowercase_ ( self : Tuple ) -> Dict: SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ = self.get_scheduler_config(thresholding=__lowerCamelCase , dynamic_thresholding_ratio=0 ) SCREAMING_SNAKE_CASE__ = scheduler_class(**__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = 10 SCREAMING_SNAKE_CASE__ = self.dummy_model() SCREAMING_SNAKE_CASE__ = self.dummy_sample_deter.half() scheduler.set_timesteps(__lowerCamelCase ) for i, t in enumerate(scheduler.timesteps ): SCREAMING_SNAKE_CASE__ = model(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ).prev_sample assert sample.dtype == torch.floataa
493
_SCREAMING_SNAKE_CASE : List[str] = {'''a''': ['''c''', '''b'''], '''b''': ['''d''', '''e'''], '''c''': [], '''d''': [], '''e''': []} _SCREAMING_SNAKE_CASE : str = ['''a''', '''b''', '''c''', '''d''', '''e'''] def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = start # add current to visited visited.append(_A ) SCREAMING_SNAKE_CASE__ = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: SCREAMING_SNAKE_CASE__ = topological_sort(_A , _A , _A ) # if all neighbors visited add current to sort sort.append(_A ) # if all vertices haven't been visited select a new one to visit if len(_A ) != len(_A ): for vertice in vertices: if vertice not in visited: SCREAMING_SNAKE_CASE__ = topological_sort(_A , _A , _A ) # return sort return sort if __name__ == "__main__": _SCREAMING_SNAKE_CASE : Any = topological_sort('''a''', [], []) print(sort)
493
1
import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging lowercase = logging.get_logger(__name__) class UpperCamelCase_ ( snake_case_ ): '''simple docstring''' def __init__( self , a ) -> Optional[Any]: super().__init__() snake_case_ = nn.ModuleList(a ) def _UpperCamelCase ( self , a , a , a , a , a , a = None , a = None , a = None , a = None , a = False , a = True , ) -> Union[ControlNetOutput, Tuple]: for i, (image, scale, controlnet) in enumerate(zip(a , a , self.nets ) ): snake_case_ , snake_case_ = controlnet( a , a , a , a , a , a , a , a , a , a , a , ) # merge samples if i == 0: snake_case_ , snake_case_ = down_samples, mid_sample else: snake_case_ = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(a , a ) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def _UpperCamelCase ( self , a , a = True , a = None , a = False , a = None , ) -> int: snake_case_ = 0 snake_case_ = save_directory for controlnet in self.nets: controlnet.save_pretrained( a , is_main_process=a , save_function=a , safe_serialization=a , variant=a , ) idx += 1 snake_case_ = model_path_to_save + F'''_{idx}''' @classmethod def _UpperCamelCase ( cls , a , **a ) -> List[str]: snake_case_ = 0 snake_case_ = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... snake_case_ = pretrained_model_path while os.path.isdir(a ): snake_case_ = ControlNetModel.from_pretrained(a , **a ) controlnets.append(a ) idx += 1 snake_case_ = pretrained_model_path + F'''_{idx}''' logger.info(F'''{len(a )} controlnets loaded from {pretrained_model_path}.''' ) if len(a ) == 0: raise ValueError( F'''No ControlNets found under {os.path.dirname(a )}. Expected at least {pretrained_model_path + "_0"}.''' ) return cls(a )
607
import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print("Googling.....") lowercase = "https://www.google.com/search?q=" + " ".join(sys.argv[1:]) lowercase = requests.get(url, headers={"UserAgent": UserAgent().random}) # res.raise_for_status() with open("project1a.html", "wb") as out_file: # only for knowing the class for data in res.iter_content(10000): out_file.write(data) lowercase = BeautifulSoup(res.text, "html.parser") lowercase = list(soup.select(".eZt8xd"))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get("href")) else: webbrowser.open(f'https://google.com{link.get("href")}')
607
1
"""simple docstring""" import random import sys import numpy as np from matplotlib import pyplot as plt from matplotlib.colors import ListedColormap UpperCAmelCase_ : List[str] = """Usage of script: script_name <size_of_canvas:int>""" UpperCAmelCase_ : List[Any] = [0] * 100 + [1] * 10 random.shuffle(choice) def _A (__a ) -> list[list[bool]]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = [[False for i in range(lowercase__ )] for j in range(lowercase__ )] return canvas def _A (__a ) -> None: """simple docstring""" for i, row in enumerate(lowercase__ ): for j, _ in enumerate(lowercase__ ): SCREAMING_SNAKE_CASE_ : Tuple = bool(random.getrandbits(1 ) ) def _A (__a ) -> list[list[bool]]: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = np.array(lowercase__ ) SCREAMING_SNAKE_CASE_ : Dict = np.array(create_canvas(current_canvas.shape[0] ) ) for r, row in enumerate(lowercase__ ): for c, pt in enumerate(lowercase__ ): SCREAMING_SNAKE_CASE_ : Optional[int] = __judge_point( lowercase__ , current_canvas[r - 1 : r + 2, c - 1 : c + 2] ) SCREAMING_SNAKE_CASE_ : Dict = next_gen_canvas del next_gen_canvas # cleaning memory as we move on. SCREAMING_SNAKE_CASE_ : list[list[bool]] = current_canvas.tolist() return return_canvas def _A (__a , __a ) -> bool: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = 0 SCREAMING_SNAKE_CASE_ : Any = 0 # finding dead or alive neighbours count. for i in neighbours: for status in i: if status: alive += 1 else: dead += 1 # handling duplicate entry for focus pt. if pt: alive -= 1 else: dead -= 1 # running the rules of game here. SCREAMING_SNAKE_CASE_ : List[Any] = pt if pt: if alive < 2: SCREAMING_SNAKE_CASE_ : List[str] = False elif alive == 2 or alive == 3: SCREAMING_SNAKE_CASE_ : int = True elif alive > 3: SCREAMING_SNAKE_CASE_ : List[Any] = False else: if alive == 3: SCREAMING_SNAKE_CASE_ : Any = True return state if __name__ == "__main__": if len(sys.argv) != 2: raise Exception(usage_doc) UpperCAmelCase_ : Optional[Any] = int(sys.argv[1]) # main working structure of this module. UpperCAmelCase_ : Union[str, Any] = create_canvas(canvas_size) seed(c) UpperCAmelCase_ , UpperCAmelCase_ : Tuple = plt.subplots() fig.show() UpperCAmelCase_ : Union[str, Any] = ListedColormap(["""w""", """k"""]) try: while True: UpperCAmelCase_ : Optional[int] = run(c) ax.matshow(c, cmap=cmap) fig.canvas.draw() ax.cla() except KeyboardInterrupt: # do nothing. pass
512
import math def A ( lowercase__ : Tuple , lowercase__ : Union[str, Any] ) -> Optional[Any]: if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.logaa(lowercase__ ) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError("""This should never happen""" ) if __name__ == "__main__": # Main function # Read two numbers from input and typecast them to int using map function. # Here x is the base and y is the power. UpperCamelCase = "Enter the base and the power separated by a comma: " UpperCamelCase , UpperCamelCase = map(int, input(prompt).split(",")) UpperCamelCase , UpperCamelCase = map(int, input(prompt).split(",")) # We find the log of each number, using the function res(), which takes two # arguments. UpperCamelCase = res(xa, ya) UpperCamelCase = res(xa, ya) # We check for the largest number if resa > resa: print("Largest number is", xa, "^", ya) elif resa > resa: print("Largest number is", xa, "^", ya) else: print("Both are equal")
45
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_electra import ElectraTokenizer lowercase : int = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} lowercase : Union[str, Any] = { """vocab_file""": { """google/electra-small-generator""": ( """https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt""" ), """google/electra-base-generator""": """https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt""", """google/electra-large-generator""": ( """https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt""" ), """google/electra-small-discriminator""": ( """https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt""" ), """google/electra-base-discriminator""": ( """https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt""" ), """google/electra-large-discriminator""": ( """https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """google/electra-small-generator""": ( """https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json""" ), """google/electra-base-generator""": ( """https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json""" ), """google/electra-large-generator""": ( """https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json""" ), """google/electra-small-discriminator""": ( """https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json""" ), """google/electra-base-discriminator""": ( """https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json""" ), """google/electra-large-discriminator""": ( """https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json""" ), }, } lowercase : int = { """google/electra-small-generator""": 5_1_2, """google/electra-base-generator""": 5_1_2, """google/electra-large-generator""": 5_1_2, """google/electra-small-discriminator""": 5_1_2, """google/electra-base-discriminator""": 5_1_2, """google/electra-large-discriminator""": 5_1_2, } lowercase : List[Any] = { """google/electra-small-generator""": {"""do_lower_case""": True}, """google/electra-base-generator""": {"""do_lower_case""": True}, """google/electra-large-generator""": {"""do_lower_case""": True}, """google/electra-small-discriminator""": {"""do_lower_case""": True}, """google/electra-base-discriminator""": {"""do_lower_case""": True}, """google/electra-large-discriminator""": {"""do_lower_case""": True}, } class a__ ( __SCREAMING_SNAKE_CASE ): _A = VOCAB_FILES_NAMES _A = PRETRAINED_VOCAB_FILES_MAP _A = PRETRAINED_INIT_CONFIGURATION _A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A = ElectraTokenizer def __init__( self : List[str] , A_ : Optional[int]=None , A_ : Tuple=None , A_ : int=True , A_ : Optional[Any]="[UNK]" , A_ : List[str]="[SEP]" , A_ : Tuple="[PAD]" , A_ : Optional[Any]="[CLS]" , A_ : Union[str, Any]="[MASK]" , A_ : Dict=True , A_ : Tuple=None , **A_ : Optional[int] , ) -> Tuple: """simple docstring""" super().__init__( A_ , tokenizer_file=A_ , do_lower_case=A_ , unk_token=A_ , sep_token=A_ , pad_token=A_ , cls_token=A_ , mask_token=A_ , tokenize_chinese_chars=A_ , strip_accents=A_ , **A_ , ) lowerCamelCase_: Tuple = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , A_ ) != do_lower_case or normalizer_state.get("""strip_accents""" , A_ ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , A_ ) != tokenize_chinese_chars ): lowerCamelCase_: int = getattr(A_ , normalizer_state.pop("""type""" ) ) lowerCamelCase_: Any = do_lower_case lowerCamelCase_: Tuple = strip_accents lowerCamelCase_: str = tokenize_chinese_chars lowerCamelCase_: Optional[int] = normalizer_class(**A_ ) lowerCamelCase_: List[Any] = do_lower_case def lowerCAmelCase ( self : str , A_ : Optional[Any] , A_ : str=None ) -> List[Any]: """simple docstring""" lowerCamelCase_: Optional[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCAmelCase ( self : Any , A_ : List[int] , A_ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowerCamelCase_: Tuple = [self.sep_token_id] lowerCamelCase_: Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase ( self : Union[str, Any] , A_ : str , A_ : Optional[str] = None ) -> Tuple[str]: """simple docstring""" lowerCamelCase_: Tuple = self._tokenizer.model.save(A_ , name=A_ ) return tuple(A_ )
584
from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
584
1
from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class SCREAMING_SNAKE_CASE__ : '''simple docstring''' _lowerCamelCase = LEDConfig _lowerCamelCase = {} _lowerCamelCase = '''gelu''' def __init__( self : Dict , lowerCamelCase : str , lowerCamelCase : Optional[int]=13 , lowerCamelCase : Optional[int]=7 , lowerCamelCase : Dict=True , lowerCamelCase : List[Any]=False , lowerCamelCase : Any=99 , lowerCamelCase : Union[str, Any]=32 , lowerCamelCase : List[str]=2 , lowerCamelCase : int=4 , lowerCamelCase : Any=37 , lowerCamelCase : Union[str, Any]=0.1 , lowerCamelCase : Optional[int]=0.1 , lowerCamelCase : Dict=20 , lowerCamelCase : List[Any]=2 , lowerCamelCase : str=1 , lowerCamelCase : Tuple=0 , lowerCamelCase : Optional[Any]=4 , ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = eos_token_id _UpperCAmelCase = pad_token_id _UpperCAmelCase = bos_token_id _UpperCAmelCase = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after _UpperCAmelCase = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests _UpperCAmelCase = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def lowerCamelCase ( self : List[Any] ) -> Tuple: """simple docstring""" _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _UpperCAmelCase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _UpperCAmelCase = tf.concat([input_ids, eos_tensor] , axis=1 ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) _UpperCAmelCase = prepare_led_inputs_dict(lowerCamelCase , lowerCamelCase , lowerCamelCase ) _UpperCAmelCase = tf.concat( [tf.zeros_like(lowerCamelCase )[:, :-1], tf.ones_like(lowerCamelCase )[:, -1:]] , axis=-1 , ) _UpperCAmelCase = global_attention_mask return config, inputs_dict def lowerCamelCase ( self : Dict , lowerCamelCase : Dict , lowerCamelCase : Dict ) -> Any: """simple docstring""" _UpperCAmelCase = TFLEDModel(config=lowerCamelCase ).get_decoder() _UpperCAmelCase = inputs_dict["""input_ids"""] _UpperCAmelCase = input_ids[:1, :] _UpperCAmelCase = inputs_dict["""attention_mask"""][:1, :] _UpperCAmelCase = 1 # first forward pass _UpperCAmelCase = model(lowerCamelCase , attention_mask=lowerCamelCase , use_cache=lowerCamelCase ) _UpperCAmelCase , _UpperCAmelCase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _UpperCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) _UpperCAmelCase = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _UpperCAmelCase = tf.concat([input_ids, next_tokens] , axis=-1 ) _UpperCAmelCase = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _UpperCAmelCase = model(lowerCamelCase , attention_mask=lowerCamelCase )[0] _UpperCAmelCase = model(lowerCamelCase , attention_mask=lowerCamelCase , past_key_values=lowerCamelCase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _UpperCAmelCase = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _UpperCAmelCase = output_from_no_past[:, -3:, random_slice_idx] _UpperCAmelCase = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowerCamelCase , lowerCamelCase , rtol=1E-3 ) def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , __snake_case , __snake_case=None , __snake_case=None , __snake_case=None , __snake_case=None , ) -> List[Any]: if attention_mask is None: _UpperCAmelCase = tf.cast(tf.math.not_equal(__snake_case , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: _UpperCAmelCase = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: _UpperCAmelCase = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _UpperCAmelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () _lowerCamelCase = (TFLEDForConditionalGeneration,) if is_tf_available() else () _lowerCamelCase = ( { '''conversational''': TFLEDForConditionalGeneration, '''feature-extraction''': TFLEDModel, '''summarization''': TFLEDForConditionalGeneration, '''text2text-generation''': TFLEDForConditionalGeneration, '''translation''': TFLEDForConditionalGeneration, } if is_tf_available() else {} ) _lowerCamelCase = True _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False def lowerCamelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" _UpperCAmelCase = TFLEDModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=lowerCamelCase ) def lowerCamelCase ( self : Dict ) -> int: """simple docstring""" self.config_tester.run_common_tests() def lowerCamelCase ( self : str ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowerCamelCase ) def lowerCamelCase ( self : Any ) -> Dict: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = tf.zeros_like(inputs_dict["""attention_mask"""] ) _UpperCAmelCase = 2 _UpperCAmelCase = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict["""global_attention_mask"""] , ) _UpperCAmelCase = True _UpperCAmelCase = self.model_tester.seq_length _UpperCAmelCase = self.model_tester.encoder_seq_length def check_decoder_attentions_output(lowerCamelCase : Optional[Any] ): _UpperCAmelCase = outputs.decoder_attentions self.assertEqual(len(lowerCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(lowerCamelCase : Any ): _UpperCAmelCase = [t.numpy() for t in outputs.encoder_attentions] _UpperCAmelCase = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(lowerCamelCase ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(lowerCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: _UpperCAmelCase = True _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = model_class(lowerCamelCase ) _UpperCAmelCase = model(self._prepare_for_class(lowerCamelCase , lowerCamelCase ) ) _UpperCAmelCase = len(lowerCamelCase ) self.assertEqual(config.output_hidden_states , lowerCamelCase ) check_encoder_attentions_output(lowerCamelCase ) if self.is_encoder_decoder: _UpperCAmelCase = model_class(lowerCamelCase ) _UpperCAmelCase = model(self._prepare_for_class(lowerCamelCase , lowerCamelCase ) ) self.assertEqual(config.output_hidden_states , lowerCamelCase ) check_decoder_attentions_output(lowerCamelCase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] _UpperCAmelCase = True _UpperCAmelCase = model_class(lowerCamelCase ) _UpperCAmelCase = model(self._prepare_for_class(lowerCamelCase , lowerCamelCase ) ) self.assertEqual(config.output_hidden_states , lowerCamelCase ) check_encoder_attentions_output(lowerCamelCase ) # Check attention is always last and order is fine _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = model_class(lowerCamelCase ) _UpperCAmelCase = model(self._prepare_for_class(lowerCamelCase , lowerCamelCase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(lowerCamelCase ) ) self.assertEqual(model.config.output_hidden_states , lowerCamelCase ) check_encoder_attentions_output(lowerCamelCase ) @unittest.skip("""LED keeps using potentially symbolic tensors in conditionals and breaks tracing.""" ) def lowerCamelCase ( self : List[Any] ) -> Tuple: """simple docstring""" pass def lowerCamelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" # TODO: Head-masking not yet implement pass def _SCREAMING_SNAKE_CASE ( __snake_case ) -> Any: return tf.constant(__snake_case , dtype=tf.intaa ) __a: int = 1E-4 @slow @require_tf class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase ( self : Optional[int] ) -> List[Any]: """simple docstring""" _UpperCAmelCase = TFLEDForConditionalGeneration.from_pretrained("""allenai/led-base-16384""" ).led # change to intended input here _UpperCAmelCase = _long_tensor([512 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] ) _UpperCAmelCase = _long_tensor([128 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] ) _UpperCAmelCase = prepare_led_inputs_dict(model.config , lowerCamelCase , lowerCamelCase ) _UpperCAmelCase = model(**lowerCamelCase )[0] _UpperCAmelCase = (1, 1024, 768) self.assertEqual(output.shape , lowerCamelCase ) # change to expected output here _UpperCAmelCase = tf.convert_to_tensor( [[2.3050, 2.8279, 0.6531], [-1.8457, -0.1455, -3.5661], [-1.0186, 0.4586, -2.2043]] , ) tf.debugging.assert_near(output[:, :3, :3] , lowerCamelCase , atol=1E-3 ) def lowerCamelCase ( self : Any ) -> str: """simple docstring""" _UpperCAmelCase = TFLEDForConditionalGeneration.from_pretrained("""allenai/led-base-16384""" ) # change to intended input here _UpperCAmelCase = _long_tensor([512 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] ) _UpperCAmelCase = _long_tensor([128 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] ) _UpperCAmelCase = prepare_led_inputs_dict(model.config , lowerCamelCase , lowerCamelCase ) _UpperCAmelCase = model(**lowerCamelCase )[0] _UpperCAmelCase = (1, 1024, model.config.vocab_size) self.assertEqual(output.shape , lowerCamelCase ) # change to expected output here _UpperCAmelCase = tf.convert_to_tensor( [[33.6507, 6.4572, 16.8089], [5.8739, -2.4238, 11.2902], [-3.2139, -4.3149, 4.2783]] , ) tf.debugging.assert_near(output[:, :3, :3] , lowerCamelCase , atol=1E-3 , rtol=1E-3 )
108
import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class snake_case_ (lowerCamelCase_ ): UpperCAmelCase__ : Tuple = ['''image_processor''', '''tokenizer'''] UpperCAmelCase__ : Any = '''OwlViTImageProcessor''' UpperCAmelCase__ : Optional[Any] = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self :Any ,__snake_case :Tuple=None ,__snake_case :Optional[int]=None ,**__snake_case :Dict ) -> Tuple: a__ = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' ,__snake_case ,) a__ = kwargs.pop('feature_extractor' ) a__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(__snake_case ,__snake_case ) def __call__( self :str ,__snake_case :List[str]=None ,__snake_case :Optional[Any]=None ,__snake_case :List[str]=None ,__snake_case :Union[str, Any]="max_length" ,__snake_case :int="np" ,**__snake_case :List[str] ) -> List[str]: if text is None and query_images is None and images is None: raise ValueError( 'You have to specify at least one text or query image or image. All three cannot be none.' ) if text is not None: if isinstance(__snake_case ,__snake_case ) or (isinstance(__snake_case ,__snake_case ) and not isinstance(text[0] ,__snake_case )): a__ = [self.tokenizer(__snake_case ,padding=__snake_case ,return_tensors=__snake_case ,**__snake_case )] elif isinstance(__snake_case ,__snake_case ) and isinstance(text[0] ,__snake_case ): a__ = [] # Maximum number of queries across batch a__ = max([len(__snake_case ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(__snake_case ) != max_num_queries: a__ = t + [' '] * (max_num_queries - len(__snake_case )) a__ = self.tokenizer(__snake_case ,padding=__snake_case ,return_tensors=__snake_case ,**__snake_case ) encodings.append(__snake_case ) else: raise TypeError('Input text should be a string, a list of strings or a nested list of strings' ) if return_tensors == "np": a__ = np.concatenate([encoding['input_ids'] for encoding in encodings] ,axis=0 ) a__ = np.concatenate([encoding['attention_mask'] for encoding in encodings] ,axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp a__ = jnp.concatenate([encoding['input_ids'] for encoding in encodings] ,axis=0 ) a__ = jnp.concatenate([encoding['attention_mask'] for encoding in encodings] ,axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch a__ = torch.cat([encoding['input_ids'] for encoding in encodings] ,dim=0 ) a__ = torch.cat([encoding['attention_mask'] for encoding in encodings] ,dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf a__ = tf.stack([encoding['input_ids'] for encoding in encodings] ,axis=0 ) a__ = tf.stack([encoding['attention_mask'] for encoding in encodings] ,axis=0 ) else: raise ValueError('Target return tensor type could not be returned' ) a__ = BatchEncoding() a__ = input_ids a__ = attention_mask if query_images is not None: a__ = BatchEncoding() a__ = self.image_processor( __snake_case ,return_tensors=__snake_case ,**__snake_case ).pixel_values a__ = query_pixel_values if images is not None: a__ = self.image_processor(__snake_case ,return_tensors=__snake_case ,**__snake_case ) if text is not None and images is not None: a__ = image_features.pixel_values return encoding elif query_images is not None and images is not None: a__ = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**__snake_case ) ,tensor_type=__snake_case ) def lowerCamelCase__( self :Union[str, Any] ,*__snake_case :Union[str, Any] ,**__snake_case :Any ) -> Dict: return self.image_processor.post_process(*__snake_case ,**__snake_case ) def lowerCamelCase__( self :Optional[int] ,*__snake_case :List[str] ,**__snake_case :List[str] ) -> Dict: return self.image_processor.post_process_object_detection(*__snake_case ,**__snake_case ) def lowerCamelCase__( self :Optional[int] ,*__snake_case :List[Any] ,**__snake_case :Tuple ) -> Tuple: return self.image_processor.post_process_image_guided_detection(*__snake_case ,**__snake_case ) def lowerCamelCase__( self :Dict ,*__snake_case :str ,**__snake_case :Optional[Any] ) -> List[Any]: return self.tokenizer.batch_decode(*__snake_case ,**__snake_case ) def lowerCamelCase__( self :Tuple ,*__snake_case :Union[str, Any] ,**__snake_case :Dict ) -> List[str]: return self.tokenizer.decode(*__snake_case ,**__snake_case ) @property def lowerCamelCase__( self :Optional[int] ) -> Optional[Any]: warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' ,__snake_case ,) return self.image_processor_class @property def lowerCamelCase__( self :List[Any] ) -> Dict: warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' ,__snake_case ,) return self.image_processor
335
0
'''simple docstring''' import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def A_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : str , _lowerCAmelCase : str , _lowerCAmelCase : Path , _lowerCAmelCase : str = None , _lowerCAmelCase : str = None , _lowerCAmelCase : str = None , ): """simple docstring""" if config_name_or_path is None: _lowerCamelCase : Any = "facebook/rag-token-base" if model_type == "rag_token" else "facebook/rag-sequence-base" if generator_tokenizer_name_or_path is None: _lowerCamelCase : Tuple = generator_name_or_path if question_encoder_tokenizer_name_or_path is None: _lowerCamelCase : List[str] = question_encoder_name_or_path _lowerCamelCase : Optional[Any] = RagTokenForGeneration if model_type == "rag_token" else RagSequenceForGeneration # Save model. _lowerCamelCase : Union[str, Any] = RagConfig.from_pretrained(_lowerCAmelCase ) _lowerCamelCase : List[Any] = AutoConfig.from_pretrained(_lowerCAmelCase ) _lowerCamelCase : Optional[Any] = AutoConfig.from_pretrained(_lowerCAmelCase ) _lowerCamelCase : Tuple = gen_config _lowerCamelCase : Any = question_encoder_config _lowerCamelCase : List[Any] = model_class.from_pretrained_question_encoder_generator( _lowerCAmelCase , _lowerCAmelCase , config=_lowerCAmelCase ) rag_model.save_pretrained(_lowerCAmelCase ) # Sanity check. model_class.from_pretrained(_lowerCAmelCase ) # Save tokenizers. _lowerCamelCase : str = AutoTokenizer.from_pretrained(_lowerCAmelCase ) gen_tokenizer.save_pretrained(dest_dir / "generator_tokenizer/" ) _lowerCamelCase : List[Any] = AutoTokenizer.from_pretrained(_lowerCAmelCase ) question_encoder_tokenizer.save_pretrained(dest_dir / "question_encoder_tokenizer/" ) if __name__ == "__main__": UpperCAmelCase_ : int = argparse.ArgumentParser() parser.add_argument( '--model_type', choices=['rag_sequence', 'rag_token'], required=True, type=str, help='RAG model type: rag_sequence, rag_token', ) parser.add_argument('--dest', type=str, required=True, help='Path to the output checkpoint directory.') parser.add_argument('--generator_name_or_path', type=str, required=True, help='Generator model identifier') parser.add_argument( '--question_encoder_name_or_path', type=str, required=True, help='Question encoder model identifier' ) parser.add_argument( '--generator_tokenizer_name_or_path', type=str, help='Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``', ) parser.add_argument( '--question_encoder_tokenizer_name_or_path', type=str, help='Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``', ) parser.add_argument( '--config_name_or_path', type=str, help=( 'Identifier of the model config to use, if not provided, resolves to a base config for a given' ' ``model_type``' ), ) UpperCAmelCase_ : Tuple = parser.parse_args() UpperCAmelCase_ : int = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
11
'''simple docstring''' import math def A_ ( _lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : Optional[int] = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(_lowerCAmelCase ) def A_ ( _lowerCAmelCase : float = 1 / 12345 ): """simple docstring""" _lowerCamelCase : Optional[int] = 0 _lowerCamelCase : int = 0 _lowerCamelCase : List[str] = 3 while True: _lowerCamelCase : List[Any] = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(_lowerCAmelCase ): _lowerCamelCase : Any = int(_lowerCAmelCase ) total_partitions += 1 if check_partition_perfect(_lowerCAmelCase ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(_lowerCAmelCase ) integer += 1 if __name__ == "__main__": print(f'''{solution() = }''')
11
1
print((lambda quine: quine % quine)("print((lambda quine: quine %% quine)(%r))"))
32
