code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
from sklearn.metrics import fa_score import datasets snake_case__ : str = """ The F1 score is the harmonic mean of the precision and recall. It can be computed with the equation: F1 = 2 * (precision * recall) / (precision + recall) """ snake_case__ : Union[str, Any] = """ Args: predictions (`list` of `int`): Predicted labels. references (`list` of `int`): Ground truth labels. labels (`list` of `int`): The set of labels to include when `average` is not set to `\'binary\'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None. pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1. average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`. - \'binary\': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary. - \'micro\': Calculate metrics globally by counting the total true positives, false negatives and false positives. - \'macro\': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - \'weighted\': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. This option can result in an F-score that is not between precision and recall. - \'samples\': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). sample_weight (`list` of `float`): Sample weights Defaults to None. Returns: f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better. Examples: Example 1-A simple binary example >>> f1_metric = datasets.load_metric(\"f1\") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0]) >>> print(results) {\'f1\': 0.5} Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`. >>> f1_metric = datasets.load_metric(\"f1\") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0) >>> print(round(results[\'f1\'], 2)) 0.67 Example 3-The same simple binary example as in Example 1, but with `sample_weight` included. >>> f1_metric = datasets.load_metric(\"f1\") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3]) >>> print(round(results[\'f1\'], 2)) 0.35 Example 4-A multiclass example, with different values for the `average` input. >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"macro\") >>> print(round(results[\'f1\'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"micro\") >>> print(round(results[\'f1\'], 2)) 0.33 >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"weighted\") >>> print(round(results[\'f1\'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {\'f1\': array([0.8, 0. , 0. ])} """ snake_case__ : Optional[Any] = """ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _A ( datasets.Metric ): '''simple docstring''' def _snake_case ( self : Union[str, Any] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("int32" ) ), "references": datasets.Sequence(datasets.Value("int32" ) ), } if self.config_name == "multilabel" else { "predictions": datasets.Value("int32" ), "references": datasets.Value("int32" ), } ) , reference_urls=["https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html"] , ) def _snake_case ( self : List[Any] , lowerCamelCase : Tuple , lowerCamelCase : Any , lowerCamelCase : int=None , lowerCamelCase : Tuple=1 , lowerCamelCase : Optional[int]="binary" , lowerCamelCase : Dict=None ): '''simple docstring''' __lowercase = fa_score( UpperCamelCase_ , UpperCamelCase_ , labels=UpperCamelCase_ , pos_label=UpperCamelCase_ , average=UpperCamelCase_ , sample_weight=UpperCamelCase_ ) return {"f1": float(UpperCamelCase_ ) if score.size == 1 else score}
402
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) __snake_case = { '''configuration_clip''': [ '''CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CLIPConfig''', '''CLIPOnnxConfig''', '''CLIPTextConfig''', '''CLIPVisionConfig''', ], '''processing_clip''': ['''CLIPProcessor'''], '''tokenization_clip''': ['''CLIPTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ['''CLIPTokenizerFast'''] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ['''CLIPFeatureExtractor'''] __snake_case = ['''CLIPImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CLIPModel''', '''CLIPPreTrainedModel''', '''CLIPTextModel''', '''CLIPTextModelWithProjection''', '''CLIPVisionModel''', '''CLIPVisionModelWithProjection''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFCLIPModel''', '''TFCLIPPreTrainedModel''', '''TFCLIPTextModel''', '''TFCLIPVisionModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''FlaxCLIPModel''', '''FlaxCLIPPreTrainedModel''', '''FlaxCLIPTextModel''', '''FlaxCLIPTextPreTrainedModel''', '''FlaxCLIPVisionModel''', '''FlaxCLIPVisionPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
189
0
"""simple docstring""" import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig __UpperCamelCase : List[Any] = logging.get_logger(__name__) class UpperCAmelCase_ : def __init__( self : int , _lowercase : Dict , _lowercase : List[Any] ) -> Optional[int]: _lowercase = question_encoder _lowercase = generator _lowercase = self.question_encoder def _lowerCamelCase ( self : int , _lowercase : Any ) -> str: if os.path.isfile(_lowercase ): raise ValueError(f"""Provided path ({save_directory}) should be a directory, not a file""" ) os.makedirs(_lowercase , exist_ok=_lowercase ) _lowercase = os.path.join(_lowercase , "question_encoder_tokenizer" ) _lowercase = os.path.join(_lowercase , "generator_tokenizer" ) self.question_encoder.save_pretrained(_lowercase ) self.generator.save_pretrained(_lowercase ) @classmethod def _lowerCamelCase ( cls : Union[str, Any] , _lowercase : Optional[Any] , **_lowercase : Dict ) -> List[str]: # dynamically import AutoTokenizer from ..auto.tokenization_auto import AutoTokenizer _lowercase = kwargs.pop("config" , _lowercase ) if config is None: _lowercase = RagConfig.from_pretrained(_lowercase ) _lowercase = AutoTokenizer.from_pretrained( _lowercase , config=config.question_encoder , subfolder="question_encoder_tokenizer" ) _lowercase = AutoTokenizer.from_pretrained( _lowercase , config=config.generator , subfolder="generator_tokenizer" ) return cls(question_encoder=_lowercase , generator=_lowercase ) def __call__( self : str , *_lowercase : Tuple , **_lowercase : Optional[Any] ) -> str: return self.current_tokenizer(*_lowercase , **_lowercase ) def _lowerCamelCase ( self : str , *_lowercase : Any , **_lowercase : Optional[int] ) -> List[str]: return self.generator.batch_decode(*_lowercase , **_lowercase ) def _lowerCamelCase ( self : List[Any] , *_lowercase : Dict , **_lowercase : str ) -> Optional[Any]: return self.generator.decode(*_lowercase , **_lowercase ) def _lowerCamelCase ( self : List[Any] ) -> Optional[Any]: _lowercase = self.question_encoder def _lowerCamelCase ( self : Dict ) -> int: _lowercase = self.generator def _lowerCamelCase ( self : int , _lowercase : List[str] , _lowercase : Optional[List[str]] = None , _lowercase : Optional[int] = None , _lowercase : Optional[int] = None , _lowercase : str = "longest" , _lowercase : str = None , _lowercase : bool = True , **_lowercase : List[Any] , ) -> BatchEncoding: warnings.warn( "`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the " "regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` " "context manager to prepare your targets. See the documentation of your specific tokenizer for more " "details" , _lowercase , ) if max_length is None: _lowercase = self.current_tokenizer.model_max_length _lowercase = self( _lowercase , add_special_tokens=_lowercase , return_tensors=_lowercase , max_length=_lowercase , padding=_lowercase , truncation=_lowercase , **_lowercase , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: _lowercase = self.current_tokenizer.model_max_length _lowercase = self( text_target=_lowercase , add_special_tokens=_lowercase , return_tensors=_lowercase , padding=_lowercase , max_length=_lowercase , truncation=_lowercase , **_lowercase , ) _lowercase = labels["input_ids"] return model_inputs
715
"""simple docstring""" import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) __UpperCamelCase : List[str] = logging.getLogger(__name__) __UpperCamelCase : List[Any] = "Hello world! cécé herlolip" __UpperCamelCase : Any = namedtuple( "BertAbsConfig", [ "temp_dir", "large", "use_bert_emb", "finetune_bert", "encoder", "share_emb", "max_pos", "enc_layers", "enc_hidden_size", "enc_heads", "enc_ff_size", "enc_dropout", "dec_layers", "dec_hidden_size", "dec_heads", "dec_ff_size", "dec_dropout", ], ) def __UpperCAmelCase ( _snake_case : Union[str, Any], _snake_case : str ): _lowercase = BertAbsConfig( temp_dir=".", finetune_bert=_snake_case, large=_snake_case, share_emb=_snake_case, use_bert_emb=_snake_case, encoder="bert", max_pos=5_1_2, enc_layers=6, enc_hidden_size=5_1_2, enc_heads=8, enc_ff_size=5_1_2, enc_dropout=0.2, dec_layers=6, dec_hidden_size=7_6_8, dec_heads=8, dec_ff_size=2_0_4_8, dec_dropout=0.2, ) _lowercase = torch.load(_snake_case, lambda _snake_case, _snake_case : storage ) _lowercase = AbsSummarizer(_snake_case, torch.device("cpu" ), _snake_case ) original.eval() _lowercase = BertAbsSummarizer(_snake_case, torch.device("cpu" ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info("convert the model" ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info("Make sure that the models' outputs are identical" ) _lowercase = BertTokenizer.from_pretrained("bert-base-uncased" ) # prepare the model inputs _lowercase = tokenizer.encode("This is sample éàalj'-." ) encoder_input_ids.extend([tokenizer.pad_token_id] * (5_1_2 - len(_snake_case )) ) _lowercase = torch.tensor(_snake_case ).unsqueeze(0 ) _lowercase = tokenizer.encode("This is sample 3 éàalj'-." ) decoder_input_ids.extend([tokenizer.pad_token_id] * (5_1_2 - len(_snake_case )) ) _lowercase = torch.tensor(_snake_case ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass _lowercase = encoder_input_ids _lowercase = decoder_input_ids _lowercase = _lowercase = None _lowercase = None _lowercase = _lowercase = None _lowercase = _lowercase = None _lowercase = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical _lowercase = original(_snake_case, _snake_case, _snake_case, _snake_case, _snake_case, _snake_case, _snake_case )[0] _lowercase = original.generator(_snake_case ) _lowercase = new_model( _snake_case, _snake_case, _snake_case, _snake_case, _snake_case )[0] _lowercase = new_model.generator(_snake_case ) _lowercase = torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print("Maximum absolute difference beween weights: {:.2f}".format(_snake_case ) ) _lowercase = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print("Maximum absolute difference beween weights: {:.2f}".format(_snake_case ) ) _lowercase = torch.allclose(_snake_case, _snake_case, atol=1e-3 ) if are_identical: logging.info("all weights are equal up to 1e-3" ) else: raise ValueError("the weights are different. The new model is likely different from the original one." ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info("saving the model's state dictionary" ) torch.save( new_model.state_dict(), "./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin" ) if __name__ == "__main__": __UpperCamelCase : List[Any] = argparse.ArgumentParser() parser.add_argument( "--bertabs_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model.", ) __UpperCamelCase : List[Any] = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
227
0
'''simple docstring''' import inspect import os import sys import unittest import accelerate from accelerate.test_utils import execute_subprocess_async, require_tpu class __snake_case ( unittest.TestCase): def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : Optional[Any] = inspect.getfile(accelerate.test_utils ) lowerCamelCase : Optional[int] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_script.py'] ) lowerCamelCase : Optional[int] = os.path.sep.join(inspect.getfile(self.__class__ ).split(os.path.sep )[:-1] ) @require_tpu def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : Optional[int] = F''' {self.test_dir}/xla_spawn.py --num_cores 8 {self.test_file_path} '''.split() lowerCamelCase : List[str] = [sys.executable] + distributed_args execute_subprocess_async(A, env=os.environ.copy() )
320
'''simple docstring''' def UpperCAmelCase ( UpperCAmelCase__ : str , UpperCAmelCase__ : int): return [sentence[i : i + ngram_size] for i in range(len(UpperCAmelCase__) - ngram_size + 1)] if __name__ == "__main__": from doctest import testmod testmod()
320
1
# Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################################################################### # # Note: If when running this conversion script you're getting an exception: # ModuleNotFoundError: No module named 'megatron.model.enums' # you need to tell python where to find the clone of Megatron-LM, e.g.: # # cd /tmp # git clone https://github.com/NVIDIA/Megatron-LM # PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ... # # if you already have it cloned elsewhere, simply adjust the path to the existing path # # If the training was done using a Megatron-LM fork, e.g., # https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one # in your path, i.e., /path/to/Megatron-DeepSpeed/ # import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def A ( _UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Tuple=0 ) -> Optional[Any]: '''simple docstring''' # Format the message. if name is None: _UpperCAmelCase = None else: _UpperCAmelCase = '.' * max(0 , spaces - 2 ) + '# {:' + str(50 - spaces ) + 's}' _UpperCAmelCase = fmt.format(_UpperCAmelCase ) # Print and recurse (if needed). if isinstance(_UpperCAmelCase , _UpperCAmelCase ): if msg is not None: print(_UpperCAmelCase ) for k in val.keys(): recursive_print(_UpperCAmelCase , val[k] , spaces + 2 ) elif isinstance(_UpperCAmelCase , torch.Tensor ): print(_UpperCAmelCase , ':' , val.size() ) else: print(_UpperCAmelCase , ':' , _UpperCAmelCase ) def A ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] ) -> Any: '''simple docstring''' # Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :] # for compatibility with later versions of NVIDIA Megatron-LM. # The inverse operation is performed inside Megatron-LM to read checkpoints: # https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209 # If param is the weight tensor of the self-attention block, the returned tensor # will have to be transposed one more time to be read by HuggingFace GPT2. _UpperCAmelCase = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] _UpperCAmelCase = (num_heads, hidden_size, num_splits) + input_shape[1:] _UpperCAmelCase = param.view(*_UpperCAmelCase ) _UpperCAmelCase = param.transpose(0 , 2 ) _UpperCAmelCase = param.transpose(1 , 2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] _UpperCAmelCase = (num_heads, num_splits, hidden_size) + input_shape[1:] _UpperCAmelCase = param.view(*_UpperCAmelCase ) _UpperCAmelCase = param.transpose(0 , 1 ).contiguous() _UpperCAmelCase = param.view(*_UpperCAmelCase ) return param def A ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict ) -> Optional[Any]: '''simple docstring''' # The converted output model. _UpperCAmelCase = {} # old versions did not store training args _UpperCAmelCase = input_state_dict.get('args' , _UpperCAmelCase ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) _UpperCAmelCase = ds_args.padded_vocab_size _UpperCAmelCase = ds_args.max_position_embeddings _UpperCAmelCase = ds_args.hidden_size _UpperCAmelCase = ds_args.num_layers _UpperCAmelCase = ds_args.num_attention_heads _UpperCAmelCase = ds_args.ffn_hidden_size # pprint(config) # The number of heads. _UpperCAmelCase = config.n_head # The hidden_size per head. _UpperCAmelCase = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): _UpperCAmelCase = input_state_dict['checkpoint_version'] else: _UpperCAmelCase = 0.0 # The model. _UpperCAmelCase = input_state_dict['model'] # The language model. _UpperCAmelCase = model['language_model'] # The embeddings. _UpperCAmelCase = lm['embedding'] # The word embeddings. _UpperCAmelCase = embeddings['word_embeddings']['weight'] # Truncate the embedding table to vocab_size rows. _UpperCAmelCase = word_embeddings[: config.vocab_size, :] _UpperCAmelCase = word_embeddings # The position embeddings. _UpperCAmelCase = embeddings['position_embeddings']['weight'] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] _UpperCAmelCase = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( F"pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don't match" ) # Store the position embeddings. _UpperCAmelCase = pos_embeddings # The transformer. _UpperCAmelCase = lm['transformer'] if 'transformer' in lm.keys() else lm['encoder'] # The regex to extract layer names. _UpperCAmelCase = re.compile(R'layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)' ) # The simple map of names for "automated" rules. _UpperCAmelCase = { 'attention.dense': '.attn.c_proj.', 'self_attention.dense': '.attn.c_proj.', 'mlp.dense_h_to_4h': '.mlp.c_fc.', 'mlp.dense_4h_to_h': '.mlp.c_proj.', } # Extract the layers. for key, val in transformer.items(): # Match the name. _UpperCAmelCase = layer_re.match(_UpperCAmelCase ) # Stop if that's not a layer if m is None: break # The index of the layer. _UpperCAmelCase = int(m.group(1 ) ) # The name of the operation. _UpperCAmelCase = m.group(2 ) # Is it a weight or a bias? _UpperCAmelCase = m.group(3 ) # The name of the layer. _UpperCAmelCase = F"transformer.h.{layer_idx}" # For layernorm(s), simply store the layer norm. if op_name.endswith('layernorm' ): _UpperCAmelCase = 'ln_1' if op_name.startswith('input' ) else 'ln_2' _UpperCAmelCase = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. _UpperCAmelCase = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view( 1 , 1 , _UpperCAmelCase , _UpperCAmelCase ) _UpperCAmelCase = causal_mask # Insert a "dummy" tensor for masked_bias. _UpperCAmelCase = torch.tensor(-1E4 , dtype=torch.floataa ) _UpperCAmelCase = masked_bias _UpperCAmelCase = fix_query_key_value_ordering(_UpperCAmelCase , _UpperCAmelCase , 3 , _UpperCAmelCase , _UpperCAmelCase ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. _UpperCAmelCase = out_val.transpose(0 , 1 ).contiguous() # Store. _UpperCAmelCase = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": _UpperCAmelCase = fix_query_key_value_ordering(_UpperCAmelCase , _UpperCAmelCase , 3 , _UpperCAmelCase , _UpperCAmelCase ) # Store. No change of shape. _UpperCAmelCase = out_val # Transpose the weights. elif weight_or_bias == "weight": _UpperCAmelCase = megatron_to_transformers[op_name] _UpperCAmelCase = val.transpose(0 , 1 ) # Copy the bias. elif weight_or_bias == "bias": _UpperCAmelCase = megatron_to_transformers[op_name] _UpperCAmelCase = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. _UpperCAmelCase = transformer['final_layernorm.weight'] _UpperCAmelCase = transformer['final_layernorm.bias'] # For LM head, transformers' wants the matrix to weight embeddings. _UpperCAmelCase = word_embeddings # It should be done! return output_state_dict def A ( ) -> Dict: '''simple docstring''' # Create the argument parser. _UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('--print-checkpoint-structure' , action='store_true' ) parser.add_argument( 'path_to_checkpoint' , type=_UpperCAmelCase , help='Path to the checkpoint file (.zip archive or direct .pt file)' , ) parser.add_argument( '--config_file' , default='' , type=_UpperCAmelCase , help='An optional config json file describing the pre-trained model.' , ) _UpperCAmelCase = parser.parse_args() # Extract the basename. _UpperCAmelCase = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(F"Extracting PyTorch state dictionary from {args.path_to_checkpoint}" ) if args.path_to_checkpoint.endswith('.zip' ): with zipfile.ZipFile(args.path_to_checkpoint , 'r' ) as checkpoint: with checkpoint.open('release/mp_rank_00/model_optim_rng.pt' ) as pytorch_dict: _UpperCAmelCase = torch.load(_UpperCAmelCase , map_location='cpu' ) else: _UpperCAmelCase = torch.load(args.path_to_checkpoint , map_location='cpu' ) _UpperCAmelCase = input_state_dict.get('args' , _UpperCAmelCase ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: _UpperCAmelCase = 'gelu_fast' elif ds_args.openai_gelu: _UpperCAmelCase = 'gelu_new' else: _UpperCAmelCase = 'gelu' else: # in the very early days this used to be "gelu_new" _UpperCAmelCase = 'gelu_new' # Spell out all parameters in case the defaults change. _UpperCAmelCase = GPTaConfig( vocab_size=50_257 , n_positions=1_024 , n_embd=1_024 , n_layer=24 , n_head=16 , n_inner=4_096 , activation_function=_UpperCAmelCase , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1E-5 , initializer_range=0.02 , summary_type='cls_index' , summary_use_proj=_UpperCAmelCase , summary_activation=_UpperCAmelCase , summary_proj_to_labels=_UpperCAmelCase , summary_first_dropout=0.1 , scale_attn_weights=_UpperCAmelCase , use_cache=_UpperCAmelCase , bos_token_id=50_256 , eos_token_id=50_256 , ) else: _UpperCAmelCase = GPTaConfig.from_json_file(args.config_file ) _UpperCAmelCase = ['GPT2LMHeadModel'] # Convert. print('Converting' ) _UpperCAmelCase = convert_megatron_checkpoint(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(_UpperCAmelCase , _UpperCAmelCase ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: _UpperCAmelCase = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": _UpperCAmelCase = 'gpt2' elif tokenizer_type == "PretrainedFromHF": _UpperCAmelCase = ds_args.tokenizer_name_or_path else: raise ValueError(F"Unrecognized tokenizer_type {tokenizer_type}" ) else: _UpperCAmelCase = 'gpt2' _UpperCAmelCase = AutoTokenizer.from_pretrained(_UpperCAmelCase ) _UpperCAmelCase = type(_UpperCAmelCase ).__name__ _UpperCAmelCase = tokenizer_class # Store the config to file. print('Saving config' ) config.save_pretrained(_UpperCAmelCase ) # Save tokenizer based on args print(F"Adding {tokenizer_class} tokenizer files" ) tokenizer.save_pretrained(_UpperCAmelCase ) # Store the state_dict to file. _UpperCAmelCase = os.path.join(_UpperCAmelCase , 'pytorch_model.bin' ) print(F"Saving checkpoint to \"{output_checkpoint_file}\"" ) torch.save(_UpperCAmelCase , _UpperCAmelCase ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
639
import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __lowerCAmelCase ( A , A , unittest.TestCase ): UpperCamelCase = IFInpaintingPipeline UpperCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''} UpperCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS UpperCamelCase = PipelineTesterMixin.required_optional_params - {'''latents'''} def _lowerCamelCase ( self : List[str]) -> Tuple: """simple docstring""" return self._get_dummy_components() def _lowerCamelCase ( self : Any , A : int , A : Dict=0) -> Tuple: """simple docstring""" if str(A).startswith('mps'): _UpperCAmelCase = torch.manual_seed(A) else: _UpperCAmelCase = torch.Generator(device=A).manual_seed(A) _UpperCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(A)).to(A) _UpperCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(A)).to(A) _UpperCAmelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def _lowerCamelCase ( self : List[str]) -> Union[str, Any]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3) def _lowerCamelCase ( self : Optional[Any]) -> Optional[int]: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA') def _lowerCamelCase ( self : List[str]) -> Any: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1) def _lowerCamelCase ( self : Optional[int]) -> Tuple: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2) def _lowerCamelCase ( self : str) -> List[str]: """simple docstring""" self._test_save_load_local() def _lowerCamelCase ( self : int) -> Tuple: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
639
1
'''simple docstring''' from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS __A = logging.get_logger(__name__) __A = { "linear": get_linear_schedule_with_warmup, "cosine": get_cosine_schedule_with_warmup, "cosine_w_restarts": get_cosine_with_hard_restarts_schedule_with_warmup, "polynomial": get_polynomial_decay_schedule_with_warmup, "constant": get_constant_schedule, "constant_w_warmup": get_constant_schedule_with_warmup, } class A ( __UpperCAmelCase ): def __init__( self , lowerCamelCase__=None , lowerCamelCase__=None , *lowerCamelCase__ , **lowerCamelCase__ ) -> Optional[int]: '''simple docstring''' super().__init__(*lowerCamelCase__ , **lowerCamelCase__ ) if config is None: assert isinstance(self.model , lowerCamelCase__ ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" F''' {self.model.__class__}''' ) lowercase__ = self.model.config else: lowercase__ = config lowercase__ = data_args lowercase__ = self.config.tgt_vocab_size if isinstance(self.config , lowerCamelCase__ ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( F'''The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for''' """ padding..""" ) if self.args.label_smoothing == 0: lowercase__ = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss lowercase__ = label_smoothed_nll_loss def A__ ( self , lowerCamelCase__ ) -> int: '''simple docstring''' if self.optimizer is None: lowercase__ = ["""bias""", """LayerNorm.weight"""] lowercase__ = [ { """params""": [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], """weight_decay""": self.args.weight_decay, }, { """params""": [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], """weight_decay""": 0.0, }, ] lowercase__ = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: lowercase__ = Adafactor lowercase__ = {"""scale_parameter""": False, """relative_step""": False} else: lowercase__ = AdamW lowercase__ = { """betas""": (self.args.adam_betaa, self.args.adam_betaa), """eps""": self.args.adam_epsilon, } lowercase__ = self.args.learning_rate if self.sharded_ddp: lowercase__ = OSS( params=lowerCamelCase__ , optim=lowerCamelCase__ , **lowerCamelCase__ , ) else: lowercase__ = optimizer_cls(lowerCamelCase__ , **lowerCamelCase__ ) if self.lr_scheduler is None: lowercase__ = self._get_lr_scheduler(lowerCamelCase__ ) else: # ignoring --lr_scheduler logger.warning("""scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.""" ) def A__ ( self , lowerCamelCase__ ) -> Any: '''simple docstring''' lowercase__ = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": lowercase__ = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": lowercase__ = schedule_func(self.optimizer , num_warmup_steps=self.args.warmup_steps ) else: lowercase__ = schedule_func( self.optimizer , num_warmup_steps=self.args.warmup_steps , num_training_steps=lowerCamelCase__ ) return scheduler def A__ ( self ) -> Optional[torch.utils.data.Sampler]: '''simple docstring''' if isinstance(self.train_dataset , torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size , distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) , ) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def A__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> str: '''simple docstring''' if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token lowercase__ = model(**lowerCamelCase__ , use_cache=lowerCamelCase__ )[0] lowercase__ = self.loss_fn(logits.view(-1 , logits.shape[-1] ) , labels.view(-1 ) ) else: # compute usual loss via models lowercase__ , lowercase__ = model(**lowerCamelCase__ , labels=lowerCamelCase__ , use_cache=lowerCamelCase__ )[:2] else: # compute label smoothed loss lowercase__ = model(**lowerCamelCase__ , use_cache=lowerCamelCase__ )[0] lowercase__ = torch.nn.functional.log_softmax(lowerCamelCase__ , dim=-1 ) lowercase__ , lowercase__ = self.loss_fn(lowerCamelCase__ , lowerCamelCase__ , self.args.label_smoothing , ignore_index=self.config.pad_token_id ) return loss, logits def A__ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> Tuple: '''simple docstring''' lowercase__ = inputs.pop("""labels""" ) lowercase__ , lowercase__ = self._compute_loss(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) return loss def A__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = None , ) -> Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]: '''simple docstring''' lowercase__ = self._prepare_inputs(lowerCamelCase__ ) lowercase__ = { """max_length""": self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, """num_beams""": self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: lowercase__ = self.model.generate( inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , **lowerCamelCase__ , ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: lowercase__ = self._pad_tensors_to_max_len(lowerCamelCase__ , gen_kwargs["""max_length"""] ) lowercase__ = inputs.pop("""labels""" ) with torch.no_grad(): # compute loss on predict data lowercase__ , lowercase__ = self._compute_loss(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) lowercase__ = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) lowercase__ = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: lowercase__ = self._pad_tensors_to_max_len(lowerCamelCase__ , gen_kwargs["""max_length"""] ) return (loss, logits, labels) def A__ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> List[str]: '''simple docstring''' lowercase__ = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( """Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be""" F''' padded to `max_length`={max_length}''' ) lowercase__ = pad_token_id * torch.ones( (tensor.shape[0], max_length) , dtype=tensor.dtype , device=tensor.device ) lowercase__ = tensor return padded_tensor
325
'''simple docstring''' class A : # Public class to implement a graph def __init__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> None: '''simple docstring''' lowercase__ = row lowercase__ = col lowercase__ = graph def A__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> bool: '''simple docstring''' return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def A__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> None: '''simple docstring''' lowercase__ = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order lowercase__ = [-1, 0, 1, -1, 1, -1, 0, 1] lowercase__ = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , lowerCamelCase__ ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , lowerCamelCase__ ) def A__ ( self ) -> int: # And finally, count all islands. '''simple docstring''' lowercase__ = [[False for j in range(self.COL )] for i in range(self.ROW )] lowercase__ = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) count += 1 return count
325
1
from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = TypeVar('DatasetType', Dataset, IterableDataset) def lowerCamelCase__ ( A__ : List[DatasetType] , A__ : Optional[List[float]] = None , A__ : Optional[int] = None , A__ : Optional[DatasetInfo] = None , A__ : Optional[NamedSplit] = None , A__ : Literal["first_exhausted", "all_exhausted"] = "first_exhausted" , ): '''simple docstring''' from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError("""Unable to interleave an empty list of datasets.""" ) for i, dataset in enumerate(A__ ): if not isinstance(A__ , (Dataset, IterableDataset) ): if isinstance(A__ , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ' """is an empty dataset dictionary.""" ) raise ValueError( f'Dataset at position {i} has at least one split: {list(A__ )}\n' f'Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(A__ ) )}\']' ) raise ValueError( f'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(A__ ).__name__}.' ) if i == 0: __lowerCamelCase, __lowerCamelCase = ( (Dataset, IterableDataset) if isinstance(A__ , A__ ) else (IterableDataset, Dataset) ) elif not isinstance(A__ , A__ ): raise ValueError( f'Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.' ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(f'{stopping_strategy} is not supported. Please enter a valid stopping_strategy.' ) if dataset_type is Dataset: return _interleave_map_style_datasets( A__ , A__ , A__ , info=A__ , split=A__ , stopping_strategy=A__ ) else: return _interleave_iterable_datasets( A__ , A__ , A__ , info=A__ , split=A__ , stopping_strategy=A__ ) def lowerCamelCase__ ( A__ : List[DatasetType] , A__ : Optional[DatasetInfo] = None , A__ : Optional[NamedSplit] = None , A__ : int = 0 , ): '''simple docstring''' if not dsets: raise ValueError("""Unable to concatenate an empty list of datasets.""" ) for i, dataset in enumerate(A__ ): if not isinstance(A__ , (Dataset, IterableDataset) ): if isinstance(A__ , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ' """is an empty dataset dictionary.""" ) raise ValueError( f'Dataset at position {i} has at least one split: {list(A__ )}\n' f'Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(A__ ) )}\']' ) raise ValueError( f'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(A__ ).__name__}.' ) if i == 0: __lowerCamelCase, __lowerCamelCase = ( (Dataset, IterableDataset) if isinstance(A__ , A__ ) else (IterableDataset, Dataset) ) elif not isinstance(A__ , A__ ): raise ValueError( f'Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.' ) if dataset_type is Dataset: return _concatenate_map_style_datasets(A__ , info=A__ , split=A__ , axis=A__ ) else: return _concatenate_iterable_datasets(A__ , info=A__ , split=A__ , axis=A__ )
80
from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
80
1
import unittest import numpy as np import torch from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class __lowercase (unittest.TestCase ): """simple docstring""" @property def UpperCamelCase__ ( self ): """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : int = UNetaDModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = self.dummy_uncond_unet SCREAMING_SNAKE_CASE_ : Dict = ScoreSdeVeScheduler() SCREAMING_SNAKE_CASE_ : Optional[int] = ScoreSdeVePipeline(unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ ) sde_ve.to(lowerCAmelCase__ ) sde_ve.set_progress_bar_config(disable=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : List[str] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : Optional[Any] = sde_ve(num_inference_steps=2 , output_type='numpy' , generator=lowerCAmelCase__ ).images SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : Any = sde_ve(num_inference_steps=2 , output_type='numpy' , generator=lowerCAmelCase__ , return_dict=lowerCAmelCase__ )[ 0 ] SCREAMING_SNAKE_CASE_ : Tuple = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE_ : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) SCREAMING_SNAKE_CASE_ : List[Any] = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class __lowercase (unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = 'google/ncsnpp-church-256' SCREAMING_SNAKE_CASE_ : Optional[Any] = UNetaDModel.from_pretrained(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : int = ScoreSdeVeScheduler.from_pretrained(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Any = ScoreSdeVePipeline(unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ ) sde_ve.to(lowerCAmelCase__ ) sde_ve.set_progress_bar_config(disable=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : int = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : Optional[int] = sde_ve(num_inference_steps=1_0 , output_type='numpy' , generator=lowerCAmelCase__ ).images SCREAMING_SNAKE_CASE_ : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 2_5_6, 2_5_6, 3) SCREAMING_SNAKE_CASE_ : Union[str, Any] = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
101
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def a__ ( A__, A__, A__, A__, A__=True, A__="pt" ): SCREAMING_SNAKE_CASE_ : Tuple = {'add_prefix_space': True} if isinstance(A__, A__ ) and not line.startswith(' ' ) else {} SCREAMING_SNAKE_CASE_ : Dict = padding_side return tokenizer( [line], max_length=A__, padding='max_length' if pad_to_max_length else None, truncation=A__, return_tensors=A__, add_special_tokens=A__, **A__, ) def a__ ( A__, A__, A__=None, ): SCREAMING_SNAKE_CASE_ : int = input_ids.ne(A__ ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class __lowercase (__SCREAMING_SNAKE_CASE ): """simple docstring""" def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__="train" , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__="" , ): """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE_ : Optional[Any] = Path(lowerCAmelCase__ ).joinpath(type_path + '.source' ) SCREAMING_SNAKE_CASE_ : Optional[int] = Path(lowerCAmelCase__ ).joinpath(type_path + '.target' ) SCREAMING_SNAKE_CASE_ : int = self.get_char_lens(self.src_file ) SCREAMING_SNAKE_CASE_ : int = max_source_length SCREAMING_SNAKE_CASE_ : Dict = max_target_length assert min(self.src_lens ) > 0, F'''found empty line in {self.src_file}''' SCREAMING_SNAKE_CASE_ : Any = tokenizer SCREAMING_SNAKE_CASE_ : List[str] = prefix if n_obs is not None: SCREAMING_SNAKE_CASE_ : Optional[Any] = self.src_lens[:n_obs] SCREAMING_SNAKE_CASE_ : Optional[Any] = src_lang SCREAMING_SNAKE_CASE_ : List[Any] = tgt_lang def __len__( self ): """simple docstring""" return len(self.src_lens ) def __getitem__( self , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = index + 1 # linecache starts at 1 SCREAMING_SNAKE_CASE_ : List[str] = self.prefix + linecache.getline(str(self.src_file ) , lowerCAmelCase__ ).rstrip('\n' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = linecache.getline(str(self.tgt_file ) , lowerCAmelCase__ ).rstrip('\n' ) assert source_line, F'''empty source line for index {index}''' assert tgt_line, F'''empty tgt line for index {index}''' # Need to add eos token manually for T5 if isinstance(self.tokenizer , lowerCAmelCase__ ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right SCREAMING_SNAKE_CASE_ : Any = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , lowerCAmelCase__ ) else self.tokenizer ) SCREAMING_SNAKE_CASE_ : List[Any] = self.tokenizer.generator if isinstance(self.tokenizer , lowerCAmelCase__ ) else self.tokenizer SCREAMING_SNAKE_CASE_ : Dict = encode_line(lowerCAmelCase__ , lowerCAmelCase__ , self.max_source_length , 'right' ) SCREAMING_SNAKE_CASE_ : Tuple = encode_line(lowerCAmelCase__ , lowerCAmelCase__ , self.max_target_length , 'right' ) SCREAMING_SNAKE_CASE_ : List[str] = source_inputs['input_ids'].squeeze() SCREAMING_SNAKE_CASE_ : Dict = target_inputs['input_ids'].squeeze() SCREAMING_SNAKE_CASE_ : str = source_inputs['attention_mask'].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def UpperCamelCase__ ( lowerCAmelCase__ ): """simple docstring""" return [len(lowerCAmelCase__ ) for x in Path(lowerCAmelCase__ ).open().readlines()] def UpperCamelCase__ ( self , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = torch.stack([x['input_ids'] for x in batch] ) SCREAMING_SNAKE_CASE_ : int = torch.stack([x['attention_mask'] for x in batch] ) SCREAMING_SNAKE_CASE_ : List[str] = torch.stack([x['decoder_input_ids'] for x in batch] ) SCREAMING_SNAKE_CASE_ : Dict = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , lowerCAmelCase__ ) else self.tokenizer.pad_token_id ) SCREAMING_SNAKE_CASE_ : List[Any] = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , lowerCAmelCase__ ) else self.tokenizer.pad_token_id ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = trim_batch(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str = trim_batch(lowerCAmelCase__ , lowerCAmelCase__ , attention_mask=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Tuple = { 'input_ids': source_ids, 'attention_mask': source_mask, 'decoder_input_ids': y, } return batch lowerCAmelCase__ : Tuple =getLogger(__name__) def a__ ( A__ ): return list(itertools.chain.from_iterable(A__ ) ) def a__ ( A__ ): SCREAMING_SNAKE_CASE_ : Optional[int] = get_git_info() save_json(A__, os.path.join(A__, 'git_log.json' ) ) def a__ ( A__, A__, A__=4, **A__ ): with open(A__, 'w' ) as f: json.dump(A__, A__, indent=A__, **A__ ) def a__ ( A__ ): with open(A__ ) as f: return json.load(A__ ) def a__ ( ): SCREAMING_SNAKE_CASE_ : List[str] = git.Repo(search_parent_directories=A__ ) SCREAMING_SNAKE_CASE_ : Any = { 'repo_id': str(A__ ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), 'hostname': str(socket.gethostname() ), } return repo_infos def a__ ( A__, A__ ): return list(map(A__, A__ ) ) def a__ ( A__, A__ ): with open(A__, 'wb' ) as f: return pickle.dump(A__, A__ ) def a__ ( A__ ): def remove_articles(A__ ): return re.sub(r'\b(a|an|the)\b', ' ', A__ ) def white_space_fix(A__ ): return " ".join(text.split() ) def remove_punc(A__ ): SCREAMING_SNAKE_CASE_ : Optional[int] = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(A__ ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(A__ ) ) ) ) def a__ ( A__, A__ ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = normalize_answer(A__ ).split() SCREAMING_SNAKE_CASE_ : List[str] = normalize_answer(A__ ).split() SCREAMING_SNAKE_CASE_ : Optional[int] = Counter(A__ ) & Counter(A__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = sum(common.values() ) if num_same == 0: return 0 SCREAMING_SNAKE_CASE_ : List[Any] = 1.0 * num_same / len(A__ ) SCREAMING_SNAKE_CASE_ : int = 1.0 * num_same / len(A__ ) SCREAMING_SNAKE_CASE_ : List[str] = (2 * precision * recall) / (precision + recall) return fa def a__ ( A__, A__ ): return normalize_answer(A__ ) == normalize_answer(A__ ) def a__ ( A__, A__ ): assert len(A__ ) == len(A__ ) SCREAMING_SNAKE_CASE_ : Any = 0 for hypo, pred in zip(A__, A__ ): em += exact_match_score(A__, A__ ) if len(A__ ) > 0: em /= len(A__ ) return {"em": em} def a__ ( A__ ): return model_prefix.startswith('rag' ) def a__ ( A__, A__, A__ ): SCREAMING_SNAKE_CASE_ : Optional[Any] = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead SCREAMING_SNAKE_CASE_ : List[Any] = 'dropout_rate' for p in extra_params: if getattr(A__, A__, A__ ): if not hasattr(A__, A__ ) and not hasattr(A__, equivalent_param[p] ): logger.info('config doesn\'t have a `{}` attribute'.format(A__ ) ) delattr(A__, A__ ) continue SCREAMING_SNAKE_CASE_ : Any = p if hasattr(A__, A__ ) else equivalent_param[p] setattr(A__, A__, getattr(A__, A__ ) ) delattr(A__, A__ ) return hparams, config
101
1
'''simple docstring''' import json import os import tempfile from transformers.testing_utils import check_json_file_has_correct_format class UpperCamelCase__ : """simple docstring""" SCREAMING_SNAKE_CASE__ : int = None def A_ ( self ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_dict ) UpperCAmelCase : Dict = json.loads(feat_extract.to_json_string() ) for key, value in self.feat_extract_dict.items(): self.assertEqual(obj[key] , snake_case ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase : Tuple = os.path.join(snake_case , "feat_extract.json" ) feat_extract_first.to_json_file(snake_case ) UpperCAmelCase : int = self.feature_extraction_class.from_json_file(snake_case ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : Optional[Any] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase : Optional[Any] = feat_extract_first.save_pretrained(snake_case )[0] check_json_file_has_correct_format(snake_case ) UpperCAmelCase : int = self.feature_extraction_class.from_pretrained(snake_case ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : Any = self.feature_extraction_class() self.assertIsNotNone(snake_case )
609
'''simple docstring''' from collections.abc import Callable class UpperCamelCase__ : """simple docstring""" def __init__( self , snake_case = None ): '''simple docstring''' UpperCAmelCase : list = [] # Stores indexes of each item for supporting updates and deletion. UpperCAmelCase : dict = {} # Stores current size of heap. UpperCAmelCase : Tuple = 0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. UpperCAmelCase : Tuple = key or (lambda snake_case : x) def A_ ( self , snake_case ): '''simple docstring''' return int((i - 1) / 2 ) if i > 0 else None def A_ ( self , snake_case ): '''simple docstring''' UpperCAmelCase : List[str] = int(2 * i + 1 ) return left if 0 < left < self.size else None def A_ ( self , snake_case ): '''simple docstring''' UpperCAmelCase : Optional[Any] = int(2 * i + 2 ) return right if 0 < right < self.size else None def A_ ( self , snake_case , snake_case ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase : List[Any] = ( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. UpperCAmelCase , UpperCAmelCase : Optional[int] = self.arr[j], self.arr[i] def A_ ( self , snake_case , snake_case ): '''simple docstring''' return self.arr[i][1] < self.arr[j][1] def A_ ( self , snake_case ): '''simple docstring''' UpperCAmelCase : int = self._left(snake_case ) UpperCAmelCase : Any = self._right(snake_case ) UpperCAmelCase : str = i if left is not None and not self._cmp(snake_case , snake_case ): UpperCAmelCase : Optional[Any] = left if right is not None and not self._cmp(snake_case , snake_case ): UpperCAmelCase : Optional[int] = right return valid_parent def A_ ( self , snake_case ): '''simple docstring''' UpperCAmelCase : Optional[Any] = self._parent(snake_case ) while parent is not None and not self._cmp(snake_case , snake_case ): self._swap(snake_case , snake_case ) UpperCAmelCase , UpperCAmelCase : Optional[int] = parent, self._parent(snake_case ) def A_ ( self , snake_case ): '''simple docstring''' UpperCAmelCase : Optional[int] = self._get_valid_parent(snake_case ) while valid_parent != index: self._swap(snake_case , snake_case ) UpperCAmelCase , UpperCAmelCase : Optional[int] = valid_parent, self._get_valid_parent(snake_case ) def A_ ( self , snake_case , snake_case ): '''simple docstring''' if item not in self.pos_map: return UpperCAmelCase : Optional[int] = self.pos_map[item] UpperCAmelCase : Dict = [item, self.key(snake_case )] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(snake_case ) self._heapify_down(snake_case ) def A_ ( self , snake_case ): '''simple docstring''' if item not in self.pos_map: return UpperCAmelCase : Optional[Any] = self.pos_map[item] del self.pos_map[item] UpperCAmelCase : Dict = self.arr[self.size - 1] UpperCAmelCase : Any = index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(snake_case ) self._heapify_down(snake_case ) def A_ ( self , snake_case , snake_case ): '''simple docstring''' UpperCAmelCase : str = len(self.arr ) if arr_len == self.size: self.arr.append([item, self.key(snake_case )] ) else: UpperCAmelCase : Tuple = [item, self.key(snake_case )] UpperCAmelCase : Any = self.size self.size += 1 self._heapify_up(self.size - 1 ) def A_ ( self ): '''simple docstring''' return self.arr[0] if self.size else None def A_ ( self ): '''simple docstring''' UpperCAmelCase : Any = self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0] ) return top_item_tuple def lowercase ( ): '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
609
1
'''simple docstring''' import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def A (__lowerCamelCase :str , __lowerCamelCase :Any , __lowerCamelCase :str=None ): # set parameter of one layer assert torch_layer.weight.shape == weight.shape, f'{torch_layer} layer.weight does not match' _lowerCAmelCase = nn.Parameter(__lowerCamelCase ) if bias is not None: assert torch_layer.bias.shape == bias.shape, f'{torch_layer} layer.bias does not match' _lowerCAmelCase = nn.Parameter(__lowerCamelCase ) def A (__lowerCamelCase :Dict , __lowerCamelCase :Optional[int] , __lowerCamelCase :Tuple ): # set torch weights for 1-to-1 comparison _lowerCAmelCase = np.asarray(weights[0] ) _lowerCAmelCase = np.asarray(weights[1] ) _lowerCAmelCase = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(__lowerCamelCase ).transpose(1 , 2 ).contiguous().view(-1 , __lowerCamelCase ) , ) set_param( torch_layer.self_attention.value , torch.tensor(__lowerCamelCase ).transpose(1 , 2 ).contiguous().view(-1 , __lowerCamelCase ) , ) set_param( torch_layer.output.dense , torch.tensor(__lowerCamelCase ).view(-1 , __lowerCamelCase ).contiguous().transpose(0 , 1 ) , ) def A (__lowerCamelCase :Dict , __lowerCamelCase :List[str] , __lowerCamelCase :str ): # set torch weights for 1-to-1 comparison _lowerCAmelCase = np.asarray(weights[0] ) _lowerCAmelCase = np.asarray(weights[1] ) _lowerCAmelCase = np.asarray(weights[2] ) _lowerCAmelCase = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(__lowerCamelCase ).transpose(1 , 2 ).contiguous().view(-1 , __lowerCamelCase ) , ) set_param( torch_layer.self_attention.key , torch.tensor(__lowerCamelCase ).transpose(1 , 2 ).contiguous().view(-1 , __lowerCamelCase ) , ) set_param( torch_layer.self_attention.value , torch.tensor(__lowerCamelCase ).transpose(1 , 2 ).contiguous().view(-1 , __lowerCamelCase ) , ) set_param( torch_layer.output.dense , torch.tensor(__lowerCamelCase ).view(-1 , __lowerCamelCase ).contiguous().transpose(0 , 1 ) , ) def A (__lowerCamelCase :Union[str, Any] , __lowerCamelCase :Dict , __lowerCamelCase :Any ): # layernorm 1 _lowerCAmelCase = weights[0][0][0] _lowerCAmelCase = np.asarray(layer_norm_a[0] ) _lowerCAmelCase = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(__lowerCamelCase ) , torch.tensor(__lowerCamelCase ) , ) # lsh weights + output _lowerCAmelCase = weights[0][1] if len(__lowerCamelCase ) < 4: set_layer_weights_in_torch_lsh(__lowerCamelCase , torch_block.attention , __lowerCamelCase ) else: set_layer_weights_in_torch_local(__lowerCamelCase , torch_block.attention , __lowerCamelCase ) # intermediate weighs _lowerCAmelCase = weights[2][0][1][2] # Chunked Feed Forward if len(__lowerCamelCase ) == 4: _lowerCAmelCase = intermediate_weights[2] # layernorm 2 _lowerCAmelCase = np.asarray(intermediate_weights[0][0] ) _lowerCAmelCase = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(__lowerCamelCase ) , torch.tensor(__lowerCamelCase ) , ) # intermediate dense _lowerCAmelCase = np.asarray(intermediate_weights[1][0] ) _lowerCAmelCase = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(__lowerCamelCase ).transpose(0 , 1 ).contiguous() , torch.tensor(__lowerCamelCase ) , ) # intermediate out _lowerCAmelCase = np.asarray(intermediate_weights[4][0] ) _lowerCAmelCase = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(__lowerCamelCase ).transpose(0 , 1 ).contiguous() , torch.tensor(__lowerCamelCase ) , ) def A (__lowerCamelCase :List[str] , __lowerCamelCase :Optional[Any] , __lowerCamelCase :Dict ): # reformer model _lowerCAmelCase = torch_model.reformer # word embeds _lowerCAmelCase = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(__lowerCamelCase ) , ) if isinstance(weights[3] , __lowerCamelCase ): _lowerCAmelCase = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): _lowerCAmelCase = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), f'{position_embeddings[emb_idx]} emb does not match' _lowerCAmelCase = nn.Parameter(torch.tensor(__lowerCamelCase ) ) _lowerCAmelCase = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( __lowerCamelCase ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): _lowerCAmelCase = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # output layer norm _lowerCAmelCase = np.asarray(weights[7][0] ) _lowerCAmelCase = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(__lowerCamelCase ) , torch.tensor(__lowerCamelCase ) , ) # output embeddings _lowerCAmelCase = np.asarray(weights[9][0] ) _lowerCAmelCase = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(__lowerCamelCase ).transpose(0 , 1 ).contiguous() , torch.tensor(__lowerCamelCase ) , ) def A (__lowerCamelCase :List[str] , __lowerCamelCase :List[Any] , __lowerCamelCase :Tuple ): # Initialise PyTorch model _lowerCAmelCase = ReformerConfig.from_json_file(__lowerCamelCase ) print(f'Building PyTorch model from configuration: {config}' ) _lowerCAmelCase = ReformerModelWithLMHead(__lowerCamelCase ) with open(__lowerCamelCase , """rb""" ) as f: _lowerCAmelCase = pickle.load(__lowerCamelCase )["""weights"""] set_model_weights_in_torch(__lowerCamelCase , __lowerCamelCase , config.hidden_size ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() , __lowerCamelCase ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--trax_model_pkl_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained Reformer model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) _lowercase = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
5
"""simple docstring""" import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor lowerCAmelCase_ = logging.get_logger(__name__) class __A ( A_ ): '''simple docstring''' def __init__( self : Dict ,*_snake_case : Optional[int] ,**_snake_case : List[Any] ) -> None: """simple docstring""" warnings.warn( '''The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use GLPNImageProcessor instead.''' ,_snake_case ,) super().__init__(*_snake_case ,**_snake_case )
560
0
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) def a (_lowerCAmelCase , _lowerCAmelCase=False ): SCREAMING_SNAKE_CASE_ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"blocks.{i}.norm1.weight", F"deit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((F"blocks.{i}.norm1.bias", F"deit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append((F"blocks.{i}.attn.proj.weight", F"deit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((F"blocks.{i}.attn.proj.bias", F"deit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((F"blocks.{i}.norm2.weight", F"deit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((F"blocks.{i}.norm2.bias", F"deit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((F"blocks.{i}.mlp.fc1.weight", F"deit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((F"blocks.{i}.mlp.fc1.bias", F"deit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((F"blocks.{i}.mlp.fc2.weight", F"deit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((F"blocks.{i}.mlp.fc2.bias", F"deit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ('''cls_token''', '''deit.embeddings.cls_token'''), ('''dist_token''', '''deit.embeddings.distillation_token'''), ('''patch_embed.proj.weight''', '''deit.embeddings.patch_embeddings.projection.weight'''), ('''patch_embed.proj.bias''', '''deit.embeddings.patch_embeddings.projection.bias'''), ('''pos_embed''', '''deit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ('''pre_logits.fc.weight''', '''pooler.dense.weight'''), ('''pre_logits.fc.bias''', '''pooler.dense.bias'''), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" SCREAMING_SNAKE_CASE_ = [(pair[0], pair[1][4:]) if pair[1].startswith('''deit''' ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ('''norm.weight''', '''deit.layernorm.weight'''), ('''norm.bias''', '''deit.layernorm.bias'''), ('''head.weight''', '''cls_classifier.weight'''), ('''head.bias''', '''cls_classifier.bias'''), ('''head_dist.weight''', '''distillation_classifier.weight'''), ('''head_dist.bias''', '''distillation_classifier.bias'''), ] ) return rename_keys def a (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=False ): for i in range(config.num_hidden_layers ): if base_model: SCREAMING_SNAKE_CASE_ = '''''' else: SCREAMING_SNAKE_CASE_ = '''deit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) SCREAMING_SNAKE_CASE_ = state_dict.pop(F"blocks.{i}.attn.qkv.weight" ) SCREAMING_SNAKE_CASE_ = state_dict.pop(F"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE_ = in_proj_weight[ : config.hidden_size, : ] SCREAMING_SNAKE_CASE_ = in_proj_bias[: config.hidden_size] SCREAMING_SNAKE_CASE_ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] SCREAMING_SNAKE_CASE_ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] SCREAMING_SNAKE_CASE_ = in_proj_weight[ -config.hidden_size :, : ] SCREAMING_SNAKE_CASE_ = in_proj_bias[-config.hidden_size :] def a (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = dct.pop(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = val def a (): SCREAMING_SNAKE_CASE_ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' SCREAMING_SNAKE_CASE_ = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return im @torch.no_grad() def a (_lowerCAmelCase , _lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = DeiTConfig() # all deit models have fine-tuned heads SCREAMING_SNAKE_CASE_ = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size SCREAMING_SNAKE_CASE_ = 1_0_0_0 SCREAMING_SNAKE_CASE_ = '''huggingface/label-files''' SCREAMING_SNAKE_CASE_ = '''imagenet-1k-id2label.json''' SCREAMING_SNAKE_CASE_ = json.load(open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) SCREAMING_SNAKE_CASE_ = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE_ = idalabel SCREAMING_SNAKE_CASE_ = {v: k for k, v in idalabel.items()} SCREAMING_SNAKE_CASE_ = int(deit_name[-6:-4] ) SCREAMING_SNAKE_CASE_ = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith('''tiny''' ): SCREAMING_SNAKE_CASE_ = 1_9_2 SCREAMING_SNAKE_CASE_ = 7_6_8 SCREAMING_SNAKE_CASE_ = 1_2 SCREAMING_SNAKE_CASE_ = 3 elif deit_name[9:].startswith('''small''' ): SCREAMING_SNAKE_CASE_ = 3_8_4 SCREAMING_SNAKE_CASE_ = 1_5_3_6 SCREAMING_SNAKE_CASE_ = 1_2 SCREAMING_SNAKE_CASE_ = 6 if deit_name[9:].startswith('''base''' ): pass elif deit_name[4:].startswith('''large''' ): SCREAMING_SNAKE_CASE_ = 1_0_2_4 SCREAMING_SNAKE_CASE_ = 4_0_9_6 SCREAMING_SNAKE_CASE_ = 2_4 SCREAMING_SNAKE_CASE_ = 1_6 # load original model from timm SCREAMING_SNAKE_CASE_ = timm.create_model(_lowerCAmelCase , pretrained=_lowerCAmelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys SCREAMING_SNAKE_CASE_ = timm_model.state_dict() SCREAMING_SNAKE_CASE_ = create_rename_keys(_lowerCAmelCase , _lowerCAmelCase ) for src, dest in rename_keys: rename_key(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) read_in_q_k_v(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # load HuggingFace model SCREAMING_SNAKE_CASE_ = DeiTForImageClassificationWithTeacher(_lowerCAmelCase ).eval() model.load_state_dict(_lowerCAmelCase ) # Check outputs on an image, prepared by DeiTImageProcessor SCREAMING_SNAKE_CASE_ = int( (2_5_6 / 2_2_4) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 SCREAMING_SNAKE_CASE_ = DeiTImageProcessor(size=_lowerCAmelCase , crop_size=config.image_size ) SCREAMING_SNAKE_CASE_ = image_processor(images=prepare_img() , return_tensors='''pt''' ) SCREAMING_SNAKE_CASE_ = encoding['''pixel_values'''] SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = timm_model(_lowerCAmelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_lowerCAmelCase , outputs.logits , atol=1e-3 ) Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) print(F"Saving model {deit_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_lowerCAmelCase ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE =argparse.ArgumentParser() # Required parameters parser.add_argument( """--deit_name""", default="""vit_deit_base_distilled_patch16_224""", type=str, help="""Name of the DeiT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) __SCREAMING_SNAKE_CASE =parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
89
def a (_lowerCAmelCase ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = [], [] while len(_lowerCAmelCase ) > 1: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = min(_lowerCAmelCase ), max(_lowerCAmelCase ) start.append(_lowerCAmelCase ) end.append(_lowerCAmelCase ) collection.remove(_lowerCAmelCase ) collection.remove(_lowerCAmelCase ) end.reverse() return start + collection + end if __name__ == "__main__": __SCREAMING_SNAKE_CASE =input("""Enter numbers separated by a comma:\n""").strip() __SCREAMING_SNAKE_CASE =[int(item) for item in user_input.split(""",""")] print(*merge_sort(unsorted), sep=""",""")
89
1
"""simple docstring""" import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class __a ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : List[Any] )-> Tuple: """simple docstring""" UpperCamelCase = [ "safety_checker/pytorch_model.bin", "safety_checker/model.safetensors", "vae/diffusion_pytorch_model.bin", "vae/diffusion_pytorch_model.safetensors", "text_encoder/pytorch_model.bin", "text_encoder/model.safetensors", "unet/diffusion_pytorch_model.bin", "unet/diffusion_pytorch_model.safetensors", ] self.assertTrue(is_safetensors_compatible(UpperCAmelCase_ ) ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] )-> Union[str, Any]: """simple docstring""" UpperCamelCase = [ "unet/diffusion_pytorch_model.bin", "unet/diffusion_pytorch_model.safetensors", ] self.assertTrue(is_safetensors_compatible(UpperCAmelCase_ ) ) def _SCREAMING_SNAKE_CASE ( self : Dict )-> List[Any]: """simple docstring""" UpperCamelCase = [ "safety_checker/pytorch_model.bin", "safety_checker/model.safetensors", "vae/diffusion_pytorch_model.bin", "vae/diffusion_pytorch_model.safetensors", "text_encoder/pytorch_model.bin", "text_encoder/model.safetensors", "unet/diffusion_pytorch_model.bin", # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(UpperCAmelCase_ ) ) def _SCREAMING_SNAKE_CASE ( self : Dict )-> Optional[int]: """simple docstring""" UpperCamelCase = [ "text_encoder/pytorch_model.bin", "text_encoder/model.safetensors", ] self.assertTrue(is_safetensors_compatible(UpperCAmelCase_ ) ) def _SCREAMING_SNAKE_CASE ( self : List[Any] )-> List[str]: """simple docstring""" UpperCamelCase = [ "safety_checker/pytorch_model.bin", "safety_checker/model.safetensors", "vae/diffusion_pytorch_model.bin", "vae/diffusion_pytorch_model.safetensors", "text_encoder/pytorch_model.bin", # Removed: 'text_encoder/model.safetensors', "unet/diffusion_pytorch_model.bin", "unet/diffusion_pytorch_model.safetensors", ] self.assertFalse(is_safetensors_compatible(UpperCAmelCase_ ) ) def _SCREAMING_SNAKE_CASE ( self : Tuple )-> int: """simple docstring""" UpperCamelCase = [ "safety_checker/pytorch_model.fp16.bin", "safety_checker/model.fp16.safetensors", "vae/diffusion_pytorch_model.fp16.bin", "vae/diffusion_pytorch_model.fp16.safetensors", "text_encoder/pytorch_model.fp16.bin", "text_encoder/model.fp16.safetensors", "unet/diffusion_pytorch_model.fp16.bin", "unet/diffusion_pytorch_model.fp16.safetensors", ] UpperCamelCase = "fp16" self.assertTrue(is_safetensors_compatible(UpperCAmelCase_ , variant=UpperCAmelCase_ ) ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] )-> Union[str, Any]: """simple docstring""" UpperCamelCase = [ "unet/diffusion_pytorch_model.fp16.bin", "unet/diffusion_pytorch_model.fp16.safetensors", ] UpperCamelCase = "fp16" self.assertTrue(is_safetensors_compatible(UpperCAmelCase_ , variant=UpperCAmelCase_ ) ) def _SCREAMING_SNAKE_CASE ( self : List[str] )-> str: """simple docstring""" # pass variant but use the non-variant filenames UpperCamelCase = [ "unet/diffusion_pytorch_model.bin", "unet/diffusion_pytorch_model.safetensors", ] UpperCamelCase = "fp16" self.assertTrue(is_safetensors_compatible(UpperCAmelCase_ , variant=UpperCAmelCase_ ) ) def _SCREAMING_SNAKE_CASE ( self : Tuple )-> int: """simple docstring""" UpperCamelCase = [ "safety_checker/pytorch_model.fp16.bin", "safety_checker/model.fp16.safetensors", "vae/diffusion_pytorch_model.fp16.bin", "vae/diffusion_pytorch_model.fp16.safetensors", "text_encoder/pytorch_model.fp16.bin", "text_encoder/model.fp16.safetensors", "unet/diffusion_pytorch_model.fp16.bin", # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] UpperCamelCase = "fp16" self.assertFalse(is_safetensors_compatible(UpperCAmelCase_ , variant=UpperCAmelCase_ ) ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] )-> Optional[int]: """simple docstring""" UpperCamelCase = [ "text_encoder/pytorch_model.fp16.bin", "text_encoder/model.fp16.safetensors", ] UpperCamelCase = "fp16" self.assertTrue(is_safetensors_compatible(UpperCAmelCase_ , variant=UpperCAmelCase_ ) ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] )-> Union[str, Any]: """simple docstring""" # pass variant but use the non-variant filenames UpperCamelCase = [ "text_encoder/pytorch_model.bin", "text_encoder/model.safetensors", ] UpperCamelCase = "fp16" self.assertTrue(is_safetensors_compatible(UpperCAmelCase_ , variant=UpperCAmelCase_ ) ) def _SCREAMING_SNAKE_CASE ( self : List[str] )-> str: """simple docstring""" UpperCamelCase = [ "safety_checker/pytorch_model.fp16.bin", "safety_checker/model.fp16.safetensors", "vae/diffusion_pytorch_model.fp16.bin", "vae/diffusion_pytorch_model.fp16.safetensors", "text_encoder/pytorch_model.fp16.bin", # 'text_encoder/model.fp16.safetensors', "unet/diffusion_pytorch_model.fp16.bin", "unet/diffusion_pytorch_model.fp16.safetensors", ] UpperCamelCase = "fp16" self.assertFalse(is_safetensors_compatible(UpperCAmelCase_ , variant=UpperCAmelCase_ ) )
554
"""simple docstring""" from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING SCREAMING_SNAKE_CASE = logging.get_logger(__name__) @add_end_docstrings(_lowerCAmelCase ) class __a ( _lowerCAmelCase ): def __init__( self : str , **UpperCAmelCase_ : List[str] )-> Tuple: """simple docstring""" super().__init__(**UpperCAmelCase_ ) requires_backends(self , "vision" ) requires_backends(self , "torch" ) if self.framework != "pt": raise ValueError(f"The {self.__class__} is only available in PyTorch." ) self.check_model_type(UpperCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Tuple , **UpperCAmelCase_ : int )-> List[str]: """simple docstring""" UpperCamelCase = {} UpperCamelCase = {} UpperCamelCase = {} # preprocess args if "points_per_batch" in kwargs: UpperCamelCase = kwargs["points_per_batch"] if "points_per_crop" in kwargs: UpperCamelCase = kwargs["points_per_crop"] if "crops_n_layers" in kwargs: UpperCamelCase = kwargs["crops_n_layers"] if "crop_overlap_ratio" in kwargs: UpperCamelCase = kwargs["crop_overlap_ratio"] if "crop_n_points_downscale_factor" in kwargs: UpperCamelCase = kwargs["crop_n_points_downscale_factor"] # postprocess args if "pred_iou_thresh" in kwargs: UpperCamelCase = kwargs["pred_iou_thresh"] if "stability_score_offset" in kwargs: UpperCamelCase = kwargs["stability_score_offset"] if "mask_threshold" in kwargs: UpperCamelCase = kwargs["mask_threshold"] if "stability_score_thresh" in kwargs: UpperCamelCase = kwargs["stability_score_thresh"] if "crops_nms_thresh" in kwargs: UpperCamelCase = kwargs["crops_nms_thresh"] if "output_rle_mask" in kwargs: UpperCamelCase = kwargs["output_rle_mask"] if "output_bboxes_mask" in kwargs: UpperCamelCase = kwargs["output_bboxes_mask"] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__( self : Optional[int] , UpperCAmelCase_ : Optional[int] , *UpperCAmelCase_ : Tuple , UpperCAmelCase_ : int=None , UpperCAmelCase_ : Tuple=None , **UpperCAmelCase_ : str )-> Any: """simple docstring""" return super().__call__(UpperCAmelCase_ , *UpperCAmelCase_ , num_workers=UpperCAmelCase_ , batch_size=UpperCAmelCase_ , **UpperCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : str=64 , UpperCAmelCase_ : int = 0 , UpperCAmelCase_ : float = 512 / 1_500 , UpperCAmelCase_ : Optional[int] = 32 , UpperCAmelCase_ : Optional[int] = 1 , )-> List[Any]: """simple docstring""" UpperCamelCase = load_image(UpperCAmelCase_ ) UpperCamelCase = self.image_processor.size["longest_edge"] UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = self.image_processor.generate_crop_boxes( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) UpperCamelCase = self.image_processor(images=UpperCAmelCase_ , return_tensors="pt" ) with self.device_placement(): if self.framework == "pt": UpperCamelCase = self.get_inference_context() with inference_context(): UpperCamelCase = self._ensure_tensor_on_device(UpperCAmelCase_ , device=self.device ) UpperCamelCase = self.model.get_image_embeddings(model_inputs.pop("pixel_values" ) ) UpperCamelCase = image_embeddings UpperCamelCase = grid_points.shape[1] UpperCamelCase = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( "Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. " "To return all points at once, set points_per_batch to None" ) for i in range(0 , UpperCAmelCase_ , UpperCAmelCase_ ): UpperCamelCase = grid_points[:, i : i + points_per_batch, :, :] UpperCamelCase = input_labels[:, i : i + points_per_batch] UpperCamelCase = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : int=0.88 , UpperCAmelCase_ : Optional[int]=0.95 , UpperCAmelCase_ : Dict=0 , UpperCAmelCase_ : int=1 , )-> Any: """simple docstring""" UpperCamelCase = model_inputs.pop("input_boxes" ) UpperCamelCase = model_inputs.pop("is_last" ) UpperCamelCase = model_inputs.pop("original_sizes" ).tolist() UpperCamelCase = model_inputs.pop("reshaped_input_sizes" ).tolist() UpperCamelCase = self.model(**UpperCAmelCase_ ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks UpperCamelCase = model_outputs["pred_masks"] UpperCamelCase = self.image_processor.post_process_masks( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , binarize=UpperCAmelCase_ ) UpperCamelCase = model_outputs["iou_scores"] UpperCamelCase , UpperCamelCase , UpperCamelCase = self.image_processor.filter_masks( masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def _SCREAMING_SNAKE_CASE ( self : Any , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : str=False , UpperCAmelCase_ : Optional[int]=0.7 , )-> Dict: """simple docstring""" UpperCamelCase = [] UpperCamelCase = [] UpperCamelCase = [] for model_output in model_outputs: all_scores.append(model_output.pop("iou_scores" ) ) all_masks.extend(model_output.pop("masks" ) ) all_boxes.append(model_output.pop("boxes" ) ) UpperCamelCase = torch.cat(UpperCAmelCase_ ) UpperCamelCase = torch.cat(UpperCAmelCase_ ) UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = self.image_processor.post_process_for_mask_generation( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) UpperCamelCase = defaultdict(UpperCAmelCase_ ) for output in model_outputs: for k, v in output.items(): extra[k].append(UpperCAmelCase_ ) UpperCamelCase = {} if output_rle_mask: UpperCamelCase = rle_mask if output_bboxes_mask: UpperCamelCase = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
554
1
from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch UpperCAmelCase_ = logging.get_logger(__name__) @add_end_docstrings( snake_case_ ,R''' top_k (`int`, defaults to 5): The number of predictions to return. targets (`str` or `List[str]`, *optional*): When passed, the model will limit the scores to the passed targets instead of looking up in the whole vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting token will be used (with a warning, and that might be slower). ''' ,) class UpperCAmelCase ( snake_case_ ): def __lowerCAmelCase ( self , _lowerCAmelCase ): if self.framework == "tf": _lowerCAmelCase = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": _lowerCAmelCase = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=_lowerCAmelCase ) else: raise ValueError('''Unsupported framework''' ) return masked_index def __lowerCAmelCase ( self , _lowerCAmelCase ): _lowerCAmelCase = self.get_masked_index(_lowerCAmelCase ) _lowerCAmelCase = np.prod(masked_index.shape ) if numel < 1: raise PipelineException( '''fill-mask''' , self.model.base_model_prefix , F'''No mask_token ({self.tokenizer.mask_token}) found on the input''' , ) def __lowerCAmelCase ( self , _lowerCAmelCase ): if isinstance(_lowerCAmelCase , _lowerCAmelCase ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input['''input_ids'''][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(_lowerCAmelCase ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase=None , **_lowerCAmelCase ): if return_tensors is None: _lowerCAmelCase = self.framework _lowerCAmelCase = self.tokenizer(_lowerCAmelCase , return_tensors=_lowerCAmelCase ) self.ensure_exactly_one_mask_token(_lowerCAmelCase ) return model_inputs def __lowerCAmelCase ( self , _lowerCAmelCase ): _lowerCAmelCase = self.model(**_lowerCAmelCase ) _lowerCAmelCase = model_inputs['''input_ids'''] return model_outputs def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase=5 , _lowerCAmelCase=None ): # Cap top_k if there are targets if target_ids is not None and target_ids.shape[0] < top_k: _lowerCAmelCase = target_ids.shape[0] _lowerCAmelCase = model_outputs['''input_ids'''][0] _lowerCAmelCase = model_outputs['''logits'''] if self.framework == "tf": _lowerCAmelCase = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] _lowerCAmelCase = outputs.numpy() _lowerCAmelCase = outputs[0, masked_index, :] _lowerCAmelCase = stable_softmax(_lowerCAmelCase , axis=-1 ) if target_ids is not None: _lowerCAmelCase = tf.gather_nd(tf.squeeze(_lowerCAmelCase , 0 ) , target_ids.reshape(-1 , 1 ) ) _lowerCAmelCase = tf.expand_dims(_lowerCAmelCase , 0 ) _lowerCAmelCase = tf.math.top_k(_lowerCAmelCase , k=_lowerCAmelCase ) _lowerCAmelCase , _lowerCAmelCase = topk.values.numpy(), topk.indices.numpy() else: _lowerCAmelCase = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=_lowerCAmelCase ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample _lowerCAmelCase = outputs[0, masked_index, :] _lowerCAmelCase = logits.softmax(dim=-1 ) if target_ids is not None: _lowerCAmelCase = probs[..., target_ids] _lowerCAmelCase , _lowerCAmelCase = probs.topk(_lowerCAmelCase ) _lowerCAmelCase = [] _lowerCAmelCase = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist() ) ): _lowerCAmelCase = [] for v, p in zip(_values , _predictions ): # Copy is important since we're going to modify this array in place _lowerCAmelCase = input_ids.numpy().copy() if target_ids is not None: _lowerCAmelCase = target_ids[p].tolist() _lowerCAmelCase = p # Filter padding out: _lowerCAmelCase = tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back _lowerCAmelCase = self.tokenizer.decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase ) _lowerCAmelCase = {'''score''': v, '''token''': p, '''token_str''': self.tokenizer.decode([p] ), '''sequence''': sequence} row.append(_lowerCAmelCase ) result.append(_lowerCAmelCase ) if single_mask: return result[0] return result def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase=None ): if isinstance(_lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = [targets] try: _lowerCAmelCase = self.tokenizer.get_vocab() except Exception: _lowerCAmelCase = {} _lowerCAmelCase = [] for target in targets: _lowerCAmelCase = vocab.get(_lowerCAmelCase , _lowerCAmelCase ) if id_ is None: _lowerCAmelCase = self.tokenizer( _lowerCAmelCase , add_special_tokens=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , return_token_type_ids=_lowerCAmelCase , max_length=1 , truncation=_lowerCAmelCase , )['''input_ids'''] if len(_lowerCAmelCase ) == 0: logger.warning( F'''The specified target token `{target}` does not exist in the model vocabulary. ''' '''We cannot replace it with anything meaningful, ignoring it''' ) continue _lowerCAmelCase = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( F'''The specified target token `{target}` does not exist in the model vocabulary. ''' F'''Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`.''' ) target_ids.append(id_ ) _lowerCAmelCase = list(set(_lowerCAmelCase ) ) if len(_lowerCAmelCase ) == 0: raise ValueError('''At least one target must be provided when passed.''' ) _lowerCAmelCase = np.array(_lowerCAmelCase ) return target_ids def __lowerCAmelCase ( self , _lowerCAmelCase=None , _lowerCAmelCase=None ): _lowerCAmelCase = {} if targets is not None: _lowerCAmelCase = self.get_target_ids(_lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = target_ids if top_k is not None: _lowerCAmelCase = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( '''fill-mask''' , self.model.base_model_prefix , '''The tokenizer does not define a `mask_token`.''' ) return {}, {}, postprocess_params def __call__( self , _lowerCAmelCase , *_lowerCAmelCase , **_lowerCAmelCase ): _lowerCAmelCase = super().__call__(_lowerCAmelCase , **_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) and len(_lowerCAmelCase ) == 1: return outputs[0] return outputs
664
import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets UpperCAmelCase_ = "\n@inproceedings{xu-etal-2016-optimizing,\n title = {Optimizing Statistical Machine Translation for Text Simplification},\n authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris},\n journal = {Transactions of the Association for Computational Linguistics},\n volume = {4},\n year={2016},\n url = {https://www.aclweb.org/anthology/Q16-1029},\n pages = {401--415\n},\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n" UpperCAmelCase_ = "\\nWIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU\nIt can be used to evaluate the quality of machine-generated texts.\n" UpperCAmelCase_ = "\nCalculates sari score (between 0 and 100) given a list of source and predicted\nsentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score.\nArgs:\n sources: list of source sentences where each sentence should be a string.\n predictions: list of predicted sentences where each sentence should be a string.\n references: list of lists of reference sentences where each sentence should be a string.\nReturns:\n sari: sari score\n sacrebleu: sacrebleu score\n exact: exact score\n\nExamples:\n >>> sources=[\"About 95 species are currently accepted .\"]\n >>> predictions=[\"About 95 you now get in .\"]\n >>> references=[[\"About 95 species are currently known .\"]]\n >>> wiki_split = datasets.load_metric(\"wiki_split\")\n >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)\n >>> print(results)\n {'sari': 21.805555555555557, 'sacrebleu': 14.535768424205482, 'exact': 0.0}\n" def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[Any] )->Optional[Any]: def remove_articles(_SCREAMING_SNAKE_CASE : List[str] ): _lowerCAmelCase = re.compile(r'''\b(a|an|the)\b''' , re.UNICODE ) return re.sub(_SCREAMING_SNAKE_CASE , ''' ''' , _SCREAMING_SNAKE_CASE ) def white_space_fix(_SCREAMING_SNAKE_CASE : List[Any] ): return " ".join(text.split() ) def remove_punc(_SCREAMING_SNAKE_CASE : Optional[Any] ): _lowerCAmelCase = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_SCREAMING_SNAKE_CASE : Optional[int] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_SCREAMING_SNAKE_CASE ) ) ) ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : List[Any] )->Any: return int(normalize_answer(_SCREAMING_SNAKE_CASE ) == normalize_answer(_SCREAMING_SNAKE_CASE ) ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : str )->int: _lowerCAmelCase = [any(compute_exact(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for ref in refs ) for pred, refs in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )] return (sum(_SCREAMING_SNAKE_CASE ) / len(_SCREAMING_SNAKE_CASE )) * 1_0_0 def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : List[str] )->Optional[int]: _lowerCAmelCase = [rgram for rgrams in rgramslist for rgram in rgrams] _lowerCAmelCase = Counter(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = Counter(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = Counter() for sgram, scount in sgramcounter.items(): _lowerCAmelCase = scount * numref _lowerCAmelCase = Counter(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = Counter() for cgram, ccount in cgramcounter.items(): _lowerCAmelCase = ccount * numref # KEEP _lowerCAmelCase = sgramcounter_rep & cgramcounter_rep _lowerCAmelCase = keepgramcounter_rep & rgramcounter _lowerCAmelCase = sgramcounter_rep & rgramcounter _lowerCAmelCase = 0 _lowerCAmelCase = 0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _lowerCAmelCase = 1 _lowerCAmelCase = 1 if len(_SCREAMING_SNAKE_CASE ) > 0: _lowerCAmelCase = keeptmpscorea / len(_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) _lowerCAmelCase = keeptmpscorea / sum(keepgramcounterall_rep.values() ) _lowerCAmelCase = 0 if keepscore_precision > 0 or keepscore_recall > 0: _lowerCAmelCase = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION _lowerCAmelCase = sgramcounter_rep - cgramcounter_rep _lowerCAmelCase = delgramcounter_rep - rgramcounter _lowerCAmelCase = sgramcounter_rep - rgramcounter _lowerCAmelCase = 0 _lowerCAmelCase = 0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _lowerCAmelCase = 1 if len(_SCREAMING_SNAKE_CASE ) > 0: _lowerCAmelCase = deltmpscorea / len(_SCREAMING_SNAKE_CASE ) # ADDITION _lowerCAmelCase = set(_SCREAMING_SNAKE_CASE ) - set(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = set(_SCREAMING_SNAKE_CASE ) & set(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = set(_SCREAMING_SNAKE_CASE ) - set(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = 0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _lowerCAmelCase = 1 _lowerCAmelCase = 1 if len(_SCREAMING_SNAKE_CASE ) > 0: _lowerCAmelCase = addtmpscore / len(_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 0: _lowerCAmelCase = addtmpscore / len(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = 0 if addscore_precision > 0 or addscore_recall > 0: _lowerCAmelCase = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : str )->List[Any]: _lowerCAmelCase = len(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = ssent.split(''' ''' ) _lowerCAmelCase = csent.split(''' ''' ) _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] for rsent in rsents: _lowerCAmelCase = rsent.split(''' ''' ) _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] ragramslist.append(_SCREAMING_SNAKE_CASE ) for i in range(0 , len(_SCREAMING_SNAKE_CASE ) - 1 ): if i < len(_SCREAMING_SNAKE_CASE ) - 1: _lowerCAmelCase = ragrams[i] + ''' ''' + ragrams[i + 1] ragrams.append(_SCREAMING_SNAKE_CASE ) if i < len(_SCREAMING_SNAKE_CASE ) - 2: _lowerCAmelCase = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] ragrams.append(_SCREAMING_SNAKE_CASE ) if i < len(_SCREAMING_SNAKE_CASE ) - 3: _lowerCAmelCase = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] + ''' ''' + ragrams[i + 3] ragrams.append(_SCREAMING_SNAKE_CASE ) ragramslist.append(_SCREAMING_SNAKE_CASE ) ragramslist.append(_SCREAMING_SNAKE_CASE ) ragramslist.append(_SCREAMING_SNAKE_CASE ) for i in range(0 , len(_SCREAMING_SNAKE_CASE ) - 1 ): if i < len(_SCREAMING_SNAKE_CASE ) - 1: _lowerCAmelCase = sagrams[i] + ''' ''' + sagrams[i + 1] sagrams.append(_SCREAMING_SNAKE_CASE ) if i < len(_SCREAMING_SNAKE_CASE ) - 2: _lowerCAmelCase = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] sagrams.append(_SCREAMING_SNAKE_CASE ) if i < len(_SCREAMING_SNAKE_CASE ) - 3: _lowerCAmelCase = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] + ''' ''' + sagrams[i + 3] sagrams.append(_SCREAMING_SNAKE_CASE ) for i in range(0 , len(_SCREAMING_SNAKE_CASE ) - 1 ): if i < len(_SCREAMING_SNAKE_CASE ) - 1: _lowerCAmelCase = cagrams[i] + ''' ''' + cagrams[i + 1] cagrams.append(_SCREAMING_SNAKE_CASE ) if i < len(_SCREAMING_SNAKE_CASE ) - 2: _lowerCAmelCase = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] cagrams.append(_SCREAMING_SNAKE_CASE ) if i < len(_SCREAMING_SNAKE_CASE ) - 3: _lowerCAmelCase = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] + ''' ''' + cagrams[i + 3] cagrams.append(_SCREAMING_SNAKE_CASE ) ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) = SARIngram(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) = SARIngram(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) = SARIngram(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) = SARIngram(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _lowerCAmelCase = sum([keepascore, keepascore, keepascore, keepascore] ) / 4 _lowerCAmelCase = sum([delascore, delascore, delascore, delascore] ) / 4 _lowerCAmelCase = sum([addascore, addascore, addascore, addascore] ) / 4 _lowerCAmelCase = (avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : bool = True , _SCREAMING_SNAKE_CASE : str = "13a" , _SCREAMING_SNAKE_CASE : bool = True )->int: # Normalization is requried for the ASSET dataset (one of the primary # datasets in sentence simplification) to allow using space # to split the sentence. Even though Wiki-Auto and TURK datasets, # do not require normalization, we do it for consistency. # Code adapted from the EASSE library [1] written by the authors of the ASSET dataset. # [1] https://github.com/feralvam/easse/blob/580bba7e1378fc8289c663f864e0487188fe8067/easse/utils/preprocessing.py#L7 if lowercase: _lowerCAmelCase = sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: _lowerCAmelCase = sacrebleu.metrics.bleu._get_tokenizer(_SCREAMING_SNAKE_CASE )()(_SCREAMING_SNAKE_CASE ) else: _lowerCAmelCase = sacrebleu.TOKENIZERS[tokenizer]()(_SCREAMING_SNAKE_CASE ) elif tokenizer == "moses": _lowerCAmelCase = sacremoses.MosesTokenizer().tokenize(_SCREAMING_SNAKE_CASE , return_str=_SCREAMING_SNAKE_CASE , escape=_SCREAMING_SNAKE_CASE ) elif tokenizer == "penn": _lowerCAmelCase = sacremoses.MosesTokenizer().penn_tokenize(_SCREAMING_SNAKE_CASE , return_str=_SCREAMING_SNAKE_CASE ) else: _lowerCAmelCase = sentence if not return_str: _lowerCAmelCase = normalized_sent.split() return normalized_sent def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : List[str] )->str: if not (len(_SCREAMING_SNAKE_CASE ) == len(_SCREAMING_SNAKE_CASE ) == len(_SCREAMING_SNAKE_CASE )): raise ValueError('''Sources length must match predictions and references lengths.''' ) _lowerCAmelCase = 0 for src, pred, refs in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): sari_score += SARIsent(normalize(_SCREAMING_SNAKE_CASE ) , normalize(_SCREAMING_SNAKE_CASE ) , [normalize(_SCREAMING_SNAKE_CASE ) for sent in refs] ) _lowerCAmelCase = sari_score / len(_SCREAMING_SNAKE_CASE ) return 1_0_0 * sari_score def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Optional[Any]="exp" , _SCREAMING_SNAKE_CASE : Optional[int]=None , _SCREAMING_SNAKE_CASE : Optional[int]=False , _SCREAMING_SNAKE_CASE : str=False , _SCREAMING_SNAKE_CASE : int=False , )->str: _lowerCAmelCase = len(references[0] ) if any(len(_SCREAMING_SNAKE_CASE ) != references_per_prediction for refs in references ): raise ValueError('''Sacrebleu requires the same number of references for each prediction''' ) _lowerCAmelCase = [[refs[i] for refs in references] for i in range(_SCREAMING_SNAKE_CASE )] _lowerCAmelCase = sacrebleu.corpus_bleu( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , smooth_method=_SCREAMING_SNAKE_CASE , smooth_value=_SCREAMING_SNAKE_CASE , force=_SCREAMING_SNAKE_CASE , lowercase=_SCREAMING_SNAKE_CASE , use_effective_order=_SCREAMING_SNAKE_CASE , ) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class UpperCAmelCase ( datasets.Metric ): def __lowerCAmelCase ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=[ '''https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py''', '''https://github.com/cocoxu/simplification/blob/master/SARI.py''', '''https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py''', '''https://github.com/mjpost/sacreBLEU''', ] , reference_urls=[ '''https://www.aclweb.org/anthology/Q16-1029.pdf''', '''https://github.com/mjpost/sacreBLEU''', '''https://en.wikipedia.org/wiki/BLEU''', '''https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213''', ] , ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = {} result.update({'''sari''': compute_sari(sources=_lowerCAmelCase , predictions=_lowerCAmelCase , references=_lowerCAmelCase )} ) result.update({'''sacrebleu''': compute_sacrebleu(predictions=_lowerCAmelCase , references=_lowerCAmelCase )} ) result.update({'''exact''': compute_em(predictions=_lowerCAmelCase , references=_lowerCAmelCase )} ) return result
