code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class a_ (unittest.TestCase ): def __UpperCamelCase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __UpperCamelCase ( self ): _lowerCAmelCase : str = 1 _lowerCAmelCase : Tuple = 3 _lowerCAmelCase : Dict = (3_2, 3_2) _lowerCAmelCase : Dict = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(snake_case_ ) return image @property def __UpperCamelCase ( self ): torch.manual_seed(0 ) _lowerCAmelCase : List[str] = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=3_2 , ) return model @property def __UpperCamelCase ( self ): torch.manual_seed(0 ) _lowerCAmelCase : List[str] = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) return model @property def __UpperCamelCase ( self ): torch.manual_seed(0 ) _lowerCAmelCase : Any = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) return CLIPTextModel(snake_case_ ) @property def __UpperCamelCase ( self ): def extract(*snake_case_ , **snake_case_ ): class a_ : def __init__( self ): _lowerCAmelCase : int = torch.ones([0] ) def __UpperCamelCase ( self , snake_case_ ): self.pixel_values.to(snake_case_ ) return self return Out() return extract def __UpperCamelCase ( self ): _lowerCAmelCase : int = """cpu""" # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase : List[Any] = self.dummy_cond_unet _lowerCAmelCase : Tuple = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=snake_case_ , set_alpha_to_one=snake_case_ , ) _lowerCAmelCase : Dict = self.dummy_vae _lowerCAmelCase : Tuple = self.dummy_text_encoder _lowerCAmelCase : str = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk _lowerCAmelCase : str = StableDiffusionPipeline( unet=snake_case_ , scheduler=snake_case_ , vae=snake_case_ , text_encoder=snake_case_ , tokenizer=snake_case_ , safety_checker=snake_case_ , feature_extractor=self.dummy_extractor , ) _lowerCAmelCase : Tuple = sd_pipe.to(snake_case_ ) sd_pipe.set_progress_bar_config(disable=snake_case_ ) _lowerCAmelCase : int = """A painting of a squirrel eating a burger""" _lowerCAmelCase : int = torch.Generator(device=snake_case_ ).manual_seed(0 ) _lowerCAmelCase : str = sd_pipe([prompt] , generator=snake_case_ , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" ) _lowerCAmelCase : int = output.images _lowerCAmelCase : Any = torch.Generator(device=snake_case_ ).manual_seed(0 ) _lowerCAmelCase : Any = sd_pipe( [prompt] , generator=snake_case_ , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=snake_case_ , )[0] _lowerCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1] _lowerCAmelCase : Optional[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) _lowerCAmelCase : List[Any] = np.array([0.5756, 0.6118, 0.5005, 0.5041, 0.5471, 0.4726, 0.4976, 0.4865, 0.4864] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def __UpperCamelCase ( self ): _lowerCAmelCase : List[str] = """cpu""" # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase : str = self.dummy_cond_unet _lowerCAmelCase : int = PNDMScheduler(skip_prk_steps=snake_case_ ) _lowerCAmelCase : List[Any] = self.dummy_vae _lowerCAmelCase : int = self.dummy_text_encoder _lowerCAmelCase : Tuple = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk _lowerCAmelCase : Union[str, Any] = StableDiffusionPipeline( unet=snake_case_ , scheduler=snake_case_ , vae=snake_case_ , text_encoder=snake_case_ , tokenizer=snake_case_ , safety_checker=snake_case_ , feature_extractor=self.dummy_extractor , ) _lowerCAmelCase : Optional[Any] = sd_pipe.to(snake_case_ ) sd_pipe.set_progress_bar_config(disable=snake_case_ ) _lowerCAmelCase : List[Any] = """A painting of a squirrel eating a burger""" _lowerCAmelCase : str = torch.Generator(device=snake_case_ ).manual_seed(0 ) _lowerCAmelCase : List[str] = sd_pipe([prompt] , generator=snake_case_ , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" ) _lowerCAmelCase : Tuple = output.images _lowerCAmelCase : Union[str, Any] = torch.Generator(device=snake_case_ ).manual_seed(0 ) _lowerCAmelCase : Any = sd_pipe( [prompt] , generator=snake_case_ , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=snake_case_ , )[0] _lowerCAmelCase : str = image[0, -3:, -3:, -1] _lowerCAmelCase : Tuple = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) _lowerCAmelCase : Tuple = np.array([0.5125, 0.5716, 0.4828, 0.5060, 0.5650, 0.4768, 0.5185, 0.4895, 0.4993] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def __UpperCamelCase ( self ): _lowerCAmelCase : str = StableDiffusionPipeline.from_pretrained( """hf-internal-testing/tiny-stable-diffusion-lms-pipe""" , safety_checker=snake_case_ ) assert isinstance(snake_case_ , snake_case_ ) assert isinstance(pipe.scheduler , snake_case_ ) assert pipe.safety_checker is None _lowerCAmelCase : Dict = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(snake_case_ ) _lowerCAmelCase : Tuple = StableDiffusionPipeline.from_pretrained(snake_case_ ) # sanity check that the pipeline still works assert pipe.safety_checker is None _lowerCAmelCase : Optional[int] = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def __UpperCamelCase ( self ): _lowerCAmelCase : Optional[Any] = self.dummy_cond_unet _lowerCAmelCase : Any = PNDMScheduler(skip_prk_steps=snake_case_ ) _lowerCAmelCase : int = self.dummy_vae _lowerCAmelCase : int = self.dummy_text_encoder _lowerCAmelCase : Optional[int] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # put models in fp16 _lowerCAmelCase : Union[str, Any] = unet.half() _lowerCAmelCase : List[str] = vae.half() _lowerCAmelCase : Optional[int] = bert.half() # make sure here that pndm scheduler skips prk _lowerCAmelCase : Any = StableDiffusionPipeline( unet=snake_case_ , scheduler=snake_case_ , vae=snake_case_ , text_encoder=snake_case_ , tokenizer=snake_case_ , safety_checker=snake_case_ , feature_extractor=self.dummy_extractor , ) _lowerCAmelCase : int = sd_pipe.to(snake_case_ ) sd_pipe.set_progress_bar_config(disable=snake_case_ ) _lowerCAmelCase : Union[str, Any] = """A painting of a squirrel eating a burger""" _lowerCAmelCase : List[Any] = sd_pipe([prompt] , num_inference_steps=2 , output_type="""np""" ).images assert image.shape == (1, 6_4, 6_4, 3) @nightly @require_torch_gpu class a_ (unittest.TestCase ): def __UpperCamelCase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self ): _lowerCAmelCase : List[str] = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=snake_case_ ) _lowerCAmelCase : Optional[Any] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) _lowerCAmelCase : Optional[Any] = sd_pipe.to(snake_case_ ) sd_pipe.set_progress_bar_config(disable=snake_case_ ) _lowerCAmelCase : Tuple = ( """portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle""" """ coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with""" """ anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and""" """ children from bahnhof zoo, detailed """ ) _lowerCAmelCase : Optional[int] = 4_0_0_3_6_6_0_3_4_6 _lowerCAmelCase : str = 7 # without safety guidance (sld_guidance_scale = 0) _lowerCAmelCase : List[str] = torch.manual_seed(snake_case_ ) _lowerCAmelCase : Optional[int] = sd_pipe( [prompt] , generator=snake_case_ , guidance_scale=snake_case_ , num_inference_steps=5_0 , output_type="""np""" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=0 , ) _lowerCAmelCase : Tuple = output.images _lowerCAmelCase : str = image[0, -3:, -3:, -1] _lowerCAmelCase : Optional[Any] = [0.2278, 0.2231, 0.2249, 0.2333, 0.2303, 0.1885, 0.2273, 0.2144, 0.2176] assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 # without safety guidance (strong configuration) _lowerCAmelCase : Tuple = torch.manual_seed(snake_case_ ) _lowerCAmelCase : Tuple = sd_pipe( [prompt] , generator=snake_case_ , guidance_scale=snake_case_ , num_inference_steps=5_0 , output_type="""np""" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=2_0_0_0 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) _lowerCAmelCase : List[str] = output.images _lowerCAmelCase : Tuple = image[0, -3:, -3:, -1] _lowerCAmelCase : str = [0.2383, 0.2276, 0.236, 0.2192, 0.2186, 0.2053, 0.1971, 0.1901, 0.1719] assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __UpperCamelCase ( self ): _lowerCAmelCase : str = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=snake_case_ ) _lowerCAmelCase : Union[str, Any] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) _lowerCAmelCase : List[str] = sd_pipe.to(snake_case_ ) sd_pipe.set_progress_bar_config(disable=snake_case_ ) _lowerCAmelCase : Optional[int] = """padme amidala taking a bath artwork, safe for work, no nudity""" _lowerCAmelCase : Optional[Any] = 2_7_3_4_9_7_1_7_5_5 _lowerCAmelCase : Dict = 7 _lowerCAmelCase : Optional[int] = torch.manual_seed(snake_case_ ) _lowerCAmelCase : Any = sd_pipe( [prompt] , generator=snake_case_ , guidance_scale=snake_case_ , num_inference_steps=5_0 , output_type="""np""" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=0 , ) _lowerCAmelCase : Union[str, Any] = output.images _lowerCAmelCase : str = image[0, -3:, -3:, -1] _lowerCAmelCase : Tuple = [0.3502, 0.3622, 0.3396, 0.3642, 0.3478, 0.3318, 0.35, 0.3348, 0.3297] assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 _lowerCAmelCase : Optional[int] = torch.manual_seed(snake_case_ ) _lowerCAmelCase : Optional[int] = sd_pipe( [prompt] , generator=snake_case_ , guidance_scale=snake_case_ , num_inference_steps=5_0 , output_type="""np""" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=2_0_0_0 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) _lowerCAmelCase : Tuple = output.images _lowerCAmelCase : Tuple = image[0, -3:, -3:, -1] _lowerCAmelCase : str = [0.5531, 0.5206, 0.4895, 0.5156, 0.5182, 0.4751, 0.4802, 0.4803, 0.4443] assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __UpperCamelCase ( self ): _lowerCAmelCase : List[str] = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ) _lowerCAmelCase : Optional[int] = sd_pipe.to(snake_case_ ) sd_pipe.set_progress_bar_config(disable=snake_case_ ) _lowerCAmelCase : str = ( """the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.""" """ leyendecker""" ) _lowerCAmelCase : str = 1_0_4_4_3_5_5_2_3_4 _lowerCAmelCase : Tuple = 1_2 _lowerCAmelCase : int = torch.manual_seed(snake_case_ ) _lowerCAmelCase : Optional[Any] = sd_pipe( [prompt] , generator=snake_case_ , guidance_scale=snake_case_ , num_inference_steps=5_0 , output_type="""np""" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=0 , ) _lowerCAmelCase : Dict = output.images _lowerCAmelCase : Tuple = image[0, -3:, -3:, -1] _lowerCAmelCase : Union[str, Any] = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7 _lowerCAmelCase : List[Any] = torch.manual_seed(snake_case_ ) _lowerCAmelCase : Tuple = sd_pipe( [prompt] , generator=snake_case_ , guidance_scale=snake_case_ , num_inference_steps=5_0 , output_type="""np""" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=2_0_0_0 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) _lowerCAmelCase : Any = output.images _lowerCAmelCase : str = image[0, -3:, -3:, -1] _lowerCAmelCase : Union[str, Any] = np.array([0.5818, 0.6285, 0.6835, 0.6019, 0.625, 0.6754, 0.6096, 0.6334, 0.6561] ) assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
384
'''simple docstring''' from math import factorial UpperCamelCase_ = {str(digit): factorial(digit) for digit in range(10)} def _UpperCAmelCase ( _lowerCamelCase : int ) -> int: if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise TypeError("""Parameter number must be int""" ) if number < 0: raise ValueError("""Parameter number must be greater than or equal to 0""" ) # Converts number in string to iterate on its digits and adds its factorial. return sum(DIGIT_FACTORIAL[digit] for digit in str(_lowerCamelCase ) ) def _UpperCAmelCase ( _lowerCamelCase : int = 60 , _lowerCamelCase : int = 1_00_00_00 ) -> int: if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not isinstance(_lowerCamelCase , _lowerCamelCase ): raise TypeError("""Parameters chain_length and number_limit must be int""" ) if chain_length <= 0 or number_limit <= 0: raise ValueError( """Parameters chain_length and number_limit must be greater than 0""" ) # the counter for the chains with the exact desired length _lowerCAmelCase : Union[str, Any] = 0 # the cached sizes of the previous chains _lowerCAmelCase : dict[int, int] = {} for start_chain_element in range(1 , _lowerCamelCase ): # The temporary set will contain the elements of the chain _lowerCAmelCase : Any = set() _lowerCAmelCase : Dict = 0 # Stop computing the chain when you find a cached size, a repeating item or the # length is greater then the desired one. _lowerCAmelCase : Union[str, Any] = start_chain_element while ( chain_element not in chain_sets_lengths and chain_element not in chain_set and chain_set_length <= chain_length ): chain_set.add(_lowerCamelCase ) chain_set_length += 1 _lowerCAmelCase : List[Any] = digit_factorial_sum(_lowerCamelCase ) if chain_element in chain_sets_lengths: chain_set_length += chain_sets_lengths[chain_element] _lowerCAmelCase : Union[str, Any] = chain_set_length # If chain contains the exact amount of elements increase the counter if chain_set_length == chain_length: chains_counter += 1 return chains_counter if __name__ == "__main__": import doctest doctest.testmod() print(F'{solution()}')
384
1
"""simple docstring""" from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class UpperCAmelCase ( __snake_case ): A__ : jnp.ndarray A__ : jnp.ndarray class UpperCAmelCase ( nn.Module ): A__ : int A__ : Tuple[int] = (16, 32, 96, 256) A__ : jnp.dtype = jnp.floataa def __UpperCAmelCase ( self : Any ): """simple docstring""" _snake_case = nn.Conv( self.block_out_channels[0] , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) _snake_case = [] for i in range(len(self.block_out_channels ) - 1 ): _snake_case = self.block_out_channels[i] _snake_case = self.block_out_channels[i + 1] _snake_case = nn.Conv( A_ , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(A_ ) _snake_case = nn.Conv( A_ , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(A_ ) _snake_case = blocks _snake_case = nn.Conv( self.conditioning_embedding_channels , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self : List[Any] , __lowerCamelCase : Optional[int] ): """simple docstring""" _snake_case = self.conv_in(A_ ) _snake_case = nn.silu(A_ ) for block in self.blocks: _snake_case = block(A_ ) _snake_case = nn.silu(A_ ) _snake_case = self.conv_out(A_ ) return embedding @flax_register_to_config class UpperCAmelCase ( nn.Module,__snake_case,__snake_case ): A__ : int = 32 A__ : int = 4 A__ : Tuple[str] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) A__ : Union[bool, Tuple[bool]] = False A__ : Tuple[int] = (320, 640, 1280, 1280) A__ : int = 2 A__ : Union[int, Tuple[int]] = 8 A__ : Optional[Union[int, Tuple[int]]] = None A__ : int = 1280 A__ : float = 0.0 A__ : bool = False A__ : jnp.dtype = jnp.floataa A__ : bool = True A__ : int = 0 A__ : str = "rgb" A__ : Tuple[int] = (16, 32, 96, 256) def __UpperCAmelCase ( self : Any , __lowerCamelCase : str ): """simple docstring""" _snake_case = (1, self.in_channels, self.sample_size, self.sample_size) _snake_case = jnp.zeros(A_ , dtype=jnp.floataa ) _snake_case = jnp.ones((1,) , dtype=jnp.intaa ) _snake_case = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) _snake_case = (1, 3, self.sample_size * 8, self.sample_size * 8) _snake_case = jnp.zeros(A_ , dtype=jnp.floataa ) _snake_case = jax.random.split(A_ ) _snake_case = {"params": params_rng, "dropout": dropout_rng} return self.init(A_ , A_ , A_ , A_ , A_ )["params"] def __UpperCAmelCase ( self : List[Any] ): """simple docstring""" _snake_case = self.block_out_channels _snake_case = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. _snake_case = self.num_attention_heads or self.attention_head_dim # input _snake_case = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time _snake_case = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) _snake_case = FlaxTimestepEmbedding(A_ , dtype=self.dtype ) _snake_case = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] , block_out_channels=self.conditioning_embedding_out_channels , ) _snake_case = self.only_cross_attention if isinstance(A_ , A_ ): _snake_case = (only_cross_attention,) * len(self.down_block_types ) if isinstance(A_ , A_ ): _snake_case = (num_attention_heads,) * len(self.down_block_types ) # down _snake_case = [] _snake_case = [] _snake_case = block_out_channels[0] _snake_case = nn.Conv( A_ , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(A_ ) for i, down_block_type in enumerate(self.down_block_types ): _snake_case = output_channel _snake_case = block_out_channels[i] _snake_case = i == len(A_ ) - 1 if down_block_type == "CrossAttnDownBlock2D": _snake_case = FlaxCrossAttnDownBlockaD( in_channels=A_ , out_channels=A_ , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , dtype=self.dtype , ) else: _snake_case = FlaxDownBlockaD( in_channels=A_ , out_channels=A_ , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(A_ ) for _ in range(self.layers_per_block ): _snake_case = nn.Conv( A_ , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(A_ ) if not is_final_block: _snake_case = nn.Conv( A_ , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(A_ ) _snake_case = down_blocks _snake_case = controlnet_down_blocks # mid _snake_case = block_out_channels[-1] _snake_case = FlaxUNetMidBlockaDCrossAttn( in_channels=A_ , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , dtype=self.dtype , ) _snake_case = nn.Conv( A_ , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self : Union[str, Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : int , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Union[str, Any] = 1.0 , __lowerCamelCase : str = True , __lowerCamelCase : Any = False , ): """simple docstring""" _snake_case = self.controlnet_conditioning_channel_order if channel_order == "bgr": _snake_case = jnp.flip(A_ , axis=1 ) # 1. time if not isinstance(A_ , jnp.ndarray ): _snake_case = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(A_ , jnp.ndarray ) and len(timesteps.shape ) == 0: _snake_case = timesteps.astype(dtype=jnp.floataa ) _snake_case = jnp.expand_dims(A_ , 0 ) _snake_case = self.time_proj(A_ ) _snake_case = self.time_embedding(A_ ) # 2. pre-process _snake_case = jnp.transpose(A_ , (0, 2, 3, 1) ) _snake_case = self.conv_in(A_ ) _snake_case = jnp.transpose(A_ , (0, 2, 3, 1) ) _snake_case = self.controlnet_cond_embedding(A_ ) sample += controlnet_cond # 3. down _snake_case = (sample,) for down_block in self.down_blocks: if isinstance(A_ , A_ ): _snake_case = down_block(A_ , A_ , A_ , deterministic=not train ) else: _snake_case = down_block(A_ , A_ , deterministic=not train ) down_block_res_samples += res_samples # 4. mid _snake_case = self.mid_block(A_ , A_ , A_ , deterministic=not train ) # 5. contronet blocks _snake_case = () for down_block_res_sample, controlnet_block in zip(A_ , self.controlnet_down_blocks ): _snake_case = controlnet_block(A_ ) controlnet_down_block_res_samples += (down_block_res_sample,) _snake_case = controlnet_down_block_res_samples _snake_case = self.controlnet_mid_block(A_ ) # 6. scaling _snake_case = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=A_ , mid_block_res_sample=A_ )
716
"""simple docstring""" from __future__ import annotations def snake_case ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> None: if (direction == 1 and array[indexa] > array[indexa]) or ( direction == 0 and array[indexa] < array[indexa] ): _snake_case , _snake_case = array[indexa], array[indexa] def snake_case ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> None: if length > 1: _snake_case = int(length / 2 ) for i in range(lowerCAmelCase_ , low + middle ): comp_and_swap(lowerCAmelCase_ , lowerCAmelCase_ , i + middle , lowerCAmelCase_ ) bitonic_merge(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) bitonic_merge(lowerCAmelCase_ , low + middle , lowerCAmelCase_ , lowerCAmelCase_ ) def snake_case ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> None: if length > 1: _snake_case = int(length / 2 ) bitonic_sort(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , 1 ) bitonic_sort(lowerCAmelCase_ , low + middle , lowerCAmelCase_ , 0 ) bitonic_merge(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) if __name__ == "__main__": snake_case = input('''Enter numbers separated by a comma:\n''').strip() snake_case = [int(item.strip()) for item in user_input.split(''',''')] bitonic_sort(unsorted, 0, len(unsorted), 1) print('''\nSorted array in ascending order is: ''', end='''''') print(*unsorted, sep=''', ''') bitonic_merge(unsorted, 0, len(unsorted), 0) print('''Sorted array in descending order is: ''', end='''''') print(*unsorted, sep=''', ''')
404
0
'''simple docstring''' from math import pi def __UpperCamelCase ( lowercase__ : int, lowercase__ : int ): '''simple docstring''' return 2 * pi * radius * (angle / 3_60) if __name__ == "__main__": print(arc_length(90, 10))
119
'''simple docstring''' def __UpperCamelCase ( lowercase__ : List[str], lowercase__ : Tuple ): '''simple docstring''' __lowercase =[0 for i in range(r + 1 )] # nc0 = 1 __lowercase =1 for i in range(1, n + 1 ): # to compute current row from previous row. __lowercase =min(lowercase__, lowercase__ ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
119
1
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class UpperCamelCase_ ( __A , __A , __A , unittest.TestCase ): lowerCamelCase_ = StableUnCLIPImgaImgPipeline lowerCamelCase_ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS lowerCamelCase_ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS lowerCamelCase_ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess lowerCamelCase_ = frozenset([] ) def _snake_case ( self :Dict ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ = 32 SCREAMING_SNAKE_CASE__ = embedder_hidden_size # image encoding components SCREAMING_SNAKE_CASE__ = CLIPImageProcessor(crop_size=32 , size=32 ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=__A , projection_dim=__A , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) ) # regular denoising components torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = StableUnCLIPImageNormalizer(embedding_dim=__A ) SCREAMING_SNAKE_CASE__ = DDPMScheduler(beta_schedule="""squaredcos_cap_v2""" ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=__A , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""CrossAttnDownBlock2D""", """DownBlock2D""") , up_block_types=("""UpBlock2D""", """CrossAttnUpBlock2D""") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="""projection""" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=__A , layers_per_block=1 , upcast_attention=__A , use_linear_projection=__A , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = DDIMScheduler( beta_schedule="""scaled_linear""" , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , prediction_type="""v_prediction""" , set_alpha_to_one=__A , steps_offset=1 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = AutoencoderKL() SCREAMING_SNAKE_CASE__ = { # image encoding components 'feature_extractor': feature_extractor, 'image_encoder': image_encoder.eval(), # image noising components 'image_normalizer': image_normalizer.eval(), 'image_noising_scheduler': image_noising_scheduler, # regular denoising components 'tokenizer': tokenizer, 'text_encoder': text_encoder.eval(), 'unet': unet.eval(), 'scheduler': scheduler, 'vae': vae.eval(), } return components def _snake_case ( self :List[Any] , __A :str , __A :int=0 , __A :Dict=True ) -> Dict: """simple docstring""" if str(__A ).startswith("""mps""" ): SCREAMING_SNAKE_CASE__ = torch.manual_seed(__A ) else: SCREAMING_SNAKE_CASE__ = torch.Generator(device=__A ).manual_seed(__A ) SCREAMING_SNAKE_CASE__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(__A ) ).to(__A ) if pil_image: SCREAMING_SNAKE_CASE__ = input_image * 0.5 + 0.5 SCREAMING_SNAKE_CASE__ = input_image.clamp(0 , 1 ) SCREAMING_SNAKE_CASE__ = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() SCREAMING_SNAKE_CASE__ = DiffusionPipeline.numpy_to_pil(__A )[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def _snake_case ( self :List[Any] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE__ = self.get_dummy_components() SCREAMING_SNAKE_CASE__ = StableUnCLIPImgaImgPipeline(**__A ) SCREAMING_SNAKE_CASE__ = sd_pipe.to(__A ) sd_pipe.set_progress_bar_config(disable=__A ) SCREAMING_SNAKE_CASE__ = self.get_dummy_inputs(__A ) inputs.update({"""image_embeds""": None} ) SCREAMING_SNAKE_CASE__ = sd_pipe(**__A ).images SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE__ = np.array([0.3_8_7_2, 0.7_2_2_4, 0.5_6_0_1, 0.4_7_4_1, 0.6_8_7_2, 0.5_8_1_4, 0.4_6_3_6, 0.3_8_6_7, 0.5_0_7_8] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def _snake_case ( self :Tuple ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ = torch_device in ['cpu', 'mps'] self._test_attention_slicing_forward_pass(test_max_difference=__A ) def _snake_case ( self :Tuple ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ = torch_device in ['cpu', 'mps'] self._test_inference_batch_single_identical(test_max_difference=__A ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def _snake_case ( self :List[str] ) -> int: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(test_max_difference=__A ) @slow @require_torch_gpu class UpperCamelCase_ ( unittest.TestCase ): def _snake_case ( self :str ) -> List[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self :str ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png""" ) SCREAMING_SNAKE_CASE__ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy""" ) SCREAMING_SNAKE_CASE__ = StableUnCLIPImgaImgPipeline.from_pretrained( """fusing/stable-unclip-2-1-l-img2img""" , torch_dtype=torch.floataa ) pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() SCREAMING_SNAKE_CASE__ = torch.Generator(device="""cpu""" ).manual_seed(0 ) SCREAMING_SNAKE_CASE__ = pipe(__A , """anime turle""" , generator=__A , output_type="""np""" ) SCREAMING_SNAKE_CASE__ = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(__A , __A ) def _snake_case ( self :Union[str, Any] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png""" ) SCREAMING_SNAKE_CASE__ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy""" ) SCREAMING_SNAKE_CASE__ = StableUnCLIPImgaImgPipeline.from_pretrained( """fusing/stable-unclip-2-1-h-img2img""" , torch_dtype=torch.floataa ) pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() SCREAMING_SNAKE_CASE__ = torch.Generator(device="""cpu""" ).manual_seed(0 ) SCREAMING_SNAKE_CASE__ = pipe(__A , """anime turle""" , generator=__A , output_type="""np""" ) SCREAMING_SNAKE_CASE__ = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(__A , __A ) def _snake_case ( self :int ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png""" ) torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() SCREAMING_SNAKE_CASE__ = StableUnCLIPImgaImgPipeline.from_pretrained( """fusing/stable-unclip-2-1-h-img2img""" , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE__ = pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() SCREAMING_SNAKE_CASE__ = pipe( __A , """anime turtle""" , num_inference_steps=2 , output_type="""np""" , ) SCREAMING_SNAKE_CASE__ = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
703
import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor _lowerCamelCase = logging.get_logger(__name__) class UpperCamelCase_ ( UpperCamelCase__ ): def __init__( self :List[Any] , *__A :Tuple , **__A :Dict ) -> None: """simple docstring""" warnings.warn( """The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use LayoutLMv2ImageProcessor instead.""" , __A , ) super().__init__(*__A , **__A )
59
0
def lowercase__ ( A_: str ) -> list: """simple docstring""" return [ txt[:a] + txt[a].upper() + txt[a + 1 :] for a in range(len(A_ ) ) if txt[a].isalpha() ] if __name__ == "__main__": __import__("doctest").testmod()
68
'''simple docstring''' import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase__ ( A , unittest.TestCase ): lowerCAmelCase_ = CodeGenTokenizer lowerCAmelCase_ = CodeGenTokenizerFast lowerCAmelCase_ = True lowerCAmelCase_ = {'add_prefix_space': True} lowerCAmelCase_ = False def lowerCamelCase_ ( self : List[str] ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowerCamelCase : Dict = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", "<|endoftext|>", ] _lowerCamelCase : Any = dict(zip(__A,range(len(__A ) ) ) ) _lowerCamelCase : Optional[int] = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] _lowerCamelCase : Tuple = {"unk_token": "<unk>"} _lowerCamelCase : Optional[Any] = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES["vocab_file"] ) _lowerCamelCase : Dict = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file,"w",encoding="utf-8" ) as fp: fp.write(json.dumps(__A ) + "\n" ) with open(self.merges_file,"w",encoding="utf-8" ) as fp: fp.write("\n".join(__A ) ) def lowerCamelCase_ ( self : Dict,**__A : Tuple ): kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname,**__A ) def lowerCamelCase_ ( self : Union[str, Any],**__A : int ): kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname,**__A ) def lowerCamelCase_ ( self : str,__A : Dict ): _lowerCamelCase : Optional[Any] = "lower newer" _lowerCamelCase : Union[str, Any] = "lower newer" return input_text, output_text def lowerCamelCase_ ( self : Dict ): _lowerCamelCase : int = CodeGenTokenizer(self.vocab_file,self.merges_file,**self.special_tokens_map ) _lowerCamelCase : Any = "lower newer" _lowerCamelCase : Optional[Any] = ["\u0120low", "er", "\u0120", "n", "e", "w", "er"] _lowerCamelCase : List[Any] = tokenizer.tokenize(__A,add_prefix_space=__A ) self.assertListEqual(__A,__A ) _lowerCamelCase : Union[str, Any] = tokens + [tokenizer.unk_token] _lowerCamelCase : Dict = [1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(tokenizer.convert_tokens_to_ids(__A ),__A ) def lowerCamelCase_ ( self : Any ): if not self.test_rust_tokenizer: return _lowerCamelCase : str = self.get_tokenizer() _lowerCamelCase : Optional[Any] = self.get_rust_tokenizer(add_prefix_space=__A ) _lowerCamelCase : Union[str, Any] = "lower newer" # Testing tokenization _lowerCamelCase : List[Any] = tokenizer.tokenize(__A,add_prefix_space=__A ) _lowerCamelCase : str = rust_tokenizer.tokenize(__A ) self.assertListEqual(__A,__A ) # Testing conversion to ids without special tokens _lowerCamelCase : str = tokenizer.encode(__A,add_special_tokens=__A,add_prefix_space=__A ) _lowerCamelCase : List[str] = rust_tokenizer.encode(__A,add_special_tokens=__A ) self.assertListEqual(__A,__A ) # Testing conversion to ids with special tokens _lowerCamelCase : List[Any] = self.get_rust_tokenizer(add_prefix_space=__A ) _lowerCamelCase : Union[str, Any] = tokenizer.encode(__A,add_prefix_space=__A ) _lowerCamelCase : Optional[int] = rust_tokenizer.encode(__A ) self.assertListEqual(__A,__A ) # Testing the unknown token _lowerCamelCase : Optional[int] = tokens + [rust_tokenizer.unk_token] _lowerCamelCase : Optional[Any] = [1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(__A ),__A ) def lowerCamelCase_ ( self : Tuple,*__A : Any,**__A : Any ): # It's very difficult to mix/test pretokenization with byte-level # And get both CodeGen and Roberta to work at the same time (mostly an issue of adding a space before the string) pass def lowerCamelCase_ ( self : int,__A : Optional[int]=1_5 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): _lowerCamelCase : Tuple = self.rust_tokenizer_class.from_pretrained(__A,**__A ) # Simple input _lowerCamelCase : Dict = "This is a simple input" _lowerCamelCase : Any = ["This is a simple input 1", "This is a simple input 2"] _lowerCamelCase : Tuple = ("This is a simple input", "This is a pair") _lowerCamelCase : Tuple = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(__A,tokenizer_r.encode,__A,max_length=__A,padding="max_length" ) # Simple input self.assertRaises(__A,tokenizer_r.encode_plus,__A,max_length=__A,padding="max_length" ) # Simple input self.assertRaises( __A,tokenizer_r.batch_encode_plus,__A,max_length=__A,padding="max_length",) # Pair input self.assertRaises(__A,tokenizer_r.encode,__A,max_length=__A,padding="max_length" ) # Pair input self.assertRaises(__A,tokenizer_r.encode_plus,__A,max_length=__A,padding="max_length" ) # Pair input self.assertRaises( __A,tokenizer_r.batch_encode_plus,__A,max_length=__A,padding="max_length",) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : str = CodeGenTokenizer.from_pretrained(self.tmpdirname,pad_token="<pad>" ) # Simple input _lowerCamelCase : Tuple = "This is a simple input" _lowerCamelCase : Dict = ["This is a simple input looooooooong", "This is a simple input"] _lowerCamelCase : Dict = ("This is a simple input", "This is a pair") _lowerCamelCase : Dict = [ ("This is a simple input loooooong", "This is a simple input"), ("This is a simple pair loooooong", "This is a simple pair"), ] _lowerCamelCase : Dict = tokenizer.pad_token_id _lowerCamelCase : Dict = tokenizer(__A,padding="max_length",max_length=3_0,return_tensors="np" ) _lowerCamelCase : int = tokenizer(__A,padding=__A,truncate=__A,return_tensors="np" ) _lowerCamelCase : List[Any] = tokenizer(*__A,padding="max_length",max_length=6_0,return_tensors="np" ) _lowerCamelCase : Tuple = tokenizer(__A,padding=__A,truncate=__A,return_tensors="np" ) # s # test single string max_length padding self.assertEqual(out_s["input_ids"].shape[-1],3_0 ) self.assertTrue(pad_token_id in out_s["input_ids"] ) self.assertTrue(0 in out_s["attention_mask"] ) # s2 # test automatic padding self.assertEqual(out_sa["input_ids"].shape[-1],3_3 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["input_ids"][0] ) self.assertFalse(0 in out_sa["attention_mask"][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["input_ids"][1] ) self.assertTrue(0 in out_sa["attention_mask"][1] ) # p # test single pair max_length padding self.assertEqual(out_p["input_ids"].shape[-1],6_0 ) self.assertTrue(pad_token_id in out_p["input_ids"] ) self.assertTrue(0 in out_p["attention_mask"] ) # p2 # test automatic padding pair self.assertEqual(out_pa["input_ids"].shape[-1],5_2 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["input_ids"][0] ) self.assertFalse(0 in out_pa["attention_mask"][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["input_ids"][1] ) self.assertTrue(0 in out_pa["attention_mask"][1] ) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : List[Any] = "$$$" _lowerCamelCase : Tuple = CodeGenTokenizer.from_pretrained(self.tmpdirname,bos_token=__A,add_bos_token=__A ) _lowerCamelCase : List[str] = "This is a simple input" _lowerCamelCase : Optional[Any] = ["This is a simple input 1", "This is a simple input 2"] _lowerCamelCase : Union[str, Any] = tokenizer.bos_token_id _lowerCamelCase : Any = tokenizer(__A ) _lowerCamelCase : List[str] = tokenizer(__A ) self.assertEqual(out_s.input_ids[0],__A ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) _lowerCamelCase : int = tokenizer.decode(out_s.input_ids ) _lowerCamelCase : str = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0],__A ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : int = CodeGenTokenizer.from_pretrained("Salesforce/codegen-350M-mono" ) _lowerCamelCase : Optional[Any] = "\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#" _lowerCamelCase : Dict = "\nif len_a > len_b: result = a\nelse: result = b" _lowerCamelCase : Any = tokenizer.encode(__A ) _lowerCamelCase : str = ["^#", re.escape("<|endoftext|>" ), "^'''", "^\"\"\"", "\n\n\n"] _lowerCamelCase : List[Any] = tokenizer.decode(__A,truncate_before_pattern=__A ) self.assertEqual(__A,__A ) def lowerCamelCase_ ( self : Any ): pass
44
0
'''simple docstring''' from argparse import ArgumentParser from datasets.commands.convert import ConvertCommand from datasets.commands.dummy_data import DummyDataCommand from datasets.commands.env import EnvironmentCommand from datasets.commands.run_beam import RunBeamCommand from datasets.commands.test import TestCommand from datasets.utils.logging import set_verbosity_info def _A (lowerCAmelCase__ :int ) -> int: '''simple docstring''' return {key.lstrip('-' ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )} def _A () -> List[str]: '''simple docstring''' _a = ArgumentParser( 'HuggingFace Datasets CLI tool' , usage='datasets-cli <command> [<args>]' , allow_abbrev=lowerCAmelCase__ ) _a = parser.add_subparsers(help='datasets-cli command helpers' ) set_verbosity_info() # Register commands ConvertCommand.register_subcommand(lowerCAmelCase__ ) EnvironmentCommand.register_subcommand(lowerCAmelCase__ ) TestCommand.register_subcommand(lowerCAmelCase__ ) RunBeamCommand.register_subcommand(lowerCAmelCase__ ) DummyDataCommand.register_subcommand(lowerCAmelCase__ ) # Parse args _a , _a = parser.parse_known_args() if not hasattr(lowerCAmelCase__ , 'func' ): parser.print_help() exit(1 ) _a = parse_unknown_args(lowerCAmelCase__ ) # Run _a = args.func(lowerCAmelCase__ , **lowerCAmelCase__ ) service.run() if __name__ == "__main__": main()
532
'''simple docstring''' import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class a : def __init__( self , __magic_name__ , __magic_name__=13 , __magic_name__=32 , __magic_name__=2 , __magic_name__=3 , __magic_name__=16 , __magic_name__=[1, 2, 1] , __magic_name__=[2, 2, 4] , __magic_name__=2 , __magic_name__=2.0 , __magic_name__=True , __magic_name__=0.0 , __magic_name__=0.0 , __magic_name__=0.1 , __magic_name__="gelu" , __magic_name__=False , __magic_name__=True , __magic_name__=0.0_2 , __magic_name__=1e-5 , __magic_name__=True , __magic_name__=None , __magic_name__=True , __magic_name__=10 , __magic_name__=8 , ) -> Optional[int]: _a = parent _a = batch_size _a = image_size _a = patch_size _a = num_channels _a = embed_dim _a = depths _a = num_heads _a = window_size _a = mlp_ratio _a = qkv_bias _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = drop_path_rate _a = hidden_act _a = use_absolute_embeddings _a = patch_norm _a = layer_norm_eps _a = initializer_range _a = is_training _a = scope _a = use_labels _a = type_sequence_label_size _a = encoder_stride def __UpperCAmelCase ( self ) -> List[Any]: _a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a = None if self.use_labels: _a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _a = self.get_config() return config, pixel_values, labels def __UpperCAmelCase ( self ) -> int: return SwinvaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ ) -> Union[str, Any]: _a = SwinvaModel(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() _a = model(__magic_name__ ) _a = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) _a = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ ) -> str: _a = SwinvaForMaskedImageModeling(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() _a = model(__magic_name__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images _a = 1 _a = SwinvaForMaskedImageModeling(__magic_name__ ) model.to(__magic_name__ ) model.eval() _a = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _a = model(__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ ) -> Optional[Any]: _a = self.type_sequence_label_size _a = SwinvaForImageClassification(__magic_name__ ) model.to(__magic_name__ ) model.eval() _a = model(__magic_name__ , labels=__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __UpperCAmelCase ( self ) -> List[str]: _a = self.prepare_config_and_inputs() _a , _a , _a = config_and_inputs _a = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): _lowerCAmelCase = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) _lowerCAmelCase = ( {"""feature-extraction""": SwinvaModel, """image-classification""": SwinvaForImageClassification} if is_torch_available() else {} ) _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False def __UpperCAmelCase ( self ) -> List[str]: _a = SwinvaModelTester(self ) _a = ConfigTester(self , config_class=__magic_name__ , embed_dim=37 ) def __UpperCAmelCase ( self ) -> int: self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __UpperCAmelCase ( self ) -> Optional[Any]: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__magic_name__ ) @unittest.skip(reason='Got `CUDA error: misaligned address` with PyTorch 2.0.0.' ) def __UpperCAmelCase ( self ) -> Optional[int]: pass @unittest.skip(reason='Swinv2 does not use inputs_embeds' ) def __UpperCAmelCase ( self ) -> Tuple: pass def __UpperCAmelCase ( self ) -> str: _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = model_class(__magic_name__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _a = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__magic_name__ , nn.Linear ) ) def __UpperCAmelCase ( self ) -> Any: _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = model_class(__magic_name__ ) _a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a = [*signature.parameters.keys()] _a = ['pixel_values'] self.assertListEqual(arg_names[:1] , __magic_name__ ) def __UpperCAmelCase ( self ) -> Union[str, Any]: _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = True for model_class in self.all_model_classes: _a = True _a = False _a = True _a = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): _a = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) _a = outputs.attentions _a = len(self.model_tester.depths ) self.assertEqual(len(__magic_name__ ) , __magic_name__ ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _a = True _a = config.window_size**2 _a = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): _a = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) _a = outputs.attentions self.assertEqual(len(__magic_name__ ) , __magic_name__ ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) _a = len(__magic_name__ ) # Check attention is always last and order is fine _a = True _a = True _a = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): _a = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) if hasattr(self.model_tester , 'num_hidden_states_types' ): _a = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states _a = 2 self.assertEqual(out_len + added_hidden_states , len(__magic_name__ ) ) _a = outputs.attentions self.assertEqual(len(__magic_name__ ) , __magic_name__ ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> List[Any]: _a = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): _a = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) _a = outputs.hidden_states _a = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(__magic_name__ ) , __magic_name__ ) # Swinv2 has a different seq_length _a = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _a = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) _a = outputs.reshaped_hidden_states self.assertEqual(len(__magic_name__ ) , __magic_name__ ) _a , _a , _a , _a = reshaped_hidden_states[0].shape _a = ( reshaped_hidden_states[0].view(__magic_name__ , __magic_name__ , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def __UpperCAmelCase ( self ) -> Union[str, Any]: _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: _a = True self.check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _a = True self.check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) def __UpperCAmelCase ( self ) -> Optional[Any]: _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = 3 _a = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) _a = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _a = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _a = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: _a = True self.check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _a = True self.check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ , (padded_height, padded_width) ) def __UpperCAmelCase ( self ) -> Tuple: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__magic_name__ ) def __UpperCAmelCase ( self ) -> str: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__magic_name__ ) @slow def __UpperCAmelCase ( self ) -> str: for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a = SwinvaModel.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) def __UpperCAmelCase ( self ) -> Optional[int]: _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = _config_zero_init(__magic_name__ ) for model_class in self.all_model_classes: _a = model_class(config=__magic_name__ ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) @require_vision @require_torch class a ( unittest.TestCase ): @cached_property def __UpperCAmelCase ( self ) -> Optional[int]: return ( AutoImageProcessor.from_pretrained('microsoft/swinv2-tiny-patch4-window8-256' ) if is_vision_available() else None ) @slow def __UpperCAmelCase ( self ) -> Optional[int]: _a = SwinvaForImageClassification.from_pretrained('microsoft/swinv2-tiny-patch4-window8-256' ).to( __magic_name__ ) _a = self.default_image_processor _a = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) _a = image_processor(images=__magic_name__ , return_tensors='pt' ).to(__magic_name__ ) # forward pass with torch.no_grad(): _a = model(**__magic_name__ ) # verify the logits _a = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , __magic_name__ ) _a = torch.tensor([-0.3_9_4_7, -0.4_3_0_6, 0.0_0_2_6] ).to(__magic_name__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __magic_name__ , atol=1e-4 ) )
532
1
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { "SCUT-DLVCLab/lilt-roberta-en-base": ( "https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base/resolve/main/config.json" ), } class __UpperCamelCase ( A__ ): __A : List[Any] = """lilt""" def __init__( self , _UpperCamelCase=30522 , _UpperCamelCase=768 , _UpperCamelCase=12 , _UpperCamelCase=12 , _UpperCamelCase=3072 , _UpperCamelCase="gelu" , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=512 , _UpperCamelCase=2 , _UpperCamelCase=0.02 , _UpperCamelCase=1e-12 , _UpperCamelCase=0 , _UpperCamelCase="absolute" , _UpperCamelCase=None , _UpperCamelCase=4 , _UpperCamelCase=1024 , **_UpperCamelCase , ): super().__init__(pad_token_id=_UpperCamelCase , **_UpperCamelCase ) _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = hidden_act _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = position_embedding_type _UpperCAmelCase = classifier_dropout _UpperCAmelCase = channel_shrink_ratio _UpperCAmelCase = max_ad_position_embeddings
32
import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class lowerCamelCase : def __init__( self , lowercase__ , lowercase__=2 , lowercase__=3_2 , lowercase__=1_6 , lowercase__=3 , lowercase__=True , lowercase__=True , lowercase__=3_2 , lowercase__=4 , lowercase__=[0, 1, 2, 3] , lowercase__=4 , lowercase__=3_7 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.0_2 , lowercase__=3 , lowercase__=[1, 3_8_4, 2_4, 2_4] , lowercase__=True , lowercase__=None , ): __UpperCAmelCase : Any = parent __UpperCAmelCase : Tuple = batch_size __UpperCAmelCase : Optional[int] = image_size __UpperCAmelCase : Tuple = patch_size __UpperCAmelCase : int = num_channels __UpperCAmelCase : Optional[Any] = is_training __UpperCAmelCase : Union[str, Any] = use_labels __UpperCAmelCase : List[Any] = hidden_size __UpperCAmelCase : Optional[Any] = num_hidden_layers __UpperCAmelCase : Any = backbone_out_indices __UpperCAmelCase : Union[str, Any] = num_attention_heads __UpperCAmelCase : Dict = intermediate_size __UpperCAmelCase : Dict = hidden_act __UpperCAmelCase : Dict = hidden_dropout_prob __UpperCAmelCase : List[Any] = attention_probs_dropout_prob __UpperCAmelCase : List[Any] = initializer_range __UpperCAmelCase : Union[str, Any] = num_labels __UpperCAmelCase : List[Any] = backbone_featmap_shape __UpperCAmelCase : Any = scope __UpperCAmelCase : Optional[int] = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) __UpperCAmelCase : Optional[Any] = (image_size // patch_size) ** 2 __UpperCAmelCase : Any = num_patches + 1 def A( self): __UpperCAmelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) __UpperCAmelCase : List[str] = None if self.use_labels: __UpperCAmelCase : Dict = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels) __UpperCAmelCase : Dict = self.get_config() return config, pixel_values, labels def A( self): __UpperCAmelCase : Dict = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, '''hidden_sizes''': [9_6, 1_9_2, 3_8_4, 7_6_8], '''num_groups''': 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowercase__ , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=lowercase__ , backbone_featmap_shape=self.backbone_featmap_shape , ) def A( self , lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : List[str] = DPTModel(config=lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : Dict = model(lowercase__) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def A( self , lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : List[str] = self.num_labels __UpperCAmelCase : Optional[Any] = DPTForDepthEstimation(lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : str = model(lowercase__) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size)) def A( self , lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : Tuple = self.num_labels __UpperCAmelCase : Optional[int] = DPTForSemanticSegmentation(lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : str = model(lowercase__ , labels=lowercase__) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size)) def A( self): __UpperCAmelCase : int = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Optional[int] = config_and_inputs __UpperCAmelCase : Union[str, Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): _lowerCAmelCase : Union[str, Any] = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () _lowerCAmelCase : Optional[int] = ( { '''depth-estimation''': DPTForDepthEstimation, '''feature-extraction''': DPTModel, '''image-segmentation''': DPTForSemanticSegmentation, } if is_torch_available() else {} ) _lowerCAmelCase : Any = False _lowerCAmelCase : str = False _lowerCAmelCase : List[Any] = False def A( self): __UpperCAmelCase : Any = DPTModelTester(self) __UpperCAmelCase : str = ConfigTester(self , config_class=lowercase__ , has_text_modality=lowercase__ , hidden_size=3_7) def A( self): self.config_tester.run_common_tests() @unittest.skip(reason='''DPT does not use inputs_embeds''') def A( self): pass def A( self): __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : str = model_class(lowercase__) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) __UpperCAmelCase : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase__ , nn.Linear)) def A( self): __UpperCAmelCase , __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Optional[int] = model_class(lowercase__) __UpperCAmelCase : int = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase : List[str] = [*signature.parameters.keys()] __UpperCAmelCase : str = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowercase__) def A( self): __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__) def A( self): __UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*lowercase__) def A( self): __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowercase__) def A( self): for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue __UpperCAmelCase , __UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Any = True if model_class in get_values(lowercase__): continue __UpperCAmelCase : List[Any] = model_class(lowercase__) model.to(lowercase__) model.train() __UpperCAmelCase : Any = self._prepare_for_class(lowercase__ , lowercase__ , return_labels=lowercase__) __UpperCAmelCase : Any = model(**lowercase__).loss loss.backward() def A( self): for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue __UpperCAmelCase , __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Optional[int] = False __UpperCAmelCase : str = True if model_class in get_values(lowercase__) or not model_class.supports_gradient_checkpointing: continue __UpperCAmelCase : Tuple = model_class(lowercase__) model.to(lowercase__) model.gradient_checkpointing_enable() model.train() __UpperCAmelCase : Tuple = self._prepare_for_class(lowercase__ , lowercase__ , return_labels=lowercase__) __UpperCAmelCase : Union[str, Any] = model(**lowercase__).loss loss.backward() def A( self): __UpperCAmelCase , __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : List[Any] = _config_zero_init(lowercase__) for model_class in self.all_model_classes: __UpperCAmelCase : Tuple = model_class(config=lowercase__) # Skip the check for the backbone __UpperCAmelCase : List[Any] = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": __UpperCAmelCase : Optional[Any] = [F"{name}.{key}" for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F"Parameter {name} of model {model_class} seems not properly initialized" , ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''') def A( self): pass @slow def A( self): for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: __UpperCAmelCase : Optional[int] = DPTModel.from_pretrained(lowercase__) self.assertIsNotNone(lowercase__) def A( self): # We do this test only for DPTForDepthEstimation since it is the only model that uses readout_type __UpperCAmelCase , __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : List[str] = '''add''' with self.assertRaises(lowercase__): __UpperCAmelCase : Optional[Any] = DPTForDepthEstimation(lowercase__) def __SCREAMING_SNAKE_CASE ( ) -> Dict: '''simple docstring''' __UpperCAmelCase : str = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision @slow class lowerCamelCase ( unittest.TestCase ): def A( self): __UpperCAmelCase : str = DPTImageProcessor.from_pretrained('''Intel/dpt-hybrid-midas''') __UpperCAmelCase : str = DPTForDepthEstimation.from_pretrained('''Intel/dpt-hybrid-midas''').to(lowercase__) __UpperCAmelCase : List[str] = prepare_img() __UpperCAmelCase : Tuple = image_processor(images=lowercase__ , return_tensors='''pt''').to(lowercase__) # forward pass with torch.no_grad(): __UpperCAmelCase : List[Any] = model(**lowercase__) __UpperCAmelCase : str = outputs.predicted_depth # verify the predicted depth __UpperCAmelCase : Union[str, Any] = torch.Size((1, 3_8_4, 3_8_4)) self.assertEqual(predicted_depth.shape , lowercase__) __UpperCAmelCase : List[str] = torch.tensor( [[[5.6_4_3_7, 5.6_1_4_6, 5.6_5_1_1], [5.4_3_7_1, 5.5_6_4_9, 5.5_9_5_8], [5.5_2_1_5, 5.5_1_8_4, 5.5_2_9_3]]]).to(lowercase__) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 1_0_0 , lowercase__ , atol=1e-4))
462
0