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available UpperCAmelCase_ = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ['BartphoTokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
603
0
"""simple docstring""" from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class _a : def __init__( self : str , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple=13 , SCREAMING_SNAKE_CASE__ : int=7 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=True , SCREAMING_SNAKE_CASE__ : int=True , SCREAMING_SNAKE_CASE__ : Optional[int]=True , SCREAMING_SNAKE_CASE__ : Tuple=True , SCREAMING_SNAKE_CASE__ : Optional[int]=99 , SCREAMING_SNAKE_CASE__ : Any=32 , SCREAMING_SNAKE_CASE__ : Any=2 , SCREAMING_SNAKE_CASE__ : str=4 , SCREAMING_SNAKE_CASE__ : Dict=37 , SCREAMING_SNAKE_CASE__ : Tuple="gelu" , SCREAMING_SNAKE_CASE__ : int=0.1 , SCREAMING_SNAKE_CASE__ : Optional[int]=0.1 , SCREAMING_SNAKE_CASE__ : Dict=5_12 , SCREAMING_SNAKE_CASE__ : int=16 , SCREAMING_SNAKE_CASE__ : Tuple=2 , SCREAMING_SNAKE_CASE__ : Any=0.02 , SCREAMING_SNAKE_CASE__ : Optional[Any]=3 , SCREAMING_SNAKE_CASE__ : Optional[int]=4 , SCREAMING_SNAKE_CASE__ : List[Any]=None , ): lowerCamelCase__ = parent lowerCamelCase__ = 13 lowerCamelCase__ = 7 lowerCamelCase__ = True lowerCamelCase__ = True lowerCamelCase__ = True lowerCamelCase__ = True lowerCamelCase__ = 99 lowerCamelCase__ = 3_84 lowerCamelCase__ = 2 lowerCamelCase__ = 4 lowerCamelCase__ = 37 lowerCamelCase__ = 'gelu' lowerCamelCase__ = 0.1 lowerCamelCase__ = 0.1 lowerCamelCase__ = 5_12 lowerCamelCase__ = 16 lowerCamelCase__ = 2 lowerCamelCase__ = 0.02 lowerCamelCase__ = 3 lowerCamelCase__ = 4 lowerCamelCase__ = 1_28 lowerCamelCase__ = 2 lowerCamelCase__ = 9 lowerCamelCase__ = 1 lowerCamelCase__ = None def _UpperCamelCase ( self : List[Any] ): lowerCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase__ = None if self.use_input_mask: lowerCamelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase__ = None if self.use_token_type_ids: lowerCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase__ = None lowerCamelCase__ = None lowerCamelCase__ = None if self.use_labels: lowerCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase__ = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase__ = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=SCREAMING_SNAKE_CASE__ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCamelCase ( self : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[str] ): lowerCamelCase__ = TFConvBertModel(config=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowerCamelCase__ = [input_ids, input_mask] lowerCamelCase__ = model(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCamelCase ( self : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Any ): lowerCamelCase__ = TFConvBertForMaskedLM(config=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCamelCase__ = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCamelCase ( self : int , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] ): lowerCamelCase__ = self.num_labels lowerCamelCase__ = TFConvBertForSequenceClassification(config=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCamelCase__ = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _UpperCamelCase ( self : str , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Any ): lowerCamelCase__ = self.num_choices lowerCamelCase__ = TFConvBertForMultipleChoice(config=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = tf.tile(tf.expand_dims(SCREAMING_SNAKE_CASE__ , 1 ) , (1, self.num_choices, 1) ) lowerCamelCase__ = tf.tile(tf.expand_dims(SCREAMING_SNAKE_CASE__ , 1 ) , (1, self.num_choices, 1) ) lowerCamelCase__ = tf.tile(tf.expand_dims(SCREAMING_SNAKE_CASE__ , 1 ) , (1, self.num_choices, 1) ) lowerCamelCase__ = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } lowerCamelCase__ = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _UpperCamelCase ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any ): lowerCamelCase__ = self.num_labels lowerCamelCase__ = TFConvBertForTokenClassification(config=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCamelCase__ = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _UpperCamelCase ( self : Any , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[str] ): lowerCamelCase__ = TFConvBertForQuestionAnswering(config=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCamelCase__ = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _UpperCamelCase ( self : Union[str, Any] ): lowerCamelCase__ = self.prepare_config_and_inputs() ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) = config_and_inputs lowerCamelCase__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class _a ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): a_ : Optional[int] = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) a_ : Tuple = ( { 'feature-extraction': TFConvBertModel, 'fill-mask': TFConvBertForMaskedLM, 'question-answering': TFConvBertForQuestionAnswering, 'text-classification': TFConvBertForSequenceClassification, 'token-classification': TFConvBertForTokenClassification, 'zero-shot': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) a_ : Union[str, Any] = False a_ : Dict = False a_ : str = False def _UpperCamelCase ( self : Optional[int] ): lowerCamelCase__ = TFConvBertModelTester(self ) lowerCamelCase__ = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE__ , hidden_size=37 ) def _UpperCamelCase ( self : int ): self.config_tester.run_common_tests() def _UpperCamelCase ( self : Any ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : Optional[Any] ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : str ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : List[str] ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : List[str] ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : str ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*SCREAMING_SNAKE_CASE__ ) @slow def _UpperCamelCase ( self : List[str] ): lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ = True lowerCamelCase__ = True if hasattr(SCREAMING_SNAKE_CASE__ , 'use_cache' ): lowerCamelCase__ = True lowerCamelCase__ = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) lowerCamelCase__ = getattr(self.model_tester , 'key_length' , SCREAMING_SNAKE_CASE__ ) for model_class in self.all_model_classes: lowerCamelCase__ = self._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = model_class(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = len(model(SCREAMING_SNAKE_CASE__ ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(SCREAMING_SNAKE_CASE__ , saved_model=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = os.path.join(SCREAMING_SNAKE_CASE__ , 'saved_model' , '1' ) lowerCamelCase__ = tf.keras.models.load_model(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = model(SCREAMING_SNAKE_CASE__ ) if self.is_encoder_decoder: lowerCamelCase__ = outputs['encoder_hidden_states'] lowerCamelCase__ = outputs['encoder_attentions'] else: lowerCamelCase__ = outputs['hidden_states'] lowerCamelCase__ = outputs['attentions'] self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def _UpperCamelCase ( self : List[Any] ): lowerCamelCase__ = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : List[Any] ): lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ = True lowerCamelCase__ = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length ) lowerCamelCase__ = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) lowerCamelCase__ = getattr(self.model_tester , 'key_length' , SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = getattr(self.model_tester , 'key_length' , SCREAMING_SNAKE_CASE__ ) def check_decoder_attentions_output(SCREAMING_SNAKE_CASE__ : str ): lowerCamelCase__ = len(SCREAMING_SNAKE_CASE__ ) self.assertEqual(out_len % 2 , 0 ) lowerCamelCase__ = outputs.decoder_attentions self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(SCREAMING_SNAKE_CASE__ : Any ): lowerCamelCase__ = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: lowerCamelCase__ = True lowerCamelCase__ = False lowerCamelCase__ = model_class(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = model(self._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) lowerCamelCase__ = len(SCREAMING_SNAKE_CASE__ ) self.assertEqual(config.output_hidden_states , SCREAMING_SNAKE_CASE__ ) check_encoder_attentions_output(SCREAMING_SNAKE_CASE__ ) if self.is_encoder_decoder: lowerCamelCase__ = model_class(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = model(self._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) self.assertEqual(config.output_hidden_states , SCREAMING_SNAKE_CASE__ ) check_decoder_attentions_output(SCREAMING_SNAKE_CASE__ ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] lowerCamelCase__ = True lowerCamelCase__ = model_class(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = model(self._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) self.assertEqual(config.output_hidden_states , SCREAMING_SNAKE_CASE__ ) check_encoder_attentions_output(SCREAMING_SNAKE_CASE__ ) # Check attention is always last and order is fine lowerCamelCase__ = True lowerCamelCase__ = True lowerCamelCase__ = model_class(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = model(self._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(SCREAMING_SNAKE_CASE__ ) ) self.assertEqual(model.config.output_hidden_states , SCREAMING_SNAKE_CASE__ ) check_encoder_attentions_output(SCREAMING_SNAKE_CASE__ ) @require_tf class _a ( unittest.TestCase ): @slow def _UpperCamelCase ( self : Any ): lowerCamelCase__ = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) lowerCamelCase__ = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowerCamelCase__ = model(SCREAMING_SNAKE_CASE__ )[0] lowerCamelCase__ = [1, 6, 7_68] self.assertEqual(output.shape , SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = tf.constant( [ [ [-0.03_47_54_93, -0.4_68_60_34, -0.30_63_88_32], [0.22_63_72_48, -0.26_98_86_46, -0.7_42_34_24], [0.10_32_48_68, -0.45_01_35_08, -0.58_28_07_84], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , SCREAMING_SNAKE_CASE__ , atol=1e-4 )
712
"""simple docstring""" def snake_case ( _a: int )-> int: '''simple docstring''' lowerCamelCase__ = 1 for i in range(1 , num + 1 ): fact *= i return fact def snake_case ( _a: int )-> int: '''simple docstring''' lowerCamelCase__ = 0 while number > 0: lowerCamelCase__ = number % 10 sum_of_digits += last_digit lowerCamelCase__ = number // 10 # Removing the last_digit from the given number return sum_of_digits def snake_case ( _a: int = 100 )-> int: '''simple docstring''' lowerCamelCase__ = factorial(_a ) lowerCamelCase__ = split_and_add(_a ) return result if __name__ == "__main__": print(solution(int(input("Enter the Number: ").strip())))
659
0
'''simple docstring''' import pandas as pd from matplotlib import pyplot as plt from sklearn.linear_model import LinearRegression # Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split # Fitting Polynomial Regression to the dataset from sklearn.preprocessing import PolynomialFeatures # Importing the dataset _lowerCAmelCase = pd.read_csv( "https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/" "position_salaries.csv" ) _lowerCAmelCase = dataset.iloc[:, 1:2].values _lowerCAmelCase = dataset.iloc[:, 2].values _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = train_test_split(X, y, test_size=0.2, random_state=0) _lowerCAmelCase = PolynomialFeatures(degree=4) _lowerCAmelCase = poly_reg.fit_transform(X) _lowerCAmelCase = LinearRegression() pol_reg.fit(X_poly, y) def UpperCamelCase ( ) -> Any: '''simple docstring''' plt.scatter(a , a , color='''red''' ) plt.plot(a , pol_reg.predict(poly_reg.fit_transform(a ) ) , color='''blue''' ) plt.title('''Truth or Bluff (Linear Regression)''' ) plt.xlabel('''Position level''' ) plt.ylabel('''Salary''' ) plt.show() if __name__ == "__main__": viz_polymonial() # Predicting a new result with Polymonial Regression pol_reg.predict(poly_reg.fit_transform([[5.5]])) # output should be 132148.43750003
432
'''simple docstring''' def UpperCamelCase ( a ) -> str: '''simple docstring''' return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
432
1
import argparse import os.path as osp import re import torch from safetensors.torch import load_file, save_file # =================# # UNet Conversion # # =================# lowercase_ : Optional[int] = [ # (stable-diffusion, HF Diffusers) ('time_embed.0.weight', 'time_embedding.linear_1.weight'), ('time_embed.0.bias', 'time_embedding.linear_1.bias'), ('time_embed.2.weight', 'time_embedding.linear_2.weight'), ('time_embed.2.bias', 'time_embedding.linear_2.bias'), ('input_blocks.0.0.weight', 'conv_in.weight'), ('input_blocks.0.0.bias', 'conv_in.bias'), ('out.0.weight', 'conv_norm_out.weight'), ('out.0.bias', 'conv_norm_out.bias'), ('out.2.weight', 'conv_out.weight'), ('out.2.bias', 'conv_out.bias'), ] lowercase_ : str = [ # (stable-diffusion, HF Diffusers) ('in_layers.0', 'norm1'), ('in_layers.2', 'conv1'), ('out_layers.0', 'norm2'), ('out_layers.3', 'conv2'), ('emb_layers.1', 'time_emb_proj'), ('skip_connection', 'conv_shortcut'), ] lowercase_ : Optional[int] = [] # hardcoded number of downblocks and resnets/attentions... # would need smarter logic for other networks. for i in range(4): # loop over downblocks/upblocks for j in range(2): # loop over resnets/attentions for downblocks lowercase_ : Dict = f'''down_blocks.{i}.resnets.{j}.''' lowercase_ : Tuple = f'''input_blocks.{3*i + j + 1}.0.''' unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix)) if i < 3: # no attention layers in down_blocks.3 lowercase_ : Dict = f'''down_blocks.{i}.attentions.{j}.''' lowercase_ : Optional[int] = f'''input_blocks.{3*i + j + 1}.1.''' unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix)) for j in range(3): # loop over resnets/attentions for upblocks lowercase_ : int = f'''up_blocks.{i}.resnets.{j}.''' lowercase_ : List[str] = f'''output_blocks.{3*i + j}.0.''' unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix)) if i > 0: # no attention layers in up_blocks.0 lowercase_ : List[str] = f'''up_blocks.{i}.attentions.{j}.''' lowercase_ : str = f'''output_blocks.{3*i + j}.1.''' unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix)) if i < 3: # no downsample in down_blocks.3 lowercase_ : int = f'''down_blocks.{i}.downsamplers.0.conv.''' lowercase_ : Union[str, Any] = f'''input_blocks.{3*(i+1)}.0.op.''' unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix)) # no upsample in up_blocks.3 lowercase_ : Optional[int] = f'''up_blocks.{i}.upsamplers.0.''' lowercase_ : Union[str, Any] = f'''output_blocks.{3*i + 2}.{1 if i == 0 else 2}.''' unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix)) lowercase_ : Dict = 'mid_block.attentions.0.' lowercase_ : int = 'middle_block.1.' unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix)) for j in range(2): lowercase_ : str = f'''mid_block.resnets.{j}.''' lowercase_ : Union[str, Any] = f'''middle_block.{2*j}.''' unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix)) def A__ ( snake_case_ : int ): # buyer beware: this is a *brittle* function, # and correct output requires that all of these pieces interact in # the exact order in which I have arranged them. SCREAMING_SNAKE_CASE__: Any= {k: k for k in unet_state_dict.keys()} for sd_name, hf_name in unet_conversion_map: SCREAMING_SNAKE_CASE__: Any= sd_name for k, v in mapping.items(): if "resnets" in k: for sd_part, hf_part in unet_conversion_map_resnet: SCREAMING_SNAKE_CASE__: Union[str, Any]= v.replace(snake_case_ , snake_case_ ) SCREAMING_SNAKE_CASE__: Tuple= v for k, v in mapping.items(): for sd_part, hf_part in unet_conversion_map_layer: SCREAMING_SNAKE_CASE__: Tuple= v.replace(snake_case_ , snake_case_ ) SCREAMING_SNAKE_CASE__: Any= v SCREAMING_SNAKE_CASE__: Tuple= {v: unet_state_dict[k] for k, v in mapping.items()} return new_state_dict # ================# # VAE Conversion # # ================# lowercase_ : List[str] = [ # (stable-diffusion, HF Diffusers) ('nin_shortcut', 'conv_shortcut'), ('norm_out', 'conv_norm_out'), ('mid.attn_1.', 'mid_block.attentions.0.'), ] for i in range(4): # down_blocks have two resnets for j in range(2): lowercase_ : List[str] = f'''encoder.down_blocks.{i}.resnets.{j}.''' lowercase_ : Optional[int] = f'''encoder.down.{i}.block.{j}.''' vae_conversion_map.append((sd_down_prefix, hf_down_prefix)) if i < 3: lowercase_ : Optional[Any] = f'''down_blocks.{i}.downsamplers.0.''' lowercase_ : List[Any] = f'''down.{i}.downsample.''' vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix)) lowercase_ : Any = f'''up_blocks.{i}.upsamplers.0.''' lowercase_ : List[str] = f'''up.{3-i}.upsample.''' vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix)) # up_blocks have three resnets # also, up blocks in hf are numbered in reverse from sd for j in range(3): lowercase_ : List[str] = f'''decoder.up_blocks.{i}.resnets.{j}.''' lowercase_ : str = f'''decoder.up.{3-i}.block.{j}.''' vae_conversion_map.append((sd_up_prefix, hf_up_prefix)) # this part accounts for mid blocks in both the encoder and the decoder for i in range(2): lowercase_ : int = f'''mid_block.resnets.{i}.''' lowercase_ : int = f'''mid.block_{i+1}.''' vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix)) lowercase_ : Optional[int] = [ # (stable-diffusion, HF Diffusers) ('norm.', 'group_norm.'), ('q.', 'query.'), ('k.', 'key.'), ('v.', 'value.'), ('proj_out.', 'proj_attn.'), ] def A__ ( snake_case_ : Optional[Any] ): # convert HF linear weights to SD conv2d weights return w.reshape(*w.shape , 1 , 1 ) def A__ ( snake_case_ : Tuple ): SCREAMING_SNAKE_CASE__: int= {k: k for k in vae_state_dict.keys()} for k, v in mapping.items(): for sd_part, hf_part in vae_conversion_map: SCREAMING_SNAKE_CASE__: str= v.replace(snake_case_ , snake_case_ ) SCREAMING_SNAKE_CASE__: List[Any]= v for k, v in mapping.items(): if "attentions" in k: for sd_part, hf_part in vae_conversion_map_attn: SCREAMING_SNAKE_CASE__: List[Any]= v.replace(snake_case_ , snake_case_ ) SCREAMING_SNAKE_CASE__: Tuple= v SCREAMING_SNAKE_CASE__: List[Any]= {v: vae_state_dict[k] for k, v in mapping.items()} SCREAMING_SNAKE_CASE__: int= ['''q''', '''k''', '''v''', '''proj_out'''] for k, v in new_state_dict.items(): for weight_name in weights_to_convert: if F'mid.attn_1.{weight_name}.weight' in k: print(F'Reshaping {k} for SD format' ) SCREAMING_SNAKE_CASE__: Tuple= reshape_weight_for_sd(snake_case_ ) return new_state_dict # =========================# # Text Encoder Conversion # # =========================# lowercase_ : List[Any] = [ # (stable-diffusion, HF Diffusers) ('resblocks.', 'text_model.encoder.layers.'), ('ln_1', 'layer_norm1'), ('ln_2', 'layer_norm2'), ('.c_fc.', '.fc1.'), ('.c_proj.', '.fc2.'), ('.attn', '.self_attn'), ('ln_final.', 'transformer.text_model.final_layer_norm.'), ('token_embedding.weight', 'transformer.text_model.embeddings.token_embedding.weight'), ('positional_embedding', 'transformer.text_model.embeddings.position_embedding.weight'), ] lowercase_ : Optional[int] = {re.escape(x[1]): x[0] for x in textenc_conversion_lst} lowercase_ : List[Any] = re.compile('|'.join(protected.keys())) # Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp lowercase_ : Optional[Any] = {'q': 0, 'k': 1, 'v': 2} def A__ ( snake_case_ : List[str] ): SCREAMING_SNAKE_CASE__: Optional[int]= {} SCREAMING_SNAKE_CASE__: Optional[Any]= {} SCREAMING_SNAKE_CASE__: List[Any]= {} for k, v in text_enc_dict.items(): if ( k.endswith('''.self_attn.q_proj.weight''' ) or k.endswith('''.self_attn.k_proj.weight''' ) or k.endswith('''.self_attn.v_proj.weight''' ) ): SCREAMING_SNAKE_CASE__: Optional[int]= k[: -len('''.q_proj.weight''' )] SCREAMING_SNAKE_CASE__: Union[str, Any]= k[-len('''q_proj.weight''' )] if k_pre not in capture_qkv_weight: SCREAMING_SNAKE_CASE__: Optional[Any]= [None, None, None] SCREAMING_SNAKE_CASE__: List[Any]= v continue if ( k.endswith('''.self_attn.q_proj.bias''' ) or k.endswith('''.self_attn.k_proj.bias''' ) or k.endswith('''.self_attn.v_proj.bias''' ) ): SCREAMING_SNAKE_CASE__: List[Any]= k[: -len('''.q_proj.bias''' )] SCREAMING_SNAKE_CASE__: Any= k[-len('''q_proj.bias''' )] if k_pre not in capture_qkv_bias: SCREAMING_SNAKE_CASE__: Dict= [None, None, None] SCREAMING_SNAKE_CASE__: Optional[Any]= v continue SCREAMING_SNAKE_CASE__: Optional[Any]= textenc_pattern.sub(lambda snake_case_ : protected[re.escape(m.group(0 ) )] , snake_case_ ) SCREAMING_SNAKE_CASE__: Tuple= v for k_pre, tensors in capture_qkv_weight.items(): if None in tensors: raise Exception('''CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing''' ) SCREAMING_SNAKE_CASE__: str= textenc_pattern.sub(lambda snake_case_ : protected[re.escape(m.group(0 ) )] , snake_case_ ) SCREAMING_SNAKE_CASE__: Tuple= torch.cat(snake_case_ ) for k_pre, tensors in capture_qkv_bias.items(): if None in tensors: raise Exception('''CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing''' ) SCREAMING_SNAKE_CASE__: List[str]= textenc_pattern.sub(lambda snake_case_ : protected[re.escape(m.group(0 ) )] , snake_case_ ) SCREAMING_SNAKE_CASE__: List[Any]= torch.cat(snake_case_ ) return new_state_dict def A__ ( snake_case_ : str ): return text_enc_dict if __name__ == "__main__": lowercase_ : Optional[Any] = argparse.ArgumentParser() parser.add_argument('--model_path', default=None, type=str, required=True, help='Path to the model to convert.') parser.add_argument('--checkpoint_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument('--half', action='store_true', help='Save weights in half precision.') parser.add_argument( '--use_safetensors', action='store_true', help='Save weights use safetensors, default is ckpt.' ) lowercase_ : Tuple = parser.parse_args() assert args.model_path is not None, "Must provide a model path!" assert args.checkpoint_path is not None, "Must provide a checkpoint path!" # Path for safetensors lowercase_ : Union[str, Any] = osp.join(args.model_path, 'unet', 'diffusion_pytorch_model.safetensors') lowercase_ : str = osp.join(args.model_path, 'vae', 'diffusion_pytorch_model.safetensors') lowercase_ : int = osp.join(args.model_path, 'text_encoder', 'model.safetensors') # Load models from safetensors if it exists, if it doesn't pytorch if osp.exists(unet_path): lowercase_ : Optional[Any] = load_file(unet_path, device='cpu') else: lowercase_ : List[str] = osp.join(args.model_path, 'unet', 'diffusion_pytorch_model.bin') lowercase_ : List[str] = torch.load(unet_path, map_location='cpu') if osp.exists(vae_path): lowercase_ : Optional[Any] = load_file(vae_path, device='cpu') else: lowercase_ : Union[str, Any] = osp.join(args.model_path, 'vae', 'diffusion_pytorch_model.bin') lowercase_ : Union[str, Any] = torch.load(vae_path, map_location='cpu') if osp.exists(text_enc_path): lowercase_ : List[str] = load_file(text_enc_path, device='cpu') else: lowercase_ : str = osp.join(args.model_path, 'text_encoder', 'pytorch_model.bin') lowercase_ : Tuple = torch.load(text_enc_path, map_location='cpu') # Convert the UNet model lowercase_ : Optional[Any] = convert_unet_state_dict(unet_state_dict) lowercase_ : Dict = {'model.diffusion_model.' + k: v for k, v in unet_state_dict.items()} # Convert the VAE model lowercase_ : Optional[int] = convert_vae_state_dict(vae_state_dict) lowercase_ : Tuple = {'first_stage_model.' + k: v for k, v in vae_state_dict.items()} # Easiest way to identify v2.0 model seems to be that the text encoder (OpenCLIP) is deeper lowercase_ : Any = 'text_model.encoder.layers.22.layer_norm2.bias' in text_enc_dict if is_vaa_model: # Need to add the tag 'transformer' in advance so we can knock it out from the final layer-norm lowercase_ : int = {'transformer.' + k: v for k, v in text_enc_dict.items()} lowercase_ : int = convert_text_enc_state_dict_vaa(text_enc_dict) lowercase_ : Optional[int] = {'cond_stage_model.model.' + k: v for k, v in text_enc_dict.items()} else: lowercase_ : str = convert_text_enc_state_dict(text_enc_dict) lowercase_ : Tuple = {'cond_stage_model.transformer.' + k: v for k, v in text_enc_dict.items()} # Put together new checkpoint lowercase_ : str = {**unet_state_dict, **vae_state_dict, **text_enc_dict} if args.half: lowercase_ : int = {k: v.half() for k, v in state_dict.items()} if args.use_safetensors: save_file(state_dict, args.checkpoint_path) else: lowercase_ : List[Any] = {'state_dict': state_dict} torch.save(state_dict, args.checkpoint_path)
107
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class _lowerCamelCase ( unittest.TestCase ): def __init__( self , lowerCAmelCase , lowerCAmelCase=7 , lowerCAmelCase=3 , lowerCAmelCase=18 , lowerCAmelCase=30 , lowerCAmelCase=400 , lowerCAmelCase=True , lowerCAmelCase=None , lowerCAmelCase=True , ) -> Any: SCREAMING_SNAKE_CASE__: Tuple= size if size is not None else {'''height''': 18, '''width''': 18} SCREAMING_SNAKE_CASE__: Dict= parent SCREAMING_SNAKE_CASE__: Tuple= batch_size SCREAMING_SNAKE_CASE__: int= num_channels SCREAMING_SNAKE_CASE__: List[Any]= image_size SCREAMING_SNAKE_CASE__: Dict= min_resolution SCREAMING_SNAKE_CASE__: Union[str, Any]= max_resolution SCREAMING_SNAKE_CASE__: Optional[Any]= do_resize SCREAMING_SNAKE_CASE__: List[Any]= size SCREAMING_SNAKE_CASE__: Optional[Any]= apply_ocr def UpperCamelCase_ ( self ) -> Optional[int]: return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class _lowerCamelCase ( UpperCamelCase_ , unittest.TestCase ): __a = LayoutLMvaImageProcessor if is_pytesseract_available() else None def UpperCamelCase_ ( self ) -> Tuple: SCREAMING_SNAKE_CASE__: List[Any]= LayoutLMvaImageProcessingTester(self ) @property def UpperCamelCase_ ( self ) -> Tuple: return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__: Tuple= self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase , '''do_resize''' ) ) self.assertTrue(hasattr(lowerCAmelCase , '''size''' ) ) self.assertTrue(hasattr(lowerCAmelCase , '''apply_ocr''' ) ) def UpperCamelCase_ ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE__: Tuple= self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 18} ) SCREAMING_SNAKE_CASE__: Optional[Any]= self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) def UpperCamelCase_ ( self ) -> Any: pass def UpperCamelCase_ ( self ) -> List[str]: # Initialize image_processing SCREAMING_SNAKE_CASE__: int= self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE__: Optional[int]= prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE__: str= image_processing(image_inputs[0] , return_tensors='''pt''' ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) self.assertIsInstance(encoding.words , lowerCAmelCase ) self.assertIsInstance(encoding.boxes , lowerCAmelCase ) # Test batched SCREAMING_SNAKE_CASE__: Optional[Any]= image_processing(lowerCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def UpperCamelCase_ ( self ) -> Dict: # Initialize image_processing SCREAMING_SNAKE_CASE__: Tuple= self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE__: Dict= prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase , numpify=lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE__: Dict= image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched SCREAMING_SNAKE_CASE__: Union[str, Any]= image_processing(lowerCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def UpperCamelCase_ ( self ) -> str: # Initialize image_processing SCREAMING_SNAKE_CASE__: Tuple= self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE__: int= prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase , torchify=lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE__: Optional[int]= image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched SCREAMING_SNAKE_CASE__: Any= image_processing(lowerCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def UpperCamelCase_ ( self ) -> Optional[Any]: # with apply_OCR = True SCREAMING_SNAKE_CASE__: int= LayoutLMvaImageProcessor() from datasets import load_dataset SCREAMING_SNAKE_CASE__: int= load_dataset('''hf-internal-testing/fixtures_docvqa''' , split='''test''' ) SCREAMING_SNAKE_CASE__: str= Image.open(ds[0]['''file'''] ).convert('''RGB''' ) SCREAMING_SNAKE_CASE__: str= image_processing(lowerCAmelCase , return_tensors='''pt''' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 SCREAMING_SNAKE_CASE__: Dict= [['''11:14''', '''to''', '''11:39''', '''a.m''', '''11:39''', '''to''', '''11:44''', '''a.m.''', '''11:44''', '''a.m.''', '''to''', '''12:25''', '''p.m.''', '''12:25''', '''to''', '''12:58''', '''p.m.''', '''12:58''', '''to''', '''4:00''', '''p.m.''', '''2:00''', '''to''', '''5:00''', '''p.m.''', '''Coffee''', '''Break''', '''Coffee''', '''will''', '''be''', '''served''', '''for''', '''men''', '''and''', '''women''', '''in''', '''the''', '''lobby''', '''adjacent''', '''to''', '''exhibit''', '''area.''', '''Please''', '''move''', '''into''', '''exhibit''', '''area.''', '''(Exhibits''', '''Open)''', '''TRRF''', '''GENERAL''', '''SESSION''', '''(PART''', '''|)''', '''Presiding:''', '''Lee''', '''A.''', '''Waller''', '''TRRF''', '''Vice''', '''President''', '''“Introductory''', '''Remarks”''', '''Lee''', '''A.''', '''Waller,''', '''TRRF''', '''Vice''', '''Presi-''', '''dent''', '''Individual''', '''Interviews''', '''with''', '''TRRF''', '''Public''', '''Board''', '''Members''', '''and''', '''Sci-''', '''entific''', '''Advisory''', '''Council''', '''Mem-''', '''bers''', '''Conducted''', '''by''', '''TRRF''', '''Treasurer''', '''Philip''', '''G.''', '''Kuehn''', '''to''', '''get''', '''answers''', '''which''', '''the''', '''public''', '''refrigerated''', '''warehousing''', '''industry''', '''is''', '''looking''', '''for.''', '''Plus''', '''questions''', '''from''', '''the''', '''floor.''', '''Dr.''', '''Emil''', '''M.''', '''Mrak,''', '''University''', '''of''', '''Cal-''', '''ifornia,''', '''Chairman,''', '''TRRF''', '''Board;''', '''Sam''', '''R.''', '''Cecil,''', '''University''', '''of''', '''Georgia''', '''College''', '''of''', '''Agriculture;''', '''Dr.''', '''Stanley''', '''Charm,''', '''Tufts''', '''University''', '''School''', '''of''', '''Medicine;''', '''Dr.''', '''Robert''', '''H.''', '''Cotton,''', '''ITT''', '''Continental''', '''Baking''', '''Company;''', '''Dr.''', '''Owen''', '''Fennema,''', '''University''', '''of''', '''Wis-''', '''consin;''', '''Dr.''', '''Robert''', '''E.''', '''Hardenburg,''', '''USDA.''', '''Questions''', '''and''', '''Answers''', '''Exhibits''', '''Open''', '''Capt.''', '''Jack''', '''Stoney''', '''Room''', '''TRRF''', '''Scientific''', '''Advisory''', '''Council''', '''Meeting''', '''Ballroom''', '''Foyer''']] # noqa: E231 SCREAMING_SNAKE_CASE__: List[Any]= [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , lowerCAmelCase ) self.assertListEqual(encoding.boxes , lowerCAmelCase ) # with apply_OCR = False SCREAMING_SNAKE_CASE__: int= LayoutLMvaImageProcessor(apply_ocr=lowerCAmelCase ) SCREAMING_SNAKE_CASE__: Optional[Any]= image_processing(lowerCAmelCase , return_tensors='''pt''' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) )
