code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .attention_processor import AttentionProcessor, AttnProcessor from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder @dataclass class lowercase__ ( UpperCamelCase_): UpperCamelCase_ = 42 class lowercase__ ( UpperCamelCase_ , UpperCamelCase_): UpperCamelCase_ = True @register_to_config def __init__( self : Union[str, Any] , UpperCamelCase__ : int = 3 , UpperCamelCase__ : int = 3 , UpperCamelCase__ : Tuple[str] = ("DownEncoderBlock2D",) , UpperCamelCase__ : Tuple[str] = ("UpDecoderBlock2D",) , UpperCamelCase__ : Tuple[int] = (64,) , UpperCamelCase__ : int = 1 , UpperCamelCase__ : str = "silu" , UpperCamelCase__ : int = 4 , UpperCamelCase__ : int = 32 , UpperCamelCase__ : int = 32 , UpperCamelCase__ : float = 0.1_8215 , ): '''simple docstring''' super().__init__() # pass init params to Encoder SCREAMING_SNAKE_CASE : Union[str, Any] = Encoder( in_channels=UpperCamelCase__ , out_channels=UpperCamelCase__ , down_block_types=UpperCamelCase__ , block_out_channels=UpperCamelCase__ , layers_per_block=UpperCamelCase__ , act_fn=UpperCamelCase__ , norm_num_groups=UpperCamelCase__ , double_z=UpperCamelCase__ , ) # pass init params to Decoder SCREAMING_SNAKE_CASE : Optional[int] = Decoder( in_channels=UpperCamelCase__ , out_channels=UpperCamelCase__ , up_block_types=UpperCamelCase__ , block_out_channels=UpperCamelCase__ , layers_per_block=UpperCamelCase__ , norm_num_groups=UpperCamelCase__ , act_fn=UpperCamelCase__ , ) SCREAMING_SNAKE_CASE : List[Any] = nn.Convad(2 * latent_channels , 2 * latent_channels , 1 ) SCREAMING_SNAKE_CASE : int = nn.Convad(UpperCamelCase__ , UpperCamelCase__ , 1 ) SCREAMING_SNAKE_CASE : Optional[int] = False SCREAMING_SNAKE_CASE : Tuple = False # only relevant if vae tiling is enabled SCREAMING_SNAKE_CASE : List[str] = self.config.sample_size SCREAMING_SNAKE_CASE : Tuple = ( self.config.sample_size[0] if isinstance(self.config.sample_size , (list, tuple) ) else self.config.sample_size ) SCREAMING_SNAKE_CASE : List[Any] = int(sample_size / (2 ** (len(self.config.block_out_channels ) - 1)) ) SCREAMING_SNAKE_CASE : Union[str, Any] = 0.25 def __A ( self : Dict , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[int]=False ): '''simple docstring''' if isinstance(UpperCamelCase__ , (Encoder, Decoder) ): SCREAMING_SNAKE_CASE : Optional[Any] = value def __A ( self : List[Any] , UpperCamelCase__ : bool = True ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = use_tiling def __A ( self : int ): '''simple docstring''' self.enable_tiling(UpperCamelCase__ ) def __A ( self : Tuple ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = True def __A ( self : str ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = False @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def __A ( self : Union[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = {} def fn_recursive_add_processors(UpperCamelCase__ : str , UpperCamelCase__ : torch.nn.Module , UpperCamelCase__ : Dict[str, AttentionProcessor] ): if hasattr(UpperCamelCase__ , '''set_processor''' ): SCREAMING_SNAKE_CASE : List[Any] = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f"""{name}.{sub_name}""" , UpperCamelCase__ , UpperCamelCase__ ) return processors for name, module in self.named_children(): fn_recursive_add_processors(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) return processors def __A ( self : Optional[int] , UpperCamelCase__ : Union[AttentionProcessor, Dict[str, AttentionProcessor]] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = len(self.attn_processors.keys() ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) and len(UpperCamelCase__ ) != count: raise ValueError( f"""A dict of processors was passed, but the number of processors {len(UpperCamelCase__ )} does not match the""" f""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" ) def fn_recursive_attn_processor(UpperCamelCase__ : str , UpperCamelCase__ : torch.nn.Module , UpperCamelCase__ : str ): if hasattr(UpperCamelCase__ , '''set_processor''' ): if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): module.set_processor(UpperCamelCase__ ) else: module.set_processor(processor.pop(f"""{name}.processor""" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"""{name}.{sub_name}""" , UpperCamelCase__ , UpperCamelCase__ ) for name, module in self.named_children(): fn_recursive_attn_processor(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def __A ( self : Optional[Any] ): '''simple docstring''' self.set_attn_processor(AttnProcessor() ) @apply_forward_hook def __A ( self : Optional[Any] , UpperCamelCase__ : torch.FloatTensor , UpperCamelCase__ : bool = True ): '''simple docstring''' if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size): return self.tiled_encode(UpperCamelCase__ , return_dict=UpperCamelCase__ ) if self.use_slicing and x.shape[0] > 1: SCREAMING_SNAKE_CASE : str = [self.encoder(UpperCamelCase__ ) for x_slice in x.split(1 )] SCREAMING_SNAKE_CASE : Optional[int] = torch.cat(UpperCamelCase__ ) else: SCREAMING_SNAKE_CASE : int = self.encoder(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Any = self.quant_conv(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Optional[int] = DiagonalGaussianDistribution(UpperCamelCase__ ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=UpperCamelCase__ ) def __A ( self : List[Any] , UpperCamelCase__ : torch.FloatTensor , UpperCamelCase__ : bool = True ): '''simple docstring''' if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size): return self.tiled_decode(UpperCamelCase__ , return_dict=UpperCamelCase__ ) SCREAMING_SNAKE_CASE : str = self.post_quant_conv(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Optional[Any] = self.decoder(UpperCamelCase__ ) if not return_dict: return (dec,) return DecoderOutput(sample=UpperCamelCase__ ) @apply_forward_hook def __A ( self : Any , UpperCamelCase__ : torch.FloatTensor , UpperCamelCase__ : bool = True ): '''simple docstring''' if self.use_slicing and z.shape[0] > 1: SCREAMING_SNAKE_CASE : Union[str, Any] = [self._decode(UpperCamelCase__ ).sample for z_slice in z.split(1 )] SCREAMING_SNAKE_CASE : Union[str, Any] = torch.cat(UpperCamelCase__ ) else: SCREAMING_SNAKE_CASE : Dict = self._decode(UpperCamelCase__ ).sample if not return_dict: return (decoded,) return DecoderOutput(sample=UpperCamelCase__ ) def __A ( self : Union[str, Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = min(a.shape[2] , b.shape[2] , UpperCamelCase__ ) for y in range(UpperCamelCase__ ): SCREAMING_SNAKE_CASE : Tuple = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent) return b def __A ( self : str , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : str ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = min(a.shape[3] , b.shape[3] , UpperCamelCase__ ) for x in range(UpperCamelCase__ ): SCREAMING_SNAKE_CASE : List[str] = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent) return b def __A ( self : int , UpperCamelCase__ : torch.FloatTensor , UpperCamelCase__ : bool = True ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor) ) SCREAMING_SNAKE_CASE : Any = int(self.tile_latent_min_size * self.tile_overlap_factor ) SCREAMING_SNAKE_CASE : Tuple = self.tile_latent_min_size - blend_extent # Split the image into 512x512 tiles and encode them separately. SCREAMING_SNAKE_CASE : List[Any] = [] for i in range(0 , x.shape[2] , UpperCamelCase__ ): SCREAMING_SNAKE_CASE : Dict = [] for j in range(0 , x.shape[3] , UpperCamelCase__ ): SCREAMING_SNAKE_CASE : Union[str, Any] = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size] SCREAMING_SNAKE_CASE : Union[str, Any] = self.encoder(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Dict = self.quant_conv(UpperCamelCase__ ) row.append(UpperCamelCase__ ) rows.append(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : List[Any] = [] for i, row in enumerate(UpperCamelCase__ ): SCREAMING_SNAKE_CASE : Optional[int] = [] for j, tile in enumerate(UpperCamelCase__ ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: SCREAMING_SNAKE_CASE : str = self.blend_v(rows[i - 1][j] , UpperCamelCase__ , UpperCamelCase__ ) if j > 0: SCREAMING_SNAKE_CASE : List[str] = self.blend_h(row[j - 1] , UpperCamelCase__ , UpperCamelCase__ ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(UpperCamelCase__ , dim=3 ) ) SCREAMING_SNAKE_CASE : Optional[int] = torch.cat(UpperCamelCase__ , dim=2 ) SCREAMING_SNAKE_CASE : List[Any] = DiagonalGaussianDistribution(UpperCamelCase__ ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=UpperCamelCase__ ) def __A ( self : Optional[int] , UpperCamelCase__ : torch.FloatTensor , UpperCamelCase__ : bool = True ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor) ) SCREAMING_SNAKE_CASE : Tuple = int(self.tile_sample_min_size * self.tile_overlap_factor ) SCREAMING_SNAKE_CASE : Any = self.tile_sample_min_size - blend_extent # Split z into overlapping 64x64 tiles and decode them separately. # The tiles have an overlap to avoid seams between tiles. SCREAMING_SNAKE_CASE : List[str] = [] for i in range(0 , z.shape[2] , UpperCamelCase__ ): SCREAMING_SNAKE_CASE : List[str] = [] for j in range(0 , z.shape[3] , UpperCamelCase__ ): SCREAMING_SNAKE_CASE : Any = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size] SCREAMING_SNAKE_CASE : Optional[Any] = self.post_quant_conv(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.decoder(UpperCamelCase__ ) row.append(UpperCamelCase__ ) rows.append(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Optional[Any] = [] for i, row in enumerate(UpperCamelCase__ ): SCREAMING_SNAKE_CASE : Any = [] for j, tile in enumerate(UpperCamelCase__ ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: SCREAMING_SNAKE_CASE : Optional[int] = self.blend_v(rows[i - 1][j] , UpperCamelCase__ , UpperCamelCase__ ) if j > 0: SCREAMING_SNAKE_CASE : List[str] = self.blend_h(row[j - 1] , UpperCamelCase__ , UpperCamelCase__ ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(UpperCamelCase__ , dim=3 ) ) SCREAMING_SNAKE_CASE : str = torch.cat(UpperCamelCase__ , dim=2 ) if not return_dict: return (dec,) return DecoderOutput(sample=UpperCamelCase__ ) def __A ( self : str , UpperCamelCase__ : torch.FloatTensor , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = True , UpperCamelCase__ : Optional[torch.Generator] = None , ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = sample SCREAMING_SNAKE_CASE : List[str] = self.encode(UpperCamelCase__ ).latent_dist if sample_posterior: SCREAMING_SNAKE_CASE : int = posterior.sample(generator=UpperCamelCase__ ) else: SCREAMING_SNAKE_CASE : int = posterior.mode() SCREAMING_SNAKE_CASE : Union[str, Any] = self.decode(UpperCamelCase__ ).sample if not return_dict: return (dec,) return DecoderOutput(sample=UpperCamelCase__ )
248
import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: __UpperCamelCase : Tuple = None __UpperCamelCase : Tuple = logging.get_logger(__name__) __UpperCamelCase : Optional[Any] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} __UpperCamelCase : Dict = { 'vocab_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/spiece.model', 't5-base': 'https://huggingface.co/t5-base/resolve/main/spiece.model', 't5-large': 'https://huggingface.co/t5-large/resolve/main/spiece.model', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/spiece.model', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/spiece.model', }, 'tokenizer_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/tokenizer.json', 't5-base': 'https://huggingface.co/t5-base/resolve/main/tokenizer.json', 't5-large': 'https://huggingface.co/t5-large/resolve/main/tokenizer.json', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/tokenizer.json', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/tokenizer.json', }, } # TODO(PVP) - this should be removed in Transformers v5 __UpperCamelCase : Any = { 't5-small': 512, 't5-base': 512, 't5-large': 512, 't5-3b': 512, 't5-11b': 512, } class lowercase__ ( UpperCamelCase_): UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = ["""input_ids""", """attention_mask"""] UpperCamelCase_ = TaTokenizer UpperCamelCase_ = [] def __init__( self : List[str] , UpperCamelCase__ : Any=None , UpperCamelCase__ : Tuple=None , UpperCamelCase__ : Dict="</s>" , UpperCamelCase__ : str="<unk>" , UpperCamelCase__ : List[str]="<pad>" , UpperCamelCase__ : Dict=100 , UpperCamelCase__ : List[Any]=None , **UpperCamelCase__ : Union[str, Any] , ): '''simple docstring''' if extra_ids > 0 and additional_special_tokens is None: SCREAMING_SNAKE_CASE : str = [f"""<extra_id_{i}>""" for i in range(UpperCamelCase__ )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens SCREAMING_SNAKE_CASE : List[Any] = len(set(filter(lambda UpperCamelCase__ : bool('''extra_id_''' in str(UpperCamelCase__ ) ) , UpperCamelCase__ ) ) ) if extra_tokens != extra_ids: raise ValueError( f"""Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are""" ''' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids''' ''' tokens''' ) super().__init__( UpperCamelCase__ , tokenizer_file=UpperCamelCase__ , eos_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , extra_ids=UpperCamelCase__ , additional_special_tokens=UpperCamelCase__ , **UpperCamelCase__ , ) SCREAMING_SNAKE_CASE : Any = vocab_file SCREAMING_SNAKE_CASE : Dict = False if not self.vocab_file else True SCREAMING_SNAKE_CASE : Optional[int] = extra_ids @staticmethod def __A ( UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : str ): '''simple docstring''' if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: SCREAMING_SNAKE_CASE : int = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( '''This tokenizer was incorrectly instantiated with a model max length of''' f""" {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this""" ''' behavior is kept to avoid breaking backwards compatibility when padding/encoding with''' ''' `truncation is True`.\n- Be aware that you SHOULD NOT rely on''' f""" {pretrained_model_name_or_path} automatically truncating your input to""" f""" {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences""" f""" longer than {deprecated_max_model_length} you can either instantiate this tokenizer with""" ''' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please''' ''' instantiate this tokenizer with `model_max_length` set to your preferred value.''' , UpperCamelCase__ , ) return max_model_length def __A ( self : Union[str, Any] , UpperCamelCase__ : str , UpperCamelCase__ : Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(UpperCamelCase__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return SCREAMING_SNAKE_CASE : Optional[Any] = os.path.join( UpperCamelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase__ ): copyfile(self.vocab_file , UpperCamelCase__ ) logger.info(f"""Copy vocab file to {out_vocab_file}""" ) return (out_vocab_file,) def __A ( self : Optional[int] , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: SCREAMING_SNAKE_CASE : Any = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def __A ( self : Tuple , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def __A ( self : Dict ): '''simple docstring''' return list( set(filter(lambda UpperCamelCase__ : bool(re.search(r'''<extra_id_\d+>''' , UpperCamelCase__ ) ) is not None , self.additional_special_tokens ) ) ) def __A ( self : List[Any] ): '''simple docstring''' return [self.convert_tokens_to_ids(UpperCamelCase__ ) for token in self.get_sentinel_tokens()]
248
1
import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class a ( unittest.TestCase ): _lowercase = MODEL_FOR_MASKED_LM_MAPPING _lowercase = TF_MODEL_FOR_MASKED_LM_MAPPING def _UpperCAmelCase ( self ): '''simple docstring''' super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : List[str] = pipeline(task="fill-mask" , model="sshleifer/tiny-distilroberta-base" , top_k=2 , framework="tf" ) _UpperCAmelCase : Union[str, Any] = unmasker("My name is <mask>" ) self.assertEqual( nested_simplify(A_ , decimals=6 ) , [ {"sequence": "My name is grouped", "score": 2.1e-05, "token": 38015, "token_str": " grouped"}, {"sequence": "My name is accuser", "score": 2.1e-05, "token": 25506, "token_str": " accuser"}, ] , ) _UpperCAmelCase : Optional[int] = unmasker("The largest city in France is <mask>" ) self.assertEqual( nested_simplify(A_ , decimals=6 ) , [ { "sequence": "The largest city in France is grouped", "score": 2.1e-05, "token": 38015, "token_str": " grouped", }, { "sequence": "The largest city in France is accuser", "score": 2.1e-05, "token": 25506, "token_str": " accuser", }, ] , ) _UpperCAmelCase : Optional[Any] = unmasker("My name is <mask>" , targets=[" Patrick", " Clara", " Teven"] , top_k=3 ) self.assertEqual( nested_simplify(A_ , decimals=6 ) , [ {"sequence": "My name is Clara", "score": 2e-05, "token": 13606, "token_str": " Clara"}, {"sequence": "My name is Patrick", "score": 2e-05, "token": 3499, "token_str": " Patrick"}, {"sequence": "My name is Te", "score": 1.9e-05, "token": 2941, "token_str": " Te"}, ] , ) @require_torch def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Optional[Any] = pipeline(task="fill-mask" , model="sshleifer/tiny-distilroberta-base" , top_k=2 , framework="pt" ) _UpperCAmelCase : List[str] = unmasker("My name is <mask>" ) self.assertEqual( nested_simplify(A_ , decimals=6 ) , [ {"sequence": "My name is Maul", "score": 2.2e-05, "token": 35676, "token_str": " Maul"}, {"sequence": "My name isELS", "score": 2.2e-05, "token": 16416, "token_str": "ELS"}, ] , ) _UpperCAmelCase : str = unmasker("The largest city in France is <mask>" ) self.assertEqual( nested_simplify(A_ , decimals=6 ) , [ { "sequence": "The largest city in France is Maul", "score": 2.2e-05, "token": 35676, "token_str": " Maul", }, {"sequence": "The largest city in France isELS", "score": 2.2e-05, "token": 16416, "token_str": "ELS"}, ] , ) _UpperCAmelCase : List[Any] = unmasker("My name is <mask>" , targets=[" Patrick", " Clara", " Teven"] , top_k=3 ) self.assertEqual( nested_simplify(A_ , decimals=6 ) , [ {"sequence": "My name is Patrick", "score": 2.1e-05, "token": 3499, "token_str": " Patrick"}, {"sequence": "My name is Te", "score": 2e-05, "token": 2941, "token_str": " Te"}, {"sequence": "My name is Clara", "score": 2e-05, "token": 13606, "token_str": " Clara"}, ] , ) _UpperCAmelCase : Optional[Any] = unmasker("My name is <mask> <mask>" , top_k=2 ) self.assertEqual( nested_simplify(A_ , decimals=6 ) , [ [ { "score": 2.2e-05, "token": 35676, "token_str": " Maul", "sequence": "<s>My name is Maul<mask></s>", }, {"score": 2.2e-05, "token": 16416, "token_str": "ELS", "sequence": "<s>My name isELS<mask></s>"}, ], [ { "score": 2.2e-05, "token": 35676, "token_str": " Maul", "sequence": "<s>My name is<mask> Maul</s>", }, {"score": 2.2e-05, "token": 16416, "token_str": "ELS", "sequence": "<s>My name is<mask>ELS</s>"}, ], ] , ) @require_torch_gpu def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Union[str, Any] = pipeline("fill-mask" , model="hf-internal-testing/tiny-random-distilbert" , device=0 , framework="pt" ) # convert model to fp16 pipe.model.half() _UpperCAmelCase : int = pipe("Paris is the [MASK] of France." ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(A_ , A_ ) @slow @require_torch def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : List[Any] = pipeline(task="fill-mask" , model="distilroberta-base" , top_k=2 , framework="pt" ) self.run_large_test(A_ ) @slow @require_tf def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : List[str] = pipeline(task="fill-mask" , model="distilroberta-base" , top_k=2 , framework="tf" ) self.run_large_test(A_ ) def _UpperCAmelCase ( self , A_ ): '''simple docstring''' _UpperCAmelCase : int = unmasker("My name is <mask>" ) self.assertEqual( nested_simplify(A_ ) , [ {"sequence": "My name is John", "score": 0.0_08, "token": 610, "token_str": " John"}, {"sequence": "My name is Chris", "score": 0.0_07, "token": 1573, "token_str": " Chris"}, ] , ) _UpperCAmelCase : Optional[int] = unmasker("The largest city in France is <mask>" ) self.assertEqual( nested_simplify(A_ ) , [ { "sequence": "The largest city in France is Paris", "score": 0.2_51, "token": 2201, "token_str": " Paris", }, { "sequence": "The largest city in France is Lyon", "score": 0.2_14, "token": 12790, "token_str": " Lyon", }, ] , ) _UpperCAmelCase : Any = unmasker("My name is <mask>" , targets=[" Patrick", " Clara", " Teven"] , top_k=3 ) self.assertEqual( nested_simplify(A_ ) , [ {"sequence": "My name is Patrick", "score": 0.0_05, "token": 3499, "token_str": " Patrick"}, {"sequence": "My name is Clara", "score": 0.0_00, "token": 13606, "token_str": " Clara"}, {"sequence": "My name is Te", "score": 0.0_00, "token": 2941, "token_str": " Te"}, ] , ) @require_torch def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : List[str] = pipeline(task="fill-mask" , model="sshleifer/tiny-distilroberta-base" , framework="pt" ) _UpperCAmelCase : Optional[int] = None _UpperCAmelCase : List[Any] = None self.run_pipeline_test(A_ , [] ) @require_tf def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Tuple = pipeline(task="fill-mask" , model="sshleifer/tiny-distilroberta-base" , framework="tf" ) _UpperCAmelCase : Union[str, Any] = None _UpperCAmelCase : str = None self.run_pipeline_test(A_ , [] ) def _UpperCAmelCase ( self , A_ , A_ , A_ ): '''simple docstring''' if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest("The provided tokenizer has no mask token, (probably reformer or wav2vec2)" ) _UpperCAmelCase : Tuple = FillMaskPipeline(model=A_ , tokenizer=A_ ) _UpperCAmelCase : Tuple = [ f'This is another {tokenizer.mask_token} test', ] return fill_masker, examples def _UpperCAmelCase ( self , A_ , A_ ): '''simple docstring''' _UpperCAmelCase : Dict = fill_masker.tokenizer _UpperCAmelCase : Tuple = fill_masker.model _UpperCAmelCase : Union[str, Any] = fill_masker( f'This is a {tokenizer.mask_token}' , ) self.assertEqual( A_ , [ {"sequence": ANY(A_ ), "score": ANY(A_ ), "token": ANY(A_ ), "token_str": ANY(A_ )}, {"sequence": ANY(A_ ), "score": ANY(A_ ), "token": ANY(A_ ), "token_str": ANY(A_ )}, {"sequence": ANY(A_ ), "score": ANY(A_ ), "token": ANY(A_ ), "token_str": ANY(A_ )}, {"sequence": ANY(A_ ), "score": ANY(A_ ), "token": ANY(A_ ), "token_str": ANY(A_ )}, {"sequence": ANY(A_ ), "score": ANY(A_ ), "token": ANY(A_ ), "token_str": ANY(A_ )}, ] , ) _UpperCAmelCase : Optional[Any] = fill_masker([f'This is a {tokenizer.mask_token}'] ) self.assertEqual( A_ , [ {"sequence": ANY(A_ ), "score": ANY(A_ ), "token": ANY(A_ ), "token_str": ANY(A_ )}, {"sequence": ANY(A_ ), "score": ANY(A_ ), "token": ANY(A_ ), "token_str": ANY(A_ )}, {"sequence": ANY(A_ ), "score": ANY(A_ ), "token": ANY(A_ ), "token_str": ANY(A_ )}, {"sequence": ANY(A_ ), "score": ANY(A_ ), "token": ANY(A_ ), "token_str": ANY(A_ )}, {"sequence": ANY(A_ ), "score": ANY(A_ ), "token": ANY(A_ ), "token_str": ANY(A_ )}, ] , ) _UpperCAmelCase : List[str] = fill_masker([f'This is a {tokenizer.mask_token}', f'Another {tokenizer.mask_token} great test.'] ) self.assertEqual( A_ , [ [ {"sequence": ANY(A_ ), "score": ANY(A_ ), "token": ANY(A_ ), "token_str": ANY(A_ )}, {"sequence": ANY(A_ ), "score": ANY(A_ ), "token": ANY(A_ ), "token_str": ANY(A_ )}, {"sequence": ANY(A_ ), "score": ANY(A_ ), "token": ANY(A_ ), "token_str": ANY(A_ )}, {"sequence": ANY(A_ ), "score": ANY(A_ ), "token": ANY(A_ ), "token_str": ANY(A_ )}, {"sequence": ANY(A_ ), "score": ANY(A_ ), "token": ANY(A_ ), "token_str": ANY(A_ )}, ], [ {"sequence": ANY(A_ ), "score": ANY(A_ ), "token": ANY(A_ ), "token_str": ANY(A_ )}, {"sequence": ANY(A_ ), "score": ANY(A_ ), "token": ANY(A_ ), "token_str": ANY(A_ )}, {"sequence": ANY(A_ ), "score": ANY(A_ ), "token": ANY(A_ ), "token_str": ANY(A_ )}, {"sequence": ANY(A_ ), "score": ANY(A_ ), "token": ANY(A_ ), "token_str": ANY(A_ )}, {"sequence": ANY(A_ ), "score": ANY(A_ ), "token": ANY(A_ ), "token_str": ANY(A_ )}, ], ] , ) with self.assertRaises(A_ ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(A_ ): fill_masker("This is" ) self.run_test_top_k(A_ , A_ ) self.run_test_targets(A_ , A_ ) self.run_test_top_k_targets(A_ , A_ ) self.fill_mask_with_duplicate_targets_and_top_k(A_ , A_ ) self.fill_mask_with_multiple_masks(A_ , A_ ) def _UpperCAmelCase ( self , A_ , A_ ): '''simple docstring''' _UpperCAmelCase : Any = tokenizer.get_vocab() _UpperCAmelCase : int = sorted(vocab.keys() )[:2] # Pipeline argument _UpperCAmelCase : Any = FillMaskPipeline(model=A_ , tokenizer=A_ , targets=A_ ) _UpperCAmelCase : Optional[int] = fill_masker(f'This is a {tokenizer.mask_token}' ) self.assertEqual( A_ , [ {"sequence": ANY(A_ ), "score": ANY(A_ ), "token": ANY(A_ ), "token_str": ANY(A_ )}, {"sequence": ANY(A_ ), "score": ANY(A_ ), "token": ANY(A_ ), "token_str": ANY(A_ )}, ] , ) _UpperCAmelCase : Tuple = {vocab[el] for el in targets} self.assertEqual({el["token"] for el in outputs} , A_ ) _UpperCAmelCase : List[Any] = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["token_str"] for el in outputs} , set(A_ ) ) # Call argument _UpperCAmelCase : Union[str, Any] = FillMaskPipeline(model=A_ , tokenizer=A_ ) _UpperCAmelCase : List[Any] = fill_masker(f'This is a {tokenizer.mask_token}' , targets=A_ ) self.assertEqual( A_ , [ {"sequence": ANY(A_ ), "score": ANY(A_ ), "token": ANY(A_ ), "token_str": ANY(A_ )}, {"sequence": ANY(A_ ), "score": ANY(A_ ), "token": ANY(A_ ), "token_str": ANY(A_ )}, ] , ) _UpperCAmelCase : Optional[Any] = {vocab[el] for el in targets} self.assertEqual({el["token"] for el in outputs} , A_ ) _UpperCAmelCase : Any = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["token_str"] for el in outputs} , set(A_ ) ) # Score equivalence _UpperCAmelCase : int = fill_masker(f'This is a {tokenizer.mask_token}' , targets=A_ ) _UpperCAmelCase : Tuple = [top_mask["token_str"] for top_mask in outputs] _UpperCAmelCase : Union[str, Any] = [top_mask["score"] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(A_ ) == set(A_ ): _UpperCAmelCase : List[str] = fill_masker(f'This is a {tokenizer.mask_token}' , targets=A_ ) _UpperCAmelCase : List[str] = [top_mask["score"] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(A_ ) , nested_simplify(A_ ) ) # Raises with invalid with self.assertRaises(A_ ): _UpperCAmelCase : Optional[int] = fill_masker(f'This is a {tokenizer.mask_token}' , targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(A_ ): _UpperCAmelCase : Dict = fill_masker(f'This is a {tokenizer.mask_token}' , targets=[""] ) with self.assertRaises(A_ ): _UpperCAmelCase : List[str] = fill_masker(f'This is a {tokenizer.mask_token}' , targets="" ) def _UpperCAmelCase ( self , A_ , A_ ): '''simple docstring''' _UpperCAmelCase : Union[str, Any] = FillMaskPipeline(model=A_ , tokenizer=A_ , top_k=2 ) _UpperCAmelCase : Union[str, Any] = fill_masker(f'This is a {tokenizer.mask_token}' ) self.assertEqual( A_ , [ {"sequence": ANY(A_ ), "score": ANY(A_ ), "token": ANY(A_ ), "token_str": ANY(A_ )}, {"sequence": ANY(A_ ), "score": ANY(A_ ), "token": ANY(A_ ), "token_str": ANY(A_ )}, ] , ) _UpperCAmelCase : int = FillMaskPipeline(model=A_ , tokenizer=A_ ) _UpperCAmelCase : Optional[Any] = fill_masker(f'This is a {tokenizer.mask_token}' , top_k=2 ) self.assertEqual( A_ , [ {"sequence": ANY(A_ ), "score": ANY(A_ ), "token": ANY(A_ ), "token_str": ANY(A_ )}, {"sequence": ANY(A_ ), "score": ANY(A_ ), "token": ANY(A_ ), "token_str": ANY(A_ )}, ] , ) self.assertEqual(nested_simplify(A_ ) , nested_simplify(A_ ) ) def _UpperCAmelCase ( self , A_ , A_ ): '''simple docstring''' _UpperCAmelCase : int = tokenizer.get_vocab() _UpperCAmelCase : Union[str, Any] = FillMaskPipeline(model=A_ , tokenizer=A_ ) # top_k=2, ntargets=3 _UpperCAmelCase : Tuple = sorted(vocab.keys() )[:3] _UpperCAmelCase : Union[str, Any] = fill_masker(f'This is a {tokenizer.mask_token}' , top_k=2 , targets=A_ ) # If we use the most probably targets, and filter differently, we should still # have the same results _UpperCAmelCase : Tuple = [el["token_str"] for el in sorted(A_ , key=lambda A_ : x["score"] , reverse=A_ )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(A_ ).issubset(A_ ): _UpperCAmelCase : int = fill_masker(f'This is a {tokenizer.mask_token}' , top_k=3 , targets=A_ ) # They should yield exactly the same result self.assertEqual(nested_simplify(A_ ) , nested_simplify(A_ ) ) def _UpperCAmelCase ( self , A_ , A_ ): '''simple docstring''' _UpperCAmelCase : Tuple = FillMaskPipeline(model=A_ , tokenizer=A_ ) _UpperCAmelCase : Dict = tokenizer.get_vocab() # String duplicates + id duplicates _UpperCAmelCase : Dict = sorted(vocab.keys() )[:3] _UpperCAmelCase : Tuple = [targets[0], targets[1], targets[0], targets[2], targets[1]] _UpperCAmelCase : Dict = fill_masker(f'My name is {tokenizer.mask_token}' , targets=A_ , top_k=10 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(A_ ) , 3 ) def _UpperCAmelCase ( self , A_ , A_ ): '''simple docstring''' _UpperCAmelCase : int = FillMaskPipeline(model=A_ , tokenizer=A_ ) _UpperCAmelCase : List[str] = fill_masker( f'This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}' , top_k=2 ) self.assertEqual( A_ , [ [ {"sequence": ANY(A_ ), "score": ANY(A_ ), "token": ANY(A_ ), "token_str": ANY(A_ )}, {"sequence": ANY(A_ ), "score": ANY(A_ ), "token": ANY(A_ ), "token_str": ANY(A_ )}, ], [ {"sequence": ANY(A_ ), "score": ANY(A_ ), "token": ANY(A_ ), "token_str": ANY(A_ )}, {"sequence": ANY(A_ ), "score": ANY(A_ ), "token": ANY(A_ ), "token_str": ANY(A_ )}, ], [ {"sequence": ANY(A_ ), "score": ANY(A_ ), "token": ANY(A_ ), "token_str": ANY(A_ )}, {"sequence": ANY(A_ ), "score": ANY(A_ ), "token": ANY(A_ ), "token_str": ANY(A_ )}, ], ] , )
467
from __future__ import annotations import numpy as np def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: list[float] ) -> Dict: return np.maximum(0 , lowerCAmelCase ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
467
1
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class A_ ( unittest.TestCase ): def __init__( self: Any ,__lowerCAmelCase: List[str] ,__lowerCAmelCase: Union[str, Any]=7 ,__lowerCAmelCase: Tuple=3 ,__lowerCAmelCase: List[Any]=30 ,__lowerCAmelCase: Any=400 ,__lowerCAmelCase: Dict=True ,__lowerCAmelCase: Optional[int]=None ,__lowerCAmelCase: Any=0.9 ,__lowerCAmelCase: Optional[int]=None ,__lowerCAmelCase: Any=True ,__lowerCAmelCase: Tuple=[0.5, 0.5, 0.5] ,__lowerCAmelCase: Union[str, Any]=[0.5, 0.5, 0.5] ,): '''simple docstring''' _lowerCamelCase : List[str] = size if size is not None else {"shortest_edge": 30} _lowerCamelCase : List[Any] = crop_size if crop_size is not None else {"height": 30, "width": 30} _lowerCamelCase : List[str] = parent _lowerCamelCase : int = batch_size _lowerCamelCase : Union[str, Any] = num_channels _lowerCamelCase : Optional[int] = min_resolution _lowerCamelCase : Dict = max_resolution _lowerCamelCase : Dict = do_resize_and_center_crop _lowerCamelCase : int = size _lowerCamelCase : List[str] = crop_pct _lowerCamelCase : Tuple = crop_size _lowerCamelCase : List[str] = do_normalize _lowerCamelCase : str = image_mean _lowerCamelCase : Optional[Any] = image_std def _lowercase ( self: List[str] ): '''simple docstring''' return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class A_ ( _a , unittest.TestCase ): lowerCAmelCase__ = PoolFormerImageProcessor if is_vision_available() else None def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase : str = PoolFormerImageProcessingTester(self ) @property def _lowercase ( self: Dict ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def _lowercase ( self: Optional[Any] ): '''simple docstring''' _lowerCamelCase : Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCAmelCase ,"do_resize_and_center_crop" ) ) self.assertTrue(hasattr(__lowerCAmelCase ,"size" ) ) self.assertTrue(hasattr(__lowerCAmelCase ,"crop_pct" ) ) self.assertTrue(hasattr(__lowerCAmelCase ,"do_normalize" ) ) self.assertTrue(hasattr(__lowerCAmelCase ,"image_mean" ) ) self.assertTrue(hasattr(__lowerCAmelCase ,"image_std" ) ) def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{"shortest_edge": 30} ) self.assertEqual(image_processor.crop_size ,{"height": 30, "width": 30} ) _lowerCamelCase : str = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ,crop_size=84 ) self.assertEqual(image_processor.size ,{"shortest_edge": 42} ) self.assertEqual(image_processor.crop_size ,{"height": 84, "width": 84} ) def _lowercase ( self: Tuple ): '''simple docstring''' pass def _lowercase ( self: Optional[Any] ): '''simple docstring''' _lowerCamelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCamelCase : int = prepare_image_inputs(self.image_processor_tester ,equal_resolution=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase ,Image.Image ) # Test not batched input _lowerCamelCase : int = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) # Test batched _lowerCamelCase : List[Any] = image_processing(__lowerCAmelCase ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCamelCase : List[str] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=__lowerCAmelCase ,numpify=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase ,np.ndarray ) # Test not batched input _lowerCamelCase : int = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) # Test batched _lowerCamelCase : Tuple = image_processing(__lowerCAmelCase ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) def _lowercase ( self: List[str] ): '''simple docstring''' _lowerCamelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCamelCase : Optional[int] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=__lowerCAmelCase ,torchify=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase ,torch.Tensor ) # Test not batched input _lowerCamelCase : Optional[int] = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) # Test batched _lowerCamelCase : Optional[Any] = image_processing(__lowerCAmelCase ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,)
46
import numpy as np from transformers import Pipeline def __UpperCamelCase ( lowerCAmelCase__ : Tuple ): __a : Union[str, Any] = np.max(lowerCAmelCase__ , axis=-1 , keepdims=lowerCAmelCase__ ) __a : List[Any] = np.exp(outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=lowerCAmelCase__ ) class UpperCamelCase__ ( __lowercase ): def lowerCAmelCase (self : Dict , **snake_case_ : str ): __a : int = {} if "second_text" in kwargs: __a : Tuple = kwargs['''second_text'''] return preprocess_kwargs, {}, {} def lowerCAmelCase (self : str , snake_case_ : Dict , snake_case_ : str=None ): return self.tokenizer(snake_case_ , text_pair=snake_case_ , return_tensors=self.framework ) def lowerCAmelCase (self : Tuple , snake_case_ : Dict ): return self.model(**snake_case_ ) def lowerCAmelCase (self : Union[str, Any] , snake_case_ : Dict ): __a : Optional[Any] = model_outputs.logits[0].numpy() __a : Optional[int] = softmax(snake_case_ ) __a : Optional[int] = np.argmax(snake_case_ ) __a : str = self.model.config.idalabel[best_class] __a : Any = probabilities[best_class].item() __a : Optional[int] = logits.tolist() return {"label": label, "score": score, "logits": logits}
521
0
from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class lowercase ( a_ ): """simple docstring""" _UpperCamelCase : torch.FloatTensor class lowercase ( nn.Module ): """simple docstring""" def __init__( self : Optional[int] , lowerCamelCase_ : Union[str, Any]=3 , lowerCamelCase_ : Any=3 , lowerCamelCase_ : Any=("DownEncoderBlock2D",) , lowerCamelCase_ : Dict=(64,) , lowerCamelCase_ : List[str]=2 , lowerCamelCase_ : Optional[Any]=32 , lowerCamelCase_ : Optional[int]="silu" , lowerCamelCase_ : List[str]=True , ): '''simple docstring''' super().__init__() _snake_case : Optional[int] = layers_per_block _snake_case : str = torch.nn.Convad( lowerCamelCase_ , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) _snake_case : Optional[int] = None _snake_case : Optional[int] = nn.ModuleList([] ) # down _snake_case : Any = block_out_channels[0] for i, down_block_type in enumerate(lowerCamelCase_ ): _snake_case : List[Any] = output_channel _snake_case : Tuple = block_out_channels[i] _snake_case : List[str] = i == len(lowerCamelCase_ ) - 1 _snake_case : List[str] = get_down_block( lowerCamelCase_ , num_layers=self.layers_per_block , in_channels=lowerCamelCase_ , out_channels=lowerCamelCase_ , add_downsample=not is_final_block , resnet_eps=1e-6 , downsample_padding=0 , resnet_act_fn=lowerCamelCase_ , resnet_groups=lowerCamelCase_ , attention_head_dim=lowerCamelCase_ , temb_channels=lowerCamelCase_ , ) self.down_blocks.append(lowerCamelCase_ ) # mid _snake_case : Optional[int] = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=lowerCamelCase_ , output_scale_factor=1 , resnet_time_scale_shift='default' , attention_head_dim=block_out_channels[-1] , resnet_groups=lowerCamelCase_ , temb_channels=lowerCamelCase_ , ) # out _snake_case : int = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=lowerCamelCase_ , eps=1e-6 ) _snake_case : Optional[int] = nn.SiLU() _snake_case : List[Any] = 2 * out_channels if double_z else out_channels _snake_case : int = nn.Convad(block_out_channels[-1] , lowerCamelCase_ , 3 , padding=1 ) _snake_case : str = False def __UpperCAmelCase ( self : Tuple , lowerCamelCase_ : str ): '''simple docstring''' _snake_case : str = x _snake_case : Tuple = self.conv_in(lowerCamelCase_ ) if self.training and self.gradient_checkpointing: def create_custom_forward(lowerCamelCase_ : List[str] ): def custom_forward(*lowerCamelCase_ : List[Any] ): return module(*lowerCamelCase_ ) return custom_forward # down if is_torch_version('>=' , '1.11.0' ): for down_block in self.down_blocks: _snake_case : List[Any] = torch.utils.checkpoint.checkpoint( create_custom_forward(lowerCamelCase_ ) , lowerCamelCase_ , use_reentrant=lowerCamelCase_ ) # middle _snake_case : Union[str, Any] = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , lowerCamelCase_ , use_reentrant=lowerCamelCase_ ) else: for down_block in self.down_blocks: _snake_case : List[str] = torch.utils.checkpoint.checkpoint(create_custom_forward(lowerCamelCase_ ) , lowerCamelCase_ ) # middle _snake_case : Dict = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , lowerCamelCase_ ) else: # down for down_block in self.down_blocks: _snake_case : Tuple = down_block(lowerCamelCase_ ) # middle _snake_case : List[str] = self.mid_block(lowerCamelCase_ ) # post-process _snake_case : Optional[Any] = self.conv_norm_out(lowerCamelCase_ ) _snake_case : int = self.conv_act(lowerCamelCase_ ) _snake_case : Optional[Any] = self.conv_out(lowerCamelCase_ ) return sample class lowercase ( nn.Module ): """simple docstring""" def __init__( self : List[Any] , lowerCamelCase_ : str=3 , lowerCamelCase_ : List[str]=3 , lowerCamelCase_ : Dict=("UpDecoderBlock2D",) , lowerCamelCase_ : Optional[Any]=(64,) , lowerCamelCase_ : Optional[Any]=2 , lowerCamelCase_ : List[str]=32 , lowerCamelCase_ : List[Any]="silu" , lowerCamelCase_ : Optional[Any]="group" , ): '''simple docstring''' super().__init__() _snake_case : Dict = layers_per_block _snake_case : Tuple = nn.Convad( lowerCamelCase_ , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) _snake_case : str = None _snake_case : List[Any] = nn.ModuleList([] ) _snake_case : str = in_channels if norm_type == 'spatial' else None # mid _snake_case : str = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=lowerCamelCase_ , output_scale_factor=1 , resnet_time_scale_shift='default' if norm_type == 'group' else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=lowerCamelCase_ , temb_channels=lowerCamelCase_ , ) # up _snake_case : Tuple = list(reversed(lowerCamelCase_ ) ) _snake_case : Tuple = reversed_block_out_channels[0] for i, up_block_type in enumerate(lowerCamelCase_ ): _snake_case : int = output_channel _snake_case : Any = reversed_block_out_channels[i] _snake_case : Any = i == len(lowerCamelCase_ ) - 1 _snake_case : Tuple = get_up_block( lowerCamelCase_ , num_layers=self.layers_per_block + 1 , in_channels=lowerCamelCase_ , out_channels=lowerCamelCase_ , prev_output_channel=lowerCamelCase_ , add_upsample=not is_final_block , resnet_eps=1e-6 , resnet_act_fn=lowerCamelCase_ , resnet_groups=lowerCamelCase_ , attention_head_dim=lowerCamelCase_ , temb_channels=lowerCamelCase_ , resnet_time_scale_shift=lowerCamelCase_ , ) self.up_blocks.append(lowerCamelCase_ ) _snake_case : Dict = output_channel # out if norm_type == "spatial": _snake_case : Dict = SpatialNorm(block_out_channels[0] , lowerCamelCase_ ) else: _snake_case : int = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=lowerCamelCase_ , eps=1e-6 ) _snake_case : Optional[Any] = nn.SiLU() _snake_case : Optional[int] = nn.Convad(block_out_channels[0] , lowerCamelCase_ , 3 , padding=1 ) _snake_case : List[Any] = False def __UpperCAmelCase ( self : List[str] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : List[Any]=None ): '''simple docstring''' _snake_case : Tuple = z _snake_case : Any = self.conv_in(lowerCamelCase_ ) _snake_case : List[str] = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(lowerCamelCase_ : int ): def custom_forward(*lowerCamelCase_ : Dict ): return module(*lowerCamelCase_ ) return custom_forward if is_torch_version('>=' , '1.11.0' ): # middle _snake_case : List[Any] = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , lowerCamelCase_ , lowerCamelCase_ , use_reentrant=lowerCamelCase_ ) _snake_case : List[str] = sample.to(lowerCamelCase_ ) # up for up_block in self.up_blocks: _snake_case : List[str] = torch.utils.checkpoint.checkpoint( create_custom_forward(lowerCamelCase_ ) , lowerCamelCase_ , lowerCamelCase_ , use_reentrant=lowerCamelCase_ ) else: # middle _snake_case : str = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , lowerCamelCase_ , lowerCamelCase_ ) _snake_case : Optional[int] = sample.to(lowerCamelCase_ ) # up for up_block in self.up_blocks: _snake_case : Dict = torch.utils.checkpoint.checkpoint(create_custom_forward(lowerCamelCase_ ) , lowerCamelCase_ , lowerCamelCase_ ) else: # middle _snake_case : List[Any] = self.mid_block(lowerCamelCase_ , lowerCamelCase_ ) _snake_case : Any = sample.to(lowerCamelCase_ ) # up for up_block in self.up_blocks: _snake_case : str = up_block(lowerCamelCase_ , lowerCamelCase_ ) # post-process if latent_embeds is None: _snake_case : Tuple = self.conv_norm_out(lowerCamelCase_ ) else: _snake_case : List[Any] = self.conv_norm_out(lowerCamelCase_ , lowerCamelCase_ ) _snake_case : Optional[Any] = self.conv_act(lowerCamelCase_ ) _snake_case : Union[str, Any] = self.conv_out(lowerCamelCase_ ) return sample class lowercase ( nn.Module ): """simple docstring""" def __init__( self : Optional[Any] , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Dict , lowerCamelCase_ : Union[str, Any]=None , lowerCamelCase_ : List[Any]="random" , lowerCamelCase_ : Union[str, Any]=False , lowerCamelCase_ : str=True ): '''simple docstring''' super().__init__() _snake_case : Optional[int] = n_e _snake_case : Dict = vq_embed_dim _snake_case : int = beta _snake_case : List[Any] = legacy _snake_case : Optional[int] = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) _snake_case : List[Any] = remap if self.remap is not None: self.register_buffer('used' , torch.tensor(np.load(self.remap ) ) ) _snake_case : str = self.used.shape[0] _snake_case : str = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": _snake_case : Union[str, Any] = self.re_embed _snake_case : int = self.re_embed + 1 print( f'''Remapping {self.n_e} indices to {self.re_embed} indices. ''' f'''Using {self.unknown_index} for unknown indices.''' ) else: _snake_case : List[Any] = n_e _snake_case : List[str] = sane_index_shape def __UpperCAmelCase ( self : List[Any] , lowerCamelCase_ : str ): '''simple docstring''' _snake_case : List[str] = inds.shape assert len(lowerCamelCase_ ) > 1 _snake_case : Union[str, Any] = inds.reshape(ishape[0] , -1 ) _snake_case : List[str] = self.used.to(lowerCamelCase_ ) _snake_case : List[Any] = (inds[:, :, None] == used[None, None, ...]).long() _snake_case : Union[str, Any] = match.argmax(-1 ) _snake_case : Optional[int] = match.sum(2 ) < 1 if self.unknown_index == "random": _snake_case : str = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: _snake_case : Tuple = self.unknown_index return new.reshape(lowerCamelCase_ ) def __UpperCAmelCase ( self : Dict , lowerCamelCase_ : Any ): '''simple docstring''' _snake_case : Dict = inds.shape assert len(lowerCamelCase_ ) > 1 _snake_case : str = inds.reshape(ishape[0] , -1 ) _snake_case : Dict = self.used.to(lowerCamelCase_ ) if self.re_embed > self.used.shape[0]: # extra token _snake_case : Tuple = 0 # simply set to zero _snake_case : Union[str, Any] = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , lowerCamelCase_ ) return back.reshape(lowerCamelCase_ ) def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : Optional[Any] ): '''simple docstring''' _snake_case : Tuple = z.permute(0 , 2 , 3 , 1 ).contiguous() _snake_case : Tuple = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z _snake_case : Optional[Any] = torch.argmin(torch.cdist(lowerCamelCase_ , self.embedding.weight ) , dim=1 ) _snake_case : Any = self.embedding(lowerCamelCase_ ).view(z.shape ) _snake_case : Union[str, Any] = None _snake_case : Dict = None # compute loss for embedding if not self.legacy: _snake_case : List[Any] = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: _snake_case : Optional[int] = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients _snake_case : Tuple = z + (z_q - z).detach() # reshape back to match original input shape _snake_case : Dict = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: _snake_case : Tuple = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis _snake_case : Union[str, Any] = self.remap_to_used(lowerCamelCase_ ) _snake_case : Union[str, Any] = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: _snake_case : int = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def __UpperCAmelCase ( self : Optional[int] , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : List[str] ): '''simple docstring''' if self.remap is not None: _snake_case : Union[str, Any] = indices.reshape(shape[0] , -1 ) # add batch axis _snake_case : Tuple = self.unmap_to_all(lowerCamelCase_ ) _snake_case : Optional[Any] = indices.reshape(-1 ) # flatten again # get quantized latent vectors _snake_case : Any = self.embedding(lowerCamelCase_ ) if shape is not None: _snake_case : Tuple = z_q.view(lowerCamelCase_ ) # reshape back to match original input shape _snake_case : List[str] = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class lowercase ( a_ ): """simple docstring""" def __init__( self : List[str] , lowerCamelCase_ : Tuple , lowerCamelCase_ : List[str]=False ): '''simple docstring''' _snake_case : List[str] = parameters _snake_case , _snake_case : Tuple = torch.chunk(lowerCamelCase_ , 2 , dim=1 ) _snake_case : Dict = torch.clamp(self.logvar , -30.0 , 20.0 ) _snake_case : Optional[Any] = deterministic _snake_case : str = torch.exp(0.5 * self.logvar ) _snake_case : Optional[Any] = torch.exp(self.logvar ) if self.deterministic: _snake_case : Any = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : Optional[torch.Generator] = None ): '''simple docstring''' _snake_case : Tuple = randn_tensor( self.mean.shape , generator=lowerCamelCase_ , device=self.parameters.device , dtype=self.parameters.dtype ) _snake_case : Union[str, Any] = self.mean + self.std * sample return x def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : Optional[Any]=None ): '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def __UpperCAmelCase ( self : str , lowerCamelCase_ : Tuple , lowerCamelCase_ : Optional[int]=[1, 2, 3] ): '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) _snake_case : Optional[int] = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=lowerCamelCase_ ) def __UpperCAmelCase ( self : str ): '''simple docstring''' return self.mean
652
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase_ : Any = { '''configuration_canine''': ['''CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CanineConfig'''], '''tokenization_canine''': ['''CanineTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Optional[Any] = [ '''CANINE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CanineForMultipleChoice''', '''CanineForQuestionAnswering''', '''CanineForSequenceClassification''', '''CanineForTokenClassification''', '''CanineLayer''', '''CanineModel''', '''CaninePreTrainedModel''', '''load_tf_weights_in_canine''', ] if TYPE_CHECKING: from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig from .tokenization_canine import CanineTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_canine import ( CANINE_PRETRAINED_MODEL_ARCHIVE_LIST, CanineForMultipleChoice, CanineForQuestionAnswering, CanineForSequenceClassification, CanineForTokenClassification, CanineLayer, CanineModel, CaninePreTrainedModel, load_tf_weights_in_canine, ) else: import sys lowercase_ : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
652
1
'''simple docstring''' def _SCREAMING_SNAKE_CASE ( lowerCamelCase__ : int ): '''simple docstring''' if p < 2: raise ValueError("""p should not be less than 2!""" ) elif p == 2: return True A: Optional[int] = 4 A: Tuple = (1 << p) - 1 for _ in range(p - 2 ): A: List[Any] = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(11))
135
'''simple docstring''' import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __SCREAMING_SNAKE_CASE : Optional[Any] =logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : Tuple ={'vocab_file': 'spiece.model'} __SCREAMING_SNAKE_CASE : Any ={ 'vocab_file': { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/spiece.model', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/spiece.model', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/spiece.model', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/spiece.model', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model', } } __SCREAMING_SNAKE_CASE : Optional[Any] ={ 'albert-base-v1': 512, 'albert-large-v1': 512, 'albert-xlarge-v1': 512, 'albert-xxlarge-v1': 512, 'albert-base-v2': 512, 'albert-large-v2': 512, 'albert-xlarge-v2': 512, 'albert-xxlarge-v2': 512, } __SCREAMING_SNAKE_CASE : Optional[Any] ='▁' class SCREAMING_SNAKE_CASE__ ( snake_case_ ): """simple docstring""" A__ : Any = VOCAB_FILES_NAMES A__ : Any = PRETRAINED_VOCAB_FILES_MAP A__ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , A , A=True , A=True , A=False , A="[CLS]" , A="[SEP]" , A="<unk>" , A="[SEP]" , A="<pad>" , A="[CLS]" , A="[MASK]" , A = None , **A , ) -> None: # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. A: Optional[int] = ( AddedToken(A , lstrip=A , rstrip=A , normalized=A ) if isinstance(A , A ) else mask_token ) A: Tuple = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=A , remove_space=A , keep_accents=A , bos_token=A , eos_token=A , unk_token=A , sep_token=A , pad_token=A , cls_token=A , mask_token=A , sp_model_kwargs=self.sp_model_kwargs , **A , ) A: Tuple = do_lower_case A: Optional[Any] = remove_space A: int = keep_accents A: str = vocab_file A: Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(A ) @property def a__ ( self ) -> Dict: return len(self.sp_model ) def a__ ( self ) -> Any: A: Optional[Any] = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> List[str]: A: List[Any] = self.__dict__.copy() A: List[str] = None return state def __setstate__( self , A ) -> Dict: A: str = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): A: Tuple = {} A: Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def a__ ( self , A ) -> List[Any]: if self.remove_space: A: str = """ """.join(inputs.strip().split() ) else: A: Optional[Any] = inputs A: int = outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" ) if not self.keep_accents: A: Tuple = unicodedata.normalize("""NFKD""" , A ) A: Optional[Any] = """""".join([c for c in outputs if not unicodedata.combining(A )] ) if self.do_lower_case: A: Tuple = outputs.lower() return outputs def a__ ( self , A ) -> List[str]: A: List[str] = self.preprocess_text(A ) A: str = self.sp_model.encode(A , out_type=A ) A: str = [] for piece in pieces: if len(A ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit(): A: Any = self.sp_model.EncodeAsPieces(piece[:-1].replace(A , """""" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: A: List[Any] = cur_pieces[1:] else: A: Union[str, Any] = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(A ) else: new_pieces.append(A ) return new_pieces def a__ ( self , A ) -> Tuple: return self.sp_model.PieceToId(A ) def a__ ( self , A ) -> List[str]: return self.sp_model.IdToPiece(A ) def a__ ( self , A ) -> Any: A: Any = [] A: Dict = """""" A: int = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(A ) + token A: Dict = True A: str = [] else: current_sub_tokens.append(A ) A: List[Any] = False out_string += self.sp_model.decode(A ) return out_string.strip() def a__ ( self , A , A = None ) -> List[int]: A: Any = [self.sep_token_id] A: Optional[Any] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def a__ ( self , A , A = None , A = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A , token_ids_a=A , already_has_special_tokens=A ) if token_ids_a is not None: return [1] + ([0] * len(A )) + [1] + ([0] * len(A )) + [1] return [1] + ([0] * len(A )) + [1] def a__ ( self , A , A = None ) -> List[int]: A: List[str] = [self.sep_token_id] A: List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def a__ ( self , A , A = None ) -> Tuple[str]: if not os.path.isdir(A ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return A: Tuple = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , A ) elif not os.path.isfile(self.vocab_file ): with open(A , """wb""" ) as fi: A: Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(A ) return (out_vocab_file,)
135
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A_ : Tuple = { "configuration_biogpt": ["BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BioGptConfig"], "tokenization_biogpt": ["BioGptTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Tuple = [ "BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST", "BioGptForCausalLM", "BioGptForTokenClassification", "BioGptForSequenceClassification", "BioGptModel", "BioGptPreTrainedModel", ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys A_ : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
419
'''simple docstring''' import json import os import shutil import tempfile from unittest import TestCase from transformers import BartTokenizer, BartTokenizerFast, DPRQuestionEncoderTokenizer, DPRQuestionEncoderTokenizerFast from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_tokenizers, require_torch, slow from transformers.utils import is_datasets_available, is_faiss_available, is_torch_available if is_torch_available() and is_datasets_available() and is_faiss_available(): from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.tokenization_rag import RagTokenizer @require_faiss @require_torch class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __UpperCamelCase ( self ): snake_case__ : int = tempfile.mkdtemp() snake_case__ : Optional[int] = 8 # DPR tok snake_case__ : List[Any] = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] snake_case__ : Optional[int] = os.path.join(self.tmpdirname , """dpr_tokenizer""" ) os.makedirs(__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE ) snake_case__ : str = os.path.join(__SCREAMING_SNAKE_CASE , DPR_VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) # BART tok snake_case__ : List[Any] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] snake_case__ : Dict = dict(zip(__SCREAMING_SNAKE_CASE , range(len(__SCREAMING_SNAKE_CASE ) ) ) ) snake_case__ : Dict = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] snake_case__ : Optional[Any] = {"""unk_token""": """<unk>"""} snake_case__ : Dict = os.path.join(self.tmpdirname , """bart_tokenizer""" ) os.makedirs(__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE ) snake_case__ : str = os.path.join(__SCREAMING_SNAKE_CASE , BART_VOCAB_FILES_NAMES["""vocab_file"""] ) snake_case__ : Optional[int] = os.path.join(__SCREAMING_SNAKE_CASE , BART_VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__SCREAMING_SNAKE_CASE ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(__SCREAMING_SNAKE_CASE ) ) def __UpperCamelCase ( self ): return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , """dpr_tokenizer""" ) ) def __UpperCamelCase ( self ): return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , """bart_tokenizer""" ) ) def __UpperCamelCase ( self ): shutil.rmtree(self.tmpdirname ) @require_tokenizers def __UpperCamelCase ( self ): snake_case__ : Optional[int] = os.path.join(self.tmpdirname , """rag_tokenizer""" ) snake_case__ : str = RagConfig(question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() ) snake_case__ : List[Any] = RagTokenizer(question_encoder=self.get_dpr_tokenizer() , generator=self.get_bart_tokenizer() ) rag_config.save_pretrained(__SCREAMING_SNAKE_CASE ) rag_tokenizer.save_pretrained(__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[int] = RagTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE , config=__SCREAMING_SNAKE_CASE ) self.assertIsInstance(new_rag_tokenizer.question_encoder , __SCREAMING_SNAKE_CASE ) self.assertEqual(new_rag_tokenizer.question_encoder.get_vocab() , rag_tokenizer.question_encoder.get_vocab() ) self.assertIsInstance(new_rag_tokenizer.generator , __SCREAMING_SNAKE_CASE ) self.assertEqual(new_rag_tokenizer.generator.get_vocab() , rag_tokenizer.generator.get_vocab() ) @slow def __UpperCamelCase ( self ): snake_case__ : Optional[int] = RagTokenizer.from_pretrained("""facebook/rag-token-nq""" ) snake_case__ : List[Any] = [ """who got the first nobel prize in physics""", """when is the next deadpool movie being released""", """which mode is used for short wave broadcast service""", """who is the owner of reading football club""", """when is the next scandal episode coming out""", """when is the last time the philadelphia won the superbowl""", """what is the most current adobe flash player version""", """how many episodes are there in dragon ball z""", """what is the first step in the evolution of the eye""", """where is gall bladder situated in human body""", """what is the main mineral in lithium batteries""", """who is the president of usa right now""", """where do the greasers live in the outsiders""", """panda is a national animal of which country""", """what is the name of manchester united stadium""", ] snake_case__ : Tuple = tokenizer(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) @slow def __UpperCamelCase ( self ): snake_case__ : str = RagTokenizer.from_pretrained("""facebook/rag-sequence-nq""" ) snake_case__ : Optional[Any] = [ """who got the first nobel prize in physics""", """when is the next deadpool movie being released""", """which mode is used for short wave broadcast service""", """who is the owner of reading football club""", """when is the next scandal episode coming out""", """when is the last time the philadelphia won the superbowl""", """what is the most current adobe flash player version""", """how many episodes are there in dragon ball z""", """what is the first step in the evolution of the eye""", """where is gall bladder situated in human body""", """what is the main mineral in lithium batteries""", """who is the president of usa right now""", """where do the greasers live in the outsiders""", """panda is a national animal of which country""", """what is the name of manchester united stadium""", ] snake_case__ : List[Any] = tokenizer(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE )
419
1
__a : Optional[Any] = [ (1000, "M"), (900, "CM"), (500, "D"), (400, "CD"), (100, "C"), (90, "XC"), (50, "L"), (40, "XL"), (10, "X"), (9, "IX"), (5, "V"), (4, "IV"), (1, "I"), ] def _SCREAMING_SNAKE_CASE ( __lowercase : str ) -> int: """simple docstring""" __A = {"""I""": 1, """V""": 5, """X""": 1_0, """L""": 5_0, """C""": 1_0_0, """D""": 5_0_0, """M""": 1_0_0_0} __A = 0 __A = 0 while place < len(__lowercase ): if (place + 1 < len(__lowercase )) and (vals[roman[place]] < vals[roman[place + 1]]): total += vals[roman[place + 1]] - vals[roman[place]] place += 2 else: total += vals[roman[place]] place += 1 return total def _SCREAMING_SNAKE_CASE ( __lowercase : int ) -> str: """simple docstring""" __A = [] for arabic, roman in ROMAN: ((__A) , (__A)) = divmod(__lowercase , __lowercase ) result.append(roman * factor ) if number == 0: break return "".join(__lowercase ) if __name__ == "__main__": import doctest doctest.testmod()
637
import unittest from transformers import SqueezeBertConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, ) class __lowercase ( lowercase_ ): '''simple docstring''' def __init__( self : Optional[int] , UpperCamelCase_ : Tuple , UpperCamelCase_ : List[str]=13 , UpperCamelCase_ : int=7 , UpperCamelCase_ : Dict=True , UpperCamelCase_ : int=True , UpperCamelCase_ : str=False , UpperCamelCase_ : Dict=True , UpperCamelCase_ : Union[str, Any]=99 , UpperCamelCase_ : Any=32 , UpperCamelCase_ : Union[str, Any]=5 , UpperCamelCase_ : List[str]=4 , UpperCamelCase_ : Union[str, Any]=64 , UpperCamelCase_ : Any="gelu" , UpperCamelCase_ : str=0.1 , UpperCamelCase_ : List[Any]=0.1 , UpperCamelCase_ : int=512 , UpperCamelCase_ : Dict=16 , UpperCamelCase_ : List[str]=2 , UpperCamelCase_ : int=0.02 , UpperCamelCase_ : Dict=3 , UpperCamelCase_ : List[Any]=4 , UpperCamelCase_ : int=None , UpperCamelCase_ : Any=2 , UpperCamelCase_ : Any=2 , UpperCamelCase_ : int=2 , UpperCamelCase_ : Optional[Any]=2 , UpperCamelCase_ : str=4 , UpperCamelCase_ : List[str]=1 , ): """simple docstring""" __A = parent __A = batch_size __A = seq_length __A = is_training __A = use_input_mask __A = use_token_type_ids __A = use_labels __A = vocab_size __A = hidden_size __A = num_hidden_layers __A = num_attention_heads __A = intermediate_size __A = hidden_act __A = hidden_dropout_prob __A = attention_probs_dropout_prob __A = max_position_embeddings __A = type_vocab_size __A = type_sequence_label_size __A = initializer_range __A = num_labels __A = num_choices __A = scope __A = q_groups __A = k_groups __A = v_groups __A = post_attention_groups __A = intermediate_groups __A = output_groups def lowerCAmelCase_ ( self : Dict ): """simple docstring""" __A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __A = None if self.use_input_mask: __A = random_attention_mask([self.batch_size, self.seq_length] ) __A = None __A = None __A = None if self.use_labels: __A = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __A = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __A = ids_tensor([self.batch_size] , self.num_choices ) __A = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase_ ( self : Any ): """simple docstring""" return SqueezeBertConfig( embedding_size=self.hidden_size , vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , attention_probs_dropout_prob=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , q_groups=self.q_groups , k_groups=self.k_groups , v_groups=self.v_groups , post_attention_groups=self.post_attention_groups , intermediate_groups=self.intermediate_groups , output_groups=self.output_groups , ) def lowerCAmelCase_ ( self : Tuple , UpperCamelCase_ : List[Any] , UpperCamelCase_ : int , UpperCamelCase_ : int , UpperCamelCase_ : List[Any] , UpperCamelCase_ : int , UpperCamelCase_ : Dict ): """simple docstring""" __A = SqueezeBertModel(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __A = model(UpperCamelCase_ , UpperCamelCase_ ) __A = model(UpperCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase_ ( self : List[str] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : str , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : List[str] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Optional[int] ): """simple docstring""" __A = SqueezeBertForMaskedLM(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __A = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase_ ( self : Optional[int] , UpperCamelCase_ : int , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Optional[Any] ): """simple docstring""" __A = SqueezeBertForQuestionAnswering(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __A = model( UpperCamelCase_ , attention_mask=UpperCamelCase_ , start_positions=UpperCamelCase_ , end_positions=UpperCamelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase_ ( self : str , UpperCamelCase_ : Tuple , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Any , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Any ): """simple docstring""" __A = self.num_labels __A = SqueezeBertForSequenceClassification(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __A = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase_ ( self : Any , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : str , UpperCamelCase_ : Dict , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Dict , UpperCamelCase_ : int ): """simple docstring""" __A = self.num_labels __A = SqueezeBertForTokenClassification(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __A = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase_ ( self : Tuple , UpperCamelCase_ : List[str] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Tuple , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Dict ): """simple docstring""" __A = self.num_choices __A = SqueezeBertForMultipleChoice(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __A = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __A = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __A = model( UpperCamelCase_ , attention_mask=UpperCamelCase_ , labels=UpperCamelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase_ ( self : int ): """simple docstring""" __A = self.prepare_config_and_inputs() ((__A) , (__A) , (__A) , (__A) , (__A) , (__A)) = config_and_inputs __A = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __lowercase ( lowercase_ , lowercase_ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = ( ( SqueezeBertModel, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, ) if is_torch_available() else None ) SCREAMING_SNAKE_CASE = ( { "feature-extraction": SqueezeBertModel, "fill-mask": SqueezeBertForMaskedLM, "question-answering": SqueezeBertForQuestionAnswering, "text-classification": SqueezeBertForSequenceClassification, "token-classification": SqueezeBertForTokenClassification, "zero-shot": SqueezeBertForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = False def lowerCAmelCase_ ( self : Tuple ): """simple docstring""" __A = SqueezeBertModelTester(self ) __A = ConfigTester(self , config_class=UpperCamelCase_ , dim=37 ) def lowerCAmelCase_ ( self : Optional[Any] ): """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase_ ( self : str ): """simple docstring""" __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_model(*UpperCamelCase_ ) def lowerCAmelCase_ ( self : Union[str, Any] ): """simple docstring""" __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_masked_lm(*UpperCamelCase_ ) def lowerCAmelCase_ ( self : Union[str, Any] ): """simple docstring""" __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_question_answering(*UpperCamelCase_ ) def lowerCAmelCase_ ( self : Any ): """simple docstring""" __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_sequence_classification(*UpperCamelCase_ ) def lowerCAmelCase_ ( self : Union[str, Any] ): """simple docstring""" __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_token_classification(*UpperCamelCase_ ) def lowerCAmelCase_ ( self : Dict ): """simple docstring""" __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_multiple_choice(*UpperCamelCase_ ) @slow def lowerCAmelCase_ ( self : int ): """simple docstring""" for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A = SqueezeBertModel.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) @require_sentencepiece @require_tokenizers @require_torch class __lowercase ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase_ ( self : Optional[int] ): """simple docstring""" __A = SqueezeBertForSequenceClassification.from_pretrained("""squeezebert/squeezebert-mnli""" ) __A = torch.tensor([[1, 29_414, 232, 328, 740, 1_140, 12_695, 69, 13, 1_588, 2]] ) __A = model(UpperCamelCase_ )[0] __A = torch.Size((1, 3) ) self.assertEqual(output.shape , UpperCamelCase_ ) __A = torch.tensor([[0.6401, -0.0349, -0.6041]] ) self.assertTrue(torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1e-4 ) )
637
1
"""simple docstring""" import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase = """▁""" UpperCamelCase = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece class UpperCamelCase__ ( _lowerCAmelCase , unittest.TestCase ): """simple docstring""" A__ : Any = BertGenerationTokenizer A__ : Optional[Any] = False A__ : Tuple = True def snake_case__ ( self ) -> int: super().setUp() A__ = BertGenerationTokenizer(SCREAMING_SNAKE_CASE__ , keep_accents=SCREAMING_SNAKE_CASE__ ) tokenizer.save_pretrained(self.tmpdirname ) def snake_case__ ( self ) -> str: A__ = "<s>" A__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) def snake_case__ ( self ) -> Optional[Any]: A__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<unk>" ) self.assertEqual(vocab_keys[1] , "<s>" ) self.assertEqual(vocab_keys[-1] , "<pad>" ) self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , 1002 ) def snake_case__ ( self ) -> Optional[int]: self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def snake_case__ ( self ) -> List[str]: A__ = BertGenerationTokenizer(SCREAMING_SNAKE_CASE__ , keep_accents=SCREAMING_SNAKE_CASE__ ) A__ = tokenizer.tokenize("This is a test" ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) , [285, 46, 10, 170, 382] , ) A__ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( SCREAMING_SNAKE_CASE__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) A__ = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) self.assertListEqual( SCREAMING_SNAKE_CASE__ , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) A__ = tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ) self.assertListEqual( SCREAMING_SNAKE_CASE__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) @cached_property def snake_case__ ( self ) -> Any: return BertGenerationTokenizer.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder" ) @slow def snake_case__ ( self ) -> List[Any]: A__ = "Hello World!" A__ = [18536, 2260, 101] self.assertListEqual(SCREAMING_SNAKE_CASE__ , self.big_tokenizer.encode(SCREAMING_SNAKE_CASE__ ) ) @slow def snake_case__ ( self ) -> Optional[Any]: A__ = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth" ) A__ = [ 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 34324, 497, 391, 408, 11342, 1244, 385, 100, 938, 985, 456, 574, 362, 12597, 3200, 3129, 1172, ] self.assertListEqual(SCREAMING_SNAKE_CASE__ , self.big_tokenizer.encode(SCREAMING_SNAKE_CASE__ ) ) @require_torch @slow def snake_case__ ( self ) -> Any: import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence A__ = list(self.big_tokenizer.get_vocab().keys() )[:10] A__ = " ".join(SCREAMING_SNAKE_CASE__ ) A__ = self.big_tokenizer.encode_plus(SCREAMING_SNAKE_CASE__ , return_tensors="pt" , return_token_type_ids=SCREAMING_SNAKE_CASE__ ) A__ = self.big_tokenizer.batch_encode_plus( [sequence + " " + sequence] , return_tensors="pt" , return_token_type_ids=SCREAMING_SNAKE_CASE__ ) A__ = BertGenerationConfig() A__ = BertGenerationEncoder(SCREAMING_SNAKE_CASE__ ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**SCREAMING_SNAKE_CASE__ ) model(**SCREAMING_SNAKE_CASE__ ) @slow def snake_case__ ( self ) -> Union[str, Any]: # fmt: off A__ = {"input_ids": [[39286, 458, 36335, 2001, 456, 13073, 13266, 455, 113, 7746, 1741, 11157, 391, 13073, 13266, 455, 113, 3967, 35412, 113, 4936, 109, 3870, 2377, 113, 30084, 45720, 458, 134, 17496, 112, 503, 11672, 113, 118, 112, 5665, 13347, 38687, 112, 1496, 31389, 112, 3268, 47264, 134, 962, 112, 16377, 8035, 23130, 430, 12169, 15518, 28592, 458, 146, 41697, 109, 391, 12169, 15518, 16689, 458, 146, 41358, 109, 452, 726, 4034, 111, 763, 35412, 5082, 388, 1903, 111, 9051, 391, 2870, 48918, 1900, 1123, 550, 998, 112, 9586, 15985, 455, 391, 410, 22955, 37636, 114], [448, 17496, 419, 3663, 385, 763, 113, 27533, 2870, 3283, 13043, 1639, 24713, 523, 656, 24013, 18550, 2521, 517, 27014, 21244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 11786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2169, 7687, 21932, 18146, 726, 363, 17032, 3391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=SCREAMING_SNAKE_CASE__ , model_name="google/bert_for_seq_generation_L-24_bbc_encoder" , revision="c817d1fd1be2ffa69431227a1fe320544943d4db" , )
562
"""simple docstring""" import numpy as np def _lowerCamelCase ( UpperCAmelCase_ : np.array ) -> np.array: """simple docstring""" return 1 / (1 + np.exp(-vector )) def _lowerCamelCase ( UpperCAmelCase_ : np.array ) -> np.array: """simple docstring""" return vector * sigmoid(1.702 * vector ) if __name__ == "__main__": import doctest doctest.testmod()
562
1
"""simple docstring""" class lowercase_ : '''simple docstring''' def __init__( self : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : int ): _A = None _A = None _A = graph self._normalize_graph(_UpperCAmelCase , _UpperCAmelCase ) _A = len(_UpperCAmelCase ) _A = None def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict ): if sources is int: _A = [sources] if sinks is int: _A = [sinks] if len(_UpperCAmelCase ) == 0 or len(_UpperCAmelCase ) == 0: return _A = sources[0] _A = sinks[0] # make fake vertex if there are more # than one source or sink if len(_UpperCAmelCase ) > 1 or len(_UpperCAmelCase ) > 1: _A = 0 for i in sources: max_input_flow += sum(self.graph[i] ) _A = len(self.graph ) + 1 for room in self.graph: room.insert(0 , 0 ) self.graph.insert(0 , [0] * size ) for i in sources: _A = max_input_flow _A = 0 _A = len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: _A = max_input_flow _A = size - 1 def lowerCAmelCase_ ( self : Optional[Any] ): if self.maximum_flow_algorithm is None: raise Exception('You need to set maximum flow algorithm before.' ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def lowerCAmelCase_ ( self : List[str] , _UpperCAmelCase : Union[str, Any] ): _A = algorithm(self ) class lowercase_ : '''simple docstring''' def __init__( self : List[Any] , _UpperCAmelCase : Union[str, Any] ): _A = flow_network _A = flow_network.verticesCount _A = flow_network.sourceIndex _A = flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that _A = flow_network.graph _A = False def lowerCAmelCase_ ( self : Optional[Any] ): if not self.executed: self._algorithm() _A = True def lowerCAmelCase_ ( self : int ): pass class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' def __init__( self : int , _UpperCAmelCase : Any ): super().__init__(_UpperCAmelCase ) # use this to save your result _A = -1 def lowerCAmelCase_ ( self : Optional[Any] ): if not self.executed: raise Exception('You should execute algorithm before using its result!' ) return self.maximum_flow class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' def __init__( self : Dict , _UpperCAmelCase : List[Any] ): super().__init__(_UpperCAmelCase ) _A = [[0] * self.verticies_count for i in range(self.verticies_count )] _A = [0] * self.verticies_count _A = [0] * self.verticies_count def lowerCAmelCase_ ( self : Dict ): _A = self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule _A = [ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list _A = 0 while i < len(_UpperCAmelCase ): _A = vertices_list[i] _A = self.heights[vertex_index] self.process_vertex(_UpperCAmelCase ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 , vertices_list.pop(_UpperCAmelCase ) ) _A = 0 else: i += 1 _A = sum(self.preflow[self.source_index] ) def lowerCAmelCase_ ( self : int , _UpperCAmelCase : Any ): while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(_UpperCAmelCase , _UpperCAmelCase ) self.relabel(_UpperCAmelCase ) def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : Tuple , _UpperCAmelCase : Tuple ): _A = min( self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , ) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def lowerCAmelCase_ ( self : Union[str, Any] , _UpperCAmelCase : int ): _A = None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): _A = self.heights[to_index] if min_height is not None: _A = min_height + 1 if __name__ == "__main__": a = [0] a = [3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] a = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network a = FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate a = flow_network.find_maximum_flow() print(F'''maximum flow is {maximum_flow}''')
7
from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging lowercase : int = logging.get_logger(__name__) class a__ ( __SCREAMING_SNAKE_CASE ): _A = ["pixel_values"] def __init__( self : Optional[Any] , A_ : bool = True , A_ : Union[int, float] = 1 / 2_55 , A_ : bool = True , A_ : int = 8 , **A_ : Dict , ) -> None: """simple docstring""" super().__init__(**A_ ) lowerCamelCase_: str = do_rescale lowerCamelCase_: List[str] = rescale_factor lowerCamelCase_: Dict = do_pad lowerCamelCase_: List[Any] = pad_size def lowerCAmelCase ( self : Tuple , A_ : np.ndarray , A_ : float , A_ : Optional[Union[str, ChannelDimension]] = None , **A_ : Dict ) -> np.ndarray: """simple docstring""" return rescale(A_ , scale=A_ , data_format=A_ , **A_ ) def lowerCAmelCase ( self : Optional[int] , A_ : np.ndarray , A_ : int , A_ : Optional[Union[str, ChannelDimension]] = None ) -> Tuple: """simple docstring""" lowerCamelCase_ , lowerCamelCase_: Optional[int] = get_image_size(A_ ) lowerCamelCase_: Tuple = (old_height // size + 1) * size - old_height lowerCamelCase_: Optional[Any] = (old_width // size + 1) * size - old_width return pad(A_ , ((0, pad_height), (0, pad_width)) , mode="""symmetric""" , data_format=A_ ) def lowerCAmelCase ( self : str , A_ : ImageInput , A_ : Optional[bool] = None , A_ : Optional[float] = None , A_ : Optional[bool] = None , A_ : Optional[int] = None , A_ : Optional[Union[str, TensorType]] = None , A_ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **A_ : str , ) -> Dict: """simple docstring""" lowerCamelCase_: str = do_rescale if do_rescale is not None else self.do_rescale lowerCamelCase_: Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCamelCase_: Union[str, Any] = do_pad if do_pad is not None else self.do_pad lowerCamelCase_: List[Any] = pad_size if pad_size is not None else self.pad_size lowerCamelCase_: Optional[Any] = make_list_of_images(A_ ) if not valid_images(A_ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) # All transformations expect numpy arrays. lowerCamelCase_: List[str] = [to_numpy_array(A_ ) for image in images] if do_rescale: lowerCamelCase_: Tuple = [self.rescale(image=A_ , scale=A_ ) for image in images] if do_pad: lowerCamelCase_: List[str] = [self.pad(A_ , size=A_ ) for image in images] lowerCamelCase_: Any = [to_channel_dimension_format(A_ , A_ ) for image in images] lowerCamelCase_: Optional[int] = {"""pixel_values""": images} return BatchFeature(data=A_ , tensor_type=A_ )
423
0
'''simple docstring''' def a ( lowerCamelCase__ ): '''simple docstring''' A_ : Optional[int] = [0] * len(lowerCamelCase__ ) A_ : Optional[int] = [] A_ : Any = [] A_ : List[str] = 0 for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(lowerCamelCase__ ) ): if indegree[i] == 0: queue.append(lowerCamelCase__ ) while queue: A_ : str = queue.pop(0 ) cnt += 1 topo.append(lowerCamelCase__ ) for x in graph[vertex]: indegree[x] -= 1 if indegree[x] == 0: queue.append(lowerCamelCase__ ) if cnt != len(lowerCamelCase__ ): print("""Cycle exists""" ) else: print(lowerCamelCase__ ) # Adjacency List of Graph lowerCamelCase :Tuple = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []} topological_sort(graph)
702