import importlib import inspect import json import os import re import shutil import sys from pathlib import Path from typing import Dict, Optional, Union from urllib import request from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info from packaging import version from .. import __version__ from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging _lowerCAmelCase :Optional[int] = ( """https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py""" ) _lowerCAmelCase :str = logging.get_logger(__name__) # pylint: disable=invalid-name def __lowerCAmelCase ( ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = "https://pypi.org/pypi/diffusers/json" SCREAMING_SNAKE_CASE : List[Any] = json.loads(request.urlopen(_lowerCamelCase ).read() )["releases"].keys() return sorted(_lowerCamelCase , key=lambda a_ : version.Version(_lowerCamelCase ) ) def __lowerCAmelCase ( ) -> Any: '''simple docstring''' if HF_MODULES_CACHE in sys.path: return sys.path.append(_lowerCamelCase ) os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = Path(_lowerCamelCase ) / "__init__.py" if not init_path.exists(): init_path.touch() def __lowerCAmelCase ( a_ ) -> Tuple: '''simple docstring''' init_hf_modules() SCREAMING_SNAKE_CASE : Tuple = Path(_lowerCamelCase ) / name # If the parent module does not exist yet, recursively create it. if not dynamic_module_path.parent.exists(): create_dynamic_module(dynamic_module_path.parent ) os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = dynamic_module_path / "__init__.py" if not init_path.exists(): init_path.touch() def __lowerCAmelCase ( a_ ) -> List[str]: '''simple docstring''' with open(_lowerCamelCase , 'r' , encoding='utf-8' ) as f: SCREAMING_SNAKE_CASE : Union[str, Any] = f.read() # Imports of the form `import .xxx` SCREAMING_SNAKE_CASE : Union[str, Any] = re.findall('^\s*import\s+\.(\S+)\s*$' , _lowerCamelCase , flags=re.MULTILINE ) # Imports of the form `from .xxx import yyy` relative_imports += re.findall('^\s*from\s+\.(\S+)\s+import' , _lowerCamelCase , flags=re.MULTILINE ) # Unique-ify return list(set(_lowerCamelCase ) ) def __lowerCAmelCase ( a_ ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = False SCREAMING_SNAKE_CASE : Tuple = [module_file] SCREAMING_SNAKE_CASE : Optional[int] = [] # Let's recurse through all relative imports while not no_change: SCREAMING_SNAKE_CASE : Optional[Any] = [] for f in files_to_check: new_imports.extend(get_relative_imports(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : Optional[Any] = Path(_lowerCamelCase ).parent SCREAMING_SNAKE_CASE : List[str] = [str(module_path / m ) for m in new_imports] SCREAMING_SNAKE_CASE : Optional[Any] = [f for f in new_import_files if f not in all_relative_imports] SCREAMING_SNAKE_CASE : Union[str, Any] = [f"""{f}.py""" for f in new_import_files] SCREAMING_SNAKE_CASE : Tuple = len(_lowerCamelCase ) == 0 all_relative_imports.extend(_lowerCamelCase ) return all_relative_imports def __lowerCAmelCase ( a_ ) -> Optional[int]: '''simple docstring''' with open(_lowerCamelCase , 'r' , encoding='utf-8' ) as f: SCREAMING_SNAKE_CASE : Dict = f.read() # Imports of the form `import xxx` SCREAMING_SNAKE_CASE : List[str] = re.findall('^\s*import\s+(\S+)\s*$' , _lowerCamelCase , flags=re.MULTILINE ) # Imports of the form `from xxx import yyy` imports += re.findall('^\s*from\s+(\S+)\s+import' , _lowerCamelCase , flags=re.MULTILINE ) # Only keep the top-level module SCREAMING_SNAKE_CASE : Optional[int] = [imp.split('.' )[0] for imp in imports if not imp.startswith('.' )] # Unique-ify and test we got them all SCREAMING_SNAKE_CASE : Any = list(set(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : Tuple = [] for imp in imports: try: importlib.import_module(_lowerCamelCase ) except ImportError: missing_packages.append(_lowerCamelCase ) if len(_lowerCamelCase ) > 0: raise ImportError( 'This modeling file requires the following packages that were not found in your environment: ' f"""{", ".join(_lowerCamelCase )}. Run `pip install {" ".join(_lowerCamelCase )}`""" ) return get_relative_imports(_lowerCamelCase ) def __lowerCAmelCase ( a_ , a_ ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : int = module_path.replace(os.path.sep , '.' ) SCREAMING_SNAKE_CASE : Optional[Any] = importlib.import_module(_lowerCamelCase ) if class_name is None: return find_pipeline_class(_lowerCamelCase ) return getattr(_lowerCamelCase , _lowerCamelCase ) def __lowerCAmelCase ( a_ ) -> List[str]: '''simple docstring''' from ..pipelines import DiffusionPipeline SCREAMING_SNAKE_CASE : int = dict(inspect.getmembers(_lowerCamelCase , inspect.isclass ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = None for cls_name, cls in cls_members.items(): if ( cls_name != DiffusionPipeline.__name__ and issubclass(cls , _lowerCamelCase ) and cls.__module__.split('.' )[0] != "diffusers" ): if pipeline_class is not None: raise ValueError( f"""Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:""" f""" {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in""" f""" {loaded_module}.""" ) SCREAMING_SNAKE_CASE : Any = cls return pipeline_class def __lowerCAmelCase ( a_ , a_ , a_ = None , a_ = False , a_ = False , a_ = None , a_ = None , a_ = None , a_ = False , ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = str(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = os.path.join(_lowerCamelCase , _lowerCamelCase ) if os.path.isfile(_lowerCamelCase ): SCREAMING_SNAKE_CASE : Union[str, Any] = module_file_or_url SCREAMING_SNAKE_CASE : Any = "local" elif pretrained_model_name_or_path.count('/' ) == 0: SCREAMING_SNAKE_CASE : Optional[Any] = get_diffusers_versions() # cut ".dev0" SCREAMING_SNAKE_CASE : Union[str, Any] = "v" + ".".join(__version__.split('.' )[:3] ) # retrieve github version that matches if revision is None: SCREAMING_SNAKE_CASE : List[Any] = latest_version if latest_version[1:] in available_versions else "main" logger.info(f"""Defaulting to latest_version: {revision}.""" ) elif revision in available_versions: SCREAMING_SNAKE_CASE : Optional[Any] = f"""v{revision}""" elif revision == "main": SCREAMING_SNAKE_CASE : Dict = revision else: raise ValueError( f"""`custom_revision`: {revision} does not exist. Please make sure to choose one of""" f""" {", ".join(available_versions + ["main"] )}.""" ) # community pipeline on GitHub SCREAMING_SNAKE_CASE : Dict = COMMUNITY_PIPELINES_URL.format(revision=_lowerCamelCase , pipeline=_lowerCamelCase ) try: SCREAMING_SNAKE_CASE : Optional[int] = cached_download( _lowerCamelCase , cache_dir=_lowerCamelCase , force_download=_lowerCamelCase , proxies=_lowerCamelCase , resume_download=_lowerCamelCase , local_files_only=_lowerCamelCase , use_auth_token=_lowerCamelCase , ) SCREAMING_SNAKE_CASE : Optional[Any] = "git" SCREAMING_SNAKE_CASE : Any = pretrained_model_name_or_path + ".py" except EnvironmentError: logger.error(f"""Could not locate the {module_file} inside {pretrained_model_name_or_path}.""" ) raise else: try: # Load from URL or cache if already cached SCREAMING_SNAKE_CASE : Any = hf_hub_download( _lowerCamelCase , _lowerCamelCase , cache_dir=_lowerCamelCase , force_download=_lowerCamelCase , proxies=_lowerCamelCase , resume_download=_lowerCamelCase , local_files_only=_lowerCamelCase , use_auth_token=_lowerCamelCase , ) SCREAMING_SNAKE_CASE : Optional[Any] = os.path.join('local' , '--'.join(pretrained_model_name_or_path.split('/' ) ) ) except EnvironmentError: logger.error(f"""Could not locate the {module_file} inside {pretrained_model_name_or_path}.""" ) raise # Check we have all the requirements in our environment SCREAMING_SNAKE_CASE : List[str] = check_imports(_lowerCamelCase ) # Now we move the module inside our cached dynamic modules. SCREAMING_SNAKE_CASE : List[str] = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule create_dynamic_module(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = Path(_lowerCamelCase ) / full_submodule if submodule == "local" or submodule == "git": # We always copy local files (we could hash the file to see if there was a change, and give them the name of # that hash, to only copy when there is a modification but it seems overkill for now). # The only reason we do the copy is to avoid putting too many folders in sys.path. shutil.copy(_lowerCamelCase , submodule_path / module_file ) for module_needed in modules_needed: SCREAMING_SNAKE_CASE : int = f"""{module_needed}.py""" shutil.copy(os.path.join(_lowerCamelCase , _lowerCamelCase ) , submodule_path / module_needed ) else: # Get the commit hash # TODO: we will get this info in the etag soon, so retrieve it from there and not here. if isinstance(_lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE : Optional[Any] = use_auth_token elif use_auth_token is True: SCREAMING_SNAKE_CASE : Dict = HfFolder.get_token() else: SCREAMING_SNAKE_CASE : Tuple = None SCREAMING_SNAKE_CASE : List[str] = model_info(_lowerCamelCase , revision=_lowerCamelCase , token=_lowerCamelCase ).sha # The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the # benefit of versioning. SCREAMING_SNAKE_CASE : str = submodule_path / commit_hash SCREAMING_SNAKE_CASE : List[str] = full_submodule + os.path.sep + commit_hash create_dynamic_module(_lowerCamelCase ) if not (submodule_path / module_file).exists(): shutil.copy(_lowerCamelCase , submodule_path / module_file ) # Make sure we also have every file with relative for module_needed in modules_needed: if not (submodule_path / module_needed).exists(): get_cached_module_file( _lowerCamelCase , f"""{module_needed}.py""" , cache_dir=_lowerCamelCase , force_download=_lowerCamelCase , resume_download=_lowerCamelCase , proxies=_lowerCamelCase , use_auth_token=_lowerCamelCase , revision=_lowerCamelCase , local_files_only=_lowerCamelCase , ) return os.path.join(_lowerCamelCase , _lowerCamelCase ) def __lowerCAmelCase ( a_ , a_ , a_ = None , a_ = None , a_ = False , a_ = False , a_ = None , a_ = None , a_ = None , a_ = False , **a_ , ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : int = get_cached_module_file( _lowerCamelCase , _lowerCamelCase , cache_dir=_lowerCamelCase , force_download=_lowerCamelCase , resume_download=_lowerCamelCase , proxies=_lowerCamelCase , use_auth_token=_lowerCamelCase , revision=_lowerCamelCase , local_files_only=_lowerCamelCase , ) return get_class_in_module(_lowerCamelCase , final_module.replace('.py' , '' ) )
717
'''simple docstring''' def __lowerCAmelCase ( a_ , a_ ) -> str: '''simple docstring''' if number < 0 or shift_amount < 0: raise ValueError('both inputs must be positive integers' ) SCREAMING_SNAKE_CASE : str = str(bin(a_ ) ) binary_number += "0" * shift_amount return binary_number def __lowerCAmelCase ( a_ , a_ ) -> str: '''simple docstring''' if number < 0 or shift_amount < 0: raise ValueError('both inputs must be positive integers' ) SCREAMING_SNAKE_CASE : Optional[Any] = str(bin(a_ ) )[2:] if shift_amount >= len(a_ ): return "0b0" SCREAMING_SNAKE_CASE : Dict = binary_number[: len(a_ ) - shift_amount] return "0b" + shifted_binary_number def __lowerCAmelCase ( a_ , a_ ) -> str: '''simple docstring''' if number >= 0: # Get binary representation of positive number SCREAMING_SNAKE_CASE : Tuple = '0' + str(bin(a_ ) ).strip('-' )[2:] else: # Get binary (2's complement) representation of negative number SCREAMING_SNAKE_CASE : Union[str, Any] = len(bin(a_ )[3:] ) # Find 2's complement of number SCREAMING_SNAKE_CASE : Any = bin(abs(a_ ) - (1 << binary_number_length) )[3:] SCREAMING_SNAKE_CASE : Optional[Any] = ( '1' + '0' * (binary_number_length - len(a_ )) + binary_number ) if shift_amount >= len(a_ ): return "0b" + binary_number[0] * len(a_ ) return ( "0b" + binary_number[0] * shift_amount + binary_number[: len(a_ ) - shift_amount] ) if __name__ == "__main__": import doctest doctest.testmod()
179
0
"""simple docstring""" from argparse import ArgumentParser from .env import EnvironmentCommand def UpperCamelCase ( ) -> Optional[int]: lowercase : Dict = ArgumentParser("""Diffusers CLI tool""" , usage="""diffusers-cli <command> [<args>]""" ) lowercase : str = parser.add_subparsers(help="""diffusers-cli command helpers""" ) # Register commands EnvironmentCommand.register_subcommand(_A ) # Let's go lowercase : Dict = parser.parse_args() if not hasattr(_A , """func""" ): parser.print_help() exit(1 ) # Run lowercase : Dict = args.func(_A ) service.run() if __name__ == "__main__": main()
264
"""simple docstring""" import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { 'b0': efficientnet.EfficientNetBa, 'b1': efficientnet.EfficientNetBa, 'b2': efficientnet.EfficientNetBa, 'b3': efficientnet.EfficientNetBa, 'b4': efficientnet.EfficientNetBa, 'b5': efficientnet.EfficientNetBa, 'b6': efficientnet.EfficientNetBa, 'b7': efficientnet.EfficientNetBa, } _lowerCAmelCase = { 'b0': { 'hidden_dim': 12_80, 'width_coef': 1.0, 'depth_coef': 1.0, 'image_size': 2_24, 'dropout_rate': 0.2, 'dw_padding': [], }, 'b1': { 'hidden_dim': 12_80, 'width_coef': 1.0, 'depth_coef': 1.1, 'image_size': 2_40, 'dropout_rate': 0.2, 'dw_padding': [16], }, 'b2': { 'hidden_dim': 14_08, 'width_coef': 1.1, 'depth_coef': 1.2, 'image_size': 2_60, 'dropout_rate': 0.3, 'dw_padding': [5, 8, 16], }, 'b3': { 'hidden_dim': 15_36, 'width_coef': 1.2, 'depth_coef': 1.4, 'image_size': 3_00, 'dropout_rate': 0.3, 'dw_padding': [5, 18], }, 'b4': { 'hidden_dim': 17_92, 'width_coef': 1.4, 'depth_coef': 1.8, 'image_size': 3_80, 'dropout_rate': 0.4, 'dw_padding': [6], }, 'b5': { 'hidden_dim': 20_48, 'width_coef': 1.6, 'depth_coef': 2.2, 'image_size': 4_56, 'dropout_rate': 0.4, 'dw_padding': [13, 27], }, 'b6': { 'hidden_dim': 23_04, 'width_coef': 1.8, 'depth_coef': 2.6, 'image_size': 5_28, 'dropout_rate': 0.5, 'dw_padding': [31], }, 'b7': { 'hidden_dim': 25_60, 'width_coef': 2.0, 'depth_coef': 3.1, 'image_size': 6_00, 'dropout_rate': 0.5, 'dw_padding': [18], }, } def UpperCamelCase ( _A ) -> List[str]: lowercase : List[str] = EfficientNetConfig() lowercase : Any = CONFIG_MAP[model_name]["""hidden_dim"""] lowercase : List[str] = CONFIG_MAP[model_name]["""width_coef"""] lowercase : str = CONFIG_MAP[model_name]["""depth_coef"""] lowercase : int = CONFIG_MAP[model_name]["""image_size"""] lowercase : List[Any] = CONFIG_MAP[model_name]["""dropout_rate"""] lowercase : int = CONFIG_MAP[model_name]["""dw_padding"""] lowercase : Optional[int] = """huggingface/label-files""" lowercase : int = """imagenet-1k-id2label.json""" lowercase : Any = 1_000 lowercase : Any = json.load(open(hf_hub_download(_A , _A , repo_type="""dataset""" ) , """r""" ) ) lowercase : Optional[int] = {int(_A ): v for k, v in idalabel.items()} lowercase : int = idalabel lowercase : Optional[Any] = {v: k for k, v in idalabel.items()} return config def UpperCamelCase ( ) -> Tuple: lowercase : Any = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowercase : Optional[int] = Image.open(requests.get(_A , stream=_A ).raw ) return im def UpperCamelCase ( _A ) -> Optional[Any]: lowercase : str = CONFIG_MAP[model_name]["""image_size"""] lowercase : Optional[int] = EfficientNetImageProcessor( size={"""height""": size, """width""": size} , image_mean=[0.485, 0.456, 0.406] , image_std=[0.4785_3944, 0.473_2864, 0.4743_4163] , do_center_crop=_A , ) return preprocessor def UpperCamelCase ( _A ) -> Optional[int]: lowercase : Union[str, Any] = [v.split("""_""" )[0].split("""block""" )[1] for v in original_param_names if v.startswith("""block""" )] lowercase : Optional[Any] = sorted(set(_A ) ) lowercase : Dict = len(_A ) lowercase : List[str] = {b: str(_A ) for b, i in zip(_A , range(_A ) )} lowercase : Union[str, Any] = [] rename_keys.append(("""stem_conv/kernel:0""", """embeddings.convolution.weight""") ) rename_keys.append(("""stem_bn/gamma:0""", """embeddings.batchnorm.weight""") ) rename_keys.append(("""stem_bn/beta:0""", """embeddings.batchnorm.bias""") ) rename_keys.append(("""stem_bn/moving_mean:0""", """embeddings.batchnorm.running_mean""") ) rename_keys.append(("""stem_bn/moving_variance:0""", """embeddings.batchnorm.running_var""") ) for b in block_names: lowercase : str = block_name_mapping[b] rename_keys.append((F"""block{b}_expand_conv/kernel:0""", F"""encoder.blocks.{hf_b}.expansion.expand_conv.weight""") ) rename_keys.append((F"""block{b}_expand_bn/gamma:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.weight""") ) rename_keys.append((F"""block{b}_expand_bn/beta:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.bias""") ) rename_keys.append( (F"""block{b}_expand_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.running_mean""") ) rename_keys.append( (F"""block{b}_expand_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.running_var""") ) rename_keys.append( (F"""block{b}_dwconv/depthwise_kernel:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight""") ) rename_keys.append((F"""block{b}_bn/gamma:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight""") ) rename_keys.append((F"""block{b}_bn/beta:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias""") ) rename_keys.append( (F"""block{b}_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean""") ) rename_keys.append( (F"""block{b}_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var""") ) rename_keys.append((F"""block{b}_se_reduce/kernel:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.reduce.weight""") ) rename_keys.append((F"""block{b}_se_reduce/bias:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.reduce.bias""") ) rename_keys.append((F"""block{b}_se_expand/kernel:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.expand.weight""") ) rename_keys.append((F"""block{b}_se_expand/bias:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.expand.bias""") ) rename_keys.append( (F"""block{b}_project_conv/kernel:0""", F"""encoder.blocks.{hf_b}.projection.project_conv.weight""") ) rename_keys.append((F"""block{b}_project_bn/gamma:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.weight""") ) rename_keys.append((F"""block{b}_project_bn/beta:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.bias""") ) rename_keys.append( (F"""block{b}_project_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.running_mean""") ) rename_keys.append( (F"""block{b}_project_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.running_var""") ) rename_keys.append(("""top_conv/kernel:0""", """encoder.top_conv.weight""") ) rename_keys.append(("""top_bn/gamma:0""", """encoder.top_bn.weight""") ) rename_keys.append(("""top_bn/beta:0""", """encoder.top_bn.bias""") ) rename_keys.append(("""top_bn/moving_mean:0""", """encoder.top_bn.running_mean""") ) rename_keys.append(("""top_bn/moving_variance:0""", """encoder.top_bn.running_var""") ) lowercase : Union[str, Any] = {} for item in rename_keys: if item[0] in original_param_names: lowercase : Optional[int] = """efficientnet.""" + item[1] lowercase : Any = """classifier.weight""" lowercase : Tuple = """classifier.bias""" return key_mapping def UpperCamelCase ( _A , _A , _A ) -> Optional[Any]: for key, value in tf_params.items(): if "normalization" in key: continue lowercase : List[Any] = key_mapping[key] if "_conv" in key and "kernel" in key: lowercase : str = torch.from_numpy(_A ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: lowercase : Optional[int] = torch.from_numpy(_A ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: lowercase : List[Any] = torch.from_numpy(np.transpose(_A ) ) else: lowercase : Optional[int] = torch.from_numpy(_A ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(_A ) @torch.no_grad() def UpperCamelCase ( _A , _A , _A , _A ) -> str: lowercase : Any = model_classes[model_name]( include_top=_A , weights="""imagenet""" , input_tensor=_A , input_shape=_A , pooling=_A , classes=1_000 , classifier_activation="""softmax""" , ) lowercase : Dict = original_model.trainable_variables lowercase : Any = original_model.non_trainable_variables lowercase : Any = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: lowercase : Dict = param.numpy() lowercase : List[str] = list(tf_params.keys() ) # Load HuggingFace model lowercase : str = get_efficientnet_config(_A ) lowercase : List[Any] = EfficientNetForImageClassification(_A ).eval() lowercase : Optional[int] = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print("""Converting parameters...""" ) lowercase : int = rename_keys(_A ) replace_params(_A , _A , _A ) # Initialize preprocessor and preprocess input image lowercase : Optional[int] = convert_image_processor(_A ) lowercase : Any = preprocessor(images=prepare_img() , return_tensors="""pt""" ) # HF model inference hf_model.eval() with torch.no_grad(): lowercase : Union[str, Any] = hf_model(**_A ) lowercase : List[Any] = outputs.logits.detach().numpy() # Original model inference lowercase : Optional[Any] = False lowercase : str = CONFIG_MAP[model_name]["""image_size"""] lowercase : Optional[Any] = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) lowercase : Optional[Any] = image.img_to_array(_A ) lowercase : Dict = np.expand_dims(_A , axis=0 ) lowercase : List[str] = original_model.predict(_A ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(_A , _A , atol=1e-3 ), "The predicted logits are not the same." print("""Model outputs match!""" ) if save_model: # Create folder to save model if not os.path.isdir(_A ): os.mkdir(_A ) # Save converted model and image processor hf_model.save_pretrained(_A ) preprocessor.save_pretrained(_A ) if push_to_hub: # Push model and image processor to hub print(F"""Pushing converted {model_name} to the hub...""" ) lowercase : Dict = F"""efficientnet-{model_name}""" preprocessor.push_to_hub(_A ) hf_model.push_to_hub(_A ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='b0', type=str, help='Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].', ) parser.add_argument( '--pytorch_dump_folder_path', default='hf_model', type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument('--save_model', action='store_true', help='Save model to local') parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') _lowerCAmelCase = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
264
1
def lowerCamelCase_ ( lowerCAmelCase__ : str , lowerCAmelCase__ : int ) -> str: '''simple docstring''' A = [[] for _ in range(lowerCAmelCase__ )] A = key - 1 if key <= 0: raise ValueError('Height of grid can\'t be 0 or negative' ) if key == 1 or len(lowerCAmelCase__ ) <= key: return input_string for position, character in enumerate(lowerCAmelCase__ ): A = position % (lowest * 2) # puts it in bounds A = min(lowerCAmelCase__ , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append(lowerCAmelCase__ ) A = [''.join(lowerCAmelCase__ ) for row in temp_grid] A = ''.join(lowerCAmelCase__ ) return output_string def lowerCamelCase_ ( lowerCAmelCase__ : str , lowerCAmelCase__ : int ) -> str: '''simple docstring''' A = [] A = key - 1 if key <= 0: raise ValueError('Height of grid can\'t be 0 or negative' ) if key == 1: return input_string A = [[] for _ in range(lowerCAmelCase__ )] # generates template for position in range(len(lowerCAmelCase__ ) ): A = position % (lowest * 2) # puts it in bounds A = min(lowerCAmelCase__ , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append('*' ) A = 0 for row in temp_grid: # fills in the characters A = input_string[counter : counter + len(lowerCAmelCase__ )] grid.append(list(lowerCAmelCase__ ) ) counter += len(lowerCAmelCase__ ) A = '' # reads as zigzag for position in range(len(lowerCAmelCase__ ) ): A = position % (lowest * 2) # puts it in bounds A = min(lowerCAmelCase__ , lowest * 2 - num ) # creates zigzag pattern output_string += grid[num][0] grid[num].pop(0 ) return output_string def lowerCamelCase_ ( lowerCAmelCase__ : str ) -> dict[int, str]: '''simple docstring''' A = {} for key_guess in range(1 , len(lowerCAmelCase__ ) ): # tries every key A = decrypt(lowerCAmelCase__ , lowerCAmelCase__ ) return results if __name__ == "__main__": import doctest doctest.testmod()
713
class lowerCAmelCase__ : def __init__( self : str , __UpperCamelCase : str = "" , __UpperCamelCase : bool = False ) -> None: # Mapping from the first character of the prefix of the node A = {} # A node will be a leaf if the tree contains its word A = is_leaf A = prefix def __UpperCamelCase ( self : int , __UpperCamelCase : str ) -> tuple[str, str, str]: A = 0 for q, w in zip(self.prefix , __UpperCamelCase ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def __UpperCamelCase ( self : int , __UpperCamelCase : list[str] ) -> None: for word in words: self.insert(__UpperCamelCase ) def __UpperCamelCase ( self : Tuple , __UpperCamelCase : str ) -> None: # Case 1: If the word is the prefix of the node # Solution: We set the current node as leaf if self.prefix == word: A = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: A = RadixNode(prefix=__UpperCamelCase , is_leaf=__UpperCamelCase ) else: A = self.nodes[word[0]] A , A , A = incoming_node.match( __UpperCamelCase ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(__UpperCamelCase ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: A = remaining_prefix A = self.nodes[matching_string[0]] A = RadixNode(__UpperCamelCase , __UpperCamelCase ) A = aux_node if remaining_word == "": A = True else: self.nodes[matching_string[0]].insert(__UpperCamelCase ) def __UpperCamelCase ( self : int , __UpperCamelCase : str ) -> bool: A = self.nodes.get(word[0] , __UpperCamelCase ) if not incoming_node: return False else: A , A , A = incoming_node.match( __UpperCamelCase ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(__UpperCamelCase ) def __UpperCamelCase ( self : Union[str, Any] , __UpperCamelCase : str ) -> bool: A = self.nodes.get(word[0] , __UpperCamelCase ) if not incoming_node: return False else: A , A , A = incoming_node.match( __UpperCamelCase ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(__UpperCamelCase ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: A = list(self.nodes.values() )[0] A = merging_node.is_leaf self.prefix += merging_node.prefix A = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: A = False # If there is 1 edge, we merge it with its child else: A = list(incoming_node.nodes.values() )[0] A = merging_node.is_leaf incoming_node.prefix += merging_node.prefix A = merging_node.nodes return True def __UpperCamelCase ( self : Union[str, Any] , __UpperCamelCase : int = 0 ) -> None: if self.prefix != "": print('-' * height , self.prefix , ' (leaf)' if self.is_leaf else '' ) for value in self.nodes.values(): value.print_tree(height + 1 ) def lowerCamelCase_ ( ) -> bool: '''simple docstring''' A = 'banana bananas bandana band apple all beast'.split() A = RadixNode() root.insert_many(lowerCAmelCase__ ) assert all(root.find(lowerCAmelCase__ ) for word in words ) assert not root.find('bandanas' ) assert not root.find('apps' ) root.delete('all' ) assert not root.find('all' ) root.delete('banana' ) assert not root.find('banana' ) assert root.find('bananas' ) return True def lowerCamelCase_ ( ) -> None: '''simple docstring''' assert test_trie() def lowerCamelCase_ ( ) -> None: '''simple docstring''' A = RadixNode() A = 'banana bananas bandanas bandana band apple all beast'.split() root.insert_many(lowerCAmelCase__ ) print('Words:' , lowerCAmelCase__ ) print('Tree:' ) root.print_tree() if __name__ == "__main__": main()
224
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { """facebook/deit-base-distilled-patch16-224""": ( """https://huggingface.co/facebook/deit-base-patch16-224/resolve/main/config.json""" ), # See all DeiT models at https://huggingface.co/models?filter=deit } class lowercase ( a_): """simple docstring""" a__ : Any = "deit" def __init__( self : int , __UpperCAmelCase : List[Any]=768 , __UpperCAmelCase : Optional[int]=12 , __UpperCAmelCase : Tuple=12 , __UpperCAmelCase : Union[str, Any]=3_072 , __UpperCAmelCase : Union[str, Any]="gelu" , __UpperCAmelCase : Union[str, Any]=0.0 , __UpperCAmelCase : Dict=0.0 , __UpperCAmelCase : Optional[Any]=0.02 , __UpperCAmelCase : Tuple=1E-12 , __UpperCAmelCase : Optional[Any]=224 , __UpperCAmelCase : Optional[Any]=16 , __UpperCAmelCase : List[Any]=3 , __UpperCAmelCase : str=True , __UpperCAmelCase : str=16 , **__UpperCAmelCase : List[Any] , ) -> Dict: super().__init__(**_snake_case ) UpperCAmelCase_= hidden_size UpperCAmelCase_= num_hidden_layers UpperCAmelCase_= num_attention_heads UpperCAmelCase_= intermediate_size UpperCAmelCase_= hidden_act UpperCAmelCase_= hidden_dropout_prob UpperCAmelCase_= attention_probs_dropout_prob UpperCAmelCase_= initializer_range UpperCAmelCase_= layer_norm_eps UpperCAmelCase_= image_size UpperCAmelCase_= patch_size UpperCAmelCase_= num_channels UpperCAmelCase_= qkv_bias UpperCAmelCase_= encoder_stride class lowercase ( a_): """simple docstring""" a__ : int = version.parse("1.11") @property def _SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def _SCREAMING_SNAKE_CASE ( self : str ) -> Any: return 1E-4
593
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging A : Optional[Any] = logging.get_logger(__name__) A : Optional[Any] = { """deepmind/language-perceiver""": """https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json""", # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class lowerCAmelCase_ ( a_ ): __UpperCAmelCase = 'perceiver' def __init__( self : List[str], _snake_case : Optional[Any]=256, _snake_case : int=1_280, _snake_case : Optional[int]=768, _snake_case : List[str]=1, _snake_case : str=26, _snake_case : Union[str, Any]=8, _snake_case : Optional[int]=8, _snake_case : Optional[int]=None, _snake_case : str=None, _snake_case : List[str]="kv", _snake_case : str=1, _snake_case : Optional[Any]=1, _snake_case : str="gelu", _snake_case : List[Any]=0.1, _snake_case : Any=0.02, _snake_case : Union[str, Any]=1E-12, _snake_case : str=True, _snake_case : Any=262, _snake_case : Union[str, Any]=2_048, _snake_case : List[str]=56, _snake_case : Tuple=[368, 496], _snake_case : Dict=16, _snake_case : Tuple=1_920, _snake_case : Optional[Any]=16, _snake_case : Optional[Any]=[1, 16, 224, 224], **_snake_case : Optional[Any], ): '''simple docstring''' super().__init__(**_snake_case ) snake_case : Union[str, Any] =num_latents snake_case : str =d_latents snake_case : Any =d_model snake_case : Any =num_blocks snake_case : Tuple =num_self_attends_per_block snake_case : int =num_self_attention_heads snake_case : str =num_cross_attention_heads snake_case : List[Any] =qk_channels snake_case : Tuple =v_channels snake_case : str =cross_attention_shape_for_attention snake_case : Union[str, Any] =self_attention_widening_factor snake_case : Union[str, Any] =cross_attention_widening_factor snake_case : Optional[int] =hidden_act snake_case : Any =attention_probs_dropout_prob snake_case : int =initializer_range snake_case : str =layer_norm_eps snake_case : Dict =use_query_residual # masked language modeling attributes snake_case : List[Any] =vocab_size snake_case : List[Any] =max_position_embeddings # image classification attributes snake_case : List[str] =image_size # flow attributes snake_case : Optional[Any] =train_size # multimodal autoencoding attributes snake_case : Dict =num_frames snake_case : Optional[Any] =audio_samples_per_frame snake_case : Dict =samples_per_patch snake_case : Union[str, Any] =output_shape class lowerCAmelCase_ ( a_ ): @property def __snake_case ( self : List[Any] ): '''simple docstring''' if self.task == "multiple-choice": snake_case : Tuple ={0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: snake_case : Union[str, Any] ={0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''inputs''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] ) @property def __snake_case ( self : List[str] ): '''simple docstring''' return 1E-4 def __snake_case ( self : Dict, _snake_case : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"], _snake_case : int = -1, _snake_case : int = -1, _snake_case : int = -1, _snake_case : bool = False, _snake_case : Optional[TensorType] = None, _snake_case : int = 3, _snake_case : int = 40, _snake_case : int = 40, ): '''simple docstring''' if isinstance(_snake_case, _snake_case ): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX snake_case : Any =compute_effective_axis_dimension( _snake_case, fixed_dimension=OnnxConfig.default_fixed_batch, num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX snake_case : Tuple =preprocessor.num_special_tokens_to_add(_snake_case ) snake_case : Optional[Any] =compute_effective_axis_dimension( _snake_case, fixed_dimension=OnnxConfig.default_fixed_sequence, num_token_to_add=_snake_case ) # Generate dummy inputs according to compute batch and sequence snake_case : str =[''' '''.join(['''a'''] ) * seq_length] * batch_size snake_case : int =dict(preprocessor(_snake_case, return_tensors=_snake_case ) ) snake_case : List[str] =inputs.pop('''input_ids''' ) return inputs elif isinstance(_snake_case, _snake_case ) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX snake_case : Union[str, Any] =compute_effective_axis_dimension(_snake_case, fixed_dimension=OnnxConfig.default_fixed_batch ) snake_case : Dict =self._generate_dummy_images(_snake_case, _snake_case, _snake_case, _snake_case ) snake_case : Optional[Any] =dict(preprocessor(images=_snake_case, return_tensors=_snake_case ) ) snake_case : Optional[Any] =inputs.pop('''pixel_values''' ) return inputs else: raise ValueError( '''Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor.''' )
349
0
'''simple docstring''' from __future__ import annotations from collections.abc import Sequence from typing import Literal def _A ( A__ , A__ ): """simple docstring""" __lowercase = list(A__ ) __lowercase = list(A__ ) __lowercase = 0 for i in range(len(A__ ) ): if lista[i] != lista[i]: count += 1 __lowercase = '''_''' if count > 1: return False else: return "".join(A__ ) def _A ( A__ ): """simple docstring""" __lowercase = [] while True: __lowercase = ['''$'''] * len(A__ ) __lowercase = [] for i in range(len(A__ ) ): for j in range(i + 1 , len(A__ ) ): __lowercase = compare_string(binary[i] , binary[j] ) if k is False: __lowercase = '''*''' __lowercase = '''*''' temp.append('''X''' ) for i in range(len(A__ ) ): if checka[i] == "$": pi.append(binary[i] ) if len(A__ ) == 0: return pi __lowercase = list(set(A__ ) ) def _A ( A__ , A__ ): """simple docstring""" __lowercase = [] for minterm in minterms: __lowercase = '''''' for _ in range(A__ ): __lowercase = str(minterm % 2 ) + string minterm //= 2 temp.append(A__ ) return temp def _A ( A__ , A__ , A__ ): """simple docstring""" __lowercase = list(A__ ) __lowercase = list(A__ ) __lowercase = 0 for i in range(len(A__ ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def _A ( A__ , A__ ): """simple docstring""" __lowercase = [] __lowercase = [0] * len(A__ ) for i in range(len(chart[0] ) ): __lowercase = 0 __lowercase = -1 for j in range(len(A__ ) ): if chart[j][i] == 1: count += 1 __lowercase = j if count == 1: __lowercase = 1 for i in range(len(A__ ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(A__ ) ): __lowercase = 0 temp.append(prime_implicants[i] ) while True: __lowercase = 0 __lowercase = -1 __lowercase = 0 for i in range(len(A__ ) ): __lowercase = chart[i].count(1 ) if count_n > max_n: __lowercase = count_n __lowercase = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(A__ ) ): __lowercase = 0 def _A ( A__ , A__ ): """simple docstring""" __lowercase = [[0 for x in range(len(A__ ) )] for x in range(len(A__ ) )] for i in range(len(A__ ) ): __lowercase = prime_implicants[i].count('''_''' ) for j in range(len(A__ ) ): if is_for_table(prime_implicants[i] , binary[j] , A__ ): __lowercase = 1 return chart def _A ( ): """simple docstring""" __lowercase = int(input('''Enter the no. of variables\n''' ) ) __lowercase = [ float(A__ ) for x in input( '''Enter the decimal representation of Minterms \'Spaces Separated\'\n''' ).split() ] __lowercase = decimal_to_binary(A__ , A__ ) __lowercase = check(A__ ) print('''Prime Implicants are:''' ) print(A__ ) __lowercase = prime_implicant_chart(A__ , A__ ) __lowercase = selection(A__ , A__ ) print('''Essential Prime Implicants are:''' ) print(A__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
624
'''simple docstring''' def _A ( ): """simple docstring""" for n in range(1 , 1000000 ): yield n * (n + 1) // 2 def _A ( A__ ): """simple docstring""" __lowercase = 1 __lowercase = 2 while i * i <= n: __lowercase = 0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def _A ( ): """simple docstring""" return next(i for i in triangle_number_generator() if count_divisors(A__ ) > 500 ) if __name__ == "__main__": print(solution())
624
1
import time import warnings from abc import ABC from copy import deepcopy from typing import Optional import torch from ..utils import add_start_docstrings, logging lowercase__ : Any = logging.get_logger(__name__) lowercase__ : List[str] = R''' Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) scores (`torch.FloatTensor` of shape `(batch_size, config.vocab_size)`): Prediction scores of a language modeling head. These can be scores for each vocabulary token before SoftMax or scores for each vocabulary token after SoftMax. kwargs (`Dict[str, Any]`, *optional*): Additional stopping criteria specific kwargs. Return: `bool`. `False` indicates we should continue, `True` indicates we should stop. ''' class lowercase_ ( UpperCamelCase_ ): """simple docstring""" @add_start_docstrings(__SCREAMING_SNAKE_CASE ) def __call__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) ->bool: raise NotImplementedError('''StoppingCriteria needs to be subclassed''' ) class lowercase_ ( UpperCamelCase_ ): """simple docstring""" def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ) ->List[str]: lowerCAmelCase = max_length lowerCAmelCase = max_position_embeddings @add_start_docstrings(__SCREAMING_SNAKE_CASE ) def __call__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) ->bool: lowerCAmelCase = input_ids.shape[-1] lowerCAmelCase = cur_len >= self.max_length if self.max_position_embeddings is not None and not is_done and cur_len >= self.max_position_embeddings: logger.warning_once( '''This is a friendly reminder - the current text generation call will exceed the model\'s predefined ''' F"maximum length ({self.max_position_embeddings}). Depending on the model, you may observe " '''exceptions, performance degradation, or nothing at all.''' ) return is_done class lowercase_ ( UpperCamelCase_ ): """simple docstring""" def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ->Tuple: warnings.warn( '''The class `MaxNewTokensCriteria` is deprecated. ''' F"Please use `MaxLengthCriteria(max_length={start_length + max_new_tokens})` " '''with `max_length = start_length + max_new_tokens` instead.''' , __SCREAMING_SNAKE_CASE , ) lowerCAmelCase = start_length lowerCAmelCase = max_new_tokens lowerCAmelCase = start_length + max_new_tokens @add_start_docstrings(__SCREAMING_SNAKE_CASE ) def __call__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) ->bool: return input_ids.shape[-1] >= self.max_length class lowercase_ ( UpperCamelCase_ ): """simple docstring""" def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ) ->str: lowerCAmelCase = max_time lowerCAmelCase = time.time() if initial_timestamp is None else initial_timestamp @add_start_docstrings(__SCREAMING_SNAKE_CASE ) def __call__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) ->bool: return time.time() - self.initial_timestamp > self.max_time class lowercase_ ( UpperCamelCase_ ): """simple docstring""" @add_start_docstrings(__SCREAMING_SNAKE_CASE ) def __call__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) ->bool: return any(criteria(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for criteria in self ) @property def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[int]: for stopping_criterium in self: if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): return stopping_criterium.max_length elif isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): return stopping_criterium.max_length return None def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ ) -> StoppingCriteriaList: lowerCAmelCase = stopping_criteria.max_length lowerCAmelCase = deepcopy(snake_case__ ) if stopping_max_length is not None and stopping_max_length != max_length: warnings.warn('''You set different `max_length` for stopping criteria and `max_length` parameter''' , snake_case__ ) elif stopping_max_length is None: new_stopping_criteria.append(MaxLengthCriteria(max_length=snake_case__ ) ) return new_stopping_criteria
312
from pathlib import Path import numpy as np from PIL import Image def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> np.ndarray: lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2] return 0.29_89 * r + 0.58_70 * g + 0.11_40 * b def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> np.ndarray: return (gray > 1_2_7) & (gray <= 2_5_5) def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ ) -> np.ndarray: lowerCAmelCase = np.zeros_like(snake_case__ ) lowerCAmelCase = np.zeros( (image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) ) # Copy image to padded image lowerCAmelCase = image # Iterate over image & apply kernel for x in range(image.shape[1] ): for y in range(image.shape[0] ): lowerCAmelCase = ( kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]] ).sum() lowerCAmelCase = int(summation > 0 ) return output if __name__ == "__main__": # read original image lowercase__ : Dict = Path(__file__).resolve().parent / '''image_data''' / '''lena.jpg''' lowercase__ : Dict = np.array(Image.open(lena_path)) # kernel to be applied lowercase__ : int = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) lowercase__ : Dict = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element) # Save the output image lowercase__ : Dict = Image.fromarray(output).convert('''RGB''') pil_img.save('''result_dilation.png''')
312
1
import argparse import datetime def __lowerCamelCase ( __a :str ) -> Dict: """simple docstring""" A__ = { "0": "Sunday", "1": "Monday", "2": "Tuesday", "3": "Wednesday", "4": "Thursday", "5": "Friday", "6": "Saturday", } A__ = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(snake_case_ ) < 1_1: raise ValueError("""Must be 10 characters long""" ) # Get month A__ = int(date_input[0] + date_input[1] ) # Validate if not 0 < m < 1_3: raise ValueError("""Month must be between 1 - 12""" ) A__ = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError("""Date separator must be '-' or '/'""" ) # Get day A__ = int(date_input[3] + date_input[4] ) # Validate if not 0 < d < 3_2: raise ValueError("""Date must be between 1 - 31""" ) # Get second separator A__ = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError("""Date separator must be '-' or '/'""" ) # Get year A__ = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] ) # Arbitrary year range if not 4_5 < y < 8_5_0_0: raise ValueError( """Year out of range. There has to be some sort of limit...right?""" ) # Get datetime obj for validation A__ = datetime.date(int(snake_case_ ) , int(snake_case_ ) , int(snake_case_ ) ) # Start math if m <= 2: A__ = y - 1 A__ = m + 1_2 # maths var A__ = int(str(snake_case_ )[:2] ) A__ = int(str(snake_case_ )[2:] ) A__ = int(2.6 * m - 5.39 ) A__ = int(c / 4 ) A__ = int(k / 4 ) A__ = int(d + k ) A__ = int(t + u + v + x ) A__ = int(z - (2 * c) ) A__ = round(w % 7 ) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError("""The date was evaluated incorrectly. Contact developer.""" ) # Response A__ = F'Your date {date_input}, is a {days[str(snake_case_ )]}!' return response if __name__ == "__main__": import doctest doctest.testmod() A : str = argparse.ArgumentParser( description=( '''Find out what day of the week nearly any date is or was. Enter ''' '''date as a string in the mm-dd-yyyy or mm/dd/yyyy format''' ) ) parser.add_argument( '''date_input''', type=str, help='''Date as a string (mm-dd-yyyy or mm/dd/yyyy)''' ) A : str = parser.parse_args() zeller(args.date_input)
703
import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def __lowerCamelCase ( __a :Tuple , __a :int , __a :Tuple ) -> Optional[int]: """simple docstring""" A__ = AlbertConfig.from_json_file(__a ) print(F'Building PyTorch model from configuration: {config}' ) A__ = AlbertForPreTraining(__a ) # Load weights from tf checkpoint load_tf_weights_in_albert(__a , __a , __a ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() , __a ) if __name__ == "__main__": A : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--albert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained ALBERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) A : Optional[Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
247
0
"""simple docstring""" import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' if (ksize % 2) == 0: __SCREAMING_SNAKE_CASE = ksize + 1 __SCREAMING_SNAKE_CASE = np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(lowerCAmelCase_ ): for x in range(lowerCAmelCase_ ): # distance from center __SCREAMING_SNAKE_CASE = x - ksize // 2 __SCREAMING_SNAKE_CASE = y - ksize // 2 # degree to radiant __SCREAMING_SNAKE_CASE = theta / 180 * np.pi __SCREAMING_SNAKE_CASE = np.cos(_theta ) __SCREAMING_SNAKE_CASE = np.sin(_theta ) # get kernel x __SCREAMING_SNAKE_CASE = cos_theta * px + sin_theta * py # get kernel y __SCREAMING_SNAKE_CASE = -sin_theta * px + cos_theta * py # fill kernel __SCREAMING_SNAKE_CASE = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image a__ : Tuple = imread('''../image_data/lena.jpg''') # turn image in gray scale value a__ : Any = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges a__ : int = np.zeros(gray.shape[:2]) for theta in [0, 3_0, 6_0, 9_0, 1_2_0, 1_5_0]: a__ : str = gabor_filter_kernel(1_0, 8, theta, 1_0, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) a__ : Tuple = out / out.max() * 2_5_5 a__ : Any = out.astype(np.uinta) imshow('''Original''', gray) imshow('''Gabor filter with 20x20 mask and 6 directions''', out) waitKey(0)
682
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a__ : List[str] = logging.get_logger(__name__) a__ : str = { '''xlm-roberta-base''': '''https://huggingface.co/xlm-roberta-base/resolve/main/config.json''', '''xlm-roberta-large''': '''https://huggingface.co/xlm-roberta-large/resolve/main/config.json''', '''xlm-roberta-large-finetuned-conll02-dutch''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json''' ), '''xlm-roberta-large-finetuned-conll02-spanish''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json''' ), '''xlm-roberta-large-finetuned-conll03-english''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json''' ), '''xlm-roberta-large-finetuned-conll03-german''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json''' ), } class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" snake_case__ : Any = "xlm-roberta" def __init__( self : int , UpperCAmelCase__ : Union[str, Any]=3_0_5_2_2 , UpperCAmelCase__ : Optional[Any]=7_6_8 , UpperCAmelCase__ : Optional[int]=1_2 , UpperCAmelCase__ : Tuple=1_2 , UpperCAmelCase__ : str=3_0_7_2 , UpperCAmelCase__ : int="gelu" , UpperCAmelCase__ : Dict=0.1 , UpperCAmelCase__ : Any=0.1 , UpperCAmelCase__ : Optional[int]=5_1_2 , UpperCAmelCase__ : Dict=2 , UpperCAmelCase__ : int=0.02 , UpperCAmelCase__ : Optional[int]=1E-12 , UpperCAmelCase__ : Any=1 , UpperCAmelCase__ : Any=0 , UpperCAmelCase__ : str=2 , UpperCAmelCase__ : Any="absolute" , UpperCAmelCase__ : Optional[Any]=True , UpperCAmelCase__ : List[Any]=None , **UpperCAmelCase__ : int , ) -> Tuple: super().__init__(pad_token_id=UpperCAmelCase__ , bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , **UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = type_vocab_size __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = position_embedding_type __SCREAMING_SNAKE_CASE = use_cache __SCREAMING_SNAKE_CASE = classifier_dropout class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" @property def UpperCAmelCase_ ( self : List[str] ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": __SCREAMING_SNAKE_CASE = {0: "batch", 1: "choice", 2: "sequence"} else: __SCREAMING_SNAKE_CASE = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
682
1
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def lowercase__ ( lowerCAmelCase : int ) -> Optional[Any]: """simple docstring""" UpperCAmelCase = 384 if "tiny" in model_name: UpperCAmelCase = [3, 3, 9, 3] UpperCAmelCase = [96, 192, 384, 768] if "small" in model_name: UpperCAmelCase = [3, 3, 27, 3] UpperCAmelCase = [96, 192, 384, 768] if "base" in model_name: UpperCAmelCase = [3, 3, 27, 3] UpperCAmelCase = [128, 256, 512, 1_024] UpperCAmelCase = 512 if "large" in model_name: UpperCAmelCase = [3, 3, 27, 3] UpperCAmelCase = [192, 384, 768, 1_536] UpperCAmelCase = 768 if "xlarge" in model_name: UpperCAmelCase = [3, 3, 27, 3] UpperCAmelCase = [256, 512, 1_024, 2_048] UpperCAmelCase = 1_024 # set label information UpperCAmelCase = 150 UpperCAmelCase = 'huggingface/label-files' UpperCAmelCase = 'ade20k-id2label.json' UpperCAmelCase = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type='dataset' ) , 'r' ) ) UpperCAmelCase = {int(_lowerCamelCase ): v for k, v in idalabel.items()} UpperCAmelCase = {v: k for k, v in idalabel.items()} UpperCAmelCase = ConvNextConfig( depths=_lowerCamelCase , hidden_sizes=_lowerCamelCase , out_features=['stage1', 'stage2', 'stage3', 'stage4'] ) UpperCAmelCase = UperNetConfig( backbone_config=_lowerCamelCase , auxiliary_in_channels=_lowerCamelCase , num_labels=_lowerCamelCase , idalabel=_lowerCamelCase , labelaid=_lowerCamelCase , ) return config def lowercase__ ( lowerCAmelCase : Optional[int] ) -> Any: """simple docstring""" UpperCAmelCase = [] # fmt: off # stem rename_keys.append(('backbone.downsample_layers.0.0.weight', 'backbone.embeddings.patch_embeddings.weight') ) rename_keys.append(('backbone.downsample_layers.0.0.bias', 'backbone.embeddings.patch_embeddings.bias') ) rename_keys.append(('backbone.downsample_layers.0.1.weight', 'backbone.embeddings.layernorm.weight') ) rename_keys.append(('backbone.downsample_layers.0.1.bias', 'backbone.embeddings.layernorm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F"backbone.stages.{i}.{j}.gamma", F"backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter") ) rename_keys.append((F"backbone.stages.{i}.{j}.depthwise_conv.weight", F"backbone.encoder.stages.{i}.layers.{j}.dwconv.weight") ) rename_keys.append((F"backbone.stages.{i}.{j}.depthwise_conv.bias", F"backbone.encoder.stages.{i}.layers.{j}.dwconv.bias") ) rename_keys.append((F"backbone.stages.{i}.{j}.norm.weight", F"backbone.encoder.stages.{i}.layers.{j}.layernorm.weight") ) rename_keys.append((F"backbone.stages.{i}.{j}.norm.bias", F"backbone.encoder.stages.{i}.layers.{j}.layernorm.bias") ) rename_keys.append((F"backbone.stages.{i}.{j}.pointwise_conv1.weight", F"backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight") ) rename_keys.append((F"backbone.stages.{i}.{j}.pointwise_conv1.bias", F"backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias") ) rename_keys.append((F"backbone.stages.{i}.{j}.pointwise_conv2.weight", F"backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight") ) rename_keys.append((F"backbone.stages.{i}.{j}.pointwise_conv2.bias", F"backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias") ) if i > 0: rename_keys.append((F"backbone.downsample_layers.{i}.0.weight", F"backbone.encoder.stages.{i}.downsampling_layer.0.weight") ) rename_keys.append((F"backbone.downsample_layers.{i}.0.bias", F"backbone.encoder.stages.{i}.downsampling_layer.0.bias") ) rename_keys.append((F"backbone.downsample_layers.{i}.1.weight", F"backbone.encoder.stages.{i}.downsampling_layer.1.weight") ) rename_keys.append((F"backbone.downsample_layers.{i}.1.bias", F"backbone.encoder.stages.{i}.downsampling_layer.1.bias") ) rename_keys.append((F"backbone.norm{i}.weight", F"backbone.hidden_states_norms.stage{i+1}.weight") ) rename_keys.append((F"backbone.norm{i}.bias", F"backbone.hidden_states_norms.stage{i+1}.bias") ) # decode head rename_keys.extend( [ ('decode_head.conv_seg.weight', 'decode_head.classifier.weight'), ('decode_head.conv_seg.bias', 'decode_head.classifier.bias'), ('auxiliary_head.conv_seg.weight', 'auxiliary_head.classifier.weight'), ('auxiliary_head.conv_seg.bias', 'auxiliary_head.classifier.bias'), ] ) # fmt: on return rename_keys def lowercase__ ( lowerCAmelCase : List[Any] , lowerCAmelCase : Any , lowerCAmelCase : str ) -> str: """simple docstring""" UpperCAmelCase = dct.pop(_lowerCamelCase ) UpperCAmelCase = val def lowercase__ ( lowerCAmelCase : List[str] , lowerCAmelCase : List[str] , lowerCAmelCase : int ) -> int: """simple docstring""" UpperCAmelCase = { 'upernet-convnext-tiny': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth', 'upernet-convnext-small': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth', 'upernet-convnext-base': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth', 'upernet-convnext-large': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth', 'upernet-convnext-xlarge': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth', } UpperCAmelCase = model_name_to_url[model_name] UpperCAmelCase = torch.hub.load_state_dict_from_url(_lowerCamelCase , map_location='cpu' )['state_dict'] UpperCAmelCase = get_upernet_config(_lowerCamelCase ) UpperCAmelCase = UperNetForSemanticSegmentation(_lowerCamelCase ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): UpperCAmelCase = state_dict.pop(_lowerCamelCase ) if "bn" in key: UpperCAmelCase = key.replace('bn' , 'batch_norm' ) UpperCAmelCase = val # rename keys UpperCAmelCase = create_rename_keys(_lowerCamelCase ) for src, dest in rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) model.load_state_dict(_lowerCamelCase ) # verify on image UpperCAmelCase = 'https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg' UpperCAmelCase = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ).convert('RGB' ) UpperCAmelCase = SegformerImageProcessor() UpperCAmelCase = processor(_lowerCamelCase , return_tensors='pt' ).pixel_values with torch.no_grad(): UpperCAmelCase = model(_lowerCamelCase ) if model_name == "upernet-convnext-tiny": UpperCAmelCase = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ) elif model_name == "upernet-convnext-small": UpperCAmelCase = torch.tensor( [[-8.8236, -8.8236, -8.6771], [-8.8236, -8.8236, -8.6771], [-8.7638, -8.7638, -8.6240]] ) elif model_name == "upernet-convnext-base": UpperCAmelCase = torch.tensor( [[-8.8558, -8.8558, -8.6905], [-8.8558, -8.8558, -8.6905], [-8.7669, -8.7669, -8.6021]] ) elif model_name == "upernet-convnext-large": UpperCAmelCase = torch.tensor( [[-8.6660, -8.6660, -8.6210], [-8.6660, -8.6660, -8.6210], [-8.6310, -8.6310, -8.5964]] ) elif model_name == "upernet-convnext-xlarge": UpperCAmelCase = torch.tensor( [[-8.4980, -8.4980, -8.3977], [-8.4980, -8.4980, -8.3977], [-8.4379, -8.4379, -8.3412]] ) print('Logits:' , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , _lowerCamelCase , atol=1E-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_lowerCamelCase ) print(F"Saving processor to {pytorch_dump_folder_path}" ) processor.save_pretrained(_lowerCamelCase ) if push_to_hub: print(F"Pushing model and processor for {model_name} to hub" ) model.push_to_hub(F"openmmlab/{model_name}" ) processor.push_to_hub(F"openmmlab/{model_name}" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''upernet-convnext-tiny''', type=str, choices=[F'upernet-convnext-{size}' for size in ['''tiny''', '''small''', '''base''', '''large''', '''xlarge''']], help='''Name of the ConvNext UperNet model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) SCREAMING_SNAKE_CASE_ = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
700