107
1
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.local_sgd import LocalSGD ######################################################################## # This is a fully working simple example to use Accelerate # with LocalSGD, which is a method to synchronize model # parameters every K batches. It is different, but complementary # to gradient accumulation. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## UpperCAmelCase_ : Any = 16 UpperCAmelCase_ : int = 32 def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase = 16 ): __magic_name__ : List[str] =AutoTokenizer.from_pretrained("""bert-base-cased""" ) __magic_name__ : str =load_dataset("""glue""" , """mrpc""" ) def tokenize_function(lowerCamelCase ): # max_length=None => use the model max length (it's actually the default) __magic_name__ : List[str] =tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowerCamelCase , max_length=lowerCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __magic_name__ : int =datasets.map( lowerCamelCase , batched=lowerCamelCase , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __magic_name__ : Any =tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(lowerCamelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. __magic_name__ : List[Any] =128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __magic_name__ : List[str] =16 elif accelerator.mixed_precision != "no": __magic_name__ : Tuple =8 else: __magic_name__ : Dict =None return tokenizer.pad( lowerCamelCase , padding="""longest""" , max_length=lowerCamelCase , pad_to_multiple_of=lowerCamelCase , return_tensors="""pt""" , ) # Instantiate dataloaders. __magic_name__ : Tuple =DataLoader( tokenized_datasets["""train"""] , shuffle=lowerCamelCase , collate_fn=lowerCamelCase , batch_size=lowerCamelCase ) __magic_name__ : Dict =DataLoader( tokenized_datasets["""validation"""] , shuffle=lowerCamelCase , collate_fn=lowerCamelCase , batch_size=lowerCamelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders UpperCAmelCase_ : Tuple = mocked_dataloaders # noqa: F811 def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , lowerCamelCase ) == "1": __magic_name__ : Tuple =2 # New Code # __magic_name__ : List[Any] =int(args.gradient_accumulation_steps ) __magic_name__ : int =int(args.local_sgd_steps ) # Initialize accelerator __magic_name__ : List[str] =Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=lowerCamelCase ) if accelerator.distributed_type not in [DistributedType.NO, DistributedType.MULTI_CPU, DistributedType.MULTI_GPU]: raise NotImplementedError("""LocalSGD is supported only for CPUs and GPUs (no DeepSpeed or MegatronLM)""" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __magic_name__ : List[str] =config["""lr"""] __magic_name__ : Dict =int(config["""num_epochs"""] ) __magic_name__ : Optional[int] =int(config["""seed"""] ) __magic_name__ : Tuple =int(config["""batch_size"""] ) __magic_name__ : Dict =evaluate.load("""glue""" , """mrpc""" ) set_seed(lowerCamelCase ) __magic_name__ , __magic_name__ : Union[str, Any] =get_dataloaders(lowerCamelCase , lowerCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __magic_name__ : str =AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=lowerCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __magic_name__ : List[str] =model.to(accelerator.device ) # Instantiate optimizer __magic_name__ : Tuple =AdamW(params=model.parameters() , lr=lowerCamelCase ) # Instantiate scheduler __magic_name__ : Dict =get_linear_schedule_with_warmup( optimizer=lowerCamelCase , num_warmup_steps=100 , num_training_steps=(len(lowerCamelCase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : List[Any] =accelerator.prepare( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) # Now we train the model for epoch in range(lowerCamelCase ): model.train() with LocalSGD( accelerator=lowerCamelCase , model=lowerCamelCase , local_sgd_steps=lowerCamelCase , enabled=local_sgd_steps is not None ) as local_sgd: for step, batch in enumerate(lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(lowerCamelCase ): __magic_name__ : Tuple =model(**lowerCamelCase ) __magic_name__ : Optional[int] =output.loss accelerator.backward(lowerCamelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # LocalSGD-specific line local_sgd.step() model.eval() for step, batch in enumerate(lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __magic_name__ : int =model(**lowerCamelCase ) __magic_name__ : int =outputs.logits.argmax(dim=-1 ) __magic_name__ , __magic_name__ : Optional[int] =accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=lowerCamelCase , references=lowerCamelCase , ) __magic_name__ : Tuple =metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"epoch {epoch}:" , lowerCamelCase ) def lowerCAmelCase_ ( ): __magic_name__ : List[str] =argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=lowerCamelCase , default=lowerCamelCase , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) # New Code # parser.add_argument( """--gradient_accumulation_steps""" , type=lowerCamelCase , default=1 , help="""The number of minibatches to be ran before gradients are accumulated.""" , ) parser.add_argument( """--local_sgd_steps""" , type=lowerCamelCase , default=8 , help="""Number of local SGD steps or None to disable local SGD""" ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) __magic_name__ : Tuple =parser.parse_args() __magic_name__ : Any ={"""lr""": 2E-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(lowerCamelCase , lowerCamelCase ) if __name__ == "__main__": main()
21
'''simple docstring''' from random import randint from tempfile import TemporaryFile import numpy as np def _snake_case ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Optional[int] ) -> List[Any]: """simple docstring""" lowerCAmelCase = 0 if start < end: lowerCAmelCase = randint(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCAmelCase = a[end] lowerCAmelCase = a[pivot] lowerCAmelCase = temp lowerCAmelCase, lowerCAmelCase = _in_place_partition(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) count += _in_place_quick_sort(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , p - 1 ) count += _in_place_quick_sort(_SCREAMING_SNAKE_CASE , p + 1 , _SCREAMING_SNAKE_CASE ) return count def _snake_case ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Optional[int] ) -> str: """simple docstring""" lowerCAmelCase = 0 lowerCAmelCase = randint(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCAmelCase = a[end] lowerCAmelCase = a[pivot] lowerCAmelCase = temp lowerCAmelCase = start - 1 for index in range(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value lowerCAmelCase = new_pivot_index + 1 lowerCAmelCase = a[new_pivot_index] lowerCAmelCase = a[index] lowerCAmelCase = temp lowerCAmelCase = a[new_pivot_index + 1] lowerCAmelCase = a[end] lowerCAmelCase = temp return new_pivot_index + 1, count UpperCAmelCase = TemporaryFile() UpperCAmelCase = 100 # 1000 elements are to be sorted UpperCAmelCase , UpperCAmelCase = 0, 1 # mean and standard deviation UpperCAmelCase = np.random.normal(mu, sigma, p) np.save(outfile, X) print('The array is') print(X) outfile.seek(0) # using the same array UpperCAmelCase = np.load(outfile) UpperCAmelCase = len(M) - 1 UpperCAmelCase = _in_place_quick_sort(M, 0, r) print( 'No of Comparisons for 100 elements selected from a standard normal distribution' 'is :' ) print(z)
433
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor A__ : Dict = logging.get_logger(__name__) class lowercase__ ( snake_case__ ): def __init__( self : Dict , *snake_case__ : Optional[Any] , **snake_case__ : Tuple ): warnings.warn( "The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use DPTImageProcessor instead." , snake_case__ , ) super().__init__(*snake_case__ , **snake_case__ )
244
"""simple docstring""" import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class lowercase__ ( snake_case__ ): _UpperCAmelCase :BigBirdConfig _UpperCAmelCase :jnp.dtype = jnp.floataa _UpperCAmelCase :bool = True def UpperCAmelCase__ ( self : Union[str, Any] ): super().setup() lowerCamelCase_ : List[Any] =nn.Dense(5 , dtype=self.dtype ) def __call__( self : str , *snake_case__ : Optional[int] , **snake_case__ : List[str] ): lowerCamelCase_ : List[str] =super().__call__(*snake_case__ , **snake_case__ ) lowerCamelCase_ : Any =self.cls(outputs[2] ) return outputs[:2] + (cls_out,) class lowercase__ ( snake_case__ ): _UpperCAmelCase :str = FlaxBigBirdForNaturalQuestionsModule def _snake_case ( lowerCamelCase__ : List[Any] , lowerCamelCase__ : Any , lowerCamelCase__ : List[str] , lowerCamelCase__ : Any , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : List[Any] ) -> Dict: def cross_entropy(lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : List[str] , lowerCamelCase__ : str=None ): lowerCamelCase_ : List[str] =logits.shape[-1] lowerCamelCase_ : Tuple =(labels[..., None] == jnp.arange(lowerCamelCase__ )[None]).astype("f4" ) lowerCamelCase_ : Any =jax.nn.log_softmax(lowerCamelCase__ , axis=-1 ) lowerCamelCase_ : str =-jnp.sum(labels * logits , axis=-1 ) if reduction is not None: lowerCamelCase_ : int =reduction(lowerCamelCase__ ) return loss lowerCamelCase_ : str =partial(lowerCamelCase__ , reduction=jnp.mean ) lowerCamelCase_ : Union[str, Any] =cross_entropy(lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase_ : int =cross_entropy(lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase_ : int =cross_entropy(lowerCamelCase__ , lowerCamelCase__ ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class lowercase__ : _UpperCAmelCase :str = "google/bigbird-roberta-base" _UpperCAmelCase :int = 3000 _UpperCAmelCase :int = 10500 _UpperCAmelCase :int = 128 _UpperCAmelCase :int = 3 _UpperCAmelCase :int = 1 _UpperCAmelCase :int = 5 # tx_args _UpperCAmelCase :float = 3e-5 _UpperCAmelCase :float = 0.0 _UpperCAmelCase :int = 20000 _UpperCAmelCase :float = 0.00_95 _UpperCAmelCase :str = "bigbird-roberta-natural-questions" _UpperCAmelCase :str = "training-expt" _UpperCAmelCase :str = "data/nq-training.jsonl" _UpperCAmelCase :str = "data/nq-validation.jsonl" def UpperCAmelCase__ ( self : List[Any] ): os.makedirs(self.base_dir , exist_ok=snake_case__ ) lowerCamelCase_ : List[Any] =os.path.join(self.base_dir , self.save_dir ) lowerCamelCase_ : str =self.batch_size_per_device * jax.device_count() @dataclass class lowercase__ : _UpperCAmelCase :int _UpperCAmelCase :int = 4096 # no dynamic padding on TPUs def __call__( self : int , snake_case__ : str ): lowerCamelCase_ : Any =self.collate_fn(snake_case__ ) lowerCamelCase_ : Tuple =jax.tree_util.tree_map(snake_case__ , snake_case__ ) return batch def UpperCAmelCase__ ( self : Dict , snake_case__ : Any ): lowerCamelCase_ , lowerCamelCase_ : Any =self.fetch_inputs(features["input_ids"] ) lowerCamelCase_ : Optional[int] ={ "input_ids": jnp.array(snake_case__ , dtype=jnp.intaa ), "attention_mask": jnp.array(snake_case__ , dtype=jnp.intaa ), "start_labels": jnp.array(features["start_token"] , dtype=jnp.intaa ), "end_labels": jnp.array(features["end_token"] , dtype=jnp.intaa ), "pooled_labels": jnp.array(features["category"] , dtype=jnp.intaa ), } return batch def UpperCAmelCase__ ( self : List[str] , snake_case__ : list ): lowerCamelCase_ : Dict =[self._fetch_inputs(snake_case__ ) for ids in input_ids] return zip(*snake_case__ ) def UpperCAmelCase__ ( self : List[str] , snake_case__ : list ): lowerCamelCase_ : Any =[1 for _ in range(len(snake_case__ ) )] while len(snake_case__ ) < self.max_length: input_ids.append(self.pad_id ) attention_mask.append(0 ) return input_ids, attention_mask def _snake_case ( lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : str=None ) -> Tuple: if seed is not None: lowerCamelCase_ : List[Any] =dataset.shuffle(seed=lowerCamelCase__ ) for i in range(len(lowerCamelCase__ ) // batch_size ): lowerCamelCase_ : Any =dataset[i * batch_size : (i + 1) * batch_size] yield dict(lowerCamelCase__ ) @partial(jax.pmap , axis_name="batch" ) def _snake_case ( lowerCamelCase__ : str , lowerCamelCase__ : Tuple , **lowerCamelCase__ : int ) -> str: def loss_fn(lowerCamelCase__ : Optional[int] ): lowerCamelCase_ : Any =model_inputs.pop("start_labels" ) lowerCamelCase_ : Dict =model_inputs.pop("end_labels" ) lowerCamelCase_ : Union[str, Any] =model_inputs.pop("pooled_labels" ) lowerCamelCase_ : Optional[Any] =state.apply_fn(**lowerCamelCase__ , params=lowerCamelCase__ , dropout_rng=lowerCamelCase__ , train=lowerCamelCase__ ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : Tuple =outputs return state.loss_fn( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ) lowerCamelCase_ , lowerCamelCase_ : Any =jax.random.split(lowerCamelCase__ ) lowerCamelCase_ : str =jax.value_and_grad(lowerCamelCase__ ) lowerCamelCase_ , lowerCamelCase_ : Optional[Any] =grad_fn(state.params ) lowerCamelCase_ : int =jax.lax.pmean({"loss": loss} , axis_name="batch" ) lowerCamelCase_ : Optional[Any] =jax.lax.pmean(lowerCamelCase__ , "batch" ) lowerCamelCase_ : str =state.apply_gradients(grads=lowerCamelCase__ ) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name="batch" ) def _snake_case ( lowerCamelCase__ : int , **lowerCamelCase__ : str ) -> List[str]: lowerCamelCase_ : List[str] =model_inputs.pop("start_labels" ) lowerCamelCase_ : str =model_inputs.pop("end_labels" ) lowerCamelCase_ : int =model_inputs.pop("pooled_labels" ) lowerCamelCase_ : List[Any] =state.apply_fn(**lowerCamelCase__ , params=state.params , train=lowerCamelCase__ ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : List[Any] =outputs lowerCamelCase_ : List[Any] =state.loss_fn(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase_ : Union[str, Any] =jax.lax.pmean({"loss": loss} , axis_name="batch" ) return metrics class lowercase__ ( train_state.TrainState ): _UpperCAmelCase :Callable = struct.field(pytree_node=snake_case__ ) @dataclass class lowercase__ : _UpperCAmelCase :Args _UpperCAmelCase :Callable _UpperCAmelCase :Callable _UpperCAmelCase :Callable _UpperCAmelCase :Callable _UpperCAmelCase :wandb _UpperCAmelCase :Callable = None def UpperCAmelCase__ ( self : str , snake_case__ : List[str] , snake_case__ : List[str] , snake_case__ : Dict , snake_case__ : List[Any]=None ): lowerCamelCase_ : Union[str, Any] =model.params lowerCamelCase_ : Tuple =TrainState.create( apply_fn=model.__call__ , params=snake_case__ , tx=snake_case__ , loss_fn=snake_case__ , ) if ckpt_dir is not None: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : Optional[Any] =restore_checkpoint(snake_case__ , snake_case__ ) lowerCamelCase_ : Optional[Any] ={ "lr": args.lr, "init_lr": args.init_lr, "warmup_steps": args.warmup_steps, "num_train_steps": num_train_steps, "weight_decay": args.weight_decay, } lowerCamelCase_ , lowerCamelCase_ : List[str] =build_tx(**snake_case__ ) lowerCamelCase_ : str =train_state.TrainState( step=snake_case__ , apply_fn=model.__call__ , params=snake_case__ , tx=snake_case__ , opt_state=snake_case__ , ) lowerCamelCase_ : Any =args lowerCamelCase_ : Optional[Any] =data_collator lowerCamelCase_ : int =lr lowerCamelCase_ : List[Any] =params lowerCamelCase_ : Tuple =jax_utils.replicate(snake_case__ ) return state def UpperCAmelCase__ ( self : List[Any] , snake_case__ : Tuple , snake_case__ : Optional[int] , snake_case__ : Union[str, Any] ): lowerCamelCase_ : Union[str, Any] =self.args lowerCamelCase_ : List[Any] =len(snake_case__ ) // args.batch_size lowerCamelCase_ : Tuple =jax.random.PRNGKey(0 ) lowerCamelCase_ : int =jax.random.split(snake_case__ , jax.device_count() ) for epoch in range(args.max_epochs ): lowerCamelCase_ : str =jnp.array(0 , dtype=jnp.floataa ) lowerCamelCase_ : int =get_batched_dataset(snake_case__ , args.batch_size , seed=snake_case__ ) lowerCamelCase_ : Any =0 for batch in tqdm(snake_case__ , total=snake_case__ , desc=F"""Running EPOCH-{epoch}""" ): lowerCamelCase_ : Dict =self.data_collator(snake_case__ ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : Dict =self.train_step_fn(snake_case__ , snake_case__ , **snake_case__ ) running_loss += jax_utils.unreplicate(metrics["loss"] ) i += 1 if i % args.logging_steps == 0: lowerCamelCase_ : int =jax_utils.unreplicate(state.step ) lowerCamelCase_ : Any =running_loss.item() / i lowerCamelCase_ : Tuple =self.scheduler_fn(state_step - 1 ) lowerCamelCase_ : Tuple =self.evaluate(snake_case__ , snake_case__ ) lowerCamelCase_ : Optional[Any] ={ "step": state_step.item(), "eval_loss": eval_loss.item(), "tr_loss": tr_loss, "lr": lr.item(), } tqdm.write(str(snake_case__ ) ) self.logger.log(snake_case__ , commit=snake_case__ ) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + F"""-e{epoch}-s{i}""" , state=snake_case__ ) def UpperCAmelCase__ ( self : Dict , snake_case__ : List[Any] , snake_case__ : Union[str, Any] ): lowerCamelCase_ : Union[str, Any] =get_batched_dataset(snake_case__ , self.args.batch_size ) lowerCamelCase_ : str =len(snake_case__ ) // self.args.batch_size lowerCamelCase_ : int =jnp.array(0 , dtype=jnp.floataa ) lowerCamelCase_ : Any =0 for batch in tqdm(snake_case__ , total=snake_case__ , desc="Evaluating ... " ): lowerCamelCase_ : str =self.data_collator(snake_case__ ) lowerCamelCase_ : Tuple =self.val_step_fn(snake_case__ , **snake_case__ ) running_loss += jax_utils.unreplicate(metrics["loss"] ) i += 1 return running_loss / i def UpperCAmelCase__ ( self : List[str] , snake_case__ : str , snake_case__ : Any ): lowerCamelCase_ : int =jax_utils.unreplicate(snake_case__ ) print(F"""SAVING CHECKPOINT IN {save_dir}""" , end=" ... " ) self.model_save_fn(snake_case__ , params=state.params ) with open(os.path.join(snake_case__ , "opt_state.msgpack" ) , "wb" ) as f: f.write(to_bytes(state.opt_state ) ) joblib.dump(self.args , os.path.join(snake_case__ , "args.joblib" ) ) joblib.dump(self.data_collator , os.path.join(snake_case__ , "data_collator.joblib" ) ) with open(os.path.join(snake_case__ , "training_state.json" ) , "w" ) as f: json.dump({"step": state.step.item()} , snake_case__ ) print("DONE" ) def _snake_case ( lowerCamelCase__ : Optional[int] , lowerCamelCase__ : str ) -> Dict: print(F"""RESTORING CHECKPOINT FROM {save_dir}""" , end=" ... " ) with open(os.path.join(lowerCamelCase__ , "flax_model.msgpack" ) , "rb" ) as f: lowerCamelCase_ : List[Any] =from_bytes(state.params , f.read() ) with open(os.path.join(lowerCamelCase__ , "opt_state.msgpack" ) , "rb" ) as f: lowerCamelCase_ : Tuple =from_bytes(state.opt_state , f.read() ) lowerCamelCase_ : Union[str, Any] =joblib.load(os.path.join(lowerCamelCase__ , "args.joblib" ) ) lowerCamelCase_ : str =joblib.load(os.path.join(lowerCamelCase__ , "data_collator.joblib" ) ) with open(os.path.join(lowerCamelCase__ , "training_state.json" ) , "r" ) as f: lowerCamelCase_ : Union[str, Any] =json.load(lowerCamelCase__ ) lowerCamelCase_ : str =training_state["step"] print("DONE" ) return params, opt_state, step, args, data_collator def _snake_case ( lowerCamelCase__ : Tuple , lowerCamelCase__ : str , lowerCamelCase__ : Any , lowerCamelCase__ : Union[str, Any] ) -> str: lowerCamelCase_ : Tuple =num_train_steps - warmup_steps lowerCamelCase_ : Any =optax.linear_schedule(init_value=lowerCamelCase__ , end_value=lowerCamelCase__ , transition_steps=lowerCamelCase__ ) lowerCamelCase_ : int =optax.linear_schedule(init_value=lowerCamelCase__ , end_value=1e-7 , transition_steps=lowerCamelCase__ ) lowerCamelCase_ : Union[str, Any] =optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] ) return lr def _snake_case ( lowerCamelCase__ : List[str] , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Tuple , lowerCamelCase__ : Tuple , lowerCamelCase__ : List[str] ) -> List[str]: def weight_decay_mask(lowerCamelCase__ : List[Any] ): lowerCamelCase_ : Any =traverse_util.flatten_dict(lowerCamelCase__ ) lowerCamelCase_ : Tuple ={k: (v[-1] != "bias" and v[-2:] != ("LayerNorm", "scale")) for k, v in params.items()} return traverse_util.unflatten_dict(lowerCamelCase__ ) lowerCamelCase_ : Optional[Any] =scheduler_fn(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase_ : List[str] =optax.adamw(learning_rate=lowerCamelCase__ , weight_decay=lowerCamelCase__ , mask=lowerCamelCase__ ) return tx, lr
244
1
import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor __A : Optional[Any] = logging.get_logger(__name__) class lowerCamelCase( __snake_case ): '''simple docstring''' def __init__( self , *snake_case_ , **snake_case_ ): warnings.warn( 'The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use DPTImageProcessor instead.' , snake_case_ , ) super().__init__(*snake_case_ , **snake_case_ )
27
SCREAMING_SNAKE_CASE :Dict = [ 999, 800, 799, 600, 599, 500, 400, 399, 377, 355, 333, 311, 288, 266, 244, 222, 200, 199, 177, 155, 133, 111, 88, 66, 44, 22, 0, ] SCREAMING_SNAKE_CASE :Dict = [ 999, 976, 952, 928, 905, 882, 858, 857, 810, 762, 715, 714, 572, 429, 428, 286, 285, 238, 190, 143, 142, 118, 95, 71, 47, 24, 0, ] SCREAMING_SNAKE_CASE :int = [ 999, 988, 977, 966, 955, 944, 933, 922, 911, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 350, 300, 299, 266, 233, 200, 199, 179, 159, 140, 120, 100, 99, 88, 77, 66, 55, 44, 33, 22, 11, 0, ] SCREAMING_SNAKE_CASE :Optional[Any] = [ 999, 995, 992, 989, 985, 981, 978, 975, 971, 967, 964, 961, 957, 956, 951, 947, 942, 937, 933, 928, 923, 919, 914, 913, 908, 903, 897, 892, 887, 881, 876, 871, 870, 864, 858, 852, 846, 840, 834, 828, 827, 820, 813, 806, 799, 792, 785, 784, 777, 770, 763, 756, 749, 742, 741, 733, 724, 716, 707, 699, 698, 688, 677, 666, 656, 655, 645, 634, 623, 613, 612, 598, 584, 570, 569, 555, 541, 527, 526, 505, 484, 483, 462, 440, 439, 396, 395, 352, 351, 308, 307, 264, 263, 220, 219, 176, 132, 88, 44, 0, ] SCREAMING_SNAKE_CASE :int = [ 999, 997, 995, 992, 990, 988, 986, 984, 981, 979, 977, 975, 972, 970, 968, 966, 964, 961, 959, 957, 956, 954, 951, 949, 946, 944, 941, 939, 936, 934, 931, 929, 926, 924, 921, 919, 916, 914, 913, 910, 907, 905, 902, 899, 896, 893, 891, 888, 885, 882, 879, 877, 874, 871, 870, 867, 864, 861, 858, 855, 852, 849, 846, 843, 840, 837, 834, 831, 828, 827, 824, 821, 817, 814, 811, 808, 804, 801, 798, 795, 791, 788, 785, 784, 780, 777, 774, 770, 766, 763, 760, 756, 752, 749, 746, 742, 741, 737, 733, 730, 726, 722, 718, 714, 710, 707, 703, 699, 698, 694, 690, 685, 681, 677, 673, 669, 664, 660, 656, 655, 650, 646, 641, 636, 632, 627, 622, 618, 613, 612, 607, 602, 596, 591, 586, 580, 575, 570, 569, 563, 557, 551, 545, 539, 533, 527, 526, 519, 512, 505, 498, 491, 484, 483, 474, 466, 457, 449, 440, 439, 428, 418, 407, 396, 395, 381, 366, 352, 351, 330, 308, 307, 286, 264, 263, 242, 220, 219, 176, 175, 132, 131, 88, 44, 0, ] SCREAMING_SNAKE_CASE :Optional[int] = [ 999, 991, 982, 974, 966, 958, 950, 941, 933, 925, 916, 908, 900, 899, 874, 850, 825, 800, 799, 700, 600, 500, 400, 300, 200, 100, 0, ] SCREAMING_SNAKE_CASE :Dict = [ 999, 992, 985, 978, 971, 964, 957, 949, 942, 935, 928, 921, 914, 907, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 300, 299, 200, 199, 100, 99, 0, ] SCREAMING_SNAKE_CASE :int = [ 999, 996, 992, 989, 985, 982, 979, 975, 972, 968, 965, 961, 958, 955, 951, 948, 944, 941, 938, 934, 931, 927, 924, 920, 917, 914, 910, 907, 903, 900, 899, 891, 884, 876, 869, 861, 853, 846, 838, 830, 823, 815, 808, 800, 799, 788, 777, 766, 755, 744, 733, 722, 711, 700, 699, 688, 677, 666, 655, 644, 633, 622, 611, 600, 599, 585, 571, 557, 542, 528, 514, 500, 499, 485, 471, 457, 442, 428, 414, 400, 399, 379, 359, 340, 320, 300, 299, 279, 259, 240, 220, 200, 199, 166, 133, 100, 99, 66, 33, 0, ]
628
0
from cva import destroyAllWindows, imread, imshow, waitKey def _a ( lowerCamelCase__ ) -> Any: # getting number of pixels in the image lowerCamelCase_ : List[str] = img.shape[0], img.shape[1] # converting each pixel's color to its negative for i in range(lowerCamelCase__ ): for j in range(lowerCamelCase__ ): lowerCamelCase_ : int = [2_55, 2_55, 2_55] - img[i][j] return img if __name__ == "__main__": # read original image UpperCamelCase = imread('''image_data/lena.jpg''', 1) # convert to its negative UpperCamelCase = convert_to_negative(img) # show result image imshow('''negative of original image''', img) waitKey(0) destroyAllWindows()
719
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase = { '''configuration_pegasus_x''': ['''PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PegasusXConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PegasusXForConditionalGeneration''', '''PegasusXModel''', '''PegasusXPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
144
0