'''simple docstring''' import unittest from diffusers.models.unet_ad_blocks import * # noqa F403 from diffusers.utils import torch_device from .test_unet_blocks_common import UNetBlockTesterMixin class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Any = DownBlockaD # noqa F405 __SCREAMING_SNAKE_CASE : List[str] = 'down' def _a (self ): A_ : Dict = [-0.02_32, -0.98_69, 0.80_54, -0.06_37, -0.16_88, -1.42_64, 0.44_70, -1.33_94, 0.09_04] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Dict = ResnetDownsampleBlockaD # noqa F405 __SCREAMING_SNAKE_CASE : Tuple = 'down' def _a (self ): A_ : Optional[int] = [0.07_10, 0.24_10, -0.73_20, -1.07_57, -1.13_43, 0.35_40, -0.01_33, -0.25_76, 0.09_48] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : List[Any] = AttnDownBlockaD # noqa F405 __SCREAMING_SNAKE_CASE : Optional[int] = 'down' def _a (self ): A_ : int = [0.06_36, 0.89_64, -0.62_34, -1.01_31, 0.08_44, 0.49_35, 0.34_37, 0.09_11, -0.29_57] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Dict = CrossAttnDownBlockaD # noqa F405 __SCREAMING_SNAKE_CASE : Optional[int] = 'down' def _a (self ): A_, A_ : str = super().prepare_init_args_and_inputs_for_common() A_ : Optional[Any] = 32 return init_dict, inputs_dict def _a (self ): A_ : List[str] = [0.22_38, -0.73_96, -0.22_55, -0.38_29, 0.19_25, 1.16_65, 0.06_03, -0.72_95, 0.19_83] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Union[str, Any] = SimpleCrossAttnDownBlockaD # noqa F405 __SCREAMING_SNAKE_CASE : List[Any] = 'down' @property def _a (self ): return super().get_dummy_input(include_encoder_hidden_states=lowercase ) def _a (self ): A_, A_ : Any = super().prepare_init_args_and_inputs_for_common() A_ : Union[str, Any] = 32 return init_dict, inputs_dict @unittest.skipIf(torch_device == """mps""" , """MPS result is not consistent""" ) def _a (self ): A_ : int = [0.79_21, -0.09_92, -0.19_62, -0.76_95, -0.42_42, 0.78_04, 0.47_37, 0.27_65, 0.33_38] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : List[str] = SkipDownBlockaD # noqa F405 __SCREAMING_SNAKE_CASE : Optional[int] = 'down' @property def _a (self ): return super().get_dummy_input(include_skip_sample=lowercase ) def _a (self ): A_ : Any = [-0.08_45, -0.20_87, -0.24_65, 0.09_71, 0.19_00, -0.04_84, 0.26_64, 0.41_79, 0.50_69] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : List[str] = AttnSkipDownBlockaD # noqa F405 __SCREAMING_SNAKE_CASE : Union[str, Any] = 'down' @property def _a (self ): return super().get_dummy_input(include_skip_sample=lowercase ) def _a (self ): A_ : int = [0.55_39, 0.16_09, 0.49_24, 0.05_37, -0.19_95, 0.40_50, 0.09_79, -0.27_21, -0.06_42] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Tuple = DownEncoderBlockaD # noqa F405 __SCREAMING_SNAKE_CASE : Any = 'down' @property def _a (self ): return super().get_dummy_input(include_temb=lowercase ) def _a (self ): A_ : int = { """in_channels""": 32, """out_channels""": 32, } A_ : Any = self.dummy_input return init_dict, inputs_dict def _a (self ): A_ : Optional[Any] = [1.11_02, 0.53_02, 0.48_72, -0.00_23, -0.80_42, 0.04_83, -0.34_89, -0.56_32, 0.76_26] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : List[str] = AttnDownEncoderBlockaD # noqa F405 __SCREAMING_SNAKE_CASE : Optional[Any] = 'down' @property def _a (self ): return super().get_dummy_input(include_temb=lowercase ) def _a (self ): A_ : Optional[Any] = { """in_channels""": 32, """out_channels""": 32, } A_ : Optional[Any] = self.dummy_input return init_dict, inputs_dict def _a (self ): A_ : Tuple = [0.89_66, -0.14_86, 0.85_68, 0.81_41, -0.90_46, -0.13_42, -0.09_72, -0.74_17, 0.15_38] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : List[Any] = UNetMidBlockaD # noqa F405 __SCREAMING_SNAKE_CASE : Dict = 'mid' def _a (self ): A_ : Optional[Any] = { """in_channels""": 32, """temb_channels""": 128, } A_ : Any = self.dummy_input return init_dict, inputs_dict def _a (self ): A_ : Optional[int] = [-0.10_62, 1.72_48, 0.34_94, 1.45_69, -0.09_10, -1.24_21, -0.99_84, 0.67_36, 1.00_28] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Any = UNetMidBlockaDCrossAttn # noqa F405 __SCREAMING_SNAKE_CASE : Optional[int] = 'mid' def _a (self ): A_, A_ : Dict = super().prepare_init_args_and_inputs_for_common() A_ : List[str] = 32 return init_dict, inputs_dict def _a (self ): A_ : str = [0.01_87, 2.42_20, 0.44_84, 1.12_03, -0.61_21, -1.51_22, -0.82_70, 0.78_51, 1.83_35] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : str = UNetMidBlockaDSimpleCrossAttn # noqa F405 __SCREAMING_SNAKE_CASE : List[Any] = 'mid' @property def _a (self ): return super().get_dummy_input(include_encoder_hidden_states=lowercase ) def _a (self ): A_, A_ : Tuple = super().prepare_init_args_and_inputs_for_common() A_ : Optional[int] = 32 return init_dict, inputs_dict def _a (self ): A_ : Any = [0.71_43, 1.99_74, 0.54_48, 1.39_77, 0.12_82, -1.12_37, -1.42_38, 0.55_30, 0.88_80] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : List[Any] = UpBlockaD # noqa F405 __SCREAMING_SNAKE_CASE : str = 'up' @property def _a (self ): return super().get_dummy_input(include_res_hidden_states_tuple=lowercase ) def _a (self ): A_ : Union[str, Any] = [-0.20_41, -0.41_65, -0.30_22, 0.00_41, -0.66_28, -0.70_53, 0.19_28, -0.03_25, 0.05_23] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Optional[int] = ResnetUpsampleBlockaD # noqa F405 __SCREAMING_SNAKE_CASE : Dict = 'up' @property def _a (self ): return super().get_dummy_input(include_res_hidden_states_tuple=lowercase ) def _a (self ): A_ : Optional[Any] = [0.22_87, 0.35_49, -0.13_46, 0.47_97, -0.17_15, -0.96_49, 0.73_05, -0.58_64, -0.62_44] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Optional[Any] = CrossAttnUpBlockaD # noqa F405 __SCREAMING_SNAKE_CASE : Any = 'up' @property def _a (self ): return super().get_dummy_input(include_res_hidden_states_tuple=lowercase ) def _a (self ): A_, A_ : Any = super().prepare_init_args_and_inputs_for_common() A_ : Union[str, Any] = 32 return init_dict, inputs_dict def _a (self ): A_ : Union[str, Any] = [-0.14_03, -0.35_15, -0.04_20, -0.14_25, 0.31_67, 0.50_94, -0.21_81, 0.59_31, 0.55_82] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Dict = SimpleCrossAttnUpBlockaD # noqa F405 __SCREAMING_SNAKE_CASE : Tuple = 'up' @property def _a (self ): return super().get_dummy_input(include_res_hidden_states_tuple=lowercase , include_encoder_hidden_states=lowercase ) def _a (self ): A_, A_ : Any = super().prepare_init_args_and_inputs_for_common() A_ : int = 32 return init_dict, inputs_dict def _a (self ): A_ : Any = [0.26_45, 0.14_80, 0.09_09, 0.80_44, -0.97_58, -0.90_83, 0.09_94, -1.14_53, -0.74_02] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Optional[int] = AttnUpBlockaD # noqa F405 __SCREAMING_SNAKE_CASE : List[str] = 'up' @property def _a (self ): return super().get_dummy_input(include_res_hidden_states_tuple=lowercase ) @unittest.skipIf(torch_device == """mps""" , """MPS result is not consistent""" ) def _a (self ): A_ : str = [0.09_79, 0.13_26, 0.00_21, 0.06_59, 0.22_49, 0.00_59, 0.11_32, 0.59_52, 0.10_33] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Any = SkipUpBlockaD # noqa F405 __SCREAMING_SNAKE_CASE : Tuple = 'up' @property def _a (self ): return super().get_dummy_input(include_res_hidden_states_tuple=lowercase ) def _a (self ): A_ : str = [-0.08_93, -0.12_34, -0.15_06, -0.03_32, 0.01_23, -0.02_11, 0.05_66, 0.01_43, 0.03_62] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Tuple = AttnSkipUpBlockaD # noqa F405 __SCREAMING_SNAKE_CASE : List[Any] = 'up' @property def _a (self ): return super().get_dummy_input(include_res_hidden_states_tuple=lowercase ) def _a (self ): A_ : str = [0.03_61, 0.06_17, 0.27_87, -0.03_50, 0.03_42, 0.34_21, -0.08_43, 0.09_13, 0.30_15] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : int = UpDecoderBlockaD # noqa F405 __SCREAMING_SNAKE_CASE : str = 'up' @property def _a (self ): return super().get_dummy_input(include_temb=lowercase ) def _a (self ): A_ : Tuple = {"""in_channels""": 32, """out_channels""": 32} A_ : Optional[int] = self.dummy_input return init_dict, inputs_dict def _a (self ): A_ : str = [0.44_04, 0.19_98, -0.98_86, -0.33_20, -0.31_28, -0.70_34, -0.69_55, -0.23_38, -0.31_37] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Tuple = AttnUpDecoderBlockaD # noqa F405 __SCREAMING_SNAKE_CASE : Dict = 'up' @property def _a (self ): return super().get_dummy_input(include_temb=lowercase ) def _a (self ): A_ : List[Any] = {"""in_channels""": 32, """out_channels""": 32} A_ : Optional[Any] = self.dummy_input return init_dict, inputs_dict def _a (self ): A_ : List[str] = [0.67_38, 0.44_91, 0.10_55, 1.07_10, 0.73_16, 0.33_39, 0.33_52, 0.10_23, 0.35_68] super().test_output(lowercase )
686
0
import json import os import shutil import tempfile from unittest import TestCase from transformers import BartTokenizer, BartTokenizerFast, DPRQuestionEncoderTokenizer, DPRQuestionEncoderTokenizerFast from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_tokenizers, require_torch, slow from transformers.utils import is_datasets_available, is_faiss_available, is_torch_available if is_torch_available() and is_datasets_available() and is_faiss_available(): from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.tokenization_rag import RagTokenizer @require_faiss @require_torch class SCREAMING_SNAKE_CASE ( snake_case ): """simple docstring""" def __A ( self: Any ) -> Tuple: _A = tempfile.mkdtemp() _A = 8 # DPR tok _A = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] _A = os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) os.makedirs(__A , exist_ok=__A ) _A = os.path.join(__A , DPR_VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) # BART tok _A = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] _A = dict(zip(__A , range(len(__A ) ) ) ) _A = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] _A = {'''unk_token''': '''<unk>'''} _A = os.path.join(self.tmpdirname , '''bart_tokenizer''' ) os.makedirs(__A , exist_ok=__A ) _A = os.path.join(__A , BART_VOCAB_FILES_NAMES['''vocab_file'''] ) _A = os.path.join(__A , BART_VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__A ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__A ) ) def __A ( self: List[str] ) -> DPRQuestionEncoderTokenizer: return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) ) def __A ( self: Dict ) -> BartTokenizer: return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''bart_tokenizer''' ) ) def __A ( self: Dict ) -> List[str]: shutil.rmtree(self.tmpdirname ) @require_tokenizers def __A ( self: Union[str, Any] ) -> List[Any]: _A = os.path.join(self.tmpdirname , '''rag_tokenizer''' ) _A = RagConfig(question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() ) _A = RagTokenizer(question_encoder=self.get_dpr_tokenizer() , generator=self.get_bart_tokenizer() ) rag_config.save_pretrained(__A ) rag_tokenizer.save_pretrained(__A ) _A = RagTokenizer.from_pretrained(__A , config=__A ) self.assertIsInstance(new_rag_tokenizer.question_encoder , __A ) self.assertEqual(new_rag_tokenizer.question_encoder.get_vocab() , rag_tokenizer.question_encoder.get_vocab() ) self.assertIsInstance(new_rag_tokenizer.generator , __A ) self.assertEqual(new_rag_tokenizer.generator.get_vocab() , rag_tokenizer.generator.get_vocab() ) @slow def __A ( self: Any ) -> Optional[Any]: _A = RagTokenizer.from_pretrained('''facebook/rag-token-nq''' ) _A = [ '''who got the first nobel prize in physics''', '''when is the next deadpool movie being released''', '''which mode is used for short wave broadcast service''', '''who is the owner of reading football club''', '''when is the next scandal episode coming out''', '''when is the last time the philadelphia won the superbowl''', '''what is the most current adobe flash player version''', '''how many episodes are there in dragon ball z''', '''what is the first step in the evolution of the eye''', '''where is gall bladder situated in human body''', '''what is the main mineral in lithium batteries''', '''who is the president of usa right now''', '''where do the greasers live in the outsiders''', '''panda is a national animal of which country''', '''what is the name of manchester united stadium''', ] _A = tokenizer(__A ) self.assertIsNotNone(__A ) @slow def __A ( self: Union[str, Any] ) -> Optional[int]: _A = RagTokenizer.from_pretrained('''facebook/rag-sequence-nq''' ) _A = [ '''who got the first nobel prize in physics''', '''when is the next deadpool movie being released''', '''which mode is used for short wave broadcast service''', '''who is the owner of reading football club''', '''when is the next scandal episode coming out''', '''when is the last time the philadelphia won the superbowl''', '''what is the most current adobe flash player version''', '''how many episodes are there in dragon ball z''', '''what is the first step in the evolution of the eye''', '''where is gall bladder situated in human body''', '''what is the main mineral in lithium batteries''', '''who is the president of usa right now''', '''where do the greasers live in the outsiders''', '''panda is a national animal of which country''', '''what is the name of manchester united stadium''', ] _A = tokenizer(__A ) self.assertIsNotNone(__A )
484
from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { 'MIT/ast-finetuned-audioset-10-10-0.4593': ( 'https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json' ), } class SCREAMING_SNAKE_CASE ( snake_case ): """simple docstring""" A_ = "audio-spectrogram-transformer" def __init__( self: Optional[Any] , __A: int=7_68 , __A: Optional[Any]=12 , __A: Tuple=12 , __A: Union[str, Any]=30_72 , __A: str="gelu" , __A: str=0.0 , __A: List[Any]=0.0 , __A: List[str]=0.02 , __A: List[str]=1e-12 , __A: Any=16 , __A: Dict=True , __A: Optional[Any]=10 , __A: Union[str, Any]=10 , __A: str=10_24 , __A: Optional[int]=1_28 , **__A: Tuple , ) -> List[Any]: super().__init__(**__A ) _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = intermediate_size _A = hidden_act _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = initializer_range _A = layer_norm_eps _A = patch_size _A = qkv_bias _A = frequency_stride _A = time_stride _A = max_length _A = num_mel_bins
484
1
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer lowerCAmelCase__ =logging.get_logger(__name__) lowerCAmelCase__ ={"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} # See all MVP models at https://huggingface.co/models?filter=mvp lowerCAmelCase__ ={ "vocab_file": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json", }, "added_tokens.json": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json", }, "merges_file": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt", }, "tokenizer_file": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json", }, } lowerCAmelCase__ ={ "RUCAIBox/mvp": 1_024, } class A__( __magic_name__ ): lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = ['''input_ids''', '''attention_mask'''] lowerCAmelCase = MvpTokenizer def __init__( self : Tuple , __SCREAMING_SNAKE_CASE : List[Any]=None , __SCREAMING_SNAKE_CASE : Optional[int]=None , __SCREAMING_SNAKE_CASE : List[str]=None , __SCREAMING_SNAKE_CASE : Tuple="replace" , __SCREAMING_SNAKE_CASE : Any="<s>" , __SCREAMING_SNAKE_CASE : List[str]="</s>" , __SCREAMING_SNAKE_CASE : List[Any]="</s>" , __SCREAMING_SNAKE_CASE : Optional[Any]="<s>" , __SCREAMING_SNAKE_CASE : str="<unk>" , __SCREAMING_SNAKE_CASE : str="<pad>" , __SCREAMING_SNAKE_CASE : Optional[Any]="<mask>" , __SCREAMING_SNAKE_CASE : str=False , __SCREAMING_SNAKE_CASE : Dict=True , **__SCREAMING_SNAKE_CASE : Any , ) -> int: """simple docstring""" super().__init__( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , tokenizer_file=__SCREAMING_SNAKE_CASE , errors=__SCREAMING_SNAKE_CASE , bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) __SCREAMING_SNAKE_CASE = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , __SCREAMING_SNAKE_CASE ) != add_prefix_space: __SCREAMING_SNAKE_CASE = getattr(__SCREAMING_SNAKE_CASE , pre_tok_state.pop('''type''' ) ) __SCREAMING_SNAKE_CASE = add_prefix_space __SCREAMING_SNAKE_CASE = pre_tok_class(**__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` __SCREAMING_SNAKE_CASE = '''post_processor''' __SCREAMING_SNAKE_CASE = getattr(self.backend_tokenizer , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if tokenizer_component_instance: __SCREAMING_SNAKE_CASE = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: __SCREAMING_SNAKE_CASE = tuple(state['''sep'''] ) if "cls" in state: __SCREAMING_SNAKE_CASE = tuple(state['''cls'''] ) __SCREAMING_SNAKE_CASE = False if state.get('''add_prefix_space''' , __SCREAMING_SNAKE_CASE ) != add_prefix_space: __SCREAMING_SNAKE_CASE = add_prefix_space __SCREAMING_SNAKE_CASE = True if state.get('''trim_offsets''' , __SCREAMING_SNAKE_CASE ) != trim_offsets: __SCREAMING_SNAKE_CASE = trim_offsets __SCREAMING_SNAKE_CASE = True if changes_to_apply: __SCREAMING_SNAKE_CASE = getattr(__SCREAMING_SNAKE_CASE , state.pop('''type''' ) ) __SCREAMING_SNAKE_CASE = component_class(**__SCREAMING_SNAKE_CASE ) setattr(self.backend_tokenizer , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) @property def _a ( self : Tuple ) -> str: """simple docstring""" if self._mask_token is None: if self.verbose: logger.error('''Using mask_token, but it is not set yet.''' ) return None return str(self._mask_token ) @mask_token.setter def _a ( self : Dict , __SCREAMING_SNAKE_CASE : Any ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else value __SCREAMING_SNAKE_CASE = value def _a ( self : str , *__SCREAMING_SNAKE_CASE : Optional[int] , **__SCREAMING_SNAKE_CASE : str ) -> BatchEncoding: """simple docstring""" __SCREAMING_SNAKE_CASE = kwargs.get('''is_split_into_words''' , __SCREAMING_SNAKE_CASE ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ '''to use it with pretokenized inputs.''' ) return super()._batch_encode_plus(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def _a ( self : Dict , *__SCREAMING_SNAKE_CASE : List[Any] , **__SCREAMING_SNAKE_CASE : Any ) -> BatchEncoding: """simple docstring""" __SCREAMING_SNAKE_CASE = kwargs.get('''is_split_into_words''' , __SCREAMING_SNAKE_CASE ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ '''to use it with pretokenized inputs.''' ) return super()._encode_plus(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def _a ( self : int , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[str] = None ) -> Tuple[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = self._tokenizer.model.save(__SCREAMING_SNAKE_CASE , name=__SCREAMING_SNAKE_CASE ) return tuple(__SCREAMING_SNAKE_CASE ) def _a ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Any=None ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _a ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None ) -> List[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = [self.sep_token_id] __SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
690
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase__ ={ "configuration_altclip": [ "ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "AltCLIPConfig", "AltCLIPTextConfig", "AltCLIPVisionConfig", ], "processing_altclip": ["AltCLIPProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ =[ "ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "AltCLIPPreTrainedModel", "AltCLIPModel", "AltCLIPTextModel", "AltCLIPVisionModel", ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys lowerCAmelCase__ =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
690
1
def _SCREAMING_SNAKE_CASE ( __lowercase : int , __lowercase : int , __lowercase : int ) -> int: """simple docstring""" if exponent == 1: return base if exponent % 2 == 0: __A = _modexpt(__lowercase , exponent // 2 , __lowercase ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(__lowercase , exponent - 1 , __lowercase )) % modulo_value def _SCREAMING_SNAKE_CASE ( __lowercase : int = 1_7_7_7 , __lowercase : int = 1_8_5_5 , __lowercase : int = 8 ) -> int: """simple docstring""" __A = base for _ in range(1 , __lowercase ): __A = _modexpt(__lowercase , __lowercase , 1_0**digits ) return result if __name__ == "__main__": print(f"""{solution() = }""")
637
from __future__ import annotations def _SCREAMING_SNAKE_CASE ( __lowercase : list[int] , __lowercase : int ) -> bool: """simple docstring""" if len(__lowercase ) == 0: return False __A = len(__lowercase ) // 2 if a_list[midpoint] == item: return True if item < a_list[midpoint]: return binary_search(a_list[:midpoint] , __lowercase ) else: return binary_search(a_list[midpoint + 1 :] , __lowercase ) if __name__ == "__main__": __a : Tuple = input("Enter numbers separated by comma:\n").strip() __a : Any = [int(item.strip()) for item in user_input.split(",")] __a : List[Any] = int(input("Enter the number to be found in the list:\n").strip()) __a : Optional[int] = "" if binary_search(sequence, target) else "not " print(f"""{target} was {not_str}found in {sequence}""")
637
1
"""simple docstring""" import contextlib import faulthandler import io import multiprocessing import os import platform import signal import tempfile def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" A__ =multiprocessing.Manager() A__ =manager.list() A__ =multiprocessing.Process(target=UpperCamelCase__ , args=(check_program, result, timeout) ) p.start() p.join(timeout=timeout + 1 ) if p.is_alive(): p.kill() if not result: result.append('timed out' ) return { "task_id": task_id, "passed": result[0] == "passed", "result": result[0], "completion_id": completion_id, } def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" with create_tempdir(): # These system calls are needed when cleaning up tempdir. import os import shutil A__ =shutil.rmtree A__ =os.rmdir A__ =os.chdir # Disable functionalities that can make destructive changes to the test. reliability_guard() # Run program. try: A__ ={} with swallow_io(): with time_limit(UpperCamelCase__ ): exec(UpperCamelCase__ , UpperCamelCase__ ) result.append('passed' ) except TimeoutException: result.append('timed out' ) except BaseException as e: result.append(F'''failed: {e}''' ) # Needed for cleaning up. A__ =rmtree A__ =rmdir A__ =chdir @contextlib.contextmanager def UpperCAmelCase ( UpperCamelCase__ ): """simple docstring""" def signal_handler(UpperCamelCase__ , UpperCamelCase__ ): raise TimeoutException('Timed out!' ) signal.setitimer(signal.ITIMER_REAL , UpperCamelCase__ ) signal.signal(signal.SIGALRM , UpperCamelCase__ ) try: yield finally: signal.setitimer(signal.ITIMER_REAL , 0 ) @contextlib.contextmanager def UpperCAmelCase ( ): """simple docstring""" A__ =WriteOnlyStringIO() with contextlib.redirect_stdout(UpperCamelCase__ ): with contextlib.redirect_stderr(UpperCamelCase__ ): with redirect_stdin(UpperCamelCase__ ): yield @contextlib.contextmanager def UpperCAmelCase ( ): """simple docstring""" with tempfile.TemporaryDirectory() as dirname: with chdir(UpperCamelCase__ ): yield dirname class UpperCamelCase__( SCREAMING_SNAKE_CASE__ ): pass class UpperCamelCase__( io.StringIO ): def snake_case__ ( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> List[Any]: raise OSError def snake_case__ ( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> str: raise OSError def snake_case__ ( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> List[Any]: raise OSError def snake_case__ ( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> List[Any]: return False class UpperCamelCase__( contextlib._RedirectStream ): # type: ignore lowerCAmelCase__ : Tuple = 'stdin' @contextlib.contextmanager def UpperCAmelCase ( UpperCamelCase__ ): """simple docstring""" if root == ".": yield return A__ =os.getcwd() os.chdir(UpperCamelCase__ ) try: yield except BaseException as exc: raise exc finally: os.chdir(UpperCamelCase__ ) def UpperCAmelCase ( UpperCamelCase__=None ): """simple docstring""" if maximum_memory_bytes is not None: import resource resource.setrlimit(resource.RLIMIT_AS , (maximum_memory_bytes, maximum_memory_bytes) ) resource.setrlimit(resource.RLIMIT_DATA , (maximum_memory_bytes, maximum_memory_bytes) ) if not platform.uname().system == "Darwin": resource.setrlimit(resource.RLIMIT_STACK , (maximum_memory_bytes, maximum_memory_bytes) ) faulthandler.disable() import builtins A__ =None A__ =None import os A__ ="1" A__ =None A__ =None A__ =None A__ =None A__ =None A__ =None A__ =None A__ =None A__ =None A__ =None A__ =None A__ =None A__ =None A__ =None A__ =None A__ =None A__ =None A__ =None A__ =None A__ =None A__ =None A__ =None A__ =None A__ =None A__ =None A__ =None A__ =None import shutil A__ =None A__ =None A__ =None import subprocess A__ =None # type: ignore A__ =None import sys A__ =None A__ =None A__ =None A__ =None A__ =None
719
"""simple docstring""" from __future__ import annotations import pandas as pd def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" A__ = [0] * no_of_processes A__ = [0] * no_of_processes # Copy the burst time into remaining_time[] for i in range(UpperCamelCase__ ): A__ = burst_time[i] A__ = 0 A__ = 0 A__ = 999_999_999 A__ = 0 A__ = False # Process until all processes are completed while complete != no_of_processes: for j in range(UpperCamelCase__ ): if arrival_time[j] <= increment_time and remaining_time[j] > 0: if remaining_time[j] < minm: A__ = remaining_time[j] A__ = j A__ = True if not check: increment_time += 1 continue remaining_time[short] -= 1 A__ = remaining_time[short] if minm == 0: A__ = 999_999_999 if remaining_time[short] == 0: complete += 1 A__ = False # Find finish time of current process A__ = increment_time + 1 # Calculate waiting time A__ = finish_time - arrival_time[short] A__ = finar - burst_time[short] if waiting_time[short] < 0: A__ = 0 # Increment time increment_time += 1 return waiting_time def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" A__ = [0] * no_of_processes for i in range(UpperCamelCase__ ): A__ = burst_time[i] + waiting_time[i] return turn_around_time def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" A__ = 0 A__ = 0 for i in range(UpperCamelCase__ ): A__ = total_waiting_time + waiting_time[i] A__ = total_turn_around_time + turn_around_time[i] print(F'''Average waiting time = {total_waiting_time / no_of_processes:.5f}''' ) print('Average turn around time =' , total_turn_around_time / no_of_processes ) if __name__ == "__main__": print("Enter how many process you want to analyze") __lowerCamelCase = int(input()) __lowerCamelCase = [0] * no_of_processes __lowerCamelCase = [0] * no_of_processes __lowerCamelCase = list(range(1, no_of_processes + 1)) for i in range(no_of_processes): print("Enter the arrival time and burst time for process:--" + str(i + 1)) __lowerCamelCase , __lowerCamelCase = map(int, input().split()) __lowerCamelCase = calculate_waitingtime(arrival_time, burst_time, no_of_processes) __lowerCamelCase = burst_time __lowerCamelCase = no_of_processes __lowerCamelCase = waiting_time __lowerCamelCase = calculate_turnaroundtime(bt, n, wt) calculate_average_times(waiting_time, turn_around_time, no_of_processes) __lowerCamelCase = pd.DataFrame( list(zip(processes, burst_time, arrival_time, waiting_time, turn_around_time)), columns=[ "Process", "BurstTime", "ArrivalTime", "WaitingTime", "TurnAroundTime", ], ) # Printing the dataFrame pd.set_option("display.max_rows", fcfs.shape[0] + 1) print(fcfs)
536
0
'''simple docstring''' from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = [randint(-10_00 , 10_00 ) for i in range(10 )] UpperCAmelCase = randint(-50_00 , 50_00 ) return (arr, r) _lowercase : int = make_dataset() def lowerCamelCase__ ( A : str , A : Optional[int] ): '''simple docstring''' for triplet in permutations(__lowerCAmelCase , 3 ): if sum(__lowerCAmelCase ) == target: return tuple(sorted(__lowerCAmelCase ) ) return (0, 0, 0) def lowerCamelCase__ ( A : Optional[int] , A : Dict ): '''simple docstring''' arr.sort() UpperCAmelCase = len(__lowerCAmelCase ) for i in range(n - 1 ): UpperCAmelCase = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = ''' from __main__ import dataset, triplet_sum1, triplet_sum2 ''' UpperCAmelCase = ''' triplet_sum1(*dataset) ''' UpperCAmelCase = ''' triplet_sum2(*dataset) ''' UpperCAmelCase = repeat(setup=__lowerCAmelCase , stmt=__lowerCAmelCase , repeat=5 , number=1_00_00 ) UpperCAmelCase = repeat(setup=__lowerCAmelCase , stmt=__lowerCAmelCase , repeat=5 , number=1_00_00 ) return (min(__lowerCAmelCase ), min(__lowerCAmelCase )) if __name__ == "__main__": from doctest import testmod testmod() _lowercase : Optional[int] = solution_times() print(F"""The time for naive implementation is {times[0]}.""") print(F"""The time for optimized implementation is {times[1]}.""")
210
import contextlib from multiprocessing import Pool, RLock from tqdm.auto import tqdm from ..utils import experimental, logging A__ = logging.get_logger(__name__) class a : __lowerCAmelCase : Optional[Any] = None @experimental def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]: """simple docstring""" if ParallelBackendConfig.backend_name is None: return _map_with_multiprocessing_pool( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) return _map_with_joblib(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Optional[Any]: """simple docstring""" snake_case__ : List[str] = num_proc if num_proc <= len(__lowerCAmelCase ) else len(__lowerCAmelCase ) snake_case__ : int = [] # We organize the splits ourselve (contiguous splits) for index in range(__lowerCAmelCase ): snake_case__ : List[Any] = len(__lowerCAmelCase ) // num_proc snake_case__ : Tuple = len(__lowerCAmelCase ) % num_proc snake_case__ : Any = div * index + min(__lowerCAmelCase , __lowerCAmelCase ) snake_case__ : int = start + div + (1 if index < mod else 0) split_kwds.append((function, iterable[start:end], types, index, disable_tqdm, desc) ) if len(__lowerCAmelCase ) != sum(len(i[1] ) for i in split_kwds ): raise ValueError( f"""Error dividing inputs iterable among processes. """ f"""Total number of objects {len(__lowerCAmelCase )}, """ f"""length: {sum(len(i[1] ) for i in split_kwds )}""" ) logger.info( f"""Spawning {num_proc} processes for {len(__lowerCAmelCase )} objects in slices of {[len(i[1] ) for i in split_kwds]}""" ) snake_case__ , snake_case__ : List[str] = None, None if not disable_tqdm: snake_case__ , snake_case__ : Any = (RLock(),), tqdm.set_lock with Pool(__lowerCAmelCase , initargs=__lowerCAmelCase , initializer=__lowerCAmelCase ) as pool: snake_case__ : Optional[int] = pool.map(__lowerCAmelCase , __lowerCAmelCase ) logger.info(f"""Finished {num_proc} processes""" ) snake_case__ : List[str] = [obj for proc_res in mapped for obj in proc_res] logger.info(f"""Unpacked {len(__lowerCAmelCase )} objects""" ) return mapped def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]: """simple docstring""" import joblib with joblib.parallel_backend(ParallelBackendConfig.backend_name , n_jobs=__lowerCAmelCase ): return joblib.Parallel()( joblib.delayed(__lowerCAmelCase )((function, obj, types, None, True, None) ) for obj in iterable ) @experimental @contextlib.contextmanager def _lowerCAmelCase ( __lowerCAmelCase ) -> Tuple: """simple docstring""" snake_case__ : Tuple = backend_name if backend_name == "spark": from joblibspark import register_spark register_spark() # TODO: call create_cache_and_write_probe if "download" in steps # TODO: raise NotImplementedError when Dataset.map etc is called try: yield finally: snake_case__ : int = None
252
0
import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class _A : def __init__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=512 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=None , ) -> int: '''simple docstring''' UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = seq_length UpperCamelCase__ = is_training UpperCamelCase__ = use_input_mask UpperCamelCase__ = use_token_type_ids UpperCamelCase__ = use_labels UpperCamelCase__ = vocab_size UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = type_vocab_size UpperCamelCase__ = type_sequence_label_size UpperCamelCase__ = initializer_range UpperCamelCase__ = num_labels UpperCamelCase__ = num_choices UpperCamelCase__ = scope def _a (self ) -> int: '''simple docstring''' UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ = None if self.use_input_mask: UpperCamelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase__ = None if self.use_token_type_ids: UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase__ = None UpperCamelCase__ = None UpperCamelCase__ = None if self.use_labels: UpperCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase__ = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _a (self ) -> Optional[Any]: '''simple docstring''' return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase_ , initializer_range=self.initializer_range , use_stable_embedding=UpperCamelCase_ , ) def _a (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[Any]: '''simple docstring''' UpperCamelCase__ = OpenLlamaModel(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() UpperCamelCase__ = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ ) UpperCamelCase__ = model(UpperCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ = True UpperCamelCase__ = OpenLlamaModel(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() UpperCamelCase__ = model( UpperCamelCase_ , attention_mask=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , encoder_attention_mask=UpperCamelCase_ , ) UpperCamelCase__ = model( UpperCamelCase_ , attention_mask=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , ) UpperCamelCase__ = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) -> Any: '''simple docstring''' UpperCamelCase__ = OpenLlamaForCausalLM(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() UpperCamelCase__ = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _a (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ = True UpperCamelCase__ = True UpperCamelCase__ = OpenLlamaForCausalLM(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() # first forward pass UpperCamelCase__ = model( UpperCamelCase_ , attention_mask=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , encoder_attention_mask=UpperCamelCase_ , use_cache=UpperCamelCase_ , ) UpperCamelCase__ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCamelCase__ = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCamelCase__ = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and UpperCamelCase__ = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCamelCase__ = torch.cat([input_mask, next_mask] , dim=-1 ) UpperCamelCase__ = model( UpperCamelCase_ , attention_mask=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , encoder_attention_mask=UpperCamelCase_ , output_hidden_states=UpperCamelCase_ , )['hidden_states'][0] UpperCamelCase__ = model( UpperCamelCase_ , attention_mask=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , encoder_attention_mask=UpperCamelCase_ , past_key_values=UpperCamelCase_ , output_hidden_states=UpperCamelCase_ , )['hidden_states'][0] # select random slice UpperCamelCase__ = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCamelCase__ = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCamelCase__ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-3 ) ) def _a (self ) -> int: '''simple docstring''' UpperCamelCase__ = self.prepare_config_and_inputs() ( UpperCamelCase__ ) = config_and_inputs UpperCamelCase__ = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class _A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): SCREAMING_SNAKE_CASE_ : int =( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) SCREAMING_SNAKE_CASE_ : List[str] =(OpenLlamaForCausalLM,) if is_torch_available() else () SCREAMING_SNAKE_CASE_ : Optional[Any] =( { "feature-extraction": OpenLlamaModel, "text-classification": OpenLlamaForSequenceClassification, "text-generation": OpenLlamaForCausalLM, "zero-shot": OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ : Dict =False SCREAMING_SNAKE_CASE_ : List[str] =False def _a (self ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ = OpenLlamaModelTester(self ) UpperCamelCase__ = ConfigTester(self , config_class=UpperCamelCase_ , hidden_size=37 ) def _a (self ) -> Optional[Any]: '''simple docstring''' self.config_tester.run_common_tests() def _a (self ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase_ ) def _a (self ) -> Tuple: '''simple docstring''' UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCamelCase__ = type self.model_tester.create_and_check_model(*UpperCamelCase_ ) def _a (self ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ = 3 UpperCamelCase__ = input_dict['input_ids'] UpperCamelCase__ = input_ids.ne(1 ).to(UpperCamelCase_ ) UpperCamelCase__ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCamelCase__ = OpenLlamaForSequenceClassification(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() UpperCamelCase__ = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , labels=UpperCamelCase_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _a (self ) -> str: '''simple docstring''' UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ = 3 UpperCamelCase__ = 'single_label_classification' UpperCamelCase__ = input_dict['input_ids'] UpperCamelCase__ = input_ids.ne(1 ).to(UpperCamelCase_ ) UpperCamelCase__ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCamelCase__ = OpenLlamaForSequenceClassification(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() UpperCamelCase__ = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , labels=UpperCamelCase_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _a (self ) -> List[str]: '''simple docstring''' UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ = 3 UpperCamelCase__ = 'multi_label_classification' UpperCamelCase__ = input_dict['input_ids'] UpperCamelCase__ = input_ids.ne(1 ).to(UpperCamelCase_ ) UpperCamelCase__ = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) UpperCamelCase__ = OpenLlamaForSequenceClassification(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() UpperCamelCase__ = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , labels=UpperCamelCase_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('''Open-Llama buffers include complex numbers, which breaks this test''' ) def _a (self ) -> List[Any]: '''simple docstring''' pass @parameterized.expand([('''linear''',), ('''dynamic''',)] ) def _a (self , SCREAMING_SNAKE_CASE_ ) -> Tuple: '''simple docstring''' UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ = ids_tensor([1, 10] , config.vocab_size ) UpperCamelCase__ = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCamelCase__ = OpenLlamaModel(UpperCamelCase_ ) original_model.to(UpperCamelCase_ ) original_model.eval() UpperCamelCase__ = original_model(UpperCamelCase_ ).last_hidden_state UpperCamelCase__ = original_model(UpperCamelCase_ ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCamelCase__ = {'type': scaling_type, 'factor': 10.0} UpperCamelCase__ = OpenLlamaModel(UpperCamelCase_ ) scaled_model.to(UpperCamelCase_ ) scaled_model.eval() UpperCamelCase__ = scaled_model(UpperCamelCase_ ).last_hidden_state UpperCamelCase__ = scaled_model(UpperCamelCase_ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-5 ) )
704
# Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position __magic_name__ ='''2.13.1''' import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse('''3.7'''): raise ImportWarning( '''To use `datasets`, Python>=3.7 is required, and the current version of Python doesn\'t match this condition.''' ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( '''To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn\'t match this condition.\n''' '''If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.''' ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip __magic_name__ =concatenate_datasets __magic_name__ =DownloadConfig __magic_name__ =DownloadManager __magic_name__ =DownloadMode __magic_name__ =DownloadConfig __magic_name__ =DownloadMode __magic_name__ =DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
469
0
'''simple docstring''' import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = {"""vocab_file""": """vocab.txt""", """emoji_file""": """emoji.json"""} SCREAMING_SNAKE_CASE = { """vocab_file""": { """abeja/gpt-neox-japanese-2.7b""": """https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt""", }, """emoji_file""": { """abeja/gpt-neox-japanese-2.7b""": """https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json""", }, } SCREAMING_SNAKE_CASE = { """abeja/gpt-neox-japanese-2.7b""": 2_0_4_8, } def snake_case_ ( lowercase__ , lowercase__ ): with open(lowercase__ , "r" , encoding="utf-8" ) as f: UpperCAmelCase__ : Any = json.loads(f.read() ) UpperCAmelCase__ : Dict = collections.OrderedDict() UpperCAmelCase__ : Optional[Any] = collections.OrderedDict() UpperCAmelCase__ : Optional[int] = collections.OrderedDict() with open(lowercase__ , "r" , encoding="utf-8" ) as f: UpperCAmelCase__ : int = f.readlines() UpperCAmelCase__ : int = [[t.rstrip("\n" )] if (t == "," or "," not in t) else t.rstrip("\n" ).split("," ) for t in token] for idx, b in enumerate(lowercase__ ): UpperCAmelCase__ : Dict = b UpperCAmelCase__ : str = idx for wd in b: UpperCAmelCase__ : List[Any] = idx return vocab, raw_vocab, ids_to_tokens, emoji class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowercase_ : Any = VOCAB_FILES_NAMES lowercase_ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP lowercase_ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ : Dict = ["input_ids", "attention_mask"] def __init__( self : Tuple , snake_case__ : Tuple , snake_case__ : str , snake_case__ : Dict="<|endoftext|>" , snake_case__ : List[Any]="<|endoftext|>" , snake_case__ : int="<|startoftext|>" , snake_case__ : List[str]="<|endoftext|>" , snake_case__ : Any=False , **snake_case__ : Optional[Any] , ): '''simple docstring''' super().__init__( unk_token=snake_case__ , pad_token=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , do_clean_text=snake_case__ , **snake_case__ , ) if not os.path.isfile(snake_case__ ): raise ValueError( F"""Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained""" " model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" ) if not os.path.isfile(snake_case__ ): raise ValueError( F"""Can't find a emoji file at path '{emoji_file}'. To load the emoji information from a Google""" " pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" ) UpperCAmelCase__ : Any = do_clean_text UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Dict = load_vocab_and_emoji(snake_case__ , snake_case__ ) UpperCAmelCase__ : Any = SubWordJapaneseTokenizer( vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji ) @property def UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' return len(self.raw_vocab ) def UpperCamelCase ( self : Optional[Any] ): '''simple docstring''' return dict(self.raw_vocab , **self.added_tokens_encoder ) def UpperCamelCase ( self : Optional[Any] , snake_case__ : Optional[int] ): '''simple docstring''' return self.subword_tokenizer.tokenize(snake_case__ , clean=self.do_clean_text ) def UpperCamelCase ( self : Any , snake_case__ : List[Any] ): '''simple docstring''' return self.vocab.get(snake_case__ , self.vocab.get(self.unk_token ) ) def UpperCamelCase ( self : Any , snake_case__ : Union[str, Any] ): '''simple docstring''' return self.subword_tokenizer.convert_id_to_token(snake_case__ ) def UpperCamelCase ( self : str , snake_case__ : Tuple ): '''simple docstring''' UpperCAmelCase__ : str = "".join(snake_case__ ).strip() return out_string def UpperCamelCase ( self : List[Any] , snake_case__ : "Conversation" ): '''simple docstring''' UpperCAmelCase__ : Dict = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(snake_case__ , add_special_tokens=snake_case__ ) + [self.eos_token_id] ) if len(snake_case__ ) > self.model_max_length: UpperCAmelCase__ : Tuple = input_ids[-self.model_max_length :] return input_ids def UpperCamelCase ( self : str , snake_case__ : str , snake_case__ : Optional[str] = None ): '''simple docstring''' UpperCAmelCase__ : str = 0 if os.path.isdir(snake_case__ ): UpperCAmelCase__ : Dict = os.path.join( snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) UpperCAmelCase__ : Tuple = os.path.join( snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["emoji_file"] ) else: UpperCAmelCase__ : Union[str, Any] = ( (filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["vocab_file"] ) UpperCAmelCase__ : int = ( (filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["emoji_file"] ) with open(snake_case__ , "w" , encoding="utf-8" ) as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( F"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" " Please check that the vocabulary is not corrupted!" ) UpperCAmelCase__ : Optional[int] = token_index writer.write(",".join(snake_case__ ) + "\n" ) index += 1 with open(snake_case__ , "w" , encoding="utf-8" ) as writer: json.dump(self.emoji , snake_case__ ) return vocab_file, emoji_file class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : List[Any] , snake_case__ : Dict , snake_case__ : Optional[int] , snake_case__ : Tuple ): '''simple docstring''' UpperCAmelCase__ : List[str] = vocab # same as swe UpperCAmelCase__ : Any = ids_to_tokens # same as bpe UpperCAmelCase__ : Union[str, Any] = emoji UpperCAmelCase__ : Optional[Any] = np.max([len(snake_case__ ) for w in self.vocab.keys()] ) UpperCAmelCase__ : Optional[int] = re.compile(R"(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)" ) UpperCAmelCase__ : Any = re.compile(R"[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*" ) UpperCAmelCase__ : Any = re.compile(R"[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}" ) UpperCAmelCase__ : int = re.compile( R"([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*" ) UpperCAmelCase__ : List[Any] = re.compile( R"(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*" ) UpperCAmelCase__ : List[Any] = re.compile( R"((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*" ) UpperCAmelCase__ : Optional[Any] = "─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿" UpperCAmelCase__ : List[Any] = "▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟" UpperCAmelCase__ : Dict = str.maketrans({k: "<BLOCK>" for k in keisen + blocks} ) def __len__( self : Optional[int] ): '''simple docstring''' return len(self.ids_to_tokens ) def UpperCamelCase ( self : Optional[int] , snake_case__ : Tuple ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.content_repattera.sub("<URL>" , snake_case__ ) UpperCAmelCase__ : Any = self.content_repattera.sub("<EMAIL>" , snake_case__ ) UpperCAmelCase__ : str = self.content_repattera.sub("<TEL>" , snake_case__ ) UpperCAmelCase__ : str = self.content_repattera.sub("<DATE>" , snake_case__ ) UpperCAmelCase__ : Optional[Any] = self.content_repattera.sub("<DATE>" , snake_case__ ) UpperCAmelCase__ : Dict = self.content_repattera.sub("<PRICE>" , snake_case__ ) UpperCAmelCase__ : Any = content.translate(self.content_transa ) while "<BLOCK><BLOCK>" in content: UpperCAmelCase__ : Optional[int] = content.replace("<BLOCK><BLOCK>" , "<BLOCK>" ) return content def UpperCamelCase ( self : str , snake_case__ : str , snake_case__ : Any=False ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = text.replace(" " , "<SP>" ) UpperCAmelCase__ : Optional[Any] = text.replace(" " , "<SP>" ) UpperCAmelCase__ : Union[str, Any] = text.replace("\r\n" , "<BR>" ) UpperCAmelCase__ : List[str] = text.replace("\n" , "<BR>" ) UpperCAmelCase__ : Union[str, Any] = text.replace("\r" , "<BR>" ) UpperCAmelCase__ : str = text.replace("\t" , "<TAB>" ) UpperCAmelCase__ : Tuple = text.replace("—" , "ー" ) UpperCAmelCase__ : Union[str, Any] = text.replace("−" , "ー" ) for k, v in self.emoji["emoji"].items(): if k in text: UpperCAmelCase__ : List[Any] = text.replace(snake_case__ , snake_case__ ) if clean: UpperCAmelCase__ : Union[str, Any] = self.clean_text(snake_case__ ) def check_simbol(snake_case__ : str ): UpperCAmelCase__ : Tuple = x.encode() if len(snake_case__ ) == 1 and len(snake_case__ ) == 2: UpperCAmelCase__ : int = (int(e[0] ) << 8) + int(e[1] ) if ( (c >= 0xC2A1 and c <= 0xC2BF) or (c >= 0xC780 and c <= 0xC783) or (c >= 0xCAB9 and c <= 0xCBBF) or (c >= 0xCC80 and c <= 0xCDA2) ): return True return False def checkuae(snake_case__ : Any ): UpperCAmelCase__ : List[str] = x.encode() if len(snake_case__ ) == 1 and len(snake_case__ ) == 3: UpperCAmelCase__ : Dict = (int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] ) if c >= 0xE28080 and c <= 0xE2B07F: return True return False UpperCAmelCase__ : Tuple = 0 UpperCAmelCase__ : Optional[Any] = [] while pos < len(snake_case__ ): UpperCAmelCase__ : Optional[Any] = min(len(snake_case__ ) , pos + self.maxlen + 1 ) if text[pos] == "<" else pos + 3 UpperCAmelCase__ : Optional[int] = [] # (token_id, token, pos) for e in range(snake_case__ , snake_case__ , -1 ): UpperCAmelCase__ : List[Any] = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(snake_case__ ) > 2: UpperCAmelCase__ : Optional[int] = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e) ) if len(snake_case__ ) > 0: # the smallest token_id is adopted UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = sorted(snake_case__ , key=lambda snake_case__ : x[0] )[0] result.append(snake_case__ ) UpperCAmelCase__ : Any = e else: UpperCAmelCase__ : Dict = pos + 1 UpperCAmelCase__ : Tuple = text[pos:end] if check_simbol(snake_case__ ): result.append("<KIGOU>" ) elif checkuae(snake_case__ ): result.append("<U2000U2BFF>" ) else: for i in wd.encode("utf-8" ): result.append("<|byte%d|>" % i ) UpperCAmelCase__ : Union[str, Any] = end return result def UpperCamelCase ( self : Dict , snake_case__ : str , snake_case__ : Dict="\n" ): '''simple docstring''' UpperCAmelCase__ : Dict = [] UpperCAmelCase__ : Any = [] UpperCAmelCase__ : List[str] = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2] ) ) else: if len(snake_case__ ) > 0: words.append(bytearray(snake_case__ ).decode("utf-8" , errors="replace" ) ) UpperCAmelCase__ : int = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji["emoji_inv"][word] ) elif word == "<SP>": words.append(" " ) elif word == "<BR>": words.append(snake_case__ ) elif word == "<TAB>": words.append("\t" ) elif word == "<BLOCK>": words.append("▀" ) elif word == "<KIGOU>": words.append("ǀ" ) elif word == "<U2000U2BFF>": words.append("‖" ) else: words.append(snake_case__ ) if len(snake_case__ ) > 0: words.append(bytearray(snake_case__ ).decode("utf-8" , errors="replace" ) ) UpperCAmelCase__ : Union[str, Any] = "".join(snake_case__ ) return text
199
import functools from typing import Any def lowerCamelCase ( UpperCamelCase : str , UpperCamelCase : list[str] ) -> bool: # Validation if not isinstance(UpperCamelCase , UpperCamelCase ) or len(UpperCamelCase ) == 0: raise ValueError('the string should be not empty string' ) if not isinstance(UpperCamelCase , UpperCamelCase ) or not all( isinstance(UpperCamelCase , UpperCamelCase ) and len(UpperCamelCase ) > 0 for item in words ): raise ValueError('the words should be a list of non-empty strings' ) # Build trie _lowerCamelCase = {} _lowerCamelCase = 'WORD_KEEPER' for word in words: _lowerCamelCase = trie for c in word: if c not in trie_node: _lowerCamelCase = {} _lowerCamelCase = trie_node[c] _lowerCamelCase = True _lowerCamelCase = len(UpperCamelCase ) # Dynamic programming method @functools.cache def is_breakable(UpperCamelCase : int ) -> bool: if index == len_string: return True _lowerCamelCase = trie for i in range(UpperCamelCase , UpperCamelCase ): _lowerCamelCase = trie_node.get(string[i] , UpperCamelCase ) if trie_node is None: return False if trie_node.get(UpperCamelCase , UpperCamelCase ) and is_breakable(i + 1 ): return True return False return is_breakable(0 ) if __name__ == "__main__": import doctest doctest.testmod()
544
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase__ = { "configuration_git": ["GIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "GitConfig", "GitVisionConfig"], "processing_git": ["GitProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ "GIT_PRETRAINED_MODEL_ARCHIVE_LIST", "GitForCausalLM", "GitModel", "GitPreTrainedModel", "GitVisionModel", ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys lowercase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
705
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available lowercase__ = { "configuration_ernie": ["ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP", "ErnieConfig", "ErnieOnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ "ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST", "ErnieForCausalLM", "ErnieForMaskedLM", "ErnieForMultipleChoice", "ErnieForNextSentencePrediction", "ErnieForPreTraining", "ErnieForQuestionAnswering", "ErnieForSequenceClassification", "ErnieForTokenClassification", "ErnieModel", "ErniePreTrainedModel", ] if TYPE_CHECKING: from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ernie import ( ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST, ErnieForCausalLM, ErnieForMaskedLM, ErnieForMultipleChoice, ErnieForNextSentencePrediction, ErnieForPreTraining, ErnieForQuestionAnswering, ErnieForSequenceClassification, ErnieForTokenClassification, ErnieModel, ErniePreTrainedModel, ) else: import sys lowercase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
63
0
'''simple docstring''' from ..utils import DummyObject, requires_backends class __SCREAMING_SNAKE_CASE ( metaclass=UpperCAmelCase_ ): __a =["torch"] def __init__( self , *lowerCamelCase , **lowerCamelCase ) ->int: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Optional[int]: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Union[str, Any]: '''simple docstring''' requires_backends(cls , ['torch'] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCAmelCase_ ): __a =["torch"] def __init__( self , *lowerCamelCase , **lowerCamelCase ) ->Any: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Optional[Any]: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Tuple: '''simple docstring''' requires_backends(cls , ['torch'] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCAmelCase_ ): __a =["torch"] def __init__( self , *lowerCamelCase , **lowerCamelCase ) ->Optional[Any]: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Dict: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->List[Any]: '''simple docstring''' requires_backends(cls , ['torch'] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCAmelCase_ ): __a =["torch"] def __init__( self , *lowerCamelCase , **lowerCamelCase ) ->Any: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Dict: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Tuple: '''simple docstring''' requires_backends(cls , ['torch'] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCAmelCase_ ): __a =["torch"] def __init__( self , *lowerCamelCase , **lowerCamelCase ) ->Any: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Optional[int]: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Dict: '''simple docstring''' requires_backends(cls , ['torch'] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCAmelCase_ ): __a =["torch"] def __init__( self , *lowerCamelCase , **lowerCamelCase ) ->Union[str, Any]: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->List[str]: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->List[str]: '''simple docstring''' requires_backends(cls , ['torch'] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCAmelCase_ ): __a =["torch"] def __init__( self , *lowerCamelCase , **lowerCamelCase ) ->Union[str, Any]: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Optional[Any]: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Union[str, Any]: '''simple docstring''' requires_backends(cls , ['torch'] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCAmelCase_ ): __a =["torch"] def __init__( self , *lowerCamelCase , **lowerCamelCase ) ->str: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Optional[int]: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Optional[Any]: '''simple docstring''' requires_backends(cls , ['torch'] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCAmelCase_ ): __a =["torch"] def __init__( self , *lowerCamelCase , **lowerCamelCase ) ->Union[str, Any]: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->int: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Dict: '''simple docstring''' requires_backends(cls , ['torch'] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCAmelCase_ ): __a =["torch"] def __init__( self , *lowerCamelCase , **lowerCamelCase ) ->Union[str, Any]: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->List[str]: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->List[Any]: '''simple docstring''' requires_backends(cls , ['torch'] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCAmelCase_ ): __a =["torch"] def __init__( self , *lowerCamelCase , **lowerCamelCase ) ->int: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->List[Any]: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Optional[Any]: '''simple docstring''' requires_backends(cls , ['torch'] ) def __UpperCAmelCase ( *SCREAMING_SNAKE_CASE__: Any, **SCREAMING_SNAKE_CASE__: Optional[Any] ) -> str: """simple docstring""" requires_backends(UpperCamelCase__, ['torch'] ) def __UpperCAmelCase ( *SCREAMING_SNAKE_CASE__: str, **SCREAMING_SNAKE_CASE__: Any ) -> Optional[int]: """simple docstring""" requires_backends(UpperCamelCase__, ['torch'] ) def __UpperCAmelCase ( *SCREAMING_SNAKE_CASE__: Optional[int], **SCREAMING_SNAKE_CASE__: Dict ) -> Optional[int]: """simple docstring""" requires_backends(UpperCamelCase__, ['torch'] ) def __UpperCAmelCase ( *SCREAMING_SNAKE_CASE__: List[Any], **SCREAMING_SNAKE_CASE__: int ) -> List[Any]: """simple docstring""" requires_backends(UpperCamelCase__, ['torch'] ) def __UpperCAmelCase ( *SCREAMING_SNAKE_CASE__: Union[str, Any], **SCREAMING_SNAKE_CASE__: str ) -> List[Any]: """simple docstring""" requires_backends(UpperCamelCase__, ['torch'] ) def __UpperCAmelCase ( *SCREAMING_SNAKE_CASE__: Optional[Any], **SCREAMING_SNAKE_CASE__: List[Any] ) -> Union[str, Any]: """simple docstring""" requires_backends(UpperCamelCase__, ['torch'] ) def __UpperCAmelCase ( *SCREAMING_SNAKE_CASE__: str, **SCREAMING_SNAKE_CASE__: Optional[int] ) -> List[Any]: """simple docstring""" requires_backends(UpperCamelCase__, ['torch'] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCAmelCase_ ): __a =["torch"] def __init__( self , *lowerCamelCase , **lowerCamelCase ) ->Any: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->List[Any]: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->str: '''simple docstring''' requires_backends(cls , ['torch'] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCAmelCase_ ): __a =["torch"] def __init__( self , *lowerCamelCase , **lowerCamelCase ) ->Any: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Optional[int]: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Optional[Any]: '''simple docstring''' requires_backends(cls , ['torch'] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCAmelCase_ ): __a =["torch"] def __init__( self , *lowerCamelCase , **lowerCamelCase ) ->Tuple: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Tuple: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Dict: '''simple docstring''' requires_backends(cls , ['torch'] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCAmelCase_ ): __a =["torch"] def __init__( self , *lowerCamelCase , **lowerCamelCase ) ->Dict: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Tuple: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Optional[int]: '''simple docstring''' requires_backends(cls , ['torch'] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCAmelCase_ ): __a =["torch"] def __init__( self , *lowerCamelCase , **lowerCamelCase ) ->Optional[Any]: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->str: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->List[str]: '''simple docstring''' requires_backends(cls , ['torch'] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCAmelCase_ ): __a =["torch"] def __init__( self , *lowerCamelCase , **lowerCamelCase ) ->Dict: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Union[str, Any]: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->List[str]: '''simple docstring''' requires_backends(cls , ['torch'] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCAmelCase_ ): __a =["torch"] def __init__( self , *lowerCamelCase , **lowerCamelCase ) ->List[Any]: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Optional[int]: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Tuple: '''simple docstring''' requires_backends(cls , ['torch'] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCAmelCase_ ): __a =["torch"] def __init__( self , *lowerCamelCase , **lowerCamelCase ) ->Any: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->int: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Optional[Any]: '''simple docstring''' requires_backends(cls , ['torch'] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCAmelCase_ ): __a =["torch"] def __init__( self , *lowerCamelCase , **lowerCamelCase ) ->Union[str, Any]: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->str: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Optional[Any]: '''simple docstring''' requires_backends(cls , ['torch'] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCAmelCase_ ): __a =["torch"] def __init__( self , *lowerCamelCase , **lowerCamelCase ) ->Dict: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Union[str, Any]: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Any: '''simple docstring''' requires_backends(cls , ['torch'] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCAmelCase_ ): __a =["torch"] def __init__( self , *lowerCamelCase , **lowerCamelCase ) ->List[Any]: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Tuple: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Optional[Any]: '''simple docstring''' requires_backends(cls , ['torch'] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCAmelCase_ ): __a =["torch"] def __init__( self , *lowerCamelCase , **lowerCamelCase ) ->List[str]: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->List[str]: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Tuple: '''simple docstring''' requires_backends(cls , ['torch'] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCAmelCase_ ): __a =["torch"] def __init__( self , *lowerCamelCase , **lowerCamelCase ) ->Any: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Any: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Union[str, Any]: '''simple docstring''' requires_backends(cls , ['torch'] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCAmelCase_ ): __a =["torch"] def __init__( self , *lowerCamelCase , **lowerCamelCase ) ->List[Any]: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Dict: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->List[str]: '''simple docstring''' requires_backends(cls , ['torch'] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCAmelCase_ ): __a =["torch"] def __init__( self , *lowerCamelCase , **lowerCamelCase ) ->int: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Tuple: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Optional[int]: '''simple docstring''' requires_backends(cls , ['torch'] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCAmelCase_ ): __a =["torch"] def __init__( self , *lowerCamelCase , **lowerCamelCase ) ->List[Any]: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->int: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Any: '''simple docstring''' requires_backends(cls , ['torch'] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCAmelCase_ ): __a =["torch"] def __init__( self , *lowerCamelCase , **lowerCamelCase ) ->List[Any]: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->int: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->List[Any]: '''simple docstring''' requires_backends(cls , ['torch'] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCAmelCase_ ): __a =["torch"] def __init__( self , *lowerCamelCase , **lowerCamelCase ) ->Optional[int]: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->int: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Optional[Any]: '''simple docstring''' requires_backends(cls , ['torch'] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCAmelCase_ ): __a =["torch"] def __init__( self , *lowerCamelCase , **lowerCamelCase ) ->List[str]: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Any: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->str: '''simple docstring''' requires_backends(cls , ['torch'] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCAmelCase_ ): __a =["torch"] def __init__( self , *lowerCamelCase , **lowerCamelCase ) ->Optional[Any]: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->List[str]: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Optional[Any]: '''simple docstring''' requires_backends(cls , ['torch'] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCAmelCase_ ): __a =["torch"] def __init__( self , *lowerCamelCase , **lowerCamelCase ) ->str: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Any: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->List[str]: '''simple docstring''' requires_backends(cls , ['torch'] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCAmelCase_ ): __a =["torch"] def __init__( self , *lowerCamelCase , **lowerCamelCase ) ->Optional[Any]: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->List[Any]: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->int: '''simple docstring''' requires_backends(cls , ['torch'] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCAmelCase_ ): __a =["torch"] def __init__( self , *lowerCamelCase , **lowerCamelCase ) ->str: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Any: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Union[str, Any]: '''simple docstring''' requires_backends(cls , ['torch'] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCAmelCase_ ): __a =["torch"] def __init__( self , *lowerCamelCase , **lowerCamelCase ) ->Union[str, Any]: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->int: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Tuple: '''simple docstring''' requires_backends(cls , ['torch'] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCAmelCase_ ): __a =["torch"] def __init__( self , *lowerCamelCase , **lowerCamelCase ) ->List[str]: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Tuple: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Union[str, Any]: '''simple docstring''' requires_backends(cls , ['torch'] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCAmelCase_ ): __a =["torch"] def __init__( self , *lowerCamelCase , **lowerCamelCase ) ->Optional[Any]: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->List[Any]: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Optional[int]: '''simple docstring''' requires_backends(cls , ['torch'] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCAmelCase_ ): __a =["torch"] def __init__( self , *lowerCamelCase , **lowerCamelCase ) ->Tuple: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->int: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->str: '''simple docstring''' requires_backends(cls , ['torch'] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCAmelCase_ ): __a =["torch"] def __init__( self , *lowerCamelCase , **lowerCamelCase ) ->Dict: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Any: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Tuple: '''simple docstring''' requires_backends(cls , ['torch'] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCAmelCase_ ): __a =["torch"] def __init__( self , *lowerCamelCase , **lowerCamelCase ) ->str: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Union[str, Any]: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Tuple: '''simple docstring''' requires_backends(cls , ['torch'] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCAmelCase_ ): __a =["torch"] def __init__( self , *lowerCamelCase , **lowerCamelCase ) ->Any: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Any: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Optional[int]: '''simple docstring''' requires_backends(cls , ['torch'] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCAmelCase_ ): __a =["torch"] def __init__( self , *lowerCamelCase , **lowerCamelCase ) ->int: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Optional[int]: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->List[str]: '''simple docstring''' requires_backends(cls , ['torch'] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCAmelCase_ ): __a =["torch"] def __init__( self , *lowerCamelCase , **lowerCamelCase ) ->Tuple: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->List[str]: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Optional[int]: '''simple docstring''' requires_backends(cls , ['torch'] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCAmelCase_ ): __a =["torch"] def __init__( self , *lowerCamelCase , **lowerCamelCase ) ->Optional[Any]: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Dict: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Tuple: '''simple docstring''' requires_backends(cls , ['torch'] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCAmelCase_ ): __a =["torch"] def __init__( self , *lowerCamelCase , **lowerCamelCase ) ->int: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Optional[int]: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Any: '''simple docstring''' requires_backends(cls , ['torch'] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCAmelCase_ ): __a =["torch"] def __init__( self , *lowerCamelCase , **lowerCamelCase ) ->Union[str, Any]: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Dict: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Tuple: '''simple docstring''' requires_backends(cls , ['torch'] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCAmelCase_ ): __a =["torch"] def __init__( self , *lowerCamelCase , **lowerCamelCase ) ->Tuple: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Any: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Optional[Any]: '''simple docstring''' requires_backends(cls , ['torch'] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCAmelCase_ ): __a =["torch"] def __init__( self , *lowerCamelCase , **lowerCamelCase ) ->Any: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->List[Any]: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->int: '''simple docstring''' requires_backends(cls , ['torch'] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCAmelCase_ ): __a =["torch"] def __init__( self , *lowerCamelCase , **lowerCamelCase ) ->List[Any]: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->str: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Tuple: '''simple docstring''' requires_backends(cls , ['torch'] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCAmelCase_ ): __a =["torch"] def __init__( self , *lowerCamelCase , **lowerCamelCase ) ->Any: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Tuple: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Optional[int]: '''simple docstring''' requires_backends(cls , ['torch'] )
448
"""simple docstring""" from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time UpperCamelCase : List[str] = Lock() def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> List[str]: """simple docstring""" global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(UpperCamelCase__ ) process_lock.release() # receive your right neighbor's value process_lock.acquire() A = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left A = min(UpperCamelCase__ , UpperCamelCase__ ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(UpperCamelCase__ ) process_lock.release() # receive your left neighbor's value process_lock.acquire() A = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right A = max(UpperCamelCase__ , UpperCamelCase__ ) # after all swaps are performed, send the values back to main result_pipe[1].send(UpperCamelCase__ ) def __snake_case ( UpperCamelCase__ ) -> List[str]: """simple docstring""" A = [] A = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop A = Pipe() A = Pipe() process_array_.append( Process( target=UpperCamelCase__ , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) A = temp_rs A = temp_rr for i in range(1 , len(UpperCamelCase__ ) - 1 ): A = Pipe() A = Pipe() process_array_.append( Process( target=UpperCamelCase__ , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) A = temp_rs A = temp_rr process_array_.append( Process( target=UpperCamelCase__ , args=( len(UpperCamelCase__ ) - 1, arr[len(UpperCamelCase__ ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(UpperCamelCase__ ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(UpperCamelCase__ ) ): A = result_pipe[p][0].recv() process_array_[p].join() return arr def __snake_case ( ) -> Optional[Any]: """simple docstring""" A = list(range(10 , 0 , -1 ) ) print('Initial List' ) print(*UpperCamelCase__ ) A = odd_even_transposition(UpperCamelCase__ ) print('Sorted List\n' ) print(*UpperCamelCase__ ) if __name__ == "__main__": main()
690
0
'''simple docstring''' from math import sqrt def a_ ( lowerCamelCase : int ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(sqrt(lowerCamelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def a_ ( lowerCamelCase : int = 10001 ): lowerCAmelCase = 0 lowerCAmelCase = 1 while count != nth and number < 3: number += 1 if is_prime(lowerCamelCase ): count += 1 while count != nth: number += 2 if is_prime(lowerCamelCase ): count += 1 return number if __name__ == "__main__": print(F'''{solution() = }''')
513
'''simple docstring''' import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def a_ ( lowerCamelCase : str , lowerCamelCase : List[str] , lowerCamelCase : Any ): lowerCAmelCase = OmegaConf.load(lowerCamelCase ) lowerCAmelCase = torch.load(lowerCamelCase , map_location='cpu' )['model'] lowerCAmelCase = list(state_dict.keys() ) # extract state_dict for VQVAE lowerCAmelCase = {} lowerCAmelCase = 'first_stage_model.' for key in keys: if key.startswith(lowerCamelCase ): lowerCAmelCase = state_dict[key] # extract state_dict for UNetLDM lowerCAmelCase = {} lowerCAmelCase = 'model.diffusion_model.' for key in keys: if key.startswith(lowerCamelCase ): lowerCAmelCase = state_dict[key] lowerCAmelCase = config.model.params.first_stage_config.params lowerCAmelCase = config.model.params.unet_config.params lowerCAmelCase = VQModel(**lowerCamelCase ).eval() vqvae.load_state_dict(lowerCamelCase ) lowerCAmelCase = UNetLDMModel(**lowerCamelCase ).eval() unet.load_state_dict(lowerCamelCase ) lowerCAmelCase = DDIMScheduler( timesteps=config.model.params.timesteps , beta_schedule='scaled_linear' , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=lowerCamelCase , ) lowerCAmelCase = LDMPipeline(lowerCamelCase , lowerCamelCase , lowerCamelCase ) pipeline.save_pretrained(lowerCamelCase ) if __name__ == "__main__": __snake_case =argparse.ArgumentParser() parser.add_argument("""--checkpoint_path""", type=str, required=True) parser.add_argument("""--config_path""", type=str, required=True) parser.add_argument("""--output_path""", type=str, required=True) __snake_case =parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
513
1
def lowerCAmelCase ( UpperCAmelCase ) ->bool: """simple docstring""" if p < 2: raise ValueError('''p should not be less than 2!''' ) elif p == 2: return True __magic_name__ : Tuple = 4 __magic_name__ : List[str] = (1 << p) - 1 for _ in range(p - 2 ): __magic_name__ : str = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(11))
154
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class A__ ( __SCREAMING_SNAKE_CASE ): lowerCamelCase__ : Any ="openai/whisper-base" lowerCamelCase__ : Any =( "This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the " "transcribed text." ) lowerCamelCase__ : Union[str, Any] ="transcriber" lowerCamelCase__ : List[str] =WhisperProcessor lowerCamelCase__ : Tuple =WhisperForConditionalGeneration lowerCamelCase__ : Tuple =["audio"] lowerCamelCase__ : List[str] =["text"] def lowercase ( self , lowerCamelCase ) -> Union[str, Any]: """simple docstring""" return self.pre_processor(lowerCamelCase , return_tensors='''pt''' ).input_features def lowercase ( self , lowerCamelCase ) -> Dict: """simple docstring""" return self.model.generate(inputs=lowerCamelCase ) def lowercase ( self , lowerCamelCase ) -> Union[str, Any]: """simple docstring""" return self.pre_processor.batch_decode(lowerCamelCase , skip_special_tokens=lowerCamelCase )[0]
154
1
from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging __UpperCamelCase : str = logging.get_logger(__name__) class lowercase__ ( UpperCamelCase_): UpperCamelCase_ = ["""audio_values""", """audio_mask"""] def __init__( self : Optional[Any] , UpperCamelCase__ : List[str]=2048 , UpperCamelCase__ : List[Any]=1 , UpperCamelCase__ : str=[16, 16] , UpperCamelCase__ : List[str]=128 , UpperCamelCase__ : Union[str, Any]=4_4100 , UpperCamelCase__ : Optional[int]=86 , UpperCamelCase__ : Dict=2048 , UpperCamelCase__ : Any=0.0 , **UpperCamelCase__ : List[Any] , ): '''simple docstring''' super().__init__( feature_size=UpperCamelCase__ , sampling_rate=UpperCamelCase__ , padding_value=UpperCamelCase__ , **UpperCamelCase__ , ) SCREAMING_SNAKE_CASE : str = spectrogram_length SCREAMING_SNAKE_CASE : Optional[int] = num_channels SCREAMING_SNAKE_CASE : List[Any] = patch_size SCREAMING_SNAKE_CASE : str = feature_size // self.patch_size[1] SCREAMING_SNAKE_CASE : Any = n_fft SCREAMING_SNAKE_CASE : List[str] = sampling_rate // hop_length_to_sampling_rate SCREAMING_SNAKE_CASE : List[str] = sampling_rate SCREAMING_SNAKE_CASE : Dict = padding_value SCREAMING_SNAKE_CASE : Optional[int] = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=UpperCamelCase__ , min_frequency=0.0 , max_frequency=2_2050.0 , sampling_rate=UpperCamelCase__ , norm='''slaney''' , mel_scale='''slaney''' , ).T def __A ( self : str , UpperCamelCase__ : np.array ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = spectrogram( UpperCamelCase__ , window_function(self.n_fft , '''hann''' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel='''dB''' , db_range=80.0 , ) SCREAMING_SNAKE_CASE : Any = log_spec[:, :-1] SCREAMING_SNAKE_CASE : List[Any] = log_spec - 20.0 SCREAMING_SNAKE_CASE : int = np.clip(log_spec / 40.0 , -2.0 , 0.0 ) + 1.0 return log_spec def __call__( self : Optional[int] , UpperCamelCase__ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , UpperCamelCase__ : Optional[Union[str, TensorType]] = None , UpperCamelCase__ : Optional[bool] = True , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = False , **UpperCamelCase__ : List[str] , ): '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( '''This feature extractor is set to support sampling rate''' f""" of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled""" f""" with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) SCREAMING_SNAKE_CASE : Optional[Any] = isinstance(UpperCamelCase__ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) SCREAMING_SNAKE_CASE : List[str] = is_batched_numpy or ( isinstance(UpperCamelCase__ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: SCREAMING_SNAKE_CASE : List[Any] = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(UpperCamelCase__ , np.ndarray ): SCREAMING_SNAKE_CASE : Any = np.asarray(UpperCamelCase__ , dtype=np.floataa ) elif isinstance(UpperCamelCase__ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): SCREAMING_SNAKE_CASE : Any = raw_speech.astype(np.floataa ) # always return batch if not is_batched: SCREAMING_SNAKE_CASE : Dict = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis SCREAMING_SNAKE_CASE : List[str] = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0] , UpperCamelCase__ ): SCREAMING_SNAKE_CASE : Tuple = [np.asarray(UpperCamelCase__ , dtype=np.floataa ) for feature in audio_features] # Create audio attention mask SCREAMING_SNAKE_CASE : Tuple = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: SCREAMING_SNAKE_CASE : int = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] SCREAMING_SNAKE_CASE : Union[str, Any] = np.array(UpperCamelCase__ ).astype(np.floataa ) # convert into correct format for padding SCREAMING_SNAKE_CASE : Optional[int] = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch SCREAMING_SNAKE_CASE : List[str] = np.ones([len(UpperCamelCase__ ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) SCREAMING_SNAKE_CASE : Any = padded_audio_features * self.padding_value for i in range(len(UpperCamelCase__ ) ): SCREAMING_SNAKE_CASE : Optional[Any] = audio_features[i] SCREAMING_SNAKE_CASE : Optional[int] = feature # return as BatchFeature if return_attention_mask: SCREAMING_SNAKE_CASE : Optional[Any] = {'''audio_values''': padded_audio_features, '''audio_mask''': audio_mask} else: SCREAMING_SNAKE_CASE : Dict = {'''audio_values''': padded_audio_features} SCREAMING_SNAKE_CASE : Optional[int] = BatchFeature(data=UpperCamelCase__ , tensor_type=UpperCamelCase__ ) return encoded_inputs
34
import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow __UpperCamelCase : str = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ 'text-classification', 'language-modeling', 'summarization', 'token-classification', 'question-answering', ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) __UpperCamelCase : int = logging.getLogger() def A ( ): SCREAMING_SNAKE_CASE : str = argparse.ArgumentParser() parser.add_argument('''-f''' ) SCREAMING_SNAKE_CASE : List[str] = parser.parse_args() return args.f def A ( _lowercase , _lowercase="eval" ): SCREAMING_SNAKE_CASE : Dict = os.path.join(_lowercase , f"""{split}_results.json""" ) if os.path.exists(_lowercase ): with open(_lowercase , '''r''' ) as f: return json.load(_lowercase ) raise ValueError(f"""can't find {path}""" ) __UpperCamelCase : Optional[Any] = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class lowercase__ ( UpperCamelCase_): def __A ( self : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = self.get_auto_remove_tmp_dir() SCREAMING_SNAKE_CASE : Tuple = f""" run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --eval_steps=2 --warmup_steps=2 --seed=42 --max_seq_length=128 """.split() with patch.object(UpperCamelCase__ , '''argv''' , UpperCamelCase__ ): run_flax_glue.main() SCREAMING_SNAKE_CASE : Union[str, Any] = get_results(UpperCamelCase__ ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) @slow def __A ( self : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = self.get_auto_remove_tmp_dir() SCREAMING_SNAKE_CASE : str = f""" run_clm_flax.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --block_size 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(UpperCamelCase__ , '''argv''' , UpperCamelCase__ ): run_clm_flax.main() SCREAMING_SNAKE_CASE : Dict = get_results(UpperCamelCase__ ) self.assertLess(result['''eval_perplexity'''] , 100 ) @slow def __A ( self : Any ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.get_auto_remove_tmp_dir() SCREAMING_SNAKE_CASE : Union[str, Any] = f""" run_summarization.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --test_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=8 --do_train --do_eval --do_predict --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --predict_with_generate """.split() with patch.object(UpperCamelCase__ , '''argv''' , UpperCamelCase__ ): run_summarization_flax.main() SCREAMING_SNAKE_CASE : Union[str, Any] = get_results(UpperCamelCase__ , split='''test''' ) self.assertGreaterEqual(result['''test_rouge1'''] , 10 ) self.assertGreaterEqual(result['''test_rouge2'''] , 2 ) self.assertGreaterEqual(result['''test_rougeL'''] , 7 ) self.assertGreaterEqual(result['''test_rougeLsum'''] , 7 ) @slow def __A ( self : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = self.get_auto_remove_tmp_dir() SCREAMING_SNAKE_CASE : Dict = f""" run_mlm.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --overwrite_output_dir --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --logging_steps 2 --eval_steps 2 --do_train --do_eval --num_train_epochs=1 """.split() with patch.object(UpperCamelCase__ , '''argv''' , UpperCamelCase__ ): run_mlm_flax.main() SCREAMING_SNAKE_CASE : List[Any] = get_results(UpperCamelCase__ ) self.assertLess(result['''eval_perplexity'''] , 42 ) @slow def __A ( self : List[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = self.get_auto_remove_tmp_dir() SCREAMING_SNAKE_CASE : Union[str, Any] = f""" run_t5_mlm_flax.py --model_name_or_path t5-small --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(UpperCamelCase__ , '''argv''' , UpperCamelCase__ ): run_ta_mlm_flax.main() SCREAMING_SNAKE_CASE : Optional[int] = get_results(UpperCamelCase__ ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.42 ) @slow def __A ( self : Union[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = 7 if get_gpu_count() > 1 else 2 SCREAMING_SNAKE_CASE : Dict = self.get_auto_remove_tmp_dir() SCREAMING_SNAKE_CASE : Any = f""" run_flax_ner.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --overwrite_output_dir --do_train --do_eval --warmup_steps=2 --learning_rate=2e-4 --logging_steps 2 --eval_steps 2 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 """.split() with patch.object(UpperCamelCase__ , '''argv''' , UpperCamelCase__ ): run_flax_ner.main() SCREAMING_SNAKE_CASE : List[str] = get_results(UpperCamelCase__ ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) self.assertGreaterEqual(result['''eval_f1'''] , 0.3 ) @slow def __A ( self : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.get_auto_remove_tmp_dir() SCREAMING_SNAKE_CASE : Union[str, Any] = f""" run_qa.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=2 --do_train --do_eval --logging_steps 2 --eval_steps 2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 """.split() with patch.object(UpperCamelCase__ , '''argv''' , UpperCamelCase__ ): run_qa.main() SCREAMING_SNAKE_CASE : str = get_results(UpperCamelCase__ ) self.assertGreaterEqual(result['''eval_f1'''] , 30 ) self.assertGreaterEqual(result['''eval_exact'''] , 30 )
34
1
def UpperCAmelCase__ ( lowerCamelCase_ : str , lowerCamelCase_ : str ): if len(lowerCamelCase_ ) != len(lowerCamelCase_ ): raise ValueError('String lengths must match!' ) __a : List[Any] = 0 for chara, chara in zip(lowerCamelCase_ , lowerCamelCase_ ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
47