664
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = { 'facebook/vit-mae-base': 'https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json', # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class UpperCAmelCase_ ( __lowerCAmelCase ): """simple docstring""" UpperCamelCase_ = '''vit_mae''' def __init__( self : Union[str, Any] , UpperCAmelCase : Optional[int]=768 , UpperCAmelCase : Tuple=12 , UpperCAmelCase : Optional[Any]=12 , UpperCAmelCase : Optional[int]=3072 , UpperCAmelCase : Any="gelu" , UpperCAmelCase : Optional[Any]=0.0 , UpperCAmelCase : Optional[int]=0.0 , UpperCAmelCase : Dict=0.0_2 , UpperCAmelCase : List[Any]=1e-12 , UpperCAmelCase : Optional[Any]=224 , UpperCAmelCase : int=16 , UpperCAmelCase : str=3 , UpperCAmelCase : Tuple=True , UpperCAmelCase : int=16 , UpperCAmelCase : str=512 , UpperCAmelCase : int=8 , UpperCAmelCase : List[Any]=2048 , UpperCAmelCase : Optional[Any]=0.7_5 , UpperCAmelCase : List[str]=False , **UpperCAmelCase : Union[str, Any] , ) -> Dict: '''simple docstring''' super().__init__(**_UpperCAmelCase ) lowercase : List[str] =hidden_size lowercase : Union[str, Any] =num_hidden_layers lowercase : Any =num_attention_heads lowercase : Tuple =intermediate_size lowercase : str =hidden_act lowercase : Optional[int] =hidden_dropout_prob lowercase : Optional[int] =attention_probs_dropout_prob lowercase : Optional[Any] =initializer_range lowercase : str =layer_norm_eps lowercase : List[Any] =image_size lowercase : str =patch_size lowercase : int =num_channels lowercase : List[Any] =qkv_bias lowercase : int =decoder_num_attention_heads lowercase : str =decoder_hidden_size lowercase : Tuple =decoder_num_hidden_layers lowercase : str =decoder_intermediate_size lowercase : Dict =mask_ratio lowercase : Any =norm_pix_loss
94
"""simple docstring""" import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : Optional[int] = (KDPMaDiscreteScheduler,) UpperCAmelCase : Any = 10 def lowerCAmelCase_ ( self : Dict , **_UpperCAmelCase : Optional[Any] ): _A = { 'num_train_timesteps': 1_100, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', } config.update(**_UpperCAmelCase ) return config def lowerCAmelCase_ ( self : Any ): for timesteps in [10, 50, 100, 1_000]: self.check_over_configs(num_train_timesteps=_UpperCAmelCase ) def lowerCAmelCase_ ( self : Dict ): for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=_UpperCAmelCase , beta_end=_UpperCAmelCase ) def lowerCAmelCase_ ( self : Tuple ): for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=_UpperCAmelCase ) def lowerCAmelCase_ ( self : Optional[int] ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_UpperCAmelCase ) def lowerCAmelCase_ ( self : Optional[int] ): _A = self.scheduler_classes[0] _A = self.get_scheduler_config(prediction_type='v_prediction' ) _A = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(self.num_inference_steps ) _A = self.dummy_model() _A = self.dummy_sample_deter * scheduler.init_noise_sigma _A = sample.to(_UpperCAmelCase ) for i, t in enumerate(scheduler.timesteps ): _A = scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase ) _A = model(_UpperCAmelCase , _UpperCAmelCase ) _A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) _A = output.prev_sample _A = torch.sum(torch.abs(_UpperCAmelCase ) ) _A = torch.mean(torch.abs(_UpperCAmelCase ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.6_9_3_4E-0_7 ) < 1E-2 assert abs(result_mean.item() - 6.1_1_1_2E-1_0 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 4.6_9_3_4_2_8_6_5_0_1_7_0_9_7_2E-0_7 ) < 1E-2 assert abs(result_mean.item() - 0.0002 ) < 1E-3 def lowerCAmelCase_ ( self : Optional[Any] ): if torch_device == "mps": return _A = self.scheduler_classes[0] _A = self.get_scheduler_config() _A = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(self.num_inference_steps ) _A = self.dummy_model() _A = self.dummy_sample_deter * scheduler.init_noise_sigma _A = sample.to(_UpperCAmelCase ) for i, t in enumerate(scheduler.timesteps ): _A = scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase ) _A = model(_UpperCAmelCase , _UpperCAmelCase ) _A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) _A = output.prev_sample _A = torch.sum(torch.abs(_UpperCAmelCase ) ) _A = torch.mean(torch.abs(_UpperCAmelCase ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 20.4125 ) < 1E-2 assert abs(result_mean.item() - 0.0266 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.4125 ) < 1E-2 assert abs(result_mean.item() - 0.0266 ) < 1E-3 def lowerCAmelCase_ ( self : Any ): if torch_device == "mps": return _A = self.scheduler_classes[0] _A = self.get_scheduler_config() _A = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(self.num_inference_steps , device=_UpperCAmelCase ) _A = self.dummy_model() _A = self.dummy_sample_deter.to(_UpperCAmelCase ) * scheduler.init_noise_sigma for t in scheduler.timesteps: _A = scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase ) _A = model(_UpperCAmelCase , _UpperCAmelCase ) _A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) _A = output.prev_sample _A = torch.sum(torch.abs(_UpperCAmelCase ) ) _A = torch.mean(torch.abs(_UpperCAmelCase ) ) if str(_UpperCAmelCase ).startswith('cpu' ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 20.4125 ) < 1E-2 assert abs(result_mean.item() - 0.0266 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.4125 ) < 1E-2 assert abs(result_mean.item() - 0.0266 ) < 1E-3
7
0
import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Dict: """simple docstring""" lowerCamelCase__ : Optional[int] = FunnelConfig.from_json_file(__snake_case ) print(f"Building PyTorch model from configuration: {config}" ) lowerCamelCase__ : Tuple = FunnelBaseModel(__snake_case ) if base_model else FunnelModel(__snake_case ) # Load weights from tf checkpoint load_tf_weights_in_funnel(__snake_case , __snake_case , __snake_case ) # Save pytorch-model print(f"Save PyTorch model to {pytorch_dump_path}" ) torch.save(model.state_dict() , __snake_case ) if __name__ == "__main__": _A : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--base_model', action='store_true', help='Whether you want just the base model (no decoder) or not.' ) _A : Any = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
713
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase _A : Union[str, Any] = logging.get_logger(__name__) _A : int = { 'allenai/longformer-base-4096': 'https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json', 'allenai/longformer-large-4096': 'https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json', 'allenai/longformer-large-4096-finetuned-triviaqa': ( 'https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json' ), 'allenai/longformer-base-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json' ), 'allenai/longformer-large-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json' ), } class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): _UpperCAmelCase : List[str] = "longformer" def __init__( self : Union[str, Any] , A : Union[List[int], int] = 5_1_2 , A : int = 2 , A : int = 1 , A : int = 0 , A : int = 2 , A : int = 3_0_5_2_2 , A : int = 7_6_8 , A : int = 1_2 , A : int = 1_2 , A : int = 3_0_7_2 , A : str = "gelu" , A : float = 0.1 , A : float = 0.1 , A : int = 5_1_2 , A : int = 2 , A : float = 0.02 , A : float = 1e-12 , A : bool = False , **A : Optional[Any] , ) ->Dict: super().__init__(pad_token_id=A , **A ) lowerCamelCase__ : Optional[Any] = attention_window lowerCamelCase__ : List[Any] = sep_token_id lowerCamelCase__ : int = bos_token_id lowerCamelCase__ : Union[str, Any] = eos_token_id lowerCamelCase__ : int = vocab_size lowerCamelCase__ : List[str] = hidden_size lowerCamelCase__ : List[str] = num_hidden_layers lowerCamelCase__ : str = num_attention_heads lowerCamelCase__ : int = hidden_act lowerCamelCase__ : Optional[int] = intermediate_size lowerCamelCase__ : str = hidden_dropout_prob lowerCamelCase__ : Tuple = attention_probs_dropout_prob lowerCamelCase__ : Union[str, Any] = max_position_embeddings lowerCamelCase__ : List[Any] = type_vocab_size lowerCamelCase__ : List[str] = initializer_range lowerCamelCase__ : str = layer_norm_eps lowerCamelCase__ : List[Any] = onnx_export class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): def __init__( self : Tuple , A : "PretrainedConfig" , A : str = "default" , A : "List[PatchingSpec]" = None ) ->Any: super().__init__(A , A , A ) lowerCamelCase__ : Any = True @property def __lowerCamelCase ( self : int ) ->Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": lowerCamelCase__ : int = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowerCamelCase__ : Tuple = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''global_attention_mask''', dynamic_axis), ] ) @property def __lowerCamelCase ( self : str ) ->Mapping[str, Mapping[int, str]]: lowerCamelCase__ : Dict = super().outputs if self.task == "default": lowerCamelCase__ : str = {0: '''batch'''} return outputs @property def __lowerCamelCase ( self : Optional[Any] ) ->float: return 1e-4 @property def __lowerCamelCase ( self : int ) ->int: # needs to be >= 14 to support tril operator return max(super().default_onnx_opset , 1_4 ) def __lowerCamelCase ( self : Union[str, Any] , A : "PreTrainedTokenizerBase" , A : int = -1 , A : int = -1 , A : bool = False , A : Optional[TensorType] = None , ) ->Mapping[str, Any]: lowerCamelCase__ : Dict = super().generate_dummy_inputs( preprocessor=A , batch_size=A , seq_length=A , is_pair=A , framework=A ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly lowerCamelCase__ : Any = torch.zeros_like(inputs['''input_ids'''] ) # make every second token global lowerCamelCase__ : List[str] = 1 return inputs
130
0
'''simple docstring''' from statistics import mean import numpy as np def UpperCAmelCase__ ( UpperCAmelCase_ : list , UpperCAmelCase_ : list , UpperCAmelCase_ : list , UpperCAmelCase_ : int ) -> list: __lowerCamelCase : Tuple = 0 # Number of processes finished __lowerCamelCase : Union[str, Any] = 0 # Displays the finished process. # If it is 0, the performance is completed if it is 1, before the performance. __lowerCamelCase : List[Any] = [0] * no_of_process # List to include calculation results __lowerCamelCase : str = [0] * no_of_process # Sort by arrival time. __lowerCamelCase : Tuple = [burst_time[i] for i in np.argsort(UpperCAmelCase_ )] __lowerCamelCase : List[str] = [process_name[i] for i in np.argsort(UpperCAmelCase_ )] arrival_time.sort() while no_of_process > finished_process_count: __lowerCamelCase : Tuple = 0 while finished_process[i] == 1: i += 1 if current_time < arrival_time[i]: __lowerCamelCase : Optional[Any] = arrival_time[i] __lowerCamelCase : Any = 0 # Index showing the location of the process being performed __lowerCamelCase : Tuple = 0 # Saves the current response ratio. __lowerCamelCase : List[str] = 0 for i in range(0 , UpperCAmelCase_ ): if finished_process[i] == 0 and arrival_time[i] <= current_time: __lowerCamelCase : Any = (burst_time[i] + (current_time - arrival_time[i])) / burst_time[ i ] if response_ratio < temp: __lowerCamelCase : Optional[int] = temp __lowerCamelCase : List[Any] = i # Calculate the turn around time __lowerCamelCase : Optional[Any] = current_time + burst_time[loc] - arrival_time[loc] current_time += burst_time[loc] # Indicates that the process has been performed. __lowerCamelCase : List[Any] = 1 # Increase finished_process_count by 1 finished_process_count += 1 return turn_around_time def UpperCAmelCase__ ( UpperCAmelCase_ : list , UpperCAmelCase_ : list , UpperCAmelCase_ : list , UpperCAmelCase_ : int ) -> list: __lowerCamelCase : Any = [0] * no_of_process for i in range(0 , UpperCAmelCase_ ): __lowerCamelCase : Dict = turn_around_time[i] - burst_time[i] return waiting_time if __name__ == "__main__": A__ : Dict = 5 A__ : str = ["""A""", """B""", """C""", """D""", """E"""] A__ : Optional[int] = [1, 2, 3, 4, 5] A__ : Optional[int] = [1, 2, 3, 4, 5] A__ : Optional[Any] = calculate_turn_around_time( process_name, arrival_time, burst_time, no_of_process ) A__ : Union[str, Any] = calculate_waiting_time( process_name, turn_around_time, burst_time, no_of_process ) print("""Process name \tArrival time \tBurst time \tTurn around time \tWaiting time""") for i in range(0, no_of_process): print( f'''{process_name[i]}\t\t{arrival_time[i]}\t\t{burst_time[i]}\t\t''' f'''{turn_around_time[i]}\t\t\t{waiting_time[i]}''' ) print(f'''average waiting time : {mean(waiting_time):.5f}''') print(f'''average turn around time : {mean(turn_around_time):.5f}''')
13
"""simple docstring""" import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) SCREAMING_SNAKE_CASE__ = [ "cross_validation.py", "gradient_accumulation.py", "local_sgd.py", "multi_process_metrics.py", "memory.py", "automatic_gradient_accumulation.py", "fsdp_with_peak_mem_tracking.py", "deepspeed_with_config_support.py", "megatron_lm_gpt_pretraining.py", ] class lowercase ( unittest.TestCase ): def _snake_case ( self , lowercase , lowercase , lowercase = None , lowercase = None ) -> Dict: lowerCAmelCase = None lowerCAmelCase = os.path.abspath(os.path.join("""examples""" , """by_feature""" ) ) lowerCAmelCase = os.path.abspath("""examples""" ) for item in os.listdir(lowercase ): if item not in EXCLUDE_EXAMPLES: lowerCAmelCase = os.path.join(lowercase , lowercase ) if os.path.isfile(lowercase ) and ".py" in item_path: with self.subTest( tested_script=lowercase , feature_script=lowercase , tested_section="""main()""" if parser_only else """training_function()""" , ): lowerCAmelCase = compare_against_test( os.path.join(lowercase , lowercase ) , lowercase , lowercase , lowercase ) lowerCAmelCase = """\n""".join(lowercase ) if special_strings is not None: for string in special_strings: lowerCAmelCase = diff.replace(lowercase , """""" ) self.assertEqual(lowercase , """""" ) def _snake_case ( self ) -> List[Any]: self.one_complete_example("""complete_nlp_example.py""" , lowercase ) self.one_complete_example("""complete_nlp_example.py""" , lowercase ) def _snake_case ( self ) -> Any: lowerCAmelCase = os.path.abspath(os.path.join("""examples""" , """cv_example.py""" ) ) lowerCAmelCase = [ """ """ * 16 + """{\n\n""", """ """ * 20 + """\"accuracy\": eval_metric[\"accuracy\"],\n\n""", """ """ * 20 + """\"f1\": eval_metric[\"f1\"],\n\n""", """ """ * 20 + """\"train_loss\": total_loss.item() / len(train_dataloader),\n\n""", """ """ * 20 + """\"epoch\": epoch,\n\n""", """ """ * 16 + """},\n\n""", """ """ * 16 + """step=epoch,\n""", """ """ * 12, """ """ * 8 + """for step, batch in enumerate(active_dataloader):\n""", ] self.one_complete_example("""complete_cv_example.py""" , lowercase , lowercase , lowercase ) self.one_complete_example("""complete_cv_example.py""" , lowercase , lowercase , lowercase ) @mock.patch.dict(os.environ , {'TESTING_MOCKED_DATALOADERS': '1'} ) class lowercase ( _UpperCAmelCase ): _SCREAMING_SNAKE_CASE = False @classmethod def _snake_case ( cls ) -> Optional[int]: super().setUpClass() lowerCAmelCase = tempfile.mkdtemp() lowerCAmelCase = os.path.join(cls._tmpdir , """default_config.yml""" ) write_basic_config(save_location=cls.configPath ) lowerCAmelCase = ["""accelerate""", """launch""", """--config_file""", cls.configPath] @classmethod def _snake_case ( cls ) -> Optional[int]: super().tearDownClass() shutil.rmtree(cls._tmpdir ) def _snake_case ( self ) -> str: lowerCAmelCase = f'\n examples/by_feature/checkpointing.py\n --checkpointing_steps epoch\n --output_dir {self.tmpdir}\n '.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , """epoch_0""" ) ) ) def _snake_case ( self ) -> Optional[int]: lowerCAmelCase = f'\n examples/by_feature/checkpointing.py\n --checkpointing_steps 1\n --output_dir {self.tmpdir}\n '.split() lowerCAmelCase = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , """step_2""" ) ) ) def _snake_case ( self ) -> List[str]: lowerCAmelCase = f'\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , "epoch_0" )}\n '.split() lowerCAmelCase = run_command(self._launch_args + testargs , return_stdout=lowercase ) self.assertNotIn("""epoch 0:""" , lowercase ) self.assertIn("""epoch 1:""" , lowercase ) def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase = f'\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , "step_2" )}\n '.split() lowerCAmelCase = run_command(self._launch_args + testargs , return_stdout=lowercase ) if torch.cuda.is_available(): lowerCAmelCase = torch.cuda.device_count() else: lowerCAmelCase = 1 if num_processes > 1: self.assertNotIn("""epoch 0:""" , lowercase ) self.assertIn("""epoch 1:""" , lowercase ) else: self.assertIn("""epoch 0:""" , lowercase ) self.assertIn("""epoch 1:""" , lowercase ) @slow def _snake_case ( self ) -> Tuple: lowerCAmelCase = """ examples/by_feature/cross_validation.py --num_folds 2 """.split() with mock.patch.dict(os.environ , {"""TESTING_MOCKED_DATALOADERS""": """0"""} ): lowerCAmelCase = run_command(self._launch_args + testargs , return_stdout=lowercase ) lowerCAmelCase = re.findall("""({.+})""" , lowercase ) lowerCAmelCase = [r for r in results if """accuracy""" in r][-1] lowerCAmelCase = ast.literal_eval(lowercase ) self.assertGreaterEqual(results["""accuracy"""] , 0.75 ) def _snake_case ( self ) -> int: lowerCAmelCase = ["""examples/by_feature/multi_process_metrics.py"""] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def _snake_case ( self ) -> Any: with tempfile.TemporaryDirectory() as tmpdir: lowerCAmelCase = f'\n examples/by_feature/tracking.py\n --with_tracking\n --project_dir {tmpdir}\n '.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(lowercase , """tracking""" ) ) ) def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase = ["""examples/by_feature/gradient_accumulation.py"""] run_command(self._launch_args + testargs ) def _snake_case ( self ) -> int: lowerCAmelCase = ["""examples/by_feature/local_sgd.py"""] run_command(self._launch_args + testargs )
532
0
"""simple docstring""" from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _UpperCamelCase ( _UpperCamelCase ): """simple docstring""" snake_case_ = 'ClapFeatureExtractor' snake_case_ = ('RobertaTokenizer', 'RobertaTokenizerFast') def __init__( self : List[Any] , snake_case : List[Any] , snake_case : Any ) -> List[str]: '''simple docstring''' super().__init__(_UpperCAmelCase , _UpperCAmelCase ) def __call__( self : List[str] , snake_case : Dict=None , snake_case : List[str]=None , snake_case : Optional[Any]=None , **snake_case : Optional[Any] ) -> str: '''simple docstring''' __magic_name__ : int = kwargs.pop('''sampling_rate''' , _UpperCAmelCase ) if text is None and audios is None: raise ValueError('''You have to specify either text or audios. Both cannot be none.''' ) if text is not None: __magic_name__ : Union[str, Any] = self.tokenizer(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase ) if audios is not None: __magic_name__ : Union[str, Any] = self.feature_extractor( _UpperCAmelCase , sampling_rate=_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase ) if text is not None and audios is not None: __magic_name__ : int = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_UpperCAmelCase ) , tensor_type=_UpperCAmelCase ) def _UpperCAmelCase ( self : List[Any] , *snake_case : Optional[Any] , **snake_case : List[Any] ) -> int: '''simple docstring''' return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase ) def _UpperCAmelCase ( self : int , *snake_case : List[str] , **snake_case : List[Any] ) -> int: '''simple docstring''' return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase ) @property def _UpperCAmelCase ( self : List[Any] ) -> List[Any]: '''simple docstring''' __magic_name__ : int = self.tokenizer.model_input_names __magic_name__ : Dict = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
713
"""simple docstring""" from __future__ import annotations from collections.abc import Callable from typing import Generic, TypeVar A = TypeVar("""T""") A = TypeVar("""U""") class _UpperCamelCase ( Generic[T, U] ): """simple docstring""" def __init__( self : Any , snake_case : T | None , snake_case : U | None ) -> Tuple: '''simple docstring''' __magic_name__ : Optional[Any] = key __magic_name__ : str = val __magic_name__ : DoubleLinkedListNode[T, U] | None = None __magic_name__ : DoubleLinkedListNode[T, U] | None = None def __repr__( self : str ) -> str: '''simple docstring''' return ( f"""Node: key: {self.key}, val: {self.val}, """ f"""has next: {bool(self.next )}, has prev: {bool(self.prev )}""" ) class _UpperCamelCase ( Generic[T, U] ): """simple docstring""" def __init__( self : str ) -> None: '''simple docstring''' __magic_name__ : DoubleLinkedListNode[T, U] = DoubleLinkedListNode(snake_case , snake_case ) __magic_name__ : DoubleLinkedListNode[T, U] = DoubleLinkedListNode(snake_case , snake_case ) __magic_name__ , __magic_name__ : Tuple = self.rear, self.head def __repr__( self : str ) -> str: '''simple docstring''' __magic_name__ : List[str] = ['''DoubleLinkedList'''] __magic_name__ : Optional[Any] = self.head while node.next is not None: rep.append(str(snake_case ) ) __magic_name__ : Any = node.next rep.append(str(self.rear ) ) return ",\n ".join(snake_case ) def _UpperCAmelCase ( self : List[str] , snake_case : DoubleLinkedListNode[T, U] ) -> None: '''simple docstring''' __magic_name__ : Tuple = self.rear.prev # All nodes other than self.head are guaranteed to have non-None previous assert previous is not None __magic_name__ : Dict = node __magic_name__ : Optional[int] = previous __magic_name__ : Tuple = node __magic_name__ : Optional[int] = self.rear def _UpperCAmelCase ( self : str , snake_case : DoubleLinkedListNode[T, U] ) -> DoubleLinkedListNode[T, U] | None: '''simple docstring''' if node.prev is None or node.next is None: return None __magic_name__ : str = node.next __magic_name__ : Dict = node.prev __magic_name__ : Any = None __magic_name__ : Dict = None return node class _UpperCamelCase ( Generic[T, U] ): """simple docstring""" snake_case_ = {} def __init__( self : Dict , snake_case : int ) -> Optional[Any]: '''simple docstring''' __magic_name__ : DoubleLinkedList[T, U] = DoubleLinkedList() __magic_name__ : str = capacity __magic_name__ : Tuple = 0 __magic_name__ : Optional[Any] = 0 __magic_name__ : List[str] = 0 __magic_name__ : dict[T, DoubleLinkedListNode[T, U]] = {} def __repr__( self : Tuple ) -> str: '''simple docstring''' return ( f"""CacheInfo(hits={self.hits}, misses={self.miss}, """ f"""capacity={self.capacity}, current size={self.num_keys})""" ) def __contains__( self : List[str] , snake_case : T ) -> bool: '''simple docstring''' return key in self.cache def _UpperCAmelCase ( self : Optional[int] , snake_case : T ) -> U | None: '''simple docstring''' if key in self.cache: self.hits += 1 __magic_name__ : DoubleLinkedListNode[T, U] = self.cache[key] __magic_name__ : Optional[Any] = self.list.remove(self.cache[key] ) assert node == value_node # node is guaranteed not None because it is in self.cache assert node is not None self.list.add(snake_case ) return node.val self.miss += 1 return None def _UpperCAmelCase ( self : str , snake_case : T , snake_case : U ) -> None: '''simple docstring''' if key not in self.cache: if self.num_keys >= self.capacity: # delete first node (oldest) when over capacity __magic_name__ : Optional[Any] = self.list.head.next # guaranteed to have a non-None first node when num_keys > 0 # explain to type checker via assertions assert first_node is not None assert first_node.key is not None assert ( self.list.remove(snake_case ) is not None ) # node guaranteed to be in list assert node.key is not None del self.cache[first_node.key] self.num_keys -= 1 __magic_name__ : List[str] = DoubleLinkedListNode(snake_case , snake_case ) self.list.add(self.cache[key] ) self.num_keys += 1 else: # bump node to the end of the list, update value __magic_name__ : Dict = self.list.remove(self.cache[key] ) assert node is not None # node guaranteed to be in list __magic_name__ : Any = value self.list.add(snake_case ) @classmethod def _UpperCAmelCase ( cls : Tuple , snake_case : int = 128 ) -> Callable[[Callable[[T], U]], Callable[..., U]]: '''simple docstring''' def cache_decorator_inner(snake_case : Callable[[T], U] ) -> Callable[..., U]: def cache_decorator_wrapper(*snake_case : T ) -> U: if func not in cls.decorator_function_to_instance_map: __magic_name__ : Any = LRUCache(snake_case ) __magic_name__ : Optional[Any] = cls.decorator_function_to_instance_map[func].get(args[0] ) if result is None: __magic_name__ : Any = func(*snake_case ) cls.decorator_function_to_instance_map[func].put(args[0] , snake_case ) return result def cache_info() -> LRUCache[T, U]: return cls.decorator_function_to_instance_map[func] setattr(snake_case , '''cache_info''' , snake_case ) # noqa: B010 return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
147
0
'''simple docstring''' def _lowerCAmelCase ( lowerCamelCase_ : float , lowerCamelCase_ : float , lowerCamelCase_ : int ): if principal <= 0: raise Exception('''Principal borrowed must be > 0''' ) if rate_per_annum < 0: raise Exception('''Rate of interest must be >= 0''' ) if years_to_repay <= 0 or not isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise Exception('''Years to repay must be an integer > 0''' ) # Yearly rate is divided by 12 to get monthly rate __lowercase = rate_per_annum / 1_2 # Years to repay is multiplied by 12 to get number of payments as payment is monthly __lowercase = years_to_repay * 1_2 return ( principal * rate_per_month * (1 + rate_per_month) ** number_of_payments / ((1 + rate_per_month) ** number_of_payments - 1) ) if __name__ == "__main__": import doctest doctest.testmod()
502
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/config.json''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/config.json''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json''' ), '''distilbert-base-german-cased''': '''https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json''', '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json''' ), '''distilbert-base-uncased-finetuned-sst-2-english''': ( '''https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json''' ), } class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : int = "distilbert" a : Union[str, Any] = { "hidden_size": "dim", "num_attention_heads": "n_heads", "num_hidden_layers": "n_layers", } def __init__(self ,_lowerCamelCase=30522 ,_lowerCamelCase=512 ,_lowerCamelCase=False ,_lowerCamelCase=6 ,_lowerCamelCase=12 ,_lowerCamelCase=768 ,_lowerCamelCase=4 * 768 ,_lowerCamelCase=0.1 ,_lowerCamelCase=0.1 ,_lowerCamelCase="gelu" ,_lowerCamelCase=0.0_2 ,_lowerCamelCase=0.1 ,_lowerCamelCase=0.2 ,_lowerCamelCase=0 ,**_lowerCamelCase ,) -> Tuple: '''simple docstring''' __lowercase = vocab_size __lowercase = max_position_embeddings __lowercase = sinusoidal_pos_embds __lowercase = n_layers __lowercase = n_heads __lowercase = dim __lowercase = hidden_dim __lowercase = dropout __lowercase = attention_dropout __lowercase = activation __lowercase = initializer_range __lowercase = qa_dropout __lowercase = seq_classif_dropout super().__init__(**_lowerCamelCase ,pad_token_id=_lowerCamelCase ) class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' @property def _UpperCAmelCase (self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": __lowercase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __lowercase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
502
1
'''simple docstring''' import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( '''The `inpainting.py` script is outdated. Please use directly `from diffusers import''' ''' StableDiffusionInpaintPipeline` instead.''' )
709
'''simple docstring''' def UpperCamelCase_ ( snake_case_ : int ) -> list[int]: '''simple docstring''' if num <= 0: raise ValueError("""Input must be a positive integer""" ) __lowerCAmelCase = [True] * (num + 1) __lowerCAmelCase = 2 while p * p <= num: if primes[p]: for i in range(p * p , num + 1 , snake_case_ ): __lowerCAmelCase = False p += 1 return [prime for prime in range(2 , num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() _A : Tuple = int(input('''Enter a positive integer: ''').strip()) print(prime_sieve_eratosthenes(user_num))
330
0
'''simple docstring''' import functools import logging import os import sys import threading from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional import huggingface_hub.utils as hf_hub_utils from tqdm import auto as tqdm_lib snake_case_ : List[Any] = threading.Lock() snake_case_ : Optional[logging.Handler] = None snake_case_ : Optional[int] = { 'debug': logging.DEBUG, 'info': logging.INFO, 'warning': logging.WARNING, 'error': logging.ERROR, 'critical': logging.CRITICAL, } snake_case_ : List[str] = logging.WARNING snake_case_ : Optional[Any] = True def __snake_case ( ): UpperCamelCase = os.getenv('''TRANSFORMERS_VERBOSITY''', _UpperCAmelCase) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( f'Unknown option TRANSFORMERS_VERBOSITY={env_level_str}, ' f'has to be one of: { ", ".join(log_levels.keys()) }') return _default_log_level def __snake_case ( ): return __name__.split('''.''')[0] def __snake_case ( ): return logging.getLogger(_get_library_name()) def __snake_case ( ): global _default_handler with _lock: if _default_handler: # This library has already configured the library root logger. return UpperCamelCase = logging.StreamHandler() # Set sys.stderr as stream. UpperCamelCase = sys.stderr.flush # Apply our default configuration to the library root logger. UpperCamelCase = _get_library_root_logger() library_root_logger.addHandler(_default_handler) library_root_logger.setLevel(_get_default_logging_level()) UpperCamelCase = False def __snake_case ( ): global _default_handler with _lock: if not _default_handler: return UpperCamelCase = _get_library_root_logger() library_root_logger.removeHandler(_default_handler) library_root_logger.setLevel(logging.NOTSET) UpperCamelCase = None def __snake_case ( ): return log_levels def __snake_case ( _UpperCAmelCase : Optional[str] = None): if name is None: UpperCamelCase = _get_library_name() _configure_library_root_logger() return logging.getLogger(_UpperCAmelCase) def __snake_case ( ): _configure_library_root_logger() return _get_library_root_logger().getEffectiveLevel() def __snake_case ( _UpperCAmelCase : int): _configure_library_root_logger() _get_library_root_logger().setLevel(_UpperCAmelCase) def __snake_case ( ): return set_verbosity(_UpperCAmelCase) def __snake_case ( ): return set_verbosity(_UpperCAmelCase) def __snake_case ( ): return set_verbosity(_UpperCAmelCase) def __snake_case ( ): return set_verbosity(_UpperCAmelCase) def __snake_case ( ): _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().removeHandler(_default_handler) def __snake_case ( ): _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().addHandler(_default_handler) def __snake_case ( _UpperCAmelCase : logging.Handler): _configure_library_root_logger() assert handler is not None _get_library_root_logger().addHandler(_UpperCAmelCase) def __snake_case ( _UpperCAmelCase : logging.Handler): _configure_library_root_logger() assert handler is not None and handler not in _get_library_root_logger().handlers _get_library_root_logger().removeHandler(_UpperCAmelCase) def __snake_case ( ): _configure_library_root_logger() UpperCamelCase = False def __snake_case ( ): _configure_library_root_logger() UpperCamelCase = True def __snake_case ( ): UpperCamelCase = _get_library_root_logger().handlers for handler in handlers: UpperCamelCase = logging.Formatter('''[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s >> %(message)s''') handler.setFormatter(_UpperCAmelCase) def __snake_case ( ): UpperCamelCase = _get_library_root_logger().handlers for handler in handlers: handler.setFormatter(_UpperCAmelCase) def __snake_case ( self : List[Any], *_UpperCAmelCase : Any, **_UpperCAmelCase : Union[str, Any]): UpperCamelCase = os.getenv('''TRANSFORMERS_NO_ADVISORY_WARNINGS''', _UpperCAmelCase) if no_advisory_warnings: return self.warning(*_UpperCAmelCase, **_UpperCAmelCase) snake_case_ : List[str] = warning_advice @functools.lru_cache(_UpperCAmelCase) def __snake_case ( self : Union[str, Any], *_UpperCAmelCase : Optional[int], **_UpperCAmelCase : Tuple): self.warning(*_UpperCAmelCase, **_UpperCAmelCase) snake_case_ : Tuple = warning_once class lowercase__ : '''simple docstring''' def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ): # pylint: disable=unused-argument '''simple docstring''' UpperCamelCase = args[0] if args else None def __iter__( self ): '''simple docstring''' return iter(self._iterator ) def __getattr__( self , lowerCamelCase__ ): '''simple docstring''' def empty_fn(*lowerCamelCase__ , **lowerCamelCase__ ): # pylint: disable=unused-argument return return empty_fn def __enter__( self ): '''simple docstring''' return self def __exit__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' return class lowercase__ : '''simple docstring''' def __call__( self , *lowerCamelCase__ , **lowerCamelCase__ ): '''simple docstring''' if _tqdm_active: return tqdm_lib.tqdm(*lowerCamelCase__ , **lowerCamelCase__ ) else: return EmptyTqdm(*lowerCamelCase__ , **lowerCamelCase__ ) def UpperCAmelCase ( self , *lowerCamelCase__ , **lowerCamelCase__ ): '''simple docstring''' UpperCamelCase = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*lowerCamelCase__ , **lowerCamelCase__ ) def UpperCAmelCase ( self ): '''simple docstring''' if _tqdm_active: return tqdm_lib.tqdm.get_lock() snake_case_ : str = _tqdm_cls() def __snake_case ( ): global _tqdm_active return bool(_tqdm_active) def __snake_case ( ): global _tqdm_active UpperCamelCase = True hf_hub_utils.enable_progress_bars() def __snake_case ( ): global _tqdm_active UpperCamelCase = False hf_hub_utils.disable_progress_bars()
212
'''simple docstring''' def __snake_case ( _UpperCAmelCase : int, _UpperCAmelCase : str): UpperCamelCase = '''''' for i in table: res += inp[i - 1] return res def __snake_case ( _UpperCAmelCase : Dict): return data[1:] + data[0] def __snake_case ( _UpperCAmelCase : Dict, _UpperCAmelCase : str): UpperCamelCase = '''''' for i in range(len(_UpperCAmelCase)): if a[i] == b[i]: res += "0" else: res += "1" return res def __snake_case ( _UpperCAmelCase : List[str], _UpperCAmelCase : Dict): UpperCamelCase = int('''0b''' + data[0] + data[-1], 2) UpperCamelCase = int('''0b''' + data[1:3], 2) return bin(s[row][col])[2:] def __snake_case ( _UpperCAmelCase : Dict, _UpperCAmelCase : Optional[Any], _UpperCAmelCase : Optional[Any], _UpperCAmelCase : List[str], _UpperCAmelCase : Optional[int]): UpperCamelCase = message[:4] UpperCamelCase = message[4:] UpperCamelCase = apply_table(_UpperCAmelCase, _UpperCAmelCase) UpperCamelCase = xor(_UpperCAmelCase, _UpperCAmelCase) UpperCamelCase = apply_sbox(_UpperCAmelCase, temp[:4]) # noqa: E741 UpperCamelCase = apply_sbox(_UpperCAmelCase, temp[4:]) UpperCamelCase = '''0''' * (2 - len(_UpperCAmelCase)) + l # noqa: E741 UpperCamelCase = '''0''' * (2 - len(_UpperCAmelCase)) + r UpperCamelCase = apply_table(l + r, _UpperCAmelCase) UpperCamelCase = xor(_UpperCAmelCase, _UpperCAmelCase) return temp + right if __name__ == "__main__": snake_case_ : List[Any] = input('Enter 10 bit key: ') snake_case_ : Union[str, Any] = input('Enter 8 bit message: ') snake_case_ : List[Any] = [6, 3, 7, 4, 8, 5, 10, 9] snake_case_ : Dict = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6] snake_case_ : Tuple = [2, 4, 3, 1] snake_case_ : List[str] = [2, 6, 3, 1, 4, 8, 5, 7] snake_case_ : Optional[int] = [4, 1, 3, 5, 7, 2, 8, 6] snake_case_ : str = [4, 1, 2, 3, 2, 3, 4, 1] snake_case_ : Optional[int] = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] snake_case_ : int = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation snake_case_ : Union[str, Any] = apply_table(key, paa_table) snake_case_ : Optional[int] = temp[:5] snake_case_ : str = temp[5:] snake_case_ : str = left_shift(left) snake_case_ : Dict = left_shift(right) snake_case_ : List[Any] = apply_table(left + right, pa_table) snake_case_ : Union[str, Any] = left_shift(left) snake_case_ : Union[str, Any] = left_shift(right) snake_case_ : str = left_shift(left) snake_case_ : Tuple = left_shift(right) snake_case_ : List[str] = apply_table(left + right, pa_table) # encryption snake_case_ : Any = apply_table(message, IP) snake_case_ : Union[str, Any] = function(expansion, sa, sa, keya, temp) snake_case_ : int = temp[4:] + temp[:4] snake_case_ : List[str] = function(expansion, sa, sa, keya, temp) snake_case_ : Dict = apply_table(temp, IP_inv) print('Cipher text is:', CT) # decryption snake_case_ : List[Any] = apply_table(CT, IP) snake_case_ : int = function(expansion, sa, sa, keya, temp) snake_case_ : List[Any] = temp[4:] + temp[:4] snake_case_ : int = function(expansion, sa, sa, keya, temp) snake_case_ : Tuple = apply_table(temp, IP_inv) print('Plain text after decypting is:', PT)
212
1
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device _a = False class UpperCamelCase_ ( unittest.TestCase ): """simple docstring""" pass @nightly @require_torch_gpu class UpperCamelCase_ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase_ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase_ ( self ): __lowerCamelCase = VersatileDiffusionPipeline.from_pretrained("""shi-labs/versatile-diffusion""" , torch_dtype=torch.floataa ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) __lowerCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" ) __lowerCamelCase = torch.manual_seed(0 ) __lowerCamelCase = pipe.dual_guided( prompt="""first prompt""" , image=UpperCAmelCase , text_to_image_strength=0.75 , generator=UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(UpperCAmelCase ) __lowerCamelCase = VersatileDiffusionPipeline.from_pretrained(UpperCAmelCase , torch_dtype=torch.floataa ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) __lowerCamelCase = generator.manual_seed(0 ) __lowerCamelCase = pipe.dual_guided( prompt="""first prompt""" , image=UpperCAmelCase , text_to_image_strength=0.75 , generator=UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" , ).images assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass" def lowerCamelCase_ ( self ): __lowerCamelCase = VersatileDiffusionPipeline.from_pretrained("""shi-labs/versatile-diffusion""" , torch_dtype=torch.floataa ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) __lowerCamelCase = """cyberpunk 2077""" __lowerCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" ) __lowerCamelCase = torch.manual_seed(0 ) __lowerCamelCase = pipe.dual_guided( prompt=UpperCAmelCase , image=UpperCAmelCase , text_to_image_strength=0.75 , generator=UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=5_0 , output_type="""numpy""" , ).images __lowerCamelCase = image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowerCamelCase = np.array([0.14_48, 0.16_19, 0.17_41, 0.10_86, 0.11_47, 0.11_28, 0.11_99, 0.11_65, 0.10_01] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 __lowerCamelCase = """A painting of a squirrel eating a burger """ __lowerCamelCase = torch.manual_seed(0 ) __lowerCamelCase = pipe.text_to_image( prompt=UpperCAmelCase , generator=UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=5_0 , output_type="""numpy""" ).images __lowerCamelCase = image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowerCamelCase = np.array([0.33_67, 0.31_69, 0.26_56, 0.38_70, 0.47_90, 0.37_96, 0.40_09, 0.48_78, 0.47_78] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 __lowerCamelCase = pipe.image_variation(UpperCAmelCase , generator=UpperCAmelCase , output_type="""numpy""" ).images __lowerCamelCase = image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowerCamelCase = np.array([0.30_76, 0.31_23, 0.32_84, 0.37_82, 0.37_70, 0.38_94, 0.42_97, 0.43_31, 0.44_56] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
700
def UpperCamelCase__ ( _A: int ): '''simple docstring''' if not isinstance(_A , _A ): __lowerCamelCase = f'''Input value of [number={number}] must be an integer''' raise TypeError(_A ) if number < 0: return False __lowerCamelCase = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
571
0
"""simple docstring""" import logging import os import sys import warnings from dataclasses import dataclass, field from random import randint from typing import Optional import datasets import evaluate import numpy as np from datasets import DatasetDict, load_dataset import transformers from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForAudioClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version SCREAMING_SNAKE_CASE_ = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.14.0''', '''To fix: pip install -r examples/pytorch/audio-classification/requirements.txt''') def lowercase__ ( lowerCAmelCase : np.ndarray , lowerCAmelCase : float , lowerCAmelCase : int = 16_000 ) -> List[Any]: """simple docstring""" UpperCAmelCase = int(round(sample_rate * max_length ) ) if len(lowerCAmelCase ) <= sample_length: return wav UpperCAmelCase = randint(0 , len(lowerCAmelCase ) - sample_length - 1 ) return wav[random_offset : random_offset + sample_length] @dataclass class _UpperCAmelCase : __SCREAMING_SNAKE_CASE : Optional[str] = field(default=SCREAMING_SNAKE_CASE_ , metadata={"help": "Name of a dataset from the datasets package"} ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=SCREAMING_SNAKE_CASE_ , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=SCREAMING_SNAKE_CASE_ , metadata={"help": "A file containing the training audio paths and labels."} ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=SCREAMING_SNAKE_CASE_ , metadata={"help": "A file containing the validation audio paths and labels."} ) __SCREAMING_SNAKE_CASE : str = field( default="train" , metadata={ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'" } , ) __SCREAMING_SNAKE_CASE : str = field( default="validation" , metadata={ "help": ( "The name of the training data set split to use (via the datasets library). Defaults to 'validation'" ) } , ) __SCREAMING_SNAKE_CASE : str = field( default="audio" , metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"} , ) __SCREAMING_SNAKE_CASE : str = field( default="label" , metadata={"help": "The name of the dataset column containing the labels. Defaults to 'label'"} ) __SCREAMING_SNAKE_CASE : Optional[int] = field( default=SCREAMING_SNAKE_CASE_ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) __SCREAMING_SNAKE_CASE : Optional[int] = field( default=SCREAMING_SNAKE_CASE_ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) __SCREAMING_SNAKE_CASE : float = field( default=2_0 , metadata={"help": "Audio clips will be randomly cut to this length during training if the value is set."} , ) @dataclass class _UpperCAmelCase : __SCREAMING_SNAKE_CASE : str = field( default="facebook/wav2vec2-base" , metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} , ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=SCREAMING_SNAKE_CASE_ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=SCREAMING_SNAKE_CASE_ , metadata={"help": "Where do you want to store the pretrained models downloaded from the Hub"} ) __SCREAMING_SNAKE_CASE : str = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=SCREAMING_SNAKE_CASE_ , metadata={"help": "Name or path of preprocessor config."} ) __SCREAMING_SNAKE_CASE : bool = field( default=SCREAMING_SNAKE_CASE_ , metadata={"help": "Whether to freeze the feature encoder layers of the model."} ) __SCREAMING_SNAKE_CASE : bool = field( default=SCREAMING_SNAKE_CASE_ , metadata={"help": "Whether to generate an attention mask in the feature extractor."} ) __SCREAMING_SNAKE_CASE : bool = field( default=SCREAMING_SNAKE_CASE_ , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) __SCREAMING_SNAKE_CASE : Optional[bool] = field( default=SCREAMING_SNAKE_CASE_ , metadata={"help": "Whether to freeze the feature extractor layers of the model."} ) __SCREAMING_SNAKE_CASE : bool = field( default=SCREAMING_SNAKE_CASE_ , metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."} , ) def a_ ( self ) -> List[str]: if not self.freeze_feature_extractor and self.freeze_feature_encoder: warnings.warn( 'The argument `--freeze_feature_extractor` is deprecated and ' 'will be removed in a future version. Use `--freeze_feature_encoder`' 'instead. Setting `freeze_feature_encoder==True`.' , lowercase_ , ) if self.freeze_feature_extractor and not self.freeze_feature_encoder: raise ValueError( 'The argument `--freeze_feature_extractor` is deprecated and ' 'should not be used in combination with `--freeze_feature_encoder`.' 'Only make use of `--freeze_feature_encoder`.' ) def lowercase__ ( ) -> List[Any]: """simple docstring""" UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_audio_classification' , lowerCAmelCase , lowerCAmelCase ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() UpperCAmelCase = training_args.get_process_log_level() logger.setLevel(lowerCAmelCase ) transformers.utils.logging.set_verbosity(lowerCAmelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} " + F"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(F"Training/evaluation parameters {training_args}" ) # Set seed before initializing model. set_seed(training_args.seed ) # Detecting last checkpoint. UpperCAmelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCAmelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. " 'Use --overwrite_output_dir to train from scratch.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Initialize our dataset and prepare it for the audio classification task. UpperCAmelCase = DatasetDict() UpperCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.train_split_name , use_auth_token=True if model_args.use_auth_token else None , ) UpperCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.eval_split_name , use_auth_token=True if model_args.use_auth_token else None , ) if data_args.audio_column_name not in raw_datasets["train"].column_names: raise ValueError( F"--audio_column_name {data_args.audio_column_name} not found in dataset '{data_args.dataset_name}'. " 'Make sure to set `--audio_column_name` to the correct audio column - one of ' F"{', '.join(raw_datasets['train'].column_names )}." ) if data_args.label_column_name not in raw_datasets["train"].column_names: raise ValueError( F"--label_column_name {data_args.label_column_name} not found in dataset '{data_args.dataset_name}'. " 'Make sure to set `--label_column_name` to the correct text column - one of ' F"{', '.join(raw_datasets['train'].column_names )}." ) # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over # transformer outputs in the classifier, but it doesn't always lead to better accuracy UpperCAmelCase = AutoFeatureExtractor.from_pretrained( model_args.feature_extractor_name or model_args.model_name_or_path , return_attention_mask=model_args.attention_mask , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # `datasets` takes care of automatically loading and resampling the audio, # so we just need to set the correct target sampling rate. UpperCAmelCase = raw_datasets.cast_column( data_args.audio_column_name , datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) ) UpperCAmelCase = feature_extractor.model_input_names[0] def train_transforms(lowerCAmelCase : List[Any] ): UpperCAmelCase = [] for audio in batch[data_args.audio_column_name]: UpperCAmelCase = random_subsample( audio['array'] , max_length=data_args.max_length_seconds , sample_rate=feature_extractor.sampling_rate ) subsampled_wavs.append(lowerCAmelCase ) UpperCAmelCase = feature_extractor(lowerCAmelCase , sampling_rate=feature_extractor.sampling_rate ) UpperCAmelCase = {model_input_name: inputs.get(lowerCAmelCase )} UpperCAmelCase = list(batch[data_args.label_column_name] ) return output_batch def val_transforms(lowerCAmelCase : int ): UpperCAmelCase = [audio['array'] for audio in batch[data_args.audio_column_name]] UpperCAmelCase = feature_extractor(lowerCAmelCase , sampling_rate=feature_extractor.sampling_rate ) UpperCAmelCase = {model_input_name: inputs.get(lowerCAmelCase )} UpperCAmelCase = list(batch[data_args.label_column_name] ) return output_batch # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. UpperCAmelCase = raw_datasets['train'].features[data_args.label_column_name].names UpperCAmelCase , UpperCAmelCase = {}, {} for i, label in enumerate(lowerCAmelCase ): UpperCAmelCase = str(lowerCAmelCase ) UpperCAmelCase = label # Load the accuracy metric from the datasets package UpperCAmelCase = evaluate.load('accuracy' ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with # `predictions` and `label_ids` fields) and has to return a dictionary string to float. def compute_metrics(lowerCAmelCase : int ): UpperCAmelCase = np.argmax(eval_pred.predictions , axis=1 ) return metric.compute(predictions=lowerCAmelCase , references=eval_pred.label_ids ) UpperCAmelCase = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(lowerCAmelCase ) , labelaid=lowerCAmelCase , idalabel=lowerCAmelCase , finetuning_task='audio-classification' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) UpperCAmelCase = AutoModelForAudioClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=lowerCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # freeze the convolutional waveform encoder if model_args.freeze_feature_encoder: model.freeze_feature_encoder() if training_args.do_train: if data_args.max_train_samples is not None: UpperCAmelCase = ( raw_datasets['train'].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms raw_datasets["train"].set_transform(lowerCAmelCase , output_all_columns=lowerCAmelCase ) if training_args.do_eval: if data_args.max_eval_samples is not None: UpperCAmelCase = ( raw_datasets['eval'].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms raw_datasets["eval"].set_transform(lowerCAmelCase , output_all_columns=lowerCAmelCase ) # Initialize our trainer UpperCAmelCase = Trainer( model=lowerCAmelCase , args=lowerCAmelCase , train_dataset=raw_datasets['train'] if training_args.do_train else None , eval_dataset=raw_datasets['eval'] if training_args.do_eval else None , compute_metrics=lowerCAmelCase , tokenizer=lowerCAmelCase , ) # Training if training_args.do_train: UpperCAmelCase = None if training_args.resume_from_checkpoint is not None: UpperCAmelCase = training_args.resume_from_checkpoint elif last_checkpoint is not None: UpperCAmelCase = last_checkpoint UpperCAmelCase = trainer.train(resume_from_checkpoint=lowerCAmelCase ) trainer.save_model() trainer.log_metrics('train' , train_result.metrics ) trainer.save_metrics('train' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: UpperCAmelCase = trainer.evaluate() trainer.log_metrics('eval' , lowerCAmelCase ) trainer.save_metrics('eval' , lowerCAmelCase ) # Write model card and (optionally) push to hub UpperCAmelCase = { 'finetuned_from': model_args.model_name_or_path, 'tasks': 'audio-classification', 'dataset': data_args.dataset_name, 'tags': ['audio-classification'], } if training_args.push_to_hub: trainer.push_to_hub(**lowerCAmelCase ) else: trainer.create_model_card(**lowerCAmelCase ) if __name__ == "__main__": main()
373
"""simple docstring""" import importlib import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Union import torch from ..utils import BaseOutput SCREAMING_SNAKE_CASE_ = '''scheduler_config.json''' class _UpperCAmelCase ( SCREAMING_SNAKE_CASE_ ): __SCREAMING_SNAKE_CASE : List[Any] = 1 __SCREAMING_SNAKE_CASE : Dict = 2 __SCREAMING_SNAKE_CASE : List[Any] = 3 __SCREAMING_SNAKE_CASE : Any = 4 __SCREAMING_SNAKE_CASE : Any = 5 __SCREAMING_SNAKE_CASE : Union[str, Any] = 6 __SCREAMING_SNAKE_CASE : str = 7 __SCREAMING_SNAKE_CASE : Any = 8 __SCREAMING_SNAKE_CASE : Tuple = 9 __SCREAMING_SNAKE_CASE : int = 1_0 __SCREAMING_SNAKE_CASE : Union[str, Any] = 1_1 __SCREAMING_SNAKE_CASE : Union[str, Any] = 1_2 __SCREAMING_SNAKE_CASE : Dict = 1_3 __SCREAMING_SNAKE_CASE : Optional[Any] = 1_4 @dataclass class _UpperCAmelCase ( SCREAMING_SNAKE_CASE_ ): __SCREAMING_SNAKE_CASE : torch.FloatTensor class _UpperCAmelCase : __SCREAMING_SNAKE_CASE : str = SCHEDULER_CONFIG_NAME __SCREAMING_SNAKE_CASE : Dict = [] __SCREAMING_SNAKE_CASE : Union[str, Any] = True @classmethod def a_ ( cls , lowercase_ = None , lowercase_ = None , lowercase_=False , **lowercase_ , ) -> List[Any]: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = cls.load_config( pretrained_model_name_or_path=lowercase_ , subfolder=lowercase_ , return_unused_kwargs=lowercase_ , return_commit_hash=lowercase_ , **lowercase_ , ) return cls.from_config(lowercase_ , return_unused_kwargs=lowercase_ , **lowercase_ ) def a_ ( self , lowercase_ , lowercase_ = False , **lowercase_ ) -> str: self.save_config(save_directory=lowercase_ , push_to_hub=lowercase_ , **lowercase_ ) @property def a_ ( self ) -> Union[str, Any]: return self._get_compatibles() @classmethod def a_ ( cls ) -> Any: UpperCAmelCase = list(set([cls.__name__] + cls._compatibles ) ) UpperCAmelCase = importlib.import_module(__name__.split('.' )[0] ) UpperCAmelCase = [ getattr(lowercase_ , lowercase_ ) for c in compatible_classes_str if hasattr(lowercase_ , lowercase_ ) ] return compatible_classes
373
1
'''simple docstring''' def _A ( A__ = 50 ): """simple docstring""" __lowercase = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(f'{solution() = }')
704
'''simple docstring''' from __future__ import annotations import unittest from transformers import FunnelConfig, is_tf_available from transformers.testing_utils import require_tf from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, ) class lowercase_ : """simple docstring""" def __init__( self : Union[str, Any] ,lowercase__ : Union[str, Any] ,lowercase__ : List[Any]=1_3 ,lowercase__ : Union[str, Any]=7 ,lowercase__ : List[Any]=True ,lowercase__ : str=True ,lowercase__ : Any=True ,lowercase__ : Union[str, Any]=True ,lowercase__ : Tuple=9_9 ,lowercase__ : List[str]=[1, 1, 2] ,lowercase__ : List[Any]=1 ,lowercase__ : List[Any]=3_2 ,lowercase__ : int=4 ,lowercase__ : Tuple=8 ,lowercase__ : Tuple=3_7 ,lowercase__ : str="gelu_new" ,lowercase__ : Dict=0.1 ,lowercase__ : Optional[int]=0.1 ,lowercase__ : Optional[Any]=0.0 ,lowercase__ : Tuple=5_1_2 ,lowercase__ : Any=3 ,lowercase__ : List[str]=0.0_2 ,lowercase__ : List[Any]=3 ,lowercase__ : List[Any]=4 ,lowercase__ : Optional[Any]=None ,lowercase__ : Tuple=False ,): __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_input_mask __lowercase = use_token_type_ids __lowercase = use_labels __lowercase = vocab_size __lowercase = block_sizes __lowercase = num_decoder_layers __lowercase = d_model __lowercase = n_head __lowercase = d_head __lowercase = d_inner __lowercase = hidden_act __lowercase = hidden_dropout __lowercase = attention_dropout __lowercase = activation_dropout __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = 2 __lowercase = num_labels __lowercase = num_choices __lowercase = scope __lowercase = initializer_std # Used in the tests to check the size of the first attention layer __lowercase = n_head # Used in the tests to check the size of the first hidden state __lowercase = self.d_model # Used in the tests to check the number of output hidden states/attentions __lowercase = sum(self.block_sizes ) + (0 if base else self.num_decoder_layers) # FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with # the last hidden state of the first block (which is the first hidden state of the decoder). if not base: __lowercase = self.num_hidden_layers + 2 def SCREAMING_SNAKE_CASE ( self : List[Any] ): __lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) __lowercase = None if self.use_input_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = None if self.use_token_type_ids: __lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) __lowercase = None __lowercase = None __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) __lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) __lowercase = ids_tensor([self.batch_size] ,self.num_choices ) __lowercase = FunnelConfig( vocab_size=self.vocab_size ,block_sizes=self.block_sizes ,num_decoder_layers=self.num_decoder_layers ,d_model=self.d_model ,n_head=self.n_head ,d_head=self.d_head ,d_inner=self.d_inner ,hidden_act=self.hidden_act ,hidden_dropout=self.hidden_dropout ,attention_dropout=self.attention_dropout ,activation_dropout=self.activation_dropout ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_std=self.initializer_std ,) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : List[str] ,lowercase__ : Union[str, Any] ,lowercase__ : int ,lowercase__ : List[str] ,lowercase__ : Optional[int] ,lowercase__ : List[Any] ,lowercase__ : List[str] ,): __lowercase = TFFunnelModel(config=lowercase__ ) __lowercase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __lowercase = model(lowercase__ ) __lowercase = [input_ids, input_mask] __lowercase = model(lowercase__ ) __lowercase = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.d_model) ) __lowercase = False __lowercase = TFFunnelModel(config=lowercase__ ) __lowercase = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.d_model) ) __lowercase = False __lowercase = TFFunnelModel(config=lowercase__ ) __lowercase = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.d_model) ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : List[Any] ,lowercase__ : Tuple ,lowercase__ : Dict ,lowercase__ : Any ,lowercase__ : Optional[Any] ,lowercase__ : Union[str, Any] ,lowercase__ : Dict ,): __lowercase = TFFunnelBaseModel(config=lowercase__ ) __lowercase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __lowercase = model(lowercase__ ) __lowercase = [input_ids, input_mask] __lowercase = model(lowercase__ ) __lowercase = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, 2, self.d_model) ) __lowercase = False __lowercase = TFFunnelBaseModel(config=lowercase__ ) __lowercase = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, 3, self.d_model) ) __lowercase = False __lowercase = TFFunnelBaseModel(config=lowercase__ ) __lowercase = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, 2, self.d_model) ) def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : Any ,lowercase__ : Any ,lowercase__ : List[Any] ,lowercase__ : Optional[int] ,lowercase__ : Dict ,lowercase__ : int ,lowercase__ : List[str] ,): __lowercase = TFFunnelForPreTraining(config=lowercase__ ) __lowercase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __lowercase = model(lowercase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,lowercase__ : Union[str, Any] ,lowercase__ : Optional[Any] ,lowercase__ : Dict ,lowercase__ : List[Any] ,lowercase__ : Tuple ,lowercase__ : Optional[Any] ,lowercase__ : Tuple ,): __lowercase = TFFunnelForMaskedLM(config=lowercase__ ) __lowercase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __lowercase = model(lowercase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : Tuple ,lowercase__ : Optional[Any] ,lowercase__ : List[Any] ,lowercase__ : List[Any] ,lowercase__ : str ,lowercase__ : Union[str, Any] ,lowercase__ : Tuple ,): __lowercase = self.num_labels __lowercase = TFFunnelForSequenceClassification(config=lowercase__ ) __lowercase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __lowercase = model(lowercase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : List[str] ,lowercase__ : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : List[str] ,lowercase__ : List[str] ,lowercase__ : str ,lowercase__ : Tuple ,): __lowercase = self.num_choices __lowercase = TFFunnelForMultipleChoice(config=lowercase__ ) __lowercase = tf.tile(tf.expand_dims(lowercase__ ,1 ) ,(1, self.num_choices, 1) ) __lowercase = tf.tile(tf.expand_dims(lowercase__ ,1 ) ,(1, self.num_choices, 1) ) __lowercase = tf.tile(tf.expand_dims(lowercase__ ,1 ) ,(1, self.num_choices, 1) ) __lowercase = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } __lowercase = model(lowercase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : Optional[Any] ,lowercase__ : List[Any] ,lowercase__ : List[str] ,lowercase__ : List[Any] ,lowercase__ : Dict ,lowercase__ : Any ,lowercase__ : Union[str, Any] ,): __lowercase = self.num_labels __lowercase = TFFunnelForTokenClassification(config=lowercase__ ) __lowercase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __lowercase = model(lowercase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : Optional[Any] ,lowercase__ : Optional[int] ,lowercase__ : Dict ,lowercase__ : List[str] ,lowercase__ : str ,lowercase__ : Tuple ,lowercase__ : Any ,): __lowercase = TFFunnelForQuestionAnswering(config=lowercase__ ) __lowercase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __lowercase = model(lowercase__ ) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE ( self : Any ): __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = config_and_inputs __lowercase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class lowercase_ (lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : int = ( ( TFFunnelModel, TFFunnelForMaskedLM, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForTokenClassification, ) if is_tf_available() else () ) SCREAMING_SNAKE_CASE : Union[str, Any] = ( { 'feature-extraction': (TFFunnelBaseModel, TFFunnelModel), 'fill-mask': TFFunnelForMaskedLM, 'question-answering': TFFunnelForQuestionAnswering, 'text-classification': TFFunnelForSequenceClassification, 'token-classification': TFFunnelForTokenClassification, 'zero-shot': TFFunnelForSequenceClassification, } if is_tf_available() else {} ) SCREAMING_SNAKE_CASE : Tuple = False SCREAMING_SNAKE_CASE : Any = False def SCREAMING_SNAKE_CASE ( self : str ): __lowercase = TFFunnelModelTester(self ) __lowercase = ConfigTester(self ,config_class=lowercase__ ) def SCREAMING_SNAKE_CASE ( self : str ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[str] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowercase__ ) @require_tf class lowercase_ (lowerCamelCase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = ( (TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else () ) SCREAMING_SNAKE_CASE : Dict = False SCREAMING_SNAKE_CASE : List[str] = False def SCREAMING_SNAKE_CASE ( self : str ): __lowercase = TFFunnelModelTester(self ,base=lowercase__ ) __lowercase = ConfigTester(self ,config_class=lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Any ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self : List[str] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_base_model(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Any ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowercase__ )
624
0
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _UpperCAmelCase ( A__ ,unittest.TestCase ): """simple docstring""" lowercase__ = KandinskyVaaControlnetImgaImgPipeline lowercase__ = ["""image_embeds""", """negative_image_embeds""", """image""", """hint"""] lowercase__ = ["""image_embeds""", """negative_image_embeds""", """image""", """hint"""] lowercase__ = [ """generator""", """height""", """width""", """strength""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] lowercase__ = False @property def lowercase__ ( self : List[Any] ): '''simple docstring''' return 32 @property def lowercase__ ( self : Optional[Any] ): '''simple docstring''' return 32 @property def lowercase__ ( self : Dict ): '''simple docstring''' return self.time_input_dim @property def lowercase__ ( self : List[Any] ): '''simple docstring''' return self.time_input_dim * 4 @property def lowercase__ ( self : Tuple ): '''simple docstring''' return 100 @property def lowercase__ ( self : List[str] ): '''simple docstring''' torch.manual_seed(0 ) lowercase__ = { """in_channels""": 8, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image_hint""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } lowercase__ = UNetaDConditionModel(**lowerCamelCase ) return model @property def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def lowercase__ ( self : Optional[Any] ): '''simple docstring''' torch.manual_seed(0 ) lowercase__ = VQModel(**self.dummy_movq_kwargs ) return model def lowercase__ ( self : Optional[int] ): '''simple docstring''' lowercase__ = self.dummy_unet lowercase__ = self.dummy_movq lowercase__ = { """num_train_timesteps""": 1_000, """beta_schedule""": """linear""", """beta_start""": 0.00085, """beta_end""": 0.012, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } lowercase__ = DDIMScheduler(**lowerCamelCase ) lowercase__ = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def lowercase__ ( self : Union[str, Any], lowerCamelCase : Union[str, Any], lowerCamelCase : int=0 ): '''simple docstring''' lowercase__ = floats_tensor((1, self.text_embedder_hidden_size), rng=random.Random(lowerCamelCase ) ).to(lowerCamelCase ) lowercase__ = floats_tensor((1, self.text_embedder_hidden_size), rng=random.Random(seed + 1 ) ).to( lowerCamelCase ) # create init_image lowercase__ = floats_tensor((1, 3, 64, 64), rng=random.Random(lowerCamelCase ) ).to(lowerCamelCase ) lowercase__ = image.cpu().permute(0, 2, 3, 1 )[0] lowercase__ = Image.fromarray(np.uinta(lowerCamelCase ) ).convert('''RGB''' ).resize((256, 256) ) # create hint lowercase__ = floats_tensor((1, 3, 64, 64), rng=random.Random(lowerCamelCase ) ).to(lowerCamelCase ) if str(lowerCamelCase ).startswith('''mps''' ): lowercase__ = torch.manual_seed(lowerCamelCase ) else: lowercase__ = torch.Generator(device=lowerCamelCase ).manual_seed(lowerCamelCase ) lowercase__ = { """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """hint""": hint, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 10, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ = """cpu""" lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**lowerCamelCase ) lowercase__ = pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) lowercase__ = pipe(**self.get_dummy_inputs(lowerCamelCase ) ) lowercase__ = output.images lowercase__ = pipe( **self.get_dummy_inputs(lowerCamelCase ), return_dict=lowerCamelCase, )[0] lowercase__ = image[0, -3:, -3:, -1] lowercase__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase__ = np.array( [0.54985034, 0.55509365, 0.52561504, 0.5570494, 0.5593818, 0.5263979, 0.50285643, 0.5069846, 0.51196736] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self : Dict ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy''' ) lowercase__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) lowercase__ = init_image.resize((512, 512) ) lowercase__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/hint_image_cat.png''' ) lowercase__ = torch.from_numpy(np.array(lowerCamelCase ) ).float() / 255.0 lowercase__ = hint.permute(2, 0, 1 ).unsqueeze(0 ) lowercase__ = """A robot, 4k photo""" lowercase__ = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''', torch_dtype=torch.floataa ) pipe_prior.to(lowerCamelCase ) lowercase__ = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-controlnet-depth''', torch_dtype=torch.floataa ) lowercase__ = pipeline.to(lowerCamelCase ) pipeline.set_progress_bar_config(disable=lowerCamelCase ) lowercase__ = torch.Generator(device='''cpu''' ).manual_seed(0 ) lowercase__ = pipe_prior( lowerCamelCase, image=lowerCamelCase, strength=0.85, generator=lowerCamelCase, negative_prompt='''''', ).to_tuple() lowercase__ = pipeline( image=lowerCamelCase, image_embeds=lowerCamelCase, negative_image_embeds=lowerCamelCase, hint=lowerCamelCase, generator=lowerCamelCase, num_inference_steps=100, height=512, width=512, strength=0.5, output_type='''np''', ) lowercase__ = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(lowerCamelCase, lowerCamelCase )
183
"""simple docstring""" from math import pow def lowerCamelCase ( _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : int , ) -> tuple[int, int]: '''simple docstring''' if current_sum == needed_sum: # If the sum of the powers is equal to needed_sum, then we have a solution. solutions_count += 1 return current_sum, solutions_count __UpperCAmelCase : List[str] = int(pow(_UpperCamelCase , _UpperCamelCase ) ) if current_sum + i_to_n <= needed_sum: # If the sum of the powers is less than needed_sum, then continue adding powers. current_sum += i_to_n __UpperCAmelCase ,__UpperCAmelCase : Union[str, Any] = backtrack( _UpperCamelCase , _UpperCamelCase , current_number + 1 , _UpperCamelCase , _UpperCamelCase ) current_sum -= i_to_n if i_to_n < needed_sum: # If the power of i is less than needed_sum, then try with the next power. __UpperCAmelCase ,__UpperCAmelCase : List[Any] = backtrack( _UpperCamelCase , _UpperCamelCase , current_number + 1 , _UpperCamelCase , _UpperCamelCase ) return current_sum, solutions_count def lowerCamelCase ( _UpperCamelCase : int , _UpperCamelCase : int ) -> int: '''simple docstring''' if not (1 <= needed_sum <= 1_0_0_0 and 2 <= power <= 1_0): raise ValueError( """Invalid input\n""" """needed_sum must be between 1 and 1000, power between 2 and 10.""" ) return backtrack(_UpperCamelCase , _UpperCamelCase , 1 , 0 , 0 )[1] # Return the solutions_count if __name__ == "__main__": import doctest doctest.testmod()
139
0
'''simple docstring''' import cva import numpy as np class lowerCamelCase_ : def __init__( self : Optional[int] , lowerCAmelCase__ : float , lowerCAmelCase__ : int ): """simple docstring""" if k in (0.04, 0.06): SCREAMING_SNAKE_CASE : str = k SCREAMING_SNAKE_CASE : Optional[Any] = window_size else: raise ValueError('''invalid k value''' ) def __str__( self : List[Any] ): """simple docstring""" return str(self.k ) def __lowercase ( self : Tuple , lowerCAmelCase__ : str ): """simple docstring""" SCREAMING_SNAKE_CASE : str = cva.imread(lowerCAmelCase__ , 0 ) SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Union[str, Any] = img.shape SCREAMING_SNAKE_CASE : list[list[int]] = [] SCREAMING_SNAKE_CASE : Dict = img.copy() SCREAMING_SNAKE_CASE : List[str] = cva.cvtColor(lowerCAmelCase__ , cva.COLOR_GRAY2RGB ) SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : int = np.gradient(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : str = dx**2 SCREAMING_SNAKE_CASE : Any = dy**2 SCREAMING_SNAKE_CASE : Optional[Any] = dx * dy SCREAMING_SNAKE_CASE : str = 0.04 SCREAMING_SNAKE_CASE : str = self.window_size // 2 for y in range(lowerCAmelCase__ , h - offset ): for x in range(lowerCAmelCase__ , w - offset ): SCREAMING_SNAKE_CASE : Any = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() SCREAMING_SNAKE_CASE : List[Any] = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() SCREAMING_SNAKE_CASE : Optional[int] = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() SCREAMING_SNAKE_CASE : Dict = (wxx * wyy) - (wxy**2) SCREAMING_SNAKE_CASE : Dict = wxx + wyy SCREAMING_SNAKE_CASE : Tuple = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 2_55 ) return color_img, corner_list if __name__ == "__main__": lowerCAmelCase_ : Tuple = HarrisCorner(0.04, 3) lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = edge_detect.detect('path_to_image') cva.imwrite('detect.png', color_img)
464
'''simple docstring''' import string from math import logaa def UpperCAmelCase ( A : str , A : str ): SCREAMING_SNAKE_CASE : Optional[Any] = document.translate( str.maketrans('''''' , '''''' , string.punctuation ) ).replace('''\n''' , '''''' ) SCREAMING_SNAKE_CASE : Tuple = document_without_punctuation.split(''' ''' ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def UpperCAmelCase ( A : str , A : str ): SCREAMING_SNAKE_CASE : int = corpus.lower().translate( str.maketrans('''''' , '''''' , string.punctuation ) ) # strip all punctuation and replace it with '' SCREAMING_SNAKE_CASE : Any = corpus_without_punctuation.split('''\n''' ) SCREAMING_SNAKE_CASE : Optional[Any] = term.lower() return (len([doc for doc in docs if term in doc] ), len(A )) def UpperCAmelCase ( A : int , A : int , A : str=False ): if smoothing: if n == 0: raise ValueError('''log10(0) is undefined.''' ) return round(1 + logaa(n / (1 + df) ) , 3 ) if df == 0: raise ZeroDivisionError('''df must be > 0''' ) elif n == 0: raise ValueError('''log10(0) is undefined.''' ) return round(logaa(n / df ) , 3 ) def UpperCAmelCase ( A : int , A : int ): return round(tf * idf , 3 )
464
1
from argparse import ArgumentParser from .add_new_model import AddNewModelCommand from .add_new_model_like import AddNewModelLikeCommand from .convert import ConvertCommand from .download import DownloadCommand from .env import EnvironmentCommand from .lfs import LfsCommands from .pt_to_tf import PTtoTFCommand from .run import RunCommand from .serving import ServeCommand from .user import UserCommands def _a ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = ArgumentParser('Transformers CLI tool' , usage='transformers-cli <command> [<args>]' ) SCREAMING_SNAKE_CASE__ : Tuple = parser.add_subparsers(help='transformers-cli command helpers' ) # Register commands ConvertCommand.register_subcommand(lowercase__ ) DownloadCommand.register_subcommand(lowercase__ ) EnvironmentCommand.register_subcommand(lowercase__ ) RunCommand.register_subcommand(lowercase__ ) ServeCommand.register_subcommand(lowercase__ ) UserCommands.register_subcommand(lowercase__ ) AddNewModelCommand.register_subcommand(lowercase__ ) AddNewModelLikeCommand.register_subcommand(lowercase__ ) LfsCommands.register_subcommand(lowercase__ ) PTtoTFCommand.register_subcommand(lowercase__ ) # Let's go SCREAMING_SNAKE_CASE__ : str = parser.parse_args() if not hasattr(lowercase__ , 'func' ): parser.print_help() exit(1 ) # Run SCREAMING_SNAKE_CASE__ : str = args.func(lowercase__ ) service.run() if __name__ == "__main__": main()
85
import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) SCREAMING_SNAKE_CASE__ : Optional[int] = logging.getLogger(__name__) SCREAMING_SNAKE_CASE__ : List[Any] = "Hello world! cécé herlolip" SCREAMING_SNAKE_CASE__ : Dict = namedtuple( "BertAbsConfig", [ "temp_dir", "large", "use_bert_emb", "finetune_bert", "encoder", "share_emb", "max_pos", "enc_layers", "enc_hidden_size", "enc_heads", "enc_ff_size", "enc_dropout", "dec_layers", "dec_hidden_size", "dec_heads", "dec_ff_size", "dec_dropout", ], ) def _a ( lowercase__ : List[str] , lowercase__ : List[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = BertAbsConfig( temp_dir='.' , finetune_bert=lowercase__ , large=lowercase__ , share_emb=lowercase__ , use_bert_emb=lowercase__ , encoder='bert' , max_pos=5_12 , enc_layers=6 , enc_hidden_size=5_12 , enc_heads=8 , enc_ff_size=5_12 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=7_68 , dec_heads=8 , dec_ff_size=20_48 , dec_dropout=0.2 , ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.load(lowercase__ , lambda lowercase__ , lowercase__ : storage ) SCREAMING_SNAKE_CASE__ : Any = AbsSummarizer(lowercase__ , torch.device('cpu' ) , lowercase__ ) original.eval() SCREAMING_SNAKE_CASE__ : List[Any] = BertAbsSummarizer(lowercase__ , torch.device('cpu' ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info('convert the model' ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info('Make sure that the models\' outputs are identical' ) SCREAMING_SNAKE_CASE__ : Any = BertTokenizer.from_pretrained('bert-base-uncased' ) # prepare the model inputs SCREAMING_SNAKE_CASE__ : Optional[Any] = tokenizer.encode('This is sample éàalj\'-.' ) encoder_input_ids.extend([tokenizer.pad_token_id] * (5_12 - len(lowercase__ )) ) SCREAMING_SNAKE_CASE__ : Optional[int] = torch.tensor(lowercase__ ).unsqueeze(0 ) SCREAMING_SNAKE_CASE__ : List[str] = tokenizer.encode('This is sample 3 éàalj\'-.' ) decoder_input_ids.extend([tokenizer.pad_token_id] * (5_12 - len(lowercase__ )) ) SCREAMING_SNAKE_CASE__ : List[str] = torch.tensor(lowercase__ ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass SCREAMING_SNAKE_CASE__ : int = encoder_input_ids SCREAMING_SNAKE_CASE__ : Any = decoder_input_ids SCREAMING_SNAKE_CASE__ : Union[str, Any] = None SCREAMING_SNAKE_CASE__ : Dict = None SCREAMING_SNAKE_CASE__ : str = None SCREAMING_SNAKE_CASE__ : List[str] = None SCREAMING_SNAKE_CASE__ : Optional[Any] = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical SCREAMING_SNAKE_CASE__ : Optional[Any] = original(lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ )[0] SCREAMING_SNAKE_CASE__ : Optional[int] = original.generator(lowercase__ ) SCREAMING_SNAKE_CASE__ : Tuple = new_model( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ )[0] SCREAMING_SNAKE_CASE__ : List[Any] = new_model.generator(lowercase__ ) SCREAMING_SNAKE_CASE__ : Tuple = torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print('Maximum absolute difference beween weights: {:.2f}'.format(lowercase__ ) ) SCREAMING_SNAKE_CASE__ : Optional[int] = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print('Maximum absolute difference beween weights: {:.2f}'.format(lowercase__ ) ) SCREAMING_SNAKE_CASE__ : List[Any] = torch.allclose(lowercase__ , lowercase__ , atol=1E-3 ) if are_identical: logging.info('all weights are equal up to 1e-3' ) else: raise ValueError('the weights are different. The new model is likely different from the original one.' ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info('saving the model\'s state dictionary' ) torch.save( new_model.state_dict() , './bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : Tuple = argparse.ArgumentParser() parser.add_argument( "--bertabs_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model.", ) SCREAMING_SNAKE_CASE__ : Tuple = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
85
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = { '''google/canine-s''': '''https://huggingface.co/google/canine-s/resolve/main/config.json''', # See all CANINE models at https://huggingface.co/models?filter=canine } class lowerCAmelCase__ ( __lowerCamelCase ): """simple docstring""" __UpperCAmelCase : Dict = '''canine''' def __init__( self , a_=768 , a_=12 , a_=12 , a_=3072 , a_="gelu" , a_=0.1 , a_=0.1 , a_=1_6384 , a_=16 , a_=0.02 , a_=1E-12 , a_=0 , a_=0Xe000 , a_=0Xe001 , a_=4 , a_=4 , a_=8 , a_=1_6384 , a_=128 , **a_ , ): super().__init__(pad_token_id=a_ , bos_token_id=a_ , eos_token_id=a_ , **a_ ) lowerCamelCase_ : Dict = max_position_embeddings lowerCamelCase_ : List[Any] = hidden_size lowerCamelCase_ : str = num_hidden_layers lowerCamelCase_ : Optional[int] = num_attention_heads lowerCamelCase_ : List[str] = intermediate_size lowerCamelCase_ : Tuple = hidden_act lowerCamelCase_ : Any = hidden_dropout_prob lowerCamelCase_ : Any = attention_probs_dropout_prob lowerCamelCase_ : List[Any] = initializer_range lowerCamelCase_ : Union[str, Any] = type_vocab_size lowerCamelCase_ : List[str] = layer_norm_eps # Character config: lowerCamelCase_ : List[Any] = downsampling_rate lowerCamelCase_ : Union[str, Any] = upsampling_kernel_size lowerCamelCase_ : Optional[Any] = num_hash_functions lowerCamelCase_ : str = num_hash_buckets lowerCamelCase_ : int = local_transformer_stride
73
import unittest from transformers.utils.backbone_utils import ( BackboneMixin, get_aligned_output_features_output_indices, verify_out_features_out_indices, ) class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" def _UpperCamelCase ( self ): lowerCamelCase_ : int = ["a", "b", "c"] # Defaults to last layer if both are None lowerCamelCase_ ,lowerCamelCase_ : Tuple = get_aligned_output_features_output_indices(a_ , a_ , a_ ) self.assertEqual(a_ , ["c"] ) self.assertEqual(a_ , [2] ) # Out indices set to match out features lowerCamelCase_ ,lowerCamelCase_ : Optional[int] = get_aligned_output_features_output_indices(["a", "c"] , a_ , a_ ) self.assertEqual(a_ , ["a", "c"] ) self.assertEqual(a_ , [0, 2] ) # Out features set to match out indices lowerCamelCase_ ,lowerCamelCase_ : Tuple = get_aligned_output_features_output_indices(a_ , [0, 2] , a_ ) self.assertEqual(a_ , ["a", "c"] ) self.assertEqual(a_ , [0, 2] ) # Out features selected from negative indices lowerCamelCase_ ,lowerCamelCase_ : Dict = get_aligned_output_features_output_indices(a_ , [-3, -1] , a_ ) self.assertEqual(a_ , ["a", "c"] ) self.assertEqual(a_ , [-3, -1] ) def _UpperCamelCase ( self ): # Stage names must be set with self.assertRaises(a_ ): verify_out_features_out_indices(["a", "b"] , (0, 1) , a_ ) # Out features must be a list with self.assertRaises(a_ ): verify_out_features_out_indices(("a", "b") , (0, 1) , ["a", "b"] ) # Out features must be a subset of stage names with self.assertRaises(a_ ): verify_out_features_out_indices(["a", "b"] , (0, 1) , ["a"] ) # Out indices must be a list or tuple with self.assertRaises(a_ ): verify_out_features_out_indices(a_ , 0 , ["a", "b"] ) # Out indices must be a subset of stage names with self.assertRaises(a_ ): verify_out_features_out_indices(a_ , (0, 1) , ["a"] ) # Out features and out indices must be the same length with self.assertRaises(a_ ): verify_out_features_out_indices(["a", "b"] , (0,) , ["a", "b", "c"] ) # Out features should match out indices with self.assertRaises(a_ ): verify_out_features_out_indices(["a", "b"] , (0, 2) , ["a", "b", "c"] ) # Out features and out indices should be in order with self.assertRaises(a_ ): verify_out_features_out_indices(["b", "a"] , (0, 1) , ["a", "b"] ) # Check passes with valid inputs verify_out_features_out_indices(["a", "b", "d"] , (0, 1, -1) , ["a", "b", "c", "d"] ) def _UpperCamelCase ( self ): lowerCamelCase_ : List[Any] = BackboneMixin() lowerCamelCase_ : List[Any] = ["a", "b", "c"] lowerCamelCase_ : Optional[int] = ["a", "c"] lowerCamelCase_ : Dict = [0, 2] # Check that the output features and indices are set correctly self.assertEqual(backbone.out_features , ["a", "c"] ) self.assertEqual(backbone.out_indices , [0, 2] ) # Check out features and indices are updated correctly lowerCamelCase_ : Union[str, Any] = ["a", "b"] self.assertEqual(backbone.out_features , ["a", "b"] ) self.assertEqual(backbone.out_indices , [0, 1] ) lowerCamelCase_ : str = [-3, -1] self.assertEqual(backbone.out_features , ["a", "c"] ) self.assertEqual(backbone.out_indices , [-3, -1] )
73
1
import qiskit def lowerCAmelCase_ ( __a , __a ) -> qiskit.result.counts.Counts: """simple docstring""" lowerCamelCase__: List[Any] =qiskit.Aer.get_backend("aer_simulator" ) lowerCamelCase__: int =qiskit.QuantumCircuit(4 , 2 ) # encode inputs in qubits 0 and 1 if bita == 1: qc_ha.x(0 ) if bita == 1: qc_ha.x(1 ) qc_ha.barrier() # use cnots to write XOR of the inputs on qubit2 qc_ha.cx(0 , 2 ) qc_ha.cx(1 , 2 ) # use ccx / toffoli gate to write AND of the inputs on qubit3 qc_ha.ccx(0 , 1 , 3 ) qc_ha.barrier() # extract outputs qc_ha.measure(2 , 0 ) # extract XOR value qc_ha.measure(3 , 1 ) # extract AND value # Execute the circuit on the qasm simulator lowerCamelCase__: List[str] =qiskit.execute(_a , _a , shots=1000 ) # Return the histogram data of the results of the experiment return job.result().get_counts(_a ) if __name__ == "__main__": __A = half_adder(1, 1) print(f'Half Adder Output Qubit Counts: {counts}')
59