"""simple docstring""" from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image SCREAMING_SNAKE_CASE_ = ['text', 'image', 'audio'] def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = [] for input_type in input_types: if input_type == "text": inputs.append('''Text input''' ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir('''fixtures/tests_samples/COCO''' ) ) / '''000000039769.png''' ).resize((512, 512) ) ) elif input_type == "audio": inputs.append(torch.ones(3000 ) ) elif isinstance(_lowercase ,_lowercase ): inputs.append(create_inputs(_lowercase ) ) else: raise ValueError(f'Invalid type requested: {input_type}' ) return inputs def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = [] for output in outputs: if isinstance(_lowercase ,(str, AgentText) ): output_types.append('''text''' ) elif isinstance(_lowercase ,(Image.Image, AgentImage) ): output_types.append('''image''' ) elif isinstance(_lowercase ,(torch.Tensor, AgentAudio) ): output_types.append('''audio''' ) else: raise ValueError(f'Invalid output: {output}' ) return output_types @is_tool_test class snake_case_ : """simple docstring""" def UpperCAmelCase__ ( self) -> List[Any]: self.assertTrue(hasattr(self.tool , '''inputs''')) self.assertTrue(hasattr(self.tool , '''outputs''')) UpperCamelCase = self.tool.inputs for _input in inputs: if isinstance(_input , lowerCamelCase_): for __input in _input: self.assertTrue(__input in authorized_types) else: self.assertTrue(_input in authorized_types) UpperCamelCase = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types) def UpperCAmelCase__ ( self) -> Union[str, Any]: UpperCamelCase = create_inputs(self.tool.inputs) UpperCamelCase = self.tool(*lowerCamelCase_) # There is a single output if len(self.tool.outputs) == 1: UpperCamelCase = [outputs] self.assertListEqual(output_types(lowerCamelCase_) , self.tool.outputs) def UpperCAmelCase__ ( self) -> str: self.assertTrue(hasattr(self.tool , '''description''')) self.assertTrue(hasattr(self.tool , '''default_checkpoint''')) self.assertTrue(self.tool.description.startswith('''This is a tool that''')) def UpperCAmelCase__ ( self) -> Any: UpperCamelCase = create_inputs(self.tool.inputs) UpperCamelCase = self.tool(*lowerCamelCase_) if not isinstance(lowerCamelCase_ , lowerCamelCase_): UpperCamelCase = [outputs] self.assertEqual(len(lowerCamelCase_) , len(self.tool.outputs)) for output, output_type in zip(lowerCamelCase_ , self.tool.outputs): UpperCamelCase = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(lowerCamelCase_ , lowerCamelCase_)) def UpperCAmelCase__ ( self) -> List[Any]: UpperCamelCase = create_inputs(self.tool.inputs) UpperCamelCase = [] for _input, input_type in zip(lowerCamelCase_ , self.tool.inputs): if isinstance(lowerCamelCase_ , lowerCamelCase_): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input) for _input_type in input_type]) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input)) # Should not raise an error UpperCamelCase = self.tool(*lowerCamelCase_) if not isinstance(lowerCamelCase_ , lowerCamelCase_): UpperCamelCase = [outputs] self.assertEqual(len(lowerCamelCase_) , len(self.tool.outputs))
34
import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase=None ): __a = None if token is not None: __a = {'Accept': 'application/vnd.github+json', 'Authorization': f'''Bearer {token}'''} __a = f'''https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100''' __a = requests.get(__lowerCamelCase , headers=__lowerCamelCase ).json() __a = {} try: job_links.update({job['name']: job['html_url'] for job in result['jobs']} ) __a = math.ceil((result['total_count'] - 100) / 100 ) for i in range(__lowerCamelCase ): __a = requests.get(url + f'''&page={i + 2}''' , headers=__lowerCamelCase ).json() job_links.update({job['name']: job['html_url'] for job in result['jobs']} ) return job_links except Exception: print(f'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' ) return {} def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase=None ): __a = None if token is not None: __a = {'Accept': 'application/vnd.github+json', 'Authorization': f'''Bearer {token}'''} __a = f'''https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100''' __a = requests.get(__lowerCamelCase , headers=__lowerCamelCase ).json() __a = {} try: artifacts.update({artifact['name']: artifact['archive_download_url'] for artifact in result['artifacts']} ) __a = math.ceil((result['total_count'] - 100) / 100 ) for i in range(__lowerCamelCase ): __a = requests.get(url + f'''&page={i + 2}''' , headers=__lowerCamelCase ).json() artifacts.update({artifact['name']: artifact['archive_download_url'] for artifact in result['artifacts']} ) return artifacts except Exception: print(f'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' ) return {} def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): __a = None if token is not None: __a = {'Accept': 'application/vnd.github+json', 'Authorization': f'''Bearer {token}'''} __a = requests.get(__lowerCamelCase , headers=__lowerCamelCase , allow_redirects=__lowerCamelCase ) __a = result.headers['Location'] __a = requests.get(__lowerCamelCase , allow_redirects=__lowerCamelCase ) __a = os.path.join(__lowerCamelCase , f'''{artifact_name}.zip''' ) with open(__lowerCamelCase , 'wb' ) as fp: fp.write(response.content ) def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase=None ): __a = [] __a = [] __a = None with zipfile.ZipFile(__lowerCamelCase ) as z: for filename in z.namelist(): if not os.path.isdir(__lowerCamelCase ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(__lowerCamelCase ) as f: for line in f: __a = line.decode('UTF-8' ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs __a = line[: line.index(': ' )] __a = line[line.index(': ' ) + len(': ' ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith('FAILED ' ): # `test` is the test method that failed __a = line[len('FAILED ' ) :] failed_tests.append(__lowerCamelCase ) elif filename == "job_name.txt": __a = line if len(__lowerCamelCase ) != len(__lowerCamelCase ): raise ValueError( f'''`errors` and `failed_tests` should have the same number of elements. Got {len(__lowerCamelCase )} for `errors` ''' f'''and {len(__lowerCamelCase )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some''' ' problem.' ) __a = None if job_name and job_links: __a = job_links.get(__lowerCamelCase , __lowerCamelCase ) # A list with elements of the form (line of error, error, failed test) __a = [x + [y] + [job_link] for x, y in zip(__lowerCamelCase , __lowerCamelCase )] return result def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase=None ): __a = [] __a = [os.path.join(__lowerCamelCase , __lowerCamelCase ) for p in os.listdir(__lowerCamelCase ) if p.endswith('.zip' )] for p in paths: errors.extend(get_errors_from_single_artifact(__lowerCamelCase , job_links=__lowerCamelCase ) ) return errors def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase=None ): __a = Counter() counter.update([x[1] for x in logs] ) __a = counter.most_common() __a = {} for error, count in counts: if error_filter is None or error not in error_filter: __a = {'count': count, 'failed_tests': [(x[2], x[0]) for x in logs if x[1] == error]} __a = dict(sorted(r.items() , key=lambda __lowerCamelCase : item[1]["count"] , reverse=__lowerCamelCase ) ) return r def lowerCAmelCase( __lowerCamelCase ): __a = test.split('::' )[0] if test.startswith('tests/models/' ): __a = test.split('/' )[2] else: __a = None return test def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase=None ): __a = [(x[0], x[1], get_model(x[2] )) for x in logs] __a = [x for x in logs if x[2] is not None] __a = {x[2] for x in logs} __a = {} for test in tests: __a = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) __a = counter.most_common() __a = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} __a = sum(error_counts.values() ) if n_errors > 0: __a = {'count': n_errors, 'errors': error_counts} __a = dict(sorted(r.items() , key=lambda __lowerCamelCase : item[1]["count"] , reverse=__lowerCamelCase ) ) return r def lowerCAmelCase( __lowerCamelCase ): __a = '| no. | error | status |' __a = '|-:|:-|:-|' __a = [header, sep] for error in reduced_by_error: __a = reduced_by_error[error]['count'] __a = f'''| {count} | {error[:100]} | |''' lines.append(__lowerCamelCase ) return "\n".join(__lowerCamelCase ) def lowerCAmelCase( __lowerCamelCase ): __a = '| model | no. of errors | major error | count |' __a = '|-:|-:|-:|-:|' __a = [header, sep] for model in reduced_by_model: __a = reduced_by_model[model]['count'] __a , __a = list(reduced_by_model[model]['errors'].items() )[0] __a = f'''| {model} | {count} | {error[:60]} | {_count} |''' lines.append(__lowerCamelCase ) return "\n".join(__lowerCamelCase ) if __name__ == "__main__": lowerCamelCase_ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("""--workflow_run_id""", type=str, required=True, help="""A GitHub Actions workflow run id.""") parser.add_argument( """--output_dir""", type=str, required=True, help="""Where to store the downloaded artifacts and other result files.""", ) parser.add_argument("""--token""", default=None, type=str, help="""A token that has actions:read permission.""") lowerCamelCase_ : List[str] = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) lowerCamelCase_ : Any = get_job_links(args.workflow_run_id, token=args.token) lowerCamelCase_ : Any = {} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: lowerCamelCase_ : int = k.find(""" / """) lowerCamelCase_ : str = k[index + len(""" / """) :] lowerCamelCase_ : Union[str, Any] = v with open(os.path.join(args.output_dir, """job_links.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) lowerCamelCase_ : int = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, """artifacts.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) lowerCamelCase_ : Any = get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error lowerCamelCase_ : Dict = Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors lowerCamelCase_ : int = counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, """errors.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) lowerCamelCase_ : Optional[int] = reduce_by_error(errors) lowerCamelCase_ : Optional[int] = reduce_by_model(errors) lowerCamelCase_ : Any = make_github_table(reduced_by_error) lowerCamelCase_ : List[str] = make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, """reduced_by_error.txt"""), """w""", encoding="""UTF-8""") as fp: fp.write(sa) with open(os.path.join(args.output_dir, """reduced_by_model.txt"""), """w""", encoding="""UTF-8""") as fp: fp.write(sa)
559
0
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : Any = logging.get_logger(__name__) UpperCAmelCase_ : str = { "EleutherAI/gpt-neox-20b": "https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json", # See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox } class UpperCamelCase ( _UpperCAmelCase ): lowerCAmelCase : Tuple = """gpt_neox""" def __init__( self , UpperCAmelCase__=50_432 , UpperCAmelCase__=6_144 , UpperCAmelCase__=44 , UpperCAmelCase__=64 , UpperCAmelCase__=24_576 , UpperCAmelCase__="gelu" , UpperCAmelCase__=0.25 , UpperCAmelCase__=10_000 , UpperCAmelCase__=0.0 , UpperCAmelCase__=0.0 , UpperCAmelCase__=0.1 , UpperCAmelCase__=2_048 , UpperCAmelCase__=0.02 , UpperCAmelCase__=1e-5 , UpperCAmelCase__=True , UpperCAmelCase__=0 , UpperCAmelCase__=2 , UpperCAmelCase__=False , UpperCAmelCase__=True , UpperCAmelCase__=None , **UpperCAmelCase__ , ): super().__init__(bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , **UpperCAmelCase__ ) A__ = vocab_size A__ = max_position_embeddings A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = rotary_pct A__ = rotary_emb_base A__ = attention_dropout A__ = hidden_dropout A__ = classifier_dropout A__ = initializer_range A__ = layer_norm_eps A__ = use_cache A__ = tie_word_embeddings A__ = use_parallel_residual A__ = rope_scaling self._rope_scaling_validation() if self.hidden_size % self.num_attention_heads != 0: raise ValueError( "The hidden size is not divisble by the number of attention heads! Make sure to update them!" ) def __A ( self ): if self.rope_scaling is None: return if not isinstance(self.rope_scaling , UpperCAmelCase__ ) or len(self.rope_scaling ) != 2: raise ValueError( "`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, " F"""got {self.rope_scaling}""" ) A__ = self.rope_scaling.get("type" , UpperCAmelCase__ ) A__ = self.rope_scaling.get("factor" , UpperCAmelCase__ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) or rope_scaling_factor <= 1.0: raise ValueError(F"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
232
import argparse import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## UpperCAmelCase_ : Optional[int] = 16 UpperCAmelCase_ : List[Any] = 32 def UpperCamelCase ( _A : Accelerator , _A : int = 16 )-> Dict: """simple docstring""" A__ = AutoTokenizer.from_pretrained("bert-base-cased" ) A__ = load_dataset("glue" , "mrpc" ) def tokenize_function(_A : Tuple ): # max_length=None => use the model max length (it's actually the default) A__ = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=_A , max_length=_A ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): A__ = datasets.map( _A , batched=_A , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library A__ = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(_A : Optional[int] ): # On TPU it's best to pad everything to the same length or training will be very slow. A__ = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": A__ = 16 elif accelerator.mixed_precision != "no": A__ = 8 else: A__ = None return tokenizer.pad( _A , padding="longest" , max_length=_A , pad_to_multiple_of=_A , return_tensors="pt" , ) # Instantiate dataloaders. A__ = DataLoader( tokenized_datasets["train"] , shuffle=_A , collate_fn=_A , batch_size=_A , drop_last=_A ) A__ = DataLoader( tokenized_datasets["validation"] , shuffle=_A , collate_fn=_A , batch_size=_A , drop_last=(accelerator.mixed_precision == "fp8") , ) return train_dataloader, eval_dataloader def UpperCamelCase ( _A : str , _A : List[str] )-> Union[str, Any]: """simple docstring""" A__ = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs A__ = config["lr"] A__ = int(config["num_epochs"] ) A__ = int(config["seed"] ) A__ = int(config["batch_size"] ) A__ = evaluate.load("glue" , "mrpc" ) # If the batch size is too big we use gradient accumulation A__ = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: A__ = batch_size // MAX_GPU_BATCH_SIZE A__ = MAX_GPU_BATCH_SIZE set_seed(_A ) A__ , A__ = get_dataloaders(_A , _A ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) A__ = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=_A ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). A__ = model.to(accelerator.device ) # Instantiate optimizer A__ = AdamW(params=model.parameters() , lr=_A ) # Instantiate scheduler A__ = get_linear_schedule_with_warmup( optimizer=_A , num_warmup_steps=100 , num_training_steps=(len(_A ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. A__ , A__ , A__ , A__ , A__ = accelerator.prepare( _A , _A , _A , _A , _A ) # Now we train the model for epoch in range(_A ): model.train() for step, batch in enumerate(_A ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) A__ = model(**_A ) A__ = outputs.loss A__ = loss / gradient_accumulation_steps accelerator.backward(_A ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_A ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): A__ = model(**_A ) A__ = outputs.logits.argmax(dim=-1 ) A__ , A__ = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=_A , references=_A , ) A__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , _A ) def UpperCamelCase ( )-> Any: """simple docstring""" A__ = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=_A , default=_A , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) A__ = parser.parse_args() A__ = {"lr": 2E-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(_A , _A ) if __name__ == "__main__": main()
232
1
from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split __UpperCAmelCase = datasets.load_iris() __UpperCAmelCase = np.array(data['data']) __UpperCAmelCase = np.array(data['target']) __UpperCAmelCase = data['target_names'] __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = train_test_split(X, y) def __UpperCamelCase ( lowercase__ : str , lowercase__ : int ) -> Optional[Any]: '''simple docstring''' return np.linalg.norm(np.array(lowercase__ ) - np.array(lowercase__ ) ) def __UpperCamelCase ( lowercase__ : Dict , lowercase__ : str , lowercase__ : Dict , lowercase__ : int , lowercase__ : str=5 ) -> Any: '''simple docstring''' lowerCAmelCase_ : List[str] = zip(lowercase__ , lowercase__ ) # List of distances of all points from the point to be classified lowerCAmelCase_ : Optional[int] = [] for data_point in data: lowerCAmelCase_ : Tuple = euclidean_distance(data_point[0] , lowercase__ ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. lowerCAmelCase_ : List[Any] = [i[1] for i in sorted(lowercase__ )[:k]] # Most commonly occurring class among them # is the class into which the point is classified lowerCAmelCase_ : List[Any] = Counter(lowercase__ ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
600
import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _A ( self : Any ): SCREAMING_SNAKE_CASE : Dict = tempfile.mkdtemp() # fmt: off SCREAMING_SNAKE_CASE : Any = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest"] # fmt: on SCREAMING_SNAKE_CASE : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) SCREAMING_SNAKE_CASE : Optional[int] = { "do_resize": True, "size": {"height": 18, "width": 18}, "do_normalize": True, "image_mean": [0.5, 0.5, 0.5], "image_std": [0.5, 0.5, 0.5], } SCREAMING_SNAKE_CASE : Optional[Any] = os.path.join(self.tmpdirname , UpperCAmelCase_ ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(UpperCAmelCase_ , UpperCAmelCase_ ) def _A ( self : List[Any] , **UpperCAmelCase_ : List[str] ): return BertTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ) def _A ( self : Union[str, Any] , **UpperCAmelCase_ : Any ): return ViTImageProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ) def _A ( self : Optional[int] ): shutil.rmtree(self.tmpdirname ) def _A ( self : List[str] ): SCREAMING_SNAKE_CASE : List[Any] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] SCREAMING_SNAKE_CASE : Union[str, Any] = [Image.fromarray(np.moveaxis(UpperCAmelCase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def _A ( self : List[str] ): SCREAMING_SNAKE_CASE : Optional[int] = self.get_tokenizer() SCREAMING_SNAKE_CASE : Tuple = self.get_image_processor() SCREAMING_SNAKE_CASE : Optional[int] = VisionTextDualEncoderProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE : Optional[Any] = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCAmelCase_ ) def _A ( self : List[Any] ): SCREAMING_SNAKE_CASE : int = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE : Optional[Any] = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) SCREAMING_SNAKE_CASE : Any = self.get_image_processor(do_normalize=UpperCAmelCase_ , padding_value=1.0 ) SCREAMING_SNAKE_CASE : str = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=UpperCAmelCase_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCAmelCase_ ) def _A ( self : Optional[int] ): SCREAMING_SNAKE_CASE : List[str] = self.get_image_processor() SCREAMING_SNAKE_CASE : List[str] = self.get_tokenizer() SCREAMING_SNAKE_CASE : Union[str, Any] = VisionTextDualEncoderProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = self.prepare_image_inputs() SCREAMING_SNAKE_CASE : int = image_processor(UpperCAmelCase_ , return_tensors="np" ) SCREAMING_SNAKE_CASE : Optional[int] = processor(images=UpperCAmelCase_ , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _A ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE : Optional[Any] = self.get_image_processor() SCREAMING_SNAKE_CASE : List[str] = self.get_tokenizer() SCREAMING_SNAKE_CASE : Union[str, Any] = VisionTextDualEncoderProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Tuple = "lower newer" SCREAMING_SNAKE_CASE : Dict = processor(text=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : int = tokenizer(UpperCAmelCase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _A ( self : Optional[int] ): SCREAMING_SNAKE_CASE : int = self.get_image_processor() SCREAMING_SNAKE_CASE : Optional[Any] = self.get_tokenizer() SCREAMING_SNAKE_CASE : List[str] = VisionTextDualEncoderProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : int = "lower newer" SCREAMING_SNAKE_CASE : Union[str, Any] = self.prepare_image_inputs() SCREAMING_SNAKE_CASE : Optional[Any] = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_ ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "token_type_ids", "attention_mask", "pixel_values"] ) # test if it raises when no input is passed with self.assertRaises(UpperCAmelCase_ ): processor() def _A ( self : List[str] ): SCREAMING_SNAKE_CASE : List[str] = self.get_image_processor() SCREAMING_SNAKE_CASE : List[str] = self.get_tokenizer() SCREAMING_SNAKE_CASE : Tuple = VisionTextDualEncoderProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : str = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] SCREAMING_SNAKE_CASE : Optional[Any] = processor.batch_decode(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer.batch_decode(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def _A ( self : List[Any] ): SCREAMING_SNAKE_CASE : Optional[int] = self.get_image_processor() SCREAMING_SNAKE_CASE : Optional[int] = self.get_tokenizer() SCREAMING_SNAKE_CASE : Optional[Any] = VisionTextDualEncoderProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = "lower newer" SCREAMING_SNAKE_CASE : Any = self.prepare_image_inputs() SCREAMING_SNAKE_CASE : Dict = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
62
0
import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): def snake_case_ ( self): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def snake_case_ ( self): A__ = 1 A__ = 3 A__ = (3_2, 3_2) A__ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0)).to(A_) return image @property def snake_case_ ( self): torch.manual_seed(0) A__ = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=3_2 , ) return model @property def snake_case_ ( self): torch.manual_seed(0) A__ = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) return model @property def snake_case_ ( self): torch.manual_seed(0) A__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) return CLIPTextModel(A_) @property def snake_case_ ( self): def extract(*a__ , **a__): class _UpperCAmelCase : def __init__( self): A__ = torch.ones([0]) def snake_case_ ( self , a__): self.pixel_values.to(A_) return self return Out() return extract def snake_case_ ( self): A__ = '''cpu''' # ensure determinism for the device-dependent torch.Generator A__ = self.dummy_cond_unet A__ = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , clip_sample=A_ , set_alpha_to_one=A_ , ) A__ = self.dummy_vae A__ = self.dummy_text_encoder A__ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''') # make sure here that pndm scheduler skips prk A__ = StableDiffusionPipeline( unet=A_ , scheduler=A_ , vae=A_ , text_encoder=A_ , tokenizer=A_ , safety_checker=A_ , feature_extractor=self.dummy_extractor , ) A__ = sd_pipe.to(A_) sd_pipe.set_progress_bar_config(disable=A_) A__ = '''A painting of a squirrel eating a burger''' A__ = torch.Generator(device=A_).manual_seed(0) A__ = sd_pipe([prompt] , generator=A_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''') A__ = output.images A__ = torch.Generator(device=A_).manual_seed(0) A__ = sd_pipe( [prompt] , generator=A_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , return_dict=A_ , )[0] A__ = image[0, -3:, -3:, -1] A__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) A__ = np.array([0.5_7_5_6, 0.6_1_1_8, 0.5_0_0_5, 0.5_0_4_1, 0.5_4_7_1, 0.4_7_2_6, 0.4_9_7_6, 0.4_8_6_5, 0.4_8_6_4]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 def snake_case_ ( self): A__ = '''cpu''' # ensure determinism for the device-dependent torch.Generator A__ = self.dummy_cond_unet A__ = PNDMScheduler(skip_prk_steps=A_) A__ = self.dummy_vae A__ = self.dummy_text_encoder A__ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''') # make sure here that pndm scheduler skips prk A__ = StableDiffusionPipeline( unet=A_ , scheduler=A_ , vae=A_ , text_encoder=A_ , tokenizer=A_ , safety_checker=A_ , feature_extractor=self.dummy_extractor , ) A__ = sd_pipe.to(A_) sd_pipe.set_progress_bar_config(disable=A_) A__ = '''A painting of a squirrel eating a burger''' A__ = torch.Generator(device=A_).manual_seed(0) A__ = sd_pipe([prompt] , generator=A_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''') A__ = output.images A__ = torch.Generator(device=A_).manual_seed(0) A__ = sd_pipe( [prompt] , generator=A_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , return_dict=A_ , )[0] A__ = image[0, -3:, -3:, -1] A__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) A__ = np.array([0.5_1_2_5, 0.5_7_1_6, 0.4_8_2_8, 0.5_0_6_0, 0.5_6_5_0, 0.4_7_6_8, 0.5_1_8_5, 0.4_8_9_5, 0.4_9_9_3]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 def snake_case_ ( self): A__ = StableDiffusionPipeline.from_pretrained( '''hf-internal-testing/tiny-stable-diffusion-lms-pipe''' , safety_checker=A_) assert isinstance(A_ , A_) assert isinstance(pipe.scheduler , A_) assert pipe.safety_checker is None A__ = pipe('''example prompt''' , num_inference_steps=2).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(A_) A__ = StableDiffusionPipeline.from_pretrained(A_) # sanity check that the pipeline still works assert pipe.safety_checker is None A__ = pipe('''example prompt''' , num_inference_steps=2).images[0] assert image is not None @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''') def snake_case_ ( self): A__ = self.dummy_cond_unet A__ = PNDMScheduler(skip_prk_steps=A_) A__ = self.dummy_vae A__ = self.dummy_text_encoder A__ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''') # put models in fp16 A__ = unet.half() A__ = vae.half() A__ = bert.half() # make sure here that pndm scheduler skips prk A__ = StableDiffusionPipeline( unet=A_ , scheduler=A_ , vae=A_ , text_encoder=A_ , tokenizer=A_ , safety_checker=A_ , feature_extractor=self.dummy_extractor , ) A__ = sd_pipe.to(A_) sd_pipe.set_progress_bar_config(disable=A_) A__ = '''A painting of a squirrel eating a burger''' A__ = sd_pipe([prompt] , num_inference_steps=2 , output_type='''np''').images assert image.shape == (1, 6_4, 6_4, 3) @nightly @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): def snake_case_ ( self): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case_ ( self): A__ = StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''' , safety_checker=A_) A__ = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config) A__ = sd_pipe.to(A_) sd_pipe.set_progress_bar_config(disable=A_) A__ = ( '''portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle''' ''' coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with''' ''' anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and''' ''' children from bahnhof zoo, detailed ''' ) A__ = 4_0_0_3_6_6_0_3_4_6 A__ = 7 # without safety guidance (sld_guidance_scale = 0) A__ = torch.manual_seed(A_) A__ = sd_pipe( [prompt] , generator=A_ , guidance_scale=A_ , num_inference_steps=5_0 , output_type='''np''' , width=5_1_2 , height=5_1_2 , sld_guidance_scale=0 , ) A__ = output.images A__ = image[0, -3:, -3:, -1] A__ = [0.2_2_7_8, 0.2_2_3_1, 0.2_2_4_9, 0.2_3_3_3, 0.2_3_0_3, 0.1_8_8_5, 0.2_2_7_3, 0.2_1_4_4, 0.2_1_7_6] assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 # without safety guidance (strong configuration) A__ = torch.manual_seed(A_) A__ = sd_pipe( [prompt] , generator=A_ , guidance_scale=A_ , num_inference_steps=5_0 , output_type='''np''' , width=5_1_2 , height=5_1_2 , sld_guidance_scale=2_0_0_0 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) A__ = output.images A__ = image[0, -3:, -3:, -1] A__ = [0.2_3_8_3, 0.2_2_7_6, 0.2_3_6, 0.2_1_9_2, 0.2_1_8_6, 0.2_0_5_3, 0.1_9_7_1, 0.1_9_0_1, 0.1_7_1_9] assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def snake_case_ ( self): A__ = StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''' , safety_checker=A_) A__ = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config) A__ = sd_pipe.to(A_) sd_pipe.set_progress_bar_config(disable=A_) A__ = '''padme amidala taking a bath artwork, safe for work, no nudity''' A__ = 2_7_3_4_9_7_1_7_5_5 A__ = 7 A__ = torch.manual_seed(A_) A__ = sd_pipe( [prompt] , generator=A_ , guidance_scale=A_ , num_inference_steps=5_0 , output_type='''np''' , width=5_1_2 , height=5_1_2 , sld_guidance_scale=0 , ) A__ = output.images A__ = image[0, -3:, -3:, -1] A__ = [0.3_5_0_2, 0.3_6_2_2, 0.3_3_9_6, 0.3_6_4_2, 0.3_4_7_8, 0.3_3_1_8, 0.3_5, 0.3_3_4_8, 0.3_2_9_7] assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 A__ = torch.manual_seed(A_) A__ = sd_pipe( [prompt] , generator=A_ , guidance_scale=A_ , num_inference_steps=5_0 , output_type='''np''' , width=5_1_2 , height=5_1_2 , sld_guidance_scale=2_0_0_0 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) A__ = output.images A__ = image[0, -3:, -3:, -1] A__ = [0.5_5_3_1, 0.5_2_0_6, 0.4_8_9_5, 0.5_1_5_6, 0.5_1_8_2, 0.4_7_5_1, 0.4_8_0_2, 0.4_8_0_3, 0.4_4_4_3] assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def snake_case_ ( self): A__ = StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''') A__ = sd_pipe.to(A_) sd_pipe.set_progress_bar_config(disable=A_) A__ = ( '''the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.''' ''' leyendecker''' ) A__ = 1_0_4_4_3_5_5_2_3_4 A__ = 1_2 A__ = torch.manual_seed(A_) A__ = sd_pipe( [prompt] , generator=A_ , guidance_scale=A_ , num_inference_steps=5_0 , output_type='''np''' , width=5_1_2 , height=5_1_2 , sld_guidance_scale=0 , ) A__ = output.images A__ = image[0, -3:, -3:, -1] A__ = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]) assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-7 A__ = torch.manual_seed(A_) A__ = sd_pipe( [prompt] , generator=A_ , guidance_scale=A_ , num_inference_steps=5_0 , output_type='''np''' , width=5_1_2 , height=5_1_2 , sld_guidance_scale=2_0_0_0 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) A__ = output.images A__ = image[0, -3:, -3:, -1] A__ = np.array([0.5_8_1_8, 0.6_2_8_5, 0.6_8_3_5, 0.6_0_1_9, 0.6_2_5, 0.6_7_5_4, 0.6_0_9_6, 0.6_3_3_4, 0.6_5_6_1]) assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