import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def UpperCAmelCase ( lowercase , lowercase ): """simple docstring""" __lowercase = torch.load(lowercase , map_location='''cpu''' ) __lowercase = chkpt['''model'''] # We have the base model one level deeper than the original XLM repository __lowercase = {} for k, v in state_dict.items(): if "pred_layer" in k: __lowercase = v else: __lowercase = v __lowercase = chkpt['''params'''] __lowercase = {n: v for n, v in config.items() if not isinstance(lowercase , (torch.FloatTensor, numpy.ndarray) )} __lowercase = chkpt['''dico_word2id'''] __lowercase = {s + '''</w>''' if s.find('''@@''' ) == -1 and i > 13 else s.replace('''@@''' , '''''' ): i for s, i in vocab.items()} # Save pytorch-model __lowercase = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME __lowercase = pytorch_dump_folder_path + '''/''' + CONFIG_NAME __lowercase = pytorch_dump_folder_path + '''/''' + VOCAB_FILES_NAMES['''vocab_file'''] print(F"Save PyTorch model to {pytorch_weights_dump_path}" ) torch.save(lowercase , lowercase ) print(F"Save configuration file to {pytorch_config_dump_path}" ) with open(lowercase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(lowercase , indent=2 ) + '''\n''' ) print(F"Save vocab file to {pytorch_config_dump_path}" ) with open(lowercase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(lowercase , indent=2 ) + '''\n''' ) if __name__ == "__main__": __a : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--xlm_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) __a : Any = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
534
0
import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class _A ( unittest.TestCase ): def __init__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=512 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=4 , ) -> List[Any]: '''simple docstring''' UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = seq_length UpperCamelCase__ = is_training UpperCamelCase__ = use_attention_mask UpperCamelCase__ = use_token_type_ids UpperCamelCase__ = use_labels UpperCamelCase__ = vocab_size UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = type_vocab_size UpperCamelCase__ = type_sequence_label_size UpperCamelCase__ = initializer_range UpperCamelCase__ = num_choices def _a (self ) -> Tuple: '''simple docstring''' UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ = None if self.use_attention_mask: UpperCamelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase__ = None if self.use_token_type_ids: UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase__ = RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=SCREAMING_SNAKE_CASE_ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def _a (self ) -> List[str]: '''simple docstring''' UpperCamelCase__ = self.prepare_config_and_inputs() UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = config_and_inputs UpperCamelCase__ = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict def _a (self ) -> List[str]: '''simple docstring''' UpperCamelCase__ = self.prepare_config_and_inputs() UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = config_and_inputs UpperCamelCase__ = True UpperCamelCase__ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class _A ( __UpperCamelCase , unittest.TestCase ): SCREAMING_SNAKE_CASE_ : int =True SCREAMING_SNAKE_CASE_ : Optional[Any] =( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def _a (self ) -> Dict: '''simple docstring''' UpperCamelCase__ = FlaxRobertaModelTester(self ) @slow def _a (self ) -> Any: '''simple docstring''' for model_class_name in self.all_model_classes: UpperCamelCase__ = model_class_name.from_pretrained('''roberta-base''' , from_pt=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = model(np.ones((1, 1) ) ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ )
709
__magic_name__ ={ '''Pillow''': '''Pillow<10.0.0''', '''accelerate''': '''accelerate>=0.20.3''', '''av''': '''av==9.2.0''', '''beautifulsoup4''': '''beautifulsoup4''', '''black''': '''black~=23.1''', '''codecarbon''': '''codecarbon==1.2.0''', '''cookiecutter''': '''cookiecutter==1.7.3''', '''dataclasses''': '''dataclasses''', '''datasets''': '''datasets!=2.5.0''', '''decord''': '''decord==0.6.0''', '''deepspeed''': '''deepspeed>=0.9.3''', '''diffusers''': '''diffusers''', '''dill''': '''dill<0.3.5''', '''evaluate''': '''evaluate>=0.2.0''', '''fairscale''': '''fairscale>0.3''', '''faiss-cpu''': '''faiss-cpu''', '''fastapi''': '''fastapi''', '''filelock''': '''filelock''', '''flax''': '''flax>=0.4.1,<=0.7.0''', '''ftfy''': '''ftfy''', '''fugashi''': '''fugashi>=1.0''', '''GitPython''': '''GitPython<3.1.19''', '''hf-doc-builder''': '''hf-doc-builder>=0.3.0''', '''huggingface-hub''': '''huggingface-hub>=0.14.1,<1.0''', '''importlib_metadata''': '''importlib_metadata''', '''ipadic''': '''ipadic>=1.0.0,<2.0''', '''isort''': '''isort>=5.5.4''', '''jax''': '''jax>=0.2.8,!=0.3.2,<=0.4.13''', '''jaxlib''': '''jaxlib>=0.1.65,<=0.4.13''', '''jieba''': '''jieba''', '''kenlm''': '''kenlm''', '''keras-nlp''': '''keras-nlp>=0.3.1''', '''librosa''': '''librosa''', '''nltk''': '''nltk''', '''natten''': '''natten>=0.14.6''', '''numpy''': '''numpy>=1.17''', '''onnxconverter-common''': '''onnxconverter-common''', '''onnxruntime-tools''': '''onnxruntime-tools>=1.4.2''', '''onnxruntime''': '''onnxruntime>=1.4.0''', '''opencv-python''': '''opencv-python''', '''optuna''': '''optuna''', '''optax''': '''optax>=0.0.8,<=0.1.4''', '''packaging''': '''packaging>=20.0''', '''parameterized''': '''parameterized''', '''phonemizer''': '''phonemizer''', '''protobuf''': '''protobuf''', '''psutil''': '''psutil''', '''pyyaml''': '''pyyaml>=5.1''', '''pydantic''': '''pydantic<2''', '''pytest''': '''pytest>=7.2.0''', '''pytest-timeout''': '''pytest-timeout''', '''pytest-xdist''': '''pytest-xdist''', '''python''': '''python>=3.8.0''', '''ray[tune]''': '''ray[tune]''', '''regex''': '''regex!=2019.12.17''', '''requests''': '''requests''', '''rhoknp''': '''rhoknp>=1.1.0,<1.3.1''', '''rjieba''': '''rjieba''', '''rouge-score''': '''rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1''', '''ruff''': '''ruff>=0.0.241,<=0.0.259''', '''sacrebleu''': '''sacrebleu>=1.4.12,<2.0.0''', '''sacremoses''': '''sacremoses''', '''safetensors''': '''safetensors>=0.3.1''', '''sagemaker''': '''sagemaker>=2.31.0''', '''scikit-learn''': '''scikit-learn''', '''sentencepiece''': '''sentencepiece>=0.1.91,!=0.1.92''', '''sigopt''': '''sigopt''', '''starlette''': '''starlette''', '''sudachipy''': '''sudachipy>=0.6.6''', '''sudachidict_core''': '''sudachidict_core>=20220729''', '''tensorflow-cpu''': '''tensorflow-cpu>=2.6,<2.14''', '''tensorflow''': '''tensorflow>=2.6,<2.14''', '''tensorflow-text''': '''tensorflow-text<2.14''', '''tf2onnx''': '''tf2onnx''', '''timeout-decorator''': '''timeout-decorator''', '''timm''': '''timm''', '''tokenizers''': '''tokenizers>=0.11.1,!=0.11.3,<0.14''', '''torch''': '''torch>=1.9,!=1.12.0''', '''torchaudio''': '''torchaudio''', '''torchvision''': '''torchvision''', '''pyctcdecode''': '''pyctcdecode>=0.4.0''', '''tqdm''': '''tqdm>=4.27''', '''unidic''': '''unidic>=1.0.2''', '''unidic_lite''': '''unidic_lite>=1.0.7''', '''urllib3''': '''urllib3<2.0.0''', '''uvicorn''': '''uvicorn''', }
469
0
"""simple docstring""" import os import pytest from transformers.dynamic_module_utils import get_imports A : List[Any] = "\nimport os\n" A : Any = "\ndef foo():\n import os\n return False\n" A : Dict = "\ndef foo():\n def bar():\n if True:\n import os\n return False\n return bar()\n" A : Optional[Any] = "\nimport os\n\ntry:\n import bar\nexcept ImportError:\n raise ValueError()\n" A : Optional[int] = "\nimport os\n\ndef foo():\n try:\n import bar\n except ImportError:\n raise ValueError()\n" A : Tuple = "\nimport os\n\ntry:\n import bar\nexcept (ImportError, AttributeError):\n raise ValueError()\n" A : Union[str, Any] = "\nimport os\n\ntry:\n import bar\nexcept ImportError as e:\n raise ValueError()\n" A : Any = "\nimport os\n\ntry:\n import bar\nexcept:\n raise ValueError()\n" A : str = "\nimport os\n\ntry:\n import bar\n import baz\nexcept ImportError:\n raise ValueError()\n" A : str = "\nimport os\n\ntry:\n import bar\n import baz\nexcept ImportError:\n x = 1\n raise ValueError()\n" A : Optional[Any] = [ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize("case" , _UpperCamelCase ) def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = os.path.join(_UpperCamelCase , "test_file.py" ) with open(_UpperCamelCase , "w" ) as _tmp_file: _tmp_file.write(_UpperCamelCase ) __lowerCAmelCase = get_imports(_UpperCamelCase ) assert parsed_imports == ["os"]
636
"""simple docstring""" import logging import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import librosa import torch from datasets import DatasetDict, load_dataset from packaging import version from torch import nn from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForPreTraining, is_apex_available, trainer_utils, ) from transformers.models.wavaveca.modeling_wavaveca import _compute_mask_indices if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse("1.6"): A : List[Any] = True from torch.cuda.amp import autocast A : Any = logging.getLogger(__name__) @dataclass class _UpperCamelCase : '''simple docstring''' __UpperCAmelCase : str =field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) __UpperCAmelCase : Optional[str] =field( default=lowerCAmelCase__ ,metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} ,) __UpperCAmelCase : Optional[bool] =field( default=lowerCAmelCase__ ,metadata={"""help""": """Whether to freeze the feature extractor layers of the model."""} ) __UpperCAmelCase : Optional[bool] =field( default=lowerCAmelCase__ ,metadata={"""help""": """Whether to log verbose messages or not."""} ,) __UpperCAmelCase : Optional[float] =field( default=2.0 ,metadata={"""help""": """Maximum temperature for gumbel softmax."""} ) __UpperCAmelCase : Optional[float] =field( default=0.5 ,metadata={"""help""": """Minimum temperature for gumbel softmax."""} ) __UpperCAmelCase : Optional[float] =field( default=0.999_995 ,metadata={"""help""": """Decay of gumbel temperature during training."""} ) def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) __lowerCAmelCase = logging.WARNING if model_args.verbose_logging: __lowerCAmelCase = logging.DEBUG elif trainer_utils.is_main_process(training_args.local_rank ): __lowerCAmelCase = logging.INFO logger.setLevel(_UpperCamelCase ) @dataclass class _UpperCamelCase : '''simple docstring''' __UpperCAmelCase : str =field( default=lowerCAmelCase__ ,metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} ) __UpperCAmelCase : Optional[str] =field( default=lowerCAmelCase__ ,metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) __UpperCAmelCase : Optional[str] =field( default="""train""" ,metadata={ """help""": """The name of the training data set split to use (via the datasets library). Defaults to 'train'""" } ,) __UpperCAmelCase : Optional[str] =field( default="""validation""" ,metadata={ """help""": ( """The name of the validation data set split to use (via the datasets library). Defaults to 'validation'""" ) } ,) __UpperCAmelCase : Optional[str] =field( default="""file""" ,metadata={"""help""": """Column in the dataset that contains speech file path. Defaults to 'file'"""} ,) __UpperCAmelCase : bool =field( default=lowerCAmelCase__ ,metadata={"""help""": """Overwrite the cached preprocessed datasets or not."""} ) __UpperCAmelCase : Optional[int] =field( default=1 ,metadata={ """help""": """The percentage of the train set used as validation set in case there's no validation split""" } ,) __UpperCAmelCase : Optional[int] =field( default=lowerCAmelCase__ ,metadata={"""help""": """The number of processes to use for the preprocessing."""} ,) __UpperCAmelCase : Optional[float] =field( default=20.0 ,metadata={"""help""": """Filter audio files that are longer than `max_duration_in_seconds` seconds"""} ) @dataclass class _UpperCamelCase : '''simple docstring''' __UpperCAmelCase : WavaVecaForPreTraining __UpperCAmelCase : WavaVecaFeatureExtractor __UpperCAmelCase : Union[bool, str] ="longest" __UpperCAmelCase : Optional[int] =None __UpperCAmelCase : Optional[int] =None def __call__( self , __a ): # reformat list to dict and set to pytorch format __lowerCAmelCase = self.feature_extractor.pad( __a , max_length=self.max_length , padding=self.padding , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="pt" , ) __lowerCAmelCase = self.model._get_feat_extract_output_lengths(batch["input_values"].shape[-1] ) __lowerCAmelCase = batch["input_values"].shape[0] # make sure that no loss is computed on padded inputs if batch["attention_mask"] is not None: # compute real output lengths according to convolution formula __lowerCAmelCase = self.model._get_feat_extract_output_lengths(batch["attention_mask"].sum(-1 ) ).to( torch.long ) __lowerCAmelCase = torch.zeros( (batch_size, mask_indices_seq_length) , dtype=torch.long , device=batch["input_values"].device ) # these two operations makes sure that all values # before the output lengths indices are attended to __lowerCAmelCase = 1 __lowerCAmelCase = attention_mask.flip([-1] ).cumsum(-1 ).flip([-1] ).bool() # sample randomly masked indices __lowerCAmelCase = _compute_mask_indices( (batch_size, mask_indices_seq_length) , self.model.config.mask_time_prob , self.model.config.mask_time_length , attention_mask=__a , min_masks=2 , ) return batch class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' def __init__( self , *__a , __a=1 , __a=0 , __a=1.0 , **__a ): super().__init__(*__a , **__a ) __lowerCAmelCase = 0 __lowerCAmelCase = max_gumbel_temp __lowerCAmelCase = min_gumbel_temp __lowerCAmelCase = gumbel_temp_decay def snake_case ( self , __a , __a ): model.train() __lowerCAmelCase = self._prepare_inputs(__a ) if self.use_amp: with autocast(): __lowerCAmelCase = self.compute_loss(__a , __a ) else: __lowerCAmelCase = self.compute_loss(__a , __a ) if self.args.n_gpu > 1 or self.deepspeed: if model.module.config.ctc_loss_reduction == "mean": __lowerCAmelCase = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": __lowerCAmelCase = loss.sum() / (inputs["mask_time_indices"]).sum() else: raise ValueError(f"{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']" ) if self.args.gradient_accumulation_steps > 1: __lowerCAmelCase = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(__a ).backward() elif self.use_apex: with amp.scale_loss(__a , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(__a ) else: loss.backward() self.num_update_step += 1 # make sure gumbel softmax temperature is decayed if self.args.n_gpu > 1 or self.deepspeed: model.module.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) else: model.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) return loss.detach() def _lowerCamelCase ( ): '''simple docstring''' __lowerCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_args_into_dataclasses() configure_logger(_UpperCamelCase , _UpperCamelCase ) # Downloading and loading a dataset from the hub. __lowerCAmelCase = load_dataset(data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) if "validation" not in datasets.keys(): # make sure only "validation" and "train" keys remain" __lowerCAmelCase = DatasetDict() __lowerCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f"{data_args.train_split_name}[:{data_args.validation_split_percentage}%]" , cache_dir=model_args.cache_dir , ) __lowerCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f"{data_args.train_split_name}[{data_args.validation_split_percentage}%:]" , cache_dir=model_args.cache_dir , ) else: # make sure only "validation" and "train" keys remain" __lowerCAmelCase = DatasetDict() __lowerCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split="validation" , cache_dir=model_args.cache_dir , ) __lowerCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f"{data_args.train_split_name}" , cache_dir=model_args.cache_dir , ) # only normalized-inputs-training is supported __lowerCAmelCase = WavaVecaFeatureExtractor.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , do_normalize=_UpperCamelCase ) def prepare_dataset(_UpperCamelCase ): # check that all files have the correct sampling rate __lowerCAmelCase , __lowerCAmelCase = librosa.load(batch[data_args.speech_file_column] , sr=feature_extractor.sampling_rate ) return batch # load audio files into numpy arrays __lowerCAmelCase = datasets.map( _UpperCamelCase , num_proc=data_args.preprocessing_num_workers , remove_columns=datasets["train"].column_names ) # filter audio files that are too long __lowerCAmelCase = vectorized_datasets.filter( lambda _UpperCamelCase : len(data["speech"] ) < int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate ) ) def normalize(_UpperCamelCase ): return feature_extractor(batch["speech"] , sampling_rate=feature_extractor.sampling_rate ) # normalize and transform to `BatchFeatures` __lowerCAmelCase = vectorized_datasets.map( _UpperCamelCase , batched=_UpperCamelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , remove_columns=vectorized_datasets["train"].column_names , ) # pretraining is only supported for "newer" stable layer norm architecture # apply_spec_augment has to be True, mask_feature_prob has to be 0.0 __lowerCAmelCase = WavaVecaConfig.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , gradient_checkpointing=training_args.gradient_checkpointing , ) if not config.do_stable_layer_norm or config.feat_extract_norm != "layer": raise ValueError( "PreTraining is only supported for ``config.do_stable_layer_norm=True`` and" " ``config.feat_extract_norm='layer'" ) __lowerCAmelCase = WavaVecaForPreTraining(_UpperCamelCase ) __lowerCAmelCase = DataCollatorForWavaVecaPretraining(model=_UpperCamelCase , feature_extractor=_UpperCamelCase ) __lowerCAmelCase = WavaVecaPreTrainer( model=_UpperCamelCase , data_collator=_UpperCamelCase , args=_UpperCamelCase , train_dataset=vectorized_datasets["train"] , eval_dataset=vectorized_datasets["validation"] , tokenizer=_UpperCamelCase , max_gumbel_temp=model_args.max_gumbel_temperature , min_gumbel_temp=model_args.min_gumbel_temperature , gumbel_temp_decay=model_args.gumbel_temperature_decay , ) trainer.train() if __name__ == "__main__": main()
636
1
"""simple docstring""" import itertools import random import unittest import numpy as np from transformers import is_speech_available from transformers.testing_utils import require_torch, require_torchaudio from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import SpeechaTextFeatureExtractor SCREAMING_SNAKE_CASE__ = random.Random() def lowerCAmelCase__ ( _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Tuple=1.0 , _UpperCamelCase : Tuple=None , _UpperCamelCase : List[Any]=None ) -> Tuple: """simple docstring""" if rng is None: snake_case = global_rng snake_case = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __init__( self , lowerCAmelCase , lowerCAmelCase=7 , lowerCAmelCase=4_00 , lowerCAmelCase=20_00 , lowerCAmelCase=24 , lowerCAmelCase=24 , lowerCAmelCase=0.0 , lowerCAmelCase=1_60_00 , lowerCAmelCase=True , lowerCAmelCase=True , ): """simple docstring""" snake_case = parent snake_case = batch_size snake_case = min_seq_length snake_case = max_seq_length snake_case = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) snake_case = feature_size snake_case = num_mel_bins snake_case = padding_value snake_case = sampling_rate snake_case = return_attention_mask snake_case = do_normalize def snake_case ( self ): """simple docstring""" return { "feature_size": self.feature_size, "num_mel_bins": self.num_mel_bins, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def snake_case ( self , lowerCAmelCase=False , lowerCAmelCase=False ): """simple docstring""" def _flatten(lowerCAmelCase ): return list(itertools.chain(*lowerCAmelCase ) ) if equal_length: snake_case = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size snake_case = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: snake_case = [np.asarray(lowerCAmelCase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class lowerCAmelCase_ ( lowerCAmelCase , unittest.TestCase ): """simple docstring""" _lowerCAmelCase : Any = SpeechaTextFeatureExtractor if is_speech_available() else None def snake_case ( self ): """simple docstring""" snake_case = SpeechaTextFeatureExtractionTester(self ) def snake_case ( self , lowerCAmelCase ): """simple docstring""" self.assertTrue(np.all(np.mean(lowerCAmelCase , axis=0 ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(lowerCAmelCase , axis=0 ) - 1 ) < 1E-3 ) ) def snake_case ( self ): """simple docstring""" snake_case = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 snake_case = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] snake_case = [np.asarray(lowerCAmelCase ) for speech_input in speech_inputs] # Test feature size snake_case = feature_extractor(lowerCAmelCase , padding=lowerCAmelCase , return_tensors='np' ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.feature_size ) # Test not batched input snake_case = feature_extractor(speech_inputs[0] , return_tensors='np' ).input_features snake_case = feature_extractor(np_speech_inputs[0] , return_tensors='np' ).input_features self.assertTrue(np.allclose(lowerCAmelCase , lowerCAmelCase , atol=1E-3 ) ) # Test batched snake_case = feature_extractor(lowerCAmelCase , return_tensors='np' ).input_features snake_case = feature_extractor(lowerCAmelCase , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(lowerCAmelCase , lowerCAmelCase ): self.assertTrue(np.allclose(lowerCAmelCase , lowerCAmelCase , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. snake_case = [floats_list((1, x) )[0] for x in (8_00, 8_00, 8_00)] snake_case = np.asarray(lowerCAmelCase ) snake_case = feature_extractor(lowerCAmelCase , return_tensors='np' ).input_features snake_case = feature_extractor(lowerCAmelCase , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(lowerCAmelCase , lowerCAmelCase ): self.assertTrue(np.allclose(lowerCAmelCase , lowerCAmelCase , atol=1E-3 ) ) def snake_case ( self ): """simple docstring""" snake_case = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] snake_case = ['longest', 'max_length', 'do_not_pad'] snake_case = [None, 16, None] for max_length, padding in zip(lowerCAmelCase , lowerCAmelCase ): snake_case = feature_extractor( lowerCAmelCase , padding=lowerCAmelCase , max_length=lowerCAmelCase , return_attention_mask=lowerCAmelCase ) snake_case = inputs.input_features snake_case = inputs.attention_mask snake_case = [np.sum(lowerCAmelCase ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def snake_case ( self ): """simple docstring""" snake_case = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] snake_case = ['longest', 'max_length', 'do_not_pad'] snake_case = [None, 16, None] for max_length, padding in zip(lowerCAmelCase , lowerCAmelCase ): snake_case = feature_extractor( lowerCAmelCase , max_length=lowerCAmelCase , padding=lowerCAmelCase , return_tensors='np' , return_attention_mask=lowerCAmelCase ) snake_case = inputs.input_features snake_case = inputs.attention_mask snake_case = [np.sum(lowerCAmelCase ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self.assertTrue(input_features[0][fbank_feat_lengths[0] :].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self.assertTrue(input_features[0][fbank_feat_lengths[1] :].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def snake_case ( self ): """simple docstring""" snake_case = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] snake_case = feature_extractor( lowerCAmelCase , padding='max_length' , max_length=4 , truncation=lowerCAmelCase , return_tensors='np' , return_attention_mask=lowerCAmelCase , ) snake_case = inputs.input_features snake_case = inputs.attention_mask snake_case = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1] ) self._check_zero_mean_unit_variance(input_features[2] ) def snake_case ( self ): """simple docstring""" snake_case = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] snake_case = feature_extractor( lowerCAmelCase , padding='longest' , max_length=4 , truncation=lowerCAmelCase , return_tensors='np' , return_attention_mask=lowerCAmelCase , ) snake_case = inputs.input_features snake_case = inputs.attention_mask snake_case = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape , (3, 4, 24) ) snake_case = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] snake_case = feature_extractor( lowerCAmelCase , padding='longest' , max_length=16 , truncation=lowerCAmelCase , return_tensors='np' , return_attention_mask=lowerCAmelCase , ) snake_case = inputs.input_features snake_case = inputs.attention_mask snake_case = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape , (3, 6, 24) ) def snake_case ( self ): """simple docstring""" import torch snake_case = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case = np.random.rand(1_00 , 32 ).astype(np.floataa ) snake_case = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: snake_case = feature_extractor.pad([{'input_features': inputs}] , return_tensors='np' ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) snake_case = feature_extractor.pad([{'input_features': inputs}] , return_tensors='pt' ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def snake_case ( self , lowerCAmelCase ): """simple docstring""" from datasets import load_dataset snake_case = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech snake_case = ds.sort('id' ).select(range(lowerCAmelCase ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] def snake_case ( self ): """simple docstring""" snake_case = np.array([ -1.57_45, -1.77_13, -1.70_20, -1.60_69, -1.22_50, -1.11_05, -0.90_72, -0.82_41, -1.23_10, -0.80_98, -0.33_20, -0.41_01, -0.79_85, -0.49_96, -0.82_13, -0.91_28, -1.04_20, -1.12_86, -1.04_40, -0.79_99, -0.84_05, -1.22_75, -1.54_43, -1.46_25, ] ) # fmt: on snake_case = self._load_datasamples(1 ) snake_case = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case = feature_extractor(lowerCAmelCase , return_tensors='pt' ).input_features self.assertEquals(input_features.shape , (1, 5_84, 24) ) self.assertTrue(np.allclose(input_features[0, 0, :30] , lowerCAmelCase , atol=1E-4 ) )
709
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE__ = {"configuration_sew": ["SEW_PRETRAINED_CONFIG_ARCHIVE_MAP", "SEWConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ "SEW_PRETRAINED_MODEL_ARCHIVE_LIST", "SEWForCTC", "SEWForSequenceClassification", "SEWModel", "SEWPreTrainedModel", ] if TYPE_CHECKING: from .configuration_sew import SEW_PRETRAINED_CONFIG_ARCHIVE_MAP, SEWConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_sew import ( SEW_PRETRAINED_MODEL_ARCHIVE_LIST, SEWForCTC, SEWForSequenceClassification, SEWModel, SEWPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
104
0
import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class _UpperCamelCase : '''simple docstring''' @staticmethod def __UpperCamelCase ( *a : Any , **a : str ) -> Any: """simple docstring""" pass def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : str = hashlib.mda(image.tobytes()) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =MODEL_FOR_DEPTH_ESTIMATION_MAPPING def __UpperCamelCase ( self : Tuple , a : int , a : Any , a : Any ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = DepthEstimationPipeline(model=a , image_processor=a ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def __UpperCamelCase ( self : int , a : List[str] , a : List[Any] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = depth_estimator("./tests/fixtures/tests_samples/COCO/000000039769.png" ) self.assertEqual({"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )} , a ) import datasets SCREAMING_SNAKE_CASE : Tuple = datasets.load_dataset("hf-internal-testing/fixtures_image_utils" , "image" , split="test" ) SCREAMING_SNAKE_CASE : List[Any] = depth_estimator( [ Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ), "http://images.cocodataset.org/val2017/000000039769.jpg", # RGBA dataset[0]["file"], # LA dataset[1]["file"], # L dataset[2]["file"], ] ) self.assertEqual( [ {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, ] , a , ) @require_tf @unittest.skip("Depth estimation is not implemented in TF" ) def __UpperCamelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" pass @slow @require_torch def __UpperCamelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = "Intel/dpt-large" SCREAMING_SNAKE_CASE : Optional[int] = pipeline("depth-estimation" , model=a ) SCREAMING_SNAKE_CASE : str = depth_estimator("http://images.cocodataset.org/val2017/000000039769.jpg" ) SCREAMING_SNAKE_CASE : Union[str, Any] = hashimage(outputs["depth"] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs["predicted_depth"].max().item() ) , 29.304 ) self.assertEqual(nested_simplify(outputs["predicted_depth"].min().item() ) , 2.662 ) @require_torch def __UpperCamelCase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" self.skipTest("There is not hf-internal-testing tiny model for either GLPN nor DPT" )
25
import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @property def __UpperCamelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : str = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , ) return model def __UpperCamelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = self.dummy_uncond_unet SCREAMING_SNAKE_CASE : Union[str, Any] = KarrasVeScheduler() SCREAMING_SNAKE_CASE : Any = KarrasVePipeline(unet=a , scheduler=a ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) SCREAMING_SNAKE_CASE : Any = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[Any] = pipe(num_inference_steps=2 , generator=a , output_type="numpy" ).images SCREAMING_SNAKE_CASE : List[str] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[Any] = pipe(num_inference_steps=2 , generator=a , output_type="numpy" , return_dict=a )[0] SCREAMING_SNAKE_CASE : List[Any] = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE : str = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self : int ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = "google/ncsnpp-celebahq-256" SCREAMING_SNAKE_CASE : List[Any] = UNetaDModel.from_pretrained(a ) SCREAMING_SNAKE_CASE : Any = KarrasVeScheduler() SCREAMING_SNAKE_CASE : Optional[Any] = KarrasVePipeline(unet=a , scheduler=a ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = pipe(num_inference_steps=20 , generator=a , output_type="numpy" ).images SCREAMING_SNAKE_CASE : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) SCREAMING_SNAKE_CASE : str = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
25
1
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class __lowerCamelCase ( UpperCamelCase__ ): """simple docstring""" snake_case__ = 42 class __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" @register_to_config def __init__( self : Any , SCREAMING_SNAKE_CASE__ : int = 3 , SCREAMING_SNAKE_CASE__ : int = 3 , SCREAMING_SNAKE_CASE__ : Tuple[str] = ("DownEncoderBlock2D",) , SCREAMING_SNAKE_CASE__ : Tuple[str] = ("UpDecoderBlock2D",) , SCREAMING_SNAKE_CASE__ : Tuple[int] = (64,) , SCREAMING_SNAKE_CASE__ : int = 1 , SCREAMING_SNAKE_CASE__ : str = "silu" , SCREAMING_SNAKE_CASE__ : int = 3 , SCREAMING_SNAKE_CASE__ : int = 32 , SCREAMING_SNAKE_CASE__ : int = 256 , SCREAMING_SNAKE_CASE__ : int = 32 , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : float = 0.18_215 , SCREAMING_SNAKE_CASE__ : str = "group" , ) -> Optional[int]: super().__init__() # pass init params to Encoder lowerCAmelCase__ = Encoder( in_channels=SCREAMING_SNAKE_CASE__ , out_channels=SCREAMING_SNAKE_CASE__ , down_block_types=SCREAMING_SNAKE_CASE__ , block_out_channels=SCREAMING_SNAKE_CASE__ , layers_per_block=SCREAMING_SNAKE_CASE__ , act_fn=SCREAMING_SNAKE_CASE__ , norm_num_groups=SCREAMING_SNAKE_CASE__ , double_z=SCREAMING_SNAKE_CASE__ , ) lowerCAmelCase__ = vq_embed_dim if vq_embed_dim is not None else latent_channels lowerCAmelCase__ = nn.Convad(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 1 ) lowerCAmelCase__ = VectorQuantizer(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , beta=0.25 , remap=SCREAMING_SNAKE_CASE__ , sane_index_shape=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = nn.Convad(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 1 ) # pass init params to Decoder lowerCAmelCase__ = Decoder( in_channels=SCREAMING_SNAKE_CASE__ , out_channels=SCREAMING_SNAKE_CASE__ , up_block_types=SCREAMING_SNAKE_CASE__ , block_out_channels=SCREAMING_SNAKE_CASE__ , layers_per_block=SCREAMING_SNAKE_CASE__ , act_fn=SCREAMING_SNAKE_CASE__ , norm_num_groups=SCREAMING_SNAKE_CASE__ , norm_type=SCREAMING_SNAKE_CASE__ , ) @apply_forward_hook def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : torch.FloatTensor , SCREAMING_SNAKE_CASE__ : bool = True ) -> VQEncoderOutput: lowerCAmelCase__ = self.encoder(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = self.quant_conv(SCREAMING_SNAKE_CASE__ ) if not return_dict: return (h,) return VQEncoderOutput(latents=SCREAMING_SNAKE_CASE__ ) @apply_forward_hook def a ( self : int , SCREAMING_SNAKE_CASE__ : torch.FloatTensor , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: # also go through quantization layer if not force_not_quantize: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = self.quantize(SCREAMING_SNAKE_CASE__ ) else: lowerCAmelCase__ = h lowerCAmelCase__ = self.post_quant_conv(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = self.decoder(SCREAMING_SNAKE_CASE__ , quant if self.config.norm_type == "spatial" else None ) if not return_dict: return (dec,) return DecoderOutput(sample=SCREAMING_SNAKE_CASE__ ) def a ( self : str , SCREAMING_SNAKE_CASE__ : torch.FloatTensor , SCREAMING_SNAKE_CASE__ : bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: lowerCAmelCase__ = sample lowerCAmelCase__ = self.encode(SCREAMING_SNAKE_CASE__ ).latents lowerCAmelCase__ = self.decode(SCREAMING_SNAKE_CASE__ ).sample if not return_dict: return (dec,) return DecoderOutput(sample=SCREAMING_SNAKE_CASE__ )
125
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { 'EleutherAI/gpt-neo-1.3B': 'https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json', # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class __lowerCamelCase ( UpperCamelCase__ ): """simple docstring""" snake_case__ = "gpt_neo" snake_case__ = ["past_key_values"] snake_case__ = {"num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"} def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : Tuple=50_257 , SCREAMING_SNAKE_CASE__ : List[Any]=2_048 , SCREAMING_SNAKE_CASE__ : Optional[int]=2_048 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=24 , SCREAMING_SNAKE_CASE__ : List[str]=[[["global", "local"], 12]] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=16 , SCREAMING_SNAKE_CASE__ : Any=None , SCREAMING_SNAKE_CASE__ : Union[str, Any]=256 , SCREAMING_SNAKE_CASE__ : List[Any]="gelu_new" , SCREAMING_SNAKE_CASE__ : Dict=0.0 , SCREAMING_SNAKE_CASE__ : int=0.0 , SCREAMING_SNAKE_CASE__ : List[Any]=0.0 , SCREAMING_SNAKE_CASE__ : List[Any]=0.1 , SCREAMING_SNAKE_CASE__ : Tuple=1e-5 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0.02 , SCREAMING_SNAKE_CASE__ : Tuple=True , SCREAMING_SNAKE_CASE__ : Optional[int]=50_256 , SCREAMING_SNAKE_CASE__ : Any=50_256 , **SCREAMING_SNAKE_CASE__ : List[str] , ) -> str: lowerCAmelCase__ = vocab_size lowerCAmelCase__ = max_position_embeddings lowerCAmelCase__ = hidden_size lowerCAmelCase__ = num_layers lowerCAmelCase__ = num_heads lowerCAmelCase__ = intermediate_size lowerCAmelCase__ = window_size lowerCAmelCase__ = activation_function lowerCAmelCase__ = resid_dropout lowerCAmelCase__ = embed_dropout lowerCAmelCase__ = attention_dropout lowerCAmelCase__ = classifier_dropout lowerCAmelCase__ = layer_norm_epsilon lowerCAmelCase__ = initializer_range lowerCAmelCase__ = use_cache lowerCAmelCase__ = bos_token_id lowerCAmelCase__ = eos_token_id lowerCAmelCase__ = attention_types lowerCAmelCase__ = self.expand_attention_types_params(SCREAMING_SNAKE_CASE__ ) if len(self.attention_layers ) != self.num_layers: raise ValueError( "Configuration for convolutional module is incorrect. " "It is required that `len(config.attention_layers)` == `config.num_layers` " f'but is `len(config.attention_layers) = {len(self.attention_layers )}`, ' f'`config.num_layers = {self.num_layers}`. ' "`config.attention_layers` is prepared using `config.attention_types`. " "Please verify the value of `config.attention_types` argument." ) super().__init__(bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) @staticmethod def a ( SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> str: lowerCAmelCase__ = [] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def _A ( lowerCAmelCase_ : Any , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int ): """simple docstring""" import torch lowerCAmelCase__ = input.size() lowerCAmelCase__ = len(lowerCAmelCase_ ) lowerCAmelCase__ = shape[dimension] lowerCAmelCase__ = torch.arange(0 , lowerCAmelCase_ , lowerCAmelCase_ ) lowerCAmelCase__ = torch.div(sizedim - size , lowerCAmelCase_ , rounding_mode="floor" ) + 1 lowerCAmelCase__ = torch.arange(lowerCAmelCase_ ) + low_indices[:min_length][:, None] lowerCAmelCase__ = [slice(lowerCAmelCase_ )] * rank lowerCAmelCase__ = indices lowerCAmelCase__ = input[s] lowerCAmelCase__ = list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(lowerCAmelCase_ ) def _A ( lowerCAmelCase_ : Any , lowerCAmelCase_ : List[str] ): """simple docstring""" import torch lowerCAmelCase__ = torch.arange(1 , lowerCAmelCase_ ) lowerCAmelCase__ = torch.remainder(lowerCAmelCase_ , lowerCAmelCase_ ) lowerCAmelCase__ = remainders == 0 lowerCAmelCase__ = candidates[divisor_indices] lowerCAmelCase__ = torch.max(lowerCAmelCase_ ) return largest_divisor, torch.div(lowerCAmelCase_ , lowerCAmelCase_ , rounding_mode="floor" ) class __lowerCamelCase ( UpperCamelCase__ ): """simple docstring""" @property def a ( self : List[str] ) -> Mapping[str, Mapping[int, str]]: lowerCAmelCase__ = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} ) if self.use_past: self.fill_with_past_key_values_(SCREAMING_SNAKE_CASE__ , direction="inputs" ) lowerCAmelCase__ = {0: "batch", 1: "past_sequence + sequence"} else: lowerCAmelCase__ = {0: "batch", 1: "sequence"} return common_inputs @property def a ( self : str ) -> int: return self._config.num_heads def a ( self : str , SCREAMING_SNAKE_CASE__ : PreTrainedTokenizer , SCREAMING_SNAKE_CASE__ : int = -1 , SCREAMING_SNAKE_CASE__ : int = -1 , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : Optional[TensorType] = None , ) -> Mapping[str, Any]: lowerCAmelCase__ = super(SCREAMING_SNAKE_CASE__ , self ).generate_dummy_inputs( SCREAMING_SNAKE_CASE__ , batch_size=SCREAMING_SNAKE_CASE__ , seq_length=SCREAMING_SNAKE_CASE__ , is_pair=SCREAMING_SNAKE_CASE__ , framework=SCREAMING_SNAKE_CASE__ ) # We need to order the input in the way they appears in the forward() lowerCAmelCase__ = OrderedDict({"input_ids": common_inputs["input_ids"]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch lowerCAmelCase__ , lowerCAmelCase__ = common_inputs["input_ids"].shape # Not using the same length for past_key_values lowerCAmelCase__ = seqlen + 2 lowerCAmelCase__ = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) lowerCAmelCase__ = [ (torch.zeros(SCREAMING_SNAKE_CASE__ ), torch.zeros(SCREAMING_SNAKE_CASE__ )) for _ in range(self.num_layers ) ] lowerCAmelCase__ = common_inputs["attention_mask"] if self.use_past: lowerCAmelCase__ = ordered_inputs["attention_mask"].dtype lowerCAmelCase__ = torch.cat( [ordered_inputs["attention_mask"], torch.ones(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , dtype=SCREAMING_SNAKE_CASE__ )] , dim=1 ) return ordered_inputs @property def a ( self : str ) -> int: return 13
125
1
import pandas as pd from matplotlib import pyplot as plt from sklearn.linear_model import LinearRegression # Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split # Fitting Polynomial Regression to the dataset from sklearn.preprocessing import PolynomialFeatures # Importing the dataset UpperCAmelCase_ : List[str] = pd.read_csv( "https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/" "position_salaries.csv" ) UpperCAmelCase_ : Union[str, Any] = dataset.iloc[:, 1:2].values UpperCAmelCase_ : Dict = dataset.iloc[:, 2].values UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Dict = train_test_split(X, y, test_size=0.2, random_state=0) UpperCAmelCase_ : Union[str, Any] = PolynomialFeatures(degree=4) UpperCAmelCase_ : Any = poly_reg.fit_transform(X) UpperCAmelCase_ : Optional[Any] = LinearRegression() pol_reg.fit(X_poly, y) def lowerCAmelCase_ ( ): plt.scatter(lowerCamelCase , lowerCamelCase , color="""red""" ) plt.plot(lowerCamelCase , pol_reg.predict(poly_reg.fit_transform(lowerCamelCase ) ) , color="""blue""" ) plt.title("""Truth or Bluff (Linear Regression)""" ) plt.xlabel("""Position level""" ) plt.ylabel("""Salary""" ) plt.show() if __name__ == "__main__": viz_polymonial() # Predicting a new result with Polymonial Regression pol_reg.predict(poly_reg.fit_transform([[5.5]])) # output should be 132148.43750003
21
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class __lowercase ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): _a = StableUnCLIPImgaImgPipeline _a = TEXT_GUIDED_IMAGE_VARIATION_PARAMS _a = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS _a = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess _a = frozenset([] ) def UpperCamelCase__ ( self ) -> List[str]: __a = 32 __a = embedder_hidden_size # image encoding components __a = CLIPImageProcessor(crop_size=32 , size=32 ) torch.manual_seed(0 ) __a = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=UpperCamelCase , projection_dim=UpperCamelCase , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) ) # regular denoising components torch.manual_seed(0 ) __a = StableUnCLIPImageNormalizer(embedding_dim=UpperCamelCase ) __a = DDPMScheduler(beta_schedule='squaredcos_cap_v2' ) torch.manual_seed(0 ) __a = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) torch.manual_seed(0 ) __a = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=UpperCamelCase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) __a = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('CrossAttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'CrossAttnUpBlock2D') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='projection' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=UpperCamelCase , layers_per_block=1 , upcast_attention=UpperCamelCase , use_linear_projection=UpperCamelCase , ) torch.manual_seed(0 ) __a = DDIMScheduler( beta_schedule='scaled_linear' , beta_start=0.00_085 , beta_end=0.012 , prediction_type='v_prediction' , set_alpha_to_one=UpperCamelCase , steps_offset=1 , ) torch.manual_seed(0 ) __a = AutoencoderKL() __a = { # image encoding components 'feature_extractor': feature_extractor, 'image_encoder': image_encoder.eval(), # image noising components 'image_normalizer': image_normalizer.eval(), 'image_noising_scheduler': image_noising_scheduler, # regular denoising components 'tokenizer': tokenizer, 'text_encoder': text_encoder.eval(), 'unet': unet.eval(), 'scheduler': scheduler, 'vae': vae.eval(), } return components def UpperCamelCase__ ( self , UpperCamelCase , UpperCamelCase=0 , UpperCamelCase=True ) -> Dict: if str(UpperCamelCase ).startswith('mps' ): __a = torch.manual_seed(UpperCamelCase ) else: __a = torch.Generator(device=UpperCamelCase ).manual_seed(UpperCamelCase ) __a = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase ) ).to(UpperCamelCase ) if pil_image: __a = input_image * 0.5 + 0.5 __a = input_image.clamp(0 , 1 ) __a = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() __a = DiffusionPipeline.numpy_to_pil(UpperCamelCase )[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def UpperCamelCase__ ( self ) -> int: __a = 'cpu' # ensure determinism for the device-dependent torch.Generator __a = self.get_dummy_components() __a = StableUnCLIPImgaImgPipeline(**UpperCamelCase ) __a = sd_pipe.to(UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase ) __a = self.get_dummy_inputs(UpperCamelCase ) inputs.update({'image_embeds': None} ) __a = sd_pipe(**UpperCamelCase ).images __a = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __a = np.array([0.3_872, 0.7_224, 0.5_601, 0.4_741, 0.6_872, 0.5_814, 0.4_636, 0.3_867, 0.5_078] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def UpperCamelCase__ ( self ) -> Any: __a = torch_device in ['cpu', 'mps'] self._test_attention_slicing_forward_pass(test_max_difference=UpperCamelCase ) def UpperCamelCase__ ( self ) -> Union[str, Any]: __a = torch_device in ['cpu', 'mps'] self._test_inference_batch_single_identical(test_max_difference=UpperCamelCase ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def UpperCamelCase__ ( self ) -> Optional[Any]: self._test_xformers_attention_forwardGenerator_pass(test_max_difference=UpperCamelCase ) @slow @require_torch_gpu class __lowercase ( unittest.TestCase ): def UpperCamelCase__ ( self ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self ) -> str: __a = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png' ) __a = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy' ) __a = StableUnCLIPImgaImgPipeline.from_pretrained( 'fusing/stable-unclip-2-1-l-img2img' , torch_dtype=torch.floataa ) pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __a = torch.Generator(device='cpu' ).manual_seed(0 ) __a = pipe(UpperCamelCase , 'anime turle' , generator=UpperCamelCase , output_type='np' ) __a = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(UpperCamelCase , UpperCamelCase ) def UpperCamelCase__ ( self ) -> Optional[int]: __a = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png' ) __a = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy' ) __a = StableUnCLIPImgaImgPipeline.from_pretrained( 'fusing/stable-unclip-2-1-h-img2img' , torch_dtype=torch.floataa ) pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __a = torch.Generator(device='cpu' ).manual_seed(0 ) __a = pipe(UpperCamelCase , 'anime turle' , generator=UpperCamelCase , output_type='np' ) __a = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(UpperCamelCase , UpperCamelCase ) def UpperCamelCase__ ( self ) -> Union[str, Any]: __a = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png' ) torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __a = StableUnCLIPImgaImgPipeline.from_pretrained( 'fusing/stable-unclip-2-1-h-img2img' , torch_dtype=torch.floataa ) __a = pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __a = pipe( UpperCamelCase , 'anime turtle' , num_inference_steps=2 , output_type='np' , ) __a = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
539
0
import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers _lowerCamelCase : Optional[Any] = """python tqdm regex requests packaging filelock numpy tokenizers""".split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append("""dataclasses""") if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append("""importlib_metadata""") for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f"""can't find {pkg} in {deps.keys()}, check dependency_versions_table.py""") def __a ( __lowerCAmelCase , __lowerCAmelCase=None ) -> Union[str, Any]: require_version(deps[pkg] , __lowerCAmelCase )
308
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : Optional[int] = logging.get_logger(__name__) _lowerCamelCase : List[str] = { """transfo-xl-wt103""": """https://huggingface.co/transfo-xl-wt103/resolve/main/config.json""", } class lowercase ( SCREAMING_SNAKE_CASE_): '''simple docstring''' UpperCAmelCase : Union[str, Any] = 'transfo-xl' UpperCAmelCase : List[str] = ['mems'] UpperCAmelCase : Optional[Any] = { 'n_token': 'vocab_size', 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : Optional[int] , snake_case : Tuple=267735 , snake_case : Optional[Any]=[20000, 40000, 200000] , snake_case : List[Any]=1024 , snake_case : List[Any]=1024 , snake_case : List[Any]=16 , snake_case : int=64 , snake_case : Optional[int]=4096 , snake_case : Union[str, Any]=4 , snake_case : List[str]=False , snake_case : int=18 , snake_case : List[Any]=1600 , snake_case : Union[str, Any]=1000 , snake_case : List[Any]=True , snake_case : Dict=True , snake_case : Optional[Any]=0 , snake_case : Dict=-1 , snake_case : List[Any]=True , snake_case : Any=0.1 , snake_case : List[Any]=0.0 , snake_case : List[str]=True , snake_case : Optional[Any]="normal" , snake_case : Optional[Any]=0.01 , snake_case : Union[str, Any]=0.01 , snake_case : List[str]=0.02 , snake_case : List[str]=1E-5 , snake_case : Optional[int]=0 , **snake_case : Union[str, Any] , ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = vocab_size SCREAMING_SNAKE_CASE : Any = [] self.cutoffs.extend(snake_case ) if proj_share_all_but_first: SCREAMING_SNAKE_CASE : Tuple = [False] + [True] * len(self.cutoffs ) else: SCREAMING_SNAKE_CASE : List[Any] = [False] + [False] * len(self.cutoffs ) SCREAMING_SNAKE_CASE : Tuple = d_model SCREAMING_SNAKE_CASE : Any = d_embed SCREAMING_SNAKE_CASE : Tuple = d_head SCREAMING_SNAKE_CASE : Union[str, Any] = d_inner SCREAMING_SNAKE_CASE : Tuple = div_val SCREAMING_SNAKE_CASE : int = pre_lnorm SCREAMING_SNAKE_CASE : Tuple = n_layer SCREAMING_SNAKE_CASE : List[str] = n_head SCREAMING_SNAKE_CASE : Dict = mem_len SCREAMING_SNAKE_CASE : Dict = same_length SCREAMING_SNAKE_CASE : Union[str, Any] = attn_type SCREAMING_SNAKE_CASE : str = clamp_len SCREAMING_SNAKE_CASE : Any = sample_softmax SCREAMING_SNAKE_CASE : Optional[int] = adaptive SCREAMING_SNAKE_CASE : Optional[int] = dropout SCREAMING_SNAKE_CASE : Union[str, Any] = dropatt SCREAMING_SNAKE_CASE : List[str] = untie_r SCREAMING_SNAKE_CASE : Union[str, Any] = init SCREAMING_SNAKE_CASE : Optional[int] = init_range SCREAMING_SNAKE_CASE : Tuple = proj_init_std SCREAMING_SNAKE_CASE : str = init_std SCREAMING_SNAKE_CASE : List[str] = layer_norm_epsilon super().__init__(eos_token_id=snake_case , **snake_case ) @property def lowerCamelCase_ ( self : str ): '''simple docstring''' logger.info(f'''The model {self.model_type} is one of the few models that has no sequence length limit.''' ) return -1 @max_position_embeddings.setter def lowerCamelCase_ ( self : Tuple , snake_case : Optional[Any] ): '''simple docstring''' raise NotImplementedError( f'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
308
1
'''simple docstring''' from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case : Optional[Any] = logging.get_logger(__name__) # TODO Update this _snake_case : Optional[Any] = { "facebook/esm-1b": "https://huggingface.co/facebook/esm-1b/resolve/main/config.json", # See all ESM models at https://huggingface.co/models?filter=esm } class A ( lowerCAmelCase__ ): lowercase_ = """esm""" def __init__( self : str , lowerCAmelCase_ : Union[str, Any]=None , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : Optional[Any]=None , lowerCAmelCase_ : Tuple=7_68 , lowerCAmelCase_ : Optional[Any]=12 , lowerCAmelCase_ : Tuple=12 , lowerCAmelCase_ : Any=30_72 , lowerCAmelCase_ : Union[str, Any]=0.1 , lowerCAmelCase_ : str=0.1 , lowerCAmelCase_ : Tuple=10_26 , lowerCAmelCase_ : Any=0.0_2 , lowerCAmelCase_ : List[Any]=1e-12 , lowerCAmelCase_ : Dict="absolute" , lowerCAmelCase_ : Optional[int]=True , lowerCAmelCase_ : Union[str, Any]=None , lowerCAmelCase_ : str=False , lowerCAmelCase_ : Tuple=False , lowerCAmelCase_ : str=None , lowerCAmelCase_ : Tuple=None , **lowerCAmelCase_ : int , ) -> Dict: """simple docstring""" super().__init__(pad_token_id=__a , mask_token_id=__a , **__a ) _a = vocab_size _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = max_position_embeddings _a = initializer_range _a = layer_norm_eps _a = position_embedding_type _a = use_cache _a = emb_layer_norm_before _a = token_dropout _a = is_folding_model if is_folding_model: if esmfold_config is None: logger.info('''No esmfold_config supplied for folding model, using default values.''' ) _a = EsmFoldConfig() elif isinstance(__a , __a ): _a = EsmFoldConfig(**__a ) _a = esmfold_config if vocab_list is None: logger.warning('''No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!''' ) _a = get_default_vocab_list() else: _a = vocab_list else: _a = None _a = None if self.esmfold_config is not None and getattr(self.esmfold_config , '''use_esm_attn_map''' , __a ): raise ValueError('''The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!''' ) def __lowerCAmelCase ( self : Dict ) -> Optional[int]: """simple docstring""" _a = super().to_dict() if isinstance(self.esmfold_config , __a ): _a = self.esmfold_config.to_dict() return output @dataclass class A : lowercase_ = None lowercase_ = True lowercase_ = False lowercase_ = False lowercase_ = False lowercase_ = 0 lowercase_ = True lowercase_ = False lowercase_ = 128 lowercase_ = None def __lowerCAmelCase ( self : Any ) -> Optional[int]: """simple docstring""" if self.trunk is None: _a = TrunkConfig() elif isinstance(self.trunk , __a ): _a = TrunkConfig(**self.trunk ) def __lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" _a = asdict(self ) _a = self.trunk.to_dict() return output @dataclass class A : lowercase_ = 48 lowercase_ = 1024 lowercase_ = 128 lowercase_ = 32 lowercase_ = 32 lowercase_ = 32 lowercase_ = 0 lowercase_ = 0 lowercase_ = False lowercase_ = 4 lowercase_ = 128 lowercase_ = None def __lowerCAmelCase ( self : Tuple ) -> List[Any]: """simple docstring""" if self.structure_module is None: _a = StructureModuleConfig() elif isinstance(self.structure_module , __a ): _a = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(F'`max_recycles` should be positive, got {self.max_recycles}.' ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( '''`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got''' F' {self.sequence_state_dim} and {self.sequence_state_dim}.' ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( '''`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got''' F' {self.pairwise_state_dim} and {self.pairwise_state_dim}.' ) _a = self.sequence_state_dim // self.sequence_head_width _a = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( '''`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got''' F' {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.' ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( '''`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got''' F' {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.' ) if self.pairwise_state_dim % 2 != 0: raise ValueError(F'`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.' ) if self.dropout >= 0.4: raise ValueError(F'`dropout` should not be greater than 0.4, got {self.dropout}.' ) def __lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" _a = asdict(self ) _a = self.structure_module.to_dict() return output @dataclass class A : lowercase_ = 384 lowercase_ = 128 lowercase_ = 16 lowercase_ = 128 lowercase_ = 12 lowercase_ = 4 lowercase_ = 8 lowercase_ = 0.1 lowercase_ = 8 lowercase_ = 1 lowercase_ = 2 lowercase_ = 7 lowercase_ = 10 lowercase_ = 1e-8 lowercase_ = 1e5 def __lowerCAmelCase ( self : str ) -> List[Any]: """simple docstring""" return asdict(self ) def snake_case_ (): '''simple docstring''' return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
22
"""simple docstring""" from ..utils import DummyObject, requires_backends class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : int =["""torch"""] def __init__( self , *__a , **__a ): requires_backends(self , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] =["""torch"""] def __init__( self , *__a , **__a ): requires_backends(self , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : int =["""torch"""] def __init__( self , *__a , **__a ): requires_backends(self , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Optional[int] =["""torch"""] def __init__( self , *__a , **__a ): requires_backends(self , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Optional[Any] =["""torch"""] def __init__( self , *__a , **__a ): requires_backends(self , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : List[Any] =["""torch"""] def __init__( self , *__a , **__a ): requires_backends(self , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Optional[Any] =["""torch"""] def __init__( self , *__a , **__a ): requires_backends(self , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : str =["""torch"""] def __init__( self , *__a , **__a ): requires_backends(self , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : int =["""torch"""] def __init__( self , *__a , **__a ): requires_backends(self , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Optional[int] =["""torch"""] def __init__( self , *__a , **__a ): requires_backends(self , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : List[str] =["""torch"""] def __init__( self , *__a , **__a ): requires_backends(self , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) def _lowerCamelCase ( *_UpperCamelCase , **_UpperCamelCase ): '''simple docstring''' requires_backends(_UpperCamelCase , ["torch"] ) def _lowerCamelCase ( *_UpperCamelCase , **_UpperCamelCase ): '''simple docstring''' requires_backends(_UpperCamelCase , ["torch"] ) def _lowerCamelCase ( *_UpperCamelCase , **_UpperCamelCase ): '''simple docstring''' requires_backends(_UpperCamelCase , ["torch"] ) def _lowerCamelCase ( *_UpperCamelCase , **_UpperCamelCase ): '''simple docstring''' requires_backends(_UpperCamelCase , ["torch"] ) def _lowerCamelCase ( *_UpperCamelCase , **_UpperCamelCase ): '''simple docstring''' requires_backends(_UpperCamelCase , ["torch"] ) def _lowerCamelCase ( *_UpperCamelCase , **_UpperCamelCase ): '''simple docstring''' requires_backends(_UpperCamelCase , ["torch"] ) def _lowerCamelCase ( *_UpperCamelCase , **_UpperCamelCase ): '''simple docstring''' requires_backends(_UpperCamelCase , ["torch"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] =["""torch"""] def __init__( self , *__a , **__a ): requires_backends(self , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Tuple =["""torch"""] def __init__( self , *__a , **__a ): requires_backends(self , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : int =["""torch"""] def __init__( self , *__a , **__a ): requires_backends(self , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Optional[Any] =["""torch"""] def __init__( self , *__a , **__a ): requires_backends(self , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : List[str] =["""torch"""] def __init__( self , *__a , **__a ): requires_backends(self , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Any =["""torch"""] def __init__( self , *__a , **__a ): requires_backends(self , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Optional[int] =["""torch"""] def __init__( self , *__a , **__a ): requires_backends(self , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Any =["""torch"""] def __init__( self , *__a , **__a ): requires_backends(self , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Optional[Any] =["""torch"""] def __init__( self , *__a , **__a ): requires_backends(self , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : List[Any] =["""torch"""] def __init__( self , *__a , **__a ): requires_backends(self , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Optional[Any] =["""torch"""] def __init__( self , *__a , **__a ): requires_backends(self , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : List[str] =["""torch"""] def __init__( self , *__a , **__a ): requires_backends(self , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Dict =["""torch"""] def __init__( self , *__a , **__a ): requires_backends(self , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : List[str] =["""torch"""] def __init__( self , *__a , **__a ): requires_backends(self , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : List[Any] =["""torch"""] def __init__( self , *__a , **__a ): requires_backends(self , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : str =["""torch"""] def __init__( self , *__a , **__a ): requires_backends(self , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : List[str] =["""torch"""] def __init__( self , *__a , **__a ): requires_backends(self , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : int =["""torch"""] def __init__( self , *__a , **__a ): requires_backends(self , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Tuple =["""torch"""] def __init__( self , *__a , **__a ): requires_backends(self , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] =["""torch"""] def __init__( self , *__a , **__a ): requires_backends(self , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : str =["""torch"""] def __init__( self , *__a , **__a ): requires_backends(self , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : List[Any] =["""torch"""] def __init__( self , *__a , **__a ): requires_backends(self , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : List[Any] =["""torch"""] def __init__( self , *__a , **__a ): requires_backends(self , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : List[str] =["""torch"""] def __init__( self , *__a , **__a ): requires_backends(self , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Tuple =["""torch"""] def __init__( self , *__a , **__a ): requires_backends(self , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : int =["""torch"""] def __init__( self , *__a , **__a ): requires_backends(self , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Any =["""torch"""] def __init__( self , *__a , **__a ): requires_backends(self , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Any =["""torch"""] def __init__( self , *__a , **__a ): requires_backends(self , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Optional[int] =["""torch"""] def __init__( self , *__a , **__a ): requires_backends(self , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Tuple =["""torch"""] def __init__( self , *__a , **__a ): requires_backends(self , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : List[str] =["""torch"""] def __init__( self , *__a , **__a ): requires_backends(self , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Dict =["""torch"""] def __init__( self , *__a , **__a ): requires_backends(self , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] =["""torch"""] def __init__( self , *__a , **__a ): requires_backends(self , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : str =["""torch"""] def __init__( self , *__a , **__a ): requires_backends(self , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : List[str] =["""torch"""] def __init__( self , *__a , **__a ): requires_backends(self , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] =["""torch"""] def __init__( self , *__a , **__a ): requires_backends(self , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Optional[int] =["""torch"""] def __init__( self , *__a , **__a ): requires_backends(self , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Optional[int] =["""torch"""] def __init__( self , *__a , **__a ): requires_backends(self , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Any =["""torch"""] def __init__( self , *__a , **__a ): requires_backends(self , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] )
636
0
import logging import os import sys from dataclasses import dataclass, field from importlib import import_module from typing import Dict, List, Optional, Tuple import numpy as np from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch import nn from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask import transformers from transformers import ( AutoConfig, AutoModelForTokenClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process __lowerCAmelCase : Any = logging.getLogger(__name__) @dataclass class lowerCamelCase : __lowerCamelCase = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) __lowerCamelCase = field( default=UpperCAmelCase_ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __lowerCamelCase = field( default='NER' , metadata={'help': 'Task type to fine tune in training (e.g. NER, POS, etc)'} ) __lowerCamelCase = field( default=UpperCAmelCase_ , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) __lowerCamelCase = field(default=UpperCAmelCase_ , metadata={'help': 'Set this flag to use fast tokenization.'} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. __lowerCamelCase = field( default=UpperCAmelCase_ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) @dataclass class lowerCamelCase : __lowerCamelCase = field( metadata={'help': 'The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task.'} ) __lowerCamelCase = field( default=UpperCAmelCase_ , metadata={'help': 'Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.'} , ) __lowerCamelCase = field( default=128 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __lowerCamelCase = field( default=UpperCAmelCase_ , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) def a_ ()-> Tuple: snake_case: Tuple = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. snake_case , snake_case , snake_case: Tuple = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: snake_case , snake_case , snake_case: Dict = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. Use" """ --overwrite_output_dir to overcome.""" ) snake_case: Optional[int] = import_module("""tasks""" ) try: snake_case: int = getattr(UpperCamelCase__ , model_args.task_type ) snake_case: List[Any] = token_classification_task_clazz() except AttributeError: raise ValueError( F"Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. " F"Available tasks classes are: {TokenClassificationTask.__subclasses__()}" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" , UpperCamelCase__ ) # Set seed set_seed(training_args.seed ) # Prepare CONLL-2003 task snake_case: int = token_classification_task.get_labels(data_args.labels ) snake_case: Optional[int] = dict(enumerate(UpperCamelCase__ ) ) snake_case: Union[str, Any] = len(UpperCamelCase__ ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. snake_case: str = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=UpperCamelCase__ , idalabel=UpperCamelCase__ , labelaid={label: i for i, label in enumerate(UpperCamelCase__ )} , cache_dir=model_args.cache_dir , ) snake_case: str = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , ) snake_case: List[str] = AutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=UpperCamelCase__ , cache_dir=model_args.cache_dir , ) # Get datasets snake_case: Tuple = ( TokenClassificationDataset( token_classification_task=UpperCamelCase__ , data_dir=data_args.data_dir , tokenizer=UpperCamelCase__ , labels=UpperCamelCase__ , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) snake_case: Dict = ( TokenClassificationDataset( token_classification_task=UpperCamelCase__ , data_dir=data_args.data_dir , tokenizer=UpperCamelCase__ , labels=UpperCamelCase__ , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def align_predictions(_lowerCAmelCase : str , _lowerCAmelCase : int ) -> Tuple[List[int], List[int]]: snake_case: Dict = np.argmax(UpperCamelCase__ , axis=2 ) snake_case , snake_case: Optional[Any] = preds.shape snake_case: int = [[] for _ in range(UpperCamelCase__ )] snake_case: Dict = [[] for _ in range(UpperCamelCase__ )] for i in range(UpperCamelCase__ ): for j in range(UpperCamelCase__ ): if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: out_label_list[i].append(label_map[label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) return preds_list, out_label_list def compute_metrics(_lowerCAmelCase : int ) -> Dict: snake_case , snake_case: List[Any] = align_predictions(p.predictions , p.label_ids ) return { "accuracy_score": accuracy_score(UpperCamelCase__ , UpperCamelCase__ ), "precision": precision_score(UpperCamelCase__ , UpperCamelCase__ ), "recall": recall_score(UpperCamelCase__ , UpperCamelCase__ ), "f1": fa_score(UpperCamelCase__ , UpperCamelCase__ ), } # Data collator snake_case: Any = DataCollatorWithPadding(UpperCamelCase__ , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer snake_case: int = Trainer( model=UpperCamelCase__ , args=UpperCamelCase__ , train_dataset=UpperCamelCase__ , eval_dataset=UpperCamelCase__ , compute_metrics=UpperCamelCase__ , data_collator=UpperCamelCase__ , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation snake_case: Optional[int] = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) snake_case: Dict = trainer.evaluate() snake_case: Union[str, Any] = os.path.join(training_args.output_dir , """eval_results.txt""" ) if trainer.is_world_process_zero(): with open(UpperCamelCase__ , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key, value in result.items(): logger.info(""" %s = %s""" , UpperCamelCase__ , UpperCamelCase__ ) writer.write("""%s = %s\n""" % (key, value) ) results.update(UpperCamelCase__ ) # Predict if training_args.do_predict: snake_case: str = TokenClassificationDataset( token_classification_task=UpperCamelCase__ , data_dir=data_args.data_dir , tokenizer=UpperCamelCase__ , labels=UpperCamelCase__ , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , ) snake_case , snake_case , snake_case: Any = trainer.predict(UpperCamelCase__ ) snake_case , snake_case: int = align_predictions(UpperCamelCase__ , UpperCamelCase__ ) snake_case: Tuple = os.path.join(training_args.output_dir , """test_results.txt""" ) if trainer.is_world_process_zero(): with open(UpperCamelCase__ , """w""" ) as writer: for key, value in metrics.items(): logger.info(""" %s = %s""" , UpperCamelCase__ , UpperCamelCase__ ) writer.write("""%s = %s\n""" % (key, value) ) # Save predictions snake_case: str = os.path.join(training_args.output_dir , """test_predictions.txt""" ) if trainer.is_world_process_zero(): with open(UpperCamelCase__ , """w""" ) as writer: with open(os.path.join(data_args.data_dir , """test.txt""" ) , """r""" ) as f: token_classification_task.write_predictions_to_file(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) return results def a_ (_lowerCAmelCase : Optional[int] )-> str: main() if __name__ == "__main__": main()
703
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __lowerCAmelCase : Tuple = logging.get_logger(__name__) __lowerCAmelCase : Tuple = '▁' __lowerCAmelCase : int = {'vocab_file': 'sentencepiece.bpe.model', 'monolingual_vocab_file': 'dict.txt'} __lowerCAmelCase : int = { 'vocab_file': { 'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model', }, 'monolingual_vocab_file': { 'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt', }, } __lowerCAmelCase : int = {'vinai/bartpho-syllable': 1024} class lowerCamelCase ( __snake_case ): __lowerCamelCase = VOCAB_FILES_NAMES __lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase = ['input_ids', 'attention_mask'] def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase="<s>" , __lowerCamelCase="</s>" , __lowerCamelCase="</s>" , __lowerCamelCase="<s>" , __lowerCamelCase="<unk>" , __lowerCamelCase="<pad>" , __lowerCamelCase="<mask>" , __lowerCamelCase = None , **__lowerCamelCase , ) -> None: '''simple docstring''' snake_case: Any = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token snake_case: Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **__lowerCamelCase , ) snake_case: Tuple = vocab_file snake_case: Dict = monolingual_vocab_file snake_case: str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__lowerCamelCase ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility snake_case: int = {} snake_case: int = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(__lowerCamelCase ) not in self.fairseq_tokens_to_ids: snake_case: Optional[int] = cnt cnt += 1 with open(__lowerCamelCase , """r""" , encoding="""utf-8""" ) as f: for line in f.readlines(): snake_case: Optional[int] = line.strip().split()[0] snake_case: List[Any] = len(self.fairseq_tokens_to_ids ) if str(__lowerCamelCase ) not in self.fairseq_tokens_to_ids: snake_case: Tuple = len(self.fairseq_tokens_to_ids ) snake_case: str = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ) -> int: '''simple docstring''' snake_case: Optional[Any] = self.__dict__.copy() snake_case: List[str] = None snake_case: Union[str, Any] = self.sp_model.serialized_model_proto() return state def __setstate__( self , __lowerCamelCase ) -> Tuple: '''simple docstring''' snake_case: str = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): snake_case: List[Any] = {} snake_case: List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def lowerCAmelCase_ ( self , __lowerCamelCase , __lowerCamelCase = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case: Optional[int] = [self.cls_token_id] snake_case: Optional[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCAmelCase_ ( self , __lowerCamelCase , __lowerCamelCase = None , __lowerCamelCase = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(__lowerCamelCase )) + [1] return [1] + ([0] * len(__lowerCamelCase )) + [1, 1] + ([0] * len(__lowerCamelCase )) + [1] def lowerCAmelCase_ ( self , __lowerCamelCase , __lowerCamelCase = None ) -> List[int]: '''simple docstring''' snake_case: Tuple = [self.sep_token_id] snake_case: str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowerCAmelCase_ ( self ) -> Any: '''simple docstring''' return len(self.fairseq_ids_to_tokens ) def lowerCAmelCase_ ( self ) -> Dict: '''simple docstring''' snake_case: Union[str, Any] = {self.convert_ids_to_tokens(__lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCAmelCase_ ( self , __lowerCamelCase ) -> List[str]: '''simple docstring''' return self.sp_model.encode(__lowerCamelCase , out_type=__lowerCamelCase ) def lowerCAmelCase_ ( self , __lowerCamelCase ) -> List[Any]: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def lowerCAmelCase_ ( self , __lowerCamelCase ) -> Dict: '''simple docstring''' return self.fairseq_ids_to_tokens[index] def lowerCAmelCase_ ( self , __lowerCamelCase ) -> Optional[int]: '''simple docstring''' snake_case: Tuple = """""".join(__lowerCamelCase ).replace(__lowerCamelCase , """ """ ).strip() return out_string def lowerCAmelCase_ ( self , __lowerCamelCase , __lowerCamelCase = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(__lowerCamelCase ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return snake_case: Tuple = os.path.join( __lowerCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) snake_case: Union[str, Any] = os.path.join( __lowerCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""monolingual_vocab_file"""] , ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(__lowerCamelCase , """wb""" ) as fi: snake_case: str = self.sp_model.serialized_model_proto() fi.write(__lowerCamelCase ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( __lowerCamelCase ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file , __lowerCamelCase ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(__lowerCamelCase , """w""" , encoding="""utf-8""" ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(F"{str(__lowerCamelCase )} \n" ) return out_vocab_file, out_monolingual_vocab_file
164
0
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def lowercase__ ( A_: int=None ) -> str: """simple docstring""" if subparsers is not None: __UpperCAmelCase =subparsers.add_parser("""test""" ) else: __UpperCAmelCase =argparse.ArgumentParser("""Accelerate test command""" ) parser.add_argument( """--config_file""" , default=A_ , help=( """The path to use to store the config file. Will default to a file named default_config.yaml in the cache """ """location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have """ """such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed """ """with 'huggingface'.""" ) , ) if subparsers is not None: parser.set_defaults(func=A_ ) return parser def lowercase__ ( A_: List[Any] ) -> Optional[int]: """simple docstring""" __UpperCAmelCase =os.path.sep.join(__file__.split(os.path.sep )[:-2] + ["""test_utils""", """scripts""", """test_script.py"""] ) if args.config_file is None: __UpperCAmelCase =script_name else: __UpperCAmelCase =F'''--config_file={args.config_file} {script_name}''' __UpperCAmelCase =["""accelerate-launch"""] + test_args.split() __UpperCAmelCase =execute_subprocess_async(A_ , env=os.environ.copy() ) if result.returncode == 0: print("""Test is a success! You are ready for your distributed training!""" ) def lowercase__ ( ) -> List[str]: """simple docstring""" __UpperCAmelCase =test_command_parser() __UpperCAmelCase =parser.parse_args() test_command(A_ ) if __name__ == "__main__": main()
68
from typing import List from .keymap import KEYMAP, get_character def lowercase__ ( A_: str ) -> str: """simple docstring""" def decorator(A_: int ): __UpperCAmelCase =getattr(A_ , """handle_key""" , [] ) handle += [key] setattr(A_ , """handle_key""" , A_ ) return func return decorator def lowercase__ ( *A_: List[str] ) -> Optional[int]: """simple docstring""" def decorator(A_: Tuple ): __UpperCAmelCase =getattr(A_ , """handle_key""" , [] ) handle += keys setattr(A_ , """handle_key""" , A_ ) return func return decorator class _A ( UpperCamelCase ): """simple docstring""" def __new__( cls : str , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[str] ) -> int: __UpperCAmelCase =super().__new__(cls , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if not hasattr(__SCREAMING_SNAKE_CASE , """key_handler""" ): setattr(__SCREAMING_SNAKE_CASE , """key_handler""" , {} ) setattr(__SCREAMING_SNAKE_CASE , """handle_input""" , KeyHandler.handle_input ) for value in attrs.values(): __UpperCAmelCase =getattr(__SCREAMING_SNAKE_CASE , """handle_key""" , [] ) for key in handled_keys: __UpperCAmelCase =value return new_cls @staticmethod def _a ( cls : Dict ) -> List[Any]: __UpperCAmelCase =get_character() if char != KEYMAP["undefined"]: __UpperCAmelCase =ord(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =cls.key_handler.get(__SCREAMING_SNAKE_CASE ) if handler: __UpperCAmelCase =char return handler(cls ) else: return None def lowercase__ ( cls: str ) -> int: """simple docstring""" return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
68
1
import argparse import os import re a__ = """src/diffusers""" # Pattern that looks at the indentation in a line. a__ = re.compile(r"""^(\s*)\S""") # Pattern that matches `"key":" and puts `key` in group 0. a__ = re.compile(r"""^\s*\"([^\"]+)\":""") # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. a__ = re.compile(r"""^\s*_import_structure\[\"([^\"]+)\"\]""") # Pattern that matches `"key",` and puts `key` in group 0. a__ = re.compile(r"""^\s*\"([^\"]+)\",\s*$""") # Pattern that matches any `[stuff]` and puts `stuff` in group 0. a__ = re.compile(r"""\[([^\]]+)\]""") def _UpperCAmelCase ( a : List[Any] ): snake_case__ = _re_indent.search(a__ ) return "" if search is None else search.groups()[0] def _UpperCAmelCase ( a : List[Any] , a : str="" , a : Dict=None , a : Optional[Any]=None ): snake_case__ = 0 snake_case__ = code.split("""\n""" ) if start_prompt is not None: while not lines[index].startswith(a__ ): index += 1 snake_case__ = ["""\n""".join(lines[:index] )] else: snake_case__ = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). snake_case__ = [lines[index]] index += 1 while index < len(a__ ) and (end_prompt is None or not lines[index].startswith(a__ )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(a__ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + """ """ ): current_block.append(lines[index] ) blocks.append("""\n""".join(a__ ) ) if index < len(a__ ) - 1: snake_case__ = [lines[index + 1]] index += 1 else: snake_case__ = [] else: blocks.append("""\n""".join(a__ ) ) snake_case__ = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(a__ ) > 0: blocks.append("""\n""".join(a__ ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(a__ ): blocks.append("""\n""".join(lines[index:] ) ) return blocks def _UpperCAmelCase ( a : Any ): def _inner(a : Union[str, Any] ): return key(a__ ).lower().replace("""_""" , """""" ) return _inner def _UpperCAmelCase ( a : List[Any] , a : str=None ): def noop(a : List[Any] ): return x if key is None: snake_case__ = noop # Constants are all uppercase, they go first. snake_case__ = [obj for obj in objects if key(a__ ).isupper()] # Classes are not all uppercase but start with a capital, they go second. snake_case__ = [obj for obj in objects if key(a__ )[0].isupper() and not key(a__ ).isupper()] # Functions begin with a lowercase, they go last. snake_case__ = [obj for obj in objects if not key(a__ )[0].isupper()] snake_case__ = ignore_underscore(a__ ) return sorted(a__ , key=a__ ) + sorted(a__ , key=a__ ) + sorted(a__ , key=a__ ) def _UpperCAmelCase ( a : Optional[Any] ): def _replace(a : Dict ): snake_case__ = match.groups()[0] if "," not in imports: return F'''[{imports}]''' snake_case__ = [part.strip().replace("""\"""" , """""" ) for part in imports.split(""",""" )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: snake_case__ = keys[:-1] return "[" + ", ".join([F'''"{k}"''' for k in sort_objects(a__ )] ) + "]" snake_case__ = import_statement.split("""\n""" ) if len(a__ ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. snake_case__ = 2 if lines[1].strip() == """[""" else 1 snake_case__ = [(i, _re_strip_line.search(a__ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] snake_case__ = sort_objects(a__ , key=lambda a : x[1] ) snake_case__ = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(a__ ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: snake_case__ = _re_bracket_content.sub(_replace , lines[1] ) else: snake_case__ = [part.strip().replace("""\"""" , """""" ) for part in lines[1].split(""",""" )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: snake_case__ = keys[:-1] snake_case__ = get_indent(lines[1] ) + """, """.join([F'''"{k}"''' for k in sort_objects(a__ )] ) return "\n".join(a__ ) else: # Finally we have to deal with imports fitting on one line snake_case__ = _re_bracket_content.sub(_replace , a__ ) return import_statement def _UpperCAmelCase ( a : Dict , a : str=True ): with open(a__ , """r""" ) as f: snake_case__ = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 snake_case__ = split_code_in_indented_blocks( a__ , start_prompt="""_import_structure = {""" , end_prompt="""if TYPE_CHECKING:""" ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(a__ ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. snake_case__ = main_blocks[block_idx] snake_case__ = block.split("""\n""" ) # Get to the start of the imports. snake_case__ = 0 while line_idx < len(a__ ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: snake_case__ = len(a__ ) else: line_idx += 1 if line_idx >= len(a__ ): continue # Ignore beginning and last line: they don't contain anything. snake_case__ = """\n""".join(block_lines[line_idx:-1] ) snake_case__ = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. snake_case__ = split_code_in_indented_blocks(a__ , indent_level=a__ ) # We have two categories of import key: list or _import_structure[key].append/extend snake_case__ = _re_direct_key if """_import_structure""" in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. snake_case__ = [(pattern.search(a__ ).groups()[0] if pattern.search(a__ ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. snake_case__ = [(i, key) for i, key in enumerate(a__ ) if key is not None] snake_case__ = [x[0] for x in sorted(a__ , key=lambda a : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. snake_case__ = 0 snake_case__ = [] for i in range(len(a__ ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: snake_case__ = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(a__ ) count += 1 # And we put our main block back together with its first and last line. snake_case__ = """\n""".join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(a__ ): if check_only: return True else: print(F'''Overwriting {file}.''' ) with open(a__ , """w""" ) as f: f.write("""\n""".join(a__ ) ) def _UpperCAmelCase ( a : Any=True ): snake_case__ = [] for root, _, files in os.walk(a__ ): if "__init__.py" in files: snake_case__ = sort_imports(os.path.join(a__ , """__init__.py""" ) , check_only=a__ ) if result: snake_case__ = [os.path.join(a__ , """__init__.py""" )] if len(a__ ) > 0: raise ValueError(F'''Would overwrite {len(a__ )} files, run `make style`.''' ) if __name__ == "__main__": a__ = argparse.ArgumentParser() parser.add_argument("""--check_only""", action="""store_true""", help="""Whether to only check or fix style.""") a__ = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