"""simple docstring""" import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) _snake_case = logging.getLogger(__name__) _snake_case = "Hello world! cécé herlolip" _snake_case = namedtuple( "BertAbsConfig", [ "temp_dir", "large", "use_bert_emb", "finetune_bert", "encoder", "share_emb", "max_pos", "enc_layers", "enc_hidden_size", "enc_heads", "enc_ff_size", "enc_dropout", "dec_layers", "dec_hidden_size", "dec_heads", "dec_ff_size", "dec_dropout", ], ) def snake_case ( _a: Union[str, Any] , _a: Dict )-> List[str]: '''simple docstring''' lowerCamelCase__ = BertAbsConfig( temp_dir='.' , finetune_bert=_a , large=_a , share_emb=_a , use_bert_emb=_a , encoder='bert' , max_pos=512 , enc_layers=6 , enc_hidden_size=512 , enc_heads=8 , enc_ff_size=512 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=768 , dec_heads=8 , dec_ff_size=2048 , dec_dropout=0.2 , ) lowerCamelCase__ = torch.load(_a , lambda _a , _a : storage ) lowerCamelCase__ = AbsSummarizer(_a , torch.device('cpu' ) , _a ) original.eval() lowerCamelCase__ = BertAbsSummarizer(_a , torch.device('cpu' ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info('convert the model' ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info('Make sure that the models\' outputs are identical' ) lowerCamelCase__ = BertTokenizer.from_pretrained('bert-base-uncased' ) # prepare the model inputs lowerCamelCase__ = tokenizer.encode('This is sample éàalj\'-.' ) encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(_a )) ) lowerCamelCase__ = torch.tensor(_a ).unsqueeze(0 ) lowerCamelCase__ = tokenizer.encode('This is sample 3 éàalj\'-.' ) decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(_a )) ) lowerCamelCase__ = torch.tensor(_a ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass lowerCamelCase__ = encoder_input_ids lowerCamelCase__ = decoder_input_ids lowerCamelCase__ = lowerCamelCase__ = None lowerCamelCase__ = None lowerCamelCase__ = lowerCamelCase__ = None lowerCamelCase__ = lowerCamelCase__ = None lowerCamelCase__ = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical lowerCamelCase__ = original(_a , _a , _a , _a , _a , _a , _a )[0] lowerCamelCase__ = original.generator(_a ) lowerCamelCase__ = new_model( _a , _a , _a , _a , _a )[0] lowerCamelCase__ = new_model.generator(_a ) lowerCamelCase__ = torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print('Maximum absolute difference beween weights: {:.2f}'.format(_a ) ) lowerCamelCase__ = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print('Maximum absolute difference beween weights: {:.2f}'.format(_a ) ) lowerCamelCase__ = torch.allclose(_a , _a , atol=1E-3 ) if are_identical: logging.info('all weights are equal up to 1e-3' ) else: raise ValueError('the weights are different. The new model is likely different from the original one.' ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info('saving the model\'s state dictionary' ) torch.save( new_model.state_dict() , './bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin' ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument( "--bertabs_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model.", ) _snake_case = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
510
0
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : List[Any] = ['''image_processor''', '''tokenizer'''] UpperCamelCase_ : Union[str, Any] = '''ViTImageProcessor''' UpperCamelCase_ : Optional[Any] = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self : Union[str, Any] , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : List[Any]=None , **UpperCAmelCase_ : Optional[int] ): SCREAMING_SNAKE_CASE : str = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , UpperCAmelCase_ , ) SCREAMING_SNAKE_CASE : List[str] = kwargs.pop("feature_extractor" ) SCREAMING_SNAKE_CASE : Any = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(UpperCAmelCase_ , UpperCAmelCase_ ) def __call__( self : int , UpperCAmelCase_ : int=None , UpperCAmelCase_ : str=None , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Union[str, Any]=None , **UpperCAmelCase_ : Any ): if text is None and visual_prompt is None and images is None: raise ValueError("You have to specify either text, visual prompt or images." ) if text is not None and visual_prompt is not None: raise ValueError("You have to specify exactly one type of prompt. Either text or visual prompt." ) if text is not None: SCREAMING_SNAKE_CASE : Any = self.tokenizer(UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ ) if visual_prompt is not None: SCREAMING_SNAKE_CASE : Optional[Any] = self.image_processor(UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ ) if images is not None: SCREAMING_SNAKE_CASE : Tuple = self.image_processor(UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ ) if visual_prompt is not None and images is not None: SCREAMING_SNAKE_CASE : Optional[int] = { "pixel_values": image_features.pixel_values, "conditional_pixel_values": prompt_features.pixel_values, } return encoding elif text is not None and images is not None: SCREAMING_SNAKE_CASE : Optional[int] = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: SCREAMING_SNAKE_CASE : Union[str, Any] = { "conditional_pixel_values": prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**UpperCAmelCase_ ) , tensor_type=UpperCAmelCase_ ) def _A ( self : Optional[Any] , *UpperCAmelCase_ : str , **UpperCAmelCase_ : List[Any] ): return self.tokenizer.batch_decode(*UpperCAmelCase_ , **UpperCAmelCase_ ) def _A ( self : Tuple , *UpperCAmelCase_ : int , **UpperCAmelCase_ : int ): return self.tokenizer.decode(*UpperCAmelCase_ , **UpperCAmelCase_ ) @property def _A ( self : Optional[int] ): warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , UpperCAmelCase_ , ) return self.image_processor_class @property def _A ( self : List[str] ): warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , UpperCAmelCase_ , ) return self.image_processor
488
import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging snake_case = logging.get_logger(__name__) snake_case = { """nvidia/segformer-b0-finetuned-ade-512-512""": ( """https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json""" ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : str = '''segformer''' def __init__( self : List[Any] , UpperCAmelCase_ : int=3 , UpperCAmelCase_ : Optional[Any]=4 , UpperCAmelCase_ : List[str]=[2, 2, 2, 2] , UpperCAmelCase_ : Optional[int]=[8, 4, 2, 1] , UpperCAmelCase_ : Union[str, Any]=[32, 64, 160, 256] , UpperCAmelCase_ : int=[7, 3, 3, 3] , UpperCAmelCase_ : str=[4, 2, 2, 2] , UpperCAmelCase_ : List[str]=[1, 2, 5, 8] , UpperCAmelCase_ : List[Any]=[4, 4, 4, 4] , UpperCAmelCase_ : Dict="gelu" , UpperCAmelCase_ : Optional[Any]=0.0 , UpperCAmelCase_ : Optional[Any]=0.0 , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : List[Any]=0.02 , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : Optional[Any]=1E-6 , UpperCAmelCase_ : List[str]=256 , UpperCAmelCase_ : Dict=255 , **UpperCAmelCase_ : Dict , ): super().__init__(**UpperCAmelCase_ ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( "Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be" " removed, as the behaviour will default to that of reshape_last_stage = True." , UpperCAmelCase_ , ) SCREAMING_SNAKE_CASE : Dict = num_channels SCREAMING_SNAKE_CASE : Any = num_encoder_blocks SCREAMING_SNAKE_CASE : Tuple = depths SCREAMING_SNAKE_CASE : Any = sr_ratios SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_sizes SCREAMING_SNAKE_CASE : int = patch_sizes SCREAMING_SNAKE_CASE : Optional[int] = strides SCREAMING_SNAKE_CASE : Tuple = mlp_ratios SCREAMING_SNAKE_CASE : Any = num_attention_heads SCREAMING_SNAKE_CASE : int = hidden_act SCREAMING_SNAKE_CASE : Optional[Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE : str = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Tuple = classifier_dropout_prob SCREAMING_SNAKE_CASE : List[Any] = initializer_range SCREAMING_SNAKE_CASE : Dict = drop_path_rate SCREAMING_SNAKE_CASE : Any = layer_norm_eps SCREAMING_SNAKE_CASE : Any = decoder_hidden_size SCREAMING_SNAKE_CASE : Union[str, Any] = kwargs.get("reshape_last_stage" , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[str] = semantic_loss_ignore_index class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Dict = version.parse('''1.11''' ) @property def _A ( self : Optional[Any] ): return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def _A ( self : List[str] ): return 1E-4 @property def _A ( self : Any ): return 12
488
1
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: _A = None _A = logging.get_logger(__name__) _A = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} _A = { """vocab_file""": { """facebook/mbart-large-en-ro""": ( """https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model""" ), """facebook/mbart-large-cc25""": ( """https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """facebook/mbart-large-en-ro""": """https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json""", """facebook/mbart-large-cc25""": """https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json""", }, } _A = { """facebook/mbart-large-en-ro""": 1024, """facebook/mbart-large-cc25""": 1024, } # fmt: off _A = ["""ar_AR""", """cs_CZ""", """de_DE""", """en_XX""", """es_XX""", """et_EE""", """fi_FI""", """fr_XX""", """gu_IN""", """hi_IN""", """it_IT""", """ja_XX""", """kk_KZ""", """ko_KR""", """lt_LT""", """lv_LV""", """my_MM""", """ne_NP""", """nl_XX""", """ro_RO""", """ru_RU""", """si_LK""", """tr_TR""", """vi_VN""", """zh_CN"""] class _lowerCAmelCase ( UpperCamelCase__ ): lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = ['input_ids', 'attention_mask'] lowerCamelCase__ = MBartTokenizer lowerCamelCase__ = [] lowerCamelCase__ = [] def __init__( self , snake_case_=None , snake_case_=None , snake_case_="<s>" , snake_case_="</s>" , snake_case_="</s>" , snake_case_="<s>" , snake_case_="<unk>" , snake_case_="<pad>" , snake_case_="<mask>" , snake_case_=None , snake_case_=None , snake_case_=None , **snake_case_ , ) -> str: # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE : List[str] =AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else mask_token super().__init__( vocab_file=snake_case_ , tokenizer_file=snake_case_ , bos_token=snake_case_ , eos_token=snake_case_ , sep_token=snake_case_ , cls_token=snake_case_ , unk_token=snake_case_ , pad_token=snake_case_ , mask_token=snake_case_ , src_lang=snake_case_ , tgt_lang=snake_case_ , additional_special_tokens=snake_case_ , **snake_case_ , ) SCREAMING_SNAKE_CASE : Union[str, Any] =vocab_file SCREAMING_SNAKE_CASE : Union[str, Any] =False if not self.vocab_file else True SCREAMING_SNAKE_CASE : int =FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} ) SCREAMING_SNAKE_CASE : List[Any] ={ lang_code: self.convert_tokens_to_ids(snake_case_ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } SCREAMING_SNAKE_CASE : List[Any] =src_lang if src_lang is not None else '''en_XX''' SCREAMING_SNAKE_CASE : Optional[Any] =self.convert_tokens_to_ids(self._src_lang ) SCREAMING_SNAKE_CASE : List[str] =tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def __a ( self ) -> str: return self._src_lang @src_lang.setter def __a ( self , snake_case_ ) -> None: SCREAMING_SNAKE_CASE : str =new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __a ( self , snake_case_ , snake_case_ = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __a ( self , snake_case_ , snake_case_ = None ) -> List[int]: SCREAMING_SNAKE_CASE : Dict =[self.sep_token_id] SCREAMING_SNAKE_CASE : Optional[int] =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __a ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , **snake_case_ ) -> List[Any]: if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) SCREAMING_SNAKE_CASE : str =src_lang SCREAMING_SNAKE_CASE : List[str] =self(snake_case_ , add_special_tokens=snake_case_ , return_tensors=snake_case_ , **snake_case_ ) SCREAMING_SNAKE_CASE : Any =self.convert_tokens_to_ids(snake_case_ ) SCREAMING_SNAKE_CASE : List[Any] =tgt_lang_id return inputs def __a ( self , snake_case_ , snake_case_ = "en_XX" , snake_case_ = None , snake_case_ = "ro_RO" , **snake_case_ , ) -> BatchEncoding: SCREAMING_SNAKE_CASE : Union[str, Any] =src_lang SCREAMING_SNAKE_CASE : int =tgt_lang return super().prepare_seqaseq_batch(snake_case_ , snake_case_ , **snake_case_ ) def __a ( self ) -> List[Any]: return self.set_src_lang_special_tokens(self.src_lang ) def __a ( self ) -> List[Any]: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __a ( self , snake_case_ ) -> None: SCREAMING_SNAKE_CASE : List[str] =self.convert_tokens_to_ids(snake_case_ ) SCREAMING_SNAKE_CASE : int =[] SCREAMING_SNAKE_CASE : Optional[int] =[self.eos_token_id, self.cur_lang_code] SCREAMING_SNAKE_CASE : Union[str, Any] =self.convert_ids_to_tokens(self.prefix_tokens ) SCREAMING_SNAKE_CASE : Any =self.convert_ids_to_tokens(self.suffix_tokens ) SCREAMING_SNAKE_CASE : str =processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __a ( self , snake_case_ ) -> None: SCREAMING_SNAKE_CASE : int =self.convert_tokens_to_ids(snake_case_ ) SCREAMING_SNAKE_CASE : str =[] SCREAMING_SNAKE_CASE : Optional[Any] =[self.eos_token_id, self.cur_lang_code] SCREAMING_SNAKE_CASE : List[str] =self.convert_ids_to_tokens(self.prefix_tokens ) SCREAMING_SNAKE_CASE : List[Any] =self.convert_ids_to_tokens(self.suffix_tokens ) SCREAMING_SNAKE_CASE : List[str] =processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __a ( self , snake_case_ , snake_case_ = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(snake_case_ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory.' ) return SCREAMING_SNAKE_CASE : Union[str, Any] =os.path.join( snake_case_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case_ ): copyfile(self.vocab_file , snake_case_ ) return (out_vocab_file,)
258
def lowerCAmelCase_ ( __a , __a ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : list[list[str]] =[[] for _ in range(__a )] SCREAMING_SNAKE_CASE : Any =key - 1 if key <= 0: raise ValueError('''Height of grid can\'t be 0 or negative''' ) if key == 1 or len(__a ) <= key: return input_string for position, character in enumerate(__a ): SCREAMING_SNAKE_CASE : Any =position % (lowest * 2) # puts it in bounds SCREAMING_SNAKE_CASE : Optional[int] =min(__a , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append(__a ) SCREAMING_SNAKE_CASE : int =[''''''.join(__a ) for row in temp_grid] SCREAMING_SNAKE_CASE : List[Any] =''''''.join(__a ) return output_string def lowerCAmelCase_ ( __a , __a ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : Any =[] SCREAMING_SNAKE_CASE : Optional[int] =key - 1 if key <= 0: raise ValueError('''Height of grid can\'t be 0 or negative''' ) if key == 1: return input_string SCREAMING_SNAKE_CASE : list[list[str]] =[[] for _ in range(__a )] # generates template for position in range(len(__a ) ): SCREAMING_SNAKE_CASE : Union[str, Any] =position % (lowest * 2) # puts it in bounds SCREAMING_SNAKE_CASE : Optional[int] =min(__a , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append('''*''' ) SCREAMING_SNAKE_CASE : Optional[Any] =0 for row in temp_grid: # fills in the characters SCREAMING_SNAKE_CASE : List[Any] =input_string[counter : counter + len(__a )] grid.append(list(__a ) ) counter += len(__a ) SCREAMING_SNAKE_CASE : int ='''''' # reads as zigzag for position in range(len(__a ) ): SCREAMING_SNAKE_CASE : List[str] =position % (lowest * 2) # puts it in bounds SCREAMING_SNAKE_CASE : Union[str, Any] =min(__a , lowest * 2 - num ) # creates zigzag pattern output_string += grid[num][0] grid[num].pop(0 ) return output_string def lowerCAmelCase_ ( __a ) -> dict[int, str]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict ={} for key_guess in range(1 , len(__a ) ): # tries every key SCREAMING_SNAKE_CASE : Optional[Any] =decrypt(__a , __a ) return results if __name__ == "__main__": import doctest doctest.testmod()
258
1
'''simple docstring''' import time from dataclasses import dataclass from multiprocessing import Pool from unittest import TestCase from unittest.mock import patch import multiprocess import numpy as np import pytest from datasets.utils.py_utils import ( NestedDataStructure, asdict, iflatmap_unordered, map_nested, temp_seed, temporary_assignment, zip_dict, ) from .utils import require_tf, require_torch def lowerCAmelCase_ ( snake_case__ ): # picklable for multiprocessing '''simple docstring''' return x.sum() def lowerCAmelCase_ ( snake_case__ ): # picklable for multiprocessing '''simple docstring''' return i + 1 @dataclass class A : __magic_name__ = 42 __magic_name__ = 42 class A ( __snake_case ): def __lowerCAmelCase ( self ) -> int: """simple docstring""" A : Optional[Any] = {} A : Any = [] A : List[str] = 1 A : Union[str, Any] = [1, 2] A : List[Any] = {'''a''': 1, '''b''': 2} A : Optional[Any] = {'''a''': [1, 2], '''b''': [3, 4]} A : Union[str, Any] = {'''a''': {'''1''': 1}, '''b''': 2} A : List[Any] = {'''a''': 1, '''b''': 2, '''c''': 3, '''d''': 4} A : Optional[Any] = {} A : Any = [] A : List[str] = 2 A : Union[str, Any] = [2, 3] A : List[Any] = {'''a''': 2, '''b''': 3} A : Dict = {'''a''': [2, 3], '''b''': [4, 5]} A : Union[str, Any] = {'''a''': {'''1''': 2}, '''b''': 3} A : Optional[int] = {'''a''': 2, '''b''': 3, '''c''': 4, '''d''': 5} self.assertEqual(map_nested(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) self.assertEqual(map_nested(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) self.assertEqual(map_nested(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) self.assertEqual(map_nested(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) self.assertEqual(map_nested(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) self.assertEqual(map_nested(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) self.assertEqual(map_nested(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) self.assertEqual(map_nested(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) A : int = 2 self.assertEqual(map_nested(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , num_proc=SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) self.assertEqual(map_nested(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , num_proc=SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) self.assertEqual(map_nested(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , num_proc=SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) self.assertEqual(map_nested(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , num_proc=SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) self.assertEqual(map_nested(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , num_proc=SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) self.assertEqual(map_nested(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , num_proc=SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) self.assertEqual(map_nested(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , num_proc=SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) self.assertEqual(map_nested(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , num_proc=SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) A : Any = {'''a''': np.eye(2 ), '''b''': np.zeros(3 ), '''c''': np.ones(2 )} A : Optional[Any] = {'''a''': 2, '''b''': 0, '''c''': 2} A : Any = { '''a''': np.eye(2 ).astype(SCREAMING_SNAKE_CASE ), '''b''': np.zeros(3 ).astype(SCREAMING_SNAKE_CASE ), '''c''': np.ones(2 ).astype(SCREAMING_SNAKE_CASE ), } self.assertEqual(map_nested(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , map_numpy=SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) self.assertEqual( {k: v.tolist() for k, v in map_nested(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , map_numpy=SCREAMING_SNAKE_CASE ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) self.assertEqual(map_nested(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , map_numpy=SCREAMING_SNAKE_CASE , num_proc=SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) self.assertEqual( {k: v.tolist() for k, v in map_nested(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , map_numpy=SCREAMING_SNAKE_CASE , num_proc=SCREAMING_SNAKE_CASE ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) with self.assertRaises(SCREAMING_SNAKE_CASE ): # can't pickle a local lambda map_nested(lambda SCREAMING_SNAKE_CASE : x + 1 , SCREAMING_SNAKE_CASE , num_proc=SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" A : int = {'''a''': 1, '''b''': 2} A : Union[str, Any] = {'''a''': 3, '''b''': 4} A : Dict = {'''a''': 5, '''b''': 6} A : Any = sorted([('''a''', (1, 3, 5)), ('''b''', (2, 4, 6))] ) self.assertEqual(sorted(zip_dict(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) , SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> int: """simple docstring""" class A : __magic_name__ = '''bar''' A : Optional[Any] = Foo() self.assertEqual(foo.my_attr , '''bar''' ) with temporary_assignment(SCREAMING_SNAKE_CASE , '''my_attr''' , '''BAR''' ): self.assertEqual(foo.my_attr , '''BAR''' ) self.assertEqual(foo.my_attr , '''bar''' ) @pytest.mark.parametrize( '''iterable_length, num_proc, expected_num_proc''' , [ (1, None, 1), (1, 1, 1), (2, None, 1), (2, 1, 1), (2, 2, 1), (2, 3, 1), (3, 2, 1), (16, 16, 16), (16, 17, 16), (17, 16, 16), ] , ) def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' with patch('''datasets.utils.py_utils._single_map_nested''' ) as mock_single_map_nested, patch( '''datasets.parallel.parallel.Pool''' ) as mock_multiprocessing_pool: A : Union[str, Any] = {F'{i}': i for i in range(snake_case__ )} A : Union[str, Any] = map_nested(lambda snake_case__ : x + 10 , snake_case__ , num_proc=snake_case__ , parallel_min_length=16 ) if expected_num_proc == 1: assert mock_single_map_nested.called assert not mock_multiprocessing_pool.called else: assert not mock_single_map_nested.called assert mock_multiprocessing_pool.called assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc class A ( __snake_case ): @require_tf def __lowerCAmelCase ( self ) -> Any: """simple docstring""" import tensorflow as tf from tensorflow.keras import layers A : Dict = layers.Dense(2 ) def gen_random_output(): A : Tuple = tf.random.uniform((1, 3) ) return model(SCREAMING_SNAKE_CASE ).numpy() with temp_seed(42 , set_tensorflow=SCREAMING_SNAKE_CASE ): A : Optional[int] = gen_random_output() with temp_seed(42 , set_tensorflow=SCREAMING_SNAKE_CASE ): A : int = gen_random_output() A : List[str] = gen_random_output() np.testing.assert_equal(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @require_torch def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" import torch def gen_random_output(): A : Optional[Any] = torch.nn.Linear(3 , 2 ) A : str = torch.rand(1 , 3 ) return model(SCREAMING_SNAKE_CASE ).detach().numpy() with temp_seed(42 , set_pytorch=SCREAMING_SNAKE_CASE ): A : List[str] = gen_random_output() with temp_seed(42 , set_pytorch=SCREAMING_SNAKE_CASE ): A : str = gen_random_output() A : Tuple = gen_random_output() np.testing.assert_equal(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" def gen_random_output(): return np.random.rand(1 , 3 ) with temp_seed(42 ): A : Union[str, Any] = gen_random_output() with temp_seed(42 ): A : Union[str, Any] = gen_random_output() A : Any = gen_random_output() np.testing.assert_equal(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @pytest.mark.parametrize('''input_data''' , [{}] ) def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' A : Dict = NestedDataStructure(snake_case__ ).data assert output_data == input_data @pytest.mark.parametrize( '''data, expected_output''' , [ ({}, []), ([], []), ('''foo''', ['''foo''']), (['''foo''', '''bar'''], ['''foo''', '''bar''']), ([['''foo''', '''bar''']], ['''foo''', '''bar''']), ([[['''foo'''], ['''bar''']]], ['''foo''', '''bar''']), ([[['''foo'''], '''bar''']], ['''foo''', '''bar''']), ({'''a''': 1, '''b''': 2}, [1, 2]), ({'''a''': [1, 2], '''b''': [3, 4]}, [1, 2, 3, 4]), ({'''a''': [[1, 2]], '''b''': [[3, 4]]}, [1, 2, 3, 4]), ({'''a''': [[1, 2]], '''b''': [3, 4]}, [1, 2, 3, 4]), ({'''a''': [[[1], [2]]], '''b''': [[[3], [4]]]}, [1, 2, 3, 4]), ({'''a''': [[[1], [2]]], '''b''': [[3, 4]]}, [1, 2, 3, 4]), ({'''a''': [[[1], [2]]], '''b''': [3, 4]}, [1, 2, 3, 4]), ({'''a''': [[[1], [2]]], '''b''': [3, [4]]}, [1, 2, 3, 4]), ({'''a''': {'''1''': 1}, '''b''': 2}, [1, 2]), ({'''a''': {'''1''': [1]}, '''b''': 2}, [1, 2]), ({'''a''': {'''1''': [1]}, '''b''': [2]}, [1, 2]), ] , ) def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' A : Optional[Any] = NestedDataStructure(snake_case__ ).flatten() assert output == expected_output def lowerCAmelCase_ ( ): '''simple docstring''' A : Optional[int] = A(x=1 , y='''foobar''' ) A : List[Any] = {'''x''': 1, '''y''': '''foobar'''} assert asdict(snake_case__ ) == expected_output A : Dict = {'''a''': {'''b''': A(x=10 , y='''foo''' )}, '''c''': [A(x=20 , y='''bar''' )]} A : Dict = {'''a''': {'''b''': {'''x''': 10, '''y''': '''foo'''}}, '''c''': [{'''x''': 20, '''y''': '''bar'''}]} assert asdict(snake_case__ ) == expected_output with pytest.raises(snake_case__ ): asdict([1, A(x=10 , y='''foo''' )] ) def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' return text.split() def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' yield (time.time(), content) time.sleep(2 ) yield (time.time(), content) def lowerCAmelCase_ ( ): '''simple docstring''' with Pool(2 ) as pool: A : List[str] = list(iflatmap_unordered(snake_case__ , _split_text , kwargs_iterable=[{'''text''': '''hello there'''}] * 10 ) ) assert out.count('''hello''' ) == 10 assert out.count('''there''' ) == 10 assert len(snake_case__ ) == 20 # check multiprocess from pathos (uses dill for pickling) with multiprocess.Pool(2 ) as pool: A : List[Any] = list(iflatmap_unordered(snake_case__ , _split_text , kwargs_iterable=[{'''text''': '''hello there'''}] * 10 ) ) assert out.count('''hello''' ) == 10 assert out.count('''there''' ) == 10 assert len(snake_case__ ) == 20 # check that we get items as fast as possible with Pool(2 ) as pool: A : Dict = [] for yield_time, content in iflatmap_unordered( snake_case__ , _aseconds_generator_of_aitems_with_timing , kwargs_iterable=[{'''content''': '''a'''}, {'''content''': '''b'''}] ): assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded" out.append(snake_case__ ) assert out.count('''a''' ) == 2 assert out.count('''b''' ) == 2 assert len(snake_case__ ) == 4
343
'''simple docstring''' import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' A : int = torch.load(snake_case__ , map_location='''cpu''' ) A : Optional[Any] = chkpt['''model'''] # We have the base model one level deeper than the original XLM repository A : Any = {} for k, v in state_dict.items(): if "pred_layer" in k: A : Any = v else: A : int = v A : str = chkpt['''params'''] A : Tuple = {n: v for n, v in config.items() if not isinstance(snake_case__ , (torch.FloatTensor, numpy.ndarray) )} A : Dict = chkpt['''dico_word2id'''] A : Optional[int] = {s + '''</w>''' if s.find('''@@''' ) == -1 and i > 13 else s.replace('''@@''' , '''''' ): i for s, i in vocab.items()} # Save pytorch-model A : str = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME A : Dict = pytorch_dump_folder_path + '''/''' + CONFIG_NAME A : Optional[int] = pytorch_dump_folder_path + '''/''' + VOCAB_FILES_NAMES['''vocab_file'''] print(F'Save PyTorch model to {pytorch_weights_dump_path}' ) torch.save(snake_case__ , snake_case__ ) print(F'Save configuration file to {pytorch_config_dump_path}' ) with open(snake_case__ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(snake_case__ , indent=2 ) + '''\n''' ) print(F'Save vocab file to {pytorch_config_dump_path}' ) with open(snake_case__ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(snake_case__ , indent=2 ) + '''\n''' ) if __name__ == "__main__": lowercase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '--xlm_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) lowercase : int = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
343
1
import requests from bsa import BeautifulSoup def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = BeautifulSoup(requests.get(lowercase , params=lowercase ).content , "html.parser" ) SCREAMING_SNAKE_CASE : Union[str, Any] = soup.find("div" , attrs={"class": "gs_ri"} ) SCREAMING_SNAKE_CASE : str = div.find("div" , attrs={"class": "gs_fl"} ).find_all("a" ) return anchors[2].get_text() if __name__ == "__main__": snake_case = { """title""": ( """Precisely geometry controlled microsupercapacitors for ultrahigh areal """ """capacitance, volumetric capacitance, and energy density""" ), """journal""": """Chem. Mater.""", """volume""": 30, """pages""": """3979-3990""", """year""": 2_018, """hl""": """en""", } print(get_citation("""https://scholar.google.com/scholar_lookup""", params=params))
62
import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed lowerCAmelCase__ = 'true' def __lowercase ( _UpperCAmelCase , _UpperCAmelCase=82 , _UpperCAmelCase=16 ) -> int: '''simple docstring''' set_seed(42 ) __lowercase = RegressionModel() __lowercase = deepcopy(_UpperCAmelCase ) __lowercase = RegressionDataset(length=_UpperCAmelCase ) __lowercase = DataLoader(_UpperCAmelCase , batch_size=_UpperCAmelCase ) model.to(accelerator.device ) __lowercase , __lowercase = accelerator.prepare(_UpperCAmelCase , _UpperCAmelCase ) return model, ddp_model, dataloader def __lowercase ( _UpperCAmelCase , _UpperCAmelCase=False ) -> int: '''simple docstring''' __lowercase = AutoTokenizer.from_pretrained("hf-internal-testing/mrpc-bert-base-cased" ) __lowercase = load_dataset("glue" , "mrpc" , split="validation" ) def tokenize_function(_UpperCAmelCase ): __lowercase = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase ) return outputs with accelerator.main_process_first(): __lowercase = dataset.map( _UpperCAmelCase , batched=_UpperCAmelCase , remove_columns=["idx", "sentence1", "sentence2"] , ) __lowercase = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(_UpperCAmelCase ): if use_longest: return tokenizer.pad(_UpperCAmelCase , padding="longest" , return_tensors="pt" ) return tokenizer.pad(_UpperCAmelCase , padding="max_length" , max_length=128 , return_tensors="pt" ) return DataLoader(_UpperCAmelCase , shuffle=_UpperCAmelCase , collate_fn=_UpperCAmelCase , batch_size=16 ) def __lowercase ( _UpperCAmelCase , _UpperCAmelCase ) -> Tuple: '''simple docstring''' __lowercase = Accelerator(dispatch_batches=_UpperCAmelCase , split_batches=_UpperCAmelCase ) __lowercase = get_dataloader(_UpperCAmelCase , not dispatch_batches ) __lowercase = AutoModelForSequenceClassification.from_pretrained( "hf-internal-testing/mrpc-bert-base-cased" , return_dict=_UpperCAmelCase ) __lowercase , __lowercase = accelerator.prepare(_UpperCAmelCase , _UpperCAmelCase ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def __lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Tuple: '''simple docstring''' __lowercase = [] for batch in dataloader: __lowercase , __lowercase = batch.values() with torch.no_grad(): __lowercase = model(_UpperCAmelCase ) __lowercase , __lowercase = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) __lowercase , __lowercase = [], [] for logit, targ in logits_and_targets: logits.append(_UpperCAmelCase ) targs.append(_UpperCAmelCase ) __lowercase , __lowercase = torch.cat(_UpperCAmelCase ), torch.cat(_UpperCAmelCase ) return logits, targs def __lowercase ( _UpperCAmelCase , _UpperCAmelCase=82 , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=16 ) -> Any: '''simple docstring''' __lowercase , __lowercase , __lowercase = get_basic_setup(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __lowercase , __lowercase = generate_predictions(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) assert ( len(_UpperCAmelCase ) == num_samples ), f'''Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(_UpperCAmelCase )}''' def __lowercase ( _UpperCAmelCase = False , _UpperCAmelCase = False ) -> str: '''simple docstring''' __lowercase = evaluate.load("glue" , "mrpc" ) __lowercase , __lowercase = get_mrpc_setup(_UpperCAmelCase , _UpperCAmelCase ) # First do baseline __lowercase , __lowercase , __lowercase = setup["no"] model.to(_UpperCAmelCase ) model.eval() for batch in dataloader: batch.to(_UpperCAmelCase ) with torch.inference_mode(): __lowercase = model(**_UpperCAmelCase ) __lowercase = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=_UpperCAmelCase , references=batch["labels"] ) __lowercase = metric.compute() # Then do distributed __lowercase , __lowercase , __lowercase = setup["ddp"] model.eval() for batch in dataloader: with torch.inference_mode(): __lowercase = model(**_UpperCAmelCase ) __lowercase = outputs.logits.argmax(dim=-1 ) __lowercase = batch["labels"] __lowercase , __lowercase = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=_UpperCAmelCase , references=_UpperCAmelCase ) __lowercase = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), f'''Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n''' def __lowercase ( ) -> Dict: '''simple docstring''' __lowercase = Accelerator(split_batches=_UpperCAmelCase , dispatch_batches=_UpperCAmelCase ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print("**Testing gather_for_metrics**" ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(f'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`''' ) test_mrpc(_UpperCAmelCase , _UpperCAmelCase ) accelerator.state._reset_state() if accelerator.is_local_main_process: print("**Test torch metrics**" ) for split_batches in [True, False]: for dispatch_batches in [True, False]: __lowercase = Accelerator(split_batches=_UpperCAmelCase , dispatch_batches=_UpperCAmelCase ) if accelerator.is_local_main_process: print(f'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99''' ) test_torch_metrics(_UpperCAmelCase , 99 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print("**Test last batch is not dropped when perfectly divisible**" ) __lowercase = Accelerator() test_torch_metrics(_UpperCAmelCase , 512 ) accelerator.state._reset_state() def __lowercase ( _UpperCAmelCase ) -> List[str]: '''simple docstring''' main() if __name__ == "__main__": main()
321
0
import json import logging import os import sys from time import time from unittest.mock import patch from transformers.testing_utils import TestCasePlus, require_torch_tpu logging.basicConfig(level=logging.DEBUG) A_ :int = logging.getLogger() def A ( a_ ) -> Dict: __UpperCamelCase : List[str] ={} __UpperCamelCase : int =os.path.join(a_ ,'all_results.json' ) if os.path.exists(a_ ): with open(a_ ,'r' ) as f: __UpperCamelCase : Tuple =json.load(a_ ) else: raise ValueError(F'can\'t find {path}' ) return results A_ :Optional[Any] = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) @require_torch_tpu class __A ( a ): """simple docstring""" def __lowercase ( self ): """simple docstring""" import xla_spawn __UpperCamelCase : List[str] =self.get_auto_remove_tmp_dir() __UpperCamelCase : Any =f'\n ./examples/pytorch/text-classification/run_glue.py\n --num_cores=8\n ./examples/pytorch/text-classification/run_glue.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --do_train\n --do_eval\n --debug tpu_metrics_debug\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --max_steps=10\n --warmup_steps=2\n --seed=42\n --max_seq_length=128\n '.split() with patch.object(lowerCamelCase__ , 'argv' , lowerCamelCase__ ): __UpperCamelCase : List[str] =time() xla_spawn.main() __UpperCamelCase : Dict =time() __UpperCamelCase : Any =get_results(lowerCamelCase__ ) self.assertGreaterEqual(result['eval_accuracy'] , 0.75 ) # Assert that the script takes less than 500 seconds to make sure it doesn't hang. self.assertLess(end - start , 500 ) def __lowercase ( self ): """simple docstring""" import xla_spawn __UpperCamelCase : Union[str, Any] ='\n ./tests/test_trainer_tpu.py\n --num_cores=8\n ./tests/test_trainer_tpu.py\n '.split() with patch.object(lowerCamelCase__ , 'argv' , lowerCamelCase__ ): xla_spawn.main()
708
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class __A ( a ): """simple docstring""" UpperCamelCase__ : torch.FloatTensor UpperCamelCase__ : torch.FloatTensor class __A ( a , a ): """simple docstring""" UpperCamelCase__ : List[str] =1 @register_to_config def __init__( self , lowerCamelCase__ = 2000 , lowerCamelCase__ = 0.15 , lowerCamelCase__ = 0.01 , lowerCamelCase__ = 1_348.0 , lowerCamelCase__ = 1E-5 , lowerCamelCase__ = 1 , ): """simple docstring""" __UpperCamelCase : List[str] =sigma_max # setable values __UpperCamelCase : Tuple =None self.set_sigmas(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ = None ): """simple docstring""" return sample def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = None ): """simple docstring""" __UpperCamelCase : List[Any] =sampling_eps if sampling_eps is not None else self.config.sampling_eps __UpperCamelCase : Any =torch.linspace(1 , lowerCamelCase__ , lowerCamelCase__ , device=lowerCamelCase__ ) def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None ): """simple docstring""" __UpperCamelCase : List[str] =sigma_min if sigma_min is not None else self.config.sigma_min __UpperCamelCase : Dict =sigma_max if sigma_max is not None else self.config.sigma_max __UpperCamelCase : List[Any] =sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : int =sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) __UpperCamelCase : Tuple =torch.exp(torch.linspace(math.log(lowerCamelCase__ ) , math.log(lowerCamelCase__ ) , lowerCamelCase__ ) ) __UpperCamelCase : Union[str, Any] =torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] ) def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" return torch.where( timesteps == 0 , torch.zeros_like(t.to(timesteps.device ) ) , self.discrete_sigmas[timesteps - 1].to(timesteps.device ) , ) def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = True , ): """simple docstring""" if self.timesteps is None: raise ValueError( '`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler' ) __UpperCamelCase : List[Any] =timestep * torch.ones( sample.shape[0] , device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) __UpperCamelCase : Optional[int] =(timestep * (len(self.timesteps ) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda __UpperCamelCase : Tuple =timesteps.to(self.discrete_sigmas.device ) __UpperCamelCase : Any =self.discrete_sigmas[timesteps].to(sample.device ) __UpperCamelCase : List[str] =self.get_adjacent_sigma(lowerCamelCase__ , lowerCamelCase__ ).to(sample.device ) __UpperCamelCase : Union[str, Any] =torch.zeros_like(lowerCamelCase__ ) __UpperCamelCase : List[str] =(sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods __UpperCamelCase : List[str] =diffusion.flatten() while len(diffusion.shape ) < len(sample.shape ): __UpperCamelCase : Optional[int] =diffusion.unsqueeze(-1 ) __UpperCamelCase : Optional[int] =drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of __UpperCamelCase : Union[str, Any] =randn_tensor( sample.shape , layout=sample.layout , generator=lowerCamelCase__ , device=sample.device , dtype=sample.dtype ) __UpperCamelCase : List[str] =sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? __UpperCamelCase : Union[str, Any] =prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=lowerCamelCase__ , prev_sample_mean=lowerCamelCase__ ) def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = True , ): """simple docstring""" if self.timesteps is None: raise ValueError( '`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler' ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction __UpperCamelCase : Optional[int] =randn_tensor(sample.shape , layout=sample.layout , generator=lowerCamelCase__ ).to(sample.device ) # compute step size from the model_output, the noise, and the snr __UpperCamelCase : Dict =torch.norm(model_output.reshape(model_output.shape[0] , -1 ) , dim=-1 ).mean() __UpperCamelCase : Optional[Any] =torch.norm(noise.reshape(noise.shape[0] , -1 ) , dim=-1 ).mean() __UpperCamelCase : Optional[Any] =(self.config.snr * noise_norm / grad_norm) ** 2 * 2 __UpperCamelCase : List[Any] =step_size * torch.ones(sample.shape[0] ).to(sample.device ) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term __UpperCamelCase : int =step_size.flatten() while len(step_size.shape ) < len(sample.shape ): __UpperCamelCase : Optional[Any] =step_size.unsqueeze(-1 ) __UpperCamelCase : Any =sample + step_size * model_output __UpperCamelCase : Optional[Any] =prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=lowerCamelCase__ ) def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ): """simple docstring""" __UpperCamelCase : List[Any] =timesteps.to(original_samples.device ) __UpperCamelCase : List[Any] =self.discrete_sigmas.to(original_samples.device )[timesteps] __UpperCamelCase : Optional[int] =( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(lowerCamelCase__ ) * sigmas[:, None, None, None] ) __UpperCamelCase : Any =noise + original_samples return noisy_samples def __len__( self ): """simple docstring""" return self.config.num_train_timesteps
154
0
import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class _A ( UpperCAmelCase_ ): def __init__( self : Union[str, Any] , lowerCamelCase__ : Dict , lowerCamelCase__ : str=13 , lowerCamelCase__ : List[Any]=7 , lowerCamelCase__ : Tuple=True , lowerCamelCase__ : Any=True , lowerCamelCase__ : str=True , lowerCamelCase__ : Tuple=True , lowerCamelCase__ : Union[str, Any]=True , lowerCamelCase__ : Union[str, Any]=False , lowerCamelCase__ : Optional[Any]=False , lowerCamelCase__ : int=False , lowerCamelCase__ : str=2 , lowerCamelCase__ : Dict=99 , lowerCamelCase__ : Dict=0 , lowerCamelCase__ : Dict=32 , lowerCamelCase__ : str=5 , lowerCamelCase__ : Optional[Any]=4 , lowerCamelCase__ : Optional[int]=0.1 , lowerCamelCase__ : int=0.1 , lowerCamelCase__ : Any=5_12 , lowerCamelCase__ : int=12 , lowerCamelCase__ : Optional[int]=2 , lowerCamelCase__ : Tuple=0.02 , lowerCamelCase__ : Optional[Any]=3 , lowerCamelCase__ : Any=4 , lowerCamelCase__ : List[str]="last" , lowerCamelCase__ : Tuple=None , lowerCamelCase__ : str=None , ): """simple docstring""" __UpperCamelCase : Tuple = parent __UpperCamelCase : Optional[Any] = batch_size __UpperCamelCase : Optional[Any] = seq_length __UpperCamelCase : List[str] = is_training __UpperCamelCase : List[Any] = use_input_lengths __UpperCamelCase : int = use_token_type_ids __UpperCamelCase : List[str] = use_labels __UpperCamelCase : str = gelu_activation __UpperCamelCase : Tuple = sinusoidal_embeddings __UpperCamelCase : Tuple = causal __UpperCamelCase : Optional[Any] = asm __UpperCamelCase : str = n_langs __UpperCamelCase : List[Any] = vocab_size __UpperCamelCase : Tuple = n_special __UpperCamelCase : Optional[int] = hidden_size __UpperCamelCase : Any = num_hidden_layers __UpperCamelCase : str = num_attention_heads __UpperCamelCase : Union[str, Any] = hidden_dropout_prob __UpperCamelCase : Union[str, Any] = attention_probs_dropout_prob __UpperCamelCase : Tuple = max_position_embeddings __UpperCamelCase : List[Any] = type_vocab_size __UpperCamelCase : Tuple = type_sequence_label_size __UpperCamelCase : Optional[Any] = initializer_range __UpperCamelCase : List[str] = num_labels __UpperCamelCase : Any = num_choices __UpperCamelCase : Optional[Any] = summary_type __UpperCamelCase : int = use_proj __UpperCamelCase : Union[str, Any] = scope def a ( self : Dict ): """simple docstring""" __UpperCamelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase : str = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase : List[str] = None if self.use_input_lengths: __UpperCamelCase : str = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length __UpperCamelCase : Optional[int] = None if self.use_token_type_ids: __UpperCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) __UpperCamelCase : List[str] = None __UpperCamelCase : Dict = None __UpperCamelCase : Dict = None if self.use_labels: __UpperCamelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCamelCase : Tuple = ids_tensor([self.batch_size] , 2 ).float() __UpperCamelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) __UpperCamelCase : str = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def a ( self : Optional[Any] ): """simple docstring""" return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def a ( self : Optional[Any] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : Dict , lowerCamelCase__ : Dict , lowerCamelCase__ : int , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : str , lowerCamelCase__ : List[Any] , lowerCamelCase__ : Union[str, Any] , ): """simple docstring""" __UpperCamelCase : Optional[Any] = FlaubertModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __UpperCamelCase : Union[str, Any] = model(lowerCamelCase__ , lengths=lowerCamelCase__ , langs=lowerCamelCase__ ) __UpperCamelCase : int = model(lowerCamelCase__ , langs=lowerCamelCase__ ) __UpperCamelCase : Tuple = model(lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a ( self : Optional[int] , lowerCamelCase__ : int , lowerCamelCase__ : List[str] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : int , lowerCamelCase__ : List[str] , lowerCamelCase__ : List[str] , lowerCamelCase__ : Any , lowerCamelCase__ : str , ): """simple docstring""" __UpperCamelCase : Union[str, Any] = FlaubertWithLMHeadModel(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __UpperCamelCase : Dict = model(lowerCamelCase__ , token_type_ids=lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a ( self : List[Any] , lowerCamelCase__ : List[str] , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Any , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Any , ): """simple docstring""" __UpperCamelCase : int = FlaubertForQuestionAnsweringSimple(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __UpperCamelCase : int = model(lowerCamelCase__ ) __UpperCamelCase : Optional[Any] = model(lowerCamelCase__ , start_positions=lowerCamelCase__ , end_positions=lowerCamelCase__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a ( self : int , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : str , lowerCamelCase__ : Dict , lowerCamelCase__ : str , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Tuple , lowerCamelCase__ : List[Any] , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : int , ): """simple docstring""" __UpperCamelCase : Union[str, Any] = FlaubertForQuestionAnswering(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __UpperCamelCase : Optional[Any] = model(lowerCamelCase__ ) __UpperCamelCase : Optional[int] = model( lowerCamelCase__ , start_positions=lowerCamelCase__ , end_positions=lowerCamelCase__ , cls_index=lowerCamelCase__ , is_impossible=lowerCamelCase__ , p_mask=lowerCamelCase__ , ) __UpperCamelCase : List[Any] = model( lowerCamelCase__ , start_positions=lowerCamelCase__ , end_positions=lowerCamelCase__ , cls_index=lowerCamelCase__ , is_impossible=lowerCamelCase__ , ) ((__UpperCamelCase) , ) : Any = result_with_labels.to_tuple() __UpperCamelCase : List[Any] = model(lowerCamelCase__ , start_positions=lowerCamelCase__ , end_positions=lowerCamelCase__ ) ((__UpperCamelCase) , ) : List[str] = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def a ( self : List[Any] , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Tuple , lowerCamelCase__ : str , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : int , lowerCamelCase__ : Dict , lowerCamelCase__ : str , ): """simple docstring""" __UpperCamelCase : Optional[int] = FlaubertForSequenceClassification(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __UpperCamelCase : Any = model(lowerCamelCase__ ) __UpperCamelCase : Union[str, Any] = model(lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def a ( self : Tuple , lowerCamelCase__ : Dict , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Any , lowerCamelCase__ : Dict , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : str , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Any , lowerCamelCase__ : Optional[Any] , ): """simple docstring""" __UpperCamelCase : Union[str, Any] = self.num_labels __UpperCamelCase : str = FlaubertForTokenClassification(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __UpperCamelCase : List[str] = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a ( self : Tuple , lowerCamelCase__ : Any , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : str , lowerCamelCase__ : Any , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : int , lowerCamelCase__ : Any , lowerCamelCase__ : Tuple , lowerCamelCase__ : List[Any] , ): """simple docstring""" __UpperCamelCase : Tuple = self.num_choices __UpperCamelCase : Tuple = FlaubertForMultipleChoice(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __UpperCamelCase : Optional[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCamelCase : Tuple = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCamelCase : Union[str, Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCamelCase : int = model( lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , labels=lowerCamelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def a ( self : Union[str, Any] ): """simple docstring""" __UpperCamelCase : Dict = self.prepare_config_and_inputs() ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) : Optional[int] = config_and_inputs __UpperCamelCase : Optional[int] = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """lengths""": input_lengths, """attention_mask""": input_mask, } return config, inputs_dict @require_torch class _A ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): lowercase_ : int = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) lowercase_ : List[str] = ( { '''feature-extraction''': FlaubertModel, '''fill-mask''': FlaubertWithLMHeadModel, '''question-answering''': FlaubertForQuestionAnsweringSimple, '''text-classification''': FlaubertForSequenceClassification, '''token-classification''': FlaubertForTokenClassification, '''zero-shot''': FlaubertForSequenceClassification, } if is_torch_available() else {} ) def a ( self : Optional[int] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : int , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : str ): """simple docstring""" if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def a ( self : Union[str, Any] , lowerCamelCase__ : Dict , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Dict=False ): """simple docstring""" __UpperCamelCase : int = super()._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ , return_labels=lowerCamelCase__ ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": __UpperCamelCase : Tuple = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCamelCase__ ) __UpperCamelCase : Tuple = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCamelCase__ ) return inputs_dict def a ( self : str ): """simple docstring""" __UpperCamelCase : Tuple = FlaubertModelTester(self ) __UpperCamelCase : Tuple = ConfigTester(self , config_class=lowerCamelCase__ , emb_dim=37 ) def a ( self : Union[str, Any] ): """simple docstring""" self.config_tester.run_common_tests() def a ( self : Optional[Any] ): """simple docstring""" __UpperCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*lowerCamelCase__ ) def a ( self : Any ): """simple docstring""" __UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*lowerCamelCase__ ) def a ( self : Optional[Any] ): """simple docstring""" __UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*lowerCamelCase__ ) def a ( self : Union[str, Any] ): """simple docstring""" __UpperCamelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*lowerCamelCase__ ) def a ( self : Union[str, Any] ): """simple docstring""" __UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*lowerCamelCase__ ) def a ( self : Tuple ): """simple docstring""" __UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*lowerCamelCase__ ) def a ( self : Optional[int] ): """simple docstring""" __UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*lowerCamelCase__ ) @slow def a ( self : Optional[int] ): """simple docstring""" for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase : Union[str, Any] = FlaubertModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) @slow @require_torch_gpu def a ( self : Optional[Any] ): """simple docstring""" __UpperCamelCase , __UpperCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return __UpperCamelCase : int = True __UpperCamelCase : Any = model_class(config=lowerCamelCase__ ) __UpperCamelCase : List[str] = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : Tuple = torch.jit.trace( lowerCamelCase__ , (inputs_dict["""input_ids"""].to("""cpu""" ), inputs_dict["""attention_mask"""].to("""cpu""" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(lowerCamelCase__ , os.path.join(lowerCamelCase__ , """traced_model.pt""" ) ) __UpperCamelCase : Optional[int] = torch.jit.load(os.path.join(lowerCamelCase__ , """traced_model.pt""" ) , map_location=lowerCamelCase__ ) loaded(inputs_dict["""input_ids"""].to(lowerCamelCase__ ) , inputs_dict["""attention_mask"""].to(lowerCamelCase__ ) ) @require_torch class _A ( unittest.TestCase ): @slow def a ( self : str ): """simple docstring""" __UpperCamelCase : Dict = FlaubertModel.from_pretrained("""flaubert/flaubert_base_cased""" ) __UpperCamelCase : List[str] = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) with torch.no_grad(): __UpperCamelCase : List[Any] = model(lowerCamelCase__ )[0] __UpperCamelCase : Tuple = torch.Size((1, 11, 7_68) ) self.assertEqual(output.shape , lowerCamelCase__ ) __UpperCamelCase : List[Any] = torch.tensor( [[[-2.6251, -1.4298, -0.0227], [-2.8510, -1.6387, 0.2258], [-2.8114, -1.1832, -0.3066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCamelCase__ , atol=1e-4 ) )
269
from __future__ import annotations class _A : def __init__( self : List[str] , lowerCamelCase__ : Any=None ): """simple docstring""" __UpperCamelCase : Union[str, Any] = data __UpperCamelCase : Union[str, Any] = None def __repr__( self : int ): """simple docstring""" __UpperCamelCase : Union[str, Any] = [] __UpperCamelCase : Optional[int] = self while temp: string_rep.append(f'{temp.data}' ) __UpperCamelCase : Dict = temp.next return "->".join(lowerCamelCase__ ) def __lowerCamelCase ( __lowerCAmelCase : list ) -> Tuple: if not elements_list: raise Exception("""The Elements List is empty""" ) __UpperCamelCase : Dict = Node(elements_list[0] ) for i in range(1 , len(__lowerCAmelCase ) ): __UpperCamelCase : List[str] = Node(elements_list[i] ) __UpperCamelCase : Optional[int] = current.next return head def __lowerCamelCase ( __lowerCAmelCase : Node ) -> None: if head_node is not None and isinstance(__lowerCAmelCase , __lowerCAmelCase ): print_reverse(head_node.next ) print(head_node.data ) def __lowerCamelCase ( ) -> Union[str, Any]: from doctest import testmod testmod() __UpperCamelCase : Any = make_linked_list([14, 52, 14, 12, 43] ) print("""Linked List:""" ) print(__lowerCAmelCase ) print("""Elements in Reverse:""" ) print_reverse(__lowerCAmelCase ) if __name__ == "__main__": main()
269
1
"""simple docstring""" import math def SCREAMING_SNAKE_CASE ( snake_case, snake_case = 0, snake_case = 0): __snake_case = end or len(snake_case) for i in range(snake_case, snake_case): __snake_case = i __snake_case = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: __snake_case = array[temp_index - 1] temp_index -= 1 __snake_case = temp_index_value return array def SCREAMING_SNAKE_CASE ( snake_case, snake_case, snake_case): # Max Heap __snake_case = index __snake_case = 2 * index + 1 # Left Node __snake_case = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: __snake_case = left_index if right_index < heap_size and array[largest] < array[right_index]: __snake_case = right_index if largest != index: __snake_case , __snake_case = array[largest], array[index] heapify(snake_case, snake_case, snake_case) def SCREAMING_SNAKE_CASE ( snake_case): __snake_case = len(snake_case) for i in range(n // 2, -1, -1): heapify(snake_case, snake_case, snake_case) for i in range(n - 1, 0, -1): __snake_case , __snake_case = array[0], array[i] heapify(snake_case, 0, snake_case) return array def SCREAMING_SNAKE_CASE ( snake_case, snake_case, snake_case, snake_case): if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def SCREAMING_SNAKE_CASE ( snake_case, snake_case, snake_case, snake_case): __snake_case = low __snake_case = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i __snake_case , __snake_case = array[j], array[i] i += 1 def SCREAMING_SNAKE_CASE ( snake_case): if len(snake_case) == 0: return array __snake_case = 2 * math.ceil(math.loga(len(snake_case))) __snake_case = 16 return intro_sort(snake_case, 0, len(snake_case), snake_case, snake_case) def SCREAMING_SNAKE_CASE ( snake_case, snake_case, snake_case, snake_case, snake_case): while end - start > size_threshold: if max_depth == 0: return heap_sort(snake_case) max_depth -= 1 __snake_case = median_of_a(snake_case, snake_case, start + ((end - start) // 2) + 1, end - 1) __snake_case = partition(snake_case, snake_case, snake_case, snake_case) intro_sort(snake_case, snake_case, snake_case, snake_case, snake_case) __snake_case = p return insertion_sort(snake_case, snake_case, snake_case) if __name__ == "__main__": import doctest doctest.testmod() __lowercase : Union[str, Any] = input("Enter numbers separated by a comma : ").strip() __lowercase : int = [float(item) for item in user_input.split(",")] print(sort(unsorted))
93
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class _A ( unittest.TestCase ): """simple docstring""" def lowercase ( self : Tuple ) -> str: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase ( self : int ) -> Tuple: __snake_case = StableDiffusionKDiffusionPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' ) __snake_case = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) sd_pipe.set_scheduler('''sample_euler''' ) __snake_case = '''A painting of a squirrel eating a burger''' __snake_case = torch.manual_seed(0 ) __snake_case = sd_pipe([prompt] , generator=A_ , guidance_scale=9.0 , num_inference_steps=20 , output_type='''np''' ) __snake_case = output.images __snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __snake_case = np.array([0.04_47, 0.04_92, 0.04_68, 0.04_08, 0.03_83, 0.04_08, 0.03_54, 0.03_80, 0.03_39] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowercase ( self : Optional[Any] ) -> Tuple: __snake_case = StableDiffusionKDiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) __snake_case = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) sd_pipe.set_scheduler('''sample_euler''' ) __snake_case = '''A painting of a squirrel eating a burger''' __snake_case = torch.manual_seed(0 ) __snake_case = sd_pipe([prompt] , generator=A_ , guidance_scale=9.0 , num_inference_steps=20 , output_type='''np''' ) __snake_case = output.images __snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __snake_case = np.array([0.12_37, 0.13_20, 0.14_38, 0.13_59, 0.13_90, 0.11_32, 0.12_77, 0.11_75, 0.11_12] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-1 def lowercase ( self : List[str] ) -> Optional[Any]: __snake_case = StableDiffusionKDiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) __snake_case = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) sd_pipe.set_scheduler('''sample_dpmpp_2m''' ) __snake_case = '''A painting of a squirrel eating a burger''' __snake_case = torch.manual_seed(0 ) __snake_case = sd_pipe( [prompt] , generator=A_ , guidance_scale=7.5 , num_inference_steps=15 , output_type='''np''' , use_karras_sigmas=A_ , ) __snake_case = output.images __snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __snake_case = np.array( [0.11_38_16_89, 0.12_11_29_21, 0.1_38_94_57, 0.12_54_96_06, 0.1_24_49_64, 0.10_83_15_17, 0.11_56_28_66, 0.10_86_78_16, 0.10_49_90_48] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
93
1
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCAmelCase__ ( unittest.TestCase ): def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str=3 , SCREAMING_SNAKE_CASE__ : Tuple=32 , SCREAMING_SNAKE_CASE__ : Tuple=3 , SCREAMING_SNAKE_CASE__ : Optional[int]=10 , SCREAMING_SNAKE_CASE__ : List[Any]=[10, 20, 30, 40] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=[1, 1, 2, 1] , SCREAMING_SNAKE_CASE__ : Optional[int]=True , SCREAMING_SNAKE_CASE__ : List[str]=True , SCREAMING_SNAKE_CASE__ : List[str]="relu" , SCREAMING_SNAKE_CASE__ : Any=3 , SCREAMING_SNAKE_CASE__ : Any=None , ) -> Any: __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = image_size __lowerCamelCase = num_channels __lowerCamelCase = embeddings_size __lowerCamelCase = hidden_sizes __lowerCamelCase = depths __lowerCamelCase = is_training __lowerCamelCase = use_labels __lowerCamelCase = hidden_act __lowerCamelCase = num_labels __lowerCamelCase = scope __lowerCamelCase = len(SCREAMING_SNAKE_CASE_ ) def __A ( self : int ) -> Dict: __lowerCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCamelCase = self.get_config() return config, pixel_values def __A ( self : Optional[int] ) -> Optional[int]: return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def __A ( self : Any , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Dict ) -> List[str]: __lowerCamelCase = FlaxRegNetModel(config=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase = model(SCREAMING_SNAKE_CASE_ ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def __A ( self : Any , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ) -> str: __lowerCamelCase = self.num_labels __lowerCamelCase = FlaxRegNetForImageClassification(config=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self : Any ) -> Optional[int]: __lowerCamelCase = self.prepare_config_and_inputs() __lowerCamelCase , __lowerCamelCase = config_and_inputs __lowerCamelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class lowerCAmelCase__ ( lowercase__ , unittest.TestCase ): a__ : Optional[Any] = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () a__ : int = False a__ : Union[str, Any] = False a__ : Dict = False def __A ( self : int ) -> None: __lowerCamelCase = FlaxRegNetModelTester(self ) __lowerCamelCase = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , has_text_modality=SCREAMING_SNAKE_CASE_ ) def __A ( self : Any ) -> Any: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __A ( self : Tuple ) -> Tuple: return def __A ( self : int ) -> str: __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def __A ( self : Tuple ) -> str: __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE_ ) @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def __A ( self : Optional[Any] ) -> Tuple: pass @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def __A ( self : Optional[int] ) -> Any: pass def __A ( self : Union[str, Any] ) -> Any: __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase = model_class(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCamelCase = [*signature.parameters.keys()] __lowerCamelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_ ) def __A ( self : Optional[int] ) -> Dict: def check_hidden_states_output(SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): __lowerCamelCase = model_class(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) __lowerCamelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __lowerCamelCase = self.model_tester.num_stages self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , expected_num_stages + 1 ) __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase = True check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCamelCase = True check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def __A ( self : List[Any] ) -> List[str]: __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowerCamelCase = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase = model_class(SCREAMING_SNAKE_CASE_ ) @jax.jit def model_jitted(SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : Any ): return model(pixel_values=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) with self.subTest('''JIT Enabled''' ): __lowerCamelCase = model_jitted(**SCREAMING_SNAKE_CASE_ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): __lowerCamelCase = model_jitted(**SCREAMING_SNAKE_CASE_ ).to_tuple() self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , len(SCREAMING_SNAKE_CASE_ ) ) for jitted_output, output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): self.assertEqual(jitted_output.shape , output.shape ) def __magic_name__ ( ) -> Tuple: __lowerCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_flax class lowerCAmelCase__ ( unittest.TestCase ): @cached_property def __A ( self : str ) -> Optional[int]: return AutoImageProcessor.from_pretrained('''facebook/regnet-y-040''' ) if is_vision_available() else None @slow def __A ( self : Optional[int] ) -> Dict: __lowerCamelCase = FlaxRegNetForImageClassification.from_pretrained('''facebook/regnet-y-040''' ) __lowerCamelCase = self.default_image_processor __lowerCamelCase = prepare_img() __lowerCamelCase = image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors='''np''' ) __lowerCamelCase = model(**SCREAMING_SNAKE_CASE_ ) # verify the logits __lowerCamelCase = (1, 10_00) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase = jnp.array([-0.4180, -1.5051, -3.4836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) )
298
"""simple docstring""" from ..utils import DummyObject, requires_backends class lowercase ( metaclass=lowercase__ ): lowercase = ['''flax''', '''transformers'''] def __init__(self : List[Any] ,*SCREAMING_SNAKE_CASE_ : Union[str, Any] ,**SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> str: """simple docstring""" requires_backends(self ,['''flax''', '''transformers'''] ) @classmethod def UpperCAmelCase (cls : List[Any] ,*SCREAMING_SNAKE_CASE_ : List[Any] ,**SCREAMING_SNAKE_CASE_ : int ) -> Optional[int]: """simple docstring""" requires_backends(cls ,['''flax''', '''transformers'''] ) @classmethod def UpperCAmelCase (cls : List[Any] ,*SCREAMING_SNAKE_CASE_ : str ,**SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" requires_backends(cls ,['''flax''', '''transformers'''] ) class lowercase ( metaclass=lowercase__ ): lowercase = ['''flax''', '''transformers'''] def __init__(self : int ,*SCREAMING_SNAKE_CASE_ : List[Any] ,**SCREAMING_SNAKE_CASE_ : Any ) -> Union[str, Any]: """simple docstring""" requires_backends(self ,['''flax''', '''transformers'''] ) @classmethod def UpperCAmelCase (cls : int ,*SCREAMING_SNAKE_CASE_ : str ,**SCREAMING_SNAKE_CASE_ : int ) -> Optional[Any]: """simple docstring""" requires_backends(cls ,['''flax''', '''transformers'''] ) @classmethod def UpperCAmelCase (cls : List[str] ,*SCREAMING_SNAKE_CASE_ : List[str] ,**SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Dict: """simple docstring""" requires_backends(cls ,['''flax''', '''transformers'''] ) class lowercase ( metaclass=lowercase__ ): lowercase = ['''flax''', '''transformers'''] def __init__(self : Tuple ,*SCREAMING_SNAKE_CASE_ : Optional[int] ,**SCREAMING_SNAKE_CASE_ : Dict ) -> List[str]: """simple docstring""" requires_backends(self ,['''flax''', '''transformers'''] ) @classmethod def UpperCAmelCase (cls : Tuple ,*SCREAMING_SNAKE_CASE_ : Dict ,**SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> List[Any]: """simple docstring""" requires_backends(cls ,['''flax''', '''transformers'''] ) @classmethod def UpperCAmelCase (cls : Tuple ,*SCREAMING_SNAKE_CASE_ : Tuple ,**SCREAMING_SNAKE_CASE_ : Tuple ) -> Union[str, Any]: """simple docstring""" requires_backends(cls ,['''flax''', '''transformers'''] ) class lowercase ( metaclass=lowercase__ ): lowercase = ['''flax''', '''transformers'''] def __init__(self : Optional[Any] ,*SCREAMING_SNAKE_CASE_ : Any ,**SCREAMING_SNAKE_CASE_ : str ) -> Union[str, Any]: """simple docstring""" requires_backends(self ,['''flax''', '''transformers'''] ) @classmethod def UpperCAmelCase (cls : List[Any] ,*SCREAMING_SNAKE_CASE_ : Optional[Any] ,**SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Union[str, Any]: """simple docstring""" requires_backends(cls ,['''flax''', '''transformers'''] ) @classmethod def UpperCAmelCase (cls : List[Any] ,*SCREAMING_SNAKE_CASE_ : List[Any] ,**SCREAMING_SNAKE_CASE_ : List[Any] ) -> Optional[Any]: """simple docstring""" requires_backends(cls ,['''flax''', '''transformers'''] )
535
0
"""simple docstring""" from collections.abc import Callable import numpy as np def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = int(np.ceil((x_end - xa) / step_size ) ) __SCREAMING_SNAKE_CASE = np.zeros((n + 1,) ) __SCREAMING_SNAKE_CASE = ya __SCREAMING_SNAKE_CASE = xa for k in range(lowerCAmelCase_ ): __SCREAMING_SNAKE_CASE = y[k] + step_size * ode_func(lowerCAmelCase_ , y[k] ) __SCREAMING_SNAKE_CASE = y[k] + ( (step_size / 2) * (ode_func(lowerCAmelCase_ , y[k] ) + ode_func(x + step_size , lowerCAmelCase_ )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
718
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available a__ : List[str] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : int = ['''MLukeTokenizer'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys a__ : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
553
0
'''simple docstring''' import sys from collections import defaultdict class _UpperCAmelCase : """simple docstring""" def __init__( self : Optional[Any] ): '''simple docstring''' _A = [] def lowerCAmelCase ( self : str , __UpperCAmelCase : str ): '''simple docstring''' return self.node_position[vertex] def lowerCAmelCase ( self : Any , __UpperCAmelCase : Dict , __UpperCAmelCase : List[Any] ): '''simple docstring''' _A = pos def lowerCAmelCase ( self : int , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : int , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : str ): '''simple docstring''' if start > size // 2 - 1: return else: if 2 * start + 2 >= size: _A = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: _A = 2 * start + 1 else: _A = 2 * start + 2 if heap[smallest_child] < heap[start]: _A , _A = heap[smallest_child], positions[smallest_child] _A , _A = ( heap[start], positions[start], ) _A , _A = temp, tempa _A = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , lowerCAmelCase_ ) self.top_to_bottom(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def lowerCAmelCase ( self : str , __UpperCAmelCase : Any , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Union[str, Any] ): '''simple docstring''' _A = position[index] while index != 0: _A = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: _A = heap[parent] _A = position[parent] self.set_position(position[parent] , lowerCAmelCase_ ) else: _A = val _A = temp self.set_position(lowerCAmelCase_ , lowerCAmelCase_ ) break _A = parent else: _A = val _A = temp self.set_position(lowerCAmelCase_ , 0 ) def lowerCAmelCase ( self : Dict , __UpperCAmelCase : Tuple , __UpperCAmelCase : Dict ): '''simple docstring''' _A = len(lowerCAmelCase_ ) // 2 - 1 for i in range(lowerCAmelCase_ , -1 , -1 ): self.top_to_bottom(lowerCAmelCase_ , lowerCAmelCase_ , len(lowerCAmelCase_ ) , lowerCAmelCase_ ) def lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Any ): '''simple docstring''' _A = positions[0] _A = sys.maxsize self.top_to_bottom(lowerCAmelCase_ , 0 , len(lowerCAmelCase_ ) , lowerCAmelCase_ ) return temp def __lowercase ( __lowercase ) -> Tuple: '''simple docstring''' _A = Heap() _A = [0] * len(__lowercase ) _A = [-1] * len(__lowercase ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph _A = [] # Heap of Distance of vertices from their neighboring vertex _A = [] for vertex in range(len(__lowercase ) ): distance_tv.append(sys.maxsize ) positions.append(__lowercase ) heap.node_position.append(__lowercase ) _A = [] _A = 1 _A = sys.maxsize for neighbor, distance in adjacency_list[0]: _A = 0 _A = distance heap.heapify(__lowercase , __lowercase ) for _ in range(1 , len(__lowercase ) ): _A = heap.delete_minimum(__lowercase , __lowercase ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) _A = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(__lowercase )] ): _A = distance heap.bottom_to_top( __lowercase , heap.get_position(__lowercase ) , __lowercase , __lowercase ) _A = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > lowerCamelCase_ = int(input('''Enter number of edges: ''').strip()) lowerCamelCase_ = defaultdict(list) for _ in range(edges_number): lowerCamelCase_ = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
330
import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class snake_case ( unittest.TestCase ): '''simple docstring''' def _lowercase ( self : Dict ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE_ = mock.Mock() SCREAMING_SNAKE_CASE_ = 500 SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = HTTPError SCREAMING_SNAKE_CASE_ = {} # Download this model to make sure it's in the cache. SCREAMING_SNAKE_CASE_ = BertTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('''requests.Session.request''' , return_value=lowerCAmelCase_ ) as mock_head: SCREAMING_SNAKE_CASE_ = BertTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def _lowercase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ = mock.Mock() SCREAMING_SNAKE_CASE_ = 500 SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = HTTPError SCREAMING_SNAKE_CASE_ = {} # Download this model to make sure it's in the cache. SCREAMING_SNAKE_CASE_ = GPTaTokenizerFast.from_pretrained('''gpt2''' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('''requests.Session.request''' , return_value=lowerCAmelCase_ ) as mock_head: SCREAMING_SNAKE_CASE_ = GPTaTokenizerFast.from_pretrained('''gpt2''' ) # This check we did call the fake head request mock_head.assert_called() def _lowercase ( self : Dict ) -> Optional[int]: """simple docstring""" try: SCREAMING_SNAKE_CASE_ = tempfile.mktemp() with open(lowerCAmelCase_ , '''wb''' ) as f: http_get('''https://huggingface.co/albert-base-v1/resolve/main/spiece.model''' , lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ = AlbertTokenizer.from_pretrained(lowerCAmelCase_ ) finally: os.remove(lowerCAmelCase_ ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile('''tokenizer.json''' ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open('''tokenizer.json''' , '''wb''' ) as f: http_get('''https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json''' , lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size , 1_000 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove('''tokenizer.json''' ) def _lowercase ( self : int ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ = AlbertTokenizer.from_pretrained('''https://huggingface.co/albert-base-v1/resolve/main/spiece.model''' ) @is_staging_test class snake_case ( unittest.TestCase ): '''simple docstring''' UpperCAmelCase : Any = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """bla""", """blou"""] @classmethod def _lowercase ( cls : Optional[Any] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE_ = TOKEN HfFolder.save_token(lowerCAmelCase_ ) @classmethod def _lowercase ( cls : Optional[int] ) -> Union[str, Any]: """simple docstring""" try: delete_repo(token=cls._token , repo_id='''test-tokenizer''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-tokenizer-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-tokenizer''' ) except HTTPError: pass def _lowercase ( self : List[Any] ) -> int: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE_ = os.path.join(lowerCAmelCase_ , '''vocab.txt''' ) with open(lowerCAmelCase_ , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) SCREAMING_SNAKE_CASE_ = BertTokenizer(lowerCAmelCase_ ) tokenizer.push_to_hub('''test-tokenizer''' , use_auth_token=self._token ) SCREAMING_SNAKE_CASE_ = BertTokenizer.from_pretrained(F'''{USER}/test-tokenizer''' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id='''test-tokenizer''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(lowerCAmelCase_ , repo_id='''test-tokenizer''' , push_to_hub=lowerCAmelCase_ , use_auth_token=self._token ) SCREAMING_SNAKE_CASE_ = BertTokenizer.from_pretrained(F'''{USER}/test-tokenizer''' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) def _lowercase ( self : Dict ) -> Union[str, Any]: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE_ = os.path.join(lowerCAmelCase_ , '''vocab.txt''' ) with open(lowerCAmelCase_ , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) SCREAMING_SNAKE_CASE_ = BertTokenizer(lowerCAmelCase_ ) tokenizer.push_to_hub('''valid_org/test-tokenizer-org''' , use_auth_token=self._token ) SCREAMING_SNAKE_CASE_ = BertTokenizer.from_pretrained('''valid_org/test-tokenizer-org''' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-tokenizer-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( lowerCAmelCase_ , repo_id='''valid_org/test-tokenizer-org''' , push_to_hub=lowerCAmelCase_ , use_auth_token=self._token ) SCREAMING_SNAKE_CASE_ = BertTokenizer.from_pretrained('''valid_org/test-tokenizer-org''' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) @require_tokenizers def _lowercase ( self : Any ) -> List[Any]: """simple docstring""" CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE_ = os.path.join(lowerCAmelCase_ , '''vocab.txt''' ) with open(lowerCAmelCase_ , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) SCREAMING_SNAKE_CASE_ = CustomTokenizer(lowerCAmelCase_ ) # No fast custom tokenizer tokenizer.push_to_hub('''test-dynamic-tokenizer''' , use_auth_token=self._token ) SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained(F'''{USER}/test-dynamic-tokenizer''' , trust_remote_code=lowerCAmelCase_ ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , '''CustomTokenizer''' ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE_ = os.path.join(lowerCAmelCase_ , '''vocab.txt''' ) with open(lowerCAmelCase_ , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) SCREAMING_SNAKE_CASE_ = BertTokenizerFast.from_pretrained(lowerCAmelCase_ ) bert_tokenizer.save_pretrained(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ = CustomTokenizerFast.from_pretrained(lowerCAmelCase_ ) tokenizer.push_to_hub('''test-dynamic-tokenizer''' , use_auth_token=self._token ) SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained(F'''{USER}/test-dynamic-tokenizer''' , trust_remote_code=lowerCAmelCase_ ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , '''CustomTokenizerFast''' ) SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained( F'''{USER}/test-dynamic-tokenizer''' , use_fast=lowerCAmelCase_ , trust_remote_code=lowerCAmelCase_ ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , '''CustomTokenizer''' ) class snake_case ( unittest.TestCase ): '''simple docstring''' def _lowercase ( self : Any ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ = Trie() trie.add('''Hello 友達''' ) self.assertEqual(trie.data , {'''H''': {'''e''': {'''l''': {'''l''': {'''o''': {''' ''': {'''友''': {'''達''': {'''''': 1}}}}}}}}} ) trie.add('''Hello''' ) trie.data self.assertEqual(trie.data , {'''H''': {'''e''': {'''l''': {'''l''': {'''o''': {'''''': 1, ''' ''': {'''友''': {'''達''': {'''''': 1}}}}}}}}} ) def _lowercase ( self : Union[str, Any] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ = Trie() self.assertEqual(trie.split('''[CLS] This is a extra_id_100''' ) , ['''[CLS] This is a extra_id_100'''] ) trie.add('''[CLS]''' ) trie.add('''extra_id_1''' ) trie.add('''extra_id_100''' ) self.assertEqual(trie.split('''[CLS] This is a extra_id_100''' ) , ['''[CLS]''', ''' This is a ''', '''extra_id_100'''] ) def _lowercase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ = Trie() trie.add('''A''' ) self.assertEqual(trie.split('''ABC''' ) , ['''A''', '''BC'''] ) self.assertEqual(trie.split('''BCA''' ) , ['''BC''', '''A'''] ) def _lowercase ( self : Tuple ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE_ = Trie() trie.add('''TOKEN]''' ) trie.add('''[SPECIAL_TOKEN]''' ) self.assertEqual(trie.split('''This is something [SPECIAL_TOKEN]''' ) , ['''This is something ''', '''[SPECIAL_TOKEN]'''] ) def _lowercase ( self : Optional[int] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE_ = Trie() trie.add('''A''' ) trie.add('''P''' ) trie.add('''[SPECIAL_TOKEN]''' ) self.assertEqual(trie.split('''This is something [SPECIAL_TOKEN]''' ) , ['''This is something ''', '''[SPECIAL_TOKEN]'''] ) def _lowercase ( self : List[str] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ = Trie() trie.add('''AB''' ) trie.add('''B''' ) trie.add('''C''' ) self.assertEqual(trie.split('''ABC''' ) , ['''AB''', '''C'''] ) def _lowercase ( self : Any ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ = Trie() trie.add('''ABC''' ) trie.add('''B''' ) trie.add('''CD''' ) self.assertEqual(trie.split('''ABCD''' ) , ['''ABC''', '''D'''] ) def _lowercase ( self : Tuple ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE_ = Trie() SCREAMING_SNAKE_CASE_ = trie.cut_text('''ABC''' , [0, 0, 2, 1, 2, 3] ) self.assertEqual(lowerCAmelCase_ , ['''AB''', '''C'''] )
393
0
from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class _lowerCAmelCase ( __magic_name__ ): """simple docstring""" def __init__( self : str , SCREAMING_SNAKE_CASE__ : NestedDataStructureLike[PathLike] , SCREAMING_SNAKE_CASE__ : Optional[NamedSplit] = None , SCREAMING_SNAKE_CASE__ : Optional[Features] = None , SCREAMING_SNAKE_CASE__ : str = None , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : Optional[int] = None , **SCREAMING_SNAKE_CASE__ : Any , ): """simple docstring""" super().__init__( SCREAMING_SNAKE_CASE__ , split=SCREAMING_SNAKE_CASE__ , features=SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ , keep_in_memory=SCREAMING_SNAKE_CASE__ , streaming=SCREAMING_SNAKE_CASE__ , num_proc=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) UpperCamelCase = path_or_paths if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else {self.split: path_or_paths} UpperCamelCase = Text( cache_dir=SCREAMING_SNAKE_CASE__ , data_files=SCREAMING_SNAKE_CASE__ , features=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) def __lowerCAmelCase ( self : Optional[int] ): """simple docstring""" if self.streaming: UpperCamelCase = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None self.builder.download_and_prepare( download_config=SCREAMING_SNAKE_CASE__ , download_mode=SCREAMING_SNAKE_CASE__ , verification_mode=SCREAMING_SNAKE_CASE__ , base_path=SCREAMING_SNAKE_CASE__ , num_proc=self.num_proc , ) UpperCamelCase = self.builder.as_dataset( split=self.split , verification_mode=SCREAMING_SNAKE_CASE__ , in_memory=self.keep_in_memory ) return dataset
170
import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig _snake_case = logging.get_logger(__name__) class _lowerCAmelCase : """simple docstring""" def __init__( self : Any , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" UpperCamelCase = question_encoder UpperCamelCase = generator UpperCamelCase = self.question_encoder def __lowerCAmelCase ( self : str , SCREAMING_SNAKE_CASE__ : Dict ): """simple docstring""" if os.path.isfile(SCREAMING_SNAKE_CASE__ ): raise ValueError(F'Provided path ({save_directory}) should be a directory, not a file' ) os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) UpperCamelCase = os.path.join(SCREAMING_SNAKE_CASE__ , 'question_encoder_tokenizer' ) UpperCamelCase = os.path.join(SCREAMING_SNAKE_CASE__ , 'generator_tokenizer' ) self.question_encoder.save_pretrained(SCREAMING_SNAKE_CASE__ ) self.generator.save_pretrained(SCREAMING_SNAKE_CASE__ ) @classmethod def __lowerCAmelCase ( cls : Any , SCREAMING_SNAKE_CASE__ : List[str] , **SCREAMING_SNAKE_CASE__ : Dict ): """simple docstring""" from ..auto.tokenization_auto import AutoTokenizer UpperCamelCase = kwargs.pop('config' , SCREAMING_SNAKE_CASE__ ) if config is None: UpperCamelCase = RagConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) UpperCamelCase = AutoTokenizer.from_pretrained( SCREAMING_SNAKE_CASE__ , config=config.question_encoder , subfolder='question_encoder_tokenizer' ) UpperCamelCase = AutoTokenizer.from_pretrained( SCREAMING_SNAKE_CASE__ , config=config.generator , subfolder='generator_tokenizer' ) return cls(question_encoder=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ ) def __call__( self : Tuple , *SCREAMING_SNAKE_CASE__ : List[Any] , **SCREAMING_SNAKE_CASE__ : List[Any] ): """simple docstring""" return self.current_tokenizer(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : int , *SCREAMING_SNAKE_CASE__ : Dict , **SCREAMING_SNAKE_CASE__ : List[str] ): """simple docstring""" return self.generator.batch_decode(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : Any , *SCREAMING_SNAKE_CASE__ : Tuple , **SCREAMING_SNAKE_CASE__ : Optional[Any] ): """simple docstring""" return self.generator.decode(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : int ): """simple docstring""" UpperCamelCase = self.question_encoder def __lowerCAmelCase ( self : str ): """simple docstring""" UpperCamelCase = self.generator def __lowerCAmelCase ( self : Any , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[List[str]] = None , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : str = "longest" , SCREAMING_SNAKE_CASE__ : str = None , SCREAMING_SNAKE_CASE__ : bool = True , **SCREAMING_SNAKE_CASE__ : Optional[Any] , ): """simple docstring""" warnings.warn( '`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the ' 'regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` ' 'context manager to prepare your targets. See the documentation of your specific tokenizer for more ' 'details' , SCREAMING_SNAKE_CASE__ , ) if max_length is None: UpperCamelCase = self.current_tokenizer.model_max_length UpperCamelCase = self( SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: UpperCamelCase = self.current_tokenizer.model_max_length UpperCamelCase = self( text_target=SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) UpperCamelCase = labels['input_ids'] return model_inputs