700
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { "bert-base-uncased": "https://huggingface.co/bert-base-uncased/resolve/main/config.json", "bert-large-uncased": "https://huggingface.co/bert-large-uncased/resolve/main/config.json", "bert-base-cased": "https://huggingface.co/bert-base-cased/resolve/main/config.json", "bert-large-cased": "https://huggingface.co/bert-large-cased/resolve/main/config.json", "bert-base-multilingual-uncased": "https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json", "bert-base-multilingual-cased": "https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json", "bert-base-chinese": "https://huggingface.co/bert-base-chinese/resolve/main/config.json", "bert-base-german-cased": "https://huggingface.co/bert-base-german-cased/resolve/main/config.json", "bert-large-uncased-whole-word-masking": ( "https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json" ), "bert-large-cased-whole-word-masking": ( "https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json" ), "bert-large-uncased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json" ), "bert-large-cased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json" ), "bert-base-cased-finetuned-mrpc": "https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json", "bert-base-german-dbmdz-cased": "https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json", "bert-base-german-dbmdz-uncased": "https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json", "cl-tohoku/bert-base-japanese": "https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json", "cl-tohoku/bert-base-japanese-whole-word-masking": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json" ), "cl-tohoku/bert-base-japanese-char": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json" ), "cl-tohoku/bert-base-japanese-char-whole-word-masking": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json" ), "TurkuNLP/bert-base-finnish-cased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json" ), "TurkuNLP/bert-base-finnish-uncased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json" ), "wietsedv/bert-base-dutch-cased": "https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json", # See all BERT models at https://huggingface.co/models?filter=bert } class _UpperCAmelCase ( A__ ): UpperCamelCase__ = '''bert''' def __init__( self , a__=3_0_5_2_2 , a__=7_6_8 , a__=1_2 , a__=1_2 , a__=3_0_7_2 , a__="gelu" , a__=0.1 , a__=0.1 , a__=5_1_2 , a__=2 , a__=0.0_2 , a__=1e-12 , a__=0 , a__="absolute" , a__=True , a__=None , **a__ , ): super().__init__(pad_token_id=a__ , **a__) A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = hidden_act A__ = intermediate_size A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = type_vocab_size A__ = initializer_range A__ = layer_norm_eps A__ = position_embedding_type A__ = use_cache A__ = classifier_dropout class _UpperCAmelCase ( A__ ): @property def snake_case_ ( self): if self.task == "multiple-choice": A__ = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: A__ = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ])
526
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) a_ : List[Any] = { """configuration_resnet""": ["""RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ResNetConfig""", """ResNetOnnxConfig"""] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : List[str] = [ """RESNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """ResNetForImageClassification""", """ResNetModel""", """ResNetPreTrainedModel""", """ResNetBackbone""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : List[str] = [ """TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFResNetForImageClassification""", """TFResNetModel""", """TFResNetPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : List[str] = [ """FlaxResNetForImageClassification""", """FlaxResNetModel""", """FlaxResNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_resnet import ( RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, ResNetBackbone, ResNetForImageClassification, ResNetModel, ResNetPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_resnet import ( TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFResNetForImageClassification, TFResNetModel, TFResNetPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel else: import sys a_ : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
676
'''simple docstring''' def a_ ( __snake_case : str , __snake_case : str ) -> str: """simple docstring""" lowerCamelCase_ =len(__snake_case ) lowerCamelCase_ =len(__snake_case ) lowerCamelCase_ =( first_str_length if first_str_length > second_str_length else second_str_length ) lowerCamelCase_ =[] for char_count in range(__snake_case ): if char_count < first_str_length: output_list.append(first_str[char_count] ) if char_count < second_str_length: output_list.append(second_str[char_count] ) return "".join(__snake_case ) if __name__ == "__main__": print(alternative_string_arrange("""AB""", """XYZ"""), end=""" """)
676
1
"""simple docstring""" import argparse import json import logging import os import shutil import sys import tempfile import unittest from unittest import mock import torch from accelerate.utils import write_basic_config from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device from transformers.utils import is_apex_available logging.basicConfig(level=logging.DEBUG) __UpperCAmelCase = logging.getLogger() def lowercase__ ( ) -> Union[str, Any]: '''simple docstring''' a__ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("-f" ) a__ : List[Any] = parser.parse_args() return args.f def lowercase__ ( lowerCAmelCase__ : Optional[int] ) -> Dict: '''simple docstring''' a__ : int = {} a__ : Any = os.path.join(lowerCAmelCase__ , "all_results.json" ) if os.path.exists(lowerCAmelCase__ ): with open(lowerCAmelCase__ , "r" ) as f: a__ : List[Any] = json.load(lowerCAmelCase__ ) else: raise ValueError(F"can't find {path}" ) return results def lowercase__ ( ) -> List[str]: '''simple docstring''' a__ : Union[str, Any] = torch.cuda.is_available() and torch_device == "cuda" return is_using_cuda and is_apex_available() __UpperCAmelCase = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class __UpperCAmelCase ( _UpperCamelCase ): @classmethod def UpperCAmelCase ( cls : Optional[int] ) -> Dict: '''simple docstring''' a__ : Any = tempfile.mkdtemp() a__ : Optional[Any] = os.path.join(cls.tmpdir , "default_config.yml" ) write_basic_config(save_location=cls.configPath ) a__ : Tuple = ["accelerate", "launch", "--config_file", cls.configPath] @classmethod def UpperCAmelCase ( cls : Optional[Any] ) -> str: '''simple docstring''' shutil.rmtree(cls.tmpdir ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def UpperCAmelCase ( self : Optional[Any] ) -> str: '''simple docstring''' a__ : List[Any] = self.get_auto_remove_tmp_dir() a__ : Tuple = F"\n {self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --seed=42\n --checkpointing_steps epoch\n --with_tracking\n ".split() if is_cuda_and_apex_available(): testargs.append("--fp16" ) run_command(self._launch_args + testargs ) a__ : Dict = get_results(a_ ) self.assertGreaterEqual(result["eval_accuracy"] , 0.75 ) self.assertTrue(os.path.exists(os.path.join(a_ , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(a_ , "glue_no_trainer" ) ) ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def UpperCAmelCase ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' a__ : Tuple = self.get_auto_remove_tmp_dir() a__ : Optional[int] = F"\n {self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py\n --model_name_or_path distilgpt2\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --block_size 128\n --per_device_train_batch_size 5\n --per_device_eval_batch_size 5\n --num_train_epochs 2\n --output_dir {tmp_dir}\n --checkpointing_steps epoch\n --with_tracking\n ".split() if torch.cuda.device_count() > 1: # Skipping because there are not enough batches to train the model + would need a drop_last to work. return run_command(self._launch_args + testargs ) a__ : Optional[Any] = get_results(a_ ) self.assertLess(result["perplexity"] , 1_00 ) self.assertTrue(os.path.exists(os.path.join(a_ , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(a_ , "clm_no_trainer" ) ) ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def UpperCAmelCase ( self : str ) -> Optional[int]: '''simple docstring''' a__ : Any = self.get_auto_remove_tmp_dir() a__ : Dict = F"\n {self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py\n --model_name_or_path distilroberta-base\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --output_dir {tmp_dir}\n --num_train_epochs=1\n --checkpointing_steps epoch\n --with_tracking\n ".split() run_command(self._launch_args + testargs ) a__ : str = get_results(a_ ) self.assertLess(result["perplexity"] , 42 ) self.assertTrue(os.path.exists(os.path.join(a_ , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(a_ , "mlm_no_trainer" ) ) ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def UpperCAmelCase ( self : str ) -> Tuple: '''simple docstring''' a__ : Dict = 7 if get_gpu_count() > 1 else 2 a__ : Tuple = self.get_auto_remove_tmp_dir() a__ : Union[str, Any] = F"\n {self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/conll/sample.json\n --validation_file tests/fixtures/tests_samples/conll/sample.json\n --output_dir {tmp_dir}\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=2\n --num_train_epochs={epochs}\n --seed 7\n --checkpointing_steps epoch\n --with_tracking\n ".split() run_command(self._launch_args + testargs ) a__ : str = get_results(a_ ) self.assertGreaterEqual(result["eval_accuracy"] , 0.75 ) self.assertLess(result["train_loss"] , 0.5 ) self.assertTrue(os.path.exists(os.path.join(a_ , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(a_ , "ner_no_trainer" ) ) ) @unittest.skip(reason="Fix me @muellerzr" ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def UpperCAmelCase ( self : str ) -> List[str]: '''simple docstring''' a__ : int = self.get_auto_remove_tmp_dir() a__ : Union[str, Any] = F"\n {self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py\n --model_name_or_path bert-base-uncased\n --version_2_with_negative\n --train_file tests/fixtures/tests_samples/SQUAD/sample.json\n --validation_file tests/fixtures/tests_samples/SQUAD/sample.json\n --output_dir {tmp_dir}\n --seed=42\n --max_train_steps=10\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n --with_tracking\n ".split() run_command(self._launch_args + testargs ) a__ : int = get_results(a_ ) # Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics. self.assertGreaterEqual(result["eval_f1"] , 28 ) self.assertGreaterEqual(result["eval_exact"] , 28 ) self.assertTrue(os.path.exists(os.path.join(a_ , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(a_ , "qa_no_trainer" ) ) ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def UpperCAmelCase ( self : Optional[int] ) -> List[Any]: '''simple docstring''' a__ : Union[str, Any] = self.get_auto_remove_tmp_dir() a__ : Dict = F"\n {self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/swag/sample.json\n --validation_file tests/fixtures/tests_samples/swag/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=20\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --with_tracking\n ".split() run_command(self._launch_args + testargs ) a__ : Any = get_results(a_ ) self.assertGreaterEqual(result["eval_accuracy"] , 0.8 ) self.assertTrue(os.path.exists(os.path.join(a_ , "swag_no_trainer" ) ) ) @slow @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def UpperCAmelCase ( self : List[str] ) -> Dict: '''simple docstring''' a__ : Optional[int] = self.get_auto_remove_tmp_dir() a__ : str = F"\n {self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py\n --model_name_or_path t5-small\n --train_file tests/fixtures/tests_samples/xsum/sample.json\n --validation_file tests/fixtures/tests_samples/xsum/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=50\n --num_warmup_steps=8\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n --with_tracking\n ".split() run_command(self._launch_args + testargs ) a__ : List[Any] = get_results(a_ ) self.assertGreaterEqual(result["eval_rouge1"] , 10 ) self.assertGreaterEqual(result["eval_rouge2"] , 2 ) self.assertGreaterEqual(result["eval_rougeL"] , 7 ) self.assertGreaterEqual(result["eval_rougeLsum"] , 7 ) self.assertTrue(os.path.exists(os.path.join(a_ , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(a_ , "summarization_no_trainer" ) ) ) @slow @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def UpperCAmelCase ( self : List[Any] ) -> str: '''simple docstring''' a__ : str = self.get_auto_remove_tmp_dir() a__ : List[str] = F"\n {self.examples_dir}/pytorch/translation/run_translation_no_trainer.py\n --model_name_or_path sshleifer/student_marian_en_ro_6_1\n --source_lang en\n --target_lang ro\n --train_file tests/fixtures/tests_samples/wmt16/sample.json\n --validation_file tests/fixtures/tests_samples/wmt16/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=50\n --num_warmup_steps=8\n --num_beams=6\n --learning_rate=3e-3\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --source_lang en_XX\n --target_lang ro_RO\n --checkpointing_steps epoch\n --with_tracking\n ".split() run_command(self._launch_args + testargs ) a__ : Optional[int] = get_results(a_ ) self.assertGreaterEqual(result["eval_bleu"] , 30 ) self.assertTrue(os.path.exists(os.path.join(a_ , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(a_ , "translation_no_trainer" ) ) ) @slow def UpperCAmelCase ( self : List[Any] ) -> List[str]: '''simple docstring''' a__ : Optional[int] = logging.StreamHandler(sys.stdout ) logger.addHandler(a_ ) a__ : Union[str, Any] = self.get_auto_remove_tmp_dir() a__ : str = F"\n {self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py\n --dataset_name huggingface/semantic-segmentation-test-sample\n --output_dir {tmp_dir}\n --max_train_steps=10\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n ".split() run_command(self._launch_args + testargs ) a__ : List[Any] = get_results(a_ ) self.assertGreaterEqual(result["eval_overall_accuracy"] , 0.10 ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def UpperCAmelCase ( self : Dict ) -> Tuple: '''simple docstring''' a__ : str = self.get_auto_remove_tmp_dir() a__ : Optional[int] = F"\n {self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py\n --model_name_or_path google/vit-base-patch16-224-in21k\n --dataset_name hf-internal-testing/cats_vs_dogs_sample\n --learning_rate 1e-4\n --per_device_train_batch_size 2\n --per_device_eval_batch_size 1\n --max_train_steps 2\n --train_val_split 0.1\n --seed 42\n --output_dir {tmp_dir}\n --with_tracking\n --checkpointing_steps 1\n ".split() if is_cuda_and_apex_available(): testargs.append("--fp16" ) run_command(self._launch_args + testargs ) a__ : Tuple = get_results(a_ ) # The base model scores a 25% self.assertGreaterEqual(result["eval_accuracy"] , 0.6 ) self.assertTrue(os.path.exists(os.path.join(a_ , "step_1" ) ) ) self.assertTrue(os.path.exists(os.path.join(a_ , "image_classification_no_trainer" ) ) )
251
"""simple docstring""" def lowercase__ ( lowerCAmelCase__ : str , lowerCAmelCase__ : list[str] ) -> str: '''simple docstring''' a__ : List[str] = "" for word_or_phrase in separated: if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise Exception("join() accepts only strings to be joined" ) joined += word_or_phrase + separator return joined.strip(lowerCAmelCase__ ) if __name__ == "__main__": from doctest import testmod testmod()
251
1
import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class __magic_name__ (unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self:str , _a:Dict ): snake_case__ = 3 snake_case__ = 2_50 snake_case__ = ids_tensor((batch_size, length) , _a ) snake_case__ = torch.ones((batch_size, length) , device=_a , dtype=torch.float ) / length return input_ids, scores def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ , snake_case__ = self._get_tensors(5 ) snake_case__ = StoppingCriteriaList( [ MaxLengthCriteria(max_length=10 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(_a , _a ) ) snake_case__ , snake_case__ = self._get_tensors(9 ) self.assertFalse(criteria(_a , _a ) ) snake_case__ , snake_case__ = self._get_tensors(10 ) self.assertTrue(criteria(_a , _a ) ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ = MaxLengthCriteria(max_length=10 ) snake_case__ , snake_case__ = self._get_tensors(5 ) self.assertFalse(criteria(_a , _a ) ) snake_case__ , snake_case__ = self._get_tensors(9 ) self.assertFalse(criteria(_a , _a ) ) snake_case__ , snake_case__ = self._get_tensors(10 ) self.assertTrue(criteria(_a , _a ) ) def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): snake_case__ = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) snake_case__ , snake_case__ = self._get_tensors(5 ) self.assertFalse(criteria(_a , _a ) ) snake_case__ , snake_case__ = self._get_tensors(9 ) self.assertFalse(criteria(_a , _a ) ) snake_case__ , snake_case__ = self._get_tensors(10 ) self.assertTrue(criteria(_a , _a ) ) snake_case__ = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 10 ) def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ , snake_case__ = self._get_tensors(5 ) snake_case__ = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(_a , _a ) ) snake_case__ = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(_a , _a ) ) def SCREAMING_SNAKE_CASE__ ( self:Tuple ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 ) with self.assertWarns(_a ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 ) snake_case__ = validate_stopping_criteria(StoppingCriteriaList() , 11 ) self.assertEqual(len(_a ) , 1 )
33
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> List[Any]: snake_case__ = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class __magic_name__ (snake_case_ ,snake_case_ ,snake_case_ ,unittest.TestCase ): '''simple docstring''' __lowercase : Dict = StableDiffusionLatentUpscalePipeline __lowercase : List[str] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { 'height', 'width', 'cross_attention_kwargs', 'negative_prompt_embeds', 'prompt_embeds', } __lowercase : List[Any] = PipelineTesterMixin.required_optional_params - {'num_images_per_prompt'} __lowercase : Any = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __lowercase : int = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __lowercase : List[Any] = frozenset([] ) __lowercase : Any = True @property def SCREAMING_SNAKE_CASE__ ( self:List[str] ): snake_case__ = 1 snake_case__ = 4 snake_case__ = (16, 16) snake_case__ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_a ) return image def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): torch.manual_seed(0 ) snake_case__ = UNetaDConditionModel( act_fn='''gelu''' , attention_head_dim=8 , norm_num_groups=_a , block_out_channels=[32, 32, 64, 64] , time_cond_proj_dim=1_60 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=32 , down_block_types=( '''KDownBlock2D''', '''KCrossAttnDownBlock2D''', '''KCrossAttnDownBlock2D''', '''KCrossAttnDownBlock2D''', ) , in_channels=8 , mid_block_type=_a , only_cross_attention=_a , out_channels=5 , resnet_time_scale_shift='''scale_shift''' , time_embedding_type='''fourier''' , timestep_post_act='''gelu''' , up_block_types=('''KCrossAttnUpBlock2D''', '''KCrossAttnUpBlock2D''', '''KCrossAttnUpBlock2D''', '''KUpBlock2D''') , ) snake_case__ = AutoencoderKL( block_out_channels=[32, 32, 64, 64] , in_channels=3 , out_channels=3 , down_block_types=[ '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', ] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) snake_case__ = EulerDiscreteScheduler(prediction_type='''sample''' ) snake_case__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='''quick_gelu''' , projection_dim=5_12 , ) snake_case__ = CLIPTextModel(_a ) snake_case__ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) snake_case__ = { '''unet''': model.eval(), '''vae''': vae.eval(), '''scheduler''': scheduler, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, } return components def SCREAMING_SNAKE_CASE__ ( self:List[Any] , _a:Optional[Any] , _a:List[str]=0 ): if str(_a ).startswith('''mps''' ): snake_case__ = torch.manual_seed(_a ) else: snake_case__ = torch.Generator(device=_a ).manual_seed(_a ) snake_case__ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': self.dummy_image.cpu(), '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = '''cpu''' snake_case__ = self.get_dummy_components() snake_case__ = self.pipeline_class(**_a ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) snake_case__ = self.get_dummy_inputs(_a ) snake_case__ = pipe(**_a ).images snake_case__ = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 2_56, 2_56, 3) ) snake_case__ = np.array( [0.47222412, 0.41921633, 0.44717434, 0.46874192, 0.42588258, 0.46150726, 0.4677534, 0.45583832, 0.48579055] ) snake_case__ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_a , 1e-3 ) def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): super().test_attention_slicing_forward_pass(expected_max_diff=7e-3 ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): super().test_cpu_offload_forward_pass(expected_max_diff=3e-3 ) def SCREAMING_SNAKE_CASE__ ( self:str ): super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def SCREAMING_SNAKE_CASE__ ( self:Any ): super().test_inference_batch_single_identical(expected_max_diff=7e-3 ) def SCREAMING_SNAKE_CASE__ ( self:Tuple ): super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3e-3 ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): super().test_save_load_local(expected_max_difference=3e-3 ) def SCREAMING_SNAKE_CASE__ ( self:str ): super().test_save_load_optional_components(expected_max_difference=3e-3 ) def SCREAMING_SNAKE_CASE__ ( self:Any ): snake_case__ = [ '''DDIMScheduler''', '''DDPMScheduler''', '''PNDMScheduler''', '''HeunDiscreteScheduler''', '''EulerAncestralDiscreteScheduler''', '''KDPM2DiscreteScheduler''', '''KDPM2AncestralDiscreteScheduler''', '''DPMSolverSDEScheduler''', ] snake_case__ = self.get_dummy_components() snake_case__ = self.pipeline_class(**_a ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=_a ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) snake_case__ = self.get_dummy_inputs(_a ) snake_case__ = 2 snake_case__ = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue snake_case__ = getattr(_a , scheduler_enum.name ) snake_case__ = scheduler_cls.from_config(pipe.scheduler.config ) snake_case__ = pipe(**_a )[0] outputs.append(_a ) assert check_same_shape(_a ) @require_torch_gpu @slow class __magic_name__ (unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = torch.manual_seed(33 ) snake_case__ = StableDiffusionPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' , torch_dtype=torch.floataa ) pipe.to('''cuda''' ) snake_case__ = StableDiffusionLatentUpscalePipeline.from_pretrained( '''stabilityai/sd-x2-latent-upscaler''' , torch_dtype=torch.floataa ) upscaler.to('''cuda''' ) snake_case__ = '''a photo of an astronaut high resolution, unreal engine, ultra realistic''' snake_case__ = pipe(_a , generator=_a , output_type='''latent''' ).images snake_case__ = upscaler( prompt=_a , image=_a , num_inference_steps=20 , guidance_scale=0 , generator=_a , output_type='''np''' , ).images[0] snake_case__ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy''' ) assert np.abs((expected_image - image).mean() ) < 5e-2 def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): snake_case__ = torch.manual_seed(33 ) snake_case__ = StableDiffusionLatentUpscalePipeline.from_pretrained( '''stabilityai/sd-x2-latent-upscaler''' , torch_dtype=torch.floataa ) upscaler.to('''cuda''' ) snake_case__ = '''the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas''' snake_case__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png''' ) snake_case__ = upscaler( prompt=_a , image=_a , num_inference_steps=20 , guidance_scale=0 , generator=_a , output_type='''np''' , ).images[0] snake_case__ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy''' ) assert np.abs((expected_image - image).max() ) < 5e-2
33
1
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCAmelCase__ ( _lowerCAmelCase ,_lowerCAmelCase ,unittest.TestCase ): A = StableDiffusionSAGPipeline A = TEXT_TO_IMAGE_PARAMS A = TEXT_TO_IMAGE_BATCH_PARAMS A = TEXT_TO_IMAGE_IMAGE_PARAMS A = TEXT_TO_IMAGE_IMAGE_PARAMS A = False def __UpperCamelCase ( self : List[Any] ) -> Any: """simple docstring""" torch.manual_seed(0 ) lowerCamelCase_ : Any = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) lowerCamelCase_ : int = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=UpperCamelCase_ , set_alpha_to_one=UpperCamelCase_ , ) torch.manual_seed(0 ) lowerCamelCase_ : List[str] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) lowerCamelCase_ : str = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) lowerCamelCase_ : Dict = CLIPTextModel(UpperCamelCase_ ) lowerCamelCase_ : List[Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) lowerCamelCase_ : Any = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def __UpperCamelCase ( self : List[str] , UpperCamelCase_ : List[str] , UpperCamelCase_ : Union[str, Any]=0 ) -> Tuple: """simple docstring""" if str(UpperCamelCase_ ).startswith('''mps''' ): lowerCamelCase_ : Any = torch.manual_seed(UpperCamelCase_ ) else: lowerCamelCase_ : str = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) lowerCamelCase_ : Tuple = { '''prompt''': '''.''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 1.0, '''sag_scale''': 1.0, '''output_type''': '''numpy''', } return inputs def __UpperCamelCase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): def __UpperCamelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : List[Any] ) -> str: """simple docstring""" lowerCamelCase_ : str = StableDiffusionSAGPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' ) lowerCamelCase_ : int = sag_pipe.to(UpperCamelCase_ ) sag_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) lowerCamelCase_ : str = '''.''' lowerCamelCase_ : int = torch.manual_seed(0 ) lowerCamelCase_ : int = sag_pipe( [prompt] , generator=UpperCamelCase_ , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' ) lowerCamelCase_ : Dict = output.images lowerCamelCase_ : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowerCamelCase_ : Tuple = np.array([0.1568, 0.1738, 0.1695, 0.1693, 0.1507, 0.1705, 0.1547, 0.1751, 0.1949] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def __UpperCamelCase ( self : Dict ) -> Dict: """simple docstring""" lowerCamelCase_ : List[Any] = StableDiffusionSAGPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) lowerCamelCase_ : Optional[Any] = sag_pipe.to(UpperCamelCase_ ) sag_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) lowerCamelCase_ : Tuple = '''.''' lowerCamelCase_ : Tuple = torch.manual_seed(0 ) lowerCamelCase_ : List[Any] = sag_pipe( [prompt] , generator=UpperCamelCase_ , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' ) lowerCamelCase_ : Optional[int] = output.images lowerCamelCase_ : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowerCamelCase_ : Dict = np.array([0.3459, 0.2876, 0.2537, 0.3002, 0.2671, 0.2160, 0.3026, 0.2262, 0.2371] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def __UpperCamelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" lowerCamelCase_ : Any = StableDiffusionSAGPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) lowerCamelCase_ : Optional[Any] = sag_pipe.to(UpperCamelCase_ ) sag_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) lowerCamelCase_ : List[str] = '''.''' lowerCamelCase_ : Optional[Any] = torch.manual_seed(0 ) lowerCamelCase_ : int = sag_pipe( [prompt] , width=768 , height=512 , generator=UpperCamelCase_ , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' , ) lowerCamelCase_ : Union[str, Any] = output.images assert image.shape == (1, 512, 768, 3)