714
from __future__ import annotations class _lowerCAmelCase : """simple docstring""" def __init__( self : Optional[int] , UpperCamelCase__ : int): '''simple docstring''' snake_case__ = data snake_case__ = None snake_case__ = None def _UpperCAmelCase ( a : Node | None ): # In Order traversal of the tree if tree: display(tree.left ) print(tree.data ) display(tree.right ) def _UpperCAmelCase ( a : Node | None ): return 1 + max(depth_of_tree(tree.left ) , depth_of_tree(tree.right ) ) if tree else 0 def _UpperCAmelCase ( a : Node ): if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right ) else: return not tree.left and not tree.right def _UpperCAmelCase ( ): # Main function for testing. snake_case__ = Node(1 ) snake_case__ = Node(2 ) snake_case__ = Node(3 ) snake_case__ = Node(4 ) snake_case__ = Node(5 ) snake_case__ = Node(6 ) snake_case__ = Node(7 ) snake_case__ = Node(8 ) snake_case__ = Node(9 ) print(is_full_binary_tree(a ) ) print(depth_of_tree(a ) ) print("""Tree is: """ ) display(a ) if __name__ == "__main__": main()
99
0
"""simple docstring""" from __future__ import annotations from math import ceil, floor, sqrt def _A ( __lowercase = 200_0000 ): """simple docstring""" lowerCamelCase__ = [0] lowerCamelCase__ = 42 for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target lowerCamelCase__ = 0 # the area corresponding to the grid that gives the product closest to target lowerCamelCase__ = 0 # an estimate of b, using the quadratic formula lowerCamelCase__ = 42 # the largest integer less than b_estimate lowerCamelCase__ = 42 # the largest integer less than b_estimate lowerCamelCase__ = 42 # the triangle number corresponding to b_floor lowerCamelCase__ = 42 # the triangle number corresponding to b_ceil lowerCamelCase__ = 42 for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ): lowerCamelCase__ = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 lowerCamelCase__ = floor(__lowercase ) lowerCamelCase__ = ceil(__lowercase ) lowerCamelCase__ = triangle_numbers[b_floor] lowerCamelCase__ = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): lowerCamelCase__ = triangle_b_first_guess * triangle_a lowerCamelCase__ = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): lowerCamelCase__ = triangle_b_second_guess * triangle_a lowerCamelCase__ = idx_a * b_ceil return area if __name__ == "__main__": print(F'{solution() = }')
129
"""simple docstring""" def _A ( __lowercase , __lowercase ): """simple docstring""" while second != 0: lowerCamelCase__ = first & second first ^= second lowerCamelCase__ = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() __magic_name__ = int(input("""Enter the first number: """).strip()) __magic_name__ = int(input("""Enter the second number: """).strip()) print(F'{add(first, second) = }')
129
1
'''simple docstring''' import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def __UpperCamelCase ( ): lowercase__ : Optional[Any] = '''https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png''' lowercase__ : Dict = Image.open(requests.get(__UpperCAmelCase , stream=__UpperCAmelCase ).raw ).convert('''RGB''' ) return image def __UpperCamelCase ( UpperCAmelCase ): lowercase__ : Any = [] # fmt: off # vision encoder rename_keys.append(('''visual_encoder.cls_token''', '''vision_model.embeddings.class_embedding''') ) rename_keys.append(('''visual_encoder.pos_embed''', '''vision_model.embeddings.position_embedding''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.weight''', '''vision_model.embeddings.patch_embedding.weight''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.bias''', '''vision_model.embeddings.patch_embedding.bias''') ) rename_keys.append(('''ln_vision.weight''', '''vision_model.post_layernorm.weight''') ) rename_keys.append(('''ln_vision.bias''', '''vision_model.post_layernorm.bias''') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F"""visual_encoder.blocks.{i}.norm1.weight""", F"""vision_model.encoder.layers.{i}.layer_norm1.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.norm1.bias""", F"""vision_model.encoder.layers.{i}.layer_norm1.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.norm2.weight""", F"""vision_model.encoder.layers.{i}.layer_norm2.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.norm2.bias""", F"""vision_model.encoder.layers.{i}.layer_norm2.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.attn.qkv.weight""", F"""vision_model.encoder.layers.{i}.self_attn.qkv.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.attn.proj.weight""", F"""vision_model.encoder.layers.{i}.self_attn.projection.weight""",) ) rename_keys.append((F"""visual_encoder.blocks.{i}.attn.proj.bias""", F"""vision_model.encoder.layers.{i}.self_attn.projection.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc1.weight""", F"""vision_model.encoder.layers.{i}.mlp.fc1.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc1.bias""", F"""vision_model.encoder.layers.{i}.mlp.fc1.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc2.weight""", F"""vision_model.encoder.layers.{i}.mlp.fc2.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc2.bias""", F"""vision_model.encoder.layers.{i}.mlp.fc2.bias""") ) # QFormer rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.weight''', '''qformer.layernorm.weight''') ) rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.bias''', '''qformer.layernorm.bias''') ) # fmt: on return rename_keys def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): lowercase__ : Tuple = dct.pop(__UpperCAmelCase ) lowercase__ : int = val def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ): for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases lowercase__ : Union[str, Any] = state_dict.pop(F"""visual_encoder.blocks.{i}.attn.q_bias""" ) lowercase__ : Any = state_dict.pop(F"""visual_encoder.blocks.{i}.attn.v_bias""" ) # next, set bias in the state dict lowercase__ : Tuple = torch.cat((q_bias, torch.zeros_like(__UpperCAmelCase , requires_grad=__UpperCAmelCase ), v_bias) ) lowercase__ : Optional[Any] = qkv_bias def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ): lowercase__ : List[Any] = 364 if '''coco''' in model_name else 224 lowercase__ : int = BlipaVisionConfig(image_size=__UpperCAmelCase ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: lowercase__ : List[str] = OPTConfig.from_pretrained('''facebook/opt-2.7b''' , eos_token_id=__UpperCAmelCase ).to_dict() elif "opt-6.7b" in model_name: lowercase__ : List[Any] = OPTConfig.from_pretrained('''facebook/opt-6.7b''' , eos_token_id=__UpperCAmelCase ).to_dict() elif "t5-xl" in model_name: lowercase__ : Optional[int] = TaConfig.from_pretrained('''google/flan-t5-xl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: lowercase__ : List[str] = TaConfig.from_pretrained('''google/flan-t5-xxl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict() lowercase__ : Tuple = BlipaConfig(vision_config=__UpperCAmelCase , text_config=__UpperCAmelCase ) return config, image_size @torch.no_grad() def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=False ): lowercase__ : Any = ( AutoTokenizer.from_pretrained('''facebook/opt-2.7b''' ) if '''opt''' in model_name else AutoTokenizer.from_pretrained('''google/flan-t5-xl''' ) ) lowercase__ : str = tokenizer('''\n''' , add_special_tokens=__UpperCAmelCase ).input_ids[0] lowercase__ , lowercase__ : Any = get_blipa_config(__UpperCAmelCase , eos_token_id=__UpperCAmelCase ) lowercase__ : List[str] = BlipaForConditionalGeneration(__UpperCAmelCase ).eval() lowercase__ : List[str] = { '''blip2-opt-2.7b''': ('''blip2_opt''', '''pretrain_opt2.7b'''), '''blip2-opt-6.7b''': ('''blip2_opt''', '''pretrain_opt6.7b'''), '''blip2-opt-2.7b-coco''': ('''blip2_opt''', '''caption_coco_opt2.7b'''), '''blip2-opt-6.7b-coco''': ('''blip2_opt''', '''caption_coco_opt6.7b'''), '''blip2-flan-t5-xl''': ('''blip2_t5''', '''pretrain_flant5xl'''), '''blip2-flan-t5-xl-coco''': ('''blip2_t5''', '''caption_coco_flant5xl'''), '''blip2-flan-t5-xxl''': ('''blip2_t5''', '''pretrain_flant5xxl'''), } lowercase__ , lowercase__ : Optional[Any] = model_name_to_original[model_name] # load original model print('''Loading original model...''' ) lowercase__ : Optional[int] = '''cuda''' if torch.cuda.is_available() else '''cpu''' lowercase__ , lowercase__ , lowercase__ : Dict = load_model_and_preprocess( name=__UpperCAmelCase , model_type=__UpperCAmelCase , is_eval=__UpperCAmelCase , device=__UpperCAmelCase ) original_model.eval() print('''Done!''' ) # update state dict keys lowercase__ : Dict = original_model.state_dict() lowercase__ : Union[str, Any] = create_rename_keys(__UpperCAmelCase ) for src, dest in rename_keys: rename_key(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): lowercase__ : Tuple = state_dict.pop(__UpperCAmelCase ) if key.startswith('''Qformer.bert''' ): lowercase__ : List[Any] = key.replace('''Qformer.bert''' , '''qformer''' ) if "attention.self" in key: lowercase__ : Optional[Any] = key.replace('''self''' , '''attention''' ) if "opt_proj" in key: lowercase__ : int = key.replace('''opt_proj''' , '''language_projection''' ) if "t5_proj" in key: lowercase__ : Optional[int] = key.replace('''t5_proj''' , '''language_projection''' ) if key.startswith('''opt''' ): lowercase__ : Union[str, Any] = key.replace('''opt''' , '''language''' ) if key.startswith('''t5''' ): lowercase__ : int = key.replace('''t5''' , '''language''' ) lowercase__ : List[str] = val # read in qv biases read_in_q_v_bias(__UpperCAmelCase , __UpperCAmelCase ) lowercase__ , lowercase__ : Optional[Any] = hf_model.load_state_dict(__UpperCAmelCase , strict=__UpperCAmelCase ) assert len(__UpperCAmelCase ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] lowercase__ : List[Any] = load_demo_image() lowercase__ : List[str] = vis_processors['''eval'''](__UpperCAmelCase ).unsqueeze(0 ).to(__UpperCAmelCase ) lowercase__ : List[Any] = tokenizer(['''\n'''] , return_tensors='''pt''' ).input_ids.to(__UpperCAmelCase ) # create processor lowercase__ : Any = BlipImageProcessor( size={'''height''': image_size, '''width''': image_size} , image_mean=__UpperCAmelCase , image_std=__UpperCAmelCase ) lowercase__ : Any = BlipaProcessor(image_processor=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) lowercase__ : Optional[int] = processor(images=__UpperCAmelCase , return_tensors='''pt''' ).pixel_values.to(__UpperCAmelCase ) # make sure processor creates exact same pixel values assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase ) original_model.to(__UpperCAmelCase ) hf_model.to(__UpperCAmelCase ) with torch.no_grad(): if "opt" in model_name: lowercase__ : Union[str, Any] = original_model({'''image''': original_pixel_values, '''text_input''': ['''''']} ).logits lowercase__ : int = hf_model(__UpperCAmelCase , __UpperCAmelCase ).logits else: lowercase__ : int = original_model( {'''image''': original_pixel_values, '''text_input''': ['''\n'''], '''text_output''': ['''\n''']} ).logits lowercase__ : Union[str, Any] = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -100 ) lowercase__ : Any = hf_model(__UpperCAmelCase , __UpperCAmelCase , labels=__UpperCAmelCase ).logits assert original_logits.shape == logits.shape print('''First values of original logits:''' , original_logits[0, :3, :3] ) print('''First values of HF logits:''' , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": lowercase__ : Tuple = torch.tensor( [[-41.5850, -4.4_4_4_0, -8.9_9_2_2], [-47.4322, -5.9_1_4_3, -1.7_3_4_0]] , device=__UpperCAmelCase ) assert torch.allclose(logits[0, :3, :3] , __UpperCAmelCase , atol=1E-4 ) elif model_name == "blip2-flan-t5-xl-coco": lowercase__ : Union[str, Any] = torch.tensor( [[-57.0109, -9.8_9_6_7, -12.6280], [-68.6578, -12.7191, -10.5065]] , device=__UpperCAmelCase ) else: # cast to same type lowercase__ : Any = logits.dtype assert torch.allclose(original_logits.to(__UpperCAmelCase ) , __UpperCAmelCase , atol=1E-2 ) print('''Looks ok!''' ) print('''Generating a caption...''' ) lowercase__ : str = '''''' lowercase__ : Any = tokenizer(__UpperCAmelCase , return_tensors='''pt''' ).input_ids.to(__UpperCAmelCase ) lowercase__ : Tuple = original_model.generate({'''image''': original_pixel_values} ) lowercase__ : Optional[Any] = hf_model.generate( __UpperCAmelCase , __UpperCAmelCase , do_sample=__UpperCAmelCase , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print('''Original generation:''' , __UpperCAmelCase ) lowercase__ : Dict = input_ids.shape[1] lowercase__ : Optional[int] = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=__UpperCAmelCase ) lowercase__ : int = [text.strip() for text in output_text] print('''HF generation:''' , __UpperCAmelCase ) if pytorch_dump_folder_path is not None: processor.save_pretrained(__UpperCAmelCase ) hf_model.save_pretrained(__UpperCAmelCase ) if push_to_hub: processor.push_to_hub(F"""nielsr/{model_name}""" ) hf_model.push_to_hub(F"""nielsr/{model_name}""" ) if __name__ == "__main__": __a: Dict = argparse.ArgumentParser() __a: Tuple = [ """blip2-opt-2.7b""", """blip2-opt-6.7b""", """blip2-opt-2.7b-coco""", """blip2-opt-6.7b-coco""", """blip2-flan-t5-xl""", """blip2-flan-t5-xl-coco""", """blip2-flan-t5-xxl""", ] parser.add_argument( """--model_name""", default="""blip2-opt-2.7b""", choices=choices, type=str, help="""Path to hf config.json of model to convert""", ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub after converting""", ) __a: int = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
713
'''simple docstring''' from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class UpperCAmelCase : '''simple docstring''' def __init__( self , __lowerCAmelCase , __lowerCAmelCase=13 , __lowerCAmelCase=7 , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=99 , __lowerCAmelCase=32 , __lowerCAmelCase=2 , __lowerCAmelCase=4 , __lowerCAmelCase=37 , __lowerCAmelCase="gelu" , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=512 , __lowerCAmelCase=16 , __lowerCAmelCase=2 , __lowerCAmelCase=0.0_2 , __lowerCAmelCase=3 , __lowerCAmelCase=4 , __lowerCAmelCase=None , ) -> Dict: lowercase__ : Union[str, Any] = parent lowercase__ : Union[str, Any] = 13 lowercase__ : Dict = 7 lowercase__ : Optional[Any] = True lowercase__ : List[Any] = True lowercase__ : Optional[Any] = True lowercase__ : Union[str, Any] = True lowercase__ : Optional[Any] = 99 lowercase__ : Dict = 32 lowercase__ : Optional[int] = 2 lowercase__ : str = 4 lowercase__ : List[str] = 37 lowercase__ : Tuple = '''gelu''' lowercase__ : Optional[int] = 0.1 lowercase__ : Optional[Any] = 0.1 lowercase__ : Dict = 512 lowercase__ : Optional[Any] = 16 lowercase__ : int = 2 lowercase__ : int = 0.0_2 lowercase__ : str = 3 lowercase__ : Optional[Any] = 4 lowercase__ : Optional[Any] = None def _lowerCAmelCase( self ) -> str: lowercase__ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ : Tuple = None if self.use_input_mask: lowercase__ : str = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ : Optional[Any] = None if self.use_token_type_ids: lowercase__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase__ : Any = None lowercase__ : Union[str, Any] = None lowercase__ : Any = None if self.use_labels: lowercase__ : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase__ : Tuple = ids_tensor([self.batch_size] , self.num_choices ) lowercase__ : str = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=__lowerCAmelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]: lowercase__ : Any = TFRoFormerModel(config=__lowerCAmelCase ) lowercase__ : Optional[int] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowercase__ : Union[str, Any] = [input_ids, input_mask] lowercase__ : Union[str, Any] = model(__lowerCAmelCase ) lowercase__ : Union[str, Any] = model(__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> int: lowercase__ : Optional[Any] = True lowercase__ : str = TFRoFormerForCausalLM(config=__lowerCAmelCase ) lowercase__ : Dict = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase__ : Dict = model(__lowerCAmelCase )['''logits'''] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> int: lowercase__ : List[str] = TFRoFormerForMaskedLM(config=__lowerCAmelCase ) lowercase__ : int = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase__ : int = model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Tuple: lowercase__ : Optional[int] = self.num_labels lowercase__ : Tuple = TFRoFormerForSequenceClassification(config=__lowerCAmelCase ) lowercase__ : int = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase__ : Any = model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Optional[Any]: lowercase__ : Union[str, Any] = self.num_choices lowercase__ : Dict = TFRoFormerForMultipleChoice(config=__lowerCAmelCase ) lowercase__ : List[str] = tf.tile(tf.expand_dims(__lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowercase__ : Optional[Any] = tf.tile(tf.expand_dims(__lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowercase__ : List[Any] = tf.tile(tf.expand_dims(__lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowercase__ : Dict = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } lowercase__ : str = model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Any: lowercase__ : Optional[int] = self.num_labels lowercase__ : List[str] = TFRoFormerForTokenClassification(config=__lowerCAmelCase ) lowercase__ : int = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase__ : Tuple = model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Any: lowercase__ : Dict = TFRoFormerForQuestionAnswering(config=__lowerCAmelCase ) lowercase__ : Optional[int] = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase__ : Tuple = model(__lowerCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCAmelCase( self ) -> Union[str, Any]: lowercase__ : Union[str, Any] = self.prepare_config_and_inputs() ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) : str = config_and_inputs lowercase__ : Any = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class UpperCAmelCase ( a__ , a__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) SCREAMING_SNAKE_CASE = ( { "feature-extraction": TFRoFormerModel, "fill-mask": TFRoFormerForMaskedLM, "question-answering": TFRoFormerForQuestionAnswering, "text-classification": TFRoFormerForSequenceClassification, "text-generation": TFRoFormerForCausalLM, "token-classification": TFRoFormerForTokenClassification, "zero-shot": TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Any: if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def _lowerCAmelCase( self ) -> List[Any]: lowercase__ : List[str] = TFRoFormerModelTester(self ) lowercase__ : List[str] = ConfigTester(self , config_class=__lowerCAmelCase , hidden_size=37 ) def _lowerCAmelCase( self ) -> Dict: self.config_tester.run_common_tests() def _lowerCAmelCase( self ) -> Tuple: lowercase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase ) def _lowerCAmelCase( self ) -> List[str]: lowercase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__lowerCAmelCase ) def _lowerCAmelCase( self ) -> str: lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*__lowerCAmelCase ) def _lowerCAmelCase( self ) -> int: lowercase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__lowerCAmelCase ) def _lowerCAmelCase( self ) -> str: lowercase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__lowerCAmelCase ) def _lowerCAmelCase( self ) -> Dict: lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__lowerCAmelCase ) def _lowerCAmelCase( self ) -> Any: lowercase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__lowerCAmelCase ) @slow def _lowerCAmelCase( self ) -> Optional[Any]: lowercase__ : List[Any] = TFRoFormerModel.from_pretrained('''junnyu/roformer_chinese_base''' ) self.assertIsNotNone(__lowerCAmelCase ) @require_tf class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def _lowerCAmelCase( self ) -> List[str]: lowercase__ : str = TFRoFormerForMaskedLM.from_pretrained('''junnyu/roformer_chinese_base''' ) lowercase__ : Optional[int] = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowercase__ : str = model(__lowerCAmelCase )[0] # TODO Replace vocab size lowercase__ : str = 50000 lowercase__ : List[Any] = [1, 6, vocab_size] self.assertEqual(output.shape , __lowerCAmelCase ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. lowercase__ : Union[str, Any] = tf.constant( [ [ [-0.1_2_0_5_3_3_4_1, -1.0_2_6_4_9_0_1, 0.2_9_2_2_1_9_4_6], [-1.5_1_3_3_7_8_3, 0.1_9_7_4_3_3, 0.1_5_1_9_0_6_0_7], [-5.0_1_3_5_4_0_3, -3.9_0_0_2_5_6, -0.8_4_0_3_8_7_6_4], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __lowerCAmelCase , atol=1E-4 ) @require_tf class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = 1e-4 def _lowerCAmelCase( self ) -> List[str]: lowercase__ : Optional[Any] = tf.constant([[4, 10]] ) lowercase__ : Any = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) lowercase__ : Optional[int] = emba(input_ids.shape ) lowercase__ : Optional[Any] = tf.constant( [[0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 1.0_0_0_0, 1.0_0_0_0, 1.0_0_0_0], [0.8_4_1_5, 0.0_4_6_4, 0.0_0_2_2, 0.5_4_0_3, 0.9_9_8_9, 1.0_0_0_0]] ) tf.debugging.assert_near(__lowerCAmelCase , __lowerCAmelCase , atol=self.tolerance ) def _lowerCAmelCase( self ) -> Union[str, Any]: lowercase__ : List[Any] = tf.constant( [ [0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0], [0.8_4_1_5, 0.8_2_1_9, 0.8_0_2_0, 0.7_8_1_9, 0.7_6_1_7], [0.9_0_9_3, 0.9_3_6_4, 0.9_5_8_1, 0.9_7_4_9, 0.9_8_7_0], ] ) lowercase__ : int = TFRoFormerSinusoidalPositionalEmbedding(num_positions=512 , embedding_dim=512 ) emba([2, 16, 512] ) lowercase__ : List[Any] = emba.weight[:3, :5] tf.debugging.assert_near(__lowerCAmelCase , __lowerCAmelCase , atol=self.tolerance ) @require_tf class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = 1e-4 def _lowerCAmelCase( self ) -> Tuple: # 2,12,16,64 lowercase__ : Dict = tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 lowercase__ : Tuple = -tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 lowercase__ : Dict = TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 ) lowercase__ : Tuple = embed_positions([2, 16, 768] )[None, None, :, :] lowercase__ , lowercase__ : Union[str, Any] = TFRoFormerSelfAttention.apply_rotary_position_embeddings( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) lowercase__ : int = tf.constant( [ [0.0_0_0_0, 0.0_1_0_0, 0.0_2_0_0, 0.0_3_0_0, 0.0_4_0_0, 0.0_5_0_0, 0.0_6_0_0, 0.0_7_0_0], [-0.2_0_1_2, 0.8_8_9_7, 0.0_2_6_3, 0.9_4_0_1, 0.2_0_7_4, 0.9_4_6_3, 0.3_4_8_1, 0.9_3_4_3], [-1.7_0_5_7, 0.6_2_7_1, -1.2_1_4_5, 1.3_8_9_7, -0.6_3_0_3, 1.7_6_4_7, -0.1_1_7_3, 1.8_9_8_5], [-2.1_7_3_1, -1.6_3_9_7, -2.7_3_5_8, 0.2_8_5_4, -2.1_8_4_0, 1.7_1_8_3, -1.3_0_1_8, 2.4_8_7_1], [0.2_7_1_7, -3.6_1_7_3, -2.9_2_0_6, -2.1_9_8_8, -3.6_6_3_8, 0.3_8_5_8, -2.9_1_5_5, 2.2_9_8_0], [3.9_8_5_9, -2.1_5_8_0, -0.7_9_8_4, -4.4_9_0_4, -4.1_1_8_1, -2.0_2_5_2, -4.4_7_8_2, 1.1_2_5_3], ] ) lowercase__ : Tuple = tf.constant( [ [0.0_0_0_0, -0.0_1_0_0, -0.0_2_0_0, -0.0_3_0_0, -0.0_4_0_0, -0.0_5_0_0, -0.0_6_0_0, -0.0_7_0_0], [0.2_0_1_2, -0.8_8_9_7, -0.0_2_6_3, -0.9_4_0_1, -0.2_0_7_4, -0.9_4_6_3, -0.3_4_8_1, -0.9_3_4_3], [1.7_0_5_7, -0.6_2_7_1, 1.2_1_4_5, -1.3_8_9_7, 0.6_3_0_3, -1.7_6_4_7, 0.1_1_7_3, -1.8_9_8_5], [2.1_7_3_1, 1.6_3_9_7, 2.7_3_5_8, -0.2_8_5_4, 2.1_8_4_0, -1.7_1_8_3, 1.3_0_1_8, -2.4_8_7_1], [-0.2_7_1_7, 3.6_1_7_3, 2.9_2_0_6, 2.1_9_8_8, 3.6_6_3_8, -0.3_8_5_8, 2.9_1_5_5, -2.2_9_8_0], [-3.9_8_5_9, 2.1_5_8_0, 0.7_9_8_4, 4.4_9_0_4, 4.1_1_8_1, 2.0_2_5_2, 4.4_7_8_2, -1.1_2_5_3], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , __lowerCAmelCase , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , __lowerCAmelCase , atol=self.tolerance )
428
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "s-JoL/Open-Llama-V1": "https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json", } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Any = 'open-llama' def __init__( self , _a=100_000 , _a=4_096 , _a=11_008 , _a=32 , _a=32 , _a="silu" , _a=2_048 , _a=0.02 , _a=1E-6 , _a=True , _a=0 , _a=1 , _a=2 , _a=False , _a=True , _a=0.1 , _a=0.1 , _a=True , _a=True , _a=None , **_a , ): __a = vocab_size __a = max_position_embeddings __a = hidden_size __a = intermediate_size __a = num_hidden_layers __a = num_attention_heads __a = hidden_act __a = initializer_range __a = rms_norm_eps __a = use_cache __a = kwargs.pop( '''use_memorry_efficient_attention''' , _a ) __a = hidden_dropout_prob __a = attention_dropout_prob __a = use_stable_embedding __a = shared_input_output_embedding __a = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , tie_word_embeddings=_a , **_a , ) def __UpperCAmelCase ( self ): if self.rope_scaling is None: return if not isinstance(self.rope_scaling , _a ) or len(self.rope_scaling ) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' f'''got {self.rope_scaling}''' ) __a = self.rope_scaling.get('''type''' , _a ) __a = self.rope_scaling.get('''factor''' , _a ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' ) if rope_scaling_factor is None or not isinstance(_a , _a ) or rope_scaling_factor <= 1.0: raise ValueError(f'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' )
695
"""simple docstring""" def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any=False ) -> Any: if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __a = len(set_a.intersection(lowerCAmelCase__ ) ) if alternative_union: __a = len(lowerCAmelCase__ ) + len(lowerCAmelCase__ ) else: __a = len(set_a.union(lowerCAmelCase__ ) ) return intersection / union if isinstance(lowerCAmelCase__ , (list, tuple) ) and isinstance(lowerCAmelCase__ , (list, tuple) ): __a = [element for element in set_a if element in set_b] if alternative_union: __a = len(lowerCAmelCase__ ) + len(lowerCAmelCase__ ) return len(lowerCAmelCase__ ) / union else: __a = set_a + [element for element in set_b if element not in set_a] return len(lowerCAmelCase__ ) / len(lowerCAmelCase__ ) return len(lowerCAmelCase__ ) / len(lowerCAmelCase__ ) return None if __name__ == "__main__": lowercase_ = {"a", "b", "c", "d", "e"} lowercase_ = {"c", "d", "e", "f", "h", "i"} print(jaccard_similarity(set_a, set_b))
695
1
'''simple docstring''' from __future__ import annotations from collections.abc import Callable def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ = 1_00, ) -> float: A_ = x_start A_ = fnc(UpperCAmelCase__ ) A_ = 0.0 for _ in range(UpperCAmelCase__ ): # Approximates small segments of curve as linear and solve # for trapezoidal area A_ = (x_end - x_start) / steps + xa A_ = fnc(UpperCAmelCase__ ) area += abs(fxa + fxa ) * (xa - xa) / 2 # Increment step A_ = xa A_ = fxa return area if __name__ == "__main__": def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Any: return x**3 + x**2 print('''f(x) = x^3 + x^2''') print('''The area between the curve, x = -5, x = 5 and the x axis is:''') __lowerCamelCase = 10 while i <= 10_0000: print(f"""with {i} steps: {trapezoidal_area(f, -5, 5, i)}""") i *= 10
711
'''simple docstring''' from __future__ import annotations import math def UpperCAmelCase__ ( UpperCAmelCase__ ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5, int(math.sqrt(UpperCAmelCase__ ) + 1 ), 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True __lowerCamelCase = [num for num in range(3, 10_0001, 2) if not is_prime(num)] def UpperCAmelCase__ ( UpperCAmelCase__ ) -> list[int]: if not isinstance(UpperCAmelCase__, UpperCAmelCase__ ): raise ValueError("""n must be an integer""" ) if n <= 0: raise ValueError("""n must be >= 0""" ) A_ = [] for num in range(len(UpperCAmelCase__ ) ): A_ = 0 while 2 * i * i <= odd_composites[num]: A_ = odd_composites[num] - 2 * i * i if is_prime(UpperCAmelCase__ ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(UpperCAmelCase__ ) == n: return list_nums return [] def UpperCAmelCase__ ( ) -> int: return compute_nums(1 )[0] if __name__ == "__main__": print(f"""{solution() = }""")
667
0
def _A ( __magic_name__ ): # bit count represents no. of bits in the gray code if bit_count < 0: raise ValueError("The given input must be positive" ) # get the generated string sequence lowercase__ = gray_code_sequence_string(__magic_name__ ) # # convert them to integers for i in range(len(__magic_name__ ) ): lowercase__ = int(sequence[i] , 2 ) return sequence def _A ( __magic_name__ ): # The approach is a recursive one # Base case achieved when either n = 0 or n=1 if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] lowercase__ = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits lowercase__ = gray_code_sequence_string(bit_count - 1 ) lowercase__ = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): lowercase__ = "0" + smaller_sequence[i] sequence.append(__magic_name__ ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): lowercase__ = "1" + smaller_sequence[i] sequence.append(__magic_name__ ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
655
from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class lowerCAmelCase ( lowercase_ ): def UpperCAmelCase ( self :Optional[int] ): '''simple docstring''' lowercase__ = SMALL_MODEL_IDENTIFIER lowercase__ = "pt" lowercase__ = "tf" def UpperCAmelCase ( self :int , _lowercase :Optional[int] ): '''simple docstring''' lowercase__ = AutoModel.from_pretrained(self.test_model ) model_pt.save_pretrained(_lowercase ) def UpperCAmelCase ( self :Tuple , _lowercase :int ): '''simple docstring''' lowercase__ = TFAutoModel.from_pretrained(self.test_model , from_pt=_lowercase ) model_tf.save_pretrained(_lowercase ) def UpperCAmelCase ( self :List[Any] ): '''simple docstring''' lowercase__ = "mock_framework" # Framework provided - return whatever the user provides lowercase__ = FeaturesManager.determine_framework(self.test_model , _lowercase ) self.assertEqual(_lowercase , _lowercase ) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(_lowercase ) lowercase__ = FeaturesManager.determine_framework(_lowercase , _lowercase ) self.assertEqual(_lowercase , _lowercase ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(_lowercase ) lowercase__ = FeaturesManager.determine_framework(_lowercase , _lowercase ) self.assertEqual(_lowercase , _lowercase ) def UpperCAmelCase ( self :List[str] ): '''simple docstring''' with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(_lowercase ) lowercase__ = FeaturesManager.determine_framework(_lowercase ) self.assertEqual(_lowercase , self.framework_pt ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(_lowercase ) lowercase__ = FeaturesManager.determine_framework(_lowercase ) self.assertEqual(_lowercase , self.framework_tf ) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(_lowercase ): lowercase__ = FeaturesManager.determine_framework(_lowercase ) def UpperCAmelCase ( self :Any ): '''simple docstring''' lowercase__ = MagicMock(return_value=_lowercase ) with patch("transformers.onnx.features.is_tf_available" , _lowercase ): lowercase__ = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(_lowercase , self.framework_pt ) # PyTorch not in environment -> use TensorFlow lowercase__ = MagicMock(return_value=_lowercase ) with patch("transformers.onnx.features.is_torch_available" , _lowercase ): lowercase__ = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(_lowercase , self.framework_tf ) # Both in environment -> use PyTorch lowercase__ = MagicMock(return_value=_lowercase ) lowercase__ = MagicMock(return_value=_lowercase ) with patch("transformers.onnx.features.is_tf_available" , _lowercase ), patch( "transformers.onnx.features.is_torch_available" , _lowercase ): lowercase__ = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(_lowercase , self.framework_pt ) # Both not in environment -> raise error lowercase__ = MagicMock(return_value=_lowercase ) lowercase__ = MagicMock(return_value=_lowercase ) with patch("transformers.onnx.features.is_tf_available" , _lowercase ), patch( "transformers.onnx.features.is_torch_available" , _lowercase ): with self.assertRaises(_lowercase ): lowercase__ = FeaturesManager.determine_framework(self.test_model )
655
1
'''simple docstring''' import argparse import json import logging import os import shutil import sys import tempfile import unittest from unittest import mock import torch from accelerate.utils import write_basic_config from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device from transformers.utils import is_apex_available logging.basicConfig(level=logging.DEBUG) lowercase__ : List[str] = logging.getLogger() def __lowerCamelCase ( ): '''simple docstring''' UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument('''-f''' ) UpperCAmelCase_ = parser.parse_args() return args.f def __lowerCamelCase ( _UpperCamelCase : Any ): '''simple docstring''' UpperCAmelCase_ = {} UpperCAmelCase_ = os.path.join(_UpperCamelCase , '''all_results.json''' ) if os.path.exists(_UpperCamelCase ): with open(_UpperCamelCase , '''r''' ) as f: UpperCAmelCase_ = json.load(_UpperCamelCase ) else: raise ValueError(F"""can't find {path}""" ) return results def __lowerCamelCase ( ): '''simple docstring''' UpperCAmelCase_ = torch.cuda.is_available() and torch_device == '''cuda''' return is_using_cuda and is_apex_available() lowercase__ : int = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class lowerCamelCase ( lowerCamelCase ): '''simple docstring''' @classmethod def lowerCAmelCase__ ( cls : int ) ->List[str]: # Write Accelerate config, will pick up on CPU, GPU, and multi-GPU UpperCAmelCase_ = tempfile.mkdtemp() UpperCAmelCase_ = os.path.join(cls.tmpdir , '''default_config.yml''' ) write_basic_config(save_location=cls.configPath ) UpperCAmelCase_ = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath] @classmethod def lowerCAmelCase__ ( cls : Union[str, Any] ) ->List[Any]: shutil.rmtree(cls.tmpdir ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCAmelCase__ ( self : str ) ->int: UpperCAmelCase_ = self.get_auto_remove_tmp_dir() UpperCAmelCase_ = f""" {self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --seed=42 --checkpointing_steps epoch --with_tracking """.split() if is_cuda_and_apex_available(): testargs.append('''--fp16''' ) run_command(self._launch_args + testargs ) UpperCAmelCase_ = get_results(UpperCAmelCase__ ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) self.assertTrue(os.path.exists(os.path.join(UpperCAmelCase__ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCAmelCase__ , '''glue_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCAmelCase__ ( self : Tuple ) ->List[str]: UpperCAmelCase_ = self.get_auto_remove_tmp_dir() UpperCAmelCase_ = f""" {self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --block_size 128 --per_device_train_batch_size 5 --per_device_eval_batch_size 5 --num_train_epochs 2 --output_dir {tmp_dir} --checkpointing_steps epoch --with_tracking """.split() if torch.cuda.device_count() > 1: # Skipping because there are not enough batches to train the model + would need a drop_last to work. return run_command(self._launch_args + testargs ) UpperCAmelCase_ = get_results(UpperCAmelCase__ ) self.assertLess(result['''perplexity'''] , 100 ) self.assertTrue(os.path.exists(os.path.join(UpperCAmelCase__ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCAmelCase__ , '''clm_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCAmelCase__ ( self : str ) ->str: UpperCAmelCase_ = self.get_auto_remove_tmp_dir() UpperCAmelCase_ = f""" {self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --num_train_epochs=1 --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs ) UpperCAmelCase_ = get_results(UpperCAmelCase__ ) self.assertLess(result['''perplexity'''] , 42 ) self.assertTrue(os.path.exists(os.path.join(UpperCAmelCase__ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCAmelCase__ , '''mlm_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCAmelCase__ ( self : Any ) ->Tuple: # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu UpperCAmelCase_ = 7 if get_gpu_count() > 1 else 2 UpperCAmelCase_ = self.get_auto_remove_tmp_dir() UpperCAmelCase_ = f""" {self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs ) UpperCAmelCase_ = get_results(UpperCAmelCase__ ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) self.assertLess(result['''train_loss'''] , 0.5 ) self.assertTrue(os.path.exists(os.path.join(UpperCAmelCase__ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCAmelCase__ , '''ner_no_trainer''' ) ) ) @unittest.skip(reason='''Fix me @muellerzr''' ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCAmelCase__ ( self : Tuple ) ->str: UpperCAmelCase_ = self.get_auto_remove_tmp_dir() UpperCAmelCase_ = f""" {self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --seed=42 --max_train_steps=10 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs ) UpperCAmelCase_ = get_results(UpperCAmelCase__ ) # Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics. self.assertGreaterEqual(result['''eval_f1'''] , 28 ) self.assertGreaterEqual(result['''eval_exact'''] , 28 ) self.assertTrue(os.path.exists(os.path.join(UpperCAmelCase__ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCAmelCase__ , '''qa_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCAmelCase__ ( self : Optional[Any] ) ->Any: UpperCAmelCase_ = self.get_auto_remove_tmp_dir() UpperCAmelCase_ = f""" {self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/swag/sample.json --validation_file tests/fixtures/tests_samples/swag/sample.json --output_dir {tmp_dir} --max_train_steps=20 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --with_tracking """.split() run_command(self._launch_args + testargs ) UpperCAmelCase_ = get_results(UpperCAmelCase__ ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.8 ) self.assertTrue(os.path.exists(os.path.join(UpperCAmelCase__ , '''swag_no_trainer''' ) ) ) @slow @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCAmelCase__ ( self : Dict ) ->List[str]: UpperCAmelCase_ = self.get_auto_remove_tmp_dir() UpperCAmelCase_ = f""" {self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --max_train_steps=50 --num_warmup_steps=8 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs ) UpperCAmelCase_ = get_results(UpperCAmelCase__ ) self.assertGreaterEqual(result['''eval_rouge1'''] , 10 ) self.assertGreaterEqual(result['''eval_rouge2'''] , 2 ) self.assertGreaterEqual(result['''eval_rougeL'''] , 7 ) self.assertGreaterEqual(result['''eval_rougeLsum'''] , 7 ) self.assertTrue(os.path.exists(os.path.join(UpperCAmelCase__ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCAmelCase__ , '''summarization_no_trainer''' ) ) ) @slow @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCAmelCase__ ( self : List[str] ) ->Any: UpperCAmelCase_ = self.get_auto_remove_tmp_dir() UpperCAmelCase_ = f""" {self.examples_dir}/pytorch/translation/run_translation_no_trainer.py --model_name_or_path sshleifer/student_marian_en_ro_6_1 --source_lang en --target_lang ro --train_file tests/fixtures/tests_samples/wmt16/sample.json --validation_file tests/fixtures/tests_samples/wmt16/sample.json --output_dir {tmp_dir} --max_train_steps=50 --num_warmup_steps=8 --num_beams=6 --learning_rate=3e-3 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --source_lang en_XX --target_lang ro_RO --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs ) UpperCAmelCase_ = get_results(UpperCAmelCase__ ) self.assertGreaterEqual(result['''eval_bleu'''] , 30 ) self.assertTrue(os.path.exists(os.path.join(UpperCAmelCase__ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCAmelCase__ , '''translation_no_trainer''' ) ) ) @slow def lowerCAmelCase__ ( self : List[Any] ) ->List[str]: UpperCAmelCase_ = logging.StreamHandler(sys.stdout ) logger.addHandler(UpperCAmelCase__ ) UpperCAmelCase_ = self.get_auto_remove_tmp_dir() UpperCAmelCase_ = f""" {self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py --dataset_name huggingface/semantic-segmentation-test-sample --output_dir {tmp_dir} --max_train_steps=10 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch """.split() run_command(self._launch_args + testargs ) UpperCAmelCase_ = get_results(UpperCAmelCase__ ) self.assertGreaterEqual(result['''eval_overall_accuracy'''] , 0.10 ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCAmelCase__ ( self : Dict ) ->Any: UpperCAmelCase_ = self.get_auto_remove_tmp_dir() UpperCAmelCase_ = f""" {self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py --model_name_or_path google/vit-base-patch16-224-in21k --dataset_name hf-internal-testing/cats_vs_dogs_sample --learning_rate 1e-4 --per_device_train_batch_size 2 --per_device_eval_batch_size 1 --max_train_steps 2 --train_val_split 0.1 --seed 42 --output_dir {tmp_dir} --with_tracking --checkpointing_steps 1 """.split() if is_cuda_and_apex_available(): testargs.append('''--fp16''' ) run_command(self._launch_args + testargs ) UpperCAmelCase_ = get_results(UpperCAmelCase__ ) # The base model scores a 25% self.assertGreaterEqual(result['''eval_accuracy'''] , 0.6 ) self.assertTrue(os.path.exists(os.path.join(UpperCAmelCase__ , '''step_1''' ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCAmelCase__ , '''image_classification_no_trainer''' ) ) )
43
'''simple docstring''' import json import os import unittest from transformers import BatchEncoding, MvpTokenizer, MvpTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin, filter_roberta_detectors @require_tokenizers class lowerCamelCase ( lowerCamelCase , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = MvpTokenizer lowerCAmelCase__ = MvpTokenizerFast lowerCAmelCase__ = True lowerCAmelCase__ = filter_roberta_detectors def lowerCAmelCase__ ( self : Union[str, Any] ) ->Tuple: super().setUp() UpperCAmelCase_ = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] UpperCAmelCase_ = dict(zip(UpperCAmelCase__ , range(len(UpperCAmelCase__ ) ) ) ) UpperCAmelCase_ = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] UpperCAmelCase_ = {'''unk_token''': '''<unk>'''} UpperCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(UpperCAmelCase__ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(UpperCAmelCase__ ) ) def lowerCAmelCase__ ( self : Tuple , **UpperCAmelCase__ : List[str] ) ->Dict: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCAmelCase__ ) def lowerCAmelCase__ ( self : Optional[int] , **UpperCAmelCase__ : int ) ->Tuple: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **UpperCAmelCase__ ) def lowerCAmelCase__ ( self : Union[str, Any] , UpperCAmelCase__ : Optional[Any] ) ->Union[str, Any]: return "lower newer", "lower newer" @cached_property def lowerCAmelCase__ ( self : Union[str, Any] ) ->Optional[int]: return MvpTokenizer.from_pretrained('''RUCAIBox/mvp''' ) @cached_property def lowerCAmelCase__ ( self : Tuple ) ->Tuple: return MvpTokenizerFast.from_pretrained('''RUCAIBox/mvp''' ) @require_torch def lowerCAmelCase__ ( self : Any ) ->Dict: UpperCAmelCase_ = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] UpperCAmelCase_ = [0, 250, 251, 1_7818, 13, 3_9186, 1938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCAmelCase_ = tokenizer(UpperCAmelCase__ , max_length=len(UpperCAmelCase__ ) , padding=UpperCAmelCase__ , return_tensors='''pt''' ) self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__ ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) UpperCAmelCase_ = batch.input_ids.tolist()[0] self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) # Test that special tokens are reset @require_torch def lowerCAmelCase__ ( self : str ) ->int: UpperCAmelCase_ = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCAmelCase_ = tokenizer(UpperCAmelCase__ , padding=UpperCAmelCase__ , return_tensors='''pt''' ) # check if input_ids are returned and no labels self.assertIn('''input_ids''' , UpperCAmelCase__ ) self.assertIn('''attention_mask''' , UpperCAmelCase__ ) self.assertNotIn('''labels''' , UpperCAmelCase__ ) self.assertNotIn('''decoder_attention_mask''' , UpperCAmelCase__ ) @require_torch def lowerCAmelCase__ ( self : Tuple ) ->Optional[Any]: UpperCAmelCase_ = [ '''Summary of the text.''', '''Another summary.''', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCAmelCase_ = tokenizer(text_target=UpperCAmelCase__ , max_length=32 , padding='''max_length''' , return_tensors='''pt''' ) self.assertEqual(32 , targets['''input_ids'''].shape[1] ) @require_torch def lowerCAmelCase__ ( self : List[str] ) ->int: for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCAmelCase_ = tokenizer( ['''I am a small frog''' * 1024, '''I am a small frog'''] , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__ , return_tensors='''pt''' ) self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__ ) self.assertEqual(batch.input_ids.shape , (2, 1024) ) @require_torch def lowerCAmelCase__ ( self : Dict ) ->Optional[int]: UpperCAmelCase_ = ['''A long paragraph for summarization.'''] UpperCAmelCase_ = [ '''Summary of the text.''', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCAmelCase_ = tokenizer(UpperCAmelCase__ , text_target=UpperCAmelCase__ , return_tensors='''pt''' ) UpperCAmelCase_ = inputs['''input_ids'''] UpperCAmelCase_ = inputs['''labels'''] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) def lowerCAmelCase__ ( self : str ) ->Optional[Any]: pass def lowerCAmelCase__ ( self : Union[str, Any] ) ->Tuple: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCAmelCase_ = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase__ , **UpperCAmelCase__ ) UpperCAmelCase_ = self.tokenizer_class.from_pretrained(UpperCAmelCase__ , **UpperCAmelCase__ ) UpperCAmelCase_ = '''A, <mask> AllenNLP sentence.''' UpperCAmelCase_ = tokenizer_r.encode_plus(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ , return_token_type_ids=UpperCAmelCase__ ) UpperCAmelCase_ = tokenizer_p.encode_plus(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ , return_token_type_ids=UpperCAmelCase__ ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) UpperCAmelCase_ = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) UpperCAmelCase_ = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual( UpperCAmelCase__ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( UpperCAmelCase__ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] )
43
1
def _lowerCAmelCase ( _lowerCAmelCase ): '''simple docstring''' if collection == []: return [] # get some information about the collection A_ : Optional[Any] = len(_lowerCAmelCase ) A_ : Dict = max(_lowerCAmelCase ) A_ : List[Any] = min(_lowerCAmelCase ) # create the counting array A_ : str = coll_max + 1 - coll_min A_ : List[str] = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 ,_lowerCAmelCase ): A_ : List[Any] = counting_arr[i] + counting_arr[i - 1] # create the output collection A_ : int = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 ,_lowerCAmelCase ) ): A_ : Optional[Any] = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def _lowerCAmelCase ( _lowerCAmelCase ): '''simple docstring''' return "".join([chr(_lowerCAmelCase ) for i in counting_sort([ord(_lowerCAmelCase ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string("""thisisthestring""") == "eghhiiinrsssttt" _lowerCAmelCase = input("""Enter numbers separated by a comma:\n""").strip() _lowerCAmelCase = [int(item) for item in user_input.split(""",""")] print(counting_sort(unsorted))
569
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): a = StableDiffusionSAGPipeline a = TEXT_TO_IMAGE_PARAMS a = TEXT_TO_IMAGE_BATCH_PARAMS a = TEXT_TO_IMAGE_IMAGE_PARAMS a = TEXT_TO_IMAGE_IMAGE_PARAMS a = False def _lowerCamelCase ( self ): torch.manual_seed(0 ) A_ : Dict = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) A_ : List[Any] = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=a__ , set_alpha_to_one=a__ , ) torch.manual_seed(0 ) A_ : Optional[int] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) A_ : Union[str, Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) A_ : Optional[int] = CLIPTextModel(a__ ) A_ : List[Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) A_ : Union[str, Any] = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def _lowerCamelCase ( self , a__ , a__=0 ): if str(a__ ).startswith("""mps""" ): A_ : Union[str, Any] = torch.manual_seed(a__ ) else: A_ : Optional[int] = torch.Generator(device=a__ ).manual_seed(a__ ) A_ : List[Any] = { """prompt""": """.""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 1.0, """sag_scale""": 1.0, """output_type""": """numpy""", } return inputs def _lowerCamelCase ( self ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): def _lowerCamelCase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self ): A_ : Optional[int] = StableDiffusionSAGPipeline.from_pretrained("""CompVis/stable-diffusion-v1-4""" ) A_ : Tuple = sag_pipe.to(a__ ) sag_pipe.set_progress_bar_config(disable=a__ ) A_ : Optional[Any] = """.""" A_ : Optional[Any] = torch.manual_seed(0 ) A_ : str = sag_pipe( [prompt] , generator=a__ , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="""np""" ) A_ : Tuple = output.images A_ : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) A_ : List[Any] = np.array([0.1568, 0.1738, 0.1695, 0.1693, 0.1507, 0.1705, 0.1547, 0.1751, 0.1949] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-2 def _lowerCamelCase ( self ): A_ : Dict = StableDiffusionSAGPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""" ) A_ : List[str] = sag_pipe.to(a__ ) sag_pipe.set_progress_bar_config(disable=a__ ) A_ : List[str] = """.""" A_ : List[Any] = torch.manual_seed(0 ) A_ : List[str] = sag_pipe( [prompt] , generator=a__ , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="""np""" ) A_ : Union[str, Any] = output.images A_ : str = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) A_ : str = np.array([0.3459, 0.2876, 0.2537, 0.3002, 0.2671, 0.2160, 0.3026, 0.2262, 0.2371] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-2 def _lowerCamelCase ( self ): A_ : Optional[Any] = StableDiffusionSAGPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""" ) A_ : Tuple = sag_pipe.to(a__ ) sag_pipe.set_progress_bar_config(disable=a__ ) A_ : Optional[Any] = """.""" A_ : Any = torch.manual_seed(0 ) A_ : Optional[int] = sag_pipe( [prompt] , width=768 , height=512 , generator=a__ , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="""np""" , ) A_ : Optional[int] = output.images assert image.shape == (1, 512, 768, 3)
569
1
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase :Optional[Any] = logging.get_logger() @dataclass class _lowerCAmelCase : __SCREAMING_SNAKE_CASE : nn.Module __SCREAMING_SNAKE_CASE : List[nn.Module] = field(default_factory=__UpperCAmelCase ) __SCREAMING_SNAKE_CASE : list = field(default_factory=__UpperCAmelCase ) def _a (self , lowercase , lowercase , lowercase ): A_ : str = len(list(m.modules() ) ) == 1 or isinstance(__SCREAMING_SNAKE_CASE , nn.Convad ) or isinstance(__SCREAMING_SNAKE_CASE , nn.BatchNormad ) if has_not_submodules: self.traced.append(__SCREAMING_SNAKE_CASE ) def __call__(self , lowercase ): for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(__SCREAMING_SNAKE_CASE ) [x.remove() for x in self.handles] return self @property def _a (self ): return list(filter(lambda lowercase : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class _lowerCAmelCase : __SCREAMING_SNAKE_CASE : nn.Module __SCREAMING_SNAKE_CASE : nn.Module __SCREAMING_SNAKE_CASE : int = 0 __SCREAMING_SNAKE_CASE : List = field(default_factory=__UpperCAmelCase ) __SCREAMING_SNAKE_CASE : List = field(default_factory=__UpperCAmelCase ) def __call__(self , lowercase ): A_ : Optional[Any] = Tracker(self.dest )(__SCREAMING_SNAKE_CASE ).parametrized A_ : int = Tracker(self.src )(__SCREAMING_SNAKE_CASE ).parametrized A_ : Optional[Any] = list(filter(lambda lowercase : type(__SCREAMING_SNAKE_CASE ) not in self.src_skip , __SCREAMING_SNAKE_CASE ) ) A_ : Tuple = list(filter(lambda lowercase : type(__SCREAMING_SNAKE_CASE ) not in self.dest_skip , __SCREAMING_SNAKE_CASE ) ) if len(__SCREAMING_SNAKE_CASE ) != len(__SCREAMING_SNAKE_CASE ): raise Exception( F'Numbers of operations are different. Source module has {len(__SCREAMING_SNAKE_CASE )} operations while' F' destination module has {len(__SCREAMING_SNAKE_CASE )}.' ) for dest_m, src_m in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(F'Transfered from={src_m} to={dest_m}' ) def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = True ): '''simple docstring''' print(f'Converting {name}...' ) with torch.no_grad(): A_ : Any = timm.create_model(_UpperCAmelCase , pretrained=_UpperCAmelCase ).eval() A_ : int = ResNetForImageClassification(_UpperCAmelCase ).eval() A_ : Union[str, Any] = ModuleTransfer(src=_UpperCAmelCase , dest=_UpperCAmelCase ) A_ : Optional[int] = torch.randn((1, 3, 2_24, 2_24) ) module_transfer(_UpperCAmelCase ) assert torch.allclose(from_model(_UpperCAmelCase ) , our_model(_UpperCAmelCase ).logits ), "The model logits don't match the original one." A_ : Tuple = f'resnet{"-".join(name.split("resnet" ) )}' print(_UpperCAmelCase ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="""Add model""" , use_temp_dir=_UpperCAmelCase , ) # we can use the convnext one A_ : Dict = AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""" ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="""Add image processor""" , use_temp_dir=_UpperCAmelCase , ) print(f'Pushed {checkpoint_name}' ) def a ( lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = True ): '''simple docstring''' A_ : int = """imagenet-1k-id2label.json""" A_ : Any = 10_00 A_ : List[Any] = (1, num_labels) A_ : str = """huggingface/label-files""" A_ : str = num_labels A_ : List[str] = json.load(open(hf_hub_download(_UpperCAmelCase , _UpperCAmelCase , repo_type="""dataset""" ) , """r""" ) ) A_ : Dict = {int(_UpperCAmelCase ): v for k, v in idalabel.items()} A_ : Optional[Any] = idalabel A_ : Dict = {v: k for k, v in idalabel.items()} A_ : List[Any] = partial(_UpperCAmelCase , num_labels=_UpperCAmelCase , idalabel=_UpperCAmelCase , labelaid=_UpperCAmelCase ) A_ : List[Any] = { """resnet18""": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[64, 1_28, 2_56, 5_12] , layer_type="""basic""" ), """resnet26""": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type="""bottleneck""" ), """resnet34""": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[64, 1_28, 2_56, 5_12] , layer_type="""basic""" ), """resnet50""": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type="""bottleneck""" ), """resnet101""": ImageNetPreTrainedConfig( depths=[3, 4, 23, 3] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type="""bottleneck""" ), """resnet152""": ImageNetPreTrainedConfig( depths=[3, 8, 36, 3] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type="""bottleneck""" ), } if model_name: convert_weight_and_push(_UpperCAmelCase , names_to_config[model_name] , _UpperCAmelCase , _UpperCAmelCase ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return config, expected_shape if __name__ == "__main__": lowerCamelCase :List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default=None, type=str, help=( '''The name of the model you wish to convert, it must be one of the supported resnet* architecture,''' ''' currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=Path, required=True, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', default=True, type=bool, required=False, help='''If True, push model and image processor to the hub.''', ) lowerCamelCase :Optional[Any] = parser.parse_args() lowerCamelCase :Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
716
'''simple docstring''' import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def a ( ): '''simple docstring''' with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(lowerCamelCase__ ): requests.request("""GET""" , """https://huggingface.co""" ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request("""GET""" , """https://huggingface.co""" , timeout=1.0 ) @pytest.mark.integration def a ( ): '''simple docstring''' with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request("""GET""" , """https://huggingface.co""" ) def a ( ): '''simple docstring''' with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(lowerCamelCase__ ): http_head("""https://huggingface.co""" )
686
0
"""simple docstring""" import os # Precomputes a list of the 100 first triangular numbers lowerCAmelCase__ = [int(0.5 * n * (n + 1)) for n in range(1, 101)] def _lowerCamelCase ( ): SCREAMING_SNAKE_CASE_ = os.path.dirname(os.path.realpath(__a ) ) SCREAMING_SNAKE_CASE_ = os.path.join(__a, '''words.txt''' ) SCREAMING_SNAKE_CASE_ = '''''' with open(__a ) as f: SCREAMING_SNAKE_CASE_ = f.readline() SCREAMING_SNAKE_CASE_ = [word.strip('''"''' ) for word in words.strip('''\r\n''' ).split(''',''' )] SCREAMING_SNAKE_CASE_ = [ word for word in [sum(ord(__a ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(__a ) if __name__ == "__main__": print(solution())
626
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def _lowerCamelCase ( __a=None ): if subparsers is not None: SCREAMING_SNAKE_CASE_ = subparsers.add_parser('''test''' ) else: SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser('''Accelerate test command''' ) parser.add_argument( '''--config_file''', default=__a, help=( '''The path to use to store the config file. Will default to a file named default_config.yaml in the cache ''' '''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ''' '''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ''' '''with \'huggingface\'.''' ), ) if subparsers is not None: parser.set_defaults(func=__a ) return parser def _lowerCamelCase ( __a ): SCREAMING_SNAKE_CASE_ = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ['''test_utils''', '''scripts''', '''test_script.py'''] ) if args.config_file is None: SCREAMING_SNAKE_CASE_ = script_name else: SCREAMING_SNAKE_CASE_ = F'--config_file={args.config_file} {script_name}' SCREAMING_SNAKE_CASE_ = ['''accelerate-launch'''] + test_args.split() SCREAMING_SNAKE_CASE_ = execute_subprocess_async(__a, env=os.environ.copy() ) if result.returncode == 0: print('''Test is a success! You are ready for your distributed training!''' ) def _lowerCamelCase ( ): SCREAMING_SNAKE_CASE_ = test_command_parser() SCREAMING_SNAKE_CASE_ = parser.parse_args() test_command(__a ) if __name__ == "__main__": main()
626
1
"""simple docstring""" from abc import ABC, abstractmethod from typing import Optional, Union from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit from ..utils.typing import NestedDataStructureLike, PathLike class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" def __init__( self : Dict , UpperCAmelCase__ : Optional[NestedDataStructureLike[PathLike]] = None , UpperCAmelCase__ : Optional[NamedSplit] = None , UpperCAmelCase__ : Optional[Features] = None , UpperCAmelCase__ : str = None , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : Optional[int] = None , **UpperCAmelCase__ : Tuple , ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE = path_or_paths __SCREAMING_SNAKE_CASE = split if split or isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else "train" __SCREAMING_SNAKE_CASE = features __SCREAMING_SNAKE_CASE = cache_dir __SCREAMING_SNAKE_CASE = keep_in_memory __SCREAMING_SNAKE_CASE = streaming __SCREAMING_SNAKE_CASE = num_proc __SCREAMING_SNAKE_CASE = kwargs @abstractmethod def UpperCAmelCase_ ( self : Tuple ) -> Union[Dataset, DatasetDict, IterableDataset, IterableDatasetDict]: pass class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" def __init__( self : List[str] , UpperCAmelCase__ : Optional[Features] = None , UpperCAmelCase__ : str = None , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : Optional[int] = None , **UpperCAmelCase__ : int , ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE = features __SCREAMING_SNAKE_CASE = cache_dir __SCREAMING_SNAKE_CASE = keep_in_memory __SCREAMING_SNAKE_CASE = streaming __SCREAMING_SNAKE_CASE = num_proc __SCREAMING_SNAKE_CASE = kwargs @abstractmethod def UpperCAmelCase_ ( self : Optional[Any] ) -> Union[Dataset, IterableDataset]: pass
553
"""simple docstring""" from __future__ import annotations import math class UpperCamelCase_ : """simple docstring""" def __init__( self : Union[str, Any] , UpperCAmelCase__ : int ) -> None: __SCREAMING_SNAKE_CASE = size # approximate the overall size of segment tree with given value __SCREAMING_SNAKE_CASE = [0 for i in range(0 , 4 * size )] # create array to store lazy update __SCREAMING_SNAKE_CASE = [0 for i in range(0 , 4 * size )] __SCREAMING_SNAKE_CASE = [0 for i in range(0 , 4 * size )] # flag for lazy update def UpperCAmelCase_ ( self : str , UpperCAmelCase__ : int ) -> int: return idx * 2 def UpperCAmelCase_ ( self : Any , UpperCAmelCase__ : int ) -> int: return idx * 2 + 1 def UpperCAmelCase_ ( self : List[Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : list[int] ) -> None: if left_element == right_element: __SCREAMING_SNAKE_CASE = a[left_element - 1] else: __SCREAMING_SNAKE_CASE = (left_element + right_element) // 2 self.build(self.left(UpperCAmelCase__ ) , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) self.build(self.right(UpperCAmelCase__ ) , mid + 1 , UpperCAmelCase__ , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = max( self.segment_tree[self.left(UpperCAmelCase__ )] , self.segment_tree[self.right(UpperCAmelCase__ )] ) def UpperCAmelCase_ ( self : Tuple , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : int ) -> bool: if self.flag[idx] is True: __SCREAMING_SNAKE_CASE = self.lazy[idx] __SCREAMING_SNAKE_CASE = False if left_element != right_element: __SCREAMING_SNAKE_CASE = self.lazy[idx] __SCREAMING_SNAKE_CASE = self.lazy[idx] __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = True if right_element < a or left_element > b: return True if left_element >= a and right_element <= b: __SCREAMING_SNAKE_CASE = val if left_element != right_element: __SCREAMING_SNAKE_CASE = val __SCREAMING_SNAKE_CASE = val __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = True return True __SCREAMING_SNAKE_CASE = (left_element + right_element) // 2 self.update(self.left(UpperCAmelCase__ ) , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) self.update(self.right(UpperCAmelCase__ ) , mid + 1 , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = max( self.segment_tree[self.left(UpperCAmelCase__ )] , self.segment_tree[self.right(UpperCAmelCase__ )] ) return True def UpperCAmelCase_ ( self : int , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : int ) -> int | float: if self.flag[idx] is True: __SCREAMING_SNAKE_CASE = self.lazy[idx] __SCREAMING_SNAKE_CASE = False if left_element != right_element: __SCREAMING_SNAKE_CASE = self.lazy[idx] __SCREAMING_SNAKE_CASE = self.lazy[idx] __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = True if right_element < a or left_element > b: return -math.inf if left_element >= a and right_element <= b: return self.segment_tree[idx] __SCREAMING_SNAKE_CASE = (left_element + right_element) // 2 __SCREAMING_SNAKE_CASE = self.query(self.left(UpperCAmelCase__ ) , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = self.query(self.right(UpperCAmelCase__ ) , mid + 1 , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) return max(UpperCAmelCase__ , UpperCAmelCase__ ) def __str__( self : int ) -> str: return str([self.query(1 , 1 , self.size , UpperCAmelCase__ , UpperCAmelCase__ ) for i in range(1 , self.size + 1 )] ) if __name__ == "__main__": a__ : Tuple = [1, 2, -4, 7, 3, -5, 6, 1_1, -2_0, 9, 1_4, 1_5, 5, 2, -8] a__ : Dict = 1_5 a__ : int = SegmentTree(size) segt.build(1, 1, size, A) print(segt.query(1, 1, size, 4, 6)) print(segt.query(1, 1, size, 7, 1_1)) print(segt.query(1, 1, size, 7, 1_2)) segt.update(1, 1, size, 1, 3, 1_1_1) print(segt.query(1, 1, size, 1, 1_5)) segt.update(1, 1, size, 7, 8, 2_3_5) print(segt)
553
1
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class a_ ( lowerCamelCase ): lowercase = ["""image_processor""", """tokenizer"""] lowercase = """ChineseCLIPImageProcessor""" lowercase = ("""BertTokenizer""", """BertTokenizerFast""") def __init__( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" UpperCamelCase = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , _SCREAMING_SNAKE_CASE , ) UpperCamelCase = kwargs.pop("""feature_extractor""" ) UpperCamelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase = self.image_processor def __call__( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: UpperCamelCase = self.tokenizer(_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if images is not None: UpperCamelCase = self.image_processor(_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if text is not None and images is not None: UpperCamelCase = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_SCREAMING_SNAKE_CASE ) , tensor_type=_SCREAMING_SNAKE_CASE ) def A__ ( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" return self.tokenizer.batch_decode(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def A__ ( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" return self.tokenizer.decode(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) @property def A__ ( self ) -> int: """simple docstring""" UpperCamelCase = self.tokenizer.model_input_names UpperCamelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def A__ ( self ) -> Tuple: """simple docstring""" warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , _SCREAMING_SNAKE_CASE , ) return self.image_processor_class
301
'''simple docstring''' import argparse import torch from transformers import OpenAIGPTConfig, OpenAIGPTModel, load_tf_weights_in_openai_gpt from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def lowercase__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> List[str]: # Construct model if openai_config_file == "": UpperCamelCase = OpenAIGPTConfig() else: UpperCamelCase = OpenAIGPTConfig.from_json_file(__UpperCamelCase ) UpperCamelCase = OpenAIGPTModel(__UpperCamelCase ) # Load weights from numpy load_tf_weights_in_openai_gpt(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # Save pytorch-model UpperCamelCase = pytorch_dump_folder_path + """/""" + WEIGHTS_NAME UpperCamelCase = pytorch_dump_folder_path + """/""" + CONFIG_NAME print(F"Save PyTorch model to {pytorch_weights_dump_path}" ) torch.save(model.state_dict() , __UpperCamelCase ) print(F"Save configuration file to {pytorch_config_dump_path}" ) with open(__UpperCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--openai_checkpoint_folder_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--openai_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained OpenAI model. \n' 'This specifies the model architecture.' ), ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_openai_checkpoint_to_pytorch( args.openai_checkpoint_folder_path, args.openai_config_file, args.pytorch_dump_folder_path )
301
1
def A__ ( __lowerCAmelCase : int | float | str ): try: lowerCamelCase__ = float(__lowerCAmelCase ) except ValueError: raise ValueError("""Please enter a valid number""" ) lowerCamelCase__ = decimal - int(__lowerCAmelCase ) if fractional_part == 0: return int(__lowerCAmelCase ), 1 else: lowerCamelCase__ = len(str(__lowerCAmelCase ).split(""".""" )[1] ) lowerCamelCase__ = int(decimal * (10**number_of_frac_digits) ) lowerCamelCase__ = 10**number_of_frac_digits lowerCamelCase__ , lowerCamelCase__ = denominator, numerator while True: lowerCamelCase__ = dividend % divisor if remainder == 0: break lowerCamelCase__ , lowerCamelCase__ = divisor, remainder lowerCamelCase__ , lowerCamelCase__ = numerator / divisor, denominator / divisor return int(__lowerCAmelCase ), int(__lowerCAmelCase ) if __name__ == "__main__": print(F'{decimal_to_fraction(2) = }') print(F'{decimal_to_fraction(89.0) = }') print(F'{decimal_to_fraction("67") = }') print(F'{decimal_to_fraction("45.0") = }') print(F'{decimal_to_fraction(1.5) = }') print(F'{decimal_to_fraction("6.25") = }') print(F'{decimal_to_fraction("78td") = }')
715
'''simple docstring''' import numpy # List of input, output pairs UpperCamelCase : List[Any] = ( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) UpperCamelCase : Optional[int] = (((5_15, 22, 13), 5_55), ((61, 35, 49), 1_50)) UpperCamelCase : int = [2, 4, 1, 5] UpperCamelCase : int = len(train_data) UpperCamelCase : Dict = 0.009 def A__ ( __lowerCAmelCase : int , __lowerCAmelCase : str="train" ): return calculate_hypothesis_value(__lowerCAmelCase , __lowerCAmelCase ) - output( __lowerCAmelCase , __lowerCAmelCase ) def A__ ( __lowerCAmelCase : Any ): lowerCamelCase__ = 0 for i in range(len(__lowerCAmelCase ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def A__ ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Tuple ): if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def A__ ( __lowerCAmelCase : int , __lowerCAmelCase : Dict ): if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def A__ ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any]=m ): lowerCamelCase__ = 0 for i in range(__lowerCAmelCase ): if index == -1: summation_value += _error(__lowerCAmelCase ) else: summation_value += _error(__lowerCAmelCase ) * train_data[i][0][index] return summation_value def A__ ( __lowerCAmelCase : List[Any] ): lowerCamelCase__ = summation_of_cost_derivative(__lowerCAmelCase , __lowerCAmelCase ) / m return cost_derivative_value def A__ ( ): global parameter_vector # Tune these values to set a tolerance value for predicted output lowerCamelCase__ = 0.00_0002 lowerCamelCase__ = 0 lowerCamelCase__ = 0 while True: j += 1 lowerCamelCase__ = [0, 0, 0, 0] for i in range(0 , len(__lowerCAmelCase ) ): lowerCamelCase__ = get_cost_derivative(i - 1 ) lowerCamelCase__ = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( __lowerCAmelCase , __lowerCAmelCase , atol=__lowerCAmelCase , rtol=__lowerCAmelCase , ): break lowerCamelCase__ = temp_parameter_vector print(("""Number of iterations:""", j) ) def A__ ( ): for i in range(len(__lowerCAmelCase ) ): print(("""Actual output value:""", output(__lowerCAmelCase , """test""" )) ) print(("""Hypothesis output:""", calculate_hypothesis_value(__lowerCAmelCase , """test""" )) ) if __name__ == "__main__": run_gradient_descent() print('\nTesting gradient descent for a linear hypothesis function.\n') test_gradient_descent()
9
0
import unittest from transformers.utils.backbone_utils import ( BackboneMixin, get_aligned_output_features_output_indices, verify_out_features_out_indices, ) class snake_case__(unittest.TestCase ): """simple docstring""" def snake_case ( self : Optional[int] ): lowercase__ : str = ["a", "b", "c"] # Defaults to last layer if both are None lowercase__ , lowercase__ : str = get_aligned_output_features_output_indices(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ , ["c"] ) self.assertEqual(SCREAMING_SNAKE_CASE__ , [2] ) # Out indices set to match out features lowercase__ , lowercase__ : Optional[Any] = get_aligned_output_features_output_indices(["a", "c"] , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ , ["a", "c"] ) self.assertEqual(SCREAMING_SNAKE_CASE__ , [0, 2] ) # Out features set to match out indices lowercase__ , lowercase__ : List[str] = get_aligned_output_features_output_indices(SCREAMING_SNAKE_CASE__ , [0, 2] , SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ , ["a", "c"] ) self.assertEqual(SCREAMING_SNAKE_CASE__ , [0, 2] ) # Out features selected from negative indices lowercase__ , lowercase__ : Optional[int] = get_aligned_output_features_output_indices(SCREAMING_SNAKE_CASE__ , [-3, -1] , SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ , ["a", "c"] ) self.assertEqual(SCREAMING_SNAKE_CASE__ , [-3, -1] ) def snake_case ( self : List[str] ): # Stage names must be set with self.assertRaises(SCREAMING_SNAKE_CASE__ ): verify_out_features_out_indices(["a", "b"] , (0, 1) , SCREAMING_SNAKE_CASE__ ) # Out features must be a list with self.assertRaises(SCREAMING_SNAKE_CASE__ ): verify_out_features_out_indices(("a", "b") , (0, 1) , ["a", "b"] ) # Out features must be a subset of stage names with self.assertRaises(SCREAMING_SNAKE_CASE__ ): verify_out_features_out_indices(["a", "b"] , (0, 1) , ["a"] ) # Out indices must be a list or tuple with self.assertRaises(SCREAMING_SNAKE_CASE__ ): verify_out_features_out_indices(SCREAMING_SNAKE_CASE__ , 0 , ["a", "b"] ) # Out indices must be a subset of stage names with self.assertRaises(SCREAMING_SNAKE_CASE__ ): verify_out_features_out_indices(SCREAMING_SNAKE_CASE__ , (0, 1) , ["a"] ) # Out features and out indices must be the same length with self.assertRaises(SCREAMING_SNAKE_CASE__ ): verify_out_features_out_indices(["a", "b"] , (0,) , ["a", "b", "c"] ) # Out features should match out indices with self.assertRaises(SCREAMING_SNAKE_CASE__ ): verify_out_features_out_indices(["a", "b"] , (0, 2) , ["a", "b", "c"] ) # Out features and out indices should be in order with self.assertRaises(SCREAMING_SNAKE_CASE__ ): verify_out_features_out_indices(["b", "a"] , (0, 1) , ["a", "b"] ) # Check passes with valid inputs verify_out_features_out_indices(["a", "b", "d"] , (0, 1, -1) , ["a", "b", "c", "d"] ) def snake_case ( self : Dict ): lowercase__ : Optional[int] = BackboneMixin() lowercase__ : Tuple = ["a", "b", "c"] lowercase__ : Dict = ["a", "c"] lowercase__ : Any = [0, 2] # Check that the output features and indices are set correctly self.assertEqual(backbone.out_features , ["a", "c"] ) self.assertEqual(backbone.out_indices , [0, 2] ) # Check out features and indices are updated correctly lowercase__ : Optional[Any] = ["a", "b"] self.assertEqual(backbone.out_features , ["a", "b"] ) self.assertEqual(backbone.out_indices , [0, 1] ) lowercase__ : Union[str, Any] = [-3, -1] self.assertEqual(backbone.out_features , ["a", "c"] ) self.assertEqual(backbone.out_indices , [-3, -1] )
496
"""simple docstring""" import unittest from transformers.utils.backbone_utils import ( BackboneMixin, get_aligned_output_features_output_indices, verify_out_features_out_indices, ) class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def snake_case__ ( self ) -> Dict: A__ = ["a", "b", "c"] # Defaults to last layer if both are None A__ , A__ = get_aligned_output_features_output_indices(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ , ["c"] ) self.assertEqual(SCREAMING_SNAKE_CASE__ , [2] ) # Out indices set to match out features A__ , A__ = get_aligned_output_features_output_indices(["a", "c"] , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ , ["a", "c"] ) self.assertEqual(SCREAMING_SNAKE_CASE__ , [0, 2] ) # Out features set to match out indices A__ , A__ = get_aligned_output_features_output_indices(SCREAMING_SNAKE_CASE__ , [0, 2] , SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ , ["a", "c"] ) self.assertEqual(SCREAMING_SNAKE_CASE__ , [0, 2] ) # Out features selected from negative indices A__ , A__ = get_aligned_output_features_output_indices(SCREAMING_SNAKE_CASE__ , [-3, -1] , SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ , ["a", "c"] ) self.assertEqual(SCREAMING_SNAKE_CASE__ , [-3, -1] ) def snake_case__ ( self ) -> Dict: # Stage names must be set with self.assertRaises(SCREAMING_SNAKE_CASE__ ): verify_out_features_out_indices(["a", "b"] , (0, 1) , SCREAMING_SNAKE_CASE__ ) # Out features must be a list with self.assertRaises(SCREAMING_SNAKE_CASE__ ): verify_out_features_out_indices(("a", "b") , (0, 1) , ["a", "b"] ) # Out features must be a subset of stage names with self.assertRaises(SCREAMING_SNAKE_CASE__ ): verify_out_features_out_indices(["a", "b"] , (0, 1) , ["a"] ) # Out indices must be a list or tuple with self.assertRaises(SCREAMING_SNAKE_CASE__ ): verify_out_features_out_indices(SCREAMING_SNAKE_CASE__ , 0 , ["a", "b"] ) # Out indices must be a subset of stage names with self.assertRaises(SCREAMING_SNAKE_CASE__ ): verify_out_features_out_indices(SCREAMING_SNAKE_CASE__ , (0, 1) , ["a"] ) # Out features and out indices must be the same length with self.assertRaises(SCREAMING_SNAKE_CASE__ ): verify_out_features_out_indices(["a", "b"] , (0,) , ["a", "b", "c"] ) # Out features should match out indices with self.assertRaises(SCREAMING_SNAKE_CASE__ ): verify_out_features_out_indices(["a", "b"] , (0, 2) , ["a", "b", "c"] ) # Out features and out indices should be in order with self.assertRaises(SCREAMING_SNAKE_CASE__ ): verify_out_features_out_indices(["b", "a"] , (0, 1) , ["a", "b"] ) # Check passes with valid inputs verify_out_features_out_indices(["a", "b", "d"] , (0, 1, -1) , ["a", "b", "c", "d"] ) def snake_case__ ( self ) -> List[Any]: A__ = BackboneMixin() A__ = ["a", "b", "c"] A__ = ["a", "c"] A__ = [0, 2] # Check that the output features and indices are set correctly self.assertEqual(backbone.out_features , ["a", "c"] ) self.assertEqual(backbone.out_indices , [0, 2] ) # Check out features and indices are updated correctly A__ = ["a", "b"] self.assertEqual(backbone.out_features , ["a", "b"] ) self.assertEqual(backbone.out_indices , [0, 1] ) A__ = [-3, -1] self.assertEqual(backbone.out_features , ["a", "c"] ) self.assertEqual(backbone.out_indices , [-3, -1] )
104
0
from __future__ import annotations from collections.abc import Iterator from typing import Any class lowerCamelCase : def __init__( self , lowercase__): __UpperCAmelCase : Any = data __UpperCAmelCase : Node | None = None class lowerCamelCase : def __init__( self): __UpperCAmelCase : Tuple = None __UpperCAmelCase : int = None def __iter__( self): __UpperCAmelCase : Union[str, Any] = self.head while self.head: yield node.data __UpperCAmelCase : int = node.next if node == self.head: break def __len__( self): return sum(1 for _ in self) def __repr__( self): return "->".join(str(lowercase__) for item in iter(self)) def A( self , lowercase__): self.insert_nth(len(self) , lowercase__) def A( self , lowercase__): self.insert_nth(0 , lowercase__) def A( self , lowercase__ , lowercase__): if index < 0 or index > len(self): raise IndexError('''list index out of range.''') __UpperCAmelCase : int = Node(lowercase__) if self.head is None: __UpperCAmelCase : Optional[int] = new_node # first node points itself __UpperCAmelCase : List[str] = new_node elif index == 0: # insert at head __UpperCAmelCase : Any = self.head __UpperCAmelCase : Optional[Any] = new_node else: __UpperCAmelCase : Optional[Any] = self.head for _ in range(index - 1): __UpperCAmelCase : Any = temp.next __UpperCAmelCase : Dict = temp.next __UpperCAmelCase : Optional[Any] = new_node if index == len(self) - 1: # insert at tail __UpperCAmelCase : Optional[int] = new_node def A( self): return self.delete_nth(0) def A( self): return self.delete_nth(len(self) - 1) def A( self , lowercase__ = 0): if not 0 <= index < len(self): raise IndexError('''list index out of range.''') __UpperCAmelCase : Dict = self.head if self.head == self.tail: # just one node __UpperCAmelCase : List[str] = None elif index == 0: # delete head node __UpperCAmelCase : Optional[int] = self.tail.next.next __UpperCAmelCase : List[str] = self.head.next else: __UpperCAmelCase : Optional[int] = self.head for _ in range(index - 1): __UpperCAmelCase : Dict = temp.next __UpperCAmelCase : Union[str, Any] = temp.next __UpperCAmelCase : Optional[Any] = temp.next.next if index == len(self) - 1: # delete at tail __UpperCAmelCase : str = temp return delete_node.data def A( self): return len(self) == 0 def __SCREAMING_SNAKE_CASE ( ) -> None: '''simple docstring''' __UpperCAmelCase : Dict = CircularLinkedList() assert len(lowercase_ ) == 0 assert circular_linked_list.is_empty() is True assert str(lowercase_ ) == "" try: circular_linked_list.delete_front() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_tail() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_nth(-1 ) raise AssertionError except IndexError: assert True try: circular_linked_list.delete_nth(0 ) raise AssertionError except IndexError: assert True assert circular_linked_list.is_empty() is True for i in range(5 ): assert len(lowercase_ ) == i circular_linked_list.insert_nth(lowercase_ , i + 1 ) assert str(lowercase_ ) == "->".join(str(lowercase_ ) for i in range(1 , 6 ) ) circular_linked_list.insert_tail(6 ) assert str(lowercase_ ) == "->".join(str(lowercase_ ) for i in range(1 , 7 ) ) circular_linked_list.insert_head(0 ) assert str(lowercase_ ) == "->".join(str(lowercase_ ) for i in range(0 , 7 ) ) assert circular_linked_list.delete_front() == 0 assert circular_linked_list.delete_tail() == 6 assert str(lowercase_ ) == "->".join(str(lowercase_ ) for i in range(1 , 6 ) ) assert circular_linked_list.delete_nth(2 ) == 3 circular_linked_list.insert_nth(2 , 3 ) assert str(lowercase_ ) == "->".join(str(lowercase_ ) for i in range(1 , 6 ) ) assert circular_linked_list.is_empty() is False if __name__ == "__main__": import doctest doctest.testmod()
675
lowerCAmelCase = 256 # Modulus to hash a string lowerCAmelCase = 1_000_003 def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> bool: '''simple docstring''' __UpperCAmelCase : List[str] = len(lowercase_ ) __UpperCAmelCase : Tuple = len(lowercase_ ) if p_len > t_len: return False __UpperCAmelCase : Any = 0 __UpperCAmelCase : List[Any] = 0 __UpperCAmelCase : List[Any] = 1 # Calculating the hash of pattern and substring of text for i in range(lowercase_ ): __UpperCAmelCase : List[str] = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus __UpperCAmelCase : List[Any] = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue __UpperCAmelCase : Any = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash __UpperCAmelCase : int = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def __SCREAMING_SNAKE_CASE ( ) -> None: '''simple docstring''' __UpperCAmelCase : Optional[int] = '''abc1abc12''' __UpperCAmelCase : List[str] = '''alskfjaldsabc1abc1abc12k23adsfabcabc''' __UpperCAmelCase : Any = '''alskfjaldsk23adsfabcabc''' assert rabin_karp(lowercase_ , lowercase_ ) and not rabin_karp(lowercase_ , lowercase_ ) # Test 2) __UpperCAmelCase : Union[str, Any] = '''ABABX''' __UpperCAmelCase : List[Any] = '''ABABZABABYABABX''' assert rabin_karp(lowercase_ , lowercase_ ) # Test 3) __UpperCAmelCase : str = '''AAAB''' __UpperCAmelCase : List[Any] = '''ABAAAAAB''' assert rabin_karp(lowercase_ , lowercase_ ) # Test 4) __UpperCAmelCase : Optional[Any] = '''abcdabcy''' __UpperCAmelCase : Any = '''abcxabcdabxabcdabcdabcy''' assert rabin_karp(lowercase_ , lowercase_ ) # Test 5) __UpperCAmelCase : Any = '''Lü''' __UpperCAmelCase : Optional[int] = '''Lüsai''' assert rabin_karp(lowercase_ , lowercase_ ) __UpperCAmelCase : List[Any] = '''Lue''' assert not rabin_karp(lowercase_ , lowercase_ ) print('''Success.''' ) if __name__ == "__main__": test_rabin_karp()
675
1
def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ ): __lowerCamelCase : str = hex_num.strip() if not hex_num: raise ValueError('No value was passed to the function' ) __lowerCamelCase : int = hex_num[0] == '-' if is_negative: __lowerCamelCase : int = hex_num[1:] try: __lowerCamelCase : Optional[int] = int(SCREAMING_SNAKE_CASE__ , 16 ) except ValueError: raise ValueError('Invalid value was passed to the function' ) __lowerCamelCase : Optional[Any] = '' while int_num > 0: __lowerCamelCase : Tuple = str(int_num % 2 ) + bin_str int_num >>= 1 return int(('-' + bin_str) if is_negative else bin_str ) if __name__ == "__main__": import doctest doctest.testmod()