170
1
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = {'vocab_file': 'spiece.model'} UpperCamelCase__ = { 'vocab_file': { 'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model', 'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model', } } UpperCamelCase__ = { 'xlnet-base-cased': None, 'xlnet-large-cased': None, } # Segments (not really needed) UpperCamelCase__ = 0 UpperCamelCase__ = 1 UpperCamelCase__ = 2 UpperCamelCase__ = 3 UpperCamelCase__ = 4 class UpperCAmelCase__ ( __snake_case ): '''simple docstring''' UpperCAmelCase_ = VOCAB_FILES_NAMES UpperCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ = 'left' def __init__( self : Optional[int] , UpperCamelCase : int , UpperCamelCase : int=False , UpperCamelCase : List[Any]=True , UpperCamelCase : Dict=False , UpperCamelCase : Optional[Any]="<s>" , UpperCamelCase : str="</s>" , UpperCamelCase : List[str]="<unk>" , UpperCamelCase : Dict="<sep>" , UpperCamelCase : int="<pad>" , UpperCamelCase : Optional[Any]="<cls>" , UpperCamelCase : str="<mask>" , UpperCamelCase : int=["<eop>", "<eod>"] , UpperCamelCase : Optional[Dict[str, Any]] = None , **UpperCamelCase : str , ): """simple docstring""" _lowercase : List[Any] = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else mask_token _lowercase : Any = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__a , remove_space=__a , keep_accents=__a , bos_token=__a , eos_token=__a , unk_token=__a , sep_token=__a , pad_token=__a , cls_token=__a , mask_token=__a , additional_special_tokens=__a , sp_model_kwargs=self.sp_model_kwargs , **__a , ) _lowercase : Tuple = 3 _lowercase : Tuple = do_lower_case _lowercase : List[Any] = remove_space _lowercase : Tuple = keep_accents _lowercase : List[str] = vocab_file _lowercase : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__a ) @property def lowerCAmelCase_ ( self : Optional[Any] ): """simple docstring""" return len(self.sp_model ) def lowerCAmelCase_ ( self : Optional[int] ): """simple docstring""" _lowercase : Union[str, Any] = {self.convert_ids_to_tokens(__a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : List[str] ): """simple docstring""" _lowercase : Tuple = self.__dict__.copy() _lowercase : int = None return state def __setstate__( self : Union[str, Any] , UpperCamelCase : Optional[Any] ): """simple docstring""" _lowercase : Optional[Any] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _lowercase : Any = {} _lowercase : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCAmelCase_ ( self : str , UpperCamelCase : Tuple ): """simple docstring""" if self.remove_space: _lowercase : List[Any] = """ """.join(inputs.strip().split() ) else: _lowercase : Union[str, Any] = inputs _lowercase : Dict = outputs.replace('''``''' , '''\"''' ).replace('''\'\'''' , '''\"''' ) if not self.keep_accents: _lowercase : Any = unicodedata.normalize('''NFKD''' , __a ) _lowercase : str = """""".join([c for c in outputs if not unicodedata.combining(__a )] ) if self.do_lower_case: _lowercase : Any = outputs.lower() return outputs def lowerCAmelCase_ ( self : Union[str, Any] , UpperCamelCase : str ): """simple docstring""" _lowercase : Tuple = self.preprocess_text(__a ) _lowercase : Union[str, Any] = self.sp_model.encode(__a , out_type=__a ) _lowercase : Any = [] for piece in pieces: if len(__a ) > 1 and piece[-1] == str(''',''' ) and piece[-2].isdigit(): _lowercase : Union[str, Any] = self.sp_model.EncodeAsPieces(piece[:-1].replace(__a , '''''' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: _lowercase : int = cur_pieces[1:] else: _lowercase : List[Any] = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(__a ) else: new_pieces.append(__a ) return new_pieces def lowerCAmelCase_ ( self : Any , UpperCamelCase : List[Any] ): """simple docstring""" return self.sp_model.PieceToId(__a ) def lowerCAmelCase_ ( self : Union[str, Any] , UpperCamelCase : List[Any] ): """simple docstring""" return self.sp_model.IdToPiece(__a ) def lowerCAmelCase_ ( self : Optional[int] , UpperCamelCase : Optional[Any] ): """simple docstring""" _lowercase : List[Any] = """""".join(__a ).replace(__a , ''' ''' ).strip() return out_string def lowerCAmelCase_ ( self : Dict , UpperCamelCase : List[int] , UpperCamelCase : bool = False , UpperCamelCase : bool = None , UpperCamelCase : bool = True , **UpperCamelCase : Dict , ): """simple docstring""" _lowercase : Union[str, Any] = kwargs.pop('''use_source_tokenizer''' , __a ) _lowercase : List[str] = self.convert_ids_to_tokens(__a , skip_special_tokens=__a ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 _lowercase : Any = [] _lowercase : int = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(__a ) ) _lowercase : str = [] sub_texts.append(__a ) else: current_sub_text.append(__a ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(__a ) ) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens _lowercase : Any = """""".join(__a ) _lowercase : Any = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: _lowercase : Any = self.clean_up_tokenization(__a ) return clean_text else: return text def lowerCAmelCase_ ( self : Dict , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ): """simple docstring""" _lowercase : Tuple = [self.sep_token_id] _lowercase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def lowerCAmelCase_ ( self : Tuple , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None , UpperCamelCase : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__a , token_ids_a=__a , already_has_special_tokens=__a ) if token_ids_a is not None: return ([0] * len(__a )) + [1] + ([0] * len(__a )) + [1, 1] return ([0] * len(__a )) + [1, 1] def lowerCAmelCase_ ( self : str , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ): """simple docstring""" _lowercase : Optional[int] = [self.sep_token_id] _lowercase : Optional[int] = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def lowerCAmelCase_ ( self : Tuple , UpperCamelCase : str , UpperCamelCase : Optional[str] = None ): """simple docstring""" if not os.path.isdir(__a ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return _lowercase : Union[str, Any] = os.path.join( __a , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __a ) elif not os.path.isfile(self.vocab_file ): with open(__a , '''wb''' ) as fi: _lowercase : Optional[int] = self.sp_model.serialized_model_proto() fi.write(__a ) return (out_vocab_file,)
322
from __future__ import annotations from math import pi def _lowercase ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_): """simple docstring""" if (inductance, frequency, reactance).count(0) != 1: raise ValueError("""One and only one argument must be 0""") if inductance < 0: raise ValueError("""Inductance cannot be negative""") if frequency < 0: raise ValueError("""Frequency cannot be negative""") if reactance < 0: raise ValueError("""Inductive reactance cannot be negative""") if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError("""Exactly one argument must be 0""") if __name__ == "__main__": import doctest doctest.testmod()
648
0
'''simple docstring''' import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging lowercase__ = logging.get_logger(__name__) class UpperCAmelCase_ ( __lowerCamelCase ): """simple docstring""" snake_case = """linear""" snake_case = """cosine""" snake_case = """cosine_with_restarts""" snake_case = """polynomial""" snake_case = """constant""" snake_case = """constant_with_warmup""" snake_case = """piecewise_constant""" def __snake_case ( lowercase : Any , lowercase : Optional[int] = -1 ): return LambdaLR(lowerCamelCase_ , lambda lowercase : 1 , last_epoch=lowerCamelCase_ ) def __snake_case ( lowercase : Union[str, Any] , lowercase : Optional[int] , lowercase : str = -1 ): def lr_lambda(lowercase : Optional[int] ): if current_step < num_warmup_steps: return float(lowerCamelCase_ ) / float(max(1.0 , lowerCamelCase_ ) ) return 1.0 return LambdaLR(lowerCamelCase_ , lowerCamelCase_ , last_epoch=lowerCamelCase_ ) def __snake_case ( lowercase : str , lowercase : Union[str, Any] , lowercase : List[Any] = -1 ): snake_case_ = {} snake_case_ = step_rules.split("," ) for rule_str in rule_list[:-1]: snake_case_ = rule_str.split(":" ) snake_case_ = int(lowerCamelCase_ ) snake_case_ = float(lowerCamelCase_ ) snake_case_ = value snake_case_ = float(rule_list[-1] ) def create_rules_function(lowercase : Dict , lowercase : Tuple ): def rule_func(lowercase : Optional[Any] ) -> float: snake_case_ = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(lowerCamelCase_ ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func snake_case_ = create_rules_function(lowerCamelCase_ , lowerCamelCase_ ) return LambdaLR(lowerCamelCase_ , lowerCamelCase_ , last_epoch=lowerCamelCase_ ) def __snake_case ( lowercase : str , lowercase : Union[str, Any] , lowercase : List[str] , lowercase : Union[str, Any]=-1 ): def lr_lambda(lowercase : Optional[Any] ): if current_step < num_warmup_steps: return float(lowerCamelCase_ ) / float(max(1 , lowerCamelCase_ ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) def __snake_case ( lowercase : int , lowercase : Optional[Any] , lowercase : Dict , lowercase : List[Any] = 0.5 , lowercase : Dict = -1 ): def lr_lambda(lowercase : Union[str, Any] ): if current_step < num_warmup_steps: return float(lowerCamelCase_ ) / float(max(1 , lowerCamelCase_ ) ) snake_case_ = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(lowerCamelCase_ ) * 2.0 * progress )) ) return LambdaLR(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) def __snake_case ( lowercase : Optional[int] , lowercase : Dict , lowercase : Dict , lowercase : Optional[int] = 1 , lowercase : Optional[int] = -1 ): def lr_lambda(lowercase : List[str] ): if current_step < num_warmup_steps: return float(lowerCamelCase_ ) / float(max(1 , lowerCamelCase_ ) ) snake_case_ = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(lowerCamelCase_ ) * progress) % 1.0) )) ) return LambdaLR(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) def __snake_case ( lowercase : str , lowercase : Union[str, Any] , lowercase : Tuple , lowercase : List[Any]=1E-7 , lowercase : Dict=1.0 , lowercase : List[Any]=-1 ): snake_case_ = optimizer.defaults['lr'] if not (lr_init > lr_end): raise ValueError(f'''lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})''' ) def lr_lambda(lowercase : int ): if current_step < num_warmup_steps: return float(lowerCamelCase_ ) / float(max(1 , lowerCamelCase_ ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: snake_case_ = lr_init - lr_end snake_case_ = num_training_steps - num_warmup_steps snake_case_ = 1 - (current_step - num_warmup_steps) / decay_steps snake_case_ = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) lowercase__ = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def __snake_case ( lowercase : Union[str, Any] , lowercase : Optional[int] , lowercase : List[Any] = None , lowercase : Dict = None , lowercase : Tuple = None , lowercase : str = 1 , lowercase : Dict = 1.0 , lowercase : Tuple = -1 , ): snake_case_ = SchedulerType(lowerCamelCase_ ) snake_case_ = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(lowerCamelCase_ , last_epoch=lowerCamelCase_ ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(lowerCamelCase_ , step_rules=lowerCamelCase_ , last_epoch=lowerCamelCase_ ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(f'''{name} requires `num_warmup_steps`, please provide that argument.''' ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(lowerCamelCase_ , num_warmup_steps=lowerCamelCase_ , last_epoch=lowerCamelCase_ ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(f'''{name} requires `num_training_steps`, please provide that argument.''' ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( lowerCamelCase_ , num_warmup_steps=lowerCamelCase_ , num_training_steps=lowerCamelCase_ , num_cycles=lowerCamelCase_ , last_epoch=lowerCamelCase_ , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( lowerCamelCase_ , num_warmup_steps=lowerCamelCase_ , num_training_steps=lowerCamelCase_ , power=lowerCamelCase_ , last_epoch=lowerCamelCase_ , ) return schedule_func( lowerCamelCase_ , num_warmup_steps=lowerCamelCase_ , num_training_steps=lowerCamelCase_ , last_epoch=lowerCamelCase_ )
706
'''simple docstring''' import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging lowercase__ = logging.get_logger(__name__) class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self , UpperCAmelCase_ ): super().__init__() snake_case_ = nn.ModuleList(UpperCAmelCase_ ) def _lowercase ( self , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = None , UpperCAmelCase_ = None , UpperCAmelCase_ = None , UpperCAmelCase_ = None , UpperCAmelCase_ = False , UpperCAmelCase_ = True , ): for i, (image, scale, controlnet) in enumerate(zip(UpperCAmelCase_ , UpperCAmelCase_ , self.nets ) ): snake_case_ , snake_case_ = controlnet( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , ) # merge samples if i == 0: snake_case_ , snake_case_ = down_samples, mid_sample else: snake_case_ = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(UpperCAmelCase_ , UpperCAmelCase_ ) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def _lowercase ( self , UpperCAmelCase_ , UpperCAmelCase_ = True , UpperCAmelCase_ = None , UpperCAmelCase_ = False , UpperCAmelCase_ = None , ): snake_case_ = 0 snake_case_ = save_directory for controlnet in self.nets: controlnet.save_pretrained( UpperCAmelCase_ , is_main_process=UpperCAmelCase_ , save_function=UpperCAmelCase_ , safe_serialization=UpperCAmelCase_ , variant=UpperCAmelCase_ , ) idx += 1 snake_case_ = model_path_to_save + f'''_{idx}''' @classmethod def _lowercase ( cls , UpperCAmelCase_ , **UpperCAmelCase_ ): snake_case_ = 0 snake_case_ = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... snake_case_ = pretrained_model_path while os.path.isdir(UpperCAmelCase_ ): snake_case_ = ControlNetModel.from_pretrained(UpperCAmelCase_ , **UpperCAmelCase_ ) controlnets.append(UpperCAmelCase_ ) idx += 1 snake_case_ = pretrained_model_path + f'''_{idx}''' logger.info(f'''{len(UpperCAmelCase_ )} controlnets loaded from {pretrained_model_path}.''' ) if len(UpperCAmelCase_ ) == 0: raise ValueError( f'''No ControlNets found under {os.path.dirname(UpperCAmelCase_ )}. Expected at least {pretrained_model_path + "_0"}.''' ) return cls(UpperCAmelCase_ )
420
0
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase_ = {"""configuration_mmbt""": ["""MMBTConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ["""MMBTForClassification""", """MMBTModel""", """ModalEmbeddings"""] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
2
def SCREAMING_SNAKE_CASE_ ( _snake_case :bytes ) -> str: return "".join([hex(_snake_case )[2:].zfill(2 ).upper() for byte in list(_snake_case )] ) def SCREAMING_SNAKE_CASE_ ( _snake_case :str ) -> bytes: # Check data validity, following RFC3548 # https://www.ietf.org/rfc/rfc3548.txt if (len(_snake_case ) % 2) != 0: raise ValueError( '''Base16 encoded data is invalid: Data does not have an even number of hex digits.''' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(_snake_case ) <= set('''0123456789ABCDEF''' ): raise ValueError( '''Base16 encoded data is invalid: Data is not uppercase hex or it contains invalid characters.''' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(_snake_case ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
2
1
import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class _snake_case ( unittest.TestCase ): def __init__( self , a , a=7 , a=3 , a=18 , a=30 , a=400 , a=True , a=None , a=True , a=None , a=True , a=[0.5, 0.5, 0.5] , a=[0.5, 0.5, 0.5] , a=False , ) -> Optional[Any]: SCREAMING_SNAKE_CASE = size if size is not None else {'height': 20, 'width': 20} SCREAMING_SNAKE_CASE = crop_size if crop_size is not None else {'height': 18, 'width': 18} SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = min_resolution SCREAMING_SNAKE_CASE = max_resolution SCREAMING_SNAKE_CASE = do_resize SCREAMING_SNAKE_CASE = size SCREAMING_SNAKE_CASE = do_center_crop SCREAMING_SNAKE_CASE = crop_size SCREAMING_SNAKE_CASE = do_normalize SCREAMING_SNAKE_CASE = image_mean SCREAMING_SNAKE_CASE = image_std SCREAMING_SNAKE_CASE = do_reduce_labels def SCREAMING_SNAKE_CASE__ ( self) -> Any: return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def lowerCamelCase__ (): SCREAMING_SNAKE_CASE = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test') SCREAMING_SNAKE_CASE = Image.open(dataset[0]['file']) SCREAMING_SNAKE_CASE = Image.open(dataset[1]['file']) return image, map def lowerCamelCase__ (): SCREAMING_SNAKE_CASE = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test') SCREAMING_SNAKE_CASE = Image.open(ds[0]['file']) SCREAMING_SNAKE_CASE = Image.open(ds[1]['file']) SCREAMING_SNAKE_CASE = Image.open(ds[2]['file']) SCREAMING_SNAKE_CASE = Image.open(ds[3]['file']) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class _snake_case ( A__ , unittest.TestCase ): _lowercase : List[str] = BeitImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE__ ( self) -> Optional[Any]: SCREAMING_SNAKE_CASE = BeitImageProcessingTester(self) @property def SCREAMING_SNAKE_CASE__ ( self) -> List[Any]: return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE__ ( self) -> List[Any]: SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(a , 'do_resize')) self.assertTrue(hasattr(a , 'size')) self.assertTrue(hasattr(a , 'do_center_crop')) self.assertTrue(hasattr(a , 'center_crop')) self.assertTrue(hasattr(a , 'do_normalize')) self.assertTrue(hasattr(a , 'image_mean')) self.assertTrue(hasattr(a , 'image_std')) def SCREAMING_SNAKE_CASE__ ( self) -> Any: SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {'height': 20, 'width': 20}) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18}) self.assertEqual(image_processor.do_reduce_labels , a) SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , crop_size=84 , reduce_labels=a) self.assertEqual(image_processor.size , {'height': 42, 'width': 42}) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84}) self.assertEqual(image_processor.do_reduce_labels , a) def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]: pass def SCREAMING_SNAKE_CASE__ ( self) -> Any: # Initialize image_processing SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict) # create random PIL images SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=a) for image in image_inputs: self.assertIsInstance(a , Image.Image) # Test not batched input SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched SCREAMING_SNAKE_CASE = image_processing(a , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def SCREAMING_SNAKE_CASE__ ( self) -> List[str]: # Initialize image_processing SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=a , numpify=a) for image in image_inputs: self.assertIsInstance(a , np.ndarray) # Test not batched input SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched SCREAMING_SNAKE_CASE = image_processing(a , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def SCREAMING_SNAKE_CASE__ ( self) -> List[str]: # Initialize image_processing SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=a , torchify=a) for image in image_inputs: self.assertIsInstance(a , torch.Tensor) # Test not batched input SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched SCREAMING_SNAKE_CASE = image_processing(a , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def SCREAMING_SNAKE_CASE__ ( self) -> Tuple: # Initialize image_processing SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=a , torchify=a) SCREAMING_SNAKE_CASE = [] for image in image_inputs: self.assertIsInstance(a , torch.Tensor) maps.append(torch.zeros(image.shape[-2:]).long()) # Test not batched input SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , maps[0] , return_tensors='pt') self.assertEqual( encoding['pixel_values'].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual( encoding['labels'].shape , ( 1, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual(encoding['labels'].dtype , torch.long) self.assertTrue(encoding['labels'].min().item() >= 0) self.assertTrue(encoding['labels'].max().item() <= 255) # Test batched SCREAMING_SNAKE_CASE = image_processing(a , a , return_tensors='pt') self.assertEqual( encoding['pixel_values'].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual( encoding['labels'].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual(encoding['labels'].dtype , torch.long) self.assertTrue(encoding['labels'].min().item() >= 0) self.assertTrue(encoding['labels'].max().item() <= 255) # Test not batched input (PIL images) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = prepare_semantic_single_inputs() SCREAMING_SNAKE_CASE = image_processing(a , a , return_tensors='pt') self.assertEqual( encoding['pixel_values'].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual( encoding['labels'].shape , ( 1, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual(encoding['labels'].dtype , torch.long) self.assertTrue(encoding['labels'].min().item() >= 0) self.assertTrue(encoding['labels'].max().item() <= 255) # Test batched input (PIL images) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = prepare_semantic_batch_inputs() SCREAMING_SNAKE_CASE = image_processing(a , a , return_tensors='pt') self.assertEqual( encoding['pixel_values'].shape , ( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual( encoding['labels'].shape , ( 2, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual(encoding['labels'].dtype , torch.long) self.assertTrue(encoding['labels'].min().item() >= 0) self.assertTrue(encoding['labels'].max().item() <= 255) def SCREAMING_SNAKE_CASE__ ( self) -> Dict: # Initialize image_processing SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = prepare_semantic_single_inputs() SCREAMING_SNAKE_CASE = image_processing(a , a , return_tensors='pt') self.assertTrue(encoding['labels'].min().item() >= 0) self.assertTrue(encoding['labels'].max().item() <= 150) SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = image_processing(a , a , return_tensors='pt') self.assertTrue(encoding['labels'].min().item() >= 0) self.assertTrue(encoding['labels'].max().item() <= 255)
721
# XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path a_ : Dict = Path(__file__).resolve().parents[3] / 'src' sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(42) a_ : List[str] = {'base': 'patrickvonplaten/wav2vec2_tiny_random', 'robust': 'patrickvonplaten/wav2vec2_tiny_random_robust'} a_ : Union[str, Any] = 'zero2' a_ : List[Any] = 'zero3' a_ : List[str] = [ZEROa, ZEROa] def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): # customize the test name generator function as we want both params to appear in the sub-test # name, as by default it shows only the first param SCREAMING_SNAKE_CASE = parameterized.to_safe_name('_'.join(str(_UpperCAmelCase) for x in param.args)) return F'''{func.__name__}_{param_based_name}''' # Cartesian-product of zero stages with models to test a_ : List[Any] = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class _snake_case ( A__ ): @parameterized.expand(a , name_func=a) def SCREAMING_SNAKE_CASE__ ( self , a , a) -> List[str]: self.run_and_check( stage=a , model=a , distributed=a , fpaa=a , ) @require_torch_multi_gpu @parameterized.expand(a , name_func=a) def SCREAMING_SNAKE_CASE__ ( self , a , a) -> List[Any]: self.run_and_check( stage=a , model=a , distributed=a , fpaa=a , ) @parameterized.expand(a , name_func=a) def SCREAMING_SNAKE_CASE__ ( self , a , a) -> int: self.run_and_check( stage=a , model=a , distributed=a , fpaa=a , ) @require_torch_multi_gpu @parameterized.expand(a , name_func=a) def SCREAMING_SNAKE_CASE__ ( self , a , a) -> List[Any]: self.run_and_check( stage=a , model=a , distributed=a , fpaa=a , ) def SCREAMING_SNAKE_CASE__ ( self , a) -> Dict: # XXX: run_asr is premature and doesn't save any results # so all we check for now is that the process didn't fail pass def SCREAMING_SNAKE_CASE__ ( self , a , a , a = 10 , a = True , a = True , a = True , ) -> Dict: SCREAMING_SNAKE_CASE = models[model] SCREAMING_SNAKE_CASE = self.run_trainer( stage=a , model_name=a , eval_steps=a , num_train_epochs=1 , distributed=a , fpaa=a , ) self.do_checks(a) return output_dir def SCREAMING_SNAKE_CASE__ ( self , a , a , a = 10 , a = 1 , a = True , a = True , ) -> List[str]: SCREAMING_SNAKE_CASE = self.get_auto_remove_tmp_dir('./xxx' , after=a) SCREAMING_SNAKE_CASE = f''' --model_name_or_path {model_name} --dataset_name hf-internal-testing/librispeech_asr_dummy --dataset_config_name clean --train_split_name validation --validation_split_name validation --output_dir {output_dir} --num_train_epochs {str(a)} --per_device_train_batch_size 2 --per_device_eval_batch_size 2 --evaluation_strategy steps --learning_rate 5e-4 --warmup_steps 8 --orthography timit --preprocessing_num_workers 1 --group_by_length --freeze_feature_extractor --report_to none --save_steps 0 --eval_steps {eval_steps} --report_to none '''.split() if fpaa: args.extend(['--fp16']) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files SCREAMING_SNAKE_CASE = f'''--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json'''.split() SCREAMING_SNAKE_CASE = [f'''{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py'''] SCREAMING_SNAKE_CASE = self.get_launcher(a) SCREAMING_SNAKE_CASE = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(a , env=self.get_env()) return output_dir def SCREAMING_SNAKE_CASE__ ( self , a=False) -> Optional[int]: # 1. explicitly set --num_nodes=1 just in case these tests end up run on a multi-node setup # - it won't be able to handle that # 2. for now testing with just 2 gpus max (since some quality tests may give different # results with mode gpus because we use very little data) SCREAMING_SNAKE_CASE = min(2 , get_gpu_count()) if distributed else 1 return f'''deepspeed --num_nodes 1 --num_gpus {num_gpus}'''.split()
444
0
'''simple docstring''' import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def snake_case__ ( self : int , lowercase__ : int , lowercase__ : int ) ->Union[str, Any]: '''simple docstring''' _UpperCamelCase : int = jnp.ones((batch_size, length) ) / length return scores def snake_case__ ( self : Tuple ) ->Tuple: '''simple docstring''' _UpperCamelCase : List[str] = None _UpperCamelCase : Optional[int] = 20 _UpperCamelCase : Dict = self._get_uniform_logits(batch_size=2 , length=lowercase__ ) # tweak scores to not be uniform anymore _UpperCamelCase : Union[str, Any] = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch _UpperCamelCase : str = scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch # compute softmax _UpperCamelCase : Optional[int] = jax.nn.softmax(lowercase__ , axis=-1 ) _UpperCamelCase : str = FlaxTemperatureLogitsWarper(temperature=0.5 ) _UpperCamelCase : Any = FlaxTemperatureLogitsWarper(temperature=1.3 ) _UpperCamelCase : Optional[int] = jax.nn.softmax(temp_dist_warper_sharper(lowercase__ , scores.copy() , cur_len=lowercase__ ) , axis=-1 ) _UpperCamelCase : List[str] = jax.nn.softmax(temp_dist_warper_smoother(lowercase__ , scores.copy() , cur_len=lowercase__ ) , axis=-1 ) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1e-3 ) ) self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1e-3 ) ) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max() ) self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min() ) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max() ) self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min() ) def snake_case__ ( self : Dict ) ->Optional[int]: '''simple docstring''' _UpperCamelCase : Tuple = None _UpperCamelCase : Any = 10 _UpperCamelCase : List[str] = 2 # create ramp distribution _UpperCamelCase : str = np.broadcast_to(np.arange(lowercase__ )[None, :] , (batch_size, vocab_size) ).copy() _UpperCamelCase : int = ramp_logits[1:, : vocab_size // 2] + vocab_size _UpperCamelCase : int = FlaxTopKLogitsWarper(3 ) _UpperCamelCase : List[str] = top_k_warp(lowercase__ , lowercase__ , cur_len=lowercase__ ) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0] ).tolist() , 7 * [True] + 3 * [False] ) self.assertListEqual(jnp.isinf(scores[1] ).tolist() , 2 * [True] + 3 * [False] + 5 * [True] ) # check special case _UpperCamelCase : List[str] = 5 _UpperCamelCase : Union[str, Any] = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3 ) _UpperCamelCase : Dict = np.broadcast_to(np.arange(lowercase__ )[None, :] , (batch_size, length) ).copy() _UpperCamelCase : int = top_k_warp_safety_check(lowercase__ , lowercase__ , cur_len=lowercase__ ) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() , [2, 2] ) def snake_case__ ( self : str ) ->Optional[int]: '''simple docstring''' _UpperCamelCase : List[Any] = None _UpperCamelCase : int = 10 _UpperCamelCase : Optional[int] = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) _UpperCamelCase : Optional[int] = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.1_5, 0.3, 0.3, 0.2_5]] ) ) _UpperCamelCase : Dict = FlaxTopPLogitsWarper(0.8 ) _UpperCamelCase : str = np.exp(top_p_warp(lowercase__ , lowercase__ , cur_len=lowercase__ ) ) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 _UpperCamelCase : Optional[int] = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.2_5]] ) self.assertTrue(np.allclose(lowercase__ , lowercase__ , atol=1e-3 ) ) # check edge cases with negative and extreme logits _UpperCamelCase : Any = np.broadcast_to(np.arange(lowercase__ )[None, :] , (batch_size, vocab_size) ).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme _UpperCamelCase : List[Any] = ramp_logits[1] * 1_0_0.0 # make sure at least 2 tokens are kept _UpperCamelCase : str = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0 ) _UpperCamelCase : Dict = top_p_warp(lowercase__ , lowercase__ , cur_len=lowercase__ ) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() , [3, 2] ) def snake_case__ ( self : List[Any] ) ->Tuple: '''simple docstring''' _UpperCamelCase : List[Any] = 20 _UpperCamelCase : List[str] = 4 _UpperCamelCase : str = 0 _UpperCamelCase : Tuple = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=lowercase__ ) # check that min length is applied at length 5 _UpperCamelCase : Optional[int] = ids_tensor((batch_size, 20) , vocab_size=20 ) _UpperCamelCase : Any = 5 _UpperCamelCase : int = self._get_uniform_logits(lowercase__ , lowercase__ ) _UpperCamelCase : Any = min_dist_processor(lowercase__ , lowercase__ , cur_len=lowercase__ ) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float("inf" )] ) # check that min length is not applied anymore at length 15 _UpperCamelCase : Any = self._get_uniform_logits(lowercase__ , lowercase__ ) _UpperCamelCase : List[Any] = 15 _UpperCamelCase : Dict = min_dist_processor(lowercase__ , lowercase__ , cur_len=lowercase__ ) self.assertFalse(jnp.isinf(lowercase__ ).any() ) def snake_case__ ( self : Optional[int] ) ->int: '''simple docstring''' _UpperCamelCase : Optional[Any] = 20 _UpperCamelCase : int = 4 _UpperCamelCase : Any = 0 _UpperCamelCase : Tuple = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowercase__ ) # check that all scores are -inf except the bos_token_id score _UpperCamelCase : Optional[Any] = ids_tensor((batch_size, 1) , vocab_size=20 ) _UpperCamelCase : Optional[int] = 1 _UpperCamelCase : Any = self._get_uniform_logits(lowercase__ , lowercase__ ) _UpperCamelCase : Optional[Any] = logits_processor(lowercase__ , lowercase__ , cur_len=lowercase__ ) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0] ) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 _UpperCamelCase : Optional[Any] = 3 _UpperCamelCase : Any = self._get_uniform_logits(lowercase__ , lowercase__ ) _UpperCamelCase : List[str] = logits_processor(lowercase__ , lowercase__ , cur_len=lowercase__ ) self.assertFalse(jnp.isinf(lowercase__ ).any() ) def snake_case__ ( self : Tuple ) ->Union[str, Any]: '''simple docstring''' _UpperCamelCase : str = 20 _UpperCamelCase : str = 4 _UpperCamelCase : List[str] = 0 _UpperCamelCase : Dict = 5 _UpperCamelCase : Dict = FlaxForcedEOSTokenLogitsProcessor(max_length=lowercase__ , eos_token_id=lowercase__ ) # check that all scores are -inf except the eos_token_id when max_length is reached _UpperCamelCase : Tuple = ids_tensor((batch_size, 4) , vocab_size=20 ) _UpperCamelCase : Optional[Any] = 4 _UpperCamelCase : Tuple = self._get_uniform_logits(lowercase__ , lowercase__ ) _UpperCamelCase : str = logits_processor(lowercase__ , lowercase__ , cur_len=lowercase__ ) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0] ) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached _UpperCamelCase : int = 3 _UpperCamelCase : Dict = self._get_uniform_logits(lowercase__ , lowercase__ ) _UpperCamelCase : Dict = logits_processor(lowercase__ , lowercase__ , cur_len=lowercase__ ) self.assertFalse(jnp.isinf(lowercase__ ).any() ) def snake_case__ ( self : Optional[int] ) ->Dict: '''simple docstring''' _UpperCamelCase : List[Any] = 4 _UpperCamelCase : List[str] = 10 _UpperCamelCase : Tuple = 15 _UpperCamelCase : int = 2 _UpperCamelCase : Optional[int] = 1 _UpperCamelCase : Any = 15 # dummy input_ids and scores _UpperCamelCase : int = ids_tensor((batch_size, sequence_length) , lowercase__ ) _UpperCamelCase : int = input_ids.copy() _UpperCamelCase : List[str] = self._get_uniform_logits(lowercase__ , lowercase__ ) _UpperCamelCase : Any = scores.copy() # instantiate all dist processors _UpperCamelCase : Optional[Any] = FlaxTemperatureLogitsWarper(temperature=0.5 ) _UpperCamelCase : Union[str, Any] = FlaxTopKLogitsWarper(3 ) _UpperCamelCase : Any = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors _UpperCamelCase : Dict = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=lowercase__ ) _UpperCamelCase : List[str] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowercase__ ) _UpperCamelCase : Dict = FlaxForcedEOSTokenLogitsProcessor(max_length=lowercase__ , eos_token_id=lowercase__ ) _UpperCamelCase : Optional[int] = 10 # no processor list _UpperCamelCase : Optional[Any] = temp_dist_warp(lowercase__ , lowercase__ , cur_len=lowercase__ ) _UpperCamelCase : Optional[Any] = top_k_warp(lowercase__ , lowercase__ , cur_len=lowercase__ ) _UpperCamelCase : Any = top_p_warp(lowercase__ , lowercase__ , cur_len=lowercase__ ) _UpperCamelCase : Union[str, Any] = min_dist_proc(lowercase__ , lowercase__ , cur_len=lowercase__ ) _UpperCamelCase : str = bos_dist_proc(lowercase__ , lowercase__ , cur_len=lowercase__ ) _UpperCamelCase : List[str] = eos_dist_proc(lowercase__ , lowercase__ , cur_len=lowercase__ ) # with processor list _UpperCamelCase : List[str] = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) _UpperCamelCase : List[Any] = processor(lowercase__ , lowercase__ , cur_len=lowercase__ ) # scores should be equal self.assertTrue(jnp.allclose(lowercase__ , lowercase__ , atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() ) def snake_case__ ( self : Optional[int] ) ->Optional[int]: '''simple docstring''' _UpperCamelCase : Any = 4 _UpperCamelCase : List[str] = 10 _UpperCamelCase : List[Any] = 15 _UpperCamelCase : str = 2 _UpperCamelCase : Union[str, Any] = 1 _UpperCamelCase : Union[str, Any] = 15 # dummy input_ids and scores _UpperCamelCase : Any = ids_tensor((batch_size, sequence_length) , lowercase__ ) _UpperCamelCase : List[Any] = input_ids.copy() _UpperCamelCase : str = self._get_uniform_logits(lowercase__ , lowercase__ ) _UpperCamelCase : Optional[Any] = scores.copy() # instantiate all dist processors _UpperCamelCase : Tuple = FlaxTemperatureLogitsWarper(temperature=0.5 ) _UpperCamelCase : int = FlaxTopKLogitsWarper(3 ) _UpperCamelCase : Tuple = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors _UpperCamelCase : Union[str, Any] = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=lowercase__ ) _UpperCamelCase : Any = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowercase__ ) _UpperCamelCase : Optional[Any] = FlaxForcedEOSTokenLogitsProcessor(max_length=lowercase__ , eos_token_id=lowercase__ ) _UpperCamelCase : List[str] = 10 # no processor list def run_no_processor_list(lowercase__ : Optional[int] , lowercase__ : Dict , lowercase__ : Optional[int] ): _UpperCamelCase : List[str] = temp_dist_warp(lowercase__ , lowercase__ , cur_len=lowercase__ ) _UpperCamelCase : List[Any] = top_k_warp(lowercase__ , lowercase__ , cur_len=lowercase__ ) _UpperCamelCase : str = top_p_warp(lowercase__ , lowercase__ , cur_len=lowercase__ ) _UpperCamelCase : List[Any] = min_dist_proc(lowercase__ , lowercase__ , cur_len=lowercase__ ) _UpperCamelCase : int = bos_dist_proc(lowercase__ , lowercase__ , cur_len=lowercase__ ) _UpperCamelCase : str = eos_dist_proc(lowercase__ , lowercase__ , cur_len=lowercase__ ) return scores # with processor list def run_processor_list(lowercase__ : Dict , lowercase__ : str , lowercase__ : Union[str, Any] ): _UpperCamelCase : List[Any] = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) _UpperCamelCase : int = processor(lowercase__ , lowercase__ , cur_len=lowercase__ ) return scores _UpperCamelCase : Dict = jax.jit(lowercase__ ) _UpperCamelCase : Optional[Any] = jax.jit(lowercase__ ) _UpperCamelCase : Tuple = jitted_run_no_processor_list(lowercase__ , lowercase__ , lowercase__ ) _UpperCamelCase : Any = jitted_run_processor_list(lowercase__ , lowercase__ , lowercase__ ) # scores should be equal self.assertTrue(jnp.allclose(lowercase__ , lowercase__ , atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() )
435
'''simple docstring''' import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__ = AutoencoderKL UpperCAmelCase__ = '''sample''' UpperCAmelCase__ = 1E-2 @property def snake_case__ ( self : List[Any] ) ->List[Any]: '''simple docstring''' _UpperCamelCase : List[str] = 4 _UpperCamelCase : Dict = 3 _UpperCamelCase : Tuple = (32, 32) _UpperCamelCase : str = floats_tensor((batch_size, num_channels) + sizes ).to(lowercase__ ) return {"sample": image} @property def snake_case__ ( self : Any ) ->List[str]: '''simple docstring''' return (3, 32, 32) @property def snake_case__ ( self : Optional[int] ) ->Optional[int]: '''simple docstring''' return (3, 32, 32) def snake_case__ ( self : Optional[int] ) ->Optional[Any]: '''simple docstring''' _UpperCamelCase : Optional[Any] = { "block_out_channels": [32, 64], "in_channels": 3, "out_channels": 3, "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"], "latent_channels": 4, } _UpperCamelCase : Optional[Any] = self.dummy_input return init_dict, inputs_dict def snake_case__ ( self : int ) ->int: '''simple docstring''' pass def snake_case__ ( self : Dict ) ->Any: '''simple docstring''' pass @unittest.skipIf(torch_device == "mps" , "Gradient checkpointing skipped on MPS" ) def snake_case__ ( self : Dict ) ->List[Any]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase : Union[str, Any] = self.prepare_init_args_and_inputs_for_common() _UpperCamelCase : Optional[int] = self.model_class(**lowercase__ ) model.to(lowercase__ ) assert not model.is_gradient_checkpointing and model.training _UpperCamelCase : List[Any] = model(**lowercase__ ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() _UpperCamelCase : Dict = torch.randn_like(lowercase__ ) _UpperCamelCase : Dict = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing _UpperCamelCase : List[str] = self.model_class(**lowercase__ ) # clone model model_a.load_state_dict(model.state_dict() ) model_a.to(lowercase__ ) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training _UpperCamelCase : int = model_a(**lowercase__ ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() _UpperCamelCase : Union[str, Any] = (out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1e-5 ) _UpperCamelCase : List[Any] = dict(model.named_parameters() ) _UpperCamelCase : Tuple = dict(model_a.named_parameters() ) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data , named_params_a[name].grad.data , atol=5e-5 ) ) def snake_case__ ( self : Optional[int] ) ->List[Any]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase : Tuple = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy" , output_loading_info=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertEqual(len(loading_info["missing_keys"] ) , 0 ) model.to(lowercase__ ) _UpperCamelCase : Tuple = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def snake_case__ ( self : Optional[Any] ) ->Optional[Any]: '''simple docstring''' _UpperCamelCase : Union[str, Any] = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy" ) _UpperCamelCase : int = model.to(lowercase__ ) model.eval() if torch_device == "mps": _UpperCamelCase : Dict = torch.manual_seed(0 ) else: _UpperCamelCase : Union[str, Any] = torch.Generator(device=lowercase__ ).manual_seed(0 ) _UpperCamelCase : Dict = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) _UpperCamelCase : str = image.to(lowercase__ ) with torch.no_grad(): _UpperCamelCase : List[str] = model(lowercase__ , sample_posterior=lowercase__ , generator=lowercase__ ).sample _UpperCamelCase : List[Any] = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": _UpperCamelCase : Dict = torch.tensor( [ -4.0078e-01, -3.8323e-04, -1.2681e-01, -1.1462e-01, 2.0095e-01, 1.0893e-01, -8.8247e-02, -3.0361e-01, -9.8644e-03, ] ) elif torch_device == "cpu": _UpperCamelCase : Dict = torch.tensor( [-0.1_3_5_2, 0.0_8_7_8, 0.0_4_1_9, -0.0_8_1_8, -0.1_0_6_9, 0.0_6_8_8, -0.1_4_5_8, -0.4_4_4_6, -0.0_0_2_6] ) else: _UpperCamelCase : Dict = torch.tensor( [-0.2_4_2_1, 0.4_6_4_2, 0.2_5_0_7, -0.0_4_3_8, 0.0_6_8_2, 0.3_1_6_0, -0.2_0_1_8, -0.0_7_2_7, 0.2_4_8_5] ) self.assertTrue(torch_all_close(lowercase__ , lowercase__ , rtol=1e-2 ) ) @slow class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def snake_case__ ( self : List[str] , lowercase__ : List[str] , lowercase__ : List[Any] ) ->Tuple: '''simple docstring''' return f'''gaussian_noise_s={seed}_shape={'_'.join([str(lowercase__ ) for s in shape] )}.npy''' def snake_case__ ( self : Tuple ) ->List[str]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case__ ( self : Dict , lowercase__ : int=0 , lowercase__ : Tuple=(4, 3, 512, 512) , lowercase__ : Any=False ) ->Dict: '''simple docstring''' _UpperCamelCase : Optional[Any] = torch.floataa if fpaa else torch.floataa _UpperCamelCase : Optional[Any] = torch.from_numpy(load_hf_numpy(self.get_file_format(lowercase__ , lowercase__ ) ) ).to(lowercase__ ).to(lowercase__ ) return image def snake_case__ ( self : int , lowercase__ : Any="CompVis/stable-diffusion-v1-4" , lowercase__ : Optional[int]=False ) ->Dict: '''simple docstring''' _UpperCamelCase : Tuple = "fp16" if fpaa else None _UpperCamelCase : List[Any] = torch.floataa if fpaa else torch.floataa _UpperCamelCase : Dict = AutoencoderKL.from_pretrained( lowercase__ , subfolder="vae" , torch_dtype=lowercase__ , revision=lowercase__ , ) model.to(lowercase__ ).eval() return model def snake_case__ ( self : List[Any] , lowercase__ : Any=0 ) ->Tuple: '''simple docstring''' if torch_device == "mps": return torch.manual_seed(lowercase__ ) return torch.Generator(device=lowercase__ ).manual_seed(lowercase__ ) @parameterized.expand( [ # fmt: off [33, [-0.1_6_0_3, 0.9_8_7_8, -0.0_4_9_5, -0.0_7_9_0, -0.2_7_0_9, 0.8_3_7_5, -0.2_0_6_0, -0.0_8_2_4], [-0.2_3_9_5, 0.0_0_9_8, 0.0_1_0_2, -0.0_7_0_9, -0.2_8_4_0, -0.0_2_7_4, -0.0_7_1_8, -0.1_8_2_4]], [47, [-0.2_3_7_6, 0.1_1_6_8, 0.1_3_3_2, -0.4_8_4_0, -0.2_5_0_8, -0.0_7_9_1, -0.0_4_9_3, -0.4_0_8_9], [0.0_3_5_0, 0.0_8_4_7, 0.0_4_6_7, 0.0_3_4_4, -0.0_8_4_2, -0.0_5_4_7, -0.0_6_3_3, -0.1_1_3_1]], # fmt: on ] ) def snake_case__ ( self : Tuple , lowercase__ : str , lowercase__ : Dict , lowercase__ : Any ) ->Tuple: '''simple docstring''' _UpperCamelCase : Any = self.get_sd_vae_model() _UpperCamelCase : Union[str, Any] = self.get_sd_image(lowercase__ ) _UpperCamelCase : Optional[int] = self.get_generator(lowercase__ ) with torch.no_grad(): _UpperCamelCase : List[str] = model(lowercase__ , generator=lowercase__ , sample_posterior=lowercase__ ).sample assert sample.shape == image.shape _UpperCamelCase : Optional[Any] = sample[-1, -2:, -2:, :2].flatten().float().cpu() _UpperCamelCase : Union[str, Any] = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice ) assert torch_all_close(lowercase__ , lowercase__ , atol=3e-3 ) @parameterized.expand( [ # fmt: off [33, [-0.0_5_1_3, 0.0_2_8_9, 1.3_7_9_9, 0.2_1_6_6, -0.2_5_7_3, -0.0_8_7_1, 0.5_1_0_3, -0.0_9_9_9]], [47, [-0.4_1_2_8, -0.1_3_2_0, -0.3_7_0_4, 0.1_9_6_5, -0.4_1_1_6, -0.2_3_3_2, -0.3_3_4_0, 0.2_2_4_7]], # fmt: on ] ) @require_torch_gpu def snake_case__ ( self : List[Any] , lowercase__ : int , lowercase__ : Tuple ) ->Dict: '''simple docstring''' _UpperCamelCase : Dict = self.get_sd_vae_model(fpaa=lowercase__ ) _UpperCamelCase : Tuple = self.get_sd_image(lowercase__ , fpaa=lowercase__ ) _UpperCamelCase : int = self.get_generator(lowercase__ ) with torch.no_grad(): _UpperCamelCase : Union[str, Any] = model(lowercase__ , generator=lowercase__ , sample_posterior=lowercase__ ).sample assert sample.shape == image.shape _UpperCamelCase : List[str] = sample[-1, -2:, :2, -2:].flatten().float().cpu() _UpperCamelCase : int = torch.tensor(lowercase__ ) assert torch_all_close(lowercase__ , lowercase__ , atol=1e-2 ) @parameterized.expand( [ # fmt: off [33, [-0.1_6_0_9, 0.9_8_6_6, -0.0_4_8_7, -0.0_7_7_7, -0.2_7_1_6, 0.8_3_6_8, -0.2_0_5_5, -0.0_8_1_4], [-0.2_3_9_5, 0.0_0_9_8, 0.0_1_0_2, -0.0_7_0_9, -0.2_8_4_0, -0.0_2_7_4, -0.0_7_1_8, -0.1_8_2_4]], [47, [-0.2_3_7_7, 0.1_1_4_7, 0.1_3_3_3, -0.4_8_4_1, -0.2_5_0_6, -0.0_8_0_5, -0.0_4_9_1, -0.4_0_8_5], [0.0_3_5_0, 0.0_8_4_7, 0.0_4_6_7, 0.0_3_4_4, -0.0_8_4_2, -0.0_5_4_7, -0.0_6_3_3, -0.1_1_3_1]], # fmt: on ] ) def snake_case__ ( self : int , lowercase__ : int , lowercase__ : Any , lowercase__ : Optional[int] ) ->Any: '''simple docstring''' _UpperCamelCase : Tuple = self.get_sd_vae_model() _UpperCamelCase : str = self.get_sd_image(lowercase__ ) with torch.no_grad(): _UpperCamelCase : List[Any] = model(lowercase__ ).sample assert sample.shape == image.shape _UpperCamelCase : int = sample[-1, -2:, -2:, :2].flatten().float().cpu() _UpperCamelCase : Optional[Any] = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice ) assert torch_all_close(lowercase__ , lowercase__ , atol=3e-3 ) @parameterized.expand( [ # fmt: off [13, [-0.2_0_5_1, -0.1_8_0_3, -0.2_3_1_1, -0.2_1_1_4, -0.3_2_9_2, -0.3_5_7_4, -0.2_9_5_3, -0.3_3_2_3]], [37, [-0.2_6_3_2, -0.2_6_2_5, -0.2_1_9_9, -0.2_7_4_1, -0.4_5_3_9, -0.4_9_9_0, -0.3_7_2_0, -0.4_9_2_5]], # fmt: on ] ) @require_torch_gpu def snake_case__ ( self : Optional[int] , lowercase__ : Tuple , lowercase__ : Dict ) ->List[str]: '''simple docstring''' _UpperCamelCase : Tuple = self.get_sd_vae_model() _UpperCamelCase : Any = self.get_sd_image(lowercase__ , shape=(3, 4, 64, 64) ) with torch.no_grad(): _UpperCamelCase : Dict = model.decode(lowercase__ ).sample assert list(sample.shape ) == [3, 3, 512, 512] _UpperCamelCase : str = sample[-1, -2:, :2, -2:].flatten().cpu() _UpperCamelCase : Any = torch.tensor(lowercase__ ) assert torch_all_close(lowercase__ , lowercase__ , atol=1e-3 ) @parameterized.expand( [ # fmt: off [27, [-0.0_3_6_9, 0.0_2_0_7, -0.0_7_7_6, -0.0_6_8_2, -0.1_7_4_7, -0.1_9_3_0, -0.1_4_6_5, -0.2_0_3_9]], [16, [-0.1_6_2_8, -0.2_1_3_4, -0.2_7_4_7, -0.2_6_4_2, -0.3_7_7_4, -0.4_4_0_4, -0.3_6_8_7, -0.4_2_7_7]], # fmt: on ] ) @require_torch_gpu def snake_case__ ( self : Union[str, Any] , lowercase__ : List[str] , lowercase__ : str ) ->Optional[int]: '''simple docstring''' _UpperCamelCase : Union[str, Any] = self.get_sd_vae_model(fpaa=lowercase__ ) _UpperCamelCase : Tuple = self.get_sd_image(lowercase__ , shape=(3, 4, 64, 64) , fpaa=lowercase__ ) with torch.no_grad(): _UpperCamelCase : int = model.decode(lowercase__ ).sample assert list(sample.shape ) == [3, 3, 512, 512] _UpperCamelCase : str = sample[-1, -2:, :2, -2:].flatten().float().cpu() _UpperCamelCase : Dict = torch.tensor(lowercase__ ) assert torch_all_close(lowercase__ , lowercase__ , atol=5e-3 ) @parameterized.expand([(13,), (16,), (27,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason="xformers is not required when using PyTorch 2.0." ) def snake_case__ ( self : str , lowercase__ : str ) ->List[Any]: '''simple docstring''' _UpperCamelCase : str = self.get_sd_vae_model(fpaa=lowercase__ ) _UpperCamelCase : List[str] = self.get_sd_image(lowercase__ , shape=(3, 4, 64, 64) , fpaa=lowercase__ ) with torch.no_grad(): _UpperCamelCase : int = model.decode(lowercase__ ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): _UpperCamelCase : Tuple = model.decode(lowercase__ ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(lowercase__ , lowercase__ , atol=1e-1 ) @parameterized.expand([(13,), (16,), (37,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason="xformers is not required when using PyTorch 2.0." ) def snake_case__ ( self : Optional[int] , lowercase__ : int ) ->str: '''simple docstring''' _UpperCamelCase : Optional[int] = self.get_sd_vae_model() _UpperCamelCase : Any = self.get_sd_image(lowercase__ , shape=(3, 4, 64, 64) ) with torch.no_grad(): _UpperCamelCase : List[Any] = model.decode(lowercase__ ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): _UpperCamelCase : Optional[int] = model.decode(lowercase__ ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(lowercase__ , lowercase__ , atol=1e-2 ) @parameterized.expand( [ # fmt: off [33, [-0.3_0_0_1, 0.0_9_1_8, -2.6_9_8_4, -3.9_7_2_0, -3.2_0_9_9, -5.0_3_5_3, 1.7_3_3_8, -0.2_0_6_5, 3.4_2_6_7]], [47, [-1.5_0_3_0, -4.3_8_7_1, -6.0_3_5_5, -9.1_1_5_7, -1.6_6_6_1, -2.7_8_5_3, 2.1_6_0_7, -5.0_8_2_3, 2.5_6_3_3]], # fmt: on ] ) def snake_case__ ( self : Union[str, Any] , lowercase__ : List[str] , lowercase__ : Dict ) ->Optional[Any]: '''simple docstring''' _UpperCamelCase : Optional[Any] = self.get_sd_vae_model() _UpperCamelCase : Any = self.get_sd_image(lowercase__ ) _UpperCamelCase : Optional[int] = self.get_generator(lowercase__ ) with torch.no_grad(): _UpperCamelCase : Union[str, Any] = model.encode(lowercase__ ).latent_dist _UpperCamelCase : Dict = dist.sample(generator=lowercase__ ) assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] _UpperCamelCase : List[Any] = sample[0, -1, -3:, -3:].flatten().cpu() _UpperCamelCase : int = torch.tensor(lowercase__ ) _UpperCamelCase : Union[str, Any] = 3e-3 if torch_device != "mps" else 1e-2 assert torch_all_close(lowercase__ , lowercase__ , atol=lowercase__ )
435
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available UpperCAmelCase : List[str] = { '''configuration_ernie''': ['''ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ErnieConfig''', '''ErnieOnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : List[Any] = [ '''ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ErnieForCausalLM''', '''ErnieForMaskedLM''', '''ErnieForMultipleChoice''', '''ErnieForNextSentencePrediction''', '''ErnieForPreTraining''', '''ErnieForQuestionAnswering''', '''ErnieForSequenceClassification''', '''ErnieForTokenClassification''', '''ErnieModel''', '''ErniePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ernie import ( ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST, ErnieForCausalLM, ErnieForMaskedLM, ErnieForMultipleChoice, ErnieForNextSentencePrediction, ErnieForPreTraining, ErnieForQuestionAnswering, ErnieForSequenceClassification, ErnieForTokenClassification, ErnieModel, ErniePreTrainedModel, ) else: import sys UpperCAmelCase : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
77
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings from typing import List from unittest.mock import Mock import torch from torch.utils.data import DataLoader, IterableDataset, TensorDataset from accelerate.accelerator import Accelerator from accelerate.utils.dataclasses import DistributedType class _A( snake_case__ ): """simple docstring""" def __init__( self , _A ): __A : Any = data def __iter__( self ): for element in self.data: yield element def _SCREAMING_SNAKE_CASE ( a=True ) -> Any: __A : List[Any] = Accelerator(even_batches=a ) assert accelerator.num_processes == 2, "this script expects that two GPUs are available" return accelerator def _SCREAMING_SNAKE_CASE ( a , a , a , a = False ) -> str: if iterable: __A : int = DummyIterableDataset(torch.as_tensor(range(a ) ) ) else: __A : Optional[Any] = TensorDataset(torch.as_tensor(range(a ) ) ) __A : Optional[Any] = DataLoader(a , batch_size=a ) __A : Optional[int] = accelerator.prepare(a ) return dl def _SCREAMING_SNAKE_CASE ( a , a , a , a , a , ) -> Union[str, Any]: __A : Optional[int] = create_dataloader(accelerator=a , dataset_size=a , batch_size=a ) __A : Tuple = [len(batch[0] ) for batch in dl] if accelerator.process_index == 0: assert batch_sizes == process_0_expected_batch_sizes elif accelerator.process_index == 1: assert batch_sizes == process_1_expected_batch_sizes def _SCREAMING_SNAKE_CASE ( ) -> List[Any]: __A : int = create_accelerator() # without padding, we would expect a different number of batches verify_dataloader_batch_sizes( a , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1, 1] , ) # without padding, we would expect the same number of batches, but different sizes verify_dataloader_batch_sizes( a , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 2] , ) def _SCREAMING_SNAKE_CASE ( ) -> List[Any]: __A : str = create_accelerator(even_batches=a ) verify_dataloader_batch_sizes( a , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1] , ) verify_dataloader_batch_sizes( a , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 1] , ) def _SCREAMING_SNAKE_CASE ( ) -> str: __A : Optional[Any] = create_accelerator(even_batches=a ) __A : str = torch.nn.Linear(1 , 1 ) __A : Optional[int] = accelerator.prepare(a ) __A : Optional[int] = create_dataloader(a , dataset_size=3 , batch_size=1 ) __A : str = [] with accelerator.join_uneven_inputs([ddp_model] ): for batch_idx, batch in enumerate(a ): __A : Dict = ddp_model(batch[0].float() ) __A : List[str] = output.sum() loss.backward() batch_idxs.append(a ) accelerator.wait_for_everyone() if accelerator.process_index == 0: assert batch_idxs == [0, 1] elif accelerator.process_index == 1: assert batch_idxs == [0] def _SCREAMING_SNAKE_CASE ( a ) -> List[Any]: with warnings.catch_warnings(record=a ) as w: with accelerator.join_uneven_inputs([Mock()] ): pass assert issubclass(w[-1].category , a ) assert "only supported for multi-GPU" in str(w[-1].message ) def _SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: __A : int = True __A : Union[str, Any] = False __A : Optional[int] = create_accelerator(even_batches=a ) __A : int = torch.nn.Linear(1 , 1 ) __A : List[Any] = accelerator.prepare(a ) __A : int = create_dataloader(a , dataset_size=3 , batch_size=1 ) __A : Optional[int] = create_dataloader(a , dataset_size=3 , batch_size=1 ) with accelerator.join_uneven_inputs([ddp_model] , even_batches=a ): __A : List[str] = train_dl.batch_sampler.even_batches __A : Dict = valid_dl.batch_sampler.even_batches assert train_dl_overridden_value == overridden_even_batches assert valid_dl_overridden_value == overridden_even_batches assert train_dl.batch_sampler.even_batches == default_even_batches assert valid_dl.batch_sampler.even_batches == default_even_batches def _SCREAMING_SNAKE_CASE ( ) -> List[Any]: __A : Any = True __A : List[Any] = False __A : Tuple = create_accelerator(even_batches=a ) __A : List[str] = torch.nn.Linear(1 , 1 ) __A : Optional[Any] = accelerator.prepare(a ) create_dataloader(a , dataset_size=3 , batch_size=1 , iterable=a ) __A : int = create_dataloader(a , dataset_size=3 , batch_size=1 ) with warnings.catch_warnings(): warnings.filterwarnings('ignore' ) try: with accelerator.join_uneven_inputs([ddp_model] , even_batches=a ): __A : Tuple = batch_dl.batch_sampler.even_batches except AttributeError: # ensure attribute error is not raised when processing iterable dl raise AssertionError assert batch_dl_overridden_value == overridden_even_batches assert batch_dl.batch_sampler.even_batches == default_even_batches def _SCREAMING_SNAKE_CASE ( ) -> Dict: __A : Any = create_accelerator() __A : Union[str, Any] = torch.nn.Linear(1 , 1 ) __A : str = accelerator.prepare(a ) create_dataloader(a , dataset_size=3 , batch_size=1 , iterable=a ) with warnings.catch_warnings(record=a ) as w: with accelerator.join_uneven_inputs([ddp_model] , even_batches=a ): pass assert issubclass(w[-1].category , a ) assert "only supported for map-style datasets" in str(w[-1].message ) def _SCREAMING_SNAKE_CASE ( ) -> List[str]: __A : str = create_accelerator() accelerator.print('Test that even_batches variable ensures uniform batches across processes' ) test_default_ensures_even_batch_sizes() accelerator.print('Run tests with even_batches disabled' ) test_can_disable_even_batches() accelerator.print('Test joining uneven inputs' ) test_can_join_uneven_inputs() accelerator.print('Test overriding even_batches when joining uneven inputs' ) test_join_can_override_even_batches() accelerator.print('Test overriding even_batches for mixed dataloader types' ) test_join_can_override_for_mixed_type_dataloaders() accelerator.print('Test overriding even_batches raises a warning for iterable dataloaders' ) test_join_raises_warning_for_iterable_when_overriding_even_batches() accelerator.print('Test join with non DDP distributed raises warning' ) __A : int = accelerator.state.distributed_type __A : Tuple = DistributedType.FSDP test_join_raises_warning_for_non_ddp_distributed(a ) __A : str = original_state if __name__ == "__main__": main()
77
1
'''simple docstring''' import requests _snake_case : Union[str, Any] = 'https://newsapi.org/v1/articles?source=bbc-news&sortBy=top&apiKey=' def snake_case_ (UpperCamelCase : str ): '''simple docstring''' _a = requests.get(_NEWS_API + bbc_news_api_key ).json() # each article in the list is a dict for i, article in enumerate(bbc_news_page['''articles'''] , 1 ): print(f'{i}.) {article["title"]}' ) if __name__ == "__main__": fetch_bbc_news(bbc_news_api_key='<Your BBC News API key goes here>')
22
from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. _lowerCamelCase : List[str] = 2_0_0 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. _lowerCamelCase : Any = 5_0 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. _lowerCamelCase : str = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1_0_0_0)) def _a ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ) -> tuple[str, float]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = len([g for position, g in enumerate(SCREAMING_SNAKE_CASE__ ) if g == main_target[position]] ) return (item, float(SCREAMING_SNAKE_CASE__ )) def _a ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ) -> tuple[str, str]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = random.randint(0 , len(SCREAMING_SNAKE_CASE__ ) - 1 ) SCREAMING_SNAKE_CASE__ : Tuple = parent_a[:random_slice] + parent_a[random_slice:] SCREAMING_SNAKE_CASE__ : str = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def _a ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : list[str] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = list(SCREAMING_SNAKE_CASE__ ) if random.uniform(0 , 1 ) < MUTATION_PROBABILITY: SCREAMING_SNAKE_CASE__ : Tuple = random.choice(SCREAMING_SNAKE_CASE__ ) return "".join(SCREAMING_SNAKE_CASE__ ) def _a ( SCREAMING_SNAKE_CASE__ : tuple[str, float] , SCREAMING_SNAKE_CASE__ : list[tuple[str, float]] , SCREAMING_SNAKE_CASE__ : list[str] , ) -> list[str]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = [] # Generate more children proportionally to the fitness score. SCREAMING_SNAKE_CASE__ : List[str] = int(parent_a[1] * 1_00 ) + 1 SCREAMING_SNAKE_CASE__ : Tuple = 10 if child_n >= 10 else child_n for _ in range(SCREAMING_SNAKE_CASE__ ): SCREAMING_SNAKE_CASE__ : Optional[int] = population_score[random.randint(0 , SCREAMING_SNAKE_CASE__ )][0] SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : Optional[Any] = crossover(parent_a[0] , SCREAMING_SNAKE_CASE__ ) # Append new string to the population list. pop.append(mutate(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) pop.append(mutate(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) return pop def _a ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : list[str] , SCREAMING_SNAKE_CASE__ : bool = True ) -> tuple[int, int, str]: '''simple docstring''' if N_POPULATION < N_SELECTED: SCREAMING_SNAKE_CASE__ : str = f'''{N_POPULATION} must be bigger than {N_SELECTED}''' raise ValueError(SCREAMING_SNAKE_CASE__ ) # Verify that the target contains no genes besides the ones inside genes variable. SCREAMING_SNAKE_CASE__ : Optional[int] = sorted({c for c in target if c not in genes} ) if not_in_genes_list: SCREAMING_SNAKE_CASE__ : Dict = f'''{not_in_genes_list} is not in genes list, evolution cannot converge''' raise ValueError(SCREAMING_SNAKE_CASE__ ) # Generate random starting population. SCREAMING_SNAKE_CASE__ : List[Any] = [] for _ in range(SCREAMING_SNAKE_CASE__ ): population.append("".join([random.choice(SCREAMING_SNAKE_CASE__ ) for i in range(len(SCREAMING_SNAKE_CASE__ ) )] ) ) # Just some logs to know what the algorithms is doing. SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : List[Any] = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(SCREAMING_SNAKE_CASE__ ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. SCREAMING_SNAKE_CASE__ : int = [evaluate(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for item in population] # Check if there is a matching evolution. SCREAMING_SNAKE_CASE__ : List[str] = sorted(SCREAMING_SNAKE_CASE__ , key=lambda SCREAMING_SNAKE_CASE__ : x[1] , reverse=SCREAMING_SNAKE_CASE__ ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( f'''\nGeneration: {generation}''' f'''\nTotal Population:{total_population}''' f'''\nBest score: {population_score[0][1]}''' f'''\nBest string: {population_score[0][0]}''' ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. SCREAMING_SNAKE_CASE__ : str = population[: int(N_POPULATION / 3 )] population.clear() population.extend(SCREAMING_SNAKE_CASE__ ) # Normalize population score to be between 0 and 1. SCREAMING_SNAKE_CASE__ : Union[str, Any] = [ (item, score / len(SCREAMING_SNAKE_CASE__ )) for item, score in population_score ] # This is selection for i in range(SCREAMING_SNAKE_CASE__ ): population.extend(select(population_score[int(SCREAMING_SNAKE_CASE__ )] , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(SCREAMING_SNAKE_CASE__ ) > N_POPULATION: break if __name__ == "__main__": _lowerCamelCase : Dict = ( '''This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!''' ) _lowerCamelCase : Tuple = list( ''' ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm''' '''nopqrstuvwxyz.,;!?+-*#@^\'èéòà€ù=)(&%$£/\\''' ) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : List[str] = basic(target_str, genes_list) print( f"\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}" )
663
0
lowerCamelCase_ : Union[str, Any] = { "a": "AAAAA", "b": "AAAAB", "c": "AAABA", "d": "AAABB", "e": "AABAA", "f": "AABAB", "g": "AABBA", "h": "AABBB", "i": "ABAAA", "j": "BBBAA", "k": "ABAAB", "l": "ABABA", "m": "ABABB", "n": "ABBAA", "o": "ABBAB", "p": "ABBBA", "q": "ABBBB", "r": "BAAAA", "s": "BAAAB", "t": "BAABA", "u": "BAABB", "v": "BBBAB", "w": "BABAA", "x": "BABAB", "y": "BABBA", "z": "BABBB", " ": " ", } lowerCamelCase_ : Dict = {value: key for key, value in encode_dict.items()} def __lowercase( __snake_case : str ) -> str: __snake_case = '' for letter in word.lower(): if letter.isalpha() or letter == " ": encoded += encode_dict[letter] else: raise Exception('encode() accepts only letters of the alphabet and spaces' ) return encoded def __lowercase( __snake_case : str ) -> str: if set(__snake_case ) - {"A", "B", " "} != set(): raise Exception('decode() accepts only \'A\', \'B\' and spaces' ) __snake_case = '' for word in coded.split(): while len(__snake_case ) != 0: decoded += decode_dict[word[:5]] __snake_case = word[5:] decoded += " " return decoded.strip() if __name__ == "__main__": from doctest import testmod testmod()
345
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinvaConfig, SwinvaForImageClassification def __lowercase( __snake_case : Tuple ) -> str: __snake_case = SwinvaConfig() __snake_case = swinva_name.split('_' ) __snake_case = name_split[1] if "to" in name_split[3]: __snake_case = int(name_split[3][-3:] ) else: __snake_case = int(name_split[3] ) if "to" in name_split[2]: __snake_case = int(name_split[2][-2:] ) else: __snake_case = int(name_split[2][6:] ) if model_size == "tiny": __snake_case = 96 __snake_case = (2, 2, 6, 2) __snake_case = (3, 6, 12, 24) elif model_size == "small": __snake_case = 96 __snake_case = (2, 2, 18, 2) __snake_case = (3, 6, 12, 24) elif model_size == "base": __snake_case = 1_28 __snake_case = (2, 2, 18, 2) __snake_case = (4, 8, 16, 32) else: __snake_case = 1_92 __snake_case = (2, 2, 18, 2) __snake_case = (6, 12, 24, 48) if "to" in swinva_name: __snake_case = (12, 12, 12, 6) if ("22k" in swinva_name) and ("to" not in swinva_name): __snake_case = 2_18_41 __snake_case = 'huggingface/label-files' __snake_case = 'imagenet-22k-id2label.json' __snake_case = json.load(open(hf_hub_download(__snake_case ,__snake_case ,repo_type='dataset' ) ,'r' ) ) __snake_case = {int(__snake_case ): v for k, v in idalabel.items()} __snake_case = idalabel __snake_case = {v: k for k, v in idalabel.items()} else: __snake_case = 10_00 __snake_case = 'huggingface/label-files' __snake_case = 'imagenet-1k-id2label.json' __snake_case = json.load(open(hf_hub_download(__snake_case ,__snake_case ,repo_type='dataset' ) ,'r' ) ) __snake_case = {int(__snake_case ): v for k, v in idalabel.items()} __snake_case = idalabel __snake_case = {v: k for k, v in idalabel.items()} __snake_case = img_size __snake_case = num_classes __snake_case = embed_dim __snake_case = depths __snake_case = num_heads __snake_case = window_size return config def __lowercase( __snake_case : List[str] ) -> Any: if "patch_embed.proj" in name: __snake_case = name.replace('patch_embed.proj' ,'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: __snake_case = name.replace('patch_embed.norm' ,'embeddings.norm' ) if "layers" in name: __snake_case = 'encoder.' + name if "attn.proj" in name: __snake_case = name.replace('attn.proj' ,'attention.output.dense' ) if "attn" in name: __snake_case = name.replace('attn' ,'attention.self' ) if "norm1" in name: __snake_case = name.replace('norm1' ,'layernorm_before' ) if "norm2" in name: __snake_case = name.replace('norm2' ,'layernorm_after' ) if "mlp.fc1" in name: __snake_case = name.replace('mlp.fc1' ,'intermediate.dense' ) if "mlp.fc2" in name: __snake_case = name.replace('mlp.fc2' ,'output.dense' ) if "q_bias" in name: __snake_case = name.replace('q_bias' ,'query.bias' ) if "k_bias" in name: __snake_case = name.replace('k_bias' ,'key.bias' ) if "v_bias" in name: __snake_case = name.replace('v_bias' ,'value.bias' ) if "cpb_mlp" in name: __snake_case = name.replace('cpb_mlp' ,'continuous_position_bias_mlp' ) if name == "norm.weight": __snake_case = 'layernorm.weight' if name == "norm.bias": __snake_case = 'layernorm.bias' if "head" in name: __snake_case = name.replace('head' ,'classifier' ) else: __snake_case = 'swinv2.' + name return name def __lowercase( __snake_case : str ,__snake_case : Optional[int] ) -> str: for key in orig_state_dict.copy().keys(): __snake_case = orig_state_dict.pop(__snake_case ) if "mask" in key: continue elif "qkv" in key: __snake_case = key.split('.' ) __snake_case = int(key_split[1] ) __snake_case = int(key_split[3] ) __snake_case = model.swinva.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: __snake_case = val[:dim, :] __snake_case = val[dim : dim * 2, :] __snake_case = val[-dim:, :] else: __snake_case = val[:dim] __snake_case = val[ dim : dim * 2 ] __snake_case = val[-dim:] else: __snake_case = val return orig_state_dict def __lowercase( __snake_case : Tuple ,__snake_case : Any ) -> Tuple: __snake_case = timm.create_model(__snake_case ,pretrained=__snake_case ) timm_model.eval() __snake_case = get_swinva_config(__snake_case ) __snake_case = SwinvaForImageClassification(__snake_case ) model.eval() __snake_case = convert_state_dict(timm_model.state_dict() ,__snake_case ) model.load_state_dict(__snake_case ) __snake_case = 'http://images.cocodataset.org/val2017/000000039769.jpg' __snake_case = AutoImageProcessor.from_pretrained('microsoft/{}'.format(swinva_name.replace('_' ,'-' ) ) ) __snake_case = Image.open(requests.get(__snake_case ,stream=__snake_case ).raw ) __snake_case = image_processor(images=__snake_case ,return_tensors='pt' ) __snake_case = timm_model(inputs['pixel_values'] ) __snake_case = model(**__snake_case ).logits assert torch.allclose(__snake_case ,__snake_case ,atol=1e-3 ) print(f'''Saving model {swinva_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__snake_case ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__snake_case ) model.push_to_hub( repo_path_or_name=Path(__snake_case ,__snake_case ) ,organization='nandwalritik' ,commit_message='Add model' ,) if __name__ == "__main__": lowerCamelCase_ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( "--swinv2_name", default="swinv2_tiny_patch4_window8_256", type=str, help="Name of the Swinv2 timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) lowerCamelCase_ : Tuple = parser.parse_args() convert_swinva_checkpoint(args.swinva_name, args.pytorch_dump_folder_path)
345
1
"""simple docstring""" import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class UpperCAmelCase_ : def __init__( self , a=2 , a=3 , a=6_4 , a=None ) -> Optional[int]: lowercase__ : Dict = np.random.default_rng(a ) lowercase__ : Any = length lowercase__ : Tuple = rng.normal(size=(length,) ).astype(np.floataa ) lowercase__ : Union[str, Any] = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self ) -> Optional[Any]: return self.length def __getitem__( self , a ) -> List[str]: return {"x": self.x[i], "y": self.y[i]} class UpperCAmelCase_ ( torch.nn.Module): def __init__( self , a=0 , a=0 , a=False ) -> str: super().__init__() lowercase__ : Union[str, Any] = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) lowercase__ : Union[str, Any] = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) lowercase__ : int = True def _UpperCAmelCase ( self , a=None ) -> int: if self.first_batch: print(f"""Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}""" ) lowercase__ : Dict = False return x * self.a[0] + self.b[0] class UpperCAmelCase_ ( torch.nn.Module): def __init__( self , a=0 , a=0 , a=False ) -> Optional[Any]: super().__init__() lowercase__ : Tuple = torch.nn.Parameter(torch.tensor(a ).float() ) lowercase__ : Any = torch.nn.Parameter(torch.tensor(a ).float() ) lowercase__ : Any = True def _UpperCAmelCase ( self , a=None ) -> Dict: if self.first_batch: print(f"""Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}""" ) lowercase__ : List[str] = False return x * self.a + self.b def a_ ( _lowerCAmelCase : int , _lowerCAmelCase : int = 16 ): '''simple docstring''' from datasets import load_dataset from transformers import AutoTokenizer lowercase__ : Union[str, Any] = AutoTokenizer.from_pretrained('bert-base-cased' ) lowercase__ : Optional[Any] = {'train': 'tests/test_samples/MRPC/train.csv', 'validation': 'tests/test_samples/MRPC/dev.csv'} lowercase__ : List[str] = load_dataset('csv' , data_files=_lowerCAmelCase ) lowercase__ : List[str] = datasets['train'].unique('label' ) lowercase__ : Tuple = {v: i for i, v in enumerate(_lowerCAmelCase )} def tokenize_function(_lowerCAmelCase : Tuple ): # max_length=None => use the model max length (it's actually the default) lowercase__ : Any = tokenizer( examples['sentence1'] , examples['sentence2'] , truncation=_lowerCAmelCase , max_length=_lowerCAmelCase , padding='max_length' ) if "label" in examples: lowercase__ : Any = [label_to_id[l] for l in examples['label']] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset lowercase__ : Optional[Any] = datasets.map( _lowerCAmelCase , batched=_lowerCAmelCase , remove_columns=['sentence1', 'sentence2', 'label'] , ) def collate_fn(_lowerCAmelCase : Optional[int] ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(_lowerCAmelCase , padding='max_length' , max_length=128 , return_tensors='pt' ) return tokenizer.pad(_lowerCAmelCase , padding='longest' , return_tensors='pt' ) # Instantiate dataloaders. lowercase__ : List[Any] = DataLoader(tokenized_datasets['train'] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=2 ) lowercase__ : str = DataLoader(tokenized_datasets['validation'] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=1 ) return train_dataloader, eval_dataloader
599
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class UpperCAmelCase_ ( _a , unittest.TestCase): lowerCamelCase__ : Optional[Any] = DiTPipeline lowerCamelCase__ : Dict = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS lowerCamelCase__ : Union[str, Any] = PipelineTesterMixin.required_optional_params - { "latents", "num_images_per_prompt", "callback", "callback_steps", } lowerCamelCase__ : Dict = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS lowerCamelCase__ : Optional[Any] = False def _UpperCAmelCase ( self ) -> Any: torch.manual_seed(0 ) lowercase__ : Dict = TransformeraDModel( sample_size=1_6 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=a , activation_fn='gelu-approximate' , num_embeds_ada_norm=1_0_0_0 , norm_type='ada_norm_zero' , norm_elementwise_affine=a , ) lowercase__ : int = AutoencoderKL() lowercase__ : Dict = DDIMScheduler() lowercase__ : List[str] = {'transformer': transformer.eval(), 'vae': vae.eval(), 'scheduler': scheduler} return components def _UpperCAmelCase ( self , a , a=0 ) -> Dict: if str(a ).startswith('mps' ): lowercase__ : Union[str, Any] = torch.manual_seed(a ) else: lowercase__ : List[str] = torch.Generator(device=a ).manual_seed(a ) lowercase__ : Optional[int] = { 'class_labels': [1], 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : str = 'cpu' lowercase__ : Any = self.get_dummy_components() lowercase__ : List[Any] = self.pipeline_class(**a ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowercase__ : str = self.get_dummy_inputs(a ) lowercase__ : List[str] = pipe(**a ).images lowercase__ : int = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 1_6, 1_6, 3) ) lowercase__ : Any = np.array([0.2_946, 0.6_601, 0.4_329, 0.3_296, 0.4_144, 0.5_319, 0.7_273, 0.5_013, 0.4_457] ) lowercase__ : Dict = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(a , 1e-3 ) def _UpperCAmelCase ( self ) -> Any: self._test_inference_batch_single_identical(relax_max_difference=a , expected_max_diff=1e-3 ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def _UpperCAmelCase ( self ) -> int: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @require_torch_gpu @slow class UpperCAmelCase_ ( unittest.TestCase): def _UpperCAmelCase ( self ) -> Any: super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCAmelCase ( self ) -> Dict: lowercase__ : Optional[int] = torch.manual_seed(0 ) lowercase__ : Any = DiTPipeline.from_pretrained('facebook/DiT-XL-2-256' ) pipe.to('cuda' ) lowercase__ : List[Any] = ['vase', 'umbrella', 'white shark', 'white wolf'] lowercase__ : Optional[int] = pipe.get_label_ids(a ) lowercase__ : Optional[int] = pipe(a , generator=a , num_inference_steps=4_0 , output_type='np' ).images for word, image in zip(a , a ): lowercase__ : Tuple = load_numpy( f"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy""" ) assert np.abs((expected_image - image).max() ) < 1e-2 def _UpperCAmelCase ( self ) -> Dict: lowercase__ : List[Any] = DiTPipeline.from_pretrained('facebook/DiT-XL-2-512' ) lowercase__ : Dict = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to('cuda' ) lowercase__ : Tuple = ['vase', 'umbrella'] lowercase__ : List[str] = pipe.get_label_ids(a ) lowercase__ : Optional[Any] = torch.manual_seed(0 ) lowercase__ : Optional[Any] = pipe(a , generator=a , num_inference_steps=2_5 , output_type='np' ).images for word, image in zip(a , a ): lowercase__ : int = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' f"""/dit/{word}_512.npy""" ) assert np.abs((expected_image - image).max() ) < 1e-1
599
1
import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal lowercase_ = datasets.utils.logging.get_logger(__name__) lowercase_ = ["names", "prefix"] lowercase_ = ["warn_bad_lines", "error_bad_lines", "mangle_dupe_cols"] lowercase_ = ["encoding_errors", "on_bad_lines"] lowercase_ = ["date_format"] @dataclass class SCREAMING_SNAKE_CASE__ ( datasets.BuilderConfig ): A : int = "," A : Optional[Any] = None A : Tuple = "infer" A : int = None A : Optional[Any] = None A : str = None A : Optional[int] = None A : int = None A : Dict = True A : Union[str, Any] = None A : Optional[int] = None A : List[str] = None A : List[str] = None A : Tuple = False A : Optional[Any] = None A : Optional[Any] = None A : str = None A : List[Any] = True A : Tuple = True A : str = False A : Any = True A : Tuple = None A : int = "." A : Optional[int] = None A : str = "\"" A : str = 0 A : str = None A : Optional[Any] = None A : str = None A : Tuple = None A : Optional[Any] = True A : List[Any] = True A : Dict = 0 A : Union[str, Any] = True A : int = False A : str = None A : Union[str, Any] = 10000 A : Optional[int] = None A : Dict = "strict" A : Union[str, Any] = "error" A : Dict = None def snake_case__ ( self : Optional[int] ): if self.delimiter is not None: __snake_case : Optional[Any] = self.delimiter if self.column_names is not None: __snake_case : int = self.column_names @property def snake_case__ ( self : List[Any] ): __snake_case : Union[str, Any] = { "sep": self.sep, "header": self.header, "names": self.names, "index_col": self.index_col, "usecols": self.usecols, "prefix": self.prefix, "mangle_dupe_cols": self.mangle_dupe_cols, "engine": self.engine, "converters": self.converters, "true_values": self.true_values, "false_values": self.false_values, "skipinitialspace": self.skipinitialspace, "skiprows": self.skiprows, "nrows": self.nrows, "na_values": self.na_values, "keep_default_na": self.keep_default_na, "na_filter": self.na_filter, "verbose": self.verbose, "skip_blank_lines": self.skip_blank_lines, "thousands": self.thousands, "decimal": self.decimal, "lineterminator": self.lineterminator, "quotechar": self.quotechar, "quoting": self.quoting, "escapechar": self.escapechar, "comment": self.comment, "encoding": self.encoding, "dialect": self.dialect, "error_bad_lines": self.error_bad_lines, "warn_bad_lines": self.warn_bad_lines, "skipfooter": self.skipfooter, "doublequote": self.doublequote, "memory_map": self.memory_map, "float_precision": self.float_precision, "chunksize": self.chunksize, "encoding_errors": self.encoding_errors, "on_bad_lines": self.on_bad_lines, "date_format": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , _lowerCAmelCase ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class SCREAMING_SNAKE_CASE__ ( datasets.ArrowBasedBuilder ): A : Dict = CsvConfig def snake_case__ ( self : Union[str, Any] ): return datasets.DatasetInfo(features=self.config.features ) def snake_case__ ( self : Any , _lowerCAmelCase : List[str] ): if not self.config.data_files: raise ValueError(f'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) __snake_case : Optional[Any] = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_lowerCAmelCase , (str, list, tuple) ): __snake_case : List[str] = data_files if isinstance(_lowerCAmelCase , _lowerCAmelCase ): __snake_case : str = [files] __snake_case : Union[str, Any] = [dl_manager.iter_files(_lowerCAmelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )] __snake_case : str = [] for split_name, files in data_files.items(): if isinstance(_lowerCAmelCase , _lowerCAmelCase ): __snake_case : Any = [files] __snake_case : int = [dl_manager.iter_files(_lowerCAmelCase ) for file in files] splits.append(datasets.SplitGenerator(name=_lowerCAmelCase , gen_kwargs={"""files""": files} ) ) return splits def snake_case__ ( self : Optional[Any] , _lowerCAmelCase : pa.Table ): if self.config.features is not None: __snake_case : Tuple = self.config.features.arrow_schema if all(not require_storage_cast(_lowerCAmelCase ) for feature in self.config.features.values() ): # cheaper cast __snake_case : int = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=_lowerCAmelCase ) else: # more expensive cast; allows str <-> int/float or str to Audio for example __snake_case : int = table_cast(_lowerCAmelCase , _lowerCAmelCase ) return pa_table def snake_case__ ( self : List[Any] , _lowerCAmelCase : str ): __snake_case : List[str] = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str __snake_case : Optional[int] = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(_lowerCAmelCase ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(_lowerCAmelCase ) ): __snake_case : List[Any] = pd.read_csv(_lowerCAmelCase , iterator=_lowerCAmelCase , dtype=_lowerCAmelCase , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(_lowerCAmelCase ): __snake_case : List[str] = pa.Table.from_pandas(_lowerCAmelCase ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(_lowerCAmelCase ) except ValueError as e: logger.error(f'''Failed to read file \'{file}\' with error {type(_lowerCAmelCase )}: {e}''' ) raise
704