418
'''simple docstring''' __lowerCamelCase : int = [ 999, 800, 799, 600, 599, 500, 400, 399, 377, 355, 333, 311, 288, 266, 244, 222, 200, 199, 177, 155, 133, 111, 88, 66, 44, 22, 0, ] __lowerCamelCase : Dict = [ 999, 976, 952, 928, 905, 882, 858, 857, 810, 762, 715, 714, 572, 429, 428, 286, 285, 238, 190, 143, 142, 118, 95, 71, 47, 24, 0, ] __lowerCamelCase : str = [ 999, 988, 977, 966, 955, 944, 933, 922, 911, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 350, 300, 299, 266, 233, 200, 199, 179, 159, 140, 120, 100, 99, 88, 77, 66, 55, 44, 33, 22, 11, 0, ] __lowerCamelCase : Tuple = [ 999, 995, 992, 989, 985, 981, 978, 975, 971, 967, 964, 961, 957, 956, 951, 947, 942, 937, 933, 928, 923, 919, 914, 913, 908, 903, 897, 892, 887, 881, 876, 871, 870, 864, 858, 852, 846, 840, 834, 828, 827, 820, 813, 806, 799, 792, 785, 784, 777, 770, 763, 756, 749, 742, 741, 733, 724, 716, 707, 699, 698, 688, 677, 666, 656, 655, 645, 634, 623, 613, 612, 598, 584, 570, 569, 555, 541, 527, 526, 505, 484, 483, 462, 440, 439, 396, 395, 352, 351, 308, 307, 264, 263, 220, 219, 176, 132, 88, 44, 0, ] __lowerCamelCase : Dict = [ 999, 997, 995, 992, 990, 988, 986, 984, 981, 979, 977, 975, 972, 970, 968, 966, 964, 961, 959, 957, 956, 954, 951, 949, 946, 944, 941, 939, 936, 934, 931, 929, 926, 924, 921, 919, 916, 914, 913, 910, 907, 905, 902, 899, 896, 893, 891, 888, 885, 882, 879, 877, 874, 871, 870, 867, 864, 861, 858, 855, 852, 849, 846, 843, 840, 837, 834, 831, 828, 827, 824, 821, 817, 814, 811, 808, 804, 801, 798, 795, 791, 788, 785, 784, 780, 777, 774, 770, 766, 763, 760, 756, 752, 749, 746, 742, 741, 737, 733, 730, 726, 722, 718, 714, 710, 707, 703, 699, 698, 694, 690, 685, 681, 677, 673, 669, 664, 660, 656, 655, 650, 646, 641, 636, 632, 627, 622, 618, 613, 612, 607, 602, 596, 591, 586, 580, 575, 570, 569, 563, 557, 551, 545, 539, 533, 527, 526, 519, 512, 505, 498, 491, 484, 483, 474, 466, 457, 449, 440, 439, 428, 418, 407, 396, 395, 381, 366, 352, 351, 330, 308, 307, 286, 264, 263, 242, 220, 219, 176, 175, 132, 131, 88, 44, 0, ] __lowerCamelCase : Tuple = [ 999, 991, 982, 974, 966, 958, 950, 941, 933, 925, 916, 908, 900, 899, 874, 850, 825, 800, 799, 700, 600, 500, 400, 300, 200, 100, 0, ] __lowerCamelCase : Tuple = [ 999, 992, 985, 978, 971, 964, 957, 949, 942, 935, 928, 921, 914, 907, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 300, 299, 200, 199, 100, 99, 0, ] __lowerCamelCase : List[Any] = [ 999, 996, 992, 989, 985, 982, 979, 975, 972, 968, 965, 961, 958, 955, 951, 948, 944, 941, 938, 934, 931, 927, 924, 920, 917, 914, 910, 907, 903, 900, 899, 891, 884, 876, 869, 861, 853, 846, 838, 830, 823, 815, 808, 800, 799, 788, 777, 766, 755, 744, 733, 722, 711, 700, 699, 688, 677, 666, 655, 644, 633, 622, 611, 600, 599, 585, 571, 557, 542, 528, 514, 500, 499, 485, 471, 457, 442, 428, 414, 400, 399, 379, 359, 340, 320, 300, 299, 279, 259, 240, 220, 200, 199, 166, 133, 100, 99, 66, 33, 0, ]
418
1
'''simple docstring''' from __future__ import annotations UpperCamelCase_ = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def lowerCamelCase ( UpperCAmelCase__ : list[list[int]] , UpperCAmelCase__ : list[int] , UpperCAmelCase__ : list[int] , UpperCAmelCase__ : int , UpperCAmelCase__ : list[list[int]] , ) -> tuple[list[list[int]], list[list[int]]]: '''simple docstring''' SCREAMING_SNAKE_CASE__ :str = [ [0 for col in range(len(grid[0] ) )] for row in range(len(UpperCAmelCase__ ) ) ] # the reference grid SCREAMING_SNAKE_CASE__ :Any = 1 SCREAMING_SNAKE_CASE__ :Dict = [ [0 for col in range(len(grid[0] ) )] for row in range(len(UpperCAmelCase__ ) ) ] # the action grid SCREAMING_SNAKE_CASE__ :int = init[0] SCREAMING_SNAKE_CASE__ :Optional[Any] = init[1] SCREAMING_SNAKE_CASE__ :List[str] = 0 SCREAMING_SNAKE_CASE__ :List[Any] = g + heuristic[x][y] # cost from starting cell to destination cell SCREAMING_SNAKE_CASE__ :List[Any] = [[f, g, x, y]] SCREAMING_SNAKE_CASE__ :Any = False # flag that is set when search is complete SCREAMING_SNAKE_CASE__ :str = False # flag set if we can't find expand while not found and not resign: if len(UpperCAmelCase__ ) == 0: raise ValueError('Algorithm is unable to find solution' ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() SCREAMING_SNAKE_CASE__ :List[Any] = cell.pop() SCREAMING_SNAKE_CASE__ :Optional[int] = next_cell[2] SCREAMING_SNAKE_CASE__ :Any = next_cell[3] SCREAMING_SNAKE_CASE__ :Dict = next_cell[1] if x == goal[0] and y == goal[1]: SCREAMING_SNAKE_CASE__ :Tuple = True else: for i in range(len(UpperCAmelCase__ ) ): # to try out different valid actions SCREAMING_SNAKE_CASE__ :Optional[int] = x + DIRECTIONS[i][0] SCREAMING_SNAKE_CASE__ :int = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(UpperCAmelCase__ ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: SCREAMING_SNAKE_CASE__ :str = g + cost SCREAMING_SNAKE_CASE__ :Union[str, Any] = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) SCREAMING_SNAKE_CASE__ :Union[str, Any] = 1 SCREAMING_SNAKE_CASE__ :Any = i SCREAMING_SNAKE_CASE__ :int = [] SCREAMING_SNAKE_CASE__ :Union[str, Any] = goal[0] SCREAMING_SNAKE_CASE__ :Optional[int] = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: SCREAMING_SNAKE_CASE__ :Optional[Any] = x - DIRECTIONS[action[x][y]][0] SCREAMING_SNAKE_CASE__ :Optional[Any] = y - DIRECTIONS[action[x][y]][1] SCREAMING_SNAKE_CASE__ :Optional[int] = xa SCREAMING_SNAKE_CASE__ :int = ya invpath.append([x, y] ) SCREAMING_SNAKE_CASE__ :int = [] for i in range(len(UpperCAmelCase__ ) ): path.append(invpath[len(UpperCAmelCase__ ) - 1 - i] ) return path, action if __name__ == "__main__": UpperCamelCase_ = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] UpperCamelCase_ = [0, 0] # all coordinates are given in format [y,x] UpperCamelCase_ = [len(grid) - 1, len(grid[0]) - 1] UpperCamelCase_ = 1 # the cost map which pushes the path closer to the goal UpperCamelCase_ = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): UpperCamelCase_ = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map UpperCamelCase_ = 99 UpperCamelCase_ , UpperCamelCase_ = search(grid, init, goal, cost, heuristic) print('''ACTION MAP''') for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
209
'''simple docstring''' import numpy as np import qiskit def lowerCamelCase ( UpperCAmelCase__ : int = 8 , UpperCAmelCase__ : int | None = None ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE__ :Union[str, Any] = np.random.default_rng(seed=UpperCAmelCase__ ) # Roughly 25% of the qubits will contribute to the key. # So we take more than we need. SCREAMING_SNAKE_CASE__ :Optional[int] = 6 * key_len # Measurement basis for Alice's qubits. SCREAMING_SNAKE_CASE__ :Union[str, Any] = rng.integers(2 , size=UpperCAmelCase__ ) # The set of states Alice will prepare. SCREAMING_SNAKE_CASE__ :List[Any] = rng.integers(2 , size=UpperCAmelCase__ ) # Measurement basis for Bob's qubits. SCREAMING_SNAKE_CASE__ :str = rng.integers(2 , size=UpperCAmelCase__ ) # Quantum Circuit to simulate BB84 SCREAMING_SNAKE_CASE__ :int = qiskit.QuantumCircuit(UpperCAmelCase__ , name='BB84' ) # Alice prepares her qubits according to rules above. for index, _ in enumerate(UpperCAmelCase__ ): if alice_state[index] == 1: bbaa_circ.x(UpperCAmelCase__ ) if alice_basis[index] == 1: bbaa_circ.h(UpperCAmelCase__ ) bbaa_circ.barrier() # Bob measures the received qubits according to rules above. for index, _ in enumerate(UpperCAmelCase__ ): if bob_basis[index] == 1: bbaa_circ.h(UpperCAmelCase__ ) bbaa_circ.barrier() bbaa_circ.measure_all() # Simulate the quantum circuit. SCREAMING_SNAKE_CASE__ :str = qiskit.Aer.get_backend('aer_simulator' ) # We only need to run one shot because the key is unique. # Multiple shots will produce the same key. SCREAMING_SNAKE_CASE__ :int = qiskit.execute(UpperCAmelCase__ , UpperCAmelCase__ , shots=1 , seed_simulator=UpperCAmelCase__ ) # Returns the result of measurement. SCREAMING_SNAKE_CASE__ :List[Any] = job.result().get_counts(UpperCAmelCase__ ).most_frequent() # Extracting the generated key from the simulation results. # Only keep measurement results where Alice and Bob chose the same basis. SCREAMING_SNAKE_CASE__ :Any = ''.join( [ result_bit for alice_basis_bit, bob_basis_bit, result_bit in zip( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) if alice_basis_bit == bob_basis_bit ] ) # Get final key. Pad with 0 if too short, otherwise truncate. SCREAMING_SNAKE_CASE__ :Optional[Any] = gen_key[:key_len] if len(UpperCAmelCase__ ) >= key_len else gen_key.ljust(UpperCAmelCase__ , '0' ) return key if __name__ == "__main__": print(f"The generated key is : {bbaa(8, seed=0)}") from doctest import testmod testmod()
209
1
import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : Any ) -> Any: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights __lowerCAmelCase : int = FlaxDiffusionPipeline.from_pretrained( """hf-internal-testing/tiny-stable-diffusion-pipe""" , safety_checker=lowerCAmelCase , cache_dir=lowerCAmelCase ) __lowerCAmelCase : Any = [t[-1] for t in os.walk(os.path.join(lowerCAmelCase , os.listdir(lowerCAmelCase )[0] , """snapshots""" ) )] __lowerCAmelCase : str = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith(""".bin""" ) for f in files ) @slow @require_flax class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Tuple: """simple docstring""" __lowerCAmelCase : Union[str, Any] = FlaxStableDiffusionPipeline.from_pretrained( """hf-internal-testing/tiny-stable-diffusion-pipe""" , safety_checker=lowerCAmelCase ) __lowerCAmelCase : Optional[int] = ( """A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of""" """ field, close up, split lighting, cinematic""" ) __lowerCAmelCase : Dict = jax.random.PRNGKey(0 ) __lowerCAmelCase : Optional[Any] = 4 __lowerCAmelCase : Any = jax.device_count() __lowerCAmelCase : str = num_samples * [prompt] __lowerCAmelCase : Tuple = pipeline.prepare_inputs(lowerCAmelCase ) # shard inputs and rng __lowerCAmelCase : Optional[int] = replicate(lowerCAmelCase ) __lowerCAmelCase : Optional[Any] = jax.random.split(lowerCAmelCase , lowerCAmelCase ) __lowerCAmelCase : List[Any] = shard(lowerCAmelCase ) __lowerCAmelCase : Any = pipeline(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , jit=lowerCAmelCase ).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.151_4745 ) < 1e-3 assert np.abs(np.abs(lowerCAmelCase , dtype=np.floataa ).sum() - 4_99_47.8_75 ) < 5e-1 __lowerCAmelCase : Dict = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(lowerCAmelCase ) == num_samples def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Tuple: """simple docstring""" __lowerCAmelCase : Optional[Any] = FlaxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""flax""" , safety_checker=lowerCAmelCase ) __lowerCAmelCase : Tuple = ( """A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of""" """ field, close up, split lighting, cinematic""" ) __lowerCAmelCase : Optional[int] = jax.random.PRNGKey(0 ) __lowerCAmelCase : List[Any] = 50 __lowerCAmelCase : List[str] = jax.device_count() __lowerCAmelCase : Optional[int] = num_samples * [prompt] __lowerCAmelCase : List[Any] = pipeline.prepare_inputs(lowerCAmelCase ) # shard inputs and rng __lowerCAmelCase : Tuple = replicate(lowerCAmelCase ) __lowerCAmelCase : Tuple = jax.random.split(lowerCAmelCase , lowerCAmelCase ) __lowerCAmelCase : Any = shard(lowerCAmelCase ) __lowerCAmelCase : Union[str, Any] = pipeline(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , jit=lowerCAmelCase ).images assert images.shape == (num_samples, 1, 5_12, 5_12, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0565_2401) ) < 1e-3 assert np.abs((np.abs(lowerCAmelCase , dtype=np.floataa ).sum() - 2_38_38_08.2) ) < 5e-1 def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Any: """simple docstring""" __lowerCAmelCase : Tuple = FlaxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""bf16""" , dtype=jnp.bfloataa , safety_checker=lowerCAmelCase ) __lowerCAmelCase : List[Any] = ( """A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of""" """ field, close up, split lighting, cinematic""" ) __lowerCAmelCase : Any = jax.random.PRNGKey(0 ) __lowerCAmelCase : Tuple = 50 __lowerCAmelCase : Any = jax.device_count() __lowerCAmelCase : Any = num_samples * [prompt] __lowerCAmelCase : str = pipeline.prepare_inputs(lowerCAmelCase ) # shard inputs and rng __lowerCAmelCase : Tuple = replicate(lowerCAmelCase ) __lowerCAmelCase : List[Any] = jax.random.split(lowerCAmelCase , lowerCAmelCase ) __lowerCAmelCase : Optional[Any] = shard(lowerCAmelCase ) __lowerCAmelCase : Dict = pipeline(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , jit=lowerCAmelCase ).images assert images.shape == (num_samples, 1, 5_12, 5_12, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0400_3906) ) < 1e-3 assert np.abs((np.abs(lowerCAmelCase , dtype=np.floataa ).sum() - 2_37_35_16.75) ) < 5e-1 def SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[str]: """simple docstring""" __lowerCAmelCase : Optional[int] = FlaxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""bf16""" , dtype=jnp.bfloataa ) __lowerCAmelCase : List[Any] = ( """A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of""" """ field, close up, split lighting, cinematic""" ) __lowerCAmelCase : Union[str, Any] = jax.random.PRNGKey(0 ) __lowerCAmelCase : Union[str, Any] = 50 __lowerCAmelCase : Dict = jax.device_count() __lowerCAmelCase : Dict = num_samples * [prompt] __lowerCAmelCase : List[str] = pipeline.prepare_inputs(lowerCAmelCase ) # shard inputs and rng __lowerCAmelCase : List[str] = replicate(lowerCAmelCase ) __lowerCAmelCase : Union[str, Any] = jax.random.split(lowerCAmelCase , lowerCAmelCase ) __lowerCAmelCase : List[Any] = shard(lowerCAmelCase ) __lowerCAmelCase : Optional[int] = pipeline(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , jit=lowerCAmelCase ).images assert images.shape == (num_samples, 1, 5_12, 5_12, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0400_3906) ) < 1e-3 assert np.abs((np.abs(lowerCAmelCase , dtype=np.floataa ).sum() - 2_37_35_16.75) ) < 5e-1 def SCREAMING_SNAKE_CASE ( self : int ) -> Any: """simple docstring""" __lowerCAmelCase : List[str] = FlaxDDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , set_alpha_to_one=lowerCAmelCase , steps_offset=1 , ) __lowerCAmelCase : Optional[int] = FlaxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""bf16""" , dtype=jnp.bfloataa , scheduler=lowerCAmelCase , safety_checker=lowerCAmelCase , ) __lowerCAmelCase : List[Any] = scheduler.create_state() __lowerCAmelCase : List[Any] = scheduler_state __lowerCAmelCase : Optional[int] = ( """A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of""" """ field, close up, split lighting, cinematic""" ) __lowerCAmelCase : Optional[Any] = jax.random.PRNGKey(0 ) __lowerCAmelCase : Tuple = 50 __lowerCAmelCase : Any = jax.device_count() __lowerCAmelCase : Optional[int] = num_samples * [prompt] __lowerCAmelCase : Optional[int] = pipeline.prepare_inputs(lowerCAmelCase ) # shard inputs and rng __lowerCAmelCase : Any = replicate(lowerCAmelCase ) __lowerCAmelCase : Optional[int] = jax.random.split(lowerCAmelCase , lowerCAmelCase ) __lowerCAmelCase : List[Any] = shard(lowerCAmelCase ) __lowerCAmelCase : str = pipeline(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , jit=lowerCAmelCase ).images assert images.shape == (num_samples, 1, 5_12, 5_12, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_4504_3945) ) < 1e-3 assert np.abs((np.abs(lowerCAmelCase , dtype=np.floataa ).sum() - 2_34_76_93.5) ) < 5e-1 def SCREAMING_SNAKE_CASE ( self : Any ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : Optional[int] = ( """A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of""" """ field, close up, split lighting, cinematic""" ) __lowerCAmelCase : Optional[Any] = jax.device_count() __lowerCAmelCase : List[str] = num_samples * [prompt] __lowerCAmelCase : List[str] = jax.random.split(jax.random.PRNGKey(0 ) , lowerCAmelCase ) __lowerCAmelCase : Dict = FlaxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""bf16""" , dtype=jnp.bfloataa , safety_checker=lowerCAmelCase , ) __lowerCAmelCase : List[Any] = replicate(lowerCAmelCase ) __lowerCAmelCase : Union[str, Any] = pipeline.prepare_inputs(lowerCAmelCase ) __lowerCAmelCase : List[Any] = shard(lowerCAmelCase ) __lowerCAmelCase : Optional[Any] = pipeline(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , jit=lowerCAmelCase ).images assert images.shape == (num_samples, 1, 5_12, 5_12, 3) __lowerCAmelCase : Tuple = images[2, 0, 2_56, 10:17, 1] # With memory efficient attention __lowerCAmelCase : int = FlaxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""bf16""" , dtype=jnp.bfloataa , safety_checker=lowerCAmelCase , use_memory_efficient_attention=lowerCAmelCase , ) __lowerCAmelCase : List[Any] = replicate(lowerCAmelCase ) __lowerCAmelCase : Optional[int] = pipeline.prepare_inputs(lowerCAmelCase ) __lowerCAmelCase : Union[str, Any] = shard(lowerCAmelCase ) __lowerCAmelCase : Tuple = pipeline(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , jit=lowerCAmelCase ).images assert images_eff.shape == (num_samples, 1, 5_12, 5_12, 3) __lowerCAmelCase : Dict = images[2, 0, 2_56, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1e-2
721
import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html __UpperCAmelCase = """platform""" import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def snake_case_ (__A : Tuple , __A : List[str] , __A : str=None , __A : Any=None , __A : Union[str, Any]=None , __A : str=None , __A : str=None , __A : Tuple=None , ) -> Optional[int]: if attention_mask is None: __lowerCAmelCase : Optional[int] = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: __lowerCAmelCase : Union[str, Any] = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: __lowerCAmelCase : int = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __lowerCAmelCase : Optional[Any] = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: __lowerCAmelCase : Any = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : Optional[Any] , lowerCAmelCase : str , lowerCAmelCase : str=13 , lowerCAmelCase : Union[str, Any]=7 , lowerCAmelCase : int=True , lowerCAmelCase : int=False , lowerCAmelCase : Any=99 , lowerCAmelCase : Dict=16 , lowerCAmelCase : int=2 , lowerCAmelCase : int=4 , lowerCAmelCase : Union[str, Any]=4 , lowerCAmelCase : Dict="gelu" , lowerCAmelCase : Optional[int]=0.1 , lowerCAmelCase : str=0.1 , lowerCAmelCase : List[Any]=32 , lowerCAmelCase : Any=2 , lowerCAmelCase : Dict=1 , lowerCAmelCase : Dict=0 , lowerCAmelCase : List[str]=0.02 , ) -> Tuple: """simple docstring""" __lowerCAmelCase : List[Any] = parent __lowerCAmelCase : str = batch_size __lowerCAmelCase : Any = seq_length __lowerCAmelCase : int = is_training __lowerCAmelCase : Tuple = use_labels __lowerCAmelCase : Union[str, Any] = vocab_size __lowerCAmelCase : Optional[int] = hidden_size __lowerCAmelCase : Dict = num_hidden_layers __lowerCAmelCase : Optional[int] = num_attention_heads __lowerCAmelCase : str = intermediate_size __lowerCAmelCase : Union[str, Any] = hidden_act __lowerCAmelCase : Tuple = hidden_dropout_prob __lowerCAmelCase : str = attention_probs_dropout_prob __lowerCAmelCase : List[Any] = max_position_embeddings __lowerCAmelCase : Optional[Any] = eos_token_id __lowerCAmelCase : List[Any] = pad_token_id __lowerCAmelCase : Optional[Any] = bos_token_id __lowerCAmelCase : Dict = initializer_range def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowerCAmelCase : Union[str, Any] = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) __lowerCAmelCase : List[str] = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) __lowerCAmelCase : Optional[int] = shift_tokens_right(lowerCAmelCase , 1 , 2 ) __lowerCAmelCase : Union[str, Any] = BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=lowerCAmelCase , ) __lowerCAmelCase : Dict = prepare_blenderbot_inputs_dict(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) return config, inputs_dict def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[Any]: """simple docstring""" __lowerCAmelCase ,__lowerCAmelCase : Tuple = self.prepare_config_and_inputs() return config, inputs_dict def SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase : List[str] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Union[str, Any] ) -> int: """simple docstring""" __lowerCAmelCase : List[str] = 20 __lowerCAmelCase : Tuple = model_class_name(lowerCAmelCase ) __lowerCAmelCase : str = model.encode(inputs_dict["""input_ids"""] ) __lowerCAmelCase ,__lowerCAmelCase : Dict = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) __lowerCAmelCase : Optional[Any] = model.init_cache(decoder_input_ids.shape[0] , lowerCAmelCase , lowerCAmelCase ) __lowerCAmelCase : Any = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""" ) __lowerCAmelCase : Optional[int] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __lowerCAmelCase : Dict = model.decode( decoder_input_ids[:, :-1] , lowerCAmelCase , decoder_attention_mask=lowerCAmelCase , past_key_values=lowerCAmelCase , decoder_position_ids=lowerCAmelCase , ) __lowerCAmelCase : Optional[Any] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) __lowerCAmelCase : Any = model.decode( decoder_input_ids[:, -1:] , lowerCAmelCase , decoder_attention_mask=lowerCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=lowerCAmelCase , ) __lowerCAmelCase : List[str] = model.decode(lowerCAmelCase , lowerCAmelCase ) __lowerCAmelCase : Dict = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' ) def SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase : Dict , lowerCAmelCase : Any , lowerCAmelCase : List[str] ) -> Dict: """simple docstring""" __lowerCAmelCase : List[Any] = 20 __lowerCAmelCase : Tuple = model_class_name(lowerCAmelCase ) __lowerCAmelCase : Tuple = model.encode(inputs_dict["""input_ids"""] ) __lowerCAmelCase ,__lowerCAmelCase : str = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) __lowerCAmelCase : Tuple = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) __lowerCAmelCase : Optional[int] = model.init_cache(decoder_input_ids.shape[0] , lowerCAmelCase , lowerCAmelCase ) __lowerCAmelCase : List[Any] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __lowerCAmelCase : List[str] = model.decode( decoder_input_ids[:, :-1] , lowerCAmelCase , decoder_attention_mask=lowerCAmelCase , past_key_values=lowerCAmelCase , decoder_position_ids=lowerCAmelCase , ) __lowerCAmelCase : str = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) __lowerCAmelCase : Any = model.decode( decoder_input_ids[:, -1:] , lowerCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=lowerCAmelCase , decoder_position_ids=lowerCAmelCase , ) __lowerCAmelCase : Any = model.decode(lowerCAmelCase , lowerCAmelCase , decoder_attention_mask=lowerCAmelCase ) __lowerCAmelCase : Any = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' ) @require_flax class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" lowerCamelCase : Optional[Any] =99 def SCREAMING_SNAKE_CASE ( self : Dict ) -> Tuple: """simple docstring""" __lowerCAmelCase : Dict = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) __lowerCAmelCase : Dict = input_ids.shape[0] __lowerCAmelCase : Union[str, Any] = BlenderbotConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]: """simple docstring""" __lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase : Tuple = self._get_config_and_data() __lowerCAmelCase : Union[str, Any] = FlaxBlenderbotForConditionalGeneration(lowerCAmelCase ) __lowerCAmelCase : Any = lm_model(input_ids=lowerCAmelCase ) __lowerCAmelCase : List[str] = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs["""logits"""].shape , lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : str ) -> str: """simple docstring""" __lowerCAmelCase : Union[str, Any] = BlenderbotConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) __lowerCAmelCase : List[str] = FlaxBlenderbotForConditionalGeneration(lowerCAmelCase ) __lowerCAmelCase : Dict = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) __lowerCAmelCase : str = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) __lowerCAmelCase : List[str] = lm_model(input_ids=lowerCAmelCase , decoder_input_ids=lowerCAmelCase ) __lowerCAmelCase : Tuple = (*summary.shape, config.vocab_size) self.assertEqual(outputs["""logits"""].shape , lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: """simple docstring""" __lowerCAmelCase : Optional[int] = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) __lowerCAmelCase : Tuple = shift_tokens_right(lowerCAmelCase , 1 , 2 ) __lowerCAmelCase : int = np.equal(lowerCAmelCase , 1 ).astype(np.floataa ).sum() __lowerCAmelCase : List[Any] = np.equal(lowerCAmelCase , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(lowerCAmelCase , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class SCREAMING_SNAKE_CASE ( a_ , unittest.TestCase , a_ ): """simple docstring""" lowerCamelCase : Dict =True lowerCamelCase : List[Any] =( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) lowerCamelCase : Tuple =(FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def SCREAMING_SNAKE_CASE ( self : int ) -> Any: """simple docstring""" __lowerCAmelCase : Union[str, Any] = FlaxBlenderbotModelTester(self ) def SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]: """simple docstring""" __lowerCAmelCase ,__lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Any ) -> int: """simple docstring""" __lowerCAmelCase ,__lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : int ) -> Dict: """simple docstring""" __lowerCAmelCase ,__lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowerCAmelCase : Tuple = self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) __lowerCAmelCase : str = model_class(lowerCAmelCase ) @jax.jit def encode_jitted(lowerCAmelCase : Optional[int] , lowerCAmelCase : Any=None , **lowerCAmelCase : Optional[Any] ): return model.encode(input_ids=lowerCAmelCase , attention_mask=lowerCAmelCase ) with self.subTest("""JIT Enabled""" ): __lowerCAmelCase : Optional[int] = encode_jitted(**lowerCAmelCase ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): __lowerCAmelCase : Tuple = encode_jitted(**lowerCAmelCase ).to_tuple() self.assertEqual(len(lowerCAmelCase ) , len(lowerCAmelCase ) ) for jitted_output, output in zip(lowerCAmelCase , lowerCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: """simple docstring""" __lowerCAmelCase ,__lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowerCAmelCase : List[Any] = model_class(lowerCAmelCase ) __lowerCAmelCase : Any = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""] ) __lowerCAmelCase : Union[str, Any] = { """decoder_input_ids""": inputs_dict["""decoder_input_ids"""], """decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""], """encoder_outputs""": encoder_outputs, } @jax.jit def decode_jitted(lowerCAmelCase : int , lowerCAmelCase : Any , lowerCAmelCase : Optional[int] ): return model.decode( decoder_input_ids=lowerCAmelCase , decoder_attention_mask=lowerCAmelCase , encoder_outputs=lowerCAmelCase , ) with self.subTest("""JIT Enabled""" ): __lowerCAmelCase : Union[str, Any] = decode_jitted(**lowerCAmelCase ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): __lowerCAmelCase : Optional[Any] = decode_jitted(**lowerCAmelCase ).to_tuple() self.assertEqual(len(lowerCAmelCase ) , len(lowerCAmelCase ) ) for jitted_output, output in zip(lowerCAmelCase , lowerCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) @slow def SCREAMING_SNAKE_CASE ( self : str ) -> int: """simple docstring""" for model_class_name in self.all_model_classes: __lowerCAmelCase : Optional[int] = model_class_name.from_pretrained("""facebook/blenderbot-400M-distill""" ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids __lowerCAmelCase : Optional[int] = np.ones((1, 1) ) * model.config.eos_token_id __lowerCAmelCase : Any = model(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) @unittest.skipUnless(jax_device != """cpu""" , """3B test too slow on CPU.""" ) @slow def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : List[Any] = {"""num_beams""": 1, """early_stopping""": True, """min_length""": 15, """max_length""": 25} __lowerCAmelCase : str = {"""skip_special_tokens""": True, """clean_up_tokenization_spaces""": True} __lowerCAmelCase : Optional[int] = FlaxBlenderbotForConditionalGeneration.from_pretrained("""facebook/blenderbot-3B""" , from_pt=lowerCAmelCase ) __lowerCAmelCase : str = BlenderbotTokenizer.from_pretrained("""facebook/blenderbot-3B""" ) __lowerCAmelCase : List[str] = ["""Sam"""] __lowerCAmelCase : List[str] = tokenizer(lowerCAmelCase , return_tensors="""jax""" ) __lowerCAmelCase : Union[str, Any] = model.generate(**lowerCAmelCase , **lowerCAmelCase ) __lowerCAmelCase : Union[str, Any] = """Sam is a great name. It means \"sun\" in Gaelic.""" __lowerCAmelCase : List[Any] = tokenizer.batch_decode(lowerCAmelCase , **lowerCAmelCase ) assert generated_txt[0].strip() == tgt_text