669
import gc import unittest import numpy as np import torch from torch.backends.cuda import sdp_kernel from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) from diffusers.utils import randn_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_a, require_torch_gpu from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class A_ ( __UpperCamelCase , unittest.TestCase ): '''simple docstring''' __snake_case = ConsistencyModelPipeline __snake_case = UNCONDITIONAL_IMAGE_GENERATION_PARAMS __snake_case = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS # Override required_optional_params to remove num_images_per_prompt __snake_case = frozenset( [ """num_inference_steps""", """generator""", """latents""", """output_type""", """return_dict""", """callback""", """callback_steps""", ] ) @property def _snake_case ( self: str ): __lowerCamelCase : Tuple = UNetaDModel.from_pretrained( 'diffusers/consistency-models-test' , subfolder='test_unet' , ) return unet @property def _snake_case ( self: Tuple ): __lowerCamelCase : List[str] = UNetaDModel.from_pretrained( 'diffusers/consistency-models-test' , subfolder='test_unet_class_cond' , ) return unet def _snake_case ( self: int , a: str=False ): if class_cond: __lowerCamelCase : str = self.dummy_cond_unet else: __lowerCamelCase : str = self.dummy_uncond_unet # Default to CM multistep sampler __lowerCamelCase : Tuple = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) __lowerCamelCase : Union[str, Any] = { 'unet': unet, 'scheduler': scheduler, } return components def _snake_case ( self: int , a: List[str] , a: Any=0 ): if str(a ).startswith('mps' ): __lowerCamelCase : List[Any] = torch.manual_seed(a ) else: __lowerCamelCase : Tuple = torch.Generator(device=a ).manual_seed(a ) __lowerCamelCase : Optional[Any] = { 'batch_size': 1, 'num_inference_steps': None, 'timesteps': [22, 0], 'generator': generator, 'output_type': 'np', } return inputs def _snake_case ( self: Optional[Any] ): __lowerCamelCase : int = 'cpu' # ensure determinism for the device-dependent torch.Generator __lowerCamelCase : Dict = self.get_dummy_components() __lowerCamelCase : str = ConsistencyModelPipeline(**a ) __lowerCamelCase : str = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) __lowerCamelCase : Any = self.get_dummy_inputs(a ) __lowerCamelCase : Optional[int] = pipe(**a ).images assert image.shape == (1, 32, 32, 3) __lowerCamelCase : Optional[int] = image[0, -3:, -3:, -1] __lowerCamelCase : str = np.array([0.3_5_7_2, 0.6_2_7_3, 0.4_0_3_1, 0.3_9_6_1, 0.4_3_2_1, 0.5_7_3_0, 0.5_2_6_6, 0.4_7_8_0, 0.5_0_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _snake_case ( self: Optional[int] ): __lowerCamelCase : int = 'cpu' # ensure determinism for the device-dependent torch.Generator __lowerCamelCase : Dict = self.get_dummy_components(class_cond=a ) __lowerCamelCase : Optional[int] = ConsistencyModelPipeline(**a ) __lowerCamelCase : Any = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) __lowerCamelCase : Union[str, Any] = self.get_dummy_inputs(a ) __lowerCamelCase : Tuple = 0 __lowerCamelCase : List[str] = pipe(**a ).images assert image.shape == (1, 32, 32, 3) __lowerCamelCase : Dict = image[0, -3:, -3:, -1] __lowerCamelCase : Any = np.array([0.3_5_7_2, 0.6_2_7_3, 0.4_0_3_1, 0.3_9_6_1, 0.4_3_2_1, 0.5_7_3_0, 0.5_2_6_6, 0.4_7_8_0, 0.5_0_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _snake_case ( self: Optional[int] ): __lowerCamelCase : Optional[int] = 'cpu' # ensure determinism for the device-dependent torch.Generator __lowerCamelCase : Optional[int] = self.get_dummy_components() __lowerCamelCase : Tuple = ConsistencyModelPipeline(**a ) __lowerCamelCase : Union[str, Any] = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) __lowerCamelCase : Tuple = self.get_dummy_inputs(a ) __lowerCamelCase : str = 1 __lowerCamelCase : Optional[int] = None __lowerCamelCase : Any = pipe(**a ).images assert image.shape == (1, 32, 32, 3) __lowerCamelCase : int = image[0, -3:, -3:, -1] __lowerCamelCase : Optional[int] = np.array([0.5_0_0_4, 0.5_0_0_4, 0.4_9_9_4, 0.5_0_0_8, 0.4_9_7_6, 0.5_0_1_8, 0.4_9_9_0, 0.4_9_8_2, 0.4_9_8_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _snake_case ( self: List[str] ): __lowerCamelCase : int = 'cpu' # ensure determinism for the device-dependent torch.Generator __lowerCamelCase : List[Any] = self.get_dummy_components(class_cond=a ) __lowerCamelCase : Optional[Any] = ConsistencyModelPipeline(**a ) __lowerCamelCase : List[Any] = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) __lowerCamelCase : List[str] = self.get_dummy_inputs(a ) __lowerCamelCase : List[str] = 1 __lowerCamelCase : List[str] = None __lowerCamelCase : str = 0 __lowerCamelCase : Tuple = pipe(**a ).images assert image.shape == (1, 32, 32, 3) __lowerCamelCase : int = image[0, -3:, -3:, -1] __lowerCamelCase : Any = np.array([0.5_0_0_4, 0.5_0_0_4, 0.4_9_9_4, 0.5_0_0_8, 0.4_9_7_6, 0.5_0_1_8, 0.4_9_9_0, 0.4_9_8_2, 0.4_9_8_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @slow @require_torch_gpu class A_ ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self: Any ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self: Optional[int] , a: str=0 , a: Tuple=False , a: Tuple="cpu" , a: List[str]=torch.floataa , a: Optional[Any]=(1, 3, 64, 64) ): __lowerCamelCase : Optional[Any] = torch.manual_seed(a ) __lowerCamelCase : Optional[int] = { 'num_inference_steps': None, 'timesteps': [22, 0], 'class_labels': 0, 'generator': generator, 'output_type': 'np', } if get_fixed_latents: __lowerCamelCase : Dict = self.get_fixed_latents(seed=a , device=a , dtype=a , shape=a ) __lowerCamelCase : Optional[Any] = latents return inputs def _snake_case ( self: Any , a: Any=0 , a: List[str]="cpu" , a: Optional[Any]=torch.floataa , a: int=(1, 3, 64, 64) ): if type(a ) == str: __lowerCamelCase : Dict = torch.device(a ) __lowerCamelCase : Union[str, Any] = torch.Generator(device=a ).manual_seed(a ) __lowerCamelCase : str = randn_tensor(a , generator=a , device=a , dtype=a ) return latents def _snake_case ( self: str ): __lowerCamelCase : Optional[int] = UNetaDModel.from_pretrained('diffusers/consistency_models' , subfolder='diffusers_cd_imagenet64_l2' ) __lowerCamelCase : Union[str, Any] = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) __lowerCamelCase : str = ConsistencyModelPipeline(unet=a , scheduler=a ) pipe.to(torch_device=a ) pipe.set_progress_bar_config(disable=a ) __lowerCamelCase : int = self.get_inputs() __lowerCamelCase : Optional[int] = pipe(**a ).images assert image.shape == (1, 64, 64, 3) __lowerCamelCase : Optional[Any] = image[0, -3:, -3:, -1] __lowerCamelCase : Any = np.array([0.0_8_8_8, 0.0_8_8_1, 0.0_6_6_6, 0.0_4_7_9, 0.0_2_9_2, 0.0_1_9_5, 0.0_2_0_1, 0.0_1_6_3, 0.0_2_5_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def _snake_case ( self: Optional[int] ): __lowerCamelCase : int = UNetaDModel.from_pretrained('diffusers/consistency_models' , subfolder='diffusers_cd_imagenet64_l2' ) __lowerCamelCase : int = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) __lowerCamelCase : Dict = ConsistencyModelPipeline(unet=a , scheduler=a ) pipe.to(torch_device=a ) pipe.set_progress_bar_config(disable=a ) __lowerCamelCase : List[str] = self.get_inputs() __lowerCamelCase : Optional[Any] = 1 __lowerCamelCase : Dict = None __lowerCamelCase : Union[str, Any] = pipe(**a ).images assert image.shape == (1, 64, 64, 3) __lowerCamelCase : Optional[Any] = image[0, -3:, -3:, -1] __lowerCamelCase : Tuple = np.array([0.0_3_4_0, 0.0_1_5_2, 0.0_0_6_3, 0.0_2_6_7, 0.0_2_2_1, 0.0_1_0_7, 0.0_4_1_6, 0.0_1_8_6, 0.0_2_1_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 @require_torch_a def _snake_case ( self: List[str] ): __lowerCamelCase : Optional[Any] = UNetaDModel.from_pretrained('diffusers/consistency_models' , subfolder='diffusers_cd_imagenet64_l2' ) __lowerCamelCase : Any = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) __lowerCamelCase : List[Any] = ConsistencyModelPipeline(unet=a , scheduler=a ) pipe.to(torch_device=a , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=a ) __lowerCamelCase : int = self.get_inputs(get_fixed_latents=a , device=a ) # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=a , enable_math=a , enable_mem_efficient=a ): __lowerCamelCase : int = pipe(**a ).images assert image.shape == (1, 64, 64, 3) __lowerCamelCase : Optional[Any] = image[0, -3:, -3:, -1] __lowerCamelCase : Optional[Any] = np.array([0.1_8_7_5, 0.1_4_2_8, 0.1_2_8_9, 0.2_1_5_1, 0.2_0_9_2, 0.1_4_7_7, 0.1_8_7_7, 0.1_6_4_1, 0.1_3_5_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @require_torch_a def _snake_case ( self: Dict ): __lowerCamelCase : Dict = UNetaDModel.from_pretrained('diffusers/consistency_models' , subfolder='diffusers_cd_imagenet64_l2' ) __lowerCamelCase : Any = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) __lowerCamelCase : str = ConsistencyModelPipeline(unet=a , scheduler=a ) pipe.to(torch_device=a , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=a ) __lowerCamelCase : str = self.get_inputs(get_fixed_latents=a , device=a ) __lowerCamelCase : str = 1 __lowerCamelCase : Union[str, Any] = None # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=a , enable_math=a , enable_mem_efficient=a ): __lowerCamelCase : Optional[int] = pipe(**a ).images assert image.shape == (1, 64, 64, 3) __lowerCamelCase : str = image[0, -3:, -3:, -1] __lowerCamelCase : str = np.array([0.1_6_6_3, 0.1_9_4_8, 0.2_2_7_5, 0.1_6_8_0, 0.1_2_0_4, 0.1_2_4_5, 0.1_8_5_8, 0.1_3_3_8, 0.2_0_9_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
669
1
'''simple docstring''' import inspect import unittest from transformers import MobileViTConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class UpperCAmelCase ( a__ ): '''simple docstring''' def UpperCamelCase( self ) -> List[str]: '''simple docstring''' lowerCamelCase_ = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowerCAmelCase__ , 'hidden_sizes' ) ) self.parent.assertTrue(hasattr(lowerCAmelCase__ , 'neck_hidden_sizes' ) ) self.parent.assertTrue(hasattr(lowerCAmelCase__ , 'num_attention_heads' ) ) class UpperCAmelCase : '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=640 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_="silu" , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=None , ) -> Tuple: '''simple docstring''' lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = image_size lowerCamelCase_ = patch_size lowerCamelCase_ = num_channels lowerCamelCase_ = last_hidden_size lowerCamelCase_ = num_attention_heads lowerCamelCase_ = hidden_act lowerCamelCase_ = conv_kernel_size lowerCamelCase_ = output_stride lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = classifier_dropout_prob lowerCamelCase_ = use_labels lowerCamelCase_ = is_training lowerCamelCase_ = num_labels lowerCamelCase_ = initializer_range lowerCamelCase_ = scope def UpperCamelCase( self ) -> Optional[Any]: '''simple docstring''' lowerCamelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase_ = None lowerCamelCase_ = None if self.use_labels: lowerCamelCase_ = ids_tensor([self.batch_size] , self.num_labels ) lowerCamelCase_ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) lowerCamelCase_ = self.get_config() return config, pixel_values, labels, pixel_labels def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' return MobileViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int: '''simple docstring''' lowerCamelCase_ = MobileViTModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() lowerCamelCase_ = model(lowerCAmelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Dict: '''simple docstring''' lowerCamelCase_ = self.num_labels lowerCamelCase_ = MobileViTForImageClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() lowerCamelCase_ = model(lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: '''simple docstring''' lowerCamelCase_ = self.num_labels lowerCamelCase_ = MobileViTForSemanticSegmentation(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() lowerCamelCase_ = model(lowerCAmelCase__ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) lowerCamelCase_ = model(lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def UpperCamelCase( self ) -> str: '''simple docstring''' lowerCamelCase_ = self.prepare_config_and_inputs() lowerCamelCase_ = config_and_inputs lowerCamelCase_ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase ( a__ , a__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = ( (MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation) if is_torch_available() else () ) SCREAMING_SNAKE_CASE_ = ( { """feature-extraction""": MobileViTModel, """image-classification""": MobileViTForImageClassification, """image-segmentation""": MobileViTForSemanticSegmentation, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = False def UpperCamelCase( self ) -> Any: '''simple docstring''' lowerCamelCase_ = MobileViTModelTester(self ) lowerCamelCase_ = MobileViTConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ ) def UpperCamelCase( self ) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='MobileViT does not use inputs_embeds' ) def UpperCamelCase( self ) -> Any: '''simple docstring''' pass @unittest.skip(reason='MobileViT does not support input and output embeddings' ) def UpperCamelCase( self ) -> int: '''simple docstring''' pass @unittest.skip(reason='MobileViT does not output attentions' ) def UpperCamelCase( self ) -> List[str]: '''simple docstring''' pass def UpperCamelCase( self ) -> Any: '''simple docstring''' lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ = model_class(lowerCAmelCase__ ) lowerCamelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase_ = [*signature.parameters.keys()] lowerCamelCase_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def UpperCamelCase( self ) -> Union[str, Any]: '''simple docstring''' pass def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def UpperCamelCase( self ) -> str: '''simple docstring''' def check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowerCamelCase_ = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): lowerCamelCase_ = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) lowerCamelCase_ = outputs.hidden_states lowerCamelCase_ = 5 self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) # MobileViT's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. lowerCamelCase_ = 2 for i in range(len(lowerCAmelCase__ ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase_ = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def UpperCamelCase( self ) -> List[str]: '''simple docstring''' lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__ ) def UpperCamelCase( self ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowerCAmelCase__ ) @slow def UpperCamelCase( self ) -> Any: '''simple docstring''' for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = MobileViTModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def _UpperCamelCase ( ) -> Optional[Any]: lowerCamelCase_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase( self ) -> str: '''simple docstring''' return MobileViTImageProcessor.from_pretrained('apple/mobilevit-xx-small' ) if is_vision_available() else None @slow def UpperCamelCase( self ) -> int: '''simple docstring''' lowerCamelCase_ = MobileViTForImageClassification.from_pretrained('apple/mobilevit-xx-small' ).to(lowerCAmelCase__ ) lowerCamelCase_ = self.default_image_processor lowerCamelCase_ = prepare_img() lowerCamelCase_ = image_processor(images=lowerCAmelCase__ , return_tensors='pt' ).to(lowerCAmelCase__ ) # forward pass with torch.no_grad(): lowerCamelCase_ = model(**lowerCAmelCase__ ) # verify the logits lowerCamelCase_ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) lowerCamelCase_ = torch.tensor([-1.9_364, -1.2_327, -0.4_653] ).to(lowerCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1E-4 ) ) @slow def UpperCamelCase( self ) -> str: '''simple docstring''' lowerCamelCase_ = MobileViTForSemanticSegmentation.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) lowerCamelCase_ = model.to(lowerCAmelCase__ ) lowerCamelCase_ = MobileViTImageProcessor.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) lowerCamelCase_ = prepare_img() lowerCamelCase_ = image_processor(images=lowerCAmelCase__ , return_tensors='pt' ).to(lowerCAmelCase__ ) # forward pass with torch.no_grad(): lowerCamelCase_ = model(**lowerCAmelCase__ ) lowerCamelCase_ = outputs.logits # verify the logits lowerCamelCase_ = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , lowerCAmelCase__ ) lowerCamelCase_ = torch.tensor( [ [[6.9_713, 6.9_786, 7.2_422], [7.2_893, 7.2_825, 7.4_446], [7.6_580, 7.8_797, 7.9_420]], [[-10.6_869, -10.3_250, -10.3_471], [-10.4_228, -9.9_868, -9.7_132], [-11.0_405, -11.0_221, -10.7_318]], [[-3.3_089, -2.8_539, -2.6_740], [-3.2_706, -2.5_621, -2.5_108], [-3.2_534, -2.6_615, -2.6_651]], ] , device=lowerCAmelCase__ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , lowerCAmelCase__ , atol=1E-4 ) ) @slow def UpperCamelCase( self ) -> str: '''simple docstring''' lowerCamelCase_ = MobileViTForSemanticSegmentation.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) lowerCamelCase_ = model.to(lowerCAmelCase__ ) lowerCamelCase_ = MobileViTImageProcessor.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) lowerCamelCase_ = prepare_img() lowerCamelCase_ = image_processor(images=lowerCAmelCase__ , return_tensors='pt' ).to(lowerCAmelCase__ ) # forward pass with torch.no_grad(): lowerCamelCase_ = model(**lowerCAmelCase__ ) lowerCamelCase_ = outputs.logits.detach().cpu() lowerCamelCase_ = image_processor.post_process_semantic_segmentation(outputs=lowerCAmelCase__ , target_sizes=[(50, 60)] ) lowerCamelCase_ = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , lowerCAmelCase__ ) lowerCamelCase_ = image_processor.post_process_semantic_segmentation(outputs=lowerCAmelCase__ ) lowerCamelCase_ = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , lowerCAmelCase__ )
709
'''simple docstring''' import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class UpperCAmelCase : '''simple docstring''' @staticmethod def UpperCamelCase( *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> List[str]: '''simple docstring''' pass def _UpperCamelCase ( __UpperCamelCase ) -> str: lowerCamelCase_ = hashlib.mda(image.tobytes() ) return m.hexdigest()[:10] def _UpperCamelCase ( __UpperCamelCase ) -> Dict: lowerCamelCase_ = np.array(__UpperCamelCase ) lowerCamelCase_ = npimg.shape return {"hash": hashimage(__UpperCamelCase ), "shape": shape} @is_pipeline_test @require_vision @require_torch class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) SCREAMING_SNAKE_CASE_ = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: '''simple docstring''' lowerCamelCase_ = MaskGenerationPipeline(model=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str: '''simple docstring''' pass @require_tf @unittest.skip('Image segmentation not implemented in TF' ) def UpperCamelCase( self ) -> int: '''simple docstring''' pass @slow @require_torch def UpperCamelCase( self ) -> Optional[int]: '''simple docstring''' lowerCamelCase_ = pipeline('mask-generation' , model='facebook/sam-vit-huge' ) lowerCamelCase_ = image_segmenter('http://images.cocodataset.org/val2017/000000039769.jpg' , points_per_batch=256 ) # Shortening by hashing lowerCamelCase_ = [] for i, o in enumerate(outputs['masks'] ): new_outupt += [{"mask": mask_to_test_readable(SCREAMING_SNAKE_CASE_ ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ , decimals=4 ) , [ {'mask': {'hash': '115ad19f5f', 'shape': (480, 640)}, 'scores': 1.0_444}, {'mask': {'hash': '6affa964c6', 'shape': (480, 640)}, 'scores': 1.021}, {'mask': {'hash': 'dfe28a0388', 'shape': (480, 640)}, 'scores': 1.0_167}, {'mask': {'hash': 'c0a5f4a318', 'shape': (480, 640)}, 'scores': 1.0_132}, {'mask': {'hash': 'fe8065c197', 'shape': (480, 640)}, 'scores': 1.0_053}, {'mask': {'hash': 'e2d0b7a0b7', 'shape': (480, 640)}, 'scores': 0.9_967}, {'mask': {'hash': '453c7844bd', 'shape': (480, 640)}, 'scores': 0.993}, {'mask': {'hash': '3d44f2926d', 'shape': (480, 640)}, 'scores': 0.9_909}, {'mask': {'hash': '64033ddc3f', 'shape': (480, 640)}, 'scores': 0.9_879}, {'mask': {'hash': '801064ff79', 'shape': (480, 640)}, 'scores': 0.9_834}, {'mask': {'hash': '6172f276ef', 'shape': (480, 640)}, 'scores': 0.9_716}, {'mask': {'hash': 'b49e60e084', 'shape': (480, 640)}, 'scores': 0.9_612}, {'mask': {'hash': 'a811e775fd', 'shape': (480, 640)}, 'scores': 0.9_599}, {'mask': {'hash': 'a6a8ebcf4b', 'shape': (480, 640)}, 'scores': 0.9_552}, {'mask': {'hash': '9d8257e080', 'shape': (480, 640)}, 'scores': 0.9_532}, {'mask': {'hash': '32de6454a8', 'shape': (480, 640)}, 'scores': 0.9_516}, {'mask': {'hash': 'af3d4af2c8', 'shape': (480, 640)}, 'scores': 0.9_499}, {'mask': {'hash': '3c6db475fb', 'shape': (480, 640)}, 'scores': 0.9_483}, {'mask': {'hash': 'c290813fb9', 'shape': (480, 640)}, 'scores': 0.9_464}, {'mask': {'hash': 'b6f0b8f606', 'shape': (480, 640)}, 'scores': 0.943}, {'mask': {'hash': '92ce16bfdf', 'shape': (480, 640)}, 'scores': 0.943}, {'mask': {'hash': 'c749b25868', 'shape': (480, 640)}, 'scores': 0.9_408}, {'mask': {'hash': 'efb6cab859', 'shape': (480, 640)}, 'scores': 0.9_335}, {'mask': {'hash': '1ff2eafb30', 'shape': (480, 640)}, 'scores': 0.9_326}, {'mask': {'hash': '788b798e24', 'shape': (480, 640)}, 'scores': 0.9_262}, {'mask': {'hash': 'abea804f0e', 'shape': (480, 640)}, 'scores': 0.8_999}, {'mask': {'hash': '7b9e8ddb73', 'shape': (480, 640)}, 'scores': 0.8_986}, {'mask': {'hash': 'cd24047c8a', 'shape': (480, 640)}, 'scores': 0.8_984}, {'mask': {'hash': '6943e6bcbd', 'shape': (480, 640)}, 'scores': 0.8_873}, {'mask': {'hash': 'b5f47c9191', 'shape': (480, 640)}, 'scores': 0.8_871} ] , ) # fmt: on @require_torch @slow def UpperCamelCase( self ) -> Any: '''simple docstring''' lowerCamelCase_ = 'facebook/sam-vit-huge' lowerCamelCase_ = pipeline('mask-generation' , model=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = image_segmenter( 'http://images.cocodataset.org/val2017/000000039769.jpg' , pred_iou_thresh=1 , points_per_batch=256 ) # Shortening by hashing lowerCamelCase_ = [] for i, o in enumerate(outputs['masks'] ): new_outupt += [{"mask": mask_to_test_readable(SCREAMING_SNAKE_CASE_ ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ , decimals=4 ) , [ {'mask': {'hash': '115ad19f5f', 'shape': (480, 640)}, 'scores': 1.0_444}, {'mask': {'hash': '6affa964c6', 'shape': (480, 640)}, 'scores': 1.0_210}, {'mask': {'hash': 'dfe28a0388', 'shape': (480, 640)}, 'scores': 1.0_167}, {'mask': {'hash': 'c0a5f4a318', 'shape': (480, 640)}, 'scores': 1.0_132}, {'mask': {'hash': 'fe8065c197', 'shape': (480, 640)}, 'scores': 1.0_053}, ] , )
384
0
"""simple docstring""" import baseaa def lowercase ( lowerCAmelCase__ : str ) -> bytes: return baseaa.baaencode(string.encode('''utf-8''' ) ) def lowercase ( lowerCAmelCase__ : bytes ) -> str: return baseaa.baadecode(lowerCAmelCase__ ).decode('''utf-8''' ) if __name__ == "__main__": lowercase_ = "Hello World!" lowercase_ = baseaa_encode(test) print(encoded) lowercase_ = baseaa_decode(encoded) print(decoded)
695
"""simple docstring""" import inspect import os import sys import unittest import accelerate from accelerate.test_utils import execute_subprocess_async, require_tpu class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ): __a = inspect.getfile(accelerate.test_utils ) __a = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_script.py'''] ) __a = os.path.sep.join(inspect.getfile(self.__class__ ).split(os.path.sep )[:-1] ) @require_tpu def __UpperCAmelCase ( self ): __a = f''' {self.test_dir}/xla_spawn.py --num_cores 8 {self.test_file_path} '''.split() __a = [sys.executable] + distributed_args execute_subprocess_async(_a , env=os.environ.copy() )
695
1
import pytest import datasets.config from datasets.utils.info_utils import is_small_dataset @pytest.mark.parametrize("dataset_size" , [None, 400 * 2**20, 600 * 2**20] ) @pytest.mark.parametrize("input_in_memory_max_size" , ["default", 0, 100 * 2**20, 900 * 2**20] ) def _lowerCAmelCase ( __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[Any] ): """simple docstring""" if input_in_memory_max_size != "default": monkeypatch.setattr(datasets.config , "IN_MEMORY_MAX_SIZE" , snake_case__ ) __SCREAMING_SNAKE_CASE : int = datasets.config.IN_MEMORY_MAX_SIZE if input_in_memory_max_size == "default": assert in_memory_max_size == 0 else: assert in_memory_max_size == input_in_memory_max_size if dataset_size and in_memory_max_size: __SCREAMING_SNAKE_CASE : Any = dataset_size < in_memory_max_size else: __SCREAMING_SNAKE_CASE : Union[str, Any] = False __SCREAMING_SNAKE_CASE : List[str] = is_small_dataset(snake_case__ ) assert result == expected
700
def _lowerCAmelCase ( __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : Dict , __lowerCamelCase : int ): """simple docstring""" if height >= 1: move_tower(height - 1 , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) move_disk(__lowerCamelCase , __lowerCamelCase ) move_tower(height - 1 , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def _lowerCAmelCase ( __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[int] ): """simple docstring""" print("moving disk from" , __lowerCamelCase , "to" , __lowerCamelCase ) def _lowerCAmelCase ( ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = int(input("Height of hanoi: " ).strip() ) move_tower(__lowerCamelCase , "A" , "B" , "C" ) if __name__ == "__main__": main()
447
0
'''simple docstring''' _lowerCAmelCase = range(2, 20 + 1) _lowerCAmelCase = [10**k for k in range(ks[-1] + 1)] _lowerCAmelCase = {} def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : Optional[Any] = sum(a_i[j] for j in range(UpperCamelCase , len(UpperCamelCase ) ) ) lowerCAmelCase__ : Tuple = sum(a_i[j] * base[j] for j in range(min(len(UpperCamelCase ) , UpperCamelCase ) ) ) lowerCAmelCase__ : List[str] = 0, 0 lowerCAmelCase__ : str = n - i lowerCAmelCase__ : int = memo.get(UpperCamelCase ) if sub_memo is not None: lowerCAmelCase__ : Union[str, Any] = sub_memo.get(UpperCamelCase ) if jumps is not None and len(UpperCamelCase ) > 0: # find and make the largest jump without going over lowerCAmelCase__ : int = -1 for _k in range(len(UpperCamelCase ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: lowerCAmelCase__ : Dict = _k break if max_jump >= 0: lowerCAmelCase__ : str = jumps[max_jump] # since the difference between jumps is cached, add c lowerCAmelCase__ : Optional[int] = diff + c for j in range(min(UpperCamelCase , len(UpperCamelCase ) ) ): lowerCAmelCase__ : Dict = divmod(UpperCamelCase , 10 ) if new_c > 0: add(UpperCamelCase , UpperCamelCase , UpperCamelCase ) else: lowerCAmelCase__ : Optional[int] = [] else: lowerCAmelCase__ : Dict = {c: []} lowerCAmelCase__ : Tuple = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps lowerCAmelCase__ : Any = next_term(UpperCamelCase , k - 1 , i + dn , UpperCamelCase ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead lowerCAmelCase__ : Union[str, Any] = compute(UpperCamelCase , UpperCamelCase , i + dn , UpperCamelCase ) diff += _diff dn += terms_jumped lowerCAmelCase__ : Any = sub_memo[c] # keep jumps sorted by # of terms skipped lowerCAmelCase__ : Optional[Any] = 0 while j < len(UpperCamelCase ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(UpperCamelCase , (diff, dn, k) ) return (diff, dn) def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" if i >= n: return 0, i if k > len(UpperCamelCase ): a_i.extend([0 for _ in range(k - len(UpperCamelCase ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) lowerCAmelCase__ : str = i lowerCAmelCase__ : Optional[int] = 0, 0, 0 for j in range(len(UpperCamelCase ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 lowerCAmelCase__ : Dict = ds_c + ds_b diff += addend lowerCAmelCase__ : Optional[Any] = 0 for j in range(UpperCamelCase ): lowerCAmelCase__ : Any = a_i[j] + addend lowerCAmelCase__ : Union[str, Any] = divmod(UpperCamelCase , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(UpperCamelCase , UpperCamelCase , UpperCamelCase ) return diff, i - start_i def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" for j in range(UpperCamelCase , len(UpperCamelCase ) ): lowerCAmelCase__ : List[str] = digits[j] + addend if s >= 10: lowerCAmelCase__ : List[Any] = divmod(UpperCamelCase , 10 ) lowerCAmelCase__ : List[str] = addend // 10 + quotient else: lowerCAmelCase__ : List[str] = s lowerCAmelCase__ : str = addend // 10 if addend == 0: break while addend > 0: lowerCAmelCase__ : List[Any] = divmod(UpperCamelCase , 10 ) digits.append(UpperCamelCase ) def _SCREAMING_SNAKE_CASE ( UpperCamelCase = 10**15 ): """simple docstring""" lowerCAmelCase__ : str = [1] lowerCAmelCase__ : Any = 1 lowerCAmelCase__ : Union[str, Any] = 0 while True: lowerCAmelCase__ : str = next_term(UpperCamelCase , 20 , i + dn , UpperCamelCase ) dn += terms_jumped if dn == n - i: break lowerCAmelCase__ : List[str] = 0 for j in range(len(UpperCamelCase ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(F"""{solution() = }""")
565
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class UpperCAmelCase ( a_ ): """simple docstring""" A__ : str = ['image_processor', 'tokenizer'] A__ : Dict = 'CLIPImageProcessor' A__ : str = ('XLMRobertaTokenizer', 'XLMRobertaTokenizerFast') def __init__( self , _snake_case=None , _snake_case=None , **_snake_case ) -> List[Any]: _UpperCamelCase : Optional[int] = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , _snake_case , ) _UpperCamelCase : Optional[Any] = kwargs.pop('''feature_extractor''' ) _UpperCamelCase : List[str] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_snake_case , _snake_case ) def __call__( self , _snake_case=None , _snake_case=None , _snake_case=None , **_snake_case ) -> Dict: if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: _UpperCamelCase : List[str] = self.tokenizer(_snake_case , return_tensors=_snake_case , **_snake_case ) if images is not None: _UpperCamelCase : str = self.image_processor(_snake_case , return_tensors=_snake_case , **_snake_case ) if text is not None and images is not None: _UpperCamelCase : Any = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_snake_case ) , tensor_type=_snake_case ) def _lowercase ( self , *_snake_case , **_snake_case ) -> Tuple: return self.tokenizer.batch_decode(*_snake_case , **_snake_case ) def _lowercase ( self , *_snake_case , **_snake_case ) -> Any: return self.tokenizer.decode(*_snake_case , **_snake_case ) @property def _lowercase ( self ) -> int: _UpperCamelCase : Optional[int] = self.tokenizer.model_input_names _UpperCamelCase : List[str] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
683
0
'''simple docstring''' from collections import deque class lowerCamelCase__ : def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCAmelCase_ = process_name # process name lowerCAmelCase_ = arrival_time # arrival time of the process # completion time of finished process or last interrupted time lowerCAmelCase_ = arrival_time lowerCAmelCase_ = burst_time # remaining burst time lowerCAmelCase_ = 0 # total time of the process wait in ready queue lowerCAmelCase_ = 0 # time from arrival time to completion time class lowerCamelCase__ : def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): # total number of mlfq's queues lowerCAmelCase_ = number_of_queues # time slice of queues that round robin algorithm applied lowerCAmelCase_ = time_slices # unfinished process is in this ready_queue lowerCAmelCase_ = queue # current time lowerCAmelCase_ = current_time # finished process is in this sequence queue lowerCAmelCase_ = deque() def UpperCAmelCase_ ( self ): lowerCAmelCase_ = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def UpperCAmelCase_ ( self , _lowerCamelCase ): lowerCAmelCase_ = [] for i in range(len(_lowerCamelCase ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def UpperCAmelCase_ ( self , _lowerCamelCase ): lowerCAmelCase_ = [] for i in range(len(_lowerCamelCase ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def UpperCAmelCase_ ( self , _lowerCamelCase ): lowerCAmelCase_ = [] for i in range(len(_lowerCamelCase ) ): completion_times.append(queue[i].stop_time ) return completion_times def UpperCAmelCase_ ( self , _lowerCamelCase ): return [q.burst_time for q in queue] def UpperCAmelCase_ ( self , _lowerCamelCase ): process.waiting_time += self.current_time - process.stop_time return process.waiting_time def UpperCAmelCase_ ( self , _lowerCamelCase ): lowerCAmelCase_ = deque() # sequence deque of finished process while len(_lowerCamelCase ) != 0: lowerCAmelCase_ = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(_lowerCamelCase ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 lowerCAmelCase_ = 0 # set the process's turnaround time because it is finished lowerCAmelCase_ = self.current_time - cp.arrival_time # set the completion time lowerCAmelCase_ = self.current_time # add the process to queue that has finished queue finished.append(_lowerCamelCase ) self.finish_queue.extend(_lowerCamelCase ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase ): lowerCAmelCase_ = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(_lowerCamelCase ) ): lowerCAmelCase_ = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(_lowerCamelCase ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time lowerCAmelCase_ = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(_lowerCamelCase ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished lowerCAmelCase_ = 0 # set the finish time lowerCAmelCase_ = self.current_time # update the process' turnaround time because it is finished lowerCAmelCase_ = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(_lowerCamelCase ) self.finish_queue.extend(_lowerCamelCase ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def UpperCAmelCase_ ( self ): # all queues except last one have round_robin algorithm for i in range(self.number_of_queues - 1 ): lowerCAmelCase_ ,lowerCAmelCase_ = self.round_robin( self.ready_queue , self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest A_ : Any =Process('''P1''', 0, 53) A_ : int =Process('''P2''', 0, 17) A_ : Tuple =Process('''P3''', 0, 68) A_ : List[Any] =Process('''P4''', 0, 24) A_ : Optional[Any] =3 A_ : Optional[Any] =[17, 25] A_ : Optional[Any] =deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={'''queue''': deque([Pa, Pa, Pa, Pa])}) A_ : int =Process('''P1''', 0, 53) A_ : int =Process('''P2''', 0, 17) A_ : str =Process('''P3''', 0, 68) A_ : List[str] =Process('''P4''', 0, 24) A_ : Union[str, Any] =3 A_ : List[Any] =[17, 25] A_ : Optional[Any] =deque([Pa, Pa, Pa, Pa]) A_ : Union[str, Any] =MLFQ(number_of_queues, time_slices, queue, 0) A_ : Optional[Any] =mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( f'''waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print completion times of processes(P1, P2, P3, P4) print( f'''completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print total turnaround times of processes(P1, P2, P3, P4) print( f'''turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print sequence of finished processes print( f'''sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}''' )
708
'''simple docstring''' def snake_case_ ( __snake_case : int) -> list: lowerCAmelCase_ = int(__snake_case) if n_element < 1: lowerCAmelCase_ = ValueError('''a should be a positive number''') raise my_error lowerCAmelCase_ = [1] lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ = (0, 0, 0) lowerCAmelCase_ = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5)) index += 1 return hamming_list if __name__ == "__main__": A_ : Union[str, Any] =input('''Enter the last number (nth term) of the Hamming Number Series: ''') print('''Formula of Hamming Number Series => 2^i * 3^j * 5^k''') A_ : Optional[int] =hamming(int(n)) print('''-----------------------------------------------------''') print(f'''The list with nth numbers is: {hamming_numbers}''') print('''-----------------------------------------------------''')
606
0
'''simple docstring''' from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer __snake_case =logging.get_logger(__name__) __snake_case ={"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} __snake_case ={ """vocab_file""": { """allegro/herbert-base-cased""": """https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json""" }, """merges_file""": { """allegro/herbert-base-cased""": """https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt""" }, } __snake_case ={"""allegro/herbert-base-cased""": 514} __snake_case ={} class UpperCAmelCase_ ( _a ): lowerCamelCase : Any = VOCAB_FILES_NAMES lowerCamelCase : str = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : Dict = PRETRAINED_INIT_CONFIGURATION lowerCamelCase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : Optional[int] = HerbertTokenizer def __init__( self : str , UpperCAmelCase__ : str=None , UpperCAmelCase__ : Optional[int]=None , UpperCAmelCase__ : Union[str, Any]=None , UpperCAmelCase__ : Union[str, Any]="<s>" , UpperCAmelCase__ : str="<unk>" , UpperCAmelCase__ : Optional[Any]="<pad>" , UpperCAmelCase__ : Optional[int]="<mask>" , UpperCAmelCase__ : Optional[int]="</s>" , **UpperCAmelCase__ : Dict , ) -> List[str]: super().__init__( A_ , A_ , tokenizer_file=A_ , cls_token=A_ , unk_token=A_ , pad_token=A_ , mask_token=A_ , sep_token=A_ , **A_ , ) def __UpperCAmelCase ( self : Any , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ) -> List[Any]: lowerCAmelCase = [self.cls_token_id] lowerCAmelCase = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __UpperCAmelCase ( self : Tuple , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None , UpperCAmelCase__ : bool = False ) -> Union[str, Any]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A_ , token_ids_a=A_ , already_has_special_tokens=A_ ) if token_ids_a is None: return [1] + ([0] * len(A_ )) + [1] return [1] + ([0] * len(A_ )) + [1] + ([0] * len(A_ )) + [1] def __UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ) -> Optional[int]: lowerCAmelCase = [self.sep_token_id] lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __UpperCAmelCase ( self : Any , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[str] = None ) -> str: lowerCAmelCase = self._tokenizer.model.save(A_ , name=A_ ) return tuple(A_ )
133
from collections.abc import Generator from math import sin def _A ( _lowercase ) -> bytes: """simple docstring""" if len(_lowercase ) != 32: raise ValueError('Input must be of length 32' ) __UpperCamelCase = B'' for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def _A ( _lowercase ) -> bytes: """simple docstring""" if i < 0: raise ValueError('Input must be non-negative' ) __UpperCamelCase = format(_lowercase , '08x' )[-8:] __UpperCamelCase = B'' for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode('utf-8' ) return little_endian_hex def _A ( _lowercase ) -> bytes: """simple docstring""" __UpperCamelCase = B'' for char in message: bit_string += format(_lowercase , '08b' ).encode('utf-8' ) __UpperCamelCase = format(len(_lowercase ) , '064b' ).encode('utf-8' ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(_lowercase ) % 5_12 != 4_48: bit_string += b"0" bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] ) return bit_string def _A ( _lowercase ) -> Generator[list[int], None, None]: """simple docstring""" if len(_lowercase ) % 5_12 != 0: raise ValueError('Input must have length that\'s a multiple of 512' ) for pos in range(0 , len(_lowercase ) , 5_12 ): __UpperCamelCase = bit_string[pos : pos + 5_12] __UpperCamelCase = [] for i in range(0 , 5_12 , 32 ): block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) ) yield block_words def _A ( _lowercase ) -> int: """simple docstring""" if i < 0: raise ValueError('Input must be non-negative' ) __UpperCamelCase = format(_lowercase , '032b' ) __UpperCamelCase = '' for c in i_str: new_str += "1" if c == "0" else "0" return int(_lowercase , 2 ) def _A ( _lowercase , _lowercase ) -> int: """simple docstring""" return (a + b) % 2**32 def _A ( _lowercase , _lowercase ) -> int: """simple docstring""" if i < 0: raise ValueError('Input must be non-negative' ) if shift < 0: raise ValueError('Shift must be non-negative' ) return ((i << shift) ^ (i >> (32 - shift))) % 2**32 def _A ( _lowercase ) -> bytes: """simple docstring""" __UpperCamelCase = preprocess(_lowercase ) __UpperCamelCase = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )] # Starting states __UpperCamelCase = 0X67_45_23_01 __UpperCamelCase = 0Xef_cd_ab_89 __UpperCamelCase = 0X98_ba_dc_fe __UpperCamelCase = 0X10_32_54_76 __UpperCamelCase = [ 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(_lowercase ): __UpperCamelCase = aa __UpperCamelCase = ba __UpperCamelCase = ca __UpperCamelCase = da # Hash current chunk for i in range(64 ): if i <= 15: # f = (b & c) | (not_32(b) & d) # Alternate definition for f __UpperCamelCase = d ^ (b & (c ^ d)) __UpperCamelCase = i elif i <= 31: # f = (d & b) | (not_32(d) & c) # Alternate definition for f __UpperCamelCase = c ^ (d & (b ^ c)) __UpperCamelCase = (5 * i + 1) % 16 elif i <= 47: __UpperCamelCase = b ^ c ^ d __UpperCamelCase = (3 * i + 5) % 16 else: __UpperCamelCase = c ^ (b | not_aa(_lowercase )) __UpperCamelCase = (7 * i) % 16 __UpperCamelCase = (f + a + added_consts[i] + block_words[g]) % 2**32 __UpperCamelCase = d __UpperCamelCase = c __UpperCamelCase = b __UpperCamelCase = sum_aa(_lowercase , left_rotate_aa(_lowercase , shift_amounts[i] ) ) # Add hashed chunk to running total __UpperCamelCase = sum_aa(_lowercase , _lowercase ) __UpperCamelCase = sum_aa(_lowercase , _lowercase ) __UpperCamelCase = sum_aa(_lowercase , _lowercase ) __UpperCamelCase = sum_aa(_lowercase , _lowercase ) __UpperCamelCase = reformat_hex(_lowercase ) + reformat_hex(_lowercase ) + reformat_hex(_lowercase ) + reformat_hex(_lowercase ) return digest if __name__ == "__main__": import doctest doctest.testmod()
1
0
import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class UpperCAmelCase ( unittest.TestCase ): def __lowerCAmelCase ( self ): _lowerCAmelCase = '''hf-internal-testing/tiny-random-t5''' _lowerCAmelCase = AutoTokenizer.from_pretrained(_lowerCAmelCase ) _lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained(_lowerCAmelCase ) _lowerCAmelCase = tokenizer('''This is me''' , return_tensors='''pt''' ) _lowerCAmelCase = model.to_bettertransformer() self.assertTrue(any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) _lowerCAmelCase = model.generate(**_lowerCAmelCase ) _lowerCAmelCase = model.reverse_bettertransformer() self.assertFalse(any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_lowerCAmelCase ) _lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained(_lowerCAmelCase ) self.assertFalse( any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) _lowerCAmelCase = model_reloaded.generate(**_lowerCAmelCase ) self.assertTrue(torch.allclose(_lowerCAmelCase , _lowerCAmelCase ) ) def __lowerCAmelCase ( self ): _lowerCAmelCase = '''hf-internal-testing/tiny-random-t5''' _lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained(_lowerCAmelCase ) _lowerCAmelCase = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(_lowerCAmelCase ): model.save_pretrained(_lowerCAmelCase ) _lowerCAmelCase = model.reverse_bettertransformer() model.save_pretrained(_lowerCAmelCase )
721
from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent UpperCAmelCase_ = {"UserAgent": UserAgent().random} def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Dict )->dict: _lowerCAmelCase = script.contents[0] _lowerCAmelCase = json.loads(data[data.find('''{"config"''' ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class UpperCAmelCase : def __init__( self , _lowerCAmelCase ): _lowerCAmelCase = F'''https://www.instagram.com/{username}/''' _lowerCAmelCase = self.get_json() def __lowerCAmelCase ( self ): _lowerCAmelCase = requests.get(self.url , headers=_lowerCAmelCase ).text _lowerCAmelCase = BeautifulSoup(_lowerCAmelCase , '''html.parser''' ).find_all('''script''' ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self ): return F'''{self.__class__.__name__}(\'{self.username}\')''' def __str__( self ): return F'''{self.fullname} ({self.username}) is {self.biography}''' @property def __lowerCAmelCase ( self ): return self.user_data["username"] @property def __lowerCAmelCase ( self ): return self.user_data["full_name"] @property def __lowerCAmelCase ( self ): return self.user_data["biography"] @property def __lowerCAmelCase ( self ): return self.user_data["business_email"] @property def __lowerCAmelCase ( self ): return self.user_data["external_url"] @property def __lowerCAmelCase ( self ): return self.user_data["edge_followed_by"]["count"] @property def __lowerCAmelCase ( self ): return self.user_data["edge_follow"]["count"] @property def __lowerCAmelCase ( self ): return self.user_data["edge_owner_to_timeline_media"]["count"] @property def __lowerCAmelCase ( self ): return self.user_data["profile_pic_url_hd"] @property def __lowerCAmelCase ( self ): return self.user_data["is_verified"] @property def __lowerCAmelCase ( self ): return self.user_data["is_private"] def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str = "github" )->None: import os if os.environ.get('''CI''' ): return # test failing on GitHub Actions _lowerCAmelCase = InstagramUser(_SCREAMING_SNAKE_CASE ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , _SCREAMING_SNAKE_CASE ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 1_5_0 assert instagram_user.number_of_followers > 1_2_0_0_0_0 assert instagram_user.number_of_followings > 1_5 assert instagram_user.email == "[email protected]" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith('''https://instagram.''' ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ = InstagramUser("github") print(instagram_user) print(F"""{instagram_user.number_of_posts = }""") print(F"""{instagram_user.number_of_followers = }""") print(F"""{instagram_user.number_of_followings = }""") print(F"""{instagram_user.email = }""") print(F"""{instagram_user.website = }""") print(F"""{instagram_user.profile_picture_url = }""") print(F"""{instagram_user.is_verified = }""") print(F"""{instagram_user.is_private = }""")
664
0
"""simple docstring""" import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' assert isinstance(__lowerCAmelCase , __lowerCAmelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = tmp_path / '''cache''' __lowerCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __lowerCAmelCase = ParquetDatasetReader(__lowerCAmelCase , cache_dir=__lowerCAmelCase , keep_in_memory=__lowerCAmelCase ).read() _check_parquet_dataset(__lowerCAmelCase , __lowerCAmelCase ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = tmp_path / '''cache''' __lowerCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __lowerCAmelCase = features.copy() if features else default_expected_features __lowerCAmelCase = ( Features({feature: Value(__lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) __lowerCAmelCase = ParquetDatasetReader(__lowerCAmelCase , features=__lowerCAmelCase , cache_dir=__lowerCAmelCase ).read() _check_parquet_dataset(__lowerCAmelCase , __lowerCAmelCase ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = tmp_path / '''cache''' __lowerCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __lowerCAmelCase = ParquetDatasetReader(__lowerCAmelCase , cache_dir=__lowerCAmelCase , split=__lowerCAmelCase ).read() _check_parquet_dataset(__lowerCAmelCase , __lowerCAmelCase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type" , [str, list] ) def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' if issubclass(__lowerCAmelCase , __lowerCAmelCase ): __lowerCAmelCase = parquet_path elif issubclass(__lowerCAmelCase , __lowerCAmelCase ): __lowerCAmelCase = [parquet_path] __lowerCAmelCase = tmp_path / '''cache''' __lowerCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __lowerCAmelCase = ParquetDatasetReader(__lowerCAmelCase , cache_dir=__lowerCAmelCase ).read() _check_parquet_dataset(__lowerCAmelCase , __lowerCAmelCase ) def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=("train",) ): '''simple docstring''' assert isinstance(__lowerCAmelCase , __lowerCAmelCase ) for split in splits: __lowerCAmelCase = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = tmp_path / '''cache''' __lowerCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __lowerCAmelCase = ParquetDatasetReader( {"train": parquet_path} , cache_dir=__lowerCAmelCase , keep_in_memory=__lowerCAmelCase ).read() _check_parquet_datasetdict(__lowerCAmelCase , __lowerCAmelCase ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = tmp_path / '''cache''' __lowerCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __lowerCAmelCase = features.copy() if features else default_expected_features __lowerCAmelCase = ( Features({feature: Value(__lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) __lowerCAmelCase = ParquetDatasetReader({"train": parquet_path} , features=__lowerCAmelCase , cache_dir=__lowerCAmelCase ).read() _check_parquet_datasetdict(__lowerCAmelCase , __lowerCAmelCase ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' if split: __lowerCAmelCase = {split: parquet_path} else: __lowerCAmelCase = '''train''' __lowerCAmelCase = {'''train''': parquet_path, '''test''': parquet_path} __lowerCAmelCase = tmp_path / '''cache''' __lowerCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __lowerCAmelCase = ParquetDatasetReader(__lowerCAmelCase , cache_dir=__lowerCAmelCase ).read() _check_parquet_datasetdict(__lowerCAmelCase , __lowerCAmelCase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = ParquetDatasetWriter(__lowerCAmelCase , tmp_path / "foo.parquet" ) assert writer.write() > 0 __lowerCAmelCase = pq.ParquetFile(tmp_path / "foo.parquet" ) __lowerCAmelCase = pf.read() assert dataset.data.table == output_table def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = str(shared_datadir / "test_image_rgb.jpg" ) __lowerCAmelCase = {'''image''': [image_path]} __lowerCAmelCase = Features({"image": Image()} ) __lowerCAmelCase = Dataset.from_dict(__lowerCAmelCase , features=__lowerCAmelCase ) __lowerCAmelCase = ParquetDatasetWriter(__lowerCAmelCase , tmp_path / "foo.parquet" ) assert writer.write() > 0 __lowerCAmelCase = Dataset.from_parquet(str(tmp_path / "foo.parquet" ) ) assert dataset.features == reloaded_dataset.features __lowerCAmelCase = ParquetDatasetReader(str(tmp_path / "foo.parquet" ) , streaming=__lowerCAmelCase ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( "feature, expected" , [ (Features({"foo": Value("int32" )} ), None), (Features({"image": Image(), "foo": Value("int32" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({"nested": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' assert get_writer_batch_size(__lowerCAmelCase ) == expected
636
'''simple docstring''' import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class a : """simple docstring""" def __init__( self : Optional[int] , snake_case_ : str , snake_case_ : List[Any]=1_3 , snake_case_ : Any=6_4 , snake_case_ : Optional[int]=2 , snake_case_ : int=3 , snake_case_ : str=True , snake_case_ : Dict=True , snake_case_ : Optional[Any]=3_2 , snake_case_ : Optional[Any]=5 , snake_case_ : List[Any]=4 , snake_case_ : List[Any]=3_7 , snake_case_ : Dict="gelu" , snake_case_ : Union[str, Any]=0.1 , snake_case_ : int=0.1 , snake_case_ : int=1_0 , snake_case_ : int=0.0_2 , snake_case_ : List[Any]=[1, 1_6, 4, 4] , snake_case_ : Any=None , ): '''simple docstring''' snake_case__ : Dict = parent snake_case__ : Optional[int] = batch_size snake_case__ : Union[str, Any] = image_size snake_case__ : str = patch_size snake_case__ : Optional[Any] = num_channels snake_case__ : List[str] = is_training snake_case__ : List[Any] = use_labels snake_case__ : List[str] = hidden_size snake_case__ : List[Any] = num_hidden_layers snake_case__ : str = num_attention_heads snake_case__ : Dict = intermediate_size snake_case__ : Tuple = hidden_act snake_case__ : str = hidden_dropout_prob snake_case__ : List[Any] = attention_probs_dropout_prob snake_case__ : List[str] = type_sequence_label_size snake_case__ : Any = initializer_range snake_case__ : Optional[Any] = scope snake_case__ : Optional[int] = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size snake_case__ : Dict = (self.image_size // 3_2) ** 2 snake_case__ : List[str] = num_patches + 1 def __magic_name__ ( self : List[str] ): '''simple docstring''' snake_case__ : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case__ : int = None if self.use_labels: snake_case__ : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case__ : Any = self.get_config() return config, pixel_values, labels def __magic_name__ ( self : str ): '''simple docstring''' snake_case__ : str = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, '''hidden_sizes''': [4, 8, 1_6, 3_2], '''num_groups''': 2, } return ViTHybridConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case_ , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=snake_case_ , ) def __magic_name__ ( self : Optional[Any] , snake_case_ : str , snake_case_ : Any , snake_case_ : List[str] ): '''simple docstring''' snake_case__ : Dict = ViTHybridModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() snake_case__ : List[str] = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __magic_name__ ( self : str , snake_case_ : Any , snake_case_ : Tuple , snake_case_ : Any ): '''simple docstring''' snake_case__ : Optional[int] = self.type_sequence_label_size snake_case__ : int = ViTHybridForImageClassification(snake_case_ ) model.to(snake_case_ ) model.eval() snake_case__ : Optional[int] = model(snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __magic_name__ ( self : Union[str, Any] ): '''simple docstring''' snake_case__ : List[Any] = self.prepare_config_and_inputs() snake_case__ , snake_case__ , snake_case__ : str = config_and_inputs snake_case__ : str = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" __UpperCAmelCase = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () __UpperCAmelCase = ( {"""feature-extraction""": ViTHybridModel, """image-classification""": ViTHybridForImageClassification} if is_torch_available() else {} ) __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False def __magic_name__ ( self : Tuple ): '''simple docstring''' snake_case__ : Tuple = ViTHybridModelTester(self ) snake_case__ : int = ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ , hidden_size=3_7 ) def __magic_name__ ( self : Union[str, Any] ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''ViT does not use inputs_embeds''' ) def __magic_name__ ( self : List[str] ): '''simple docstring''' pass def __magic_name__ ( self : str ): '''simple docstring''' snake_case__ , snake_case__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : Any = model_class(snake_case_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) snake_case__ : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case_ , nn.Linear ) ) def __magic_name__ ( self : Union[str, Any] ): '''simple docstring''' snake_case__ , snake_case__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : Tuple = model_class(snake_case_ ) snake_case__ : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case__ : str = [*signature.parameters.keys()] snake_case__ : List[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , snake_case_ ) def __magic_name__ ( self : int ): '''simple docstring''' snake_case__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def __magic_name__ ( self : Dict ): '''simple docstring''' snake_case__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case_ ) def __magic_name__ ( self : List[Any] ): '''simple docstring''' snake_case__ , snake_case__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : Tuple = _config_zero_init(snake_case_ ) for model_class in self.all_model_classes: snake_case__ : Optional[Any] = model_class(config=snake_case_ ) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": snake_case__ : Optional[Any] = [F"""{name}.{key}""" for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @slow def __magic_name__ ( self : List[Any] ): '''simple docstring''' for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ : Any = ViTHybridModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) def _a ( ): """simple docstring""" snake_case__ : Optional[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class a ( unittest.TestCase ): """simple docstring""" @cached_property def __magic_name__ ( self : List[Any] ): '''simple docstring''' return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __magic_name__ ( self : str ): '''simple docstring''' snake_case__ : Tuple = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( snake_case_ ) snake_case__ : Dict = self.default_image_processor snake_case__ : Optional[int] = prepare_img() snake_case__ : Optional[Any] = image_processor(images=snake_case_ , return_tensors='''pt''' ).to(snake_case_ ) # forward pass with torch.no_grad(): snake_case__ : Dict = model(**snake_case_ ) # verify the logits snake_case__ : Any = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , snake_case_ ) snake_case__ : Union[str, Any] = torch.tensor([-1.9_0_9_0, -0.4_9_9_3, -0.2_3_8_9] ).to(snake_case_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , snake_case_ , atol=1e-4 ) ) @slow @require_accelerate def __magic_name__ ( self : Tuple ): '''simple docstring''' snake_case__ : Tuple = ViTHybridImageProcessor.from_pretrained('''google/vit-hybrid-base-bit-384''' ) snake_case__ : Optional[int] = ViTHybridForImageClassification.from_pretrained('''google/vit-hybrid-base-bit-384''' , device_map='''auto''' ) snake_case__ : int = prepare_img() snake_case__ : int = image_processor(images=snake_case_ , return_tensors='''pt''' ) snake_case__ : int = model(**snake_case_ ) snake_case__ : List[str] = outputs.logits # model predicts one of the 1000 ImageNet classes snake_case__ : Union[str, Any] = logits.argmax(-1 ).item() self.assertTrue(model.config.idalabel[predicted_class_idx] , '''tabby, tabby cat''' )
347
0
'''simple docstring''' import json import os import re import sys import urllib.request import requests from bsa import BeautifulSoup UpperCamelCase : Any = { """User-Agent""": """Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36""" """ (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582""" } def SCREAMING_SNAKE_CASE__ ( snake_case : str = "dhaka" , snake_case : int = 5 ) -> int: """simple docstring""" a : List[str] = min(snake_case , 50 ) # Prevent abuse! a : Tuple = { 'q': query, 'tbm': 'isch', 'hl': 'en', 'ijn': '0', } a : Optional[Any] = requests.get('https://www.google.com/search' , params=snake_case , headers=snake_case ) a : Optional[int] = BeautifulSoup(html.text , 'html.parser' ) a : Optional[Any] = ''.join( re.findall(R'AF_initDataCallback\(([^<]+)\);' , str(soup.select('script' ) ) ) ) a : Any = json.dumps(snake_case ) a : Optional[Any] = json.loads(snake_case ) a : List[str] = re.findall( R'\[\"GRID_STATE0\",null,\[\[1,\[0,\".*?\",(.*),\"All\",' , snake_case , ) if not matched_google_image_data: return 0 a : Optional[int] = re.sub( R'\[\"(https\:\/\/encrypted-tbn0\.gstatic\.com\/images\?.*?)\",\d+,\d+\]' , '' , str(snake_case ) , ) a : Any = re.findall( R'(?:\'|,),\[\"(https:|http.*?)\",\d+,\d+\]' , snake_case , ) for index, fixed_full_res_image in enumerate(snake_case ): if index >= max_images: return index a : Optional[int] = bytes(snake_case , 'ascii' ).decode( 'unicode-escape' ) a : Any = bytes(snake_case , 'ascii' ).decode( 'unicode-escape' ) a : int = urllib.request.build_opener() a : Optional[int] = [ ( 'User-Agent', 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36' ' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582', ) ] urllib.request.install_opener(snake_case ) a : int = F"""query_{query.replace(' ' , '_' )}""" if not os.path.exists(snake_case ): os.makedirs(snake_case ) urllib.request.urlretrieve( # noqa: S310 snake_case , F"""{path_name}/original_size_img_{index}.jpg""" ) return index if __name__ == "__main__": try: UpperCamelCase : Optional[Any] = download_images_from_google_query(sys.argv[1]) print(f'''{image_count} images were downloaded to disk.''') except IndexError: print("""Please provide a search term.""") raise
710
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCamelCase : int = """▁""" UpperCamelCase : int = {"""vocab_file""": """spiece.model"""} UpperCamelCase : Optional[int] = { """vocab_file""": {"""google/pegasus-xsum""": """https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"""} } UpperCamelCase : Optional[int] = { """google/pegasus-xsum""": 512, } UpperCamelCase : List[Any] = logging.get_logger(__name__) class UpperCamelCase ( a_ ): """simple docstring""" A : Tuple = VOCAB_FILES_NAMES A : List[str] = VOCAB_FILES_NAMES A : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP A : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : Any = ["input_ids", "attention_mask"] def __init__( self : Dict , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str="<pad>" , UpperCAmelCase_ : str="</s>" , UpperCAmelCase_ : Any="<unk>" , UpperCAmelCase_ : List[str]="<mask_2>" , UpperCAmelCase_ : int="<mask_1>" , UpperCAmelCase_ : List[Any]=None , UpperCAmelCase_ : Union[str, Any]=1_0_3 , UpperCAmelCase_ : Optional[Dict[str, Any]] = None , **UpperCAmelCase_ : List[Any] , ): """simple docstring""" a : Optional[Any] = offset if additional_special_tokens is not None: if not isinstance(UpperCAmelCase_ , UpperCAmelCase_): raise TypeError( f"""additional_special_tokens should be of type {type(UpperCAmelCase_)}, but is""" f""" {type(UpperCAmelCase_)}""") a : List[Any] = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f"""<unk_{i}>""" for i in range(len(UpperCAmelCase_) , self.offset - 1) ] if len(set(UpperCAmelCase_)) != len(UpperCAmelCase_): raise ValueError( 'Please make sure that the provided additional_special_tokens do not contain an incorrectly' f""" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.""") a : Union[str, Any] = additional_special_tokens_extended else: a : List[str] = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f"""<unk_{i}>""" for i in range(2 , self.offset)] a : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , mask_token_sent=UpperCAmelCase_ , offset=UpperCAmelCase_ , additional_special_tokens=UpperCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase_ , ) a : List[Any] = mask_token_sent a : Optional[Any] = vocab_file a : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(UpperCAmelCase_) # add special tokens to encoder dict a : Dict[int, str] = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, }) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1)}) a : Dict[str, int] = {v: k for k, v in self.encoder.items()} @property def SCREAMING_SNAKE_CASE_ ( self : str): """simple docstring""" return len(self.sp_model) + self.offset def SCREAMING_SNAKE_CASE_ ( self : List[str]): """simple docstring""" a : Optional[int] = {self.convert_ids_to_tokens(UpperCAmelCase_): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self : int): """simple docstring""" a : Optional[int] = self.__dict__.copy() a : List[str] = None return state def __setstate__( self : Optional[int] , UpperCAmelCase_ : Any): """simple docstring""" a : Union[str, Any] = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs'): a : str = {} a : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , UpperCAmelCase_ : str): """simple docstring""" return self.sp_model.encode(UpperCAmelCase_ , out_type=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , UpperCAmelCase_ : str): """simple docstring""" if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] a : Union[str, Any] = self.sp_model.piece_to_id(UpperCAmelCase_) return sp_id + self.offset def SCREAMING_SNAKE_CASE_ ( self : List[str] , UpperCAmelCase_ : int): """simple docstring""" if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: a : Dict = self.sp_model.IdToPiece(index - self.offset) return token def SCREAMING_SNAKE_CASE_ ( self : Tuple , UpperCAmelCase_ : Optional[int]): """simple docstring""" a : Optional[int] = [] a : Dict = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(UpperCAmelCase_) + token a : Dict = [] else: current_sub_tokens.append(UpperCAmelCase_) out_string += self.sp_model.decode(UpperCAmelCase_) return out_string.strip() def SCREAMING_SNAKE_CASE_ ( self : str , UpperCAmelCase_ : str=False): """simple docstring""" return 1 def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , UpperCAmelCase_ : List[str]): """simple docstring""" a : Tuple = set(self.all_special_ids) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def SCREAMING_SNAKE_CASE_ ( self : List[Any] , UpperCAmelCase_ : List , UpperCAmelCase_ : Optional[List] = None , UpperCAmelCase_ : bool = False): """simple docstring""" if already_has_special_tokens: return self._special_token_mask(UpperCAmelCase_) elif token_ids_a is None: return self._special_token_mask(UpperCAmelCase_) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a) + [1] def SCREAMING_SNAKE_CASE_ ( self : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any]=None): """simple docstring""" if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def SCREAMING_SNAKE_CASE_ ( self : str , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None): """simple docstring""" if not os.path.isdir(UpperCAmelCase_): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""") return a : int = os.path.join( UpperCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(UpperCAmelCase_) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , UpperCAmelCase_) elif not os.path.isfile(self.vocab_file): with open(UpperCAmelCase_ , 'wb') as fi: a : Any = self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase_) return (out_vocab_file,)
610
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import FunnelConfig, is_tf_available from transformers.testing_utils import require_tf from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, ) class __lowercase : def __init__( self : int ,A : Tuple ,A : Dict=13 ,A : Optional[Any]=7 ,A : Optional[int]=True ,A : Union[str, Any]=True ,A : Optional[int]=True ,A : Tuple=True ,A : str=99 ,A : int=[1, 1, 2] ,A : Tuple=1 ,A : List[Any]=32 ,A : List[str]=4 ,A : Any=8 ,A : Optional[int]=37 ,A : Any="gelu_new" ,A : Dict=0.1 ,A : Dict=0.1 ,A : Any=0.0 ,A : Optional[int]=512 ,A : List[str]=3 ,A : Optional[int]=0.0_2 ,A : Optional[Any]=3 ,A : Tuple=4 ,A : Union[str, Any]=None ,A : List[Any]=False ,): '''simple docstring''' UpperCAmelCase__ : List[Any] = parent UpperCAmelCase__ : int = batch_size UpperCAmelCase__ : Any = seq_length UpperCAmelCase__ : Any = is_training UpperCAmelCase__ : Dict = use_input_mask UpperCAmelCase__ : Any = use_token_type_ids UpperCAmelCase__ : Union[str, Any] = use_labels UpperCAmelCase__ : Any = vocab_size UpperCAmelCase__ : int = block_sizes UpperCAmelCase__ : Tuple = num_decoder_layers UpperCAmelCase__ : List[str] = d_model UpperCAmelCase__ : Tuple = n_head UpperCAmelCase__ : Dict = d_head UpperCAmelCase__ : str = d_inner UpperCAmelCase__ : int = hidden_act UpperCAmelCase__ : Dict = hidden_dropout UpperCAmelCase__ : Any = attention_dropout UpperCAmelCase__ : Optional[int] = activation_dropout UpperCAmelCase__ : List[Any] = max_position_embeddings UpperCAmelCase__ : Union[str, Any] = type_vocab_size UpperCAmelCase__ : Tuple = 2 UpperCAmelCase__ : Any = num_labels UpperCAmelCase__ : Tuple = num_choices UpperCAmelCase__ : List[Any] = scope UpperCAmelCase__ : Union[str, Any] = initializer_std # Used in the tests to check the size of the first attention layer UpperCAmelCase__ : Any = n_head # Used in the tests to check the size of the first hidden state UpperCAmelCase__ : Optional[Any] = self.d_model # Used in the tests to check the number of output hidden states/attentions UpperCAmelCase__ : int = sum(self.block_sizes ) + (0 if base else self.num_decoder_layers) # FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with # the last hidden state of the first block (which is the first hidden state of the decoder). if not base: UpperCAmelCase__ : Tuple = self.num_hidden_layers + 2 def __lowercase ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : str = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) UpperCAmelCase__ : str = None if self.use_input_mask: UpperCAmelCase__ : Dict = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase__ : Dict = None if self.use_token_type_ids: UpperCAmelCase__ : Dict = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) UpperCAmelCase__ : str = None UpperCAmelCase__ : List[str] = None UpperCAmelCase__ : int = None if self.use_labels: UpperCAmelCase__ : List[Any] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) UpperCAmelCase__ : Tuple = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) UpperCAmelCase__ : List[str] = ids_tensor([self.batch_size] ,self.num_choices ) UpperCAmelCase__ : Tuple = FunnelConfig( vocab_size=self.vocab_size ,block_sizes=self.block_sizes ,num_decoder_layers=self.num_decoder_layers ,d_model=self.d_model ,n_head=self.n_head ,d_head=self.d_head ,d_inner=self.d_inner ,hidden_act=self.hidden_act ,hidden_dropout=self.hidden_dropout ,attention_dropout=self.attention_dropout ,activation_dropout=self.activation_dropout ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_std=self.initializer_std ,) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) def __lowercase ( self : str ,A : int ,A : str ,A : str ,A : int ,A : Dict ,A : Union[str, Any] ,A : Dict ,): '''simple docstring''' UpperCAmelCase__ : int = TFFunnelModel(config=a__ ) UpperCAmelCase__ : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} UpperCAmelCase__ : Optional[int] = model(a__ ) UpperCAmelCase__ : Optional[int] = [input_ids, input_mask] UpperCAmelCase__ : str = model(a__ ) UpperCAmelCase__ : str = model(a__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.d_model) ) UpperCAmelCase__ : Dict = False UpperCAmelCase__ : Any = TFFunnelModel(config=a__ ) UpperCAmelCase__ : Union[str, Any] = model(a__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.d_model) ) UpperCAmelCase__ : Dict = False UpperCAmelCase__ : Tuple = TFFunnelModel(config=a__ ) UpperCAmelCase__ : int = model(a__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.d_model) ) def __lowercase ( self : Union[str, Any] ,A : List[str] ,A : str ,A : List[str] ,A : List[Any] ,A : Tuple ,A : Dict ,A : str ,): '''simple docstring''' UpperCAmelCase__ : List[str] = TFFunnelBaseModel(config=a__ ) UpperCAmelCase__ : int = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} UpperCAmelCase__ : int = model(a__ ) UpperCAmelCase__ : Tuple = [input_ids, input_mask] UpperCAmelCase__ : Optional[int] = model(a__ ) UpperCAmelCase__ : Optional[int] = model(a__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, 2, self.d_model) ) UpperCAmelCase__ : Any = False UpperCAmelCase__ : Optional[int] = TFFunnelBaseModel(config=a__ ) UpperCAmelCase__ : Optional[int] = model(a__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, 3, self.d_model) ) UpperCAmelCase__ : List[Any] = False UpperCAmelCase__ : Any = TFFunnelBaseModel(config=a__ ) UpperCAmelCase__ : Any = model(a__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, 2, self.d_model) ) def __lowercase ( self : int ,A : Tuple ,A : Union[str, Any] ,A : List[Any] ,A : Any ,A : Dict ,A : List[Any] ,A : Optional[Any] ,): '''simple docstring''' UpperCAmelCase__ : List[Any] = TFFunnelForPreTraining(config=a__ ) UpperCAmelCase__ : List[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} UpperCAmelCase__ : Dict = model(a__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length) ) def __lowercase ( self : Optional[int] ,A : List[str] ,A : Tuple ,A : Tuple ,A : List[str] ,A : List[Any] ,A : List[Any] ,A : Optional[Any] ,): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = TFFunnelForMaskedLM(config=a__ ) UpperCAmelCase__ : List[str] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} UpperCAmelCase__ : int = model(a__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def __lowercase ( self : int ,A : List[str] ,A : Tuple ,A : int ,A : Dict ,A : Optional[Any] ,A : Optional[Any] ,A : Dict ,): '''simple docstring''' UpperCAmelCase__ : List[str] = self.num_labels UpperCAmelCase__ : Any = TFFunnelForSequenceClassification(config=a__ ) UpperCAmelCase__ : Union[str, Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} UpperCAmelCase__ : Tuple = model(a__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def __lowercase ( self : List[str] ,A : Any ,A : List[Any] ,A : str ,A : List[str] ,A : List[Any] ,A : List[Any] ,A : Tuple ,): '''simple docstring''' UpperCAmelCase__ : Dict = self.num_choices UpperCAmelCase__ : Dict = TFFunnelForMultipleChoice(config=a__ ) UpperCAmelCase__ : Any = tf.tile(tf.expand_dims(a__ ,1 ) ,(1, self.num_choices, 1) ) UpperCAmelCase__ : Dict = tf.tile(tf.expand_dims(a__ ,1 ) ,(1, self.num_choices, 1) ) UpperCAmelCase__ : List[str] = tf.tile(tf.expand_dims(a__ ,1 ) ,(1, self.num_choices, 1) ) UpperCAmelCase__ : Any = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } UpperCAmelCase__ : Union[str, Any] = model(a__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def __lowercase ( self : str ,A : int ,A : List[Any] ,A : List[Any] ,A : Optional[Any] ,A : Dict ,A : Union[str, Any] ,A : Dict ,): '''simple docstring''' UpperCAmelCase__ : Dict = self.num_labels UpperCAmelCase__ : Optional[int] = TFFunnelForTokenClassification(config=a__ ) UpperCAmelCase__ : List[str] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} UpperCAmelCase__ : Dict = model(a__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def __lowercase ( self : List[str] ,A : Optional[int] ,A : Dict ,A : Union[str, Any] ,A : Optional[Any] ,A : int ,A : int ,A : Union[str, Any] ,): '''simple docstring''' UpperCAmelCase__ : List[Any] = TFFunnelForQuestionAnswering(config=a__ ) UpperCAmelCase__ : Dict = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} UpperCAmelCase__ : Optional[int] = model(a__ ) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def __lowercase ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Any = self.prepare_config_and_inputs() ( UpperCAmelCase__ ) : Dict = config_and_inputs UpperCAmelCase__ : List[str] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class __lowercase ( lowercase_ , lowercase_ , unittest.TestCase ): snake_case_ = ( ( TFFunnelModel, TFFunnelForMaskedLM, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForTokenClassification, ) if is_tf_available() else () ) snake_case_ = ( { "feature-extraction": (TFFunnelBaseModel, TFFunnelModel), "fill-mask": TFFunnelForMaskedLM, "question-answering": TFFunnelForQuestionAnswering, "text-classification": TFFunnelForSequenceClassification, "token-classification": TFFunnelForTokenClassification, "zero-shot": TFFunnelForSequenceClassification, } if is_tf_available() else {} ) snake_case_ = False snake_case_ = False def __lowercase ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Any = TFFunnelModelTester(self ) UpperCAmelCase__ : Tuple = ConfigTester(self ,config_class=a__ ) def __lowercase ( self : Tuple ): '''simple docstring''' self.config_tester.run_common_tests() def __lowercase ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__ ) def __lowercase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*a__ ) def __lowercase ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*a__ ) def __lowercase ( self : int ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*a__ ) def __lowercase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*a__ ) @require_tf class __lowercase ( lowercase_ , unittest.TestCase ): snake_case_ = ( (TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else () ) snake_case_ = False snake_case_ = False def __lowercase ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Any = TFFunnelModelTester(self ,base=a__ ) UpperCAmelCase__ : Any = ConfigTester(self ,config_class=a__ ) def __lowercase ( self : Dict ): '''simple docstring''' self.config_tester.run_common_tests() def __lowercase ( self : str ): '''simple docstring''' UpperCAmelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_base_model(*a__ ) def __lowercase ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*a__ ) def __lowercase ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*a__ )
65
import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration lowerCamelCase__ = 50_0000 lowerCamelCase__ , lowerCamelCase__ = os.path.split(__file__) lowerCamelCase__ = os.path.join(RESULTS_BASEPATH, """results""", RESULTS_FILENAME.replace(""".py""", """.json""")) @get_duration def UpperCamelCase ( snake_case__ : datasets.Dataset ,**snake_case__ : Any ): '''simple docstring''' __snake_case :List[str] = dataset.map(**snake_case__ ) @get_duration def UpperCamelCase ( snake_case__ : datasets.Dataset ,**snake_case__ : Dict ): '''simple docstring''' __snake_case :int = dataset.filter(**snake_case__ ) def UpperCamelCase ( ): '''simple docstring''' __snake_case :str = {"""num examples""": SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: __snake_case :Dict = datasets.Features({"""text""": datasets.Value("""string""" ), """numbers""": datasets.Value("""float32""" )} ) __snake_case :Optional[int] = generate_example_dataset( os.path.join(snake_case__ ,"""dataset.arrow""" ) ,snake_case__ ,num_examples=snake_case__ ) __snake_case :str = transformers.AutoTokenizer.from_pretrained("""bert-base-cased""" ,use_fast=snake_case__ ) def tokenize(snake_case__ : Optional[int] ): return tokenizer(examples["""text"""] ) __snake_case :Optional[Any] = map(snake_case__ ) __snake_case :Optional[Any] = map(snake_case__ ,batched=snake_case__ ) __snake_case :Optional[Any] = map(snake_case__ ,function=lambda snake_case__ : None ,batched=snake_case__ ) with dataset.formatted_as(type="""numpy""" ): __snake_case :int = map(snake_case__ ,function=lambda snake_case__ : None ,batched=snake_case__ ) with dataset.formatted_as(type="""pandas""" ): __snake_case :List[Any] = map(snake_case__ ,function=lambda snake_case__ : None ,batched=snake_case__ ) with dataset.formatted_as(type="""torch""" ,columns="""numbers""" ): __snake_case :str = map(snake_case__ ,function=lambda snake_case__ : None ,batched=snake_case__ ) with dataset.formatted_as(type="""tensorflow""" ,columns="""numbers""" ): __snake_case :Optional[int] = map(snake_case__ ,function=lambda snake_case__ : None ,batched=snake_case__ ) __snake_case :Dict = map(snake_case__ ,function=snake_case__ ,batched=snake_case__ ) __snake_case :Tuple = filter(snake_case__ ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(snake_case__ ,"""wb""" ) as f: f.write(json.dumps(snake_case__ ).encode("""utf-8""" ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
455
0
"""simple docstring""" import argparse import json from pathlib import Path import torch import torchaudio from datasets import load_dataset from huggingface_hub import hf_hub_download from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE_ : int = logging.get_logger(__name__) def UpperCAmelCase__ ( A__ ) -> Optional[int]: """simple docstring""" lowerCamelCase__ = ASTConfig() if "10-10" in model_name: pass elif "speech-commands" in model_name: lowerCamelCase__ = 128 elif "12-12" in model_name: lowerCamelCase__ = 12 lowerCamelCase__ = 12 elif "14-14" in model_name: lowerCamelCase__ = 14 lowerCamelCase__ = 14 elif "16-16" in model_name: lowerCamelCase__ = 16 lowerCamelCase__ = 16 else: raise ValueError("Model not supported" ) lowerCamelCase__ = "huggingface/label-files" if "speech-commands" in model_name: lowerCamelCase__ = 35 lowerCamelCase__ = "speech-commands-v2-id2label.json" else: lowerCamelCase__ = 527 lowerCamelCase__ = "audioset-id2label.json" lowerCamelCase__ = json.load(open(hf_hub_download(A__ , A__ , repo_type="dataset" ) , "r" ) ) lowerCamelCase__ = {int(A__ ): v for k, v in idalabel.items()} lowerCamelCase__ = idalabel lowerCamelCase__ = {v: k for k, v in idalabel.items()} return config def UpperCAmelCase__ ( A__ ) -> str: """simple docstring""" if "module.v" in name: lowerCamelCase__ = name.replace("module.v" , "audio_spectrogram_transformer" ) if "cls_token" in name: lowerCamelCase__ = name.replace("cls_token" , "embeddings.cls_token" ) if "dist_token" in name: lowerCamelCase__ = name.replace("dist_token" , "embeddings.distillation_token" ) if "pos_embed" in name: lowerCamelCase__ = name.replace("pos_embed" , "embeddings.position_embeddings" ) if "patch_embed.proj" in name: lowerCamelCase__ = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) # transformer blocks if "blocks" in name: lowerCamelCase__ = name.replace("blocks" , "encoder.layer" ) if "attn.proj" in name: lowerCamelCase__ = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: lowerCamelCase__ = name.replace("attn" , "attention.self" ) if "norm1" in name: lowerCamelCase__ = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: lowerCamelCase__ = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: lowerCamelCase__ = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: lowerCamelCase__ = name.replace("mlp.fc2" , "output.dense" ) # final layernorm if "audio_spectrogram_transformer.norm" in name: lowerCamelCase__ = name.replace("audio_spectrogram_transformer.norm" , "audio_spectrogram_transformer.layernorm" ) # classifier head if "module.mlp_head.0" in name: lowerCamelCase__ = name.replace("module.mlp_head.0" , "classifier.layernorm" ) if "module.mlp_head.1" in name: lowerCamelCase__ = name.replace("module.mlp_head.1" , "classifier.dense" ) return name def UpperCAmelCase__ ( A__ , A__ ) -> Union[str, Any]: """simple docstring""" for key in orig_state_dict.copy().keys(): lowerCamelCase__ = orig_state_dict.pop(A__ ) if "qkv" in key: lowerCamelCase__ = key.split("." ) lowerCamelCase__ = int(key_split[3] ) lowerCamelCase__ = config.hidden_size if "weight" in key: lowerCamelCase__ = val[:dim, :] lowerCamelCase__ = val[dim : dim * 2, :] lowerCamelCase__ = val[-dim:, :] else: lowerCamelCase__ = val[:dim] lowerCamelCase__ = val[dim : dim * 2] lowerCamelCase__ = val[-dim:] else: lowerCamelCase__ = val return orig_state_dict def UpperCAmelCase__ ( A__ ) -> Dict: """simple docstring""" lowerCamelCase__ = [ "module.v.head.weight", "module.v.head.bias", "module.v.head_dist.weight", "module.v.head_dist.bias", ] for k in ignore_keys: state_dict.pop(A__ , A__ ) @torch.no_grad() def UpperCAmelCase__ ( A__ , A__ , A__=False ) -> str: """simple docstring""" lowerCamelCase__ = get_audio_spectrogram_transformer_config(A__ ) lowerCamelCase__ = { "ast-finetuned-audioset-10-10-0.4593": ( "https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1" ), "ast-finetuned-audioset-10-10-0.450": ( "https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1" ), "ast-finetuned-audioset-10-10-0.448": ( "https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1" ), "ast-finetuned-audioset-10-10-0.448-v2": ( "https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1" ), "ast-finetuned-audioset-12-12-0.447": ( "https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1" ), "ast-finetuned-audioset-14-14-0.443": ( "https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1" ), "ast-finetuned-audioset-16-16-0.442": ( "https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1" ), "ast-finetuned-speech-commands-v2": ( "https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1" ), } # load original state_dict lowerCamelCase__ = model_name_to_url[model_name] lowerCamelCase__ = torch.hub.load_state_dict_from_url(A__ , map_location="cpu" ) # remove some keys remove_keys(A__ ) # rename some keys lowerCamelCase__ = convert_state_dict(A__ , A__ ) # load 🤗 model lowerCamelCase__ = ASTForAudioClassification(A__ ) model.eval() model.load_state_dict(A__ ) # verify outputs on dummy input # source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62 lowerCamelCase__ = -4.2677393 if "speech-commands" not in model_name else -6.845978 lowerCamelCase__ = 4.5689974 if "speech-commands" not in model_name else 5.5654526 lowerCamelCase__ = 1024 if "speech-commands" not in model_name else 128 lowerCamelCase__ = ASTFeatureExtractor(mean=A__ , std=A__ , max_length=A__ ) if "speech-commands" in model_name: lowerCamelCase__ = load_dataset("speech_commands" , "v0.02" , split="validation" ) lowerCamelCase__ = dataset[0]["audio"]["array"] else: lowerCamelCase__ = hf_hub_download( repo_id="nielsr/audio-spectogram-transformer-checkpoint" , filename="sample_audio.flac" , repo_type="dataset" , ) lowerCamelCase__ , lowerCamelCase__ = torchaudio.load(A__ ) lowerCamelCase__ = waveform.squeeze().numpy() lowerCamelCase__ = feature_extractor(A__ , sampling_rate=1_6000 , return_tensors="pt" ) # forward pass lowerCamelCase__ = model(**A__ ) lowerCamelCase__ = outputs.logits if model_name == "ast-finetuned-audioset-10-10-0.4593": lowerCamelCase__ = torch.tensor([-0.8760, -7.0042, -8.6602] ) elif model_name == "ast-finetuned-audioset-10-10-0.450": lowerCamelCase__ = torch.tensor([-1.1986, -7.0903, -8.2718] ) elif model_name == "ast-finetuned-audioset-10-10-0.448": lowerCamelCase__ = torch.tensor([-2.6128, -8.0080, -9.4344] ) elif model_name == "ast-finetuned-audioset-10-10-0.448-v2": lowerCamelCase__ = torch.tensor([-1.5080, -7.4534, -8.8917] ) elif model_name == "ast-finetuned-audioset-12-12-0.447": lowerCamelCase__ = torch.tensor([-0.5050, -6.5833, -8.0843] ) elif model_name == "ast-finetuned-audioset-14-14-0.443": lowerCamelCase__ = torch.tensor([-0.3826, -7.0336, -8.2413] ) elif model_name == "ast-finetuned-audioset-16-16-0.442": lowerCamelCase__ = torch.tensor([-1.2113, -6.9101, -8.3470] ) elif model_name == "ast-finetuned-speech-commands-v2": lowerCamelCase__ = torch.tensor([6.1589, -8.0566, -8.7984] ) else: raise ValueError("Unknown model name" ) if not torch.allclose(logits[0, :3] , A__ , atol=1E-4 ): raise ValueError("Logits don't match" ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: Path(A__ ).mkdir(exist_ok=A__ ) print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(A__ ) print(f'Saving feature extractor to {pytorch_dump_folder_path}' ) feature_extractor.save_pretrained(A__ ) if push_to_hub: print("Pushing model and feature extractor to the hub..." ) model.push_to_hub(f'MIT/{model_name}' ) feature_extractor.push_to_hub(f'MIT/{model_name}' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''ast-finetuned-audioset-10-10-0.4593''', type=str, help='''Name of the Audio Spectrogram Transformer model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) SCREAMING_SNAKE_CASE_ : str = parser.parse_args() convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