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowercase_ = logging.get_logger(__name__) def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' if isinstance(__SCREAMING_SNAKE_CASE , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(__SCREAMING_SNAKE_CASE , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(__SCREAMING_SNAKE_CASE ): return [[videos]] raise ValueError(F'''Could not make batched video from {videos}''' ) class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): A : Any = ["pixel_values"] def __init__( self : Optional[int] , _lowerCAmelCase : bool = True , _lowerCAmelCase : Dict[str, int] = None , _lowerCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , _lowerCAmelCase : bool = True , _lowerCAmelCase : Dict[str, int] = None , _lowerCAmelCase : bool = True , _lowerCAmelCase : Union[int, float] = 1 / 2_55 , _lowerCAmelCase : bool = True , _lowerCAmelCase : Optional[Union[float, List[float]]] = None , _lowerCAmelCase : Optional[Union[float, List[float]]] = None , **_lowerCAmelCase : Union[str, Any] , ): super().__init__(**_lowerCAmelCase ) __snake_case : Tuple = size if size is not None else {"""shortest_edge""": 2_24} __snake_case : List[Any] = get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) __snake_case : int = crop_size if crop_size is not None else {"""height""": 2_24, """width""": 2_24} __snake_case : List[Any] = get_size_dict(_lowerCAmelCase , param_name="""crop_size""" ) __snake_case : Union[str, Any] = do_resize __snake_case : Optional[Any] = size __snake_case : int = do_center_crop __snake_case : Dict = crop_size __snake_case : Dict = resample __snake_case : Tuple = do_rescale __snake_case : Optional[int] = rescale_factor __snake_case : str = do_normalize __snake_case : int = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __snake_case : Union[str, Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def snake_case__ ( self : Optional[int] , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : Dict[str, int] , _lowerCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , _lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase : Optional[Any] , ): __snake_case : List[str] = get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) if "shortest_edge" in size: __snake_case : Tuple = get_resize_output_image_size(_lowerCAmelCase , size["""shortest_edge"""] , default_to_square=_lowerCAmelCase ) elif "height" in size and "width" in size: __snake_case : List[Any] = (size["""height"""], size["""width"""]) else: raise ValueError(f'''Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' ) return resize(_lowerCAmelCase , size=_lowerCAmelCase , resample=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def snake_case__ ( self : str , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : Dict[str, int] , _lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase : Optional[Any] , ): __snake_case : List[str] = get_size_dict(_lowerCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''Size must have \'height\' and \'width\' as keys. Got {size.keys()}''' ) return center_crop(_lowerCAmelCase , size=(size["""height"""], size["""width"""]) , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def snake_case__ ( self : Tuple , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : Union[int, float] , _lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase : Optional[Any] , ): return rescale(_lowerCAmelCase , scale=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def snake_case__ ( self : str , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : Union[float, List[float]] , _lowerCAmelCase : Union[float, List[float]] , _lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase : Dict , ): return normalize(_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def snake_case__ ( self : Tuple , _lowerCAmelCase : ImageInput , _lowerCAmelCase : bool = None , _lowerCAmelCase : Dict[str, int] = None , _lowerCAmelCase : PILImageResampling = None , _lowerCAmelCase : bool = None , _lowerCAmelCase : Dict[str, int] = None , _lowerCAmelCase : bool = None , _lowerCAmelCase : float = None , _lowerCAmelCase : bool = None , _lowerCAmelCase : Optional[Union[float, List[float]]] = None , _lowerCAmelCase : Optional[Union[float, List[float]]] = None , _lowerCAmelCase : Optional[ChannelDimension] = ChannelDimension.FIRST , ): if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. __snake_case : Tuple = to_numpy_array(_lowerCAmelCase ) if do_resize: __snake_case : List[Any] = self.resize(image=_lowerCAmelCase , size=_lowerCAmelCase , resample=_lowerCAmelCase ) if do_center_crop: __snake_case : Dict = self.center_crop(_lowerCAmelCase , size=_lowerCAmelCase ) if do_rescale: __snake_case : int = self.rescale(image=_lowerCAmelCase , scale=_lowerCAmelCase ) if do_normalize: __snake_case : List[Any] = self.normalize(image=_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase ) __snake_case : Optional[Any] = to_channel_dimension_format(_lowerCAmelCase , _lowerCAmelCase ) return image def snake_case__ ( self : List[str] , _lowerCAmelCase : ImageInput , _lowerCAmelCase : bool = None , _lowerCAmelCase : Dict[str, int] = None , _lowerCAmelCase : PILImageResampling = None , _lowerCAmelCase : bool = None , _lowerCAmelCase : Dict[str, int] = None , _lowerCAmelCase : bool = None , _lowerCAmelCase : float = None , _lowerCAmelCase : bool = None , _lowerCAmelCase : Optional[Union[float, List[float]]] = None , _lowerCAmelCase : Optional[Union[float, List[float]]] = None , _lowerCAmelCase : Optional[Union[str, TensorType]] = None , _lowerCAmelCase : ChannelDimension = ChannelDimension.FIRST , **_lowerCAmelCase : Union[str, Any] , ): __snake_case : Optional[int] = do_resize if do_resize is not None else self.do_resize __snake_case : Any = resample if resample is not None else self.resample __snake_case : Tuple = do_center_crop if do_center_crop is not None else self.do_center_crop __snake_case : List[Any] = do_rescale if do_rescale is not None else self.do_rescale __snake_case : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor __snake_case : Optional[int] = do_normalize if do_normalize is not None else self.do_normalize __snake_case : List[str] = image_mean if image_mean is not None else self.image_mean __snake_case : List[str] = image_std if image_std is not None else self.image_std __snake_case : Optional[Any] = size if size is not None else self.size __snake_case : int = get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) __snake_case : Any = crop_size if crop_size is not None else self.crop_size __snake_case : List[Any] = get_size_dict(_lowerCAmelCase , param_name="""crop_size""" ) if not valid_images(_lowerCAmelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) __snake_case : Optional[Any] = make_batched(_lowerCAmelCase ) __snake_case : int = [ [ self._preprocess_image( image=_lowerCAmelCase , do_resize=_lowerCAmelCase , size=_lowerCAmelCase , resample=_lowerCAmelCase , do_center_crop=_lowerCAmelCase , crop_size=_lowerCAmelCase , do_rescale=_lowerCAmelCase , rescale_factor=_lowerCAmelCase , do_normalize=_lowerCAmelCase , image_mean=_lowerCAmelCase , image_std=_lowerCAmelCase , data_format=_lowerCAmelCase , ) for img in video ] for video in videos ] __snake_case : Optional[int] = {"""pixel_values""": videos} return BatchFeature(data=_lowerCAmelCase , tensor_type=_lowerCAmelCase )
390
0
'''simple docstring''' from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { '''huggingface/informer-tourism-monthly''': ( '''https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json''' ), # See all Informer models at https://huggingface.co/models?filter=informer } class lowerCAmelCase ( A ): lowerCAmelCase_ = "informer" lowerCAmelCase_ = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers", } def __init__( self : List[Any] , __lowercase : Optional[int] = None , __lowercase : Optional[int] = None , __lowercase : str = "student_t" , __lowercase : str = "nll" , __lowercase : int = 1 , __lowercase : List[int] = None , __lowercase : Optional[Union[str, bool]] = "mean" , __lowercase : int = 0 , __lowercase : int = 0 , __lowercase : int = 0 , __lowercase : int = 0 , __lowercase : Optional[List[int]] = None , __lowercase : Optional[List[int]] = None , __lowercase : int = 64 , __lowercase : int = 32 , __lowercase : int = 32 , __lowercase : int = 2 , __lowercase : int = 2 , __lowercase : int = 2 , __lowercase : int = 2 , __lowercase : bool = True , __lowercase : str = "gelu" , __lowercase : float = 0.0_5 , __lowercase : float = 0.1 , __lowercase : float = 0.1 , __lowercase : float = 0.1 , __lowercase : float = 0.1 , __lowercase : int = 100 , __lowercase : float = 0.0_2 , __lowercase : str=True , __lowercase : str = "prob" , __lowercase : int = 5 , __lowercase : bool = True , **__lowercase : str , ): """simple docstring""" __lowercase =prediction_length __lowercase =context_length or prediction_length __lowercase =distribution_output __lowercase =loss __lowercase =input_size __lowercase =num_time_features __lowercase =lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] __lowercase =scaling __lowercase =num_dynamic_real_features __lowercase =num_static_real_features __lowercase =num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(__lowercase ) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`' ) __lowercase =cardinality else: __lowercase =[0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(__lowercase ) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`' ) __lowercase =embedding_dimension else: __lowercase =[min(50 , (cat + 1) // 2 ) for cat in self.cardinality] __lowercase =num_parallel_samples # Transformer architecture configuration __lowercase =input_size * len(self.lags_sequence ) + self._number_of_features __lowercase =d_model __lowercase =encoder_attention_heads __lowercase =decoder_attention_heads __lowercase =encoder_ffn_dim __lowercase =decoder_ffn_dim __lowercase =encoder_layers __lowercase =decoder_layers __lowercase =dropout __lowercase =attention_dropout __lowercase =activation_dropout __lowercase =encoder_layerdrop __lowercase =decoder_layerdrop __lowercase =activation_function __lowercase =init_std __lowercase =use_cache # Informer __lowercase =attention_type __lowercase =sampling_factor __lowercase =distil super().__init__(is_encoder_decoder=__lowercase , **__lowercase ) @property def snake_case ( self : Optional[int] ): """simple docstring""" return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
119
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCAmelCase = { '''configuration_owlvit''': [ '''OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''OwlViTConfig''', '''OwlViTOnnxConfig''', '''OwlViTTextConfig''', '''OwlViTVisionConfig''', ], '''processing_owlvit''': ['''OwlViTProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = ['''OwlViTFeatureExtractor'''] UpperCAmelCase = ['''OwlViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ '''OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''OwlViTModel''', '''OwlViTPreTrainedModel''', '''OwlViTTextModel''', '''OwlViTVisionModel''', '''OwlViTForObjectDetection''', ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
119
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer __UpperCamelCase : int = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast __UpperCamelCase : List[Any] = TaTokenizerFast __UpperCamelCase : Dict = {"configuration_mt5": ["MT5Config", "MT5OnnxConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Any = [ "MT5EncoderModel", "MT5ForConditionalGeneration", "MT5ForQuestionAnswering", "MT5Model", "MT5PreTrainedModel", "MT5Stack", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : str = ["TFMT5EncoderModel", "TFMT5ForConditionalGeneration", "TFMT5Model"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[int] = ["FlaxMT5EncoderModel", "FlaxMT5ForConditionalGeneration", "FlaxMT5Model"] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys __UpperCamelCase : Tuple = _LazyModule( __name__, globals()["__file__"], _import_structure, extra_objects={"MT5Tokenizer": MTaTokenizer, "MT5TokenizerFast": MTaTokenizerFast}, module_spec=__spec__, )
712
import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class __magic_name__ ( __lowerCAmelCase , unittest.TestCase): A: Optional[int] = BarthezTokenizer A: Optional[int] = BarthezTokenizerFast A: str = True A: Optional[int] = True def UpperCAmelCase__ ( self : List[Any] ) -> str: '''simple docstring''' super().setUp() UpperCamelCase__ : Optional[Any] = BarthezTokenizerFast.from_pretrained('''moussaKam/mbarthez''' ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=lowerCamelCase__ ) UpperCamelCase__ : int = tokenizer def UpperCAmelCase__ ( self : Union[str, Any] ) -> str: '''simple docstring''' UpperCamelCase__ : Optional[int] = '''<pad>''' UpperCamelCase__ : List[str] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase__ ) , lowerCamelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase__ ) , lowerCamelCase__ ) def UpperCAmelCase__ ( self : int ) -> Tuple: '''simple docstring''' UpperCamelCase__ : int = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''<mask>''' ) self.assertEqual(len(lowerCamelCase__ ) , 101122 ) def UpperCAmelCase__ ( self : Optional[Any] ) -> str: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 101122 ) @require_torch def UpperCAmelCase__ ( self : Dict ) -> Tuple: '''simple docstring''' UpperCamelCase__ : Dict = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] UpperCamelCase__ : Any = [0, 57, 3018, 70307, 91, 2] UpperCamelCase__ : Optional[int] = self.tokenizer( lowerCamelCase__ , max_length=len(lowerCamelCase__ ) , padding=lowerCamelCase__ , truncation=lowerCamelCase__ , return_tensors='''pt''' ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) UpperCamelCase__ : List[Any] = batch.input_ids.tolist()[0] self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) def UpperCAmelCase__ ( self : str ) -> List[Any]: '''simple docstring''' if not self.test_rust_tokenizer: return UpperCamelCase__ : List[Any] = self.get_tokenizer() UpperCamelCase__ : Optional[int] = self.get_rust_tokenizer() UpperCamelCase__ : Any = '''I was born in 92000, and this is falsé.''' UpperCamelCase__ : List[str] = tokenizer.tokenize(lowerCamelCase__ ) UpperCamelCase__ : Tuple = rust_tokenizer.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ : Tuple = tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) UpperCamelCase__ : str = rust_tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ : Tuple = self.get_rust_tokenizer() UpperCamelCase__ : Optional[int] = tokenizer.encode(lowerCamelCase__ ) UpperCamelCase__ : str = rust_tokenizer.encode(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) @slow def UpperCAmelCase__ ( self : List[str] ) -> Dict: '''simple docstring''' UpperCamelCase__ : Optional[int] = {'''input_ids''': [[0, 490, 14328, 4507, 354, 47, 43669, 95, 25, 78117, 20215, 19779, 190, 22, 400, 4, 35343, 80310, 603, 86, 24937, 105, 33438, 94762, 196, 39642, 7, 15, 15933, 173, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 10534, 87, 25, 66, 3358, 196, 55289, 8, 82961, 81, 2204, 75203, 7, 15, 763, 12956, 216, 178, 14328, 9595, 1377, 69693, 7, 448, 71021, 196, 18106, 1437, 13974, 108, 9083, 4, 49315, 7, 39, 86, 1326, 2793, 46333, 4, 448, 196, 74588, 7, 49315, 7, 39, 21, 822, 38470, 74, 21, 66723, 62480, 8, 22050, 5, 2]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. UpperCamelCase__ : int = [ '''Le transformeur est un modèle d\'apprentissage profond introduit en 2017, ''' '''utilisé principalement dans le domaine du traitement automatique des langues (TAL).''', '''À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus ''' '''pour gérer des données séquentielles, telles que le langage naturel, pour des tâches ''' '''telles que la traduction et la synthèse de texte.''', ] self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase__ , model_name='''moussaKam/mbarthez''' , revision='''c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6''' , sequences=lowerCamelCase__ , )
106
0
'''simple docstring''' import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params lowercase__ =getLogger(__name__) lowercase__ ='cuda' if torch.cuda.is_available() else 'cpu' def UpperCamelCase_ ( A__ , A__ , A__ , A__ = 8 , A__ = DEFAULT_DEVICE , A__=False , A__="summarization" , A__=None , **A__ , ): a_ = Path(A__ ).open("""w""" , encoding="""utf-8""" ) a_ = str(A__ ) a_ = AutoModelForSeqaSeqLM.from_pretrained(A__ ).to(A__ ) if fpaa: a_ = model.half() a_ = AutoTokenizer.from_pretrained(A__ ) logger.info(F'''Inferred tokenizer type: {tokenizer.__class__}''' ) # if this is wrong, check config.model_type. a_ = time.time() # update config with task specific params use_task_specific_params(A__ , A__ ) if prefix is None: a_ = prefix or getattr(model.config , """prefix""" , """""" ) or """""" for examples_chunk in tqdm(list(chunks(A__ , A__ ) ) ): a_ = [prefix + text for text in examples_chunk] a_ = tokenizer(A__ , return_tensors="""pt""" , truncation=A__ , padding="""longest""" ).to(A__ ) a_ = model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **A__ , ) a_ = tokenizer.batch_decode(A__ , skip_special_tokens=A__ , clean_up_tokenization_spaces=A__ ) for hypothesis in dec: fout.write(hypothesis + """\n""" ) fout.flush() fout.close() a_ = int(time.time() - start_time ) # seconds a_ = len(A__ ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def UpperCamelCase_ ( ): return datetime.datetime.now().strftime("""%Y-%m-%d %H:%M:%S""" ) def UpperCamelCase_ ( A__=True ): a_ = argparse.ArgumentParser() parser.add_argument("""model_name""" , type=A__ , help="""like facebook/bart-large-cnn,t5-base, etc.""" ) parser.add_argument("""input_path""" , type=A__ , help="""like cnn_dm/test.source""" ) parser.add_argument("""save_path""" , type=A__ , help="""where to save summaries""" ) parser.add_argument("""--reference_path""" , type=A__ , required=A__ , help="""like cnn_dm/test.target""" ) parser.add_argument("""--score_path""" , type=A__ , required=A__ , default="""metrics.json""" , help="""where to save metrics""" ) parser.add_argument("""--device""" , type=A__ , required=A__ , default=A__ , help="""cuda, cuda:1, cpu etc.""" ) parser.add_argument( """--prefix""" , type=A__ , required=A__ , default=A__ , help="""will be added to the begininng of src examples""" ) parser.add_argument("""--task""" , type=A__ , default="""summarization""" , help="""used for task_specific_params + metrics""" ) parser.add_argument("""--bs""" , type=A__ , default=8 , required=A__ , help="""batch size""" ) parser.add_argument( """--n_obs""" , type=A__ , default=-1 , required=A__ , help="""How many observations. Defaults to all.""" ) parser.add_argument("""--fp16""" , action="""store_true""" ) parser.add_argument("""--dump-args""" , action="""store_true""" , help="""print the custom hparams with the results""" ) parser.add_argument( """--info""" , nargs="""?""" , type=A__ , const=datetime_now() , help=( """use in conjunction w/ --dump-args to print with the results whatever other info you'd like, e.g.""" """ lang=en-ru. If no value is passed, the current datetime string will be used.""" ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate a_ , a_ = parser.parse_known_args() a_ = parse_numeric_n_bool_cl_kwargs(A__ ) if parsed_args and verbose: print(F'''parsed the following generate kwargs: {parsed_args}''' ) a_ = [""" """ + x.rstrip() if """t5""" in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: a_ = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=A__ ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(F'''score_path {args.score_path} will be overwritten unless you type ctrl-c.''' ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError("""Can't mix --fp16 and --device cpu""" ) a_ = generate_summaries_or_translations( A__ , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **A__ , ) if args.reference_path is None: return {} # Compute scores a_ = calculate_bleu if """translation""" in args.task else calculate_rouge a_ = [x.rstrip() for x in open(args.save_path ).readlines()] a_ = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(A__ )] a_ = score_fn(A__ , A__ ) scores.update(A__ ) if args.dump_args: scores.update(A__ ) if args.info: a_ = args.info if verbose: print(A__ ) if args.score_path is not None: json.dump(A__ , open(args.score_path , """w""" ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
263
'''simple docstring''' import math def UpperCamelCase_ ( A__ ): return math.sqrt(A__ ) * math.sqrt(A__ ) == num def UpperCamelCase_ ( A__ ): a_ = 0 a_ = n while left <= right: a_ = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: a_ = mid - 1 else: a_ = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
263
1
'''simple docstring''' import os import tempfile import unittest from transformers import NezhaConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, ) from transformers.models.nezha.modeling_nezha import NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST class __SCREAMING_SNAKE_CASE : def __init__( self , lowerCamelCase , lowerCamelCase=13 , lowerCamelCase=7 , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=99 , lowerCamelCase=32 , lowerCamelCase=5 , lowerCamelCase=4 , lowerCamelCase=37 , lowerCamelCase="gelu" , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=128 , lowerCamelCase=32 , lowerCamelCase=16 , lowerCamelCase=2 , lowerCamelCase=0.02 , lowerCamelCase=3 , lowerCamelCase=4 , lowerCamelCase=None , ) ->int: '''simple docstring''' __a = parent __a = batch_size __a = seq_length __a = is_training __a = use_input_mask __a = use_token_type_ids __a = use_labels __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = intermediate_size __a = hidden_act __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = type_vocab_size __a = type_sequence_label_size __a = initializer_range __a = num_labels __a = num_choices __a = scope def __UpperCamelCase ( self ) ->Any: '''simple docstring''' __a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __a = None if self.use_input_mask: __a = random_attention_mask([self.batch_size, self.seq_length] ) __a = None if self.use_token_type_ids: __a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __a = None __a = None __a = None if self.use_labels: __a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __a = ids_tensor([self.batch_size] , self.num_choices ) __a = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCamelCase ( self ) ->Dict: '''simple docstring''' return NezhaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase , initializer_range=self.initializer_range , ) def __UpperCamelCase ( self ) ->Dict: '''simple docstring''' ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) = self.prepare_config_and_inputs() __a = True __a = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __a = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def __UpperCamelCase ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) ->int: '''simple docstring''' __a = NezhaModel(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __a = model(lowerCamelCase , attention_mask=lowerCamelCase , token_type_ids=lowerCamelCase ) __a = model(lowerCamelCase , token_type_ids=lowerCamelCase ) __a = model(lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __UpperCamelCase ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ) ->int: '''simple docstring''' __a = True __a = NezhaModel(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __a = model( lowerCamelCase , attention_mask=lowerCamelCase , token_type_ids=lowerCamelCase , encoder_hidden_states=lowerCamelCase , encoder_attention_mask=lowerCamelCase , ) __a = model( lowerCamelCase , attention_mask=lowerCamelCase , token_type_ids=lowerCamelCase , encoder_hidden_states=lowerCamelCase , ) __a = model(lowerCamelCase , attention_mask=lowerCamelCase , token_type_ids=lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __UpperCamelCase ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) ->Tuple: '''simple docstring''' __a = NezhaForMaskedLM(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __a = model(lowerCamelCase , attention_mask=lowerCamelCase , token_type_ids=lowerCamelCase , labels=lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCamelCase ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) ->List[str]: '''simple docstring''' __a = NezhaForNextSentencePrediction(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __a = model( lowerCamelCase , attention_mask=lowerCamelCase , token_type_ids=lowerCamelCase , labels=lowerCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def __UpperCamelCase ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) ->Dict: '''simple docstring''' __a = NezhaForPreTraining(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __a = model( lowerCamelCase , attention_mask=lowerCamelCase , token_type_ids=lowerCamelCase , labels=lowerCamelCase , next_sentence_label=lowerCamelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def __UpperCamelCase ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) ->Any: '''simple docstring''' __a = NezhaForQuestionAnswering(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __a = model( lowerCamelCase , attention_mask=lowerCamelCase , token_type_ids=lowerCamelCase , start_positions=lowerCamelCase , end_positions=lowerCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __UpperCamelCase ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) ->List[Any]: '''simple docstring''' __a = self.num_labels __a = NezhaForSequenceClassification(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __a = model(lowerCamelCase , attention_mask=lowerCamelCase , token_type_ids=lowerCamelCase , labels=lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCamelCase ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) ->Union[str, Any]: '''simple docstring''' __a = self.num_labels __a = NezhaForTokenClassification(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __a = model(lowerCamelCase , attention_mask=lowerCamelCase , token_type_ids=lowerCamelCase , labels=lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __UpperCamelCase ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) ->Optional[int]: '''simple docstring''' __a = self.num_choices __a = NezhaForMultipleChoice(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __a = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __a = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __a = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __a = model( lowerCamelCase , attention_mask=lowerCamelCase , token_type_ids=lowerCamelCase , labels=lowerCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __UpperCamelCase ( self ) ->Any: '''simple docstring''' __a = self.prepare_config_and_inputs() ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) = config_and_inputs __a = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): __a =( ( NezhaModel, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, ) if is_torch_available() else () ) __a =( { "feature-extraction": NezhaModel, "fill-mask": NezhaForMaskedLM, "question-answering": NezhaForQuestionAnswering, "text-classification": NezhaForSequenceClassification, "token-classification": NezhaForTokenClassification, "zero-shot": NezhaForSequenceClassification, } if is_torch_available() else {} ) __a =True def __UpperCamelCase ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase=False ) ->Any: '''simple docstring''' __a = super()._prepare_for_class(lowerCamelCase , lowerCamelCase , return_labels=lowerCamelCase ) if return_labels: if model_class in get_values(lowerCamelCase ): __a = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=lowerCamelCase ) __a = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCamelCase ) return inputs_dict def __UpperCamelCase ( self ) ->Dict: '''simple docstring''' __a = NezhaModelTester(self ) __a = ConfigTester(self , config_class=lowerCamelCase , hidden_size=37 ) def __UpperCamelCase ( self ) ->Optional[int]: '''simple docstring''' self.config_tester.run_common_tests() def __UpperCamelCase ( self ) ->Optional[int]: '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) def __UpperCamelCase ( self ) ->str: '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*lowerCamelCase ) def __UpperCamelCase ( self ) ->List[Any]: '''simple docstring''' # This regression test was failing with PyTorch < 1.3 ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) = self.model_tester.prepare_config_and_inputs_for_decoder() __a = None self.model_tester.create_and_check_model_as_decoder( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ) def __UpperCamelCase ( self ) ->str: '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCamelCase ) def __UpperCamelCase ( self ) ->Optional[Any]: '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowerCamelCase ) def __UpperCamelCase ( self ) ->Dict: '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_next_sequence_prediction(*lowerCamelCase ) def __UpperCamelCase ( self ) ->List[Any]: '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowerCamelCase ) def __UpperCamelCase ( self ) ->int: '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCamelCase ) def __UpperCamelCase ( self ) ->Optional[Any]: '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCamelCase ) def __UpperCamelCase ( self ) ->Union[str, Any]: '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCamelCase ) @slow def __UpperCamelCase ( self ) ->Optional[int]: '''simple docstring''' for model_name in NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a = NezhaModel.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) @slow @require_torch_gpu def __UpperCamelCase ( self ) ->List[str]: '''simple docstring''' __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # NezhaForMultipleChoice behaves incorrectly in JIT environments. if model_class == NezhaForMultipleChoice: return __a = True __a = model_class(config=lowerCamelCase ) __a = self._prepare_for_class(lowerCamelCase , lowerCamelCase ) __a = torch.jit.trace( lowerCamelCase , (inputs_dict['input_ids'].to('cpu' ), inputs_dict['attention_mask'].to('cpu' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(lowerCamelCase , os.path.join(lowerCamelCase , 'bert.pt' ) ) __a = torch.jit.load(os.path.join(lowerCamelCase , 'bert.pt' ) , map_location=lowerCamelCase ) loaded(inputs_dict['input_ids'].to(lowerCamelCase ) , inputs_dict['attention_mask'].to(lowerCamelCase ) ) @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): @slow def __UpperCamelCase ( self ) ->List[str]: '''simple docstring''' __a = NezhaModel.from_pretrained('sijunhe/nezha-cn-base' ) __a = torch.tensor([[0, 1, 2, 3, 4, 5]] ) __a = torch.tensor([[0, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __a = model(lowerCamelCase , attention_mask=lowerCamelCase )[0] __a = torch.Size((1, 6, 768) ) self.assertEqual(output.shape , lowerCamelCase ) __a = torch.tensor([[[0.0685, 0.2441, 0.1102], [0.0600, 0.1906, 0.1349], [0.0221, 0.0819, 0.0586]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , lowerCamelCase , atol=1e-4 ) ) @slow def __UpperCamelCase ( self ) ->List[Any]: '''simple docstring''' __a = NezhaForMaskedLM.from_pretrained('sijunhe/nezha-cn-base' ) __a = torch.tensor([[0, 1, 2, 3, 4, 5]] ) __a = torch.tensor([[1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __a = model(lowerCamelCase , attention_mask=lowerCamelCase )[0] __a = torch.Size((1, 6, 2_1128) ) self.assertEqual(output.shape , lowerCamelCase ) __a = torch.tensor( [[-2.7939, -1.7902, -2.2189], [-2.8585, -1.8908, -2.3723], [-2.6499, -1.7750, -2.2558]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , lowerCamelCase , atol=1e-4 ) )
270
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCamelCase : Dict = logging.get_logger(__name__) __UpperCamelCase : Optional[int] = { """facebook/xmod-base""": """https://huggingface.co/facebook/xmod-base/resolve/main/config.json""", """facebook/xmod-large-prenorm""": """https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json""", """facebook/xmod-base-13-125k""": """https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json""", """facebook/xmod-base-30-125k""": """https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json""", """facebook/xmod-base-30-195k""": """https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json""", """facebook/xmod-base-60-125k""": """https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json""", """facebook/xmod-base-60-265k""": """https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json""", """facebook/xmod-base-75-125k""": """https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json""", """facebook/xmod-base-75-269k""": """https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json""", } class __SCREAMING_SNAKE_CASE ( _lowerCAmelCase ): __a ="xmod" def __init__( self , lowerCamelCase=3_0522 , lowerCamelCase=768 , lowerCamelCase=12 , lowerCamelCase=12 , lowerCamelCase=3072 , lowerCamelCase="gelu" , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=512 , lowerCamelCase=2 , lowerCamelCase=0.02 , lowerCamelCase=1e-12 , lowerCamelCase=1 , lowerCamelCase=0 , lowerCamelCase=2 , lowerCamelCase="absolute" , lowerCamelCase=True , lowerCamelCase=None , lowerCamelCase=False , lowerCamelCase=2 , lowerCamelCase=False , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=("en_XX",) , lowerCamelCase=None , **lowerCamelCase , ) ->Any: '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase , bos_token_id=lowerCamelCase , eos_token_id=lowerCamelCase , **lowerCamelCase ) __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = hidden_act __a = intermediate_size __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = type_vocab_size __a = initializer_range __a = layer_norm_eps __a = position_embedding_type __a = use_cache __a = classifier_dropout __a = pre_norm __a = adapter_reduction_factor __a = adapter_layer_norm __a = adapter_reuse_layer_norm __a = ln_before_adapter __a = list(lowerCamelCase ) __a = default_language class __SCREAMING_SNAKE_CASE ( _lowerCAmelCase ): @property def __UpperCamelCase ( self ) ->Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": __a = {0: 'batch', 1: 'choice', 2: 'sequence'} else: __a = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
270
1
import unittest import numpy as np import torch from diffusers import PNDMPipeline, PNDMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class lowercase ( unittest.TestCase): """simple docstring""" @property def _SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[int]: torch.manual_seed(0 ) UpperCAmelCase_= UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) return model def _SCREAMING_SNAKE_CASE ( self : int ) -> Tuple: UpperCAmelCase_= self.dummy_uncond_unet UpperCAmelCase_= PNDMScheduler() UpperCAmelCase_= PNDMPipeline(unet=lowercase_ , scheduler=lowercase_ ) pndm.to(lowercase_ ) pndm.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase_= torch.manual_seed(0 ) UpperCAmelCase_= pndm(generator=lowercase_ , num_inference_steps=20 , output_type="""numpy""" ).images UpperCAmelCase_= torch.manual_seed(0 ) UpperCAmelCase_= pndm(generator=lowercase_ , num_inference_steps=20 , output_type="""numpy""" , return_dict=lowercase_ )[0] UpperCAmelCase_= image[0, -3:, -3:, -1] UpperCAmelCase_= image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCAmelCase_= np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class lowercase ( unittest.TestCase): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> int: UpperCAmelCase_= "google/ddpm-cifar10-32" UpperCAmelCase_= UNetaDModel.from_pretrained(lowercase_ ) UpperCAmelCase_= PNDMScheduler() UpperCAmelCase_= PNDMPipeline(unet=lowercase_ , scheduler=lowercase_ ) pndm.to(lowercase_ ) pndm.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase_= torch.manual_seed(0 ) UpperCAmelCase_= pndm(generator=lowercase_ , output_type="""numpy""" ).images UpperCAmelCase_= image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCAmelCase_= np.array([0.1_564, 0.14_645, 0.1_406, 0.14_715, 0.12_425, 0.14_045, 0.13_115, 0.12_175, 0.125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
593
from copy import deepcopy from typing import Optional, Union import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_tf_available, is_torch_available if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf class lowercase_ ( __snake_case ): _lowerCamelCase = ['image_processor'] _lowerCamelCase = 'SamImageProcessor' def __init__( self , lowercase_ ): super().__init__(lowercase_ ) _snake_case : Optional[Any] = self.image_processor _snake_case : Tuple = -10 _snake_case : str = self.image_processor.size["longest_edge"] def __call__( self , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_ = None , **lowercase_ , ): _snake_case : List[Any] = self.image_processor( lowercase_ , return_tensors=lowercase_ , **lowercase_ , ) # pop arguments that are not used in the foward but used nevertheless _snake_case : Any = encoding_image_processor["original_sizes"] if hasattr(lowercase_ , "numpy" ): # Checks if Torch or TF tensor _snake_case : int = original_sizes.numpy() _snake_case ,_snake_case ,_snake_case : Union[str, Any] = self._check_and_preprocess_points( input_points=lowercase_ , input_labels=lowercase_ , input_boxes=lowercase_ , ) _snake_case : Dict = self._normalize_and_convert( lowercase_ , lowercase_ , input_points=lowercase_ , input_labels=lowercase_ , input_boxes=lowercase_ , return_tensors=lowercase_ , ) return encoding_image_processor def UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_="pt" , ): if input_points is not None: if len(lowercase_ ) != len(lowercase_ ): _snake_case : int = [ self._normalize_coordinates(self.target_size , lowercase_ , original_sizes[0] ) for point in input_points ] else: _snake_case : Dict = [ self._normalize_coordinates(self.target_size , lowercase_ , lowercase_ ) for point, original_size in zip(lowercase_ , lowercase_ ) ] # check that all arrays have the same shape if not all(point.shape == input_points[0].shape for point in input_points ): if input_labels is not None: _snake_case ,_snake_case : int = self._pad_points_and_labels(lowercase_ , lowercase_ ) _snake_case : Any = np.array(lowercase_ ) if input_labels is not None: _snake_case : Optional[Any] = np.array(lowercase_ ) if input_boxes is not None: if len(lowercase_ ) != len(lowercase_ ): _snake_case : Optional[Any] = [ self._normalize_coordinates(self.target_size , lowercase_ , original_sizes[0] , is_bounding_box=lowercase_ ) for box in input_boxes ] else: _snake_case : List[str] = [ self._normalize_coordinates(self.target_size , lowercase_ , lowercase_ , is_bounding_box=lowercase_ ) for box, original_size in zip(lowercase_ , lowercase_ ) ] _snake_case : Tuple = np.array(lowercase_ ) if input_boxes is not None: if return_tensors == "pt": _snake_case : List[str] = torch.from_numpy(lowercase_ ) # boxes batch size of 1 by default _snake_case : Optional[Any] = input_boxes.unsqueeze(1 ) if len(input_boxes.shape ) != 3 else input_boxes elif return_tensors == "tf": _snake_case : List[str] = tf.convert_to_tensor(lowercase_ ) # boxes batch size of 1 by default _snake_case : Optional[int] = tf.expand_dims(lowercase_ , 1 ) if len(input_boxes.shape ) != 3 else input_boxes encoding_image_processor.update({"input_boxes": input_boxes} ) if input_points is not None: if return_tensors == "pt": _snake_case : Tuple = torch.from_numpy(lowercase_ ) # point batch size of 1 by default _snake_case : int = input_points.unsqueeze(1 ) if len(input_points.shape ) != 4 else input_points elif return_tensors == "tf": _snake_case : List[str] = tf.convert_to_tensor(lowercase_ ) # point batch size of 1 by default _snake_case : Tuple = tf.expand_dims(lowercase_ , 1 ) if len(input_points.shape ) != 4 else input_points encoding_image_processor.update({"input_points": input_points} ) if input_labels is not None: if return_tensors == "pt": _snake_case : Dict = torch.from_numpy(lowercase_ ) # point batch size of 1 by default _snake_case : str = input_labels.unsqueeze(1 ) if len(input_labels.shape ) != 3 else input_labels elif return_tensors == "tf": _snake_case : Optional[Any] = tf.convert_to_tensor(lowercase_ ) # point batch size of 1 by default _snake_case : List[Any] = tf.expand_dims(lowercase_ , 1 ) if len(input_labels.shape ) != 3 else input_labels encoding_image_processor.update({"input_labels": input_labels} ) return encoding_image_processor def UpperCamelCase ( self , lowercase_ , lowercase_ ): _snake_case : List[Any] = max([point.shape[0] for point in input_points] ) _snake_case : List[str] = [] for i, point in enumerate(lowercase_ ): if point.shape[0] != expected_nb_points: _snake_case : Optional[Any] = np.concatenate( [point, np.zeros((expected_nb_points - point.shape[0], 2) ) + self.point_pad_value] , axis=0 ) _snake_case : Union[str, Any] = np.append(input_labels[i] , [self.point_pad_value] ) processed_input_points.append(lowercase_ ) _snake_case : Optional[Any] = processed_input_points return input_points, input_labels def UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_=False ): _snake_case ,_snake_case : Optional[int] = original_size _snake_case ,_snake_case : List[str] = self.image_processor._get_preprocess_shape(lowercase_ , longest_edge=lowercase_ ) _snake_case : Optional[Any] = deepcopy(lowercase_ ).astype(lowercase_ ) if is_bounding_box: _snake_case : str = coords.reshape(-1 , 2 , 2 ) _snake_case : Optional[Any] = coords[..., 0] * (new_w / old_w) _snake_case : Dict = coords[..., 1] * (new_h / old_h) if is_bounding_box: _snake_case : Optional[Any] = coords.reshape(-1 , 4 ) return coords def UpperCamelCase ( self , lowercase_=None , lowercase_=None , lowercase_=None , ): if input_points is not None: if hasattr(lowercase_ , "numpy" ): # Checks for TF or Torch tensor _snake_case : Union[str, Any] = input_points.numpy().tolist() if not isinstance(lowercase_ , lowercase_ ) or not isinstance(input_points[0] , lowercase_ ): raise ValueError("Input points must be a list of list of floating points." ) _snake_case : Any = [np.array(lowercase_ ) for input_point in input_points] else: _snake_case : Optional[int] = None if input_labels is not None: if hasattr(lowercase_ , "numpy" ): _snake_case : Tuple = input_labels.numpy().tolist() if not isinstance(lowercase_ , lowercase_ ) or not isinstance(input_labels[0] , lowercase_ ): raise ValueError("Input labels must be a list of list integers." ) _snake_case : Tuple = [np.array(lowercase_ ) for label in input_labels] else: _snake_case : Optional[Any] = None if input_boxes is not None: if hasattr(lowercase_ , "numpy" ): _snake_case : List[str] = input_boxes.numpy().tolist() if ( not isinstance(lowercase_ , lowercase_ ) or not isinstance(input_boxes[0] , lowercase_ ) or not isinstance(input_boxes[0][0] , lowercase_ ) ): raise ValueError("Input boxes must be a list of list of list of floating points." ) _snake_case : List[Any] = [np.array(lowercase_ ).astype(np.floataa ) for box in input_boxes] else: _snake_case : Optional[int] = None return input_points, input_labels, input_boxes @property def UpperCamelCase ( self ): _snake_case : Union[str, Any] = self.image_processor.model_input_names return list(dict.fromkeys(lowercase_ ) ) def UpperCamelCase ( self , *lowercase_ , **lowercase_ ): return self.image_processor.post_process_masks(*lowercase_ , **lowercase_ )
670
0
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class _A ( unittest.TestCase ): '''simple docstring''' _lowercase = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING _lowercase = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def __lowerCAmelCase ( self : Union[str, Any] , lowerCamelCase : Tuple , lowerCamelCase : List[str] , lowerCamelCase : Dict )-> str: snake_case__ : List[Any] = TextaTextGenerationPipeline(model=lowerCamelCase , tokenizer=lowerCamelCase ) return generator, ["Something to write", "Something else"] def __lowerCAmelCase ( self : Any , lowerCamelCase : int , lowerCamelCase : Any )-> str: snake_case__ : Tuple = generator("""Something there""" ) self.assertEqual(lowerCamelCase , [{"""generated_text""": ANY(lowerCamelCase )}] ) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]["""generated_text"""].startswith("""Something there""" ) ) snake_case__ : Any = generator(["""This is great !""", """Something else"""] , num_return_sequences=2 , do_sample=lowerCamelCase ) self.assertEqual( lowerCamelCase , [ [{"""generated_text""": ANY(lowerCamelCase )}, {"""generated_text""": ANY(lowerCamelCase )}], [{"""generated_text""": ANY(lowerCamelCase )}, {"""generated_text""": ANY(lowerCamelCase )}], ] , ) snake_case__ : int = generator( ["""This is great !""", """Something else"""] , num_return_sequences=2 , batch_size=2 , do_sample=lowerCamelCase ) self.assertEqual( lowerCamelCase , [ [{"""generated_text""": ANY(lowerCamelCase )}, {"""generated_text""": ANY(lowerCamelCase )}], [{"""generated_text""": ANY(lowerCamelCase )}, {"""generated_text""": ANY(lowerCamelCase )}], ] , ) with self.assertRaises(lowerCamelCase ): generator(4 ) @require_torch def __lowerCAmelCase ( self : List[str] )-> Optional[int]: snake_case__ : str = pipeline("""text2text-generation""" , model="""patrickvonplaten/t5-tiny-random""" , framework="""pt""" ) # do_sample=False necessary for reproducibility snake_case__ : int = generator("""Something there""" , do_sample=lowerCamelCase ) self.assertEqual(lowerCamelCase , [{"""generated_text""": """"""}] ) snake_case__ : List[Any] = 3 snake_case__ : Any = generator( """Something there""" , num_return_sequences=lowerCamelCase , num_beams=lowerCamelCase , ) snake_case__ : int = [ {"""generated_text""": """Beide Beide Beide Beide Beide Beide Beide Beide Beide"""}, {"""generated_text""": """Beide Beide Beide Beide Beide Beide Beide Beide"""}, {"""generated_text""": """"""}, ] self.assertEqual(lowerCamelCase , lowerCamelCase ) snake_case__ : Tuple = generator("""This is a test""" , do_sample=lowerCamelCase , num_return_sequences=2 , return_tensors=lowerCamelCase ) self.assertEqual( lowerCamelCase , [ {"""generated_token_ids""": ANY(torch.Tensor )}, {"""generated_token_ids""": ANY(torch.Tensor )}, ] , ) snake_case__ : Any = generator.model.config.eos_token_id snake_case__ : Optional[Any] = """<pad>""" snake_case__ : Tuple = generator( ["""This is a test""", """This is a second test"""] , do_sample=lowerCamelCase , num_return_sequences=2 , batch_size=2 , return_tensors=lowerCamelCase , ) self.assertEqual( lowerCamelCase , [ [ {"""generated_token_ids""": ANY(torch.Tensor )}, {"""generated_token_ids""": ANY(torch.Tensor )}, ], [ {"""generated_token_ids""": ANY(torch.Tensor )}, {"""generated_token_ids""": ANY(torch.Tensor )}, ], ] , ) @require_tf def __lowerCAmelCase ( self : Dict )-> Dict: snake_case__ : Optional[Any] = pipeline("""text2text-generation""" , model="""patrickvonplaten/t5-tiny-random""" , framework="""tf""" ) # do_sample=False necessary for reproducibility snake_case__ : List[str] = generator("""Something there""" , do_sample=lowerCamelCase ) self.assertEqual(lowerCamelCase , [{"""generated_text""": """"""}] )
172
'''simple docstring''' import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class _A : '''simple docstring''' @staticmethod def __lowerCAmelCase ( *lowerCamelCase : Union[str, Any] , **lowerCamelCase : Union[str, Any] )-> Dict: pass def lowerCAmelCase__ ( UpperCAmelCase ): """simple docstring""" return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. lowerCAmelCase__ = ( 'https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png' ) @is_pipeline_test @require_torch @require_vision class _A ( unittest.TestCase ): '''simple docstring''' _lowercase = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def __lowerCAmelCase ( self : Optional[int] , lowerCamelCase : Any , lowerCamelCase : List[str] , lowerCamelCase : Optional[Any] )-> Optional[int]: snake_case__ : Union[str, Any] = pipeline( """document-question-answering""" , model=lowerCamelCase , tokenizer=lowerCamelCase , image_processor=lowerCamelCase ) snake_case__ : int = INVOICE_URL snake_case__ : List[Any] = list(zip(*apply_tesseract(load_image(lowerCamelCase ) , lowerCamelCase , """""" ) ) ) snake_case__ : Dict = """What is the placebo?""" snake_case__ : int = [ { """image""": load_image(lowerCamelCase ), """question""": question, }, { """image""": image, """question""": question, }, { """image""": image, """question""": question, """word_boxes""": word_boxes, }, ] return dqa_pipeline, examples def __lowerCAmelCase ( self : int , lowerCamelCase : str , lowerCamelCase : List[str] )-> Union[str, Any]: snake_case__ : List[Any] = dqa_pipeline(lowerCamelCase , top_k=2 ) self.assertEqual( lowerCamelCase , [ [ {"""score""": ANY(lowerCamelCase ), """answer""": ANY(lowerCamelCase ), """start""": ANY(lowerCamelCase ), """end""": ANY(lowerCamelCase )}, {"""score""": ANY(lowerCamelCase ), """answer""": ANY(lowerCamelCase ), """start""": ANY(lowerCamelCase ), """end""": ANY(lowerCamelCase )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def __lowerCAmelCase ( self : int )-> List[Any]: snake_case__ : List[Any] = pipeline("""document-question-answering""" , model="""hf-internal-testing/tiny-random-layoutlmv2""" ) snake_case__ : int = INVOICE_URL snake_case__ : List[Any] = """How many cats are there?""" snake_case__ : Optional[int] = [ {"""score""": 0.0_001, """answer""": """oy 2312/2019""", """start""": 38, """end""": 39}, {"""score""": 0.0_001, """answer""": """oy 2312/2019 DUE""", """start""": 38, """end""": 40}, ] snake_case__ : Dict = dqa_pipeline(image=lowerCamelCase , question=lowerCamelCase , top_k=2 ) self.assertEqual(nested_simplify(lowerCamelCase , decimals=4 ) , lowerCamelCase ) snake_case__ : str = dqa_pipeline({"""image""": image, """question""": question} , top_k=2 ) self.assertEqual(nested_simplify(lowerCamelCase , decimals=4 ) , lowerCamelCase ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably snake_case__ : Optional[Any] = """./tests/fixtures/tests_samples/COCO/000000039769.png""" snake_case__ : Union[str, Any] = dqa_pipeline(image=lowerCamelCase , question=lowerCamelCase , top_k=2 ) self.assertEqual(lowerCamelCase , [] ) # We can optionnally pass directly the words and bounding boxes snake_case__ : Tuple = """./tests/fixtures/tests_samples/COCO/000000039769.png""" snake_case__ : Optional[int] = [] snake_case__ : List[Any] = [] snake_case__ : Tuple = dqa_pipeline(image=lowerCamelCase , question=lowerCamelCase , words=lowerCamelCase , boxes=lowerCamelCase , top_k=2 ) self.assertEqual(lowerCamelCase , [] ) @slow @require_torch @require_detectrona @require_pytesseract def __lowerCAmelCase ( self : int )-> Any: snake_case__ : List[str] = pipeline( """document-question-answering""" , model="""tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa""" , revision="""9977165""" , ) snake_case__ : List[Any] = INVOICE_URL snake_case__ : Optional[Any] = """What is the invoice number?""" snake_case__ : Any = dqa_pipeline(image=lowerCamelCase , question=lowerCamelCase , top_k=2 ) self.assertEqual( nested_simplify(lowerCamelCase , decimals=4 ) , [ {"""score""": 0.9_944, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.0_009, """answer""": """us-001""", """start""": 16, """end""": 16}, ] , ) snake_case__ : Union[str, Any] = dqa_pipeline({"""image""": image, """question""": question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCamelCase , decimals=4 ) , [ {"""score""": 0.9_944, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.0_009, """answer""": """us-001""", """start""": 16, """end""": 16}, ] , ) snake_case__ : Dict = dqa_pipeline( [{"""image""": image, """question""": question}, {"""image""": image, """question""": question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCamelCase , decimals=4 ) , [ [ {"""score""": 0.9_944, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.0_009, """answer""": """us-001""", """start""": 16, """end""": 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def __lowerCAmelCase ( self : List[Any] )-> Any: snake_case__ : Optional[Any] = pipeline( """document-question-answering""" , model="""tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa""" , revision="""9977165""" , max_seq_len=50 , ) snake_case__ : Dict = INVOICE_URL snake_case__ : Tuple = """What is the invoice number?""" snake_case__ : Optional[Any] = dqa_pipeline(image=lowerCamelCase , question=lowerCamelCase , top_k=2 ) self.assertEqual( nested_simplify(lowerCamelCase , decimals=4 ) , [ {"""score""": 0.9_974, """answer""": """1110212019""", """start""": 23, """end""": 23}, {"""score""": 0.9_948, """answer""": """us-001""", """start""": 16, """end""": 16}, ] , ) snake_case__ : int = dqa_pipeline({"""image""": image, """question""": question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCamelCase , decimals=4 ) , [ {"""score""": 0.9_974, """answer""": """1110212019""", """start""": 23, """end""": 23}, {"""score""": 0.9_948, """answer""": """us-001""", """start""": 16, """end""": 16}, ] , ) snake_case__ : List[Any] = dqa_pipeline( [{"""image""": image, """question""": question}, {"""image""": image, """question""": question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCamelCase , decimals=4 ) , [ [ {"""score""": 0.9_974, """answer""": """1110212019""", """start""": 23, """end""": 23}, {"""score""": 0.9_948, """answer""": """us-001""", """start""": 16, """end""": 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def __lowerCAmelCase ( self : List[str] )-> Dict: snake_case__ : Optional[Any] = AutoTokenizer.from_pretrained( """impira/layoutlm-document-qa""" , revision="""3dc6de3""" , add_prefix_space=lowerCamelCase ) snake_case__ : Tuple = pipeline( """document-question-answering""" , model="""impira/layoutlm-document-qa""" , tokenizer=lowerCamelCase , revision="""3dc6de3""" , ) snake_case__ : Optional[int] = INVOICE_URL snake_case__ : Union[str, Any] = """What is the invoice number?""" snake_case__ : Dict = dqa_pipeline(image=lowerCamelCase , question=lowerCamelCase , top_k=2 ) self.assertEqual( nested_simplify(lowerCamelCase , decimals=4 ) , [ {"""score""": 0.4_251, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.0_819, """answer""": """1110212019""", """start""": 23, """end""": 23}, ] , ) snake_case__ : int = dqa_pipeline({"""image""": image, """question""": question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCamelCase , decimals=4 ) , [ {"""score""": 0.4_251, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.0_819, """answer""": """1110212019""", """start""": 23, """end""": 23}, ] , ) snake_case__ : int = dqa_pipeline( [{"""image""": image, """question""": question}, {"""image""": image, """question""": question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCamelCase , decimals=4 ) , [ [ {"""score""": 0.4_251, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.0_819, """answer""": """1110212019""", """start""": 23, """end""": 23}, ] ] * 2 , ) snake_case__ : Tuple = list(zip(*apply_tesseract(load_image(lowerCamelCase ) , lowerCamelCase , """""" ) ) ) # This model should also work if `image` is set to None snake_case__ : Dict = dqa_pipeline({"""image""": None, """word_boxes""": word_boxes, """question""": question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCamelCase , decimals=4 ) , [ {"""score""": 0.4_251, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.0_819, """answer""": """1110212019""", """start""": 23, """end""": 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def __lowerCAmelCase ( self : int )-> str: snake_case__ : Dict = AutoTokenizer.from_pretrained( """impira/layoutlm-document-qa""" , revision="""3dc6de3""" , add_prefix_space=lowerCamelCase ) snake_case__ : List[Any] = pipeline( """document-question-answering""" , model="""impira/layoutlm-document-qa""" , tokenizer=lowerCamelCase , revision="""3dc6de3""" , max_seq_len=50 , ) snake_case__ : Any = INVOICE_URL snake_case__ : List[Any] = """What is the invoice number?""" snake_case__ : int = dqa_pipeline(image=lowerCamelCase , question=lowerCamelCase , top_k=2 ) self.assertEqual( nested_simplify(lowerCamelCase , decimals=4 ) , [ {"""score""": 0.9_999, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.9_998, """answer""": """us-001""", """start""": 16, """end""": 16}, ] , ) snake_case__ : str = dqa_pipeline( [{"""image""": image, """question""": question}, {"""image""": image, """question""": question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCamelCase , decimals=4 ) , [ [ {"""score""": 0.9_999, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.9_998, """answer""": """us-001""", """start""": 16, """end""": 16}, ] ] * 2 , ) snake_case__ : Dict = list(zip(*apply_tesseract(load_image(lowerCamelCase ) , lowerCamelCase , """""" ) ) ) # This model should also work if `image` is set to None snake_case__ : Optional[Any] = dqa_pipeline({"""image""": None, """word_boxes""": word_boxes, """question""": question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCamelCase , decimals=4 ) , [ {"""score""": 0.9_999, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.9_998, """answer""": """us-001""", """start""": 16, """end""": 16}, ] , ) @slow @require_torch def __lowerCAmelCase ( self : int )-> Tuple: snake_case__ : Optional[int] = pipeline( """document-question-answering""" , model="""naver-clova-ix/donut-base-finetuned-docvqa""" , tokenizer=AutoTokenizer.from_pretrained("""naver-clova-ix/donut-base-finetuned-docvqa""" ) , feature_extractor="""naver-clova-ix/donut-base-finetuned-docvqa""" , ) snake_case__ : str = INVOICE_URL snake_case__ : Tuple = """What is the invoice number?""" snake_case__ : Tuple = dqa_pipeline(image=lowerCamelCase , question=lowerCamelCase , top_k=2 ) self.assertEqual(nested_simplify(lowerCamelCase , decimals=4 ) , [{"""answer""": """us-001"""}] ) @require_tf @unittest.skip("""Document question answering not implemented in TF""" ) def __lowerCAmelCase ( self : int )-> List[Any]: pass
172
1
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 UpperCAmelCase_ = get_tests_dir("fixtures") UpperCAmelCase_ = get_tests_dir("fixtures/dummy_feature_extractor_config.json") UpperCAmelCase_ = get_tests_dir("fixtures/dummy-config.json") class __UpperCamelCase ( unittest.TestCase ): def UpperCamelCase( self ): _UpperCAmelCase = 0 def UpperCamelCase( self ): _UpperCAmelCase = AutoFeatureExtractor.from_pretrained('''facebook/wav2vec2-base-960h''' ) self.assertIsInstance(_UpperCamelCase , _UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = AutoFeatureExtractor.from_pretrained(_UpperCamelCase ) self.assertIsInstance(_UpperCamelCase , _UpperCamelCase ) def UpperCamelCase( self ): with tempfile.TemporaryDirectory() as tmpdirname: _UpperCAmelCase = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally _UpperCAmelCase = AutoFeatureExtractor.from_pretrained(_UpperCamelCase ).to_dict() config_dict.pop('''feature_extractor_type''' ) _UpperCAmelCase = WavaVecaFeatureExtractor(**_UpperCamelCase ) # save in new folder model_config.save_pretrained(_UpperCamelCase ) config.save_pretrained(_UpperCamelCase ) _UpperCAmelCase = AutoFeatureExtractor.from_pretrained(_UpperCamelCase ) # make sure private variable is not incorrectly saved _UpperCAmelCase = json.loads(config.to_json_string() ) self.assertTrue('''_processor_class''' not in dict_as_saved ) self.assertIsInstance(_UpperCamelCase , _UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = AutoFeatureExtractor.from_pretrained(_UpperCamelCase ) self.assertIsInstance(_UpperCamelCase , _UpperCamelCase ) def UpperCamelCase( self ): with self.assertRaisesRegex( _UpperCamelCase , '''bert-base is not a local folder and is not a valid model identifier''' ): _UpperCAmelCase = AutoFeatureExtractor.from_pretrained('''bert-base''' ) def UpperCamelCase( self ): with self.assertRaisesRegex( _UpperCamelCase , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): _UpperCAmelCase = AutoFeatureExtractor.from_pretrained(_UpperCamelCase , revision='''aaaaaa''' ) def UpperCamelCase( self ): with self.assertRaisesRegex( _UpperCamelCase , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ): _UpperCAmelCase = AutoFeatureExtractor.from_pretrained('''hf-internal-testing/config-no-model''' ) def UpperCamelCase( self ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(_UpperCamelCase ): _UpperCAmelCase = AutoFeatureExtractor.from_pretrained( '''hf-internal-testing/test_dynamic_feature_extractor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(_UpperCamelCase ): _UpperCAmelCase = AutoFeatureExtractor.from_pretrained( '''hf-internal-testing/test_dynamic_feature_extractor''' , trust_remote_code=_UpperCamelCase ) _UpperCAmelCase = AutoFeatureExtractor.from_pretrained( '''hf-internal-testing/test_dynamic_feature_extractor''' , trust_remote_code=_UpperCamelCase ) self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(_UpperCamelCase ) _UpperCAmelCase = AutoFeatureExtractor.from_pretrained(_UpperCamelCase , trust_remote_code=_UpperCamelCase ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' ) def UpperCamelCase( self ): try: AutoConfig.register('''custom''' , _UpperCamelCase ) AutoFeatureExtractor.register(_UpperCamelCase , _UpperCamelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_UpperCamelCase ): AutoFeatureExtractor.register(_UpperCamelCase , _UpperCamelCase ) # Now that the config is registered, it can be used as any other config with the auto-API _UpperCAmelCase = CustomFeatureExtractor.from_pretrained(_UpperCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(_UpperCamelCase ) _UpperCAmelCase = AutoFeatureExtractor.from_pretrained(_UpperCamelCase ) self.assertIsInstance(_UpperCamelCase , _UpperCamelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def UpperCamelCase( self ): class __UpperCamelCase ( A__ ): __A : Dict = True try: AutoConfig.register('''custom''' , _UpperCamelCase ) AutoFeatureExtractor.register(_UpperCamelCase , _UpperCamelCase ) # If remote code is not set, the default is to use local _UpperCAmelCase = AutoFeatureExtractor.from_pretrained( '''hf-internal-testing/test_dynamic_feature_extractor''' ) self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. _UpperCAmelCase = AutoFeatureExtractor.from_pretrained( '''hf-internal-testing/test_dynamic_feature_extractor''' , trust_remote_code=_UpperCamelCase ) self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub _UpperCAmelCase = AutoFeatureExtractor.from_pretrained( '''hf-internal-testing/test_dynamic_feature_extractor''' , trust_remote_code=_UpperCamelCase ) self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' ) self.assertTrue(not hasattr(_UpperCamelCase , '''is_local''' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
32
"""simple docstring""" import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class a ( UpperCAmelCase__ ): UpperCamelCase : Any = 'Speech2TextFeatureExtractor' UpperCamelCase : Optional[Any] = 'Speech2TextTokenizer' def __init__( self : Optional[Any] , lowerCAmelCase : List[str] , lowerCAmelCase : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' super().__init__(lowerCAmelCase , lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[int] =self.feature_extractor SCREAMING_SNAKE_CASE_: List[Any] =False def __call__( self : Dict , *lowerCAmelCase : str , **lowerCAmelCase : str ) -> str: '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*lowerCAmelCase , **lowerCAmelCase ) if "raw_speech" in kwargs: warnings.warn("""Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.""" ) SCREAMING_SNAKE_CASE_: Tuple =kwargs.pop("""raw_speech""" ) else: SCREAMING_SNAKE_CASE_: int =kwargs.pop("""audio""" , lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[int] =kwargs.pop("""sampling_rate""" , lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Tuple =kwargs.pop("""text""" , lowerCAmelCase ) if len(lowerCAmelCase ) > 0: SCREAMING_SNAKE_CASE_: List[str] =args[0] SCREAMING_SNAKE_CASE_: List[str] =args[1:] if audio is None and text is None: raise ValueError("""You need to specify either an `audio` or `text` input to process.""" ) if audio is not None: SCREAMING_SNAKE_CASE_: Optional[int] =self.feature_extractor(lowerCAmelCase , *lowerCAmelCase , sampling_rate=lowerCAmelCase , **lowerCAmelCase ) if text is not None: SCREAMING_SNAKE_CASE_: Union[str, Any] =self.tokenizer(lowerCAmelCase , **lowerCAmelCase ) if text is None: return inputs elif audio is None: return encodings else: SCREAMING_SNAKE_CASE_: Any =encodings["""input_ids"""] return inputs def lowerCamelCase__ ( self : Any , *lowerCAmelCase : Any , **lowerCAmelCase : Tuple ) -> Any: '''simple docstring''' return self.tokenizer.batch_decode(*lowerCAmelCase , **lowerCAmelCase ) def lowerCamelCase__ ( self : Tuple , *lowerCAmelCase : Any , **lowerCAmelCase : int ) -> Any: '''simple docstring''' return self.tokenizer.decode(*lowerCAmelCase , **lowerCAmelCase ) @contextmanager def lowerCamelCase__ ( self : Tuple ) -> Tuple: '''simple docstring''' warnings.warn( """`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your """ """labels by using the argument `text` of the regular `__call__` method (either in the same call as """ """your audio inputs, or in a separate call.""" ) SCREAMING_SNAKE_CASE_: Optional[Any] =True SCREAMING_SNAKE_CASE_: Dict =self.tokenizer yield SCREAMING_SNAKE_CASE_: int =self.feature_extractor SCREAMING_SNAKE_CASE_: str =False
409
0
import jax.numpy as jnp from ...utils import logging from ..ta.modeling_flax_ta import FlaxTaEncoderModel, FlaxTaForConditionalGeneration, FlaxTaModel from .configuration_mta import MTaConfig lowercase = logging.get_logger(__name__) lowercase = '''T5Config''' def __lowerCAmelCase ( UpperCAmelCase__ : jnp.array , UpperCAmelCase__ : int , UpperCAmelCase__ : int ) -> jnp.ndarray: lowerCamelCase_ = jnp.zeros_like(a_ ) lowerCamelCase_ = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1] ) lowerCamelCase_ = shifted_input_ids.at[:, 0].set(a_ ) lowerCamelCase_ = jnp.where(shifted_input_ids == -1_0_0 , a_ , a_ ) return shifted_input_ids class __A( _UpperCamelCase ): SCREAMING_SNAKE_CASE = '''mt5''' SCREAMING_SNAKE_CASE = MTaConfig class __A( _UpperCamelCase ): SCREAMING_SNAKE_CASE = '''mt5''' SCREAMING_SNAKE_CASE = MTaConfig class __A( _UpperCamelCase ): SCREAMING_SNAKE_CASE = '''mt5''' SCREAMING_SNAKE_CASE = MTaConfig
713
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class __A( unittest.TestCase ): def lowercase__ ( self : Optional[Any] ): # For consistency across different places the DisjunctiveConstraint is called, # dc.token_ids is a list of integers. It is also initialized only by integers. lowerCamelCase_ = [[1, 2, 4], [1, 2, 3, 4]] lowerCamelCase_ = DisjunctiveConstraint(__UpperCamelCase ) self.assertTrue(isinstance(dc.token_ids , __UpperCamelCase ) ) with self.assertRaises(__UpperCamelCase ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(__UpperCamelCase ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def lowercase__ ( self : List[Any] ): # We can't have constraints that are complete subsets of another. This leads to a preverse # interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint? # It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially # fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm # will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it). lowerCamelCase_ = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(__UpperCamelCase ): DisjunctiveConstraint(__UpperCamelCase ) # fails here def lowercase__ ( self : Union[str, Any] ): lowerCamelCase_ = [[1, 2, 3], [1, 2, 4]] lowerCamelCase_ = DisjunctiveConstraint(__UpperCamelCase ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = dc.update(1 ) lowerCamelCase_ = stepped is True and completed is False and reset is False self.assertTrue(__UpperCamelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = dc.update(2 ) lowerCamelCase_ = stepped is True and completed is False and reset is False self.assertTrue(__UpperCamelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = dc.update(3 ) lowerCamelCase_ = stepped is True and completed is True and reset is False self.assertTrue(__UpperCamelCase ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def lowercase__ ( self : Tuple ): lowerCamelCase_ = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] lowerCamelCase_ = DisjunctiveConstraint(__UpperCamelCase ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
103
0
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys _snake_case = subprocess.check_output("git merge-base main HEAD".split()).decode("utf-8") _snake_case = ( subprocess.check_output(f'''git diff --diff-filter=d --name-only {fork_point_sha}'''.split()).decode("utf-8").split() ) _snake_case = "|".join(sys.argv[1:]) _snake_case = re.compile(Rf'''^({joined_dirs}).*?\.py$''') _snake_case = [x for x in modified_files if regex.match(x)] print(" ".join(relevant_modified_files), end="")
500
def A ( _lowerCamelCase ): '''simple docstring''' if not isinstance(_lowerCamelCase , _lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = F"Input value of [number={number}] must be an integer" raise TypeError(_lowerCamelCase ) if number < 1: _lowerCAmelCase : Tuple = F"Input value of [number={number}] must be > 0" raise ValueError(_lowerCamelCase ) _lowerCAmelCase : Dict = 1 for i in range(1 , _lowerCamelCase ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
500
1
"""simple docstring""" class a : """simple docstring""" def __init__( self: Any , UpperCamelCase: list ): """simple docstring""" A__ = set_counts A__ = max(UpperCamelCase ) A__ = len(UpperCamelCase ) A__ = [1] * num_sets A__ = list(range(UpperCamelCase ) ) def UpperCamelCase ( self: Any , UpperCamelCase: int , UpperCamelCase: int ): """simple docstring""" A__ = self.get_parent(UpperCamelCase ) A__ = self.get_parent(UpperCamelCase ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] A__ = 0 A__ = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 A__ = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] A__ = 0 A__ = src_parent A__ = self.set_counts[src_parent] A__ = max(self.max_set , UpperCamelCase ) return True def UpperCamelCase ( self: Tuple , UpperCamelCase: int ): """simple docstring""" if self.parents[disj_set] == disj_set: return disj_set A__ = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
500
"""simple docstring""" from __future__ import annotations class a : """simple docstring""" def __init__( self: Any , UpperCamelCase: str , UpperCamelCase: str ): """simple docstring""" A__ , A__ = text, pattern A__ , A__ = len(UpperCamelCase ), len(UpperCamelCase ) def UpperCamelCase ( self: Dict , UpperCamelCase: str ): """simple docstring""" for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def UpperCamelCase ( self: str , UpperCamelCase: int ): """simple docstring""" for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def UpperCamelCase ( self: List[Any] ): """simple docstring""" A__ = [] for i in range(self.textLen - self.patLen + 1 ): A__ = self.mismatch_in_text(UpperCamelCase ) if mismatch_index == -1: positions.append(UpperCamelCase ) else: A__ = self.match_in_pattern(self.text[mismatch_index] ) A__ = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions SCREAMING_SNAKE_CASE_ : List[Any] = 'ABAABA' SCREAMING_SNAKE_CASE_ : List[Any] = 'AB' SCREAMING_SNAKE_CASE_ : Union[str, Any] = BoyerMooreSearch(text, pattern) SCREAMING_SNAKE_CASE_ : int = bms.bad_character_heuristic() if len(positions) == 0: print('No match found') else: print('Pattern found in following positions: ') print(positions)
500
1
import argparse import json import os import torch from transformers import LukeConfig, LukeModel, LukeTokenizer, RobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def UpperCAmelCase_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): # Load configuration defined in the metadata file with open(_UpperCAmelCase ) as metadata_file: lowerCamelCase_: Optional[int] = json.load(_UpperCAmelCase ) lowerCamelCase_: List[Any] = LukeConfig(use_entity_aware_attention=_UpperCAmelCase , **metadata["""model_config"""] ) # Load in the weights from the checkpoint_path lowerCamelCase_: List[str] = torch.load(_UpperCAmelCase , map_location="""cpu""" ) # Load the entity vocab file lowerCamelCase_: Union[str, Any] = load_entity_vocab(_UpperCAmelCase ) lowerCamelCase_: str = RobertaTokenizer.from_pretrained(metadata["""model_config"""]["""bert_model_name"""] ) # Add special tokens to the token vocabulary for downstream tasks lowerCamelCase_: Dict = AddedToken("""<ent>""" , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) lowerCamelCase_: Tuple = AddedToken("""<ent2>""" , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) tokenizer.add_special_tokens({"""additional_special_tokens""": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f"""Saving tokenizer to {pytorch_dump_folder_path}""" ) tokenizer.save_pretrained(_UpperCAmelCase ) with open(os.path.join(_UpperCAmelCase , LukeTokenizer.vocab_files_names["""entity_vocab_file"""] ) , """w""" ) as f: json.dump(_UpperCAmelCase , _UpperCAmelCase ) lowerCamelCase_: Optional[int] = LukeTokenizer.from_pretrained(_UpperCAmelCase ) # Initialize the embeddings of the special tokens lowerCamelCase_: Union[str, Any] = state_dict["""embeddings.word_embeddings.weight"""] lowerCamelCase_: Tuple = word_emb[tokenizer.convert_tokens_to_ids(["""@"""] )[0]].unsqueeze(0 ) lowerCamelCase_: Dict = word_emb[tokenizer.convert_tokens_to_ids(["""#"""] )[0]].unsqueeze(0 ) lowerCamelCase_: Dict = torch.cat([word_emb, ent_emb, enta_emb] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: lowerCamelCase_: Any = f"""encoder.layer.{layer_index}.attention.self.""" lowerCamelCase_: Tuple = state_dict[prefix + matrix_name] lowerCamelCase_: int = state_dict[prefix + matrix_name] lowerCamelCase_: Optional[Any] = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks lowerCamelCase_: Union[str, Any] = state_dict["""entity_embeddings.entity_embeddings.weight"""] lowerCamelCase_: int = entity_emb[entity_vocab["""[MASK]"""]] lowerCamelCase_: List[str] = LukeModel(config=_UpperCAmelCase ).eval() lowerCamelCase_ , lowerCamelCase_: List[Any] = model.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase ) if not (len(_UpperCAmelCase ) == 1 and missing_keys[0] == "embeddings.position_ids"): raise ValueError(f"""Missing keys {', '.join(_UpperCAmelCase )}. Expected only missing embeddings.position_ids""" ) if not (all(key.startswith("""entity_predictions""" ) or key.startswith("""lm_head""" ) for key in unexpected_keys )): raise ValueError( """Unexpected keys""" f""" {', '.join([key for key in unexpected_keys if not (key.startswith('entity_predictions' ) or key.startswith('lm_head' ))] )}""" ) # Check outputs lowerCamelCase_: Union[str, Any] = LukeTokenizer.from_pretrained(_UpperCAmelCase , task="""entity_classification""" ) lowerCamelCase_: str = ( """Top seed Ana Ivanovic said on Thursday she could hardly believe her luck as a fortuitous netcord helped the""" """ new world number one avoid a humiliating second- round exit at Wimbledon .""" ) lowerCamelCase_: str = (3_9, 4_2) lowerCamelCase_: int = tokenizer(_UpperCAmelCase , entity_spans=[span] , add_prefix_space=_UpperCAmelCase , return_tensors="""pt""" ) lowerCamelCase_: Any = model(**_UpperCAmelCase ) # Verify word hidden states if model_size == "large": lowerCamelCase_: str = torch.Size((1, 4_2, 1_0_2_4) ) lowerCamelCase_: Any = torch.tensor( [[0.0_1_3_3, 0.0_8_6_5, 0.0_0_9_5], [0.3_0_9_3, -0.2_5_7_6, -0.7_4_1_8], [-0.1_7_2_0, -0.2_1_1_7, -0.2_8_6_9]] ) else: # base lowerCamelCase_: int = torch.Size((1, 4_2, 7_6_8) ) lowerCamelCase_: List[Any] = torch.tensor([[0.0_0_3_7, 0.1_3_6_8, -0.0_0_9_1], [0.1_0_9_9, 0.3_3_2_9, -0.1_0_9_5], [0.0_7_6_5, 0.5_3_3_5, 0.1_1_7_9]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f"""Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}""" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , _UpperCAmelCase , atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": lowerCamelCase_: str = torch.Size((1, 1, 1_0_2_4) ) lowerCamelCase_: Tuple = torch.tensor([[0.0_4_6_6, -0.0_1_0_6, -0.0_1_7_9]] ) else: # base lowerCamelCase_: List[Any] = torch.Size((1, 1, 7_6_8) ) lowerCamelCase_: int = torch.tensor([[0.1_4_5_7, 0.1_0_4_4, 0.0_1_7_4]] ) if not (outputs.entity_last_hidden_state.shape != expected_shape): raise ValueError( f"""Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is""" f""" {expected_shape}""" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , _UpperCAmelCase , atol=1E-4 ): raise ValueError # Finally, save our PyTorch model and tokenizer print("""Saving PyTorch model to {}""".format(_UpperCAmelCase ) ) model.save_pretrained(_UpperCAmelCase ) def UpperCAmelCase_ ( _UpperCAmelCase ): lowerCamelCase_: int = {} with open(_UpperCAmelCase , """r""" , encoding="""utf-8""" ) as f: for index, line in enumerate(_UpperCAmelCase ): lowerCamelCase_ , lowerCamelCase_: str = line.rstrip().split("""\t""" ) lowerCamelCase_: Optional[Any] = index return entity_vocab if __name__ == "__main__": lowercase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument("""--checkpoint_path""", type=str, help="""Path to a pytorch_model.bin file.""") parser.add_argument( """--metadata_path""", default=None, type=str, help="""Path to a metadata.json file, defining the configuration.""" ) parser.add_argument( """--entity_vocab_path""", default=None, type=str, help="""Path to an entity_vocab.tsv file, containing the entity vocabulary.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to where to dump the output PyTorch model.""" ) parser.add_argument( """--model_size""", default="""base""", type=str, choices=["""base""", """large"""], help="""Size of the model to be converted.""" ) lowercase : Dict = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
423
def UpperCAmelCase_ ( _UpperCAmelCase ): lowerCamelCase_: Any = current_set.copy() for row_index, row in enumerate(_UpperCAmelCase ): lowerCamelCase_: Optional[Any] = row[0] for column_index, column in enumerate(_UpperCAmelCase ): if magnitude == 0: lowerCamelCase_: Union[str, Any] = column continue lowerCamelCase_: Any = column / magnitude # Subtract to cancel term lowerCamelCase_: str = current_set[0] lowerCamelCase_: Union[str, Any] = [first_row] lowerCamelCase_: Optional[int] = current_set[1::] for row in current_set: lowerCamelCase_: List[Any] = [] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(_UpperCAmelCase ) continue for column_index in range(len(_UpperCAmelCase ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(_UpperCAmelCase ) # Create next recursion iteration set if len(final_set[0] ) != 3: lowerCamelCase_: Dict = final_set[0] lowerCamelCase_: List[str] = [] lowerCamelCase_: Union[str, Any] = [] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) lowerCamelCase_: Any = simplify(_UpperCAmelCase ) for i in range(len(_UpperCAmelCase ) ): resultant[i].insert(0 , current_first_column[i] ) resultant.insert(0 , _UpperCAmelCase ) lowerCamelCase_: Dict = resultant return final_set def UpperCAmelCase_ ( _UpperCAmelCase ): if len(_UpperCAmelCase ) == 0: raise IndexError("""solve_simultaneous() requires n lists of length n+1""" ) lowerCamelCase_: Optional[Any] = len(_UpperCAmelCase ) + 1 if any(len(_UpperCAmelCase ) != _length for item in equations ): raise IndexError("""solve_simultaneous() requires n lists of length n+1""" ) for row in equations: if any(not isinstance(_UpperCAmelCase , (int, float) ) for column in row ): raise ValueError("""solve_simultaneous() requires lists of integers""" ) if len(_UpperCAmelCase ) == 1: return [equations[0][-1] / equations[0][0]] lowerCamelCase_: Tuple = equations.copy() if any(0 in row for row in data_set ): lowerCamelCase_: Tuple = data_set.copy() lowerCamelCase_: Tuple = [] for row_index, row in enumerate(_UpperCAmelCase ): if 0 not in row: lowerCamelCase_: Optional[int] = data_set.pop(_UpperCAmelCase ) break if not full_row: raise ValueError("""solve_simultaneous() requires at least 1 full equation""" ) data_set.insert(0 , _UpperCAmelCase ) lowerCamelCase_: List[Any] = data_set.copy() lowerCamelCase_: str = simplify(_UpperCAmelCase ) lowerCamelCase_: Union[str, Any] = simplified[::-1] lowerCamelCase_: list = [] for row in simplified: lowerCamelCase_: Any = row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue lowerCamelCase_: List[str] = row.copy()[: len(_UpperCAmelCase ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(_UpperCAmelCase ) == 0: solutions.append(0 ) continue lowerCamelCase_: Optional[int] = temp_row[1::] lowerCamelCase_: Optional[Any] = temp_row[::-1] for column_index, column in enumerate(_UpperCAmelCase ): current_solution -= column * solutions[column_index] solutions.append(_UpperCAmelCase ) lowerCamelCase_: List[Any] = [] for item in solutions: final.append(float(round(_UpperCAmelCase , 5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() lowercase : str = [ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
423
1
from __future__ import annotations __A = 1.6_0_2_1e-1_9 # units = C def lowerCamelCase_ ( UpperCamelCase__ : float , UpperCamelCase__ : float , UpperCamelCase__ : float , ) -> tuple[str, float]: """simple docstring""" if (conductivity, electron_conc, mobility).count(0 ) != 1: raise ValueError('You cannot supply more or less than 2 values' ) elif conductivity < 0: raise ValueError('Conductivity cannot be negative' ) elif electron_conc < 0: raise ValueError('Electron concentration cannot be negative' ) elif mobility < 0: raise ValueError('mobility cannot be negative' ) elif conductivity == 0: return ( "conductivity", mobility * electron_conc * ELECTRON_CHARGE, ) elif electron_conc == 0: return ( "electron_conc", conductivity / (mobility * ELECTRON_CHARGE), ) else: return ( "mobility", conductivity / (electron_conc * ELECTRON_CHARGE), ) if __name__ == "__main__": import doctest doctest.testmod()
167
import requests __A = "" # <-- Put your OpenWeatherMap appid here! __A = "https://api.openweathermap.org/data/2.5/" def lowerCamelCase_ ( UpperCamelCase__ : str = "Chicago" , UpperCamelCase__ : str = APPID ) -> dict: """simple docstring""" return requests.get(URL_BASE + 'weather' , params=locals() ).json() def lowerCamelCase_ ( UpperCamelCase__ : str = "Kolkata, India" , UpperCamelCase__ : str = APPID ) -> dict: """simple docstring""" return requests.get(URL_BASE + 'forecast' , params=locals() ).json() def lowerCamelCase_ ( UpperCamelCase__ : float = 55.68 , UpperCamelCase__ : float = 12.57 , UpperCamelCase__ : str = APPID ) -> dict: """simple docstring""" return requests.get(URL_BASE + 'onecall' , params=locals() ).json() if __name__ == "__main__": from pprint import pprint while True: __A = input("Enter a location:").strip() if location: pprint(current_weather(location)) else: break
167
1
"""simple docstring""" from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def lowercase__ ( lowerCamelCase ): if not is_accelerate_available(): return method _SCREAMING_SNAKE_CASE : Optional[int] = version.parse(accelerate.__version__ ).base_version if version.parse(lowerCamelCase ) < version.parse('0.17.0' ): return method def wrapper(self, *lowerCamelCase, **lowerCamelCase ): if hasattr(self, '_hf_hook' ) and hasattr(self._hf_hook, 'pre_forward' ): self._hf_hook.pre_forward(self ) return method(self, *lowerCamelCase, **lowerCamelCase ) return wrapper
621
"""simple docstring""" import functools import logging import os import sys import threading from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional import huggingface_hub.utils as hf_hub_utils from tqdm import auto as tqdm_lib lowerCAmelCase__ = threading.Lock() lowerCAmelCase__ = None lowerCAmelCase__ = { 'debug': logging.DEBUG, 'info': logging.INFO, 'warning': logging.WARNING, 'error': logging.ERROR, 'critical': logging.CRITICAL, } lowerCAmelCase__ = logging.WARNING lowerCAmelCase__ = True def lowercase__ ( ): _SCREAMING_SNAKE_CASE : int = os.getenv('TRANSFORMERS_VERBOSITY', lowerCamelCase ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( f"""Unknown option TRANSFORMERS_VERBOSITY={env_level_str}, """ f"""has to be one of: { ", ".join(log_levels.keys() ) }""" ) return _default_log_level def lowercase__ ( ): return __name__.split('.' )[0] def lowercase__ ( ): return logging.getLogger(_get_library_name() ) def lowercase__ ( ): global _default_handler with _lock: if _default_handler: # This library has already configured the library root logger. return _SCREAMING_SNAKE_CASE : Optional[int] = logging.StreamHandler() # Set sys.stderr as stream. _SCREAMING_SNAKE_CASE : Tuple = sys.stderr.flush # Apply our default configuration to the library root logger. _SCREAMING_SNAKE_CASE : Union[str, Any] = _get_library_root_logger() library_root_logger.addHandler(_default_handler ) library_root_logger.setLevel(_get_default_logging_level() ) _SCREAMING_SNAKE_CASE : int = False def lowercase__ ( ): global _default_handler with _lock: if not _default_handler: return _SCREAMING_SNAKE_CASE : Any = _get_library_root_logger() library_root_logger.removeHandler(_default_handler ) library_root_logger.setLevel(logging.NOTSET ) _SCREAMING_SNAKE_CASE : Optional[Any] = None def lowercase__ ( ): return log_levels def lowercase__ ( lowerCamelCase = None ): if name is None: _SCREAMING_SNAKE_CASE : Tuple = _get_library_name() _configure_library_root_logger() return logging.getLogger(lowerCamelCase ) def lowercase__ ( ): _configure_library_root_logger() return _get_library_root_logger().getEffectiveLevel() def lowercase__ ( lowerCamelCase ): _configure_library_root_logger() _get_library_root_logger().setLevel(lowerCamelCase ) def lowercase__ ( ): return set_verbosity(lowerCamelCase ) def lowercase__ ( ): return set_verbosity(lowerCamelCase ) def lowercase__ ( ): return set_verbosity(lowerCamelCase ) def lowercase__ ( ): return set_verbosity(lowerCamelCase ) def lowercase__ ( ): _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().removeHandler(_default_handler ) def lowercase__ ( ): _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().addHandler(_default_handler ) def lowercase__ ( lowerCamelCase ): _configure_library_root_logger() assert handler is not None _get_library_root_logger().addHandler(lowerCamelCase ) def lowercase__ ( lowerCamelCase ): _configure_library_root_logger() assert handler is not None and handler not in _get_library_root_logger().handlers _get_library_root_logger().removeHandler(lowerCamelCase ) def lowercase__ ( ): _configure_library_root_logger() _SCREAMING_SNAKE_CASE : List[str] = False def lowercase__ ( ): _configure_library_root_logger() _SCREAMING_SNAKE_CASE : int = True def lowercase__ ( ): _SCREAMING_SNAKE_CASE : Any = _get_library_root_logger().handlers for handler in handlers: _SCREAMING_SNAKE_CASE : Optional[int] = logging.Formatter('[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s >> %(message)s' ) handler.setFormatter(lowerCamelCase ) def lowercase__ ( ): _SCREAMING_SNAKE_CASE : List[str] = _get_library_root_logger().handlers for handler in handlers: handler.setFormatter(lowerCamelCase ) def lowercase__ ( self, *lowerCamelCase, **lowerCamelCase ): _SCREAMING_SNAKE_CASE : str = os.getenv('TRANSFORMERS_NO_ADVISORY_WARNINGS', lowerCamelCase ) if no_advisory_warnings: return self.warning(*lowerCamelCase, **lowerCamelCase ) lowerCAmelCase__ = warning_advice @functools.lru_cache(lowerCamelCase ) def lowercase__ ( self, *lowerCamelCase, **lowerCamelCase ): self.warning(*lowerCamelCase, **lowerCamelCase ) lowerCAmelCase__ = warning_once class _lowerCAmelCase : def __init__( self , *lowerCAmelCase_ , **lowerCAmelCase_ ) -> Optional[int]: # pylint: disable=unused-argument _SCREAMING_SNAKE_CASE : Tuple = args[0] if args else None def __iter__( self ) -> Dict: return iter(self._iterator ) def __getattr__( self , lowerCAmelCase_ ) -> Tuple: def empty_fn(*lowerCAmelCase_ , **lowerCAmelCase_ ): # pylint: disable=unused-argument return return empty_fn def __enter__( self ) -> List[Any]: return self def __exit__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Optional[Any]: return class _lowerCAmelCase : def __call__( self , *lowerCAmelCase_ , **lowerCAmelCase_ ) -> Optional[Any]: if _tqdm_active: return tqdm_lib.tqdm(*lowerCAmelCase_ , **lowerCAmelCase_ ) else: return EmptyTqdm(*lowerCAmelCase_ , **lowerCAmelCase_ ) def A ( self , *lowerCAmelCase_ , **lowerCAmelCase_ ) -> List[str]: _SCREAMING_SNAKE_CASE : Optional[int] = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*lowerCAmelCase_ , **lowerCAmelCase_ ) def A ( self ) -> Any: if _tqdm_active: return tqdm_lib.tqdm.get_lock() lowerCAmelCase__ = _tqdm_cls() def lowercase__ ( ): global _tqdm_active return bool(_tqdm_active ) def lowercase__ ( ): global _tqdm_active _SCREAMING_SNAKE_CASE : int = True hf_hub_utils.enable_progress_bars() def lowercase__ ( ): global _tqdm_active _SCREAMING_SNAKE_CASE : Optional[Any] = False hf_hub_utils.disable_progress_bars()