"""simple docstring""" import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class _UpperCAmelCase ( nn.Module ): def __init__( self ) -> Any: super().__init__() UpperCAmelCase = nn.Linear(3 , 4 ) UpperCAmelCase = nn.BatchNormad(4 ) UpperCAmelCase = nn.Linear(4 , 5 ) def a_ ( self , lowercase_ ) -> Any: return self.lineara(self.batchnorm(self.lineara(lowercase_ ) ) ) class _UpperCAmelCase ( SCREAMING_SNAKE_CASE_ ): def a_ ( self , lowercase_ , *lowercase_ , **lowercase_ ) -> List[str]: return (args[0] + 1,) + args[1:], kwargs class _UpperCAmelCase ( SCREAMING_SNAKE_CASE_ ): def a_ ( self , lowercase_ , lowercase_ ) -> Union[str, Any]: return output + 1 class _UpperCAmelCase ( unittest.TestCase ): def a_ ( self ) -> Optional[int]: UpperCAmelCase = ModelForTest() UpperCAmelCase = ModelHook() add_hook_to_module(lowercase_ , lowercase_ ) self.assertEqual(test_model._hf_hook , lowercase_ ) self.assertTrue(hasattr(lowercase_ , '_old_forward' ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , 'forward' ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ['x'] ) remove_hook_from_module(lowercase_ ) self.assertFalse(hasattr(lowercase_ , '_hf_hook' ) ) self.assertFalse(hasattr(lowercase_ , '_old_forward' ) ) def a_ ( self ) -> Any: UpperCAmelCase = ModelForTest() UpperCAmelCase = ModelHook() add_hook_to_module(lowercase_ , lowercase_ ) add_hook_to_module(lowercase_ , lowercase_ , append=lowercase_ ) self.assertEqual(isinstance(test_model._hf_hook , lowercase_ ) , lowercase_ ) self.assertEqual(len(test_model._hf_hook.hooks ) , 2 ) self.assertTrue(hasattr(lowercase_ , '_old_forward' ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , 'forward' ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ['x'] ) remove_hook_from_module(lowercase_ ) self.assertFalse(hasattr(lowercase_ , '_hf_hook' ) ) self.assertFalse(hasattr(lowercase_ , '_old_forward' ) ) def a_ ( self ) -> Any: UpperCAmelCase = ModelForTest() UpperCAmelCase = torch.randn(2 , 3 ) UpperCAmelCase = test_model(x + 1 ) UpperCAmelCase = test_model(x + 2 ) UpperCAmelCase = PreForwardHook() add_hook_to_module(lowercase_ , lowercase_ ) UpperCAmelCase = test_model(lowercase_ ) self.assertTrue(torch.allclose(lowercase_ , lowercase_ , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain UpperCAmelCase = PreForwardHook() add_hook_to_module(lowercase_ , lowercase_ ) UpperCAmelCase = test_model(lowercase_ ) self.assertTrue(torch.allclose(lowercase_ , lowercase_ , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks UpperCAmelCase = SequentialHook(PreForwardHook() , PreForwardHook() ) add_hook_to_module(lowercase_ , lowercase_ ) UpperCAmelCase = test_model(lowercase_ ) assert torch.allclose(lowercase_ , lowercase_ , atol=1E-5 ) def a_ ( self ) -> List[str]: UpperCAmelCase = ModelForTest() UpperCAmelCase = torch.randn(2 , 3 ) UpperCAmelCase = test_model(lowercase_ ) UpperCAmelCase = PostForwardHook() add_hook_to_module(lowercase_ , lowercase_ ) UpperCAmelCase = test_model(lowercase_ ) self.assertTrue(torch.allclose(lowercase_ , output + 1 , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain UpperCAmelCase = PostForwardHook() add_hook_to_module(lowercase_ , lowercase_ ) UpperCAmelCase = test_model(lowercase_ ) self.assertTrue(torch.allclose(lowercase_ , output + 1 , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks UpperCAmelCase = SequentialHook(PostForwardHook() , PostForwardHook() ) add_hook_to_module(lowercase_ , lowercase_ ) UpperCAmelCase = test_model(lowercase_ ) assert torch.allclose(lowercase_ , output + 2 , atol=1E-5 ) def a_ ( self ) -> Tuple: UpperCAmelCase = ModelForTest() UpperCAmelCase = torch.randn(2 , 3 ) UpperCAmelCase = test_model(lowercase_ ) UpperCAmelCase = PostForwardHook() add_hook_to_module(lowercase_ , lowercase_ ) UpperCAmelCase = test_model(lowercase_ ) self.assertTrue(torch.allclose(lowercase_ , output + 1 ) ) self.assertTrue(outputa.requires_grad ) UpperCAmelCase = True UpperCAmelCase = test_model(lowercase_ ) self.assertFalse(outputa.requires_grad ) @require_multi_gpu def a_ ( self ) -> Optional[int]: UpperCAmelCase = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) # This will move each submodule on different devices add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1 ) ) self.assertEqual(model.lineara.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device(0 ) ) self.assertEqual(model.lineara.weight.device , torch.device(1 ) ) # We can still make a forward pass. The input does not need to be on any particular device UpperCAmelCase = torch.randn(2 , 3 ) UpperCAmelCase = model(lowercase_ ) self.assertEqual(output.device , torch.device(1 ) ) # We can add a general hook to put back output on same device as input. add_hook_to_module(lowercase_ , AlignDevicesHook(io_same_device=lowercase_ ) ) UpperCAmelCase = torch.randn(2 , 3 ).to(0 ) UpperCAmelCase = model(lowercase_ ) self.assertEqual(output.device , torch.device(0 ) ) def a_ ( self ) -> Dict: UpperCAmelCase = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) # This will move each submodule on different devices UpperCAmelCase = {'execution_device': 0 if torch.cuda.is_available() else 'cpu', 'offload': True} add_hook_to_module(model.lineara , AlignDevicesHook(**lowercase_ ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**lowercase_ ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**lowercase_ ) ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('meta' ) ) self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) # Buffers are not included in the offload by default, so are on the execution device UpperCAmelCase = torch.device(hook_kwargs['execution_device'] ) self.assertEqual(model.batchnorm.running_mean.device , lowercase_ ) UpperCAmelCase = torch.randn(2 , 3 ) UpperCAmelCase = model(lowercase_ ) self.assertEqual(output.device , lowercase_ ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) # Now test with buffers included in the offload UpperCAmelCase = { 'execution_device': 0 if torch.cuda.is_available() else 'cpu', 'offload': True, 'offload_buffers': True, } add_hook_to_module(model.lineara , AlignDevicesHook(**lowercase_ ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**lowercase_ ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**lowercase_ ) ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('meta' ) ) self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device('meta' ) ) UpperCAmelCase = torch.randn(2 , 3 ) UpperCAmelCase = model(lowercase_ ) self.assertEqual(output.device , lowercase_ ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) def a_ ( self ) -> Optional[int]: UpperCAmelCase = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) # This will move each submodule on different devices UpperCAmelCase = 0 if torch.cuda.is_available() else 'cpu' attach_align_device_hook(lowercase_ , execution_device=lowercase_ , offload=lowercase_ ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('meta' ) ) self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) # Buffers are not included in the offload by default, so are on the execution device UpperCAmelCase = torch.device(lowercase_ ) self.assertEqual(model.batchnorm.running_mean.device , lowercase_ ) UpperCAmelCase = torch.randn(2 , 3 ) UpperCAmelCase = model(lowercase_ ) self.assertEqual(output.device , lowercase_ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(lowercase_ ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) # Now test with buffers included in the offload attach_align_device_hook(lowercase_ , execution_device=lowercase_ , offload=lowercase_ , offload_buffers=lowercase_ ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('meta' ) ) self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device('meta' ) ) UpperCAmelCase = torch.randn(2 , 3 ) UpperCAmelCase = model(lowercase_ ) self.assertEqual(output.device , lowercase_ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(lowercase_ ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) def a_ ( self ) -> Dict: UpperCAmelCase = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) # This will move each submodule on different devices UpperCAmelCase = 0 if torch.cuda.is_available() else 'cpu' attach_align_device_hook( lowercase_ , execution_device=lowercase_ , offload=lowercase_ , weights_map=model.state_dict() ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('meta' ) ) self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) # Buffers are not included in the offload by default, so are on the execution device UpperCAmelCase = torch.device(lowercase_ ) self.assertEqual(model.batchnorm.running_mean.device , lowercase_ ) UpperCAmelCase = torch.randn(2 , 3 ) UpperCAmelCase = model(lowercase_ ) self.assertEqual(output.device , lowercase_ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(lowercase_ ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) # Now test with buffers included in the offload attach_align_device_hook( lowercase_ , execution_device=lowercase_ , offload=lowercase_ , weights_map=model.state_dict() , offload_buffers=lowercase_ , ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('meta' ) ) self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device('meta' ) ) UpperCAmelCase = torch.randn(2 , 3 ) UpperCAmelCase = model(lowercase_ ) self.assertEqual(output.device , lowercase_ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(lowercase_ ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) )
183
0
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowercase_ = logging.get_logger(__name__) lowercase_ = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } lowercase_ = { 'vocab_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'}, 'merges_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'}, 'tokenizer_config_file': { 'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json' }, } lowercase_ = {'facebook/blenderbot-3B': 1_28} class _UpperCamelCase ( lowerCamelCase__ ): '''simple docstring''' _A = VOCAB_FILES_NAMES _A = PRETRAINED_VOCAB_FILES_MAP _A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A = ["input_ids", "attention_mask"] _A = BlenderbotTokenizer def __init__( self : int , SCREAMING_SNAKE_CASE_ : List[Any]=None , SCREAMING_SNAKE_CASE_ : str=None , SCREAMING_SNAKE_CASE_ : Tuple=None , SCREAMING_SNAKE_CASE_ : Optional[Any]="replace" , SCREAMING_SNAKE_CASE_ : Any="<s>" , SCREAMING_SNAKE_CASE_ : List[str]="</s>" , SCREAMING_SNAKE_CASE_ : Any="</s>" , SCREAMING_SNAKE_CASE_ : str="<s>" , SCREAMING_SNAKE_CASE_ : Optional[Any]="<unk>" , SCREAMING_SNAKE_CASE_ : List[str]="<pad>" , SCREAMING_SNAKE_CASE_ : Any="<mask>" , SCREAMING_SNAKE_CASE_ : List[Any]=False , SCREAMING_SNAKE_CASE_ : Dict=True , **SCREAMING_SNAKE_CASE_ : int , ): super().__init__( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , tokenizer_file=SCREAMING_SNAKE_CASE_ , errors=SCREAMING_SNAKE_CASE_ , bos_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ , trim_offsets=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) _a = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , SCREAMING_SNAKE_CASE_ ) != add_prefix_space: _a = getattr(SCREAMING_SNAKE_CASE_ , pre_tok_state.pop('type' ) ) _a = add_prefix_space _a = pre_tok_class(**SCREAMING_SNAKE_CASE_ ) _a = add_prefix_space _a = 'post_processor' _a = getattr(self.backend_tokenizer , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if tokenizer_component_instance: _a = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _a = tuple(state['sep'] ) if "cls" in state: _a = tuple(state['cls'] ) _a = False if state.get('add_prefix_space' , SCREAMING_SNAKE_CASE_ ) != add_prefix_space: _a = add_prefix_space _a = True if state.get('trim_offsets' , SCREAMING_SNAKE_CASE_ ) != trim_offsets: _a = trim_offsets _a = True if changes_to_apply: _a = getattr(SCREAMING_SNAKE_CASE_ , state.pop('type' ) ) _a = component_class(**SCREAMING_SNAKE_CASE_ ) setattr(self.backend_tokenizer , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def _UpperCAmelCase ( self : List[Any] ): if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def _UpperCAmelCase ( self : str , SCREAMING_SNAKE_CASE_ : str ): _a = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else value _a = value def _UpperCAmelCase ( self : int , *SCREAMING_SNAKE_CASE_ : str , **SCREAMING_SNAKE_CASE_ : Optional[int] ): _a = kwargs.get('is_split_into_words' , SCREAMING_SNAKE_CASE_ ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def _UpperCAmelCase ( self : Tuple , *SCREAMING_SNAKE_CASE_ : Dict , **SCREAMING_SNAKE_CASE_ : Any ): _a = kwargs.get('is_split_into_words' , SCREAMING_SNAKE_CASE_ ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def _UpperCAmelCase ( self : List[Any] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[str] = None ): _a = self._tokenizer.model.save(SCREAMING_SNAKE_CASE_ , name=SCREAMING_SNAKE_CASE_ ) return tuple(SCREAMING_SNAKE_CASE_ ) def _UpperCAmelCase ( self : Any , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None ): _a = [self.sep_token_id] _a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _UpperCAmelCase ( self : Tuple , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None ): return token_ids_a + [self.eos_token_id] def _UpperCAmelCase ( self : Dict , SCREAMING_SNAKE_CASE_ : "Conversation" ): _a = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(' ' + text ) else: # Generated responses should contain them already. inputs.append(SCREAMING_SNAKE_CASE_ ) _a = ' '.join(SCREAMING_SNAKE_CASE_ ) _a = self.encode(SCREAMING_SNAKE_CASE_ ) if len(SCREAMING_SNAKE_CASE_ ) > self.model_max_length: _a = input_ids[-self.model_max_length :] logger.warning(f"""Trimmed input from conversation as it was longer than {self.model_max_length} tokens.""" ) return input_ids
562
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class _UpperCamelCase ( lowerCamelCase__ ): '''simple docstring''' _A = 42 class _UpperCamelCase ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' @register_to_config def __init__( self : int , SCREAMING_SNAKE_CASE_ : int = 6_5_5_3_6 , SCREAMING_SNAKE_CASE_ : Optional[int] = None , SCREAMING_SNAKE_CASE_ : int = 2 , SCREAMING_SNAKE_CASE_ : int = 2 , SCREAMING_SNAKE_CASE_ : int = 0 , SCREAMING_SNAKE_CASE_ : str = "fourier" , SCREAMING_SNAKE_CASE_ : bool = True , SCREAMING_SNAKE_CASE_ : bool = False , SCREAMING_SNAKE_CASE_ : float = 0.0 , SCREAMING_SNAKE_CASE_ : Tuple[str] = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , SCREAMING_SNAKE_CASE_ : Tuple[str] = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , SCREAMING_SNAKE_CASE_ : Tuple[str] = "UNetMidBlock1D" , SCREAMING_SNAKE_CASE_ : str = None , SCREAMING_SNAKE_CASE_ : Tuple[int] = (3_2, 3_2, 6_4) , SCREAMING_SNAKE_CASE_ : str = None , SCREAMING_SNAKE_CASE_ : int = 8 , SCREAMING_SNAKE_CASE_ : int = 1 , SCREAMING_SNAKE_CASE_ : bool = False , ): super().__init__() _a = sample_size # time if time_embedding_type == "fourier": _a = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=SCREAMING_SNAKE_CASE_ , log=SCREAMING_SNAKE_CASE_ , flip_sin_to_cos=SCREAMING_SNAKE_CASE_ ) _a = 2 * block_out_channels[0] elif time_embedding_type == "positional": _a = Timesteps( block_out_channels[0] , flip_sin_to_cos=SCREAMING_SNAKE_CASE_ , downscale_freq_shift=SCREAMING_SNAKE_CASE_ ) _a = block_out_channels[0] if use_timestep_embedding: _a = block_out_channels[0] * 4 _a = TimestepEmbedding( in_channels=SCREAMING_SNAKE_CASE_ , time_embed_dim=SCREAMING_SNAKE_CASE_ , act_fn=SCREAMING_SNAKE_CASE_ , out_dim=block_out_channels[0] , ) _a = nn.ModuleList([] ) _a = None _a = nn.ModuleList([] ) _a = None # down _a = in_channels for i, down_block_type in enumerate(SCREAMING_SNAKE_CASE_ ): _a = output_channel _a = block_out_channels[i] if i == 0: input_channel += extra_in_channels _a = i == len(SCREAMING_SNAKE_CASE_ ) - 1 _a = get_down_block( SCREAMING_SNAKE_CASE_ , num_layers=SCREAMING_SNAKE_CASE_ , in_channels=SCREAMING_SNAKE_CASE_ , out_channels=SCREAMING_SNAKE_CASE_ , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(SCREAMING_SNAKE_CASE_ ) # mid _a = get_mid_block( SCREAMING_SNAKE_CASE_ , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=SCREAMING_SNAKE_CASE_ , add_downsample=SCREAMING_SNAKE_CASE_ , ) # up _a = list(reversed(SCREAMING_SNAKE_CASE_ ) ) _a = reversed_block_out_channels[0] if out_block_type is None: _a = out_channels else: _a = block_out_channels[0] for i, up_block_type in enumerate(SCREAMING_SNAKE_CASE_ ): _a = output_channel _a = ( reversed_block_out_channels[i + 1] if i < len(SCREAMING_SNAKE_CASE_ ) - 1 else final_upsample_channels ) _a = i == len(SCREAMING_SNAKE_CASE_ ) - 1 _a = get_up_block( SCREAMING_SNAKE_CASE_ , num_layers=SCREAMING_SNAKE_CASE_ , in_channels=SCREAMING_SNAKE_CASE_ , out_channels=SCREAMING_SNAKE_CASE_ , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(SCREAMING_SNAKE_CASE_ ) _a = output_channel # out _a = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 3_2 ) _a = get_out_block( out_block_type=SCREAMING_SNAKE_CASE_ , num_groups_out=SCREAMING_SNAKE_CASE_ , embed_dim=block_out_channels[0] , out_channels=SCREAMING_SNAKE_CASE_ , act_fn=SCREAMING_SNAKE_CASE_ , fc_dim=block_out_channels[-1] // 4 , ) def _UpperCAmelCase ( self : int , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : Union[torch.Tensor, float, int] , SCREAMING_SNAKE_CASE_ : bool = True , ): _a = timestep if not torch.is_tensor(SCREAMING_SNAKE_CASE_ ): _a = torch.tensor([timesteps] , dtype=torch.long , device=sample.device ) elif torch.is_tensor(SCREAMING_SNAKE_CASE_ ) and len(timesteps.shape ) == 0: _a = timesteps[None].to(sample.device ) _a = self.time_proj(SCREAMING_SNAKE_CASE_ ) if self.config.use_timestep_embedding: _a = self.time_mlp(SCREAMING_SNAKE_CASE_ ) else: _a = timestep_embed[..., None] _a = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) _a = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down _a = () for downsample_block in self.down_blocks: _a , _a = downsample_block(hidden_states=SCREAMING_SNAKE_CASE_ , temb=SCREAMING_SNAKE_CASE_ ) down_block_res_samples += res_samples # 3. mid if self.mid_block: _a = self.mid_block(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): _a = down_block_res_samples[-1:] _a = down_block_res_samples[:-1] _a = upsample_block(SCREAMING_SNAKE_CASE_ , res_hidden_states_tuple=SCREAMING_SNAKE_CASE_ , temb=SCREAMING_SNAKE_CASE_ ) # 5. post-process if self.out_block: _a = self.out_block(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if not return_dict: return (sample,) return UNetaDOutput(sample=SCREAMING_SNAKE_CASE_ )
562
1
import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class UpperCAmelCase_ ( _a, unittest.TestCase): '''simple docstring''' __UpperCamelCase : str = DebertaTokenizer __UpperCamelCase : Optional[int] = True __UpperCamelCase : Optional[int] = DebertaTokenizerFast def _lowercase ( self ): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCamelCase : Optional[int] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''[UNK]''', ] UpperCamelCase : Tuple = dict(zip(__SCREAMING_SNAKE_CASE , range(len(__SCREAMING_SNAKE_CASE ) ) ) ) UpperCamelCase : Any = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] UpperCamelCase : List[Any] = {'''unk_token''': '''[UNK]'''} UpperCamelCase : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCamelCase : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__SCREAMING_SNAKE_CASE ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__SCREAMING_SNAKE_CASE ) ) def _lowercase ( self , **__SCREAMING_SNAKE_CASE ): """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : int = '''lower newer''' UpperCamelCase : Union[str, Any] = '''lower newer''' return input_text, output_text def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[str] = self.get_tokenizer() UpperCamelCase : int = '''lower newer''' UpperCamelCase : Union[str, Any] = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] UpperCamelCase : Tuple = tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase : List[Any] = tokens + [tokenizer.unk_token] UpperCamelCase : Optional[int] = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : int = self.get_tokenizer() UpperCamelCase : Optional[Any] = tokenizer('''Hello''' , '''World''' ) UpperCamelCase : List[str] = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd['''token_type_ids'''] , __SCREAMING_SNAKE_CASE ) @slow def _lowercase ( self ): """simple docstring""" UpperCamelCase : Union[str, Any] = self.tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) UpperCamelCase : Optional[Any] = tokenizer.encode('''sequence builders''' , add_special_tokens=__SCREAMING_SNAKE_CASE ) UpperCamelCase : int = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Dict = tokenizer.encode( '''sequence builders''' , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[str] = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def _lowercase ( self ): """simple docstring""" UpperCamelCase : Optional[Any] = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: UpperCamelCase : Optional[int] = tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) UpperCamelCase : str = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] UpperCamelCase : Union[str, Any] = tokenizer(__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = [tokenizer.decode(__SCREAMING_SNAKE_CASE , skip_special_tokens=__SCREAMING_SNAKE_CASE ) for seq in encoding['''input_ids''']] # fmt: off UpperCamelCase : int = { '''input_ids''': [ [1, 2_118, 11_126, 565, 35, 83, 25_191, 163, 18_854, 13, 12_156, 12, 16_101, 25_376, 13_807, 9, 22_205, 27_893, 1_635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2_118, 11_126, 565, 24_536, 80, 43_797, 4_878, 7_373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 133, 78, 65, 16, 10, 3_724, 1_538, 33_183, 11_303, 43_797, 1_938, 4, 870, 24_165, 29_105, 5, 739, 32_644, 33_183, 11_303, 36_173, 88, 80, 650, 7_821, 45_940, 6, 52, 2_559, 5, 1_836, 9, 5, 7_397, 13_171, 31, 5, 1_836, 9, 32_644, 33_183, 11_303, 4, 2] ], '''token_type_ids''': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], '''attention_mask''': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on UpperCamelCase : List[str] = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] self.assertDictEqual(encoding.data , __SCREAMING_SNAKE_CASE ) for expected, decoded in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
720
import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter __UpperCAmelCase : List[Any] = True except ImportError: __UpperCAmelCase : List[str] = False __UpperCAmelCase : Any = logging.get_logger(__name__) # pylint: disable=invalid-name def a ( SCREAMING_SNAKE_CASE_ : Namespace ): """simple docstring""" return AddNewModelCommand(args.testing , args.testing_file , path=args.path ) class UpperCAmelCase_ ( _a): '''simple docstring''' @staticmethod def _lowercase ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : List[Any] = parser.add_parser('''add-new-model''' ) add_new_model_parser.add_argument('''--testing''' , action='''store_true''' , help='''If in testing mode.''' ) add_new_model_parser.add_argument('''--testing_file''' , type=__SCREAMING_SNAKE_CASE , help='''Configuration file on which to run.''' ) add_new_model_parser.add_argument( '''--path''' , type=__SCREAMING_SNAKE_CASE , help='''Path to cookiecutter. Should only be used for testing purposes.''' ) add_new_model_parser.set_defaults(func=__SCREAMING_SNAKE_CASE ) def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , *__SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Tuple = testing UpperCamelCase : Any = testing_file UpperCamelCase : Dict = path def _lowercase ( self ): """simple docstring""" warnings.warn( '''The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. ''' '''It is not actively maintained anymore, so might give a result that won\'t pass all tests and quality ''' '''checks, you should use `transformers-cli add-new-model-like` instead.''' ) if not _has_cookiecutter: raise ImportError( '''Model creation dependencies are required to use the `add_new_model` command. Install them by running ''' '''the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n''' ) # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory UpperCamelCase : List[str] = [directory for directory in os.listdir() if '''cookiecutter-template-''' == directory[:22]] if len(__SCREAMING_SNAKE_CASE ) > 0: raise ValueError( '''Several directories starting with `cookiecutter-template-` in current working directory. ''' '''Please clean your directory by removing all folders starting with `cookiecutter-template-` or ''' '''change your working directory.''' ) UpperCamelCase : Dict = ( Path(__SCREAMING_SNAKE_CASE ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent ) UpperCamelCase : List[Any] = path_to_transformer_root / '''templates''' / '''adding_a_new_model''' # Execute cookiecutter if not self._testing: cookiecutter(str(__SCREAMING_SNAKE_CASE ) ) else: with open(self._testing_file , '''r''' ) as configuration_file: UpperCamelCase : Tuple = json.load(__SCREAMING_SNAKE_CASE ) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path ) , no_input=__SCREAMING_SNAKE_CASE , extra_context=__SCREAMING_SNAKE_CASE , ) UpperCamelCase : Dict = [directory for directory in os.listdir() if '''cookiecutter-template-''' in directory[:22]][0] # Retrieve configuration with open(directory + '''/configuration.json''' , '''r''' ) as configuration_file: UpperCamelCase : Tuple = json.load(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Dict = configuration['''lowercase_modelname'''] UpperCamelCase : int = configuration['''generate_tensorflow_pytorch_and_flax'''] os.remove(f"""{directory}/configuration.json""" ) UpperCamelCase : str = '''PyTorch''' in generate_tensorflow_pytorch_and_flax UpperCamelCase : Any = '''TensorFlow''' in generate_tensorflow_pytorch_and_flax UpperCamelCase : Union[str, Any] = '''Flax''' in generate_tensorflow_pytorch_and_flax UpperCamelCase : Optional[Any] = f"""{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}""" os.makedirs(__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE ) os.makedirs(f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}""" , exist_ok=__SCREAMING_SNAKE_CASE ) # Tests require submodules as they have parent imports with open(f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py""" , '''w''' ): pass shutil.move( f"""{directory}/__init__.py""" , f"""{model_dir}/__init__.py""" , ) shutil.move( f"""{directory}/configuration_{lowercase_model_name}.py""" , f"""{model_dir}/configuration_{lowercase_model_name}.py""" , ) def remove_copy_lines(__SCREAMING_SNAKE_CASE ): with open(__SCREAMING_SNAKE_CASE , '''r''' ) as f: UpperCamelCase : Any = f.readlines() with open(__SCREAMING_SNAKE_CASE , '''w''' ) as f: for line in lines: if "# Copied from transformers." not in line: f.write(__SCREAMING_SNAKE_CASE ) if output_pytorch: if not self._testing: remove_copy_lines(f"""{directory}/modeling_{lowercase_model_name}.py""" ) shutil.move( f"""{directory}/modeling_{lowercase_model_name}.py""" , f"""{model_dir}/modeling_{lowercase_model_name}.py""" , ) shutil.move( f"""{directory}/test_modeling_{lowercase_model_name}.py""" , f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py""" , ) else: os.remove(f"""{directory}/modeling_{lowercase_model_name}.py""" ) os.remove(f"""{directory}/test_modeling_{lowercase_model_name}.py""" ) if output_tensorflow: if not self._testing: remove_copy_lines(f"""{directory}/modeling_tf_{lowercase_model_name}.py""" ) shutil.move( f"""{directory}/modeling_tf_{lowercase_model_name}.py""" , f"""{model_dir}/modeling_tf_{lowercase_model_name}.py""" , ) shutil.move( f"""{directory}/test_modeling_tf_{lowercase_model_name}.py""" , f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py""" , ) else: os.remove(f"""{directory}/modeling_tf_{lowercase_model_name}.py""" ) os.remove(f"""{directory}/test_modeling_tf_{lowercase_model_name}.py""" ) if output_flax: if not self._testing: remove_copy_lines(f"""{directory}/modeling_flax_{lowercase_model_name}.py""" ) shutil.move( f"""{directory}/modeling_flax_{lowercase_model_name}.py""" , f"""{model_dir}/modeling_flax_{lowercase_model_name}.py""" , ) shutil.move( f"""{directory}/test_modeling_flax_{lowercase_model_name}.py""" , f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py""" , ) else: os.remove(f"""{directory}/modeling_flax_{lowercase_model_name}.py""" ) os.remove(f"""{directory}/test_modeling_flax_{lowercase_model_name}.py""" ) shutil.move( f"""{directory}/{lowercase_model_name}.md""" , f"""{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md""" , ) shutil.move( f"""{directory}/tokenization_{lowercase_model_name}.py""" , f"""{model_dir}/tokenization_{lowercase_model_name}.py""" , ) shutil.move( f"""{directory}/tokenization_fast_{lowercase_model_name}.py""" , f"""{model_dir}/tokenization_{lowercase_model_name}_fast.py""" , ) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): # Create temp file UpperCamelCase , UpperCamelCase : Optional[Any] = mkstemp() UpperCamelCase : Tuple = False with fdopen(__SCREAMING_SNAKE_CASE , '''w''' ) as new_file: with open(__SCREAMING_SNAKE_CASE ) as old_file: for line in old_file: new_file.write(__SCREAMING_SNAKE_CASE ) if line_to_copy_below in line: UpperCamelCase : Optional[int] = True for line_to_copy in lines_to_copy: new_file.write(__SCREAMING_SNAKE_CASE ) if not line_found: raise ValueError(f"""Line {line_to_copy_below} was not found in file.""" ) # Copy the file permissions from the old file to the new file copymode(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Remove original file remove(__SCREAMING_SNAKE_CASE ) # Move new file move(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def skip_units(__SCREAMING_SNAKE_CASE ): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(__SCREAMING_SNAKE_CASE ): with open(__SCREAMING_SNAKE_CASE ) as datafile: UpperCamelCase : int = [] UpperCamelCase : Dict = False UpperCamelCase : List[Any] = False for line in datafile: if "# To replace in: " in line and "##" not in line: UpperCamelCase : Dict = line.split('''"''' )[1] UpperCamelCase : int = skip_units(__SCREAMING_SNAKE_CASE ) elif "# Below: " in line and "##" not in line: UpperCamelCase : Dict = line.split('''"''' )[1] UpperCamelCase : List[str] = skip_units(__SCREAMING_SNAKE_CASE ) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase : Dict = [] elif "# Replace with" in line and "##" not in line: UpperCamelCase : Tuple = [] elif "##" not in line: lines_to_copy.append(__SCREAMING_SNAKE_CASE ) remove(__SCREAMING_SNAKE_CASE ) replace_in_files(f"""{directory}/to_replace_{lowercase_model_name}.py""" ) os.rmdir(__SCREAMING_SNAKE_CASE )
643
0
"""simple docstring""" # # This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or # many nodes) can talk to each other via nccl and allocate gpu memory. # # To run first adjust the number of processes and nodes: # # python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port # # You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d # # use torch.distributed.launch instead of torch.distributed.run for torch < 1.9 # # If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with: # # NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # which should tell you what's going on behind the scenes. # # # This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that # runs on 2 nodes of 4 gpus per node: # # #SBATCH --job-name=test-nodes # name # #SBATCH --nodes=2 # nodes # #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! # #SBATCH --cpus-per-task=10 # number of cores per tasks # #SBATCH --gres=gpu:4 # number of gpus # #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS) # #SBATCH --output=%x-%j.out # output file name # # GPUS_PER_NODE=4 # MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) # MASTER_PORT=6000 # # srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \ # --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \ # --master_addr $MASTER_ADDR --master_port $MASTER_PORT \ # torch-distributed-gpu-test.py' # import fcntl import os import socket import torch import torch.distributed as dist def _lowerCAmelCase ( *lowerCAmelCase ): '''simple docstring''' with open(lowerCAmelCase , """r""" ) as fh: fcntl.flock(lowerCAmelCase , fcntl.LOCK_EX ) try: print(*lowerCAmelCase ) finally: fcntl.flock(lowerCAmelCase , fcntl.LOCK_UN ) lowerCAmelCase_ : Dict = int(os.environ['''LOCAL_RANK''']) torch.cuda.set_device(local_rank) lowerCAmelCase_ : int = torch.device('''cuda''', local_rank) lowerCAmelCase_ : List[str] = socket.gethostname() lowerCAmelCase_ : str = F'[{hostname}-{local_rank}]' try: # test distributed dist.init_process_group('''nccl''') dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM) dist.barrier() # test cuda is available and can allocate memory torch.cuda.is_available() torch.ones(1).cuda(local_rank) # global rank lowerCAmelCase_ : Tuple = dist.get_rank() lowerCAmelCase_ : Any = dist.get_world_size() printflock(F'{gpu} is OK (global rank: {rank}/{world_size})') dist.barrier() if rank == 0: printflock(F'pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}') except Exception: printflock(F'{gpu} is broken') raise
673
"""simple docstring""" import math def _lowerCAmelCase ( lowerCAmelCase = 100 ): '''simple docstring''' UpperCAmelCase = sum(i * i for i in range(1 , n + 1 ) ) UpperCAmelCase = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(F'{solution() = }')
673
1
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from typing import Optional import evaluate import numpy as np import torch from datasets import load_dataset from PIL import Image from torchvision.transforms import ( CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor, ) import transformers from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForImageClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version SCREAMING_SNAKE_CASE = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/image-classification/requirements.txt""") SCREAMING_SNAKE_CASE = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys()) SCREAMING_SNAKE_CASE = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def lowerCamelCase__ ( UpperCAmelCase_ )-> List[str]: """simple docstring""" with open(UpperCAmelCase_ , "rb" ) as f: UpperCamelCase = Image.open(UpperCAmelCase_ ) return im.convert("RGB" ) @dataclass class __a : UpperCamelCase_ : Optional[str] = field( default=_lowerCAmelCase , metadata={ '''help''': '''Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub).''' } , ) UpperCamelCase_ : Optional[str] = field( default=_lowerCAmelCase , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) UpperCamelCase_ : Optional[str] = field(default=_lowerCAmelCase , metadata={'''help''': '''A folder containing the training data.'''} ) UpperCamelCase_ : Optional[str] = field(default=_lowerCAmelCase , metadata={'''help''': '''A folder containing the validation data.'''} ) UpperCamelCase_ : Optional[float] = field( default=0.1_5 , metadata={'''help''': '''Percent to split off of train for validation.'''} ) UpperCamelCase_ : Optional[int] = field( default=_lowerCAmelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) UpperCamelCase_ : Optional[int] = field( default=_lowerCAmelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) def _SCREAMING_SNAKE_CASE ( self : Any )-> str: """simple docstring""" if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None): raise ValueError( "You must specify either a dataset name from the hub or a train and/or validation directory." ) @dataclass class __a : UpperCamelCase_ : str = field( default='''google/vit-base-patch16-224-in21k''' , metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} , ) UpperCamelCase_ : Optional[str] = field( default=_lowerCAmelCase , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(_lowerCAmelCase )} , ) UpperCamelCase_ : Optional[str] = field( default=_lowerCAmelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) UpperCamelCase_ : Optional[str] = field( default=_lowerCAmelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from s3'''} ) UpperCamelCase_ : str = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) UpperCamelCase_ : str = field(default=_lowerCAmelCase , metadata={'''help''': '''Name or path of preprocessor config.'''} ) UpperCamelCase_ : bool = field( default=_lowerCAmelCase , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) UpperCamelCase_ : bool = field( default=_lowerCAmelCase , metadata={'''help''': '''Will enable to load a pretrained model whose head dimensions are different.'''} , ) def lowerCamelCase__ ( UpperCAmelCase_ )-> List[str]: """simple docstring""" UpperCamelCase = torch.stack([example["pixel_values"] for example in examples] ) UpperCamelCase = torch.tensor([example["labels"] for example in examples] ) return {"pixel_values": pixel_values, "labels": labels} def lowerCamelCase__ ( )-> Dict: """simple docstring""" UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCamelCase , UpperCamelCase , UpperCamelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCamelCase , UpperCamelCase , UpperCamelCase = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_image_classification" , UpperCAmelCase_ , UpperCAmelCase_ ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() UpperCamelCase = training_args.get_process_log_level() logger.setLevel(UpperCAmelCase_ ) transformers.utils.logging.set_verbosity(UpperCAmelCase_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + F"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(F"Training/evaluation parameters {training_args}" ) # Detecting last checkpoint. UpperCamelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCamelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. " "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # Initialize our dataset and prepare it for the 'image-classification' task. if data_args.dataset_name is not None: UpperCamelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir , task="image-classification" , use_auth_token=True if model_args.use_auth_token else None , ) else: UpperCamelCase = {} if data_args.train_dir is not None: UpperCamelCase = os.path.join(data_args.train_dir , "**" ) if data_args.validation_dir is not None: UpperCamelCase = os.path.join(data_args.validation_dir , "**" ) UpperCamelCase = load_dataset( "imagefolder" , data_files=UpperCAmelCase_ , cache_dir=model_args.cache_dir , task="image-classification" , ) # If we don't have a validation split, split off a percentage of train as validation. UpperCamelCase = None if "validation" in dataset.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , UpperCAmelCase_ ) and data_args.train_val_split > 0.0: UpperCamelCase = dataset["train"].train_test_split(data_args.train_val_split ) UpperCamelCase = split["train"] UpperCamelCase = split["test"] # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. UpperCamelCase = dataset["train"].features["labels"].names UpperCamelCase , UpperCamelCase = {}, {} for i, label in enumerate(UpperCAmelCase_ ): UpperCamelCase = str(UpperCAmelCase_ ) UpperCamelCase = label # Load the accuracy metric from the datasets package UpperCamelCase = evaluate.load("accuracy" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(UpperCAmelCase_ ): return metric.compute(predictions=np.argmax(p.predictions , axis=1 ) , references=p.label_ids ) UpperCamelCase = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(UpperCAmelCase_ ) , labelaid=UpperCAmelCase_ , idalabel=UpperCAmelCase_ , finetuning_task="image-classification" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) UpperCamelCase = AutoModelForImageClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=UpperCAmelCase_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) UpperCamelCase = AutoImageProcessor.from_pretrained( model_args.image_processor_name or model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Define torchvision transforms to be applied to each image. if "shortest_edge" in image_processor.size: UpperCamelCase = image_processor.size["shortest_edge"] else: UpperCamelCase = (image_processor.size["height"], image_processor.size["width"]) UpperCamelCase = Normalize(mean=image_processor.image_mean , std=image_processor.image_std ) UpperCamelCase = Compose( [ RandomResizedCrop(UpperCAmelCase_ ), RandomHorizontalFlip(), ToTensor(), normalize, ] ) UpperCamelCase = Compose( [ Resize(UpperCAmelCase_ ), CenterCrop(UpperCAmelCase_ ), ToTensor(), normalize, ] ) def train_transforms(UpperCAmelCase_ ): UpperCamelCase = [ _train_transforms(pil_img.convert("RGB" ) ) for pil_img in example_batch["image"] ] return example_batch def val_transforms(UpperCAmelCase_ ): UpperCamelCase = [_val_transforms(pil_img.convert("RGB" ) ) for pil_img in example_batch["image"]] return example_batch if training_args.do_train: if "train" not in dataset: raise ValueError("--do_train requires a train dataset" ) if data_args.max_train_samples is not None: UpperCamelCase = ( dataset["train"].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms dataset["train"].set_transform(UpperCAmelCase_ ) if training_args.do_eval: if "validation" not in dataset: raise ValueError("--do_eval requires a validation dataset" ) if data_args.max_eval_samples is not None: UpperCamelCase = ( dataset["validation"].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms dataset["validation"].set_transform(UpperCAmelCase_ ) # Initalize our trainer UpperCamelCase = Trainer( model=UpperCAmelCase_ , args=UpperCAmelCase_ , train_dataset=dataset["train"] if training_args.do_train else None , eval_dataset=dataset["validation"] if training_args.do_eval else None , compute_metrics=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , data_collator=UpperCAmelCase_ , ) # Training if training_args.do_train: UpperCamelCase = None if training_args.resume_from_checkpoint is not None: UpperCamelCase = training_args.resume_from_checkpoint elif last_checkpoint is not None: UpperCamelCase = last_checkpoint UpperCamelCase = trainer.train(resume_from_checkpoint=UpperCAmelCase_ ) trainer.save_model() trainer.log_metrics("train" , train_result.metrics ) trainer.save_metrics("train" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: UpperCamelCase = trainer.evaluate() trainer.log_metrics("eval" , UpperCAmelCase_ ) trainer.save_metrics("eval" , UpperCAmelCase_ ) # Write model card and (optionally) push to hub UpperCamelCase = { "finetuned_from": model_args.model_name_or_path, "tasks": "image-classification", "dataset": data_args.dataset_name, "tags": ["image-classification", "vision"], } if training_args.push_to_hub: trainer.push_to_hub(**UpperCAmelCase_ ) else: trainer.create_model_card(**UpperCAmelCase_ ) if __name__ == "__main__": main()
701
"""simple docstring""" def lowerCamelCase__ ( UpperCAmelCase_ )-> int: """simple docstring""" if a < 0: raise ValueError("Input value must be a positive integer" ) elif isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): raise TypeError("Input value must be a 'int' type" ) return bin(UpperCAmelCase_ ).count("1" ) if __name__ == "__main__": import doctest doctest.testmod()
556
0
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, TensorType _snake_case = logging.get_logger(__name__) _snake_case = { 'openai/imagegpt-small': '', 'openai/imagegpt-medium': '', 'openai/imagegpt-large': '', } class UpperCamelCase ( _SCREAMING_SNAKE_CASE ): UpperCamelCase : Dict = 'imagegpt' UpperCamelCase : Optional[Any] = ['past_key_values'] UpperCamelCase : Dict = { 'hidden_size': 'n_embd', 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : str , UpperCAmelCase__ : Optional[Any]=512 + 1 , UpperCAmelCase__ : Any=32 * 32 , UpperCAmelCase__ : Union[str, Any]=512 , UpperCAmelCase__ : Any=24 , UpperCAmelCase__ : Optional[Any]=8 , UpperCAmelCase__ : str=None , UpperCAmelCase__ : str="quick_gelu" , UpperCAmelCase__ : str=0.1 , UpperCAmelCase__ : List[Any]=0.1 , UpperCAmelCase__ : int=0.1 , UpperCAmelCase__ : Dict=1E-5 , UpperCAmelCase__ : List[Any]=0.0_2 , UpperCAmelCase__ : int=True , UpperCAmelCase__ : Any=True , UpperCAmelCase__ : str=False , UpperCAmelCase__ : Optional[Any]=False , UpperCAmelCase__ : List[Any]=False , **UpperCAmelCase__ : Optional[int] , ) -> int: _a : Dict = vocab_size _a : int = n_positions _a : Union[str, Any] = n_embd _a : List[Any] = n_layer _a : Optional[int] = n_head _a : List[str] = n_inner _a : str = activation_function _a : Union[str, Any] = resid_pdrop _a : int = embd_pdrop _a : int = attn_pdrop _a : Tuple = layer_norm_epsilon _a : Optional[int] = initializer_range _a : List[Any] = scale_attn_weights _a : int = use_cache _a : List[Any] = scale_attn_by_inverse_layer_idx _a : Optional[Any] = reorder_and_upcast_attn _a : Any = tie_word_embeddings super().__init__(tie_word_embeddings=UpperCamelCase__ , **UpperCamelCase__ ) class UpperCamelCase ( _SCREAMING_SNAKE_CASE ): @property def _lowercase ( self : Optional[int] ) -> Any: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ] ) def _lowercase ( self : Optional[int] , UpperCAmelCase__ : "FeatureExtractionMixin" , UpperCAmelCase__ : int = 1 , UpperCAmelCase__ : int = -1 , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : Optional["TensorType"] = None , UpperCAmelCase__ : int = 3 , UpperCAmelCase__ : int = 32 , UpperCAmelCase__ : int = 32 , ) -> Tuple: _a : List[str] = self._generate_dummy_images(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) _a : List[Any] = dict(preprocessor(images=UpperCamelCase__ , return_tensors=UpperCamelCase__ ) ) return inputs
389
"""simple docstring""" from math import ceil def __a ( a, a ): """simple docstring""" _a = list(range(0, a ) ) _a = [item for sublist in list(device_map.values() ) for item in sublist] # Duplicate check _a = [] for i in device_map_blocks: if device_map_blocks.count(a ) > 1 and i not in duplicate_blocks: duplicate_blocks.append(a ) # Missing blocks _a = [i for i in blocks if i not in device_map_blocks] _a = [i for i in device_map_blocks if i not in blocks] if len(a ) != 0: raise ValueError( "Duplicate attention blocks specified in device_map. Attention blocks must be specified to one device." " These attention blocks were specified more than once: " + str(a ) ) if len(a ) != 0: raise ValueError( "There are attention blocks for this model that are not specified in the device_map. Add these attention " "blocks to a device on the device_map: " + str(a ) ) if len(a ) != 0: raise ValueError( "The device_map contains more attention blocks than this model has. Remove these from the device_map:" + str(a ) ) def __a ( a, a ): """simple docstring""" _a = list(range(a ) ) _a = int(ceil(n_layers / len(a ) ) ) _a = [layers[i : i + n_blocks] for i in range(0, a, a )] return dict(zip(a, a ) )
388
0
"""simple docstring""" import logging import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import librosa import torch from datasets import DatasetDict, load_dataset from packaging import version from torch import nn from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForPreTraining, is_apex_available, trainer_utils, ) from transformers.models.wavaveca.modeling_wavaveca import _compute_mask_indices if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse("1.6"): lowerCAmelCase_: List[str] = True from torch.cuda.amp import autocast lowerCAmelCase_: Optional[int] = logging.getLogger(__name__) @dataclass class a__ : snake_case_ = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) snake_case_ = field( default=_a , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) snake_case_ = field( default=_a , metadata={"help": "Whether to freeze the feature extractor layers of the model."} ) snake_case_ = field( default=_a , metadata={"help": "Whether to log verbose messages or not."} , ) snake_case_ = field( default=2.0 , metadata={"help": "Maximum temperature for gumbel softmax."} ) snake_case_ = field( default=0.5 , metadata={"help": "Minimum temperature for gumbel softmax."} ) snake_case_ = field( default=0.999995 , metadata={"help": "Decay of gumbel temperature during training."} ) def __a ( A , A ): '''simple docstring''' logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) lowercase__ = logging.WARNING if model_args.verbose_logging: lowercase__ = logging.DEBUG elif trainer_utils.is_main_process(training_args.local_rank ): lowercase__ = logging.INFO logger.setLevel(A ) @dataclass class a__ : snake_case_ = field( default=_a , metadata={"help": "The name of the dataset to use (via the datasets library)."} ) snake_case_ = field( default=_a , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) snake_case_ = field( default="train" , metadata={ "help": "The name of the training data set split to use (via the datasets library). Defaults to \'train\'" } , ) snake_case_ = field( default="validation" , metadata={ "help": ( "The name of the validation data set split to use (via the datasets library). Defaults to \'validation\'" ) } , ) snake_case_ = field( default="file" , metadata={"help": "Column in the dataset that contains speech file path. Defaults to \'file\'"} , ) snake_case_ = field( default=_a , metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) snake_case_ = field( default=1 , metadata={ "help": "The percentage of the train set used as validation set in case there\'s no validation split" } , ) snake_case_ = field( default=_a , metadata={"help": "The number of processes to use for the preprocessing."} , ) snake_case_ = field( default=20.0 , metadata={"help": "Filter audio files that are longer than `max_duration_in_seconds` seconds"} ) @dataclass class a__ : snake_case_ = 42 snake_case_ = 42 snake_case_ = "longest" snake_case_ = None snake_case_ = None def __call__( self, _UpperCAmelCase ): '''simple docstring''' lowercase__ = self.feature_extractor.pad( UpperCAmelCase__, max_length=self.max_length, padding=self.padding, pad_to_multiple_of=self.pad_to_multiple_of, return_tensors="pt", ) lowercase__ = self.model._get_feat_extract_output_lengths(batch["input_values"].shape[-1] ) lowercase__ = batch['''input_values'''].shape[0] # make sure that no loss is computed on padded inputs if batch["attention_mask"] is not None: # compute real output lengths according to convolution formula lowercase__ = self.model._get_feat_extract_output_lengths(batch["attention_mask"].sum(-1 ) ).to( torch.long ) lowercase__ = torch.zeros( (batch_size, mask_indices_seq_length), dtype=torch.long, device=batch["input_values"].device ) # these two operations makes sure that all values # before the output lengths indices are attended to lowercase__ = 1 lowercase__ = attention_mask.flip([-1] ).cumsum(-1 ).flip([-1] ).bool() # sample randomly masked indices lowercase__ = _compute_mask_indices( (batch_size, mask_indices_seq_length), self.model.config.mask_time_prob, self.model.config.mask_time_length, attention_mask=UpperCAmelCase__, min_masks=2, ) return batch class a__ ( _a ): def __init__( self, *_UpperCAmelCase, _UpperCAmelCase=1, _UpperCAmelCase=0, _UpperCAmelCase=1.0, **_UpperCAmelCase ): '''simple docstring''' super().__init__(*UpperCAmelCase__, **UpperCAmelCase__ ) lowercase__ = 0 lowercase__ = max_gumbel_temp lowercase__ = min_gumbel_temp lowercase__ = gumbel_temp_decay def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' model.train() lowercase__ = self._prepare_inputs(UpperCAmelCase__ ) if self.use_amp: with autocast(): lowercase__ = self.compute_loss(UpperCAmelCase__, UpperCAmelCase__ ) else: lowercase__ = self.compute_loss(UpperCAmelCase__, UpperCAmelCase__ ) if self.args.n_gpu > 1 or self.deepspeed: if model.module.config.ctc_loss_reduction == "mean": lowercase__ = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": lowercase__ = loss.sum() / (inputs['''mask_time_indices''']).sum() else: raise ValueError(F'''{model.config.ctc_loss_reduction} is not valid. Choose one of [\'mean\', \'sum\']''' ) if self.args.gradient_accumulation_steps > 1: lowercase__ = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(UpperCAmelCase__ ).backward() elif self.use_apex: with amp.scale_loss(UpperCAmelCase__, self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(UpperCAmelCase__ ) else: loss.backward() self.num_update_step += 1 # make sure gumbel softmax temperature is decayed if self.args.n_gpu > 1 or self.deepspeed: model.module.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step, self.min_gumbel_temp ) ) else: model.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step, self.min_gumbel_temp ) ) return loss.detach() def __a ( ): '''simple docstring''' lowercase__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) lowercase__ = parser.parse_args_into_dataclasses() configure_logger(A , A ) # Downloading and loading a dataset from the hub. lowercase__ = load_dataset(data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) if "validation" not in datasets.keys(): # make sure only "validation" and "train" keys remain" lowercase__ = DatasetDict() lowercase__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f'''{data_args.train_split_name}[:{data_args.validation_split_percentage}%]''' , cache_dir=model_args.cache_dir , ) lowercase__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f'''{data_args.train_split_name}[{data_args.validation_split_percentage}%:]''' , cache_dir=model_args.cache_dir , ) else: # make sure only "validation" and "train" keys remain" lowercase__ = DatasetDict() lowercase__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split="validation" , cache_dir=model_args.cache_dir , ) lowercase__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f'''{data_args.train_split_name}''' , cache_dir=model_args.cache_dir , ) # only normalized-inputs-training is supported lowercase__ = WavaVecaFeatureExtractor.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , do_normalize=A ) def prepare_dataset(A ): # check that all files have the correct sampling rate lowercase__ = librosa.load(batch[data_args.speech_file_column] , sr=feature_extractor.sampling_rate ) return batch # load audio files into numpy arrays lowercase__ = datasets.map( A , num_proc=data_args.preprocessing_num_workers , remove_columns=datasets["train"].column_names ) # filter audio files that are too long lowercase__ = vectorized_datasets.filter( lambda A : len(data["speech"] ) < int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate ) ) def normalize(A ): return feature_extractor(batch["speech"] , sampling_rate=feature_extractor.sampling_rate ) # normalize and transform to `BatchFeatures` lowercase__ = vectorized_datasets.map( A , batched=A , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , remove_columns=vectorized_datasets["train"].column_names , ) # pretraining is only supported for "newer" stable layer norm architecture # apply_spec_augment has to be True, mask_feature_prob has to be 0.0 lowercase__ = WavaVecaConfig.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , gradient_checkpointing=training_args.gradient_checkpointing , ) if not config.do_stable_layer_norm or config.feat_extract_norm != "layer": raise ValueError( "PreTraining is only supported for ``config.do_stable_layer_norm=True`` and" " ``config.feat_extract_norm=\'layer\'" ) lowercase__ = WavaVecaForPreTraining(A ) lowercase__ = DataCollatorForWavaVecaPretraining(model=A , feature_extractor=A ) lowercase__ = WavaVecaPreTrainer( model=A , data_collator=A , args=A , train_dataset=vectorized_datasets["train"] , eval_dataset=vectorized_datasets["validation"] , tokenizer=A , max_gumbel_temp=model_args.max_gumbel_temperature , min_gumbel_temp=model_args.min_gumbel_temperature , gumbel_temp_decay=model_args.gumbel_temperature_decay , ) trainer.train() if __name__ == "__main__": main()
718
"""simple docstring""" lowerCAmelCase_: Union[str, Any] = [ 9_9_9, 8_0_0, 7_9_9, 6_0_0, 5_9_9, 5_0_0, 4_0_0, 3_9_9, 3_7_7, 3_5_5, 3_3_3, 3_1_1, 2_8_8, 2_6_6, 2_4_4, 2_2_2, 2_0_0, 1_9_9, 1_7_7, 1_5_5, 1_3_3, 1_1_1, 8_8, 6_6, 4_4, 2_2, 0, ] lowerCAmelCase_: List[str] = [ 9_9_9, 9_7_6, 9_5_2, 9_2_8, 9_0_5, 8_8_2, 8_5_8, 8_5_7, 8_1_0, 7_6_2, 7_1_5, 7_1_4, 5_7_2, 4_2_9, 4_2_8, 2_8_6, 2_8_5, 2_3_8, 1_9_0, 1_4_3, 1_4_2, 1_1_8, 9_5, 7_1, 4_7, 2_4, 0, ] lowerCAmelCase_: List[str] = [ 9_9_9, 9_8_8, 9_7_7, 9_6_6, 9_5_5, 9_4_4, 9_3_3, 9_2_2, 9_1_1, 9_0_0, 8_9_9, 8_7_9, 8_5_9, 8_4_0, 8_2_0, 8_0_0, 7_9_9, 7_6_6, 7_3_3, 7_0_0, 6_9_9, 6_5_0, 6_0_0, 5_9_9, 5_0_0, 4_9_9, 4_0_0, 3_9_9, 3_5_0, 3_0_0, 2_9_9, 2_6_6, 2_3_3, 2_0_0, 1_9_9, 1_7_9, 1_5_9, 1_4_0, 1_2_0, 1_0_0, 9_9, 8_8, 7_7, 6_6, 5_5, 4_4, 3_3, 2_2, 1_1, 0, ] lowerCAmelCase_: Dict = [ 9_9_9, 9_9_5, 9_9_2, 9_8_9, 9_8_5, 9_8_1, 9_7_8, 9_7_5, 9_7_1, 9_6_7, 9_6_4, 9_6_1, 9_5_7, 9_5_6, 9_5_1, 9_4_7, 9_4_2, 9_3_7, 9_3_3, 9_2_8, 9_2_3, 9_1_9, 9_1_4, 9_1_3, 9_0_8, 9_0_3, 8_9_7, 8_9_2, 8_8_7, 8_8_1, 8_7_6, 8_7_1, 8_7_0, 8_6_4, 8_5_8, 8_5_2, 8_4_6, 8_4_0, 8_3_4, 8_2_8, 8_2_7, 8_2_0, 8_1_3, 8_0_6, 7_9_9, 7_9_2, 7_8_5, 7_8_4, 7_7_7, 7_7_0, 7_6_3, 7_5_6, 7_4_9, 7_4_2, 7_4_1, 7_3_3, 7_2_4, 7_1_6, 7_0_7, 6_9_9, 6_9_8, 6_8_8, 6_7_7, 6_6_6, 6_5_6, 6_5_5, 6_4_5, 6_3_4, 6_2_3, 6_1_3, 6_1_2, 5_9_8, 5_8_4, 5_7_0, 5_6_9, 5_5_5, 5_4_1, 5_2_7, 5_2_6, 5_0_5, 4_8_4, 4_8_3, 4_6_2, 4_4_0, 4_3_9, 3_9_6, 3_9_5, 3_5_2, 3_5_1, 3_0_8, 3_0_7, 2_6_4, 2_6_3, 2_2_0, 2_1_9, 1_7_6, 1_3_2, 8_8, 4_4, 0, ] lowerCAmelCase_: Optional[int] = [ 9_9_9, 9_9_7, 9_9_5, 9_9_2, 9_9_0, 9_8_8, 9_8_6, 9_8_4, 9_8_1, 9_7_9, 9_7_7, 9_7_5, 9_7_2, 9_7_0, 9_6_8, 9_6_6, 9_6_4, 9_6_1, 9_5_9, 9_5_7, 9_5_6, 9_5_4, 9_5_1, 9_4_9, 9_4_6, 9_4_4, 9_4_1, 9_3_9, 9_3_6, 9_3_4, 9_3_1, 9_2_9, 9_2_6, 9_2_4, 9_2_1, 9_1_9, 9_1_6, 9_1_4, 9_1_3, 9_1_0, 9_0_7, 9_0_5, 9_0_2, 8_9_9, 8_9_6, 8_9_3, 8_9_1, 8_8_8, 8_8_5, 8_8_2, 8_7_9, 8_7_7, 8_7_4, 8_7_1, 8_7_0, 8_6_7, 8_6_4, 8_6_1, 8_5_8, 8_5_5, 8_5_2, 8_4_9, 8_4_6, 8_4_3, 8_4_0, 8_3_7, 8_3_4, 8_3_1, 8_2_8, 8_2_7, 8_2_4, 8_2_1, 8_1_7, 8_1_4, 8_1_1, 8_0_8, 8_0_4, 8_0_1, 7_9_8, 7_9_5, 7_9_1, 7_8_8, 7_8_5, 7_8_4, 7_8_0, 7_7_7, 7_7_4, 7_7_0, 7_6_6, 7_6_3, 7_6_0, 7_5_6, 7_5_2, 7_4_9, 7_4_6, 7_4_2, 7_4_1, 7_3_7, 7_3_3, 7_3_0, 7_2_6, 7_2_2, 7_1_8, 7_1_4, 7_1_0, 7_0_7, 7_0_3, 6_9_9, 6_9_8, 6_9_4, 6_9_0, 6_8_5, 6_8_1, 6_7_7, 6_7_3, 6_6_9, 6_6_4, 6_6_0, 6_5_6, 6_5_5, 6_5_0, 6_4_6, 6_4_1, 6_3_6, 6_3_2, 6_2_7, 6_2_2, 6_1_8, 6_1_3, 6_1_2, 6_0_7, 6_0_2, 5_9_6, 5_9_1, 5_8_6, 5_8_0, 5_7_5, 5_7_0, 5_6_9, 5_6_3, 5_5_7, 5_5_1, 5_4_5, 5_3_9, 5_3_3, 5_2_7, 5_2_6, 5_1_9, 5_1_2, 5_0_5, 4_9_8, 4_9_1, 4_8_4, 4_8_3, 4_7_4, 4_6_6, 4_5_7, 4_4_9, 4_4_0, 4_3_9, 4_2_8, 4_1_8, 4_0_7, 3_9_6, 3_9_5, 3_8_1, 3_6_6, 3_5_2, 3_5_1, 3_3_0, 3_0_8, 3_0_7, 2_8_6, 2_6_4, 2_6_3, 2_4_2, 2_2_0, 2_1_9, 1_7_6, 1_7_5, 1_3_2, 1_3_1, 8_8, 4_4, 0, ] lowerCAmelCase_: Tuple = [ 9_9_9, 9_9_1, 9_8_2, 9_7_4, 9_6_6, 9_5_8, 9_5_0, 9_4_1, 9_3_3, 9_2_5, 9_1_6, 9_0_8, 9_0_0, 8_9_9, 8_7_4, 8_5_0, 8_2_5, 8_0_0, 7_9_9, 7_0_0, 6_0_0, 5_0_0, 4_0_0, 3_0_0, 2_0_0, 1_0_0, 0, ] lowerCAmelCase_: str = [ 9_9_9, 9_9_2, 9_8_5, 9_7_8, 9_7_1, 9_6_4, 9_5_7, 9_4_9, 9_4_2, 9_3_5, 9_2_8, 9_2_1, 9_1_4, 9_0_7, 9_0_0, 8_9_9, 8_7_9, 8_5_9, 8_4_0, 8_2_0, 8_0_0, 7_9_9, 7_6_6, 7_3_3, 7_0_0, 6_9_9, 6_5_0, 6_0_0, 5_9_9, 5_0_0, 4_9_9, 4_0_0, 3_9_9, 3_0_0, 2_9_9, 2_0_0, 1_9_9, 1_0_0, 9_9, 0, ] lowerCAmelCase_: int = [ 9_9_9, 9_9_6, 9_9_2, 9_8_9, 9_8_5, 9_8_2, 9_7_9, 9_7_5, 9_7_2, 9_6_8, 9_6_5, 9_6_1, 9_5_8, 9_5_5, 9_5_1, 9_4_8, 9_4_4, 9_4_1, 9_3_8, 9_3_4, 9_3_1, 9_2_7, 9_2_4, 9_2_0, 9_1_7, 9_1_4, 9_1_0, 9_0_7, 9_0_3, 9_0_0, 8_9_9, 8_9_1, 8_8_4, 8_7_6, 8_6_9, 8_6_1, 8_5_3, 8_4_6, 8_3_8, 8_3_0, 8_2_3, 8_1_5, 8_0_8, 8_0_0, 7_9_9, 7_8_8, 7_7_7, 7_6_6, 7_5_5, 7_4_4, 7_3_3, 7_2_2, 7_1_1, 7_0_0, 6_9_9, 6_8_8, 6_7_7, 6_6_6, 6_5_5, 6_4_4, 6_3_3, 6_2_2, 6_1_1, 6_0_0, 5_9_9, 5_8_5, 5_7_1, 5_5_7, 5_4_2, 5_2_8, 5_1_4, 5_0_0, 4_9_9, 4_8_5, 4_7_1, 4_5_7, 4_4_2, 4_2_8, 4_1_4, 4_0_0, 3_9_9, 3_7_9, 3_5_9, 3_4_0, 3_2_0, 3_0_0, 2_9_9, 2_7_9, 2_5_9, 2_4_0, 2_2_0, 2_0_0, 1_9_9, 1_6_6, 1_3_3, 1_0_0, 9_9, 6_6, 3_3, 0, ]
668
0