712
"""simple docstring""" import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class _A : def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=13 , SCREAMING_SNAKE_CASE__=7 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=99 , SCREAMING_SNAKE_CASE__=16 , SCREAMING_SNAKE_CASE__=36 , SCREAMING_SNAKE_CASE__=6 , SCREAMING_SNAKE_CASE__=6 , SCREAMING_SNAKE_CASE__=6 , SCREAMING_SNAKE_CASE__=37 , SCREAMING_SNAKE_CASE__="gelu" , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=512 , SCREAMING_SNAKE_CASE__=16 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=0.02 , SCREAMING_SNAKE_CASE__=3 , SCREAMING_SNAKE_CASE__=4 , SCREAMING_SNAKE_CASE__=None , ) -> Optional[Any]: lowerCamelCase__ = parent lowerCamelCase__ = batch_size lowerCamelCase__ = seq_length lowerCamelCase__ = is_training lowerCamelCase__ = use_input_mask lowerCamelCase__ = use_token_type_ids lowerCamelCase__ = use_labels lowerCamelCase__ = vocab_size lowerCamelCase__ = embedding_size lowerCamelCase__ = hidden_size lowerCamelCase__ = num_hidden_layers lowerCamelCase__ = num_hidden_groups lowerCamelCase__ = num_attention_heads lowerCamelCase__ = intermediate_size lowerCamelCase__ = hidden_act lowerCamelCase__ = hidden_dropout_prob lowerCamelCase__ = attention_probs_dropout_prob lowerCamelCase__ = max_position_embeddings lowerCamelCase__ = type_vocab_size lowerCamelCase__ = type_sequence_label_size lowerCamelCase__ = initializer_range lowerCamelCase__ = num_labels lowerCamelCase__ = num_choices lowerCamelCase__ = scope def _lowerCamelCase ( self ) -> Any: lowerCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase__ = None if self.use_input_mask: lowerCamelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase__ = None if self.use_token_type_ids: lowerCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase__ = None lowerCamelCase__ = None lowerCamelCase__ = None if self.use_labels: lowerCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase__ = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCamelCase ( self ) -> List[str]: return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def _lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> int: lowerCamelCase__ = AlbertModel(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() lowerCamelCase__ = model(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = model(SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> str: lowerCamelCase__ = AlbertForPreTraining(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() lowerCamelCase__ = model( SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ , sentence_order_label=SCREAMING_SNAKE_CASE__ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def _lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Any: lowerCamelCase__ = AlbertForMaskedLM(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() lowerCamelCase__ = model(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Any: lowerCamelCase__ = AlbertForQuestionAnswering(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() lowerCamelCase__ = model( SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ , start_positions=SCREAMING_SNAKE_CASE__ , end_positions=SCREAMING_SNAKE_CASE__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Optional[int]: lowerCamelCase__ = self.num_labels lowerCamelCase__ = AlbertForSequenceClassification(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() lowerCamelCase__ = model(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> int: lowerCamelCase__ = self.num_labels lowerCamelCase__ = AlbertForTokenClassification(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() lowerCamelCase__ = model(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> int: lowerCamelCase__ = self.num_choices lowerCamelCase__ = AlbertForMultipleChoice(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() lowerCamelCase__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase__ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase__ = model( SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowerCamelCase ( self ) -> Union[str, Any]: lowerCamelCase__ = self.prepare_config_and_inputs() ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) = config_and_inputs lowerCamelCase__ = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class _A ( __a , __a , unittest.TestCase ): __a = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) __a = ( { 'feature-extraction': AlbertModel, 'fill-mask': AlbertForMaskedLM, 'question-answering': AlbertForQuestionAnswering, 'text-classification': AlbertForSequenceClassification, 'token-classification': AlbertForTokenClassification, 'zero-shot': AlbertForSequenceClassification, } if is_torch_available() else {} ) __a = True def _lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=False ) -> Optional[Any]: lowerCamelCase__ = super()._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , return_labels=SCREAMING_SNAKE_CASE__ ) if return_labels: if model_class in get_values(SCREAMING_SNAKE_CASE__ ): lowerCamelCase__ = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=SCREAMING_SNAKE_CASE__ ) return inputs_dict def _lowerCamelCase ( self ) -> Union[str, Any]: lowerCamelCase__ = AlbertModelTester(self ) lowerCamelCase__ = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE__ , hidden_size=37 ) def _lowerCamelCase ( self ) -> Any: self.config_tester.run_common_tests() def _lowerCamelCase ( self ) -> int: lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE__ ) def _lowerCamelCase ( self ) -> Optional[Any]: lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*SCREAMING_SNAKE_CASE__ ) def _lowerCamelCase ( self ) -> Dict: lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*SCREAMING_SNAKE_CASE__ ) def _lowerCamelCase ( self ) -> Dict: lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*SCREAMING_SNAKE_CASE__ ) def _lowerCamelCase ( self ) -> int: lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*SCREAMING_SNAKE_CASE__ ) def _lowerCamelCase ( self ) -> Union[str, Any]: lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*SCREAMING_SNAKE_CASE__ ) def _lowerCamelCase ( self ) -> Optional[int]: lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCamelCase__ = type self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE__ ) @slow def _lowerCamelCase ( self ) -> int: for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ = AlbertModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) @require_torch class _A ( unittest.TestCase ): @slow def _lowerCamelCase ( self ) -> int: lowerCamelCase__ = AlbertModel.from_pretrained("albert-base-v2" ) lowerCamelCase__ = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) lowerCamelCase__ = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowerCamelCase__ = model(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ )[0] lowerCamelCase__ = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = torch.tensor( [[[-0.65_13, 1.50_35, -0.27_66], [-0.65_15, 1.50_46, -0.27_80], [-0.65_12, 1.50_49, -0.27_84]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , SCREAMING_SNAKE_CASE__ , atol=1e-4 ) )
274
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _a: Optional[int] = { 'configuration_blip_2': [ 'BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Blip2Config', 'Blip2QFormerConfig', 'Blip2VisionConfig', ], 'processing_blip_2': ['Blip2Processor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a: List[Any] = [ 'BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST', 'Blip2Model', 'Blip2QFormerModel', 'Blip2PreTrainedModel', 'Blip2ForConditionalGeneration', 'Blip2VisionModel', ] if TYPE_CHECKING: from .configuration_blip_a import ( BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipaConfig, BlipaQFormerConfig, BlipaVisionConfig, ) from .processing_blip_a import BlipaProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip_a import ( BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST, BlipaForConditionalGeneration, BlipaModel, BlipaPreTrainedModel, BlipaQFormerModel, BlipaVisionModel, ) else: import sys _a: Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
162
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss _UpperCamelCase : Optional[Any] =pytest.mark.integration @require_faiss class UpperCAmelCase__ ( __snake_case ): def A__ ( self ): _A : Any = Dataset.from_dict({'''filename''': ['''my_name-train''' + '''_''' + str(A__ ) for x in np.arange(30 ).tolist()]} ) return dset def A__ ( self ): import faiss _A : Dataset = self._create_dummy_dataset() _A : List[str] = dset.map( lambda A__ ,A__ : {"vecs": i * np.ones(5 ,dtype=np.floataa )} ,with_indices=A__ ,keep_in_memory=A__ ) _A : Tuple = dset.add_faiss_index('''vecs''' ,batch_size=100 ,metric_type=faiss.METRIC_INNER_PRODUCT ) _A , _A : List[Any] = dset.get_nearest_examples('''vecs''' ,np.ones(5 ,dtype=np.floataa ) ) self.assertEqual(examples['''filename'''][0] ,'''my_name-train_29''' ) dset.drop_index('''vecs''' ) def A__ ( self ): import faiss _A : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 ,1 ) ,index_name='''vecs''' ,batch_size=100 ,metric_type=faiss.METRIC_INNER_PRODUCT ,) _A , _A : Tuple = dset.get_nearest_examples('''vecs''' ,np.ones(5 ,dtype=np.floataa ) ) self.assertEqual(examples['''filename'''][0] ,'''my_name-train_29''' ) def A__ ( self ): import faiss _A : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 ,1 ) ,index_name='''vecs''' ,metric_type=faiss.METRIC_INNER_PRODUCT ,) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=A__ ) as tmp_file: dset.save_faiss_index('''vecs''' ,tmp_file.name ) dset.load_faiss_index('''vecs2''' ,tmp_file.name ) os.unlink(tmp_file.name ) _A , _A : Optional[int] = dset.get_nearest_examples('''vecs2''' ,np.ones(5 ,dtype=np.floataa ) ) self.assertEqual(examples['''filename'''][0] ,'''my_name-train_29''' ) def A__ ( self ): _A : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 ,1 ) ,index_name='''vecs''' ) dset.drop_index('''vecs''' ) self.assertRaises(A__ ,partial(dset.get_nearest_examples ,'''vecs2''' ,np.ones(5 ,dtype=np.floataa ) ) ) def A__ ( self ): from elasticsearch import Elasticsearch _A : Dataset = self._create_dummy_dataset() with patch('''elasticsearch.Elasticsearch.search''' ) as mocked_search, patch( '''elasticsearch.client.IndicesClient.create''' ) as mocked_index_create, patch('''elasticsearch.helpers.streaming_bulk''' ) as mocked_bulk: _A : str = {'''acknowledged''': True} mocked_bulk.return_value([(True, None)] * 30 ) _A : Optional[Any] = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 29}]}} _A : Optional[Any] = Elasticsearch() dset.add_elasticsearch_index('''filename''' ,es_client=A__ ) _A , _A : Tuple = dset.get_nearest_examples('''filename''' ,'''my_name-train_29''' ) self.assertEqual(examples['''filename'''][0] ,'''my_name-train_29''' ) @require_faiss class UpperCAmelCase__ ( __snake_case ): def A__ ( self ): import faiss _A : Union[str, Any] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 ,dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal ,5 ) index.add_vectors(np.zeros((5, 5) ,dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal ,10 ) # single query _A : str = np.zeros(5 ,dtype=np.floataa ) _A : Dict = 1 _A , _A : Optional[int] = index.search(A__ ) self.assertRaises(A__ ,index.search ,query.reshape(-1 ,1 ) ) self.assertGreater(scores[0] ,0 ) self.assertEqual(indices[0] ,1 ) # batched queries _A : Optional[Any] = np.eye(5 ,dtype=np.floataa )[::-1] _A , _A : Dict = index.search_batch(A__ ) self.assertRaises(A__ ,index.search_batch ,queries[0] ) _A : Tuple = [scores[0] for scores in total_scores] _A : List[str] = [indices[0] for indices in total_indices] self.assertGreater(np.min(A__ ) ,0 ) self.assertListEqual([4, 3, 2, 1, 0] ,A__ ) def A__ ( self ): import faiss _A : List[Any] = FaissIndex(string_factory='''Flat''' ) index.add_vectors(np.eye(5 ,dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index ,faiss.IndexFlat ) _A : str = FaissIndex(string_factory='''LSH''' ) index.add_vectors(np.eye(5 ,dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index ,faiss.IndexLSH ) with self.assertRaises(A__ ): _A : List[str] = FaissIndex(string_factory='''Flat''' ,custom_index=faiss.IndexFlat(5 ) ) def A__ ( self ): import faiss _A : Any = faiss.IndexFlat(5 ) _A : Any = FaissIndex(custom_index=A__ ) index.add_vectors(np.eye(5 ,dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index ,faiss.IndexFlat ) def A__ ( self ): import faiss _A : Optional[int] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 ,dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=A__ ) as tmp_file: index.save(tmp_file.name ) _A : str = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) _A : Tuple = np.zeros(5 ,dtype=np.floataa ) _A : Tuple = 1 _A , _A : Union[str, Any] = index.search(A__ ) self.assertGreater(scores[0] ,0 ) self.assertEqual(indices[0] ,1 ) @require_faiss def a__ (__lowercase :List[Any] ) -> int: import faiss _A : Any = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) _A : List[Any] = '''index.faiss''' _A : Any = f"""mock://{index_name}""" index.save(__lowercase , storage_options=mockfs.storage_options ) _A : Dict = FaissIndex.load(__lowercase , storage_options=mockfs.storage_options ) _A : Tuple = np.zeros(5 , dtype=np.floataa ) _A : Union[str, Any] = 1 _A , _A : Optional[int] = index.search(__lowercase ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class UpperCAmelCase__ ( __snake_case ): def A__ ( self ): from elasticsearch import Elasticsearch with patch('''elasticsearch.Elasticsearch.search''' ) as mocked_search, patch( '''elasticsearch.client.IndicesClient.create''' ) as mocked_index_create, patch('''elasticsearch.helpers.streaming_bulk''' ) as mocked_bulk: _A : Tuple = Elasticsearch() _A : Tuple = {'''acknowledged''': True} _A : int = ElasticSearchIndex(es_client=A__ ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(['''foo''', '''bar''', '''foobar'''] ) # single query _A : Dict = '''foo''' _A : Optional[Any] = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 0}]}} _A , _A : Optional[Any] = index.search(A__ ) self.assertEqual(scores[0] ,1 ) self.assertEqual(indices[0] ,0 ) # single query with timeout _A : Union[str, Any] = '''foo''' _A : Optional[int] = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 0}]}} _A , _A : Optional[int] = index.search(A__ ,request_timeout=30 ) self.assertEqual(scores[0] ,1 ) self.assertEqual(indices[0] ,0 ) # batched queries _A : Dict = ['''foo''', '''bar''', '''foobar'''] _A : Dict = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 1}]}} _A , _A : Dict = index.search_batch(A__ ) _A : Union[str, Any] = [scores[0] for scores in total_scores] _A : Tuple = [indices[0] for indices in total_indices] self.assertGreater(np.min(A__ ) ,0 ) self.assertListEqual([1, 1, 1] ,A__ ) # batched queries with timeout _A : Union[str, Any] = ['''foo''', '''bar''', '''foobar'''] _A : int = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 1}]}} _A , _A : str = index.search_batch(A__ ,request_timeout=30 ) _A : Dict = [scores[0] for scores in total_scores] _A : List[str] = [indices[0] for indices in total_indices] self.assertGreater(np.min(A__ ) ,0 ) self.assertListEqual([1, 1, 1] ,A__ )
206
0
"""simple docstring""" # This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny vocab first, and then a tiny model - so the outcome is truly tiny - # all files ~60KB. As compared to taking a full-size model, reducing to the minimum its layers and # emb dimensions, but keeping the full vocab + merges files, leading to ~3MB in total for all files. # The latter is done by `fsmt-make-super-tiny-model.py`. # # It will be used then as "stas/tiny-wmt19-en-ru" from pathlib import Path import json import tempfile from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES __a = "tiny-wmt19-en-ru" # Build # borrowed from a test __a = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "w</w>", "r</w>", "t</w>", "lo", "low", "er</w>", "low</w>", "lowest</w>", "newer</w>", "wider</w>", "<unk>", ] __a = dict(zip(vocab, range(len(vocab)))) __a = ["l o 123", "lo w 1456", "e r</w> 1789", ""] with tempfile.TemporaryDirectory() as tmpdirname: __a = Path(tmpdirname) __a = build_dir / VOCAB_FILES_NAMES["src_vocab_file"] __a = build_dir / VOCAB_FILES_NAMES["tgt_vocab_file"] __a = build_dir / VOCAB_FILES_NAMES["merges_file"] with open(src_vocab_file, "w") as fp: fp.write(json.dumps(vocab_tokens)) with open(tgt_vocab_file, "w") as fp: fp.write(json.dumps(vocab_tokens)) with open(merges_file, "w") as fp: fp.write("\n".join(merges)) __a = FSMTTokenizer( langs=["en", "ru"], src_vocab_size=len(vocab), tgt_vocab_size=len(vocab), src_vocab_file=src_vocab_file, tgt_vocab_file=tgt_vocab_file, merges_file=merges_file, ) __a = FSMTConfig( langs=["ru", "en"], src_vocab_size=10_00, tgt_vocab_size=10_00, d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) __a = FSMTForConditionalGeneration(config) print(F"""num of params {tiny_model.num_parameters()}""") # Test __a = tokenizer(["Making tiny model"], return_tensors="pt") __a = tiny_model(**batch) print("test output:", len(outputs.logits[0])) # Save tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(F"""Generated {mname_tiny}""") # Upload # transformers-cli upload tiny-wmt19-en-ru
310
"""simple docstring""" import warnings from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch from ...models import UNetaDModel from ...schedulers import RePaintScheduler from ...utils import PIL_INTERPOLATION, logging, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput __a = logging.get_logger(__name__) # pylint: disable=invalid-name def A_ ( _lowercase ): '''simple docstring''' warnings.warn( """The preprocess method is deprecated and will be removed in a future version. Please""" """ use VaeImageProcessor.preprocess instead""", _lowercase, ) if isinstance(_lowercase, torch.Tensor ): return image elif isinstance(_lowercase, PIL.Image.Image ): snake_case_ :Tuple = [image] if isinstance(image[0], PIL.Image.Image ): snake_case_, snake_case_ :List[str] = image[0].size snake_case_, snake_case_ :List[str] = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8 snake_case_ :Any = [np.array(i.resize((w, h), resample=PIL_INTERPOLATION["""lanczos"""] ) )[None, :] for i in image] snake_case_ :Optional[Any] = np.concatenate(_lowercase, axis=0 ) snake_case_ :Optional[Any] = np.array(_lowercase ).astype(np.floataa ) / 255.0 snake_case_ :str = image.transpose(0, 3, 1, 2 ) snake_case_ :List[str] = 2.0 * image - 1.0 snake_case_ :Dict = torch.from_numpy(_lowercase ) elif isinstance(image[0], torch.Tensor ): snake_case_ :int = torch.cat(_lowercase, dim=0 ) return image def A_ ( _lowercase ): '''simple docstring''' if isinstance(_lowercase, torch.Tensor ): return mask elif isinstance(_lowercase, PIL.Image.Image ): snake_case_ :Optional[Any] = [mask] if isinstance(mask[0], PIL.Image.Image ): snake_case_, snake_case_ :List[str] = mask[0].size snake_case_, snake_case_ :Any = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 snake_case_ :List[str] = [np.array(m.convert("""L""" ).resize((w, h), resample=PIL_INTERPOLATION["""nearest"""] ) )[None, :] for m in mask] snake_case_ :Optional[Any] = np.concatenate(_lowercase, axis=0 ) snake_case_ :List[Any] = mask.astype(np.floataa ) / 255.0 snake_case_ :Dict = 0 snake_case_ :List[Any] = 1 snake_case_ :List[str] = torch.from_numpy(_lowercase ) elif isinstance(mask[0], torch.Tensor ): snake_case_ :List[str] = torch.cat(_lowercase, dim=0 ) return mask class lowerCamelCase ( _lowerCAmelCase ): '''simple docstring''' _A : UNetaDModel _A : RePaintScheduler def __init__( self: Optional[Any] , snake_case: Tuple , snake_case: int ) -> int: super().__init__() self.register_modules(unet=snake_case , scheduler=snake_case ) @torch.no_grad() def __call__( self: Optional[int] , snake_case: Union[torch.Tensor, PIL.Image.Image] , snake_case: Union[torch.Tensor, PIL.Image.Image] , snake_case: int = 250 , snake_case: float = 0.0 , snake_case: int = 10 , snake_case: int = 10 , snake_case: Optional[Union[torch.Generator, List[torch.Generator]]] = None , snake_case: Optional[str] = "pil" , snake_case: bool = True , ) -> Union[ImagePipelineOutput, Tuple]: snake_case_ :List[str] = image snake_case_ :Optional[int] = _preprocess_image(snake_case ) snake_case_ :Union[str, Any] = original_image.to(device=self.device , dtype=self.unet.dtype ) snake_case_ :Tuple = _preprocess_mask(snake_case ) snake_case_ :List[str] = mask_image.to(device=self.device , dtype=self.unet.dtype ) snake_case_ :List[str] = original_image.shape[0] # sample gaussian noise to begin the loop if isinstance(snake_case , snake_case ) and len(snake_case ) != batch_size: raise ValueError( f"""You have passed a list of generators of length {len(snake_case )}, but requested an effective batch""" f""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) snake_case_ :int = original_image.shape snake_case_ :List[str] = randn_tensor(snake_case , generator=snake_case , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(snake_case , snake_case , snake_case , self.device ) snake_case_ :Dict = eta snake_case_ :Union[str, Any] = self.scheduler.timesteps[0] + 1 snake_case_ :str = generator[0] if isinstance(snake_case , snake_case ) else generator for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): if t < t_last: # predict the noise residual snake_case_ :Any = self.unet(snake_case , snake_case ).sample # compute previous image: x_t -> x_t-1 snake_case_ :Any = self.scheduler.step(snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ).prev_sample else: # compute the reverse: x_t-1 -> x_t snake_case_ :Optional[Any] = self.scheduler.undo_step(snake_case , snake_case , snake_case ) snake_case_ :Optional[int] = t snake_case_ :List[str] = (image / 2 + 0.5).clamp(0 , 1 ) snake_case_ :Any = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": snake_case_ :Union[str, Any] = self.numpy_to_pil(snake_case ) if not return_dict: return (image,) return ImagePipelineOutput(images=snake_case )
310
1
import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : int , __lowerCamelCase : List[str] , __lowerCamelCase : Dict=2 , __lowerCamelCase : List[Any]=3 , __lowerCamelCase : Optional[Any]=4 , __lowerCamelCase : Union[str, Any]=2 , __lowerCamelCase : Any=7 , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : List[str]=True , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : Union[str, Any]=99 , __lowerCamelCase : Dict=36 , __lowerCamelCase : Optional[int]=3 , __lowerCamelCase : str=4 , __lowerCamelCase : Union[str, Any]=37 , __lowerCamelCase : List[str]="gelu" , __lowerCamelCase : Union[str, Any]=0.1 , __lowerCamelCase : List[Any]=0.1 , __lowerCamelCase : List[str]=512 , __lowerCamelCase : Any=16 , __lowerCamelCase : List[str]=2 , __lowerCamelCase : Any=0.02 , __lowerCamelCase : List[str]=6 , __lowerCamelCase : Dict=6 , __lowerCamelCase : int=3 , __lowerCamelCase : Union[str, Any]=4 , __lowerCamelCase : Any=None , __lowerCamelCase : Any=1000 , ): SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = patch_size SCREAMING_SNAKE_CASE = text_seq_length SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_input_mask SCREAMING_SNAKE_CASE = use_token_type_ids SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = type_vocab_size SCREAMING_SNAKE_CASE = type_sequence_label_size SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = coordinate_size SCREAMING_SNAKE_CASE = shape_size SCREAMING_SNAKE_CASE = num_labels SCREAMING_SNAKE_CASE = num_choices SCREAMING_SNAKE_CASE = scope SCREAMING_SNAKE_CASE = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) SCREAMING_SNAKE_CASE = text_seq_length SCREAMING_SNAKE_CASE = (image_size // patch_size) ** 2 + 1 SCREAMING_SNAKE_CASE = self.text_seq_length + self.image_seq_length def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: SCREAMING_SNAKE_CASE = bbox[i, j, 3] SCREAMING_SNAKE_CASE = bbox[i, j, 1] SCREAMING_SNAKE_CASE = t if bbox[i, j, 2] < bbox[i, j, 0]: SCREAMING_SNAKE_CASE = bbox[i, j, 2] SCREAMING_SNAKE_CASE = bbox[i, j, 0] SCREAMING_SNAKE_CASE = t SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE = None if self.use_input_mask: SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.text_seq_length] ) SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None if self.use_labels: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def _snake_case ( self : List[str] , __lowerCamelCase : Dict , __lowerCamelCase : List[str] , __lowerCamelCase : Any , __lowerCamelCase : List[str] , __lowerCamelCase : Dict , __lowerCamelCase : Dict , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any] ): SCREAMING_SNAKE_CASE = LayoutLMvaModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() # text + image SCREAMING_SNAKE_CASE = model(__lowerCamelCase , pixel_values=__lowerCamelCase ) SCREAMING_SNAKE_CASE = model( __lowerCamelCase , bbox=__lowerCamelCase , pixel_values=__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase ) SCREAMING_SNAKE_CASE = model(__lowerCamelCase , bbox=__lowerCamelCase , pixel_values=__lowerCamelCase , token_type_ids=__lowerCamelCase ) SCREAMING_SNAKE_CASE = model(__lowerCamelCase , bbox=__lowerCamelCase , pixel_values=__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only SCREAMING_SNAKE_CASE = model(__lowerCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only SCREAMING_SNAKE_CASE = model(pixel_values=__lowerCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def _snake_case ( self : List[str] , __lowerCamelCase : int , __lowerCamelCase : List[Any] , __lowerCamelCase : int , __lowerCamelCase : List[str] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[Any] ): SCREAMING_SNAKE_CASE = self.num_labels SCREAMING_SNAKE_CASE = LayoutLMvaForSequenceClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model( __lowerCamelCase , bbox=__lowerCamelCase , pixel_values=__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self : Union[str, Any] , __lowerCamelCase : List[str] , __lowerCamelCase : int , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : int , __lowerCamelCase : List[str] , __lowerCamelCase : str ): SCREAMING_SNAKE_CASE = self.num_labels SCREAMING_SNAKE_CASE = LayoutLMvaForTokenClassification(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model( __lowerCamelCase , bbox=__lowerCamelCase , pixel_values=__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def _snake_case ( self : Optional[int] , __lowerCamelCase : List[Any] , __lowerCamelCase : Tuple , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Any ): SCREAMING_SNAKE_CASE = LayoutLMvaForQuestionAnswering(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model( __lowerCamelCase , bbox=__lowerCamelCase , pixel_values=__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , start_positions=__lowerCamelCase , end_positions=__lowerCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _snake_case ( self : List[str] ): SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ) = config_and_inputs SCREAMING_SNAKE_CASE = { "input_ids": input_ids, "bbox": bbox, "pixel_values": pixel_values, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_torch class _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) lowerCamelCase__ = ( {"document-question-answering": LayoutLMvaForQuestionAnswering, "feature-extraction": LayoutLMvaModel} if is_torch_available() else {} ) def _snake_case ( self : Any , __lowerCamelCase : str , __lowerCamelCase : int , __lowerCamelCase : Tuple , __lowerCamelCase : List[Any] , __lowerCamelCase : Union[str, Any] ): # `DocumentQuestionAnsweringPipeline` is expected to work with this model, but it combines the text and visual # embedding along the sequence dimension (dim 1), which causes an error during post-processing as `p_mask` has # the sequence dimension of the text embedding only. # (see the line `embedding_output = torch.cat([embedding_output, visual_embeddings], dim=1)`) return True def _snake_case ( self : str ): SCREAMING_SNAKE_CASE = LayoutLMvaModelTester(self ) SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=__lowerCamelCase , hidden_size=37 ) def _snake_case ( self : List[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : str , __lowerCamelCase : List[Any]=False ): SCREAMING_SNAKE_CASE = copy.deepcopy(__lowerCamelCase ) if model_class in get_values(__lowerCamelCase ): SCREAMING_SNAKE_CASE = { k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous() if isinstance(__lowerCamelCase , torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(__lowerCamelCase ): SCREAMING_SNAKE_CASE = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=__lowerCamelCase ) elif model_class in get_values(__lowerCamelCase ): SCREAMING_SNAKE_CASE = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__lowerCamelCase ) SCREAMING_SNAKE_CASE = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__lowerCamelCase ) elif model_class in [ *get_values(__lowerCamelCase ), ]: SCREAMING_SNAKE_CASE = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__lowerCamelCase ) elif model_class in [ *get_values(__lowerCamelCase ), ]: SCREAMING_SNAKE_CASE = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=__lowerCamelCase , ) return inputs_dict def _snake_case ( self : Any ): self.config_tester.run_common_tests() def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def _snake_case ( self : Optional[int] ): SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: SCREAMING_SNAKE_CASE = type self.model_tester.create_and_check_model(*__lowerCamelCase ) def _snake_case ( self : List[Any] ): SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__lowerCamelCase ) def _snake_case ( self : Any ): SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__lowerCamelCase ) def _snake_case ( self : List[Any] ): SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__lowerCamelCase ) @slow def _snake_case ( self : Optional[Any] ): for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE = LayoutLMvaModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) def __a ( ): SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @cached_property def _snake_case ( self : List[Any] ): return LayoutLMvaImageProcessor(apply_ocr=__lowerCamelCase ) if is_vision_available() else None @slow def _snake_case ( self : Optional[Any] ): SCREAMING_SNAKE_CASE = LayoutLMvaModel.from_pretrained("microsoft/layoutlmv3-base" ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE = self.default_image_processor SCREAMING_SNAKE_CASE = prepare_img() SCREAMING_SNAKE_CASE = image_processor(images=__lowerCamelCase , return_tensors="pt" ).pixel_values.to(__lowerCamelCase ) SCREAMING_SNAKE_CASE = torch.tensor([[1, 2]] ) SCREAMING_SNAKE_CASE = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass SCREAMING_SNAKE_CASE = model( input_ids=input_ids.to(__lowerCamelCase ) , bbox=bbox.to(__lowerCamelCase ) , pixel_values=pixel_values.to(__lowerCamelCase ) , ) # verify the logits SCREAMING_SNAKE_CASE = torch.Size((1, 199, 768) ) self.assertEqual(outputs.last_hidden_state.shape , __lowerCamelCase ) SCREAMING_SNAKE_CASE = torch.tensor( [[-0.0_529, 0.3_618, 0.1_632], [-0.1_587, -0.1_667, -0.0_400], [-0.1_557, -0.1_671, -0.0_505]] ).to(__lowerCamelCase ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , __lowerCamelCase , atol=1e-4 ) )
16
'''simple docstring''' def UpperCamelCase_( snake_case : Dict , snake_case : str , snake_case : Optional[int] , snake_case : Optional[Any] ): '''simple docstring''' global f # a global dp table for knapsack if f[i][j] < 0: if j < wt[i - 1]: snake_case_ = mf_knapsack(i - 1 , snake_case , snake_case , snake_case ) else: snake_case_ = max( mf_knapsack(i - 1 , snake_case , snake_case , snake_case ) , mf_knapsack(i - 1 , snake_case , snake_case , j - wt[i - 1] ) + val[i - 1] , ) snake_case_ = val return f[i][j] def UpperCamelCase_( snake_case : Dict , snake_case : Tuple , snake_case : Dict , snake_case : int ): '''simple docstring''' snake_case_ = [[0] * (w + 1) for _ in range(n + 1 )] for i in range(1 , n + 1 ): for w_ in range(1 , w + 1 ): if wt[i - 1] <= w_: snake_case_ = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] ) else: snake_case_ = dp[i - 1][w_] return dp[n][w_], dp def UpperCamelCase_( snake_case : int , snake_case : list , snake_case : list ): '''simple docstring''' if not (isinstance(snake_case , (list, tuple) ) and isinstance(snake_case , (list, tuple) )): raise ValueError( "Both the weights and values vectors must be either lists or tuples" ) snake_case_ = len(snake_case ) if num_items != len(snake_case ): snake_case_ = ( "The number of weights must be the same as the number of values.\n" f'But got {num_items} weights and {len(snake_case )} values' ) raise ValueError(snake_case ) for i in range(snake_case ): if not isinstance(wt[i] , snake_case ): snake_case_ = ( "All weights must be integers but got weight of " f'type {type(wt[i] )} at index {i}' ) raise TypeError(snake_case ) snake_case_ , snake_case_ = knapsack(snake_case , snake_case , snake_case , snake_case ) snake_case_ = set() _construct_solution(snake_case , snake_case , snake_case , snake_case , snake_case ) return optimal_val, example_optional_set def UpperCamelCase_( snake_case : list , snake_case : list , snake_case : int , snake_case : int , snake_case : set ): '''simple docstring''' if i > 0 and j > 0: if dp[i - 1][j] == dp[i][j]: _construct_solution(snake_case , snake_case , i - 1 , snake_case , snake_case ) else: optimal_set.add(snake_case ) _construct_solution(snake_case , snake_case , i - 1 , j - wt[i - 1] , snake_case ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : Tuple = [3, 2, 4, 4] _SCREAMING_SNAKE_CASE : int = [4, 3, 2, 3] _SCREAMING_SNAKE_CASE : List[Any] = 4 _SCREAMING_SNAKE_CASE : List[Any] = 6 _SCREAMING_SNAKE_CASE : List[str] = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)] _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[str] = knapsack(w, wt, val, n) print(optimal_solution) print(mf_knapsack(n, wt, val, w)) # switched the n and w # testing the dynamic programming problem with example # the optimal subset for the above example are items 3 and 4 _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Optional[Any] = knapsack_with_example_solution(w, wt, val) assert optimal_solution == 8 assert optimal_subset == {3, 4} print("optimal_value = ", optimal_solution) print("An optimal subset corresponding to the optimal value", optimal_subset)
400
0
'''simple docstring''' from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
123
'''simple docstring''' import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets A_ = datasets.logging.get_logger(__name__) A_ = "\\n@InProceedings{moosavi2019minimum,\n author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube},\n title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection},\n year = {2019},\n booktitle = {Proceedings of the 57th Annual Meeting of\n the Association for Computational Linguistics (Volume 1: Long Papers)},\n publisher = {Association for Computational Linguistics},\n address = {Florence, Italy},\n}\n\n@inproceedings{10.3115/1072399.1072405,\nauthor = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette},\ntitle = {A Model-Theoretic Coreference Scoring Scheme},\nyear = {1995},\nisbn = {1558604022},\npublisher = {Association for Computational Linguistics},\naddress = {USA},\nurl = {https://doi.org/10.3115/1072399.1072405},\ndoi = {10.3115/1072399.1072405},\nbooktitle = {Proceedings of the 6th Conference on Message Understanding},\npages = {45–52},\nnumpages = {8},\nlocation = {Columbia, Maryland},\nseries = {MUC6 ’95}\n}\n\n@INPROCEEDINGS{Bagga98algorithmsfor,\n author = {Amit Bagga and Breck Baldwin},\n title = {Algorithms for Scoring Coreference Chains},\n booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference},\n year = {1998},\n pages = {563--566}\n}\n\n@INPROCEEDINGS{Luo05oncoreference,\n author = {Xiaoqiang Luo},\n title = {On coreference resolution performance metrics},\n booktitle = {In Proc. of HLT/EMNLP},\n year = {2005},\n pages = {25--32},\n publisher = {URL}\n}\n\n@inproceedings{moosavi-strube-2016-coreference,\n title = \"Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric\",\n author = \"Moosavi, Nafise Sadat and\n Strube, Michael\",\n booktitle = \"Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)\",\n month = aug,\n year = \"2016\",\n address = \"Berlin, Germany\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/P16-1060\",\n doi = \"10.18653/v1/P16-1060\",\n pages = \"632--642\",\n}\n\n" A_ = "\\nCoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which\nimplements of the common evaluation metrics including MUC [Vilain et al, 1995],\nB-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005],\nLEA [Moosavi and Strube, 2016] and the averaged CoNLL score\n(the average of the F1 values of MUC, B-cubed and CEAFe)\n[Denis and Baldridge, 2009a; Pradhan et al., 2011].\n\nThis wrapper of CoVal currently only work with CoNLL line format:\nThe CoNLL format has one word per line with all the annotation for this word in column separated by spaces:\nColumn Type Description\n1 Document ID This is a variation on the document filename\n2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc.\n3 Word number\n4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release.\n5 Part-of-Speech\n6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the \"([pos] [word])\" string (or leaf) and concatenating the items in the rows of that column.\n7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a \"-\"\n8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7.\n9 Word sense This is the word sense of the word in Column 3.\n10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data.\n11 Named Entities These columns identifies the spans representing various named entities.\n12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7.\nN Coreference Coreference chain information encoded in a parenthesis structure.\nMore informations on the format can be found here (section \"*_conll File Format\"): http://www.conll.cemantix.org/2012/data.html\n\nDetails on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md\n\nCoVal code was written by @ns-moosavi.\nSome parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py\nThe test suite is taken from https://github.com/conll/reference-coreference-scorers/\nMention evaluation and the test suite are added by @andreasvc.\nParsing CoNLL files is developed by Leo Born.\n" A_ = "\nCalculates coreference evaluation metrics.\nArgs:\n predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format.\n Each prediction is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format.\n Each reference is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n keep_singletons: After extracting all mentions of key or system files,\n mentions whose corresponding coreference chain is of size one,\n are considered as singletons. The default evaluation mode will include\n singletons in evaluations if they are included in the key or the system files.\n By setting 'keep_singletons=False', all singletons in the key and system files\n will be excluded from the evaluation.\n NP_only: Most of the recent coreference resolvers only resolve NP mentions and\n leave out the resolution of VPs. By setting the 'NP_only' option, the scorer will only evaluate the resolution of NPs.\n min_span: By setting 'min_span', the scorer reports the results based on automatically detected minimum spans.\n Minimum spans are determined using the MINA algorithm.\n\nReturns:\n 'mentions': mentions\n 'muc': MUC metric [Vilain et al, 1995]\n 'bcub': B-cubed [Bagga and Baldwin, 1998]\n 'ceafe': CEAFe [Luo et al., 2005]\n 'lea': LEA [Moosavi and Strube, 2016]\n 'conll_score': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe)\n\nExamples:\n\n >>> coval = datasets.load_metric('coval')\n >>> words = ['bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -',\n ... 'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)',\n ... 'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)',\n ... 'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -',\n ... 'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -',\n ... 'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -']\n >>> references = [words]\n >>> predictions = [words]\n >>> results = coval.compute(predictions=predictions, references=references)\n >>> print(results) # doctest:+ELLIPSIS\n {'mentions/recall': 1.0,[...] 'conll_score': 100.0}\n" def A ( _UpperCAmelCase : Tuple ,_UpperCAmelCase : Optional[Any] ,_UpperCAmelCase : List[str]=False ,_UpperCAmelCase : Any=False ,_UpperCAmelCase : Optional[int]=True ,_UpperCAmelCase : Any=False ,_UpperCAmelCase : int="dummy_doc" ) -> List[Any]: '''simple docstring''' __lowerCAmelCase : int = {doc: key_lines} __lowerCAmelCase : Tuple = {doc: sys_lines} __lowerCAmelCase : Dict = {} __lowerCAmelCase : List[Any] = 0 __lowerCAmelCase : Optional[int] = 0 __lowerCAmelCase : int = 0 __lowerCAmelCase : Dict = 0 __lowerCAmelCase : str = 0 __lowerCAmelCase : Optional[int] = 0 __lowerCAmelCase , __lowerCAmelCase : List[Any] = reader.get_doc_mentions(_UpperCAmelCase ,key_doc_lines[doc] ,_UpperCAmelCase ) key_singletons_num += singletons_num if NP_only or min_span: __lowerCAmelCase : List[Any] = reader.set_annotated_parse_trees(_UpperCAmelCase ,key_doc_lines[doc] ,_UpperCAmelCase ,_UpperCAmelCase ) __lowerCAmelCase , __lowerCAmelCase : Tuple = reader.get_doc_mentions(_UpperCAmelCase ,sys_doc_lines[doc] ,_UpperCAmelCase ) sys_singletons_num += singletons_num if NP_only or min_span: __lowerCAmelCase : str = reader.set_annotated_parse_trees(_UpperCAmelCase ,key_doc_lines[doc] ,_UpperCAmelCase ,_UpperCAmelCase ) if remove_nested: __lowerCAmelCase , __lowerCAmelCase : Optional[int] = reader.remove_nested_coref_mentions(_UpperCAmelCase ,_UpperCAmelCase ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters __lowerCAmelCase , __lowerCAmelCase : int = reader.remove_nested_coref_mentions(_UpperCAmelCase ,_UpperCAmelCase ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters __lowerCAmelCase : int = reader.get_mention_assignments(_UpperCAmelCase ,_UpperCAmelCase ) __lowerCAmelCase : int = reader.get_mention_assignments(_UpperCAmelCase ,_UpperCAmelCase ) __lowerCAmelCase : List[Any] = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( 'Number of removed nested coreferring mentions in the key ' F"""annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}""" ) logger.info( 'Number of resulting singleton clusters in the key ' F"""annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}""" ) if not keep_singletons: logger.info( F"""{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system """ 'files, respectively' ) return doc_coref_infos def A ( _UpperCAmelCase : str ,_UpperCAmelCase : Optional[Any] ,_UpperCAmelCase : Optional[int] ,_UpperCAmelCase : int ,_UpperCAmelCase : str ,_UpperCAmelCase : Optional[int] ,_UpperCAmelCase : str ) -> Any: '''simple docstring''' __lowerCAmelCase : Union[str, Any] = get_coref_infos(_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ) __lowerCAmelCase : Dict = {} __lowerCAmelCase : int = 0 __lowerCAmelCase : Union[str, Any] = 0 for name, metric in metrics: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Tuple = evaluator.evaluate_documents(_UpperCAmelCase ,_UpperCAmelCase ,beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({F"""{name}/recall""": recall, F"""{name}/precision""": precision, F"""{name}/f1""": fa} ) logger.info( name.ljust(1_0 ) ,F"""Recall: {recall * 1_0_0:.2f}""" ,F""" Precision: {precision * 1_0_0:.2f}""" ,F""" F1: {fa * 1_0_0:.2f}""" ,) if conll_subparts_num == 3: __lowerCAmelCase : Tuple = (conll / 3) * 1_0_0 logger.info(F"""CoNLL score: {conll:.2f}""" ) output_scores.update({'conll_score': conll} ) return output_scores def A ( _UpperCAmelCase : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' __lowerCAmelCase : List[Any] = False for line in key_lines: if not line.startswith('#' ): if len(line.split() ) > 6: __lowerCAmelCase : Union[str, Any] = line.split()[5] if not parse_col == "-": __lowerCAmelCase : Optional[Any] = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase__ ( datasets.Metric ): '''simple docstring''' def snake_case ( self ) -> Optional[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' ) ), 'references': datasets.Sequence(datasets.Value('string' ) ), } ) , codebase_urls=['https://github.com/ns-moosavi/coval'] , reference_urls=[ 'https://github.com/ns-moosavi/coval', 'https://www.aclweb.org/anthology/P16-1060', 'http://www.conll.cemantix.org/2012/data.html', ] , ) def snake_case ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False ) -> Tuple: __lowerCAmelCase : Optional[Any] = [ ('mentions', evaluator.mentions), ('muc', evaluator.muc), ('bcub', evaluator.b_cubed), ('ceafe', evaluator.ceafe), ('lea', evaluator.lea), ] if min_span: __lowerCAmelCase : List[Any] = util.check_gold_parse_annotation(SCREAMING_SNAKE_CASE ) if not has_gold_parse: raise NotImplementedError('References should have gold parse annotation to use \'min_span\'.' ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" __lowerCAmelCase : List[Any] = evaluate( key_lines=SCREAMING_SNAKE_CASE , sys_lines=SCREAMING_SNAKE_CASE , metrics=SCREAMING_SNAKE_CASE , NP_only=SCREAMING_SNAKE_CASE , remove_nested=SCREAMING_SNAKE_CASE , keep_singletons=SCREAMING_SNAKE_CASE , min_span=SCREAMING_SNAKE_CASE , ) return score
123
1
import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() __a: int = logging.get_logger(__name__) def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ) -> List[Any]: _UpperCAmelCase = RobertaPreLayerNormConfig.from_pretrained( __snake_case , architectures=["""RobertaPreLayerNormForMaskedLM"""] ) # convert state_dict _UpperCAmelCase = torch.load(hf_hub_download(repo_id=__snake_case , filename="""pytorch_model.bin""" ) ) _UpperCAmelCase = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith("""roberta.""" ): _UpperCAmelCase = """roberta_prelayernorm.""" + tensor_key[len("""roberta.""" ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith(""".self.LayerNorm.weight""" ) or tensor_key.endswith(""".self.LayerNorm.bias""" ): continue _UpperCAmelCase = tensor_value _UpperCAmelCase = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=__snake_case , config=__snake_case , state_dict=__snake_case ) model.save_pretrained(__snake_case ) # convert tokenizer _UpperCAmelCase = AutoTokenizer.from_pretrained(__snake_case ) tokenizer.save_pretrained(__snake_case ) if __name__ == "__main__": __a: Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint-repo''', default=None, type=str, required=True, help='''Path the official PyTorch dump, e.g. \'andreasmadsen/efficient_mlm_m0.40\'.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __a: Dict = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
108
def A__ (snake_case : int ) -> bool: if number < 0: raise ValueError("""number must not be negative""" ) return number & (number - 1) == 0 if __name__ == "__main__": import doctest doctest.testmod()
279
0
from __future__ import annotations from collections.abc import Callable from typing import Any, Generic, TypeVar A__ = TypeVar('''T''') class a ( Generic[T] ): def __init__( self :int ,__lowercase :list[T] ,__lowercase :Callable[[T, T], T] ): snake_case__ : Any | T = None snake_case__ : int = len(lowerCamelCase__ ) snake_case__ : list[T] = [any_type for _ in range(self.N )] + arr snake_case__ : Tuple = fnc self.build() def __lowerCamelCase ( self :int ): for p in range(self.N - 1 ,0 ,-1 ): snake_case__ : Dict = self.fn(self.st[p * 2] ,self.st[p * 2 + 1] ) def __lowerCamelCase ( self :Any ,__lowercase :int ,__lowercase :T ): p += self.N snake_case__ : Optional[int] = v while p > 1: snake_case__ : Tuple = p // 2 snake_case__ : Optional[Any] = self.fn(self.st[p * 2] ,self.st[p * 2 + 1] ) def __lowerCamelCase ( self :Dict ,__lowercase :int ,__lowercase :int ): # noqa: E741 snake_case__ : Optional[Any] = l + self.N, r + self.N snake_case__ : T | None = None while l <= r: if l % 2 == 1: snake_case__ : List[Any] = self.st[l] if res is None else self.fn(lowerCamelCase__ ,self.st[l] ) if r % 2 == 0: snake_case__ : Tuple = self.st[r] if res is None else self.fn(lowerCamelCase__ ,self.st[r] ) snake_case__ : List[str] = (l + 1) // 2, (r - 1) // 2 return res if __name__ == "__main__": from functools import reduce A__ = [1, 10, -2, 9, -3, 8, 4, -7, 5, 6, 11, -12] A__ = { 0: 7, 1: 2, 2: 6, 3: -14, 4: 5, 5: 4, 6: 7, 7: -10, 8: 9, 9: 10, 10: 12, 11: 1, } A__ = SegmentTree(test_array, min) A__ = SegmentTree(test_array, max) A__ = SegmentTree(test_array, lambda a, b: a + b) def _lowerCAmelCase ( ) -> List[Any]: """simple docstring""" for i in range(len(__lowerCAmelCase ) ): for j in range(__lowerCAmelCase , len(__lowerCAmelCase ) ): snake_case__ : Dict = reduce(__lowerCAmelCase , test_array[i : j + 1] ) snake_case__ : List[str] = reduce(__lowerCAmelCase , test_array[i : j + 1] ) snake_case__ : int = reduce(lambda __lowerCAmelCase , __lowerCAmelCase : a + b , test_array[i : j + 1] ) assert min_range == min_segment_tree.query(__lowerCAmelCase , __lowerCAmelCase ) assert max_range == max_segment_tree.query(__lowerCAmelCase , __lowerCAmelCase ) assert sum_range == sum_segment_tree.query(__lowerCAmelCase , __lowerCAmelCase ) test_all_segments() for index, value in test_updates.items(): A__ = value min_segment_tree.update(index, value) max_segment_tree.update(index, value) sum_segment_tree.update(index, value) test_all_segments()
718
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=True , __lowerCAmelCase="pt" ) -> List[Any]: """simple docstring""" snake_case__ : List[Any] = {'''add_prefix_space''': True} if isinstance(__lowerCAmelCase , __lowerCAmelCase ) and not line.startswith(''' ''' ) else {} snake_case__ : int = padding_side return tokenizer( [line] , max_length=__lowerCAmelCase , padding='''max_length''' if pad_to_max_length else None , truncation=__lowerCAmelCase , return_tensors=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , **__lowerCAmelCase , ) def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , ) -> int: """simple docstring""" snake_case__ : Tuple = input_ids.ne(__lowerCAmelCase ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class a ( __lowerCamelCase ): def __init__( self :str ,__lowercase :List[Any] ,__lowercase :Optional[int] ,__lowercase :str ,__lowercase :List[Any] ,__lowercase :Union[str, Any]="train" ,__lowercase :Any=None ,__lowercase :List[str]=None ,__lowercase :Any=None ,__lowercase :Optional[Any]="" ,): super().__init__() snake_case__ : Dict = Path(__lowercase ).joinpath(type_path + '''.source''' ) snake_case__ : List[Any] = Path(__lowercase ).joinpath(type_path + '''.target''' ) snake_case__ : List[Any] = self.get_char_lens(self.src_file ) snake_case__ : List[str] = max_source_length snake_case__ : str = max_target_length assert min(self.src_lens ) > 0, F"""found empty line in {self.src_file}""" snake_case__ : Any = tokenizer snake_case__ : int = prefix if n_obs is not None: snake_case__ : Tuple = self.src_lens[:n_obs] snake_case__ : Optional[int] = src_lang snake_case__ : int = tgt_lang def __len__( self :str ): return len(self.src_lens ) def __getitem__( self :Tuple ,__lowercase :List[str] ): snake_case__ : Optional[Any] = index + 1 # linecache starts at 1 snake_case__ : Dict = self.prefix + linecache.getline(str(self.src_file ) ,__lowercase ).rstrip('''\n''' ) snake_case__ : List[str] = linecache.getline(str(self.tgt_file ) ,__lowercase ).rstrip('''\n''' ) assert source_line, F"""empty source line for index {index}""" assert tgt_line, F"""empty tgt line for index {index}""" # Need to add eos token manually for T5 if isinstance(self.tokenizer ,__lowercase ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right snake_case__ : Union[str, Any] = ( self.tokenizer.question_encoder if isinstance(self.tokenizer ,__lowercase ) else self.tokenizer ) snake_case__ : Any = self.tokenizer.generator if isinstance(self.tokenizer ,__lowercase ) else self.tokenizer snake_case__ : List[Any] = encode_line(__lowercase ,__lowercase ,self.max_source_length ,'''right''' ) snake_case__ : Any = encode_line(__lowercase ,__lowercase ,self.max_target_length ,'''right''' ) snake_case__ : Optional[int] = source_inputs['''input_ids'''].squeeze() snake_case__ : Optional[Any] = target_inputs['''input_ids'''].squeeze() snake_case__ : Optional[int] = source_inputs['''attention_mask'''].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def __lowerCamelCase ( __lowercase :List[Any] ): return [len(__lowercase ) for x in Path(__lowercase ).open().readlines()] def __lowerCamelCase ( self :Union[str, Any] ,__lowercase :int ): snake_case__ : List[str] = torch.stack([x['''input_ids'''] for x in batch] ) snake_case__ : Any = torch.stack([x['''attention_mask'''] for x in batch] ) snake_case__ : List[Any] = torch.stack([x['''decoder_input_ids'''] for x in batch] ) snake_case__ : Any = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer ,__lowercase ) else self.tokenizer.pad_token_id ) snake_case__ : Any = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer ,__lowercase ) else self.tokenizer.pad_token_id ) snake_case__ : List[Any] = trim_batch(__lowercase ,__lowercase ) snake_case__ , snake_case__ : int = trim_batch(__lowercase ,__lowercase ,attention_mask=__lowercase ) snake_case__ : Union[str, Any] = { '''input_ids''': source_ids, '''attention_mask''': source_mask, '''decoder_input_ids''': y, } return batch A__ = getLogger(__name__) def _lowerCAmelCase ( __lowerCAmelCase ) -> Optional[int]: """simple docstring""" return list(itertools.chain.from_iterable(__lowerCAmelCase ) ) def _lowerCAmelCase ( __lowerCAmelCase ) -> None: """simple docstring""" snake_case__ : Tuple = get_git_info() save_json(__lowerCAmelCase , os.path.join(__lowerCAmelCase , '''git_log.json''' ) ) def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=4 , **__lowerCAmelCase ) -> Dict: """simple docstring""" with open(__lowerCAmelCase , '''w''' ) as f: json.dump(__lowerCAmelCase , __lowerCAmelCase , indent=__lowerCAmelCase , **__lowerCAmelCase ) def _lowerCAmelCase ( __lowerCAmelCase ) -> List[str]: """simple docstring""" with open(__lowerCAmelCase ) as f: return json.load(__lowerCAmelCase ) def _lowerCAmelCase ( ) -> List[str]: """simple docstring""" snake_case__ : Union[str, Any] = git.Repo(search_parent_directories=__lowerCAmelCase ) snake_case__ : Optional[Any] = { '''repo_id''': str(__lowerCAmelCase ), '''repo_sha''': str(repo.head.object.hexsha ), '''repo_branch''': str(repo.active_branch ), '''hostname''': str(socket.gethostname() ), } return repo_infos def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase ) -> List: """simple docstring""" return list(map(__lowerCAmelCase , __lowerCAmelCase ) ) def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]: """simple docstring""" with open(__lowerCAmelCase , '''wb''' ) as f: return pickle.dump(__lowerCAmelCase , __lowerCAmelCase ) def _lowerCAmelCase ( __lowerCAmelCase ) -> Tuple: """simple docstring""" def remove_articles(__lowerCAmelCase ): return re.sub(r'''\b(a|an|the)\b''' , ''' ''' , __lowerCAmelCase ) def white_space_fix(__lowerCAmelCase ): return " ".join(text.split() ) def remove_punc(__lowerCAmelCase ): snake_case__ : Tuple = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(__lowerCAmelCase ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(__lowerCAmelCase ) ) ) ) def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]: """simple docstring""" snake_case__ : Dict = normalize_answer(__lowerCAmelCase ).split() snake_case__ : Dict = normalize_answer(__lowerCAmelCase ).split() snake_case__ : int = Counter(__lowerCAmelCase ) & Counter(__lowerCAmelCase ) snake_case__ : Union[str, Any] = sum(common.values() ) if num_same == 0: return 0 snake_case__ : List[str] = 1.0 * num_same / len(__lowerCAmelCase ) snake_case__ : Dict = 1.0 * num_same / len(__lowerCAmelCase ) snake_case__ : Union[str, Any] = (2 * precision * recall) / (precision + recall) return fa def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase ) -> Any: """simple docstring""" return normalize_answer(__lowerCAmelCase ) == normalize_answer(__lowerCAmelCase ) def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase ) -> Dict: """simple docstring""" assert len(__lowerCAmelCase ) == len(__lowerCAmelCase ) snake_case__ : Optional[int] = 0 for hypo, pred in zip(__lowerCAmelCase , __lowerCAmelCase ): em += exact_match_score(__lowerCAmelCase , __lowerCAmelCase ) if len(__lowerCAmelCase ) > 0: em /= len(__lowerCAmelCase ) return {"em": em} def _lowerCAmelCase ( __lowerCAmelCase ) -> Union[str, Any]: """simple docstring""" return model_prefix.startswith('''rag''' ) def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> int: """simple docstring""" snake_case__ : str = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead snake_case__ : Union[str, Any] = '''dropout_rate''' for p in extra_params: if getattr(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): if not hasattr(__lowerCAmelCase , __lowerCAmelCase ) and not hasattr(__lowerCAmelCase , equivalent_param[p] ): logger.info('''config doesn\'t have a `{}` attribute'''.format(__lowerCAmelCase ) ) delattr(__lowerCAmelCase , __lowerCAmelCase ) continue snake_case__ : Optional[Any] = p if hasattr(__lowerCAmelCase , __lowerCAmelCase ) else equivalent_param[p] setattr(__lowerCAmelCase , __lowerCAmelCase , getattr(__lowerCAmelCase , __lowerCAmelCase ) ) delattr(__lowerCAmelCase , __lowerCAmelCase ) return hparams, config
219
0
from __future__ import annotations from math import pi, sqrt def __lowercase ( snake_case, snake_case ): """simple docstring""" if inductance <= 0: raise ValueError('''Inductance cannot be 0 or negative''' ) elif capacitance <= 0: raise ValueError('''Capacitance cannot be 0 or negative''' ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
0
from ..utils import DummyObject, requires_backends class _SCREAMING_SNAKE_CASE ( metaclass=snake_case ): lowerCamelCase_ = ['flax'] def __init__( self : List[Any] , *snake_case_ : Optional[Any] , **snake_case_ : List[Any] ): """simple docstring""" requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls : Dict , *snake_case_ : Optional[Any] , **snake_case_ : List[str] ): """simple docstring""" requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls : List[Any] , *snake_case_ : Union[str, Any] , **snake_case_ : Dict ): """simple docstring""" requires_backends(cls , ['''flax'''] ) class _SCREAMING_SNAKE_CASE ( metaclass=snake_case ): lowerCamelCase_ = ['flax'] def __init__( self : Optional[Any] , *snake_case_ : Tuple , **snake_case_ : str ): """simple docstring""" requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls : Optional[Any] , *snake_case_ : Union[str, Any] , **snake_case_ : Optional[Any] ): """simple docstring""" requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls : Optional[int] , *snake_case_ : Tuple , **snake_case_ : int ): """simple docstring""" requires_backends(cls , ['''flax'''] ) class _SCREAMING_SNAKE_CASE ( metaclass=snake_case ): lowerCamelCase_ = ['flax'] def __init__( self : List[Any] , *snake_case_ : Tuple , **snake_case_ : int ): """simple docstring""" requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls : List[str] , *snake_case_ : List[str] , **snake_case_ : Optional[Any] ): """simple docstring""" requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls : Optional[Any] , *snake_case_ : str , **snake_case_ : Optional[int] ): """simple docstring""" requires_backends(cls , ['''flax'''] ) class _SCREAMING_SNAKE_CASE ( metaclass=snake_case ): lowerCamelCase_ = ['flax'] def __init__( self : Any , *snake_case_ : Tuple , **snake_case_ : Dict ): """simple docstring""" requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls : Union[str, Any] , *snake_case_ : List[str] , **snake_case_ : Union[str, Any] ): """simple docstring""" requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls : List[Any] , *snake_case_ : int , **snake_case_ : Any ): """simple docstring""" requires_backends(cls , ['''flax'''] ) class _SCREAMING_SNAKE_CASE ( metaclass=snake_case ): lowerCamelCase_ = ['flax'] def __init__( self : Optional[int] , *snake_case_ : Tuple , **snake_case_ : Union[str, Any] ): """simple docstring""" requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls : Tuple , *snake_case_ : Union[str, Any] , **snake_case_ : List[Any] ): """simple docstring""" requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls : Dict , *snake_case_ : str , **snake_case_ : List[str] ): """simple docstring""" requires_backends(cls , ['''flax'''] ) class _SCREAMING_SNAKE_CASE ( metaclass=snake_case ): lowerCamelCase_ = ['flax'] def __init__( self : Tuple , *snake_case_ : Union[str, Any] , **snake_case_ : str ): """simple docstring""" requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls : List[Any] , *snake_case_ : Tuple , **snake_case_ : Optional[int] ): """simple docstring""" requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls : List[Any] , *snake_case_ : Tuple , **snake_case_ : Tuple ): """simple docstring""" requires_backends(cls , ['''flax'''] ) class _SCREAMING_SNAKE_CASE ( metaclass=snake_case ): lowerCamelCase_ = ['flax'] def __init__( self : Union[str, Any] , *snake_case_ : str , **snake_case_ : str ): """simple docstring""" requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls : str , *snake_case_ : Union[str, Any] , **snake_case_ : Union[str, Any] ): """simple docstring""" requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls : Dict , *snake_case_ : int , **snake_case_ : Dict ): """simple docstring""" requires_backends(cls , ['''flax'''] ) class _SCREAMING_SNAKE_CASE ( metaclass=snake_case ): lowerCamelCase_ = ['flax'] def __init__( self : int , *snake_case_ : Any , **snake_case_ : List[str] ): """simple docstring""" requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls : Optional[int] , *snake_case_ : Any , **snake_case_ : Union[str, Any] ): """simple docstring""" requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls : Tuple , *snake_case_ : List[Any] , **snake_case_ : List[str] ): """simple docstring""" requires_backends(cls , ['''flax'''] ) class _SCREAMING_SNAKE_CASE ( metaclass=snake_case ): lowerCamelCase_ = ['flax'] def __init__( self : Dict , *snake_case_ : int , **snake_case_ : Optional[Any] ): """simple docstring""" requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls : str , *snake_case_ : int , **snake_case_ : List[Any] ): """simple docstring""" requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls : Optional[int] , *snake_case_ : Optional[Any] , **snake_case_ : int ): """simple docstring""" requires_backends(cls , ['''flax'''] ) class _SCREAMING_SNAKE_CASE ( metaclass=snake_case ): lowerCamelCase_ = ['flax'] def __init__( self : List[Any] , *snake_case_ : Optional[int] , **snake_case_ : Any ): """simple docstring""" requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls : Optional[Any] , *snake_case_ : List[str] , **snake_case_ : Union[str, Any] ): """simple docstring""" requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls : Optional[Any] , *snake_case_ : List[Any] , **snake_case_ : Optional[Any] ): """simple docstring""" requires_backends(cls , ['''flax'''] ) class _SCREAMING_SNAKE_CASE ( metaclass=snake_case ): lowerCamelCase_ = ['flax'] def __init__( self : Tuple , *snake_case_ : Any , **snake_case_ : Dict ): """simple docstring""" requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls : Dict , *snake_case_ : List[str] , **snake_case_ : Any ): """simple docstring""" requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls : Dict , *snake_case_ : List[Any] , **snake_case_ : Optional[int] ): """simple docstring""" requires_backends(cls , ['''flax'''] ) class _SCREAMING_SNAKE_CASE ( metaclass=snake_case ): lowerCamelCase_ = ['flax'] def __init__( self : Optional[Any] , *snake_case_ : Optional[int] , **snake_case_ : int ): """simple docstring""" requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls : Tuple , *snake_case_ : Union[str, Any] , **snake_case_ : str ): """simple docstring""" requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls : int , *snake_case_ : Dict , **snake_case_ : Dict ): """simple docstring""" requires_backends(cls , ['''flax'''] ) class _SCREAMING_SNAKE_CASE ( metaclass=snake_case ): lowerCamelCase_ = ['flax'] def __init__( self : str , *snake_case_ : Optional[int] , **snake_case_ : List[Any] ): """simple docstring""" requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls : str , *snake_case_ : Optional[int] , **snake_case_ : Dict ): """simple docstring""" requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls : Any , *snake_case_ : Optional[int] , **snake_case_ : str ): """simple docstring""" requires_backends(cls , ['''flax'''] )
256
0
"""simple docstring""" import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def a__ ( a : str , a : Dict , a : Tuple , a : Dict , a : Dict ): """simple docstring""" with open(a ) as metadata_file: _snake_case : Tuple = json.load(a ) _snake_case : Dict = LukeConfig(use_entity_aware_attention=a , **metadata["model_config"] ) # Load in the weights from the checkpoint_path _snake_case : int = torch.load(a , map_location="cpu" )["module"] # Load the entity vocab file _snake_case : Dict = load_original_entity_vocab(a ) # add an entry for [MASK2] _snake_case : Any = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 _snake_case : Union[str, Any] = XLMRobertaTokenizer.from_pretrained(metadata["model_config"]["bert_model_name"] ) # Add special tokens to the token vocabulary for downstream tasks _snake_case : List[str] = AddedToken("<ent>" , lstrip=a , rstrip=a ) _snake_case : Tuple = AddedToken("<ent2>" , lstrip=a , rstrip=a ) tokenizer.add_special_tokens({"additional_special_tokens": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f'Saving tokenizer to {pytorch_dump_folder_path}' ) tokenizer.save_pretrained(a ) with open(os.path.join(a , "tokenizer_config.json" ) , "r" ) as f: _snake_case : str = json.load(a ) _snake_case : Optional[Any] = "MLukeTokenizer" with open(os.path.join(a , "tokenizer_config.json" ) , "w" ) as f: json.dump(a , a ) with open(os.path.join(a , MLukeTokenizer.vocab_files_names["entity_vocab_file"] ) , "w" ) as f: json.dump(a , a ) _snake_case : Tuple = MLukeTokenizer.from_pretrained(a ) # Initialize the embeddings of the special tokens _snake_case : List[Any] = tokenizer.convert_tokens_to_ids(["@"] )[0] _snake_case : List[Any] = tokenizer.convert_tokens_to_ids(["#"] )[0] _snake_case : Tuple = state_dict["embeddings.word_embeddings.weight"] _snake_case : Optional[int] = word_emb[ent_init_index].unsqueeze(0 ) _snake_case : Dict = word_emb[enta_init_index].unsqueeze(0 ) _snake_case : Any = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: _snake_case : Optional[Any] = state_dict[bias_name] _snake_case : List[str] = decoder_bias[ent_init_index].unsqueeze(0 ) _snake_case : Optional[int] = decoder_bias[enta_init_index].unsqueeze(0 ) _snake_case : Dict = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: _snake_case : Optional[int] = f'encoder.layer.{layer_index}.attention.self.' _snake_case : Union[str, Any] = state_dict[prefix + matrix_name] _snake_case : str = state_dict[prefix + matrix_name] _snake_case : List[str] = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks _snake_case : List[Any] = state_dict["entity_embeddings.entity_embeddings.weight"] _snake_case : Optional[int] = entity_emb[entity_vocab["[MASK]"]].unsqueeze(0 ) _snake_case : str = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' _snake_case : str = state_dict["entity_predictions.bias"] _snake_case : List[str] = entity_prediction_bias[entity_vocab["[MASK]"]].unsqueeze(0 ) _snake_case : str = torch.cat([entity_prediction_bias, entity_mask_bias] ) _snake_case : Optional[Any] = LukeForMaskedLM(config=a ).eval() state_dict.pop("entity_predictions.decoder.weight" ) state_dict.pop("lm_head.decoder.weight" ) state_dict.pop("lm_head.decoder.bias" ) _snake_case : Optional[int] = OrderedDict() for key, value in state_dict.items(): if not (key.startswith("lm_head" ) or key.startswith("entity_predictions" )): _snake_case : Tuple = state_dict[key] else: _snake_case : str = state_dict[key] _snake_case , _snake_case : str = model.load_state_dict(a , strict=a ) if set(a ) != {"luke.embeddings.position_ids"}: raise ValueError(f'Unexpected unexpected_keys: {unexpected_keys}' ) if set(a ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(f'Unexpected missing_keys: {missing_keys}' ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs _snake_case : Dict = MLukeTokenizer.from_pretrained(a , task="entity_classification" ) _snake_case : str = "ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan)." _snake_case : Tuple = (0, 9) _snake_case : Any = tokenizer(a , entity_spans=[span] , return_tensors="pt" ) _snake_case : str = model(**a ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base _snake_case : Any = torch.Size((1, 33, 768) ) _snake_case : Any = torch.tensor([[0.0892, 0.0596, -0.2819], [0.0134, 0.1199, 0.0573], [-0.0169, 0.0927, 0.0644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f'Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , a , atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base _snake_case : Tuple = torch.Size((1, 1, 768) ) _snake_case : Union[str, Any] = torch.tensor([[-0.1482, 0.0609, 0.0322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( f'Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is' f' {expected_shape}' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , a , atol=1e-4 ): raise ValueError # Verify masked word/entity prediction _snake_case : str = MLukeTokenizer.from_pretrained(a ) _snake_case : Optional[int] = "Tokyo is the capital of <mask>." _snake_case : Any = (24, 30) _snake_case : Dict = tokenizer(a , entity_spans=[span] , return_tensors="pt" ) _snake_case : List[Any] = model(**a ) _snake_case : List[str] = encoding["input_ids"][0].tolist() _snake_case : List[Any] = input_ids.index(tokenizer.convert_tokens_to_ids("<mask>" ) ) _snake_case : Optional[int] = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(a ) _snake_case : int = outputs.entity_logits[0][0].argmax().item() _snake_case : Union[str, Any] = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith("en:" )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print("Saving PyTorch model to {}".format(a ) ) model.save_pretrained(a ) def a__ ( a : List[str] ): """simple docstring""" _snake_case : Optional[int] = ["[MASK]", "[PAD]", "[UNK]"] _snake_case : Dict = [json.loads(a ) for line in open(a )] _snake_case : Any = {} for entry in data: _snake_case : List[Any] = entry["id"] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: _snake_case : int = entity_id break _snake_case : int = f'{language}:{entity_name}' _snake_case : Dict = entity_id return new_mapping if __name__ == "__main__": _a : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("""--checkpoint_path""", type=str, help="""Path to a pytorch_model.bin file.""") parser.add_argument( """--metadata_path""", default=None, type=str, help="""Path to a metadata.json file, defining the configuration.""" ) parser.add_argument( """--entity_vocab_path""", default=None, type=str, help="""Path to an entity_vocab.tsv file, containing the entity vocabulary.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to where to dump the output PyTorch model.""" ) parser.add_argument( """--model_size""", default="""base""", type=str, choices=["""base""", """large"""], help="""Size of the model to be converted.""" ) _a : Dict = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
87
"""simple docstring""" from argparse import ArgumentParser, Namespace from ..utils import logging from . import BaseTransformersCLICommand def a__ ( a : Namespace ): """simple docstring""" return ConvertCommand( args.model_type , args.tf_checkpoint , args.pytorch_dump_output , args.config , args.finetuning_task_name ) _a : int = """ transformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires TensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions. """ class _UpperCAmelCase ( _snake_case): @staticmethod def lowerCamelCase__ ( snake_case_ ): _snake_case : Dict = parser.add_parser( "convert" , help="CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints." , ) train_parser.add_argument("--model_type" , type=snake_case_ , required=snake_case_ , help="Model's type." ) train_parser.add_argument( "--tf_checkpoint" , type=snake_case_ , required=snake_case_ , help="TensorFlow checkpoint path or folder." ) train_parser.add_argument( "--pytorch_dump_output" , type=snake_case_ , required=snake_case_ , help="Path to the PyTorch saved model output." ) train_parser.add_argument("--config" , type=snake_case_ , default="" , help="Configuration file path or folder." ) train_parser.add_argument( "--finetuning_task_name" , type=snake_case_ , default=snake_case_ , help="Optional fine-tuning task name if the TF model was a finetuned model." , ) train_parser.set_defaults(func=snake_case_ ) def __init__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , *snake_case_ , ): _snake_case : str = logging.get_logger("transformers-cli/converting" ) self._logger.info(F'Loading model {model_type}' ) _snake_case : Optional[int] = model_type _snake_case : Any = tf_checkpoint _snake_case : Optional[int] = pytorch_dump_output _snake_case : Tuple = config _snake_case : Tuple = finetuning_task_name def lowerCamelCase__ ( self ): if self._model_type == "albert": try: from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(snake_case_ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "bert": try: from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(snake_case_ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "funnel": try: from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(snake_case_ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "t5": try: from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch except ImportError: raise ImportError(snake_case_ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "gpt": from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import ( convert_openai_checkpoint_to_pytorch, ) convert_openai_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "transfo_xl": try: from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import ( convert_transfo_xl_checkpoint_to_pytorch, ) except ImportError: raise ImportError(snake_case_ ) if "ckpt" in self._tf_checkpoint.lower(): _snake_case : int = self._tf_checkpoint _snake_case : Optional[Any] = "" else: _snake_case : Optional[int] = self._tf_checkpoint _snake_case : List[str] = "" convert_transfo_xl_checkpoint_to_pytorch( snake_case_ , self._config , self._pytorch_dump_output , snake_case_ ) elif self._model_type == "gpt2": try: from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import ( convert_gpta_checkpoint_to_pytorch, ) except ImportError: raise ImportError(snake_case_ ) convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "xlnet": try: from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import ( convert_xlnet_checkpoint_to_pytorch, ) except ImportError: raise ImportError(snake_case_ ) convert_xlnet_checkpoint_to_pytorch( self._tf_checkpoint , self._config , self._pytorch_dump_output , self._finetuning_task_name ) elif self._model_type == "xlm": from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( convert_xlm_checkpoint_to_pytorch, ) convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "lxmert": from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import ( convert_lxmert_checkpoint_to_pytorch, ) convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "rembert": from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import ( convert_rembert_tf_checkpoint_to_pytorch, ) convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) else: raise ValueError( "--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]" )
87
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _snake_case = { "configuration_altclip": [ "ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "AltCLIPConfig", "AltCLIPTextConfig", "AltCLIPVisionConfig", ], "processing_altclip": ["AltCLIPProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "AltCLIPPreTrainedModel", "AltCLIPModel", "AltCLIPTextModel", "AltCLIPVisionModel", ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
282
'''simple docstring''' import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class _snake_case ( datasets.BuilderConfig ): SCREAMING_SNAKE_CASE : Optional[datasets.Features] = None class _snake_case ( datasets.ArrowBasedBuilder ): SCREAMING_SNAKE_CASE : Tuple = PandasConfig def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def _SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ): '''simple docstring''' if not self.config.data_files: raise ValueError(F'At least one data file must be specified, but got data_files={self.config.data_files}' ) lowerCAmelCase = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_SCREAMING_SNAKE_CASE , (str, list, tuple) ): lowerCAmelCase = data_files if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): lowerCAmelCase = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive lowerCAmelCase = [dl_manager.iter_files(_SCREAMING_SNAKE_CASE ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files} )] lowerCAmelCase = [] for split_name, files in data_files.items(): if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): lowerCAmelCase = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive lowerCAmelCase = [dl_manager.iter_files(_SCREAMING_SNAKE_CASE ) for file in files] splits.append(datasets.SplitGenerator(name=_SCREAMING_SNAKE_CASE , gen_kwargs={'files': files} ) ) return splits def _SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ): '''simple docstring''' if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example lowerCAmelCase = table_cast(_SCREAMING_SNAKE_CASE , self.config.features.arrow_schema ) return pa_table def _SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ): '''simple docstring''' for i, file in enumerate(itertools.chain.from_iterable(_SCREAMING_SNAKE_CASE ) ): with open(_SCREAMING_SNAKE_CASE , 'rb' ) as f: lowerCAmelCase = pa.Table.from_pandas(pd.read_pickle(_SCREAMING_SNAKE_CASE ) ) yield i, self._cast_table(_SCREAMING_SNAKE_CASE )
284
0
from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def snake_case (__lowercase = "isbn/0140328726" ) -> dict: '''simple docstring''' _snake_case : Optional[Any] = olid.strip().strip("/" ) # Remove leading/trailing whitespace & slashes if new_olid.count("/" ) != 1: _snake_case : int = F"""{olid} is not a valid Open Library olid""" raise ValueError(__lowercase ) return requests.get(F"""https://openlibrary.org/{new_olid}.json""" ).json() def snake_case (__lowercase ) -> dict: '''simple docstring''' _snake_case : Optional[Any] = { "title": "Title", "publish_date": "Publish date", "authors": "Authors", "number_of_pages": "Number of pages:", "first_sentence": "First sentence", "isbn_10": "ISBN (10)", "isbn_13": "ISBN (13)", } _snake_case : int = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()} _snake_case : List[str] = [ get_openlibrary_data(author["key"] )["name"] for author in data["Authors"] ] _snake_case : str = data["First sentence"]["value"] for key, value in data.items(): if isinstance(__lowercase , __lowercase ): _snake_case : Optional[int] = ", ".join(__lowercase ) return data if __name__ == "__main__": import doctest doctest.testmod() while True: __SCREAMING_SNAKE_CASE : int = input('\nEnter the ISBN code to search (or \'quit\' to stop): ').strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (1_0, 1_3) or not isbn.isdigit(): print(F'''Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.''') continue print(F'''\nSearching Open Library for ISBN: {isbn}...\n''') try: __SCREAMING_SNAKE_CASE : str = summarize_book(get_openlibrary_data(F'''isbn/{isbn}''')) print('\n'.join(F'''{key}: {value}''' for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(F'''Sorry, there are no results for ISBN: {isbn}.''')