621
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowercase = { 'configuration_megatron_bert': ['MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MegatronBertConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ 'MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MegatronBertForCausalLM', 'MegatronBertForMaskedLM', 'MegatronBertForMultipleChoice', 'MegatronBertForNextSentencePrediction', 'MegatronBertForPreTraining', 'MegatronBertForQuestionAnswering', 'MegatronBertForSequenceClassification', 'MegatronBertForTokenClassification', 'MegatronBertModel', 'MegatronBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_megatron_bert import ( MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, MegatronBertPreTrainedModel, ) else: import sys __lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
719
"""simple docstring""" from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch __lowercase = logging.get_logger(__name__) @add_end_docstrings( _a ,r""" top_k (`int`, defaults to 5): The number of predictions to return. targets (`str` or `List[str]`, *optional*): When passed, the model will limit the scores to the passed targets instead of looking up in the whole vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting token will be used (with a warning, and that might be slower). """ ,) class _A ( _a ): """simple docstring""" def __snake_case ( self : Optional[int] , __UpperCAmelCase : GenericTensor): if self.framework == "tf": a : Dict = tf.where(input_ids == self.tokenizer.mask_token_id).numpy() elif self.framework == "pt": a : str = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=__UpperCAmelCase) else: raise ValueError("Unsupported framework") return masked_index def __snake_case ( self : Optional[int] , __UpperCAmelCase : GenericTensor): a : Union[str, Any] = self.get_masked_index(__UpperCAmelCase) a : Dict = np.prod(masked_index.shape) if numel < 1: raise PipelineException( "fill-mask" , self.model.base_model_prefix , f'''No mask_token ({self.tokenizer.mask_token}) found on the input''' , ) def __snake_case ( self : List[str] , __UpperCAmelCase : GenericTensor): if isinstance(__UpperCAmelCase , __UpperCAmelCase): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input["input_ids"][0]) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(__UpperCAmelCase) def __snake_case ( self : Optional[Any] , __UpperCAmelCase : int , __UpperCAmelCase : Optional[Any]=None , **__UpperCAmelCase : Optional[int]): if return_tensors is None: a : Optional[int] = self.framework a : int = self.tokenizer(__UpperCAmelCase , return_tensors=__UpperCAmelCase) self.ensure_exactly_one_mask_token(__UpperCAmelCase) return model_inputs def __snake_case ( self : Optional[Any] , __UpperCAmelCase : Tuple): a : Dict = self.model(**__UpperCAmelCase) a : Optional[int] = model_inputs["input_ids"] return model_outputs def __snake_case ( self : Optional[Any] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : int=5 , __UpperCAmelCase : int=None): # Cap top_k if there are targets if target_ids is not None and target_ids.shape[0] < top_k: a : Optional[int] = target_ids.shape[0] a : Dict = model_outputs["input_ids"][0] a : int = model_outputs["logits"] if self.framework == "tf": a : Union[str, Any] = tf.where(input_ids == self.tokenizer.mask_token_id).numpy()[:, 0] a : Tuple = outputs.numpy() a : Optional[Any] = outputs[0, masked_index, :] a : int = stable_softmax(__UpperCAmelCase , axis=-1) if target_ids is not None: a : List[str] = tf.gather_nd(tf.squeeze(__UpperCAmelCase , 0) , target_ids.reshape(-1 , 1)) a : Union[str, Any] = tf.expand_dims(__UpperCAmelCase , 0) a : List[Any] = tf.math.top_k(__UpperCAmelCase , k=__UpperCAmelCase) a , a : Optional[Any] = topk.values.numpy(), topk.indices.numpy() else: a : Any = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=__UpperCAmelCase).squeeze(-1) # Fill mask pipeline supports only one ${mask_token} per sample a : List[str] = outputs[0, masked_index, :] a : int = logits.softmax(dim=-1) if target_ids is not None: a : Any = probs[..., target_ids] a , a : Union[str, Any] = probs.topk(__UpperCAmelCase) a : Optional[int] = [] a : List[Any] = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist())): a : Dict = [] for v, p in zip(_values , _predictions): # Copy is important since we're going to modify this array in place a : List[str] = input_ids.numpy().copy() if target_ids is not None: a : List[Any] = target_ids[p].tolist() a : Dict = p # Filter padding out: a : List[Any] = tokens[np.where(tokens != self.tokenizer.pad_token_id)] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back a : List[Any] = self.tokenizer.decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase) a : Dict = {"score": v, "token": p, "token_str": self.tokenizer.decode([p]), "sequence": sequence} row.append(__UpperCAmelCase) result.append(__UpperCAmelCase) if single_mask: return result[0] return result def __snake_case ( self : str , __UpperCAmelCase : Dict , __UpperCAmelCase : Any=None): if isinstance(__UpperCAmelCase , __UpperCAmelCase): a : Optional[int] = [targets] try: a : Union[str, Any] = self.tokenizer.get_vocab() except Exception: a : Any = {} a : str = [] for target in targets: a : str = vocab.get(__UpperCAmelCase , __UpperCAmelCase) if id_ is None: a : Any = self.tokenizer( __UpperCAmelCase , add_special_tokens=__UpperCAmelCase , return_attention_mask=__UpperCAmelCase , return_token_type_ids=__UpperCAmelCase , max_length=1 , truncation=__UpperCAmelCase , )["input_ids"] if len(__UpperCAmelCase) == 0: logger.warning( f'''The specified target token `{target}` does not exist in the model vocabulary. ''' "We cannot replace it with anything meaningful, ignoring it") continue a : Tuple = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( f'''The specified target token `{target}` does not exist in the model vocabulary. ''' f'''Replacing with `{self.tokenizer.convert_ids_to_tokens(id_)}`.''') target_ids.append(id_) a : Union[str, Any] = list(set(__UpperCAmelCase)) if len(__UpperCAmelCase) == 0: raise ValueError("At least one target must be provided when passed.") a : Union[str, Any] = np.array(__UpperCAmelCase) return target_ids def __snake_case ( self : List[str] , __UpperCAmelCase : Tuple=None , __UpperCAmelCase : int=None): a : int = {} if targets is not None: a : List[Any] = self.get_target_ids(__UpperCAmelCase , __UpperCAmelCase) a : Optional[int] = target_ids if top_k is not None: a : Any = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( "fill-mask" , self.model.base_model_prefix , "The tokenizer does not define a `mask_token`.") return {}, {}, postprocess_params def __call__( self : Optional[int] , __UpperCAmelCase : int , *__UpperCAmelCase : Dict , **__UpperCAmelCase : int): a : str = super().__call__(__UpperCAmelCase , **__UpperCAmelCase) if isinstance(__UpperCAmelCase , __UpperCAmelCase) and len(__UpperCAmelCase) == 1: return outputs[0] return outputs
135
0
def __lowerCamelCase ( lowerCamelCase__ : int = 10 , lowerCamelCase__ : int = 1000 , lowerCamelCase__ : bool = True ): '''simple docstring''' assert ( isinstance(__lowerCamelCase , __lowerCamelCase ) and isinstance(__lowerCamelCase , __lowerCamelCase ) and isinstance(__lowerCamelCase , __lowerCamelCase ) ), "Invalid type of value(s) specified to function!" if min_val > max_val: raise ValueError("""Invalid value for min_val or max_val (min_value < max_value)""" ) return min_val if option else max_val def __lowerCamelCase ( lowerCamelCase__ : int , lowerCamelCase__ : int ): '''simple docstring''' return int((number_a + number_a) / 2 ) def __lowerCamelCase ( lowerCamelCase__ : int , lowerCamelCase__ : int , lowerCamelCase__ : int ): '''simple docstring''' assert ( isinstance(__lowerCamelCase , __lowerCamelCase ) and isinstance(__lowerCamelCase , __lowerCamelCase ) and isinstance(__lowerCamelCase , __lowerCamelCase ) ), 'argument values must be type of "int"' if lower > higher: raise ValueError("""argument value for lower and higher must be(lower > higher)""" ) if not lower < to_guess < higher: raise ValueError( """guess value must be within the range of lower and higher value""" ) def answer(lowerCamelCase__ : int ) -> str: if number > to_guess: return "high" elif number < to_guess: return "low" else: return "same" print("""started...""" ) lowerCamelCase = lower lowerCamelCase = higher lowerCamelCase = [] while True: lowerCamelCase = get_avg(__lowerCamelCase , __lowerCamelCase ) last_numbers.append(__lowerCamelCase ) if answer(__lowerCamelCase ) == "low": lowerCamelCase = number elif answer(__lowerCamelCase ) == "high": lowerCamelCase = number else: break print(f'guess the number : {last_numbers[-1]}' ) print(f'details : {last_numbers!s}' ) def __lowerCamelCase ( ): '''simple docstring''' lowerCamelCase = int(input("""Enter lower value : """ ).strip() ) lowerCamelCase = int(input("""Enter high value : """ ).strip() ) lowerCamelCase = int(input("""Enter value to guess : """ ).strip() ) guess_the_number(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if __name__ == "__main__": main()
457
'''simple docstring''' import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class __magic_name__ ( lowerCAmelCase ): def __init__( self , *snake_case , snake_case=None , snake_case=None , **snake_case) -> Tuple: '''simple docstring''' super().__init__(*snake_case , **snake_case) _UpperCAmelCase : Any =eval_examples _UpperCAmelCase : Optional[int] =post_process_function def lowerCAmelCase ( self , snake_case = None , snake_case=None , snake_case = None , snake_case = "eval" , **snake_case , ) -> Dict[str, float]: '''simple docstring''' _UpperCAmelCase : Tuple =gen_kwargs.copy() _UpperCAmelCase : int =( gen_kwargs['max_length'] if gen_kwargs.get('max_length') is not None else self.args.generation_max_length ) _UpperCAmelCase : Dict =( gen_kwargs['num_beams'] if gen_kwargs.get('num_beams') is not None else self.args.generation_num_beams ) _UpperCAmelCase : Dict =gen_kwargs _UpperCAmelCase : Tuple =self.eval_dataset if eval_dataset is None else eval_dataset _UpperCAmelCase : Union[str, Any] =self.get_eval_dataloader(snake_case) _UpperCAmelCase : Tuple =self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. _UpperCAmelCase : Dict =self.compute_metrics _UpperCAmelCase : Optional[Any] =None _UpperCAmelCase : str =time.time() _UpperCAmelCase : int =self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: _UpperCAmelCase : str =eval_loop( snake_case , description='Evaluation' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=snake_case , metric_key_prefix=snake_case , ) finally: _UpperCAmelCase : str =compute_metrics _UpperCAmelCase : Optional[int] =self.args.eval_batch_size * self.args.world_size if f"{metric_key_prefix}_jit_compilation_time" in output.metrics: start_time += output.metrics[f"{metric_key_prefix}_jit_compilation_time"] output.metrics.update( speed_metrics( snake_case , snake_case , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size) , )) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default _UpperCAmelCase : Tuple =self.post_process_function(snake_case , snake_case , snake_case) _UpperCAmelCase : Union[str, Any] =self.compute_metrics(snake_case) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys()): if not key.startswith(f"{metric_key_prefix}_"): _UpperCAmelCase : Any =metrics.pop(snake_case) metrics.update(output.metrics) else: _UpperCAmelCase : str =output.metrics if self.args.should_log: # Only the main node log the results by default self.log(snake_case) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report()) _UpperCAmelCase : Any =self.callback_handler.on_evaluate(self.args , self.state , self.control , snake_case) return metrics def lowerCAmelCase ( self , snake_case , snake_case , snake_case=None , snake_case = "test" , **snake_case) -> Dict: '''simple docstring''' _UpperCAmelCase : Optional[int] =gen_kwargs.copy() _UpperCAmelCase : int =self.get_test_dataloader(snake_case) # Temporarily disable metric computation, we will do it in the loop here. _UpperCAmelCase : str =self.compute_metrics _UpperCAmelCase : Union[str, Any] =None _UpperCAmelCase : Union[str, Any] =time.time() _UpperCAmelCase : Tuple =self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: _UpperCAmelCase : Any =eval_loop( snake_case , description='Prediction' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=snake_case , metric_key_prefix=snake_case , ) finally: _UpperCAmelCase : Any =compute_metrics _UpperCAmelCase : Dict =self.args.eval_batch_size * self.args.world_size if f"{metric_key_prefix}_jit_compilation_time" in output.metrics: start_time += output.metrics[f"{metric_key_prefix}_jit_compilation_time"] output.metrics.update( speed_metrics( snake_case , snake_case , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size) , )) if self.post_process_function is None or self.compute_metrics is None: return output _UpperCAmelCase : Tuple =self.post_process_function(snake_case , snake_case , snake_case , 'predict') _UpperCAmelCase : Union[str, Any] =self.compute_metrics(snake_case) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys()): if not key.startswith(f"{metric_key_prefix}_"): _UpperCAmelCase : Any =metrics.pop(snake_case) metrics.update(output.metrics) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=snake_case)
446
0
import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def _lowercase ( a__ : Dict , a__ : int ) -> List[str]: """simple docstring""" _UpperCamelCase = torch.load(a__ , map_location="cpu" ) _UpperCamelCase = chkpt["model"] # We have the base model one level deeper than the original XLM repository _UpperCamelCase = {} for k, v in state_dict.items(): if "pred_layer" in k: _UpperCamelCase = v else: _UpperCamelCase = v _UpperCamelCase = chkpt["params"] _UpperCamelCase = {n: v for n, v in config.items() if not isinstance(a__ , (torch.FloatTensor, numpy.ndarray) )} _UpperCamelCase = chkpt["dico_word2id"] _UpperCamelCase = {s + "</w>" if s.find("@@" ) == -1 and i > 13 else s.replace("@@" , "" ): i for s, i in vocab.items()} # Save pytorch-model _UpperCamelCase = pytorch_dump_folder_path + "/" + WEIGHTS_NAME _UpperCamelCase = pytorch_dump_folder_path + "/" + CONFIG_NAME _UpperCamelCase = pytorch_dump_folder_path + "/" + VOCAB_FILES_NAMES["vocab_file"] print(f'''Save PyTorch model to {pytorch_weights_dump_path}''' ) torch.save(a__ , a__ ) print(f'''Save configuration file to {pytorch_config_dump_path}''' ) with open(a__ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(a__ , indent=2 ) + "\n" ) print(f'''Save vocab file to {pytorch_config_dump_path}''' ) with open(a__ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(a__ , indent=2 ) + "\n" ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--xlm_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) __lowerCAmelCase = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
714
import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class lowerCamelCase_ ( lowercase , lowercase ): @register_to_config def __init__( self , *, lowerCamelCase_ = 4 , lowerCamelCase_ = 7_68 , lowerCamelCase_ , lowerCamelCase_ , ) -> int: """simple docstring""" super().__init__() _UpperCamelCase = nn.Parameter(torch.zeros(lowerCamelCase_ ) ) # parameters for additional clip time embeddings _UpperCamelCase = nn.Linear(lowerCamelCase_ , lowerCamelCase_ ) _UpperCamelCase = nn.Linear(lowerCamelCase_ , lowerCamelCase_ ) # parameters for encoder hidden states _UpperCamelCase = clip_extra_context_tokens _UpperCamelCase = nn.Linear( lowerCamelCase_ , self.clip_extra_context_tokens * cross_attention_dim ) _UpperCamelCase = nn.Linear(lowerCamelCase_ , lowerCamelCase_ ) _UpperCamelCase = nn.LayerNorm(lowerCamelCase_ ) def lowercase ( self , *, lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> int: """simple docstring""" if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings _UpperCamelCase = image_embeddings.shape[0] _UpperCamelCase = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 ) _UpperCamelCase = classifier_free_guidance_embeddings.expand( lowerCamelCase_ , -1 ) _UpperCamelCase = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 ) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] _UpperCamelCase = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... _UpperCamelCase = self.embedding_proj(lowerCamelCase_ ) _UpperCamelCase = self.clip_image_embeddings_project_to_time_embeddings(lowerCamelCase_ ) _UpperCamelCase = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" _UpperCamelCase = self.clip_extra_context_tokens_proj(lowerCamelCase_ ) _UpperCamelCase = clip_extra_context_tokens.reshape(lowerCamelCase_ , -1 , self.clip_extra_context_tokens ) _UpperCamelCase = clip_extra_context_tokens.permute(0 , 2 , 1 ) _UpperCamelCase = self.encoder_hidden_states_proj(lowerCamelCase_ ) _UpperCamelCase = self.text_encoder_hidden_states_norm(lowerCamelCase_ ) _UpperCamelCase = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 ) return text_encoder_hidden_states, additive_clip_time_embeddings
589
0
def __lowercase ( snake_case, snake_case ): """simple docstring""" return price * (1 + tax_rate) if __name__ == "__main__": print(f"{price_plus_tax(1_00, 0.25) = }") print(f"{price_plus_tax(125.50, 0.05) = }")
0
import functools import logging import os import sys import threading from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional import huggingface_hub.utils as hf_hub_utils from tqdm import auto as tqdm_lib A : Dict = threading.Lock() A : Optional[logging.Handler] = None A : Optional[int] = { "debug": logging.DEBUG, "info": logging.INFO, "warning": logging.WARNING, "error": logging.ERROR, "critical": logging.CRITICAL, } A : List[str] = logging.WARNING A : str = True def a__ ( ): SCREAMING_SNAKE_CASE_ = os.getenv("TRANSFORMERS_VERBOSITY" , __UpperCamelCase ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( F'''Unknown option TRANSFORMERS_VERBOSITY={env_level_str}, ''' F'''has to be one of: { ", ".join(log_levels.keys() ) }''' ) return _default_log_level def a__ ( ): return __name__.split("." )[0] def a__ ( ): return logging.getLogger(_get_library_name() ) def a__ ( ): global _default_handler with _lock: if _default_handler: # This library has already configured the library root logger. return SCREAMING_SNAKE_CASE_ = logging.StreamHandler() # Set sys.stderr as stream. SCREAMING_SNAKE_CASE_ = sys.stderr.flush # Apply our default configuration to the library root logger. SCREAMING_SNAKE_CASE_ = _get_library_root_logger() library_root_logger.addHandler(_default_handler ) library_root_logger.setLevel(_get_default_logging_level() ) SCREAMING_SNAKE_CASE_ = False def a__ ( ): global _default_handler with _lock: if not _default_handler: return SCREAMING_SNAKE_CASE_ = _get_library_root_logger() library_root_logger.removeHandler(_default_handler ) library_root_logger.setLevel(logging.NOTSET ) SCREAMING_SNAKE_CASE_ = None def a__ ( ): return log_levels def a__ ( __UpperCamelCase = None ): if name is None: SCREAMING_SNAKE_CASE_ = _get_library_name() _configure_library_root_logger() return logging.getLogger(__UpperCamelCase ) def a__ ( ): _configure_library_root_logger() return _get_library_root_logger().getEffectiveLevel() def a__ ( __UpperCamelCase ): _configure_library_root_logger() _get_library_root_logger().setLevel(__UpperCamelCase ) def a__ ( ): return set_verbosity(__UpperCamelCase ) def a__ ( ): return set_verbosity(__UpperCamelCase ) def a__ ( ): return set_verbosity(__UpperCamelCase ) def a__ ( ): return set_verbosity(__UpperCamelCase ) def a__ ( ): _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().removeHandler(_default_handler ) def a__ ( ): _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().addHandler(_default_handler ) def a__ ( __UpperCamelCase ): _configure_library_root_logger() assert handler is not None _get_library_root_logger().addHandler(__UpperCamelCase ) def a__ ( __UpperCamelCase ): _configure_library_root_logger() assert handler is not None and handler not in _get_library_root_logger().handlers _get_library_root_logger().removeHandler(__UpperCamelCase ) def a__ ( ): _configure_library_root_logger() SCREAMING_SNAKE_CASE_ = False def a__ ( ): _configure_library_root_logger() SCREAMING_SNAKE_CASE_ = True def a__ ( ): SCREAMING_SNAKE_CASE_ = _get_library_root_logger().handlers for handler in handlers: SCREAMING_SNAKE_CASE_ = logging.Formatter("[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s >> %(message)s" ) handler.setFormatter(__UpperCamelCase ) def a__ ( ): SCREAMING_SNAKE_CASE_ = _get_library_root_logger().handlers for handler in handlers: handler.setFormatter(__UpperCamelCase ) def a__ ( self , *__UpperCamelCase , **__UpperCamelCase ): SCREAMING_SNAKE_CASE_ = os.getenv("TRANSFORMERS_NO_ADVISORY_WARNINGS" , __UpperCamelCase ) if no_advisory_warnings: return self.warning(*__UpperCamelCase , **__UpperCamelCase ) A : Dict = warning_advice @functools.lru_cache(__UpperCamelCase ) def a__ ( self , *__UpperCamelCase , **__UpperCamelCase ): self.warning(*__UpperCamelCase , **__UpperCamelCase ) A : Union[str, Any] = warning_once class lowerCamelCase : """simple docstring""" def __init__( self : Optional[Any] , *__magic_name__ : Optional[int] , **__magic_name__ : int ) -> int: # pylint: disable=unused-argument SCREAMING_SNAKE_CASE_ = args[0] if args else None def __iter__( self : str ) -> Optional[int]: return iter(self._iterator ) def __getattr__( self : Dict , __magic_name__ : int ) -> Optional[int]: def empty_fn(*__magic_name__ : Tuple , **__magic_name__ : Optional[Any] ): # pylint: disable=unused-argument return return empty_fn def __enter__( self : Any ) -> Dict: return self def __exit__( self : Union[str, Any] , __magic_name__ : Any , __magic_name__ : List[str] , __magic_name__ : List[str] ) -> List[str]: return class lowerCamelCase : """simple docstring""" def __call__( self : List[Any] , *__magic_name__ : List[str] , **__magic_name__ : Tuple ) -> Union[str, Any]: if _tqdm_active: return tqdm_lib.tqdm(*__magic_name__ , **__magic_name__ ) else: return EmptyTqdm(*__magic_name__ , **__magic_name__ ) def __A ( self : Tuple , *__magic_name__ : List[Any] , **__magic_name__ : List[str] ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*__magic_name__ , **__magic_name__ ) def __A ( self : Optional[Any] ) -> Dict: if _tqdm_active: return tqdm_lib.tqdm.get_lock() A : Optional[int] = _tqdm_cls() def a__ ( ): global _tqdm_active return bool(_tqdm_active ) def a__ ( ): global _tqdm_active SCREAMING_SNAKE_CASE_ = True hf_hub_utils.enable_progress_bars() def a__ ( ): global _tqdm_active SCREAMING_SNAKE_CASE_ = False hf_hub_utils.disable_progress_bars()
140
0
'''simple docstring''' from __future__ import annotations def UpperCamelCase_ ( snake_case_ : int | float | str , snake_case_ : int | float | str ) -> list[str]: '''simple docstring''' if nth_term == "": return [""] __lowerCAmelCase = int(snake_case_ ) __lowerCAmelCase = int(snake_case_ ) __lowerCAmelCase = [] for temp in range(int(snake_case_ ) ): series.append(f"""1 / {pow(temp + 1 , int(snake_case_ ) )}""" if series else """1""" ) return series if __name__ == "__main__": import doctest doctest.testmod() _A : int = int(input('''Enter the last number (nth term) of the P-Series''')) _A : Any = int(input('''Enter the power for P-Series''')) print('''Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p''') print(p_series(nth_term, power))
330
'''simple docstring''' import itertools import os from collections import Counter, defaultdict from concurrent.futures import ThreadPoolExecutor, as_completed import numpy as np import datasets from .execute import check_correctness _A : Union[str, Any] = '''\ @misc{chen2021evaluating, title={Evaluating Large Language Models Trained on Code}, author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \ and Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \ and Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \ and Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \ and Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \ and Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \ and Mohammad Bavarian and Clemens Winter and Philippe Tillet \ and Felipe Petroski Such and Dave Cummings and Matthias Plappert \ and Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \ and William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \ and Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \ and William Saunders and Christopher Hesse and Andrew N. Carr \ and Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \ and Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \ and Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \ and Sam McCandlish and Ilya Sutskever and Wojciech Zaremba}, year={2021}, eprint={2107.03374}, archivePrefix={arXiv}, primaryClass={cs.LG} } ''' _A : Dict = '''\ This metric implements the evaluation harness for the HumanEval problem solving dataset described in the paper "Evaluating Large Language Models Trained on Code" (https://arxiv.org/abs/2107.03374). ''' _A : Any = ''' Calculates how good are predictions given some references, using certain scores Args: predictions: list of candidates to evaluate. Each candidates should be a list of strings with several code candidates to solve the problem. references: a list with a test for each prediction. Each test should evaluate the correctness of a code candidate. k: number of code candidates to consider in the evaluation (Default: [1, 10, 100]) num_workers: number of workers used to evaluate the canidate programs (Default: 4). timeout: Returns: pass_at_k: dict with pass rates for each k results: dict with granular results of each unittest Examples: >>> code_eval = datasets.load_metric("code_eval") >>> test_cases = ["assert add(2,3)==5"] >>> candidates = [["def add(a,b): return a*b", "def add(a, b): return a+b"]] >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2]) >>> print(pass_at_k) {\'pass@1\': 0.5, \'pass@2\': 1.0} ''' _A : int = ''' ################################################################################ !!!WARNING!!! ################################################################################ The "code_eval" metric executes untrusted model-generated code in Python. Although it is highly unlikely that model-generated code will do something overtly malicious in response to this test suite, model-generated code may act destructively due to a lack of model capability or alignment. Users are strongly encouraged to sandbox this evaluation suite so that it does not perform destructive actions on their host or network. For more information on how OpenAI sandboxes its code, see the paper "Evaluating Large Language Models Trained on Code" (https://arxiv.org/abs/2107.03374). Once you have read this disclaimer and taken appropriate precautions, set the environment variable HF_ALLOW_CODE_EVAL="1". Within Python you can to this with: >>> import os >>> os.environ["HF_ALLOW_CODE_EVAL"] = "1" ################################################################################\ ''' _A : List[str] = '''The MIT License Copyright (c) OpenAI (https://openai.com) Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowercase ( datasets.Metric ): '''simple docstring''' def a ( self : Optional[int] ) -> Optional[Any]: return datasets.MetricInfo( # This is the description that will appear on the metrics page. description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""string""" ) ), """references""": datasets.Value("""string""" ), } ) , homepage="""https://github.com/openai/human-eval""" , codebase_urls=["""https://github.com/openai/human-eval"""] , reference_urls=["""https://github.com/openai/human-eval"""] , license=_LICENSE , ) def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[Any]=[1, 10, 1_00] , SCREAMING_SNAKE_CASE__ : Tuple=4 , SCREAMING_SNAKE_CASE__ : Optional[Any]=3.0 ) -> Optional[int]: if os.getenv("""HF_ALLOW_CODE_EVAL""" , 0 ) != "1": raise ValueError(_WARNING ) if os.name == "nt": raise NotImplementedError("""This metric is currently not supported on Windows.""" ) with ThreadPoolExecutor(max_workers=SCREAMING_SNAKE_CASE__ ) as executor: __lowerCAmelCase = [] __lowerCAmelCase = Counter() __lowerCAmelCase = 0 __lowerCAmelCase = defaultdict(SCREAMING_SNAKE_CASE__ ) for task_id, (candidates, test_case) in enumerate(zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ): for candidate in candidates: __lowerCAmelCase = candidate + """\n""" + test_case __lowerCAmelCase = (test_program, timeout, task_id, completion_id[task_id]) __lowerCAmelCase = executor.submit(SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ ) futures.append(SCREAMING_SNAKE_CASE__ ) completion_id[task_id] += 1 n_samples += 1 for future in as_completed(SCREAMING_SNAKE_CASE__ ): __lowerCAmelCase = future.result() results[result["task_id"]].append((result["""completion_id"""], result) ) __lowerCAmelCase , __lowerCAmelCase = [], [] for result in results.values(): result.sort() __lowerCAmelCase = [r[1]["""passed"""] for r in result] total.append(len(SCREAMING_SNAKE_CASE__ ) ) correct.append(sum(SCREAMING_SNAKE_CASE__ ) ) __lowerCAmelCase = np.array(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = np.array(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = k __lowerCAmelCase = {f"""pass@{k}""": estimate_pass_at_k(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).mean() for k in ks if (total >= k).all()} return pass_at_k, results def UpperCamelCase_ ( snake_case_ : List[Any] , snake_case_ : Tuple , snake_case_ : int ) -> Dict: '''simple docstring''' def estimator(snake_case_ : int , snake_case_ : int , snake_case_ : int ) -> float: if n - c < k: return 1.0 return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 , n + 1 ) ) if isinstance(snake_case_ , snake_case_ ): __lowerCAmelCase = itertools.repeat(snake_case_ , len(snake_case_ ) ) else: assert len(snake_case_ ) == len(snake_case_ ) __lowerCAmelCase = iter(snake_case_ ) return np.array([estimator(int(snake_case_ ) , int(snake_case_ ) , snake_case_ ) for n, c in zip(snake_case_ , snake_case_ )] )
330
1
from __future__ import annotations import numpy as np def snake_case ( lowerCamelCase ): '''simple docstring''' return np.maximum(0 , lowerCamelCase ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
80
from typing import TYPE_CHECKING from ....utils import _LazyModule _SCREAMING_SNAKE_CASE : Union[str, Any] = {'tokenization_tapex': ['TapexTokenizer']} if TYPE_CHECKING: from .tokenization_tapex import TapexTokenizer else: import sys _SCREAMING_SNAKE_CASE : int = _LazyModule(__name__, globals()['__file__'], _import_structure)
226
0
'''simple docstring''' def A_ ( __SCREAMING_SNAKE_CASE : Union[str, Any] ) -> int: """simple docstring""" __A : int = [1] __A , __A , __A : Tuple = 0, 0, 0 __A : Dict = ugly_nums[ia] * 2 __A : Tuple = ugly_nums[ia] * 3 __A : List[str] = ugly_nums[ia] * 5 for _ in range(1 , __UpperCamelCase ): __A : List[str] = min(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) ugly_nums.append(__UpperCamelCase ) if next_num == next_a: ia += 1 __A : Optional[int] = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 __A : Union[str, Any] = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 __A : List[Any] = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(F"{ugly_numbers(200) = }")
713
'''simple docstring''' import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging A__ : Union[str, Any] =logging.get_logger(__name__) A__ : List[str] ={'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'} # See all LED models at https://huggingface.co/models?filter=LED A__ : str ={ 'vocab_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json', }, 'merges_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt', }, 'tokenizer_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json', }, } A__ : List[Any] ={ 'allenai/led-base-16384': 16_384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def A_ ( ) -> Tuple: """simple docstring""" __A : Optional[int] = ( list(range(ord("""!""" ) , ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ) , ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ) , ord("""ÿ""" ) + 1 ) ) ) __A : List[Any] = bs[:] __A : Union[str, Any] = 0 for b in range(2**8 ): if b not in bs: bs.append(__SCREAMING_SNAKE_CASE ) cs.append(2**8 + n ) n += 1 __A : int = [chr(__SCREAMING_SNAKE_CASE ) for n in cs] return dict(zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) def A_ ( __SCREAMING_SNAKE_CASE : str ) -> Tuple: """simple docstring""" __A : str = set() __A : int = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __A : Optional[Any] = char return pairs class __A ( _SCREAMING_SNAKE_CASE ): lowerCamelCase =VOCAB_FILES_NAMES lowerCamelCase =PRETRAINED_VOCAB_FILES_MAP lowerCamelCase =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase =['''input_ids''', '''attention_mask'''] def __init__( self : Any , lowerCamelCase : Dict , lowerCamelCase : List[str] , lowerCamelCase : Dict="replace" , lowerCamelCase : int="<s>" , lowerCamelCase : str="</s>" , lowerCamelCase : List[str]="</s>" , lowerCamelCase : Optional[Any]="<s>" , lowerCamelCase : Any="<unk>" , lowerCamelCase : str="<pad>" , lowerCamelCase : Any="<mask>" , lowerCamelCase : Optional[int]=False , **lowerCamelCase : str , ): """simple docstring""" __A : List[Any] = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else bos_token __A : Any = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else eos_token __A : int = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else sep_token __A : Any = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else cls_token __A : List[Any] = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else unk_token __A : List[Any] = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __A : List[str] = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else mask_token super().__init__( errors=lowerCamelCase , bos_token=lowerCamelCase , eos_token=lowerCamelCase , unk_token=lowerCamelCase , sep_token=lowerCamelCase , cls_token=lowerCamelCase , pad_token=lowerCamelCase , mask_token=lowerCamelCase , add_prefix_space=lowerCamelCase , **lowerCamelCase , ) with open(lowerCamelCase , encoding="""utf-8""" ) as vocab_handle: __A : Optional[Any] = json.load(lowerCamelCase ) __A : Dict = {v: k for k, v in self.encoder.items()} __A : List[Any] = errors # how to handle errors in decoding __A : Optional[int] = bytes_to_unicode() __A : str = {v: k for k, v in self.byte_encoder.items()} with open(lowerCamelCase , encoding="""utf-8""" ) as merges_handle: __A : str = merges_handle.read().split("""\n""" )[1:-1] __A : Tuple = [tuple(merge.split() ) for merge in bpe_merges] __A : List[Any] = dict(zip(lowerCamelCase , range(len(lowerCamelCase ) ) ) ) __A : List[str] = {} __A : List[str] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __A : Any = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def lowercase_( self : Any ): """simple docstring""" return len(self.encoder ) def lowercase_( self : Optional[int] ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def lowercase_( self : str , lowerCamelCase : Optional[int] ): """simple docstring""" if token in self.cache: return self.cache[token] __A : Optional[Any] = tuple(lowerCamelCase ) __A : Dict = get_pairs(lowerCamelCase ) if not pairs: return token while True: __A : str = min(lowerCamelCase , key=lambda lowerCamelCase : self.bpe_ranks.get(lowerCamelCase , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break __A , __A : Optional[Any] = bigram __A : List[Any] = [] __A : Union[str, Any] = 0 while i < len(lowerCamelCase ): try: __A : str = word.index(lowerCamelCase , lowerCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __A : Union[str, Any] = j if word[i] == first and i < len(lowerCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __A : Dict = tuple(lowerCamelCase ) __A : List[Any] = new_word if len(lowerCamelCase ) == 1: break else: __A : Optional[Any] = get_pairs(lowerCamelCase ) __A : Optional[int] = """ """.join(lowerCamelCase ) __A : str = word return word def lowercase_( self : str , lowerCamelCase : Optional[int] ): """simple docstring""" __A : List[str] = [] for token in re.findall(self.pat , lowerCamelCase ): __A : Optional[Any] = """""".join( self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCamelCase ).split(""" """ ) ) return bpe_tokens def lowercase_( self : Dict , lowerCamelCase : Tuple ): """simple docstring""" return self.encoder.get(lowerCamelCase , self.encoder.get(self.unk_token ) ) def lowercase_( self : str , lowerCamelCase : Optional[Any] ): """simple docstring""" return self.decoder.get(lowerCamelCase ) def lowercase_( self : Tuple , lowerCamelCase : int ): """simple docstring""" __A : Any = """""".join(lowerCamelCase ) __A : int = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" , errors=self.errors ) return text def lowercase_( self : List[str] , lowerCamelCase : str , lowerCamelCase : Optional[str] = None ): """simple docstring""" if not os.path.isdir(lowerCamelCase ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return __A : Any = os.path.join( lowerCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) __A : Optional[Any] = os.path.join( lowerCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(lowerCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCamelCase , ensure_ascii=lowerCamelCase ) + """\n""" ) __A : str = 0 with open(lowerCamelCase , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCamelCase : kv[1] ): if index != token_index: logger.warning( f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." """ Please check that the tokenizer is not corrupted!""" ) __A : Any = token_index writer.write(""" """.join(lowerCamelCase ) + """\n""" ) index += 1 return vocab_file, merge_file def lowercase_( self : str , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __A : Tuple = [self.cls_token_id] __A : str = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowercase_( self : List[str] , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None , lowerCamelCase : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase , token_ids_a=lowerCamelCase , already_has_special_tokens=lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase )) + [1] return [1] + ([0] * len(lowerCamelCase )) + [1, 1] + ([0] * len(lowerCamelCase )) + [1] def lowercase_( self : List[str] , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None ): """simple docstring""" __A : int = [self.sep_token_id] __A : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowercase_( self : Dict , lowerCamelCase : int , lowerCamelCase : Dict=False , **lowerCamelCase : List[Any] ): """simple docstring""" __A : Union[str, Any] = kwargs.pop("""add_prefix_space""" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCamelCase ) > 0 and not text[0].isspace()): __A : Dict = """ """ + text return (text, kwargs) def lowercase_( self : Optional[int] , lowerCamelCase : Union[Dict[str, EncodedInput], BatchEncoding] , lowerCamelCase : Optional[int] = None , lowerCamelCase : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , lowerCamelCase : Optional[int] = None , lowerCamelCase : Optional[bool] = None , ): """simple docstring""" __A : str = super()._pad( encoded_inputs=lowerCamelCase , max_length=lowerCamelCase , padding_strategy=lowerCamelCase , pad_to_multiple_of=lowerCamelCase , return_attention_mask=lowerCamelCase , ) # Load from model defaults if return_attention_mask is None: __A : List[Any] = """attention_mask""" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: __A : Tuple = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. __A : List[Any] = len(encoded_inputs["""global_attention_mask"""] ) != len(lowerCamelCase ) if needs_to_be_padded: __A : str = len(lowerCamelCase ) - len(encoded_inputs["""global_attention_mask"""] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` __A : List[Any] = ( encoded_inputs["""global_attention_mask"""] + [-1] * difference ) elif self.padding_side == "left": __A : Any = [-1] * difference + encoded_inputs[ """global_attention_mask""" ] else: raise ValueError("""Invalid padding strategy:""" + str(self.padding_side ) ) return encoded_inputs
499
0
"""simple docstring""" import json import logging import os import sys from time import time from unittest.mock import patch from transformers.testing_utils import TestCasePlus, require_torch_tpu logging.basicConfig(level=logging.DEBUG) __magic_name__ : Optional[Any] = logging.getLogger() def a_ ( lowercase__ :List[str] ): __lowerCamelCase = {} __lowerCamelCase = os.path.join(lowercase__, """all_results.json""" ) if os.path.exists(lowercase__ ): with open(lowercase__, """r""" ) as f: __lowerCamelCase = json.load(lowercase__ ) else: raise ValueError(f'can\'t find {path}' ) return results __magic_name__ : Optional[Any] = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) @require_torch_tpu class __snake_case (lowerCamelCase ): def __a ( self: int ): import xla_spawn __lowerCamelCase = self.get_auto_remove_tmp_dir() __lowerCamelCase = f'\n ./examples/pytorch/text-classification/run_glue.py\n --num_cores=8\n ./examples/pytorch/text-classification/run_glue.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --do_train\n --do_eval\n --debug tpu_metrics_debug\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --max_steps=10\n --warmup_steps=2\n --seed=42\n --max_seq_length=128\n '.split() with patch.object(A_ , """argv""" , A_ ): __lowerCamelCase = time() xla_spawn.main() __lowerCamelCase = time() __lowerCamelCase = get_results(A_ ) self.assertGreaterEqual(result["""eval_accuracy"""] , 0.75 ) # Assert that the script takes less than 500 seconds to make sure it doesn't hang. self.assertLess(end - start , 5_00 ) def __a ( self: Optional[Any] ): import xla_spawn __lowerCamelCase = """ ./tests/test_trainer_tpu.py --num_cores=8 ./tests/test_trainer_tpu.py """.split() with patch.object(A_ , """argv""" , A_ ): xla_spawn.main()
281
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __magic_name__ : str = logging.get_logger(__name__) __magic_name__ : List[Any] = { 'uclanlp/visualbert-vqa': 'https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json', 'uclanlp/visualbert-vqa-pre': 'https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json', 'uclanlp/visualbert-vqa-coco-pre': ( 'https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json' ), 'uclanlp/visualbert-vcr': 'https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json', 'uclanlp/visualbert-vcr-pre': 'https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json', 'uclanlp/visualbert-vcr-coco-pre': ( 'https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json' ), 'uclanlp/visualbert-nlvr2': 'https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json', 'uclanlp/visualbert-nlvr2-pre': 'https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json', 'uclanlp/visualbert-nlvr2-coco-pre': ( 'https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json' ) # See all VisualBERT models at https://huggingface.co/models?filter=visual_bert } class __snake_case (lowerCamelCase ): __a = '''visual_bert''' def __init__( self: Any , A_: List[str]=3_05_22 , A_: Tuple=7_68 , A_: Dict=5_12 , A_: List[Any]=12 , A_: str=12 , A_: Dict=30_72 , A_: str="gelu" , A_: Union[str, Any]=0.1 , A_: Any=0.1 , A_: List[Any]=5_12 , A_: int=2 , A_: int=0.02 , A_: Any=1E-12 , A_: List[str]=False , A_: str=True , A_: Union[str, Any]=1 , A_: Optional[int]=0 , A_: Dict=2 , **A_: Optional[int] , ): super().__init__(pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ , **A_ ) __lowerCamelCase = vocab_size __lowerCamelCase = max_position_embeddings __lowerCamelCase = hidden_size __lowerCamelCase = visual_embedding_dim __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = initializer_range __lowerCamelCase = type_vocab_size __lowerCamelCase = layer_norm_eps __lowerCamelCase = bypass_transformer __lowerCamelCase = special_visual_initialize
281
1
'''simple docstring''' def __UpperCamelCase ( _A : str ) -> bool: """simple docstring""" if not all(x.isalpha() for x in string ): raise ValueError('String must only contain alphabetic characters.' ) lowerCAmelCase : List[Any] = sorted(string.lower() ) return len(_A ) == len(set(_A ) ) if __name__ == "__main__": _lowerCAmelCase : Tuple = input('Enter a string ').strip() _lowerCAmelCase : Dict = is_isogram(input_str) print(f"""{input_str} is {'an' if isogram else 'not an'} isogram.""")
646
'''simple docstring''' _lowerCAmelCase : List[str] = {str(digit): digit**5 for digit in range(10)} def __UpperCamelCase ( _A : int ) -> int: """simple docstring""" return sum(DIGITS_FIFTH_POWER[digit] for digit in str(_A ) ) def __UpperCamelCase ( ) -> int: """simple docstring""" return sum( number for number in range(10_00 , 1_00_00_00 ) if number == digits_fifth_powers_sum(_A ) ) if __name__ == "__main__": print(solution())
646
1
import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = {'''vocab_file''': '''spiece.model'''} SCREAMING_SNAKE_CASE__ = { '''vocab_file''': { '''AI-Sweden/gpt-sw3-126m''': '''https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model''', '''AI-Sweden/gpt-sw3-350m''': '''https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model''', '''AI-Sweden/gpt-sw3-1.6b''': '''https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model''', '''AI-Sweden/gpt-sw3-6.7b''': '''https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model''', '''AI-Sweden/gpt-sw3-20b''': '''https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model''', } } SCREAMING_SNAKE_CASE__ = { '''AI-Sweden/gpt-sw3-126m''': 2048, '''AI-Sweden/gpt-sw3-350m''': 2048, '''AI-Sweden/gpt-sw3-1.6b''': 2048, '''AI-Sweden/gpt-sw3-6.7b''': 2048, '''AI-Sweden/gpt-sw3-20b''': 2048, } class _UpperCamelCase( __lowerCamelCase ): __SCREAMING_SNAKE_CASE : Any = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : List[Any] = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : Any = ['''input_ids''', '''attention_mask'''] def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any]=False , SCREAMING_SNAKE_CASE__ : Optional[int]=False , SCREAMING_SNAKE_CASE__ : Optional[int]=False , SCREAMING_SNAKE_CASE__ : str=None , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , SCREAMING_SNAKE_CASE__ : Optional[int]=None , SCREAMING_SNAKE_CASE__ : List[str]=None , SCREAMING_SNAKE_CASE__ : Optional[Dict[str, Any]] = None , **SCREAMING_SNAKE_CASE__ : List[Any] , ): '''simple docstring''' __a : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs __a : List[Any] = kwargs.get('name_or_path' ) if name_or_path is None: logger.warning( 'name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b,' ' you are testing the model, this can safely be ignored' ) __a : str = 'None' # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing __a : List[Any] = '<|endoftext|>' if eos_token is None else eos_token __a : List[str] = '<unk>' if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: __a : str = unk_token if pad_token is None else pad_token __a : List[Any] = eos_token if bos_token is None else bos_token else: __a : Optional[Any] = '<pad>' if pad_token is None else pad_token __a : Tuple = '<s>' if bos_token is None else bos_token super().__init__( do_lower_case=SCREAMING_SNAKE_CASE__ , remove_space=SCREAMING_SNAKE_CASE__ , keep_accents=SCREAMING_SNAKE_CASE__ , bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , sp_model_kwargs=self.sp_model_kwargs , **SCREAMING_SNAKE_CASE__ , ) __a : str = do_lower_case __a : Dict = remove_space __a : Any = keep_accents __a : Optional[Any] = vocab_file __a : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(SCREAMING_SNAKE_CASE__ ) # Used for whitespace normalization in input texts # fmt : off __a : int = {' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', '', '„'} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing __a : List[Any] = re.compile( f'''[{"".join(map(SCREAMING_SNAKE_CASE__ , list(range(0 , 9 ) ) + list(range(1_1 , 3_2 ) ) + list(range(1_2_7 , 1_6_0 ) ) + [1_6_0, 1_7_3, 8_2_0_3] ) )}]''' ) def __getstate__( self : Optional[int] ): '''simple docstring''' __a : List[Any] = self.__dict__.copy() __a : Union[str, Any] = None return state def __setstate__( self : Any , SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' __a : Union[str, Any] = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): __a : Dict = {} __a : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def __lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' return len(self.sp_model ) def __lowerCAmelCase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' __a : Optional[Any] = self.non_printing_characters_re.sub('' , SCREAMING_SNAKE_CASE__ ) # Normalize whitespaces __a : int = ''.join([char if char not in self.whitespaces else ' ' for char in text] ) # NFC Unicode normalization __a : Union[str, Any] = unicodedata.normalize('NFC' , SCREAMING_SNAKE_CASE__ ) return text def __lowerCAmelCase ( self : List[Any] , SCREAMING_SNAKE_CASE__ : str , **SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' __a : Tuple = self.preprocess_text(SCREAMING_SNAKE_CASE__ ) return self.sp_model.encode(SCREAMING_SNAKE_CASE__ , out_type=SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : Dict , SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' return self.sp_model.PieceToId(SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : List[Any] , SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' return self.sp_model.IdToPiece(SCREAMING_SNAKE_CASE__ ) @staticmethod def __lowerCAmelCase ( SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' return out_string def __lowerCAmelCase ( self : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] ): '''simple docstring''' __a : Any = [] __a : List[Any] = '' __a : Optional[int] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE__ ) + token __a : int = True __a : Tuple = [] else: current_sub_tokens.append(SCREAMING_SNAKE_CASE__ ) __a : str = False out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE__ ) return out_string def __lowerCAmelCase ( self : Dict ): '''simple docstring''' __a : Optional[Any] = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __lowerCAmelCase ( self : List[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __a : Tuple = os.path.join( SCREAMING_SNAKE_CASE__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE__ ) elif not os.path.isfile(self.vocab_file ): with open(SCREAMING_SNAKE_CASE__ , 'wb' ) as fi: __a : Any = self.sp_model.serialized_model_proto() fi.write(SCREAMING_SNAKE_CASE__ ) return (out_vocab_file,) def __lowerCAmelCase ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Union[str, List[str]] , SCREAMING_SNAKE_CASE__ : Union[str, bool] = False ): '''simple docstring''' if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __a : Tuple = self.preprocess_text(SCREAMING_SNAKE_CASE__ ) __a : Dict = self.sp_model.encode(SCREAMING_SNAKE_CASE__ ) else: __a : Optional[Any] = [self.preprocess_text(SCREAMING_SNAKE_CASE__ ) for t in text] __a : List[Any] = self.sp_model.encode(SCREAMING_SNAKE_CASE__ ) if return_tensors is True or return_tensors == "pt": __a : Tuple = torch.tensor(SCREAMING_SNAKE_CASE__ ) return token_ids def __lowerCAmelCase ( self : str , SCREAMING_SNAKE_CASE__ : Union[int, List[int]] ): '''simple docstring''' return self.sp_model.decode(SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : List[Any] , SCREAMING_SNAKE_CASE__ : "Conversation" ): '''simple docstring''' __a : int = [f'''User: {text}''' if is_user else f'''Bot: {text}''' for is_user, text in conversation.iter_texts()] __a : int = ( f'''{self.eos_token}{self.bos_token}''' + f'''{self.bos_token}'''.join(SCREAMING_SNAKE_CASE__ ) + f'''{self.bos_token}Bot:''' ) return self.encode(text=SCREAMING_SNAKE_CASE__ )
47
"""simple docstring""" import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class lowerCAmelCase_ ( _lowercase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: List[str] = BioGptTokenizer _lowerCamelCase: Tuple = False def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt A = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'w</w>', 'r</w>', 't</w>', 'lo', 'low', 'er</w>', 'low</w>', 'lowest</w>', 'newer</w>', 'wider</w>', '<unk>', ] A = dict(zip(A_ ,range(len(A_ ) ) ) ) A = ['l o 123', 'lo w 1456', 'e r</w> 1789', ''] A = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] ) A = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file ,'w' ) as fp: fp.write(json.dumps(A_ ) ) with open(self.merges_file ,'w' ) as fp: fp.write('\n'.join(A_ ) ) def _SCREAMING_SNAKE_CASE ( self : Dict ,A_ : Tuple ) -> int: A = 'lower newer' A = 'lower newer' return input_text, output_text def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Any: A = BioGptTokenizer(self.vocab_file ,self.merges_file ) A = 'lower' A = ['low', 'er</w>'] A = tokenizer.tokenize(A_ ) self.assertListEqual(A_ ,A_ ) A = tokens + ['<unk>'] A = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(A_ ) ,A_ ) @slow def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[Any]: A = BioGptTokenizer.from_pretrained('microsoft/biogpt' ) A = tokenizer.encode('sequence builders' ,add_special_tokens=A_ ) A = tokenizer.encode('multi-sequence build' ,add_special_tokens=A_ ) A = tokenizer.build_inputs_with_special_tokens(A_ ) A = tokenizer.build_inputs_with_special_tokens(A_ ,A_ ) self.assertTrue(encoded_sentence == [2] + text ) self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
91
0
import math from collections.abc import Callable def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Callable[[float], float] , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float ): __UpperCamelCase =xa __UpperCamelCase =xa while True: if x_n == x_na or function(SCREAMING_SNAKE_CASE__ ) == function(SCREAMING_SNAKE_CASE__ ): raise ZeroDivisionError('float division by zero, could not find root' ) __UpperCamelCase =x_na - ( function(SCREAMING_SNAKE_CASE__ ) / ((function(SCREAMING_SNAKE_CASE__ ) - function(SCREAMING_SNAKE_CASE__ )) / (x_na - x_n)) ) if abs(x_na - x_na ) < 10**-5: return x_na __UpperCamelCase =x_na __UpperCamelCase =x_na def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : float ): return math.pow(SCREAMING_SNAKE_CASE__ , 3 ) - (2 * x) - 5 if __name__ == "__main__": print(intersection(f, 3, 3.5))
682
from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ , A_=13 , A_=7 , A_=True , A_=True , A_=True , A_=True , A_=99 , A_=32 , A_=2 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=16 , A_=2 , A_=0.02 , A_=3 , A_=4 , A_=None , ) -> Tuple: __UpperCamelCase =parent __UpperCamelCase =13 __UpperCamelCase =7 __UpperCamelCase =True __UpperCamelCase =True __UpperCamelCase =True __UpperCamelCase =True __UpperCamelCase =99 __UpperCamelCase =32 __UpperCamelCase =2 __UpperCamelCase =4 __UpperCamelCase =37 __UpperCamelCase ='gelu' __UpperCamelCase =0.1 __UpperCamelCase =0.1 __UpperCamelCase =512 __UpperCamelCase =16 __UpperCamelCase =2 __UpperCamelCase =0.02 __UpperCamelCase =3 __UpperCamelCase =4 __UpperCamelCase =None def _a ( self ) -> Tuple: __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase =None if self.use_input_mask: __UpperCamelCase =random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase =None if self.use_token_type_ids: __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCamelCase =None __UpperCamelCase =None __UpperCamelCase =None if self.use_labels: __UpperCamelCase =ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCamelCase =ids_tensor([self.batch_size] , self.num_choices ) __UpperCamelCase =RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=A_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> str: __UpperCamelCase =TFRoFormerModel(config=A_ ) __UpperCamelCase ={'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __UpperCamelCase =[input_ids, input_mask] __UpperCamelCase =model(A_ ) __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> int: __UpperCamelCase =True __UpperCamelCase =TFRoFormerForCausalLM(config=A_ ) __UpperCamelCase ={ 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __UpperCamelCase =model(A_ )['logits'] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> str: __UpperCamelCase =TFRoFormerForMaskedLM(config=A_ ) __UpperCamelCase ={ 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Dict: __UpperCamelCase =self.num_labels __UpperCamelCase =TFRoFormerForSequenceClassification(config=A_ ) __UpperCamelCase ={ 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> str: __UpperCamelCase =self.num_choices __UpperCamelCase =TFRoFormerForMultipleChoice(config=A_ ) __UpperCamelCase =tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase =tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase =tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase ={ 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Optional[Any]: __UpperCamelCase =self.num_labels __UpperCamelCase =TFRoFormerForTokenClassification(config=A_ ) __UpperCamelCase ={ 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Union[str, Any]: __UpperCamelCase =TFRoFormerForQuestionAnswering(config=A_ ) __UpperCamelCase ={ 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _a ( self ) -> Dict: __UpperCamelCase =self.prepare_config_and_inputs() ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) =config_and_inputs __UpperCamelCase ={'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class UpperCAmelCase__ ( A_ , A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Dict = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) UpperCAmelCase__ : Tuple = ( { "feature-extraction": TFRoFormerModel, "fill-mask": TFRoFormerForMaskedLM, "question-answering": TFRoFormerForQuestionAnswering, "text-classification": TFRoFormerForSequenceClassification, "text-generation": TFRoFormerForCausalLM, "token-classification": TFRoFormerForTokenClassification, "zero-shot": TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) UpperCAmelCase__ : Union[str, Any] = False UpperCAmelCase__ : Tuple = False def _a ( self , A_ , A_ , A_ , A_ , A_ ) -> Optional[Any]: if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def _a ( self ) -> str: __UpperCamelCase =TFRoFormerModelTester(self ) __UpperCamelCase =ConfigTester(self , config_class=A_ , hidden_size=37 ) def _a ( self ) -> Tuple: self.config_tester.run_common_tests() def _a ( self ) -> Any: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def _a ( self ) -> Dict: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A_ ) def _a ( self ) -> List[str]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*A_ ) def _a ( self ) -> str: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*A_ ) def _a ( self ) -> int: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A_ ) def _a ( self ) -> List[Any]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A_ ) def _a ( self ) -> Optional[Any]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A_ ) @slow def _a ( self ) -> Union[str, Any]: __UpperCamelCase =TFRoFormerModel.from_pretrained('junnyu/roformer_chinese_base' ) self.assertIsNotNone(A_ ) @require_tf class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @slow def _a ( self ) -> List[str]: __UpperCamelCase =TFRoFormerForMaskedLM.from_pretrained('junnyu/roformer_chinese_base' ) __UpperCamelCase =tf.constant([[0, 1, 2, 3, 4, 5]] ) __UpperCamelCase =model(A_ )[0] # TODO Replace vocab size __UpperCamelCase =50000 __UpperCamelCase =[1, 6, vocab_size] self.assertEqual(output.shape , A_ ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. __UpperCamelCase =tf.constant( [ [ [-0.1205_3341, -1.026_4901, 0.2922_1946], [-1.513_3783, 0.19_7433, 0.1519_0607], [-5.013_5403, -3.90_0256, -0.8403_8764], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , A_ , atol=1E-4 ) @require_tf class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : int = 1e-4 def _a ( self ) -> int: __UpperCamelCase =tf.constant([[4, 10]] ) __UpperCamelCase =TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) __UpperCamelCase =emba(input_ids.shape ) __UpperCamelCase =tf.constant( [[0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 1.0000], [0.8415, 0.0464, 0.0022, 0.5403, 0.9989, 1.0000]] ) tf.debugging.assert_near(A_ , A_ , atol=self.tolerance ) def _a ( self ) -> int: __UpperCamelCase =tf.constant( [ [0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [0.8415, 0.8219, 0.8020, 0.7819, 0.7617], [0.9093, 0.9364, 0.9581, 0.9749, 0.9870], ] ) __UpperCamelCase =TFRoFormerSinusoidalPositionalEmbedding(num_positions=512 , embedding_dim=512 ) emba([2, 16, 512] ) __UpperCamelCase =emba.weight[:3, :5] tf.debugging.assert_near(A_ , A_ , atol=self.tolerance ) @require_tf class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = 1e-4 def _a ( self ) -> List[Any]: # 2,12,16,64 __UpperCamelCase =tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 __UpperCamelCase =-tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 __UpperCamelCase =TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 ) __UpperCamelCase =embed_positions([2, 16, 768] )[None, None, :, :] __UpperCamelCase , __UpperCamelCase =TFRoFormerSelfAttention.apply_rotary_position_embeddings( A_ , A_ , A_ ) __UpperCamelCase =tf.constant( [ [0.0000, 0.0100, 0.0200, 0.0300, 0.0400, 0.0500, 0.0600, 0.0700], [-0.2012, 0.8897, 0.0263, 0.9401, 0.2074, 0.9463, 0.3481, 0.9343], [-1.7057, 0.6271, -1.2145, 1.3897, -0.6303, 1.7647, -0.1173, 1.8985], [-2.1731, -1.6397, -2.7358, 0.2854, -2.1840, 1.7183, -1.3018, 2.4871], [0.2717, -3.6173, -2.9206, -2.1988, -3.6638, 0.3858, -2.9155, 2.2980], [3.9859, -2.1580, -0.7984, -4.4904, -4.1181, -2.0252, -4.4782, 1.1253], ] ) __UpperCamelCase =tf.constant( [ [0.0000, -0.0100, -0.0200, -0.0300, -0.0400, -0.0500, -0.0600, -0.0700], [0.2012, -0.8897, -0.0263, -0.9401, -0.2074, -0.9463, -0.3481, -0.9343], [1.7057, -0.6271, 1.2145, -1.3897, 0.6303, -1.7647, 0.1173, -1.8985], [2.1731, 1.6397, 2.7358, -0.2854, 2.1840, -1.7183, 1.3018, -2.4871], [-0.2717, 3.6173, 2.9206, 2.1988, 3.6638, -0.3858, 2.9155, -2.2980], [-3.9859, 2.1580, 0.7984, 4.4904, 4.1181, 2.0252, 4.4782, -1.1253], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , A_ , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , A_ , atol=self.tolerance )
682
1
import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class __lowercase ( a__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = ["image_processor", "tokenizer"] SCREAMING_SNAKE_CASE = "BlipImageProcessor" SCREAMING_SNAKE_CASE = "AutoTokenizer" def __init__( self : Union[str, Any] , UpperCamelCase_ : Dict , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : str ): """simple docstring""" super().__init__(__a , __a ) # add QFormer tokenizer __A = qformer_tokenizer def __call__( self : List[Any] , UpperCamelCase_ : ImageInput = None , UpperCamelCase_ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCamelCase_ : bool = True , UpperCamelCase_ : Union[bool, str, PaddingStrategy] = False , UpperCamelCase_ : Union[bool, str, TruncationStrategy] = None , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : int = 0 , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : Optional[bool] = None , UpperCamelCase_ : bool = False , UpperCamelCase_ : bool = False , UpperCamelCase_ : bool = False , UpperCamelCase_ : bool = False , UpperCamelCase_ : bool = False , UpperCamelCase_ : bool = True , UpperCamelCase_ : Optional[Union[str, TensorType]] = None , **UpperCamelCase_ : List[str] , ): """simple docstring""" if images is None and text is None: raise ValueError("""You have to specify at least images or text.""" ) __A = BatchFeature() if text is not None: __A = self.tokenizer( text=__a , add_special_tokens=__a , padding=__a , truncation=__a , max_length=__a , stride=__a , pad_to_multiple_of=__a , return_attention_mask=__a , return_overflowing_tokens=__a , return_special_tokens_mask=__a , return_offsets_mapping=__a , return_token_type_ids=__a , return_length=__a , verbose=__a , return_tensors=__a , **__a , ) encoding.update(__a ) __A = self.qformer_tokenizer( text=__a , add_special_tokens=__a , padding=__a , truncation=__a , max_length=__a , stride=__a , pad_to_multiple_of=__a , return_attention_mask=__a , return_overflowing_tokens=__a , return_special_tokens_mask=__a , return_offsets_mapping=__a , return_token_type_ids=__a , return_length=__a , verbose=__a , return_tensors=__a , **__a , ) __A = qformer_text_encoding.pop("""input_ids""" ) __A = qformer_text_encoding.pop("""attention_mask""" ) if images is not None: __A = self.image_processor(__a , return_tensors=__a ) encoding.update(__a ) return encoding def lowerCAmelCase_ ( self : Optional[int] , *UpperCamelCase_ : Tuple , **UpperCamelCase_ : int ): """simple docstring""" return self.tokenizer.batch_decode(*__a , **__a ) def lowerCAmelCase_ ( self : Tuple , *UpperCamelCase_ : Tuple , **UpperCamelCase_ : Optional[Any] ): """simple docstring""" return self.tokenizer.decode(*__a , **__a ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def lowerCAmelCase_ ( self : Tuple ): """simple docstring""" __A = self.tokenizer.model_input_names __A = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) def lowerCAmelCase_ ( self : Tuple , UpperCamelCase_ : str , **UpperCamelCase_ : Optional[Any] ): """simple docstring""" if os.path.isfile(__a ): raise ValueError(F"Provided path ({save_directory}) should be a directory, not a file" ) os.makedirs(__a , exist_ok=__a ) __A = os.path.join(__a , """qformer_tokenizer""" ) self.qformer_tokenizer.save_pretrained(__a ) return super().save_pretrained(__a , **__a ) @classmethod def lowerCAmelCase_ ( cls : List[Any] , UpperCamelCase_ : List[Any] , **UpperCamelCase_ : Any ): """simple docstring""" __A = AutoTokenizer.from_pretrained(__a , subfolder="""qformer_tokenizer""" ) __A = cls._get_arguments_from_pretrained(__a , **__a ) args.append(__a ) return cls(*__a )
637
snake_case__ : List[Any] = [ 999, 800, 799, 600, 599, 500, 400, 399, 377, 355, 333, 311, 288, 266, 244, 222, 200, 199, 177, 155, 133, 111, 88, 66, 44, 22, 0, ] snake_case__ : Tuple = [ 999, 976, 952, 928, 905, 882, 858, 857, 810, 762, 715, 714, 572, 429, 428, 286, 285, 238, 190, 143, 142, 118, 95, 71, 47, 24, 0, ] snake_case__ : List[Any] = [ 999, 988, 977, 966, 955, 944, 933, 922, 911, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 350, 300, 299, 266, 233, 200, 199, 179, 159, 140, 120, 100, 99, 88, 77, 66, 55, 44, 33, 22, 11, 0, ] snake_case__ : List[str] = [ 999, 995, 992, 989, 985, 981, 978, 975, 971, 967, 964, 961, 957, 956, 951, 947, 942, 937, 933, 928, 923, 919, 914, 913, 908, 903, 897, 892, 887, 881, 876, 871, 870, 864, 858, 852, 846, 840, 834, 828, 827, 820, 813, 806, 799, 792, 785, 784, 777, 770, 763, 756, 749, 742, 741, 733, 724, 716, 707, 699, 698, 688, 677, 666, 656, 655, 645, 634, 623, 613, 612, 598, 584, 570, 569, 555, 541, 527, 526, 505, 484, 483, 462, 440, 439, 396, 395, 352, 351, 308, 307, 264, 263, 220, 219, 176, 132, 88, 44, 0, ] snake_case__ : Any = [ 999, 997, 995, 992, 990, 988, 986, 984, 981, 979, 977, 975, 972, 970, 968, 966, 964, 961, 959, 957, 956, 954, 951, 949, 946, 944, 941, 939, 936, 934, 931, 929, 926, 924, 921, 919, 916, 914, 913, 910, 907, 905, 902, 899, 896, 893, 891, 888, 885, 882, 879, 877, 874, 871, 870, 867, 864, 861, 858, 855, 852, 849, 846, 843, 840, 837, 834, 831, 828, 827, 824, 821, 817, 814, 811, 808, 804, 801, 798, 795, 791, 788, 785, 784, 780, 777, 774, 770, 766, 763, 760, 756, 752, 749, 746, 742, 741, 737, 733, 730, 726, 722, 718, 714, 710, 707, 703, 699, 698, 694, 690, 685, 681, 677, 673, 669, 664, 660, 656, 655, 650, 646, 641, 636, 632, 627, 622, 618, 613, 612, 607, 602, 596, 591, 586, 580, 575, 570, 569, 563, 557, 551, 545, 539, 533, 527, 526, 519, 512, 505, 498, 491, 484, 483, 474, 466, 457, 449, 440, 439, 428, 418, 407, 396, 395, 381, 366, 352, 351, 330, 308, 307, 286, 264, 263, 242, 220, 219, 176, 175, 132, 131, 88, 44, 0, ] snake_case__ : int = [ 999, 991, 982, 974, 966, 958, 950, 941, 933, 925, 916, 908, 900, 899, 874, 850, 825, 800, 799, 700, 600, 500, 400, 300, 200, 100, 0, ] snake_case__ : Any = [ 999, 992, 985, 978, 971, 964, 957, 949, 942, 935, 928, 921, 914, 907, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 300, 299, 200, 199, 100, 99, 0, ] snake_case__ : Union[str, Any] = [ 999, 996, 992, 989, 985, 982, 979, 975, 972, 968, 965, 961, 958, 955, 951, 948, 944, 941, 938, 934, 931, 927, 924, 920, 917, 914, 910, 907, 903, 900, 899, 891, 884, 876, 869, 861, 853, 846, 838, 830, 823, 815, 808, 800, 799, 788, 777, 766, 755, 744, 733, 722, 711, 700, 699, 688, 677, 666, 655, 644, 633, 622, 611, 600, 599, 585, 571, 557, 542, 528, 514, 500, 499, 485, 471, 457, 442, 428, 414, 400, 399, 379, 359, 340, 320, 300, 299, 279, 259, 240, 220, 200, 199, 166, 133, 100, 99, 66, 33, 0, ]
278
0
import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() _UpperCAmelCase : Tuple =logging.get_logger(__name__) _UpperCAmelCase : int ={ """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } _UpperCAmelCase : List[str] =[ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def lowerCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> Optional[Any]: for attribute in key.split('''.''' ): lowerCAmelCase_ : Union[str, Any] = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) if weight_type is not None: lowerCAmelCase_ : Any = getattr(lowerCAmelCase_ , lowerCAmelCase_ ).shape else: lowerCAmelCase_ : int = hf_pointer.shape assert hf_shape == value.shape, ( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": lowerCAmelCase_ : Optional[Any] = value elif weight_type == "weight_g": lowerCAmelCase_ : Any = value elif weight_type == "weight_v": lowerCAmelCase_ : List[str] = value elif weight_type == "bias": lowerCAmelCase_ : Tuple = value else: lowerCAmelCase_ : str = value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def lowerCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ )-> Union[str, Any]: lowerCAmelCase_ : List[str] = [] lowerCAmelCase_ : List[str] = fairseq_model.state_dict() lowerCAmelCase_ : Dict = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight lowerCAmelCase_ : Any = None for name, value in fairseq_dict.items(): lowerCAmelCase_ : int = False if "conv_layers" in name: load_conv_layer( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , hf_model.config.feat_extract_norm == '''group''' , ) lowerCAmelCase_ : List[str] = True elif name.split('''.''' )[0] == "proj": lowerCAmelCase_ : int = fairseq_model.proj lowerCAmelCase_ : List[Any] = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: lowerCAmelCase_ : Any = True if "*" in mapped_key: lowerCAmelCase_ : str = name.split(lowerCAmelCase_ )[0].split('''.''' )[-2] lowerCAmelCase_ : Optional[Any] = mapped_key.replace('''*''' , lowerCAmelCase_ ) if "weight_g" in name: lowerCAmelCase_ : List[str] = '''weight_g''' elif "weight_v" in name: lowerCAmelCase_ : str = '''weight_v''' elif "bias" in name: lowerCAmelCase_ : Any = '''bias''' elif "weight" in name: lowerCAmelCase_ : List[Any] = '''weight''' else: lowerCAmelCase_ : Any = None set_recursively(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) continue if not is_used: unused_weights.append(lowerCAmelCase_ ) logger.warning(f"""Unused weights: {unused_weights}""" ) return proj_weight def lowerCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> Dict: lowerCAmelCase_ : List[str] = full_name.split('''conv_layers.''' )[-1] lowerCAmelCase_ : Optional[int] = name.split('''.''' ) lowerCAmelCase_ : Any = int(items[0] ) lowerCAmelCase_ : List[str] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) lowerCAmelCase_ : int = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) lowerCAmelCase_ : int = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) lowerCAmelCase_ : Dict = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) lowerCAmelCase_ : Optional[int] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(lowerCAmelCase_ ) def lowerCAmelCase ( lowerCAmelCase_ )-> Any: lowerCAmelCase_ , lowerCAmelCase_ : Tuple = emb.weight.shape lowerCAmelCase_ : List[str] = nn.Linear(lowerCAmelCase_ , lowerCAmelCase_ , bias=lowerCAmelCase_ ) lowerCAmelCase_ : Optional[Any] = emb.weight.data return lin_layer def lowerCAmelCase ( lowerCAmelCase_ )-> int: with open(lowerCAmelCase_ , '''r''' , encoding='''utf-8''' ) as f: lowerCAmelCase_ : Optional[Any] = f.readlines() lowerCAmelCase_ : str = [line.split(''' ''' )[0] for line in lines] lowerCAmelCase_ : Optional[Any] = len(lowerCAmelCase_ ) lowerCAmelCase_ : List[str] = { '''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3, } vocab_dict.update(dict(zip(lowerCAmelCase_ , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def lowerCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , )-> Tuple: lowerCAmelCase_ : int = WavaVecaConfig.from_pretrained(lowerCAmelCase_ ) lowerCAmelCase_ : Optional[Any] = SpeechaTextaConfig.from_pretrained( lowerCAmelCase_ , vocab_size=lowerCAmelCase_ , decoder_layers=lowerCAmelCase_ , do_stable_layer_norm=lowerCAmelCase_ ) lowerCAmelCase_ : Union[str, Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , ) lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Tuple = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) lowerCAmelCase_ : Dict = model[0].eval() # set weights for wav2vec2 encoder lowerCAmelCase_ : Tuple = WavaVecaModel(lowerCAmelCase_ ) lowerCAmelCase_ : List[Any] = recursively_load_weights_wavaveca(model.encoder , lowerCAmelCase_ ) lowerCAmelCase_ : Optional[Any] = SpeechaTextaForCausalLM(lowerCAmelCase_ ) lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=lowerCAmelCase_ ) # set output linear layer unexpected_keys.remove('''embed_out''' ) lowerCAmelCase_ : Any = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(f"""The following keys are missing when loading the decoder weights: {missing_keys}""" ) logger.warning(f"""The following keys are unexpected when loading the decoder weights: {unexpected_keys}""" ) lowerCAmelCase_ : int = SpeechEncoderDecoderModel(encoder=lowerCAmelCase_ , decoder=lowerCAmelCase_ ) lowerCAmelCase_ : Optional[int] = False # add projection layer lowerCAmelCase_ : Any = nn.Parameter(projection_layer.weight ) lowerCAmelCase_ : Optional[Any] = nn.Parameter(projection_layer.bias ) lowerCAmelCase_ : Any = create_vocab_dict(lowerCAmelCase_ ) with open(os.path.join(lowerCAmelCase_ , '''vocab.json''' ) , '''w''' ) as fp: json.dump(lowerCAmelCase_ , lowerCAmelCase_ ) lowerCAmelCase_ : List[Any] = SpeechaTextaTokenizer(os.path.join(lowerCAmelCase_ , '''vocab.json''' ) ) tokenizer.save_pretrained(lowerCAmelCase_ ) lowerCAmelCase_ : int = hf_wavavec.config.to_dict() lowerCAmelCase_ : List[Any] = tokenizer.pad_token_id lowerCAmelCase_ : List[str] = tokenizer.bos_token_id lowerCAmelCase_ : Optional[int] = tokenizer.eos_token_id lowerCAmelCase_ : Optional[int] = '''speech_to_text_2''' lowerCAmelCase_ : Tuple = '''wav2vec2''' lowerCAmelCase_ : Optional[int] = SpeechEncoderDecoderConfig.from_dict(lowerCAmelCase_ ) hf_wavavec.save_pretrained(lowerCAmelCase_ ) feature_extractor.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": _UpperCAmelCase : List[Any] =argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument( """--encoder_config_path""", default="""facebook/wav2vec2-large-lv60""", type=str, help="""Path to hf encoder wav2vec2 checkpoint config""", ) parser.add_argument( """--decoder_config_path""", default="""facebook/s2t-small-mustc-en-fr-st""", type=str, help="""Path to hf decoder s2t checkpoint config""", ) parser.add_argument("""--vocab_size""", default=1_0224, type=int, help="""Vocab size of decoder""") parser.add_argument("""--num_decoder_layers""", default=7, type=int, help="""Number of decoder layers""") _UpperCAmelCase : Tuple =parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
619
from __future__ import annotations from math import pi def lowerCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> dict[str, float]: if (inductance, frequency, reactance).count(0 ) != 1: raise ValueError('''One and only one argument must be 0''' ) if inductance < 0: raise ValueError('''Inductance cannot be negative''' ) if frequency < 0: raise ValueError('''Frequency cannot be negative''' ) if reactance < 0: raise ValueError('''Inductive reactance cannot be negative''' ) if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
619
1
_lowerCAmelCase : int = {"a": ["c", "b"], "b": ["d", "e"], "c": [], "d": [], "e": []} _lowerCAmelCase : List[str] = ["a", "b", "c", "d", "e"] def UpperCamelCase_( _snake_case : List[str] , _snake_case : Union[str, Any] , _snake_case : str ): """simple docstring""" __a =start # add current to visited visited.append(_snake_case ) __a =edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: __a =topological_sort(_snake_case , _snake_case , _snake_case ) # if all neighbors visited add current to sort sort.append(_snake_case ) # if all vertices haven't been visited select a new one to visit if len(_snake_case ) != len(_snake_case ): for vertice in vertices: if vertice not in visited: __a =topological_sort(_snake_case , _snake_case , _snake_case ) # return sort return sort if __name__ == "__main__": _lowerCAmelCase : str = topological_sort("a", [], []) print(sort)
242
import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging _lowerCAmelCase : List[str] = logging.get_logger(__name__) # pylint: disable=invalid-name class __magic_name__ ( lowerCAmelCase_ ): def __init__( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> Optional[int]: '''simple docstring''' super().__init__() self.register_modules( vae=__snake_case , text_encoder=__snake_case , tokenizer=__snake_case , unet=__snake_case , scheduler=__snake_case , safety_checker=__snake_case , feature_extractor=__snake_case , ) def __magic_name__ ( self , __snake_case = "auto" ) -> int: '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory __a =self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__snake_case ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' self.enable_attention_slicing(__snake_case ) @torch.no_grad() def __call__( self , __snake_case , __snake_case = 512 , __snake_case = 512 , __snake_case = 50 , __snake_case = 7.5 , __snake_case = None , __snake_case = 1 , __snake_case = 0.0 , __snake_case = None , __snake_case = None , __snake_case = "pil" , __snake_case = True , __snake_case = None , __snake_case = 1 , __snake_case = None , **__snake_case , ) -> Tuple: '''simple docstring''' if isinstance(__snake_case , __snake_case ): __a =1 elif isinstance(__snake_case , __snake_case ): __a =len(__snake_case ) else: raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(__snake_case )}' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f'`height` and `width` have to be divisible by 8 but are {height} and {width}.' ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(__snake_case , __snake_case ) or callback_steps <= 0) ): raise ValueError( f'`callback_steps` has to be a positive integer but is {callback_steps} of type' f' {type(__snake_case )}.' ) # get prompt text embeddings __a =self.tokenizer( __snake_case , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , ) __a =text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: __a =self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' f' {self.tokenizer.model_max_length} tokens: {removed_text}' ) __a =text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: __a =self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method __a , __a , __a =text_embeddings.shape __a =text_embeddings.repeat(1 , __snake_case , 1 ) __a =text_embeddings.view(bs_embed * num_images_per_prompt , __snake_case , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. __a =guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: __a =42 if negative_prompt is None: __a =[''] elif type(__snake_case ) is not type(__snake_case ): raise TypeError( f'`negative_prompt` should be the same type to `prompt`, but got {type(__snake_case )} !=' f' {type(__snake_case )}.' ) elif isinstance(__snake_case , __snake_case ): __a =[negative_prompt] elif batch_size != len(__snake_case ): raise ValueError( f'`negative_prompt`: {negative_prompt} has batch size {len(__snake_case )}, but `prompt`:' f' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches' ' the batch size of `prompt`.' ) else: __a =negative_prompt __a =text_input_ids.shape[-1] __a =self.tokenizer( __snake_case , padding='max_length' , max_length=__snake_case , truncation=__snake_case , return_tensors='pt' , ) __a =self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __a =uncond_embeddings.shape[1] __a =uncond_embeddings.repeat(__snake_case , __snake_case , 1 ) __a =uncond_embeddings.view(batch_size * num_images_per_prompt , __snake_case , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __a =torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. __a =(batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) __a =(batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64) __a =text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps __a =torch.randn( __snake_case , generator=__snake_case , device='cpu' , dtype=__snake_case ).to(self.device ) __a =torch.randn(__snake_case , generator=__snake_case , device='cpu' , dtype=__snake_case ).to( self.device ) else: __a =torch.randn( __snake_case , generator=__snake_case , device=self.device , dtype=__snake_case ) __a =torch.randn(__snake_case , generator=__snake_case , device=self.device , dtype=__snake_case ) else: if latents_reference.shape != latents_shape: raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {latents_shape}' ) __a =latents_reference.to(self.device ) __a =latents.to(self.device ) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images __a =(latents_shape[3] - latents_shape_reference[3]) // 2 __a =(latents_shape[2] - latents_shape_reference[2]) // 2 __a =latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx __a =latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy __a =0 if dx < 0 else dx __a =0 if dy < 0 else dy __a =max(-dx , 0 ) __a =max(-dy , 0 ) # import pdb # pdb.set_trace() __a =latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(__snake_case ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand __a =self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler __a =latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __a ='eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __a ={} if accepts_eta: __a =eta for i, t in enumerate(self.progress_bar(__snake_case ) ): # expand the latents if we are doing classifier free guidance __a =torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __a =self.scheduler.scale_model_input(__snake_case , __snake_case ) # predict the noise residual __a =self.unet(__snake_case , __snake_case , encoder_hidden_states=__snake_case ).sample # perform guidance if do_classifier_free_guidance: __a , __a =noise_pred.chunk(2 ) __a =noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 __a =self.scheduler.step(__snake_case , __snake_case , __snake_case , **__snake_case ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(__snake_case , __snake_case , __snake_case ) __a =1 / 0.1_8215 * latents __a =self.vae.decode(__snake_case ).sample __a =(image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __a =image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if self.safety_checker is not None: __a =self.feature_extractor(self.numpy_to_pil(__snake_case ) , return_tensors='pt' ).to( self.device ) __a , __a =self.safety_checker( images=__snake_case , clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) ) else: __a =None if output_type == "pil": __a =self.numpy_to_pil(__snake_case ) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=__snake_case , nsfw_content_detected=__snake_case )
242
1