"""simple docstring""" import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) __SCREAMING_SNAKE_CASE ="▁" __SCREAMING_SNAKE_CASE ={ "vocab_file": "vocab.json", "spm_file": "sentencepiece.bpe.model", } __SCREAMING_SNAKE_CASE ={ "vocab_file": { "facebook/s2t-small-librispeech-asr": ( "https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json" ), }, "spm_file": { "facebook/s2t-small-librispeech-asr": ( "https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model" ) }, } __SCREAMING_SNAKE_CASE ={ "facebook/s2t-small-librispeech-asr": 1024, } __SCREAMING_SNAKE_CASE =["pt", "fr", "ru", "nl", "ro", "it", "es", "de"] __SCREAMING_SNAKE_CASE ={"mustc": MUSTC_LANGS} class UpperCamelCase ( lowercase_ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = MAX_MODEL_INPUT_SIZES lowercase = ["""input_ids""", """attention_mask"""] lowercase = [] def __init__( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase="<s>" ,__UpperCamelCase="</s>" ,__UpperCamelCase="<pad>" ,__UpperCamelCase="<unk>" ,__UpperCamelCase=False ,__UpperCamelCase=False ,__UpperCamelCase=None ,__UpperCamelCase=None ,__UpperCamelCase = None ,**__UpperCamelCase ,) -> None: '''simple docstring''' lowercase_ : Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__UpperCamelCase ,eos_token=__UpperCamelCase ,unk_token=__UpperCamelCase ,pad_token=__UpperCamelCase ,do_upper_case=__UpperCamelCase ,do_lower_case=__UpperCamelCase ,tgt_lang=__UpperCamelCase ,lang_codes=__UpperCamelCase ,sp_model_kwargs=self.sp_model_kwargs ,**__UpperCamelCase ,) lowercase_ : str = do_upper_case lowercase_ : int = do_lower_case lowercase_ : str = load_json(__UpperCamelCase ) lowercase_ : Union[str, Any] = {v: k for k, v in self.encoder.items()} lowercase_ : Optional[int] = spm_file lowercase_ : List[Any] = load_spm(__UpperCamelCase ,self.sp_model_kwargs ) if lang_codes is not None: lowercase_ : List[Any] = lang_codes lowercase_ : List[str] = LANGUAGES[lang_codes] lowercase_ : Any = [f'''<lang:{lang}>''' for lang in self.langs] lowercase_ : List[Any] = {lang: self.sp_model.PieceToId(f'''<lang:{lang}>''' ) for lang in self.langs} lowercase_ : Tuple = self.lang_tokens lowercase_ : Any = tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang ) else: lowercase_ : List[Any] = {} @property def _UpperCAmelCase ( self ) -> int: '''simple docstring''' return len(self.encoder ) @property def _UpperCAmelCase ( self ) -> str: '''simple docstring''' return self._tgt_lang @tgt_lang.setter def _UpperCAmelCase ( self ,__UpperCamelCase ) -> None: '''simple docstring''' lowercase_ : List[Any] = new_tgt_lang self.set_tgt_lang_special_tokens(__UpperCamelCase ) def _UpperCAmelCase ( self ,__UpperCamelCase ) -> None: '''simple docstring''' lowercase_ : List[Any] = self.lang_code_to_id[tgt_lang] lowercase_ : Optional[int] = [lang_code_id] def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[str]: '''simple docstring''' return self.sp_model.encode(__UpperCamelCase ,out_type=__UpperCamelCase ) def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Dict: '''simple docstring''' return self.encoder.get(__UpperCamelCase ,self.encoder[self.unk_token] ) def _UpperCAmelCase ( self ,__UpperCamelCase ) -> str: '''simple docstring''' return self.decoder.get(__UpperCamelCase ,self.unk_token ) def _UpperCAmelCase ( self ,__UpperCamelCase ) -> str: '''simple docstring''' lowercase_ : Dict = [] lowercase_ : Optional[Any] = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: lowercase_ : List[str] = self.sp_model.decode(__UpperCamelCase ) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " lowercase_ : int = [] else: current_sub_tokens.append(__UpperCamelCase ) lowercase_ : str = self.sp_model.decode(__UpperCamelCase ) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase=None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id] def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ,__UpperCamelCase = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCamelCase ,token_ids_a=__UpperCamelCase ,already_has_special_tokens=__UpperCamelCase ) lowercase_ : str = [1] * len(self.prefix_tokens ) lowercase_ : str = [1] if token_ids_a is None: return prefix_ones + ([0] * len(__UpperCamelCase )) + suffix_ones return prefix_ones + ([0] * len(__UpperCamelCase )) + ([0] * len(__UpperCamelCase )) + suffix_ones def _UpperCAmelCase ( self ) -> Dict: '''simple docstring''' lowercase_ : Optional[int] = self.encoder.copy() vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Dict: '''simple docstring''' lowercase_ : Tuple = self.__dict__.copy() lowercase_ : str = None return state def __setstate__( self ,__UpperCamelCase ) -> None: '''simple docstring''' lowercase_ : Optional[int] = d # for backward compatibility if not hasattr(self ,'sp_model_kwargs' ): lowercase_ : Union[str, Any] = {} lowercase_ : int = load_spm(self.spm_file ,self.sp_model_kwargs ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ) -> Tuple[str]: '''simple docstring''' lowercase_ : List[str] = Path(__UpperCamelCase ) assert save_dir.is_dir(), f'''{save_directory} should be a directory''' lowercase_ : Tuple = save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['vocab_file'] ) lowercase_ : List[Any] = save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['spm_file'] ) save_json(self.encoder ,__UpperCamelCase ) if os.path.abspath(self.spm_file ) != os.path.abspath(__UpperCamelCase ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file ,__UpperCamelCase ) elif not os.path.isfile(self.spm_file ): with open(__UpperCamelCase ,'wb' ) as fi: lowercase_ : Any = self.sp_model.serialized_model_proto() fi.write(__UpperCamelCase ) return (str(__UpperCamelCase ), str(__UpperCamelCase )) def lowercase__( __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : str ): lowercase_ : Union[str, Any] = sentencepiece.SentencePieceProcessor(**a__ ) spm.Load(str(a__ ) ) return spm def lowercase__( __SCREAMING_SNAKE_CASE : Any ): with open(a__ , 'r' ) as f: return json.load(a__ ) def lowercase__( __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Tuple ): with open(a__ , 'w' ) as f: json.dump(a__ , a__ , indent=2 )
425
"""simple docstring""" import itertools import math def UpperCAmelCase ( a__ ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(a__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def UpperCAmelCase ( ): '''simple docstring''' lowerCAmelCase :str = 2 while True: if is_prime(a__ ): yield num num += 1 def UpperCAmelCase ( a__ = 1_00_01 ): '''simple docstring''' return next(itertools.islice(prime_generator() , nth - 1 , a__ ) ) if __name__ == "__main__": print(F"""{solution() = }""")
553
0
import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase=None ) -> Any: _UpperCAmelCase = None if token is not None: _UpperCAmelCase = {"Accept": "application/vnd.github+json", "Authorization": F'''Bearer {token}'''} _UpperCAmelCase = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100''' _UpperCAmelCase = requests.get(_lowerCAmelCase , headers=_lowerCAmelCase ).json() _UpperCAmelCase = {} try: job_links.update({job["name"]: job["html_url"] for job in result["jobs"]} ) _UpperCAmelCase = math.ceil((result["total_count"] - 100) / 100 ) for i in range(_lowerCAmelCase ): _UpperCAmelCase = requests.get(url + F'''&page={i + 2}''' , headers=_lowerCAmelCase ).json() job_links.update({job["name"]: job["html_url"] for job in result["jobs"]} ) return job_links except Exception: print(F'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' ) return {} def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase=None ) -> List[str]: _UpperCAmelCase = None if token is not None: _UpperCAmelCase = {"Accept": "application/vnd.github+json", "Authorization": F'''Bearer {token}'''} _UpperCAmelCase = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100''' _UpperCAmelCase = requests.get(_lowerCAmelCase , headers=_lowerCAmelCase ).json() _UpperCAmelCase = {} try: artifacts.update({artifact["name"]: artifact["archive_download_url"] for artifact in result["artifacts"]} ) _UpperCAmelCase = math.ceil((result["total_count"] - 100) / 100 ) for i in range(_lowerCAmelCase ): _UpperCAmelCase = requests.get(url + F'''&page={i + 2}''' , headers=_lowerCAmelCase ).json() artifacts.update({artifact["name"]: artifact["archive_download_url"] for artifact in result["artifacts"]} ) return artifacts except Exception: print(F'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' ) return {} def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> List[str]: _UpperCAmelCase = None if token is not None: _UpperCAmelCase = {"Accept": "application/vnd.github+json", "Authorization": F'''Bearer {token}'''} _UpperCAmelCase = requests.get(_lowerCAmelCase , headers=_lowerCAmelCase , allow_redirects=_lowerCAmelCase ) _UpperCAmelCase = result.headers["Location"] _UpperCAmelCase = requests.get(_lowerCAmelCase , allow_redirects=_lowerCAmelCase ) _UpperCAmelCase = os.path.join(_lowerCAmelCase , F'''{artifact_name}.zip''' ) with open(_lowerCAmelCase , "wb" ) as fp: fp.write(response.content ) def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase=None ) -> int: _UpperCAmelCase = [] _UpperCAmelCase = [] _UpperCAmelCase = None with zipfile.ZipFile(_lowerCAmelCase ) as z: for filename in z.namelist(): if not os.path.isdir(_lowerCAmelCase ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(_lowerCAmelCase ) as f: for line in f: _UpperCAmelCase = line.decode("UTF-8" ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs _UpperCAmelCase = line[: line.index(": " )] _UpperCAmelCase = line[line.index(": " ) + len(": " ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith("FAILED " ): # `test` is the test method that failed _UpperCAmelCase = line[len("FAILED " ) :] failed_tests.append(_lowerCAmelCase ) elif filename == "job_name.txt": _UpperCAmelCase = line if len(_lowerCAmelCase ) != len(_lowerCAmelCase ): raise ValueError( F'''`errors` and `failed_tests` should have the same number of elements. Got {len(_lowerCAmelCase )} for `errors` ''' F'''and {len(_lowerCAmelCase )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some''' " problem." ) _UpperCAmelCase = None if job_name and job_links: _UpperCAmelCase = job_links.get(_lowerCAmelCase , _lowerCAmelCase ) # A list with elements of the form (line of error, error, failed test) _UpperCAmelCase = [x + [y] + [job_link] for x, y in zip(_lowerCAmelCase , _lowerCAmelCase )] return result def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase=None ) -> Dict: _UpperCAmelCase = [] _UpperCAmelCase = [os.path.join(_lowerCAmelCase , _lowerCAmelCase ) for p in os.listdir(_lowerCAmelCase ) if p.endswith(".zip" )] for p in paths: errors.extend(get_errors_from_single_artifact(_lowerCAmelCase , job_links=_lowerCAmelCase ) ) return errors def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase=None ) -> Union[str, Any]: _UpperCAmelCase = Counter() counter.update([x[1] for x in logs] ) _UpperCAmelCase = counter.most_common() _UpperCAmelCase = {} for error, count in counts: if error_filter is None or error not in error_filter: _UpperCAmelCase = {"count": count, "failed_tests": [(x[2], x[0]) for x in logs if x[1] == error]} _UpperCAmelCase = dict(sorted(r.items() , key=lambda _lowerCAmelCase : item[1]["count"] , reverse=_lowerCAmelCase ) ) return r def __lowerCamelCase ( _lowerCAmelCase ) -> Tuple: _UpperCAmelCase = test.split("::" )[0] if test.startswith("tests/models/" ): _UpperCAmelCase = test.split("/" )[2] else: _UpperCAmelCase = None return test def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase=None ) -> Tuple: _UpperCAmelCase = [(x[0], x[1], get_model(x[2] )) for x in logs] _UpperCAmelCase = [x for x in logs if x[2] is not None] _UpperCAmelCase = {x[2] for x in logs} _UpperCAmelCase = {} for test in tests: _UpperCAmelCase = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) _UpperCAmelCase = counter.most_common() _UpperCAmelCase = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} _UpperCAmelCase = sum(error_counts.values() ) if n_errors > 0: _UpperCAmelCase = {"count": n_errors, "errors": error_counts} _UpperCAmelCase = dict(sorted(r.items() , key=lambda _lowerCAmelCase : item[1]["count"] , reverse=_lowerCAmelCase ) ) return r def __lowerCamelCase ( _lowerCAmelCase ) -> List[str]: _UpperCAmelCase = "| no. | error | status |" _UpperCAmelCase = "|-:|:-|:-|" _UpperCAmelCase = [header, sep] for error in reduced_by_error: _UpperCAmelCase = reduced_by_error[error]["count"] _UpperCAmelCase = F'''| {count} | {error[:100]} | |''' lines.append(_lowerCAmelCase ) return "\n".join(_lowerCAmelCase ) def __lowerCamelCase ( _lowerCAmelCase ) -> Dict: _UpperCAmelCase = "| model | no. of errors | major error | count |" _UpperCAmelCase = "|-:|-:|-:|-:|" _UpperCAmelCase = [header, sep] for model in reduced_by_model: _UpperCAmelCase = reduced_by_model[model]["count"] _UpperCAmelCase , _UpperCAmelCase = list(reduced_by_model[model]["errors"].items() )[0] _UpperCAmelCase = F'''| {model} | {count} | {error[:60]} | {_count} |''' lines.append(_lowerCAmelCase ) return "\n".join(_lowerCAmelCase ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.") parser.add_argument( "--output_dir", type=str, required=True, help="Where to store the downloaded artifacts and other result files.", ) parser.add_argument("--token", default=None, type=str, help="A token that has actions:read permission.") __lowerCAmelCase = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) __lowerCAmelCase = get_job_links(args.workflow_run_id, token=args.token) __lowerCAmelCase = {} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: __lowerCAmelCase = k.find(" / ") __lowerCAmelCase = k[index + len(" / ") :] __lowerCAmelCase = v with open(os.path.join(args.output_dir, "job_links.json"), "w", encoding="UTF-8") as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) __lowerCAmelCase = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, "artifacts.json"), "w", encoding="UTF-8") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) __lowerCAmelCase = get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error __lowerCAmelCase = Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors __lowerCAmelCase = counter.most_common(3_0) for item in most_common: print(item) with open(os.path.join(args.output_dir, "errors.json"), "w", encoding="UTF-8") as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) __lowerCAmelCase = reduce_by_error(errors) __lowerCAmelCase = reduce_by_model(errors) __lowerCAmelCase = make_github_table(reduced_by_error) __lowerCAmelCase = make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, "reduced_by_error.txt"), "w", encoding="UTF-8") as fp: fp.write(sa) with open(os.path.join(args.output_dir, "reduced_by_model.txt"), "w", encoding="UTF-8") as fp: fp.write(sa)
712
from ..utils import DummyObject, requires_backends class __SCREAMING_SNAKE_CASE ( metaclass=lowercase): __SCREAMING_SNAKE_CASE : Optional[int] = ["""keras_nlp"""] def __init__( self : Optional[int] , *__UpperCamelCase : List[Any] , **__UpperCamelCase : Optional[int] ): requires_backends(self , ["keras_nlp"] )
129
0
import enum import os from hashlib import shaaaa from typing import Optional from .. import config from .logging import get_logger lowercase_ = get_logger(__name__) class __a ( enum.Enum ): SCREAMING_SNAKE_CASE = "all_checks" SCREAMING_SNAKE_CASE = "basic_checks" SCREAMING_SNAKE_CASE = "no_checks" class __a ( SCREAMING_SNAKE_CASE ): pass class __a ( SCREAMING_SNAKE_CASE ): pass class __a ( SCREAMING_SNAKE_CASE ): pass class __a ( SCREAMING_SNAKE_CASE ): pass def __lowerCAmelCase ( __lowerCamelCase : Optional[dict] , __lowerCamelCase : dict , __lowerCamelCase : Dict=None ) -> Optional[Any]: if expected_checksums is None: logger.info("""Unable to verify checksums.""" ) return if len(set(__lowerCamelCase ) - set(__lowerCamelCase ) ) > 0: raise ExpectedMoreDownloadedFiles(str(set(__lowerCamelCase ) - set(__lowerCamelCase ) ) ) if len(set(__lowerCamelCase ) - set(__lowerCamelCase ) ) > 0: raise UnexpectedDownloadedFile(str(set(__lowerCamelCase ) - set(__lowerCamelCase ) ) ) __lowerCAmelCase =[url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]] __lowerCAmelCase =""" for """ + verification_name if verification_name is not None else """""" if len(__lowerCamelCase ) > 0: raise NonMatchingChecksumError( f"""Checksums didn't match{for_verification_name}:\n""" f"""{bad_urls}\n""" """Set `verification_mode='no_checks'` to skip checksums verification and ignore this error""" ) logger.info("""All the checksums matched successfully""" + for_verification_name ) class __a ( SCREAMING_SNAKE_CASE ): pass class __a ( SCREAMING_SNAKE_CASE ): pass class __a ( SCREAMING_SNAKE_CASE ): pass class __a ( SCREAMING_SNAKE_CASE ): pass def __lowerCAmelCase ( __lowerCamelCase : Optional[dict] , __lowerCamelCase : dict ) -> Any: if expected_splits is None: logger.info("""Unable to verify splits sizes.""" ) return if len(set(__lowerCamelCase ) - set(__lowerCamelCase ) ) > 0: raise ExpectedMoreSplits(str(set(__lowerCamelCase ) - set(__lowerCamelCase ) ) ) if len(set(__lowerCamelCase ) - set(__lowerCamelCase ) ) > 0: raise UnexpectedSplits(str(set(__lowerCamelCase ) - set(__lowerCamelCase ) ) ) __lowerCAmelCase =[ {"""expected""": expected_splits[name], """recorded""": recorded_splits[name]} for name in expected_splits if expected_splits[name].num_examples != recorded_splits[name].num_examples ] if len(__lowerCamelCase ) > 0: raise NonMatchingSplitsSizesError(str(__lowerCamelCase ) ) logger.info("""All the splits matched successfully.""" ) def __lowerCAmelCase ( __lowerCamelCase : str , __lowerCamelCase : bool = True ) -> dict: if record_checksum: __lowerCAmelCase =shaaaa() with open(__lowerCamelCase , """rb""" ) as f: for chunk in iter(lambda: f.read(1 << 20 ) , b"""""" ): m.update(__lowerCamelCase ) __lowerCAmelCase =m.hexdigest() else: __lowerCAmelCase =None return {"num_bytes": os.path.getsize(__lowerCamelCase ), "checksum": checksum} def __lowerCAmelCase ( __lowerCamelCase : Optional[int] ) -> List[Any]: if dataset_size and config.IN_MEMORY_MAX_SIZE: return dataset_size < config.IN_MEMORY_MAX_SIZE else: return False
354
from __future__ import annotations class __a : def __init__( self : List[Any] , snake_case_ : str , snake_case_ : str)-> Optional[int]: __lowerCAmelCase , __lowerCAmelCase =text, pattern __lowerCAmelCase , __lowerCAmelCase =len(snake_case_), len(snake_case_) def UpperCamelCase ( self : List[Any] , snake_case_ : str)-> int: for i in range(self.patLen - 1 , -1 , -1): if char == self.pattern[i]: return i return -1 def UpperCamelCase ( self : List[str] , snake_case_ : int)-> int: for i in range(self.patLen - 1 , -1 , -1): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def UpperCamelCase ( self : Dict)-> list[int]: # searches pattern in text and returns index positions __lowerCAmelCase =[] for i in range(self.textLen - self.patLen + 1): __lowerCAmelCase =self.mismatch_in_text(snake_case_) if mismatch_index == -1: positions.append(snake_case_) else: __lowerCAmelCase =self.match_in_pattern(self.text[mismatch_index]) __lowerCAmelCase =( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions lowercase_ = '''ABAABA''' lowercase_ = '''AB''' lowercase_ = BoyerMooreSearch(text, pattern) lowercase_ = bms.bad_character_heuristic() if len(positions) == 0: print('''No match found''') else: print('''Pattern found in following positions: ''') print(positions)
354
1
import unittest from transformers import AutoTokenizer, FalconConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, ) class _UpperCamelCase : def __init__( self: Dict , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: Optional[Any]=3 , _SCREAMING_SNAKE_CASE: Any=7 , _SCREAMING_SNAKE_CASE: Union[str, Any]=True , _SCREAMING_SNAKE_CASE: Optional[int]=True , _SCREAMING_SNAKE_CASE: List[Any]=False , _SCREAMING_SNAKE_CASE: str=True , _SCREAMING_SNAKE_CASE: Any=99 , _SCREAMING_SNAKE_CASE: List[str]=32 , _SCREAMING_SNAKE_CASE: List[str]=5 , _SCREAMING_SNAKE_CASE: Optional[int]=4 , _SCREAMING_SNAKE_CASE: str=37 , _SCREAMING_SNAKE_CASE: Optional[int]="gelu" , _SCREAMING_SNAKE_CASE: str=0.1 , _SCREAMING_SNAKE_CASE: Any=0.1 , _SCREAMING_SNAKE_CASE: Optional[Any]=512 , _SCREAMING_SNAKE_CASE: Optional[Any]=16 , _SCREAMING_SNAKE_CASE: Union[str, Any]=2 , _SCREAMING_SNAKE_CASE: Tuple=0.02 , _SCREAMING_SNAKE_CASE: Optional[Any]=3 , _SCREAMING_SNAKE_CASE: Union[str, Any]=4 , _SCREAMING_SNAKE_CASE: Tuple=None , ) -> Tuple: """simple docstring""" UpperCamelCase_ = parent UpperCamelCase_ = batch_size UpperCamelCase_ = seq_length UpperCamelCase_ = is_training UpperCamelCase_ = use_input_mask UpperCamelCase_ = use_token_type_ids UpperCamelCase_ = use_labels UpperCamelCase_ = vocab_size UpperCamelCase_ = hidden_size UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = num_attention_heads UpperCamelCase_ = intermediate_size UpperCamelCase_ = hidden_act UpperCamelCase_ = hidden_dropout_prob UpperCamelCase_ = attention_probs_dropout_prob UpperCamelCase_ = max_position_embeddings UpperCamelCase_ = type_vocab_size UpperCamelCase_ = type_sequence_label_size UpperCamelCase_ = initializer_range UpperCamelCase_ = num_labels UpperCamelCase_ = num_choices UpperCamelCase_ = scope def lowercase ( self: Any ) -> Any: """simple docstring""" UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase_ = None if self.use_input_mask: UpperCamelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase_ = None UpperCamelCase_ = None UpperCamelCase_ = None UpperCamelCase_ = None if self.use_labels: UpperCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase_ = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase ( self: Any ) -> Union[str, Any]: """simple docstring""" return FalconConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , pad_token_id=1 , new_decoder_architecture=_SCREAMING_SNAKE_CASE , ) def lowercase ( self: str , _SCREAMING_SNAKE_CASE: Any , _SCREAMING_SNAKE_CASE: List[str] , _SCREAMING_SNAKE_CASE: Dict , _SCREAMING_SNAKE_CASE: List[str] , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: Dict , _SCREAMING_SNAKE_CASE: Union[str, Any] ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = FalconModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase_ = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase ( self: Optional[int] , _SCREAMING_SNAKE_CASE: Optional[int] , _SCREAMING_SNAKE_CASE: Union[str, Any] , _SCREAMING_SNAKE_CASE: Optional[int] , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: List[str] , _SCREAMING_SNAKE_CASE: Any , _SCREAMING_SNAKE_CASE: Optional[int] , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: Tuple , ) -> str: """simple docstring""" UpperCamelCase_ = True UpperCamelCase_ = FalconModel(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase_ = model( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , encoder_hidden_states=_SCREAMING_SNAKE_CASE , encoder_attention_mask=_SCREAMING_SNAKE_CASE , ) UpperCamelCase_ = model( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , encoder_hidden_states=_SCREAMING_SNAKE_CASE , ) UpperCamelCase_ = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase ( self: Optional[int] , _SCREAMING_SNAKE_CASE: Optional[int] , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: Union[str, Any] , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: Union[str, Any] , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: Any , _SCREAMING_SNAKE_CASE: int , ) -> int: """simple docstring""" UpperCamelCase_ = FalconForCausalLM(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase_ = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase ( self: Optional[int] , _SCREAMING_SNAKE_CASE: Optional[int] , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: Any , _SCREAMING_SNAKE_CASE: Union[str, Any] , _SCREAMING_SNAKE_CASE: Optional[int] , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: Union[str, Any] , ) -> List[Any]: """simple docstring""" UpperCamelCase_ = True UpperCamelCase_ = True UpperCamelCase_ = FalconForCausalLM(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() # first forward pass UpperCamelCase_ = model( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , encoder_hidden_states=_SCREAMING_SNAKE_CASE , encoder_attention_mask=_SCREAMING_SNAKE_CASE , use_cache=_SCREAMING_SNAKE_CASE , ) UpperCamelCase_ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCamelCase_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCamelCase_ = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and UpperCamelCase_ = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCamelCase_ = torch.cat([input_mask, next_mask] , dim=-1 ) UpperCamelCase_ = model( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , encoder_hidden_states=_SCREAMING_SNAKE_CASE , encoder_attention_mask=_SCREAMING_SNAKE_CASE , output_hidden_states=_SCREAMING_SNAKE_CASE , )["hidden_states"][0] UpperCamelCase_ = model( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , encoder_hidden_states=_SCREAMING_SNAKE_CASE , encoder_attention_mask=_SCREAMING_SNAKE_CASE , past_key_values=_SCREAMING_SNAKE_CASE , output_hidden_states=_SCREAMING_SNAKE_CASE , )["hidden_states"][0] # select random slice UpperCamelCase_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCamelCase_ = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCamelCase_ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1e-3 ) ) def lowercase ( self: Tuple ) -> int: """simple docstring""" UpperCamelCase_ = self.prepare_config_and_inputs() ( ( UpperCamelCase_ ) , ( UpperCamelCase_ ) , ( UpperCamelCase_ ) , ( UpperCamelCase_ ) , ( UpperCamelCase_ ) , ( UpperCamelCase_ ) , ( UpperCamelCase_ ) , ) = config_and_inputs UpperCamelCase_ = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): _UpperCamelCase : Optional[Any] = ( ( FalconModel, FalconForCausalLM, FalconForSequenceClassification, FalconForTokenClassification, FalconForQuestionAnswering, ) if is_torch_available() else () ) _UpperCamelCase : Union[str, Any] = (FalconForCausalLM,) if is_torch_available() else () _UpperCamelCase : Optional[int] = ( { '''feature-extraction''': FalconModel, '''text-classification''': FalconForSequenceClassification, '''text-generation''': FalconForCausalLM, '''question-answering''': FalconForQuestionAnswering, '''token-classification''': FalconForTokenClassification, '''zero-shot''': FalconForSequenceClassification, } if is_torch_available() else {} ) _UpperCamelCase : Any = False _UpperCamelCase : int = False def lowercase ( self: str ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = FalconModelTester(self ) UpperCamelCase_ = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , hidden_size=37 ) def lowercase ( self: Optional[Any] ) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() def lowercase ( self: str ) -> Any: """simple docstring""" UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def lowercase ( self: List[Any] ) -> Dict: """simple docstring""" UpperCamelCase_ , *UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() for alibi in [True, False]: UpperCamelCase_ = alibi self.model_tester.create_and_check_model(_SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE ) def lowercase ( self: Any ) -> str: """simple docstring""" UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase_ = 3 UpperCamelCase_ = input_dict["input_ids"] UpperCamelCase_ = input_ids.ne(1 ).to(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCamelCase_ = FalconForSequenceClassification(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase_ = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowercase ( self: Dict ) -> List[str]: """simple docstring""" UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase_ = 3 UpperCamelCase_ = "single_label_classification" UpperCamelCase_ = input_dict["input_ids"] UpperCamelCase_ = input_ids.ne(1 ).to(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCamelCase_ = FalconForSequenceClassification(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase_ = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowercase ( self: List[str] ) -> int: """simple docstring""" UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase_ = input_dict["input_ids"] UpperCamelCase_ = FalconForCausalLM(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase_ = model(_SCREAMING_SNAKE_CASE , use_cache=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = input_ids.shape[0] UpperCamelCase_ = model._convert_to_rw_cache(result.past_key_values ) UpperCamelCase_ = model._convert_cache_to_standard_format(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for layer in range(len(_SCREAMING_SNAKE_CASE ) ): for tensor_idx in range(2 ): self.assertTrue(rw_cache[layer][tensor_idx].ndim == 3 ) self.assertTrue(result.past_key_values[layer][tensor_idx].ndim == 4 ) self.assertTrue( torch.all(result.past_key_values[layer][tensor_idx] == standard_cache[layer][tensor_idx] ) ) def lowercase ( self: Union[str, Any] ) -> Any: """simple docstring""" UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase_ = 3 UpperCamelCase_ = "multi_label_classification" UpperCamelCase_ = input_dict["input_ids"] UpperCamelCase_ = input_ids.ne(1 ).to(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) UpperCamelCase_ = FalconForSequenceClassification(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase_ = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowercase ( self: List[Any] ) -> List[Any]: """simple docstring""" for model_class in self.all_generative_model_classes: UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() # If it doesn't support cache, pass the test if not hasattr(_SCREAMING_SNAKE_CASE , "use_cache" ): return UpperCamelCase_ = model_class(_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) if "use_cache" not in inputs: UpperCamelCase_ = True UpperCamelCase_ = model(**_SCREAMING_SNAKE_CASE ) # If "past_key_values" is not returned, pass the test (e.g. RWKV uses a different cache name and format) if "past_key_values" not in outputs: return UpperCamelCase_ = ( getattr(_SCREAMING_SNAKE_CASE , "decoder_layers" , _SCREAMING_SNAKE_CASE ) or getattr(_SCREAMING_SNAKE_CASE , "num_decoder_layers" , _SCREAMING_SNAKE_CASE ) or config.num_hidden_layers ) UpperCamelCase_ = getattr(_SCREAMING_SNAKE_CASE , "num_kv_heads" , config.num_attention_heads ) UpperCamelCase_ = getattr(_SCREAMING_SNAKE_CASE , "d_model" , config.hidden_size ) UpperCamelCase_ = embed_dim // num_attention_heads UpperCamelCase_ = outputs["past_key_values"] self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ , UpperCamelCase_ = inputs["input_ids"].shape for i in range(_SCREAMING_SNAKE_CASE ): if config.new_decoder_architecture: UpperCamelCase_ = config.num_attention_heads elif config.multi_query: UpperCamelCase_ = 1 self.assertEqual(len(past_kv[0] ) , 2 ) # K V for the decoder = 2 self.assertEqual( past_kv[i][0].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) self.assertEqual( past_kv[i][1].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) @require_torch class _UpperCamelCase ( unittest.TestCase ): @slow def lowercase ( self: Tuple ) -> int: """simple docstring""" UpperCamelCase_ = AutoTokenizer.from_pretrained("Rocketknight1/falcon-rw-1b" ) UpperCamelCase_ = FalconForCausalLM.from_pretrained("Rocketknight1/falcon-rw-1b" ) model.eval() model.to(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = tokenizer("My favorite food is" , return_tensors="pt" ).to(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = ( "My favorite food is pizza. I love it so much that I have a pizza party every year for my birthday." ) UpperCamelCase_ = model.generate(**_SCREAMING_SNAKE_CASE , do_sample=_SCREAMING_SNAKE_CASE , max_new_tokens=19 ) UpperCamelCase_ = tokenizer.batch_decode(_SCREAMING_SNAKE_CASE )[0] self.assertEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @slow def lowercase ( self: Dict ) -> Dict: """simple docstring""" for repo in ["Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b"]: UpperCamelCase_ = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = FalconForCausalLM.from_pretrained(_SCREAMING_SNAKE_CASE ) model.eval() model.to(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = tokenizer("My favorite food is" , return_tensors="pt" ).to(_SCREAMING_SNAKE_CASE ) # We just test that these run without errors - the models are randomly initialized # and so the actual text outputs will be garbage model.generate(**_SCREAMING_SNAKE_CASE , do_sample=_SCREAMING_SNAKE_CASE , max_new_tokens=4 ) model.generate(**_SCREAMING_SNAKE_CASE , do_sample=_SCREAMING_SNAKE_CASE , max_new_tokens=4 ) model.generate(**_SCREAMING_SNAKE_CASE , num_beams=2 , max_new_tokens=4 ) @slow def lowercase ( self: Union[str, Any] ) -> Any: """simple docstring""" with torch.no_grad(): for repo in [ "Rocketknight1/falcon-rw-1b", "Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b", ]: UpperCamelCase_ = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = FalconForCausalLM.from_pretrained(_SCREAMING_SNAKE_CASE ) model.eval() model.to(device=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = tokenizer("My favorite food is" , return_tensors="pt" ).to(_SCREAMING_SNAKE_CASE ) # Test results are the same with and without cache UpperCamelCase_ = model.generate(**_SCREAMING_SNAKE_CASE , do_sample=_SCREAMING_SNAKE_CASE , max_new_tokens=20 , use_cache=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = model.generate(**_SCREAMING_SNAKE_CASE , do_sample=_SCREAMING_SNAKE_CASE , max_new_tokens=20 , use_cache=_SCREAMING_SNAKE_CASE ) self.assertTrue((outputs_cache - outputs_no_cache).sum().item() == 0 )
371
import unittest from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _UpperCamelCase : @staticmethod def lowercase ( *_SCREAMING_SNAKE_CASE: Optional[int] , **_SCREAMING_SNAKE_CASE: Dict ) -> Union[str, Any]: """simple docstring""" pass @is_pipeline_test @require_vision @require_torch class _UpperCamelCase ( unittest.TestCase ): _UpperCamelCase : str = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING def lowercase ( self: int , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: Optional[Any] ) -> Any: """simple docstring""" UpperCamelCase_ = pipeline( "zero-shot-object-detection" , model="hf-internal-testing/tiny-random-owlvit-object-detection" ) UpperCamelCase_ = [ { "image": "./tests/fixtures/tests_samples/COCO/000000039769.png", "candidate_labels": ["cat", "remote", "couch"], } ] return object_detector, examples def lowercase ( self: Optional[Any] , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: Tuple ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = object_detector(examples[0] , threshold=0.0 ) UpperCamelCase_ = len(_SCREAMING_SNAKE_CASE ) self.assertGreater(_SCREAMING_SNAKE_CASE , 0 ) self.assertEqual( _SCREAMING_SNAKE_CASE , [ { "score": ANY(_SCREAMING_SNAKE_CASE ), "label": ANY(_SCREAMING_SNAKE_CASE ), "box": {"xmin": ANY(_SCREAMING_SNAKE_CASE ), "ymin": ANY(_SCREAMING_SNAKE_CASE ), "xmax": ANY(_SCREAMING_SNAKE_CASE ), "ymax": ANY(_SCREAMING_SNAKE_CASE )}, } for i in range(_SCREAMING_SNAKE_CASE ) ] , ) @require_tf @unittest.skip("Zero Shot Object Detection not implemented in TF" ) def lowercase ( self: Tuple ) -> List[str]: """simple docstring""" pass @require_torch def lowercase ( self: Union[str, Any] ) -> str: """simple docstring""" UpperCamelCase_ = pipeline( "zero-shot-object-detection" , model="hf-internal-testing/tiny-random-owlvit-object-detection" ) UpperCamelCase_ = object_detector( "./tests/fixtures/tests_samples/COCO/000000039769.png" , candidate_labels=["cat", "remote", "couch"] , threshold=0.64 , ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , [ {"score": 0.72_35, "label": "cat", "box": {"xmin": 204, "ymin": 167, "xmax": 232, "ymax": 190}}, {"score": 0.72_18, "label": "remote", "box": {"xmin": 204, "ymin": 167, "xmax": 232, "ymax": 190}}, {"score": 0.71_84, "label": "couch", "box": {"xmin": 204, "ymin": 167, "xmax": 232, "ymax": 190}}, {"score": 0.67_48, "label": "remote", "box": {"xmin": 571, "ymin": 83, "xmax": 598, "ymax": 103}}, {"score": 0.66_56, "label": "cat", "box": {"xmin": 571, "ymin": 83, "xmax": 598, "ymax": 103}}, {"score": 0.66_14, "label": "couch", "box": {"xmin": 571, "ymin": 83, "xmax": 598, "ymax": 103}}, {"score": 0.64_56, "label": "remote", "box": {"xmin": 494, "ymin": 105, "xmax": 521, "ymax": 127}}, {"score": 0.6_42, "label": "remote", "box": {"xmin": 67, "ymin": 274, "xmax": 93, "ymax": 297}}, {"score": 0.64_19, "label": "cat", "box": {"xmin": 494, "ymin": 105, "xmax": 521, "ymax": 127}}, ] , ) UpperCamelCase_ = object_detector( [ { "image": "./tests/fixtures/tests_samples/COCO/000000039769.png", "candidate_labels": ["cat", "remote", "couch"], } ] , threshold=0.64 , ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , [ [ {"score": 0.72_35, "label": "cat", "box": {"xmin": 204, "ymin": 167, "xmax": 232, "ymax": 190}}, {"score": 0.72_18, "label": "remote", "box": {"xmin": 204, "ymin": 167, "xmax": 232, "ymax": 190}}, {"score": 0.71_84, "label": "couch", "box": {"xmin": 204, "ymin": 167, "xmax": 232, "ymax": 190}}, {"score": 0.67_48, "label": "remote", "box": {"xmin": 571, "ymin": 83, "xmax": 598, "ymax": 103}}, {"score": 0.66_56, "label": "cat", "box": {"xmin": 571, "ymin": 83, "xmax": 598, "ymax": 103}}, {"score": 0.66_14, "label": "couch", "box": {"xmin": 571, "ymin": 83, "xmax": 598, "ymax": 103}}, {"score": 0.64_56, "label": "remote", "box": {"xmin": 494, "ymin": 105, "xmax": 521, "ymax": 127}}, {"score": 0.6_42, "label": "remote", "box": {"xmin": 67, "ymin": 274, "xmax": 93, "ymax": 297}}, {"score": 0.64_19, "label": "cat", "box": {"xmin": 494, "ymin": 105, "xmax": 521, "ymax": 127}}, ] ] , ) @require_torch @slow def lowercase ( self: List[str] ) -> List[str]: """simple docstring""" UpperCamelCase_ = pipeline("zero-shot-object-detection" ) UpperCamelCase_ = object_detector( "http://images.cocodataset.org/val2017/000000039769.jpg" , candidate_labels=["cat", "remote", "couch"] , ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , [ {"score": 0.28_68, "label": "cat", "box": {"xmin": 324, "ymin": 20, "xmax": 640, "ymax": 373}}, {"score": 0.2_77, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 177, "ymax": 115}}, {"score": 0.25_37, "label": "cat", "box": {"xmin": 1, "ymin": 55, "xmax": 315, "ymax": 472}}, {"score": 0.14_74, "label": "remote", "box": {"xmin": 335, "ymin": 74, "xmax": 371, "ymax": 187}}, {"score": 0.12_08, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 642, "ymax": 476}}, ] , ) UpperCamelCase_ = object_detector( [ { "image": "http://images.cocodataset.org/val2017/000000039769.jpg", "candidate_labels": ["cat", "remote", "couch"], }, { "image": "http://images.cocodataset.org/val2017/000000039769.jpg", "candidate_labels": ["cat", "remote", "couch"], }, ] , ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , [ [ {"score": 0.28_68, "label": "cat", "box": {"xmin": 324, "ymin": 20, "xmax": 640, "ymax": 373}}, {"score": 0.2_77, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 177, "ymax": 115}}, {"score": 0.25_37, "label": "cat", "box": {"xmin": 1, "ymin": 55, "xmax": 315, "ymax": 472}}, {"score": 0.14_74, "label": "remote", "box": {"xmin": 335, "ymin": 74, "xmax": 371, "ymax": 187}}, {"score": 0.12_08, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 642, "ymax": 476}}, ], [ {"score": 0.28_68, "label": "cat", "box": {"xmin": 324, "ymin": 20, "xmax": 640, "ymax": 373}}, {"score": 0.2_77, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 177, "ymax": 115}}, {"score": 0.25_37, "label": "cat", "box": {"xmin": 1, "ymin": 55, "xmax": 315, "ymax": 472}}, {"score": 0.14_74, "label": "remote", "box": {"xmin": 335, "ymin": 74, "xmax": 371, "ymax": 187}}, {"score": 0.12_08, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 642, "ymax": 476}}, ], ] , ) @require_tf @unittest.skip("Zero Shot Object Detection not implemented in TF" ) def lowercase ( self: List[Any] ) -> str: """simple docstring""" pass @require_torch @slow def lowercase ( self: Any ) -> int: """simple docstring""" UpperCamelCase_ = 0.2 UpperCamelCase_ = pipeline("zero-shot-object-detection" ) UpperCamelCase_ = object_detector( "http://images.cocodataset.org/val2017/000000039769.jpg" , candidate_labels=["cat", "remote", "couch"] , threshold=_SCREAMING_SNAKE_CASE , ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , [ {"score": 0.28_68, "label": "cat", "box": {"xmin": 324, "ymin": 20, "xmax": 640, "ymax": 373}}, {"score": 0.2_77, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 177, "ymax": 115}}, {"score": 0.25_37, "label": "cat", "box": {"xmin": 1, "ymin": 55, "xmax": 315, "ymax": 472}}, ] , ) @require_torch @slow def lowercase ( self: Dict ) -> Tuple: """simple docstring""" UpperCamelCase_ = 2 UpperCamelCase_ = pipeline("zero-shot-object-detection" ) UpperCamelCase_ = object_detector( "http://images.cocodataset.org/val2017/000000039769.jpg" , candidate_labels=["cat", "remote", "couch"] , top_k=_SCREAMING_SNAKE_CASE , ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , [ {"score": 0.28_68, "label": "cat", "box": {"xmin": 324, "ymin": 20, "xmax": 640, "ymax": 373}}, {"score": 0.2_77, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 177, "ymax": 115}}, ] , )
371
1
from collections import defaultdict from pathlib import Path import pandas as pd from rouge_cli import calculate_rouge_path from utils import calculate_rouge SCREAMING_SNAKE_CASE__ : Dict = [ """Prosecutor: \"No videos were used in the crash investigation\" German papers say they saw a cell phone video of the""" """ final seconds on board Flight 9525. The Germanwings co-pilot says he had a \"previous episode of severe""" """ depression\" German airline confirms it knew of Andreas Lubitz's depression years before he took control.""", """The Palestinian Authority officially becomes the 123rd member of the International Criminal Court. The formal""" """ accession was marked with a ceremony at The Hague, in the Netherlands. The Palestinians signed the ICC's""" """ founding Rome Statute in January. Israel and the United States opposed the Palestinians' efforts to join the""" """ body.""", """Amnesty International releases its annual report on the death penalty. The report catalogs the use of""" """ state-sanctioned killing as a punitive measure across the globe. At least 607 people were executed around the""" """ world in 2014, compared to 778 in 2013. The U.S. remains one of the worst offenders for imposing capital""" """ punishment.""", ] SCREAMING_SNAKE_CASE__ : Union[str, Any] = [ """Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports .""" """ Journalists at Bild and Paris Match are \"very confident\" the video clip is real, an editor says . Andreas Lubitz""" """ had informed his Lufthansa training school of an episode of severe depression, airline says .""", """Membership gives the ICC jurisdiction over alleged crimes committed in Palestinian territories since last June .""" """ Israel and the United States opposed the move, which could open the door to war crimes investigations against""" """ Israelis .""", """Amnesty's annual death penalty report catalogs encouraging signs, but setbacks in numbers of those sentenced to""" """ death . Organization claims that governments around the world are using the threat of terrorism to advance""" """ executions . The number of executions worldwide has gone down by almost 22% compared with 2013, but death""" """ sentences up by 28% .""", ] def __lowercase ( ): """simple docstring""" __magic_name__ :List[Any] = calculate_rouge(snake_case, snake_case, bootstrap_aggregation=snake_case, rouge_keys=['''rouge2''', '''rougeL'''] ) assert isinstance(snake_case, snake_case ) __magic_name__ :List[Any] = calculate_rouge(snake_case, snake_case, bootstrap_aggregation=snake_case, rouge_keys=['''rouge2'''] ) assert ( pd.DataFrame(no_aggregation['''rouge2'''] ).fmeasure.mean() == pd.DataFrame(no_aggregation_just_ra['''rouge2'''] ).fmeasure.mean() ) def __lowercase ( ): """simple docstring""" __magic_name__ :Dict = '''rougeLsum''' __magic_name__ :Any = calculate_rouge(snake_case, snake_case, newline_sep=snake_case, rouge_keys=[k] )[k] __magic_name__ :List[str] = calculate_rouge(snake_case, snake_case, newline_sep=snake_case, rouge_keys=[k] )[k] assert score > score_no_sep def __lowercase ( ): """simple docstring""" __magic_name__ :str = ['''rouge1''', '''rouge2''', '''rougeL'''] __magic_name__ :int = calculate_rouge(snake_case, snake_case, newline_sep=snake_case, rouge_keys=snake_case ) __magic_name__ :Optional[int] = calculate_rouge(snake_case, snake_case, newline_sep=snake_case, rouge_keys=snake_case ) assert score_sep == score_no_sep def __lowercase ( ): """simple docstring""" __magic_name__ :Any = [ '''Her older sister, Margot Frank, died in 1945, a month earlier than previously thought.''', '''Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .''', ] __magic_name__ :Dict = [ '''Margot Frank, died in 1945, a month earlier than previously thought.''', '''Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of''' ''' the final seconds on board Flight 9525.''', ] assert calculate_rouge(snake_case, snake_case, newline_sep=snake_case ) == calculate_rouge(snake_case, snake_case, newline_sep=snake_case ) def __lowercase ( ): """simple docstring""" __magic_name__ :Tuple = [ '''" "a person who has such a video needs to immediately give it to the investigators," prosecutor says .<n> "it is a very disturbing scene," editor-in-chief of bild online tells "erin burnett: outfront" ''' ] __magic_name__ :int = [ ''' Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports . Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz had informed his Lufthansa training school of an episode of severe depression, airline says .''' ] __magic_name__ :Union[str, Any] = calculate_rouge(snake_case, snake_case, rouge_keys=['''rougeLsum'''], newline_sep=snake_case )['''rougeLsum'''] __magic_name__ :List[Any] = calculate_rouge(snake_case, snake_case, rouge_keys=['''rougeLsum'''] )['''rougeLsum'''] assert new_score > prev_score def __lowercase ( ): """simple docstring""" __magic_name__ :int = Path('''examples/seq2seq/test_data/wmt_en_ro''' ) __magic_name__ :Tuple = calculate_rouge_path(data_dir.joinpath('''test.source''' ), data_dir.joinpath('''test.target''' ) ) assert isinstance(snake_case, snake_case ) __magic_name__ :Union[str, Any] = calculate_rouge_path( data_dir.joinpath('''test.source''' ), data_dir.joinpath('''test.target''' ), bootstrap_aggregation=snake_case ) assert isinstance(snake_case, snake_case )
0
def __lowercase ( snake_case ): """simple docstring""" return "".join([hex(snake_case )[2:].zfill(2 ).upper() for byte in list(snake_case )] ) def __lowercase ( snake_case ): """simple docstring""" if (len(snake_case ) % 2) != 0: raise ValueError( '''Base16 encoded data is invalid: Data does not have an even number of hex digits.''' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(snake_case ) <= set('''0123456789ABCDEF''' ): raise ValueError( '''Base16 encoded data is invalid: Data is not uppercase hex or it contains invalid characters.''' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1], 1_6 ) for i in range(0, len(snake_case ), 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
0
1
'''simple docstring''' import logging import os from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union from filelock import FileLock from transformers import PreTrainedTokenizer, is_tf_available, is_torch_available lowerCAmelCase_ : str = logging.getLogger(__name__) @dataclass class UpperCamelCase__ : lowerCAmelCase__ : str lowerCAmelCase__ : List[str] lowerCAmelCase__ : Optional[List[str]] @dataclass class UpperCamelCase__ : lowerCAmelCase__ : List[int] lowerCAmelCase__ : List[int] lowerCAmelCase__ : Optional[List[int]] = None lowerCAmelCase__ : Optional[List[int]] = None class UpperCamelCase__ ( __lowerCAmelCase ): lowerCAmelCase__ : List[str] = "train" lowerCAmelCase__ : Optional[Any] = "dev" lowerCAmelCase__ : Optional[int] = "test" class UpperCamelCase__ : @staticmethod def __a ( lowerCamelCase : List[Any] , lowerCamelCase : Union[Split, str] ): '''simple docstring''' raise NotImplementedError @staticmethod def __a ( lowerCamelCase : str ): '''simple docstring''' raise NotImplementedError @staticmethod def __a ( lowerCamelCase : List[InputExample] , lowerCamelCase : List[str] , lowerCamelCase : int , lowerCamelCase : PreTrainedTokenizer , lowerCamelCase : List[str]=False , lowerCamelCase : Dict="[CLS]" , lowerCamelCase : int=1 , lowerCamelCase : int="[SEP]" , lowerCamelCase : str=False , lowerCamelCase : Union[str, Any]=False , lowerCamelCase : Union[str, Any]=0 , lowerCamelCase : Dict=0 , lowerCamelCase : Any=-1_0_0 , lowerCamelCase : Any=0 , lowerCamelCase : List[str]=True , ): '''simple docstring''' a__ = {label: i for i, label in enumerate(lowerCamelCase )} a__ = [] for ex_index, example in enumerate(lowerCamelCase ): if ex_index % 1_0_0_0_0 == 0: logger.info("Writing example %d of %d" , lowerCamelCase , len(lowerCamelCase ) ) a__ = [] a__ = [] for word, label in zip(example.words , example.labels ): a__ = tokenizer.tokenize(lowerCamelCase ) # bert-base-multilingual-cased sometimes output "nothing ([]) when calling tokenize with just a space. if len(lowerCamelCase ) > 0: tokens.extend(lowerCamelCase ) # Use the real label id for the first token of the word, and padding ids for the remaining tokens label_ids.extend([label_map[label]] + [pad_token_label_id] * (len(lowerCamelCase ) - 1) ) # Account for [CLS] and [SEP] with "- 2" and with "- 3" for RoBERTa. a__ = tokenizer.num_special_tokens_to_add() if len(lowerCamelCase ) > max_seq_length - special_tokens_count: a__ = tokens[: (max_seq_length - special_tokens_count)] a__ = label_ids[: (max_seq_length - special_tokens_count)] # The convention in BERT is: # (a) For sequence pairs: # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 # # Where "type_ids" are used to indicate whether this is the first # sequence or the second sequence. The embedding vectors for `type=0` and # `type=1` were learned during pre-training and are added to the wordpiece # embedding vector (and position vector). This is not *strictly* necessary # since the [SEP] token unambiguously separates the sequences, but it makes # it easier for the model to learn the concept of sequences. # # For classification tasks, the first vector (corresponding to [CLS]) is # used as the "sentence vector". Note that this only makes sense because # the entire model is fine-tuned. tokens += [sep_token] label_ids += [pad_token_label_id] if sep_token_extra: # roberta uses an extra separator b/w pairs of sentences tokens += [sep_token] label_ids += [pad_token_label_id] a__ = [sequence_a_segment_id] * len(lowerCamelCase ) if cls_token_at_end: tokens += [cls_token] label_ids += [pad_token_label_id] segment_ids += [cls_token_segment_id] else: a__ = [cls_token] + tokens a__ = [pad_token_label_id] + label_ids a__ = [cls_token_segment_id] + segment_ids a__ = tokenizer.convert_tokens_to_ids(lowerCamelCase ) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. a__ = [1 if mask_padding_with_zero else 0] * len(lowerCamelCase ) # Zero-pad up to the sequence length. a__ = max_seq_length - len(lowerCamelCase ) if pad_on_left: a__ = ([pad_token] * padding_length) + input_ids a__ = ([0 if mask_padding_with_zero else 1] * padding_length) + input_mask a__ = ([pad_token_segment_id] * padding_length) + segment_ids a__ = ([pad_token_label_id] * padding_length) + label_ids else: input_ids += [pad_token] * padding_length input_mask += [0 if mask_padding_with_zero else 1] * padding_length segment_ids += [pad_token_segment_id] * padding_length label_ids += [pad_token_label_id] * padding_length assert len(lowerCamelCase ) == max_seq_length assert len(lowerCamelCase ) == max_seq_length assert len(lowerCamelCase ) == max_seq_length assert len(lowerCamelCase ) == max_seq_length if ex_index < 5: logger.info("*** Example ***" ) logger.info("guid: %s" , example.guid ) logger.info("tokens: %s" , " ".join([str(lowerCamelCase ) for x in tokens] ) ) logger.info("input_ids: %s" , " ".join([str(lowerCamelCase ) for x in input_ids] ) ) logger.info("input_mask: %s" , " ".join([str(lowerCamelCase ) for x in input_mask] ) ) logger.info("segment_ids: %s" , " ".join([str(lowerCamelCase ) for x in segment_ids] ) ) logger.info("label_ids: %s" , " ".join([str(lowerCamelCase ) for x in label_ids] ) ) if "token_type_ids" not in tokenizer.model_input_names: a__ = None features.append( InputFeatures( input_ids=lowerCamelCase , attention_mask=lowerCamelCase , token_type_ids=lowerCamelCase , label_ids=lowerCamelCase ) ) return features if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset class UpperCamelCase__ ( __lowerCAmelCase ): lowerCAmelCase__ : List[InputFeatures] lowerCAmelCase__ : int = nn.CrossEntropyLoss().ignore_index def __init__( self : Dict , lowerCamelCase : TokenClassificationTask , lowerCamelCase : str , lowerCamelCase : PreTrainedTokenizer , lowerCamelCase : List[str] , lowerCamelCase : str , lowerCamelCase : Optional[int] = None , lowerCamelCase : Optional[Any]=False , lowerCamelCase : Split = Split.train , ): '''simple docstring''' # Load data features from cache or dataset file a__ = os.path.join( lowerCamelCase , "cached_{}_{}_{}".format(mode.value , tokenizer.__class__.__name__ , str(lowerCamelCase ) ) , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. a__ = cached_features_file + ".lock" with FileLock(lowerCamelCase ): if os.path.exists(lowerCamelCase ) and not overwrite_cache: logger.info(F'''Loading features from cached file {cached_features_file}''' ) a__ = torch.load(lowerCamelCase ) else: logger.info(F'''Creating features from dataset file at {data_dir}''' ) a__ = token_classification_task.read_examples_from_file(lowerCamelCase , lowerCamelCase ) # TODO clean up all this to leverage built-in features of tokenizers a__ = token_classification_task.convert_examples_to_features( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , cls_token_at_end=bool(model_type in ["xlnet"] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ["xlnet"] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=lowerCamelCase , pad_on_left=bool(tokenizer.padding_side == "left" ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info(F'''Saving features into cached file {cached_features_file}''' ) torch.save(self.features , lowerCamelCase ) def __len__( self : Tuple ): '''simple docstring''' return len(self.features ) def __getitem__( self : Dict , lowerCamelCase : Any ): '''simple docstring''' return self.features[i] if is_tf_available(): import tensorflow as tf class UpperCamelCase__ : lowerCAmelCase__ : List[InputFeatures] lowerCAmelCase__ : int = -100 def __init__( self : Optional[int] , lowerCamelCase : TokenClassificationTask , lowerCamelCase : str , lowerCamelCase : PreTrainedTokenizer , lowerCamelCase : List[str] , lowerCamelCase : str , lowerCamelCase : Optional[int] = None , lowerCamelCase : Tuple=False , lowerCamelCase : Split = Split.train , ): '''simple docstring''' a__ = token_classification_task.read_examples_from_file(lowerCamelCase , lowerCamelCase ) # TODO clean up all this to leverage built-in features of tokenizers a__ = token_classification_task.convert_examples_to_features( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , cls_token_at_end=bool(model_type in ["xlnet"] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ["xlnet"] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=lowerCamelCase , pad_on_left=bool(tokenizer.padding_side == "left" ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) def gen(): for ex in self.features: if ex.token_type_ids is None: yield ( {"input_ids": ex.input_ids, "attention_mask": ex.attention_mask}, ex.label_ids, ) else: yield ( { "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label_ids, ) if "token_type_ids" not in tokenizer.model_input_names: a__ = tf.data.Dataset.from_generator( lowerCamelCase , ({"input_ids": tf.intaa, "attention_mask": tf.intaa}, tf.intaa) , ( {"input_ids": tf.TensorShape([None] ), "attention_mask": tf.TensorShape([None] )}, tf.TensorShape([None] ), ) , ) else: a__ = tf.data.Dataset.from_generator( lowerCamelCase , ({"input_ids": tf.intaa, "attention_mask": tf.intaa, "token_type_ids": tf.intaa}, tf.intaa) , ( { "input_ids": tf.TensorShape([None] ), "attention_mask": tf.TensorShape([None] ), "token_type_ids": tf.TensorShape([None] ), }, tf.TensorShape([None] ), ) , ) def __a ( self : Dict ): '''simple docstring''' a__ = self.dataset.apply(tf.data.experimental.assert_cardinality(len(self.features ) ) ) return self.dataset def __len__( self : Tuple ): '''simple docstring''' return len(self.features ) def __getitem__( self : Dict , lowerCamelCase : Tuple ): '''simple docstring''' return self.features[i]
289
'''simple docstring''' def _lowerCamelCase (__lowerCamelCase : int = 400_0000 ) -> int: a__ = [0, 1] a__ = 0 while fib[i] <= n: fib.append(fib[i] + fib[i + 1] ) if fib[i + 2] > n: break i += 1 a__ = 0 for j in range(len(__lowerCamelCase ) - 1 ): if fib[j] % 2 == 0: total += fib[j] return total if __name__ == "__main__": print(f"""{solution() = }""")
289
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowercase : Optional[Any] = logging.get_logger(__name__) __lowercase : str = { '''facebook/data2vec-vision-base-ft''': ( '''https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json''' ), } class __lowercase ( _lowercase ): lowerCamelCase : Union[str, Any] = "data2vec-vision" def __init__(self , A=7_6_8 , A=1_2 , A=1_2 , A=3_0_7_2 , A="gelu" , A=0.0 , A=0.0 , A=0.02 , A=1E-12 , A=2_2_4 , A=1_6 , A=3 , A=False , A=False , A=False , A=False , A=0.1 , A=0.1 , A=True , A=[3, 5, 7, 1_1] , A=[1, 2, 3, 6] , A=True , A=0.4 , A=2_5_6 , A=1 , A=False , A=2_5_5 , **A , ): super().__init__(**A ) lowerCamelCase_ : Dict = hidden_size lowerCamelCase_ : Union[str, Any] = num_hidden_layers lowerCamelCase_ : Union[str, Any] = num_attention_heads lowerCamelCase_ : Optional[int] = intermediate_size lowerCamelCase_ : Any = hidden_act lowerCamelCase_ : Optional[Any] = hidden_dropout_prob lowerCamelCase_ : Union[str, Any] = attention_probs_dropout_prob lowerCamelCase_ : List[Any] = initializer_range lowerCamelCase_ : Any = layer_norm_eps lowerCamelCase_ : str = image_size lowerCamelCase_ : Optional[Any] = patch_size lowerCamelCase_ : List[str] = num_channels lowerCamelCase_ : Optional[int] = use_mask_token lowerCamelCase_ : Dict = use_absolute_position_embeddings lowerCamelCase_ : List[str] = use_relative_position_bias lowerCamelCase_ : List[Any] = use_shared_relative_position_bias lowerCamelCase_ : List[str] = layer_scale_init_value lowerCamelCase_ : Union[str, Any] = drop_path_rate lowerCamelCase_ : Dict = use_mean_pooling # decode head attributes (semantic segmentation) lowerCamelCase_ : int = out_indices lowerCamelCase_ : List[Any] = pool_scales # auxiliary head attributes (semantic segmentation) lowerCamelCase_ : Tuple = use_auxiliary_head lowerCamelCase_ : Tuple = auxiliary_loss_weight lowerCamelCase_ : Any = auxiliary_channels lowerCamelCase_ : List[Any] = auxiliary_num_convs lowerCamelCase_ : int = auxiliary_concat_input lowerCamelCase_ : List[str] = semantic_loss_ignore_index class __lowercase ( _lowercase ): lowerCamelCase : List[str] = version.parse("1.11" ) @property def UpperCAmelCase__ (self ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def UpperCAmelCase__ (self ): return 1E-4
422