580
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers import ( TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, BertConfig, DPRConfig, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) class lowercase_ : def __init__( self , lowercase_ , lowercase_=13 , lowercase_=7 , lowercase_=True , lowercase_=True , lowercase_=True , lowercase_=True , lowercase_=99 , lowercase_=32 , lowercase_=2 , lowercase_=4 , lowercase_=37 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=512 , lowercase_=16 , lowercase_=2 , lowercase_=0.02 , lowercase_=3 , lowercase_=4 , lowercase_=None , lowercase_=0 , ): _snake_case : Tuple = parent _snake_case : Optional[int] = batch_size _snake_case : Tuple = seq_length _snake_case : Any = is_training _snake_case : int = use_input_mask _snake_case : Union[str, Any] = use_token_type_ids _snake_case : int = use_labels _snake_case : int = vocab_size _snake_case : Optional[Any] = hidden_size _snake_case : Any = num_hidden_layers _snake_case : Optional[Any] = num_attention_heads _snake_case : int = intermediate_size _snake_case : Optional[int] = hidden_act _snake_case : List[Any] = hidden_dropout_prob _snake_case : List[str] = attention_probs_dropout_prob _snake_case : int = max_position_embeddings _snake_case : Optional[Any] = type_vocab_size _snake_case : str = type_sequence_label_size _snake_case : Dict = initializer_range _snake_case : List[Any] = num_labels _snake_case : str = num_choices _snake_case : Union[str, Any] = scope _snake_case : Any = projection_dim def UpperCamelCase ( self ): _snake_case : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _snake_case : Union[str, Any] = None if self.use_input_mask: # follow test_modeling_tf_ctrl.py _snake_case : int = random_attention_mask([self.batch_size, self.seq_length] ) _snake_case : Tuple = None if self.use_token_type_ids: _snake_case : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _snake_case : Optional[int] = None _snake_case : str = None _snake_case : Any = None if self.use_labels: _snake_case : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _snake_case : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _snake_case : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) _snake_case : Dict = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase_ , initializer_range=self.initializer_range , ) _snake_case : Optional[int] = DPRConfig(projection_dim=self.projection_dim , **config.to_dict() ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ): _snake_case : Union[str, Any] = TFDPRContextEncoder(config=lowercase_ ) _snake_case : str = model(lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ ) _snake_case : Any = model(lowercase_ , token_type_ids=lowercase_ ) _snake_case : int = model(lowercase_ ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ): _snake_case : Union[str, Any] = TFDPRQuestionEncoder(config=lowercase_ ) _snake_case : Optional[int] = model(lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ ) _snake_case : Tuple = model(lowercase_ , token_type_ids=lowercase_ ) _snake_case : Union[str, Any] = model(lowercase_ ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ): _snake_case : Optional[Any] = TFDPRReader(config=lowercase_ ) _snake_case : Any = model(lowercase_ , attention_mask=lowercase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.relevance_logits.shape , (self.batch_size,) ) def UpperCamelCase ( self ): _snake_case : Dict = self.prepare_config_and_inputs() ( ( _snake_case ) ,( _snake_case ) ,( _snake_case ) ,( _snake_case ) ,( _snake_case ) ,( _snake_case ) ,( _snake_case ) , ) : Any = config_and_inputs _snake_case : Any = {"input_ids": input_ids} return config, inputs_dict @require_tf class lowercase_ ( __snake_case , __snake_case , unittest.TestCase ): _lowerCamelCase = ( ( TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) if is_tf_available() else () ) _lowerCamelCase = {'feature-extraction': TFDPRQuestionEncoder} if is_tf_available() else {} _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False def UpperCamelCase ( self ): _snake_case : Tuple = TFDPRModelTester(self ) _snake_case : str = ConfigTester(self , config_class=lowercase_ , hidden_size=37 ) def UpperCamelCase ( self ): self.config_tester.run_common_tests() def UpperCamelCase ( self ): _snake_case : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_context_encoder(*lowercase_ ) def UpperCamelCase ( self ): _snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_question_encoder(*lowercase_ ) def UpperCamelCase ( self ): _snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_reader(*lowercase_ ) @slow def UpperCamelCase ( self ): for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : Optional[Any] = TFDPRContextEncoder.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : Any = TFDPRContextEncoder.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : Union[str, Any] = TFDPRQuestionEncoder.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : Dict = TFDPRReader.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) @require_tf class lowercase_ ( unittest.TestCase ): @slow def UpperCamelCase ( self ): _snake_case : Optional[Any] = TFDPRQuestionEncoder.from_pretrained("facebook/dpr-question_encoder-single-nq-base" ) _snake_case : Optional[Any] = tf.constant( [[101, 7_592, 1_010, 2_003, 2_026, 3_899, 10_140, 1_029, 102]] ) # [CLS] hello, is my dog cute? [SEP] _snake_case : Dict = model(lowercase_ )[0] # embedding shape = (1, 768) # compare the actual values for a slice. _snake_case : Any = tf.constant( [ [ 0.03_236_253, 0.12_753_335, 0.16_818_509, 0.00_279_786, 0.3_896_933, 0.24_264_945, 0.2_178_971, -0.02_335_227, -0.08_481_959, -0.14_324_117, ] ] ) self.assertTrue(numpy.allclose(output[:, :10].numpy() , expected_slice.numpy() , atol=1e-4 ) )
580
1
'''simple docstring''' import os from datetime import datetime as dt from github import Github __A : str = [ "good first issue", "feature request", "wip", ] def UpperCamelCase_ ( ): '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = Github(os.environ["""GITHUB_TOKEN"""] ) lowerCAmelCase_ : Union[str, Any] = g.get_repo("""huggingface/accelerate""" ) lowerCAmelCase_ : Optional[int] = repo.get_issues(state="""open""" ) for issue in open_issues: lowerCAmelCase_ : List[str] = sorted([comment for comment in issue.get_comments()] , key=lambda A__ : i.created_at , reverse=A__ ) lowerCAmelCase_ : List[Any] = comments[0] if len(A__ ) > 0 else None lowerCAmelCase_ : Optional[Any] = dt.utcnow() lowerCAmelCase_ : Optional[Any] = (current_time - issue.updated_at).days lowerCAmelCase_ : Optional[Any] = (current_time - issue.created_at).days if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and days_since_updated > 7 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Close issue since it has been 7 days of inactivity since bot mention. issue.edit(state="""closed""" ) elif ( days_since_updated > 23 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Add stale comment issue.create_comment( """This issue has been automatically marked as stale because it has not had """ """recent activity. If you think this still needs to be addressed """ """please comment on this thread.\n\nPlease note that issues that do not follow the """ """[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) """ """are likely to be ignored.""" ) if __name__ == "__main__": main()
275
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available __A : str = { "configuration_audio_spectrogram_transformer": [ "AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "ASTConfig", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[str] = [ "AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "ASTForAudioClassification", "ASTModel", "ASTPreTrainedModel", ] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = ["ASTFeatureExtractor"] if TYPE_CHECKING: from .configuration_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ASTConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ASTForAudioClassification, ASTModel, ASTPreTrainedModel, ) try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor else: import sys __A : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
275
1
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _lowerCAmelCase ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): """simple docstring""" lowercase__ : Any = CycleDiffusionPipeline lowercase__ : List[str] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { """negative_prompt""", """height""", """width""", """negative_prompt_embeds""", } lowercase__ : Union[str, Any] = PipelineTesterMixin.required_optional_params - {"""latents"""} lowercase__ : List[str] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"""source_prompt"""} ) lowercase__ : str = IMAGE_TO_IMAGE_IMAGE_PARAMS lowercase__ : List[str] = IMAGE_TO_IMAGE_IMAGE_PARAMS def snake_case__ ( self : Any ) -> Union[str, Any]: """simple docstring""" torch.manual_seed(0 ) __lowercase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) __lowercase = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , num_train_timesteps=1_000 , clip_sample=lowercase , set_alpha_to_one=lowercase , ) torch.manual_seed(0 ) __lowercase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) __lowercase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) __lowercase = CLIPTextModel(lowercase ) __lowercase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) __lowercase = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def snake_case__ ( self : Tuple , lowercase : Dict , lowercase : Any=0 ) -> Any: """simple docstring""" __lowercase = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowercase ) ).to(lowercase ) __lowercase = image / 2 + 0.5 if str(lowercase ).startswith("""mps""" ): __lowercase = torch.manual_seed(lowercase ) else: __lowercase = torch.Generator(device=lowercase ).manual_seed(lowercase ) __lowercase = { """prompt""": """An astronaut riding an elephant""", """source_prompt""": """An astronaut riding a horse""", """image""": image, """generator""": generator, """num_inference_steps""": 2, """eta""": 0.1, """strength""": 0.8, """guidance_scale""": 3, """source_guidance_scale""": 1, """output_type""": """numpy""", } return inputs def snake_case__ ( self : Tuple ) -> Any: """simple docstring""" __lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator __lowercase = self.get_dummy_components() __lowercase = CycleDiffusionPipeline(**lowercase ) __lowercase = pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) __lowercase = self.get_dummy_inputs(lowercase ) __lowercase = pipe(**lowercase ) __lowercase = output.images __lowercase = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) __lowercase = np.array([0.4459, 0.4943, 0.4544, 0.6643, 0.5474, 0.4327, 0.5701, 0.5959, 0.5179] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def snake_case__ ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase = self.get_dummy_components() for name, module in components.items(): if hasattr(lowercase , """half""" ): __lowercase = module.half() __lowercase = CycleDiffusionPipeline(**lowercase ) __lowercase = pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) __lowercase = self.get_dummy_inputs(lowercase ) __lowercase = pipe(**lowercase ) __lowercase = output.images __lowercase = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) __lowercase = np.array([0.3506, 0.4543, 0.446, 0.4575, 0.5195, 0.4155, 0.5273, 0.518, 0.4116] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def snake_case__ ( self : Optional[Any] ) -> str: """simple docstring""" return super().test_save_load_local() @unittest.skip("""non-deterministic pipeline""" ) def snake_case__ ( self : str ) -> Dict: """simple docstring""" return super().test_inference_batch_single_identical() @skip_mps def snake_case__ ( self : Tuple ) -> List[str]: """simple docstring""" return super().test_dict_tuple_outputs_equivalent() @skip_mps def snake_case__ ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" return super().test_save_load_optional_components() @skip_mps def snake_case__ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" return super().test_attention_slicing_forward_pass() @slow @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case__ ( self : Union[str, Any] ) -> Tuple: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case__ ( self : str ) -> List[str]: """simple docstring""" __lowercase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/cycle-diffusion/black_colored_car.png""" ) __lowercase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy""" ) __lowercase = init_image.resize((512, 512) ) __lowercase = """CompVis/stable-diffusion-v1-4""" __lowercase = DDIMScheduler.from_pretrained(lowercase , subfolder="""scheduler""" ) __lowercase = CycleDiffusionPipeline.from_pretrained( lowercase , scheduler=lowercase , safety_checker=lowercase , torch_dtype=torch.floataa , revision="""fp16""" ) pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) pipe.enable_attention_slicing() __lowercase = """A black colored car""" __lowercase = """A blue colored car""" __lowercase = torch.manual_seed(0 ) __lowercase = pipe( prompt=lowercase , source_prompt=lowercase , image=lowercase , num_inference_steps=100 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=lowercase , output_type="""np""" , ) __lowercase = output.images # the values aren't exactly equal, but the images look the same visually assert np.abs(image - expected_image ).max() < 5E-1 def snake_case__ ( self : Optional[int] ) -> Dict: """simple docstring""" __lowercase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/cycle-diffusion/black_colored_car.png""" ) __lowercase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy""" ) __lowercase = init_image.resize((512, 512) ) __lowercase = """CompVis/stable-diffusion-v1-4""" __lowercase = DDIMScheduler.from_pretrained(lowercase , subfolder="""scheduler""" ) __lowercase = CycleDiffusionPipeline.from_pretrained(lowercase , scheduler=lowercase , safety_checker=lowercase ) pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) pipe.enable_attention_slicing() __lowercase = """A black colored car""" __lowercase = """A blue colored car""" __lowercase = torch.manual_seed(0 ) __lowercase = pipe( prompt=lowercase , source_prompt=lowercase , image=lowercase , num_inference_steps=100 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=lowercase , output_type="""np""" , ) __lowercase = output.images assert np.abs(image - expected_image ).max() < 2E-2
634
def UpperCAmelCase__ ( lowercase__ ) -> Optional[int]: __lowercase = len(lowercase__ ) __lowercase = sum(lowercase__ ) __lowercase = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): __lowercase = True for i in range(1 , s + 1 ): __lowercase = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): __lowercase = dp[i][j - 1] if arr[i - 1] <= j: __lowercase = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: __lowercase = s - 2 * j break return diff
634
1
from __future__ import annotations import inspect import unittest from typing import List, Tuple from transformers import RegNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, TFRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase_ : '''simple docstring''' def __init__( self : List[Any] , UpperCamelCase__ : str , UpperCamelCase__ : Optional[int]=3 , UpperCamelCase__ : str=32 , UpperCamelCase__ : int=3 , UpperCamelCase__ : Optional[Any]=10 , UpperCamelCase__ : Union[str, Any]=[10, 20, 30, 40] , UpperCamelCase__ : Tuple=[1, 1, 2, 1] , UpperCamelCase__ : Union[str, Any]=True , UpperCamelCase__ : List[Any]=True , UpperCamelCase__ : Optional[Any]="relu" , UpperCamelCase__ : Any=3 , UpperCamelCase__ : List[Any]=None , ) -> Optional[Any]: """simple docstring""" __magic_name__ = parent __magic_name__ = batch_size __magic_name__ = image_size __magic_name__ = num_channels __magic_name__ = embeddings_size __magic_name__ = hidden_sizes __magic_name__ = depths __magic_name__ = is_training __magic_name__ = use_labels __magic_name__ = hidden_act __magic_name__ = num_labels __magic_name__ = scope __magic_name__ = len(UpperCamelCase__ ) def _lowercase ( self : Optional[int] ) -> str: """simple docstring""" __magic_name__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __magic_name__ = None if self.use_labels: __magic_name__ = ids_tensor([self.batch_size] , self.num_labels ) __magic_name__ = self.get_config() return config, pixel_values, labels def _lowercase ( self : Optional[Any] ) -> List[str]: """simple docstring""" return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def _lowercase ( self : Union[str, Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : str , UpperCamelCase__ : Optional[Any] ) -> List[str]: """simple docstring""" __magic_name__ = TFRegNetModel(config=UpperCamelCase__ ) __magic_name__ = model(UpperCamelCase__ , training=UpperCamelCase__ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _lowercase ( self : str , UpperCamelCase__ : Tuple , UpperCamelCase__ : Dict , UpperCamelCase__ : Tuple ) -> List[Any]: """simple docstring""" __magic_name__ = self.num_labels __magic_name__ = TFRegNetForImageClassification(UpperCamelCase__ ) __magic_name__ = model(UpperCamelCase__ , labels=UpperCamelCase__ , training=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowercase ( self : int ) -> List[Any]: """simple docstring""" __magic_name__ = self.prepare_config_and_inputs() __magic_name__ , __magic_name__ , __magic_name__ = config_and_inputs __magic_name__ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class UpperCAmelCase_ ( _A , _A , unittest.TestCase ): '''simple docstring''' a__ = (TFRegNetModel, TFRegNetForImageClassification) if is_tf_available() else () a__ = ( {"""feature-extraction""": TFRegNetModel, """image-classification""": TFRegNetForImageClassification} if is_tf_available() else {} ) a__ = False a__ = False a__ = False a__ = False a__ = False def _lowercase ( self : str ) -> Any: """simple docstring""" __magic_name__ = TFRegNetModelTester(self ) __magic_name__ = ConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ ) def _lowercase ( self : List[str] ) -> Any: """simple docstring""" return @unittest.skip(reason="""RegNet does not use inputs_embeds""" ) def _lowercase ( self : str ) -> Any: """simple docstring""" pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("""GPU""" ) ) == 0 , reason="""TF does not support backprop for grouped convolutions on CPU.""" , ) @slow def _lowercase ( self : List[str] ) -> List[str]: """simple docstring""" super().test_keras_fit() @unittest.skip(reason="""RegNet does not support input and output embeddings""" ) def _lowercase ( self : str ) -> List[str]: """simple docstring""" pass def _lowercase ( self : Any ) -> Dict: """simple docstring""" __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ = model_class(UpperCamelCase__ ) __magic_name__ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __magic_name__ = [*signature.parameters.keys()] __magic_name__ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def _lowercase ( self : Dict ) -> int: """simple docstring""" __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def _lowercase ( self : List[str] ) -> Optional[Any]: """simple docstring""" def check_hidden_states_output(UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : Any ): __magic_name__ = model_class(UpperCamelCase__ ) __magic_name__ = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) , training=UpperCamelCase__ ) __magic_name__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __magic_name__ = self.model_tester.num_stages self.assertEqual(len(UpperCamelCase__ ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ = ["""basic""", """bottleneck"""] for model_class in self.all_model_classes: for layer_type in layers_type: __magic_name__ = layer_type __magic_name__ = True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __magic_name__ = True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def _lowercase ( self : List[Any] ) -> List[str]: """simple docstring""" __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() def check_equivalence(UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : List[Any] , UpperCamelCase__ : int={} ): __magic_name__ = model(UpperCamelCase__ , return_dict=UpperCamelCase__ , **UpperCamelCase__ ) __magic_name__ = model(UpperCamelCase__ , return_dict=UpperCamelCase__ , **UpperCamelCase__ ).to_tuple() def recursive_check(UpperCamelCase__ : str , UpperCamelCase__ : Optional[int] ): if isinstance(UpperCamelCase__ , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(UpperCamelCase__ , UpperCamelCase__ ): recursive_check(UpperCamelCase__ , UpperCamelCase__ ) elif tuple_object is None: return else: self.assertTrue( all(tf.equal(UpperCamelCase__ , UpperCamelCase__ ) ) , msg=( """Tuple and dict output are not equal. Difference:""" F''' {tf.math.reduce_max(tf.abs(tuple_object - dict_object ) )}''' ) , ) recursive_check(UpperCamelCase__ , UpperCamelCase__ ) for model_class in self.all_model_classes: __magic_name__ = model_class(UpperCamelCase__ ) __magic_name__ = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) __magic_name__ = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) check_equivalence(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) __magic_name__ = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) __magic_name__ = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) check_equivalence(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) __magic_name__ = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) __magic_name__ = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) check_equivalence(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , {"""output_hidden_states""": True} ) __magic_name__ = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) __magic_name__ = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) check_equivalence(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , {"""output_hidden_states""": True} ) def _lowercase ( self : Dict ) -> List[Any]: """simple docstring""" __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase__ ) @slow def _lowercase ( self : str ) -> str: """simple docstring""" for model_name in TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ = TFRegNetModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def a__ ( ): '''simple docstring''' __magic_name__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def _lowercase ( self : str ) -> int: """simple docstring""" return ( AutoImageProcessor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def _lowercase ( self : List[str] ) -> int: """simple docstring""" __magic_name__ = TFRegNetForImageClassification.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) __magic_name__ = self.default_image_processor __magic_name__ = prepare_img() __magic_name__ = image_processor(images=UpperCamelCase__ , return_tensors="""tf""" ) # forward pass __magic_name__ = model(**UpperCamelCase__ , training=UpperCamelCase__ ) # verify the logits __magic_name__ = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) __magic_name__ = tf.constant([-0.4180, -1.5051, -3.4836] ) tf.debugging.assert_near(outputs.logits[0, :3] , UpperCamelCase__ , atol=1E-4 )
529
import logging import os from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union from filelock import FileLock from transformers import PreTrainedTokenizer, is_tf_available, is_torch_available __lowerCAmelCase : Dict = logging.getLogger(__name__) @dataclass class UpperCAmelCase_ : '''simple docstring''' a__ = 42 a__ = 42 a__ = 42 @dataclass class UpperCAmelCase_ : '''simple docstring''' a__ = 42 a__ = 42 a__ = None a__ = None class UpperCAmelCase_ ( _A ): '''simple docstring''' a__ = """train""" a__ = """dev""" a__ = """test""" class UpperCAmelCase_ : '''simple docstring''' @staticmethod def _lowercase ( UpperCamelCase__ : List[Any] , UpperCamelCase__ : Union[Split, str] ) -> List[InputExample]: """simple docstring""" raise NotImplementedError @staticmethod def _lowercase ( UpperCamelCase__ : str ) -> List[str]: """simple docstring""" raise NotImplementedError @staticmethod def _lowercase ( UpperCamelCase__ : List[InputExample] , UpperCamelCase__ : List[str] , UpperCamelCase__ : int , UpperCamelCase__ : PreTrainedTokenizer , UpperCamelCase__ : Optional[Any]=False , UpperCamelCase__ : Tuple="[CLS]" , UpperCamelCase__ : List[str]=1 , UpperCamelCase__ : str="[SEP]" , UpperCamelCase__ : int=False , UpperCamelCase__ : Dict=False , UpperCamelCase__ : List[str]=0 , UpperCamelCase__ : str=0 , UpperCamelCase__ : Optional[Any]=-100 , UpperCamelCase__ : Union[str, Any]=0 , UpperCamelCase__ : Optional[int]=True , ) -> List[InputFeatures]: """simple docstring""" __magic_name__ = {label: i for i, label in enumerate(UpperCamelCase__ )} __magic_name__ = [] for ex_index, example in enumerate(UpperCamelCase__ ): if ex_index % 1_0000 == 0: logger.info("""Writing example %d of %d""" , UpperCamelCase__ , len(UpperCamelCase__ ) ) __magic_name__ = [] __magic_name__ = [] for word, label in zip(example.words , example.labels ): __magic_name__ = tokenizer.tokenize(UpperCamelCase__ ) # bert-base-multilingual-cased sometimes output "nothing ([]) when calling tokenize with just a space. if len(UpperCamelCase__ ) > 0: tokens.extend(UpperCamelCase__ ) # Use the real label id for the first token of the word, and padding ids for the remaining tokens label_ids.extend([label_map[label]] + [pad_token_label_id] * (len(UpperCamelCase__ ) - 1) ) # Account for [CLS] and [SEP] with "- 2" and with "- 3" for RoBERTa. __magic_name__ = tokenizer.num_special_tokens_to_add() if len(UpperCamelCase__ ) > max_seq_length - special_tokens_count: __magic_name__ = tokens[: (max_seq_length - special_tokens_count)] __magic_name__ = label_ids[: (max_seq_length - special_tokens_count)] # The convention in BERT is: # (a) For sequence pairs: # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 # # Where "type_ids" are used to indicate whether this is the first # sequence or the second sequence. The embedding vectors for `type=0` and # `type=1` were learned during pre-training and are added to the wordpiece # embedding vector (and position vector). This is not *strictly* necessary # since the [SEP] token unambiguously separates the sequences, but it makes # it easier for the model to learn the concept of sequences. # # For classification tasks, the first vector (corresponding to [CLS]) is # used as the "sentence vector". Note that this only makes sense because # the entire model is fine-tuned. tokens += [sep_token] label_ids += [pad_token_label_id] if sep_token_extra: # roberta uses an extra separator b/w pairs of sentences tokens += [sep_token] label_ids += [pad_token_label_id] __magic_name__ = [sequence_a_segment_id] * len(UpperCamelCase__ ) if cls_token_at_end: tokens += [cls_token] label_ids += [pad_token_label_id] segment_ids += [cls_token_segment_id] else: __magic_name__ = [cls_token] + tokens __magic_name__ = [pad_token_label_id] + label_ids __magic_name__ = [cls_token_segment_id] + segment_ids __magic_name__ = tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. __magic_name__ = [1 if mask_padding_with_zero else 0] * len(UpperCamelCase__ ) # Zero-pad up to the sequence length. __magic_name__ = max_seq_length - len(UpperCamelCase__ ) if pad_on_left: __magic_name__ = ([pad_token] * padding_length) + input_ids __magic_name__ = ([0 if mask_padding_with_zero else 1] * padding_length) + input_mask __magic_name__ = ([pad_token_segment_id] * padding_length) + segment_ids __magic_name__ = ([pad_token_label_id] * padding_length) + label_ids else: input_ids += [pad_token] * padding_length input_mask += [0 if mask_padding_with_zero else 1] * padding_length segment_ids += [pad_token_segment_id] * padding_length label_ids += [pad_token_label_id] * padding_length assert len(UpperCamelCase__ ) == max_seq_length assert len(UpperCamelCase__ ) == max_seq_length assert len(UpperCamelCase__ ) == max_seq_length assert len(UpperCamelCase__ ) == max_seq_length if ex_index < 5: logger.info("""*** Example ***""" ) logger.info("""guid: %s""" , example.guid ) logger.info("""tokens: %s""" , """ """.join([str(UpperCamelCase__ ) for x in tokens] ) ) logger.info("""input_ids: %s""" , """ """.join([str(UpperCamelCase__ ) for x in input_ids] ) ) logger.info("""input_mask: %s""" , """ """.join([str(UpperCamelCase__ ) for x in input_mask] ) ) logger.info("""segment_ids: %s""" , """ """.join([str(UpperCamelCase__ ) for x in segment_ids] ) ) logger.info("""label_ids: %s""" , """ """.join([str(UpperCamelCase__ ) for x in label_ids] ) ) if "token_type_ids" not in tokenizer.model_input_names: __magic_name__ = None features.append( InputFeatures( input_ids=UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , label_ids=UpperCamelCase__ ) ) return features if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset class UpperCAmelCase_ ( _A ): '''simple docstring''' a__ = 42 a__ = nn.CrossEntropyLoss().ignore_index def __init__( self : Optional[Any] , UpperCamelCase__ : TokenClassificationTask , UpperCamelCase__ : str , UpperCamelCase__ : PreTrainedTokenizer , UpperCamelCase__ : List[str] , UpperCamelCase__ : str , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : Optional[Any]=False , UpperCamelCase__ : Split = Split.train , ) -> str: """simple docstring""" __magic_name__ = os.path.join( UpperCamelCase__ , """cached_{}_{}_{}""".format(mode.value , tokenizer.__class__.__name__ , str(UpperCamelCase__ ) ) , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __magic_name__ = cached_features_file + """.lock""" with FileLock(UpperCamelCase__ ): if os.path.exists(UpperCamelCase__ ) and not overwrite_cache: logger.info(F'''Loading features from cached file {cached_features_file}''' ) __magic_name__ = torch.load(UpperCamelCase__ ) else: logger.info(F'''Creating features from dataset file at {data_dir}''' ) __magic_name__ = token_classification_task.read_examples_from_file(UpperCamelCase__ , UpperCamelCase__ ) # TODO clean up all this to leverage built-in features of tokenizers __magic_name__ = token_classification_task.convert_examples_to_features( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , cls_token_at_end=bool(model_type in ["""xlnet"""] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ["""xlnet"""] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=UpperCamelCase__ , pad_on_left=bool(tokenizer.padding_side == """left""" ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info(F'''Saving features into cached file {cached_features_file}''' ) torch.save(self.features , UpperCamelCase__ ) def __len__( self : List[str] ) -> Any: """simple docstring""" return len(self.features ) def __getitem__( self : Tuple , UpperCamelCase__ : Union[str, Any] ) -> InputFeatures: """simple docstring""" return self.features[i] if is_tf_available(): import tensorflow as tf class UpperCAmelCase_ : '''simple docstring''' a__ = 42 a__ = -1_00 def __init__( self : List[str] , UpperCamelCase__ : TokenClassificationTask , UpperCamelCase__ : str , UpperCamelCase__ : PreTrainedTokenizer , UpperCamelCase__ : List[str] , UpperCamelCase__ : str , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : List[Any]=False , UpperCamelCase__ : Split = Split.train , ) -> List[Any]: """simple docstring""" __magic_name__ = token_classification_task.read_examples_from_file(UpperCamelCase__ , UpperCamelCase__ ) # TODO clean up all this to leverage built-in features of tokenizers __magic_name__ = token_classification_task.convert_examples_to_features( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , cls_token_at_end=bool(model_type in ["""xlnet"""] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ["""xlnet"""] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=UpperCamelCase__ , pad_on_left=bool(tokenizer.padding_side == """left""" ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) def gen(): for ex in self.features: if ex.token_type_ids is None: yield ( {"input_ids": ex.input_ids, "attention_mask": ex.attention_mask}, ex.label_ids, ) else: yield ( { "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label_ids, ) if "token_type_ids" not in tokenizer.model_input_names: __magic_name__ = tf.data.Dataset.from_generator( UpperCamelCase__ , ({"""input_ids""": tf.intaa, """attention_mask""": tf.intaa}, tf.intaa) , ( {"""input_ids""": tf.TensorShape([None] ), """attention_mask""": tf.TensorShape([None] )}, tf.TensorShape([None] ), ) , ) else: __magic_name__ = tf.data.Dataset.from_generator( UpperCamelCase__ , ({"""input_ids""": tf.intaa, """attention_mask""": tf.intaa, """token_type_ids""": tf.intaa}, tf.intaa) , ( { """input_ids""": tf.TensorShape([None] ), """attention_mask""": tf.TensorShape([None] ), """token_type_ids""": tf.TensorShape([None] ), }, tf.TensorShape([None] ), ) , ) def _lowercase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" __magic_name__ = self.dataset.apply(tf.data.experimental.assert_cardinality(len(self.features ) ) ) return self.dataset def __len__( self : Tuple ) -> Tuple: """simple docstring""" return len(self.features ) def __getitem__( self : Optional[Any] , UpperCamelCase__ : Union[str, Any] ) -> InputFeatures: """simple docstring""" return self.features[i]
529
1
import unittest import numpy as np from transformers import BertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.bert.modeling_flax_bert import ( FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, ) class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def __init__( self : str , __A : Optional[int] , __A : Optional[int]=1_3 , __A : Optional[Any]=7 , __A : List[str]=True , __A : int=True , __A : int=True , __A : Union[str, Any]=True , __A : Union[str, Any]=9_9 , __A : List[Any]=3_2 , __A : Optional[Any]=5 , __A : int=4 , __A : List[str]=3_7 , __A : Any="gelu" , __A : Tuple=0.1 , __A : Tuple=0.1 , __A : Union[str, Any]=5_1_2 , __A : Tuple=1_6 , __A : List[Any]=2 , __A : List[str]=0.0_2 , __A : List[str]=4 , ): snake_case__ : Union[str, Any] = parent snake_case__ : Any = batch_size snake_case__ : Optional[int] = seq_length snake_case__ : List[str] = is_training snake_case__ : Optional[int] = use_attention_mask snake_case__ : Dict = use_token_type_ids snake_case__ : Optional[int] = use_labels snake_case__ : Tuple = vocab_size snake_case__ : Union[str, Any] = hidden_size snake_case__ : List[str] = num_hidden_layers snake_case__ : Optional[int] = num_attention_heads snake_case__ : Optional[Any] = intermediate_size snake_case__ : Optional[int] = hidden_act snake_case__ : List[str] = hidden_dropout_prob snake_case__ : Tuple = attention_probs_dropout_prob snake_case__ : Dict = max_position_embeddings snake_case__ : List[str] = type_vocab_size snake_case__ : str = type_sequence_label_size snake_case__ : List[str] = initializer_range snake_case__ : Union[str, Any] = num_choices def _lowercase ( self : Optional[int] ): snake_case__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case__ : List[Any] = None if self.use_attention_mask: snake_case__ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) snake_case__ : Optional[int] = None if self.use_token_type_ids: snake_case__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case__ : Optional[int] = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_snake_case , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def _lowercase ( self : int ): snake_case__ : Any = self.prepare_config_and_inputs() snake_case__, snake_case__, snake_case__, snake_case__ : Optional[Any] = config_and_inputs snake_case__ : Tuple = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict def _lowercase ( self : str ): snake_case__ : str = self.prepare_config_and_inputs() snake_case__, snake_case__, snake_case__, snake_case__ : List[str] = config_and_inputs snake_case__ : Tuple = True snake_case__ : List[str] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) snake_case__ : Any = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, attention_mask, encoder_hidden_states, encoder_attention_mask, ) @require_flax class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" a_ = True a_ = ( ( FlaxBertModel, FlaxBertForPreTraining, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForQuestionAnswering, FlaxBertForNextSentencePrediction, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertForQuestionAnswering, ) if is_flax_available() else () ) def _lowercase ( self : Any ): snake_case__ : Optional[int] = FlaxBertModelTester(self ) @slow def _lowercase ( self : int ): snake_case__ : List[Any] = FlaxBertModel.from_pretrained("bert-base-cased" ) snake_case__ : Optional[int] = model(np.ones((1, 1) ) ) self.assertIsNotNone(_snake_case )
707
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def _lowercase ( self : Tuple ): snake_case__ : List[str] = torch.tensor([-1_0_0, -1, -0.1, 0, 0.1, 1.0, 1_0_0] ) snake_case__ : Tuple = get_activation("gelu" ) self.assertTrue(torch.allclose(gelu_python(__A ) , torch_builtin(__A ) ) ) self.assertFalse(torch.allclose(gelu_python(__A ) , gelu_new(__A ) ) ) def _lowercase ( self : Dict ): snake_case__ : str = torch.tensor([-1_0_0, -1, -0.1, 0, 0.1, 1.0, 1_0_0] ) snake_case__ : Union[str, Any] = get_activation("gelu" ) snake_case__ : int = get_activation("gelu_10" ) snake_case__ : Optional[int] = torch_builtin(__A ) snake_case__ : Dict = geluaa(__A ) snake_case__ : Optional[Any] = torch.where(y_gelu_aa < 1_0.0 , 1 , 0 ) self.assertTrue(torch.max(__A ).item() == 1_0.0 ) self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) ) def _lowercase ( self : str ): get_activation("gelu" ) get_activation("gelu_10" ) get_activation("gelu_fast" ) get_activation("gelu_new" ) get_activation("gelu_python" ) get_activation("gelu_pytorch_tanh" ) get_activation("linear" ) get_activation("mish" ) get_activation("quick_gelu" ) get_activation("relu" ) get_activation("sigmoid" ) get_activation("silu" ) get_activation("swish" ) get_activation("tanh" ) with self.assertRaises(__A ): get_activation("bogus" ) with self.assertRaises(__A ): get_activation(__A ) def _lowercase ( self : List[str] ): snake_case__ : List[str] = get_activation("gelu" ) snake_case__ : Any = 1 snake_case__ : Union[str, Any] = get_activation("gelu" ) self.assertEqual(acta.a , 1 ) with self.assertRaises(__A ): snake_case__ : int = acta.a
25
0
'''simple docstring''' __lowerCAmelCase = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} __lowerCAmelCase = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> list[int]: _a : int = True _a : Any = [] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) order.append(lowerCAmelCase_ ) return order def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> list[int]: _a : List[str] = True _a : Optional[int] = [vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) return component def __lowerCamelCase ( lowerCAmelCase_ ) -> list[list[int]]: _a : Optional[int] = len(lowerCAmelCase_ ) * [False] _a : dict[int, list[int]] = {vert: [] for vert in range(len(lowerCAmelCase_ ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(lowerCAmelCase_ ) _a : List[Any] = [] for i, was_visited in enumerate(lowerCAmelCase_ ): if not was_visited: order += topology_sort(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) _a : Any = [] _a : Tuple = len(lowerCAmelCase_ ) * [False] for i in range(len(lowerCAmelCase_ ) ): _a : Any = order[len(lowerCAmelCase_ ) - i - 1] if not visited[vert]: _a : Optional[int] = find_components(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) components_list.append(lowerCAmelCase_ ) return components_list
358
'''simple docstring''' from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) # TODO Update this __lowerCAmelCase = { '''facebook/esm-1b''': '''https://huggingface.co/facebook/esm-1b/resolve/main/config.json''', # See all ESM models at https://huggingface.co/models?filter=esm } class __magic_name__ ( _UpperCamelCase ): lowerCAmelCase : Any = 'esm' def __init__( self : Optional[int] ,_UpperCAmelCase : Optional[Any]=None ,_UpperCAmelCase : Dict=None ,_UpperCAmelCase : Union[str, Any]=None ,_UpperCAmelCase : List[Any]=768 ,_UpperCAmelCase : Union[str, Any]=12 ,_UpperCAmelCase : List[str]=12 ,_UpperCAmelCase : Tuple=3072 ,_UpperCAmelCase : Dict=0.1 ,_UpperCAmelCase : Tuple=0.1 ,_UpperCAmelCase : List[str]=1026 ,_UpperCAmelCase : List[str]=0.02 ,_UpperCAmelCase : Optional[int]=1E-12 ,_UpperCAmelCase : List[str]="absolute" ,_UpperCAmelCase : Tuple=True ,_UpperCAmelCase : Tuple=None ,_UpperCAmelCase : List[Any]=False ,_UpperCAmelCase : int=False ,_UpperCAmelCase : int=None ,_UpperCAmelCase : Union[str, Any]=None ,**_UpperCAmelCase : List[Any] ,): super().__init__(pad_token_id=_UpperCAmelCase ,mask_token_id=_UpperCAmelCase ,**_UpperCAmelCase ) _a : Optional[Any] = vocab_size _a : Union[str, Any] = hidden_size _a : Dict = num_hidden_layers _a : int = num_attention_heads _a : Dict = intermediate_size _a : List[Any] = hidden_dropout_prob _a : List[Any] = attention_probs_dropout_prob _a : Optional[Any] = max_position_embeddings _a : Optional[int] = initializer_range _a : List[Any] = layer_norm_eps _a : int = position_embedding_type _a : Optional[int] = use_cache _a : Any = emb_layer_norm_before _a : List[str] = token_dropout _a : List[str] = is_folding_model if is_folding_model: if esmfold_config is None: logger.info('No esmfold_config supplied for folding model, using default values.' ) _a : Dict = EsmFoldConfig() elif isinstance(_UpperCAmelCase ,_UpperCAmelCase ): _a : Dict = EsmFoldConfig(**_UpperCAmelCase ) _a : Optional[int] = esmfold_config if vocab_list is None: logger.warning('No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!' ) _a : Optional[int] = get_default_vocab_list() else: _a : Optional[int] = vocab_list else: _a : Optional[Any] = None _a : Union[str, Any] = None if self.esmfold_config is not None and getattr(self.esmfold_config ,'use_esm_attn_map' ,_UpperCAmelCase ): raise ValueError('The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!' ) def __lowercase ( self : Any ): _a : str = super().to_dict() if isinstance(self.esmfold_config ,_UpperCAmelCase ): _a : List[str] = self.esmfold_config.to_dict() return output @dataclass class __magic_name__ : lowerCAmelCase : str = None lowerCAmelCase : bool = True lowerCAmelCase : bool = False lowerCAmelCase : bool = False lowerCAmelCase : bool = False lowerCAmelCase : float = 0 lowerCAmelCase : bool = True lowerCAmelCase : bool = False lowerCAmelCase : int = 1_2_8 lowerCAmelCase : "TrunkConfig" = None def __lowercase ( self : List[str] ): if self.trunk is None: _a : Dict = TrunkConfig() elif isinstance(self.trunk ,_UpperCAmelCase ): _a : str = TrunkConfig(**self.trunk ) def __lowercase ( self : List[Any] ): _a : List[str] = asdict(self ) _a : List[str] = self.trunk.to_dict() return output @dataclass class __magic_name__ : lowerCAmelCase : int = 4_8 lowerCAmelCase : int = 1_0_2_4 lowerCAmelCase : int = 1_2_8 lowerCAmelCase : int = 3_2 lowerCAmelCase : int = 3_2 lowerCAmelCase : int = 3_2 lowerCAmelCase : float = 0 lowerCAmelCase : float = 0 lowerCAmelCase : bool = False lowerCAmelCase : int = 4 lowerCAmelCase : Optional[int] = 1_2_8 lowerCAmelCase : "StructureModuleConfig" = None def __lowercase ( self : str ): if self.structure_module is None: _a : Tuple = StructureModuleConfig() elif isinstance(self.structure_module ,_UpperCAmelCase ): _a : List[str] = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(F"""`max_recycles` should be positive, got {self.max_recycles}.""" ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( '`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got' F""" {self.sequence_state_dim} and {self.sequence_state_dim}.""" ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( '`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got' F""" {self.pairwise_state_dim} and {self.pairwise_state_dim}.""" ) _a : Optional[int] = self.sequence_state_dim // self.sequence_head_width _a : int = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( '`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got' F""" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.""" ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( '`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got' F""" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.""" ) if self.pairwise_state_dim % 2 != 0: raise ValueError(F"""`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.""" ) if self.dropout >= 0.4: raise ValueError(F"""`dropout` should not be greater than 0.4, got {self.dropout}.""" ) def __lowercase ( self : Optional[int] ): _a : Optional[Any] = asdict(self ) _a : Optional[Any] = self.structure_module.to_dict() return output @dataclass class __magic_name__ : lowerCAmelCase : int = 3_8_4 lowerCAmelCase : int = 1_2_8 lowerCAmelCase : int = 1_6 lowerCAmelCase : int = 1_2_8 lowerCAmelCase : int = 1_2 lowerCAmelCase : int = 4 lowerCAmelCase : int = 8 lowerCAmelCase : float = 0.1 lowerCAmelCase : int = 8 lowerCAmelCase : int = 1 lowerCAmelCase : int = 2 lowerCAmelCase : int = 7 lowerCAmelCase : int = 1_0 lowerCAmelCase : float = 1e-8 lowerCAmelCase : float = 1e5 def __lowercase ( self : str ): return asdict(self ) def __lowerCamelCase ( ) -> Optional[int]: return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
358
1
"""simple docstring""" import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( 'split_dict' , [ SplitDict(), SplitDict({'train': SplitInfo(name='train' , num_bytes=1337 , num_examples=42 , dataset_name='my_dataset' )} ), SplitDict({'train': SplitInfo(name='train' , num_bytes=1337 , num_examples=42 )} ), SplitDict({'train': SplitInfo()} ), ] , ) def __A (_SCREAMING_SNAKE_CASE ) ->List[str]: """simple docstring""" lowerCAmelCase__ :str = split_dict._to_yaml_list() assert len(_SCREAMING_SNAKE_CASE ) == len(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :Optional[Any] = SplitDict._from_yaml_list(_SCREAMING_SNAKE_CASE ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump lowerCAmelCase__ :Optional[int] = None # the split name of split_dict takes over the name of the split info object lowerCAmelCase__ :str = split_name assert split_dict == reloaded @pytest.mark.parametrize( 'split_info' , [SplitInfo(), SplitInfo(dataset_name=_SCREAMING_SNAKE_CASE ), SplitInfo(dataset_name='my_dataset' )] ) def __A (_SCREAMING_SNAKE_CASE ) ->Optional[Any]: """simple docstring""" lowerCAmelCase__ :Dict = asdict(SplitDict({'train': split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
711
"""simple docstring""" from ...processing_utils import ProcessorMixin class _lowerCAmelCase ( a ): """simple docstring""" __magic_name__ :List[str] = """SpeechT5FeatureExtractor""" __magic_name__ :List[Any] = """SpeechT5Tokenizer""" def __init__( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' super().__init__(__UpperCAmelCase , __UpperCAmelCase ) def __call__( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :List[str] = kwargs.pop('audio' , __UpperCAmelCase ) lowerCAmelCase__ :int = kwargs.pop('text' , __UpperCAmelCase ) lowerCAmelCase__ :Any = kwargs.pop('text_target' , __UpperCAmelCase ) lowerCAmelCase__ :int = kwargs.pop('audio_target' , __UpperCAmelCase ) lowerCAmelCase__ :List[Any] = kwargs.pop('sampling_rate' , __UpperCAmelCase ) if audio is not None and text is not None: raise ValueError( 'Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?' ) if audio_target is not None and text_target is not None: raise ValueError( 'Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?' ) if audio is None and audio_target is None and text is None and text_target is None: raise ValueError( 'You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.' ) if audio is not None: lowerCAmelCase__ :List[str] = self.feature_extractor(__UpperCAmelCase , *__UpperCAmelCase , sampling_rate=__UpperCAmelCase , **__UpperCAmelCase ) elif text is not None: lowerCAmelCase__ :str = self.tokenizer(__UpperCAmelCase , **__UpperCAmelCase ) else: lowerCAmelCase__ :Any = None if audio_target is not None: lowerCAmelCase__ :int = self.feature_extractor(audio_target=__UpperCAmelCase , *__UpperCAmelCase , sampling_rate=__UpperCAmelCase , **__UpperCAmelCase ) lowerCAmelCase__ :int = targets['input_values'] elif text_target is not None: lowerCAmelCase__ :Optional[int] = self.tokenizer(__UpperCAmelCase , **__UpperCAmelCase ) lowerCAmelCase__ :Dict = targets['input_ids'] else: lowerCAmelCase__ :Dict = None if inputs is None: return targets if targets is not None: lowerCAmelCase__ :Union[str, Any] = labels lowerCAmelCase__ :Dict = targets.get('attention_mask' ) if decoder_attention_mask is not None: lowerCAmelCase__ :Dict = decoder_attention_mask return inputs def snake_case ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Any = kwargs.pop('input_values' , __UpperCAmelCase ) lowerCAmelCase__ :List[Any] = kwargs.pop('input_ids' , __UpperCAmelCase ) lowerCAmelCase__ :Any = kwargs.pop('labels' , __UpperCAmelCase ) if input_values is not None and input_ids is not None: raise ValueError('Cannot process both `input_values` and `input_ids` inputs.' ) if input_values is None and input_ids is None and labels is None: raise ValueError( 'You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.' ) if input_values is not None: lowerCAmelCase__ :Union[str, Any] = self.feature_extractor.pad(__UpperCAmelCase , *__UpperCAmelCase , **__UpperCAmelCase ) elif input_ids is not None: lowerCAmelCase__ :Optional[int] = self.tokenizer.pad(__UpperCAmelCase , **__UpperCAmelCase ) else: lowerCAmelCase__ :int = None if labels is not None: if "input_ids" in labels or (isinstance(__UpperCAmelCase , __UpperCAmelCase ) and "input_ids" in labels[0]): lowerCAmelCase__ :List[str] = self.tokenizer.pad(__UpperCAmelCase , **__UpperCAmelCase ) lowerCAmelCase__ :Optional[Any] = targets['input_ids'] else: lowerCAmelCase__ :Optional[int] = self.feature_extractor.feature_size lowerCAmelCase__ :int = self.feature_extractor.num_mel_bins lowerCAmelCase__ :Dict = self.feature_extractor.pad(__UpperCAmelCase , *__UpperCAmelCase , **__UpperCAmelCase ) lowerCAmelCase__ :List[Any] = feature_size_hack lowerCAmelCase__ :str = targets['input_values'] else: lowerCAmelCase__ :Optional[Any] = None if inputs is None: return targets if targets is not None: lowerCAmelCase__ :Union[str, Any] = labels lowerCAmelCase__ :List[Any] = targets.get('attention_mask' ) if decoder_attention_mask is not None: lowerCAmelCase__ :Tuple = decoder_attention_mask return inputs def snake_case ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase ) def snake_case ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase )
560
0
'''simple docstring''' _UpperCamelCase : Any = "0.18.2" from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
284
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { "asapp/sew-tiny-100k": "https://huggingface.co/asapp/sew-tiny-100k/resolve/main/config.json", # See all SEW models at https://huggingface.co/models?filter=sew } class __UpperCAmelCase (__A ): '''simple docstring''' _UpperCamelCase : Dict = 'sew' def __init__( self , snake_case_=32 , snake_case_=768 , snake_case_=12 , snake_case_=12 , snake_case_=3_072 , snake_case_=2 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=0.1 , snake_case_=0.0 , snake_case_=0.1 , snake_case_=0.1 , snake_case_=0.02 , snake_case_=1E-5 , snake_case_="group" , snake_case_="gelu" , snake_case_=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , snake_case_=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , snake_case_=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , snake_case_=False , snake_case_=128 , snake_case_=16 , snake_case_=True , snake_case_=0.05 , snake_case_=10 , snake_case_=2 , snake_case_=0.0 , snake_case_=10 , snake_case_=0 , snake_case_="mean" , snake_case_=False , snake_case_=False , snake_case_=256 , snake_case_=0 , snake_case_=1 , snake_case_=2 , **snake_case_ , ): '''simple docstring''' super().__init__(**snake_case_ , pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ ) A__ : Dict = hidden_size A__ : Dict = feat_extract_norm A__ : str = feat_extract_activation A__ : Optional[Any] = list(snake_case_ ) A__ : str = list(snake_case_ ) A__ : Any = list(snake_case_ ) A__ : Any = conv_bias A__ : Any = num_conv_pos_embeddings A__ : Any = num_conv_pos_embedding_groups A__ : str = len(self.conv_dim ) A__ : Tuple = num_hidden_layers A__ : int = intermediate_size A__ : Union[str, Any] = squeeze_factor A__ : Union[str, Any] = hidden_act A__ : List[str] = num_attention_heads A__ : List[str] = hidden_dropout A__ : Dict = attention_dropout A__ : Tuple = activation_dropout A__ : Optional[int] = feat_proj_dropout A__ : Optional[Any] = final_dropout A__ : int = layerdrop A__ : List[Any] = layer_norm_eps A__ : int = initializer_range A__ : Dict = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect.""" """It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,""" F'''but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)''' F'''= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 A__ : Optional[Any] = apply_spec_augment A__ : int = mask_time_prob A__ : Tuple = mask_time_length A__ : Optional[Any] = mask_time_min_masks A__ : Any = mask_feature_prob A__ : List[Any] = mask_feature_length A__ : Any = mask_feature_min_masks # ctc loss A__ : str = ctc_loss_reduction A__ : List[Any] = ctc_zero_infinity # sequence classification A__ : Union[str, Any] = use_weighted_layer_sum A__ : str = classifier_proj_size @property def lowerCamelCase ( self ): '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
363
0
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxCrossAttnUpBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, FlaxUpBlockaD, ) @flax.struct.dataclass class lowerCamelCase_ ( _A ): '''simple docstring''' a__ = 42 @flax_register_to_config class lowerCamelCase_ ( nn.Module ,_A ,_A ): '''simple docstring''' a__ = 32 a__ = 4 a__ = 4 a__ = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) a__ = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D") a__ = False a__ = (320, 640, 1280, 1280) a__ = 2 a__ = 8 a__ = None a__ = 1280 a__ = 0.0 a__ = False a__ = jnp.floataa a__ = True a__ = 0 a__ = False def SCREAMING_SNAKE_CASE__ ( self : List[str] , __lowerCamelCase : jax.random.KeyArray ) -> FrozenDict: # init input tensors A : List[Any] = (1, self.in_channels, self.sample_size, self.sample_size) A : Dict = jnp.zeros(__lowerCamelCase , dtype=jnp.floataa ) A : Any = jnp.ones((1,) , dtype=jnp.intaa ) A : str = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) A , A : Tuple = jax.random.split(__lowerCamelCase ) A : str = {"params": params_rng, "dropout": dropout_rng} return self.init(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )["params"] def SCREAMING_SNAKE_CASE__ ( self : int ) -> Union[str, Any]: A : Any = self.block_out_channels A : Any = block_out_channels[0] * 4 if self.num_attention_heads is not None: raise ValueError( "At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19." ) # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. A : Union[str, Any] = self.num_attention_heads or self.attention_head_dim # input A : Union[str, Any] = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time A : Union[str, Any] = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) A : int = FlaxTimestepEmbedding(__lowerCamelCase , dtype=self.dtype ) A : List[Any] = self.only_cross_attention if isinstance(__lowerCamelCase , __lowerCamelCase ): A : Optional[int] = (only_cross_attention,) * len(self.down_block_types ) if isinstance(__lowerCamelCase , __lowerCamelCase ): A : Optional[int] = (num_attention_heads,) * len(self.down_block_types ) # down A : List[str] = [] A : Union[str, Any] = block_out_channels[0] for i, down_block_type in enumerate(self.down_block_types ): A : List[str] = output_channel A : Union[str, Any] = block_out_channels[i] A : Any = i == len(__lowerCamelCase ) - 1 if down_block_type == "CrossAttnDownBlock2D": A : Any = FlaxCrossAttnDownBlockaD( in_channels=__lowerCamelCase , out_channels=__lowerCamelCase , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: A : Optional[Any] = FlaxDownBlockaD( in_channels=__lowerCamelCase , out_channels=__lowerCamelCase , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(__lowerCamelCase ) A : List[str] = down_blocks # mid A : Optional[Any] = FlaxUNetMidBlockaDCrossAttn( in_channels=block_out_channels[-1] , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) # up A : Tuple = [] A : Tuple = list(reversed(__lowerCamelCase ) ) A : Any = list(reversed(__lowerCamelCase ) ) A : List[Any] = list(reversed(__lowerCamelCase ) ) A : Optional[int] = reversed_block_out_channels[0] for i, up_block_type in enumerate(self.up_block_types ): A : List[str] = output_channel A : Optional[int] = reversed_block_out_channels[i] A : Any = reversed_block_out_channels[min(i + 1 , len(__lowerCamelCase ) - 1 )] A : Optional[Any] = i == len(__lowerCamelCase ) - 1 if up_block_type == "CrossAttnUpBlock2D": A : Optional[int] = FlaxCrossAttnUpBlockaD( in_channels=__lowerCamelCase , out_channels=__lowerCamelCase , prev_output_channel=__lowerCamelCase , num_layers=self.layers_per_block + 1 , num_attention_heads=reversed_num_attention_heads[i] , add_upsample=not is_final_block , dropout=self.dropout , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: A : Optional[int] = FlaxUpBlockaD( in_channels=__lowerCamelCase , out_channels=__lowerCamelCase , prev_output_channel=__lowerCamelCase , num_layers=self.layers_per_block + 1 , add_upsample=not is_final_block , dropout=self.dropout , dtype=self.dtype , ) up_blocks.append(__lowerCamelCase ) A : Optional[Any] = output_channel A : Union[str, Any] = up_blocks # out A : Tuple = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) A : Optional[int] = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : Dict , __lowerCamelCase : Dict , __lowerCamelCase : Tuple , __lowerCamelCase : Optional[Any] , __lowerCamelCase : int=None , __lowerCamelCase : Any=None , __lowerCamelCase : bool = True , __lowerCamelCase : bool = False , ) -> Union[FlaxUNetaDConditionOutput, Tuple]: # 1. time if not isinstance(__lowerCamelCase , jnp.ndarray ): A : List[str] = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(__lowerCamelCase , jnp.ndarray ) and len(timesteps.shape ) == 0: A : List[str] = timesteps.astype(dtype=jnp.floataa ) A : Union[str, Any] = jnp.expand_dims(__lowerCamelCase , 0 ) A : Optional[int] = self.time_proj(__lowerCamelCase ) A : Dict = self.time_embedding(__lowerCamelCase ) # 2. pre-process A : str = jnp.transpose(__lowerCamelCase , (0, 2, 3, 1) ) A : List[str] = self.conv_in(__lowerCamelCase ) # 3. down A : int = (sample,) for down_block in self.down_blocks: if isinstance(__lowerCamelCase , __lowerCamelCase ): A , A : Dict = down_block(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , deterministic=not train ) else: A , A : List[Any] = down_block(__lowerCamelCase , __lowerCamelCase , deterministic=not train ) down_block_res_samples += res_samples if down_block_additional_residuals is not None: A : Tuple = () for down_block_res_sample, down_block_additional_residual in zip( __lowerCamelCase , __lowerCamelCase ): down_block_res_sample += down_block_additional_residual new_down_block_res_samples += (down_block_res_sample,) A : Dict = new_down_block_res_samples # 4. mid A : Any = self.mid_block(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , deterministic=not train ) if mid_block_additional_residual is not None: sample += mid_block_additional_residual # 5. up for up_block in self.up_blocks: A : Any = down_block_res_samples[-(self.layers_per_block + 1) :] A : List[Any] = down_block_res_samples[: -(self.layers_per_block + 1)] if isinstance(__lowerCamelCase , __lowerCamelCase ): A : int = up_block( __lowerCamelCase , temb=__lowerCamelCase , encoder_hidden_states=__lowerCamelCase , res_hidden_states_tuple=__lowerCamelCase , deterministic=not train , ) else: A : int = up_block(__lowerCamelCase , temb=__lowerCamelCase , res_hidden_states_tuple=__lowerCamelCase , deterministic=not train ) # 6. post-process A : Union[str, Any] = self.conv_norm_out(__lowerCamelCase ) A : str = nn.silu(__lowerCamelCase ) A : str = self.conv_out(__lowerCamelCase ) A : List[str] = jnp.transpose(__lowerCamelCase , (0, 3, 1, 2) ) if not return_dict: return (sample,) return FlaxUNetaDConditionOutput(sample=__lowerCamelCase )
17
from sklearn.metrics import recall_score import datasets __SCREAMING_SNAKE_CASE = """ Recall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation: Recall = TP / (TP + FN) Where TP is the true positives and FN is the false negatives. """ __SCREAMING_SNAKE_CASE = """ Args: - **predictions** (`list` of `int`): The predicted labels. - **references** (`list` of `int`): The ground truth labels. - **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None. - **pos_label** (`int`): The class label to use as the 'positive class' when calculating the recall. Defaults to `1`. - **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`. - `'binary'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary. - `'micro'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives. - `'macro'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - `'weighted'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall. - `'samples'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). - **sample_weight** (`list` of `float`): Sample weights Defaults to `None`. - **zero_division** (): Sets the value to return when there is a zero division. Defaults to . - `'warn'`: If there is a zero division, the return value is `0`, but warnings are also raised. - `0`: If there is a zero division, the return value is `0`. - `1`: If there is a zero division, the return value is `1`. Returns: - **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better. Examples: Example 1-A simple example with some errors >>> recall_metric = datasets.load_metric('recall') >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1]) >>> print(results) {'recall': 0.6666666666666666} Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`. >>> recall_metric = datasets.load_metric('recall') >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0) >>> print(results) {'recall': 0.5} Example 3-The same example as Example 1, but with `sample_weight` included. >>> recall_metric = datasets.load_metric('recall') >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8] >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight) >>> print(results) {'recall': 0.55} Example 4-A multiclass example, using different averages. >>> recall_metric = datasets.load_metric('recall') >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = recall_metric.compute(predictions=predictions, references=references, average='macro') >>> print(results) {'recall': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average='micro') >>> print(results) {'recall': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average='weighted') >>> print(results) {'recall': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {'recall': array([1., 0., 0.])} """ __SCREAMING_SNAKE_CASE = """ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class lowerCamelCase_ ( datasets.Metric ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> str: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("int32" ) ), "references": datasets.Sequence(datasets.Value("int32" ) ), } if self.config_name == "multilabel" else { "predictions": datasets.Value("int32" ), "references": datasets.Value("int32" ), } ) , reference_urls=["https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html"] , ) def SCREAMING_SNAKE_CASE__ ( self : Any , __lowerCamelCase : int , __lowerCamelCase : Dict , __lowerCamelCase : str=None , __lowerCamelCase : List[Any]=1 , __lowerCamelCase : Tuple="binary" , __lowerCamelCase : Tuple=None , __lowerCamelCase : Tuple="warn" , ) -> Optional[Any]: A : str = recall_score( __lowerCamelCase , __lowerCamelCase , labels=__lowerCamelCase , pos_label=__lowerCamelCase , average=__lowerCamelCase , sample_weight=__lowerCamelCase , zero_division=__lowerCamelCase , ) return {"recall": float(__lowerCamelCase ) if score.size == 1 else score}
17
1
from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class __lowerCAmelCase ( _a ): def lowerCamelCase (self ) -> Dict: '''simple docstring''' return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def lowerCamelCase (self ) -> Tuple: '''simple docstring''' snake_case_ : Union[str, Any] = {'''col_1''': [3, 2, 1, 0], '''col_2''': ['''a''', '''b''', '''c''', '''d''']} return Dataset.from_dict(__magic_name__ ) def lowerCamelCase (self ) -> str: '''simple docstring''' snake_case_ : int = self._create_example_records() snake_case_ : List[str] = Dataset.from_list(__magic_name__ ) self.assertListEqual(dset.column_names , ['''col_1''', '''col_2'''] ) for i, r in enumerate(__magic_name__ ): self.assertDictEqual(__magic_name__ , example_records[i] ) def lowerCamelCase (self ) -> List[Any]: '''simple docstring''' snake_case_ : Dict = self._create_example_records() snake_case_ : Tuple = Dataset.from_list(__magic_name__ ) snake_case_ : Optional[int] = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} ) self.assertEqual(dset.info , dset_from_dict.info ) def lowerCamelCase (self ) -> Any: # checks what happens with missing columns '''simple docstring''' snake_case_ : Dict = [{'''col_1''': 1}, {'''col_2''': '''x'''}] snake_case_ : Any = Dataset.from_list(__magic_name__ ) self.assertDictEqual(dset[0] , {'''col_1''': 1} ) self.assertDictEqual(dset[1] , {'''col_1''': None} ) # NB: first record is used for columns def lowerCamelCase (self ) -> Optional[int]: # checks if the type can be inferred from the second record '''simple docstring''' snake_case_ : int = [{'''col_1''': []}, {'''col_1''': [1, 2]}] snake_case_ : str = Dataset.from_list(__magic_name__ ) self.assertEqual(dset.info.features['''col_1'''] , Sequence(Value('''int64''' ) ) ) def lowerCamelCase (self ) -> List[str]: '''simple docstring''' snake_case_ : Union[str, Any] = Dataset.from_list([] ) self.assertEqual(len(__magic_name__ ) , 0 ) self.assertListEqual(dset.column_names , [] )
60
import math from numpy import inf from scipy.integrate import quad def SCREAMING_SNAKE_CASE_ ( __A : float ) -> float: """simple docstring""" if num <= 0: raise ValueError('math domain error' ) return quad(__A , 0 , __A , args=(__A) )[0] def SCREAMING_SNAKE_CASE_ ( __A : float , __A : float ) -> float: """simple docstring""" return math.pow(__A , z - 1 ) * math.exp(-x ) if __name__ == "__main__": from doctest import testmod testmod()
570
0
'''simple docstring''' from datetime import datetime import matplotlib.pyplot as plt import torch def snake_case_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' for param in module.parameters(): _snake_case = False def snake_case_ ( ): '''simple docstring''' _snake_case = "cuda" if torch.cuda.is_available() else "cpu" if torch.backends.mps.is_available() and torch.backends.mps.is_built(): _snake_case = "mps" if device == "mps": print( "WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch" " errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues" " with generations." ) return device def snake_case_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' _snake_case = plt.imshow(UpperCAmelCase__ ) fig.axes.get_xaxis().set_visible(UpperCAmelCase__ ) fig.axes.get_yaxis().set_visible(UpperCAmelCase__ ) plt.show() def snake_case_ ( ): '''simple docstring''' _snake_case = datetime.now() _snake_case = current_time.strftime("%H:%M:%S" ) return timestamp
710
'''simple docstring''' import cva import numpy as np class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self , lowerCamelCase , lowerCamelCase ): if k in (0.04, 0.06): _snake_case = k _snake_case = window_size else: raise ValueError("invalid k value" ) def __str__( self ): return str(self.k ) def UpperCamelCase( self , lowerCamelCase ): _snake_case = cva.imread(lowerCamelCase , 0 ) _snake_case , _snake_case = img.shape _snake_case = [] _snake_case = img.copy() _snake_case = cva.cvtColor(lowerCamelCase , cva.COLOR_GRAY2RGB ) _snake_case , _snake_case = np.gradient(lowerCamelCase ) _snake_case = dx**2 _snake_case = dy**2 _snake_case = dx * dy _snake_case = 0.04 _snake_case = self.window_size // 2 for y in range(lowerCamelCase , h - offset ): for x in range(lowerCamelCase , w - offset ): _snake_case = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() _snake_case = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() _snake_case = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() _snake_case = (wxx * wyy) - (wxy**2) _snake_case = wxx + wyy _snake_case = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 255 ) return color_img, corner_list if __name__ == "__main__": __magic_name__ : Tuple = HarrisCorner(0.04, 3) __magic_name__ , __magic_name__ : Any = edge_detect.detect("""path_to_image""") cva.imwrite("""detect.png""", color_img)
368
0
import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class lowerCamelCase__ : """simple docstring""" @staticmethod def snake_case__ ( *snake_case , **snake_case ): '''simple docstring''' pass def UpperCamelCase_( _A :Dict )-> Union[str, Any]: return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. __UpperCamelCase = ( 'https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png' ) @is_pipeline_test @require_torch @require_vision class lowerCamelCase__ ( unittest.TestCase ): """simple docstring""" _UpperCamelCase : Any = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def snake_case__ ( self , snake_case , snake_case , snake_case ): '''simple docstring''' UpperCamelCase__ = pipeline( "document-question-answering" , model=snake_case , tokenizer=snake_case , image_processor=snake_case ) UpperCamelCase__ = INVOICE_URL UpperCamelCase__ = list(zip(*apply_tesseract(load_image(snake_case ) , snake_case , "" ) ) ) UpperCamelCase__ = "What is the placebo?" UpperCamelCase__ = [ { "image": load_image(snake_case ), "question": question, }, { "image": image, "question": question, }, { "image": image, "question": question, "word_boxes": word_boxes, }, ] return dqa_pipeline, examples def snake_case__ ( self , snake_case , snake_case ): '''simple docstring''' UpperCamelCase__ = dqa_pipeline(snake_case , top_k=2 ) self.assertEqual( snake_case , [ [ {"score": ANY(snake_case ), "answer": ANY(snake_case ), "start": ANY(snake_case ), "end": ANY(snake_case )}, {"score": ANY(snake_case ), "answer": ANY(snake_case ), "start": ANY(snake_case ), "end": ANY(snake_case )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def snake_case__ ( self ): '''simple docstring''' UpperCamelCase__ = pipeline("document-question-answering" , model="hf-internal-testing/tiny-random-layoutlmv2" ) UpperCamelCase__ = INVOICE_URL UpperCamelCase__ = "How many cats are there?" UpperCamelCase__ = [ {"score": 0.0001, "answer": "oy 2312/2019", "start": 38, "end": 39}, {"score": 0.0001, "answer": "oy 2312/2019 DUE", "start": 38, "end": 40}, ] UpperCamelCase__ = dqa_pipeline(image=snake_case , question=snake_case , top_k=2 ) self.assertEqual(nested_simplify(snake_case , decimals=4 ) , snake_case ) UpperCamelCase__ = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual(nested_simplify(snake_case , decimals=4 ) , snake_case ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably UpperCamelCase__ = "./tests/fixtures/tests_samples/COCO/000000039769.png" UpperCamelCase__ = dqa_pipeline(image=snake_case , question=snake_case , top_k=2 ) self.assertEqual(snake_case , [] ) # We can optionnally pass directly the words and bounding boxes UpperCamelCase__ = "./tests/fixtures/tests_samples/COCO/000000039769.png" UpperCamelCase__ = [] UpperCamelCase__ = [] UpperCamelCase__ = dqa_pipeline(image=snake_case , question=snake_case , words=snake_case , boxes=snake_case , top_k=2 ) self.assertEqual(snake_case , [] ) @slow @require_torch @require_detectrona @require_pytesseract def snake_case__ ( self ): '''simple docstring''' UpperCamelCase__ = pipeline( "document-question-answering" , model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa" , revision="9977165" , ) UpperCamelCase__ = INVOICE_URL UpperCamelCase__ = "What is the invoice number?" UpperCamelCase__ = dqa_pipeline(image=snake_case , question=snake_case , top_k=2 ) self.assertEqual( nested_simplify(snake_case , decimals=4 ) , [ {"score": 0.9944, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0009, "answer": "us-001", "start": 16, "end": 16}, ] , ) UpperCamelCase__ = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(snake_case , decimals=4 ) , [ {"score": 0.9944, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0009, "answer": "us-001", "start": 16, "end": 16}, ] , ) UpperCamelCase__ = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(snake_case , decimals=4 ) , [ [ {"score": 0.9944, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0009, "answer": "us-001", "start": 16, "end": 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def snake_case__ ( self ): '''simple docstring''' UpperCamelCase__ = pipeline( "document-question-answering" , model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa" , revision="9977165" , max_seq_len=50 , ) UpperCamelCase__ = INVOICE_URL UpperCamelCase__ = "What is the invoice number?" UpperCamelCase__ = dqa_pipeline(image=snake_case , question=snake_case , top_k=2 ) self.assertEqual( nested_simplify(snake_case , decimals=4 ) , [ {"score": 0.9974, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9948, "answer": "us-001", "start": 16, "end": 16}, ] , ) UpperCamelCase__ = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(snake_case , decimals=4 ) , [ {"score": 0.9974, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9948, "answer": "us-001", "start": 16, "end": 16}, ] , ) UpperCamelCase__ = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(snake_case , decimals=4 ) , [ [ {"score": 0.9974, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9948, "answer": "us-001", "start": 16, "end": 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def snake_case__ ( self ): '''simple docstring''' UpperCamelCase__ = AutoTokenizer.from_pretrained( "impira/layoutlm-document-qa" , revision="3dc6de3" , add_prefix_space=snake_case ) UpperCamelCase__ = pipeline( "document-question-answering" , model="impira/layoutlm-document-qa" , tokenizer=snake_case , revision="3dc6de3" , ) UpperCamelCase__ = INVOICE_URL UpperCamelCase__ = "What is the invoice number?" UpperCamelCase__ = dqa_pipeline(image=snake_case , question=snake_case , top_k=2 ) self.assertEqual( nested_simplify(snake_case , decimals=4 ) , [ {"score": 0.4251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0819, "answer": "1110212019", "start": 23, "end": 23}, ] , ) UpperCamelCase__ = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(snake_case , decimals=4 ) , [ {"score": 0.4251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0819, "answer": "1110212019", "start": 23, "end": 23}, ] , ) UpperCamelCase__ = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(snake_case , decimals=4 ) , [ [ {"score": 0.4251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0819, "answer": "1110212019", "start": 23, "end": 23}, ] ] * 2 , ) UpperCamelCase__ = list(zip(*apply_tesseract(load_image(snake_case ) , snake_case , "" ) ) ) # This model should also work if `image` is set to None UpperCamelCase__ = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(snake_case , decimals=4 ) , [ {"score": 0.4251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0819, "answer": "1110212019", "start": 23, "end": 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def snake_case__ ( self ): '''simple docstring''' UpperCamelCase__ = AutoTokenizer.from_pretrained( "impira/layoutlm-document-qa" , revision="3dc6de3" , add_prefix_space=snake_case ) UpperCamelCase__ = pipeline( "document-question-answering" , model="impira/layoutlm-document-qa" , tokenizer=snake_case , revision="3dc6de3" , max_seq_len=50 , ) UpperCamelCase__ = INVOICE_URL UpperCamelCase__ = "What is the invoice number?" UpperCamelCase__ = dqa_pipeline(image=snake_case , question=snake_case , top_k=2 ) self.assertEqual( nested_simplify(snake_case , decimals=4 ) , [ {"score": 0.9999, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9998, "answer": "us-001", "start": 16, "end": 16}, ] , ) UpperCamelCase__ = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(snake_case , decimals=4 ) , [ [ {"score": 0.9999, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9998, "answer": "us-001", "start": 16, "end": 16}, ] ] * 2 , ) UpperCamelCase__ = list(zip(*apply_tesseract(load_image(snake_case ) , snake_case , "" ) ) ) # This model should also work if `image` is set to None UpperCamelCase__ = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(snake_case , decimals=4 ) , [ {"score": 0.9999, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9998, "answer": "us-001", "start": 16, "end": 16}, ] , ) @slow @require_torch def snake_case__ ( self ): '''simple docstring''' UpperCamelCase__ = pipeline( "document-question-answering" , model="naver-clova-ix/donut-base-finetuned-docvqa" , tokenizer=AutoTokenizer.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa" ) , feature_extractor="naver-clova-ix/donut-base-finetuned-docvqa" , ) UpperCamelCase__ = INVOICE_URL UpperCamelCase__ = "What is the invoice number?" UpperCamelCase__ = dqa_pipeline(image=snake_case , question=snake_case , top_k=2 ) self.assertEqual(nested_simplify(snake_case , decimals=4 ) , [{"answer": "us-001"}] ) @require_tf @unittest.skip("Document question answering not implemented in TF" ) def snake_case__ ( self ): '''simple docstring''' pass
551
from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch("socket.socket" ) @patch("builtins.open" ) def UpperCamelCase_( _A :Tuple , _A :str )-> int: # ===== initialization ===== UpperCamelCase__ = Mock() UpperCamelCase__ = conn, Mock() UpperCamelCase__ = iter([1, None] ) UpperCamelCase__ = lambda _A : next(_A ) # ===== invoke ===== send_file(filename="mytext.txt" , testing=_A ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
551
1
from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers lowerCamelCase__ = [ '''python''', '''tqdm''', '''regex''', '''requests''', '''packaging''', '''filelock''', '''numpy''', '''tokenizers''', '''huggingface-hub''', '''safetensors''', '''accelerate''', '''pyyaml''', ] for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed elif pkg == "accelerate": # must be loaded here, or else tqdm check may fail from .utils import is_accelerate_available # Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of # Transformers with PyTorch if not is_accelerate_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''') def A(__a: str , __a: str=None ): require_version(deps[pkg] , __a )
715
def A(__a: int ): lowerCAmelCase_ = abs(__a ) lowerCAmelCase_ = 0 while n > 0: res += n % 10 n //= 10 return res def A(__a: int ): lowerCAmelCase_ = abs(__a ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def A(__a: int ): return sum(int(__a ) for c in str(abs(__a ) ) ) def A(): from collections.abc import Callable from timeit import timeit def benchmark_a_function(__a: Callable , __a: int ) -> None: lowerCAmelCase_ = F"{func.__name__}({value})" lowerCAmelCase_ = timeit(F"__main__.{call}" , setup="import __main__" ) print(F"{call:56} = {func(__a )} -- {timing:.4f} seconds" ) for value in (26_2144, 1125_8999_0684_2624, 126_7650_6002_2822_9401_4967_0320_5376): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(__a , __a ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
226
0
def UpperCamelCase ( __lowercase : Optional[int] ): '''simple docstring''' if collection == []: return [] # get some information about the collection A_ : Tuple = len(__lowercase ) A_ : List[str] = max(__lowercase ) A_ : List[Any] = min(__lowercase ) # create the counting array A_ : Optional[Any] = coll_max + 1 - coll_min A_ : Tuple = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 ,__lowercase ): A_ : int = counting_arr[i] + counting_arr[i - 1] # create the output collection A_ : Tuple = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 ,__lowercase ) ): A_ : Optional[Any] = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def UpperCamelCase ( __lowercase : List[Any] ): '''simple docstring''' return "".join([chr(__lowercase ) for i in counting_sort([ord(__lowercase ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string("""thisisthestring""") == "eghhiiinrsssttt" _UpperCAmelCase = input("""Enter numbers separated by a comma:\n""").strip() _UpperCAmelCase = [int(item) for item in user_input.split(""",""")] print(counting_sort(unsorted))
558
import argparse import os import re import packaging.version _UpperCAmelCase = """examples/""" _UpperCAmelCase = { """examples""": (re.compile(r"""^check_min_version\(\"[^\"]+\"\)\s*$""", re.MULTILINE), """check_min_version(\"VERSION\")\n"""), """init""": (re.compile(r"""^__version__\s+=\s+\"([^\"]+)\"\s*$""", re.MULTILINE), """__version__ = \"VERSION\"\n"""), """setup""": (re.compile(r"""^(\s*)version\s*=\s*\"[^\"]+\",""", re.MULTILINE), r"""\1version=\"VERSION\","""), """doc""": (re.compile(r"""^(\s*)release\s*=\s*\"[^\"]+\"$""", re.MULTILINE), """release = \"VERSION\"\n"""), } _UpperCAmelCase = { """init""": """src/transformers/__init__.py""", """setup""": """setup.py""", } _UpperCAmelCase = """README.md""" def UpperCamelCase ( __lowercase : Dict ,__lowercase : Any ,__lowercase : Tuple ): '''simple docstring''' with open(__lowercase ,'r' ,encoding='utf-8' ,newline='\n' ) as f: A_ : Dict = f.read() A_ , A_ : Dict = REPLACE_PATTERNS[pattern] A_ : List[str] = replace.replace('VERSION' ,__lowercase ) A_ : int = re_pattern.sub(__lowercase ,__lowercase ) with open(__lowercase ,'w' ,encoding='utf-8' ,newline='\n' ) as f: f.write(__lowercase ) def UpperCamelCase ( __lowercase : Union[str, Any] ): '''simple docstring''' for folder, directories, fnames in os.walk(__lowercase ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('research_projects' ) if "legacy" in directories: directories.remove('legacy' ) for fname in fnames: if fname.endswith('.py' ): update_version_in_file(os.path.join(__lowercase ,__lowercase ) ,__lowercase ,pattern='examples' ) def UpperCamelCase ( __lowercase : Tuple ,__lowercase : Tuple=False ): '''simple docstring''' for pattern, fname in REPLACE_FILES.items(): update_version_in_file(__lowercase ,__lowercase ,__lowercase ) if not patch: update_version_in_examples(__lowercase ) def UpperCamelCase ( ): '''simple docstring''' A_ : Optional[int] = '🤗 Transformers currently provides the following architectures' A_ : str = '1. Want to contribute a new model?' with open(__lowercase ,'r' ,encoding='utf-8' ,newline='\n' ) as f: A_ : int = f.readlines() # Find the start of the list. A_ : List[str] = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 A_ : List[str] = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('1.' ): A_ : str = lines[index].replace( 'https://huggingface.co/docs/transformers/main/model_doc' ,'https://huggingface.co/docs/transformers/model_doc' ,) index += 1 with open(__lowercase ,'w' ,encoding='utf-8' ,newline='\n' ) as f: f.writelines(__lowercase ) def UpperCamelCase ( ): '''simple docstring''' with open(REPLACE_FILES['init'] ,'r' ) as f: A_ : Any = f.read() A_ : Union[str, Any] = REPLACE_PATTERNS['init'][0].search(__lowercase ).groups()[0] return packaging.version.parse(__lowercase ) def UpperCamelCase ( __lowercase : Tuple=False ): '''simple docstring''' A_ : List[Any] = get_version() if patch and default_version.is_devrelease: raise ValueError('Can\'t create a patch version from the dev branch, checkout a released version!' ) if default_version.is_devrelease: A_ : Any = default_version.base_version elif patch: A_ : str = f'''{default_version.major}.{default_version.minor}.{default_version.micro + 1}''' else: A_ : List[Any] = f'''{default_version.major}.{default_version.minor + 1}.0''' # Now let's ask nicely if that's the right one. A_ : Dict = input(f'''Which version are you releasing? [{default_version}]''' ) if len(__lowercase ) == 0: A_ : Union[str, Any] = default_version print(f'''Updating version to {version}.''' ) global_version_update(__lowercase ,patch=__lowercase ) if not patch: print('Cleaning main README, don\'t forget to run `make fix-copies`.' ) clean_main_ref_in_model_list() def UpperCamelCase ( ): '''simple docstring''' A_ : Union[str, Any] = get_version() A_ : List[str] = f'''{current_version.major}.{current_version.minor + 1}.0.dev0''' A_ : List[str] = current_version.base_version # Check with the user we got that right. A_ : str = input(f'''Which version are we developing now? [{dev_version}]''' ) if len(__lowercase ) == 0: A_ : Dict = dev_version print(f'''Updating version to {version}.''' ) global_version_update(__lowercase ) print('Cleaning main README, don\'t forget to run `make fix-copies`.' ) clean_main_ref_in_model_list() if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser() parser.add_argument("""--post_release""", action="""store_true""", help="""Whether this is pre or post release.""") parser.add_argument("""--patch""", action="""store_true""", help="""Whether or not this is a patch release.""") _UpperCAmelCase = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("""Nothing to do after a patch :-)""") else: post_release_work()
558
1
def UpperCAmelCase_( a__ ): """simple docstring""" try: SCREAMING_SNAKE_CASE : Any = float(a__ ) except ValueError: raise ValueError('''Please enter a valid number''' ) SCREAMING_SNAKE_CASE : Dict = decimal - int(a__ ) if fractional_part == 0: return int(a__ ), 1 else: SCREAMING_SNAKE_CASE : List[Any] = len(str(a__ ).split('''.''' )[1] ) SCREAMING_SNAKE_CASE : str = int(decimal * (10**number_of_frac_digits) ) SCREAMING_SNAKE_CASE : List[str] = 10**number_of_frac_digits SCREAMING_SNAKE_CASE : Optional[int] = denominator, numerator while True: SCREAMING_SNAKE_CASE : Any = dividend % divisor if remainder == 0: break SCREAMING_SNAKE_CASE : Optional[Any] = divisor, remainder SCREAMING_SNAKE_CASE : Union[str, Any] = numerator / divisor, denominator / divisor return int(a__ ), int(a__ ) if __name__ == "__main__": print(F"{decimal_to_fraction(2) = }") print(F"{decimal_to_fraction(89.0) = }") print(F"{decimal_to_fraction('67') = }") print(F"{decimal_to_fraction('45.0') = }") print(F"{decimal_to_fraction(1.5) = }") print(F"{decimal_to_fraction('6.25') = }") print(F"{decimal_to_fraction('78td') = }")
707
def UpperCAmelCase_( a__ ): """simple docstring""" if collection == []: return [] # get some information about the collection SCREAMING_SNAKE_CASE : List[Any] = len(a__ ) SCREAMING_SNAKE_CASE : int = max(a__ ) SCREAMING_SNAKE_CASE : Optional[int] = min(a__ ) # create the counting array SCREAMING_SNAKE_CASE : str = coll_max + 1 - coll_min SCREAMING_SNAKE_CASE : Any = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 , a__ ): SCREAMING_SNAKE_CASE : Tuple = counting_arr[i] + counting_arr[i - 1] # create the output collection SCREAMING_SNAKE_CASE : int = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 , a__ ) ): SCREAMING_SNAKE_CASE : Dict = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def UpperCAmelCase_( a__ ): """simple docstring""" return "".join([chr(a__ ) for i in counting_sort([ord(a__ ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string('''thisisthestring''') == "eghhiiinrsssttt" a__ : Optional[int] = input('''Enter numbers separated by a comma:\n''').strip() a__ : str = [int(item) for item in user_input.split(''',''')] print(counting_sort(unsorted))
333
0
"""simple docstring""" import math def A__ ( A__ ) -> bool: '''simple docstring''' _UpperCAmelCase = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(A__ ) def A__ ( A__ = 1 / 1_2345 ) -> int: '''simple docstring''' _UpperCAmelCase = 0 _UpperCAmelCase = 0 _UpperCAmelCase = 3 while True: _UpperCAmelCase = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(A__ ): _UpperCAmelCase = int(A__ ) total_partitions += 1 if check_partition_perfect(A__ ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(A__ ) integer += 1 if __name__ == "__main__": print(f'''{solution() = }''')
426