'''simple docstring''' import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser UpperCamelCase__ : Optional[Any] = re.compile(R"\s+") def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> int: """simple docstring""" return {"hash": hashlib.mda(re.sub(SCREAMING_SNAKE_CASE_ , """""" , example["""content"""] ).encode("""utf-8""" ) ).hexdigest()} def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = [len(SCREAMING_SNAKE_CASE_ ) for line in example["""content"""].splitlines()] return {"line_mean": np.mean(SCREAMING_SNAKE_CASE_ ), "line_max": max(SCREAMING_SNAKE_CASE_ )} def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = np.mean([c.isalnum() for c in example["""content"""]] ) return {"alpha_frac": alpha_frac} def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: """simple docstring""" if example["hash"] in uniques: uniques.remove(example["""hash"""] ) return True else: return False def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=5 ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE = ["""auto-generated""", """autogenerated""", """automatically generated"""] _SCREAMING_SNAKE_CASE = example["""content"""].splitlines() for _, line in zip(range(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=0.05 ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = ["""unit tests""", """test file""", """configuration file"""] _SCREAMING_SNAKE_CASE = example["""content"""].splitlines() _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = 0 # first test for _, line in zip(range(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test _SCREAMING_SNAKE_CASE = example["""content"""].count("""\n""" ) _SCREAMING_SNAKE_CASE = int(coeff * nlines ) for line in lines: count_config += line.lower().count("""config""" ) count_test += line.lower().count("""test""" ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = ["""def """, """class """, """for """, """while """] _SCREAMING_SNAKE_CASE = example["""content"""].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=4 ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE = example["""content"""].splitlines() _SCREAMING_SNAKE_CASE = 0 for line in lines: counter += line.lower().count("""=""" ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> Tuple: """simple docstring""" _SCREAMING_SNAKE_CASE = tokenizer(example["""content"""] , truncation=SCREAMING_SNAKE_CASE_ )["""input_ids"""] _SCREAMING_SNAKE_CASE = len(example["""content"""] ) / len(SCREAMING_SNAKE_CASE_ ) return {"ratio": ratio} def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> Tuple: """simple docstring""" _SCREAMING_SNAKE_CASE = {} results.update(get_hash(SCREAMING_SNAKE_CASE_ ) ) results.update(line_stats(SCREAMING_SNAKE_CASE_ ) ) results.update(alpha_stats(SCREAMING_SNAKE_CASE_ ) ) results.update(char_token_ratio(SCREAMING_SNAKE_CASE_ ) ) results.update(is_autogenerated(SCREAMING_SNAKE_CASE_ ) ) results.update(is_config_or_test(SCREAMING_SNAKE_CASE_ ) ) results.update(has_no_keywords(SCREAMING_SNAKE_CASE_ ) ) results.update(has_few_assignments(SCREAMING_SNAKE_CASE_ ) ) return results def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int: """simple docstring""" if not check_uniques(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> int: """simple docstring""" with open(SCREAMING_SNAKE_CASE_ , """rb""" ) as f_in: with gzip.open(str(SCREAMING_SNAKE_CASE_ ) + """.gz""" , """wb""" , compresslevel=6 ) as f_out: shutil.copyfileobj(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) os.unlink(SCREAMING_SNAKE_CASE_ ) # Settings UpperCamelCase__ : List[str] = HfArgumentParser(PreprocessingArguments) UpperCamelCase__ : List[Any] = parser.parse_args() if args.num_workers is None: UpperCamelCase__ : Optional[int] = multiprocessing.cpu_count() UpperCamelCase__ : List[Any] = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset UpperCamelCase__ : Union[str, Any] = time.time() UpperCamelCase__ : Optional[Any] = load_dataset(args.dataset_name, split="train") print(f"""Time to load dataset: {time.time()-t_start:.2f}""") # Run preprocessing UpperCamelCase__ : Any = time.time() UpperCamelCase__ : Any = ds.map(preprocess, num_proc=args.num_workers) print(f"""Time to preprocess dataset: {time.time()-t_start:.2f}""") # Deduplicate hashes UpperCamelCase__ : int = set(ds.unique("hash")) UpperCamelCase__ : Optional[int] = len(uniques) / len(ds) print(f"""Fraction of duplicates: {1-frac:.2%}""") # Deduplicate data and apply heuristics UpperCamelCase__ : Optional[Any] = time.time() UpperCamelCase__ : Tuple = ds.filter(filter, fn_kwargs={"uniques": uniques, "args": args}) print(f"""Time to filter dataset: {time.time()-t_start:.2f}""") print(f"""Size of filtered dataset: {len(ds_filter)}""") # Deduplicate with minhash and jaccard similarity if args.near_deduplication: UpperCamelCase__ : Optional[int] = time.time() UpperCamelCase__ , UpperCamelCase__ : List[Any] = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(f"""Time to deduplicate dataset: {time.time()-t_start:.2f}""") print(f"""Size of deduplicate dataset: {len(ds_filter)}""") # Save data in batches of samples_per_file UpperCamelCase__ : str = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / "duplicate_clusters.json", "w") as f: json.dump(duplicate_clusters, f) UpperCamelCase__ : Tuple = output_dir / "data" data_dir.mkdir(exist_ok=True) UpperCamelCase__ : Optional[Any] = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): UpperCamelCase__ : List[str] = str(data_dir / f"""file-{file_number+1:012}.json""") UpperCamelCase__ : Optional[int] = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(f"""Time to save dataset: {time.time()-t_start:.2f}""")
0
'''simple docstring''' import numpy as np import torch from torch.utils.data import Dataset from utils import logger class _a (_lowerCamelCase): """simple docstring""" def __init__( self , A__ , A__ ) -> Any: _SCREAMING_SNAKE_CASE = params _SCREAMING_SNAKE_CASE = np.array(A__ ) _SCREAMING_SNAKE_CASE = np.array([len(A__ ) for t in data] ) self.check() self.remove_long_sequences() self.remove_empty_sequences() self.remove_unknown_sequences() self.check() self.print_statistics() def __getitem__( self , A__ ) -> Dict: return (self.token_ids[index], self.lengths[index]) def __len__( self ) -> Tuple: return len(self.lengths ) def UpperCamelCase ( self ) -> Dict: assert len(self.token_ids ) == len(self.lengths ) assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) ) def UpperCamelCase ( self ) -> List[str]: _SCREAMING_SNAKE_CASE = self.params.max_model_input_size _SCREAMING_SNAKE_CASE = self.lengths > max_len logger.info(F"Splitting {sum(A__ )} too long sequences." ) def divide_chunks(A__ , A__ ): return [l[i : i + n] for i in range(0 , len(A__ ) , A__ )] _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] if self.params.mlm: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.params.special_tok_ids["""cls_token"""], self.params.special_tok_ids["""sep_token"""] else: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.params.special_tok_ids["""bos_token"""], self.params.special_tok_ids["""eos_token"""] for seq_, len_ in zip(self.token_ids , self.lengths ): assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_ if len_ <= max_len: new_tok_ids.append(seq_ ) new_lengths.append(len_ ) else: _SCREAMING_SNAKE_CASE = [] for sub_s in divide_chunks(seq_ , max_len - 2 ): if sub_s[0] != cls_id: _SCREAMING_SNAKE_CASE = np.insert(A__ , 0 , A__ ) if sub_s[-1] != sep_id: _SCREAMING_SNAKE_CASE = np.insert(A__ , len(A__ ) , A__ ) assert len(A__ ) <= max_len assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s sub_seqs.append(A__ ) new_tok_ids.extend(A__ ) new_lengths.extend([len(A__ ) for l in sub_seqs] ) _SCREAMING_SNAKE_CASE = np.array(A__ ) _SCREAMING_SNAKE_CASE = np.array(A__ ) def UpperCamelCase ( self ) -> List[str]: _SCREAMING_SNAKE_CASE = len(self ) _SCREAMING_SNAKE_CASE = self.lengths > 11 _SCREAMING_SNAKE_CASE = self.token_ids[indices] _SCREAMING_SNAKE_CASE = self.lengths[indices] _SCREAMING_SNAKE_CASE = len(self ) logger.info(F"Remove {init_size - new_size} too short (<=11 tokens) sequences." ) def UpperCamelCase ( self ) -> int: if "unk_token" not in self.params.special_tok_ids: return else: _SCREAMING_SNAKE_CASE = self.params.special_tok_ids["""unk_token"""] _SCREAMING_SNAKE_CASE = len(self ) _SCREAMING_SNAKE_CASE = np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] ) _SCREAMING_SNAKE_CASE = (unk_occs / self.lengths) < 0.5 _SCREAMING_SNAKE_CASE = self.token_ids[indices] _SCREAMING_SNAKE_CASE = self.lengths[indices] _SCREAMING_SNAKE_CASE = len(self ) logger.info(F"Remove {init_size - new_size} sequences with a high level of unknown tokens (50%)." ) def UpperCamelCase ( self ) -> Optional[Any]: if not self.params.is_master: return logger.info(F"{len(self )} sequences" ) # data_len = sum(self.lengths) # nb_unique_tokens = len(Counter(list(chain(*self.token_ids)))) # logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)') # unk_idx = self.params.special_tok_ids['unk_token'] # nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids]) # logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)') def UpperCamelCase ( self , A__ ) -> Any: _SCREAMING_SNAKE_CASE = [t[0] for t in batch] _SCREAMING_SNAKE_CASE = [t[1] for t in batch] assert len(A__ ) == len(A__ ) # Max for paddings _SCREAMING_SNAKE_CASE = max(A__ ) # Pad token ids if self.params.mlm: _SCREAMING_SNAKE_CASE = self.params.special_tok_ids["""pad_token"""] else: _SCREAMING_SNAKE_CASE = self.params.special_tok_ids["""unk_token"""] _SCREAMING_SNAKE_CASE = [list(t.astype(A__ ) ) + [pad_idx] * (max_seq_len_ - len(A__ )) for t in token_ids] assert len(tk_ ) == len(A__ ) assert all(len(A__ ) == max_seq_len_ for t in tk_ ) _SCREAMING_SNAKE_CASE = torch.tensor(tk_ ) # (bs, max_seq_len_) _SCREAMING_SNAKE_CASE = torch.tensor(A__ ) # (bs) return tk_t, lg_t
0
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) snake_case : Tuple = { """configuration_swiftformer""": [ """SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SwiftFormerConfig""", """SwiftFormerOnnxConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : int = [ """SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """SwiftFormerForImageClassification""", """SwiftFormerModel""", """SwiftFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys snake_case : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
545
"""simple docstring""" import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCamelCase__ ( a_): """simple docstring""" def __init__( self : List[str] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Optional[int]=1_3 , UpperCamelCase_ : Dict=7 , UpperCamelCase_ : Dict=True , UpperCamelCase_ : Optional[Any]=True , UpperCamelCase_ : Union[str, Any]=True , UpperCamelCase_ : Dict=True , UpperCamelCase_ : Optional[int]=True , UpperCamelCase_ : Tuple=False , UpperCamelCase_ : Union[str, Any]=False , UpperCamelCase_ : Any=False , UpperCamelCase_ : Tuple=2 , UpperCamelCase_ : List[Any]=9_9 , UpperCamelCase_ : List[Any]=0 , UpperCamelCase_ : Tuple=3_2 , UpperCamelCase_ : Any=5 , UpperCamelCase_ : Dict=4 , UpperCamelCase_ : Tuple=0.1 , UpperCamelCase_ : Any=0.1 , UpperCamelCase_ : Optional[Any]=5_1_2 , UpperCamelCase_ : Union[str, Any]=1_2 , UpperCamelCase_ : List[str]=2 , UpperCamelCase_ : str=0.02 , UpperCamelCase_ : List[str]=3 , UpperCamelCase_ : Dict=4 , UpperCamelCase_ : Optional[int]="last" , UpperCamelCase_ : List[str]=None , UpperCamelCase_ : Tuple=None , ): '''simple docstring''' __magic_name__ = parent __magic_name__ = batch_size __magic_name__ = seq_length __magic_name__ = is_training __magic_name__ = use_input_lengths __magic_name__ = use_token_type_ids __magic_name__ = use_labels __magic_name__ = gelu_activation __magic_name__ = sinusoidal_embeddings __magic_name__ = causal __magic_name__ = asm __magic_name__ = n_langs __magic_name__ = vocab_size __magic_name__ = n_special __magic_name__ = hidden_size __magic_name__ = num_hidden_layers __magic_name__ = num_attention_heads __magic_name__ = hidden_dropout_prob __magic_name__ = attention_probs_dropout_prob __magic_name__ = max_position_embeddings __magic_name__ = type_vocab_size __magic_name__ = type_sequence_label_size __magic_name__ = initializer_range __magic_name__ = num_labels __magic_name__ = num_choices __magic_name__ = summary_type __magic_name__ = use_proj __magic_name__ = scope def a__ ( self : List[str] ): '''simple docstring''' __magic_name__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __magic_name__ = random_attention_mask([self.batch_size, self.seq_length] ) __magic_name__ = None if self.use_input_lengths: __magic_name__ = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length __magic_name__ = None if self.use_token_type_ids: __magic_name__ = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) __magic_name__ = None __magic_name__ = None __magic_name__ = None if self.use_labels: __magic_name__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __magic_name__ = ids_tensor([self.batch_size] , 2 ).float() __magic_name__ = ids_tensor([self.batch_size] , self.num_choices ) __magic_name__ = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def a__ ( self : int ): '''simple docstring''' return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def a__ ( self : Dict , UpperCamelCase_ : List[str] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Any , UpperCamelCase_ : str , UpperCamelCase_ : List[str] , UpperCamelCase_ : List[str] , UpperCamelCase_ : List[str] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Optional[int] , ): '''simple docstring''' __magic_name__ = FlaubertModel(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __magic_name__ = model(UpperCamelCase_ , lengths=UpperCamelCase_ , langs=UpperCamelCase_ ) __magic_name__ = model(UpperCamelCase_ , langs=UpperCamelCase_ ) __magic_name__ = model(UpperCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a__ ( self : Dict , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Any , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Any , UpperCamelCase_ : Dict , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Tuple , UpperCamelCase_ : int , UpperCamelCase_ : str , ): '''simple docstring''' __magic_name__ = FlaubertWithLMHeadModel(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __magic_name__ = model(UpperCamelCase_ , token_type_ids=UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a__ ( self : Union[str, Any] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Any , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Tuple , UpperCamelCase_ : List[Any] , UpperCamelCase_ : int , UpperCamelCase_ : int , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : str , ): '''simple docstring''' __magic_name__ = FlaubertForQuestionAnsweringSimple(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __magic_name__ = model(UpperCamelCase_ ) __magic_name__ = model(UpperCamelCase_ , start_positions=UpperCamelCase_ , end_positions=UpperCamelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a__ ( self : str , UpperCamelCase_ : int , UpperCamelCase_ : Any , UpperCamelCase_ : Any , UpperCamelCase_ : Any , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : List[str] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : str , UpperCamelCase_ : Union[str, Any] , ): '''simple docstring''' __magic_name__ = FlaubertForQuestionAnswering(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __magic_name__ = model(UpperCamelCase_ ) __magic_name__ = model( UpperCamelCase_ , start_positions=UpperCamelCase_ , end_positions=UpperCamelCase_ , cls_index=UpperCamelCase_ , is_impossible=UpperCamelCase_ , p_mask=UpperCamelCase_ , ) __magic_name__ = model( UpperCamelCase_ , start_positions=UpperCamelCase_ , end_positions=UpperCamelCase_ , cls_index=UpperCamelCase_ , is_impossible=UpperCamelCase_ , ) ((__magic_name__) , ) = result_with_labels.to_tuple() __magic_name__ = model(UpperCamelCase_ , start_positions=UpperCamelCase_ , end_positions=UpperCamelCase_ ) ((__magic_name__) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def a__ ( self : str , UpperCamelCase_ : Dict , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : str , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Dict , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : List[str] , ): '''simple docstring''' __magic_name__ = FlaubertForSequenceClassification(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __magic_name__ = model(UpperCamelCase_ ) __magic_name__ = model(UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def a__ ( self : Optional[int] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Dict , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : List[str] , UpperCamelCase_ : str , UpperCamelCase_ : List[str] , UpperCamelCase_ : Any , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Tuple , ): '''simple docstring''' __magic_name__ = self.num_labels __magic_name__ = FlaubertForTokenClassification(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __magic_name__ = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a__ ( self : str , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Tuple , UpperCamelCase_ : List[str] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Dict , UpperCamelCase_ : List[str] , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple , ): '''simple docstring''' __magic_name__ = self.num_choices __magic_name__ = FlaubertForMultipleChoice(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __magic_name__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __magic_name__ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __magic_name__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __magic_name__ = model( UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , labels=UpperCamelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def a__ ( self : Union[str, Any] ): '''simple docstring''' __magic_name__ = self.prepare_config_and_inputs() ( ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ) = config_and_inputs __magic_name__ = { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths, 'attention_mask': input_mask, } return config, inputs_dict @require_torch class UpperCamelCase__ ( a_ , a_ , unittest.TestCase): """simple docstring""" __UpperCAmelCase = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) __UpperCAmelCase = ( { """feature-extraction""": FlaubertModel, """fill-mask""": FlaubertWithLMHeadModel, """question-answering""": FlaubertForQuestionAnsweringSimple, """text-classification""": FlaubertForSequenceClassification, """token-classification""": FlaubertForTokenClassification, """zero-shot""": FlaubertForSequenceClassification, } if is_torch_available() else {} ) def a__ ( self : List[str] , UpperCamelCase_ : Any , UpperCamelCase_ : List[str] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Dict ): '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def a__ ( self : List[Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Dict , UpperCamelCase_ : Optional[Any]=False ): '''simple docstring''' __magic_name__ = super()._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ , return_labels=UpperCamelCase_ ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": __magic_name__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCamelCase_ ) __magic_name__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCamelCase_ ) return inputs_dict def a__ ( self : List[str] ): '''simple docstring''' __magic_name__ = FlaubertModelTester(self ) __magic_name__ = ConfigTester(self , config_class=UpperCamelCase_ , emb_dim=3_7 ) def a__ ( self : Optional[int] ): '''simple docstring''' self.config_tester.run_common_tests() def a__ ( self : Optional[Any] ): '''simple docstring''' __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*UpperCamelCase_ ) def a__ ( self : Dict ): '''simple docstring''' __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*UpperCamelCase_ ) def a__ ( self : int ): '''simple docstring''' __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*UpperCamelCase_ ) def a__ ( self : int ): '''simple docstring''' __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*UpperCamelCase_ ) def a__ ( self : Optional[int] ): '''simple docstring''' __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*UpperCamelCase_ ) def a__ ( self : str ): '''simple docstring''' __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*UpperCamelCase_ ) def a__ ( self : Union[str, Any] ): '''simple docstring''' __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*UpperCamelCase_ ) @slow def a__ ( self : Any ): '''simple docstring''' for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ = FlaubertModel.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) @slow @require_torch_gpu def a__ ( self : str ): '''simple docstring''' __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return __magic_name__ = True __magic_name__ = model_class(config=UpperCamelCase_ ) __magic_name__ = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) __magic_name__ = torch.jit.trace( UpperCamelCase_ , (inputs_dict['input_ids'].to('cpu' ), inputs_dict['attention_mask'].to('cpu' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(UpperCamelCase_ , os.path.join(UpperCamelCase_ , 'traced_model.pt' ) ) __magic_name__ = torch.jit.load(os.path.join(UpperCamelCase_ , 'traced_model.pt' ) , map_location=UpperCamelCase_ ) loaded(inputs_dict['input_ids'].to(UpperCamelCase_ ) , inputs_dict['attention_mask'].to(UpperCamelCase_ ) ) @require_torch class UpperCamelCase__ ( unittest.TestCase): """simple docstring""" @slow def a__ ( self : Dict ): '''simple docstring''' __magic_name__ = FlaubertModel.from_pretrained('flaubert/flaubert_base_cased' ) __magic_name__ = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) with torch.no_grad(): __magic_name__ = model(UpperCamelCase_ )[0] __magic_name__ = torch.Size((1, 1_1, 7_6_8) ) self.assertEqual(output.shape , UpperCamelCase_ ) __magic_name__ = torch.tensor( [[[-2.6_251, -1.4_298, -0.0_227], [-2.8_510, -1.6_387, 0.2_258], [-2.8_114, -1.1_832, -0.3_066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCamelCase_ , atol=1e-4 ) )
545
1
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCAmelCase__ =logging.get_logger(__name__) UpperCAmelCase__ ={"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} UpperCAmelCase__ ={ "tokenizer_file": { "EleutherAI/gpt-neox-20b": "https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json", }, } UpperCAmelCase__ ={ "gpt-neox-20b": 2048, } class lowerCamelCase__ ( __lowercase ): a : List[str] = VOCAB_FILES_NAMES a : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP a : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : Tuple = ['input_ids', 'attention_mask'] def __init__( self : List[Any] , A_ : Tuple=None , A_ : Optional[Any]=None , A_ : str=None , A_ : Optional[int]="<|endoftext|>" , A_ : Dict="<|endoftext|>" , A_ : List[Any]="<|endoftext|>" , A_ : Any=False , **A_ : List[str] , ): '''simple docstring''' super().__init__( __A , __A , tokenizer_file=__A , unk_token=__A , bos_token=__A , eos_token=__A , add_prefix_space=__A , **__A , ) __lowercase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , __A ) != add_prefix_space: __lowercase = getattr(__A , pre_tok_state.pop("""type""" ) ) __lowercase = add_prefix_space __lowercase = pre_tok_class(**__A ) __lowercase = add_prefix_space def SCREAMING_SNAKE_CASE_ ( self : Tuple , A_ : Union[str, Any] , A_ : int = None ): '''simple docstring''' __lowercase = self._tokenizer.model.save(__A , name=__A ) return tuple(__A ) def SCREAMING_SNAKE_CASE_ ( self : str , A_ : Any ): '''simple docstring''' __lowercase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(__A , add_special_tokens=__A ) + [self.eos_token_id] ) if len(__A ) > self.model_max_length: __lowercase = input_ids[-self.model_max_length :] return input_ids
714
"""simple docstring""" def lowerCAmelCase_ ( UpperCamelCase__ : str , UpperCamelCase__ : str ): """simple docstring""" def get_matched_characters(UpperCamelCase__ : str , UpperCamelCase__ : str ) -> str: __lowercase = [] __lowercase = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): __lowercase = int(max(0 , i - limit ) ) __lowercase = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(UpperCamelCase__ ) __lowercase = f'''{_stra[0:_stra.index(UpperCamelCase__ )]} {_stra[_stra.index(UpperCamelCase__ ) + 1:]}''' return "".join(UpperCamelCase__ ) # matching characters __lowercase = get_matched_characters(UpperCamelCase__ , UpperCamelCase__ ) __lowercase = get_matched_characters(UpperCamelCase__ , UpperCamelCase__ ) __lowercase = len(UpperCamelCase__ ) # transposition __lowercase = ( len([(ca, ca) for ca, ca in zip(UpperCamelCase__ , UpperCamelCase__ ) if ca != ca] ) // 2 ) if not match_count: __lowercase = 0.0 else: __lowercase = ( 1 / 3 * ( match_count / len(UpperCamelCase__ ) + match_count / len(UpperCamelCase__ ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters __lowercase = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler("hello", "world"))
442
0
def _lowerCamelCase ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str ): """simple docstring""" a_ : int = len(SCREAMING_SNAKE_CASE_ ) a_ : int = len(SCREAMING_SNAKE_CASE_ ) a_ : int = ( first_str_length if first_str_length > second_str_length else second_str_length ) a_ : list = [] for char_count in range(SCREAMING_SNAKE_CASE_ ): if char_count < first_str_length: output_list.append(first_str[char_count] ) if char_count < second_str_length: output_list.append(second_str[char_count] ) return "".join(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": print(alternative_string_arrange("AB", "XYZ"), end=" ")
419
from __future__ import annotations def _lowerCamelCase ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" a_ : list[list[int]] = [] create_all_state(1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , [] , SCREAMING_SNAKE_CASE_ ) return result def _lowerCamelCase ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : list[int] , SCREAMING_SNAKE_CASE_ : list[list[int]] , ): """simple docstring""" if level == 0: total_list.append(current_list[:] ) return for i in range(SCREAMING_SNAKE_CASE_ , total_number - level + 2 ): current_list.append(SCREAMING_SNAKE_CASE_ ) create_all_state(i + 1 , SCREAMING_SNAKE_CASE_ , level - 1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) current_list.pop() def _lowerCamelCase ( SCREAMING_SNAKE_CASE_ : list[list[int]] ): """simple docstring""" for i in total_list: print(*SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : str = 4 SCREAMING_SNAKE_CASE : Optional[Any] = 2 SCREAMING_SNAKE_CASE : Optional[int] = generate_all_combinations(n, k) print_all_state(total_list)
419
1
import argparse import re from pathlib import Path import requests import torch from PIL import Image from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor from transformers import ( EfficientFormerConfig, EfficientFormerForImageClassificationWithTeacher, EfficientFormerImageProcessor, ) from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def UpperCAmelCase ( _lowerCamelCase : int , _lowerCamelCase : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = old_name if "patch_embed" in old_name: SCREAMING_SNAKE_CASE__ : Union[str, Any] = old_name.split("." ) if layer == "0": SCREAMING_SNAKE_CASE__ : Tuple = old_name.replace("0" , "convolution1" ) elif layer == "1": SCREAMING_SNAKE_CASE__ : int = old_name.replace("1" , "batchnorm_before" ) elif layer == "3": SCREAMING_SNAKE_CASE__ : List[str] = old_name.replace("3" , "convolution2" ) else: SCREAMING_SNAKE_CASE__ : List[str] = old_name.replace("4" , "batchnorm_after" ) if "network" in old_name and re.search(r"\d\.\d" , _lowerCamelCase ): SCREAMING_SNAKE_CASE__ : Optional[Any] = r"\b\d{2}\b" if bool(re.search(_lowerCamelCase , _lowerCamelCase ) ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = re.search(r"\d\.\d\d." , _lowerCamelCase ).group() else: SCREAMING_SNAKE_CASE__ : str = re.search(r"\d\.\d." , _lowerCamelCase ).group() if int(match[0] ) < 6: SCREAMING_SNAKE_CASE__ : Tuple = old_name.replace(_lowerCamelCase , "" ) SCREAMING_SNAKE_CASE__ : List[Any] = trimmed_name.replace("network" , match[0] + ".meta4D_layers.blocks." + match[2:-1] ) SCREAMING_SNAKE_CASE__ : Optional[Any] = "intermediate_stages." + trimmed_name else: SCREAMING_SNAKE_CASE__ : str = old_name.replace(_lowerCamelCase , "" ) if int(match[2] ) < num_meta4D_last_stage: SCREAMING_SNAKE_CASE__ : str = trimmed_name.replace("network" , "meta4D_layers.blocks." + match[2] ) else: SCREAMING_SNAKE_CASE__ : Optional[int] = str(int(match[2] ) - num_meta4D_last_stage ) SCREAMING_SNAKE_CASE__ : List[str] = trimmed_name.replace("network" , "meta3D_layers.blocks." + layer_index ) if "norm1" in old_name: SCREAMING_SNAKE_CASE__ : Optional[int] = trimmed_name.replace("norm1" , "layernorm1" ) elif "norm2" in old_name: SCREAMING_SNAKE_CASE__ : List[Any] = trimmed_name.replace("norm2" , "layernorm2" ) elif "fc1" in old_name: SCREAMING_SNAKE_CASE__ : Dict = trimmed_name.replace("fc1" , "linear_in" ) elif "fc2" in old_name: SCREAMING_SNAKE_CASE__ : Union[str, Any] = trimmed_name.replace("fc2" , "linear_out" ) SCREAMING_SNAKE_CASE__ : Any = "last_stage." + trimmed_name elif "network" in old_name and re.search(r".\d." , _lowerCamelCase ): SCREAMING_SNAKE_CASE__ : Optional[Any] = old_name.replace("network" , "intermediate_stages" ) if "fc" in new_name: SCREAMING_SNAKE_CASE__ : Dict = new_name.replace("fc" , "convolution" ) elif ("norm1" in new_name) and ("layernorm1" not in new_name): SCREAMING_SNAKE_CASE__ : Union[str, Any] = new_name.replace("norm1" , "batchnorm_before" ) elif ("norm2" in new_name) and ("layernorm2" not in new_name): SCREAMING_SNAKE_CASE__ : Optional[int] = new_name.replace("norm2" , "batchnorm_after" ) if "proj" in new_name: SCREAMING_SNAKE_CASE__ : Dict = new_name.replace("proj" , "projection" ) if "dist_head" in new_name: SCREAMING_SNAKE_CASE__ : Optional[Any] = new_name.replace("dist_head" , "distillation_classifier" ) elif "head" in new_name: SCREAMING_SNAKE_CASE__ : int = new_name.replace("head" , "classifier" ) elif "patch_embed" in new_name: SCREAMING_SNAKE_CASE__ : List[Any] = "efficientformer." + new_name elif new_name == "norm.weight" or new_name == "norm.bias": SCREAMING_SNAKE_CASE__ : Optional[Any] = new_name.replace("norm" , "layernorm" ) SCREAMING_SNAKE_CASE__ : Dict = "efficientformer." + new_name else: SCREAMING_SNAKE_CASE__ : Union[str, Any] = "efficientformer.encoder." + new_name return new_name def UpperCAmelCase ( _lowerCamelCase : Dict , _lowerCamelCase : Optional[int] ): '''simple docstring''' for key in checkpoint.copy().keys(): SCREAMING_SNAKE_CASE__ : Union[str, Any] = checkpoint.pop(_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : List[str] = val return checkpoint def UpperCAmelCase ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = "http://images.cocodataset.org/val2017/000000039769.jpg" SCREAMING_SNAKE_CASE__ : Union[str, Any] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) return image def UpperCAmelCase ( _lowerCamelCase : Path , _lowerCamelCase : Path , _lowerCamelCase : Path , _lowerCamelCase : bool ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = torch.load(_lowerCamelCase , map_location="cpu" )["model"] SCREAMING_SNAKE_CASE__ : Tuple = EfficientFormerConfig.from_json_file(_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : Tuple = EfficientFormerForImageClassificationWithTeacher(_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = "_".join(checkpoint_path.split("/" )[-1].split("." )[0].split("_" )[:-1] ) SCREAMING_SNAKE_CASE__ : Dict = config.depths[-1] - config.num_metaad_blocks + 1 SCREAMING_SNAKE_CASE__ : Optional[Any] = convert_torch_checkpoint(_lowerCamelCase , _lowerCamelCase ) model.load_state_dict(_lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE__ : str = { "bilinear": PILImageResampling.BILINEAR, "bicubic": PILImageResampling.BICUBIC, "nearest": PILImageResampling.NEAREST, } # prepare image SCREAMING_SNAKE_CASE__ : int = prepare_img() SCREAMING_SNAKE_CASE__ : List[Any] = 256 SCREAMING_SNAKE_CASE__ : int = 224 SCREAMING_SNAKE_CASE__ : Dict = EfficientFormerImageProcessor( size={"shortest_edge": image_size} , crop_size={"height": crop_size, "width": crop_size} , resample=pillow_resamplings["bicubic"] , ) SCREAMING_SNAKE_CASE__ : List[str] = processor(images=_lowerCamelCase , return_tensors="pt" ).pixel_values # original processing pipeline SCREAMING_SNAKE_CASE__ : Union[str, Any] = Compose( [ Resize(_lowerCamelCase , interpolation=pillow_resamplings["bicubic"] ), CenterCrop(_lowerCamelCase ), ToTensor(), Normalize(_lowerCamelCase , _lowerCamelCase ), ] ) SCREAMING_SNAKE_CASE__ : str = image_transforms(_lowerCamelCase ).unsqueeze(0 ) assert torch.allclose(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE__ : str = model(_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : int = outputs.logits SCREAMING_SNAKE_CASE__ : Tuple = (1, 1_000) if "l1" in model_name: SCREAMING_SNAKE_CASE__ : Dict = torch.Tensor( [-0.1_3_1_2, 0.4_3_5_3, -1.0_4_9_9, -0.5_1_2_4, 0.4_1_8_3, -0.6_7_9_3, -1.3_7_7_7, -0.0_8_9_3, -0.7_3_5_8, -2.4_3_2_8] ) assert torch.allclose(logits[0, :10] , _lowerCamelCase , atol=1E-3 ) assert logits.shape == expected_shape elif "l3" in model_name: SCREAMING_SNAKE_CASE__ : int = torch.Tensor( [-1.3_1_5_0, -1.5_4_5_6, -1.2_5_5_6, -0.8_4_9_6, -0.7_1_2_7, -0.7_8_9_7, -0.9_7_2_8, -0.3_0_5_2, 0.3_7_5_1, -0.3_1_2_7] ) assert torch.allclose(logits[0, :10] , _lowerCamelCase , atol=1E-3 ) assert logits.shape == expected_shape elif "l7" in model_name: SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.Tensor( [-1.0_2_8_3, -1.4_1_3_1, -0.5_6_4_4, -1.3_1_1_5, -0.5_7_8_5, -1.2_0_4_9, -0.7_5_2_8, 0.1_9_9_2, -0.3_8_2_2, -0.0_8_7_8] ) assert logits.shape == expected_shape else: raise ValueError( f"""Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7""" ) # Save Checkpoints Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) model.save_pretrained(_lowerCamelCase ) print(f"""Checkpoint successfuly converted. Model saved at {pytorch_dump_path}""" ) processor.save_pretrained(_lowerCamelCase ) print(f"""Processor successfuly saved at {pytorch_dump_path}""" ) if push_to_hub: print("Pushing model to the hub..." ) model.push_to_hub( repo_id=f"""Bearnardd/{pytorch_dump_path}""" , commit_message="Add model" , use_temp_dir=_lowerCamelCase , ) processor.push_to_hub( repo_id=f"""Bearnardd/{pytorch_dump_path}""" , commit_message="Add image processor" , use_temp_dir=_lowerCamelCase , ) if __name__ == "__main__": __lowercase :int = argparse.ArgumentParser() # Required parameters parser.add_argument( "--pytorch_model_path", default=None, type=str, required=True, help="Path to EfficientFormer pytorch checkpoint.", ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The json file for EfficientFormer model config.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument("--push_to_hub", action="store_true", help="Push model and image processor to the hub") parser.add_argument( "--no-push_to_hub", dest="push_to_hub", action="store_false", help="Do not push model and image processor to the hub", ) parser.set_defaults(push_to_hub=True) __lowercase :List[Any] = parser.parse_args() convert_efficientformer_checkpoint( checkpoint_path=args.pytorch_model_path, efficientformer_config_file=args.config_file, pytorch_dump_path=args.pytorch_dump_path, push_to_hub=args.push_to_hub, )
702
import sys from collections import defaultdict class _a : """simple docstring""" def __init__( self : Any ) ->Dict: SCREAMING_SNAKE_CASE__ : Tuple = [] def A_ ( self : int , a : List[str] ) ->Dict: return self.node_position[vertex] def A_ ( self : Optional[Any] , a : Any , a : List[str] ) ->Optional[Any]: SCREAMING_SNAKE_CASE__ : str = pos def A_ ( self : List[Any] , a : List[str] , a : Dict , a : Dict , a : List[Any] ) ->Optional[int]: if start > size // 2 - 1: return else: if 2 * start + 2 >= size: SCREAMING_SNAKE_CASE__ : Optional[Any] = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: SCREAMING_SNAKE_CASE__ : Dict = 2 * start + 1 else: SCREAMING_SNAKE_CASE__ : Tuple = 2 * start + 2 if heap[smallest_child] < heap[start]: SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : int = heap[smallest_child], positions[smallest_child] SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : Optional[int] = ( heap[start], positions[start], ) SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : Tuple = temp, tempa SCREAMING_SNAKE_CASE__ : Optional[Any] = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , a ) self.top_to_bottom(a , a , a , a ) def A_ ( self : Union[str, Any] , a : Tuple , a : Tuple , a : Union[str, Any] , a : List[Any] ) ->Optional[int]: SCREAMING_SNAKE_CASE__ : List[Any] = position[index] while index != 0: SCREAMING_SNAKE_CASE__ : Union[str, Any] = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: SCREAMING_SNAKE_CASE__ : List[Any] = heap[parent] SCREAMING_SNAKE_CASE__ : str = position[parent] self.set_position(position[parent] , a ) else: SCREAMING_SNAKE_CASE__ : int = val SCREAMING_SNAKE_CASE__ : Optional[Any] = temp self.set_position(a , a ) break SCREAMING_SNAKE_CASE__ : Optional[int] = parent else: SCREAMING_SNAKE_CASE__ : int = val SCREAMING_SNAKE_CASE__ : List[str] = temp self.set_position(a , 0 ) def A_ ( self : Union[str, Any] , a : int , a : List[str] ) ->Union[str, Any]: SCREAMING_SNAKE_CASE__ : List[str] = len(a ) // 2 - 1 for i in range(a , -1 , -1 ): self.top_to_bottom(a , a , len(a ) , a ) def A_ ( self : Dict , a : List[Any] , a : Dict ) ->Optional[int]: SCREAMING_SNAKE_CASE__ : Any = positions[0] SCREAMING_SNAKE_CASE__ : Optional[int] = sys.maxsize self.top_to_bottom(a , 0 , len(a ) , a ) return temp def UpperCAmelCase ( _lowerCamelCase : str ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = Heap() SCREAMING_SNAKE_CASE__ : Any = [0] * len(_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : Any = [-1] * len(_lowerCamelCase ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph SCREAMING_SNAKE_CASE__ : Union[str, Any] = [] # Heap of Distance of vertices from their neighboring vertex SCREAMING_SNAKE_CASE__ : str = [] for vertex in range(len(_lowerCamelCase ) ): distance_tv.append(sys.maxsize ) positions.append(_lowerCamelCase ) heap.node_position.append(_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : List[Any] = [] SCREAMING_SNAKE_CASE__ : int = 1 SCREAMING_SNAKE_CASE__ : int = sys.maxsize for neighbor, distance in adjacency_list[0]: SCREAMING_SNAKE_CASE__ : int = 0 SCREAMING_SNAKE_CASE__ : List[str] = distance heap.heapify(_lowerCamelCase , _lowerCamelCase ) for _ in range(1 , len(_lowerCamelCase ) ): SCREAMING_SNAKE_CASE__ : Optional[Any] = heap.delete_minimum(_lowerCamelCase , _lowerCamelCase ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(_lowerCamelCase )] ): SCREAMING_SNAKE_CASE__ : Any = distance heap.bottom_to_top( _lowerCamelCase , heap.get_position(_lowerCamelCase ) , _lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE__ : str = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > __lowercase :Union[str, Any] = int(input("Enter number of edges: ").strip()) __lowercase :Dict = defaultdict(list) for _ in range(edges_number): __lowercase :Any = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
26
0
import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging UpperCamelCase : Dict = logging.get_logger(__name__) def UpperCamelCase_ ( __a ) -> Union[str, Any]: a__ : Tuple = R"\w+[.]\d+" a__ : List[Any] = re.findall(__a , __a ) for pat in pats: a__ : Union[str, Any] = key.replace(__a , "_".join(pat.split("." ) ) ) return key def UpperCamelCase_ ( __a , __a , __a ) -> List[str]: a__ : List[str] = pt_tuple_key[:-1] + ("scale",) if ( any("norm" in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): a__ : Any = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: a__ : Optional[Any] = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: a__ : Union[str, Any] = pt_tuple_key[:-1] + ("embedding",) return renamed_pt_tuple_key, pt_tensor # conv layer a__ : List[str] = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: a__ : str = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer a__ : Tuple = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight": a__ : Tuple = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight a__ : Optional[Any] = pt_tuple_key[:-1] + ("weight",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias a__ : Union[str, Any] = pt_tuple_key[:-1] + ("bias",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def UpperCamelCase_ ( __a , __a , __a=42 ) -> str: # Step 1: Convert pytorch tensor to numpy a__ : Optional[int] = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params a__ : Tuple = flax_model.init_weights(PRNGKey(__a ) ) a__ : Optional[Any] = flatten_dict(__a ) a__ : Union[str, Any] = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): a__ : Optional[int] = rename_key(__a ) a__ : Optional[int] = tuple(renamed_pt_key.split("." ) ) # Correctly rename weight parameters a__, a__ : Union[str, Any] = rename_key_and_reshape_tensor(__a , __a , __a ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ''' f'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) # also add unexpected weight so that warning is thrown a__ : str = jnp.asarray(__a ) return unflatten_dict(__a )
37
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer UpperCamelCase : Any = logging.get_logger(__name__) UpperCamelCase : Any = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} UpperCamelCase : Union[str, Any] = { """vocab_file""": { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/vocab.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/vocab.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/vocab.json""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json""", """roberta-large-openai-detector""": ( """https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json""" ), }, """merges_file""": { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/merges.txt""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/merges.txt""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/merges.txt""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt""", """roberta-large-openai-detector""": ( """https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt""" ), }, """tokenizer_file""": { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/tokenizer.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/tokenizer.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json""", """roberta-base-openai-detector""": ( """https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json""" ), """roberta-large-openai-detector""": ( """https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json""" ), }, } UpperCamelCase : List[str] = { """roberta-base""": 512, """roberta-large""": 512, """roberta-large-mnli""": 512, """distilroberta-base""": 512, """roberta-base-openai-detector""": 512, """roberta-large-openai-detector""": 512, } class A__ ( A__ ): """simple docstring""" _lowercase = VOCAB_FILES_NAMES _lowercase = PRETRAINED_VOCAB_FILES_MAP _lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase = ['input_ids', 'attention_mask'] _lowercase = RobertaTokenizer def __init__( self : List[str] , lowerCamelCase__ : Any=None , lowerCamelCase__ : List[Any]=None , lowerCamelCase__ : Dict=None , lowerCamelCase__ : List[str]="replace" , lowerCamelCase__ : List[str]="<s>" , lowerCamelCase__ : Union[str, Any]="</s>" , lowerCamelCase__ : Any="</s>" , lowerCamelCase__ : Any="<s>" , lowerCamelCase__ : int="<unk>" , lowerCamelCase__ : Any="<pad>" , lowerCamelCase__ : Tuple="<mask>" , lowerCamelCase__ : Any=False , lowerCamelCase__ : Dict=True , **lowerCamelCase__ : Optional[Any] , ): super().__init__( lowerCamelCase__ , lowerCamelCase__ , tokenizer_file=lowerCamelCase__ , errors=lowerCamelCase__ , bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , unk_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , add_prefix_space=lowerCamelCase__ , trim_offsets=lowerCamelCase__ , **lowerCamelCase__ , ) a__ : List[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , lowerCamelCase__ ) != add_prefix_space: a__ : Any = getattr(lowerCamelCase__ , pre_tok_state.pop("type" ) ) a__ : int = add_prefix_space a__ : Tuple = pre_tok_class(**lowerCamelCase__ ) a__ : str = add_prefix_space a__ : Tuple = "post_processor" a__ : Dict = getattr(self.backend_tokenizer , lowerCamelCase__ , lowerCamelCase__ ) if tokenizer_component_instance: a__ : Tuple = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: a__ : Tuple = tuple(state["sep"] ) if "cls" in state: a__ : str = tuple(state["cls"] ) a__ : str = False if state.get("add_prefix_space" , lowerCamelCase__ ) != add_prefix_space: a__ : str = add_prefix_space a__ : Any = True if state.get("trim_offsets" , lowerCamelCase__ ) != trim_offsets: a__ : int = trim_offsets a__ : Dict = True if changes_to_apply: a__ : Union[str, Any] = getattr(lowerCamelCase__ , state.pop("type" ) ) a__ : str = component_class(**lowerCamelCase__ ) setattr(self.backend_tokenizer , lowerCamelCase__ , lowerCamelCase__ ) @property def _UpperCamelCase( self : Union[str, Any] ): if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def _UpperCamelCase( self : List[Any] , lowerCamelCase__ : Tuple ): a__ : List[Any] = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else value a__ : List[str] = value def _UpperCamelCase( self : Union[str, Any] , *lowerCamelCase__ : int , **lowerCamelCase__ : int ): a__ : Optional[int] = kwargs.get("is_split_into_words" , lowerCamelCase__ ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*lowerCamelCase__ , **lowerCamelCase__ ) def _UpperCamelCase( self : Tuple , *lowerCamelCase__ : Dict , **lowerCamelCase__ : List[str] ): a__ : Dict = kwargs.get("is_split_into_words" , lowerCamelCase__ ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*lowerCamelCase__ , **lowerCamelCase__ ) def _UpperCamelCase( self : str , lowerCamelCase__ : str , lowerCamelCase__ : Optional[str] = None ): a__ : int = self._tokenizer.model.save(lowerCamelCase__ , name=lowerCamelCase__ ) return tuple(lowerCamelCase__ ) def _UpperCamelCase( self : Optional[int] , lowerCamelCase__ : Dict , lowerCamelCase__ : Optional[int]=None ): a__ : Union[str, Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _UpperCamelCase( self : Dict , lowerCamelCase__ : List[int] , lowerCamelCase__ : Optional[List[int]] = None ): a__ : Tuple = [self.sep_token_id] a__ : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
37
1
"""simple docstring""" import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase =logging.get_logger(__name__) def _A ( _a : str , _a : str ): """simple docstring""" A = RobertaPreLayerNormConfig.from_pretrained( _a , architectures=["""RobertaPreLayerNormForMaskedLM"""] ) # convert state_dict A = torch.load(hf_hub_download(repo_id=_a , filename="""pytorch_model.bin""" ) ) A = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith("""roberta.""" ): A = """roberta_prelayernorm.""" + tensor_key[len("""roberta.""" ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith(""".self.LayerNorm.weight""" ) or tensor_key.endswith(""".self.LayerNorm.bias""" ): continue A = tensor_value A = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=_a , config=_a , state_dict=_a ) model.save_pretrained(_a ) # convert tokenizer A = AutoTokenizer.from_pretrained(_a ) tokenizer.save_pretrained(_a ) if __name__ == "__main__": UpperCAmelCase =argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint-repo", default=None, type=str, required=True, help="Path the official PyTorch dump, e.g. 'andreasmadsen/efficient_mlm_m0.40'.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) UpperCAmelCase =parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
255
"""simple docstring""" from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging UpperCAmelCase =logging.get_logger(__name__) UpperCAmelCase ={ "google/umt5-small": "https://huggingface.co/google/umt5-small/resolve/main/config.json", # See all umt5 models at https://huggingface.co/models?filter=umt5 } class lowerCamelCase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowerCamelCase = '''umt5''' _lowerCamelCase = ['''past_key_values'''] def __init__( self ,lowerCamelCase_=2_5_0_1_1_2 ,lowerCamelCase_=5_1_2 ,lowerCamelCase_=6_4 ,lowerCamelCase_=1_0_2_4 ,lowerCamelCase_=8 ,lowerCamelCase_=None ,lowerCamelCase_=6 ,lowerCamelCase_=3_2 ,lowerCamelCase_=1_2_8 ,lowerCamelCase_=0.1 ,lowerCamelCase_=1E-6 ,lowerCamelCase_=1.0 ,lowerCamelCase_="gated-gelu" ,lowerCamelCase_=True ,lowerCamelCase_=True ,lowerCamelCase_="T5Tokenizer" ,lowerCamelCase_=True ,lowerCamelCase_=0 ,lowerCamelCase_=1 ,lowerCamelCase_=0 ,**lowerCamelCase_ ,) -> Dict: super().__init__( is_encoder_decoder=lowerCamelCase_ ,tokenizer_class=lowerCamelCase_ ,tie_word_embeddings=lowerCamelCase_ ,pad_token_id=lowerCamelCase_ ,eos_token_id=lowerCamelCase_ ,decoder_start_token_id=lowerCamelCase_ ,**lowerCamelCase_ ,) A = vocab_size A = d_model A = d_kv A = d_ff A = num_layers A = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry A = num_heads A = relative_attention_num_buckets A = relative_attention_max_distance A = dropout_rate A = layer_norm_epsilon A = initializer_factor A = feed_forward_proj A = use_cache A = self.feed_forward_proj.split("""-""" ) A = act_info[-1] A = act_info[0] == """gated""" if len(lowerCamelCase_ ) > 1 and act_info[0] != "gated" or len(lowerCamelCase_ ) > 2: raise ValueError( f'`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.' """Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. """ """'gated-gelu' or 'relu'""" ) if feed_forward_proj == "gated-gelu": A = """gelu_new""" @property def UpperCamelCase__ ( self ) -> Dict: return self.d_model @property def UpperCamelCase__ ( self ) -> Any: return self.num_heads @property def UpperCamelCase__ ( self ) -> int: return self.num_layers class lowerCamelCase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def UpperCamelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: A = { """input_ids""": {0: """batch""", 1: """encoder_sequence"""}, """attention_mask""": {0: """batch""", 1: """encoder_sequence"""}, } if self.use_past: A = """past_encoder_sequence + sequence""" A = {0: """batch"""} A = {0: """batch""", 1: """past_decoder_sequence + sequence"""} else: A = {0: """batch""", 1: """decoder_sequence"""} A = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(lowerCamelCase_ ,direction="""inputs""" ) return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def UpperCamelCase__ ( self ) -> int: return 1_3 @property def UpperCamelCase__ ( self ) -> float: return 5E-4
255
1
'''simple docstring''' def __lowercase ( __lowercase ) -> Union[str, Any]: '''simple docstring''' _A , _A = [], [] while len(__lowercase ) > 1: _A , _A = min(__lowercase ), max(__lowercase ) start.append(__lowercase ) end.append(__lowercase ) collection.remove(__lowercase ) collection.remove(__lowercase ) end.reverse() return start + collection + end if __name__ == "__main__": lowerCamelCase_ = input('''Enter numbers separated by a comma:\n''').strip() lowerCamelCase_ = [int(item) for item in user_input.split(''',''')] print(*merge_sort(unsorted), sep=''',''')
330
'''simple docstring''' def __lowercase ( __lowercase , __lowercase , __lowercase ) -> float: '''simple docstring''' if principal <= 0: raise Exception("Principal borrowed must be > 0" ) if rate_per_annum < 0: raise Exception("Rate of interest must be >= 0" ) if years_to_repay <= 0 or not isinstance(__lowercase , __lowercase ): raise Exception("Years to repay must be an integer > 0" ) # Yearly rate is divided by 12 to get monthly rate _A = rate_per_annum / 12 # Years to repay is multiplied by 12 to get number of payments as payment is monthly _A = years_to_repay * 12 return ( principal * rate_per_month * (1 + rate_per_month) ** number_of_payments / ((1 + rate_per_month) ** number_of_payments - 1) ) if __name__ == "__main__": import doctest doctest.testmod()
330
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from timm import create_model from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import BitConfig, BitForImageClassification, BitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() A : Optional[Any] = logging.get_logger(__name__) def snake_case_ ( a__ : Union[str, Any] ): """simple docstring""" __lowercase = """huggingface/label-files""" __lowercase = """imagenet-1k-id2label.json""" __lowercase = json.load(open(hf_hub_download(a__ ,a__ ,repo_type="""dataset""" ) ,"""r""" ) ) __lowercase = {int(a__ ): v for k, v in idalabel.items()} __lowercase = {v: k for k, v in idalabel.items()} __lowercase = """std_conv""" if """bit""" in model_name else False # note that when using BiT as backbone for ViT-hybrid checkpoints, # one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same", # config.conv_layer = "std_conv_same" __lowercase = BitConfig( conv_layer=a__ ,num_labels=10_00 ,idalabel=a__ ,labelaid=a__ ,) return config def snake_case_ ( a__ : Union[str, Any] ): """simple docstring""" if "stem.conv" in name: __lowercase = name.replace("""stem.conv""" ,"""bit.embedder.convolution""" ) if "blocks" in name: __lowercase = name.replace("""blocks""" ,"""layers""" ) if "head.fc" in name: __lowercase = name.replace("""head.fc""" ,"""classifier.1""" ) if name.startswith("""norm""" ): __lowercase = """bit.""" + name if "bit" not in name and "classifier" not in name: __lowercase = """bit.encoder.""" + name return name def snake_case_ ( ): """simple docstring""" __lowercase = """http://images.cocodataset.org/val2017/000000039769.jpg""" __lowercase = Image.open(requests.get(a__ ,stream=a__ ).raw ) return im @torch.no_grad() def snake_case_ ( a__ : Dict ,a__ : Optional[int] ,a__ : Tuple=False ): """simple docstring""" __lowercase = get_config(a__ ) # load original model from timm __lowercase = create_model(a__ ,pretrained=a__ ) timm_model.eval() # load state_dict of original model __lowercase = timm_model.state_dict() for key in state_dict.copy().keys(): __lowercase = state_dict.pop(a__ ) __lowercase = val.squeeze() if """head""" in key else val # load HuggingFace model __lowercase = BitForImageClassification(a__ ) model.eval() model.load_state_dict(a__ ) # create image processor __lowercase = create_transform(**resolve_data_config({} ,model=a__ ) ) __lowercase = transform.transforms __lowercase = { """bilinear""": PILImageResampling.BILINEAR, """bicubic""": PILImageResampling.BICUBIC, """nearest""": PILImageResampling.NEAREST, } __lowercase = BitImageProcessor( do_resize=a__ ,size={"""shortest_edge""": timm_transforms[0].size} ,resample=pillow_resamplings[timm_transforms[0].interpolation.value] ,do_center_crop=a__ ,crop_size={"""height""": timm_transforms[1].size[0], """width""": timm_transforms[1].size[1]} ,do_normalize=a__ ,image_mean=timm_transforms[-1].mean.tolist() ,image_std=timm_transforms[-1].std.tolist() ,) __lowercase = prepare_img() __lowercase = transform(a__ ).unsqueeze(0 ) __lowercase = processor(a__ ,return_tensors="""pt""" ).pixel_values # verify pixel values assert torch.allclose(a__ ,a__ ) # verify logits with torch.no_grad(): __lowercase = model(a__ ) __lowercase = outputs.logits print("""Logits:""" ,logits[0, :3] ) print("""Predicted class:""" ,model.config.idalabel[logits.argmax(-1 ).item()] ) __lowercase = timm_model(a__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(a__ ,outputs.logits ,atol=1e-3 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: Path(a__ ).mkdir(exist_ok=a__ ) print(f'Saving model {model_name} and processor to {pytorch_dump_folder_path}' ) model.save_pretrained(a__ ) processor.save_pretrained(a__ ) if push_to_hub: print(f'Pushing model {model_name} and processor to the hub' ) model.push_to_hub(f'ybelkada/{model_name}' ) processor.push_to_hub(f'ybelkada/{model_name}' ) if __name__ == "__main__": A : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""resnetv2_50x1_bitm""", type=str, help="""Name of the BiT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model to the hub.""", ) A : Union[str, Any] = parser.parse_args() convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
163
'''simple docstring''' from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
163
1
from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class snake_case__ ( UpperCamelCase_ ): def __init__( self : List[str] , _lowerCamelCase : NestedDataStructureLike[PathLike] , _lowerCamelCase : Optional[NamedSplit] = None , _lowerCamelCase : Optional[Features] = None , _lowerCamelCase : str = None , _lowerCamelCase : bool = False , _lowerCamelCase : bool = False , _lowerCamelCase : Optional[int] = None , **_lowerCamelCase : Optional[int] , ): super().__init__( _lowerCamelCase , split=_lowerCamelCase , features=_lowerCamelCase , cache_dir=_lowerCamelCase , keep_in_memory=_lowerCamelCase , streaming=_lowerCamelCase , num_proc=_lowerCamelCase , **_lowerCamelCase , ) snake_case__ : Tuple = path_or_paths if isinstance(_lowerCamelCase , _lowerCamelCase ) else {self.split: path_or_paths} snake_case__ : Any = Text( cache_dir=_lowerCamelCase , data_files=_lowerCamelCase , features=_lowerCamelCase , **_lowerCamelCase , ) def UpperCAmelCase__ ( self : Union[str, Any] ): # Build iterable dataset if self.streaming: snake_case__ : Dict = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: snake_case__ : List[Any] = None snake_case__ : List[str] = None snake_case__ : int = None snake_case__ : Dict = None self.builder.download_and_prepare( download_config=_lowerCamelCase , download_mode=_lowerCamelCase , verification_mode=_lowerCamelCase , base_path=_lowerCamelCase , num_proc=self.num_proc , ) snake_case__ : str = self.builder.as_dataset( split=self.split , verification_mode=_lowerCamelCase , in_memory=self.keep_in_memory ) return dataset
170
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCamelCase : List[str] = {'configuration_encoder_decoder': ['EncoderDecoderConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : List[str] = ['EncoderDecoderModel'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : str = ['TFEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Union[str, Any] = ['FlaxEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys lowerCamelCase : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
170
1
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase__ : str = logging.get_logger(__name__) lowerCAmelCase__ : Optional[Any] = {"vocab_file": "spiece.model"} lowerCAmelCase__ : str = { "vocab_file": { "albert-base-v1": "https://huggingface.co/albert-base-v1/resolve/main/spiece.model", "albert-large-v1": "https://huggingface.co/albert-large-v1/resolve/main/spiece.model", "albert-xlarge-v1": "https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model", "albert-xxlarge-v1": "https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model", "albert-base-v2": "https://huggingface.co/albert-base-v2/resolve/main/spiece.model", "albert-large-v2": "https://huggingface.co/albert-large-v2/resolve/main/spiece.model", "albert-xlarge-v2": "https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model", "albert-xxlarge-v2": "https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model", } } lowerCAmelCase__ : Optional[Any] = { "albert-base-v1": 512, "albert-large-v1": 512, "albert-xlarge-v1": 512, "albert-xxlarge-v1": 512, "albert-base-v2": 512, "albert-large-v2": 512, "albert-xlarge-v2": 512, "albert-xxlarge-v2": 512, } lowerCAmelCase__ : Union[str, Any] = "▁" class snake_case ( __UpperCAmelCase ): """simple docstring""" snake_case__ = VOCAB_FILES_NAMES snake_case__ = PRETRAINED_VOCAB_FILES_MAP snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Any ,lowerCamelCase__ : Optional[int] ,lowerCamelCase__ : Tuple=True ,lowerCamelCase__ : List[str]=True ,lowerCamelCase__ : Union[str, Any]=False ,lowerCamelCase__ : str="[CLS]" ,lowerCamelCase__ : int="[SEP]" ,lowerCamelCase__ : Dict="<unk>" ,lowerCamelCase__ : Dict="[SEP]" ,lowerCamelCase__ : Any="<pad>" ,lowerCamelCase__ : Optional[int]="[CLS]" ,lowerCamelCase__ : Any="[MASK]" ,lowerCamelCase__ : Optional[Dict[str, Any]] = None ,**lowerCamelCase__ : str ,): UpperCAmelCase__ = ( AddedToken(lowerCAmelCase_ ,lstrip=lowerCAmelCase_ ,rstrip=lowerCAmelCase_ ,normalized=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ ,lowerCAmelCase_ ) else mask_token ) UpperCAmelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=lowerCAmelCase_ ,remove_space=lowerCAmelCase_ ,keep_accents=lowerCAmelCase_ ,bos_token=lowerCAmelCase_ ,eos_token=lowerCAmelCase_ ,unk_token=lowerCAmelCase_ ,sep_token=lowerCAmelCase_ ,pad_token=lowerCAmelCase_ ,cls_token=lowerCAmelCase_ ,mask_token=lowerCAmelCase_ ,sp_model_kwargs=self.sp_model_kwargs ,**lowerCAmelCase_ ,) UpperCAmelCase__ = do_lower_case UpperCAmelCase__ = remove_space UpperCAmelCase__ = keep_accents UpperCAmelCase__ = vocab_file UpperCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowerCAmelCase_ ) @property def __lowerCAmelCase ( self : Optional[Any] ): return len(self.sp_model ) def __lowerCAmelCase ( self : List[Any] ): UpperCAmelCase__ = {self.convert_ids_to_tokens(lowerCAmelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Tuple ): UpperCAmelCase__ = self.__dict__.copy() UpperCAmelCase__ = None return state def __setstate__( self : Optional[Any] ,lowerCamelCase__ : int ): UpperCAmelCase__ = d # for backward compatibility if not hasattr(self ,'sp_model_kwargs' ): UpperCAmelCase__ = {} UpperCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __lowerCAmelCase ( self : Optional[int] ,lowerCamelCase__ : Optional[int] ): if self.remove_space: UpperCAmelCase__ = ' '.join(inputs.strip().split() ) else: UpperCAmelCase__ = inputs UpperCAmelCase__ = outputs.replace('``' ,'\"' ).replace('\'\'' ,'\"' ) if not self.keep_accents: UpperCAmelCase__ = unicodedata.normalize('NFKD' ,lowerCAmelCase_ ) UpperCAmelCase__ = ''.join([c for c in outputs if not unicodedata.combining(lowerCAmelCase_ )] ) if self.do_lower_case: UpperCAmelCase__ = outputs.lower() return outputs def __lowerCAmelCase ( self : Optional[Any] ,lowerCamelCase__ : str ): UpperCAmelCase__ = self.preprocess_text(lowerCAmelCase_ ) UpperCAmelCase__ = self.sp_model.encode(lowerCAmelCase_ ,out_type=lowerCAmelCase_ ) UpperCAmelCase__ = [] for piece in pieces: if len(lowerCAmelCase_ ) > 1 and piece[-1] == str(',' ) and piece[-2].isdigit(): UpperCAmelCase__ = self.sp_model.EncodeAsPieces(piece[:-1].replace(lowerCAmelCase_ ,'' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: UpperCAmelCase__ = cur_pieces[1:] else: UpperCAmelCase__ = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(lowerCAmelCase_ ) else: new_pieces.append(lowerCAmelCase_ ) return new_pieces def __lowerCAmelCase ( self : List[Any] ,lowerCamelCase__ : int ): return self.sp_model.PieceToId(lowerCAmelCase_ ) def __lowerCAmelCase ( self : Dict ,lowerCamelCase__ : Dict ): return self.sp_model.IdToPiece(lowerCAmelCase_ ) def __lowerCAmelCase ( self : Optional[int] ,lowerCamelCase__ : int ): UpperCAmelCase__ = [] UpperCAmelCase__ = '' UpperCAmelCase__ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowerCAmelCase_ ) + token UpperCAmelCase__ = True UpperCAmelCase__ = [] else: current_sub_tokens.append(lowerCAmelCase_ ) UpperCAmelCase__ = False out_string += self.sp_model.decode(lowerCAmelCase_ ) return out_string.strip() def __lowerCAmelCase ( self : Dict ,lowerCamelCase__ : List[int] ,lowerCamelCase__ : Optional[List[int]] = None ): UpperCAmelCase__ = [self.sep_token_id] UpperCAmelCase__ = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __lowerCAmelCase ( self : Tuple ,lowerCamelCase__ : List[int] ,lowerCamelCase__ : Optional[List[int]] = None ,lowerCamelCase__ : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase_ ,token_ids_a=lowerCAmelCase_ ,already_has_special_tokens=lowerCAmelCase_ ) if token_ids_a is not None: return [1] + ([0] * len(lowerCAmelCase_ )) + [1] + ([0] * len(lowerCAmelCase_ )) + [1] return [1] + ([0] * len(lowerCAmelCase_ )) + [1] def __lowerCAmelCase ( self : List[str] ,lowerCamelCase__ : List[int] ,lowerCamelCase__ : Optional[List[int]] = None ): UpperCAmelCase__ = [self.sep_token_id] UpperCAmelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCAmelCase ( self : Dict ,lowerCamelCase__ : str ,lowerCamelCase__ : Optional[str] = None ): if not os.path.isdir(lowerCAmelCase_ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase__ = os.path.join( lowerCAmelCase_ ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,lowerCAmelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase_ ,'wb' ) as fi: UpperCAmelCase__ = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase_ ) return (out_vocab_file,)
712
"""simple docstring""" import re def a_ ( lowerCamelCase ): return [char.split() for char in re.split(r'[^ a-z A-Z 0-9 \s]' , str_ )] def a_ ( lowerCamelCase ): UpperCAmelCase__ = split_input(str_ ) return "".join( [''.join([char.capitalize() for char in sub_str] ) for sub_str in string_split] ) def a_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): try: UpperCAmelCase__ = split_input(lowerCamelCase ) if upper: UpperCAmelCase__ = ''.join( [ separator.join([char.upper() for char in sub_str] ) for sub_str in string_split ] ) else: UpperCAmelCase__ = ''.join( [ separator.join([char.lower() for char in sub_str] ) for sub_str in string_split ] ) return res_str except IndexError: return "not valid string" def a_ ( lowerCamelCase ): return to_simple_case(lowerCamelCase ) def a_ ( lowerCamelCase ): try: UpperCAmelCase__ = to_simple_case(lowerCamelCase ) return res_str[0].lower() + res_str[1:] except IndexError: return "not valid string" def a_ ( lowerCamelCase , lowerCamelCase ): return to_complex_case(lowerCamelCase , lowerCamelCase , '_' ) def a_ ( lowerCamelCase , lowerCamelCase ): return to_complex_case(lowerCamelCase , lowerCamelCase , '-' ) if __name__ == "__main__": __import__('doctest').testmod()
632
0
import logging import math from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union import torch from .tensor_utils import tensor_tree_map, tree_map def SCREAMING_SNAKE_CASE_ ( _snake_case :Union[dict, list, tuple, torch.Tensor] ) -> List[Tuple[int, ...]]: _A = [] if isinstance(_snake_case , _snake_case ): for v in tree.values(): shapes.extend(_fetch_dims(_snake_case ) ) elif isinstance(_snake_case , (list, tuple) ): for t in tree: shapes.extend(_fetch_dims(_snake_case ) ) elif isinstance(_snake_case , torch.Tensor ): shapes.append(tree.shape ) else: raise ValueError('''Not supported''' ) return shapes @torch.jit.ignore def SCREAMING_SNAKE_CASE_ ( _snake_case :int , _snake_case :Tuple[int, ...] ) -> Tuple[int, ...]: _A = [] for d in reversed(_snake_case ): idx.append(flat_idx % d ) _A = flat_idx // d return tuple(reversed(_snake_case ) ) @torch.jit.ignore def SCREAMING_SNAKE_CASE_ ( _snake_case :Sequence[int] , _snake_case :Sequence[int] , _snake_case :Sequence[int] , _snake_case :Optional[Sequence[bool]] = None , _snake_case :Optional[Sequence[bool]] = None , ) -> List[Tuple[slice, ...]]: # start_edges and end_edges both indicate whether, starting from any given # dimension, the start/end index is at the top/bottom edge of the # corresponding tensor, modeled as a tree def reduce_edge_list(_snake_case :List[bool] ) -> None: _A = True for i in range(len(_snake_case ) ): _A = -1 * (i + 1) l[reversed_idx] &= tally _A = l[reversed_idx] if start_edges is None: _A = [s == 0 for s in start] reduce_edge_list(_snake_case ) if end_edges is None: _A = [e == (d - 1) for e, d in zip(_snake_case , _snake_case )] reduce_edge_list(_snake_case ) # Base cases. Either start/end are empty and we're done, or the final, # one-dimensional tensor can be simply sliced if len(_snake_case ) == 0: return [()] elif len(_snake_case ) == 1: return [(slice(start[0] , end[0] + 1 ),)] _A = [] _A = [] # Dimensions common to start and end can be selected directly for s, e in zip(_snake_case , _snake_case ): if s == e: path_list.append(slice(_snake_case , s + 1 ) ) else: break _A = tuple(_snake_case ) _A = len(_snake_case ) # start == end, and we're done if divergence_idx == len(_snake_case ): return [path] def upper() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None _A = start[divergence_idx] return tuple( path + (slice(_snake_case , sdi + 1 ),) + s for s in _get_minimal_slice_set( start[divergence_idx + 1 :] , [d - 1 for d in dims[divergence_idx + 1 :]] , dims[divergence_idx + 1 :] , start_edges=start_edges[divergence_idx + 1 :] , end_edges=[True for _ in end_edges[divergence_idx + 1 :]] , ) ) def lower() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None _A = end[divergence_idx] return tuple( path + (slice(_snake_case , edi + 1 ),) + s for s in _get_minimal_slice_set( [0 for _ in start[divergence_idx + 1 :]] , end[divergence_idx + 1 :] , dims[divergence_idx + 1 :] , start_edges=[True for _ in start_edges[divergence_idx + 1 :]] , end_edges=end_edges[divergence_idx + 1 :] , ) ) # If both start and end are at the edges of the subtree rooted at # divergence_idx, we can just select the whole subtree at once if start_edges[divergence_idx] and end_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] + 1 ),) ) # If just start is at the edge, we can grab almost all of the subtree, # treating only the ragged bottom edge as an edge case elif start_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] ),) ) slices.extend(lower() ) # Analogous to the previous case, but the top is ragged this time elif end_edges[divergence_idx]: slices.extend(upper() ) slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] + 1 ),) ) # If both sides of the range are ragged, we need to handle both sides # separately. If there's contiguous meat in between them, we can index it # in one big chunk else: slices.extend(upper() ) _A = end[divergence_idx] - start[divergence_idx] if middle_ground > 1: slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] ),) ) slices.extend(lower() ) return slices @torch.jit.ignore def SCREAMING_SNAKE_CASE_ ( _snake_case :torch.Tensor , _snake_case :int , _snake_case :int , _snake_case :int ) -> torch.Tensor: _A = t.shape[:no_batch_dims] _A = list(_flat_idx_to_idx(_snake_case , _snake_case ) ) # _get_minimal_slice_set is inclusive _A = list(_flat_idx_to_idx(flat_end - 1 , _snake_case ) ) # Get an ordered list of slices to perform _A = _get_minimal_slice_set( _snake_case , _snake_case , _snake_case , ) _A = [t[s] for s in slices] return torch.cat([s.view((-1,) + t.shape[no_batch_dims:] ) for s in sliced_tensors] ) def SCREAMING_SNAKE_CASE_ ( _snake_case :Callable , _snake_case :Dict[str, Any] , _snake_case :int , _snake_case :int , _snake_case :bool = False , _snake_case :Any = None , _snake_case :bool = False , ) -> Any: if not (len(_snake_case ) > 0): raise ValueError('''Must provide at least one input''' ) _A = [shape[:no_batch_dims] for shape in _fetch_dims(_snake_case )] _A = tuple([max(_snake_case ) for s in zip(*_snake_case )] ) def _prep_inputs(_snake_case :torch.Tensor ) -> torch.Tensor: if not low_mem: if not sum(t.shape[:no_batch_dims] ) == no_batch_dims: _A = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) _A = t.reshape(-1 , *t.shape[no_batch_dims:] ) else: _A = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) return t _A = tensor_tree_map(_prep_inputs , _snake_case ) _A = None if _out is not None: _A = tensor_tree_map(lambda _snake_case : t.view([-1] + list(t.shape[no_batch_dims:] ) ) , _out ) _A = 1 for d in orig_batch_dims: flat_batch_dim *= d _A = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0) def _select_chunk(_snake_case :torch.Tensor ) -> torch.Tensor: return t[i : i + chunk_size] if t.shape[0] != 1 else t _A = 0 _A = prepped_outputs for _ in range(_snake_case ): # Chunk the input if not low_mem: _A = _select_chunk else: _A = partial( _chunk_slice , flat_start=_snake_case , flat_end=min(_snake_case , i + chunk_size ) , no_batch_dims=len(_snake_case ) , ) _A = tensor_tree_map(_snake_case , _snake_case ) # Run the layer on the chunk _A = layer(**_snake_case ) # Allocate space for the output if out is None: _A = tensor_tree_map(lambda _snake_case : t.new_zeros((flat_batch_dim,) + t.shape[1:] ) , _snake_case ) # Put the chunk in its pre-allocated space if isinstance(_snake_case , _snake_case ): def assign(_snake_case :dict , _snake_case :dict ) -> None: for k, v in da.items(): if isinstance(_snake_case , _snake_case ): assign(_snake_case , da[k] ) else: if _add_into_out: v[i : i + chunk_size] += da[k] else: _A = da[k] assign(_snake_case , _snake_case ) elif isinstance(_snake_case , _snake_case ): for xa, xa in zip(_snake_case , _snake_case ): if _add_into_out: xa[i : i + chunk_size] += xa else: _A = xa elif isinstance(_snake_case , torch.Tensor ): if _add_into_out: out[i : i + chunk_size] += output_chunk else: _A = output_chunk else: raise ValueError('''Not supported''' ) i += chunk_size _A = tensor_tree_map(lambda _snake_case : t.view(orig_batch_dims + t.shape[1:] ) , _snake_case ) return out class lowerCamelCase__ : """simple docstring""" def __init__( self : List[str] , __lowerCAmelCase : int = 5_12 , ) -> Optional[int]: _A = max_chunk_size _A = None _A = None def snake_case_ ( self : int , __lowerCAmelCase : Callable , __lowerCAmelCase : tuple , __lowerCAmelCase : int ) -> int: logging.info('''Tuning chunk size...''' ) if min_chunk_size >= self.max_chunk_size: return min_chunk_size _A = [2**l for l in range(int(math.log(self.max_chunk_size , 2 ) ) + 1 )] _A = [c for c in candidates if c > min_chunk_size] _A = [min_chunk_size] + candidates candidates[-1] += 4 def test_chunk_size(__lowerCAmelCase : int ) -> bool: try: with torch.no_grad(): fn(*__lowerCAmelCase , chunk_size=__lowerCAmelCase ) return True except RuntimeError: return False _A = 0 _A = len(__lowerCAmelCase ) - 1 while i > min_viable_chunk_size_index: _A = test_chunk_size(candidates[i] ) if not viable: _A = (min_viable_chunk_size_index + i) // 2 else: _A = i _A = (i + len(__lowerCAmelCase ) - 1) // 2 return candidates[min_viable_chunk_size_index] def snake_case_ ( self : Union[str, Any] , __lowerCAmelCase : Iterable , __lowerCAmelCase : Iterable ) -> bool: _A = True for aa, aa in zip(__lowerCAmelCase , __lowerCAmelCase ): assert type(__lowerCAmelCase ) == type(__lowerCAmelCase ) if isinstance(__lowerCAmelCase , (list, tuple) ): consistent &= self._compare_arg_caches(__lowerCAmelCase , __lowerCAmelCase ) elif isinstance(__lowerCAmelCase , __lowerCAmelCase ): _A = [v for _, v in sorted(aa.items() , key=lambda __lowerCAmelCase : x[0] )] _A = [v for _, v in sorted(aa.items() , key=lambda __lowerCAmelCase : x[0] )] consistent &= self._compare_arg_caches(__lowerCAmelCase , __lowerCAmelCase ) else: consistent &= aa == aa return consistent def snake_case_ ( self : Any , __lowerCAmelCase : Callable , __lowerCAmelCase : tuple , __lowerCAmelCase : int , ) -> int: _A = True _A = tree_map(lambda __lowerCAmelCase : a.shape if isinstance(__lowerCAmelCase , torch.Tensor ) else a , __lowerCAmelCase , __lowerCAmelCase ) if self.cached_arg_data is not None: # If args have changed shape/value, we need to re-tune assert len(self.cached_arg_data ) == len(__lowerCAmelCase ) _A = self._compare_arg_caches(self.cached_arg_data , __lowerCAmelCase ) else: # Otherwise, we can reuse the precomputed value _A = False if not consistent: _A = self._determine_favorable_chunk_size( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ) _A = arg_data assert self.cached_chunk_size is not None return self.cached_chunk_size
2
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _A = { 'configuration_chinese_clip': [ 'CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ChineseCLIPConfig', 'ChineseCLIPOnnxConfig', 'ChineseCLIPTextConfig', 'ChineseCLIPVisionConfig', ], 'processing_chinese_clip': ['ChineseCLIPProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = ['ChineseCLIPFeatureExtractor'] _A = ['ChineseCLIPImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ 'CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'ChineseCLIPModel', 'ChineseCLIPPreTrainedModel', 'ChineseCLIPTextModel', 'ChineseCLIPVisionModel', ] if TYPE_CHECKING: from .configuration_chinese_clip import ( CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, ChineseCLIPConfig, ChineseCLIPOnnxConfig, ChineseCLIPTextConfig, ChineseCLIPVisionConfig, ) from .processing_chinese_clip import ChineseCLIPProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_chinese_clip import ChineseCLIPFeatureExtractor, ChineseCLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_chinese_clip import ( CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, ChineseCLIPModel, ChineseCLIPPreTrainedModel, ChineseCLIPTextModel, ChineseCLIPVisionModel, ) else: import sys _A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
159
0
'''simple docstring''' import unittest import torch from torch import nn from diffusers.models.activations import get_activation class __A ( unittest.TestCase ): def _lowercase (self : Any ): UpperCAmelCase_ = get_activation("swish" ) self.assertIsInstance(__a , nn.SiLU ) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def _lowercase (self : Any ): UpperCAmelCase_ = get_activation("silu" ) self.assertIsInstance(__a , nn.SiLU ) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def _lowercase (self : str ): UpperCAmelCase_ = get_activation("mish" ) self.assertIsInstance(__a , nn.Mish ) self.assertEqual(act(torch.tensor(-200 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def _lowercase (self : Dict ): UpperCAmelCase_ = get_activation("gelu" ) self.assertIsInstance(__a , nn.GELU ) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
415
'''simple docstring''' import torch from diffusers import DiffusionPipeline class __A ( UpperCamelCase__ ): def __init__(self : int , __a : Tuple , __a : int ): super().__init__() self.register_modules(unet=__a , scheduler=__a ) def __call__(self : Union[str, Any] ): UpperCAmelCase_ = torch.randn( (1, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , ) UpperCAmelCase_ = 1 UpperCAmelCase_ = self.unet(__a , __a ).sample UpperCAmelCase_ = self.scheduler.step(__a , __a , __a ).prev_sample UpperCAmelCase_ = scheduler_output - scheduler_output + torch.ones_like(__a ) return result
415
1
"""simple docstring""" class UpperCAmelCase_ : def __init__( self ) -> None: __lowercase : dict[str, TrieNode] = {} # Mapping from char to TrieNode __lowercase : Dict = False def _lowerCamelCase ( self , UpperCamelCase_ ) -> None: for word in words: self.insert(UpperCamelCase_ ) def _lowerCamelCase ( self , UpperCamelCase_ ) -> None: __lowercase : List[str] = self for char in word: if char not in curr.nodes: __lowercase : Optional[Any] = TrieNode() __lowercase : List[Any] = curr.nodes[char] __lowercase : List[str] = True def _lowerCamelCase ( self , UpperCamelCase_ ) -> bool: __lowercase : List[str] = self for char in word: if char not in curr.nodes: return False __lowercase : Tuple = curr.nodes[char] return curr.is_leaf def _lowerCamelCase ( self , UpperCamelCase_ ) -> None: def _delete(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> bool: if index == len(UpperCamelCase_ ): # If word does not exist if not curr.is_leaf: return False __lowercase : str = False return len(curr.nodes ) == 0 __lowercase : Any = word[index] __lowercase : List[str] = curr.nodes.get(UpperCamelCase_ ) # If char not in current trie node if not char_node: return False # Flag to check if node can be deleted __lowercase : Optional[int] = _delete(UpperCamelCase_ , UpperCamelCase_ , index + 1 ) if delete_curr: del curr.nodes[char] return len(curr.nodes ) == 0 return delete_curr _delete(self , UpperCamelCase_ , 0 ) def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase ): if node.is_leaf: print(__UpperCamelCase , end=''' ''' ) for key, value in node.nodes.items(): print_words(__UpperCamelCase , word + key ) def __UpperCAmelCase ( ): __lowercase : Optional[int] = '''banana bananas bandana band apple all beast'''.split() __lowercase : str = TrieNode() root.insert_many(__UpperCamelCase ) # print_words(root, "") assert all(root.find(__UpperCamelCase ) for word in words ) assert root.find('''banana''' ) assert not root.find('''bandanas''' ) assert not root.find('''apps''' ) assert root.find('''apple''' ) assert root.find('''all''' ) root.delete('''all''' ) assert not root.find('''all''' ) root.delete('''banana''' ) assert not root.find('''banana''' ) assert root.find('''bananas''' ) return True def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase ): print(str(__UpperCamelCase ) , '''works!''' if passes else '''doesn\'t work :(''' ) def __UpperCAmelCase ( ): assert test_trie() def __UpperCAmelCase ( ): print_results('''Testing trie functionality''' , test_trie() ) if __name__ == "__main__": main()
76
"""simple docstring""" from __future__ import annotations def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): # noqa: E741 while r - l > 1: __lowercase : int = (l + r) // 2 if v[m] >= key: __lowercase : Any = m else: __lowercase : List[Any] = m # noqa: E741 return r def __UpperCAmelCase ( __UpperCamelCase ): if len(__UpperCamelCase ) == 0: return 0 __lowercase : List[str] = [0] * len(__UpperCamelCase ) __lowercase : Any = 1 __lowercase : Dict = v[0] for i in range(1 , len(__UpperCamelCase ) ): if v[i] < tail[0]: __lowercase : Tuple = v[i] elif v[i] > tail[length - 1]: __lowercase : Optional[Any] = v[i] length += 1 else: __lowercase : Dict = v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
76
1
'''simple docstring''' import json import os import tempfile from unittest.mock import patch import torch from torch.utils.data import DataLoader, TensorDataset from accelerate import DistributedType, infer_auto_device_map, init_empty_weights from accelerate.accelerator import Accelerator from accelerate.state import GradientState, PartialState from accelerate.test_utils import require_bnb, require_multi_gpu, slow from accelerate.test_utils.testing import AccelerateTestCase, require_cuda from accelerate.utils import patch_environment def _A () -> Dict: '''simple docstring''' _a = torch.nn.Linear(2 , 4 ) _a = torch.optim.AdamW(model.parameters() , lr=1.0 ) _a = torch.optim.lr_scheduler.OneCycleLR(lowerCAmelCase__ , max_lr=0.0_1 , steps_per_epoch=2 , epochs=1 ) _a = DataLoader(TensorDataset(torch.tensor([1, 2, 3] ) ) ) _a = DataLoader(TensorDataset(torch.tensor([4, 5, 6] ) ) ) return model, optimizer, scheduler, train_dl, valid_dl def _A (lowerCAmelCase__ :str ) -> Optional[int]: '''simple docstring''' return (model.weight.abs().sum() + model.bias.abs().sum()).item() def _A (lowerCAmelCase__ :Optional[Any] ) -> Optional[int]: '''simple docstring''' _a = torch.nn.Linear(*tuple(model.weight.T.shape ) ).state_dict() model.load_state_dict(lowerCAmelCase__ ) class a ( _SCREAMING_SNAKE_CASE ): @require_cuda def __UpperCAmelCase ( self ) -> Union[str, Any]: _a = Accelerator() assert PartialState._shared_state["_cpu"] is False assert PartialState._shared_state["device"].type == "cuda" with self.assertRaises(__magic_name__ ): _a = Accelerator(cpu=__magic_name__ ) def __UpperCAmelCase ( self ) -> Optional[int]: _a = Accelerator() _a = GradientState() assert state.num_steps == 1 _a = 4 assert state.num_steps == 4 assert state.sync_gradients is True _a = False assert state.sync_gradients is False GradientState._reset_state() def __UpperCAmelCase ( self ) -> List[str]: _a = Accelerator() _a , _a , _a , _a , _a = create_components() ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) = accelerator.prepare(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) self.assertTrue(prepared_model in accelerator._models ) self.assertTrue(prepared_optimizer in accelerator._optimizers ) self.assertTrue(prepared_scheduler in accelerator._schedulers ) self.assertTrue(prepared_train_dl in accelerator._dataloaders ) self.assertTrue(prepared_valid_dl in accelerator._dataloaders ) def __UpperCAmelCase ( self ) -> Tuple: _a = Accelerator() _a , _a , _a , _a , _a = create_components() accelerator.prepare(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) accelerator.free_memory() self.assertTrue(len(accelerator._models ) == 0 ) self.assertTrue(len(accelerator._optimizers ) == 0 ) self.assertTrue(len(accelerator._schedulers ) == 0 ) self.assertTrue(len(accelerator._dataloaders ) == 0 ) def __UpperCAmelCase ( self ) -> Union[str, Any]: PartialState._reset_state() # Mock torch.cuda.set_device to avoid an exception as the device doesn't exist def noop(*__magic_name__ , **__magic_name__ ): pass with patch('torch.cuda.set_device' , __magic_name__ ), patch_environment(ACCELERATE_TORCH_DEVICE='cuda:64' ): _a = Accelerator() self.assertEqual(str(accelerator.state.device ) , 'cuda:64' ) def __UpperCAmelCase ( self ) -> List[str]: _a = Accelerator() _a , _a , _a , _a , _a = create_components() accelerator.prepare(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) _a = get_signature(__magic_name__ ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(__magic_name__ ) # make sure random weights don't match load_random_weights(__magic_name__ ) self.assertTrue(abs(model_signature - get_signature(__magic_name__ ) ) > 1e-3 ) # make sure loaded weights match accelerator.load_state(__magic_name__ ) self.assertTrue(abs(model_signature - get_signature(__magic_name__ ) ) < 1e-3 ) def __UpperCAmelCase ( self ) -> Tuple: _a = Accelerator() _a , _a , _a , _a , _a = create_components() accelerator.prepare(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) _a = get_signature(__magic_name__ ) # saving hook def save_config(__magic_name__ , __magic_name__ , __magic_name__ ): _a = {'class_name': models[0].__class__.__name__} with open(os.path.join(__magic_name__ , 'data.json' ) , 'w' ) as f: json.dump(__magic_name__ , __magic_name__ ) # loading hook def load_config(__magic_name__ , __magic_name__ ): with open(os.path.join(__magic_name__ , 'data.json' ) , 'r' ) as f: _a = json.load(__magic_name__ ) _a = config['class_name'] _a = accelerator.register_save_state_pre_hook(__magic_name__ ) _a = accelerator.register_load_state_pre_hook(__magic_name__ ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(__magic_name__ ) # make sure random weights don't match with hooks load_random_weights(__magic_name__ ) self.assertTrue(abs(model_signature - get_signature(__magic_name__ ) ) > 1e-3 ) # random class name to verify correct one is loaded _a = 'random' # make sure loaded weights match with hooks accelerator.load_state(__magic_name__ ) self.assertTrue(abs(model_signature - get_signature(__magic_name__ ) ) < 1e-3 ) # mode.class_name is loaded from config self.assertTrue(model.class_name == model.__class__.__name__ ) # remove hooks save_hook.remove() load_hook.remove() with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(__magic_name__ ) # make sure random weights don't match with hooks removed load_random_weights(__magic_name__ ) self.assertTrue(abs(model_signature - get_signature(__magic_name__ ) ) > 1e-3 ) # random class name to verify correct one is loaded _a = 'random' # make sure loaded weights match with hooks removed accelerator.load_state(__magic_name__ ) self.assertTrue(abs(model_signature - get_signature(__magic_name__ ) ) < 1e-3 ) # mode.class_name is NOT loaded from config self.assertTrue(model.class_name != model.__class__.__name__ ) def __UpperCAmelCase ( self ) -> List[str]: _a = Accelerator() _a , _a , _a , _a , _a = create_components() _a = None # This should work _a , _a , _a , _a , _a , _a = accelerator.prepare( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) self.assertTrue(dummy_obj is None ) def __UpperCAmelCase ( self ) -> str: _a = Accelerator() _a , _a , _a , _a , _a = create_components() _a = [1, 2, 3] # This should work _a , _a , _a , _a , _a , _a = accelerator.prepare( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) self.assertEqual( getattr(__magic_name__ , '_is_accelerate_prepared' , __magic_name__ ) , __magic_name__ , 'Dummy object should have `_is_accelerate_prepared` set to `True`' , ) self.assertEqual( getattr(__magic_name__ , '_is_accelerate_prepared' , __magic_name__ ) , __magic_name__ , 'Model is missing `_is_accelerator_prepared` or is set to `False`' , ) self.assertEqual( getattr(__magic_name__ , '_is_accelerate_prepared' , __magic_name__ ) , __magic_name__ , 'Optimizer is missing `_is_accelerator_prepared` or is set to `False`' , ) self.assertEqual( getattr(__magic_name__ , '_is_accelerate_prepared' , __magic_name__ ) , __magic_name__ , 'Scheduler is missing `_is_accelerator_prepared` or is set to `False`' , ) self.assertEqual( getattr(__magic_name__ , '_is_accelerate_prepared' , __magic_name__ ) , __magic_name__ , 'Train Dataloader is missing `_is_accelerator_prepared` or is set to `False`' , ) self.assertEqual( getattr(__magic_name__ , '_is_accelerate_prepared' , __magic_name__ ) , __magic_name__ , 'Valid Dataloader is missing `_is_accelerator_prepared` or is set to `False`' , ) @slow @require_bnb def __UpperCAmelCase ( self ) -> Optional[int]: from transformers import AutoModelForCausalLM _a = AutoModelForCausalLM.from_pretrained( 'EleutherAI/gpt-neo-125m' , load_in_abit=__magic_name__ , device_map={'': 0} , ) _a = Accelerator() # This should work _a = accelerator.prepare(__magic_name__ ) @slow @require_bnb def __UpperCAmelCase ( self ) -> Optional[int]: from transformers import AutoModelForCausalLM _a = Accelerator() with init_empty_weights(): _a = AutoModelForCausalLM.from_pretrained( 'EleutherAI/gpt-neo-125m' , ) model.tie_weights() _a = infer_auto_device_map(__magic_name__ ) _a = 'cpu' _a = AutoModelForCausalLM.from_pretrained( 'EleutherAI/gpt-neo-125m' , device_map=__magic_name__ , load_in_abit=__magic_name__ , llm_inta_enable_fpaa_cpu_offload=__magic_name__ ) # This should not work and get value error with self.assertRaises(__magic_name__ ): _a = accelerator.prepare(__magic_name__ ) @slow @require_bnb @require_multi_gpu def __UpperCAmelCase ( self ) -> List[Any]: from transformers import AutoModelForCausalLM _a = {'distributed_type': DistributedType.MULTI_GPU} with init_empty_weights(): _a = AutoModelForCausalLM.from_pretrained( 'EleutherAI/gpt-neo-125m' , ) model.tie_weights() _a = infer_auto_device_map(__magic_name__ ) _a = 1 _a = AutoModelForCausalLM.from_pretrained( 'EleutherAI/gpt-neo-125m' , load_in_abit=__magic_name__ , device_map=__magic_name__ , ) _a = Accelerator() # This should not work and get value error with self.assertRaises(__magic_name__ ): _a = accelerator.prepare(__magic_name__ ) PartialState._reset_state() @slow @require_bnb @require_multi_gpu def __UpperCAmelCase ( self ) -> Optional[int]: from transformers import AutoModelForCausalLM with init_empty_weights(): _a = AutoModelForCausalLM.from_pretrained( 'EleutherAI/gpt-neo-125m' , ) _a = infer_auto_device_map(__magic_name__ ) _a = 1 _a = AutoModelForCausalLM.from_pretrained( 'EleutherAI/gpt-neo-125m' , load_in_abit=__magic_name__ , device_map=__magic_name__ , ) _a = Accelerator() # This should work _a = accelerator.prepare(__magic_name__ ) @require_cuda def __UpperCAmelCase ( self ) -> List[Any]: _a = torch.nn.Linear(10 , 10 ) _a = torch.optim.SGD(model.parameters() , lr=0.0_1 ) _a = Accelerator(cpu=__magic_name__ ) _a = accelerator.prepare(__magic_name__ )