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class __lowercase ( unittest.TestCase ): def __init__(self , A , A=7 , A=3 , A=3_0 , A=4_0_0 , A=True , A=None , A=True , A=[0.5, 0.5, 0.5] , A=[0.5, 0.5, 0.5] , A=True , A=1 / 2_5_5 , A=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p lowerCamelCase_ : int = size if size is not None else {'''shortest_edge''': 1_8, '''longest_edge''': 1_3_3_3} lowerCamelCase_ : Any = parent lowerCamelCase_ : Tuple = batch_size lowerCamelCase_ : Union[str, Any] = num_channels lowerCamelCase_ : List[str] = min_resolution lowerCamelCase_ : List[Any] = max_resolution lowerCamelCase_ : Tuple = do_resize lowerCamelCase_ : Dict = size lowerCamelCase_ : Optional[int] = do_normalize lowerCamelCase_ : Union[str, Any] = image_mean lowerCamelCase_ : str = image_std lowerCamelCase_ : List[Any] = do_rescale lowerCamelCase_ : str = rescale_factor lowerCamelCase_ : Optional[int] = do_pad def UpperCAmelCase__ (self ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def UpperCAmelCase__ (self , A , A=False ): if not batched: lowerCamelCase_ : Any = image_inputs[0] if isinstance(A , Image.Image ): lowerCamelCase_, lowerCamelCase_ : int = image.size else: lowerCamelCase_, lowerCamelCase_ : Any = image.shape[1], image.shape[2] if w < h: lowerCamelCase_ : str = int(self.size['''shortest_edge'''] * h / w ) lowerCamelCase_ : Optional[Any] = self.size['''shortest_edge'''] elif w > h: lowerCamelCase_ : Union[str, Any] = self.size['''shortest_edge'''] lowerCamelCase_ : Any = int(self.size['''shortest_edge'''] * w / h ) else: lowerCamelCase_ : Any = self.size['''shortest_edge'''] lowerCamelCase_ : Tuple = self.size['''shortest_edge'''] else: lowerCamelCase_ : Optional[Any] = [] for image in image_inputs: lowerCamelCase_, lowerCamelCase_ : Dict = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowerCamelCase_ : Dict = max(A , key=lambda A : item[0] )[0] lowerCamelCase_ : int = max(A , key=lambda A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class __lowercase ( _lowercase , unittest.TestCase ): lowerCamelCase : Any = DetaImageProcessor if is_vision_available() else None def UpperCAmelCase__ (self ): lowerCamelCase_ : Union[str, Any] = DetaImageProcessingTester(self ) @property def UpperCAmelCase__ (self ): return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase__ (self ): lowerCamelCase_ : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A , '''image_mean''' ) ) self.assertTrue(hasattr(A , '''image_std''' ) ) self.assertTrue(hasattr(A , '''do_normalize''' ) ) self.assertTrue(hasattr(A , '''do_resize''' ) ) self.assertTrue(hasattr(A , '''do_rescale''' ) ) self.assertTrue(hasattr(A , '''do_pad''' ) ) self.assertTrue(hasattr(A , '''size''' ) ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 1_8, '''longest_edge''': 1_3_3_3} ) self.assertEqual(image_processor.do_pad , A ) def UpperCAmelCase__ (self ): pass def UpperCAmelCase__ (self ): # Initialize image_processing lowerCamelCase_ : int = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCamelCase_ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=A ) for image in image_inputs: self.assertIsInstance(A , Image.Image ) # Test not batched input lowerCamelCase_ : Dict = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values lowerCamelCase_, lowerCamelCase_ : Optional[Any] = self.image_processor_tester.get_expected_values(A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCamelCase_, lowerCamelCase_ : Any = self.image_processor_tester.get_expected_values(A , batched=A ) lowerCamelCase_ : Tuple = image_processing(A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase__ (self ): # Initialize image_processing lowerCamelCase_ : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCamelCase_ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , numpify=A ) for image in image_inputs: self.assertIsInstance(A , np.ndarray ) # Test not batched input lowerCamelCase_ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values lowerCamelCase_, lowerCamelCase_ : Union[str, Any] = self.image_processor_tester.get_expected_values(A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCamelCase_ : List[str] = image_processing(A , return_tensors='''pt''' ).pixel_values lowerCamelCase_, lowerCamelCase_ : Dict = self.image_processor_tester.get_expected_values(A , batched=A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase__ (self ): # Initialize image_processing lowerCamelCase_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCamelCase_ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , torchify=A ) for image in image_inputs: self.assertIsInstance(A , torch.Tensor ) # Test not batched input lowerCamelCase_ : List[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values lowerCamelCase_, lowerCamelCase_ : Any = self.image_processor_tester.get_expected_values(A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCamelCase_ : Optional[Any] = image_processing(A , return_tensors='''pt''' ).pixel_values lowerCamelCase_, lowerCamelCase_ : List[Any] = self.image_processor_tester.get_expected_values(A , batched=A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def UpperCAmelCase__ (self ): # prepare image and target lowerCamelCase_ : Any = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: lowerCamelCase_ : Any = json.loads(f.read() ) lowerCamelCase_ : str = {'''image_id''': 3_9_7_6_9, '''annotations''': target} # encode them lowerCamelCase_ : Optional[Any] = DetaImageProcessor() lowerCamelCase_ : Optional[int] = image_processing(images=A , annotations=A , return_tensors='''pt''' ) # verify pixel values lowerCamelCase_ : Dict = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding['''pixel_values'''].shape , A ) lowerCamelCase_ : Dict = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , A , atol=1E-4 ) ) # verify area lowerCamelCase_ : Dict = torch.tensor([58_87.96_00, 1_12_50.20_61, 48_93_53.84_38, 83_71_22.75_00, 14_79_67.51_56, 16_57_32.34_38] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , A ) ) # verify boxes lowerCamelCase_ : Optional[Any] = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , A ) lowerCamelCase_ : int = torch.tensor([0.55_03, 0.27_65, 0.06_04, 0.22_15] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , A , atol=1E-3 ) ) # verify image_id lowerCamelCase_ : int = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , A ) ) # verify is_crowd lowerCamelCase_ : Tuple = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , A ) ) # verify class_labels lowerCamelCase_ : List[str] = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , A ) ) # verify orig_size lowerCamelCase_ : Optional[int] = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , A ) ) # verify size lowerCamelCase_ : List[str] = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , A ) ) @slow def UpperCAmelCase__ (self ): # prepare image, target and masks_path lowerCamelCase_ : Union[str, Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: lowerCamelCase_ : Tuple = json.loads(f.read() ) lowerCamelCase_ : Tuple = {'''file_name''': '''000000039769.png''', '''image_id''': 3_9_7_6_9, '''segments_info''': target} lowerCamelCase_ : List[str] = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them lowerCamelCase_ : Any = DetaImageProcessor(format='''coco_panoptic''' ) lowerCamelCase_ : Dict = image_processing(images=A , annotations=A , masks_path=A , return_tensors='''pt''' ) # verify pixel values lowerCamelCase_ : Dict = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding['''pixel_values'''].shape , A ) lowerCamelCase_ : Dict = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , A , atol=1E-4 ) ) # verify area lowerCamelCase_ : Tuple = torch.tensor([14_79_79.68_75, 16_55_27.04_69, 48_46_38.59_38, 1_12_92.93_75, 58_79.65_62, 76_34.11_47] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , A ) ) # verify boxes lowerCamelCase_ : List[Any] = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , A ) lowerCamelCase_ : int = torch.tensor([0.26_25, 0.54_37, 0.46_88, 0.86_25] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , A , atol=1E-3 ) ) # verify image_id lowerCamelCase_ : Union[str, Any] = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , A ) ) # verify is_crowd lowerCamelCase_ : Optional[Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , A ) ) # verify class_labels lowerCamelCase_ : Dict = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , A ) ) # verify masks lowerCamelCase_ : Tuple = 8_2_2_8_7_3 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , A ) # verify orig_size lowerCamelCase_ : Any = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , A ) ) # verify size lowerCamelCase_ : Tuple = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , A ) )
422
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) a_ : int = {"configuration_vit": ["VIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTConfig", "ViTOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : List[Any] = ["ViTFeatureExtractor"] a_ : Optional[int] = ["ViTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Optional[int] = [ "VIT_PRETRAINED_MODEL_ARCHIVE_LIST", "ViTForImageClassification", "ViTForMaskedImageModeling", "ViTModel", "ViTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Any = [ "TFViTForImageClassification", "TFViTModel", "TFViTPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Dict = [ "FlaxViTForImageClassification", "FlaxViTModel", "FlaxViTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys a_ : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
711
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING import torch from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class a ( _SCREAMING_SNAKE_CASE ): _lowerCAmelCase = """dandelin/vilt-b32-finetuned-vqa""" _lowerCAmelCase = ( """This is a tool that answers a question about an image. It takes an input named `image` which should be the """ """image containing the information, as well as a `question` which should be the question in English. It """ """returns a text that is the answer to the question.""" ) _lowerCAmelCase = """image_qa""" _lowerCAmelCase = AutoProcessor _lowerCAmelCase = AutoModelForVisualQuestionAnswering _lowerCAmelCase = ["""image""", """text"""] _lowerCAmelCase = ["""text"""] def __init__( self , *__magic_name__ , **__magic_name__ ) -> Tuple: requires_backends(self , ['vision'] ) super().__init__(*__magic_name__ , **__magic_name__ ) def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ ) -> Tuple: return self.pre_processor(__magic_name__ , __magic_name__ , return_tensors='pt' ) def __UpperCAmelCase ( self , __magic_name__ ) -> Any: with torch.no_grad(): return self.model(**__magic_name__ ).logits def __UpperCAmelCase ( self , __magic_name__ ) -> Optional[int]: _a = outputs.argmax(-1 ).item() return self.model.config.idalabel[idx]
532
0
from __future__ import annotations class SCREAMING_SNAKE_CASE_ : def __init__( self : Optional[Any] , lowerCamelCase_ : int ): """simple docstring""" UpperCamelCase = data UpperCamelCase = None UpperCamelCase = None def lowercase( UpperCamelCase_ ) -> None: # In Order traversal of the tree '''simple docstring''' if tree: display(tree.left ) print(tree.data ) display(tree.right ) def lowercase( UpperCamelCase_ ) -> int: '''simple docstring''' return 1 + max(depth_of_tree(tree.left ) , depth_of_tree(tree.right ) ) if tree else 0 def lowercase( UpperCamelCase_ ) -> bool: '''simple docstring''' if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right ) else: return not tree.left and not tree.right def lowercase( ) -> None: # Main function for testing. '''simple docstring''' UpperCamelCase = Node(1 ) UpperCamelCase = Node(2 ) UpperCamelCase = Node(3 ) UpperCamelCase = Node(4 ) UpperCamelCase = Node(5 ) UpperCamelCase = Node(6 ) UpperCamelCase = Node(7 ) UpperCamelCase = Node(8 ) UpperCamelCase = Node(9 ) print(is_full_binary_tree(UpperCamelCase_ ) ) print(depth_of_tree(UpperCamelCase_ ) ) print("""Tree is: """ ) display(UpperCamelCase_ ) if __name__ == "__main__": main()
537
import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : Tuple ): """simple docstring""" UpperCamelCase = 3 UpperCamelCase = 250 UpperCamelCase = ids_tensor((batch_size, length) , lowerCamelCase_ ) UpperCamelCase = torch.ones((batch_size, length) , device=lowerCamelCase_ , dtype=torch.float ) / length return input_ids, scores def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase , UpperCamelCase = self._get_tensors(5 ) UpperCamelCase = StoppingCriteriaList( [ MaxLengthCriteria(max_length=10 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(lowerCamelCase_ , lowerCamelCase_ ) ) UpperCamelCase , UpperCamelCase = self._get_tensors(9 ) self.assertFalse(criteria(lowerCamelCase_ , lowerCamelCase_ ) ) UpperCamelCase , UpperCamelCase = self._get_tensors(10 ) self.assertTrue(criteria(lowerCamelCase_ , lowerCamelCase_ ) ) def lowerCamelCase_ ( self : str ): """simple docstring""" UpperCamelCase = MaxLengthCriteria(max_length=10 ) UpperCamelCase , UpperCamelCase = self._get_tensors(5 ) self.assertFalse(criteria(lowerCamelCase_ , lowerCamelCase_ ) ) UpperCamelCase , UpperCamelCase = self._get_tensors(9 ) self.assertFalse(criteria(lowerCamelCase_ , lowerCamelCase_ ) ) UpperCamelCase , UpperCamelCase = self._get_tensors(10 ) self.assertTrue(criteria(lowerCamelCase_ , lowerCamelCase_ ) ) def lowerCamelCase_ ( self : str ): """simple docstring""" UpperCamelCase = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) UpperCamelCase , UpperCamelCase = self._get_tensors(5 ) self.assertFalse(criteria(lowerCamelCase_ , lowerCamelCase_ ) ) UpperCamelCase , UpperCamelCase = self._get_tensors(9 ) self.assertFalse(criteria(lowerCamelCase_ , lowerCamelCase_ ) ) UpperCamelCase , UpperCamelCase = self._get_tensors(10 ) self.assertTrue(criteria(lowerCamelCase_ , lowerCamelCase_ ) ) UpperCamelCase = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 10 ) def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase , UpperCamelCase = self._get_tensors(5 ) UpperCamelCase = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(lowerCamelCase_ , lowerCamelCase_ ) ) UpperCamelCase = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(lowerCamelCase_ , lowerCamelCase_ ) ) def lowerCamelCase_ ( self : str ): """simple docstring""" validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 ) with self.assertWarns(lowerCamelCase_ ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 ) UpperCamelCase = validate_stopping_criteria(StoppingCriteriaList() , 11 ) self.assertEqual(len(lowerCamelCase_ ) , 1 )
537
1
import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel _snake_case : Any = { 'text_branch': 'text_model', 'audio_branch': 'audio_model.audio_encoder', 'attn': 'attention.self', 'self.proj': 'output.dense', 'attention.self_mask': 'attn_mask', 'mlp.fc1': 'intermediate.dense', 'mlp.fc2': 'output.dense', 'norm1': 'layernorm_before', 'norm2': 'layernorm_after', 'bn0': 'batch_norm', } _snake_case : Any = AutoFeatureExtractor.from_pretrained('laion/clap-htsat-unfused', truncation='rand_trunc') def _A ( __snake_case :Tuple , __snake_case :str=False ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = create_model( "HTSAT-tiny" , "roberta" , __snake_case , precision="fp32" , device="cuda:0" if torch.cuda.is_available() else "cpu" , enable_fusion=__snake_case , fusion_type="aff_2d" if enable_fusion else None , ) return model, model_cfg def _A ( __snake_case :Any ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = R".*sequential.(\d+).*" __SCREAMING_SNAKE_CASE = R".*_projection.(\d+).*" for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: __SCREAMING_SNAKE_CASE = key.replace(__snake_case , __snake_case ) if re.match(__snake_case , __snake_case ): # replace sequential layers with list __SCREAMING_SNAKE_CASE = re.match(__snake_case , __snake_case ).group(1 ) __SCREAMING_SNAKE_CASE = key.replace(f'''sequential.{sequential_layer}.''' , f'''layers.{int(__snake_case )//3}.linear.''' ) elif re.match(__snake_case , __snake_case ): __SCREAMING_SNAKE_CASE = int(re.match(__snake_case , __snake_case ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... __SCREAMING_SNAKE_CASE = 1 if projecton_layer == 0 else 2 __SCREAMING_SNAKE_CASE = key.replace(f'''_projection.{projecton_layer}.''' , f'''_projection.linear{transformers_projection_layer}.''' ) if "audio" and "qkv" in key: # split qkv into query key and value __SCREAMING_SNAKE_CASE = value __SCREAMING_SNAKE_CASE = mixed_qkv.size(0 ) // 3 __SCREAMING_SNAKE_CASE = mixed_qkv[:qkv_dim] __SCREAMING_SNAKE_CASE = mixed_qkv[qkv_dim : qkv_dim * 2] __SCREAMING_SNAKE_CASE = mixed_qkv[qkv_dim * 2 :] __SCREAMING_SNAKE_CASE = query_layer __SCREAMING_SNAKE_CASE = key_layer __SCREAMING_SNAKE_CASE = value_layer else: __SCREAMING_SNAKE_CASE = value return model_state_dict def _A ( __snake_case :str , __snake_case :Optional[int] , __snake_case :int , __snake_case :str=False ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = init_clap(__snake_case , enable_fusion=__snake_case ) clap_model.eval() __SCREAMING_SNAKE_CASE = clap_model.state_dict() __SCREAMING_SNAKE_CASE = rename_state_dict(__snake_case ) __SCREAMING_SNAKE_CASE = ClapConfig() __SCREAMING_SNAKE_CASE = enable_fusion __SCREAMING_SNAKE_CASE = ClapModel(__snake_case ) # ignore the spectrogram embedding layer model.load_state_dict(__snake_case , strict=__snake_case ) model.save_pretrained(__snake_case ) transformers_config.save_pretrained(__snake_case ) if __name__ == "__main__": _snake_case : Optional[Any] = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument('--enable_fusion', action='store_true', help='Whether to enable fusion or not') _snake_case : List[str] = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
214
from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class __SCREAMING_SNAKE_CASE : SCREAMING_SNAKE_CASE__ =LEDConfig SCREAMING_SNAKE_CASE__ ={} SCREAMING_SNAKE_CASE__ ="""gelu""" def __init__( self, _a, _a=13, _a=7, _a=True, _a=False, _a=99, _a=32, _a=2, _a=4, _a=37, _a=0.1, _a=0.1, _a=20, _a=2, _a=1, _a=0, _a=4, ) -> Optional[int]: __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = seq_length __SCREAMING_SNAKE_CASE = is_training __SCREAMING_SNAKE_CASE = use_labels __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = eos_token_id __SCREAMING_SNAKE_CASE = pad_token_id __SCREAMING_SNAKE_CASE = bos_token_id __SCREAMING_SNAKE_CASE = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after __SCREAMING_SNAKE_CASE = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests __SCREAMING_SNAKE_CASE = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def __lowerCAmelCase ( self ) -> List[str]: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length - 1], self.vocab_size ) __SCREAMING_SNAKE_CASE = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ), 1 ) __SCREAMING_SNAKE_CASE = tf.concat([input_ids, eos_tensor], axis=1 ) __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) __SCREAMING_SNAKE_CASE = self.config_cls( vocab_size=self.vocab_size, d_model=self.hidden_size, encoder_layers=self.num_hidden_layers, decoder_layers=self.num_hidden_layers, encoder_attention_heads=self.num_attention_heads, decoder_attention_heads=self.num_attention_heads, encoder_ffn_dim=self.intermediate_size, decoder_ffn_dim=self.intermediate_size, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, eos_token_ids=[2], bos_token_id=self.bos_token_id, pad_token_id=self.pad_token_id, decoder_start_token_id=self.pad_token_id, attention_window=self.attention_window, **self.config_updates, ) __SCREAMING_SNAKE_CASE = prepare_led_inputs_dict(_a, _a, _a ) __SCREAMING_SNAKE_CASE = tf.concat( [tf.zeros_like(_a )[:, :-1], tf.ones_like(_a )[:, -1:]], axis=-1, ) __SCREAMING_SNAKE_CASE = global_attention_mask return config, inputs_dict def __lowerCAmelCase ( self, _a, _a ) -> List[str]: __SCREAMING_SNAKE_CASE = TFLEDModel(config=_a ).get_decoder() __SCREAMING_SNAKE_CASE = inputs_dict["input_ids"] __SCREAMING_SNAKE_CASE = input_ids[:1, :] __SCREAMING_SNAKE_CASE = inputs_dict["attention_mask"][:1, :] __SCREAMING_SNAKE_CASE = 1 # first forward pass __SCREAMING_SNAKE_CASE = model(_a, attention_mask=_a, use_cache=_a ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __SCREAMING_SNAKE_CASE = ids_tensor((self.batch_size, 3), config.vocab_size ) __SCREAMING_SNAKE_CASE = tf.cast(ids_tensor((self.batch_size, 3), 2 ), tf.inta ) # append to next input_ids and __SCREAMING_SNAKE_CASE = tf.concat([input_ids, next_tokens], axis=-1 ) __SCREAMING_SNAKE_CASE = tf.concat([attention_mask, next_attn_mask], axis=-1 ) __SCREAMING_SNAKE_CASE = model(_a, attention_mask=_a )[0] __SCREAMING_SNAKE_CASE = model(_a, attention_mask=_a, past_key_values=_a )[0] self.parent.assertEqual(next_tokens.shape[1], output_from_past.shape[1] ) # select random slice __SCREAMING_SNAKE_CASE = int(ids_tensor((1,), output_from_past.shape[-1] ) ) __SCREAMING_SNAKE_CASE = output_from_no_past[:, -3:, random_slice_idx] __SCREAMING_SNAKE_CASE = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(_a, _a, rtol=1E-3 ) def _A ( __snake_case :Any , __snake_case :Dict , __snake_case :List[Any] , __snake_case :List[Any]=None , __snake_case :Optional[Any]=None , __snake_case :Any=None , __snake_case :List[str]=None , ) -> List[str]: """simple docstring""" if attention_mask is None: __SCREAMING_SNAKE_CASE = tf.cast(tf.math.not_equal(__snake_case , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: __SCREAMING_SNAKE_CASE = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: __SCREAMING_SNAKE_CASE = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __SCREAMING_SNAKE_CASE = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class __SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): SCREAMING_SNAKE_CASE__ =(TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () SCREAMING_SNAKE_CASE__ =(TFLEDForConditionalGeneration,) if is_tf_available() else () SCREAMING_SNAKE_CASE__ =( { """conversational""": TFLEDForConditionalGeneration, """feature-extraction""": TFLEDModel, """summarization""": TFLEDForConditionalGeneration, """text2text-generation""": TFLEDForConditionalGeneration, """translation""": TFLEDForConditionalGeneration, } if is_tf_available() else {} ) SCREAMING_SNAKE_CASE__ =True SCREAMING_SNAKE_CASE__ =False SCREAMING_SNAKE_CASE__ =False SCREAMING_SNAKE_CASE__ =False def __lowerCAmelCase ( self ) -> Optional[Any]: __SCREAMING_SNAKE_CASE = TFLEDModelTester(self ) __SCREAMING_SNAKE_CASE = ConfigTester(self, config_class=_a ) def __lowerCAmelCase ( self ) -> Any: self.config_tester.run_common_tests() def __lowerCAmelCase ( self ) -> Any: __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_a ) def __lowerCAmelCase ( self ) -> List[str]: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() __SCREAMING_SNAKE_CASE = tf.zeros_like(inputs_dict["attention_mask"] ) __SCREAMING_SNAKE_CASE = 2 __SCREAMING_SNAKE_CASE = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices, 1, inputs_dict["global_attention_mask"], ) __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = self.model_tester.seq_length __SCREAMING_SNAKE_CASE = self.model_tester.encoder_seq_length def check_decoder_attentions_output(_a ): __SCREAMING_SNAKE_CASE = outputs.decoder_attentions self.assertEqual(len(_a ), self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ), [self.model_tester.num_attention_heads, seq_length, seq_length], ) def check_encoder_attentions_output(_a ): __SCREAMING_SNAKE_CASE = [t.numpy() for t in outputs.encoder_attentions] __SCREAMING_SNAKE_CASE = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(_a ), self.model_tester.num_hidden_layers ) self.assertEqual(len(_a ), self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ), [self.model_tester.num_attention_heads, seq_length, seq_length], ) self.assertListEqual( list(global_attentions[0].shape[-3:] ), [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices], ) for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = model_class(_a ) __SCREAMING_SNAKE_CASE = model(self._prepare_for_class(_a, _a ) ) __SCREAMING_SNAKE_CASE = len(_a ) self.assertEqual(config.output_hidden_states, _a ) check_encoder_attentions_output(_a ) if self.is_encoder_decoder: __SCREAMING_SNAKE_CASE = model_class(_a ) __SCREAMING_SNAKE_CASE = model(self._prepare_for_class(_a, _a ) ) self.assertEqual(config.output_hidden_states, _a ) check_decoder_attentions_output(_a ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = model_class(_a ) __SCREAMING_SNAKE_CASE = model(self._prepare_for_class(_a, _a ) ) self.assertEqual(config.output_hidden_states, _a ) check_encoder_attentions_output(_a ) # Check attention is always last and order is fine __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = model_class(_a ) __SCREAMING_SNAKE_CASE = model(self._prepare_for_class(_a, _a ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1), len(_a ) ) self.assertEqual(model.config.output_hidden_states, _a ) check_encoder_attentions_output(_a ) @unittest.skip("LED keeps using potentially symbolic tensors in conditionals and breaks tracing." ) def __lowerCAmelCase ( self ) -> Tuple: pass def __lowerCAmelCase ( self ) -> Optional[int]: # TODO: Head-masking not yet implement pass def _A ( __snake_case :Optional[int] ) -> List[Any]: """simple docstring""" return tf.constant(__snake_case , dtype=tf.intaa ) _snake_case : int = 1e-4 @slow @require_tf class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __lowerCAmelCase ( self ) -> List[Any]: __SCREAMING_SNAKE_CASE = TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384" ).led # change to intended input here __SCREAMING_SNAKE_CASE = _long_tensor([5_12 * [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69]] ) __SCREAMING_SNAKE_CASE = _long_tensor([1_28 * [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69]] ) __SCREAMING_SNAKE_CASE = prepare_led_inputs_dict(model.config, _a, _a ) __SCREAMING_SNAKE_CASE = model(**_a )[0] __SCREAMING_SNAKE_CASE = (1, 10_24, 7_68) self.assertEqual(output.shape, _a ) # change to expected output here __SCREAMING_SNAKE_CASE = tf.convert_to_tensor( [[2.3050, 2.8279, 0.6531], [-1.8457, -0.1455, -3.5661], [-1.0186, 0.4586, -2.2043]], ) tf.debugging.assert_near(output[:, :3, :3], _a, atol=1E-3 ) def __lowerCAmelCase ( self ) -> List[str]: __SCREAMING_SNAKE_CASE = TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384" ) # change to intended input here __SCREAMING_SNAKE_CASE = _long_tensor([5_12 * [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69]] ) __SCREAMING_SNAKE_CASE = _long_tensor([1_28 * [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69]] ) __SCREAMING_SNAKE_CASE = prepare_led_inputs_dict(model.config, _a, _a ) __SCREAMING_SNAKE_CASE = model(**_a )[0] __SCREAMING_SNAKE_CASE = (1, 10_24, model.config.vocab_size) self.assertEqual(output.shape, _a ) # change to expected output here __SCREAMING_SNAKE_CASE = tf.convert_to_tensor( [[33.6507, 6.4572, 16.8089], [5.8739, -2.4238, 11.2902], [-3.2139, -4.3149, 4.2783]], ) tf.debugging.assert_near(output[:, :3, :3], _a, atol=1E-3, rtol=1E-3 )
214
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { 'weiweishi/roc-bert-base-zh': 'https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json', } class UpperCAmelCase__ ( __lowerCamelCase ): """simple docstring""" lowerCAmelCase__ : List[Any] = """roc_bert""" def __init__( self , _SCREAMING_SNAKE_CASE=3_0_5_2_2 , _SCREAMING_SNAKE_CASE=7_6_8 , _SCREAMING_SNAKE_CASE=1_2 , _SCREAMING_SNAKE_CASE=1_2 , _SCREAMING_SNAKE_CASE=3_0_7_2 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=5_1_2 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.0_2 , _SCREAMING_SNAKE_CASE=1E-12 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE="absolute" , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=7_6_8 , _SCREAMING_SNAKE_CASE=9_1_0 , _SCREAMING_SNAKE_CASE=5_1_2 , _SCREAMING_SNAKE_CASE=2_4_8_5_8 , _SCREAMING_SNAKE_CASE=True , **_SCREAMING_SNAKE_CASE , ) -> List[Any]: a_ : Optional[int] = vocab_size a_ : str = max_position_embeddings a_ : List[Any] = hidden_size a_ : Optional[Any] = num_hidden_layers a_ : Union[str, Any] = num_attention_heads a_ : List[str] = intermediate_size a_ : List[Any] = hidden_act a_ : str = hidden_dropout_prob a_ : Union[str, Any] = attention_probs_dropout_prob a_ : Any = initializer_range a_ : str = type_vocab_size a_ : Union[str, Any] = layer_norm_eps a_ : str = use_cache a_ : Tuple = enable_pronunciation a_ : Dict = enable_shape a_ : int = pronunciation_embed_dim a_ : List[Any] = pronunciation_vocab_size a_ : int = shape_embed_dim a_ : List[str] = shape_vocab_size a_ : List[Any] = concat_input a_ : List[str] = position_embedding_type a_ : Any = classifier_dropout super().__init__(pad_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
473
"""simple docstring""" UpperCamelCase = '0.18.2' from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
473
1
"""simple docstring""" # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. _A = abspath(join(dirname(dirname(dirname(__file__))), 'src')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='ignore', category=FutureWarning) def UpperCAmelCase ( a_ ): '''simple docstring''' from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(a_ ) def UpperCAmelCase ( a_ ): '''simple docstring''' from transformers.testing_utils import pytest_terminal_summary_main lowerCamelCase : int = terminalreporter.config.getoption('--make-reports' ) if make_reports: pytest_terminal_summary_main(a_, id=a_ )
133
"""simple docstring""" import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def UpperCAmelCase ( ): '''simple docstring''' raise RuntimeError('CUDA out of memory.' ) class _lowercase ( nn.Module ): def __init__( self ) -> Optional[Any]: super().__init__() lowerCamelCase : Dict = nn.Linear(3 , 4 ) lowerCamelCase : Optional[int] = nn.BatchNormad(4 ) lowerCamelCase : List[str] = nn.Linear(4 , 5 ) def _UpperCamelCase ( self , UpperCAmelCase_ ) -> Dict: return self.lineara(self.batchnorm(self.lineara(UpperCAmelCase_ ) ) ) class _lowercase ( unittest.TestCase ): def _UpperCamelCase ( self ) -> Dict: lowerCamelCase : Union[str, Any] = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(UpperCAmelCase_ ): nonlocal batch_sizes batch_sizes.append(UpperCAmelCase_ ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(UpperCAmelCase_ , [128, 64, 32, 16, 8] ) def _UpperCamelCase ( self ) -> Any: lowerCamelCase : Optional[Any] = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(UpperCAmelCase_ , UpperCAmelCase_ ): nonlocal batch_sizes batch_sizes.append(UpperCAmelCase_ ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga lowerCamelCase , lowerCamelCase : List[str] = mock_training_loop_function('hello' ) self.assertListEqual(UpperCAmelCase_ , [128, 64, 32, 16, 8] ) self.assertListEqual([bs, arga] , [8, 'hello'] ) def _UpperCamelCase ( self ) -> List[str]: @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(UpperCAmelCase_ ): pass with self.assertRaises(UpperCAmelCase_ ) as cm: mock_training_loop_function() self.assertIn('No executable batch size found, reached zero.' , cm.exception.args[0] ) def _UpperCamelCase ( self ) -> List[str]: @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(UpperCAmelCase_ ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(UpperCAmelCase_ ) as cm: mock_training_loop_function() self.assertIn('No executable batch size found, reached zero.' , cm.exception.args[0] ) def _UpperCamelCase ( self ) -> Any: @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(UpperCAmelCase_ ) as cm: mock_training_loop_function(128 , 'hello' , 'world' ) self.assertIn('Batch size was passed into `f`' , cm.exception.args[0] ) self.assertIn('`f(arg1=\'hello\', arg2=\'world\')' , cm.exception.args[0] ) def _UpperCamelCase ( self ) -> List[str]: @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(UpperCAmelCase_ ): raise ValueError('Oops, we had an error!' ) with self.assertRaises(UpperCAmelCase_ ) as cm: mock_training_loop_function() self.assertIn('Oops, we had an error!' , cm.exception.args[0] ) @require_cuda def _UpperCamelCase ( self ) -> Union[str, Any]: lowerCamelCase : List[str] = torch.cuda.memory_allocated() lowerCamelCase : Optional[int] = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , UpperCAmelCase_ ) lowerCamelCase : Tuple = release_memory(UpperCAmelCase_ ) self.assertEqual(torch.cuda.memory_allocated() , UpperCAmelCase_ )
133
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { """andreasmadsen/efficient_mlm_m0.40""": ( """https://huggingface.co/andreasmadsen/efficient_mlm_m0.40/resolve/main/config.json""" ), } class UpperCAmelCase__ ( snake_case ): """simple docstring""" lowerCAmelCase__ : Tuple = 'roberta-prelayernorm' def __init__( self: int , __lowerCAmelCase: List[Any]=50_265 , __lowerCAmelCase: Optional[int]=768 , __lowerCAmelCase: Tuple=12 , __lowerCAmelCase: List[str]=12 , __lowerCAmelCase: int=3_072 , __lowerCAmelCase: Tuple="gelu" , __lowerCAmelCase: str=0.1 , __lowerCAmelCase: List[Any]=0.1 , __lowerCAmelCase: Dict=512 , __lowerCAmelCase: Any=2 , __lowerCAmelCase: int=0.02 , __lowerCAmelCase: Dict=1E-12 , __lowerCAmelCase: List[Any]=1 , __lowerCAmelCase: Any=0 , __lowerCAmelCase: List[str]=2 , __lowerCAmelCase: Optional[int]="absolute" , __lowerCAmelCase: List[Any]=True , __lowerCAmelCase: List[Any]=None , **__lowerCAmelCase: List[str] , ) -> Tuple: '''simple docstring''' super().__init__(pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , **__lowerCAmelCase ) __UpperCAmelCase = vocab_size __UpperCAmelCase = hidden_size __UpperCAmelCase = num_hidden_layers __UpperCAmelCase = num_attention_heads __UpperCAmelCase = hidden_act __UpperCAmelCase = intermediate_size __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = max_position_embeddings __UpperCAmelCase = type_vocab_size __UpperCAmelCase = initializer_range __UpperCAmelCase = layer_norm_eps __UpperCAmelCase = position_embedding_type __UpperCAmelCase = use_cache __UpperCAmelCase = classifier_dropout class UpperCAmelCase__ ( snake_case ): """simple docstring""" @property def _UpperCAmelCase ( self: List[Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": __UpperCAmelCase = {0: "batch", 1: "choice", 2: "sequence"} else: __UpperCAmelCase = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
221
from statistics import mean, stdev def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: list , SCREAMING_SNAKE_CASE_: int = 3 ) -> list: '''simple docstring''' A__ = min(SCREAMING_SNAKE_CASE_ ) A__ = max(SCREAMING_SNAKE_CASE_ ) # normalize data return [round((x - x_min) / (x_max - x_min) , SCREAMING_SNAKE_CASE_ ) for x in data] def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: list , SCREAMING_SNAKE_CASE_: int = 3 ) -> list: '''simple docstring''' A__ = mean(SCREAMING_SNAKE_CASE_ ) A__ = stdev(SCREAMING_SNAKE_CASE_ ) # standardize data return [round((x - mu) / (sigma) , SCREAMING_SNAKE_CASE_ ) for x in data]
514
0
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase__ : Tuple = logging.get_logger(__name__) def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" A_ : Union[str, Any] = OrderedDict() for key, value in state_dict.items(): if key.startswith("""module.encoder""" ): A_ : Dict = key.replace("""module.encoder""" , """glpn.encoder""" ) if key.startswith("""module.decoder""" ): A_ : Dict = key.replace("""module.decoder""" , """decoder.stages""" ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 A_ : Optional[int] = key[key.find("""patch_embed""" ) + len("""patch_embed""" )] A_ : Union[str, Any] = key.replace(F"patch_embed{idx}" , F"patch_embeddings.{int(a_ )-1}" ) if "norm" in key: A_ : Dict = key.replace("""norm""" , """layer_norm""" ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 A_ : Dict = key[key.find("""glpn.encoder.layer_norm""" ) + len("""glpn.encoder.layer_norm""" )] A_ : Dict = key.replace(F"layer_norm{idx}" , F"layer_norm.{int(a_ )-1}" ) if "layer_norm1" in key: A_ : List[str] = key.replace("""layer_norm1""" , """layer_norm_1""" ) if "layer_norm2" in key: A_ : Optional[Any] = key.replace("""layer_norm2""" , """layer_norm_2""" ) if "block" in key: # replace for example block1 by block.0 A_ : int = key[key.find("""block""" ) + len("""block""" )] A_ : Optional[int] = key.replace(F"block{idx}" , F"block.{int(a_ )-1}" ) if "attn.q" in key: A_ : Tuple = key.replace("""attn.q""" , """attention.self.query""" ) if "attn.proj" in key: A_ : List[Any] = key.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in key: A_ : Union[str, Any] = key.replace("""attn""" , """attention.self""" ) if "fc1" in key: A_ : Tuple = key.replace("""fc1""" , """dense1""" ) if "fc2" in key: A_ : Tuple = key.replace("""fc2""" , """dense2""" ) if "linear_pred" in key: A_ : Dict = key.replace("""linear_pred""" , """classifier""" ) if "linear_fuse" in key: A_ : int = key.replace("""linear_fuse.conv""" , """linear_fuse""" ) A_ : str = key.replace("""linear_fuse.bn""" , """batch_norm""" ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 A_ : List[Any] = key[key.find("""linear_c""" ) + len("""linear_c""" )] A_ : int = key.replace(F"linear_c{idx}" , F"linear_c.{int(a_ )-1}" ) if "bot_conv" in key: A_ : Any = key.replace("""bot_conv""" , """0.convolution""" ) if "skip_conv1" in key: A_ : Union[str, Any] = key.replace("""skip_conv1""" , """1.convolution""" ) if "skip_conv2" in key: A_ : Tuple = key.replace("""skip_conv2""" , """2.convolution""" ) if "fusion1" in key: A_ : str = key.replace("""fusion1""" , """1.fusion""" ) if "fusion2" in key: A_ : Tuple = key.replace("""fusion2""" , """2.fusion""" ) if "fusion3" in key: A_ : Optional[Any] = key.replace("""fusion3""" , """3.fusion""" ) if "fusion" in key and "conv" in key: A_ : List[str] = key.replace("""conv""" , """convolutional_layer""" ) if key.startswith("""module.last_layer_depth""" ): A_ : Union[str, Any] = key.replace("""module.last_layer_depth""" , """head.head""" ) A_ : Union[str, Any] = value return new_state_dict def UpperCAmelCase ( a_ , a_ ) -> Dict: """simple docstring""" for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) A_ : Union[str, Any] = state_dict.pop(F"glpn.encoder.block.{i}.{j}.attention.self.kv.weight" ) A_ : List[str] = state_dict.pop(F"glpn.encoder.block.{i}.{j}.attention.self.kv.bias" ) # next, add keys and values (in that order) to the state dict A_ : List[Any] = kv_weight[ : config.hidden_sizes[i], : ] A_ : Dict = kv_bias[: config.hidden_sizes[i]] A_ : List[str] = kv_weight[ config.hidden_sizes[i] :, : ] A_ : Union[str, Any] = kv_bias[config.hidden_sizes[i] :] def UpperCAmelCase ( ) -> List[str]: """simple docstring""" A_ : Dict = """http://images.cocodataset.org/val2017/000000039769.jpg""" A_ : Union[str, Any] = Image.open(requests.get(a_ , stream=a_ ).raw ) return image @torch.no_grad() def UpperCAmelCase ( a_ , a_ , a_=False , a_=None ) -> Union[str, Any]: """simple docstring""" A_ : List[str] = GLPNConfig(hidden_sizes=[6_4, 1_2_8, 3_2_0, 5_1_2] , decoder_hidden_size=6_4 , depths=[3, 8, 2_7, 3] ) # load image processor (only resize + rescale) A_ : Tuple = GLPNImageProcessor() # prepare image A_ : Dict = prepare_img() A_ : Union[str, Any] = image_processor(images=a_ , return_tensors="""pt""" ).pixel_values logger.info("""Converting model...""" ) # load original state dict A_ : Dict = torch.load(a_ , map_location=torch.device("""cpu""" ) ) # rename keys A_ : Any = rename_keys(a_ ) # key and value matrices need special treatment read_in_k_v(a_ , a_ ) # create HuggingFace model and load state dict A_ : Any = GLPNForDepthEstimation(a_ ) model.load_state_dict(a_ ) model.eval() # forward pass A_ : List[Any] = model(a_ ) A_ : Optional[Any] = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: A_ : str = torch.tensor( [[4.4147, 4.0873, 4.0673], [3.7890, 3.2881, 3.1525], [3.7674, 3.5423, 3.4913]] ) elif "kitti" in model_name: A_ : Dict = torch.tensor( [[3.4291, 2.7865, 2.5151], [3.2841, 2.7021, 2.3502], [3.1147, 2.4625, 2.2481]] ) else: raise ValueError(F"Unknown model name: {model_name}" ) A_ : str = torch.Size([1, 4_8_0, 6_4_0] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3] , a_ , atol=1E-4 ) print("""Looks ok!""" ) # finally, push to hub if required if push_to_hub: logger.info("""Pushing model and image processor to the hub...""" ) model.push_to_hub( repo_path_or_name=Path(a_ , a_ ) , organization="""nielsr""" , commit_message="""Add model""" , use_temp_dir=a_ , ) image_processor.push_to_hub( repo_path_or_name=Path(a_ , a_ ) , organization="""nielsr""" , commit_message="""Add image processor""" , use_temp_dir=a_ , ) if __name__ == "__main__": UpperCamelCase__ : Any = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to upload the model to the HuggingFace hub.' ) parser.add_argument( '--model_name', default='glpn-kitti', type=str, help='Name of the model in case you\'re pushing to the hub.', ) UpperCamelCase__ : List[Any] = parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
710
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ : Union[str, Any] = logging.get_logger(__name__) UpperCamelCase__ : Any = { 'sayakpaul/vit-msn-base': 'https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class _lowerCAmelCase ( __A ): """simple docstring""" lowerCamelCase = '''vit_msn''' def __init__( self , _lowerCamelCase=768 , _lowerCamelCase=12 , _lowerCamelCase=12 , _lowerCamelCase=3072 , _lowerCamelCase="gelu" , _lowerCamelCase=0.0 , _lowerCamelCase=0.0 , _lowerCamelCase=0.02 , _lowerCamelCase=1e-06 , _lowerCamelCase=224 , _lowerCamelCase=16 , _lowerCamelCase=3 , _lowerCamelCase=True , **_lowerCamelCase , ) -> List[Any]: super().__init__(**_lowerCamelCase ) A_ : Tuple = hidden_size A_ : List[str] = num_hidden_layers A_ : List[str] = num_attention_heads A_ : Optional[Any] = intermediate_size A_ : List[Any] = hidden_act A_ : int = hidden_dropout_prob A_ : int = attention_probs_dropout_prob A_ : Dict = initializer_range A_ : List[str] = layer_norm_eps A_ : Optional[Any] = image_size A_ : Dict = patch_size A_ : Dict = num_channels A_ : Dict = qkv_bias
385
0
"""simple docstring""" import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging a_ = logging.get_logger(__name__) class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Dict = ["""input_features""", """is_longer"""] def __init__(self , lowercase__=64 , lowercase__=4_80_00 , lowercase__=4_80 , lowercase__=10 , lowercase__=10_24 , lowercase__=0.0 , lowercase__=False , lowercase__ = 0 , lowercase__ = 1_40_00 , lowercase__ = None , lowercase__ = "fusion" , lowercase__ = "repeatpad" , **lowercase__ , ): super().__init__( feature_size=_snake_case , sampling_rate=_snake_case , padding_value=_snake_case , return_attention_mask=_snake_case , **_snake_case , ) snake_case_ : int = top_db snake_case_ : List[str] = truncation snake_case_ : List[Any] = padding snake_case_ : List[str] = fft_window_size snake_case_ : str = (fft_window_size >> 1) + 1 snake_case_ : Optional[Any] = hop_length snake_case_ : str = max_length_s snake_case_ : Optional[int] = max_length_s * sampling_rate snake_case_ : List[str] = sampling_rate snake_case_ : Dict = frequency_min snake_case_ : int = frequency_max snake_case_ : Optional[int] = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=_snake_case , min_frequency=_snake_case , max_frequency=_snake_case , sampling_rate=_snake_case , norm=_snake_case , mel_scale="""htk""" , ) snake_case_ : Union[str, Any] = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=_snake_case , min_frequency=_snake_case , max_frequency=_snake_case , sampling_rate=_snake_case , norm="""slaney""" , mel_scale="""slaney""" , ) def __UpperCamelCase (self ): snake_case_ : List[str] = copy.deepcopy(self.__dict__ ) snake_case_ : int = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def __UpperCamelCase (self , lowercase__ , lowercase__ = None ): snake_case_ : str = spectrogram( _snake_case , window_function(self.fft_window_size , """hann""" ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=_snake_case , log_mel="""dB""" , ) return log_mel_spectrogram.T def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ ): snake_case_ : Dict = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk snake_case_ : List[Any] = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk snake_case_ : str = [0] # randomly choose index for each part snake_case_ : Dict = np.random.choice(ranges[0] ) snake_case_ : Optional[Any] = np.random.choice(ranges[1] ) snake_case_ : List[Any] = np.random.choice(ranges[2] ) snake_case_ : str = mel[idx_front : idx_front + chunk_frames, :] snake_case_ : str = mel[idx_middle : idx_middle + chunk_frames, :] snake_case_ : Dict = mel[idx_back : idx_back + chunk_frames, :] snake_case_ : str = torch.tensor(mel[None, None, :] ) snake_case_ : str = torch.nn.functional.interpolate( _snake_case , size=[chunk_frames, 64] , mode="""bilinear""" , align_corners=_snake_case ) snake_case_ : Tuple = mel_shrink[0][0].numpy() snake_case_ : int = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): if waveform.shape[0] > max_length: if truncation == "rand_trunc": snake_case_ : List[Any] = True # random crop to max_length (for compatibility) -> this should be handled by self.pad snake_case_ : Dict = len(_snake_case ) - max_length snake_case_ : Any = np.random.randint(0 , overflow + 1 ) snake_case_ : Optional[int] = waveform[idx : idx + max_length] snake_case_ : Union[str, Any] = self._np_extract_fbank_features(_snake_case , self.mel_filters_slaney )[None, :] elif truncation == "fusion": snake_case_ : Optional[int] = self._np_extract_fbank_features(_snake_case , self.mel_filters ) snake_case_ : Optional[Any] = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed snake_case_ : Dict = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. snake_case_ : Dict = np.stack([mel, mel, mel, mel] , axis=0 ) snake_case_ : Union[str, Any] = False else: snake_case_ : Any = self._random_mel_fusion(_snake_case , _snake_case , _snake_case ) snake_case_ : int = True else: raise NotImplementedError(f'data_truncating {truncation} not implemented' ) else: snake_case_ : Any = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": snake_case_ : List[Any] = int(max_length / len(_snake_case ) ) snake_case_ : str = np.stack(np.tile(_snake_case , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": snake_case_ : int = int(max_length / len(_snake_case ) ) snake_case_ : Union[str, Any] = np.stack(np.tile(_snake_case , _snake_case ) ) snake_case_ : int = np.pad(_snake_case , (0, max_length - waveform.shape[0]) , mode="""constant""" , constant_values=0 ) if truncation == "fusion": snake_case_ : Tuple = self._np_extract_fbank_features(_snake_case , self.mel_filters ) snake_case_ : Optional[Any] = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: snake_case_ : Tuple = self._np_extract_fbank_features(_snake_case , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__(self , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , **lowercase__ , ): snake_case_ : List[str] = truncation if truncation is not None else self.truncation snake_case_ : Optional[int] = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a' f' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input' f' was sampled with {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) snake_case_ : Union[str, Any] = isinstance(_snake_case , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'Only mono-channel audio is supported for input to {self}' ) snake_case_ : Optional[int] = is_batched_numpy or ( isinstance(_snake_case , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: snake_case_ : Tuple = [np.asarray(_snake_case , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(_snake_case , np.ndarray ): snake_case_ : Optional[Any] = np.asarray(_snake_case , dtype=np.floataa ) elif isinstance(_snake_case , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): snake_case_ : List[str] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: snake_case_ : Dict = [np.asarray(_snake_case )] # convert to mel spectrogram, truncate and pad if needed. snake_case_ : str = [ self._get_input_mel(_snake_case , max_length if max_length else self.nb_max_samples , _snake_case , _snake_case ) for waveform in raw_speech ] snake_case_ : Optional[int] = [] snake_case_ : Any = [] for mel, longer in padded_inputs: input_mel.append(_snake_case ) is_longer.append(_snake_case ) if truncation == "fusion" and sum(_snake_case ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer snake_case_ : Any = np.random.randint(0 , len(_snake_case ) ) snake_case_ : Union[str, Any] = True if isinstance(input_mel[0] , _snake_case ): snake_case_ : List[Any] = [np.asarray(_snake_case , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool snake_case_ : Any = [[longer] for longer in is_longer] snake_case_ : str = {"""input_features""": input_mel, """is_longer""": is_longer} snake_case_ : str = BatchFeature(_snake_case ) if return_tensors is not None: snake_case_ : List[str] = input_features.convert_to_tensors(_snake_case ) return input_features
480
'''simple docstring''' from .imports import is_rich_available if is_rich_available(): from rich.traceback import install install(show_locals=False) else: raise ModuleNotFoundError("To use the rich extension, install rich with `pip install rich`")
316
0
from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax lowercase__ : int = logging.get_logger(__name__) @add_end_docstrings(SCREAMING_SNAKE_CASE_ ) class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self , **SCREAMING_SNAKE_CASE_ )-> Tuple: '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE_ ) requires_backends(self , '''vision''' ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == '''tf''' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )-> str: '''simple docstring''' return super().__call__(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def A__ ( self , **SCREAMING_SNAKE_CASE_ )-> Tuple: '''simple docstring''' __UpperCamelCase = {} if "candidate_labels" in kwargs: __UpperCamelCase = kwargs['''candidate_labels'''] if "hypothesis_template" in kwargs: __UpperCamelCase = kwargs['''hypothesis_template'''] return preprocess_params, {}, {} def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_="This is a photo of {}." )-> Optional[int]: '''simple docstring''' __UpperCamelCase = load_image(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = self.image_processor(images=[image] , return_tensors=self.framework ) __UpperCamelCase = candidate_labels __UpperCamelCase = [hypothesis_template.format(SCREAMING_SNAKE_CASE_ ) for x in candidate_labels] __UpperCamelCase = self.tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors=self.framework , padding=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = [text_inputs] return inputs def A__ ( self , SCREAMING_SNAKE_CASE_ )-> Dict: '''simple docstring''' __UpperCamelCase = model_inputs.pop('''candidate_labels''' ) __UpperCamelCase = model_inputs.pop('''text_inputs''' ) if isinstance(text_inputs[0] , SCREAMING_SNAKE_CASE_ ): __UpperCamelCase = text_inputs[0] else: # Batching case. __UpperCamelCase = text_inputs[0][0] __UpperCamelCase = self.model(**SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = { '''candidate_labels''': candidate_labels, '''logits''': outputs.logits_per_image, } return model_outputs def A__ ( self , SCREAMING_SNAKE_CASE_ )-> int: '''simple docstring''' __UpperCamelCase = model_outputs.pop('''candidate_labels''' ) __UpperCamelCase = model_outputs['''logits'''][0] if self.framework == "pt": __UpperCamelCase = logits.softmax(dim=-1 ).squeeze(-1 ) __UpperCamelCase = probs.tolist() if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __UpperCamelCase = [scores] elif self.framework == "tf": __UpperCamelCase = stable_softmax(SCREAMING_SNAKE_CASE_ , axis=-1 ) __UpperCamelCase = probs.numpy().tolist() else: raise ValueError(F"Unsupported framework: {self.framework}" ) __UpperCamelCase = [ {'''score''': score, '''label''': candidate_label} for score, candidate_label in sorted(zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , key=lambda SCREAMING_SNAKE_CASE_ : -x[0] ) ] return result
451
import argparse import shutil import time from json import JSONDecodeError from logging import getLogger from pathlib import Path from typing import Dict, List import torch from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import ( SeqaSeqDataset, calculate_bleu, calculate_rouge, chunks, lmap, load_json, parse_numeric_n_bool_cl_kwargs, save_json, use_task_specific_params, write_txt_file, ) lowercase__ : Union[str, Any] = getLogger(__name__) def A_ ( snake_case : str , snake_case : str , snake_case : str , snake_case : int = 8 , snake_case : int = 1024 , snake_case : Dict="val" , snake_case : Tuple=None , snake_case : int=False , snake_case : Union[str, Any]="summarization" , snake_case : Optional[Any]=None , snake_case : List[str]=1 , snake_case : Dict = None , snake_case : Optional[Any]="" , **snake_case : Tuple , ) -> Dict: '''simple docstring''' __UpperCamelCase = str(snake_case ) assert local_rank is not None torch.distributed.init_process_group(backend='''nccl''' , rank=snake_case ) __UpperCamelCase = Path(snake_case ) __UpperCamelCase = save_dir.joinpath(f"rank_{local_rank}_output.json" ) torch.cuda.set_device(snake_case ) __UpperCamelCase = AutoModelForSeqaSeqLM.from_pretrained(snake_case ).cuda() if fpaa: __UpperCamelCase = model.half() # determine if we need to increase num_beams use_task_specific_params(snake_case , snake_case ) # update config with task specific params __UpperCamelCase = generate_kwargs.pop('''num_beams''' , model.config.num_beams ) # AttributeError risk? if num_return_sequences > num_beams: __UpperCamelCase = num_return_sequences __UpperCamelCase = AutoTokenizer.from_pretrained(snake_case ) logger.info(f"Inferred tokenizer type: {tokenizer.__class__}" ) # if this is wrong, check config.model_type. if max_source_length is None: __UpperCamelCase = tokenizer.model_max_length if prefix is None: __UpperCamelCase = prefix or getattr(model.config , '''prefix''' , '''''' ) or '''''' __UpperCamelCase = SeqaSeqDataset( snake_case , snake_case , snake_case , max_target_length=1024 , type_path=snake_case , n_obs=snake_case , prefix=snake_case , **snake_case , ) # I set shuffle=True for a more accurate progress bar. # If all the longest samples are first, the prog bar estimate is too high at the beginning. __UpperCamelCase = ds.make_sortish_sampler(snake_case , distributed=snake_case , add_extra_examples=snake_case , shuffle=snake_case ) __UpperCamelCase = DataLoader(snake_case , sampler=snake_case , batch_size=snake_case , collate_fn=ds.collate_fn ) __UpperCamelCase = [] for batch in tqdm(snake_case ): __UpperCamelCase = model.generate( input_ids=batch['''input_ids'''].to(model.device ) , attention_mask=batch['''attention_mask'''].to(model.device ) , num_return_sequences=snake_case , num_beams=snake_case , **snake_case , ) __UpperCamelCase = tokenizer.batch_decode(snake_case , skip_special_tokens=snake_case , clean_up_tokenization_spaces=snake_case ) __UpperCamelCase = batch['''ids'''] if num_return_sequences > 1: __UpperCamelCase = chunks(snake_case , snake_case ) # batch size chunks, each of size num_return_seq for i, pred in enumerate(snake_case ): results.append({'''pred''': pred, '''id''': ids[i].item()} ) save_json(snake_case , snake_case ) return results, sampler.num_replicas def A_ ( ) -> int: '''simple docstring''' __UpperCamelCase = argparse.ArgumentParser( epilog='''Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate''' ) parser.add_argument('''--data_dir''' , type=snake_case , help='''like cnn_dm/test.source''' ) parser.add_argument( '''--model_name''' , type=snake_case , help='''like facebook/bart-large-cnn,t5-base, etc.''' , default='''sshleifer/distilbart-xsum-12-3''' , ) parser.add_argument('''--save_dir''' , type=snake_case , help='''where to save''' , default='''tmp_gen''' ) parser.add_argument('''--max_source_length''' , type=snake_case , default=snake_case ) parser.add_argument( '''--type_path''' , type=snake_case , default='''test''' , help='''which subset to evaluate typically train/val/test''' ) parser.add_argument('''--task''' , type=snake_case , default='''summarization''' , help='''used for task_specific_params + metrics''' ) parser.add_argument('''--bs''' , type=snake_case , default=8 , required=snake_case , help='''batch size''' ) parser.add_argument( '''--local_rank''' , type=snake_case , default=-1 , required=snake_case , help='''should be passed by distributed.launch''' ) parser.add_argument( '''--n_obs''' , type=snake_case , default=snake_case , required=snake_case , help='''How many observations. Defaults to all.''' ) parser.add_argument( '''--num_return_sequences''' , type=snake_case , default=1 , required=snake_case , help='''How many sequences to return''' ) parser.add_argument( '''--sync_timeout''' , type=snake_case , default=600 , required=snake_case , help='''How long should master process wait for other processes to finish.''' , ) parser.add_argument('''--src_lang''' , type=snake_case , default=snake_case , required=snake_case ) parser.add_argument('''--tgt_lang''' , type=snake_case , default=snake_case , required=snake_case ) parser.add_argument( '''--prefix''' , type=snake_case , required=snake_case , default=snake_case , help='''will be added to the begininng of src examples''' ) parser.add_argument('''--fp16''' , action='''store_true''' ) parser.add_argument('''--debug''' , action='''store_true''' ) __UpperCamelCase = time.time() __UpperCamelCase , __UpperCamelCase = parser.parse_known_args() __UpperCamelCase = parse_numeric_n_bool_cl_kwargs(snake_case ) if generate_kwargs and args.local_rank <= 0: print(f"parsed the following generate kwargs: {generate_kwargs}" ) __UpperCamelCase = Path(args.save_dir + '''_tmp''' ) Path(snake_case ).mkdir(exist_ok=snake_case ) # this handles locking. __UpperCamelCase = list(json_save_dir.glob('''rank_*.json''' ) ) if intermediate_files: raise ValueError(f"Found files at {json_save_dir} please move or remove them." ) # In theory, a node could finish and save before another node hits this. If this happens, we can address later. __UpperCamelCase = {} if args.src_lang is not None: __UpperCamelCase = args.src_lang if args.tgt_lang is not None: __UpperCamelCase = args.tgt_lang Path(args.save_dir ).mkdir(exist_ok=snake_case ) __UpperCamelCase , __UpperCamelCase = eval_data_dir( args.data_dir , snake_case , args.model_name , type_path=args.type_path , bs=args.bs , fpaa=args.fpaa , task=args.task , local_rank=args.local_rank , n_obs=args.n_obs , max_source_length=args.max_source_length , num_return_sequences=args.num_return_sequences , prefix=args.prefix , dataset_kwargs=snake_case , **snake_case , ) if args.local_rank <= 0: __UpperCamelCase = Path(args.save_dir ) save_dir.mkdir(exist_ok=snake_case ) __UpperCamelCase = gather_results_from_each_node(snake_case , snake_case , args.sync_timeout ) __UpperCamelCase = combine_partial_results(snake_case ) if args.num_return_sequences > 1: __UpperCamelCase = save_dir.joinpath('''pseudolabel_results.json''' ) print(f"Saving aggregated results at {save_path}, intermediate in {json_save_dir}/" ) save_json(snake_case , snake_case ) return __UpperCamelCase = Path(args.data_dir ).joinpath(args.type_path + '''.target''' ) with open(snake_case ) as f: __UpperCamelCase = [x.rstrip() for x in f.readlines()][: len(snake_case )] # Calculate metrics, save metrics, and save _generations.txt __UpperCamelCase = '''translation''' in args.task __UpperCamelCase = calculate_bleu if calc_bleu else calculate_rouge __UpperCamelCase = '''bleu''' if calc_bleu else '''rouge''' __UpperCamelCase = score_fn(snake_case , snake_case ) __UpperCamelCase = len(snake_case ) __UpperCamelCase = time.time() - start_time __UpperCamelCase = round(runtime / metrics['''n_obs'''] , 4 ) __UpperCamelCase = num_replicas # TODO(@stas00): add whatever metadata to metrics __UpperCamelCase = save_dir.joinpath(f"{args.type_path}_{metric_name}.json" ) save_json(snake_case , snake_case , indent=snake_case ) print(snake_case ) write_txt_file(snake_case , save_dir.joinpath(f"{args.type_path}_generations.txt" ) ) if args.debug: write_txt_file(snake_case , save_dir.joinpath(f"{args.type_path}.target" ) ) else: shutil.rmtree(snake_case ) def A_ ( snake_case : Optional[int] ) -> List: '''simple docstring''' __UpperCamelCase = [] for partial_result in partial_results: records.extend(snake_case ) __UpperCamelCase = sorted(snake_case , key=lambda snake_case : x["id"] ) __UpperCamelCase = [x['''pred'''] for x in records] return preds def A_ ( snake_case : List[str] , snake_case : int , snake_case : str ) -> List[Dict[str, List]]: '''simple docstring''' __UpperCamelCase = time.time() logger.info('''waiting for all nodes to finish''' ) __UpperCamelCase = None while (time.time() - start_wait) < timeout: __UpperCamelCase = list(save_dir.glob('''rank_*.json''' ) ) if len(snake_case ) < num_replicas: continue try: # make sure all json files are fully saved __UpperCamelCase = lmap(snake_case , snake_case ) return json_data except JSONDecodeError: continue else: raise TimeoutError('''Rank 0 gave up on waiting for other processes''' ) # Unreachable if __name__ == "__main__": # Usage for MT: run_generate()