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = {} class a ( _SCREAMING_SNAKE_CASE ): """simple docstring""" A__ : Dict = "llama" A__ : int = ["past_key_values"] def __init__( self , snake_case_=32000 , snake_case_=4096 , snake_case_=11008 , snake_case_=32 , snake_case_=32 , snake_case_=None , snake_case_="silu" , snake_case_=2048 , snake_case_=0.02 , snake_case_=1e-6 , snake_case_=True , snake_case_=0 , snake_case_=1 , snake_case_=2 , snake_case_=1 , snake_case_=False , snake_case_=None , **snake_case_ , ) -> Any: _UpperCAmelCase = vocab_size _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = hidden_size _UpperCAmelCase = intermediate_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads # for backward compatibility if num_key_value_heads is None: _UpperCAmelCase = num_attention_heads _UpperCAmelCase = num_key_value_heads _UpperCAmelCase = hidden_act _UpperCAmelCase = initializer_range _UpperCAmelCase = rms_norm_eps _UpperCAmelCase = pretraining_tp _UpperCAmelCase = use_cache _UpperCAmelCase = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ , tie_word_embeddings=snake_case_ , **snake_case_ , ) def __A ( self ) -> List[str]: if self.rope_scaling is None: return if not isinstance(self.rope_scaling , snake_case_ ) or len(self.rope_scaling ) != 2: raise ValueError( "`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, " F"""got {self.rope_scaling}""" ) _UpperCAmelCase = self.rope_scaling.get("type" , snake_case_ ) _UpperCAmelCase = self.rope_scaling.get("factor" , snake_case_ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(snake_case_ , snake_case_ ) or rope_scaling_factor <= 1.0: raise ValueError(F"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
426
1
"""simple docstring""" from __future__ import annotations from collections.abc import Iterator class _A : def __init__( self , __lowerCAmelCase ): """simple docstring""" lowercase = value lowercase = None lowercase = None class _A : def __init__( self , __lowerCAmelCase ): """simple docstring""" lowercase = tree def A__ ( self , __lowerCAmelCase ): """simple docstring""" if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self ): """simple docstring""" yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
197
"""simple docstring""" def UpperCAmelCase__ ( lowerCAmelCase__ :str , lowerCAmelCase__ :int ) -> list: '''simple docstring''' lowercase = word.split() def justify(lowerCAmelCase__ :list , lowerCAmelCase__ :int , lowerCAmelCase__ :int ) -> str: lowercase = max_width - width lowercase = len(lowerCAmelCase__ ) if len(lowerCAmelCase__ ) == 1: # if there is only word in line # just insert overall_spaces_count for the remainder of line return line[0] + " " * overall_spaces_count else: lowercase = words_count - 1 # num_spaces_between_words_list[i] : tells you to insert # num_spaces_between_words_list[i] spaces # after word on line[i] lowercase = spaces_to_insert_between_words * [ overall_spaces_count // spaces_to_insert_between_words ] lowercase = ( overall_spaces_count % spaces_to_insert_between_words ) # distribute spaces via round robin to the left words for i in range(lowerCAmelCase__ ): num_spaces_between_words_list[i] += 1 lowercase = [] for i in range(lowerCAmelCase__ ): # add the word aligned_words_list.append(line[i] ) # add the spaces to insert aligned_words_list.append(num_spaces_between_words_list[i] * """ """ ) # just add the last word to the sentence aligned_words_list.append(line[-1] ) # join the aligned words list to form a justified line return "".join(lowerCAmelCase__ ) lowercase = [] lowercase = [] lowercase = 0 for word in words: if width + len(lowerCAmelCase__ ) + len(lowerCAmelCase__ ) <= max_width: # keep adding words until we can fill out max_width # width = sum of length of all words (without overall_spaces_count) # len(word) = length of current word # len(line) = number of overall_spaces_count to insert between words line.append(lowerCAmelCase__ ) width += len(lowerCAmelCase__ ) else: # justify the line and add it to result answer.append(justify(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) ) # reset new line and new width lowercase , lowercase = [word], len(lowerCAmelCase__ ) lowercase = max_width - width - len(lowerCAmelCase__ ) answer.append(""" """.join(lowerCAmelCase__ ) + (remaining_spaces + 1) * """ """ ) return answer if __name__ == "__main__": from doctest import testmod testmod()
197
1
"""simple docstring""" import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed _SCREAMING_SNAKE_CASE : Union[str, Any] = { '''distilbert''': (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), '''roberta''': (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), '''bert''': (BertConfig, BertForMaskedLM, BertTokenizer), '''gpt2''': (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def lowerCamelCase__ ( _lowerCamelCase : List[Any] ) -> Any: assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def lowerCamelCase__ ( _lowerCamelCase : Dict , _lowerCamelCase : Optional[Any] ) -> Any: if args.student_type == "roberta": lowerCamelCase_ = False elif args.student_type == "gpt2": lowerCamelCase_ = False def lowerCamelCase__ ( _lowerCamelCase : Tuple , _lowerCamelCase : Any ) -> Optional[Any]: if args.student_type == "roberta": lowerCamelCase_ = False def lowerCamelCase__ ( ) -> List[Any]: lowerCamelCase_ = argparse.ArgumentParser(description='Training' ) parser.add_argument('--force' , action='store_true' , help='Overwrite dump_path if it already exists.' ) parser.add_argument( '--dump_path' , type=_lowerCamelCase , required=_lowerCamelCase , help='The output directory (log, checkpoints, parameters, etc.)' ) parser.add_argument( '--data_file' , type=_lowerCamelCase , required=_lowerCamelCase , help='The binarized file (tokenized + tokens_to_ids) and grouped by sequence.' , ) parser.add_argument( '--student_type' , type=_lowerCamelCase , choices=['distilbert', 'roberta', 'gpt2'] , required=_lowerCamelCase , help='The student type (DistilBERT, RoBERTa).' , ) parser.add_argument('--student_config' , type=_lowerCamelCase , required=_lowerCamelCase , help='Path to the student configuration.' ) parser.add_argument( '--student_pretrained_weights' , default=_lowerCamelCase , type=_lowerCamelCase , help='Load student initialization checkpoint.' ) parser.add_argument( '--teacher_type' , choices=['bert', 'roberta', 'gpt2'] , required=_lowerCamelCase , help='Teacher type (BERT, RoBERTa).' ) parser.add_argument('--teacher_name' , type=_lowerCamelCase , required=_lowerCamelCase , help='The teacher model.' ) parser.add_argument('--temperature' , default=2.0 , type=_lowerCamelCase , help='Temperature for the softmax temperature.' ) parser.add_argument( '--alpha_ce' , default=0.5 , type=_lowerCamelCase , help='Linear weight for the distillation loss. Must be >=0.' ) parser.add_argument( '--alpha_mlm' , default=0.0 , type=_lowerCamelCase , help='Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.' , ) parser.add_argument('--alpha_clm' , default=0.5 , type=_lowerCamelCase , help='Linear weight for the CLM loss. Must be >=0.' ) parser.add_argument('--alpha_mse' , default=0.0 , type=_lowerCamelCase , help='Linear weight of the MSE loss. Must be >=0.' ) parser.add_argument( '--alpha_cos' , default=0.0 , type=_lowerCamelCase , help='Linear weight of the cosine embedding loss. Must be >=0.' ) parser.add_argument( '--mlm' , action='store_true' , help='The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.' ) parser.add_argument( '--mlm_mask_prop' , default=0.15 , type=_lowerCamelCase , help='Proportion of tokens for which we need to make a prediction.' , ) parser.add_argument('--word_mask' , default=0.8 , type=_lowerCamelCase , help='Proportion of tokens to mask out.' ) parser.add_argument('--word_keep' , default=0.1 , type=_lowerCamelCase , help='Proportion of tokens to keep.' ) parser.add_argument('--word_rand' , default=0.1 , type=_lowerCamelCase , help='Proportion of tokens to randomly replace.' ) parser.add_argument( '--mlm_smoothing' , default=0.7 , type=_lowerCamelCase , help='Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).' , ) parser.add_argument('--token_counts' , type=_lowerCamelCase , help='The token counts in the data_file for MLM.' ) parser.add_argument( '--restrict_ce_to_mask' , action='store_true' , help='If true, compute the distillation loss only the [MLM] prediction distribution.' , ) parser.add_argument( '--freeze_pos_embs' , action='store_true' , help='Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.' , ) parser.add_argument( '--freeze_token_type_embds' , action='store_true' , help='Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.' , ) parser.add_argument('--n_epoch' , type=_lowerCamelCase , default=3 , help='Number of pass on the whole dataset.' ) parser.add_argument('--batch_size' , type=_lowerCamelCase , default=5 , help='Batch size (for each process).' ) parser.add_argument( '--group_by_size' , action='store_false' , help='If true, group sequences that have similar length into the same batch. Default is true.' , ) parser.add_argument( '--gradient_accumulation_steps' , type=_lowerCamelCase , default=50 , help='Gradient accumulation for larger training batches.' , ) parser.add_argument('--warmup_prop' , default=0.05 , type=_lowerCamelCase , help='Linear warmup proportion.' ) parser.add_argument('--weight_decay' , default=0.0 , type=_lowerCamelCase , help='Weight decay if we apply some.' ) parser.add_argument('--learning_rate' , default=5e-4 , type=_lowerCamelCase , help='The initial learning rate for Adam.' ) parser.add_argument('--adam_epsilon' , default=1e-6 , type=_lowerCamelCase , help='Epsilon for Adam optimizer.' ) parser.add_argument('--max_grad_norm' , default=5.0 , type=_lowerCamelCase , help='Max gradient norm.' ) parser.add_argument('--initializer_range' , default=0.02 , type=_lowerCamelCase , help='Random initialization range.' ) parser.add_argument( '--fp16' , action='store_true' , help='Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit' , ) parser.add_argument( '--fp16_opt_level' , type=_lowerCamelCase , default='O1' , help=( 'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].' 'See details at https://nvidia.github.io/apex/amp.html' ) , ) parser.add_argument('--n_gpu' , type=_lowerCamelCase , default=1 , help='Number of GPUs in the node.' ) parser.add_argument('--local_rank' , type=_lowerCamelCase , default=-1 , help='Distributed training - Local rank' ) parser.add_argument('--seed' , type=_lowerCamelCase , default=56 , help='Random seed' ) parser.add_argument('--log_interval' , type=_lowerCamelCase , default=500 , help='Tensorboard logging interval.' ) parser.add_argument('--checkpoint_interval' , type=_lowerCamelCase , default=4000 , help='Checkpoint interval.' ) lowerCamelCase_ = parser.parse_args() sanity_checks(_lowerCamelCase ) # ARGS # init_gpu_params(_lowerCamelCase ) set_seed(_lowerCamelCase ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( F'''Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite''' ' itUse `--force` if you want to overwrite it' ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(F'''Experiment will be dumped and logged in {args.dump_path}''' ) # SAVE PARAMS # logger.info(F'''Param: {args}''' ) with open(os.path.join(args.dump_path , 'parameters.json' ) , 'w' ) as f: json.dump(vars(_lowerCamelCase ) , _lowerCamelCase , indent=4 ) git_log(args.dump_path ) lowerCamelCase_ = MODEL_CLASSES[args.student_type] lowerCamelCase_ = MODEL_CLASSES[args.teacher_type] # TOKENIZER # lowerCamelCase_ = teacher_tokenizer_class.from_pretrained(args.teacher_name ) lowerCamelCase_ = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): lowerCamelCase_ = tokenizer.all_special_tokens.index(_lowerCamelCase ) lowerCamelCase_ = tokenizer.all_special_ids[idx] logger.info(F'''Special tokens {special_tok_ids}''' ) lowerCamelCase_ = special_tok_ids lowerCamelCase_ = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(F'''Loading data from {args.data_file}''' ) with open(args.data_file , 'rb' ) as fp: lowerCamelCase_ = pickle.load(_lowerCamelCase ) if args.mlm: logger.info(F'''Loading token counts from {args.token_counts} (already pre-computed)''' ) with open(args.token_counts , 'rb' ) as fp: lowerCamelCase_ = pickle.load(_lowerCamelCase ) lowerCamelCase_ = np.maximum(_lowerCamelCase , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): lowerCamelCase_ = 0.0 # do not predict special tokens lowerCamelCase_ = torch.from_numpy(_lowerCamelCase ) else: lowerCamelCase_ = None lowerCamelCase_ = LmSeqsDataset(params=_lowerCamelCase , data=_lowerCamelCase ) logger.info('Data loader created.' ) # STUDENT # logger.info(F'''Loading student config from {args.student_config}''' ) lowerCamelCase_ = student_config_class.from_pretrained(args.student_config ) lowerCamelCase_ = True if args.student_pretrained_weights is not None: logger.info(F'''Loading pretrained weights from {args.student_pretrained_weights}''' ) lowerCamelCase_ = student_model_class.from_pretrained(args.student_pretrained_weights , config=_lowerCamelCase ) else: lowerCamelCase_ = student_model_class(_lowerCamelCase ) if args.n_gpu > 0: student.to(F'''cuda:{args.local_rank}''' ) logger.info('Student loaded.' ) # TEACHER # lowerCamelCase_ = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=_lowerCamelCase ) if args.n_gpu > 0: teacher.to(F'''cuda:{args.local_rank}''' ) logger.info(F'''Teacher loaded from {args.teacher_name}.''' ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(_lowerCamelCase , _lowerCamelCase ) if args.freeze_token_type_embds: freeze_token_type_embeddings(_lowerCamelCase , _lowerCamelCase ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() lowerCamelCase_ = Distiller( params=_lowerCamelCase , dataset=_lowerCamelCase , token_probs=_lowerCamelCase , student=_lowerCamelCase , teacher=_lowerCamelCase ) distiller.train() logger.info('Let\'s go get some drinks.' ) if __name__ == "__main__": main()
549
import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class __A ( A_ , unittest.TestCase ): UpperCamelCase :Optional[int] = DebertaTokenizer UpperCamelCase :Union[str, Any] = True UpperCamelCase :int = DebertaTokenizerFast def _snake_case (self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCamelCase__ : Optional[int] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """[UNK]""", ] lowerCamelCase__ : Any = dict(zip(__magic_name__ , range(len(__magic_name__ ) ) ) ) lowerCamelCase__ : Any = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] lowerCamelCase__ : Union[str, Any] = {"""unk_token""": """[UNK]"""} lowerCamelCase__ : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) lowerCamelCase__ : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__magic_name__ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(__magic_name__ ) ) def _snake_case (self , **__magic_name__ ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__magic_name__ ) def _snake_case (self , __magic_name__ ): lowerCamelCase__ : Optional[Any] = """lower newer""" lowerCamelCase__ : Tuple = """lower newer""" return input_text, output_text def _snake_case (self ): lowerCamelCase__ : Optional[int] = self.get_tokenizer() lowerCamelCase__ : List[Any] = """lower newer""" lowerCamelCase__ : str = ["""l""", """o""", """w""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] lowerCamelCase__ : List[Any] = tokenizer.tokenize(__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) lowerCamelCase__ : Tuple = tokens + [tokenizer.unk_token] lowerCamelCase__ : Optional[int] = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__magic_name__ ) , __magic_name__ ) def _snake_case (self ): lowerCamelCase__ : Any = self.get_tokenizer() lowerCamelCase__ : int = tokenizer("""Hello""" , """World""" ) lowerCamelCase__ : str = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd["""token_type_ids"""] , __magic_name__ ) @slow def _snake_case (self ): lowerCamelCase__ : List[str] = self.tokenizer_class.from_pretrained("""microsoft/deberta-base""" ) lowerCamelCase__ : List[Any] = tokenizer.encode("""sequence builders""" , add_special_tokens=__magic_name__ ) lowerCamelCase__ : Union[str, Any] = tokenizer.encode("""multi-sequence build""" , add_special_tokens=__magic_name__ ) lowerCamelCase__ : str = tokenizer.encode( """sequence builders""" , add_special_tokens=__magic_name__ , add_prefix_space=__magic_name__ ) lowerCamelCase__ : Any = tokenizer.encode( """sequence builders""" , """multi-sequence build""" , add_special_tokens=__magic_name__ , add_prefix_space=__magic_name__ ) lowerCamelCase__ : Any = tokenizer.build_inputs_with_special_tokens(__magic_name__ ) lowerCamelCase__ : int = tokenizer.build_inputs_with_special_tokens(__magic_name__ , __magic_name__ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def _snake_case (self ): lowerCamelCase__ : Optional[Any] = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: lowerCamelCase__ : List[Any] = tokenizer_class.from_pretrained("""microsoft/deberta-base""" ) lowerCamelCase__ : Tuple = [ """ALBERT: A Lite BERT for Self-supervised Learning of Language Representations""", """ALBERT incorporates two parameter reduction techniques""", """The first one is a factorized embedding parameterization. By decomposing the large vocabulary""" """ embedding matrix into two small matrices, we separate the size of the hidden layers from the size of""" """ vocabulary embedding.""", ] lowerCamelCase__ : List[Any] = tokenizer(__magic_name__ , padding=__magic_name__ ) lowerCamelCase__ : int = [tokenizer.decode(__magic_name__ , skip_special_tokens=__magic_name__ ) for seq in encoding["""input_ids"""]] # fmt: off lowerCamelCase__ : Union[str, Any] = { """input_ids""": [ [1, 2118, 11126, 565, 35, 83, 25191, 163, 18854, 13, 12156, 12, 16101, 25376, 13807, 9, 22205, 27893, 1635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2118, 11126, 565, 24536, 80, 43797, 4878, 7373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 133, 78, 65, 16, 10, 3724, 1538, 33183, 11303, 43797, 1938, 4, 870, 24165, 29105, 5, 739, 32644, 33183, 11303, 36173, 88, 80, 650, 7821, 45940, 6, 52, 2559, 5, 1836, 9, 5, 7397, 13171, 31, 5, 1836, 9, 32644, 33183, 11303, 4, 2] ], """token_type_ids""": [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], """attention_mask""": [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on lowerCamelCase__ : Union[str, Any] = [ """ALBERT: A Lite BERT for Self-supervised Learning of Language Representations""", """ALBERT incorporates two parameter reduction techniques""", """The first one is a factorized embedding parameterization. By decomposing the large vocabulary""" """ embedding matrix into two small matrices, we separate the size of the hidden layers from the size of""" """ vocabulary embedding.""", ] self.assertDictEqual(encoding.data , __magic_name__ ) for expected, decoded in zip(__magic_name__ , __magic_name__ ): self.assertEqual(__magic_name__ , __magic_name__ )
157
0
'''simple docstring''' def UpperCamelCase__ ( _A: int ): '''simple docstring''' assert ( isinstance(_A , _A ) and number_of_steps > 0 ), f'''number_of_steps needs to be positive integer, your input {number_of_steps}''' if number_of_steps == 1: return 1 __lowerCamelCase , __lowerCamelCase = 1, 1 for _ in range(number_of_steps - 1 ): __lowerCamelCase , __lowerCamelCase = current + previous, current return current if __name__ == "__main__": import doctest doctest.testmod()
702
_a : str = tuple[float, float, float] _a : List[Any] = tuple[float, float, float] def UpperCamelCase__ ( _A: Pointad , _A: Pointad ): '''simple docstring''' __lowerCamelCase = end_pointa[0] - end_pointa[0] __lowerCamelCase = end_pointa[1] - end_pointa[1] __lowerCamelCase = end_pointa[2] - end_pointa[2] return (x, y, z) def UpperCamelCase__ ( _A: Vectorad , _A: Vectorad ): '''simple docstring''' __lowerCamelCase = ab[1] * ac[2] - ab[2] * ac[1] # *i __lowerCamelCase = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j __lowerCamelCase = ab[0] * ac[1] - ab[1] * ac[0] # *k return (x, y, z) def UpperCamelCase__ ( _A: Vectorad , _A: int ): '''simple docstring''' return tuple(round(_A , _A ) for x in vector ) == (0, 0, 0) def UpperCamelCase__ ( _A: Pointad , _A: Pointad , _A: Pointad , _A: int = 10 ): '''simple docstring''' __lowerCamelCase = create_vector(_A , _A ) __lowerCamelCase = create_vector(_A , _A ) return is_zero_vector(get_ad_vectors_cross(_A , _A ) , _A )
571
0
from __future__ import annotations from collections import namedtuple def UpperCamelCase_ ( __a , __a , __a ) -> tuple: a__ : Union[str, Any] = namedtuple("result" , "name value" ) if (voltage, current, power).count(0 ) != 1: raise ValueError("Only one argument must be 0" ) elif power < 0: raise ValueError( "Power cannot be negative in any electrical/electronics system" ) elif voltage == 0: return result("voltage" , power / current ) elif current == 0: return result("current" , power / voltage ) elif power == 0: return result("power" , float(round(abs(voltage * current ) , 2 ) ) ) else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
37
from __future__ import annotations from collections.abc import Sequence from typing import Literal def __SCREAMING_SNAKE_CASE ( a__ : str ,a__ : str ) -> str | Literal[False]: __A : Tuple = list(a__ ) __A : Optional[int] = list(a__ ) __A : int = 0 for i in range(len(a__ ) ): if lista[i] != lista[i]: count += 1 __A : int = """_""" if count > 1: return False else: return "".join(a__ ) def __SCREAMING_SNAKE_CASE ( a__ : list[str] ) -> list[str]: __A : Optional[Any] = [] while True: __A : Tuple = ["""$"""] * len(a__ ) __A : Union[str, Any] = [] for i in range(len(a__ ) ): for j in range(i + 1 ,len(a__ ) ): __A : int = compare_string(binary[i] ,binary[j] ) if k is False: __A : List[str] = """*""" __A : Any = """*""" temp.append("""X""" ) for i in range(len(a__ ) ): if checka[i] == "$": pi.append(binary[i] ) if len(a__ ) == 0: return pi __A : Optional[Any] = list(set(a__ ) ) def __SCREAMING_SNAKE_CASE ( a__ : int ,a__ : Sequence[float] ) -> list[str]: __A : List[str] = [] for minterm in minterms: __A : List[Any] = """""" for _ in range(a__ ): __A : Union[str, Any] = str(minterm % 2 ) + string minterm //= 2 temp.append(a__ ) return temp def __SCREAMING_SNAKE_CASE ( a__ : str ,a__ : str ,a__ : int ) -> bool: __A : Optional[Any] = list(a__ ) __A : Tuple = list(a__ ) __A : Any = 0 for i in range(len(a__ ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def __SCREAMING_SNAKE_CASE ( a__ : list[list[int]] ,a__ : list[str] ) -> list[str]: __A : Optional[int] = [] __A : Tuple = [0] * len(a__ ) for i in range(len(chart[0] ) ): __A : str = 0 __A : Any = -1 for j in range(len(a__ ) ): if chart[j][i] == 1: count += 1 __A : Optional[Any] = j if count == 1: __A : int = 1 for i in range(len(a__ ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(a__ ) ): __A : List[str] = 0 temp.append(prime_implicants[i] ) while True: __A : Optional[Any] = 0 __A : Any = -1 __A : int = 0 for i in range(len(a__ ) ): __A : List[Any] = chart[i].count(1 ) if count_n > max_n: __A : Dict = count_n __A : Tuple = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(a__ ) ): __A : Union[str, Any] = 0 def __SCREAMING_SNAKE_CASE ( a__ : list[str] ,a__ : list[str] ) -> list[list[int]]: __A : Any = [[0 for x in range(len(a__ ) )] for x in range(len(a__ ) )] for i in range(len(a__ ) ): __A : List[Any] = prime_implicants[i].count("""_""" ) for j in range(len(a__ ) ): if is_for_table(prime_implicants[i] ,binary[j] ,a__ ): __A : Union[str, Any] = 1 return chart def __SCREAMING_SNAKE_CASE ( ) -> None: __A : Any = int(input("""Enter the no. of variables\n""" ) ) __A : List[str] = [ float(a__ ) for x in input( """Enter the decimal representation of Minterms 'Spaces Separated'\n""" ).split() ] __A : Dict = decimal_to_binary(a__ ,a__ ) __A : Union[str, Any] = check(a__ ) print("""Prime Implicants are:""" ) print(a__ ) __A : Optional[Any] = prime_implicant_chart(a__ ,a__ ) __A : Any = selection(a__ ,a__ ) print("""Essential Prime Implicants are:""" ) print(a__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
17
0
import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class lowerCamelCase__( unittest.TestCase): def lowerCAmelCase__ ( self: List[Any] ): __lowerCamelCase = 10 def lowerCAmelCase__ ( self: Dict ): __lowerCamelCase = [1, 2, 3, 4] __lowerCamelCase = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(UpperCamelCase_ , self.block_size , 0 ) , UpperCamelCase_ ) def lowerCAmelCase__ ( self: Any ): __lowerCamelCase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] __lowerCamelCase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(UpperCamelCase_ , self.block_size , 0 ) , UpperCamelCase_ ) def lowerCAmelCase__ ( self: Optional[int] ): __lowerCamelCase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] __lowerCamelCase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(UpperCamelCase_ , self.block_size , 0 ) , UpperCamelCase_ ) def lowerCAmelCase__ ( self: Dict ): __lowerCamelCase = """It was the year of Our Lord one thousand seven hundred and seventy-five.\n\nSpiritual revelations were conceded to England at that favoured period, as at this.""" __lowerCamelCase, __lowerCamelCase = process_story(UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , [] ) def lowerCAmelCase__ ( self: Dict ): __lowerCamelCase = """""" __lowerCamelCase, __lowerCamelCase = process_story(UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , [] ) self.assertEqual(UpperCamelCase_ , [] ) def lowerCAmelCase__ ( self: str ): __lowerCamelCase = ( """It was the year of Our Lord one thousand seven hundred and """ """seventy-five\n\nSpiritual revelations were conceded to England """ """at that favoured period, as at this.\n@highlight\n\nIt was the best of times""" ) __lowerCamelCase, __lowerCamelCase = process_story(UpperCamelCase_ ) __lowerCamelCase = [ """It was the year of Our Lord one thousand seven hundred and seventy-five.""", """Spiritual revelations were conceded to England at that favoured period, as at this.""", ] self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) __lowerCamelCase = ["""It was the best of times."""] self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self: Any ): __lowerCamelCase = torch.tensor([1, 2, 3, 4] ) __lowerCamelCase = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(UpperCamelCase_ , 0 ).numpy() , expected.numpy() ) def lowerCAmelCase__ ( self: str ): __lowerCamelCase = torch.tensor([1, 2, 3, 4, 23, 23, 23] ) __lowerCamelCase = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(UpperCamelCase_ , 23 ).numpy() , expected.numpy() ) def lowerCAmelCase__ ( self: List[Any] ): __lowerCamelCase = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) __lowerCamelCase = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(UpperCamelCase_ , 1 ).numpy() , expected.numpy() ) def lowerCAmelCase__ ( self: List[str] ): __lowerCamelCase = 1_01 __lowerCamelCase = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 1_01, 5, 6], [1, 1_01, 3, 4, 1_01, 6]] ) __lowerCamelCase = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) __lowerCamelCase = compute_token_type_ids(UpperCamelCase_ , UpperCamelCase_ ) np.testing.assert_array_equal(UpperCamelCase_ , UpperCamelCase_ )
80
import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase_ = get_tests_dir('fixtures/test_sentencepiece_bpe.model') class lowerCamelCase__( __lowerCamelCase , unittest.TestCase): UpperCAmelCase__ : int = BartphoTokenizer UpperCAmelCase__ : List[str] = False UpperCAmelCase__ : List[str] = True def lowerCAmelCase__ ( self: Tuple ): super().setUp() __lowerCamelCase = ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] __lowerCamelCase = dict(zip(UpperCamelCase_ , range(len(UpperCamelCase_ ) ) ) ) __lowerCamelCase = {"""unk_token""": """<unk>"""} __lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""monolingual_vocab_file"""] ) with open(self.monolingual_vocab_file , """w""" , encoding="""utf-8""" ) as fp: for token in vocab_tokens: fp.write(F'{token} {vocab_tokens[token]}\n' ) __lowerCamelCase = BartphoTokenizer(UpperCamelCase_ , self.monolingual_vocab_file , **self.special_tokens_map ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase__ ( self: List[str] , **UpperCamelCase_: List[str] ): kwargs.update(self.special_tokens_map ) return BartphoTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase_ ) def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: str ): __lowerCamelCase = """This is a là test""" __lowerCamelCase = """This is a<unk><unk> test""" return input_text, output_text def lowerCAmelCase__ ( self: Any ): __lowerCamelCase = BartphoTokenizer(UpperCamelCase_ , self.monolingual_vocab_file , **self.special_tokens_map ) __lowerCamelCase = """This is a là test""" __lowerCamelCase = """▁This ▁is ▁a ▁l à ▁t est""".split() __lowerCamelCase = tokenizer.tokenize(UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) __lowerCamelCase = tokens + [tokenizer.unk_token] __lowerCamelCase = [4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase_ ) , UpperCamelCase_ )
80
1
import os from datetime import datetime as dt from github import Github _lowercase: List[str] = [ '''good first issue''', '''feature request''', '''wip''', ] def _lowerCamelCase ( ): _lowerCAmelCase = Github(os.environ['GITHUB_TOKEN'] ) _lowerCAmelCase = g.get_repo('huggingface/accelerate' ) _lowerCAmelCase = repo.get_issues(state='open' ) for issue in open_issues: _lowerCAmelCase = sorted([comment for comment in issue.get_comments()] , key=lambda snake_case : i.created_at , reverse=snake_case ) _lowerCAmelCase = comments[0] if len(snake_case ) > 0 else None _lowerCAmelCase = dt.utcnow() _lowerCAmelCase = (current_time - issue.updated_at).days _lowerCAmelCase = (current_time - issue.created_at).days if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and days_since_updated > 7 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Close issue since it has been 7 days of inactivity since bot mention. issue.edit(state='closed' ) elif ( days_since_updated > 23 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Add stale comment issue.create_comment( 'This issue has been automatically marked as stale because it has not had ' 'recent activity. If you think this still needs to be addressed ' 'please comment on this thread.\n\nPlease note that issues that do not follow the ' '[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) ' 'are likely to be ignored.' ) if __name__ == "__main__": main()
192
import warnings from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch from ...models import UNetaDModel from ...schedulers import RePaintScheduler from ...utils import PIL_INTERPOLATION, logging, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput _lowercase: List[str] = logging.get_logger(__name__) # pylint: disable=invalid-name def _lowerCamelCase ( snake_case ): warnings.warn( 'The preprocess method is deprecated and will be removed in a future version. Please' ' use VaeImageProcessor.preprocess instead' , snake_case , ) if isinstance(snake_case , torch.Tensor ): return image elif isinstance(snake_case , PIL.Image.Image ): _lowerCAmelCase = [image] if isinstance(image[0] , PIL.Image.Image ): _lowerCAmelCase , _lowerCAmelCase = image[0].size _lowerCAmelCase , _lowerCAmelCase = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8 _lowerCAmelCase = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['lanczos'] ) )[None, :] for i in image] _lowerCAmelCase = np.concatenate(snake_case , axis=0 ) _lowerCAmelCase = np.array(snake_case ).astype(np.floataa ) / 2_55.0 _lowerCAmelCase = image.transpose(0 , 3 , 1 , 2 ) _lowerCAmelCase = 2.0 * image - 1.0 _lowerCAmelCase = torch.from_numpy(snake_case ) elif isinstance(image[0] , torch.Tensor ): _lowerCAmelCase = torch.cat(snake_case , dim=0 ) return image def _lowerCamelCase ( snake_case ): if isinstance(snake_case , torch.Tensor ): return mask elif isinstance(snake_case , PIL.Image.Image ): _lowerCAmelCase = [mask] if isinstance(mask[0] , PIL.Image.Image ): _lowerCAmelCase , _lowerCAmelCase = mask[0].size _lowerCAmelCase , _lowerCAmelCase = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 _lowerCAmelCase = [np.array(m.convert('L' ).resize((w, h) , resample=PIL_INTERPOLATION['nearest'] ) )[None, :] for m in mask] _lowerCAmelCase = np.concatenate(snake_case , axis=0 ) _lowerCAmelCase = mask.astype(np.floataa ) / 2_55.0 _lowerCAmelCase = 0 _lowerCAmelCase = 1 _lowerCAmelCase = torch.from_numpy(snake_case ) elif isinstance(mask[0] , torch.Tensor ): _lowerCAmelCase = torch.cat(snake_case , dim=0 ) return mask class lowerCamelCase__ ( UpperCAmelCase ): UpperCamelCase__ =42 UpperCamelCase__ =42 def __init__( self : int , lowercase__ : List[Any] , lowercase__ : Optional[Any] ): super().__init__() self.register_modules(unet=lowercase__ , scheduler=lowercase__ ) @torch.no_grad() def __call__( self : Any , lowercase__ : Union[torch.Tensor, PIL.Image.Image] , lowercase__ : Union[torch.Tensor, PIL.Image.Image] , lowercase__ : int = 2_50 , lowercase__ : float = 0.0 , lowercase__ : int = 10 , lowercase__ : int = 10 , lowercase__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowercase__ : Optional[str] = "pil" , lowercase__ : bool = True , ): _lowerCAmelCase = image _lowerCAmelCase = _preprocess_image(lowercase__ ) _lowerCAmelCase = original_image.to(device=self.device , dtype=self.unet.dtype ) _lowerCAmelCase = _preprocess_mask(lowercase__ ) _lowerCAmelCase = mask_image.to(device=self.device , dtype=self.unet.dtype ) _lowerCAmelCase = original_image.shape[0] # sample gaussian noise to begin the loop if isinstance(lowercase__ , lowercase__ ) and len(lowercase__ ) != batch_size: raise ValueError( f'You have passed a list of generators of length {len(lowercase__ )}, but requested an effective batch' f' size of {batch_size}. Make sure the batch size matches the length of the generators.' ) _lowerCAmelCase = original_image.shape _lowerCAmelCase = randn_tensor(lowercase__ , generator=lowercase__ , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(lowercase__ , lowercase__ , lowercase__ , self.device ) _lowerCAmelCase = eta _lowerCAmelCase = self.scheduler.timesteps[0] + 1 _lowerCAmelCase = generator[0] if isinstance(lowercase__ , lowercase__ ) else generator for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): if t < t_last: # predict the noise residual _lowerCAmelCase = self.unet(lowercase__ , lowercase__ ).sample # compute previous image: x_t -> x_t-1 _lowerCAmelCase = self.scheduler.step(lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ).prev_sample else: # compute the reverse: x_t-1 -> x_t _lowerCAmelCase = self.scheduler.undo_step(lowercase__ , lowercase__ , lowercase__ ) _lowerCAmelCase = t _lowerCAmelCase = (image / 2 + 0.5).clamp(0 , 1 ) _lowerCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _lowerCAmelCase = self.numpy_to_pil(lowercase__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowercase__ )
192
1
from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ : List[str] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : Union[str, Any] = { """snap-research/efficientformer-l1-300""": ( """https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json""" ), } class lowerCamelCase_ ( lowerCamelCase ): a__ = '''efficientformer''' def __init__( self , __lowerCAmelCase = [3, 2, 6, 4] , __lowerCAmelCase = [4_8, 9_6, 2_2_4, 4_4_8] , __lowerCAmelCase = [True, True, True, True] , __lowerCAmelCase = 4_4_8 , __lowerCAmelCase = 3_2 , __lowerCAmelCase = 4 , __lowerCAmelCase = 7 , __lowerCAmelCase = 5 , __lowerCAmelCase = 8 , __lowerCAmelCase = 4 , __lowerCAmelCase = 0.0 , __lowerCAmelCase = 1_6 , __lowerCAmelCase = 3 , __lowerCAmelCase = 3 , __lowerCAmelCase = 3 , __lowerCAmelCase = 2 , __lowerCAmelCase = 1 , __lowerCAmelCase = 0.0 , __lowerCAmelCase = 1 , __lowerCAmelCase = True , __lowerCAmelCase = True , __lowerCAmelCase = 1E-5 , __lowerCAmelCase = "gelu" , __lowerCAmelCase = 0.02 , __lowerCAmelCase = 1E-12 , __lowerCAmelCase = 2_2_4 , __lowerCAmelCase = 1E-05 , **__lowerCAmelCase , ): """simple docstring""" super().__init__(**__lowerCAmelCase ) __magic_name__ :List[Any] = hidden_act __magic_name__ :Union[str, Any] = hidden_dropout_prob __magic_name__ :Optional[int] = hidden_sizes __magic_name__ :int = num_hidden_layers __magic_name__ :Dict = num_attention_heads __magic_name__ :Optional[int] = initializer_range __magic_name__ :Optional[Any] = layer_norm_eps __magic_name__ :Union[str, Any] = patch_size __magic_name__ :Dict = num_channels __magic_name__ :Optional[Any] = depths __magic_name__ :Optional[int] = mlp_expansion_ratio __magic_name__ :Tuple = downsamples __magic_name__ :List[Any] = dim __magic_name__ :str = key_dim __magic_name__ :Any = attention_ratio __magic_name__ :Tuple = resolution __magic_name__ :str = pool_size __magic_name__ :Optional[Any] = downsample_patch_size __magic_name__ :Any = downsample_stride __magic_name__ :List[Any] = downsample_pad __magic_name__ :List[str] = drop_path_rate __magic_name__ :Union[str, Any] = num_metaad_blocks __magic_name__ :Any = distillation __magic_name__ :Tuple = use_layer_scale __magic_name__ :Union[str, Any] = layer_scale_init_value __magic_name__ :int = image_size __magic_name__ :Tuple = batch_norm_eps
180
SCREAMING_SNAKE_CASE__ : str = """Alexander Joslin""" import operator as op from .stack import Stack def __lowercase ( snake_case ): """simple docstring""" __magic_name__ :Optional[int] = {'''*''': op.mul, '''/''': op.truediv, '''+''': op.add, '''-''': op.sub} __magic_name__ :Stack[int] = Stack() __magic_name__ :Stack[str] = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(snake_case ) ) elif i in operators: # RULE 2 operator_stack.push(snake_case ) elif i == ")": # RULE 4 __magic_name__ :Optional[int] = operator_stack.peek() operator_stack.pop() __magic_name__ :List[str] = operand_stack.peek() operand_stack.pop() __magic_name__ :Optional[Any] = operand_stack.peek() operand_stack.pop() __magic_name__ :Optional[int] = operators[opr](snake_case, snake_case ) operand_stack.push(snake_case ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : Any = """(5 + ((4 * 2) * (2 + 3)))""" # answer = 45 print(f"{equation} = {dijkstras_two_stack_algorithm(equation)}")
180
1
"""simple docstring""" import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate _a = trt.Logger(trt.Logger.WARNING) _a = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) _a = logging.getLogger(__name__) _a = argparse.ArgumentParser() # Required parameters parser.add_argument( """--onnx_model_path""", default=None, type=str, required=True, help="""Path to ONNX model: """, ) parser.add_argument( """--output_dir""", default=None, type=str, required=True, help="""The output directory where the model checkpoints and predictions will be written.""", ) # Other parameters parser.add_argument( """--tokenizer_name""", default="""""", type=str, required=True, help="""Pretrained tokenizer name or path if not the same as model_name""", ) parser.add_argument( """--version_2_with_negative""", action="""store_true""", help="""If true, the SQuAD examples contain some that do not have an answer.""", ) parser.add_argument( """--null_score_diff_threshold""", type=float, default=0.0, help="""If null_score - best_non_null is greater than the threshold predict null.""", ) parser.add_argument( """--max_seq_length""", default=384, type=int, help=( """The maximum total input sequence length after WordPiece tokenization. Sequences """ """longer than this will be truncated, and sequences shorter than this will be padded.""" ), ) parser.add_argument( """--doc_stride""", default=128, type=int, help="""When splitting up a long document into chunks, how much stride to take between chunks.""", ) parser.add_argument("""--per_device_eval_batch_size""", default=8, type=int, help="""Batch size per GPU/CPU for evaluation.""") parser.add_argument( """--n_best_size""", default=20, type=int, help="""The total number of n-best predictions to generate in the nbest_predictions.json output file.""", ) parser.add_argument( """--max_answer_length""", default=30, type=int, help=( """The maximum length of an answer that can be generated. This is needed because the start """ """and end predictions are not conditioned on one another.""" ), ) parser.add_argument("""--seed""", type=int, default=42, help="""random seed for initialization""") parser.add_argument( """--dataset_name""", type=str, default=None, required=True, help="""The name of the dataset to use (via the datasets library).""", ) parser.add_argument( """--dataset_config_name""", type=str, default=None, help="""The configuration name of the dataset to use (via the datasets library).""", ) parser.add_argument( """--preprocessing_num_workers""", type=int, default=4, help="""A csv or a json file containing the training data.""" ) parser.add_argument("""--overwrite_cache""", action="""store_true""", help="""Overwrite the cached training and evaluation sets""") parser.add_argument( """--fp16""", action="""store_true""", help="""Whether to use 16-bit (mixed) precision instead of 32-bit""", ) parser.add_argument( """--int8""", action="""store_true""", help="""Whether to use INT8""", ) _a = parser.parse_args() if args.tokenizer_name: _a = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( """You are instantiating a new tokenizer from scratch. This is not supported by this script.""" """You can do it from another script, save it, and load it from here, using --tokenizer_name.""" ) logger.info("""Training/evaluation parameters %s""", args) _a = args.per_device_eval_batch_size _a = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties _a = True _a = """temp_engine/bert-fp32.engine""" if args.fpaa: _a = """temp_engine/bert-fp16.engine""" if args.inta: _a = """temp_engine/bert-int8.engine""" # import ONNX file if not os.path.exists("""temp_engine"""): os.makedirs("""temp_engine""") _a = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, """rb""") as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network _a = [network.get_input(i) for i in range(network.num_inputs)] _a = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: _a = 1 << 50 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) _a = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) _a = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, """wb""") as f: f.write(engine.serialize()) def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, __snake_case ) -> Tuple: """simple docstring""" _UpperCamelCase = np.asarray(inputs['''input_ids'''], dtype=np.intaa ) _UpperCamelCase = np.asarray(inputs['''attention_mask'''], dtype=np.intaa ) _UpperCamelCase = np.asarray(inputs['''token_type_ids'''], dtype=np.intaa ) # Copy inputs cuda.memcpy_htod_async(d_inputs[0], input_ids.ravel(), __snake_case ) cuda.memcpy_htod_async(d_inputs[1], attention_mask.ravel(), __snake_case ) cuda.memcpy_htod_async(d_inputs[2], token_type_ids.ravel(), __snake_case ) # start time _UpperCamelCase = time.time() # Run inference context.execute_async( bindings=[int(__snake_case ) for d_inp in d_inputs] + [int(__snake_case ), int(__snake_case )], stream_handle=stream.handle ) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(__snake_case, __snake_case, __snake_case ) cuda.memcpy_dtoh_async(__snake_case, __snake_case, __snake_case ) # Synchronize the stream and take time stream.synchronize() # end time _UpperCamelCase = time.time() _UpperCamelCase = end_time - start_time _UpperCamelCase = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. _a = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. _a = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError("""Evaluation requires a dataset name""") # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. _a = raw_datasets["""validation"""].column_names _a = """question""" if """question""" in column_names else column_names[0] _a = """context""" if """context""" in column_names else column_names[1] _a = """answers""" if """answers""" in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). _a = tokenizer.padding_side == """right""" if args.max_seq_length > tokenizer.model_max_length: logger.warning( F"""The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the""" F"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) _a = min(args.max_seq_length, tokenizer.model_max_length) def lowerCamelCase__ ( __snake_case ) -> Optional[int]: """simple docstring""" _UpperCamelCase = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. _UpperCamelCase = tokenizer( examples[question_column_name if pad_on_right else context_column_name], examples[context_column_name if pad_on_right else question_column_name], truncation='''only_second''' if pad_on_right else '''only_first''', max_length=__snake_case, stride=args.doc_stride, return_overflowing_tokens=__snake_case, return_offsets_mapping=__snake_case, padding='''max_length''', ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. _UpperCamelCase = tokenized_examples.pop('''overflow_to_sample_mapping''' ) # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. _UpperCamelCase = [] for i in range(len(tokenized_examples['''input_ids'''] ) ): # Grab the sequence corresponding to that example (to know what is the context and what is the question). _UpperCamelCase = tokenized_examples.sequence_ids(__snake_case ) _UpperCamelCase = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. _UpperCamelCase = sample_mapping[i] tokenized_examples["example_id"].append(examples['''id'''][sample_index] ) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. _UpperCamelCase = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples['''offset_mapping'''][i] ) ] return tokenized_examples _a = raw_datasets["""validation"""] # Validation Feature Creation _a = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc="""Running tokenizer on validation dataset""", ) _a = default_data_collator _a = eval_dataset.remove_columns(["""example_id""", """offset_mapping"""]) _a = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case="eval" ) -> str: """simple docstring""" _UpperCamelCase = postprocess_qa_predictions( examples=__snake_case, features=__snake_case, predictions=__snake_case, version_2_with_negative=args.version_2_with_negative, n_best_size=args.n_best_size, max_answer_length=args.max_answer_length, null_score_diff_threshold=args.null_score_diff_threshold, output_dir=args.output_dir, prefix=__snake_case, ) # Format the result to the format the metric expects. if args.version_2_with_negative: _UpperCamelCase = [ {'''id''': k, '''prediction_text''': v, '''no_answer_probability''': 0.0} for k, v in predictions.items() ] else: _UpperCamelCase = [{'''id''': k, '''prediction_text''': v} for k, v in predictions.items()] _UpperCamelCase = [{'''id''': ex['''id'''], '''answers''': ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=__snake_case, label_ids=__snake_case ) _a = load_metric("""squad_v2""" if args.version_2_with_negative else """squad""") # Evaluation! logger.info("""Loading ONNX model %s for evaluation""", args.onnx_model_path) with open(engine_name, """rb""") as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def lowerCamelCase__ ( __snake_case ) -> List[str]: """simple docstring""" return trt.volume(engine.get_binding_shape(__snake_case ) ) * engine.get_binding_dtype(__snake_case ).itemsize # Allocate device memory for inputs and outputs. _a = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer _a = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) _a = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) _a = cuda.mem_alloc(h_outputa.nbytes) _a = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. _a = cuda.Stream() # Evaluation logger.info("""***** Running Evaluation *****""") logger.info(F""" Num examples = {len(eval_dataset)}""") logger.info(F""" Batch size = {args.per_device_eval_batch_size}""") _a = 0.0 _a = 0 _a = timeit.default_timer() _a = None for step, batch in enumerate(eval_dataloader): _a , _a = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 _a , _a = outputs _a = torch.tensor(start_logits) _a = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered _a = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-100) _a = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-100) _a = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) _a = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100) if all_preds is not None: _a = nested_truncate(all_preds, len(eval_dataset)) _a = timeit.default_timer() - start_time logger.info(""" Evaluation done in total %f secs (%f sec per example)""", evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info("""Average Inference Time = {:.3f} ms""".format(total_time * 1000 / niter)) logger.info("""Total Inference Time = {:.3f} ms""".format(total_time * 1000)) logger.info("""Total Number of Inference = %d""", niter) _a = post_processing_function(eval_examples, eval_dataset, all_preds) _a = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(F"""Evaluation metrics: {eval_metric}""")
19
"""simple docstring""" import argparse import fairseq import torch from torch import nn from transformers import ( MBartaaTokenizer, MBartConfig, MBartForCausalLM, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() _a = logging.get_logger(__name__) _a = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } _a = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case, __snake_case ) -> Tuple: """simple docstring""" for attribute in key.split('''.''' ): _UpperCamelCase = getattr(__snake_case, __snake_case ) if weight_type is not None: _UpperCamelCase = getattr(__snake_case, __snake_case ).shape else: _UpperCamelCase = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": _UpperCamelCase = value elif weight_type == "weight_g": _UpperCamelCase = value elif weight_type == "weight_v": _UpperCamelCase = value elif weight_type == "bias": _UpperCamelCase = value else: _UpperCamelCase = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def lowerCamelCase__ ( __snake_case, __snake_case ) -> List[str]: """simple docstring""" _UpperCamelCase = [] _UpperCamelCase = fairseq_model.state_dict() _UpperCamelCase = hf_model.feature_extractor _UpperCamelCase = hf_model.adapter for name, value in fairseq_dict.items(): _UpperCamelCase = False if "conv_layers" in name: load_conv_layer( __snake_case, __snake_case, __snake_case, __snake_case, hf_model.config.feat_extract_norm == '''group''', ) _UpperCamelCase = True elif any(x in name for x in ['''adaptor''', '''w2v_encoder.proj.''', '''w2v_proj_ln.'''] ): load_adapter(__snake_case, __snake_case, __snake_case, __snake_case ) _UpperCamelCase = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: _UpperCamelCase = True if "*" in mapped_key: _UpperCamelCase = name.split(__snake_case )[0].split('''.''' )[-2] _UpperCamelCase = mapped_key.replace('''*''', __snake_case ) if "weight_g" in name: _UpperCamelCase = '''weight_g''' elif "weight_v" in name: _UpperCamelCase = '''weight_v''' elif "bias" in name: _UpperCamelCase = '''bias''' elif "weight" in name: _UpperCamelCase = '''weight''' else: _UpperCamelCase = None set_recursively(__snake_case, __snake_case, __snake_case, __snake_case, __snake_case ) continue if not is_used: unused_weights.append(__snake_case ) logger.warning(F'''Unused weights: {unused_weights}''' ) def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case, __snake_case ) -> List[Any]: """simple docstring""" _UpperCamelCase = full_name.split('''conv_layers.''' )[-1] _UpperCamelCase = name.split('''.''' ) _UpperCamelCase = int(items[0] ) _UpperCamelCase = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) _UpperCamelCase = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) _UpperCamelCase = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) _UpperCamelCase = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) _UpperCamelCase = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(__snake_case ) def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case ) -> Dict: """simple docstring""" _UpperCamelCase = full_name.split('''adaptor.''' )[-1] _UpperCamelCase = name.split('''.''' ) if items[1].isdigit(): _UpperCamelCase = int(items[1] ) else: _UpperCamelCase = None if "adaptor" not in full_name: if "proj_ln" in full_name: # has to be layer norm if "bias" in name: assert ( value.shape == adapter.proj_layer_norm.bias.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found.''' _UpperCamelCase = value logger.info(F'''Adapter proj layer norm bias was initialized from {full_name}.''' ) if "weight" in name: assert ( value.shape == adapter.proj_layer_norm.weight.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found.''' _UpperCamelCase = value else: # has to be projection layer if "bias" in name: assert ( value.shape == adapter.proj.bias.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found.''' _UpperCamelCase = value logger.info(F'''Adapter proj layer bias was initialized from {full_name}.''' ) if "weight" in name: assert ( value.shape == adapter.proj.weight.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found.''' _UpperCamelCase = value logger.info(F'''Adapter proj layer weight was initialized from {full_name}.''' ) elif isinstance(__snake_case, __snake_case ): if "bias" in name: assert ( value.shape == adapter.layers[layer_id].conv.bias.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found.''' _UpperCamelCase = value logger.info(F'''Adapter layer {layer_id} bias was initialized from {full_name}.''' ) elif "weight" in name: assert ( value.shape == adapter.layers[layer_id].conv.weight.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found.''' _UpperCamelCase = value logger.info(F'''Adapter layer {layer_id} bias was initialized from {full_name}.''' ) else: unused_weights.append(__snake_case ) def lowerCamelCase__ ( __snake_case ) -> str: """simple docstring""" _UpperCamelCase , _UpperCamelCase = emb.weight.shape _UpperCamelCase = nn.Linear(__snake_case, __snake_case, bias=__snake_case ) _UpperCamelCase = emb.weight.data return lin_layer @torch.no_grad() def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = WavaVecaConfig.from_pretrained( __snake_case, add_adapter=__snake_case, adapter_stride=__snake_case, adapter_kernel_size=__snake_case, use_auth_token=__snake_case, output_hidden_size=__snake_case, ) _UpperCamelCase = MBartConfig.from_pretrained(__snake_case ) # load model _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path], arg_overrides={ '''config_yaml''': config_yaml_path, '''data''': '''/'''.join(dict_path.split('''/''' )[:-1] ), '''w2v_path''': checkpoint_path, '''load_pretrained_decoder_from''': None, }, ) _UpperCamelCase = model[0].eval() # load feature extractor _UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained(__snake_case, use_auth_token=__snake_case ) # set weights for wav2vec2 encoder _UpperCamelCase = WavaVecaModel(__snake_case ) recursively_load_weights_wavaveca(model.encoder, __snake_case ) # load decoder weights _UpperCamelCase = MBartForCausalLM(__snake_case ) _UpperCamelCase , _UpperCamelCase = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict(), strict=__snake_case ) logger.warning(F'''The following keys are missing when loading the decoder weights: {missing_keys}''' ) logger.warning(F'''The following keys are unexpected when loading the decoder weights: {unexpected_keys}''' ) _UpperCamelCase = SpeechEncoderDecoderModel(encoder=__snake_case, decoder=__snake_case ) _UpperCamelCase = False _UpperCamelCase = MBartaaTokenizer(__snake_case ) tokenizer.save_pretrained(__snake_case ) _UpperCamelCase = hf_wavavec.config.to_dict() _UpperCamelCase = tokenizer.pad_token_id _UpperCamelCase = tokenizer.bos_token_id _UpperCamelCase = tokenizer.eos_token_id _UpperCamelCase = '''mbart50''' _UpperCamelCase = '''wav2vec2''' _UpperCamelCase = tokenizer.eos_token_id _UpperCamelCase = 25_00_04 _UpperCamelCase = tokenizer.eos_token_id _UpperCamelCase = SpeechEncoderDecoderConfig.from_dict(__snake_case ) hf_wavavec.save_pretrained(__snake_case ) feature_extractor.save_pretrained(__snake_case ) if __name__ == "__main__": _a = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_yaml_path""", default=None, type=str, help="""Path to yaml file of fine-tuned model""") parser.add_argument( """--encoder_config_path""", default="""facebook/wav2vec2-xls-r-1b""", type=str, help="""Path to hf encoder wav2vec2 checkpoint config""", ) parser.add_argument( """--decoder_config_path""", default="""facebook/mbart-large-50-one-to-many-mmt""", type=str, help="""Path to hf decoder checkpoint config""", ) parser.add_argument("""--add_adapter""", default=True, type=bool, help="""whethere to add model adapter layers""") parser.add_argument("""--adapter_stride""", default=2, type=int, help="""stride of adapter layers""") parser.add_argument("""--adapter_kernel_size""", default=3, type=int, help="""kernel size of adapter layers""") parser.add_argument("""--encoder_output_dim""", default=1024, type=int, help="""encoder output dim""") parser.add_argument("""--start_token_id""", default=25_0004, type=int, help="""`decoder_start_token_id` of model config""") _a = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, args.config_yaml_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, add_adapter=args.add_adapter, adapter_kernel_size=args.adapter_kernel_size, adapter_stride=args.adapter_stride, decoder_start_token_id=args.start_token_id, encoder_output_dim=args.encoder_output_dim, )
19
1
def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = [1] for i in range(2 , _SCREAMING_SNAKE_CASE ): factorials.append(factorials[-1] * i ) assert 0 <= k < factorials[-1] * n, "k out of bounds" SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = list(range(_SCREAMING_SNAKE_CASE ) ) # Find permutation while factorials: SCREAMING_SNAKE_CASE = factorials.pop() SCREAMING_SNAKE_CASE = divmod(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) permutation.append(elements[number] ) elements.remove(elements[number] ) permutation.append(elements[0] ) return permutation if __name__ == "__main__": import doctest doctest.testmod()
719
import pytest from datasets import inspect_metric, list_metrics, load_metric @pytest.fixture def __lowercase ( _SCREAMING_SNAKE_CASE ) -> List[Any]: '''simple docstring''' monkeypatch.setattr("""datasets.utils.deprecation_utils._emitted_deprecation_warnings""" , set() ) @pytest.fixture def __lowercase ( _SCREAMING_SNAKE_CASE ) -> Dict: '''simple docstring''' class UpperCamelCase__ : '''simple docstring''' def __init__( self : int ,lowerCamelCase__ : Dict ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = metric_id class UpperCamelCase__ : '''simple docstring''' __snake_case : List[str] = [MetricMock(lowerCAmelCase_ ) for metric_id in ["accuracy", "mse", "precision", "codeparrot/apps_metric"]] def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> str: '''simple docstring''' return self._metrics monkeypatch.setattr("""datasets.inspect.huggingface_hub""" , HfhMock() ) @pytest.mark.parametrize( """func, args""" , [(load_metric, ("""metrics/mse""",)), (list_metrics, ()), (inspect_metric, ("""metrics/mse""", """tmp_path"""))] ) def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: '''simple docstring''' if "tmp_path" in args: SCREAMING_SNAKE_CASE = tuple(arg if arg != """tmp_path""" else tmp_path for arg in args ) with pytest.warns(_SCREAMING_SNAKE_CASE , match="""https://huggingface.co/docs/evaluate""" ): func(*_SCREAMING_SNAKE_CASE )
116
0
"""simple docstring""" import os import unittest from tempfile import TemporaryDirectory import torch import torch.nn as nn from accelerate.utils import ( OffloadedWeightsLoader, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, ) class snake_case_ ( nn.Module ): """simple docstring""" def __init__( self) -> Union[str, Any]: super().__init__() UpperCamelCase = nn.Linear(3 , 4) UpperCamelCase = nn.BatchNormad(4) UpperCamelCase = nn.Linear(4 , 5) def UpperCAmelCase__ ( self , lowerCamelCase_) -> str: return self.lineara(self.batchnorm(self.lineara(lowerCAmelCase_))) class snake_case_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self) -> Tuple: UpperCamelCase = ModelForTest() with TemporaryDirectory() as tmp_dir: offload_state_dict(lowerCAmelCase_ , model.state_dict()) UpperCamelCase = os.path.join(lowerCAmelCase_ , '''index.json''') self.assertTrue(os.path.isfile(lowerCAmelCase_)) # TODO: add tests on what is inside the index for key in ["linear1.weight", "linear1.bias", "linear2.weight", "linear2.bias"]: UpperCamelCase = os.path.join(lowerCAmelCase_ , F'{key}.dat') self.assertTrue(os.path.isfile(lowerCAmelCase_)) # TODO: add tests on the fact weights are properly loaded def UpperCAmelCase__ ( self) -> str: UpperCamelCase = [torch.floataa, torch.floataa, torch.bfloataa] for dtype in dtypes: UpperCamelCase = torch.randn(2 , 3 , dtype=lowerCAmelCase_) with TemporaryDirectory() as tmp_dir: UpperCamelCase = offload_weight(lowerCAmelCase_ , '''weight''' , lowerCAmelCase_ , {}) UpperCamelCase = os.path.join(lowerCAmelCase_ , '''weight.dat''') self.assertTrue(os.path.isfile(lowerCAmelCase_)) self.assertDictEqual(lowerCAmelCase_ , {'''weight''': {'''shape''': [2, 3], '''dtype''': str(lowerCAmelCase_).split('''.''')[1]}}) UpperCamelCase = load_offloaded_weight(lowerCAmelCase_ , index['''weight''']) self.assertTrue(torch.equal(lowerCAmelCase_ , lowerCAmelCase_)) def UpperCAmelCase__ ( self) -> Optional[Any]: UpperCamelCase = ModelForTest() UpperCamelCase = model.state_dict() UpperCamelCase = {k: v for k, v in state_dict.items() if '''linear2''' not in k} UpperCamelCase = {k: v for k, v in state_dict.items() if '''linear2''' in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(lowerCAmelCase_ , lowerCAmelCase_) UpperCamelCase = OffloadedWeightsLoader(state_dict=lowerCAmelCase_ , save_folder=lowerCAmelCase_) # Every key is there with the right value self.assertEqual(sorted(lowerCAmelCase_) , sorted(state_dict.keys())) for key, param in state_dict.items(): self.assertTrue(torch.allclose(lowerCAmelCase_ , weight_map[key])) UpperCamelCase = {k: v for k, v in state_dict.items() if '''weight''' in k} UpperCamelCase = {k: v for k, v in state_dict.items() if '''weight''' not in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(lowerCAmelCase_ , lowerCAmelCase_) UpperCamelCase = OffloadedWeightsLoader(state_dict=lowerCAmelCase_ , save_folder=lowerCAmelCase_) # Every key is there with the right value self.assertEqual(sorted(lowerCAmelCase_) , sorted(state_dict.keys())) for key, param in state_dict.items(): self.assertTrue(torch.allclose(lowerCAmelCase_ , weight_map[key])) with TemporaryDirectory() as tmp_dir: offload_state_dict(lowerCAmelCase_ , lowerCAmelCase_) # Duplicates are removed UpperCamelCase = OffloadedWeightsLoader(state_dict=lowerCAmelCase_ , save_folder=lowerCAmelCase_) # Every key is there with the right value self.assertEqual(sorted(lowerCAmelCase_) , sorted(state_dict.keys())) for key, param in state_dict.items(): self.assertTrue(torch.allclose(lowerCAmelCase_ , weight_map[key])) def UpperCAmelCase__ ( self) -> List[Any]: UpperCamelCase = {'''a.1''': 0, '''a.10''': 1, '''a.2''': 2} UpperCamelCase = extract_submodules_state_dict(lowerCAmelCase_ , ['''a.1''', '''a.2''']) self.assertDictEqual(lowerCAmelCase_ , {'''a.1''': 0, '''a.2''': 2}) UpperCamelCase = {'''a.1.a''': 0, '''a.10.a''': 1, '''a.2.a''': 2} UpperCamelCase = extract_submodules_state_dict(lowerCAmelCase_ , ['''a.1''', '''a.2''']) self.assertDictEqual(lowerCAmelCase_ , {'''a.1.a''': 0, '''a.2.a''': 2})
34
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=__lowerCAmelCase ) class a ( __lowerCAmelCase ): """simple docstring""" lowerCamelCase :str = field(default='''text-classification''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) lowerCamelCase :ClassVar[Features] = Features({'''text''': Value('''string''' )} ) lowerCamelCase :ClassVar[Features] = Features({'''labels''': ClassLabel} ) lowerCamelCase :str = "text" lowerCamelCase :str = "labels" def UpperCAmelCase ( self , lowerCAmelCase_ ) -> Optional[int]: if self.label_column not in features: raise ValueError(F'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] , lowerCAmelCase_ ): raise ValueError(F'''Column {self.label_column} is not a ClassLabel.''' ) _A = copy.deepcopy(self ) _A = self.label_schema.copy() _A = features[self.label_column] _A = label_schema return task_template @property def UpperCAmelCase ( self ) -> Dict[str, str]: return { self.text_column: "text", self.label_column: "labels", }
401
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { 'facebook/deit-base-distilled-patch16-224': ( 'https://huggingface.co/facebook/deit-base-patch16-224/resolve/main/config.json' ), # See all DeiT models at https://huggingface.co/models?filter=deit } class a ( UpperCAmelCase ): _lowercase = "deit" def __init__( self , A_=768 , A_=12 , A_=12 , A_=3072 , A_="gelu" , A_=0.0 , A_=0.0 , A_=0.02 , A_=1e-12 , A_=224 , A_=16 , A_=3 , A_=True , A_=16 , **A_ , ): '''simple docstring''' super().__init__(**A_ ) _UpperCAmelCase : str = hidden_size _UpperCAmelCase : List[str] = num_hidden_layers _UpperCAmelCase : Optional[int] = num_attention_heads _UpperCAmelCase : int = intermediate_size _UpperCAmelCase : Optional[int] = hidden_act _UpperCAmelCase : int = hidden_dropout_prob _UpperCAmelCase : Dict = attention_probs_dropout_prob _UpperCAmelCase : Tuple = initializer_range _UpperCAmelCase : Union[str, Any] = layer_norm_eps _UpperCAmelCase : List[str] = image_size _UpperCAmelCase : Optional[Any] = patch_size _UpperCAmelCase : str = num_channels _UpperCAmelCase : int = qkv_bias _UpperCAmelCase : str = encoder_stride class a ( UpperCAmelCase ): _lowercase = version.parse("1.11" ) @property def _UpperCAmelCase ( self ): '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def _UpperCAmelCase ( self ): '''simple docstring''' return 1e-4
467
import fire from utils import calculate_rouge, save_json def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: int , lowerCAmelCase: Tuple , lowerCAmelCase: Any=None , **lowerCAmelCase: Any ) -> Dict: _UpperCAmelCase : Optional[Any] = [x.strip() for x in open(lowerCAmelCase ).readlines()] _UpperCAmelCase : str = [x.strip() for x in open(lowerCAmelCase ).readlines()][: len(lowerCAmelCase )] _UpperCAmelCase : str = calculate_rouge(lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ) if save_path is not None: save_json(lowerCAmelCase , lowerCAmelCase , indent=lowerCAmelCase ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
467
1
"""simple docstring""" from string import ascii_lowercase, ascii_uppercase def SCREAMING_SNAKE_CASE ( lowercase__ ) -> str: if not sentence: return "" lowerCAmelCase__ : List[Any] = dict(zip(lowercase__ , lowercase__ ) ) return lower_to_upper.get(sentence[0] , sentence[0] ) + sentence[1:] if __name__ == "__main__": from doctest import testmod testmod()
453
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { """microsoft/beit-base-patch16-224-pt22k""": ( """https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json""" ), # See all BEiT models at https://huggingface.co/models?filter=beit } class __a ( __magic_name__ ): """simple docstring""" __UpperCamelCase : Union[str, Any] = 'beit' def __init__( self , snake_case=8_192 , snake_case=768 , snake_case=12 , snake_case=12 , snake_case=3_072 , snake_case="gelu" , snake_case=0.0 , snake_case=0.0 , snake_case=0.02 , snake_case=1e-12 , snake_case=224 , snake_case=16 , snake_case=3 , snake_case=False , snake_case=False , snake_case=False , snake_case=False , snake_case=0.1 , snake_case=0.1 , snake_case=True , snake_case=[3, 5, 7, 11] , snake_case=[1, 2, 3, 6] , snake_case=True , snake_case=0.4 , snake_case=256 , snake_case=1 , snake_case=False , snake_case=255 , **snake_case , ): """simple docstring""" super().__init__(**snake_case ) lowerCAmelCase__ : Union[str, Any] = vocab_size lowerCAmelCase__ : int = hidden_size lowerCAmelCase__ : str = num_hidden_layers lowerCAmelCase__ : Any = num_attention_heads lowerCAmelCase__ : List[str] = intermediate_size lowerCAmelCase__ : int = hidden_act lowerCAmelCase__ : Optional[Any] = hidden_dropout_prob lowerCAmelCase__ : str = attention_probs_dropout_prob lowerCAmelCase__ : Optional[int] = initializer_range lowerCAmelCase__ : Dict = layer_norm_eps lowerCAmelCase__ : int = image_size lowerCAmelCase__ : Union[str, Any] = patch_size lowerCAmelCase__ : Dict = num_channels lowerCAmelCase__ : Optional[Any] = use_mask_token lowerCAmelCase__ : Dict = use_absolute_position_embeddings lowerCAmelCase__ : Any = use_relative_position_bias lowerCAmelCase__ : List[Any] = use_shared_relative_position_bias lowerCAmelCase__ : Dict = layer_scale_init_value lowerCAmelCase__ : Optional[int] = drop_path_rate lowerCAmelCase__ : Optional[Any] = use_mean_pooling # decode head attributes (semantic segmentation) lowerCAmelCase__ : Optional[int] = out_indices lowerCAmelCase__ : List[Any] = pool_scales # auxiliary head attributes (semantic segmentation) lowerCAmelCase__ : List[Any] = use_auxiliary_head lowerCAmelCase__ : Optional[int] = auxiliary_loss_weight lowerCAmelCase__ : List[str] = auxiliary_channels lowerCAmelCase__ : Optional[Any] = auxiliary_num_convs lowerCAmelCase__ : Union[str, Any] = auxiliary_concat_input lowerCAmelCase__ : List[str] = semantic_loss_ignore_index class __a ( __magic_name__ ): """simple docstring""" __UpperCamelCase : List[str] = version.parse('1.11' ) @property def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" return 1e-4
453
1
'''simple docstring''' import math def _lowerCamelCase ( lowerCamelCase_ : float , lowerCamelCase_ : float ): """simple docstring""" return math.pow(lowerCamelCase_ , 2 ) - a def _lowerCamelCase ( lowerCamelCase_ : float ): """simple docstring""" return 2 * x def _lowerCamelCase ( lowerCamelCase_ : float ): """simple docstring""" UpperCAmelCase_ : Optional[int] = 2.0 while start <= a: UpperCAmelCase_ : Tuple = math.pow(lowerCamelCase_ , 2 ) return start def _lowerCamelCase ( lowerCamelCase_ : float , lowerCamelCase_ : int = 9999 , lowerCamelCase_ : float = 0.00_0000_0000_0001 ): """simple docstring""" if a < 0: raise ValueError('math domain error' ) UpperCAmelCase_ : Dict = get_initial_point(lowerCamelCase_ ) for _ in range(lowerCamelCase_ ): UpperCAmelCase_ : Tuple = value UpperCAmelCase_ : Any = value - fx(lowerCamelCase_ , lowerCamelCase_ ) / fx_derivative(lowerCamelCase_ ) if abs(prev_value - value ) < tolerance: return value return value if __name__ == "__main__": from doctest import testmod testmod()
714
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case__ : Dict = { '''configuration_git''': ['''GIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GitConfig''', '''GitVisionConfig'''], '''processing_git''': ['''GitProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Any = [ '''GIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GitForCausalLM''', '''GitModel''', '''GitPreTrainedModel''', '''GitVisionModel''', ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys snake_case__ : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
389
0
import gc import threading import time import psutil import torch class SCREAMING_SNAKE_CASE__ : '''simple docstring''' def __init__( self : Union[str, Any] ) -> str: """simple docstring""" _UpperCAmelCase = psutil.Process() _UpperCAmelCase = False def lowerCamelCase ( self : List[Any] ) -> int: """simple docstring""" _UpperCAmelCase = -1 while True: _UpperCAmelCase = max(self.process.memory_info().rss , self.cpu_memory_peak ) # can't sleep or will not catch the peak right (this comment is here on purpose) if not self.peak_monitoring: break def lowerCamelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" _UpperCAmelCase = True _UpperCAmelCase = threading.Thread(target=self.peak_monitor ) _UpperCAmelCase = True self.thread.start() def lowerCamelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" _UpperCAmelCase = False self.thread.join() return self.cpu_memory_peak __a: Union[str, Any] = PeakCPUMemory() def _SCREAMING_SNAKE_CASE ( ) -> List[Any]: # Time _UpperCAmelCase = {"""time""": time.time()} gc.collect() torch.cuda.empty_cache() # CPU mem _UpperCAmelCase = psutil.Process().memory_info().rss cpu_peak_tracker.start() # GPU mem for i in range(torch.cuda.device_count() ): _UpperCAmelCase = torch.cuda.memory_allocated(__snake_case ) torch.cuda.reset_peak_memory_stats() return measures def _SCREAMING_SNAKE_CASE ( __snake_case ) -> Union[str, Any]: # Time _UpperCAmelCase = {"""time""": time.time() - start_measures["""time"""]} gc.collect() torch.cuda.empty_cache() # CPU mem _UpperCAmelCase = (psutil.Process().memory_info().rss - start_measures["""cpu"""]) / 2**2_0 _UpperCAmelCase = (cpu_peak_tracker.stop() - start_measures["""cpu"""]) / 2**2_0 # GPU mem for i in range(torch.cuda.device_count() ): _UpperCAmelCase = (torch.cuda.memory_allocated(__snake_case ) - start_measures[str(__snake_case )]) / 2**2_0 _UpperCAmelCase = (torch.cuda.max_memory_allocated(__snake_case ) - start_measures[str(__snake_case )]) / 2**2_0 return measures def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ) -> str: print(f"""{description}:""" ) print(f"""- Time: {measures["time"]:.2f}s""" ) for i in range(torch.cuda.device_count() ): print(f"""- GPU {i} allocated: {measures[str(__snake_case )]:.2f}MiB""" ) _UpperCAmelCase = measures[f"""{i}-peak"""] print(f"""- GPU {i} peak: {peak:.2f}MiB""" ) print(f"""- CPU RAM allocated: {measures["cpu"]:.2f}MiB""" ) print(f"""- CPU RAM peak: {measures["cpu-peak"]:.2f}MiB""" )
108
"""simple docstring""" import warnings from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging _A = logging.get_logger(__name__) _A = { """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/config.json""", # See all BART models at https://huggingface.co/models?filter=bart } class lowerCamelCase ( lowerCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = 'bart' SCREAMING_SNAKE_CASE = ['past_key_values'] SCREAMING_SNAKE_CASE = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__(self , _lowerCamelCase=50265 , _lowerCamelCase=1024 , _lowerCamelCase=12 , _lowerCamelCase=4096 , _lowerCamelCase=16 , _lowerCamelCase=12 , _lowerCamelCase=4096 , _lowerCamelCase=16 , _lowerCamelCase=0.0 , _lowerCamelCase=0.0 , _lowerCamelCase="gelu" , _lowerCamelCase=1024 , _lowerCamelCase=0.1 , _lowerCamelCase=0.0 , _lowerCamelCase=0.0 , _lowerCamelCase=0.02 , _lowerCamelCase=0.0 , _lowerCamelCase=False , _lowerCamelCase=True , _lowerCamelCase=3 , _lowerCamelCase=1 , _lowerCamelCase=0 , _lowerCamelCase=2 , _lowerCamelCase=True , _lowerCamelCase=2 , _lowerCamelCase=2 , **_lowerCamelCase , ): """simple docstring""" UpperCAmelCase__ : str = vocab_size UpperCAmelCase__ : Optional[Any] = max_position_embeddings UpperCAmelCase__ : int = d_model UpperCAmelCase__ : str = encoder_ffn_dim UpperCAmelCase__ : List[str] = encoder_layers UpperCAmelCase__ : Optional[int] = encoder_attention_heads UpperCAmelCase__ : Optional[int] = decoder_ffn_dim UpperCAmelCase__ : Dict = decoder_layers UpperCAmelCase__ : int = decoder_attention_heads UpperCAmelCase__ : Optional[Any] = dropout UpperCAmelCase__ : int = attention_dropout UpperCAmelCase__ : str = activation_dropout UpperCAmelCase__ : Optional[int] = activation_function UpperCAmelCase__ : List[str] = init_std UpperCAmelCase__ : Dict = encoder_layerdrop UpperCAmelCase__ : Any = decoder_layerdrop UpperCAmelCase__ : List[str] = classifier_dropout UpperCAmelCase__ : Any = use_cache UpperCAmelCase__ : Union[str, Any] = encoder_layers UpperCAmelCase__ : List[Any] = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( num_labels=_lowerCamelCase , pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , is_encoder_decoder=_lowerCamelCase , decoder_start_token_id=_lowerCamelCase , forced_eos_token_id=_lowerCamelCase , **_lowerCamelCase , ) # ensure backward compatibility for BART CNN models if self.forced_bos_token_id is None and kwargs.get("""force_bos_token_to_be_generated""" , _lowerCamelCase ): UpperCAmelCase__ : List[Any] = self.bos_token_id warnings.warn( F"""Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. """ """The config can simply be saved and uploaded again to be fixed.""" ) class lowerCamelCase ( lowerCAmelCase__ ): '''simple docstring''' @property def _a (self ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase__ : int = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: UpperCAmelCase__ : Dict = {0: """batch"""} UpperCAmelCase__ : Tuple = {0: """batch""", 1: """past_decoder_sequence + sequence"""} else: UpperCAmelCase__ : Dict = {0: """batch""", 1: """decoder_sequence"""} UpperCAmelCase__ : List[str] = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(_lowerCamelCase , direction="""inputs""" ) elif self.task == "causal-lm": # TODO: figure this case out. UpperCAmelCase__ : str = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: UpperCAmelCase__ , UpperCAmelCase__ : List[str] = self.num_layers for i in range(_lowerCamelCase ): UpperCAmelCase__ : Optional[int] = {0: """batch""", 2: """past_sequence + sequence"""} UpperCAmelCase__ : int = {0: """batch""", 2: """past_sequence + sequence"""} else: UpperCAmelCase__ : Union[str, Any] = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ("""decoder_input_ids""", {0: """batch""", 1: """decoder_sequence"""}), ("""decoder_attention_mask""", {0: """batch""", 1: """decoder_sequence"""}), ] ) return common_inputs @property def _a (self ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase__ : Any = super().outputs else: UpperCAmelCase__ : Union[str, Any] = super(_lowerCamelCase , self ).outputs if self.use_past: UpperCAmelCase__ , UpperCAmelCase__ : Dict = self.num_layers for i in range(_lowerCamelCase ): UpperCAmelCase__ : List[str] = {0: """batch""", 2: """past_sequence + sequence"""} UpperCAmelCase__ : int = {0: """batch""", 2: """past_sequence + sequence"""} return common_outputs def _a (self , _lowerCamelCase , _lowerCamelCase = -1 , _lowerCamelCase = -1 , _lowerCamelCase = False , _lowerCamelCase = None , ): """simple docstring""" UpperCAmelCase__ : int = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Generate decoder inputs UpperCAmelCase__ : int = seq_length if not self.use_past else 1 UpperCAmelCase__ : str = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) UpperCAmelCase__ : str = {F"""decoder_{name}""": tensor for name, tensor in decoder_inputs.items()} UpperCAmelCase__ : Union[str, Any] = dict(**_lowerCamelCase , **_lowerCamelCase ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch UpperCAmelCase__ , UpperCAmelCase__ : str = common_inputs["""input_ids"""].shape UpperCAmelCase__ : int = common_inputs["""decoder_input_ids"""].shape[1] UpperCAmelCase__ , UpperCAmelCase__ : List[str] = self.num_attention_heads UpperCAmelCase__ : str = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) UpperCAmelCase__ : Optional[int] = decoder_seq_length + 3 UpperCAmelCase__ : Any = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) UpperCAmelCase__ : str = torch.cat( [common_inputs["""decoder_attention_mask"""], torch.ones(_lowerCamelCase , _lowerCamelCase )] , dim=1 ) UpperCAmelCase__ : List[str] = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered UpperCAmelCase__ , UpperCAmelCase__ : Dict = self.num_layers UpperCAmelCase__ : Union[str, Any] = min(_lowerCamelCase , _lowerCamelCase ) UpperCAmelCase__ : str = max(_lowerCamelCase , _lowerCamelCase ) - min_num_layers UpperCAmelCase__ : Dict = """encoder""" if num_encoder_layers > num_decoder_layers else """decoder""" for _ in range(_lowerCamelCase ): common_inputs["past_key_values"].append( ( torch.zeros(_lowerCamelCase ), torch.zeros(_lowerCamelCase ), torch.zeros(_lowerCamelCase ), torch.zeros(_lowerCamelCase ), ) ) # TODO: test this. UpperCAmelCase__ : Dict = encoder_shape if remaining_side_name == """encoder""" else decoder_shape for _ in range(_lowerCamelCase , _lowerCamelCase ): common_inputs["past_key_values"].append((torch.zeros(_lowerCamelCase ), torch.zeros(_lowerCamelCase )) ) return common_inputs def _a (self , _lowerCamelCase , _lowerCamelCase = -1 , _lowerCamelCase = -1 , _lowerCamelCase = False , _lowerCamelCase = None , ): """simple docstring""" UpperCAmelCase__ : Any = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values UpperCAmelCase__ : int = seqlen + 2 UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = self.num_layers UpperCAmelCase__ , UpperCAmelCase__ : str = self.num_attention_heads UpperCAmelCase__ : Tuple = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) UpperCAmelCase__ : Optional[int] = common_inputs["""attention_mask"""].dtype UpperCAmelCase__ : List[str] = torch.cat( [common_inputs["""attention_mask"""], torch.ones(_lowerCamelCase , _lowerCamelCase , dtype=_lowerCamelCase )] , dim=1 ) UpperCAmelCase__ : Tuple = [ (torch.zeros(_lowerCamelCase ), torch.zeros(_lowerCamelCase )) for _ in range(_lowerCamelCase ) ] return common_inputs def _a (self , _lowerCamelCase , _lowerCamelCase = -1 , _lowerCamelCase = -1 , _lowerCamelCase = False , _lowerCamelCase = None , ): """simple docstring""" UpperCAmelCase__ : Tuple = compute_effective_axis_dimension( _lowerCamelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCAmelCase__ : Optional[int] = tokenizer.num_special_tokens_to_add(_lowerCamelCase ) UpperCAmelCase__ : int = compute_effective_axis_dimension( _lowerCamelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_lowerCamelCase ) # Generate dummy inputs according to compute batch and sequence UpperCAmelCase__ : List[Any] = [""" """.join([tokenizer.unk_token] ) * seq_length] * batch_size UpperCAmelCase__ : Optional[int] = dict(tokenizer(_lowerCamelCase , return_tensors=_lowerCamelCase ) ) return common_inputs def _a (self , _lowerCamelCase , _lowerCamelCase = -1 , _lowerCamelCase = -1 , _lowerCamelCase = False , _lowerCamelCase = None , ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase__ : Tuple = self._generate_dummy_inputs_for_default_and_seqaseq_lm( _lowerCamelCase , batch_size=_lowerCamelCase , seq_length=_lowerCamelCase , is_pair=_lowerCamelCase , framework=_lowerCamelCase ) elif self.task == "causal-lm": UpperCAmelCase__ : Optional[int] = self._generate_dummy_inputs_for_causal_lm( _lowerCamelCase , batch_size=_lowerCamelCase , seq_length=_lowerCamelCase , is_pair=_lowerCamelCase , framework=_lowerCamelCase ) else: UpperCAmelCase__ : Dict = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCamelCase , batch_size=_lowerCamelCase , seq_length=_lowerCamelCase , is_pair=_lowerCamelCase , framework=_lowerCamelCase ) return common_inputs def _a (self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase__ : Union[str, Any] = super()._flatten_past_key_values_(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) else: UpperCAmelCase__ : Optional[int] = super(_lowerCamelCase , self )._flatten_past_key_values_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
182
0
'''simple docstring''' import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' __lowercase : torch.FloatTensor __lowercase : Optional[torch.FloatTensor] = None def _UpperCAmelCase ( _UpperCamelCase : List[Any], _UpperCamelCase : Optional[int]=0.9_9_9, _UpperCamelCase : List[str]="cosine", ) -> Optional[Any]: if alpha_transform_type == "cosine": def alpha_bar_fn(_UpperCamelCase : Optional[Any] ): return math.cos((t + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_UpperCamelCase : Tuple ): return math.exp(t * -1_2.0 ) else: raise ValueError(F'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) A_ = [] for i in range(lowerCamelCase__ ): A_ = i / num_diffusion_timesteps A_ = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(lowerCamelCase__ ) / alpha_bar_fn(lowerCamelCase__ ), lowerCamelCase__ ) ) return torch.tensor(lowerCamelCase__, dtype=torch.floataa ) class __UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' @register_to_config def __init__( self , _SCREAMING_SNAKE_CASE = 1000 , _SCREAMING_SNAKE_CASE = "fixed_small_log" , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = 1.0 , _SCREAMING_SNAKE_CASE = "epsilon" , _SCREAMING_SNAKE_CASE = "squaredcos_cap_v2" , ) -> List[Any]: if beta_schedule != "squaredcos_cap_v2": raise ValueError('''UnCLIPScheduler only supports `beta_schedule`: \'squaredcos_cap_v2\'''' ) A_ = betas_for_alpha_bar(_SCREAMING_SNAKE_CASE ) A_ = 1.0 - self.betas A_ = torch.cumprod(self.alphas , dim=0 ) A_ = torch.tensor(1.0 ) # standard deviation of the initial noise distribution A_ = 1.0 # setable values A_ = None A_ = torch.from_numpy(np.arange(0 , _SCREAMING_SNAKE_CASE )[::-1].copy() ) A_ = variance_type def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> torch.FloatTensor: return sample def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> int: A_ = num_inference_steps A_ = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) A_ = (np.arange(0 , _SCREAMING_SNAKE_CASE ) * step_ratio).round()[::-1].copy().astype(np.intaa ) A_ = torch.from_numpy(_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) -> Union[str, Any]: if prev_timestep is None: A_ = t - 1 A_ = self.alphas_cumprod[t] A_ = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one A_ = 1 - alpha_prod_t A_ = 1 - alpha_prod_t_prev if prev_timestep == t - 1: A_ = self.betas[t] else: A_ = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample A_ = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: A_ = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": A_ = torch.log(torch.clamp(_SCREAMING_SNAKE_CASE , min=1E-20 ) ) A_ = torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler A_ = variance.log() A_ = beta.log() A_ = (predicted_variance + 1) / 2 A_ = frac * max_log + (1 - frac) * min_log return variance def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE = True , ) -> Union[UnCLIPSchedulerOutput, Tuple]: A_ = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": A_ ,A_ = torch.split(_SCREAMING_SNAKE_CASE , sample.shape[1] , dim=1 ) else: A_ = None # 1. compute alphas, betas if prev_timestep is None: A_ = t - 1 A_ = self.alphas_cumprod[t] A_ = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one A_ = 1 - alpha_prod_t A_ = 1 - alpha_prod_t_prev if prev_timestep == t - 1: A_ = self.betas[t] A_ = self.alphas[t] else: A_ = 1 - alpha_prod_t / alpha_prod_t_prev A_ = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": A_ = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": A_ = model_output else: raise ValueError( F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`''' ''' for the UnCLIPScheduler.''' ) # 3. Clip "predicted x_0" if self.config.clip_sample: A_ = torch.clamp( _SCREAMING_SNAKE_CASE , -self.config.clip_sample_range , self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf A_ = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t A_ = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf A_ = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise A_ = 0 if t > 0: A_ = randn_tensor( model_output.shape , dtype=model_output.dtype , generator=_SCREAMING_SNAKE_CASE , device=model_output.device ) A_ = self._get_variance( _SCREAMING_SNAKE_CASE , predicted_variance=_SCREAMING_SNAKE_CASE , prev_timestep=_SCREAMING_SNAKE_CASE , ) if self.variance_type == "fixed_small_log": A_ = variance elif self.variance_type == "learned_range": A_ = (0.5 * variance).exp() else: raise ValueError( F'''variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`''' ''' for the UnCLIPScheduler.''' ) A_ = variance * variance_noise A_ = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=_SCREAMING_SNAKE_CASE , pred_original_sample=_SCREAMING_SNAKE_CASE ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) -> torch.FloatTensor: A_ = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype ) A_ = timesteps.to(original_samples.device ) A_ = alphas_cumprod[timesteps] ** 0.5 A_ = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): A_ = sqrt_alpha_prod.unsqueeze(-1 ) A_ = (1 - alphas_cumprod[timesteps]) ** 0.5 A_ = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): A_ = sqrt_one_minus_alpha_prod.unsqueeze(-1 ) A_ = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
721
'''simple docstring''' from collections import defaultdict from math import gcd def _UpperCAmelCase ( _UpperCamelCase : int = 1_50_00_00 ) -> int: A_ = defaultdict(_UpperCamelCase ) A_ = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1, _UpperCamelCase, 2 ): if gcd(_UpperCamelCase, _UpperCamelCase ) > 1: continue A_ = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(_UpperCamelCase, limit + 1, _UpperCamelCase ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(F"""{solution() = }""")
174
0