710
'''simple docstring''' from typing import List, Optional import numpy as np from ...processing_utils import ProcessorMixin from ...utils import to_numpy class a ( _SCREAMING_SNAKE_CASE ): _lowerCAmelCase = """EncodecFeatureExtractor""" _lowerCAmelCase = ("""T5Tokenizer""", """T5TokenizerFast""") def __init__( self , __magic_name__ , __magic_name__ ) -> Optional[Any]: super().__init__(__magic_name__ , __magic_name__ ) _a = self.feature_extractor _a = False def __UpperCAmelCase ( self , __magic_name__=None , __magic_name__=None , __magic_name__=True ) -> Tuple: return self.tokenizer.get_decoder_prompt_ids(task=__magic_name__ , language=__magic_name__ , no_timestamps=__magic_name__ ) def __call__( self , *__magic_name__ , **__magic_name__ ) -> List[str]: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*__magic_name__ , **__magic_name__ ) _a = kwargs.pop('audio' , __magic_name__ ) _a = kwargs.pop('sampling_rate' , __magic_name__ ) _a = kwargs.pop('text' , __magic_name__ ) if len(__magic_name__ ) > 0: _a = args[0] _a = args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.' ) if text is not None: _a = self.tokenizer(__magic_name__ , **__magic_name__ ) if audio is not None: _a = self.feature_extractor(__magic_name__ , *__magic_name__ , sampling_rate=__magic_name__ , **__magic_name__ ) if audio is None: return inputs elif text is None: return audio_inputs else: _a = audio_inputs['input_values'] if "padding_mask" in audio_inputs: _a = audio_inputs['padding_mask'] return inputs def __UpperCAmelCase ( self , *__magic_name__ , **__magic_name__ ) -> Tuple: _a = kwargs.pop('audio' , __magic_name__ ) _a = kwargs.pop('padding_mask' , __magic_name__ ) if len(__magic_name__ ) > 0: _a = args[0] _a = args[1:] if audio_values is not None: return self._decode_audio(__magic_name__ , padding_mask=__magic_name__ ) else: return self.tokenizer.batch_decode(*__magic_name__ , **__magic_name__ ) def __UpperCAmelCase ( self , *__magic_name__ , **__magic_name__ ) -> List[Any]: return self.tokenizer.decode(*__magic_name__ , **__magic_name__ ) def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ = None ) -> List[np.ndarray]: _a = to_numpy(__magic_name__ ) _a , _a , _a = audio_values.shape if padding_mask is None: return list(__magic_name__ ) _a = to_numpy(__magic_name__ ) # match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding** # token (so that the generated audio values are **not** treated as padded tokens) _a = seq_len - padding_mask.shape[-1] _a = 1 - self.feature_extractor.padding_value _a = np.pad(__magic_name__ , ((0, 0), (0, difference)) , 'constant' , constant_values=__magic_name__ ) _a = audio_values.tolist() for i in range(__magic_name__ ): _a = np.asarray(audio_values[i] )[ padding_mask[i][None, :] != self.feature_extractor.padding_value ] _a = sliced_audio.reshape(__magic_name__ , -1 ) return audio_values
532
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """facebook/xlm-roberta-xl""": """https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json""", """facebook/xlm-roberta-xxl""": """https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json""", # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = '''xlm-roberta-xl''' def __init__( self : Union[str, Any] , _UpperCAmelCase : Dict=250880 , _UpperCAmelCase : List[str]=2560 , _UpperCAmelCase : Any=36 , _UpperCAmelCase : Dict=32 , _UpperCAmelCase : Optional[int]=10240 , _UpperCAmelCase : List[str]="gelu" , _UpperCAmelCase : Optional[Any]=0.1 , _UpperCAmelCase : Optional[Any]=0.1 , _UpperCAmelCase : Tuple=514 , _UpperCAmelCase : str=1 , _UpperCAmelCase : Union[str, Any]=0.02 , _UpperCAmelCase : Tuple=1e-05 , _UpperCAmelCase : str=1 , _UpperCAmelCase : Any=0 , _UpperCAmelCase : Optional[int]=2 , _UpperCAmelCase : Dict="absolute" , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : Tuple=None , **_UpperCAmelCase : List[Any] , ) -> Optional[Any]: '''simple docstring''' super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = hidden_act UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = type_vocab_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = position_embedding_type UpperCAmelCase_ = use_cache UpperCAmelCase_ = classifier_dropout class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def lowercase__ ( self : int ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": UpperCAmelCase_ = {0: "batch", 1: "choice", 2: "sequence"} else: UpperCAmelCase_ = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
82
"""simple docstring""" from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance lowerCamelCase = 6_378_137.0 lowerCamelCase = 6_356_752.314_245 lowerCamelCase = 6_378_137 def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude UpperCAmelCase_ = atan((1 - flattening) * tan(radians(lowerCAmelCase__ ) ) ) UpperCAmelCase_ = atan((1 - flattening) * tan(radians(lowerCAmelCase__ ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius UpperCAmelCase_ = haversine_distance(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) / EQUATORIAL_RADIUS # Intermediate P and Q values UpperCAmelCase_ = (b_lata + b_lata) / 2 UpperCAmelCase_ = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) UpperCAmelCase_ = (sin(lowerCAmelCase__ ) ** 2) * (cos(lowerCAmelCase__ ) ** 2) UpperCAmelCase_ = cos(sigma / 2 ) ** 2 UpperCAmelCase_ = (sigma - sin(lowerCAmelCase__ )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) UpperCAmelCase_ = (cos(lowerCAmelCase__ ) ** 2) * (sin(lowerCAmelCase__ ) ** 2) UpperCAmelCase_ = sin(sigma / 2 ) ** 2 UpperCAmelCase_ = (sigma + sin(lowerCAmelCase__ )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
82
1
from pathlib import Path import fire from tqdm import tqdm def _A ( __snake_case :str="ro" , __snake_case :Optional[int]="en" , __snake_case :Optional[int]="wmt16" , __snake_case :List[Any]=None ) -> None: """simple docstring""" try: import datasets except (ModuleNotFoundError, ImportError): raise ImportError("run pip install datasets" ) __SCREAMING_SNAKE_CASE = f'''{src_lang}-{tgt_lang}''' print(f'''Converting {dataset}-{pair}''' ) __SCREAMING_SNAKE_CASE = datasets.load_dataset(__snake_case , __snake_case ) if save_dir is None: __SCREAMING_SNAKE_CASE = f'''{dataset}-{pair}''' __SCREAMING_SNAKE_CASE = Path(__snake_case ) save_dir.mkdir(exist_ok=__snake_case ) for split in ds.keys(): print(f'''Splitting {split} with {ds[split].num_rows} records''' ) # to save to val.source, val.target like summary datasets __SCREAMING_SNAKE_CASE = "val" if split == "validation" else split __SCREAMING_SNAKE_CASE = save_dir.joinpath(f'''{fn}.source''' ) __SCREAMING_SNAKE_CASE = save_dir.joinpath(f'''{fn}.target''' ) __SCREAMING_SNAKE_CASE = src_path.open("w+" ) __SCREAMING_SNAKE_CASE = tgt_path.open("w+" ) # reader is the bottleneck so writing one record at a time doesn't slow things down for x in tqdm(ds[split] ): __SCREAMING_SNAKE_CASE = x["translation"] src_fp.write(ex[src_lang] + "\n" ) tgt_fp.write(ex[tgt_lang] + "\n" ) print(f'''Saved {dataset} dataset to {save_dir}''' ) if __name__ == "__main__": fire.Fire(download_wmt_dataset)
214
from __future__ import annotations import copy import tempfile import unittest from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tensorflow_probability, require_tf, slow, ) from ..bert.test_modeling_bert import BertModelTester if is_tf_available(): from transformers import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFFunnelBaseModel, TFFunnelModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, TFTapasForQuestionAnswering, ) from transformers.models.auto.modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST class __SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE__ ="""new-model""" if is_tf_available(): class __SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE__ =NewModelConfig @require_tf class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): @slow def __lowerCAmelCase ( self ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE = "bert-base-cased" __SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(_a ) self.assertIsNotNone(_a ) self.assertIsInstance(_a, _a ) __SCREAMING_SNAKE_CASE = TFAutoModel.from_pretrained(_a ) self.assertIsNotNone(_a ) self.assertIsInstance(_a, _a ) @slow def __lowerCAmelCase ( self ) -> Any: __SCREAMING_SNAKE_CASE = "bert-base-cased" __SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(_a ) self.assertIsNotNone(_a ) self.assertIsInstance(_a, _a ) __SCREAMING_SNAKE_CASE = TFAutoModelForPreTraining.from_pretrained(_a ) self.assertIsNotNone(_a ) self.assertIsInstance(_a, _a ) @slow def __lowerCAmelCase ( self ) -> Dict: for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(_a ) self.assertIsNotNone(_a ) self.assertIsInstance(_a, _a ) __SCREAMING_SNAKE_CASE = TFAutoModelForCausalLM.from_pretrained(_a ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = TFAutoModelForCausalLM.from_pretrained(_a, output_loading_info=_a ) self.assertIsNotNone(_a ) self.assertIsInstance(_a, _a ) @slow def __lowerCAmelCase ( self ) -> List[str]: for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(_a ) self.assertIsNotNone(_a ) self.assertIsInstance(_a, _a ) __SCREAMING_SNAKE_CASE = TFAutoModelWithLMHead.from_pretrained(_a ) self.assertIsNotNone(_a ) self.assertIsInstance(_a, _a ) @slow def __lowerCAmelCase ( self ) -> int: for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(_a ) self.assertIsNotNone(_a ) self.assertIsInstance(_a, _a ) __SCREAMING_SNAKE_CASE = TFAutoModelForMaskedLM.from_pretrained(_a ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = TFAutoModelForMaskedLM.from_pretrained(_a, output_loading_info=_a ) self.assertIsNotNone(_a ) self.assertIsInstance(_a, _a ) @slow def __lowerCAmelCase ( self ) -> Optional[int]: for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(_a ) self.assertIsNotNone(_a ) self.assertIsInstance(_a, _a ) __SCREAMING_SNAKE_CASE = TFAutoModelForSeqaSeqLM.from_pretrained(_a ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = TFAutoModelForSeqaSeqLM.from_pretrained(_a, output_loading_info=_a ) self.assertIsNotNone(_a ) self.assertIsInstance(_a, _a ) @slow def __lowerCAmelCase ( self ) -> Any: # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: __SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(_a ) self.assertIsNotNone(_a ) self.assertIsInstance(_a, _a ) __SCREAMING_SNAKE_CASE = TFAutoModelForSequenceClassification.from_pretrained(_a ) self.assertIsNotNone(_a ) self.assertIsInstance(_a, _a ) @slow def __lowerCAmelCase ( self ) -> Optional[Any]: # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: __SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(_a ) self.assertIsNotNone(_a ) self.assertIsInstance(_a, _a ) __SCREAMING_SNAKE_CASE = TFAutoModelForQuestionAnswering.from_pretrained(_a ) self.assertIsNotNone(_a ) self.assertIsInstance(_a, _a ) @slow @require_tensorflow_probability def __lowerCAmelCase ( self ) -> Dict: for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: __SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(_a ) self.assertIsNotNone(_a ) self.assertIsInstance(_a, _a ) __SCREAMING_SNAKE_CASE = TFAutoModelForTableQuestionAnswering.from_pretrained(_a ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = TFAutoModelForTableQuestionAnswering.from_pretrained( _a, output_loading_info=_a ) self.assertIsNotNone(_a ) self.assertIsInstance(_a, _a ) def __lowerCAmelCase ( self ) -> int: __SCREAMING_SNAKE_CASE = TFAutoModelWithLMHead.from_pretrained(_a ) self.assertIsInstance(_a, _a ) self.assertEqual(model.num_parameters(), 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=_a ), 1_44_10 ) def __lowerCAmelCase ( self ) -> Tuple: __SCREAMING_SNAKE_CASE = TFAutoModelWithLMHead.from_pretrained(_a ) self.assertIsInstance(_a, _a ) self.assertEqual(model.num_parameters(), 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=_a ), 1_44_10 ) def __lowerCAmelCase ( self ) -> List[Any]: # For the auto model mapping, FunnelConfig has two models: FunnelModel and FunnelBaseModel __SCREAMING_SNAKE_CASE = TFAutoModel.from_pretrained("sgugger/funnel-random-tiny" ) self.assertIsInstance(_a, _a ) __SCREAMING_SNAKE_CASE = copy.deepcopy(model.config ) __SCREAMING_SNAKE_CASE = ["FunnelBaseModel"] __SCREAMING_SNAKE_CASE = TFAutoModel.from_config(_a ) self.assertIsInstance(_a, _a ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_a ) __SCREAMING_SNAKE_CASE = TFAutoModel.from_pretrained(_a ) self.assertIsInstance(_a, _a ) def __lowerCAmelCase ( self ) -> str: try: AutoConfig.register("new-model", _a ) __SCREAMING_SNAKE_CASE = [ TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ] for auto_class in auto_classes: with self.subTest(auto_class.__name__ ): # Wrong config class will raise an error with self.assertRaises(_a ): auto_class.register(_a, _a ) auto_class.register(_a, _a ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_a ): auto_class.register(_a, _a ) # Now that the config is registered, it can be used as any other config with the auto-API __SCREAMING_SNAKE_CASE = BertModelTester(self ).get_config() __SCREAMING_SNAKE_CASE = NewModelConfig(**tiny_config.to_dict() ) __SCREAMING_SNAKE_CASE = auto_class.from_config(_a ) self.assertIsInstance(_a, _a ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_a ) __SCREAMING_SNAKE_CASE = auto_class.from_pretrained(_a ) self.assertIsInstance(_a, _a ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] for mapping in ( TF_MODEL_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, ): if NewModelConfig in mapping._extra_content: del mapping._extra_content[NewModelConfig] def __lowerCAmelCase ( self ) -> List[str]: with self.assertRaisesRegex( _a, "bert-base is not a local folder and is not a valid model identifier" ): __SCREAMING_SNAKE_CASE = TFAutoModel.from_pretrained("bert-base" ) def __lowerCAmelCase ( self ) -> Tuple: with self.assertRaisesRegex( _a, r"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): __SCREAMING_SNAKE_CASE = TFAutoModel.from_pretrained(_a, revision="aaaaaa" ) def __lowerCAmelCase ( self ) -> Dict: with self.assertRaisesRegex( _a, "hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin", ): __SCREAMING_SNAKE_CASE = TFAutoModel.from_pretrained("hf-internal-testing/config-no-model" ) def __lowerCAmelCase ( self ) -> Optional[int]: with self.assertRaisesRegex(_a, "Use `from_pt=True` to load this model" ): __SCREAMING_SNAKE_CASE = TFAutoModel.from_pretrained("hf-internal-testing/tiny-bert-pt-only" ) def __lowerCAmelCase ( self ) -> List[Any]: # Make sure we have cached the model. __SCREAMING_SNAKE_CASE = TFAutoModel.from_pretrained("hf-internal-testing/tiny-random-bert" ) with RequestCounter() as counter: __SCREAMING_SNAKE_CASE = TFAutoModel.from_pretrained("hf-internal-testing/tiny-random-bert" ) self.assertEqual(counter.get_request_count, 0 ) self.assertEqual(counter.head_request_count, 1 ) self.assertEqual(counter.other_request_count, 0 ) # With a sharded checkpoint __SCREAMING_SNAKE_CASE = TFAutoModel.from_pretrained("ArthurZ/tiny-random-bert-sharded" ) with RequestCounter() as counter: __SCREAMING_SNAKE_CASE = TFAutoModel.from_pretrained("ArthurZ/tiny-random-bert-sharded" ) self.assertEqual(counter.get_request_count, 0 ) self.assertEqual(counter.head_request_count, 1 ) self.assertEqual(counter.other_request_count, 0 )
214
1
'''simple docstring''' from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
215
'''simple docstring''' def __lowerCamelCase ( __snake_case : Dict, __snake_case : Union[str, Any], __snake_case : Optional[Any], __snake_case : int, __snake_case : int, __snake_case : Tuple ) -> Dict: """simple docstring""" if index == r: for j in range(__snake_case ): print(data[j], end=""" """ ) print(""" """ ) return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location A__ : Optional[int] =arr[i] combination_util(__snake_case, __snake_case, __snake_case, index + 1, __snake_case, i + 1 ) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(__snake_case, __snake_case, __snake_case, __snake_case, __snake_case, i + 1 ) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def __lowerCamelCase ( __snake_case : Any, __snake_case : Dict, __snake_case : str ) -> str: """simple docstring""" A__ : Union[str, Any] =[0] * r # Print all combination using temporary array 'data[]' combination_util(__snake_case, __snake_case, __snake_case, 0, __snake_case, 0 ) if __name__ == "__main__": # Driver code to check the function above __snake_case : List[Any] = [10, 20, 30, 40, 50] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
215
1
"""simple docstring""" import inspect import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py __SCREAMING_SNAKE_CASE = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. __SCREAMING_SNAKE_CASE = direct_transformers_import(PATH_TO_TRANSFORMERS) __SCREAMING_SNAKE_CASE = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` __SCREAMING_SNAKE_CASE = re.compile(r'\[(.+?)\]\((https://huggingface\.co/.+?)\)') __SCREAMING_SNAKE_CASE = { 'DecisionTransformerConfig', 'EncoderDecoderConfig', 'MusicgenConfig', 'RagConfig', 'SpeechEncoderDecoderConfig', 'TimmBackboneConfig', 'VisionEncoderDecoderConfig', 'VisionTextDualEncoderConfig', 'LlamaConfig', } def A_ ( __lowercase ): UpperCamelCase_ : List[str] =None # source code of `config_class` UpperCamelCase_ : Any =inspect.getsource(__lowercase ) UpperCamelCase_ : Dict =_re_checkpoint.findall(__lowercase ) # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` for ckpt_name, ckpt_link in checkpoints: # allow the link to end with `/` if ckpt_link.endswith('/' ): UpperCamelCase_ : Any =ckpt_link[:-1] # verify the checkpoint name corresponds to the checkpoint link UpperCamelCase_ : List[str] =F'''https://huggingface.co/{ckpt_name}''' if ckpt_link == ckpt_link_from_name: UpperCamelCase_ : Optional[int] =ckpt_name break return checkpoint def A_ ( ): UpperCamelCase_ : List[Any] =[] for config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in config_class.__module__: continue UpperCamelCase_ : Tuple =get_checkpoint_from_config_class(__lowercase ) UpperCamelCase_ : str =config_class.__name__ if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(__lowercase ) if len(__lowercase ) > 0: UpperCamelCase_ : str ='\n'.join(sorted(__lowercase ) ) raise ValueError(F'''The following configurations don\'t contain any valid checkpoint:\n{message}''' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
395
"""simple docstring""" import os from pickle import UnpicklingError from typing import Dict, Tuple import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict, unflatten_dict import transformers from .utils import logging __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def A_ ( __lowercase , __lowercase , __lowercase , __lowercase=False ): try: import torch # noqa: F401 except ImportError: logger.error( 'Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see' ' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation' ' instructions.' ) raise if not is_sharded: UpperCamelCase_ : Dict =os.path.abspath(__lowercase ) logger.info(F'''Loading PyTorch weights from {pt_path}''' ) UpperCamelCase_ : List[Any] =torch.load(__lowercase , map_location='cpu' ) logger.info(F'''PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters.''' ) UpperCamelCase_ : str =convert_pytorch_state_dict_to_flax(__lowercase , __lowercase ) else: # model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files UpperCamelCase_ : str =convert_pytorch_sharded_state_dict_to_flax(__lowercase , __lowercase ) return flax_state_dict def A_ ( __lowercase , __lowercase , __lowercase , __lowercase , ): def is_key_or_prefix_key_in_dict(__lowercase ) -> bool: return len(set(__lowercase ) & {key, (model_prefix,) + key} ) > 0 # layer norm UpperCamelCase_ : Any =pt_tuple_key[:-1] + ('scale',) if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(__lowercase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer mean UpperCamelCase_ : Union[str, Any] =pt_tuple_key[:-1] + ('mean',) if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(__lowercase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer var UpperCamelCase_ : Optional[int] =pt_tuple_key[:-1] + ('var',) if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(__lowercase ): return renamed_pt_tuple_key, pt_tensor # embedding UpperCamelCase_ : Union[str, Any] =pt_tuple_key[:-1] + ('embedding',) if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(__lowercase ): return renamed_pt_tuple_key, pt_tensor # conv layer UpperCamelCase_ : Tuple =pt_tuple_key[:-1] + ('kernel',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(__lowercase ): UpperCamelCase_ : List[Any] =pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer UpperCamelCase_ : Optional[Any] =pt_tuple_key[:-1] + ('kernel',) if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(__lowercase ): UpperCamelCase_ : Union[str, Any] =pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight UpperCamelCase_ : Any =pt_tuple_key[:-1] + ('weight',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias UpperCamelCase_ : Optional[int] =pt_tuple_key[:-1] + ('bias',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 UpperCamelCase_ : Dict =None if pt_tuple_key[-3::2] == ("parametrizations", "original0"): UpperCamelCase_ : int =pt_tuple_key[-2] + '_g' elif pt_tuple_key[-3::2] == ("parametrizations", "original1"): UpperCamelCase_ : List[str] =pt_tuple_key[-2] + '_v' if name is not None: UpperCamelCase_ : Optional[int] =pt_tuple_key[:-3] + (name,) return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def A_ ( __lowercase , __lowercase ): # convert pytorch tensor to numpy UpperCamelCase_ : Optional[Any] ={k: v.numpy() for k, v in pt_state_dict.items()} UpperCamelCase_ : Any =flax_model.base_model_prefix # use params dict if the model contains batch norm layers if "params" in flax_model.params: UpperCamelCase_ : Dict =flax_model.params['params'] else: UpperCamelCase_ : Union[str, Any] =flax_model.params UpperCamelCase_ : Optional[Any] =flatten_dict(__lowercase ) # add batch_stats keys,values to dict if "batch_stats" in flax_model.params: UpperCamelCase_ : Any =flatten_dict(flax_model.params['batch_stats'] ) random_flax_state_dict.update(__lowercase ) UpperCamelCase_ : Optional[Any] ={} UpperCamelCase_ : str =(model_prefix not in flax_model_params) and ( model_prefix in {k.split('.' )[0] for k in pt_state_dict.keys()} ) UpperCamelCase_ : Optional[Any] =(model_prefix in flax_model_params) and ( model_prefix not in {k.split('.' )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): UpperCamelCase_ : str =tuple(pt_key.split('.' ) ) # remove base model prefix if necessary UpperCamelCase_ : Dict =pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: UpperCamelCase_ : str =pt_tuple_key[1:] # Correctly rename weight parameters UpperCamelCase_ , UpperCamelCase_ : Tuple =rename_key_and_reshape_tensor( __lowercase , __lowercase , __lowercase , __lowercase ) # add model prefix if necessary UpperCamelCase_ : str =(model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: UpperCamelCase_ : List[Any] =(model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ''' F'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1] or "var" in flax_key[-1]: UpperCamelCase_ : str =jnp.asarray(__lowercase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(__lowercase , __lowercase ) continue # also add unexpected weight so that warning is thrown UpperCamelCase_ : str =jnp.asarray(__lowercase ) else: # also add unexpected weight so that warning is thrown UpperCamelCase_ : str =jnp.asarray(__lowercase ) return unflatten_dict(__lowercase ) def A_ ( __lowercase , __lowercase ): import torch # Load the index UpperCamelCase_ : List[str] ={} for shard_file in shard_filenames: # load using msgpack utils UpperCamelCase_ : Dict =torch.load(__lowercase ) UpperCamelCase_ : Tuple ={k: v.numpy() for k, v in pt_state_dict.items()} UpperCamelCase_ : Optional[int] =flax_model.base_model_prefix # use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict if "batch_stats" in flax_model.params: UpperCamelCase_ : Union[str, Any] =flax_model.params['params'] UpperCamelCase_ : str =flatten_dict(__lowercase ) random_flax_state_dict.update(flatten_dict(flax_model.params['batch_stats'] ) ) else: UpperCamelCase_ : Optional[Any] =flax_model.params UpperCamelCase_ : Union[str, Any] =flatten_dict(__lowercase ) UpperCamelCase_ : List[str] =(model_prefix not in flax_model_params) and ( model_prefix in {k.split('.' )[0] for k in pt_state_dict.keys()} ) UpperCamelCase_ : Any =(model_prefix in flax_model_params) and ( model_prefix not in {k.split('.' )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): UpperCamelCase_ : str =tuple(pt_key.split('.' ) ) # remove base model prefix if necessary UpperCamelCase_ : Optional[Any] =pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: UpperCamelCase_ : Optional[int] =pt_tuple_key[1:] # Correctly rename weight parameters UpperCamelCase_ , UpperCamelCase_ : Tuple =rename_key_and_reshape_tensor( __lowercase , __lowercase , __lowercase , __lowercase ) # add model prefix if necessary UpperCamelCase_ : Tuple =(model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: UpperCamelCase_ : int =(model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ''' F'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1]: UpperCamelCase_ : Union[str, Any] =jnp.asarray(__lowercase ) continue if "var" in flax_key[-1]: UpperCamelCase_ : Optional[int] =jnp.asarray(__lowercase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(__lowercase , __lowercase ) continue # also add unexpected weight so that warning is thrown UpperCamelCase_ : Dict =jnp.asarray(__lowercase ) else: # also add unexpected weight so that warning is thrown UpperCamelCase_ : int =jnp.asarray(__lowercase ) return unflatten_dict(__lowercase ) def A_ ( __lowercase , __lowercase ): UpperCamelCase_ : str =os.path.abspath(__lowercase ) logger.info(F'''Loading Flax weights from {flax_checkpoint_path}''' ) # import correct flax class UpperCamelCase_ : Any =getattr(__lowercase , 'Flax' + model.__class__.__name__ ) # load flax weight dict with open(__lowercase , 'rb' ) as state_f: try: UpperCamelCase_ : Any =from_bytes(__lowercase , state_f.read() ) except UnpicklingError: raise EnvironmentError(F'''Unable to convert {flax_checkpoint_path} to Flax deserializable object. ''' ) return load_flax_weights_in_pytorch_model(__lowercase , __lowercase ) def A_ ( __lowercase , __lowercase ): try: import torch # noqa: F401 except ImportError: logger.error( 'Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see' ' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation' ' instructions.' ) raise # check if we have bf16 weights UpperCamelCase_ : List[Any] =flatten_dict(jax.tree_util.tree_map(lambda __lowercase : x.dtype == jnp.bfloataa , __lowercase ) ).values() if any(__lowercase ): # convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( 'Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` ' 'before loading those in PyTorch model.' ) UpperCamelCase_ : List[Any] =jax.tree_util.tree_map( lambda __lowercase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , __lowercase ) UpperCamelCase_ : str =flatten_dict(__lowercase ) UpperCamelCase_ : Union[str, Any] =pt_model.state_dict() UpperCamelCase_ : int =(pt_model.base_model_prefix in flax_state) and ( pt_model.base_model_prefix not in {k.split('.' )[0] for k in pt_model_dict.keys()} ) UpperCamelCase_ : Optional[int] =(pt_model.base_model_prefix not in flax_state) and ( pt_model.base_model_prefix in {k.split('.' )[0] for k in pt_model_dict.keys()} ) # keep track of unexpected & missing keys UpperCamelCase_ : Tuple =[] UpperCamelCase_ : Tuple =set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): UpperCamelCase_ : str =flax_key_tuple[0] == pt_model.base_model_prefix UpperCamelCase_ : Tuple ='.'.join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict # adapt flax_key to prepare for loading from/to base model only if load_model_with_head_into_base_model and has_base_model_prefix: UpperCamelCase_ : Union[str, Any] =flax_key_tuple[1:] elif load_base_model_into_model_with_head and require_base_model_prefix: UpperCamelCase_ : int =(pt_model.base_model_prefix,) + flax_key_tuple # rename flax weights to PyTorch format if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(__lowercase ) not in pt_model_dict: # conv layer UpperCamelCase_ : Union[str, Any] =flax_key_tuple[:-1] + ('weight',) UpperCamelCase_ : Optional[int] =jnp.transpose(__lowercase , (3, 2, 0, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(__lowercase ) not in pt_model_dict: # linear layer UpperCamelCase_ : str =flax_key_tuple[:-1] + ('weight',) UpperCamelCase_ : List[Any] =flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: UpperCamelCase_ : Optional[Any] =flax_key_tuple[:-1] + ('weight',) # adding batch stats from flax batch norm to pt elif "mean" in flax_key_tuple[-1]: UpperCamelCase_ : int =flax_key_tuple[:-1] + ('running_mean',) elif "var" in flax_key_tuple[-1]: UpperCamelCase_ : int =flax_key_tuple[:-1] + ('running_var',) if "batch_stats" in flax_state: UpperCamelCase_ : Optional[Any] ='.'.join(flax_key_tuple[1:] ) # Remove the params/batch_stats header else: UpperCamelCase_ : Any ='.'.join(__lowercase ) # We also need to look at `pt_model_dict` and see if there are keys requiring further transformation. UpperCamelCase_ : Optional[Any] ={} # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 for key in pt_model_dict: UpperCamelCase_ : List[Any] =key.split('.' ) UpperCamelCase_ : Optional[Any] =None if key_components[-3::2] == ["parametrizations", "original0"]: UpperCamelCase_ : Optional[int] =key_components[-2] + '_g' elif key_components[-3::2] == ["parametrizations", "original1"]: UpperCamelCase_ : Optional[int] =key_components[-2] + '_v' if name is not None: UpperCamelCase_ : str =key_components[:-3] + [name] UpperCamelCase_ : int ='.'.join(__lowercase ) UpperCamelCase_ : int =key if flax_key in special_pt_names: UpperCamelCase_ : str =special_pt_names[flax_key] if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F'''Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected ''' F'''to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) else: # add weight to pytorch dict UpperCamelCase_ : Any =np.asarray(__lowercase ) if not isinstance(__lowercase , np.ndarray ) else flax_tensor UpperCamelCase_ : Any =torch.from_numpy(__lowercase ) # remove from missing keys missing_keys.remove(__lowercase ) else: # weight is not expected by PyTorch model unexpected_keys.append(__lowercase ) pt_model.load_state_dict(__lowercase ) # re-transform missing_keys to list UpperCamelCase_ : Tuple =list(__lowercase ) if len(__lowercase ) > 0: logger.warning( 'Some weights of the Flax model were not used when initializing the PyTorch model' F''' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing''' F''' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture''' ' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This' F''' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect''' ' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a' ' FlaxBertForSequenceClassification model).' ) else: logger.warning(F'''All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n''' ) if len(__lowercase ) > 0: logger.warning( F'''Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly''' F''' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to''' ' use it for predictions and inference.' ) else: logger.warning( F'''All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n''' 'If your task is similar to the task the model of the checkpoint was trained on, ' F'''you can already use {pt_model.__class__.__name__} for predictions without further training.''' ) return pt_model
395
1
def lowerCamelCase__ ( _a): if n == 1 or not isinstance(_a , _a): return 0 elif n == 2: return 1 else: SCREAMING_SNAKE_CASE : Optional[int] = [0, 1] for i in range(2 , n + 1): sequence.append(sequence[i - 1] + sequence[i - 2]) return sequence[n] def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : str = 0 SCREAMING_SNAKE_CASE : List[str] = 2 while digits < n: index += 1 SCREAMING_SNAKE_CASE : Dict = len(str(fibonacci(_a))) return index def lowerCamelCase__ ( _a = 1000): return fibonacci_digits_index(_a) if __name__ == "__main__": print(solution(int(str(input()).strip())))
25
'''simple docstring''' from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake __lowerCAmelCase =numpy.array([0, 0]) __lowerCAmelCase =numpy.array([0.5, 0.866_0254]) __lowerCAmelCase =numpy.array([1, 0]) __lowerCAmelCase =[VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def a ( _UpperCAmelCase , _UpperCAmelCase ) -> list[numpy.ndarray]: """simple docstring""" a_ = initial_vectors for _ in range(_UpperCAmelCase ): a_ = iteration_step(_UpperCAmelCase ) return vectors def a ( _UpperCAmelCase ) -> list[numpy.ndarray]: """simple docstring""" a_ = [] for i, start_vector in enumerate(vectors[:-1] ): a_ = vectors[i + 1] new_vectors.append(_UpperCAmelCase ) a_ = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 6_0 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def a ( _UpperCAmelCase , _UpperCAmelCase ) -> numpy.ndarray: """simple docstring""" a_ = numpy.radians(_UpperCAmelCase ) a_ , a_ = numpy.cos(_UpperCAmelCase ), numpy.sin(_UpperCAmelCase ) a_ = numpy.array(((c, -s), (s, c)) ) return numpy.dot(_UpperCAmelCase , _UpperCAmelCase ) def a ( _UpperCAmelCase ) -> None: """simple docstring""" a_ = plt.gca() axes.set_aspect('equal' ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() a_ , a_ = zip(*_UpperCAmelCase ) plt.plot(_UpperCAmelCase , _UpperCAmelCase ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() __lowerCAmelCase =iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
697
0
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { "microsoft/markuplm-base": "https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json", "microsoft/markuplm-large": "https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json", } class __SCREAMING_SNAKE_CASE ( _a ): snake_case : Union[str, Any] = """markuplm""" def __init__( self , __lowerCAmelCase=30522 , __lowerCAmelCase=768 , __lowerCAmelCase=12 , __lowerCAmelCase=12 , __lowerCAmelCase=3072 , __lowerCAmelCase="gelu" , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=512 , __lowerCAmelCase=2 , __lowerCAmelCase=0.02 , __lowerCAmelCase=1E-12 , __lowerCAmelCase=0 , __lowerCAmelCase=0 , __lowerCAmelCase=2 , __lowerCAmelCase=256 , __lowerCAmelCase=1024 , __lowerCAmelCase=216 , __lowerCAmelCase=1001 , __lowerCAmelCase=32 , __lowerCAmelCase=50 , __lowerCAmelCase="absolute" , __lowerCAmelCase=True , __lowerCAmelCase=None , **__lowerCAmelCase , ): super().__init__( pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , **__lowerCAmelCase , ) UpperCamelCase__ = vocab_size UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = hidden_act UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = type_vocab_size UpperCamelCase__ = initializer_range UpperCamelCase__ = layer_norm_eps UpperCamelCase__ = position_embedding_type UpperCamelCase__ = use_cache UpperCamelCase__ = classifier_dropout # additional properties UpperCamelCase__ = max_depth UpperCamelCase__ = max_xpath_tag_unit_embeddings UpperCamelCase__ = max_xpath_subs_unit_embeddings UpperCamelCase__ = tag_pad_id UpperCamelCase__ = subs_pad_id UpperCamelCase__ = xpath_unit_hidden_size
548
import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): snake_case : Any = MODEL_FOR_MASKED_LM_MAPPING snake_case : Dict = TF_MODEL_FOR_MASKED_LM_MAPPING def _lowerCamelCase ( self ): super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def _lowerCamelCase ( self ): UpperCamelCase__ = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , top_k=2 , framework="""tf""" ) UpperCamelCase__ = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(__lowerCAmelCase , decimals=6 ) , [ {"""sequence""": """My name is grouped""", """score""": 2.1E-05, """token""": 38015, """token_str""": """ grouped"""}, {"""sequence""": """My name is accuser""", """score""": 2.1E-05, """token""": 25506, """token_str""": """ accuser"""}, ] , ) UpperCamelCase__ = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(__lowerCAmelCase , decimals=6 ) , [ { """sequence""": """The largest city in France is grouped""", """score""": 2.1E-05, """token""": 38015, """token_str""": """ grouped""", }, { """sequence""": """The largest city in France is accuser""", """score""": 2.1E-05, """token""": 25506, """token_str""": """ accuser""", }, ] , ) UpperCamelCase__ = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(__lowerCAmelCase , decimals=6 ) , [ {"""sequence""": """My name is Clara""", """score""": 2E-05, """token""": 13606, """token_str""": """ Clara"""}, {"""sequence""": """My name is Patrick""", """score""": 2E-05, """token""": 3499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Te""", """score""": 1.9E-05, """token""": 2941, """token_str""": """ Te"""}, ] , ) @require_torch def _lowerCamelCase ( self ): UpperCamelCase__ = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , top_k=2 , framework="""pt""" ) UpperCamelCase__ = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(__lowerCAmelCase , decimals=6 ) , [ {"""sequence""": """My name is Maul""", """score""": 2.2E-05, """token""": 35676, """token_str""": """ Maul"""}, {"""sequence""": """My name isELS""", """score""": 2.2E-05, """token""": 16416, """token_str""": """ELS"""}, ] , ) UpperCamelCase__ = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(__lowerCAmelCase , decimals=6 ) , [ { """sequence""": """The largest city in France is Maul""", """score""": 2.2E-05, """token""": 35676, """token_str""": """ Maul""", }, {"""sequence""": """The largest city in France isELS""", """score""": 2.2E-05, """token""": 16416, """token_str""": """ELS"""}, ] , ) UpperCamelCase__ = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(__lowerCAmelCase , decimals=6 ) , [ {"""sequence""": """My name is Patrick""", """score""": 2.1E-05, """token""": 3499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Te""", """score""": 2E-05, """token""": 2941, """token_str""": """ Te"""}, {"""sequence""": """My name is Clara""", """score""": 2E-05, """token""": 13606, """token_str""": """ Clara"""}, ] , ) UpperCamelCase__ = unmasker("""My name is <mask> <mask>""" , top_k=2 ) self.assertEqual( nested_simplify(__lowerCAmelCase , decimals=6 ) , [ [ { """score""": 2.2E-05, """token""": 35676, """token_str""": """ Maul""", """sequence""": """<s>My name is Maul<mask></s>""", }, {"""score""": 2.2E-05, """token""": 16416, """token_str""": """ELS""", """sequence""": """<s>My name isELS<mask></s>"""}, ], [ { """score""": 2.2E-05, """token""": 35676, """token_str""": """ Maul""", """sequence""": """<s>My name is<mask> Maul</s>""", }, {"""score""": 2.2E-05, """token""": 16416, """token_str""": """ELS""", """sequence""": """<s>My name is<mask>ELS</s>"""}, ], ] , ) @require_torch_gpu def _lowerCamelCase ( self ): UpperCamelCase__ = pipeline("""fill-mask""" , model="""hf-internal-testing/tiny-random-distilbert""" , device=0 , framework="""pt""" ) # convert model to fp16 pipe.model.half() UpperCamelCase__ = pipe("""Paris is the [MASK] of France.""" ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) @slow @require_torch def _lowerCamelCase ( self ): UpperCamelCase__ = pipeline(task="""fill-mask""" , model="""distilroberta-base""" , top_k=2 , framework="""pt""" ) self.run_large_test(__lowerCAmelCase ) @slow @require_tf def _lowerCamelCase ( self ): UpperCamelCase__ = pipeline(task="""fill-mask""" , model="""distilroberta-base""" , top_k=2 , framework="""tf""" ) self.run_large_test(__lowerCAmelCase ) def _lowerCamelCase ( self , __lowerCAmelCase ): UpperCamelCase__ = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [ {"""sequence""": """My name is John""", """score""": 0.008, """token""": 610, """token_str""": """ John"""}, {"""sequence""": """My name is Chris""", """score""": 0.007, """token""": 1573, """token_str""": """ Chris"""}, ] , ) UpperCamelCase__ = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [ { """sequence""": """The largest city in France is Paris""", """score""": 0.251, """token""": 2201, """token_str""": """ Paris""", }, { """sequence""": """The largest city in France is Lyon""", """score""": 0.214, """token""": 12790, """token_str""": """ Lyon""", }, ] , ) UpperCamelCase__ = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [ {"""sequence""": """My name is Patrick""", """score""": 0.005, """token""": 3499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Clara""", """score""": 0.000, """token""": 13606, """token_str""": """ Clara"""}, {"""sequence""": """My name is Te""", """score""": 0.000, """token""": 2941, """token_str""": """ Te"""}, ] , ) @require_torch def _lowerCamelCase ( self ): UpperCamelCase__ = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , framework="""pt""" ) UpperCamelCase__ = None UpperCamelCase__ = None self.run_pipeline_test(__lowerCAmelCase , [] ) @require_tf def _lowerCamelCase ( self ): UpperCamelCase__ = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , framework="""tf""" ) UpperCamelCase__ = None UpperCamelCase__ = None self.run_pipeline_test(__lowerCAmelCase , [] ) def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest("""The provided tokenizer has no mask token, (probably reformer or wav2vec2)""" ) UpperCamelCase__ = FillMaskPipeline(model=__lowerCAmelCase , tokenizer=__lowerCAmelCase ) UpperCamelCase__ = [ f"""This is another {tokenizer.mask_token} test""", ] return fill_masker, examples def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase ): UpperCamelCase__ = fill_masker.tokenizer UpperCamelCase__ = fill_masker.model UpperCamelCase__ = fill_masker( f"""This is a {tokenizer.mask_token}""" , ) self.assertEqual( __lowerCAmelCase , [ {"""sequence""": ANY(__lowerCAmelCase ), """score""": ANY(__lowerCAmelCase ), """token""": ANY(__lowerCAmelCase ), """token_str""": ANY(__lowerCAmelCase )}, {"""sequence""": ANY(__lowerCAmelCase ), """score""": ANY(__lowerCAmelCase ), """token""": ANY(__lowerCAmelCase ), """token_str""": ANY(__lowerCAmelCase )}, {"""sequence""": ANY(__lowerCAmelCase ), """score""": ANY(__lowerCAmelCase ), """token""": ANY(__lowerCAmelCase ), """token_str""": ANY(__lowerCAmelCase )}, {"""sequence""": ANY(__lowerCAmelCase ), """score""": ANY(__lowerCAmelCase ), """token""": ANY(__lowerCAmelCase ), """token_str""": ANY(__lowerCAmelCase )}, {"""sequence""": ANY(__lowerCAmelCase ), """score""": ANY(__lowerCAmelCase ), """token""": ANY(__lowerCAmelCase ), """token_str""": ANY(__lowerCAmelCase )}, ] , ) UpperCamelCase__ = fill_masker([f"""This is a {tokenizer.mask_token}"""] ) self.assertEqual( __lowerCAmelCase , [ {"""sequence""": ANY(__lowerCAmelCase ), """score""": ANY(__lowerCAmelCase ), """token""": ANY(__lowerCAmelCase ), """token_str""": ANY(__lowerCAmelCase )}, {"""sequence""": ANY(__lowerCAmelCase ), """score""": ANY(__lowerCAmelCase ), """token""": ANY(__lowerCAmelCase ), """token_str""": ANY(__lowerCAmelCase )}, {"""sequence""": ANY(__lowerCAmelCase ), """score""": ANY(__lowerCAmelCase ), """token""": ANY(__lowerCAmelCase ), """token_str""": ANY(__lowerCAmelCase )}, {"""sequence""": ANY(__lowerCAmelCase ), """score""": ANY(__lowerCAmelCase ), """token""": ANY(__lowerCAmelCase ), """token_str""": ANY(__lowerCAmelCase )}, {"""sequence""": ANY(__lowerCAmelCase ), """score""": ANY(__lowerCAmelCase ), """token""": ANY(__lowerCAmelCase ), """token_str""": ANY(__lowerCAmelCase )}, ] , ) UpperCamelCase__ = fill_masker([f"""This is a {tokenizer.mask_token}""", f"""Another {tokenizer.mask_token} great test."""] ) self.assertEqual( __lowerCAmelCase , [ [ {"""sequence""": ANY(__lowerCAmelCase ), """score""": ANY(__lowerCAmelCase ), """token""": ANY(__lowerCAmelCase ), """token_str""": ANY(__lowerCAmelCase )}, {"""sequence""": ANY(__lowerCAmelCase ), """score""": ANY(__lowerCAmelCase ), """token""": ANY(__lowerCAmelCase ), """token_str""": ANY(__lowerCAmelCase )}, {"""sequence""": ANY(__lowerCAmelCase ), """score""": ANY(__lowerCAmelCase ), """token""": ANY(__lowerCAmelCase ), """token_str""": ANY(__lowerCAmelCase )}, {"""sequence""": ANY(__lowerCAmelCase ), """score""": ANY(__lowerCAmelCase ), """token""": ANY(__lowerCAmelCase ), """token_str""": ANY(__lowerCAmelCase )}, {"""sequence""": ANY(__lowerCAmelCase ), """score""": ANY(__lowerCAmelCase ), """token""": ANY(__lowerCAmelCase ), """token_str""": ANY(__lowerCAmelCase )}, ], [ {"""sequence""": ANY(__lowerCAmelCase ), """score""": ANY(__lowerCAmelCase ), """token""": ANY(__lowerCAmelCase ), """token_str""": ANY(__lowerCAmelCase )}, {"""sequence""": ANY(__lowerCAmelCase ), """score""": ANY(__lowerCAmelCase ), """token""": ANY(__lowerCAmelCase ), """token_str""": ANY(__lowerCAmelCase )}, {"""sequence""": ANY(__lowerCAmelCase ), """score""": ANY(__lowerCAmelCase ), """token""": ANY(__lowerCAmelCase ), """token_str""": ANY(__lowerCAmelCase )}, {"""sequence""": ANY(__lowerCAmelCase ), """score""": ANY(__lowerCAmelCase ), """token""": ANY(__lowerCAmelCase ), """token_str""": ANY(__lowerCAmelCase )}, {"""sequence""": ANY(__lowerCAmelCase ), """score""": ANY(__lowerCAmelCase ), """token""": ANY(__lowerCAmelCase ), """token_str""": ANY(__lowerCAmelCase )}, ], ] , ) with self.assertRaises(__lowerCAmelCase ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(__lowerCAmelCase ): fill_masker("""This is""" ) self.run_test_top_k(__lowerCAmelCase , __lowerCAmelCase ) self.run_test_targets(__lowerCAmelCase , __lowerCAmelCase ) self.run_test_top_k_targets(__lowerCAmelCase , __lowerCAmelCase ) self.fill_mask_with_duplicate_targets_and_top_k(__lowerCAmelCase , __lowerCAmelCase ) self.fill_mask_with_multiple_masks(__lowerCAmelCase , __lowerCAmelCase ) def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase ): UpperCamelCase__ = tokenizer.get_vocab() UpperCamelCase__ = sorted(vocab.keys() )[:2] # Pipeline argument UpperCamelCase__ = FillMaskPipeline(model=__lowerCAmelCase , tokenizer=__lowerCAmelCase , targets=__lowerCAmelCase ) UpperCamelCase__ = fill_masker(f"""This is a {tokenizer.mask_token}""" ) self.assertEqual( __lowerCAmelCase , [ {"""sequence""": ANY(__lowerCAmelCase ), """score""": ANY(__lowerCAmelCase ), """token""": ANY(__lowerCAmelCase ), """token_str""": ANY(__lowerCAmelCase )}, {"""sequence""": ANY(__lowerCAmelCase ), """score""": ANY(__lowerCAmelCase ), """token""": ANY(__lowerCAmelCase ), """token_str""": ANY(__lowerCAmelCase )}, ] , ) UpperCamelCase__ = {vocab[el] for el in targets} self.assertEqual({el["""token"""] for el in outputs} , __lowerCAmelCase ) UpperCamelCase__ = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["""token_str"""] for el in outputs} , set(__lowerCAmelCase ) ) # Call argument UpperCamelCase__ = FillMaskPipeline(model=__lowerCAmelCase , tokenizer=__lowerCAmelCase ) UpperCamelCase__ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=__lowerCAmelCase ) self.assertEqual( __lowerCAmelCase , [ {"""sequence""": ANY(__lowerCAmelCase ), """score""": ANY(__lowerCAmelCase ), """token""": ANY(__lowerCAmelCase ), """token_str""": ANY(__lowerCAmelCase )}, {"""sequence""": ANY(__lowerCAmelCase ), """score""": ANY(__lowerCAmelCase ), """token""": ANY(__lowerCAmelCase ), """token_str""": ANY(__lowerCAmelCase )}, ] , ) UpperCamelCase__ = {vocab[el] for el in targets} self.assertEqual({el["""token"""] for el in outputs} , __lowerCAmelCase ) UpperCamelCase__ = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["""token_str"""] for el in outputs} , set(__lowerCAmelCase ) ) # Score equivalence UpperCamelCase__ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=__lowerCAmelCase ) UpperCamelCase__ = [top_mask["""token_str"""] for top_mask in outputs] UpperCamelCase__ = [top_mask["""score"""] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(__lowerCAmelCase ) == set(__lowerCAmelCase ): UpperCamelCase__ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=__lowerCAmelCase ) UpperCamelCase__ = [top_mask["""score"""] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(__lowerCAmelCase ) , nested_simplify(__lowerCAmelCase ) ) # Raises with invalid with self.assertRaises(__lowerCAmelCase ): UpperCamelCase__ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(__lowerCAmelCase ): UpperCamelCase__ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=[""""""] ) with self.assertRaises(__lowerCAmelCase ): UpperCamelCase__ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets="""""" ) def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase ): UpperCamelCase__ = FillMaskPipeline(model=__lowerCAmelCase , tokenizer=__lowerCAmelCase , top_k=2 ) UpperCamelCase__ = fill_masker(f"""This is a {tokenizer.mask_token}""" ) self.assertEqual( __lowerCAmelCase , [ {"""sequence""": ANY(__lowerCAmelCase ), """score""": ANY(__lowerCAmelCase ), """token""": ANY(__lowerCAmelCase ), """token_str""": ANY(__lowerCAmelCase )}, {"""sequence""": ANY(__lowerCAmelCase ), """score""": ANY(__lowerCAmelCase ), """token""": ANY(__lowerCAmelCase ), """token_str""": ANY(__lowerCAmelCase )}, ] , ) UpperCamelCase__ = FillMaskPipeline(model=__lowerCAmelCase , tokenizer=__lowerCAmelCase ) UpperCamelCase__ = fill_masker(f"""This is a {tokenizer.mask_token}""" , top_k=2 ) self.assertEqual( __lowerCAmelCase , [ {"""sequence""": ANY(__lowerCAmelCase ), """score""": ANY(__lowerCAmelCase ), """token""": ANY(__lowerCAmelCase ), """token_str""": ANY(__lowerCAmelCase )}, {"""sequence""": ANY(__lowerCAmelCase ), """score""": ANY(__lowerCAmelCase ), """token""": ANY(__lowerCAmelCase ), """token_str""": ANY(__lowerCAmelCase )}, ] , ) self.assertEqual(nested_simplify(__lowerCAmelCase ) , nested_simplify(__lowerCAmelCase ) ) def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase ): UpperCamelCase__ = tokenizer.get_vocab() UpperCamelCase__ = FillMaskPipeline(model=__lowerCAmelCase , tokenizer=__lowerCAmelCase ) # top_k=2, ntargets=3 UpperCamelCase__ = sorted(vocab.keys() )[:3] UpperCamelCase__ = fill_masker(f"""This is a {tokenizer.mask_token}""" , top_k=2 , targets=__lowerCAmelCase ) # If we use the most probably targets, and filter differently, we should still # have the same results UpperCamelCase__ = [el["""token_str"""] for el in sorted(__lowerCAmelCase , key=lambda __lowerCAmelCase : x["score"] , reverse=__lowerCAmelCase )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(__lowerCAmelCase ).issubset(__lowerCAmelCase ): UpperCamelCase__ = fill_masker(f"""This is a {tokenizer.mask_token}""" , top_k=3 , targets=__lowerCAmelCase ) # They should yield exactly the same result self.assertEqual(nested_simplify(__lowerCAmelCase ) , nested_simplify(__lowerCAmelCase ) ) def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase ): UpperCamelCase__ = FillMaskPipeline(model=__lowerCAmelCase , tokenizer=__lowerCAmelCase ) UpperCamelCase__ = tokenizer.get_vocab() # String duplicates + id duplicates UpperCamelCase__ = sorted(vocab.keys() )[:3] UpperCamelCase__ = [targets[0], targets[1], targets[0], targets[2], targets[1]] UpperCamelCase__ = fill_masker(f"""My name is {tokenizer.mask_token}""" , targets=__lowerCAmelCase , top_k=10 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(__lowerCAmelCase ) , 3 ) def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase ): UpperCamelCase__ = FillMaskPipeline(model=__lowerCAmelCase , tokenizer=__lowerCAmelCase ) UpperCamelCase__ = fill_masker( f"""This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}""" , top_k=2 ) self.assertEqual( __lowerCAmelCase , [ [ {"""sequence""": ANY(__lowerCAmelCase ), """score""": ANY(__lowerCAmelCase ), """token""": ANY(__lowerCAmelCase ), """token_str""": ANY(__lowerCAmelCase )}, {"""sequence""": ANY(__lowerCAmelCase ), """score""": ANY(__lowerCAmelCase ), """token""": ANY(__lowerCAmelCase ), """token_str""": ANY(__lowerCAmelCase )}, ], [ {"""sequence""": ANY(__lowerCAmelCase ), """score""": ANY(__lowerCAmelCase ), """token""": ANY(__lowerCAmelCase ), """token_str""": ANY(__lowerCAmelCase )}, {"""sequence""": ANY(__lowerCAmelCase ), """score""": ANY(__lowerCAmelCase ), """token""": ANY(__lowerCAmelCase ), """token_str""": ANY(__lowerCAmelCase )}, ], [ {"""sequence""": ANY(__lowerCAmelCase ), """score""": ANY(__lowerCAmelCase ), """token""": ANY(__lowerCAmelCase ), """token_str""": ANY(__lowerCAmelCase )}, {"""sequence""": ANY(__lowerCAmelCase ), """score""": ANY(__lowerCAmelCase ), """token""": ANY(__lowerCAmelCase ), """token_str""": ANY(__lowerCAmelCase )}, ], ] , )
548
1
'''simple docstring''' import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets _lowerCAmelCase = "\n@inproceedings{xu-etal-2016-optimizing,\n title = {Optimizing Statistical Machine Translation for Text Simplification},\n authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris},\n journal = {Transactions of the Association for Computational Linguistics},\n volume = {4},\n year={2016},\n url = {https://www.aclweb.org/anthology/Q16-1029},\n pages = {401--415\n},\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n" _lowerCAmelCase = "\\nWIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU\nIt can be used to evaluate the quality of machine-generated texts.\n" _lowerCAmelCase = "\nCalculates sari score (between 0 and 100) given a list of source and predicted\nsentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score.\nArgs:\n sources: list of source sentences where each sentence should be a string.\n predictions: list of predicted sentences where each sentence should be a string.\n references: list of lists of reference sentences where each sentence should be a string.\nReturns:\n sari: sari score\n sacrebleu: sacrebleu score\n exact: exact score\n\nExamples:\n >>> sources=[\"About 95 species are currently accepted .\"]\n >>> predictions=[\"About 95 you now get in .\"]\n >>> references=[[\"About 95 species are currently known .\"]]\n >>> wiki_split = datasets.load_metric(\"wiki_split\")\n >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)\n >>> print(results)\n {'sari': 21.805555555555557, 'sacrebleu': 14.535768424205482, 'exact': 0.0}\n" def _lowerCAmelCase ( lowercase : List[Any] ) ->Any: """simple docstring""" def remove_articles(lowercase : Tuple ): lowercase__ = re.compile(R'''\b(a|an|the)\b''' , re.UNICODE ) return re.sub(lowercase , ''' ''' , lowercase ) def white_space_fix(lowercase : int ): return " ".join(text.split() ) def remove_punc(lowercase : Optional[Any] ): lowercase__ = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(lowercase : Optional[Any] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(lowercase ) ) ) ) def _lowerCAmelCase ( lowercase : Tuple , lowercase : Optional[int] ) ->Any: """simple docstring""" return int(normalize_answer(lowercase ) == normalize_answer(lowercase ) ) def _lowerCAmelCase ( lowercase : Union[str, Any] , lowercase : List[str] ) ->Optional[Any]: """simple docstring""" lowercase__ = [any(compute_exact(lowercase , lowercase ) for ref in refs ) for pred, refs in zip(lowercase , lowercase )] return (sum(lowercase ) / len(lowercase )) * 1_0_0 def _lowerCAmelCase ( lowercase : List[str] , lowercase : Union[str, Any] , lowercase : List[Any] , lowercase : List[str] ) ->Any: """simple docstring""" lowercase__ = [rgram for rgrams in rgramslist for rgram in rgrams] lowercase__ = Counter(lowercase ) lowercase__ = Counter(lowercase ) lowercase__ = Counter() for sgram, scount in sgramcounter.items(): lowercase__ = scount * numref lowercase__ = Counter(lowercase ) lowercase__ = Counter() for cgram, ccount in cgramcounter.items(): lowercase__ = ccount * numref # KEEP lowercase__ = sgramcounter_rep & cgramcounter_rep lowercase__ = keepgramcounter_rep & rgramcounter lowercase__ = sgramcounter_rep & rgramcounter lowercase__ = 0 lowercase__ = 0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. lowercase__ = 1 lowercase__ = 1 if len(lowercase ) > 0: lowercase__ = keeptmpscorea / len(lowercase ) if len(lowercase ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) lowercase__ = keeptmpscorea / sum(keepgramcounterall_rep.values() ) lowercase__ = 0 if keepscore_precision > 0 or keepscore_recall > 0: lowercase__ = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION lowercase__ = sgramcounter_rep - cgramcounter_rep lowercase__ = delgramcounter_rep - rgramcounter lowercase__ = sgramcounter_rep - rgramcounter lowercase__ = 0 lowercase__ = 0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. lowercase__ = 1 if len(lowercase ) > 0: lowercase__ = deltmpscorea / len(lowercase ) # ADDITION lowercase__ = set(lowercase ) - set(lowercase ) lowercase__ = set(lowercase ) & set(lowercase ) lowercase__ = set(lowercase ) - set(lowercase ) lowercase__ = 0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. lowercase__ = 1 lowercase__ = 1 if len(lowercase ) > 0: lowercase__ = addtmpscore / len(lowercase ) if len(lowercase ) > 0: lowercase__ = addtmpscore / len(lowercase ) lowercase__ = 0 if addscore_precision > 0 or addscore_recall > 0: lowercase__ = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def _lowerCAmelCase ( lowercase : Optional[Any] , lowercase : Optional[int] , lowercase : Tuple ) ->Union[str, Any]: """simple docstring""" lowercase__ = len(lowercase ) lowercase__ = ssent.split(''' ''' ) lowercase__ = csent.split(''' ''' ) lowercase__ = [] lowercase__ = [] lowercase__ = [] lowercase__ = [] lowercase__ = [] lowercase__ = [] lowercase__ = [] lowercase__ = [] lowercase__ = [] lowercase__ = [] for rsent in rsents: lowercase__ = rsent.split(''' ''' ) lowercase__ = [] lowercase__ = [] lowercase__ = [] ragramslist.append(lowercase ) for i in range(0 , len(lowercase ) - 1 ): if i < len(lowercase ) - 1: lowercase__ = ragrams[i] + ''' ''' + ragrams[i + 1] ragrams.append(lowercase ) if i < len(lowercase ) - 2: lowercase__ = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] ragrams.append(lowercase ) if i < len(lowercase ) - 3: lowercase__ = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] + ''' ''' + ragrams[i + 3] ragrams.append(lowercase ) ragramslist.append(lowercase ) ragramslist.append(lowercase ) ragramslist.append(lowercase ) for i in range(0 , len(lowercase ) - 1 ): if i < len(lowercase ) - 1: lowercase__ = sagrams[i] + ''' ''' + sagrams[i + 1] sagrams.append(lowercase ) if i < len(lowercase ) - 2: lowercase__ = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] sagrams.append(lowercase ) if i < len(lowercase ) - 3: lowercase__ = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] + ''' ''' + sagrams[i + 3] sagrams.append(lowercase ) for i in range(0 , len(lowercase ) - 1 ): if i < len(lowercase ) - 1: lowercase__ = cagrams[i] + ''' ''' + cagrams[i + 1] cagrams.append(lowercase ) if i < len(lowercase ) - 2: lowercase__ = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] cagrams.append(lowercase ) if i < len(lowercase ) - 3: lowercase__ = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] + ''' ''' + cagrams[i + 3] cagrams.append(lowercase ) ((lowercase__) , (lowercase__) , (lowercase__)) = SARIngram(lowercase , lowercase , lowercase , lowercase ) ((lowercase__) , (lowercase__) , (lowercase__)) = SARIngram(lowercase , lowercase , lowercase , lowercase ) ((lowercase__) , (lowercase__) , (lowercase__)) = SARIngram(lowercase , lowercase , lowercase , lowercase ) ((lowercase__) , (lowercase__) , (lowercase__)) = SARIngram(lowercase , lowercase , lowercase , lowercase ) lowercase__ = sum([keepascore, keepascore, keepascore, keepascore] ) / 4 lowercase__ = sum([delascore, delascore, delascore, delascore] ) / 4 lowercase__ = sum([addascore, addascore, addascore, addascore] ) / 4 lowercase__ = (avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def _lowerCAmelCase ( lowercase : Optional[Any] , lowercase : bool = True , lowercase : str = "13a" , lowercase : bool = True ) ->Optional[Any]: """simple docstring""" if lowercase: lowercase__ = sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: lowercase__ = sacrebleu.metrics.bleu._get_tokenizer(lowercase )()(lowercase ) else: lowercase__ = sacrebleu.TOKENIZERS[tokenizer]()(lowercase ) elif tokenizer == "moses": lowercase__ = sacremoses.MosesTokenizer().tokenize(lowercase , return_str=lowercase , escape=lowercase ) elif tokenizer == "penn": lowercase__ = sacremoses.MosesTokenizer().penn_tokenize(lowercase , return_str=lowercase ) else: lowercase__ = sentence if not return_str: lowercase__ = normalized_sent.split() return normalized_sent def _lowerCAmelCase ( lowercase : Union[str, Any] , lowercase : Optional[int] , lowercase : Dict ) ->Tuple: """simple docstring""" if not (len(lowercase ) == len(lowercase ) == len(lowercase )): raise ValueError('''Sources length must match predictions and references lengths.''' ) lowercase__ = 0 for src, pred, refs in zip(lowercase , lowercase , lowercase ): sari_score += SARIsent(normalize(lowercase ) , normalize(lowercase ) , [normalize(lowercase ) for sent in refs] ) lowercase__ = sari_score / len(lowercase ) return 1_0_0 * sari_score def _lowerCAmelCase ( lowercase : str , lowercase : int , lowercase : Dict="exp" , lowercase : str=None , lowercase : int=False , lowercase : Union[str, Any]=False , lowercase : List[Any]=False , ) ->Union[str, Any]: """simple docstring""" lowercase__ = len(references[0] ) if any(len(lowercase ) != references_per_prediction for refs in references ): raise ValueError('''Sacrebleu requires the same number of references for each prediction''' ) lowercase__ = [[refs[i] for refs in references] for i in range(lowercase )] lowercase__ = sacrebleu.corpus_bleu( lowercase , lowercase , smooth_method=lowercase , smooth_value=lowercase , force=lowercase , lowercase=lowercase , use_effective_order=lowercase , ) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): """simple docstring""" def snake_case_( self )-> List[str]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=[ '''https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py''', '''https://github.com/cocoxu/simplification/blob/master/SARI.py''', '''https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py''', '''https://github.com/mjpost/sacreBLEU''', ] , reference_urls=[ '''https://www.aclweb.org/anthology/Q16-1029.pdf''', '''https://github.com/mjpost/sacreBLEU''', '''https://en.wikipedia.org/wiki/BLEU''', '''https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213''', ] , ) def snake_case_( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )-> Optional[int]: lowercase__ = {} result.update({'''sari''': compute_sari(sources=_lowerCamelCase , predictions=_lowerCamelCase , references=_lowerCamelCase )} ) result.update({'''sacrebleu''': compute_sacrebleu(predictions=_lowerCamelCase , references=_lowerCamelCase )} ) result.update({'''exact''': compute_em(predictions=_lowerCamelCase , references=_lowerCamelCase )} ) return result
161
'''simple docstring''' def _lowerCAmelCase ( lowercase : int ) ->List[Any]: """simple docstring""" lowercase__ = [] lowercase__ = [] lowercase__ = { '''^''': 3, '''*''': 2, '''/''': 2, '''%''': 2, '''+''': 1, '''-''': 1, } # Priority of each operator lowercase__ = len(lowercase ) if (len(lowercase ) > 7) else 7 # Print table header for output print( '''Symbol'''.center(8 ) , '''Stack'''.center(lowercase ) , '''Postfix'''.center(lowercase ) , sep=''' | ''' , ) print('''-''' * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(lowercase ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(lowercase ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(lowercase ) == 0: stack.append(lowercase ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(lowercase ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(lowercase ) # push x to stack print( x.center(8 ) , (''''''.join(lowercase )).ljust(lowercase ) , (''''''.join(lowercase )).ljust(lowercase ) , sep=''' | ''' , ) # Output in tabular format while len(lowercase ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( ''' '''.center(8 ) , (''''''.join(lowercase )).ljust(lowercase ) , (''''''.join(lowercase )).ljust(lowercase ) , sep=''' | ''' , ) # Output in tabular format return "".join(lowercase ) # return Postfix as str def _lowerCAmelCase ( lowercase : Tuple ) ->int: """simple docstring""" lowercase__ = list(infix[::-1] ) # reverse the infix equation for i in range(len(lowercase ) ): if infix[i] == "(": lowercase__ = ''')''' # change "(" to ")" elif infix[i] == ")": lowercase__ = '''(''' # change ")" to "(" return (infix_2_postfix(''''''.join(lowercase ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": _lowerCAmelCase = input("\nEnter an Infix Equation = ") # Input an Infix equation _lowerCAmelCase = "".join(Infix.split()) # Remove spaces from the input print("\n\t", Infix, "(Infix) -> ", infix_2_prefix(Infix), "(Prefix)")
161
1
snake_case__ : Dict = 8.31_4462 # Unit - J mol-1 K-1 def _snake_case (__lowercase , __lowercase , __lowercase): if moles < 0 or kelvin < 0 or volume < 0: raise ValueError('Invalid inputs. Enter positive value.') return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume def _snake_case (__lowercase , __lowercase , __lowercase): if moles < 0 or kelvin < 0 or pressure < 0: raise ValueError('Invalid inputs. Enter positive value.') return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure if __name__ == "__main__": from doctest import testmod testmod()
709
import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) snake_case__ : str = logging.getLogger(__name__) @dataclass(frozen=UpperCAmelCase__ ) class _a : """simple docstring""" A_ = 42 A_ = 42 A_ = None A_ = None A_ = None @dataclass(frozen=UpperCAmelCase__ ) class _a : """simple docstring""" A_ = 42 A_ = None A_ = None A_ = None A_ = None if is_torch_available(): import torch from torch.utils.data import Dataset class _a ( UpperCAmelCase__ ): """simple docstring""" A_ = 42 def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase=False , _UpperCAmelCase = False , ) -> Any: UpperCamelCase_ = hans_processors[task]() UpperCamelCase_ = os.path.join( _UpperCAmelCase , 'cached_{}_{}_{}_{}'.format( 'dev' if evaluate else 'train' , tokenizer.__class__.__name__ , str(_UpperCAmelCase ) , _UpperCAmelCase , ) , ) UpperCamelCase_ = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) UpperCamelCase_ , UpperCamelCase_ = label_list[2], label_list[1] UpperCamelCase_ = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. UpperCamelCase_ = cached_features_file + '.lock' with FileLock(_UpperCAmelCase ): if os.path.exists(_UpperCAmelCase ) and not overwrite_cache: logger.info(f"""Loading features from cached file {cached_features_file}""" ) UpperCamelCase_ = torch.load(_UpperCAmelCase ) else: logger.info(f"""Creating features from dataset file at {data_dir}""" ) UpperCamelCase_ = ( processor.get_dev_examples(_UpperCAmelCase ) if evaluate else processor.get_train_examples(_UpperCAmelCase ) ) logger.info('Training examples: %s' , len(_UpperCAmelCase ) ) UpperCamelCase_ = hans_convert_examples_to_features(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) logger.info('Saving features into cached file %s' , _UpperCAmelCase ) torch.save(self.features , _UpperCAmelCase ) def __len__( self ) -> Dict: return len(self.features ) def __getitem__( self , _UpperCAmelCase ) -> InputFeatures: return self.features[i] def _UpperCAmelCase ( self ) -> Dict: return self.label_list if is_tf_available(): import tensorflow as tf class _a : """simple docstring""" A_ = 42 def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 128 , _UpperCAmelCase=False , _UpperCAmelCase = False , ) -> int: UpperCamelCase_ = hans_processors[task]() UpperCamelCase_ = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) UpperCamelCase_ , UpperCamelCase_ = label_list[2], label_list[1] UpperCamelCase_ = label_list UpperCamelCase_ = processor.get_dev_examples(_UpperCAmelCase ) if evaluate else processor.get_train_examples(_UpperCAmelCase ) UpperCamelCase_ = hans_convert_examples_to_features(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc='convert examples to features' ): if ex_index % 10000 == 0: logger.info('Writing example %d of %d' % (ex_index, len(_UpperCAmelCase )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) UpperCamelCase_ = tf.data.Dataset.from_generator( _UpperCAmelCase , ( { 'example_id': tf.intaa, 'input_ids': tf.intaa, 'attention_mask': tf.intaa, 'token_type_ids': tf.intaa, }, tf.intaa, ) , ( { 'example_id': tf.TensorShape([] ), 'input_ids': tf.TensorShape([None, None] ), 'attention_mask': tf.TensorShape([None, None] ), 'token_type_ids': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def _UpperCAmelCase ( self ) -> List[str]: return self.dataset def __len__( self ) -> str: return len(self.features ) def __getitem__( self , _UpperCAmelCase ) -> InputFeatures: return self.features[i] def _UpperCAmelCase ( self ) -> int: return self.label_list class _a ( UpperCAmelCase__ ): """simple docstring""" def _UpperCAmelCase ( self , _UpperCAmelCase ) -> Tuple: return self._create_examples(self._read_tsv(os.path.join(_UpperCAmelCase , 'heuristics_train_set.txt' ) ) , 'train' ) def _UpperCAmelCase ( self , _UpperCAmelCase ) -> Dict: return self._create_examples(self._read_tsv(os.path.join(_UpperCAmelCase , 'heuristics_evaluation_set.txt' ) ) , 'dev' ) def _UpperCAmelCase ( self ) -> List[Any]: return ["contradiction", "entailment", "neutral"] def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> List[str]: UpperCamelCase_ = [] for i, line in enumerate(_UpperCAmelCase ): if i == 0: continue UpperCamelCase_ = '%s-%s' % (set_type, line[0]) UpperCamelCase_ = line[5] UpperCamelCase_ = line[6] UpperCamelCase_ = line[7][2:] if line[7].startswith('ex' ) else line[7] UpperCamelCase_ = line[0] examples.append(InputExample(guid=_UpperCAmelCase , text_a=_UpperCAmelCase , text_b=_UpperCAmelCase , label=_UpperCAmelCase , pairID=_UpperCAmelCase ) ) return examples def _snake_case (__lowercase , __lowercase , __lowercase , __lowercase , ): UpperCamelCase_ = {label: i for i, label in enumerate(__lowercase)} UpperCamelCase_ = [] for ex_index, example in tqdm.tqdm(enumerate(__lowercase) , desc='convert examples to features'): if ex_index % 10000 == 0: logger.info('Writing example %d' % (ex_index)) UpperCamelCase_ = tokenizer( example.text_a , example.text_b , add_special_tokens=__lowercase , max_length=__lowercase , padding='max_length' , truncation=__lowercase , return_overflowing_tokens=__lowercase , ) UpperCamelCase_ = label_map[example.label] if example.label in label_map else 0 UpperCamelCase_ = int(example.pairID) features.append(InputFeatures(**__lowercase , label=__lowercase , pairID=__lowercase)) for i, example in enumerate(examples[:5]): logger.info('*** Example ***') logger.info(f"""guid: {example}""") logger.info(f"""features: {features[i]}""") return features snake_case__ : List[str] = { """hans""": 3, } snake_case__ : Union[str, Any] = { """hans""": HansProcessor, }
618
0
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging _UpperCAmelCase : str = logging.get_logger(__name__) _UpperCAmelCase : Any = { '''Helsinki-NLP/opus-mt-en-de''': '''https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json''', # See all Marian models at https://huggingface.co/models?filter=marian } class __magic_name__ ( __SCREAMING_SNAKE_CASE ): UpperCamelCase__ = 'marian' UpperCamelCase__ = ['past_key_values'] UpperCamelCase__ = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , snake_case_=5_81_01 , snake_case_=None , snake_case_=10_24 , snake_case_=12 , snake_case_=40_96 , snake_case_=16 , snake_case_=12 , snake_case_=40_96 , snake_case_=16 , snake_case_=0.0 , snake_case_=0.0 , snake_case_=True , snake_case_=True , snake_case_="gelu" , snake_case_=10_24 , snake_case_=0.1 , snake_case_=0.0 , snake_case_=0.0 , snake_case_=0.02 , snake_case_=5_81_00 , snake_case_=False , snake_case_=5_81_00 , snake_case_=0 , snake_case_=0 , snake_case_=True , **snake_case_ , ): lowercase =vocab_size lowercase =decoder_vocab_size or vocab_size lowercase =max_position_embeddings lowercase =d_model lowercase =encoder_ffn_dim lowercase =encoder_layers lowercase =encoder_attention_heads lowercase =decoder_ffn_dim lowercase =decoder_layers lowercase =decoder_attention_heads lowercase =dropout lowercase =attention_dropout lowercase =activation_dropout lowercase =activation_function lowercase =init_std lowercase =encoder_layerdrop lowercase =decoder_layerdrop lowercase =use_cache lowercase =encoder_layers lowercase =scale_embedding # scale factor will be sqrt(d_model) if True lowercase =share_encoder_decoder_embeddings super().__init__( pad_token_id=snake_case_ , eos_token_id=snake_case_ , is_encoder_decoder=snake_case_ , decoder_start_token_id=snake_case_ , forced_eos_token_id=snake_case_ , **snake_case_ , ) class __magic_name__ ( __SCREAMING_SNAKE_CASE ): @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs def _A( self ): if self.task in ["default", "seq2seq-lm"]: lowercase =OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: lowercase ={0: '''batch'''} lowercase ={0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: lowercase ={0: '''batch''', 1: '''decoder_sequence'''} lowercase ={0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(snake_case_ , direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. lowercase =OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: lowercase , lowercase =self.num_layers for i in range(snake_case_ ): lowercase ={0: '''batch''', 2: '''past_sequence + sequence'''} lowercase ={0: '''batch''', 2: '''past_sequence + sequence'''} else: lowercase =OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs def _A( self ): if self.task in ["default", "seq2seq-lm"]: lowercase =super().outputs else: lowercase =super(snake_case_ , self ).outputs if self.use_past: lowercase , lowercase =self.num_layers for i in range(snake_case_ ): lowercase ={0: '''batch''', 2: '''past_sequence + sequence'''} lowercase ={0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def _A( self , snake_case_ , snake_case_ = -1 , snake_case_ = -1 , snake_case_ = False , snake_case_ = None , ): lowercase =self._generate_dummy_inputs_for_encoder_and_decoder( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # Generate decoder inputs lowercase =seq_length if not self.use_past else 1 lowercase =self._generate_dummy_inputs_for_encoder_and_decoder( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) lowercase ={f'decoder_{name}': tensor for name, tensor in decoder_inputs.items()} lowercase =dict(**snake_case_ , **snake_case_ ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch lowercase , lowercase =common_inputs['''input_ids'''].shape lowercase =common_inputs['''decoder_input_ids'''].shape[1] lowercase , lowercase =self.num_attention_heads lowercase =( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) lowercase =decoder_seq_length + 3 lowercase =( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) lowercase =torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(snake_case_ , snake_case_ )] , dim=1 ) lowercase =[] # If the number of encoder and decoder layers are present in the model configuration, both are considered lowercase , lowercase =self.num_layers lowercase =min(snake_case_ , snake_case_ ) lowercase =max(snake_case_ , snake_case_ ) - min_num_layers lowercase ='''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(snake_case_ ): common_inputs["past_key_values"].append( ( torch.zeros(snake_case_ ), torch.zeros(snake_case_ ), torch.zeros(snake_case_ ), torch.zeros(snake_case_ ), ) ) # TODO: test this. lowercase =encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(snake_case_ , snake_case_ ): common_inputs["past_key_values"].append((torch.zeros(snake_case_ ), torch.zeros(snake_case_ )) ) return common_inputs def _A( self , snake_case_ , snake_case_ = -1 , snake_case_ = -1 , snake_case_ = False , snake_case_ = None , ): lowercase =self._generate_dummy_inputs_for_encoder_and_decoder( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch lowercase , lowercase =common_inputs['''input_ids'''].shape # Not using the same length for past_key_values lowercase =seqlen + 2 lowercase , lowercase =self.num_layers lowercase , lowercase =self.num_attention_heads lowercase =( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) lowercase =common_inputs['''attention_mask'''].dtype lowercase =torch.cat( [common_inputs['''attention_mask'''], torch.ones(snake_case_ , snake_case_ , dtype=snake_case_ )] , dim=1 ) lowercase =[ (torch.zeros(snake_case_ ), torch.zeros(snake_case_ )) for _ in range(snake_case_ ) ] return common_inputs def _A( self , snake_case_ , snake_case_ = -1 , snake_case_ = -1 , snake_case_ = False , snake_case_ = None , ): # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX lowercase =compute_effective_axis_dimension( snake_case_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX lowercase =tokenizer.num_special_tokens_to_add(snake_case_ ) lowercase =compute_effective_axis_dimension( snake_case_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=snake_case_ ) # Generate dummy inputs according to compute batch and sequence lowercase =[''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size lowercase =dict(tokenizer(snake_case_ , return_tensors=snake_case_ ) ) return common_inputs def _A( self , snake_case_ , snake_case_ = -1 , snake_case_ = -1 , snake_case_ = False , snake_case_ = None , ): if self.task in ["default", "seq2seq-lm"]: lowercase =self._generate_dummy_inputs_for_default_and_seqaseq_lm( snake_case_ , batch_size=snake_case_ , seq_length=snake_case_ , is_pair=snake_case_ , framework=snake_case_ ) else: lowercase =self._generate_dummy_inputs_for_causal_lm( snake_case_ , batch_size=snake_case_ , seq_length=snake_case_ , is_pair=snake_case_ , framework=snake_case_ ) return common_inputs def _A( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): if self.task in ["default", "seq2seq-lm"]: lowercase =super()._flatten_past_key_values_(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) else: lowercase =super(snake_case_ , self )._flatten_past_key_values_( snake_case_ , snake_case_ , snake_case_ , snake_case_ ) @property def _A( self ): return 1E-4
72
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available SCREAMING_SNAKE_CASE_ = { '''configuration_rag''': ['''RagConfig'''], '''retrieval_rag''': ['''RagRetriever'''], '''tokenization_rag''': ['''RagTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ '''RagModel''', '''RagPreTrainedModel''', '''RagSequenceForGeneration''', '''RagTokenForGeneration''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ '''TFRagModel''', '''TFRagPreTrainedModel''', '''TFRagSequenceForGeneration''', '''TFRagTokenForGeneration''', ] if TYPE_CHECKING: from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever from .tokenization_rag import RagTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rag import ( TFRagModel, TFRagPreTrainedModel, TFRagSequenceForGeneration, TFRagTokenForGeneration, ) else: import sys SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
465
0
import unittest from knapsack import greedy_knapsack as kp class lowercase_ ( unittest.TestCase ): def UpperCamelCase ( self ): _snake_case : Tuple = [10, 20, 30, 40, 50, 60] _snake_case : Union[str, Any] = [2, 4, 6, 8, 10, 12] _snake_case : Union[str, Any] = 100 self.assertEqual(kp.calc_profit(__a , __a , __a ) , 210 ) def UpperCamelCase ( self ): self.assertRaisesRegex(__a , "max_weight must greater than zero." ) def UpperCamelCase ( self ): self.assertRaisesRegex(__a , "Weight can not be negative." ) def UpperCamelCase ( self ): self.assertRaisesRegex(__a , "Profit can not be negative." ) def UpperCamelCase ( self ): self.assertRaisesRegex(__a , "max_weight must greater than zero." ) def UpperCamelCase ( self ): self.assertRaisesRegex( __a , "The length of profit and weight must be same." ) if __name__ == "__main__": unittest.main()
720
def snake_case (__lowercase , __lowercase , __lowercase ) -> list: '''simple docstring''' _snake_case : int = len(__lowercase ) _snake_case : int = [[0] * n for i in range(__lowercase )] for i in range(__lowercase ): _snake_case : str = y_points[i] for i in range(2 , __lowercase ): for j in range(__lowercase , __lowercase ): _snake_case : Union[str, Any] = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
580
0