451
1
from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split _lowerCAmelCase = datasets.load_iris() _lowerCAmelCase = np.array(data["data"]) _lowerCAmelCase = np.array(data["target"]) _lowerCAmelCase = data["target_names"] _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase = train_test_split(X, y) def _snake_case ( __snake_case , __snake_case ): return np.linalg.norm(np.array(__snake_case ) - np.array(__snake_case ) ) def _snake_case ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case=5 ): _UpperCamelCase = zip(__snake_case , __snake_case ) # List of distances of all points from the point to be classified _UpperCamelCase = [] for data_point in data: _UpperCamelCase = euclidean_distance(data_point[0] , __snake_case ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. _UpperCamelCase = [i[1] for i in sorted(__snake_case )[:k]] # Most commonly occurring class among them # is the class into which the point is classified _UpperCamelCase = Counter(__snake_case ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
10
import torch from torch import nn class A_ ( nn.Module ): '''simple docstring''' def __init__( self , snake_case , snake_case , snake_case , snake_case , snake_case=1 , snake_case=False ): super().__init__() lowercase = n_token lowercase = d_embed lowercase = d_proj lowercase = cutoffs + [n_token] lowercase = [0] + self.cutoffs lowercase = div_val lowercase = self.cutoffs[0] lowercase = len(self.cutoffs ) - 1 lowercase = self.shortlist_size + self.n_clusters if self.n_clusters > 0: lowercase = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed ) ) lowercase = nn.Parameter(torch.zeros(self.n_clusters ) ) lowercase = nn.ModuleList() lowercase = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs ) ): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(snake_case , snake_case ) ) ) else: self.out_projs.append(snake_case ) self.out_layers.append(nn.Linear(snake_case , snake_case ) ) else: for i in range(len(self.cutoffs ) ): lowercase , lowercase = self.cutoff_ends[i], self.cutoff_ends[i + 1] lowercase = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(snake_case , snake_case ) ) ) self.out_layers.append(nn.Linear(snake_case , r_idx - l_idx ) ) lowercase = keep_order def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case , snake_case ): if proj is None: lowercase = nn.functional.linear(snake_case , snake_case , bias=snake_case ) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: lowercase = nn.functional.linear(snake_case , proj.t().contiguous() ) lowercase = nn.functional.linear(snake_case , snake_case , bias=snake_case ) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case=None , snake_case=False ): if labels is not None: # Shift so that tokens < n predict n lowercase = hidden[..., :-1, :].contiguous() lowercase = labels[..., 1:].contiguous() lowercase = hidden.view(-1 , hidden.size(-1 ) ) lowercase = labels.view(-1 ) if hidden.size(0 ) != labels.size(0 ): raise RuntimeError('Input and labels should have the same size in the batch dimension.' ) else: lowercase = hidden.view(-1 , hidden.size(-1 ) ) if self.n_clusters == 0: lowercase = self._compute_logit(snake_case , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) if labels is not None: lowercase = labels != -100 lowercase = torch.zeros_like(snake_case , dtype=hidden.dtype , device=hidden.device ) lowercase = ( -nn.functional.log_softmax(snake_case , dim=-1 )[mask].gather(1 , labels[mask].unsqueeze(1 ) ).squeeze(1 ) ) else: lowercase = nn.functional.log_softmax(snake_case , dim=-1 ) else: # construct weights and biases lowercase , lowercase = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: lowercase , lowercase = self.cutoff_ends[i], self.cutoff_ends[i + 1] lowercase = self.out_layers[0].weight[l_idx:r_idx] lowercase = self.out_layers[0].bias[l_idx:r_idx] else: lowercase = self.out_layers[i].weight lowercase = self.out_layers[i].bias if i == 0: lowercase = torch.cat([weight_i, self.cluster_weight] , dim=0 ) lowercase = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(snake_case ) biases.append(snake_case ) lowercase , lowercase , lowercase = weights[0], biases[0], self.out_projs[0] lowercase = self._compute_logit(snake_case , snake_case , snake_case , snake_case ) lowercase = nn.functional.log_softmax(snake_case , dim=1 ) if labels is None: lowercase = hidden.new_empty((head_logit.size(0 ), self.n_token) ) else: lowercase = torch.zeros_like(snake_case , dtype=hidden.dtype , device=hidden.device ) lowercase = 0 lowercase = [0] + self.cutoffs for i in range(len(snake_case ) - 1 ): lowercase , lowercase = cutoff_values[i], cutoff_values[i + 1] if labels is not None: lowercase = (labels >= l_idx) & (labels < r_idx) lowercase = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue lowercase = labels.index_select(0 , snake_case ) - l_idx lowercase = head_logprob.index_select(0 , snake_case ) lowercase = hidden.index_select(0 , snake_case ) else: lowercase = hidden if i == 0: if labels is not None: lowercase = head_logprob_i.gather(1 , target_i[:, None] ).squeeze(1 ) else: lowercase = head_logprob[:, : self.cutoffs[0]] else: lowercase , lowercase , lowercase = weights[i], biases[i], self.out_projs[i] lowercase = self._compute_logit(snake_case , snake_case , snake_case , snake_case ) lowercase = nn.functional.log_softmax(snake_case , dim=1 ) lowercase = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: lowercase = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None] ).squeeze(1 ) else: lowercase = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i lowercase = logprob_i if labels is not None: if (hasattr(self , 'keep_order' ) and self.keep_order) or keep_order: out.index_copy_(0 , snake_case , -logprob_i ) else: out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i ) offset += logprob_i.size(0 ) return out def SCREAMING_SNAKE_CASE__ ( self , snake_case ): if self.n_clusters == 0: lowercase = self._compute_logit(snake_case , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) return nn.functional.log_softmax(snake_case , dim=-1 ) else: # construct weights and biases lowercase , lowercase = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: lowercase , lowercase = self.cutoff_ends[i], self.cutoff_ends[i + 1] lowercase = self.out_layers[0].weight[l_idx:r_idx] lowercase = self.out_layers[0].bias[l_idx:r_idx] else: lowercase = self.out_layers[i].weight lowercase = self.out_layers[i].bias if i == 0: lowercase = torch.cat([weight_i, self.cluster_weight] , dim=0 ) lowercase = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(snake_case ) biases.append(snake_case ) lowercase , lowercase , lowercase = weights[0], biases[0], self.out_projs[0] lowercase = self._compute_logit(snake_case , snake_case , snake_case , snake_case ) lowercase = hidden.new_empty((head_logit.size(0 ), self.n_token) ) lowercase = nn.functional.log_softmax(snake_case , dim=1 ) lowercase = [0] + self.cutoffs for i in range(len(snake_case ) - 1 ): lowercase , lowercase = cutoff_values[i], cutoff_values[i + 1] if i == 0: lowercase = head_logprob[:, : self.cutoffs[0]] else: lowercase , lowercase , lowercase = weights[i], biases[i], self.out_projs[i] lowercase = self._compute_logit(snake_case , snake_case , snake_case , snake_case ) lowercase = nn.functional.log_softmax(snake_case , dim=1 ) lowercase = head_logprob[:, -i] + tail_logprob_i lowercase = logprob_i return out
84
0
import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class a_ : @property def lowerCAmelCase( self : Optional[int] ): """simple docstring""" return self.get_dummy_input() @property def lowerCAmelCase( self : List[str] ): """simple docstring""" if self.block_type == "down": return (4, 32, 16, 16) elif self.block_type == "mid": return (4, 32, 32, 32) elif self.block_type == "up": return (4, 32, 64, 64) raise ValueError(F"'{self.block_type}' is not a supported block_type. Set it to 'up', 'mid', or 'down'." ) def lowerCAmelCase( self : int , UpperCAmelCase__ : Union[str, Any]=True , UpperCAmelCase__ : Union[str, Any]=False , UpperCAmelCase__ : Any=False , UpperCAmelCase__ : Any=False , ): """simple docstring""" snake_case : Union[str, Any] = 4 snake_case : List[str] = 32 snake_case : Tuple = (32, 32) snake_case : Any = torch.manual_seed(0 ) snake_case : Tuple = torch.device(UpperCAmelCase__ ) snake_case : int = (batch_size, num_channels) + sizes snake_case : Tuple = randn_tensor(UpperCAmelCase__ , generator=UpperCAmelCase__ , device=UpperCAmelCase__ ) snake_case : List[str] = {'''hidden_states''': hidden_states} if include_temb: snake_case : Optional[int] = 128 snake_case : Optional[Any] = randn_tensor((batch_size, temb_channels) , generator=UpperCAmelCase__ , device=UpperCAmelCase__ ) if include_res_hidden_states_tuple: snake_case : Optional[Any] = torch.manual_seed(1 ) snake_case : int = (randn_tensor(UpperCAmelCase__ , generator=UpperCAmelCase__ , device=UpperCAmelCase__ ),) if include_encoder_hidden_states: snake_case : Dict = floats_tensor((batch_size, 32, 32) ).to(UpperCAmelCase__ ) if include_skip_sample: snake_case : List[Any] = randn_tensor(((batch_size, 3) + sizes) , generator=UpperCAmelCase__ , device=UpperCAmelCase__ ) return dummy_input def lowerCAmelCase( self : Dict ): """simple docstring""" snake_case : Optional[int] = { '''in_channels''': 32, '''out_channels''': 32, '''temb_channels''': 128, } if self.block_type == "up": snake_case : Union[str, Any] = 32 if self.block_type == "mid": init_dict.pop('''out_channels''' ) snake_case : Tuple = self.dummy_input return init_dict, inputs_dict def lowerCAmelCase( self : Optional[int] , UpperCAmelCase__ : Dict ): """simple docstring""" snake_case , snake_case : List[Any] = self.prepare_init_args_and_inputs_for_common() snake_case : List[str] = self.block_class(**UpperCAmelCase__ ) unet_block.to(UpperCAmelCase__ ) unet_block.eval() with torch.no_grad(): snake_case : Optional[int] = unet_block(**UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): snake_case : Optional[Any] = output[0] self.assertEqual(output.shape , self.output_shape ) snake_case : List[str] = output[0, -1, -3:, -3:] snake_case : Optional[Any] = torch.tensor(UpperCAmelCase__ ).to(UpperCAmelCase__ ) assert torch_all_close(output_slice.flatten() , UpperCAmelCase__ , atol=5e-3 ) @unittest.skipIf(torch_device == '''mps''' , '''Training is not supported in mps''' ) def lowerCAmelCase( self : Union[str, Any] ): """simple docstring""" snake_case , snake_case : Any = self.prepare_init_args_and_inputs_for_common() snake_case : Optional[int] = self.block_class(**UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.train() snake_case : int = model(**UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): snake_case : Optional[int] = output[0] snake_case : Dict = torch.device(UpperCAmelCase__ ) snake_case : Tuple = randn_tensor(output.shape , device=UpperCAmelCase__ ) snake_case : Union[str, Any] = torch.nn.functional.mse_loss(UpperCAmelCase__ , UpperCAmelCase__ ) loss.backward()
84
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class a_ ( unittest.TestCase ): def __init__( self : Optional[Any] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[int]=7 , UpperCAmelCase__ : Union[str, Any]=3 , UpperCAmelCase__ : int=18 , UpperCAmelCase__ : Optional[int]=30 , UpperCAmelCase__ : Optional[int]=400 , UpperCAmelCase__ : int=True , UpperCAmelCase__ : Optional[int]=None , UpperCAmelCase__ : int=True , ): """simple docstring""" snake_case : int = size if size is not None else {'''height''': 18, '''width''': 18} snake_case : Optional[Any] = parent snake_case : Any = batch_size snake_case : Any = num_channels snake_case : Union[str, Any] = image_size snake_case : Dict = min_resolution snake_case : Dict = max_resolution snake_case : int = do_resize snake_case : List[str] = size snake_case : List[Any] = apply_ocr def lowerCAmelCase( self : int ): """simple docstring""" return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class a_ ( a , unittest.TestCase ): A__ : List[Any] = LayoutLMvaImageProcessor if is_pytesseract_available() else None def lowerCAmelCase( self : Dict ): """simple docstring""" snake_case : Optional[Any] = LayoutLMvaImageProcessingTester(self ) @property def lowerCAmelCase( self : Dict ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase( self : List[Any] ): """simple docstring""" snake_case : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase__ , '''do_resize''' ) ) self.assertTrue(hasattr(UpperCAmelCase__ , '''size''' ) ) self.assertTrue(hasattr(UpperCAmelCase__ , '''apply_ocr''' ) ) def lowerCAmelCase( self : Optional[int] ): """simple docstring""" snake_case : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 18} ) snake_case : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) def lowerCAmelCase( self : str ): """simple docstring""" pass def lowerCAmelCase( self : Dict ): """simple docstring""" # Initialize image_processing snake_case : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , Image.Image ) # Test not batched input snake_case : Optional[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) self.assertIsInstance(encoding.words , UpperCAmelCase__ ) self.assertIsInstance(encoding.boxes , UpperCAmelCase__ ) # Test batched snake_case : Dict = image_processing(UpperCAmelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def lowerCAmelCase( self : Union[str, Any] ): """simple docstring""" # Initialize image_processing snake_case : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , numpify=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , np.ndarray ) # Test not batched input snake_case : List[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched snake_case : List[Any] = image_processing(UpperCAmelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def lowerCAmelCase( self : Optional[Any] ): """simple docstring""" # Initialize image_processing snake_case : str = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , torchify=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , torch.Tensor ) # Test not batched input snake_case : List[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched snake_case : Tuple = image_processing(UpperCAmelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def lowerCAmelCase( self : Optional[Any] ): """simple docstring""" # with apply_OCR = True snake_case : int = LayoutLMvaImageProcessor() from datasets import load_dataset snake_case : List[Any] = load_dataset('''hf-internal-testing/fixtures_docvqa''' , split='''test''' ) snake_case : List[Any] = Image.open(ds[0]['''file'''] ).convert('''RGB''' ) snake_case : Any = image_processing(UpperCAmelCase__ , return_tensors='''pt''' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 snake_case : Optional[Any] = [['''11:14''', '''to''', '''11:39''', '''a.m''', '''11:39''', '''to''', '''11:44''', '''a.m.''', '''11:44''', '''a.m.''', '''to''', '''12:25''', '''p.m.''', '''12:25''', '''to''', '''12:58''', '''p.m.''', '''12:58''', '''to''', '''4:00''', '''p.m.''', '''2:00''', '''to''', '''5:00''', '''p.m.''', '''Coffee''', '''Break''', '''Coffee''', '''will''', '''be''', '''served''', '''for''', '''men''', '''and''', '''women''', '''in''', '''the''', '''lobby''', '''adjacent''', '''to''', '''exhibit''', '''area.''', '''Please''', '''move''', '''into''', '''exhibit''', '''area.''', '''(Exhibits''', '''Open)''', '''TRRF''', '''GENERAL''', '''SESSION''', '''(PART''', '''|)''', '''Presiding:''', '''Lee''', '''A.''', '''Waller''', '''TRRF''', '''Vice''', '''President''', '''“Introductory''', '''Remarks”''', '''Lee''', '''A.''', '''Waller,''', '''TRRF''', '''Vice''', '''Presi-''', '''dent''', '''Individual''', '''Interviews''', '''with''', '''TRRF''', '''Public''', '''Board''', '''Members''', '''and''', '''Sci-''', '''entific''', '''Advisory''', '''Council''', '''Mem-''', '''bers''', '''Conducted''', '''by''', '''TRRF''', '''Treasurer''', '''Philip''', '''G.''', '''Kuehn''', '''to''', '''get''', '''answers''', '''which''', '''the''', '''public''', '''refrigerated''', '''warehousing''', '''industry''', '''is''', '''looking''', '''for.''', '''Plus''', '''questions''', '''from''', '''the''', '''floor.''', '''Dr.''', '''Emil''', '''M.''', '''Mrak,''', '''University''', '''of''', '''Cal-''', '''ifornia,''', '''Chairman,''', '''TRRF''', '''Board;''', '''Sam''', '''R.''', '''Cecil,''', '''University''', '''of''', '''Georgia''', '''College''', '''of''', '''Agriculture;''', '''Dr.''', '''Stanley''', '''Charm,''', '''Tufts''', '''University''', '''School''', '''of''', '''Medicine;''', '''Dr.''', '''Robert''', '''H.''', '''Cotton,''', '''ITT''', '''Continental''', '''Baking''', '''Company;''', '''Dr.''', '''Owen''', '''Fennema,''', '''University''', '''of''', '''Wis-''', '''consin;''', '''Dr.''', '''Robert''', '''E.''', '''Hardenburg,''', '''USDA.''', '''Questions''', '''and''', '''Answers''', '''Exhibits''', '''Open''', '''Capt.''', '''Jack''', '''Stoney''', '''Room''', '''TRRF''', '''Scientific''', '''Advisory''', '''Council''', '''Meeting''', '''Ballroom''', '''Foyer''']] # noqa: E231 snake_case : Union[str, Any] = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , UpperCAmelCase__ ) self.assertListEqual(encoding.boxes , UpperCAmelCase__ ) # with apply_OCR = False snake_case : str = LayoutLMvaImageProcessor(apply_ocr=UpperCAmelCase__ ) snake_case : Optional[Any] = image_processing(UpperCAmelCase__ , return_tensors='''pt''' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) )
84
1
"""simple docstring""" import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() lowercase__ : Optional[Any] = logging.get_logger('''transformers.models.speecht5''') def __lowercase ( _a , _a , _a ): hf_model.apply_weight_norm() snake_case_ : Optional[int] = checkpoint['''input_conv.weight_g'''] snake_case_ : Tuple = checkpoint['''input_conv.weight_v'''] snake_case_ : Dict = checkpoint['''input_conv.bias'''] for i in range(len(config.upsample_rates ) ): snake_case_ : List[Any] = checkpoint[f"upsamples.{i}.1.weight_g"] snake_case_ : Tuple = checkpoint[f"upsamples.{i}.1.weight_v"] snake_case_ : Optional[Any] = checkpoint[f"upsamples.{i}.1.bias"] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): snake_case_ : int = checkpoint[f"blocks.{i}.convs1.{j}.1.weight_g"] snake_case_ : Optional[int] = checkpoint[f"blocks.{i}.convs1.{j}.1.weight_v"] snake_case_ : List[str] = checkpoint[f"blocks.{i}.convs1.{j}.1.bias"] snake_case_ : Tuple = checkpoint[f"blocks.{i}.convs2.{j}.1.weight_g"] snake_case_ : str = checkpoint[f"blocks.{i}.convs2.{j}.1.weight_v"] snake_case_ : Dict = checkpoint[f"blocks.{i}.convs2.{j}.1.bias"] snake_case_ : List[Any] = checkpoint['''output_conv.1.weight_g'''] snake_case_ : Tuple = checkpoint['''output_conv.1.weight_v'''] snake_case_ : Dict = checkpoint['''output_conv.1.bias'''] hf_model.remove_weight_norm() @torch.no_grad() def __lowercase ( _a , _a , _a , _a=None , _a=None , ): if config_path is not None: snake_case_ : Dict = SpeechTaHifiGanConfig.from_pretrained(_a ) else: snake_case_ : Tuple = SpeechTaHifiGanConfig() snake_case_ : Tuple = SpeechTaHifiGan(_a ) snake_case_ : Union[str, Any] = torch.load(_a ) load_weights(orig_checkpoint['''model''']['''generator'''] , _a , _a ) snake_case_ : str = np.load(_a ) snake_case_ : int = stats[0].reshape(-1 ) snake_case_ : Tuple = stats[1].reshape(-1 ) snake_case_ : str = torch.from_numpy(_a ).float() snake_case_ : Dict = torch.from_numpy(_a ).float() model.save_pretrained(_a ) if repo_id: print('''Pushing to the hub...''' ) model.push_to_hub(_a ) if __name__ == "__main__": lowercase__ : Any = argparse.ArgumentParser() parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to original checkpoint''') parser.add_argument('''--stats_path''', required=True, default=None, type=str, help='''Path to stats.npy file''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) lowercase__ : Dict = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
123
"""simple docstring""" from typing import Dict from .base import GenericTensor, Pipeline class _UpperCAmelCase ( lowerCAmelCase__): def _snake_case ( self : int , lowercase_ : Optional[Any]=None , lowercase_ : List[str]=None , lowercase_ : Optional[Any]=None , **lowercase_ : Any ): if tokenize_kwargs is None: snake_case_ : str = {} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( '''truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)''' ) snake_case_ : int = truncation snake_case_ : Union[str, Any] = tokenize_kwargs snake_case_ : int = {} if return_tensors is not None: snake_case_ : str = return_tensors return preprocess_params, {}, postprocess_params def _snake_case ( self : List[Any] , lowercase_ : Optional[int] , **lowercase_ : int ): snake_case_ : Union[str, Any] = self.framework snake_case_ : List[Any] = self.tokenizer(lowercase_ , return_tensors=lowercase_ , **lowercase_ ) return model_inputs def _snake_case ( self : Union[str, Any] , lowercase_ : Tuple ): snake_case_ : Union[str, Any] = self.model(**lowercase_ ) return model_outputs def _snake_case ( self : str , lowercase_ : str , lowercase_ : List[str]=False ): # [0] is the first available tensor, logits or last_hidden_state. if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__( self : List[str] , *lowercase_ : int , **lowercase_ : Dict ): return super().__call__(*lowercase_ , **lowercase_ )
123
1
import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase_ ( lowerCamelCase_ , unittest.TestCase ): __a : Union[str, Any] = CLIPTokenizer __a : List[str] = CLIPTokenizerFast __a : List[str] = True __a : Tuple = {} __a : Tuple = False def snake_case ( self ): super().setUp() # fmt: off SCREAMING_SNAKE_CASE_ : List[Any] = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on SCREAMING_SNAKE_CASE_ : Union[str, Any] = dict(zip(snake_case__ ,range(len(snake_case__ ) ) ) ) SCREAMING_SNAKE_CASE_ : Any = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>'] SCREAMING_SNAKE_CASE_ : Any = {'unk_token': '<unk>'} SCREAMING_SNAKE_CASE_ : Any = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] ) SCREAMING_SNAKE_CASE_ : Any = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file ,'w' ,encoding='utf-8' ) as fp: fp.write(json.dumps(snake_case__ ) + '\n' ) with open(self.merges_file ,'w' ,encoding='utf-8' ) as fp: fp.write('\n'.join(snake_case__ ) ) def snake_case ( self ,**snake_case__ ): kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname ,**snake_case__ ) def snake_case ( self ,**snake_case__ ): kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname ,**snake_case__ ) def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : List[str] = 'lower newer' SCREAMING_SNAKE_CASE_ : Tuple = 'lower newer' return input_text, output_text def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Tuple = CLIPTokenizer(self.vocab_file ,self.merges_file ,**self.special_tokens_map ) SCREAMING_SNAKE_CASE_ : List[Any] = 'lower newer' SCREAMING_SNAKE_CASE_ : Optional[Any] = ['lo', 'w', 'er</w>', 'n', 'e', 'w', 'er</w>'] SCREAMING_SNAKE_CASE_ : Any = tokenizer.tokenize(snake_case__ ) self.assertListEqual(snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Any = tokens + [tokenizer.unk_token] SCREAMING_SNAKE_CASE_ : Optional[Any] = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) ,snake_case__ ) @require_ftfy def snake_case ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): SCREAMING_SNAKE_CASE_ : Any = self.tokenizer_class.from_pretrained(snake_case__ ,**snake_case__ ) SCREAMING_SNAKE_CASE_ : Any = self.rust_tokenizer_class.from_pretrained(snake_case__ ,**snake_case__ ) SCREAMING_SNAKE_CASE_ : Dict = 'A\n\'ll 11p223RF☆ho!!to?\'d\'d\'\'d of a cat to-$\'\'d.' SCREAMING_SNAKE_CASE_ : Union[str, Any] = tokenizer_s.tokenize(snake_case__ ) SCREAMING_SNAKE_CASE_ : str = tokenizer_r.tokenize(snake_case__ ) self.assertListEqual(snake_case__ ,snake_case__ ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways SCREAMING_SNAKE_CASE_ : Dict = 'xa\u0303y' + ' ' + 'x\xe3y' SCREAMING_SNAKE_CASE_ : Optional[Any] = tokenizer_s.tokenize(snake_case__ ) SCREAMING_SNAKE_CASE_ : str = tokenizer_r.tokenize(snake_case__ ) self.assertListEqual(snake_case__ ,snake_case__ ) # Test that the tokenization is identical on unicode of space type SCREAMING_SNAKE_CASE_ : Optional[Any] = [ '\u0009', # (horizontal tab, '\t') '\u000B', # (vertical tab) '\u000C', # (form feed) '\u0020', # (space, ' ') '\u200E', # (left-to-right mark):w '\u200F', # (right-to-left mark) ] for unicode_seq in spaces_unicodes: SCREAMING_SNAKE_CASE_ : Union[str, Any] = tokenizer_s.tokenize(snake_case__ ) SCREAMING_SNAKE_CASE_ : List[Any] = tokenizer_r.tokenize(snake_case__ ) self.assertListEqual(snake_case__ ,snake_case__ ) # Test that the tokenization is identical on unicode of line break type SCREAMING_SNAKE_CASE_ : Tuple = [ '\u000A', # (line feed, '\n') '\r\n', # (carriage return and line feed, '\r\n') '\u000D', # (carriage return, '\r') '\r', # (carriage return, '\r') '\u000D', # (carriage return, '\r') '\u2028', # (line separator) '\u2029', # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: SCREAMING_SNAKE_CASE_ : Optional[Any] = tokenizer_s.tokenize(snake_case__ ) SCREAMING_SNAKE_CASE_ : Tuple = tokenizer_r.tokenize(snake_case__ ) self.assertListEqual(snake_case__ ,snake_case__ ) def snake_case ( self ): # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): SCREAMING_SNAKE_CASE_ : Optional[int] = 'hello' # `hello` is a token in the vocabulary of `pretrained_name` SCREAMING_SNAKE_CASE_ : Tuple = F'{text_of_1_token} {text_of_1_token}' SCREAMING_SNAKE_CASE_ : Optional[int] = self.rust_tokenizer_class.from_pretrained( snake_case__ ,use_fast=snake_case__ ,) SCREAMING_SNAKE_CASE_ : str = tokenizer_r(snake_case__ ,return_offsets_mapping=snake_case__ ,add_special_tokens=snake_case__ ) self.assertEqual(encoding.offset_mapping[0] ,(0, len(snake_case__ )) ) self.assertEqual( encoding.offset_mapping[1] ,(len(snake_case__ ) + 1, len(snake_case__ ) + 1 + len(snake_case__ )) ,) SCREAMING_SNAKE_CASE_ : Union[str, Any] = F' {text}' SCREAMING_SNAKE_CASE_ : Optional[int] = self.rust_tokenizer_class.from_pretrained( snake_case__ ,use_fast=snake_case__ ,) SCREAMING_SNAKE_CASE_ : int = tokenizer_r(snake_case__ ,return_offsets_mapping=snake_case__ ,add_special_tokens=snake_case__ ) self.assertEqual(encoding.offset_mapping[0] ,(1, 1 + len(snake_case__ )) ) self.assertEqual( encoding.offset_mapping[1] ,(1 + len(snake_case__ ) + 1, 1 + len(snake_case__ ) + 1 + len(snake_case__ )) ,) def snake_case ( self ): # Test related to the breaking change introduced in transformers v4.17.0 # We need to check that an error in raised when the user try to load a previous version of the tokenizer. with self.assertRaises(snake_case__ ) as context: self.rust_tokenizer_class.from_pretrained('robot-test/old-clip-tokenizer' ) self.assertTrue( context.exception.args[0].startswith( 'The `backend_tokenizer` provided does not match the expected format.' ) ) @require_ftfy def snake_case ( self ): super().test_tokenization_python_rust_equals() def snake_case ( self ): # CLIP always lower cases letters pass
685
import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class lowerCAmelCase_ : def __init__( self ,snake_case__ ,snake_case__=13 ,snake_case__=7 ,snake_case__=True ,snake_case__=True ,snake_case__=False ,snake_case__=True ,snake_case__=99 ,snake_case__=32 ,snake_case__=5 ,snake_case__=4 ,snake_case__=37 ,snake_case__="gelu" ,snake_case__=0.1 ,snake_case__=0.1 ,snake_case__=512 ,snake_case__=16 ,snake_case__=2 ,snake_case__=0.02 ,snake_case__=3 ,snake_case__=4 ,snake_case__=None ,): SCREAMING_SNAKE_CASE_ : Union[str, Any] = parent SCREAMING_SNAKE_CASE_ : List[Any] = batch_size SCREAMING_SNAKE_CASE_ : Tuple = seq_length SCREAMING_SNAKE_CASE_ : Tuple = is_training SCREAMING_SNAKE_CASE_ : List[str] = use_input_mask SCREAMING_SNAKE_CASE_ : List[str] = use_token_type_ids SCREAMING_SNAKE_CASE_ : Optional[Any] = use_labels SCREAMING_SNAKE_CASE_ : int = vocab_size SCREAMING_SNAKE_CASE_ : Optional[int] = hidden_size SCREAMING_SNAKE_CASE_ : Optional[int] = num_hidden_layers SCREAMING_SNAKE_CASE_ : Optional[int] = num_attention_heads SCREAMING_SNAKE_CASE_ : Any = intermediate_size SCREAMING_SNAKE_CASE_ : Dict = hidden_act SCREAMING_SNAKE_CASE_ : List[str] = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : Tuple = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : Dict = max_position_embeddings SCREAMING_SNAKE_CASE_ : str = type_vocab_size SCREAMING_SNAKE_CASE_ : int = type_sequence_label_size SCREAMING_SNAKE_CASE_ : int = initializer_range SCREAMING_SNAKE_CASE_ : Tuple = num_labels SCREAMING_SNAKE_CASE_ : List[str] = num_choices SCREAMING_SNAKE_CASE_ : Tuple = scope def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Dict = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) SCREAMING_SNAKE_CASE_ : int = None if self.use_input_mask: SCREAMING_SNAKE_CASE_ : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE_ : int = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) SCREAMING_SNAKE_CASE_ : List[Any] = None SCREAMING_SNAKE_CASE_ : List[str] = None SCREAMING_SNAKE_CASE_ : Dict = None if self.use_labels: SCREAMING_SNAKE_CASE_ : Optional[Any] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ : Any = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) SCREAMING_SNAKE_CASE_ : Tuple = ids_tensor([self.batch_size] ,self.num_choices ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case ( self ): return LlamaConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=snake_case__ ,initializer_range=self.initializer_range ,) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Any = LlamaModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE_ : List[Any] = model(snake_case__ ,attention_mask=snake_case__ ) SCREAMING_SNAKE_CASE_ : Dict = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,): SCREAMING_SNAKE_CASE_ : int = True SCREAMING_SNAKE_CASE_ : Optional[Any] = LlamaModel(snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE_ : Optional[Any] = model( snake_case__ ,attention_mask=snake_case__ ,encoder_hidden_states=snake_case__ ,encoder_attention_mask=snake_case__ ,) SCREAMING_SNAKE_CASE_ : Tuple = model( snake_case__ ,attention_mask=snake_case__ ,encoder_hidden_states=snake_case__ ,) SCREAMING_SNAKE_CASE_ : Tuple = model(snake_case__ ,attention_mask=snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,): SCREAMING_SNAKE_CASE_ : Optional[Any] = LlamaForCausalLM(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE_ : Dict = model(snake_case__ ,attention_mask=snake_case__ ,labels=snake_case__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,): SCREAMING_SNAKE_CASE_ : int = True SCREAMING_SNAKE_CASE_ : int = True SCREAMING_SNAKE_CASE_ : List[Any] = LlamaForCausalLM(config=snake_case__ ) model.to(snake_case__ ) model.eval() # first forward pass SCREAMING_SNAKE_CASE_ : List[Any] = model( snake_case__ ,attention_mask=snake_case__ ,encoder_hidden_states=snake_case__ ,encoder_attention_mask=snake_case__ ,use_cache=snake_case__ ,) SCREAMING_SNAKE_CASE_ : Optional[int] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids SCREAMING_SNAKE_CASE_ : str = ids_tensor((self.batch_size, 3) ,config.vocab_size ) SCREAMING_SNAKE_CASE_ : Any = ids_tensor((self.batch_size, 3) ,vocab_size=2 ) # append to next input_ids and SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.cat([input_ids, next_tokens] ,dim=-1 ) SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.cat([input_mask, next_mask] ,dim=-1 ) SCREAMING_SNAKE_CASE_ : Dict = model( snake_case__ ,attention_mask=snake_case__ ,encoder_hidden_states=snake_case__ ,encoder_attention_mask=snake_case__ ,output_hidden_states=snake_case__ ,)['hidden_states'][0] SCREAMING_SNAKE_CASE_ : Tuple = model( snake_case__ ,attention_mask=snake_case__ ,encoder_hidden_states=snake_case__ ,encoder_attention_mask=snake_case__ ,past_key_values=snake_case__ ,output_hidden_states=snake_case__ ,)['hidden_states'][0] # select random slice SCREAMING_SNAKE_CASE_ : Any = ids_tensor((1,) ,output_from_past.shape[-1] ).item() SCREAMING_SNAKE_CASE_ : str = output_from_no_past[:, -3:, random_slice_idx].detach() SCREAMING_SNAKE_CASE_ : str = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(snake_case__ ,snake_case__ ,atol=1E-3 ) ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Dict = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ) : Optional[int] = config_and_inputs SCREAMING_SNAKE_CASE_ : List[Any] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): __a : Optional[int] = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () __a : int = (LlamaForCausalLM,) if is_torch_available() else () __a : Any = ( { "feature-extraction": LlamaModel, "text-classification": LlamaForSequenceClassification, "text-generation": LlamaForCausalLM, "zero-shot": LlamaForSequenceClassification, } if is_torch_available() else {} ) __a : Tuple = False __a : Tuple = False def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Optional[int] = LlamaModelTester(self ) SCREAMING_SNAKE_CASE_ : List[str] = ConfigTester(self ,config_class=snake_case__ ,hidden_size=37 ) def snake_case ( self ): self.config_tester.run_common_tests() def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : List[str] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: SCREAMING_SNAKE_CASE_ : Optional[int] = type self.model_tester.create_and_check_model(*snake_case__ ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : Dict = 3 SCREAMING_SNAKE_CASE_ : Optional[Any] = input_dict['input_ids'] SCREAMING_SNAKE_CASE_ : str = input_ids.ne(1 ).to(snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = ids_tensor([self.model_tester.batch_size] ,self.model_tester.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ : Optional[Any] = LlamaForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE_ : Tuple = model(snake_case__ ,attention_mask=snake_case__ ,labels=snake_case__ ) self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : Any = 3 SCREAMING_SNAKE_CASE_ : int = 'single_label_classification' SCREAMING_SNAKE_CASE_ : str = input_dict['input_ids'] SCREAMING_SNAKE_CASE_ : Dict = input_ids.ne(1 ).to(snake_case__ ) SCREAMING_SNAKE_CASE_ : List[Any] = ids_tensor([self.model_tester.batch_size] ,self.model_tester.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = LlamaForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE_ : List[str] = model(snake_case__ ,attention_mask=snake_case__ ,labels=snake_case__ ) self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : Tuple = 3 SCREAMING_SNAKE_CASE_ : str = 'multi_label_classification' SCREAMING_SNAKE_CASE_ : int = input_dict['input_ids'] SCREAMING_SNAKE_CASE_ : Tuple = input_ids.ne(1 ).to(snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = ids_tensor( [self.model_tester.batch_size, config.num_labels] ,self.model_tester.type_sequence_label_size ).to(torch.float ) SCREAMING_SNAKE_CASE_ : Optional[int] = LlamaForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE_ : Union[str, Any] = model(snake_case__ ,attention_mask=snake_case__ ,labels=snake_case__ ) self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('LLaMA buffers include complex numbers, which breaks this test' ) def snake_case ( self ): pass @parameterized.expand([('linear',), ('dynamic',)] ) def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : Optional[int] = ids_tensor([1, 10] ,config.vocab_size ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] ,config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights SCREAMING_SNAKE_CASE_ : Any = LlamaModel(snake_case__ ) original_model.to(snake_case__ ) original_model.eval() SCREAMING_SNAKE_CASE_ : int = original_model(snake_case__ ).last_hidden_state SCREAMING_SNAKE_CASE_ : List[Any] = original_model(snake_case__ ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights SCREAMING_SNAKE_CASE_ : List[Any] = {'type': scaling_type, 'factor': 10.0} SCREAMING_SNAKE_CASE_ : int = LlamaModel(snake_case__ ) scaled_model.to(snake_case__ ) scaled_model.eval() SCREAMING_SNAKE_CASE_ : str = scaled_model(snake_case__ ).last_hidden_state SCREAMING_SNAKE_CASE_ : Optional[int] = scaled_model(snake_case__ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(snake_case__ ,snake_case__ ,atol=1E-5 ) ) else: self.assertFalse(torch.allclose(snake_case__ ,snake_case__ ,atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(snake_case__ ,snake_case__ ,atol=1E-5 ) ) @require_torch class lowerCAmelCase_ ( unittest.TestCase ): @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = [1, 306, 4658, 278, 6593, 310, 2834, 338] SCREAMING_SNAKE_CASE_ : List[Any] = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-7b-hf' ,device_map='auto' ) SCREAMING_SNAKE_CASE_ : List[str] = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 SCREAMING_SNAKE_CASE_ : int = torch.tensor([[-6.6550, -4.1227, -4.9859, -3.2406, 0.8262, -3.0033, 1.2964, -3.3699]] ) torch.testing.assert_close(out.mean(-1 ) ,snake_case__ ,atol=1E-2 ,rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off SCREAMING_SNAKE_CASE_ : List[Any] = torch.tensor([-12.8281, -7.4453, -0.4639, -8.0625, -7.2500, -8.0000, -6.4883, -7.7695, -7.8438, -7.0312, -6.2188, -7.1328, -1.8496, 1.9961, -8.6250, -6.7227, -12.8281, -6.9492, -7.0742, -7.7852, -7.5820, -7.9062, -6.9375, -7.9805, -8.3438, -8.1562, -8.0469, -7.6250, -7.7422, -7.3398,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] ,snake_case__ ,atol=1E-5 ,rtol=1E-5 ) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def snake_case ( self ): SCREAMING_SNAKE_CASE_ : List[str] = [1, 306, 4658, 278, 6593, 310, 2834, 338] SCREAMING_SNAKE_CASE_ : Dict = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-hf' ,device_map='auto' ) SCREAMING_SNAKE_CASE_ : Tuple = model(torch.tensor(snake_case__ ) ) # Expected mean on dim = -1 SCREAMING_SNAKE_CASE_ : List[str] = torch.tensor([[-2.0622, -1.2794, -1.1638, -0.9788, -1.4603, -1.0238, -1.7893, -1.4411]] ) torch.testing.assert_close(out.mean(-1 ) ,snake_case__ ,atol=1E-2 ,rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off SCREAMING_SNAKE_CASE_ : List[str] = torch.tensor([-8.1406, -8.0547, 2.7461, -1.2344, -0.1448, -1.8262, -1.0020, -1.8154, -1.6895, -1.8516, -2.3574, -0.9277, 3.7598, 6.5742, -1.2998, -0.1177, -8.1406, -2.9688, -2.9199, -3.1699, -3.5254, -2.3555, -2.7988, -3.4141, -2.8262, -4.5195, -3.3379, -3.3164, -2.7832, -3.0273] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] ,snake_case__ ,atol=1E-5 ,rtol=1E-5 ) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Dict = [1, 306, 4658, 278, 6593, 310, 2834, 338] SCREAMING_SNAKE_CASE_ : Union[str, Any] = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-chat-hf' ,device_map='auto' ) SCREAMING_SNAKE_CASE_ : Tuple = model(torch.tensor(snake_case__ ) ) # Expected mean on dim = -1 SCREAMING_SNAKE_CASE_ : Dict = torch.tensor([[-0.8562, -1.8520, -0.7551, -0.4162, -1.5161, -1.2038, -2.4823, -2.3254]] ) torch.testing.assert_close(out.mean(-1 ) ,snake_case__ ,atol=1E-2 ,rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off SCREAMING_SNAKE_CASE_ : List[Any] = torch.tensor([-2.2227, 4.8828, 0.9023, -0.4578, -0.7871, -0.1033, -0.6221, -0.5786, -0.7803, -1.0674, -1.2920, -0.1570, 0.8008, 2.0723, -0.9497, 0.2771, -2.2227, -0.7612, -1.4346, -1.2061, -1.6426, -0.3000, -0.7139, -1.1934, -1.8691, -1.6973, -1.5947, -1.2705, -0.3523, -0.5513] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) ,snake_case__ ,atol=1E-2 ,rtol=1E-2 ) @unittest.skip( 'Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test' ) @slow def snake_case ( self ): SCREAMING_SNAKE_CASE_ : List[Any] = [1, 306, 4658, 278, 6593, 310, 2834, 338] SCREAMING_SNAKE_CASE_ : str = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-70b-hf' ,device_map='auto' ) SCREAMING_SNAKE_CASE_ : int = model(torch.tensor(snake_case__ ) ) SCREAMING_SNAKE_CASE_ : List[Any] = torch.tensor( [[-4.2327, -3.3360, -4.6665, -4.7631, -1.8180, -3.4170, -1.4211, -3.1810]] ,dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) ,snake_case__ ,atol=1E-2 ,rtol=1E-2 ) # fmt: off SCREAMING_SNAKE_CASE_ : Optional[int] = torch.tensor([-9.4922, -3.9551, 1.7998, -5.6758, -5.1055, -5.8984, -4.8320, -6.8086, -6.5391, -5.6172, -5.5820, -5.5352, 1.7881, 3.6289, -6.5117, -3.4785, -9.5000, -6.0352, -6.8125, -6.0195, -6.6836, -5.4727, -6.2812, -6.0391, -7.3398, -7.4297, -7.4844, -6.5820, -5.8789, -5.5312] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] ,snake_case__ ,atol=1E-5 ,rtol=1E-5 ) @unittest.skip('Model is curently gated' ) @slow def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = 'Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the "princi' SCREAMING_SNAKE_CASE_ : List[str] = 'Simply put, the theory of relativity states that ' SCREAMING_SNAKE_CASE_ : str = LlamaTokenizer.from_pretrained('meta-llama/Llama-2-13b-chat-hf' ) SCREAMING_SNAKE_CASE_ : Optional[int] = tokenizer.encode(snake_case__ ,return_tensors='pt' ) SCREAMING_SNAKE_CASE_ : Tuple = LlamaForCausalLM.from_pretrained( 'meta-llama/Llama-2-13b-chat-hf' ,device_map='sequential' ,use_safetensors=snake_case__ ) # greedy generation outputs SCREAMING_SNAKE_CASE_ : Union[str, Any] = model.generate(snake_case__ ,max_new_tokens=64 ,top_p=snake_case__ ,temperature=1 ,do_sample=snake_case__ ) SCREAMING_SNAKE_CASE_ : Dict = tokenizer.decode(generated_ids[0] ,skip_special_tokens=snake_case__ ) self.assertEqual(snake_case__ ,snake_case__ )
685
1
"""simple docstring""" import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) __SCREAMING_SNAKE_CASE =["model.decoder.embed_positions.weights"] def lowercase__( __SCREAMING_SNAKE_CASE : List[Any] ): if "emb" in name: lowercase_ : Dict = name.replace('emb' , 'model.decoder.embed_tokens' ) if "transformer" in name: lowercase_ : int = name.replace('transformer' , 'model.decoder' ) if "cross_attention" in name: lowercase_ : int = name.replace('cross_attention' , 'encoder_attn' ) if "linear1" in name: lowercase_ : List[str] = name.replace('linear1' , 'fc1' ) if "linear2" in name: lowercase_ : Tuple = name.replace('linear2' , 'fc2' ) if "norm1" in name: lowercase_ : List[Any] = name.replace('norm1' , 'self_attn_layer_norm' ) if "norm_cross" in name: lowercase_ : List[Any] = name.replace('norm_cross' , 'encoder_attn_layer_norm' ) if "norm2" in name: lowercase_ : str = name.replace('norm2' , 'final_layer_norm' ) if "out_norm" in name: lowercase_ : List[str] = name.replace('out_norm' , 'model.decoder.layer_norm' ) if "linears" in name: lowercase_ : str = name.replace('linears' , 'lm_heads' ) if "condition_provider.conditioners.description.output_proj" in name: lowercase_ : Union[str, Any] = name.replace('condition_provider.conditioners.description.output_proj' , 'enc_to_dec_proj' ) return name def lowercase__( __SCREAMING_SNAKE_CASE : OrderedDict , __SCREAMING_SNAKE_CASE : int ): lowercase_ : Union[str, Any] = list(state_dict.keys() ) lowercase_ : Dict = {} for key in keys: lowercase_ : str = state_dict.pop(__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[int] = rename_keys(__SCREAMING_SNAKE_CASE ) if "in_proj_weight" in key: # split fused qkv proj lowercase_ : str = val[:hidden_size, :] lowercase_ : Dict = val[hidden_size : 2 * hidden_size, :] lowercase_ : Tuple = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: lowercase_ : Any = val else: lowercase_ : Dict = val return state_dict, enc_dec_proj_state_dict def lowercase__( __SCREAMING_SNAKE_CASE : str ): if checkpoint == "small": # default config values lowercase_ : List[str] = 10_24 lowercase_ : str = 24 lowercase_ : Tuple = 16 elif checkpoint == "medium": lowercase_ : Optional[int] = 15_36 lowercase_ : Any = 48 lowercase_ : Dict = 24 elif checkpoint == "large": lowercase_ : int = 20_48 lowercase_ : Tuple = 48 lowercase_ : Tuple = 32 else: raise ValueError(F'''Checkpoint should be one of `[\'small\', \'medium\', \'large\']`, got {checkpoint}.''' ) lowercase_ : Dict = MusicgenDecoderConfig( hidden_size=__SCREAMING_SNAKE_CASE , ffn_dim=hidden_size * 4 , num_hidden_layers=__SCREAMING_SNAKE_CASE , num_attention_heads=__SCREAMING_SNAKE_CASE , ) return config @torch.no_grad() def lowercase__( __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Tuple=None , __SCREAMING_SNAKE_CASE : str=None , __SCREAMING_SNAKE_CASE : int="cpu" ): lowercase_ : List[Any] = MusicGen.get_pretrained(__SCREAMING_SNAKE_CASE , device=__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = decoder_config_from_checkpoint(__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = fairseq_model.lm.state_dict() lowercase_ , lowercase_ : Optional[Any] = rename_state_dict( __SCREAMING_SNAKE_CASE , hidden_size=decoder_config.hidden_size ) lowercase_ : Optional[Any] = TaEncoderModel.from_pretrained('t5-base' ) lowercase_ : int = EncodecModel.from_pretrained('facebook/encodec_32khz' ) lowercase_ : List[Any] = MusicgenForCausalLM(__SCREAMING_SNAKE_CASE ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection lowercase_ , lowercase_ : Any = decoder.load_state_dict(__SCREAMING_SNAKE_CASE , strict=__SCREAMING_SNAKE_CASE ) for key in missing_keys.copy(): if key.startswith(('text_encoder', 'audio_encoder') ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(__SCREAMING_SNAKE_CASE ) if len(__SCREAMING_SNAKE_CASE ) > 0: raise ValueError(F'''Missing key(s) in state_dict: {missing_keys}''' ) if len(__SCREAMING_SNAKE_CASE ) > 0: raise ValueError(F'''Unexpected key(s) in state_dict: {unexpected_keys}''' ) # init the composite model lowercase_ : Optional[int] = MusicgenForConditionalGeneration(text_encoder=__SCREAMING_SNAKE_CASE , audio_encoder=__SCREAMING_SNAKE_CASE , decoder=__SCREAMING_SNAKE_CASE ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(__SCREAMING_SNAKE_CASE ) # check we can do a forward pass lowercase_ : List[Any] = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) lowercase_ : Union[str, Any] = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): lowercase_ : List[str] = model(input_ids=__SCREAMING_SNAKE_CASE , decoder_input_ids=__SCREAMING_SNAKE_CASE ).logits if logits.shape != (8, 1, 20_48): raise ValueError('Incorrect shape for logits' ) # now construct the processor lowercase_ : List[Any] = AutoTokenizer.from_pretrained('t5-base' ) lowercase_ : Dict = AutoFeatureExtractor.from_pretrained('facebook/encodec_32khz' , padding_side='left' ) lowercase_ : int = MusicgenProcessor(feature_extractor=__SCREAMING_SNAKE_CASE , tokenizer=__SCREAMING_SNAKE_CASE ) # set the appropriate bos/pad token ids lowercase_ : Union[str, Any] = 20_48 lowercase_ : Optional[Any] = 20_48 # set other default generation config params lowercase_ : Any = int(30 * audio_encoder.config.frame_rate ) lowercase_ : Tuple = True lowercase_ : List[Any] = 3.0 if pytorch_dump_folder is not None: Path(__SCREAMING_SNAKE_CASE ).mkdir(exist_ok=__SCREAMING_SNAKE_CASE ) logger.info(F'''Saving model {checkpoint} to {pytorch_dump_folder}''' ) model.save_pretrained(__SCREAMING_SNAKE_CASE ) processor.save_pretrained(__SCREAMING_SNAKE_CASE ) if repo_id: logger.info(F'''Pushing model {checkpoint} to {repo_id}''' ) model.push_to_hub(__SCREAMING_SNAKE_CASE ) processor.push_to_hub(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE =argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint", default="small", type=str, help="Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.", ) parser.add_argument( "--pytorch_dump_folder", required=True, default=None, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) parser.add_argument( "--device", default="cpu", type=str, help="Torch device to run the conversion, either cpu or cuda." ) __SCREAMING_SNAKE_CASE =parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
425