218
0
import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :str = MobileBertConfig.from_json_file(SCREAMING_SNAKE_CASE ) print(f"""Building PyTorch model from configuration: {config}""" ) __UpperCamelCase :List[str] = MobileBertForPreTraining(SCREAMING_SNAKE_CASE ) # Load weights from tf checkpoint __UpperCamelCase :int = load_tf_weights_in_mobilebert(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--mobilebert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained MobileBERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __lowercase = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
167
import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowerCamelCase_ ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' a__ : Any = DDIMPipeline a__ : int = UNCONDITIONAL_IMAGE_GENERATION_PARAMS a__ : Optional[int] = PipelineTesterMixin.required_optional_params - { """num_images_per_prompt""", """latents""", """callback""", """callback_steps""", } a__ : Any = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS a__ : Optional[int] = False def UpperCamelCase__ ( self) -> Optional[Any]: torch.manual_seed(0) __UpperCamelCase :Tuple = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) __UpperCamelCase :Dict = DDIMScheduler() __UpperCamelCase :int = {'''unet''': unet, '''scheduler''': scheduler} return components def UpperCamelCase__ ( self , __lowercase , __lowercase=0) -> Tuple: if str(__lowercase).startswith('''mps'''): __UpperCamelCase :Optional[int] = torch.manual_seed(__lowercase) else: __UpperCamelCase :Tuple = torch.Generator(device=__lowercase).manual_seed(__lowercase) __UpperCamelCase :str = { '''batch_size''': 1, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def UpperCamelCase__ ( self) -> Optional[int]: __UpperCamelCase :int = '''cpu''' __UpperCamelCase :Any = self.get_dummy_components() __UpperCamelCase :Any = self.pipeline_class(**__lowercase) pipe.to(__lowercase) pipe.set_progress_bar_config(disable=__lowercase) __UpperCamelCase :Dict = self.get_dummy_inputs(__lowercase) __UpperCamelCase :Union[str, Any] = pipe(**__lowercase).images __UpperCamelCase :Dict = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 32, 32, 3)) __UpperCamelCase :List[str] = np.array( [1.0_0_0E0_0, 5.7_1_7E-0_1, 4.7_1_7E-0_1, 1.0_0_0E0_0, 0.0_0_0E0_0, 1.0_0_0E0_0, 3.0_0_0E-0_4, 0.0_0_0E0_0, 9.0_0_0E-0_4]) __UpperCamelCase :int = np.abs(image_slice.flatten() - expected_slice).max() self.assertLessEqual(__lowercase , 1E-3) def UpperCamelCase__ ( self) -> str: super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3) def UpperCamelCase__ ( self) -> Any: super().test_save_load_local(expected_max_difference=3E-3) def UpperCamelCase__ ( self) -> Optional[Any]: super().test_save_load_optional_components(expected_max_difference=3E-3) def UpperCamelCase__ ( self) -> Union[str, Any]: super().test_inference_batch_single_identical(expected_max_diff=3E-3) @slow @require_torch_gpu class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self) -> Dict: __UpperCamelCase :int = '''google/ddpm-cifar10-32''' __UpperCamelCase :str = UNetaDModel.from_pretrained(__lowercase) __UpperCamelCase :int = DDIMScheduler() __UpperCamelCase :Optional[Any] = DDIMPipeline(unet=__lowercase , scheduler=__lowercase) ddim.to(__lowercase) ddim.set_progress_bar_config(disable=__lowercase) __UpperCamelCase :Dict = torch.manual_seed(0) __UpperCamelCase :Tuple = ddim(generator=__lowercase , eta=0.0 , output_type='''numpy''').images __UpperCamelCase :Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __UpperCamelCase :List[str] = np.array([0.17_23, 0.16_17, 0.16_00, 0.16_26, 0.14_97, 0.15_13, 0.15_05, 0.14_42, 0.14_53]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def UpperCamelCase__ ( self) -> str: __UpperCamelCase :int = '''google/ddpm-ema-bedroom-256''' __UpperCamelCase :Optional[Any] = UNetaDModel.from_pretrained(__lowercase) __UpperCamelCase :Union[str, Any] = DDIMScheduler.from_pretrained(__lowercase) __UpperCamelCase :Optional[int] = DDIMPipeline(unet=__lowercase , scheduler=__lowercase) ddpm.to(__lowercase) ddpm.set_progress_bar_config(disable=__lowercase) __UpperCamelCase :Dict = torch.manual_seed(0) __UpperCamelCase :Optional[int] = ddpm(generator=__lowercase , output_type='''numpy''').images __UpperCamelCase :Any = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) __UpperCamelCase :Any = np.array([0.00_60, 0.02_01, 0.03_44, 0.00_24, 0.00_18, 0.00_02, 0.00_22, 0.00_00, 0.00_69]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2
167
1
import argparse from collections import OrderedDict from pathlib import Path import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision.transforms import functional as F from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) UpperCamelCase = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', F'''encoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', F'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''encoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''encoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''encoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''encoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.weight''', F'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.bias''', F'''encoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.weight''', F'''encoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''encoder.layers.{i}.final_layer_norm.bias''')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.multihead_attn.out_proj.weight''', F'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.multihead_attn.out_proj.bias''', F'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''decoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''decoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''decoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''decoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.weight''', F'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.bias''', F'''decoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.weight''', F'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.bias''', F'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.weight''', F'''decoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''decoder.layers.{i}.final_layer_norm.bias''')) # convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ("""input_proj.weight""", """input_projection.weight"""), ("""input_proj.bias""", """input_projection.bias"""), ("""query_embed.weight""", """query_position_embeddings.weight"""), ("""transformer.encoder.norm.weight""", """encoder.layernorm.weight"""), ("""transformer.encoder.norm.bias""", """encoder.layernorm.bias"""), ("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""), ("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""), ("""class_embed.weight""", """class_labels_classifier.weight"""), ("""class_embed.bias""", """class_labels_classifier.bias"""), ("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""), ("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""), ("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""), ("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""), ("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""), ("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""), ] ) def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): A_ : List[str] = state_dict.pop(SCREAMING_SNAKE_CASE ) A_ : Optional[int] = val def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): A_ : Optional[int] = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: A_ : Union[str, Any] = key.replace('''backbone.0.body''' , '''backbone.conv_encoder.model''' ) A_ : Tuple = value else: A_ : List[Any] = value return new_state_dict def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): A_ : str = '''''' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) A_ : Optional[int] = state_dict.pop(f'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) A_ : Any = state_dict.pop(f'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict A_ : Optional[Any] = in_proj_weight[:256, :] A_ : Optional[Any] = in_proj_bias[:256] A_ : List[Any] = in_proj_weight[256:512, :] A_ : List[Any] = in_proj_bias[256:512] A_ : List[str] = in_proj_weight[-256:, :] A_ : Any = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention A_ : Union[str, Any] = state_dict.pop(f'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight''' ) A_ : Optional[int] = state_dict.pop(f'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict A_ : Tuple = in_proj_weight[:256, :] A_ : Union[str, Any] = in_proj_bias[:256] A_ : Dict = in_proj_weight[256:512, :] A_ : List[str] = in_proj_bias[256:512] A_ : Any = in_proj_weight[-256:, :] A_ : Tuple = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention A_ : List[str] = state_dict.pop( f'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight''' ) A_ : str = state_dict.pop(f'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) of cross-attention to the state dict A_ : List[str] = in_proj_weight_cross_attn[:256, :] A_ : Any = in_proj_bias_cross_attn[:256] A_ : List[str] = in_proj_weight_cross_attn[256:512, :] A_ : Any = in_proj_bias_cross_attn[256:512] A_ : Tuple = in_proj_weight_cross_attn[-256:, :] A_ : int = in_proj_bias_cross_attn[-256:] def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): A_ : int = image.size A_ : Optional[int] = max(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) A_ : List[str] = 800 if '''detection''' in checkpoint_url else 1_000 A_ : Optional[int] = target_max_size / current_max_size A_ : str = image.resize((int(round(scale * width ) ), int(round(scale * height ) )) ) return resized_image def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): A_ : List[str] = F.to_tensor(SCREAMING_SNAKE_CASE ) A_ : str = F.normalize(SCREAMING_SNAKE_CASE , mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] , std=[0.2_2_9, 0.2_2_4, 0.2_2_5] ) return image @torch.no_grad() def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): logger.info('''Converting model...''' ) # load original state dict A_ : Union[str, Any] = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE , map_location='''cpu''' ) # rename keys for src, dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) A_ : Tuple = rename_backbone_keys(SCREAMING_SNAKE_CASE ) # query, key and value matrices need special treatment read_in_q_k_v(SCREAMING_SNAKE_CASE ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them A_ : Union[str, Any] = '''model.''' for key in state_dict.copy().keys(): if not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ): A_ : Dict = state_dict.pop(SCREAMING_SNAKE_CASE ) A_ : int = val # create HuggingFace model and load state dict A_ : Optional[int] = TableTransformerConfig( backbone='''resnet18''' , mask_loss_coefficient=1 , dice_loss_coefficient=1 , ce_loss_coefficient=1 , bbox_loss_coefficient=5 , giou_loss_coefficient=2 , eos_coefficient=0.4 , class_cost=1 , bbox_cost=5 , giou_cost=2 , ) if "detection" in checkpoint_url: A_ : Any = 15 A_ : Union[str, Any] = 2 A_ : Optional[Any] = {0: '''table''', 1: '''table rotated'''} A_ : int = idalabel A_ : str = {v: k for k, v in idalabel.items()} else: A_ : str = 125 A_ : List[Any] = 6 A_ : Tuple = { 0: '''table''', 1: '''table column''', 2: '''table row''', 3: '''table column header''', 4: '''table projected row header''', 5: '''table spanning cell''', } A_ : int = idalabel A_ : List[Any] = {v: k for k, v in idalabel.items()} A_ : int = DetrImageProcessor( format='''coco_detection''' , max_size=800 if '''detection''' in checkpoint_url else 1_000 ) A_ : List[Any] = TableTransformerForObjectDetection(SCREAMING_SNAKE_CASE ) model.load_state_dict(SCREAMING_SNAKE_CASE ) model.eval() # verify our conversion A_ : Optional[Any] = '''example_pdf.png''' if '''detection''' in checkpoint_url else '''example_table.png''' A_ : Union[str, Any] = hf_hub_download(repo_id='''nielsr/example-pdf''' , repo_type='''dataset''' , filename=SCREAMING_SNAKE_CASE ) A_ : Tuple = Image.open(SCREAMING_SNAKE_CASE ).convert('''RGB''' ) A_ : List[Any] = normalize(resize(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ).unsqueeze(0 ) A_ : Dict = model(SCREAMING_SNAKE_CASE ) if "detection" in checkpoint_url: A_ : str = (1, 15, 3) A_ : Dict = torch.tensor( [[-6.7_8_9_7, -16.9_985, 6.7_9_3_7], [-8.0_1_8_6, -22.2_192, 6.9_6_7_7], [-7.3_1_1_7, -21.0_708, 7.4_0_5_5]] ) A_ : Optional[int] = torch.tensor([[0.4_8_6_7, 0.1_7_6_7, 0.6_7_3_2], [0.6_7_1_8, 0.4_4_7_9, 0.3_8_3_0], [0.4_7_1_6, 0.1_7_6_0, 0.6_3_6_4]] ) else: A_ : List[str] = (1, 125, 7) A_ : Any = torch.tensor( [[-18.1_430, -8.3_2_1_4, 4.8_2_7_4], [-18.4_685, -7.1_3_6_1, -4.2_6_6_7], [-26.3_693, -9.3_4_2_9, -4.9_9_6_2]] ) A_ : Optional[int] = torch.tensor([[0.4_9_8_3, 0.5_5_9_5, 0.9_4_4_0], [0.4_9_1_6, 0.6_3_1_5, 0.5_9_5_4], [0.6_1_0_8, 0.8_6_3_7, 0.1_1_3_5]] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, :3, :3] , SCREAMING_SNAKE_CASE , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , SCREAMING_SNAKE_CASE , atol=1e-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(f'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(SCREAMING_SNAKE_CASE ).mkdir(exist_ok=SCREAMING_SNAKE_CASE ) model.save_pretrained(SCREAMING_SNAKE_CASE ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE ) if push_to_hub: # Push model to HF hub logger.info('''Pushing model to the hub...''' ) A_ : Tuple = ( '''microsoft/table-transformer-detection''' if '''detection''' in checkpoint_url else '''microsoft/table-transformer-structure-recognition''' ) model.push_to_hub(SCREAMING_SNAKE_CASE ) image_processor.push_to_hub(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() parser.add_argument( """--checkpoint_url""", default="""https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth""", type=str, choices=[ """https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth""", """https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth""", ], help="""URL of the Table Transformer checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) UpperCamelCase = parser.parse_args() convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
706
from __future__ import annotations import string from itertools import cycle, product from pathlib import Path UpperCamelCase = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) UpperCamelCase = [ord(letter) for letter in string.ascii_lowercase] UpperCamelCase = {ord(char) for char in VALID_CHARS} UpperCamelCase = ["the", "be", "to", "of", "and", "in", "that", "have"] def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): A_ : str = "" A_ : int A_ : int A_ : int for keychar, cipherchar in zip(cycle(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ): A_ : Tuple = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(SCREAMING_SNAKE_CASE ) return decoded def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): A_ : list[str] = [] for key in product(SCREAMING_SNAKE_CASE , repeat=3 ): A_ : Tuple = try_key(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if encoded is not None: possibles.append(SCREAMING_SNAKE_CASE ) return possibles def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): return [possible for possible in possibles if common_word in possible.lower()] def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE = "p059_cipher.txt" ): A_ : list[int] A_ : list[str] A_ : str A_ : str A_ : str = Path(SCREAMING_SNAKE_CASE ).parent.joinpath(SCREAMING_SNAKE_CASE ).read_text(encoding='''utf-8''' ) A_ : Optional[Any] = [int(SCREAMING_SNAKE_CASE ) for number in data.strip().split(''',''' )] A_ : Optional[int] = filter_valid_chars(SCREAMING_SNAKE_CASE ) for common_word in COMMON_WORDS: A_ : Optional[Any] = filter_common_word(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) == 1: break A_ : int = possibles[0] return sum(ord(SCREAMING_SNAKE_CASE ) for char in decoded_text ) if __name__ == "__main__": print(F'''{solution() = }''')
152
0
"""simple docstring""" from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image snake_case = ['''text''', '''image''', '''audio'''] def snake_case ( lowerCAmelCase_ ) -> Any: _snake_case = [] for input_type in input_types: if input_type == "text": inputs.append('''Text input''' ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir('''fixtures/tests_samples/COCO''' ) ) / '''000000039769.png''' ).resize((512, 512) ) ) elif input_type == "audio": inputs.append(torch.ones(3000 ) ) elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): inputs.append(create_inputs(lowerCAmelCase_ ) ) else: raise ValueError(f"""Invalid type requested: {input_type}""" ) return inputs def snake_case ( lowerCAmelCase_ ) -> str: _snake_case = [] for output in outputs: if isinstance(lowerCAmelCase_ , (str, AgentText) ): output_types.append('''text''' ) elif isinstance(lowerCAmelCase_ , (Image.Image, AgentImage) ): output_types.append('''image''' ) elif isinstance(lowerCAmelCase_ , (torch.Tensor, AgentAudio) ): output_types.append('''audio''' ) else: raise ValueError(f"""Invalid output: {output}""" ) return output_types @is_tool_test class UpperCAmelCase : def __UpperCAmelCase ( self : List[Any] ): """simple docstring""" self.assertTrue(hasattr(self.tool , '''inputs''' ) ) self.assertTrue(hasattr(self.tool , '''outputs''' ) ) _snake_case = self.tool.inputs for _input in inputs: if isinstance(_input , __lowerCamelCase ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) _snake_case = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def __UpperCAmelCase ( self : List[str] ): """simple docstring""" _snake_case = create_inputs(self.tool.inputs ) _snake_case = self.tool(*__lowerCamelCase ) # There is a single output if len(self.tool.outputs ) == 1: _snake_case = [outputs] self.assertListEqual(output_types(__lowerCamelCase ) , self.tool.outputs ) def __UpperCAmelCase ( self : Union[str, Any] ): """simple docstring""" self.assertTrue(hasattr(self.tool , '''description''' ) ) self.assertTrue(hasattr(self.tool , '''default_checkpoint''' ) ) self.assertTrue(self.tool.description.startswith('''This is a tool that''' ) ) def __UpperCAmelCase ( self : List[Any] ): """simple docstring""" _snake_case = create_inputs(self.tool.inputs ) _snake_case = self.tool(*__lowerCamelCase ) if not isinstance(__lowerCamelCase , __lowerCamelCase ): _snake_case = [outputs] self.assertEqual(len(__lowerCamelCase ) , len(self.tool.outputs ) ) for output, output_type in zip(__lowerCamelCase , self.tool.outputs ): _snake_case = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(__lowerCamelCase , __lowerCamelCase ) ) def __UpperCAmelCase ( self : Any ): """simple docstring""" _snake_case = create_inputs(self.tool.inputs ) _snake_case = [] for _input, input_type in zip(__lowerCamelCase , self.tool.inputs ): if isinstance(__lowerCamelCase , __lowerCamelCase ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error _snake_case = self.tool(*__lowerCamelCase ) if not isinstance(__lowerCamelCase , __lowerCamelCase ): _snake_case = [outputs] self.assertEqual(len(__lowerCamelCase ) , len(self.tool.outputs ) )
103
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase_ : List[str] = { '''configuration_informer''': [ '''INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''InformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Union[str, Any] = [ '''INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''InformerForPrediction''', '''InformerModel''', '''InformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys lowercase_ : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
304
0
'''simple docstring''' # A Bipartite Graph is a graph whose vertices can be divided into two independent sets, # U and V such that every edge (u, v) either connects a vertex from U to V or a vertex # from V to U. In other words, for every edge (u, v), either u belongs to U and v to V, # or u belongs to V and v to U. We can also say that there is no edge that connects # vertices of same set. def _a ( _lowercase : Dict ): '''simple docstring''' __UpperCAmelCase : str = [False] * len(_lowercase ) __UpperCAmelCase : Any = [-1] * len(_lowercase ) def dfs(_lowercase : Dict , _lowercase : List[str] ): __UpperCAmelCase : List[Any] = True __UpperCAmelCase : Union[str, Any] = c for u in graph[v]: if not visited[u]: dfs(_lowercase , 1 - c ) for i in range(len(_lowercase ) ): if not visited[i]: dfs(_lowercase , 0 ) for i in range(len(_lowercase ) ): for j in graph[i]: if color[i] == color[j]: return False return True # Adjacency list of graph __UpperCAmelCase :Any = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []} print(check_bipartite_dfs(graph))
266
'''simple docstring''' def _a ( _lowercase : List[str] ): '''simple docstring''' __UpperCAmelCase : int = len(_lowercase ) while cur > 1: # Find the maximum number in arr __UpperCAmelCase : Union[str, Any] = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi __UpperCAmelCase : Any = arr[mi::-1] + arr[mi + 1 : len(_lowercase )] # Reverse whole list __UpperCAmelCase : List[str] = arr[cur - 1 :: -1] + arr[cur : len(_lowercase )] cur -= 1 return arr if __name__ == "__main__": __UpperCAmelCase :Any = input("Enter numbers separated by a comma:\n").strip() __UpperCAmelCase :Optional[int] = [int(item) for item in user_input.split(",")] print(pancake_sort(unsorted))
266
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { '''vinvino02/glpn-kitti''': '''https://huggingface.co/vinvino02/glpn-kitti/resolve/main/config.json''', # See all GLPN models at https://huggingface.co/models?filter=glpn } class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: Any = '''glpn''' def __init__( self : Tuple ,A_ : Optional[int]=3 ,A_ : Union[str, Any]=4 ,A_ : Optional[int]=[2, 2, 2, 2] ,A_ : List[str]=[8, 4, 2, 1] ,A_ : List[str]=[32, 64, 160, 256] ,A_ : List[str]=[7, 3, 3, 3] ,A_ : List[Any]=[4, 2, 2, 2] ,A_ : Dict=[1, 2, 5, 8] ,A_ : List[str]=[4, 4, 4, 4] ,A_ : Union[str, Any]="gelu" ,A_ : Optional[Any]=0.0 ,A_ : Dict=0.0 ,A_ : Any=0.02 ,A_ : List[Any]=0.1 ,A_ : Optional[int]=1e-6 ,A_ : int=64 ,A_ : Optional[int]=10 ,A_ : List[str]=-1 ,**A_ : str ,) -> Optional[int]: super().__init__(**A_ ) A = num_channels A = num_encoder_blocks A = depths A = sr_ratios A = hidden_sizes A = patch_sizes A = strides A = mlp_ratios A = num_attention_heads A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = initializer_range A = drop_path_rate A = layer_norm_eps A = decoder_hidden_size A = max_depth A = head_in_index
91
"""simple docstring""" from __future__ import annotations def _snake_case ( snake_case__ : tuple[int, int] , snake_case__ : int ): A , A = position A = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] A = [] for position in positions: A , A = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(snake_case__ ) return permissible_positions def _snake_case ( snake_case__ : list[list[int]] ): return not any(elem == 0 for row in board for elem in row ) def _snake_case ( snake_case__ : list[list[int]] , snake_case__ : tuple[int, int] , snake_case__ : int ): if is_complete(snake_case__ ): return True for position in get_valid_pos(snake_case__ , len(snake_case__ ) ): A , A = position if board[y][x] == 0: A = curr + 1 if open_knight_tour_helper(snake_case__ , snake_case__ , curr + 1 ): return True A = 0 return False def _snake_case ( snake_case__ : int ): A = [[0 for i in range(snake_case__ )] for j in range(snake_case__ )] for i in range(snake_case__ ): for j in range(snake_case__ ): A = 1 if open_knight_tour_helper(snake_case__ , (i, j) , 1 ): return board A = 0 A = F'Open Kight Tour cannot be performed on a board of size {n}' raise ValueError(snake_case__ ) if __name__ == "__main__": import doctest doctest.testmod()
91
1
def snake_case( __magic_name__ ) -> list[int]: '''simple docstring''' lowercase : Dict = [0 for i in range(len(__magic_name__ ) )] # initialize interval's left pointer and right pointer lowercase , lowercase : Tuple = 0, 0 for i in range(1 , len(__magic_name__ ) ): # case when current index is inside the interval if i <= right_pointer: lowercase : Union[str, Any] = min(right_pointer - i + 1 , z_result[i - left_pointer] ) lowercase : Optional[Any] = min_edge while go_next(__magic_name__ , __magic_name__ , __magic_name__ ): z_result[i] += 1 # if new index's result gives us more right interval, # we've to update left_pointer and right_pointer if i + z_result[i] - 1 > right_pointer: lowercase , lowercase : Tuple = i, i + z_result[i] - 1 return z_result def snake_case( __magic_name__ , __magic_name__ , __magic_name__ ) -> bool: '''simple docstring''' return i + z_result[i] < len(__magic_name__ ) and s[z_result[i]] == s[i + z_result[i]] def snake_case( __magic_name__ , __magic_name__ ) -> int: '''simple docstring''' lowercase : Any = 0 # concatenate 'pattern' and 'input_str' and call z_function # with concatenated string lowercase : Dict = z_function(pattern + input_str ) for val in z_result: # if value is greater then length of the pattern string # that means this index is starting position of substring # which is equal to pattern string if val >= len(__magic_name__ ): answer += 1 return answer if __name__ == "__main__": import doctest doctest.testmod()
596
# A Bipartite Graph is a graph whose vertices can be divided into two independent sets, # U and V such that every edge (u, v) either connects a vertex from U to V or a vertex # from V to U. In other words, for every edge (u, v), either u belongs to U and v to V, # or u belongs to V and v to U. We can also say that there is no edge that connects # vertices of same set. def snake_case( __magic_name__ ) -> Any: '''simple docstring''' lowercase : Union[str, Any] = [False] * len(__magic_name__ ) lowercase : int = [-1] * len(__magic_name__ ) def dfs(__magic_name__ , __magic_name__ ): lowercase : str = True lowercase : Tuple = c for u in graph[v]: if not visited[u]: dfs(__magic_name__ , 1 - c ) for i in range(len(__magic_name__ ) ): if not visited[i]: dfs(__magic_name__ , 0 ) for i in range(len(__magic_name__ ) ): for j in graph[i]: if color[i] == color[j]: return False return True # Adjacency list of graph lowerCAmelCase_ = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []} print(check_bipartite_dfs(graph))
596
1