"""simple docstring""" import os import shutil import sys import tempfile import unittest from pathlib import Path import pytest import transformers from transformers import ( BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoTokenizer, BertConfig, BertTokenizer, BertTokenizerFast, CTRLTokenizer, GPTaTokenizer, GPTaTokenizerFast, PreTrainedTokenizerFast, RobertaTokenizer, RobertaTokenizerFast, is_tokenizers_available, ) from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.auto.tokenization_auto import ( TOKENIZER_MAPPING, get_tokenizer_config, tokenizer_class_from_name, ) from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import ( DUMMY_DIFF_TOKENIZER_IDENTIFIER, DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tokenizers, slow, ) sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class UpperCamelCase ( unittest.TestCase ): def _UpperCAmelCase ( self ) -> int: '''simple docstring''' lowercase_ : str = 0 @slow def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x): lowercase_ : Tuple = AutoTokenizer.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) self.assertIsInstance(__UpperCamelCase ,(BertTokenizer, BertTokenizerFast) ) self.assertGreater(len(__UpperCamelCase ) ,0 ) for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys(): lowercase_ : List[Any] = AutoTokenizer.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) self.assertIsInstance(__UpperCamelCase ,(GPTaTokenizer, GPTaTokenizerFast) ) self.assertGreater(len(__UpperCamelCase ) ,0 ) def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ : Tuple = AutoTokenizer.from_pretrained(__UpperCamelCase ) self.assertIsInstance(__UpperCamelCase ,(BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size ,12 ) def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' lowercase_ : Dict = AutoTokenizer.from_pretrained(__UpperCamelCase ) self.assertIsInstance(__UpperCamelCase ,(RobertaTokenizer, RobertaTokenizerFast) ) self.assertEqual(tokenizer.vocab_size ,20 ) def _UpperCAmelCase ( self ) -> str: '''simple docstring''' lowercase_ : str = AutoConfig.from_pretrained(__UpperCamelCase ) self.assertIsInstance(__UpperCamelCase ,__UpperCamelCase ) # Check that tokenizer_type ≠ model_type lowercase_ : List[str] = AutoTokenizer.from_pretrained(__UpperCamelCase ,config=__UpperCamelCase ) self.assertIsInstance(__UpperCamelCase ,(BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size ,12 ) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('./tests/fixtures/vocab.txt' ,os.path.join(__UpperCamelCase ,'vocab.txt' ) ) lowercase_ : List[Any] = AutoTokenizer.from_pretrained(__UpperCamelCase ,tokenizer_type='bert' ,use_fast=__UpperCamelCase ) self.assertIsInstance(__UpperCamelCase ,__UpperCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('./tests/fixtures/vocab.json' ,os.path.join(__UpperCamelCase ,'vocab.json' ) ) shutil.copy('./tests/fixtures/merges.txt' ,os.path.join(__UpperCamelCase ,'merges.txt' ) ) lowercase_ : Optional[int] = AutoTokenizer.from_pretrained(__UpperCamelCase ,tokenizer_type='gpt2' ,use_fast=__UpperCamelCase ) self.assertIsInstance(__UpperCamelCase ,__UpperCamelCase ) @require_tokenizers def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('./tests/fixtures/vocab.txt' ,os.path.join(__UpperCamelCase ,'vocab.txt' ) ) lowercase_ : str = AutoTokenizer.from_pretrained(__UpperCamelCase ,tokenizer_type='bert' ) self.assertIsInstance(__UpperCamelCase ,__UpperCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('./tests/fixtures/vocab.json' ,os.path.join(__UpperCamelCase ,'vocab.json' ) ) shutil.copy('./tests/fixtures/merges.txt' ,os.path.join(__UpperCamelCase ,'merges.txt' ) ) lowercase_ : Dict = AutoTokenizer.from_pretrained(__UpperCamelCase ,tokenizer_type='gpt2' ) self.assertIsInstance(__UpperCamelCase ,__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' with pytest.raises(__UpperCamelCase ): AutoTokenizer.from_pretrained('./' ,tokenizer_type='xxx' ) @require_tokenizers def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: lowercase_ : Optional[Any] = tokenizer_class.from_pretrained('wietsedv/bert-base-dutch-cased' ) self.assertIsInstance(__UpperCamelCase ,(BertTokenizer, BertTokenizerFast) ) if isinstance(__UpperCamelCase ,__UpperCamelCase ): self.assertEqual(tokenizer.basic_tokenizer.do_lower_case ,__UpperCamelCase ) else: self.assertEqual(tokenizer.do_lower_case ,__UpperCamelCase ) self.assertEqual(tokenizer.model_max_length ,512 ) @require_tokenizers def _UpperCAmelCase ( self ) -> int: '''simple docstring''' for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: with self.assertRaisesRegex( __UpperCamelCase ,'julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier' ,): lowercase_ : Optional[Any] = tokenizer_class.from_pretrained('julien-c/herlolip-not-exists' ) def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' lowercase_ : Any = TOKENIZER_MAPPING.values() lowercase_ : Union[str, Any] = [] for slow_tok, fast_tok in tokenizers: if slow_tok is not None: tokenizer_names.append(slow_tok.__name__ ) if fast_tok is not None: tokenizer_names.append(fast_tok.__name__ ) for tokenizer_name in tokenizer_names: # must find the right class tokenizer_class_from_name(__UpperCamelCase ) @require_tokenizers def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' self.assertIsInstance(AutoTokenizer.from_pretrained('bert-base-cased' ,use_fast=__UpperCamelCase ) ,__UpperCamelCase ) self.assertIsInstance(AutoTokenizer.from_pretrained('bert-base-cased' ) ,__UpperCamelCase ) @require_tokenizers def _UpperCAmelCase ( self ) -> Dict: '''simple docstring''' lowercase_ : str = AutoTokenizer.from_pretrained('distilbert-base-uncased' ,do_lower_case=__UpperCamelCase ) lowercase_ : Optional[int] = 'Hello, world. How are you?' lowercase_ : Optional[int] = tokenizer.tokenize(__UpperCamelCase ) self.assertEqual('[UNK]' ,tokens[0] ) lowercase_ : List[Any] = AutoTokenizer.from_pretrained('microsoft/mpnet-base' ,do_lower_case=__UpperCamelCase ) lowercase_ : Tuple = tokenizer.tokenize(__UpperCamelCase ) self.assertEqual('[UNK]' ,tokens[0] ) @require_tokenizers def _UpperCAmelCase ( self ) -> Dict: '''simple docstring''' lowercase_ : List[Any] = AutoTokenizer.from_pretrained('robot-test/dummy-tokenizer-fast-with-model-config' ) self.assertEqual(type(__UpperCamelCase ) ,__UpperCamelCase ) self.assertEqual(tokenizer.model_max_length ,512 ) self.assertEqual(tokenizer.vocab_size ,3_0000 ) self.assertEqual(tokenizer.unk_token ,'[UNK]' ) self.assertEqual(tokenizer.padding_side ,'right' ) self.assertEqual(tokenizer.truncation_side ,'right' ) def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ : Optional[int] = AutoTokenizer.from_pretrained(__UpperCamelCase ) self.assertIsInstance(__UpperCamelCase ,(BertTokenizer, BertTokenizerFast) ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__UpperCamelCase ) lowercase_ : List[str] = AutoTokenizer.from_pretrained(__UpperCamelCase ) self.assertIsInstance(__UpperCamelCase ,tokenizer.__class__ ) self.assertEqual(tokenizera.vocab_size ,12 ) def _UpperCAmelCase ( self ) -> str: '''simple docstring''' lowercase_ : List[str] = AutoTokenizer.from_pretrained('ctrl' ) # There is no fast CTRL so this always gives us a slow tokenizer. self.assertIsInstance(__UpperCamelCase ,__UpperCamelCase ) def _UpperCAmelCase ( self ) -> str: '''simple docstring''' lowercase_ : Union[str, Any] = get_tokenizer_config('bert-base-cased' ) lowercase_ : Union[str, Any] = config.pop('_commit_hash' ,__UpperCamelCase ) # If we ever update bert-base-cased tokenizer config, this dict here will need to be updated. self.assertEqual(__UpperCamelCase ,{'do_lower_case': False} ) # This model does not have a tokenizer_config so we get back an empty dict. lowercase_ : Any = get_tokenizer_config(__UpperCamelCase ) self.assertDictEqual(__UpperCamelCase ,{} ) # A tokenizer saved with `save_pretrained` always creates a tokenizer config. lowercase_ : List[Any] = AutoTokenizer.from_pretrained(__UpperCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__UpperCamelCase ) lowercase_ : int = get_tokenizer_config(__UpperCamelCase ) # Check the class of the tokenizer was properly saved (note that it always saves the slow class). self.assertEqual(config['tokenizer_class'] ,'BertTokenizer' ) def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' try: AutoConfig.register('custom' ,__UpperCamelCase ) AutoTokenizer.register(__UpperCamelCase ,slow_tokenizer_class=__UpperCamelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__UpperCamelCase ): AutoTokenizer.register(__UpperCamelCase ,slow_tokenizer_class=__UpperCamelCase ) lowercase_ : List[str] = CustomTokenizer.from_pretrained(__UpperCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__UpperCamelCase ) lowercase_ : Tuple = AutoTokenizer.from_pretrained(__UpperCamelCase ) self.assertIsInstance(__UpperCamelCase ,__UpperCamelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] @require_tokenizers def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' try: AutoConfig.register('custom' ,__UpperCamelCase ) # Can register in two steps AutoTokenizer.register(__UpperCamelCase ,slow_tokenizer_class=__UpperCamelCase ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] ,(CustomTokenizer, None) ) AutoTokenizer.register(__UpperCamelCase ,fast_tokenizer_class=__UpperCamelCase ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] ,(CustomTokenizer, CustomTokenizerFast) ) del TOKENIZER_MAPPING._extra_content[CustomConfig] # Can register in one step AutoTokenizer.register( __UpperCamelCase ,slow_tokenizer_class=__UpperCamelCase ,fast_tokenizer_class=__UpperCamelCase ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] ,(CustomTokenizer, CustomTokenizerFast) ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__UpperCamelCase ): AutoTokenizer.register(__UpperCamelCase ,fast_tokenizer_class=__UpperCamelCase ) # We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer # and that model does not have a tokenizer.json with tempfile.TemporaryDirectory() as tmp_dir: lowercase_ : List[str] = BertTokenizerFast.from_pretrained(__UpperCamelCase ) bert_tokenizer.save_pretrained(__UpperCamelCase ) lowercase_ : Dict = CustomTokenizerFast.from_pretrained(__UpperCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__UpperCamelCase ) lowercase_ : Any = AutoTokenizer.from_pretrained(__UpperCamelCase ) self.assertIsInstance(__UpperCamelCase ,__UpperCamelCase ) lowercase_ : Any = AutoTokenizer.from_pretrained(__UpperCamelCase ,use_fast=__UpperCamelCase ) self.assertIsInstance(__UpperCamelCase ,__UpperCamelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' with self.assertRaises(__UpperCamelCase ): lowercase_ : Union[str, Any] = AutoTokenizer.from_pretrained('hf-internal-testing/test_dynamic_tokenizer' ) # If remote code is disabled, we can't load this config. with self.assertRaises(__UpperCamelCase ): lowercase_ : Tuple = AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer' ,trust_remote_code=__UpperCamelCase ) lowercase_ : int = AutoTokenizer.from_pretrained('hf-internal-testing/test_dynamic_tokenizer' ,trust_remote_code=__UpperCamelCase ) self.assertTrue(tokenizer.special_attribute_present ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__UpperCamelCase ) lowercase_ : int = AutoTokenizer.from_pretrained(__UpperCamelCase ,trust_remote_code=__UpperCamelCase ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ ,'NewTokenizerFast' ) self.assertEqual(reloaded_tokenizer.__class__.__name__ ,'NewTokenizerFast' ) # Test we can also load the slow version lowercase_ : int = AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer' ,trust_remote_code=__UpperCamelCase ,use_fast=__UpperCamelCase ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ ,'NewTokenizer' ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__UpperCamelCase ) lowercase_ : Optional[Any] = AutoTokenizer.from_pretrained(__UpperCamelCase ,trust_remote_code=__UpperCamelCase ,use_fast=__UpperCamelCase ) self.assertEqual(reloaded_tokenizer.__class__.__name__ ,'NewTokenizer' ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) else: self.assertEqual(tokenizer.__class__.__name__ ,'NewTokenizer' ) self.assertEqual(reloaded_tokenizer.__class__.__name__ ,'NewTokenizer' ) @require_tokenizers def _UpperCAmelCase ( self ) -> str: '''simple docstring''' class UpperCamelCase ( lowercase_ ): lowercase = False class UpperCamelCase ( lowercase_ ): lowercase = NewTokenizer lowercase = False try: AutoConfig.register('custom' ,__UpperCamelCase ) AutoTokenizer.register(__UpperCamelCase ,slow_tokenizer_class=__UpperCamelCase ) AutoTokenizer.register(__UpperCamelCase ,fast_tokenizer_class=__UpperCamelCase ) # If remote code is not set, the default is to use local lowercase_ : List[str] = AutoTokenizer.from_pretrained('hf-internal-testing/test_dynamic_tokenizer' ) self.assertEqual(tokenizer.__class__.__name__ ,'NewTokenizerFast' ) self.assertFalse(tokenizer.special_attribute_present ) lowercase_ : str = AutoTokenizer.from_pretrained('hf-internal-testing/test_dynamic_tokenizer' ,use_fast=__UpperCamelCase ) self.assertEqual(tokenizer.__class__.__name__ ,'NewTokenizer' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote code is disabled, we load the local one. lowercase_ : List[str] = AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer' ,trust_remote_code=__UpperCamelCase ) self.assertEqual(tokenizer.__class__.__name__ ,'NewTokenizerFast' ) self.assertFalse(tokenizer.special_attribute_present ) lowercase_ : Optional[int] = AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer' ,trust_remote_code=__UpperCamelCase ,use_fast=__UpperCamelCase ) self.assertEqual(tokenizer.__class__.__name__ ,'NewTokenizer' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub lowercase_ : Optional[Any] = AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer' ,trust_remote_code=__UpperCamelCase ) self.assertEqual(tokenizer.__class__.__name__ ,'NewTokenizerFast' ) self.assertTrue(tokenizer.special_attribute_present ) lowercase_ : Optional[int] = AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer' ,trust_remote_code=__UpperCamelCase ,use_fast=__UpperCamelCase ) self.assertEqual(tokenizer.__class__.__name__ ,'NewTokenizer' ) self.assertTrue(tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' lowercase_ : List[str] = AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer_legacy' ,trust_remote_code=__UpperCamelCase ) self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ ,'NewTokenizerFast' ) # Test we can also load the slow version lowercase_ : Tuple = AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer_legacy' ,trust_remote_code=__UpperCamelCase ,use_fast=__UpperCamelCase ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ ,'NewTokenizer' ) else: self.assertEqual(tokenizer.__class__.__name__ ,'NewTokenizer' ) def _UpperCAmelCase ( self ) -> int: '''simple docstring''' with self.assertRaisesRegex( __UpperCamelCase ,'bert-base is not a local folder and is not a valid model identifier' ): lowercase_ : List[Any] = AutoTokenizer.from_pretrained('bert-base' ) def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' with self.assertRaisesRegex( __UpperCamelCase ,r'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): lowercase_ : Optional[int] = AutoTokenizer.from_pretrained(__UpperCamelCase ,revision='aaaaaa' ) def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' lowercase_ : Tuple = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' ) with RequestCounter() as counter: lowercase_ : List[Any] = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' ) self.assertEqual(counter.get_request_count ,0 ) self.assertEqual(counter.head_request_count ,1 ) self.assertEqual(counter.other_request_count ,0 )
425
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from diffusers import DDIMScheduler, KandinskyVaaPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowerCamelCase_ ( __a , unittest.TestCase ): lowerCAmelCase__ = KandinskyVaaPipeline lowerCAmelCase__ = [ 'image_embeds', 'negative_image_embeds', ] lowerCAmelCase__ = ['image_embeds', 'negative_image_embeds'] lowerCAmelCase__ = [ 'generator', 'height', 'width', 'latents', 'guidance_scale', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] lowerCAmelCase__ = False @property def lowercase_ ( self : Optional[Any] ): '''simple docstring''' return 32 @property def lowercase_ ( self : Any ): '''simple docstring''' return 32 @property def lowercase_ ( self : Any ): '''simple docstring''' return self.time_input_dim @property def lowercase_ ( self : Dict ): '''simple docstring''' return self.time_input_dim * 4 @property def lowercase_ ( self : List[Any] ): '''simple docstring''' return 100 @property def lowercase_ ( self : Optional[int] ): '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase__ : Tuple = { '''in_channels''': 4, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } UpperCAmelCase__ : Any = UNetaDConditionModel(**_A ) return model @property def lowercase_ ( self : Tuple ): '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowercase_ ( self : Any ): '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase__ : Optional[Any] = VQModel(**self.dummy_movq_kwargs ) return model def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : List[Any] = self.dummy_unet UpperCAmelCase__ : int = self.dummy_movq UpperCAmelCase__ : str = DDIMScheduler( num_train_timesteps=1_000 , beta_schedule='''linear''' , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , clip_sample=_A , set_alpha_to_one=_A , steps_offset=1 , prediction_type='''epsilon''' , thresholding=_A , ) UpperCAmelCase__ : Union[str, Any] = { '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def lowercase_ ( self : Dict , _A : Dict , _A : List[str]=0 ): '''simple docstring''' UpperCAmelCase__ : Any = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_A ) ).to(_A ) UpperCAmelCase__ : Tuple = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _A ) if str(_A ).startswith('''mps''' ): UpperCAmelCase__ : Optional[int] = torch.manual_seed(_A ) else: UpperCAmelCase__ : Optional[int] = torch.Generator(device=_A ).manual_seed(_A ) UpperCAmelCase__ : List[Any] = { '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 64, '''width''': 64, '''guidance_scale''': 4.0, '''num_inference_steps''': 2, '''output_type''': '''np''', } return inputs def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Any = '''cpu''' UpperCAmelCase__ : List[Any] = self.get_dummy_components() UpperCAmelCase__ : Optional[int] = self.pipeline_class(**_A ) UpperCAmelCase__ : str = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase__ : Any = pipe(**self.get_dummy_inputs(_A ) ) UpperCAmelCase__ : List[str] = output.images UpperCAmelCase__ : Union[str, Any] = pipe( **self.get_dummy_inputs(_A ) , return_dict=_A , )[0] UpperCAmelCase__ : Optional[int] = image[0, -3:, -3:, -1] UpperCAmelCase__ : Optional[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase__ : Union[str, Any] = np.array( [0.6_2_3_7_9_7_6, 1.0, 0.3_6_4_4_1_3_3_2, 1.0, 0.7_0_6_3_9_6_3_4, 0.2_9_8_7_7_1_8_6, 0.8_5_6_5_2_1_2_5, 0.5_2_1_6_8_4_3, 0.5_4_4_5_4_0_4_6] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class lowerCamelCase_ ( unittest.TestCase ): def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self : str ): '''simple docstring''' UpperCAmelCase__ : str = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_text2img_cat_fp16.npy''' ) UpperCAmelCase__ : List[str] = KandinskyVaaPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(_A ) UpperCAmelCase__ : Optional[Any] = KandinskyVaaPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-decoder''' , torch_dtype=torch.floataa ) UpperCAmelCase__ : Optional[Any] = pipeline.to(_A ) pipeline.set_progress_bar_config(disable=_A ) UpperCAmelCase__ : int = '''red cat, 4k photo''' UpperCAmelCase__ : Dict = torch.Generator(device='''cuda''' ).manual_seed(0 ) UpperCAmelCase__ , UpperCAmelCase__ : Dict = pipe_prior( _A , generator=_A , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() UpperCAmelCase__ : Union[str, Any] = torch.Generator(device='''cuda''' ).manual_seed(0 ) UpperCAmelCase__ : Dict = pipeline( image_embeds=_A , negative_image_embeds=_A , generator=_A , num_inference_steps=100 , output_type='''np''' , ) UpperCAmelCase__ : Tuple = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(_A , _A )
312
'''simple docstring''' import os import unittest from transformers import LxmertTokenizer, LxmertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCamelCase_ ( __a , unittest.TestCase ): lowerCAmelCase__ = LxmertTokenizer lowerCAmelCase__ = LxmertTokenizerFast lowerCAmelCase__ = True lowerCAmelCase__ = True def lowercase_ ( self : Any ): '''simple docstring''' super().setUp() UpperCAmelCase__ : str = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] UpperCAmelCase__ : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def lowercase_ ( self : List[Any] , _A : List[str] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = '''UNwant\u00E9d,running''' UpperCAmelCase__ : str = '''unwanted, running''' return input_text, output_text def lowercase_ ( self : str ): '''simple docstring''' UpperCAmelCase__ : Any = self.tokenizer_class(self.vocab_file ) UpperCAmelCase__ : Tuple = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(_A , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_A ) , [7, 4, 5, 10, 8, 9] ) def lowercase_ ( self : int ): '''simple docstring''' if not self.test_rust_tokenizer: return UpperCAmelCase__ : List[str] = self.get_tokenizer() UpperCAmelCase__ : Tuple = self.get_rust_tokenizer() UpperCAmelCase__ : str = '''I was born in 92000, and this is falsé.''' UpperCAmelCase__ : Dict = tokenizer.tokenize(_A ) UpperCAmelCase__ : Tuple = rust_tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) UpperCAmelCase__ : int = tokenizer.encode(_A , add_special_tokens=_A ) UpperCAmelCase__ : Tuple = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) UpperCAmelCase__ : Optional[int] = self.get_rust_tokenizer() UpperCAmelCase__ : Tuple = tokenizer.encode(_A ) UpperCAmelCase__ : Any = rust_tokenizer.encode(_A ) self.assertListEqual(_A , _A )
312
1
'''simple docstring''' import functools def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): # Validation if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or not all(isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for day in days ): raise ValueError("""The parameter days should be a list of integers""" ) if len(_SCREAMING_SNAKE_CASE ) != 3 or not all(isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for cost in costs ): raise ValueError("""The parameter costs should be a list of three integers""" ) if len(_SCREAMING_SNAKE_CASE ) == 0: return 0 if min(_SCREAMING_SNAKE_CASE ) <= 0: raise ValueError("""All days elements should be greater than 0""" ) if max(_SCREAMING_SNAKE_CASE ) >= 366: raise ValueError("""All days elements should be less than 366""" ) _snake_case = set(_SCREAMING_SNAKE_CASE ) @functools.cache def dynamic_programming(_SCREAMING_SNAKE_CASE ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
585
'''simple docstring''' import unittest import numpy as np import torch from diffusers import PNDMPipeline, PNDMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @property def lowercase (self ) -> Optional[Any]: torch.manual_seed(0 ) _snake_case = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) return model def lowercase (self ) -> Dict: _snake_case = self.dummy_uncond_unet _snake_case = PNDMScheduler() _snake_case = PNDMPipeline(unet=UpperCAmelCase , scheduler=UpperCAmelCase ) pndm.to(UpperCAmelCase ) pndm.set_progress_bar_config(disable=UpperCAmelCase ) _snake_case = torch.manual_seed(0 ) _snake_case = pndm(generator=UpperCAmelCase , num_inference_steps=20 , output_type="""numpy""" ).images _snake_case = torch.manual_seed(0 ) _snake_case = pndm(generator=UpperCAmelCase , num_inference_steps=20 , output_type="""numpy""" , return_dict=UpperCAmelCase )[0] _snake_case = image[0, -3:, -3:, -1] _snake_case = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _snake_case = np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowercase (self ) -> Optional[Any]: _snake_case = """google/ddpm-cifar10-32""" _snake_case = UNetaDModel.from_pretrained(UpperCAmelCase ) _snake_case = PNDMScheduler() _snake_case = PNDMPipeline(unet=UpperCAmelCase , scheduler=UpperCAmelCase ) pndm.to(UpperCAmelCase ) pndm.set_progress_bar_config(disable=UpperCAmelCase ) _snake_case = torch.manual_seed(0 ) _snake_case = pndm(generator=UpperCAmelCase , output_type="""numpy""" ).images _snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _snake_case = np.array([0.1564, 0.1_4645, 0.1406, 0.1_4715, 0.1_2425, 0.1_4045, 0.1_3115, 0.1_2175, 0.125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
585
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices snake_case = logging.get_logger(__name__) class UpperCAmelCase ( __SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): A__ : List[str] = '''maskformer-swin''' A__ : Any = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self : Dict , __lowerCamelCase : Tuple=2_2_4 , __lowerCamelCase : Any=4 , __lowerCamelCase : Optional[Any]=3 , __lowerCamelCase : Tuple=9_6 , __lowerCamelCase : List[str]=[2, 2, 6, 2] , __lowerCamelCase : int=[3, 6, 1_2, 2_4] , __lowerCamelCase : Union[str, Any]=7 , __lowerCamelCase : Union[str, Any]=4.0 , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : List[Any]=0.0 , __lowerCamelCase : Union[str, Any]=0.0 , __lowerCamelCase : Any=0.1 , __lowerCamelCase : int="gelu" , __lowerCamelCase : List[Any]=False , __lowerCamelCase : str=0.0_2 , __lowerCamelCase : List[str]=1E-5 , __lowerCamelCase : Tuple=None , __lowerCamelCase : Optional[int]=None , **__lowerCamelCase : Dict , ): """simple docstring""" super().__init__(**__lowerCamelCase ) _snake_case = image_size _snake_case = patch_size _snake_case = num_channels _snake_case = embed_dim _snake_case = depths _snake_case = len(__lowerCamelCase ) _snake_case = num_heads _snake_case = window_size _snake_case = mlp_ratio _snake_case = qkv_bias _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = drop_path_rate _snake_case = hidden_act _snake_case = use_absolute_embeddings _snake_case = layer_norm_eps _snake_case = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _snake_case = int(embed_dim * 2 ** (len(__lowerCamelCase ) - 1) ) _snake_case = ['''stem'''] + [f"""stage{idx}""" for idx in range(1 , len(__lowerCamelCase ) + 1 )] _snake_case , _snake_case = get_aligned_output_features_output_indices( out_features=__lowerCamelCase , out_indices=__lowerCamelCase , stage_names=self.stage_names )
404
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() snake_case = logging.get_logger(__name__) def snake_case ( lowerCAmelCase_ , lowerCAmelCase_=False ) -> str: _snake_case = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"""blocks.{i}.norm1.weight""", f"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""blocks.{i}.norm1.bias""", f"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((f"""blocks.{i}.attn.proj.weight""", f"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.attn.proj.bias""", f"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((f"""blocks.{i}.norm2.weight""", f"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""blocks.{i}.norm2.bias""", f"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.weight""", f"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.bias""", f"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.weight""", f"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.bias""", f"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('''cls_token''', '''vit.embeddings.cls_token'''), ('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _snake_case = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def snake_case ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=False ) -> int: for i in range(config.num_hidden_layers ): if base_model: _snake_case = '''''' else: _snake_case = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _snake_case = state_dict.pop(f"""blocks.{i}.attn.qkv.weight""" ) _snake_case = state_dict.pop(f"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict _snake_case = in_proj_weight[ : config.hidden_size, : ] _snake_case = in_proj_bias[: config.hidden_size] _snake_case = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _snake_case = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _snake_case = in_proj_weight[ -config.hidden_size :, : ] _snake_case = in_proj_bias[-config.hidden_size :] def snake_case ( lowerCAmelCase_ ) -> Any: _snake_case = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(lowerCAmelCase_ , lowerCAmelCase_ ) def snake_case ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Dict: _snake_case = dct.pop(lowerCAmelCase_ ) _snake_case = val def snake_case ( ) -> List[Any]: _snake_case = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _snake_case = Image.open(requests.get(lowerCAmelCase_ , stream=lowerCAmelCase_ ).raw ) return im @torch.no_grad() def snake_case ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=True ) -> Any: _snake_case = ViTConfig() # patch_size if model_name[-1] == "8": _snake_case = 8 # set labels if required if not base_model: _snake_case = 1000 _snake_case = '''huggingface/label-files''' _snake_case = '''imagenet-1k-id2label.json''' _snake_case = json.load(open(hf_hub_download(lowerCAmelCase_ , lowerCAmelCase_ , repo_type='''dataset''' ) , '''r''' ) ) _snake_case = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} _snake_case = idalabel _snake_case = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: _snake_case = 384 _snake_case = 1536 _snake_case = 12 _snake_case = 6 # load original model from torch hub _snake_case = torch.hub.load('''facebookresearch/dino:main''' , lowerCAmelCase_ ) original_model.eval() # load state_dict of original model, remove and rename some keys _snake_case = original_model.state_dict() if base_model: remove_classification_head_(lowerCAmelCase_ ) _snake_case = create_rename_keys(lowerCAmelCase_ , base_model=lowerCAmelCase_ ) for src, dest in rename_keys: rename_key(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) read_in_q_k_v(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # load HuggingFace model if base_model: _snake_case = ViTModel(lowerCAmelCase_ , add_pooling_layer=lowerCAmelCase_ ).eval() else: _snake_case = ViTForImageClassification(lowerCAmelCase_ ).eval() model.load_state_dict(lowerCAmelCase_ ) # Check outputs on an image, prepared by ViTImageProcessor _snake_case = ViTImageProcessor() _snake_case = image_processor(images=prepare_img() , return_tensors='''pt''' ) _snake_case = encoding['''pixel_values'''] _snake_case = model(lowerCAmelCase_ ) if base_model: _snake_case = original_model(lowerCAmelCase_ ) assert torch.allclose(lowerCAmelCase_ , outputs.last_hidden_state[:, 0, :] , atol=1E-1 ) else: _snake_case = original_model(lowerCAmelCase_ ) assert logits.shape == outputs.logits.shape assert torch.allclose(lowerCAmelCase_ , outputs.logits , atol=1E-3 ) Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowerCAmelCase_ ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''dino_vitb16''', type=str, help='''Name of the model trained with DINO you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--base_model''', action='''store_true''', help='''Whether to only convert the base model (no projection head weights).''', ) parser.set_defaults(base_model=True) snake_case = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
404
1
import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename a_ = """http://www.mocksite.com/file1.txt""" a_ = """\"text\": [\"foo\", \"foo\"]""" a_ = """6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8""" class __lowerCAmelCase : lowerCAmelCase__ = 2_0_0 lowerCAmelCase__ = {"""Content-Length""": """100"""} lowerCAmelCase__ = {} def lowerCamelCase ( self , **__UpperCAmelCase ): '''simple docstring''' return [bytes(__lowercase , '''utf-8''' )] def a__ ( *_UpperCamelCase : Optional[int] ,**_UpperCamelCase : List[str] ): return MockResponse() @pytest.mark.parametrize('''urls_type''' ,[str, list, dict] ) def a__ ( _UpperCamelCase : Dict ,_UpperCamelCase : Union[str, Any] ,_UpperCamelCase : Union[str, Any] ): import requests monkeypatch.setattr(UpperCamelCase__ ,'''request''' ,UpperCamelCase__ ) __lowerCamelCase = URL if issubclass(UpperCamelCase__ ,UpperCamelCase__ ): __lowerCamelCase = url elif issubclass(UpperCamelCase__ ,UpperCamelCase__ ): __lowerCamelCase = [url] elif issubclass(UpperCamelCase__ ,UpperCamelCase__ ): __lowerCamelCase = {'''train''': url} __lowerCamelCase = '''dummy''' __lowerCamelCase = '''downloads''' __lowerCamelCase = tmp_path __lowerCamelCase = DownloadConfig( cache_dir=os.path.join(UpperCamelCase__ ,UpperCamelCase__ ) ,use_etag=UpperCamelCase__ ,) __lowerCamelCase = DownloadManager(dataset_name=UpperCamelCase__ ,download_config=UpperCamelCase__ ) __lowerCamelCase = dl_manager.download(UpperCamelCase__ ) __lowerCamelCase = urls for downloaded_paths in [downloaded_paths]: if isinstance(UpperCamelCase__ ,UpperCamelCase__ ): __lowerCamelCase = [downloaded_paths] __lowerCamelCase = [urls] elif isinstance(UpperCamelCase__ ,UpperCamelCase__ ): assert "train" in downloaded_paths.keys() __lowerCamelCase = downloaded_paths.values() __lowerCamelCase = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(UpperCamelCase__ ,UpperCamelCase__ ): assert downloaded_path == dl_manager.downloaded_paths[input_url] __lowerCamelCase = Path(UpperCamelCase__ ) __lowerCamelCase = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() __lowerCamelCase = downloaded_path.read_text() assert content == CONTENT __lowerCamelCase = downloaded_path.with_suffix('''.json''' ) assert metadata_downloaded_path.exists() __lowerCamelCase = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize('''paths_type''' ,[str, list, dict] ) def a__ ( _UpperCamelCase : str ,_UpperCamelCase : Optional[Any] ,_UpperCamelCase : Dict ): __lowerCamelCase = str(UpperCamelCase__ ) if issubclass(UpperCamelCase__ ,UpperCamelCase__ ): __lowerCamelCase = filename elif issubclass(UpperCamelCase__ ,UpperCamelCase__ ): __lowerCamelCase = [filename] elif issubclass(UpperCamelCase__ ,UpperCamelCase__ ): __lowerCamelCase = {'''train''': filename} __lowerCamelCase = '''dummy''' __lowerCamelCase = xz_file.parent __lowerCamelCase = '''extracted''' __lowerCamelCase = DownloadConfig( cache_dir=UpperCamelCase__ ,use_etag=UpperCamelCase__ ,) __lowerCamelCase = DownloadManager(dataset_name=UpperCamelCase__ ,download_config=UpperCamelCase__ ) __lowerCamelCase = dl_manager.extract(UpperCamelCase__ ) __lowerCamelCase = paths for extracted_paths in [extracted_paths]: if isinstance(UpperCamelCase__ ,UpperCamelCase__ ): __lowerCamelCase = [extracted_paths] __lowerCamelCase = [paths] elif isinstance(UpperCamelCase__ ,UpperCamelCase__ ): assert "train" in extracted_paths.keys() __lowerCamelCase = extracted_paths.values() __lowerCamelCase = paths.values() assert extracted_paths for extracted_path, input_path in zip(UpperCamelCase__ ,UpperCamelCase__ ): assert extracted_path == dl_manager.extracted_paths[input_path] __lowerCamelCase = Path(UpperCamelCase__ ) __lowerCamelCase = extracted_path.parts assert parts[-1] == hash_url_to_filename(UpperCamelCase__ ,etag=UpperCamelCase__ ) assert parts[-2] == extracted_subdir assert extracted_path.exists() __lowerCamelCase = extracted_path.read_text() __lowerCamelCase = text_file.read_text() assert extracted_file_content == expected_file_content def a__ ( _UpperCamelCase : List[Any] ,_UpperCamelCase : int ): assert path.endswith('''.jsonl''' ) for num_items, line in enumerate(UpperCamelCase__ ,start=1 ): __lowerCamelCase = json.loads(line.decode('''utf-8''' ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize('''archive_jsonl''' ,['''tar_jsonl_path''', '''zip_jsonl_path'''] ) def a__ ( _UpperCamelCase : Tuple ,_UpperCamelCase : int ): __lowerCamelCase = request.getfixturevalue(UpperCamelCase__ ) __lowerCamelCase = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(UpperCamelCase__ ) ,start=1 ): _test_jsonl(UpperCamelCase__ ,UpperCamelCase__ ) assert num_jsonl == 2 @pytest.mark.parametrize('''archive_nested_jsonl''' ,['''tar_nested_jsonl_path''', '''zip_nested_jsonl_path'''] ) def a__ ( _UpperCamelCase : Tuple ,_UpperCamelCase : Dict ): __lowerCamelCase = request.getfixturevalue(UpperCamelCase__ ) __lowerCamelCase = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(UpperCamelCase__ ) ,start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(UpperCamelCase__ ) ,start=1 ): _test_jsonl(UpperCamelCase__ ,UpperCamelCase__ ) assert num_tar == 1 assert num_jsonl == 2 def a__ ( _UpperCamelCase : int ): __lowerCamelCase = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(UpperCamelCase__ ) ,start=1 ): assert os.path.basename(UpperCamelCase__ ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
175
'''simple docstring''' # Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a_ = { 'configuration_cpmant': ['CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CpmAntConfig'], 'tokenization_cpmant': ['CpmAntTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST', 'CpmAntForCausalLM', 'CpmAntModel', 'CpmAntPreTrainedModel', ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
296
0
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING __magic_name__ = logging.get_logger(__name__) __magic_name__ = { '''ut/deta''': '''https://huggingface.co/ut/deta/resolve/main/config.json''', } class _SCREAMING_SNAKE_CASE ( __UpperCamelCase ): _A : List[str] = 'deta' _A : Tuple = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self , lowerCamelCase=None , lowerCamelCase=9_00 , lowerCamelCase=20_48 , lowerCamelCase=6 , lowerCamelCase=20_48 , lowerCamelCase=8 , lowerCamelCase=6 , lowerCamelCase=10_24 , lowerCamelCase=8 , lowerCamelCase=0.0 , lowerCamelCase=True , lowerCamelCase="relu" , lowerCamelCase=2_56 , lowerCamelCase=0.1 , lowerCamelCase=0.0 , lowerCamelCase=0.0 , lowerCamelCase=0.0_2 , lowerCamelCase=1.0 , lowerCamelCase=True , lowerCamelCase=False , lowerCamelCase="sine" , lowerCamelCase=5 , lowerCamelCase=4 , lowerCamelCase=4 , lowerCamelCase=True , lowerCamelCase=3_00 , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=1 , lowerCamelCase=5 , lowerCamelCase=2 , lowerCamelCase=1 , lowerCamelCase=1 , lowerCamelCase=5 , lowerCamelCase=2 , lowerCamelCase=0.1 , lowerCamelCase=0.2_5 , **lowerCamelCase , ): if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) snake_case__ = CONFIG_MAPPING["resnet"](out_features=["stage2", "stage3", "stage4"] ) else: if isinstance(lowerCamelCase , lowerCamelCase ): snake_case__ = backbone_config.pop("model_type" ) snake_case__ = CONFIG_MAPPING[backbone_model_type] snake_case__ = config_class.from_dict(lowerCamelCase ) snake_case__ = backbone_config snake_case__ = num_queries snake_case__ = max_position_embeddings snake_case__ = d_model snake_case__ = encoder_ffn_dim snake_case__ = encoder_layers snake_case__ = encoder_attention_heads snake_case__ = decoder_ffn_dim snake_case__ = decoder_layers snake_case__ = decoder_attention_heads snake_case__ = dropout snake_case__ = attention_dropout snake_case__ = activation_dropout snake_case__ = activation_function snake_case__ = init_std snake_case__ = init_xavier_std snake_case__ = encoder_layerdrop snake_case__ = auxiliary_loss snake_case__ = position_embedding_type # deformable attributes snake_case__ = num_feature_levels snake_case__ = encoder_n_points snake_case__ = decoder_n_points snake_case__ = two_stage snake_case__ = two_stage_num_proposals snake_case__ = with_box_refine snake_case__ = assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError("If two_stage is True, with_box_refine must be True." ) # Hungarian matcher snake_case__ = class_cost snake_case__ = bbox_cost snake_case__ = giou_cost # Loss coefficients snake_case__ = mask_loss_coefficient snake_case__ = dice_loss_coefficient snake_case__ = bbox_loss_coefficient snake_case__ = giou_loss_coefficient snake_case__ = eos_coefficient snake_case__ = focal_alpha super().__init__(is_encoder_decoder=lowerCamelCase , **lowerCamelCase ) @property def A_ ( self ): return self.encoder_attention_heads @property def A_ ( self ): return self.d_model def A_ ( self ): snake_case__ = copy.deepcopy(self.__dict__ ) snake_case__ = self.backbone_config.to_dict() snake_case__ = self.__class__.model_type return output
530
import argparse import json import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification def SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase ): snake_case__ = SwinConfig() snake_case__ = swin_name.split("_" ) snake_case__ = name_split[1] snake_case__ = int(name_split[4] ) snake_case__ = int(name_split[3][-1] ) if model_size == "tiny": snake_case__ = 96 snake_case__ = (2, 2, 6, 2) snake_case__ = (3, 6, 12, 24) elif model_size == "small": snake_case__ = 96 snake_case__ = (2, 2, 18, 2) snake_case__ = (3, 6, 12, 24) elif model_size == "base": snake_case__ = 128 snake_case__ = (2, 2, 18, 2) snake_case__ = (4, 8, 16, 32) else: snake_case__ = 192 snake_case__ = (2, 2, 18, 2) snake_case__ = (6, 12, 24, 48) if "in22k" in swin_name: snake_case__ = 21_841 else: snake_case__ = 1_000 snake_case__ = "huggingface/label-files" snake_case__ = "imagenet-1k-id2label.json" snake_case__ = json.load(open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase , repo_type="dataset" ) , "r" ) ) snake_case__ = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} snake_case__ = idalabel snake_case__ = {v: k for k, v in idalabel.items()} snake_case__ = img_size snake_case__ = num_classes snake_case__ = embed_dim snake_case__ = depths snake_case__ = num_heads snake_case__ = window_size return config def SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase ): if "patch_embed.proj" in name: snake_case__ = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: snake_case__ = name.replace("patch_embed.norm" , "embeddings.norm" ) if "layers" in name: snake_case__ = "encoder." + name if "attn.proj" in name: snake_case__ = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: snake_case__ = name.replace("attn" , "attention.self" ) if "norm1" in name: snake_case__ = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: snake_case__ = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: snake_case__ = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: snake_case__ = name.replace("mlp.fc2" , "output.dense" ) if name == "norm.weight": snake_case__ = "layernorm.weight" if name == "norm.bias": snake_case__ = "layernorm.bias" if "head" in name: snake_case__ = name.replace("head" , "classifier" ) else: snake_case__ = "swin." + name return name def SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase , __lowerCAmelCase ): for key in orig_state_dict.copy().keys(): snake_case__ = orig_state_dict.pop(__lowerCAmelCase ) if "mask" in key: continue elif "qkv" in key: snake_case__ = key.split("." ) snake_case__ = int(key_split[1] ) snake_case__ = int(key_split[3] ) snake_case__ = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: snake_case__ = val[:dim, :] snake_case__ = val[ dim : dim * 2, : ] snake_case__ = val[-dim:, :] else: snake_case__ = val[ :dim ] snake_case__ = val[ dim : dim * 2 ] snake_case__ = val[ -dim: ] else: snake_case__ = val return orig_state_dict def SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase , __lowerCAmelCase ): snake_case__ = timm.create_model(__lowerCAmelCase , pretrained=__lowerCAmelCase ) timm_model.eval() snake_case__ = get_swin_config(__lowerCAmelCase ) snake_case__ = SwinForImageClassification(__lowerCAmelCase ) model.eval() snake_case__ = convert_state_dict(timm_model.state_dict() , __lowerCAmelCase ) model.load_state_dict(__lowerCAmelCase ) snake_case__ = "http://images.cocodataset.org/val2017/000000039769.jpg" snake_case__ = AutoImageProcessor.from_pretrained("microsoft/{}".format(swin_name.replace("_" , "-" ) ) ) snake_case__ = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ) snake_case__ = image_processor(images=__lowerCAmelCase , return_tensors="pt" ) snake_case__ = timm_model(inputs["pixel_values"] ) snake_case__ = model(**__lowerCAmelCase ).logits assert torch.allclose(__lowerCAmelCase , __lowerCAmelCase , atol=1E-3 ) print(F"""Saving model {swin_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__lowerCAmelCase ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--swin_name''', default='''swin_tiny_patch4_window7_224''', type=str, help='''Name of the Swin timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) __magic_name__ = parser.parse_args() convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
530
1
import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging A : Dict = { 'cola': 2, 'mnli': 3, 'mrpc': 2, 'sst-2': 2, 'sts-b': 1, 'qqp': 2, 'qnli': 2, 'rte': 2, 'wnli': 2, } logging.set_verbosity_info() def UpperCamelCase ( __magic_name__ : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : str , __magic_name__ : Union[str, Any]=None ) -> Any: """simple docstring""" lowercase__ = XLNetConfig.from_json_file(__magic_name__ ) lowercase__ = finetuning_task.lower() if finetuning_task is not None else """""" if finetuning_task in GLUE_TASKS_NUM_LABELS: print(f'''Building PyTorch XLNetForSequenceClassification model from configuration: {config}''' ) lowercase__ = finetuning_task lowercase__ = GLUE_TASKS_NUM_LABELS[finetuning_task] lowercase__ = XLNetForSequenceClassification(__magic_name__ ) elif "squad" in finetuning_task: lowercase__ = finetuning_task lowercase__ = XLNetForQuestionAnswering(__magic_name__ ) else: lowercase__ = XLNetLMHeadModel(__magic_name__ ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(__magic_name__ , __magic_name__ , __magic_name__ ) # Save pytorch-model lowercase__ = os.path.join(__magic_name__ , __magic_name__ ) lowercase__ = os.path.join(__magic_name__ , __magic_name__ ) print(f'''Save PyTorch model to {os.path.abspath(__magic_name__ )}''' ) torch.save(model.state_dict() , __magic_name__ ) print(f'''Save configuration file to {os.path.abspath(__magic_name__ )}''' ) with open(__magic_name__ , """w""" , encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": A : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--xlnet_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained XLNet model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the folder to store the PyTorch model or dataset/vocab.', ) parser.add_argument( '--finetuning_task', default=None, type=str, help='Name of a task on which the XLNet TensorFlow model was fine-tuned', ) A : Any = parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
15
"""simple docstring""" import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class lowerCamelCase__ ( snake_case ): SCREAMING_SNAKE_CASE = (DPMSolverSDEScheduler,) SCREAMING_SNAKE_CASE = 10 def _UpperCamelCase ( self ,**A ): UpperCAmelCase = { """num_train_timesteps""": 1_100, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", """noise_sampler_seed""": 0, } config.update(**A ) return config def _UpperCamelCase ( self ): for timesteps in [10, 50, 100, 1_000]: self.check_over_configs(num_train_timesteps=A ) def _UpperCamelCase ( self ): for beta_start, beta_end in zip([0.00001, 0.0001, 0.001] ,[0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=A ,beta_end=A ) def _UpperCamelCase ( self ): for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=A ) def _UpperCamelCase ( self ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=A ) def _UpperCamelCase ( self ): UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config() UpperCAmelCase = scheduler_class(**A ) scheduler.set_timesteps(self.num_inference_steps ) UpperCAmelCase = self.dummy_model() UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma UpperCAmelCase = sample.to(A ) for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase = scheduler.scale_model_input(A ,A ) UpperCAmelCase = model(A ,A ) UpperCAmelCase = scheduler.step(A ,A ,A ) UpperCAmelCase = output.prev_sample UpperCAmelCase = torch.sum(torch.abs(A ) ) UpperCAmelCase = torch.mean(torch.abs(A ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.47821044921875 ) < 1e-2 assert abs(result_mean.item() - 0.2178705964565277 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59352111816406 ) < 1e-2 assert abs(result_mean.item() - 0.22342906892299652 ) < 1e-3 else: assert abs(result_sum.item() - 162.52383422851562 ) < 1e-2 assert abs(result_mean.item() - 0.211619570851326 ) < 1e-3 def _UpperCamelCase ( self ): UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config(prediction_type="""v_prediction""" ) UpperCAmelCase = scheduler_class(**A ) scheduler.set_timesteps(self.num_inference_steps ) UpperCAmelCase = self.dummy_model() UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma UpperCAmelCase = sample.to(A ) for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase = scheduler.scale_model_input(A ,A ) UpperCAmelCase = model(A ,A ) UpperCAmelCase = scheduler.step(A ,A ,A ) UpperCAmelCase = output.prev_sample UpperCAmelCase = torch.sum(torch.abs(A ) ) UpperCAmelCase = torch.mean(torch.abs(A ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 124.77149200439453 ) < 1e-2 assert abs(result_mean.item() - 0.16226289014816284 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 128.1663360595703 ) < 1e-2 assert abs(result_mean.item() - 0.16688326001167297 ) < 1e-3 else: assert abs(result_sum.item() - 119.8487548828125 ) < 1e-2 assert abs(result_mean.item() - 0.1560530662536621 ) < 1e-3 def _UpperCamelCase ( self ): UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config() UpperCAmelCase = scheduler_class(**A ) scheduler.set_timesteps(self.num_inference_steps ,device=A ) UpperCAmelCase = self.dummy_model() UpperCAmelCase = self.dummy_sample_deter.to(A ) * scheduler.init_noise_sigma for t in scheduler.timesteps: UpperCAmelCase = scheduler.scale_model_input(A ,A ) UpperCAmelCase = model(A ,A ) UpperCAmelCase = scheduler.step(A ,A ,A ) UpperCAmelCase = output.prev_sample UpperCAmelCase = torch.sum(torch.abs(A ) ) UpperCAmelCase = torch.mean(torch.abs(A ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.46957397460938 ) < 1e-2 assert abs(result_mean.item() - 0.21805934607982635 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59353637695312 ) < 1e-2 assert abs(result_mean.item() - 0.22342908382415771 ) < 1e-3 else: assert abs(result_sum.item() - 162.52383422851562 ) < 1e-2 assert abs(result_mean.item() - 0.211619570851326 ) < 1e-3 def _UpperCamelCase ( self ): UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config() UpperCAmelCase = scheduler_class(**A ,use_karras_sigmas=A ) scheduler.set_timesteps(self.num_inference_steps ,device=A ) UpperCAmelCase = self.dummy_model() UpperCAmelCase = self.dummy_sample_deter.to(A ) * scheduler.init_noise_sigma UpperCAmelCase = sample.to(A ) for t in scheduler.timesteps: UpperCAmelCase = scheduler.scale_model_input(A ,A ) UpperCAmelCase = model(A ,A ) UpperCAmelCase = scheduler.step(A ,A ,A ) UpperCAmelCase = output.prev_sample UpperCAmelCase = torch.sum(torch.abs(A ) ) UpperCAmelCase = torch.mean(torch.abs(A ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 176.66974135742188 ) < 1e-2 assert abs(result_mean.item() - 0.23003872730981811 ) < 1e-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 177.63653564453125 ) < 1e-2 assert abs(result_mean.item() - 0.23003872730981811 ) < 1e-2 else: assert abs(result_sum.item() - 170.3135223388672 ) < 1e-2 assert abs(result_mean.item() - 0.23003872730981811 ) < 1e-2
341
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _snake_case = {'''configuration_opt''': ['''OPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''OPTConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ '''OPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''OPTForCausalLM''', '''OPTModel''', '''OPTPreTrainedModel''', '''OPTForSequenceClassification''', '''OPTForQuestionAnswering''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['''TFOPTForCausalLM''', '''TFOPTModel''', '''TFOPTPreTrainedModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ '''FlaxOPTForCausalLM''', '''FlaxOPTModel''', '''FlaxOPTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_opt import ( OPT_PRETRAINED_MODEL_ARCHIVE_LIST, OPTForCausalLM, OPTForQuestionAnswering, OPTForSequenceClassification, OPTModel, OPTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel else: import sys _snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
713
"""simple docstring""" def __snake_case ( SCREAMING_SNAKE_CASE: str ): """simple docstring""" _lowerCAmelCase = 0 # if input_string is "aba" than new_input_string become "a|b|a" _lowerCAmelCase = '' _lowerCAmelCase = '' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(SCREAMING_SNAKE_CASE ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring _lowerCAmelCase , _lowerCAmelCase = 0, 0 # length[i] shows the length of palindromic substring with center i _lowerCAmelCase = [1 for i in range(len(SCREAMING_SNAKE_CASE ) )] # for each character in new_string find corresponding palindromic string _lowerCAmelCase = 0 for j in range(len(SCREAMING_SNAKE_CASE ) ): _lowerCAmelCase = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(SCREAMING_SNAKE_CASE ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 _lowerCAmelCase = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: _lowerCAmelCase = j - k + 1 # noqa: E741 _lowerCAmelCase = j + k - 1 # update max_length and start position if max_length < length[j]: _lowerCAmelCase = length[j] _lowerCAmelCase = j # create that string _lowerCAmelCase = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
491
0
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: UpperCamelCase = None UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {'vocab_file': 'sentencepiece.model', 'tokenizer_file': 'tokenizer.json'} UpperCamelCase = { 'vocab_file': { 'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/sentencepiece.model', }, 'tokenizer_file': { 'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/tokenizer.json', }, } UpperCamelCase = { 'google/rembert': 256, } UpperCamelCase = '▁' class _A ( UpperCAmelCase_ ): lowercase_ : str = VOCAB_FILES_NAMES lowercase_ : Tuple = PRETRAINED_VOCAB_FILES_MAP lowercase_ : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ : Union[str, Any] = RemBertTokenizer def __init__( self : Dict , lowerCamelCase__ : Tuple=None , lowerCamelCase__ : int=None , lowerCamelCase__ : Optional[Any]=True , lowerCamelCase__ : Tuple=True , lowerCamelCase__ : List[Any]=False , lowerCamelCase__ : int="[CLS]" , lowerCamelCase__ : Optional[Any]="[SEP]" , lowerCamelCase__ : Tuple="<unk>" , lowerCamelCase__ : Tuple="[SEP]" , lowerCamelCase__ : Optional[Any]="<pad>" , lowerCamelCase__ : List[str]="[CLS]" , lowerCamelCase__ : List[str]="[MASK]" , **lowerCamelCase__ : Optional[int] , ): """simple docstring""" __UpperCamelCase : Optional[int] = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else mask_token super().__init__( lowerCamelCase__ , tokenizer_file=lowerCamelCase__ , do_lower_case=lowerCamelCase__ , remove_space=lowerCamelCase__ , keep_accents=lowerCamelCase__ , bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , unk_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , **lowerCamelCase__ , ) __UpperCamelCase : List[Any] = do_lower_case __UpperCamelCase : List[str] = remove_space __UpperCamelCase : List[str] = keep_accents __UpperCamelCase : Any = vocab_file __UpperCamelCase : Union[str, Any] = False if not self.vocab_file else True def a ( self : List[Any] , lowerCamelCase__ : List[int] , lowerCamelCase__ : Optional[List[int]] = None ): """simple docstring""" __UpperCamelCase : List[str] = [self.sep_token_id] __UpperCamelCase : List[str] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def a ( self : List[Any] , lowerCamelCase__ : List[int] , lowerCamelCase__ : Optional[List[int]] = None , lowerCamelCase__ : bool = False ): """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( """You should not supply a second sequence if the provided sequence of """ """ids is already formatted with special tokens for the model.""" ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(lowerCamelCase__ )) + [1] + ([0] * len(lowerCamelCase__ )) + [1] return [1] + ([0] * len(lowerCamelCase__ )) + [1] def a ( self : List[Any] , lowerCamelCase__ : List[int] , lowerCamelCase__ : Optional[List[int]] = None ): """simple docstring""" __UpperCamelCase : Optional[Any] = [self.sep_token_id] __UpperCamelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def a ( self : Optional[Any] , lowerCamelCase__ : str , lowerCamelCase__ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(lowerCamelCase__ ): logger.error("""Vocabulary path ({}) should be a directory""".format(lowerCamelCase__ ) ) return __UpperCamelCase : str = os.path.join( lowerCamelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase__ ): copyfile(self.vocab_file , lowerCamelCase__ ) return (out_vocab_file,)
269
import argparse import os from pathlib import Path import torch from bark.generation import _load_model as _bark_load_model from huggingface_hub import hf_hub_download from transformers import EncodecConfig, EncodecModel, set_seed from transformers.models.bark.configuration_bark import ( BarkCoarseConfig, BarkConfig, BarkFineConfig, BarkSemanticConfig, ) from transformers.models.bark.generation_configuration_bark import ( BarkCoarseGenerationConfig, BarkFineGenerationConfig, BarkGenerationConfig, BarkSemanticGenerationConfig, ) from transformers.models.bark.modeling_bark import BarkCoarseModel, BarkFineModel, BarkModel, BarkSemanticModel from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase = logging.get_logger(__name__) set_seed(770) UpperCamelCase = { 'c_attn': 'att_proj', 'c_proj': 'out_proj', 'c_fc': 'in_proj', 'transformer.': '', 'h.': 'layers.', 'ln_1': 'layernorm_1', 'ln_2': 'layernorm_2', 'ln_f': 'layernorm_final', 'wpe': 'position_embeds_layer', 'wte': 'input_embeds_layer', } UpperCamelCase = { 'text_small': { 'repo_id': 'suno/bark', 'file_name': 'text.pt', }, 'coarse_small': { 'repo_id': 'suno/bark', 'file_name': 'coarse.pt', }, 'fine_small': { 'repo_id': 'suno/bark', 'file_name': 'fine.pt', }, 'text': { 'repo_id': 'suno/bark', 'file_name': 'text_2.pt', }, 'coarse': { 'repo_id': 'suno/bark', 'file_name': 'coarse_2.pt', }, 'fine': { 'repo_id': 'suno/bark', 'file_name': 'fine_2.pt', }, } UpperCamelCase = os.path.dirname(os.path.abspath(__file__)) UpperCamelCase = os.path.join(os.path.expanduser('~'), '.cache') UpperCamelCase = os.path.join(os.getenv('XDG_CACHE_HOME', default_cache_dir), 'suno', 'bark_v0') def __lowerCamelCase ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[str]=False ) -> int: __UpperCamelCase : Optional[Any] = model_type if use_small: key += "_small" return os.path.join(__lowerCAmelCase , REMOTE_MODEL_PATHS[key]["""file_name"""] ) def __lowerCamelCase ( __lowerCAmelCase : int , __lowerCAmelCase : Optional[Any] ) -> List[Any]: os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase ) hf_hub_download(repo_id=__lowerCAmelCase , filename=__lowerCAmelCase , local_dir=__lowerCAmelCase ) def __lowerCamelCase ( __lowerCAmelCase : List[str] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Union[str, Any]=False , __lowerCAmelCase : Tuple="text" ) -> Optional[Any]: if model_type == "text": __UpperCamelCase : List[str] = BarkSemanticModel __UpperCamelCase : Dict = BarkSemanticConfig __UpperCamelCase : str = BarkSemanticGenerationConfig elif model_type == "coarse": __UpperCamelCase : List[str] = BarkCoarseModel __UpperCamelCase : int = BarkCoarseConfig __UpperCamelCase : int = BarkCoarseGenerationConfig elif model_type == "fine": __UpperCamelCase : List[Any] = BarkFineModel __UpperCamelCase : Dict = BarkFineConfig __UpperCamelCase : int = BarkFineGenerationConfig else: raise NotImplementedError() __UpperCamelCase : List[str] = f'{model_type}_small' if use_small else model_type __UpperCamelCase : Dict = REMOTE_MODEL_PATHS[model_key] if not os.path.exists(__lowerCAmelCase ): logger.info(f'{model_type} model not found, downloading into `{CACHE_DIR}`.' ) _download(model_info["""repo_id"""] , model_info["""file_name"""] ) __UpperCamelCase : Union[str, Any] = torch.load(__lowerCAmelCase , map_location=__lowerCAmelCase ) # this is a hack __UpperCamelCase : Any = checkpoint["""model_args"""] if "input_vocab_size" not in model_args: __UpperCamelCase : Tuple = model_args["""vocab_size"""] __UpperCamelCase : List[str] = model_args["""vocab_size"""] del model_args["vocab_size"] # convert Bark model arguments to HF Bark model arguments __UpperCamelCase : Tuple = model_args.pop("""n_head""" ) __UpperCamelCase : Tuple = model_args.pop("""n_embd""" ) __UpperCamelCase : Union[str, Any] = model_args.pop("""n_layer""" ) __UpperCamelCase : List[Any] = ConfigClass(**checkpoint["""model_args"""] ) __UpperCamelCase : Optional[int] = ModelClass(config=__lowerCAmelCase ) __UpperCamelCase : Dict = GenerationConfigClass() __UpperCamelCase : Any = model_generation_config __UpperCamelCase : str = checkpoint["""model"""] # fixup checkpoint __UpperCamelCase : Dict = """_orig_mod.""" for k, v in list(state_dict.items() ): if k.startswith(__lowerCAmelCase ): # replace part of the key with corresponding layer name in HF implementation __UpperCamelCase : List[str] = k[len(__lowerCAmelCase ) :] for old_layer_name in new_layer_name_dict: __UpperCamelCase : List[Any] = new_k.replace(__lowerCAmelCase , new_layer_name_dict[old_layer_name] ) __UpperCamelCase : Optional[Any] = state_dict.pop(__lowerCAmelCase ) __UpperCamelCase : int = set(state_dict.keys() ) - set(model.state_dict().keys() ) __UpperCamelCase : List[Any] = {k for k in extra_keys if not k.endswith(""".attn.bias""" )} __UpperCamelCase : Dict = set(model.state_dict().keys() ) - set(state_dict.keys() ) __UpperCamelCase : Optional[int] = {k for k in missing_keys if not k.endswith(""".attn.bias""" )} if len(__lowerCAmelCase ) != 0: raise ValueError(f'extra keys found: {extra_keys}' ) if len(__lowerCAmelCase ) != 0: raise ValueError(f'missing keys: {missing_keys}' ) model.load_state_dict(__lowerCAmelCase , strict=__lowerCAmelCase ) __UpperCamelCase : Tuple = model.num_parameters(exclude_embeddings=__lowerCAmelCase ) __UpperCamelCase : Optional[int] = checkpoint["""best_val_loss"""].item() logger.info(f'model loaded: {round(n_params/1e6 , 1 )}M params, {round(__lowerCAmelCase , 3 )} loss' ) model.eval() model.to(__lowerCAmelCase ) del checkpoint, state_dict return model def __lowerCamelCase ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : int=False , __lowerCAmelCase : Tuple="text" ) -> Tuple: if model_type not in ("text", "coarse", "fine"): raise NotImplementedError() __UpperCamelCase : str = """cpu""" # do conversion on cpu __UpperCamelCase : str = _get_ckpt_path(__lowerCAmelCase , use_small=__lowerCAmelCase ) __UpperCamelCase : Optional[int] = _load_model(__lowerCAmelCase , __lowerCAmelCase , model_type=__lowerCAmelCase , use_small=__lowerCAmelCase ) # load bark initial model __UpperCamelCase : Dict = _bark_load_model(__lowerCAmelCase , """cpu""" , model_type=__lowerCAmelCase , use_small=__lowerCAmelCase ) if model_type == "text": __UpperCamelCase : Dict = bark_model["""model"""] if model.num_parameters(exclude_embeddings=__lowerCAmelCase ) != bark_model.get_num_params(): raise ValueError("""initial and new models don't have the same number of parameters""" ) # check if same output as the bark model __UpperCamelCase : List[str] = 5 __UpperCamelCase : List[Any] = 10 if model_type in ["text", "coarse"]: __UpperCamelCase : List[Any] = torch.randint(256 , (batch_size, sequence_length) , dtype=torch.int ) __UpperCamelCase : List[str] = bark_model(__lowerCAmelCase )[0] __UpperCamelCase : Dict = model(__lowerCAmelCase ) # take last logits __UpperCamelCase : Union[str, Any] = output_new_model_total.logits[:, [-1], :] else: __UpperCamelCase : Optional[int] = 3 __UpperCamelCase : Tuple = 8 __UpperCamelCase : int = torch.randint(256 , (batch_size, sequence_length, n_codes_total) , dtype=torch.int ) __UpperCamelCase : Union[str, Any] = model(__lowerCAmelCase , __lowerCAmelCase ) __UpperCamelCase : Tuple = bark_model(__lowerCAmelCase , __lowerCAmelCase ) __UpperCamelCase : Dict = output_new_model_total.logits # output difference should come from the difference of self-attention implementation design if output_new_model.shape != output_old_model.shape: raise ValueError("""initial and new outputs don't have the same shape""" ) if (output_new_model - output_old_model).abs().max().item() > 1e-3: raise ValueError("""initial and new outputs are not equal""" ) Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase ) model.save_pretrained(__lowerCAmelCase ) def __lowerCamelCase ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[str] , __lowerCAmelCase : List[str] , __lowerCAmelCase : int , __lowerCAmelCase : Optional[Any] , ) -> int: __UpperCamelCase : Optional[int] = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) __UpperCamelCase : str = BarkSemanticConfig.from_pretrained(os.path.join(__lowerCAmelCase , """config.json""" ) ) __UpperCamelCase : List[str] = BarkCoarseConfig.from_pretrained(os.path.join(__lowerCAmelCase , """config.json""" ) ) __UpperCamelCase : List[Any] = BarkFineConfig.from_pretrained(os.path.join(__lowerCAmelCase , """config.json""" ) ) __UpperCamelCase : List[str] = EncodecConfig.from_pretrained("""facebook/encodec_24khz""" ) __UpperCamelCase : Optional[int] = BarkSemanticModel.from_pretrained(__lowerCAmelCase ) __UpperCamelCase : List[Any] = BarkCoarseModel.from_pretrained(__lowerCAmelCase ) __UpperCamelCase : Union[str, Any] = BarkFineModel.from_pretrained(__lowerCAmelCase ) __UpperCamelCase : Union[str, Any] = EncodecModel.from_pretrained("""facebook/encodec_24khz""" ) __UpperCamelCase : Dict = BarkConfig.from_sub_model_configs( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) __UpperCamelCase : List[Any] = BarkGenerationConfig.from_sub_model_configs( semantic.generation_config , coarseAcoustic.generation_config , fineAcoustic.generation_config ) __UpperCamelCase : Optional[int] = BarkModel(__lowerCAmelCase ) __UpperCamelCase : List[Any] = semantic __UpperCamelCase : Any = coarseAcoustic __UpperCamelCase : Dict = fineAcoustic __UpperCamelCase : List[str] = codec __UpperCamelCase : Optional[Any] = bark_generation_config Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase ) bark.save_pretrained(__lowerCAmelCase , repo_id=__lowerCAmelCase , push_to_hub=__lowerCAmelCase ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('model_type', type=str, help='text, coarse or fine.') parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--is_small', action='store_true', help='convert the small version instead of the large.') UpperCamelCase = parser.parse_args() load_model(args.pytorch_dump_folder_path, model_type=args.model_type, use_small=args.is_small)