"""simple docstring""" from typing import Dict from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, get_torch_dist_unique_port, require_torch_multi_gpu, require_torch_neuroncore, ) from transformers.training_args import ParallelMode from transformers.utils import logging __UpperCAmelCase = logging.get_logger(__name__) if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset from transformers import Trainer class lowercase_ ( __A ): def __init__( self : str , _lowercase : Dict = 1_0_1 ): lowerCAmelCase__ : Any = length def __len__( self : Optional[Any] ): return self.length def __getitem__( self : Union[str, Any] , _lowercase : int ): return i class lowercase_ : def __call__( self : Any , _lowercase : Optional[Any] ): return {"input_ids": torch.tensor(snake_case_ ), "labels": torch.tensor(snake_case_ )} class lowercase_ ( nn.Module ): def __init__( self : Dict ): super().__init__() # Add some (unused) params otherwise DDP will complain. lowerCAmelCase__ : str = nn.Linear(1_2_0 , 8_0 ) def _lowerCAmelCase ( self : List[Any] , _lowercase : str , _lowercase : int=None ): if labels is not None: return torch.tensor(0.0 , device=input_ids.device ), input_ids else: return input_ids class lowercase_ ( __A ): @require_torch_neuroncore def _lowerCAmelCase ( self : Optional[int] ): lowerCAmelCase__ : str = f"--nproc_per_node=2\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n ".split() lowerCAmelCase__ : int = self.get_auto_remove_tmp_dir() lowerCAmelCase__ : int = f"--output_dir {output_dir}".split() lowerCAmelCase__ : Optional[int] = ["""torchrun"""] + distributed_args + args execute_subprocess_async(snake_case_ , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call class lowercase_ ( __A ): @require_torch_multi_gpu def _lowerCAmelCase ( self : Union[str, Any] ): lowerCAmelCase__ : str = f"--nproc_per_node={torch.cuda.device_count()}\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n ".split() lowerCAmelCase__ : Tuple = self.get_auto_remove_tmp_dir() lowerCAmelCase__ : List[str] = f"--output_dir {output_dir}".split() lowerCAmelCase__ : int = ["""torchrun"""] + distributed_args + args execute_subprocess_async(snake_case_ , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call if __name__ == "__main__": # The script below is meant to be run under torch.distributed, on a machine with multiple GPUs: # # PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py __UpperCAmelCase = HfArgumentParser((TrainingArguments,)) __UpperCAmelCase = parser.parse_args_into_dataclasses()[0] logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, """ f"""distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}""" ) # Essentially, what we want to verify in the distributed case is that we get all samples back, # in the right order. (this is crucial for prediction for instance) for dataset_length in [101, 40, 7]: __UpperCAmelCase = DummyDataset(dataset_length) def lowercase__ ( lowerCamelCase : int ) -> str: lowerCAmelCase__ : Union[str, Any] = list(range(len(lowerCamelCase ) ) ) lowerCAmelCase__ : Tuple = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential if not success and training_args.local_rank == 0: logger.warning( "Predictions and/or labels do not match expected results:\n - predictions: " F"{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}" ) return {"success": success} __UpperCAmelCase = Trainer( model=DummyModel(), args=training_args, data_collator=DummyDataCollator(), eval_dataset=dataset, compute_metrics=compute_metrics, ) __UpperCAmelCase = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) __UpperCAmelCase = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) __UpperCAmelCase = 2 __UpperCAmelCase = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) __UpperCAmelCase = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) __UpperCAmelCase = None
308
"""simple docstring""" import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class __UpperCAmelCase (unittest.TestCase , __A ): '''simple docstring''' def lowerCamelCase ( self ): '''simple docstring''' A__ : List[Any] = load_tool("""text-classification""" ) self.tool.setup() A__ : Any = load_tool("""text-classification""" , remote=snake_case_ ) def lowerCamelCase ( self ): '''simple docstring''' A__ : int = self.tool("""That's quite cool""" , ["""positive""", """negative"""] ) self.assertEqual(snake_case_ , """positive""" ) def lowerCamelCase ( self ): '''simple docstring''' A__ : Optional[Any] = self.remote_tool("""That's quite cool""" , ["""positive""", """negative"""] ) self.assertEqual(snake_case_ , """positive""" ) def lowerCamelCase ( self ): '''simple docstring''' A__ : str = self.tool(text="""That's quite cool""" , labels=["""positive""", """negative"""] ) self.assertEqual(snake_case_ , """positive""" ) def lowerCamelCase ( self ): '''simple docstring''' A__ : int = self.remote_tool(text="""That's quite cool""" , labels=["""positive""", """negative"""] ) self.assertEqual(snake_case_ , """positive""" )
363
0
def UpperCamelCase_ ( a_ = 100 ) ->int: A =set() A =0 A =n + 1 # maximum limit for a in range(2 , a_ ): for b in range(2 , a_ ): A =a**b # calculates the current power collect_powers.add(a_ ) # adds the result to the set return len(a_ ) if __name__ == "__main__": print("""Number of terms """, solution(int(str(input()).strip())))
689
def UpperCamelCase_ ( a_ , a_ ) ->list[int]: A =int(a_ ) # Initialize Result A =[] # Traverse through all denomination for denomination in reversed(a_ ): # Find denominations while int(a_ ) >= int(a_ ): total_value -= int(a_ ) answer.append(a_ ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": __a = [] __a = """0""" if ( input("""Do you want to enter your denominations ? (yY/n): """).strip().lower() == "y" ): __a = int(input("""Enter the number of denominations you want to add: """).strip()) for i in range(0, n): denominations.append(int(input(F'''Denomination {i}: ''').strip())) __a = input("""Enter the change you want to make in Indian Currency: """).strip() else: # All denominations of Indian Currency if user does not enter __a = [1, 2, 5, 1_0, 2_0, 5_0, 1_0_0, 5_0_0, 2_0_0_0] __a = input("""Enter the change you want to make: """).strip() if int(value) == 0 or int(value) < 0: print("""The total value cannot be zero or negative.""") else: print(F'''Following is minimal change for {value}: ''') __a = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=""" """)
689
1
import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) __UpperCAmelCase = logging.getLogger() __UpperCAmelCase = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class __a ( snake_case__ ): def A ( self : Dict , UpperCAmelCase : Optional[int] ): os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) lowerCAmelCase_ : int = {'source': 'What is love ?', 'target': 'life'} lowerCAmelCase_ : str = {'train': 12, 'val': 2, 'test': 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: lowerCAmelCase_ : Optional[int] = '\n'.join([contents[field]] * n_lines[split] ) with open(os.path.join(_UpperCAmelCase , F'{split}.{field}' ) , """w""" ) as f: f.write(_UpperCAmelCase ) def A ( self : Union[str, Any] , UpperCAmelCase : int , UpperCAmelCase : str = "pytorch" ): lowerCAmelCase_ : Dict = self.get_auto_remove_tmp_dir() lowerCAmelCase_ : int = os.path.join(_UpperCAmelCase , """output""" ) lowerCAmelCase_ : Tuple = os.path.join(_UpperCAmelCase , """data""" ) self._create_dummy_data(data_dir=_UpperCAmelCase ) lowerCAmelCase_ : Dict = F'\n --data_dir {data_dir} \\n --output_dir {output_dir} \\n --model_name_or_path facebook/rag-sequence-base \\n --model_type rag_sequence \\n --do_train \\n --do_predict \\n --n_val -1 \\n --val_check_interval 1.0 \\n --train_batch_size 2 \\n --eval_batch_size 1 \\n --max_source_length 25 \\n --max_target_length 25 \\n --val_max_target_length 25 \\n --test_max_target_length 25 \\n --label_smoothing 0.1 \\n --dropout 0.1 \\n --attention_dropout 0.1 \\n --weight_decay 0.001 \\n --adam_epsilon 1e-08 \\n --max_grad_norm 0.1 \\n --lr_scheduler polynomial \\n --learning_rate 3e-04 \\n --num_train_epochs 1 \\n --warmup_steps 4 \\n --gradient_accumulation_steps 1 \\n --distributed-port 8787 \\n --use_dummy_dataset 1 \\n --distributed_retriever {distributed_retriever} \\n '.split() if gpus > 0: testargs.append(F'--gpus={gpus}' ) if is_apex_available(): testargs.append("""--fp16""" ) else: testargs.append("""--gpus=0""" ) testargs.append("""--distributed_backend=ddp_cpu""" ) testargs.append("""--num_processes=2""" ) lowerCAmelCase_ : str = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(_UpperCAmelCase , env=self.get_env() ) lowerCAmelCase_ : Optional[int] = os.path.join(_UpperCAmelCase , """metrics.json""" ) with open(_UpperCAmelCase ) as f: lowerCAmelCase_ : List[str] = json.load(_UpperCAmelCase ) return result @require_torch_gpu def A ( self : Tuple ): lowerCAmelCase_ : Tuple = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_multi_gpu def A ( self : Tuple ): lowerCAmelCase_ : Optional[int] = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_gpu @require_ray def A ( self : List[Any] ): lowerCAmelCase_ : str = self._run_finetune(gpus=1 , distributed_retriever="""ray""" ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_multi_gpu @require_ray def A ( self : List[Any] ): lowerCAmelCase_ : Dict = self._run_finetune(gpus=1 , distributed_retriever="""ray""" ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 )
600
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase_ : """simple docstring""" def __init__( self: int , _UpperCAmelCase: Any , _UpperCAmelCase: Tuple=13 , _UpperCAmelCase: Optional[Any]=32 , _UpperCAmelCase: List[Any]=2 , _UpperCAmelCase: Optional[int]=3 , _UpperCAmelCase: Optional[int]=16 , _UpperCAmelCase: Optional[Any]=[32, 64, 128] , _UpperCAmelCase: Optional[int]=[1, 2, 1] , _UpperCAmelCase: int=[2, 2, 4] , _UpperCAmelCase: List[str]=2 , _UpperCAmelCase: Dict=2.0 , _UpperCAmelCase: Optional[int]=True , _UpperCAmelCase: str=0.0 , _UpperCAmelCase: int=0.0 , _UpperCAmelCase: str=0.1 , _UpperCAmelCase: Dict="gelu" , _UpperCAmelCase: Optional[Any]=False , _UpperCAmelCase: Union[str, Any]=True , _UpperCAmelCase: Union[str, Any]=0.0_2 , _UpperCAmelCase: Optional[int]=1e-5 , _UpperCAmelCase: Optional[int]=True , _UpperCAmelCase: Optional[Any]=None , _UpperCAmelCase: Tuple=True , _UpperCAmelCase: str=10 , _UpperCAmelCase: int=8 , _UpperCAmelCase: List[Any]=["stage1", "stage2"] , _UpperCAmelCase: List[Any]=[1, 2] , ): _lowerCAmelCase :Optional[int] = parent _lowerCAmelCase :Dict = batch_size _lowerCAmelCase :Optional[Any] = image_size _lowerCAmelCase :Optional[Any] = patch_size _lowerCAmelCase :List[Any] = num_channels _lowerCAmelCase :Optional[int] = embed_dim _lowerCAmelCase :List[str] = hidden_sizes _lowerCAmelCase :Union[str, Any] = depths _lowerCAmelCase :int = num_heads _lowerCAmelCase :Any = window_size _lowerCAmelCase :List[Any] = mlp_ratio _lowerCAmelCase :Optional[int] = qkv_bias _lowerCAmelCase :Union[str, Any] = hidden_dropout_prob _lowerCAmelCase :Optional[int] = attention_probs_dropout_prob _lowerCAmelCase :Dict = drop_path_rate _lowerCAmelCase :List[Any] = hidden_act _lowerCAmelCase :Tuple = use_absolute_embeddings _lowerCAmelCase :Optional[int] = patch_norm _lowerCAmelCase :Optional[Any] = layer_norm_eps _lowerCAmelCase :Union[str, Any] = initializer_range _lowerCAmelCase :List[str] = is_training _lowerCAmelCase :str = scope _lowerCAmelCase :Optional[int] = use_labels _lowerCAmelCase :List[Any] = type_sequence_label_size _lowerCAmelCase :Union[str, Any] = encoder_stride _lowerCAmelCase :Optional[int] = out_features _lowerCAmelCase :List[str] = out_indices def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase :Dict = None if self.use_labels: _lowerCAmelCase :List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase :str = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE__ ( self: int ): return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Tuple ): _lowerCAmelCase :List[Any] = FocalNetModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :List[str] = model(_UpperCAmelCase ) _lowerCAmelCase :Union[str, Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) _lowerCAmelCase :List[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Optional[Any] ): _lowerCAmelCase :Union[str, Any] = FocalNetBackbone(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :str = model(_UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None _lowerCAmelCase :Optional[int] = None _lowerCAmelCase :Dict = FocalNetBackbone(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :Any = model(_UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def SCREAMING_SNAKE_CASE__ ( self: Tuple , _UpperCAmelCase: Union[str, Any] , _UpperCAmelCase: int , _UpperCAmelCase: Optional[Any] ): _lowerCAmelCase :Any = FocalNetForMaskedImageModeling(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :str = model(_UpperCAmelCase ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images _lowerCAmelCase :List[Any] = 1 _lowerCAmelCase :List[Any] = FocalNetForMaskedImageModeling(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCAmelCase :int = model(_UpperCAmelCase ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: int , _UpperCAmelCase: Dict , _UpperCAmelCase: Optional[int] ): _lowerCAmelCase :Union[str, Any] = self.type_sequence_label_size _lowerCAmelCase :Dict = FocalNetForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :Union[str, Any] = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _lowerCAmelCase :Optional[int] = 1 _lowerCAmelCase :Tuple = FocalNetForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :Tuple = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCAmelCase :List[str] = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Tuple = self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :str = config_and_inputs _lowerCAmelCase :List[str] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ (snake_case__ , snake_case__ , unittest.TestCase ): """simple docstring""" lowerCamelCase : Optional[int] = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) lowerCamelCase : Optional[Any] = ( {'feature-extraction': FocalNetModel, 'image-classification': FocalNetForImageClassification} if is_torch_available() else {} ) lowerCamelCase : Tuple = False lowerCamelCase : Union[str, Any] = False lowerCamelCase : Union[str, Any] = False lowerCamelCase : Any = False lowerCamelCase : List[Any] = False def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Tuple = FocalNetModelTester(self ) _lowerCAmelCase :str = ConfigTester(self , config_class=_UpperCAmelCase , embed_dim=37 , has_text_modality=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[str] ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): return def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: int ): _lowerCAmelCase :Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[str] ): _lowerCAmelCase :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: str ): _lowerCAmelCase :Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) @unittest.skip(reason='FocalNet does not use inputs_embeds' ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): pass @unittest.skip(reason='FocalNet does not use feedforward chunking' ) def SCREAMING_SNAKE_CASE__ ( self: str ): pass def SCREAMING_SNAKE_CASE__ ( self: Tuple ): _lowerCAmelCase , _lowerCAmelCase :Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: _lowerCAmelCase :Optional[Any] = model_class(_UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _lowerCAmelCase :Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCAmelCase , nn.Linear ) ) def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): _lowerCAmelCase , _lowerCAmelCase :Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: _lowerCAmelCase :Tuple = model_class(_UpperCAmelCase ) _lowerCAmelCase :Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase :int = [*signature.parameters.keys()] _lowerCAmelCase :List[str] = ['pixel_values'] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Any , _UpperCAmelCase: int , _UpperCAmelCase: Union[str, Any] , _UpperCAmelCase: Any , _UpperCAmelCase: Optional[int] ): _lowerCAmelCase :Union[str, Any] = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): _lowerCAmelCase :Optional[Any] = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) _lowerCAmelCase :List[Any] = outputs.hidden_states _lowerCAmelCase :str = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) # FocalNet has a different seq_length _lowerCAmelCase :Any = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _lowerCAmelCase :List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) _lowerCAmelCase :List[str] = outputs.reshaped_hidden_states self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :int = reshaped_hidden_states[0].shape _lowerCAmelCase :Optional[int] = ( reshaped_hidden_states[0].view(_UpperCAmelCase , _UpperCAmelCase , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): _lowerCAmelCase , _lowerCAmelCase :Any = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase :List[str] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: _lowerCAmelCase :Optional[int] = True self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase :Dict = True self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): _lowerCAmelCase , _lowerCAmelCase :str = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase :str = 3 _lowerCAmelCase :Union[str, Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) _lowerCAmelCase :int = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _lowerCAmelCase :Tuple = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _lowerCAmelCase :Any = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: _lowerCAmelCase :List[str] = True self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase :Union[str, Any] = True self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , (padded_height, padded_width) ) @slow def SCREAMING_SNAKE_CASE__ ( self: int ): for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase :List[Any] = FocalNetModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Tuple ): _lowerCAmelCase , _lowerCAmelCase :int = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase :Optional[int] = _config_zero_init(_UpperCAmelCase ) for model_class in self.all_model_classes: _lowerCAmelCase :str = model_class(config=_UpperCAmelCase ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @require_vision @require_torch class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" @cached_property def SCREAMING_SNAKE_CASE__ ( self: Dict ): # TODO update organization return AutoImageProcessor.from_pretrained('microsoft/focalnet-tiny' ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE__ ( self: Any ): _lowerCAmelCase :Tuple = FocalNetForImageClassification.from_pretrained('microsoft/focalnet-tiny' ).to(_UpperCAmelCase ) _lowerCAmelCase :Union[str, Any] = self.default_image_processor _lowerCAmelCase :Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) _lowerCAmelCase :Any = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): _lowerCAmelCase :Dict = model(**_UpperCAmelCase ) # verify the logits _lowerCAmelCase :str = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) _lowerCAmelCase :Dict = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 281 ) @require_torch class UpperCAmelCase_ (snake_case__ , unittest.TestCase ): """simple docstring""" lowerCamelCase : int = (FocalNetBackbone,) if is_torch_available() else () lowerCamelCase : str = FocalNetConfig lowerCamelCase : Union[str, Any] = False def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): _lowerCAmelCase :Any = FocalNetModelTester(self )
687
0
from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class UpperCamelCase__ : def __init__( self , UpperCamelCase__ = None ): if components is None: A__ : Optional[int] = [] A__ : Dict = list(UpperCamelCase__ ) def __len__( self ): return len(self.__components ) def __str__( self ): return "(" + ",".join(map(UpperCamelCase__ , self.__components ) ) + ")" def __add__( self , UpperCamelCase__ ): A__ : Optional[int] = len(self ) if size == len(UpperCamelCase__ ): A__ : Optional[int] = [self.__components[i] + other.component(UpperCamelCase__ ) for i in range(UpperCamelCase__ )] return Vector(UpperCamelCase__ ) else: raise Exception('''must have the same size''' ) def __sub__( self , UpperCamelCase__ ): A__ : Optional[Any] = len(self ) if size == len(UpperCamelCase__ ): A__ : List[Any] = [self.__components[i] - other.component(UpperCamelCase__ ) for i in range(UpperCamelCase__ )] return Vector(UpperCamelCase__ ) else: # error case raise Exception('''must have the same size''' ) @overload def __mul__( self , UpperCamelCase__ ): ... @overload def __mul__( self , UpperCamelCase__ ): ... def __mul__( self , UpperCamelCase__ ): if isinstance(UpperCamelCase__ , (float, int) ): A__ : Optional[Any] = [c * other for c in self.__components] return Vector(UpperCamelCase__ ) elif isinstance(UpperCamelCase__ , UpperCamelCase__ ) and len(self ) == len(UpperCamelCase__ ): A__ : Optional[int] = len(self ) A__ : List[Any] = [self.__components[i] * other.component(UpperCamelCase__ ) for i in range(UpperCamelCase__ )] return sum(UpperCamelCase__ ) else: # error case raise Exception('''invalid operand!''' ) def __snake_case ( self ): return Vector(self.__components ) def __snake_case ( self , UpperCamelCase__ ): if isinstance(UpperCamelCase__ , UpperCamelCase__ ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception('''index out of range''' ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ ): assert -len(self.__components ) <= pos < len(self.__components ) A__ : Tuple = value def __snake_case ( self ): if len(self.__components ) == 0: raise Exception('''Vector is empty''' ) A__ : Tuple = [c**2 for c in self.__components] return math.sqrt(sum(UpperCamelCase__ ) ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ = False ): A__ : Dict = self * other A__ : Any = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> Vector: """simple docstring""" assert isinstance(__UpperCamelCase , __UpperCamelCase ) return Vector([0] * dimension ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int , __UpperCamelCase : int ) -> Vector: """simple docstring""" assert isinstance(__UpperCamelCase , __UpperCamelCase ) and (isinstance(__UpperCamelCase , __UpperCamelCase )) A__ : Union[str, Any] = [0] * dimension A__ : str = 1 return Vector(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : float , __UpperCamelCase : Vector , __UpperCamelCase : Vector ) -> Vector: """simple docstring""" assert ( isinstance(__UpperCamelCase , __UpperCamelCase ) and isinstance(__UpperCamelCase , __UpperCamelCase ) and (isinstance(__UpperCamelCase , (int, float) )) ) return x * scalar + y def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : int ) -> Vector: """simple docstring""" random.seed(__UpperCamelCase ) A__ : Optional[Any] = [random.randint(__UpperCamelCase , __UpperCamelCase ) for _ in range(__UpperCamelCase )] return Vector(__UpperCamelCase ) class UpperCamelCase__ : def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : Optional[Any] = matrix A__ : Optional[int] = w A__ : Any = h def __str__( self ): A__ : Optional[int] = '''''' for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self , UpperCamelCase__ ): if self.__width == other.width() and self.__height == other.height(): A__ : Dict = [] for i in range(self.__height ): A__ : Any = [ self.__matrix[i][j] + other.component(UpperCamelCase__ , UpperCamelCase__ ) for j in range(self.__width ) ] matrix.append(UpperCamelCase__ ) return Matrix(UpperCamelCase__ , self.__width , self.__height ) else: raise Exception('''matrix must have the same dimension!''' ) def __sub__( self , UpperCamelCase__ ): if self.__width == other.width() and self.__height == other.height(): A__ : List[str] = [] for i in range(self.__height ): A__ : int = [ self.__matrix[i][j] - other.component(UpperCamelCase__ , UpperCamelCase__ ) for j in range(self.__width ) ] matrix.append(UpperCamelCase__ ) return Matrix(UpperCamelCase__ , self.__width , self.__height ) else: raise Exception('''matrices must have the same dimension!''' ) @overload def __mul__( self , UpperCamelCase__ ): ... @overload def __mul__( self , UpperCamelCase__ ): ... def __mul__( self , UpperCamelCase__ ): if isinstance(UpperCamelCase__ , UpperCamelCase__ ): # matrix-vector if len(UpperCamelCase__ ) == self.__width: A__ : Optional[Any] = zero_vector(self.__height ) for i in range(self.__height ): A__ : Optional[Any] = [ self.__matrix[i][j] * other.component(UpperCamelCase__ ) for j in range(self.__width ) ] ans.change_component(UpperCamelCase__ , sum(UpperCamelCase__ ) ) return ans else: raise Exception( '''vector must have the same size as the ''' '''number of columns of the matrix!''' ) elif isinstance(UpperCamelCase__ , (int, float) ): # matrix-scalar A__ : List[str] = [ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(UpperCamelCase__ , self.__width , self.__height ) return None def __snake_case ( self ): return self.__height def __snake_case ( self ): return self.__width def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ ): if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception('''change_component: indices out of bounds''' ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): if 0 <= x < self.__height and 0 <= y < self.__width: A__ : Any = value else: raise Exception('''change_component: indices out of bounds''' ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ ): if self.__height != self.__width: raise Exception('''Matrix is not square''' ) A__ : int = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(UpperCamelCase__ ) ): A__ : Any = minor[i][:y] + minor[i][y + 1 :] return Matrix(UpperCamelCase__ , self.__width - 1 , self.__height - 1 ).determinant() def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ ): if self.__height != self.__width: raise Exception('''Matrix is not square''' ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(UpperCamelCase__ , UpperCamelCase__ ) else: raise Exception('''Indices out of bounds''' ) def __snake_case ( self ): if self.__height != self.__width: raise Exception('''Matrix is not square''' ) if self.__height < 1: raise Exception('''Matrix has no element''' ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: A__ : Dict = [ self.__matrix[0][y] * self.cofactor(0 , UpperCamelCase__ ) for y in range(self.__width ) ] return sum(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> Matrix: """simple docstring""" A__ : list[list[float]] = [[0] * n for _ in range(__UpperCamelCase )] return Matrix(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : int ) -> Matrix: """simple docstring""" random.seed(__UpperCamelCase ) A__ : list[list[float]] = [ [random.randint(__UpperCamelCase , __UpperCamelCase ) for _ in range(__UpperCamelCase )] for _ in range(__UpperCamelCase ) ] return Matrix(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase )
701
import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=1024 , UpperCamelCase__=1024 , UpperCamelCase__=3.6 ): A__ : str = tokenizer A__ : int = tokenizer.bos_token_id A__ : List[Any] = dataset A__ : Tuple = seq_length A__ : Any = seq_length * chars_per_token * num_of_sequences def __iter__( self ): A__ : Dict = iter(self.dataset ) A__ : Tuple = True while more_examples: A__ , A__ : Optional[Any] = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(UpperCamelCase__ )['''content'''] ) buffer_len += len(buffer[-1] ) except StopIteration: A__ : Dict = False break A__ : str = tokenizer(UpperCamelCase__ , truncation=UpperCamelCase__ )['''input_ids'''] A__ : Optional[int] = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0 , len(UpperCamelCase__ ) , self.seq_length ): A__ : Optional[int] = all_token_ids[i : i + self.seq_length] if len(UpperCamelCase__ ) == self.seq_length: yield torch.tensor(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] ) -> Any: """simple docstring""" A__ : Any = {'''streaming''': True} A__ : List[str] = load_dataset(args.dataset_name , split='''train''' , **__UpperCamelCase ) A__ : List[str] = ConstantLengthDataset(__UpperCamelCase , __UpperCamelCase , seq_length=args.seq_length ) A__ : int = DataLoader(__UpperCamelCase , batch_size=args.batch_size ) return eval_dataloader def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[str] ) -> Dict: """simple docstring""" model.eval() A__ : Dict = [] for step, batch in enumerate(__UpperCamelCase ): with torch.no_grad(): A__ : Any = model(__UpperCamelCase , labels=__UpperCamelCase ) A__ : Tuple = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(__UpperCamelCase ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break A__ : Tuple = torch.mean(torch.cat(__UpperCamelCase ) ) try: A__ : Optional[Any] = torch.exp(__UpperCamelCase ) except OverflowError: A__ : Union[str, Any] = float('''inf''' ) return loss.item(), perplexity.item() # Setup Accelerator _SCREAMING_SNAKE_CASE : List[Any] = Accelerator() # Parse configuration _SCREAMING_SNAKE_CASE : Optional[int] = HfArgumentParser(EvaluationArguments) _SCREAMING_SNAKE_CASE : Union[str, Any] = parser.parse_args() set_seed(args.seed) # Logging _SCREAMING_SNAKE_CASE : Dict = logging.getLogger(__name__) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) # Load model and tokenizer _SCREAMING_SNAKE_CASE : Optional[int] = AutoModelForCausalLM.from_pretrained(args.model_ckpt) _SCREAMING_SNAKE_CASE : List[str] = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader _SCREAMING_SNAKE_CASE : Optional[Any] = create_dataloader(args) # Prepare everything with our `accelerator`. _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Optional[Any] = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info('Evaluating and saving model after training') _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Optional[int] = evaluate(args) logger.info(f"""loss/eval: {eval_loss}, perplexity: {perplexity}""")
55
0