269
1
import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __lowerCamelCase : Dict = logging.get_logger(__name__) __lowerCamelCase : Optional[int] = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } __lowerCamelCase : List[str] = { '''vocab_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json''' }, '''merges_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt''' }, '''tokenizer_config_file''': { '''facebook/blenderbot_small-90M''': ( '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json''' ) }, } __lowerCamelCase : Union[str, Any] = {'''facebook/blenderbot_small-90M''': 512} def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ = set() SCREAMING_SNAKE_CASE__ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) SCREAMING_SNAKE_CASE__ = char SCREAMING_SNAKE_CASE__ = set(A__ ) return pairs class __snake_case ( __lowerCamelCase ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = ['input_ids', 'attention_mask'] def __init__( self : str , _lowercase : List[str] , _lowercase : Optional[Any] , _lowercase : List[str]="__start__" , _lowercase : Optional[Any]="__end__" , _lowercase : Optional[Any]="__unk__" , _lowercase : Union[str, Any]="__null__" , **_lowercase : int , ): """simple docstring""" super().__init__(unk_token=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , **UpperCamelCase_ ) with open(UpperCamelCase_ , encoding="""utf-8""" ) as vocab_handle: SCREAMING_SNAKE_CASE__ = json.load(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = {v: k for k, v in self.encoder.items()} with open(UpperCamelCase_ , encoding="""utf-8""" ) as merges_handle: SCREAMING_SNAKE_CASE__ = merges_handle.read().split("""\n""" )[1:-1] SCREAMING_SNAKE_CASE__ = [tuple(merge.split() ) for merge in merges] SCREAMING_SNAKE_CASE__ = dict(zip(UpperCamelCase_ , range(len(UpperCamelCase_ ) ) ) ) SCREAMING_SNAKE_CASE__ = {} @property def __a ( self : List[str] ): """simple docstring""" return len(self.encoder ) def __a ( self : List[str] ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def __a ( self : str , _lowercase : str ): """simple docstring""" if token in self.cache: return self.cache[token] SCREAMING_SNAKE_CASE__ = re.sub("""([.,!?()])""" , R""" \1""" , UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = re.sub("""(')""" , R""" \1 """ , UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = re.sub(R"""\s{2,}""" , """ """ , UpperCamelCase_ ) if "\n" in token: SCREAMING_SNAKE_CASE__ = token.replace("""\n""" , """ __newln__""" ) SCREAMING_SNAKE_CASE__ = token.split(""" """ ) SCREAMING_SNAKE_CASE__ = [] for token in tokens: if not len(UpperCamelCase_ ): continue SCREAMING_SNAKE_CASE__ = token.lower() SCREAMING_SNAKE_CASE__ = tuple(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = tuple(list(word[:-1] ) + [word[-1] + """</w>"""] ) SCREAMING_SNAKE_CASE__ = get_pairs(UpperCamelCase_ ) if not pairs: words.append(UpperCamelCase_ ) continue while True: SCREAMING_SNAKE_CASE__ = min(UpperCamelCase_ , key=lambda _lowercase : self.bpe_ranks.get(UpperCamelCase_ , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = bigram SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = 0 while i < len(UpperCamelCase_ ): try: SCREAMING_SNAKE_CASE__ = word.index(UpperCamelCase_ , UpperCamelCase_ ) new_word.extend(word[i:j] ) SCREAMING_SNAKE_CASE__ = j except ValueError: new_word.extend(word[i:] ) break if word[i] == first and i < len(UpperCamelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 SCREAMING_SNAKE_CASE__ = tuple(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = new_word if len(UpperCamelCase_ ) == 1: break else: SCREAMING_SNAKE_CASE__ = get_pairs(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = """@@ """.join(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = word[:-4] SCREAMING_SNAKE_CASE__ = word words.append(UpperCamelCase_ ) return " ".join(UpperCamelCase_ ) def __a ( self : List[str] , _lowercase : str ): """simple docstring""" SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = re.findall(R"""\S+\n?""" , UpperCamelCase_ ) for token in words: split_tokens.extend(list(self.bpe(UpperCamelCase_ ).split(""" """ ) ) ) return split_tokens def __a ( self : Tuple , _lowercase : str ): """simple docstring""" SCREAMING_SNAKE_CASE__ = token.lower() return self.encoder.get(UpperCamelCase_ , self.encoder.get(self.unk_token ) ) def __a ( self : Dict , _lowercase : int ): """simple docstring""" return self.decoder.get(UpperCamelCase_ , self.unk_token ) def __a ( self : Optional[int] , _lowercase : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = """ """.join(UpperCamelCase_ ).replace("""@@ """ , """""" ).strip() return out_string def __a ( self : str , _lowercase : str , _lowercase : Optional[str] = None ): """simple docstring""" if not os.path.isdir(UpperCamelCase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return SCREAMING_SNAKE_CASE__ = os.path.join( UpperCamelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) SCREAMING_SNAKE_CASE__ = os.path.join( UpperCamelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(UpperCamelCase_ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCamelCase_ , ensure_ascii=UpperCamelCase_ ) + """\n""" ) SCREAMING_SNAKE_CASE__ = 0 with open(UpperCamelCase_ , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _lowercase : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" """ Please check that the tokenizer is not corrupted!""" ) SCREAMING_SNAKE_CASE__ = token_index writer.write(""" """.join(UpperCamelCase_ ) + """\n""" ) index += 1 return vocab_file, merge_file
714
from __future__ import annotations def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : list ) -> float: """simple docstring""" if not nums: raise ValueError("""List is empty""" ) return sum(__UpperCamelCase ) / len(__UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
379
0
from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) A = _symbol_database.Default() A = _descriptor_pool.Default().AddSerializedFile( b'\n\x19sentencepiece_model.proto\x12\rsentencepiece"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03' ) A = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'sentencepiece_model_pb2', _globals) if _descriptor._USE_C_DESCRIPTORS is False: A = None A = b'H\003' # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" A = 45 A = 1581 A = 1517 A = 1570 A = 1584 A = 1793 A = 1795 A = 1916 A = 1864 A = 1905 A = 1919 A = 2429 A = 2208 A = 2418 A = 2323 A = 2407 # @@protoc_insertion_point(module_scope)
187
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices A = logging.get_logger(__name__) A = { 'google/bit-50': 'https://huggingface.co/google/bit-50/resolve/main/config.json', } class SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ): """simple docstring""" __A = """bit""" __A = ["""preactivation""", """bottleneck"""] __A = ["""SAME""", """VALID"""] def __init__( self , __UpperCamelCase=3 , __UpperCamelCase=64 , __UpperCamelCase=[2_56, 5_12, 10_24, 20_48] , __UpperCamelCase=[3, 4, 6, 3] , __UpperCamelCase="preactivation" , __UpperCamelCase="relu" , __UpperCamelCase=None , __UpperCamelCase=32 , __UpperCamelCase=0.0 , __UpperCamelCase=False , __UpperCamelCase=32 , __UpperCamelCase=1 , __UpperCamelCase=None , __UpperCamelCase=None , **__UpperCamelCase , ): """simple docstring""" super().__init__(**__UpperCamelCase ) if layer_type not in self.layer_types: raise ValueError(f"""layer_type={layer_type} is not one of {','.join(self.layer_types )}""" ) if global_padding is not None: if global_padding.upper() in self.supported_padding: snake_case_ = global_padding.upper() else: raise ValueError(f"""Padding strategy {global_padding} not supported""" ) snake_case_ = num_channels snake_case_ = embedding_size snake_case_ = hidden_sizes snake_case_ = depths snake_case_ = layer_type snake_case_ = hidden_act snake_case_ = global_padding snake_case_ = num_groups snake_case_ = drop_path_rate snake_case_ = embedding_dynamic_padding snake_case_ = output_stride snake_case_ = width_factor snake_case_ = ['stem'] + [f"""stage{idx}""" for idx in range(1 , len(__UpperCamelCase ) + 1 )] snake_case_ , snake_case_ = get_aligned_output_features_output_indices( out_features=__UpperCamelCase , out_indices=__UpperCamelCase , stage_names=self.stage_names )
187
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging __lowercase = logging.get_logger(__name__) if is_vision_available(): import PIL class a__( UpperCamelCase_ ): UpperCAmelCase_ : Tuple = ['''pixel_values'''] def __init__( self , __lowerCAmelCase = True , __lowerCAmelCase = None , __lowerCAmelCase = PILImageResampling.BICUBIC , __lowerCAmelCase = True , __lowerCAmelCase = None , __lowerCAmelCase = True , __lowerCAmelCase = 1 / 255 , __lowerCAmelCase = True , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = True , **__lowerCAmelCase , ): """simple docstring""" super().__init__(**__lowerCAmelCase) lowerCAmelCase = size if size is not None else {'''shortest_edge''': 224} lowerCAmelCase = get_size_dict(__lowerCAmelCase , default_to_square=__lowerCAmelCase) lowerCAmelCase = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} lowerCAmelCase = get_size_dict(__lowerCAmelCase , default_to_square=__lowerCAmelCase , param_name="""crop_size""") lowerCAmelCase = do_resize lowerCAmelCase = size lowerCAmelCase = resample lowerCAmelCase = do_center_crop lowerCAmelCase = crop_size lowerCAmelCase = do_rescale lowerCAmelCase = rescale_factor lowerCAmelCase = do_normalize lowerCAmelCase = image_mean if image_mean is not None else OPENAI_CLIP_MEAN lowerCAmelCase = image_std if image_std is not None else OPENAI_CLIP_STD lowerCAmelCase = do_convert_rgb def a_ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = PILImageResampling.BICUBIC , __lowerCAmelCase = None , **__lowerCAmelCase , ): """simple docstring""" lowerCAmelCase = get_size_dict(__lowerCAmelCase , default_to_square=__lowerCAmelCase) if "shortest_edge" not in size: raise ValueError(f"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}") lowerCAmelCase = get_resize_output_image_size(__lowerCAmelCase , size=size["""shortest_edge"""] , default_to_square=__lowerCAmelCase) return resize(__lowerCAmelCase , size=__lowerCAmelCase , resample=__lowerCAmelCase , data_format=__lowerCAmelCase , **__lowerCAmelCase) def a_ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None , **__lowerCAmelCase , ): """simple docstring""" lowerCAmelCase = get_size_dict(__lowerCAmelCase) if "height" not in size or "width" not in size: raise ValueError(f"The `size` parameter must contain the keys (height, width). Got {size.keys()}") return center_crop(__lowerCAmelCase , size=(size["""height"""], size["""width"""]) , data_format=__lowerCAmelCase , **__lowerCAmelCase) def a_ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None , **__lowerCAmelCase , ): """simple docstring""" return rescale(__lowerCAmelCase , scale=__lowerCAmelCase , data_format=__lowerCAmelCase , **__lowerCAmelCase) def a_ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None , **__lowerCAmelCase , ): """simple docstring""" return normalize(__lowerCAmelCase , mean=__lowerCAmelCase , std=__lowerCAmelCase , data_format=__lowerCAmelCase , **__lowerCAmelCase) def a_ ( self , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = ChannelDimension.FIRST , **__lowerCAmelCase , ): """simple docstring""" lowerCAmelCase = do_resize if do_resize is not None else self.do_resize lowerCAmelCase = size if size is not None else self.size lowerCAmelCase = get_size_dict(__lowerCAmelCase , param_name="""size""" , default_to_square=__lowerCAmelCase) lowerCAmelCase = resample if resample is not None else self.resample lowerCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop lowerCAmelCase = crop_size if crop_size is not None else self.crop_size lowerCAmelCase = get_size_dict(__lowerCAmelCase , param_name="""crop_size""" , default_to_square=__lowerCAmelCase) lowerCAmelCase = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase = image_mean if image_mean is not None else self.image_mean lowerCAmelCase = image_std if image_std is not None else self.image_std lowerCAmelCase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb lowerCAmelCase = make_list_of_images(__lowerCAmelCase) if not valid_images(__lowerCAmelCase): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""") if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""") if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""") if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""") if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""") # PIL RGBA images are converted to RGB if do_convert_rgb: lowerCAmelCase = [convert_to_rgb(__lowerCAmelCase) for image in images] # All transformations expect numpy arrays. lowerCAmelCase = [to_numpy_array(__lowerCAmelCase) for image in images] if do_resize: lowerCAmelCase = [self.resize(image=__lowerCAmelCase , size=__lowerCAmelCase , resample=__lowerCAmelCase) for image in images] if do_center_crop: lowerCAmelCase = [self.center_crop(image=__lowerCAmelCase , size=__lowerCAmelCase) for image in images] if do_rescale: lowerCAmelCase = [self.rescale(image=__lowerCAmelCase , scale=__lowerCAmelCase) for image in images] if do_normalize: lowerCAmelCase = [self.normalize(image=__lowerCAmelCase , mean=__lowerCAmelCase , std=__lowerCAmelCase) for image in images] lowerCAmelCase = [to_channel_dimension_format(__lowerCAmelCase , __lowerCAmelCase) for image in images] lowerCAmelCase = {'''pixel_values''': images} return BatchFeature(data=__lowerCAmelCase , tensor_type=__lowerCAmelCase)
719
'''simple docstring''' import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors __lowercase = logging.getLogger(__name__) class a__( lowerCAmelCase__ ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = '''sequence-classification''' def __init__( self , __lowerCAmelCase): """simple docstring""" if type(__lowerCAmelCase) == dict: lowerCAmelCase = Namespace(**__lowerCAmelCase) lowerCAmelCase = glue_output_modes[hparams.task] lowerCAmelCase = glue_tasks_num_labels[hparams.task] super().__init__(__lowerCAmelCase , __lowerCAmelCase , self.mode) def a_ ( self , **__lowerCAmelCase): """simple docstring""" return self.model(**__lowerCAmelCase) def a_ ( self , __lowerCAmelCase , __lowerCAmelCase): """simple docstring""" lowerCAmelCase = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: lowerCAmelCase = batch[2] if self.config.model_type in ["""bert""", """xlnet""", """albert"""] else None lowerCAmelCase = self(**__lowerCAmelCase) lowerCAmelCase = outputs[0] lowerCAmelCase = self.trainer.lr_schedulers[0]["""scheduler"""] lowerCAmelCase = {"""loss""": loss, """rate""": lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def a_ ( self): """simple docstring""" lowerCAmelCase = self.hparams lowerCAmelCase = processors[args.task]() lowerCAmelCase = processor.get_labels() for mode in ["train", "dev"]: lowerCAmelCase = self._feature_file(__lowerCAmelCase) if os.path.exists(__lowerCAmelCase) and not args.overwrite_cache: logger.info("""Loading features from cached file %s""" , __lowerCAmelCase) else: logger.info("""Creating features from dataset file at %s""" , args.data_dir) lowerCAmelCase = ( processor.get_dev_examples(args.data_dir) if mode == """dev""" else processor.get_train_examples(args.data_dir) ) lowerCAmelCase = convert_examples_to_features( __lowerCAmelCase , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info("""Saving features into cached file %s""" , __lowerCAmelCase) torch.save(__lowerCAmelCase , __lowerCAmelCase) def a_ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = False): """simple docstring""" lowerCAmelCase = """dev""" if mode == """test""" else mode lowerCAmelCase = self._feature_file(__lowerCAmelCase) logger.info("""Loading features from cached file %s""" , __lowerCAmelCase) lowerCAmelCase = torch.load(__lowerCAmelCase) lowerCAmelCase = torch.tensor([f.input_ids for f in features] , dtype=torch.long) lowerCAmelCase = torch.tensor([f.attention_mask for f in features] , dtype=torch.long) lowerCAmelCase = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long) if self.hparams.glue_output_mode == "classification": lowerCAmelCase = torch.tensor([f.label for f in features] , dtype=torch.long) elif self.hparams.glue_output_mode == "regression": lowerCAmelCase = torch.tensor([f.label for f in features] , dtype=torch.float) return DataLoader( TensorDataset(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase) , batch_size=__lowerCAmelCase , shuffle=__lowerCAmelCase , ) def a_ ( self , __lowerCAmelCase , __lowerCAmelCase): """simple docstring""" lowerCAmelCase = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: lowerCAmelCase = batch[2] if self.config.model_type in ["""bert""", """xlnet""", """albert"""] else None lowerCAmelCase = self(**__lowerCAmelCase) lowerCAmelCase , lowerCAmelCase = outputs[:2] lowerCAmelCase = logits.detach().cpu().numpy() lowerCAmelCase = inputs["""labels"""].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def a_ ( self , __lowerCAmelCase): """simple docstring""" lowerCAmelCase = torch.stack([x["""val_loss"""] for x in outputs]).mean().detach().cpu().item() lowerCAmelCase = np.concatenate([x["""pred"""] for x in outputs] , axis=0) if self.hparams.glue_output_mode == "classification": lowerCAmelCase = np.argmax(__lowerCAmelCase , axis=1) elif self.hparams.glue_output_mode == "regression": lowerCAmelCase = np.squeeze(__lowerCAmelCase) lowerCAmelCase = np.concatenate([x["""target"""] for x in outputs] , axis=0) lowerCAmelCase = [[] for _ in range(out_label_ids.shape[0])] lowerCAmelCase = [[] for _ in range(out_label_ids.shape[0])] lowerCAmelCase = {**{"""val_loss""": val_loss_mean}, **compute_metrics(self.hparams.task , __lowerCAmelCase , __lowerCAmelCase)} lowerCAmelCase = dict(results.items()) lowerCAmelCase = results return ret, preds_list, out_label_list def a_ ( self , __lowerCAmelCase): """simple docstring""" lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = self._eval_end(__lowerCAmelCase) lowerCAmelCase = ret["""log"""] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def a_ ( self , __lowerCAmelCase): """simple docstring""" lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = self._eval_end(__lowerCAmelCase) lowerCAmelCase = ret["""log"""] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def a_ ( __lowerCAmelCase , __lowerCAmelCase): """simple docstring""" BaseTransformer.add_model_specific_args(__lowerCAmelCase , __lowerCAmelCase) parser.add_argument( """--max_seq_length""" , default=128 , type=__lowerCAmelCase , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--task""" , default="""""" , type=__lowerCAmelCase , required=__lowerCAmelCase , help="""The GLUE task to run""" , ) parser.add_argument( """--gpus""" , default=0 , type=__lowerCAmelCase , help="""The number of GPUs allocated for this, it is by default 0 meaning none""" , ) parser.add_argument( """--overwrite_cache""" , action="""store_true""" , help="""Overwrite the cached training and evaluation sets""") return parser def snake_case__ ( ) -> str: '''simple docstring''' lowerCAmelCase = argparse.ArgumentParser() add_generic_args(_A , os.getcwd() ) lowerCAmelCase = GLUETransformer.add_model_specific_args(_A , os.getcwd() ) lowerCAmelCase = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: lowerCAmelCase = os.path.join( """./results""" , f"{args.task}_{time.strftime('%Y%m%d_%H%M%S' )}" , ) os.makedirs(args.output_dir ) lowerCAmelCase = GLUETransformer(_A ) lowerCAmelCase = generic_train(_A , _A ) # Optionally, predict on dev set and write to output_dir if args.do_predict: lowerCAmelCase = sorted(glob.glob(os.path.join(args.output_dir , """checkpoint-epoch=*.ckpt""" ) , recursive=_A ) ) lowerCAmelCase = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(_A ) if __name__ == "__main__": main()
605
0
import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : Optional[int] , __a : str , __a : int = None , __a : str = None , __a : Tuple = None , __a : List[Any] = False , __a : List[Any] = False , __a : Union[str, Any] = None , __a : Optional[Any] = None , **__a : List[Any] , ) -> str: """simple docstring""" super().__init__( SCREAMING_SNAKE_CASE__ , split=SCREAMING_SNAKE_CASE__ , features=SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ , keep_in_memory=SCREAMING_SNAKE_CASE__ , streaming=SCREAMING_SNAKE_CASE__ , num_proc=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) __lowercase : str = field __lowercase : int = path_or_paths if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else {self.split: path_or_paths} __lowercase : Tuple = Json( cache_dir=SCREAMING_SNAKE_CASE__ , data_files=SCREAMING_SNAKE_CASE__ , features=SCREAMING_SNAKE_CASE__ , field=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) def lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" if self.streaming: __lowercase : Optional[Any] = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: __lowercase : Optional[Any] = None __lowercase : List[str] = None __lowercase : str = None __lowercase : Tuple = None self.builder.download_and_prepare( download_config=SCREAMING_SNAKE_CASE__ , download_mode=SCREAMING_SNAKE_CASE__ , verification_mode=SCREAMING_SNAKE_CASE__ , base_path=SCREAMING_SNAKE_CASE__ , num_proc=self.num_proc , ) __lowercase : List[str] = self.builder.as_dataset( split=self.split , verification_mode=SCREAMING_SNAKE_CASE__ , in_memory=self.keep_in_memory ) return dataset class lowerCAmelCase : '''simple docstring''' def __init__( self : str , __a : Dict , __a : Union[str, Any] , __a : int = None , __a : int = None , **__a : Any , ) -> Any: """simple docstring""" if num_proc is not None and num_proc <= 0: raise ValueError(F"num_proc {num_proc} must be an integer > 0." ) __lowercase : Optional[Any] = dataset __lowercase : Tuple = path_or_buf __lowercase : List[str] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE __lowercase : int = num_proc __lowercase : Tuple = '''utf-8''' __lowercase : Optional[int] = to_json_kwargs def lowerCAmelCase ( self : Any ) -> int: """simple docstring""" __lowercase : Optional[int] = self.to_json_kwargs.pop("""path_or_buf""" , SCREAMING_SNAKE_CASE__ ) __lowercase : str = self.to_json_kwargs.pop("""orient""" , """records""" ) __lowercase : str = self.to_json_kwargs.pop("""lines""" , True if orient == """records""" else False ) __lowercase : Optional[int] = self.to_json_kwargs.pop("""index""" , False if orient in ["""split""", """table"""] else True ) __lowercase : int = self.to_json_kwargs.pop("""compression""" , SCREAMING_SNAKE_CASE__ ) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(F"`datasets` currently does not support {compression} compression" ) if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with fsspec.open(self.path_or_buf , """wb""" , compression=SCREAMING_SNAKE_CASE__ ) as buffer: __lowercase : Optional[int] = self._write(file_obj=SCREAMING_SNAKE_CASE__ , orient=SCREAMING_SNAKE_CASE__ , lines=SCREAMING_SNAKE_CASE__ , index=SCREAMING_SNAKE_CASE__ , **self.to_json_kwargs ) else: if compression: raise NotImplementedError( F"The compression parameter is not supported when writing to a buffer, but compression={compression}" """ was passed. Please provide a local path instead.""" ) __lowercase : List[str] = self._write( file_obj=self.path_or_buf , orient=SCREAMING_SNAKE_CASE__ , lines=SCREAMING_SNAKE_CASE__ , index=SCREAMING_SNAKE_CASE__ , **self.to_json_kwargs ) return written def lowerCAmelCase ( self : int , __a : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase : Optional[Any] = args __lowercase : Union[str, Any] = query_table( table=self.dataset.data , key=slice(SCREAMING_SNAKE_CASE__ , offset + self.batch_size ) , indices=self.dataset._indices , ) __lowercase : int = batch.to_pandas().to_json( path_or_buf=SCREAMING_SNAKE_CASE__ , orient=SCREAMING_SNAKE_CASE__ , lines=SCREAMING_SNAKE_CASE__ , index=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) if not json_str.endswith("""\n""" ): json_str += "\n" return json_str.encode(self.encoding ) def lowerCAmelCase ( self : Tuple , __a : List[str] , __a : Any , __a : Any , __a : Optional[Any] , **__a : Dict , ) -> int: """simple docstring""" __lowercase : List[str] = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating json from Arrow format""" , ): __lowercase : Optional[Any] = self._batch_json((offset, orient, lines, index, to_json_kwargs) ) written += file_obj.write(SCREAMING_SNAKE_CASE__ ) else: __lowercase : Optional[int] = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating json from Arrow format""" , ): written += file_obj.write(SCREAMING_SNAKE_CASE__ ) return written
149
"""simple docstring""" import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel lowerCamelCase_ = { "text_branch": "text_model", "audio_branch": "audio_model.audio_encoder", "attn": "attention.self", "self.proj": "output.dense", "attention.self_mask": "attn_mask", "mlp.fc1": "intermediate.dense", "mlp.fc2": "output.dense", "norm1": "layernorm_before", "norm2": "layernorm_after", "bn0": "batch_norm", } lowerCamelCase_ = AutoFeatureExtractor.from_pretrained("laion/clap-htsat-unfused", truncation="rand_trunc") def __lowerCamelCase ( a_ : Any , a_ : Union[str, Any]=False ) -> int: __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE :Dict = create_model( '''HTSAT-tiny''' , '''roberta''' , a_ , precision='''fp32''' , device='''cuda:0''' if torch.cuda.is_available() else '''cpu''' , enable_fusion=a_ , fusion_type='''aff_2d''' if enable_fusion else None , ) return model, model_cfg def __lowerCamelCase ( a_ : Optional[int] ) -> int: __SCREAMING_SNAKE_CASE :Dict = {} __SCREAMING_SNAKE_CASE :Any = r'''.*sequential.(\d+).*''' __SCREAMING_SNAKE_CASE :Dict = r'''.*_projection.(\d+).*''' for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: __SCREAMING_SNAKE_CASE :str = key.replace(a_ , a_ ) if re.match(a_ , a_ ): # replace sequential layers with list __SCREAMING_SNAKE_CASE :Tuple = re.match(a_ , a_ ).group(1 ) __SCREAMING_SNAKE_CASE :str = key.replace(f'''sequential.{sequential_layer}.''' , f'''layers.{int(a_ )//3}.linear.''' ) elif re.match(a_ , a_ ): __SCREAMING_SNAKE_CASE :Union[str, Any] = int(re.match(a_ , a_ ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... __SCREAMING_SNAKE_CASE :Union[str, Any] = 1 if projecton_layer == 0 else 2 __SCREAMING_SNAKE_CASE :Tuple = key.replace(f'''_projection.{projecton_layer}.''' , f'''_projection.linear{transformers_projection_layer}.''' ) if "audio" and "qkv" in key: # split qkv into query key and value __SCREAMING_SNAKE_CASE :Union[str, Any] = value __SCREAMING_SNAKE_CASE :Optional[Any] = mixed_qkv.size(0 ) // 3 __SCREAMING_SNAKE_CASE :Optional[Any] = mixed_qkv[:qkv_dim] __SCREAMING_SNAKE_CASE :Optional[Any] = mixed_qkv[qkv_dim : qkv_dim * 2] __SCREAMING_SNAKE_CASE :str = mixed_qkv[qkv_dim * 2 :] __SCREAMING_SNAKE_CASE :Dict = query_layer __SCREAMING_SNAKE_CASE :Tuple = key_layer __SCREAMING_SNAKE_CASE :str = value_layer else: __SCREAMING_SNAKE_CASE :Optional[Any] = value return model_state_dict def __lowerCamelCase ( a_ : Optional[int] , a_ : Dict , a_ : Dict , a_ : List[Any]=False ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE :Optional[int] = init_clap(a_ , enable_fusion=a_ ) clap_model.eval() __SCREAMING_SNAKE_CASE :Optional[Any] = clap_model.state_dict() __SCREAMING_SNAKE_CASE :Tuple = rename_state_dict(a_ ) __SCREAMING_SNAKE_CASE :Any = ClapConfig() __SCREAMING_SNAKE_CASE :Tuple = enable_fusion __SCREAMING_SNAKE_CASE :Dict = ClapModel(a_ ) # ignore the spectrogram embedding layer model.load_state_dict(a_ , strict=a_ ) model.save_pretrained(a_ ) transformers_config.save_pretrained(a_ ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument("--enable_fusion", action="store_true", help="Whether to enable fusion or not") lowerCamelCase_ = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
498
0
'''simple docstring''' import logging import os from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union from filelock import FileLock from transformers import PreTrainedTokenizer, is_tf_available, is_torch_available A__ : Any = logging.getLogger(__name__) @dataclass class snake_case__ : A__ = 42 A__ = 42 A__ = 42 @dataclass class snake_case__ : A__ = 42 A__ = 42 A__ = None A__ = None class snake_case__ ( SCREAMING_SNAKE_CASE_ ): A__ = '''train''' A__ = '''dev''' A__ = '''test''' class snake_case__ : @staticmethod def A_ ( __a : str , __a : Union[Split, str] ) -> List[InputExample]: '''simple docstring''' raise NotImplementedError @staticmethod def A_ ( __a : str ) -> List[str]: '''simple docstring''' raise NotImplementedError @staticmethod def A_ ( __a : List[InputExample] , __a : List[str] , __a : int , __a : PreTrainedTokenizer , __a : Union[str, Any]=False , __a : Union[str, Any]="[CLS]" , __a : List[str]=1 , __a : Optional[Any]="[SEP]" , __a : Optional[Any]=False , __a : int=False , __a : int=0 , __a : Dict=0 , __a : str=-100 , __a : Optional[int]=0 , __a : Union[str, Any]=True , ) -> List[InputFeatures]: '''simple docstring''' __snake_case : Tuple = {label: i for i, label in enumerate(__a )} __snake_case : int = [] for ex_index, example in enumerate(__a ): if ex_index % 10000 == 0: logger.info('Writing example %d of %d' , __a , len(__a ) ) __snake_case : Dict = [] __snake_case : Union[str, Any] = [] for word, label in zip(example.words , example.labels ): __snake_case : int = tokenizer.tokenize(__a ) # bert-base-multilingual-cased sometimes output "nothing ([]) when calling tokenize with just a space. if len(__a ) > 0: tokens.extend(__a ) # Use the real label id for the first token of the word, and padding ids for the remaining tokens label_ids.extend([label_map[label]] + [pad_token_label_id] * (len(__a ) - 1) ) # Account for [CLS] and [SEP] with "- 2" and with "- 3" for RoBERTa. __snake_case : List[Any] = tokenizer.num_special_tokens_to_add() if len(__a ) > max_seq_length - special_tokens_count: __snake_case : Tuple = tokens[: (max_seq_length - special_tokens_count)] __snake_case : List[Any] = label_ids[: (max_seq_length - special_tokens_count)] # The convention in BERT is: # (a) For sequence pairs: # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 # # Where "type_ids" are used to indicate whether this is the first # sequence or the second sequence. The embedding vectors for `type=0` and # `type=1` were learned during pre-training and are added to the wordpiece # embedding vector (and position vector). This is not *strictly* necessary # since the [SEP] token unambiguously separates the sequences, but it makes # it easier for the model to learn the concept of sequences. # # For classification tasks, the first vector (corresponding to [CLS]) is # used as the "sentence vector". Note that this only makes sense because # the entire model is fine-tuned. tokens += [sep_token] label_ids += [pad_token_label_id] if sep_token_extra: # roberta uses an extra separator b/w pairs of sentences tokens += [sep_token] label_ids += [pad_token_label_id] __snake_case : Any = [sequence_a_segment_id] * len(__a ) if cls_token_at_end: tokens += [cls_token] label_ids += [pad_token_label_id] segment_ids += [cls_token_segment_id] else: __snake_case : str = [cls_token] + tokens __snake_case : List[Any] = [pad_token_label_id] + label_ids __snake_case : Union[str, Any] = [cls_token_segment_id] + segment_ids __snake_case : Optional[Any] = tokenizer.convert_tokens_to_ids(__a ) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. __snake_case : Any = [1 if mask_padding_with_zero else 0] * len(__a ) # Zero-pad up to the sequence length. __snake_case : int = max_seq_length - len(__a ) if pad_on_left: __snake_case : List[Any] = ([pad_token] * padding_length) + input_ids __snake_case : Any = ([0 if mask_padding_with_zero else 1] * padding_length) + input_mask __snake_case : List[Any] = ([pad_token_segment_id] * padding_length) + segment_ids __snake_case : Union[str, Any] = ([pad_token_label_id] * padding_length) + label_ids else: input_ids += [pad_token] * padding_length input_mask += [0 if mask_padding_with_zero else 1] * padding_length segment_ids += [pad_token_segment_id] * padding_length label_ids += [pad_token_label_id] * padding_length assert len(__a ) == max_seq_length assert len(__a ) == max_seq_length assert len(__a ) == max_seq_length assert len(__a ) == max_seq_length if ex_index < 5: logger.info('*** Example ***' ) logger.info('guid: %s' , example.guid ) logger.info('tokens: %s' , ' '.join([str(__a ) for x in tokens] ) ) logger.info('input_ids: %s' , ' '.join([str(__a ) for x in input_ids] ) ) logger.info('input_mask: %s' , ' '.join([str(__a ) for x in input_mask] ) ) logger.info('segment_ids: %s' , ' '.join([str(__a ) for x in segment_ids] ) ) logger.info('label_ids: %s' , ' '.join([str(__a ) for x in label_ids] ) ) if "token_type_ids" not in tokenizer.model_input_names: __snake_case : List[str] = None features.append( InputFeatures( input_ids=__a , attention_mask=__a , token_type_ids=__a , label_ids=__a ) ) return features if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset class snake_case__ ( SCREAMING_SNAKE_CASE_ ): A__ = 42 A__ = nn.CrossEntropyLoss().ignore_index def __init__( self : List[Any] , __a : TokenClassificationTask , __a : str , __a : PreTrainedTokenizer , __a : List[str] , __a : str , __a : Optional[int] = None , __a : int=False , __a : Split = Split.train , ) -> Optional[int]: '''simple docstring''' # Load data features from cache or dataset file __snake_case : Optional[Any] = os.path.join( __a , 'cached_{}_{}_{}'.format(mode.value , tokenizer.__class__.__name__ , str(__a ) ) , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __snake_case : str = cached_features_file + '.lock' with FileLock(__a ): if os.path.exists(__a ) and not overwrite_cache: logger.info(f'''Loading features from cached file {cached_features_file}''' ) __snake_case : Tuple = torch.load(__a ) else: logger.info(f'''Creating features from dataset file at {data_dir}''' ) __snake_case : str = token_classification_task.read_examples_from_file(__a , __a ) # TODO clean up all this to leverage built-in features of tokenizers __snake_case : Union[str, Any] = token_classification_task.convert_examples_to_features( __a , __a , __a , __a , cls_token_at_end=bool(model_type in ['xlnet'] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ['xlnet'] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=__a , pad_on_left=bool(tokenizer.padding_side == 'left' ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info(f'''Saving features into cached file {cached_features_file}''' ) torch.save(self.features , __a ) def __len__( self : List[str] ) -> Optional[Any]: '''simple docstring''' return len(self.features ) def __getitem__( self : Tuple , __a : Optional[Any] ) -> InputFeatures: '''simple docstring''' return self.features[i] if is_tf_available(): import tensorflow as tf class snake_case__ : A__ = 42 A__ = -100 def __init__( self : Tuple , __a : TokenClassificationTask , __a : str , __a : PreTrainedTokenizer , __a : List[str] , __a : str , __a : Optional[int] = None , __a : List[Any]=False , __a : Split = Split.train , ) -> Union[str, Any]: '''simple docstring''' __snake_case : Union[str, Any] = token_classification_task.read_examples_from_file(__a , __a ) # TODO clean up all this to leverage built-in features of tokenizers __snake_case : int = token_classification_task.convert_examples_to_features( __a , __a , __a , __a , cls_token_at_end=bool(model_type in ['xlnet'] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ['xlnet'] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=__a , pad_on_left=bool(tokenizer.padding_side == 'left' ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) def gen(): for ex in self.features: if ex.token_type_ids is None: yield ( {"input_ids": ex.input_ids, "attention_mask": ex.attention_mask}, ex.label_ids, ) else: yield ( { "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label_ids, ) if "token_type_ids" not in tokenizer.model_input_names: __snake_case : Tuple = tf.data.Dataset.from_generator( __a , ({'input_ids': tf.intaa, 'attention_mask': tf.intaa}, tf.intaa) , ( {'input_ids': tf.TensorShape([None] ), 'attention_mask': tf.TensorShape([None] )}, tf.TensorShape([None] ), ) , ) else: __snake_case : Any = tf.data.Dataset.from_generator( __a , ({'input_ids': tf.intaa, 'attention_mask': tf.intaa, 'token_type_ids': tf.intaa}, tf.intaa) , ( { 'input_ids': tf.TensorShape([None] ), 'attention_mask': tf.TensorShape([None] ), 'token_type_ids': tf.TensorShape([None] ), }, tf.TensorShape([None] ), ) , ) def A_ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' __snake_case : List[str] = self.dataset.apply(tf.data.experimental.assert_cardinality(len(self.features ) ) ) return self.dataset def __len__( self : Any ) -> str: '''simple docstring''' return len(self.features ) def __getitem__( self : List[Any] , __a : List[str] ) -> InputFeatures: '''simple docstring''' return self.features[i]
124
'''simple docstring''' import random def a_ ( _UpperCAmelCase : list ,_UpperCAmelCase : List[Any] ) -> tuple: __snake_case , __snake_case , __snake_case : int = [], [], [] for element in data: if element < pivot: less.append(_UpperCAmelCase ) elif element > pivot: greater.append(_UpperCAmelCase ) else: equal.append(_UpperCAmelCase ) return less, equal, greater def a_ ( _UpperCAmelCase : list ,_UpperCAmelCase : int ) -> int: # index = len(items) // 2 when trying to find the median # (value of index when items is sorted) # invalid input if index >= len(_UpperCAmelCase ) or index < 0: return None __snake_case : int = items[random.randint(0 ,len(_UpperCAmelCase ) - 1 )] __snake_case : List[Any] = 0 __snake_case , __snake_case , __snake_case : Any = _partition(_UpperCAmelCase ,_UpperCAmelCase ) __snake_case : List[str] = len(_UpperCAmelCase ) __snake_case : int = len(_UpperCAmelCase ) # index is the pivot if m <= index < m + count: return pivot # must be in smaller elif m > index: return quick_select(_UpperCAmelCase ,_UpperCAmelCase ) # must be in larger else: return quick_select(_UpperCAmelCase ,index - (m + count) )
124
1
'''simple docstring''' import argparse import logging import os import re import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, DataCollatorForLanguageModeling, PushToHubCallback, TFAutoModelForMaskedLM, create_optimizer, ) _a : Tuple = logging.getLogger(__name__) _a : Optional[Any] = tf.data.AUTOTUNE def lowerCamelCase__ ( ): UpperCAmelCase = argparse.ArgumentParser(description='Train a masked language model on TPU.' ) parser.add_argument( '--pretrained_model_config' , type=SCREAMING_SNAKE_CASE , default='roberta-base' , help='The model config to use. Note that we don\'t copy the model\'s weights, only the config!' , ) parser.add_argument( '--tokenizer' , type=SCREAMING_SNAKE_CASE , default='unigram-tokenizer-wikitext' , help='The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model\'s vocab size.' , ) parser.add_argument( '--per_replica_batch_size' , type=SCREAMING_SNAKE_CASE , default=8 , help='Batch size per TPU core.' , ) parser.add_argument( '--no_tpu' , action='store_true' , help='If set, run on CPU and don\'t try to initialize a TPU. Useful for debugging on non-TPU instances.' , ) parser.add_argument( '--tpu_name' , type=SCREAMING_SNAKE_CASE , help='Name of TPU resource to initialize. Should be blank on Colab, and \'local\' on TPU VMs.' , default='local' , ) parser.add_argument( '--tpu_zone' , type=SCREAMING_SNAKE_CASE , help='Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes.' , ) parser.add_argument( '--gcp_project' , type=SCREAMING_SNAKE_CASE , help='Google cloud project name. Only used for non-Colab TPU nodes.' ) parser.add_argument( '--bfloat16' , action='store_true' , help='Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU.' , ) parser.add_argument( '--train_dataset' , type=SCREAMING_SNAKE_CASE , help='Path to training dataset to load. If the path begins with `gs://`' ' then the dataset will be loaded from a Google Cloud Storage bucket.' , ) parser.add_argument( '--shuffle_buffer_size' , type=SCREAMING_SNAKE_CASE , default=2**18 , help='Size of the shuffle buffer (in samples)' , ) parser.add_argument( '--eval_dataset' , type=SCREAMING_SNAKE_CASE , help='Path to evaluation dataset to load. If the path begins with `gs://`' ' then the dataset will be loaded from a Google Cloud Storage bucket.' , ) parser.add_argument( '--num_epochs' , type=SCREAMING_SNAKE_CASE , default=1 , help='Number of epochs to train for.' , ) parser.add_argument( '--learning_rate' , type=SCREAMING_SNAKE_CASE , default=1E-4 , help='Learning rate to use for training.' , ) parser.add_argument( '--weight_decay_rate' , type=SCREAMING_SNAKE_CASE , default=1E-3 , help='Weight decay rate to use for training.' , ) parser.add_argument( '--max_length' , type=SCREAMING_SNAKE_CASE , default=512 , help='Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py' , ) parser.add_argument( '--mlm_probability' , type=SCREAMING_SNAKE_CASE , default=0.15 , help='Fraction of tokens to mask during training.' , ) parser.add_argument('--output_dir' , type=SCREAMING_SNAKE_CASE , required=SCREAMING_SNAKE_CASE , help='Path to save model checkpoints to.' ) parser.add_argument('--hub_model_id' , type=SCREAMING_SNAKE_CASE , help='Model ID to upload to on the Hugging Face Hub.' ) UpperCAmelCase = parser.parse_args() return args def lowerCamelCase__ ( SCREAMING_SNAKE_CASE : str ): try: if args.tpu_name: UpperCAmelCase = tf.distribute.cluster_resolver.TPUClusterResolver( args.tpu_name , zone=args.tpu_zone , project=args.gcp_project ) else: UpperCAmelCase = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: raise RuntimeError( 'Couldn\'t connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or ' '--gcp_project. When running on a TPU VM, use --tpu_name local.' ) tf.config.experimental_connect_to_cluster(SCREAMING_SNAKE_CASE ) tf.tpu.experimental.initialize_tpu_system(SCREAMING_SNAKE_CASE ) return tpu def lowerCamelCase__ ( SCREAMING_SNAKE_CASE : List[Any] ): UpperCAmelCase = 0 for file in file_list: UpperCAmelCase = file.split('/' )[-1] UpperCAmelCase = re.search(R'-\d+-(\d+)\.tfrecord' , SCREAMING_SNAKE_CASE ).group(1 ) UpperCAmelCase = int(SCREAMING_SNAKE_CASE ) num_samples += sample_count return num_samples def lowerCamelCase__ ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str=None ): UpperCAmelCase = count_samples(SCREAMING_SNAKE_CASE ) UpperCAmelCase = tf.data.Dataset.from_tensor_slices(SCREAMING_SNAKE_CASE ) if shuffle: UpperCAmelCase = dataset.shuffle(len(SCREAMING_SNAKE_CASE ) ) UpperCAmelCase = tf.data.TFRecordDataset(SCREAMING_SNAKE_CASE , num_parallel_reads=SCREAMING_SNAKE_CASE ) # TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here UpperCAmelCase = dataset.apply(tf.data.experimental.assert_cardinality(SCREAMING_SNAKE_CASE ) ) UpperCAmelCase = dataset.map(SCREAMING_SNAKE_CASE , num_parallel_calls=SCREAMING_SNAKE_CASE ) if shuffle: assert shuffle_buffer_size is not None UpperCAmelCase = dataset.shuffle(args.shuffle_buffer_size ) UpperCAmelCase = dataset.batch(SCREAMING_SNAKE_CASE , drop_remainder=SCREAMING_SNAKE_CASE ) UpperCAmelCase = dataset.map(SCREAMING_SNAKE_CASE , num_parallel_calls=SCREAMING_SNAKE_CASE ) UpperCAmelCase = dataset.prefetch(SCREAMING_SNAKE_CASE ) return dataset def lowerCamelCase__ ( SCREAMING_SNAKE_CASE : List[str] ): if not args.no_tpu: UpperCAmelCase = initialize_tpu(SCREAMING_SNAKE_CASE ) UpperCAmelCase = tf.distribute.TPUStrategy(SCREAMING_SNAKE_CASE ) else: UpperCAmelCase = tf.distribute.OneDeviceStrategy(device='/gpu:0' ) if args.bfloataa: tf.keras.mixed_precision.set_global_policy('mixed_bfloat16' ) UpperCAmelCase = AutoTokenizer.from_pretrained(args.tokenizer ) UpperCAmelCase = AutoConfig.from_pretrained(args.pretrained_model_config ) UpperCAmelCase = tokenizer.vocab_size UpperCAmelCase = tf.io.gfile.glob(os.path.join(args.train_dataset , '*.tfrecord' ) ) if not training_records: raise ValueError(f'''No .tfrecord files found in {args.train_dataset}.''' ) UpperCAmelCase = tf.io.gfile.glob(os.path.join(args.eval_dataset , '*.tfrecord' ) ) if not eval_records: raise ValueError(f'''No .tfrecord files found in {args.eval_dataset}.''' ) UpperCAmelCase = count_samples(SCREAMING_SNAKE_CASE ) UpperCAmelCase = num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync) UpperCAmelCase = steps_per_epoch * args.num_epochs with strategy.scope(): UpperCAmelCase = TFAutoModelForMaskedLM.from_config(SCREAMING_SNAKE_CASE ) model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built UpperCAmelCase , UpperCAmelCase = create_optimizer( num_train_steps=SCREAMING_SNAKE_CASE , num_warmup_steps=total_train_steps // 20 , init_lr=args.learning_rate , weight_decay_rate=args.weight_decay_rate , ) # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=SCREAMING_SNAKE_CASE , metrics=['accuracy'] ) def decode_fn(SCREAMING_SNAKE_CASE : Tuple ): UpperCAmelCase = { 'input_ids': tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), 'attention_mask': tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), } return tf.io.parse_single_example(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can # use their methods in our data pipeline. UpperCAmelCase = DataCollatorForLanguageModeling( tokenizer=SCREAMING_SNAKE_CASE , mlm_probability=args.mlm_probability , mlm=SCREAMING_SNAKE_CASE , return_tensors='tf' ) def mask_with_collator(SCREAMING_SNAKE_CASE : List[Any] ): # TF really needs an isin() function UpperCAmelCase = ( ~tf.cast(batch['attention_mask'] , tf.bool ) | (batch['input_ids'] == tokenizer.cls_token_id) | (batch['input_ids'] == tokenizer.sep_token_id) ) UpperCAmelCase , UpperCAmelCase = data_collator.tf_mask_tokens( batch['input_ids'] , vocab_size=len(SCREAMING_SNAKE_CASE ) , mask_token_id=tokenizer.mask_token_id , special_tokens_mask=SCREAMING_SNAKE_CASE , ) return batch UpperCAmelCase = args.per_replica_batch_size * strategy.num_replicas_in_sync UpperCAmelCase = prepare_dataset( SCREAMING_SNAKE_CASE , decode_fn=SCREAMING_SNAKE_CASE , mask_fn=SCREAMING_SNAKE_CASE , batch_size=SCREAMING_SNAKE_CASE , shuffle=SCREAMING_SNAKE_CASE , shuffle_buffer_size=args.shuffle_buffer_size , ) UpperCAmelCase = prepare_dataset( SCREAMING_SNAKE_CASE , decode_fn=SCREAMING_SNAKE_CASE , mask_fn=SCREAMING_SNAKE_CASE , batch_size=SCREAMING_SNAKE_CASE , shuffle=SCREAMING_SNAKE_CASE , ) UpperCAmelCase = [] if args.hub_model_id: callbacks.append( PushToHubCallback(output_dir=args.output_dir , hub_model_id=args.hub_model_id , tokenizer=SCREAMING_SNAKE_CASE ) ) model.fit( SCREAMING_SNAKE_CASE , validation_data=SCREAMING_SNAKE_CASE , epochs=args.num_epochs , callbacks=SCREAMING_SNAKE_CASE , ) model.save_pretrained(args.output_dir ) if __name__ == "__main__": _a : Any = parse_args() main(args)
447
'''simple docstring''' import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class lowercase_ ( unittest.TestCase ): '''simple docstring''' def snake_case_ ( self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase = 'ylacombe/bark-small' UpperCAmelCase = tempfile.mkdtemp() UpperCAmelCase = 'en_speaker_1' UpperCAmelCase = 'This is a test string' UpperCAmelCase = 'speaker_embeddings_path.json' UpperCAmelCase = 'speaker_embeddings' def snake_case_ ( self , **a_ ) -> List[str]: """simple docstring""" return AutoTokenizer.from_pretrained(self.checkpoint , **a_ ) def snake_case_ ( self ) -> str: """simple docstring""" shutil.rmtree(self.tmpdirname ) def snake_case_ ( self ) -> Optional[int]: """simple docstring""" UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = BarkProcessor(tokenizer=a_ ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def snake_case_ ( self ) -> int: """simple docstring""" UpperCAmelCase = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) UpperCAmelCase = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) UpperCAmelCase = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token='(BOS)' , eos_token='(EOS)' , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def snake_case_ ( self ) -> Dict: """simple docstring""" UpperCAmelCase = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) UpperCAmelCase = 3_5 UpperCAmelCase = 2 UpperCAmelCase = 8 UpperCAmelCase = { 'semantic_prompt': np.ones(a_ ), 'coarse_prompt': np.ones((nb_codebooks_coarse, seq_len) ), 'fine_prompt': np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset UpperCAmelCase = processor(text=self.input_string , voice_preset=a_ ) UpperCAmelCase = inputs['history_prompt'] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(a_ , np.array([] ) ).tolist() ) # test loading voice preset from npz file UpperCAmelCase = os.path.join(self.tmpdirname , 'file.npz' ) np.savez(a_ , **a_ ) UpperCAmelCase = processor(text=self.input_string , voice_preset=a_ ) UpperCAmelCase = inputs['history_prompt'] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(a_ , np.array([] ) ).tolist() ) # test loading voice preset from the hub UpperCAmelCase = processor(text=self.input_string , voice_preset=self.voice_preset ) def snake_case_ ( self ) -> List[Any]: """simple docstring""" UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = BarkProcessor(tokenizer=a_ ) UpperCAmelCase = processor(text=self.input_string ) UpperCAmelCase = tokenizer( self.input_string , padding='max_length' , max_length=2_5_6 , add_special_tokens=a_ , return_attention_mask=a_ , return_token_type_ids=a_ , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
447
1
import requests from bsa import BeautifulSoup def _lowercase ( a__ : str = "https://www.worldometers.info/coronavirus" ) -> str: """simple docstring""" _UpperCamelCase = BeautifulSoup(requests.get(_lowerCamelCase ).text , "html.parser" ) _UpperCamelCase = soup.findAll("h1" ) _UpperCamelCase = soup.findAll("div" , {"class": "maincounter-number"} ) keys += soup.findAll("span" , {"class": "panel-title"} ) values += soup.findAll("div" , {"class": "number-table-main"} ) return {key.text.strip(): value.text.strip() for key, value in zip(_lowerCamelCase , _lowerCamelCase )} if __name__ == "__main__": print("""\033[1m""" + """COVID-19 Status of the World""" + """\033[0m\n""") for key, value in world_covidaa_stats().items(): print(F'''{key}\n{value}\n''')
700
def _lowercase ( a__ : int , a__ : int ) -> float: """simple docstring""" return base * power(a__ , (exponent - 1) ) if exponent else 1 if __name__ == "__main__": print("""Raise base to the power of exponent using recursion...""") __lowerCAmelCase = int(input("""Enter the base: """).strip()) __lowerCAmelCase = int(input("""Enter the exponent: """).strip()) __lowerCAmelCase = power(base, abs(exponent)) if exponent < 0: # power() does not properly deal w/ negative exponents __lowerCAmelCase = 1 / result print(F'''{base} to the power of {exponent} is {result}''')
589
0
'''simple docstring''' import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> np.ndarray: # prepare kernel # the kernel size have to be odd if (ksize % 2) == 0: lowerCamelCase_ = ksize + 1 lowerCamelCase_ = np.zeros((ksize, ksize) ,dtype=np.floataa ) # each value for y in range(__UpperCamelCase ): for x in range(__UpperCamelCase ): # distance from center lowerCamelCase_ = x - ksize // 2 lowerCamelCase_ = y - ksize // 2 # degree to radiant lowerCamelCase_ = theta / 1_80 * np.pi lowerCamelCase_ = np.cos(_theta ) lowerCamelCase_ = np.sin(_theta ) # get kernel x lowerCamelCase_ = cos_theta * px + sin_theta * py # get kernel y lowerCamelCase_ = -sin_theta * px + cos_theta * py # fill kernel lowerCamelCase_ = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image A_ = imread("../image_data/lena.jpg") # turn image in gray scale value A_ = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges A_ = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 120, 150]: A_ = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) A_ = out / out.max() * 255 A_ = out.astype(np.uinta) imshow("Original", gray) imshow("Gabor filter with 20x20 mask and 6 directions", out) waitKey(0)
42
import math def snake_case_ (__A : int = 1_0_0 ) -> int: __lowerCAmelCase : List[str] = sum(i * i for i in range(1 , n + 1 ) ) __lowerCAmelCase : int = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(F'{solution() = }')
651
0
import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class __UpperCamelCase ( nn.Module ): SCREAMING_SNAKE_CASE__ = 42 SCREAMING_SNAKE_CASE__ = 42 SCREAMING_SNAKE_CASE__ = 0.0 SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = jnp.floataa def __A ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ = [] UpperCAmelCase_ = [] for i in range(self.num_layers ): UpperCAmelCase_ = self.in_channels if i == 0 else self.out_channels UpperCAmelCase_ = FlaxResnetBlockaD( in_channels=lowerCAmelCase , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(lowerCAmelCase ) UpperCAmelCase_ = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(lowerCAmelCase ) UpperCAmelCase_ = resnets UpperCAmelCase_ = attentions if self.add_downsample: UpperCAmelCase_ = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Union[str, Any] , lowerCAmelCase : str , lowerCAmelCase : Tuple , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : int=True ): '''simple docstring''' UpperCAmelCase_ = () for resnet, attn in zip(self.resnets , self.attentions ): UpperCAmelCase_ = resnet(lowerCAmelCase , lowerCAmelCase , deterministic=lowerCAmelCase ) UpperCAmelCase_ = attn(lowerCAmelCase , lowerCAmelCase , deterministic=lowerCAmelCase ) output_states += (hidden_states,) if self.add_downsample: UpperCAmelCase_ = self.downsamplers_a(lowerCAmelCase ) output_states += (hidden_states,) return hidden_states, output_states class __UpperCamelCase ( nn.Module ): SCREAMING_SNAKE_CASE__ = 42 SCREAMING_SNAKE_CASE__ = 42 SCREAMING_SNAKE_CASE__ = 0.0 SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = jnp.floataa def __A ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase_ = [] for i in range(self.num_layers ): UpperCAmelCase_ = self.in_channels if i == 0 else self.out_channels UpperCAmelCase_ = FlaxResnetBlockaD( in_channels=lowerCAmelCase , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(lowerCAmelCase ) UpperCAmelCase_ = resnets if self.add_downsample: UpperCAmelCase_ = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Union[str, Any] , lowerCAmelCase : List[str] , lowerCAmelCase : List[Any] , lowerCAmelCase : int=True ): '''simple docstring''' UpperCAmelCase_ = () for resnet in self.resnets: UpperCAmelCase_ = resnet(lowerCAmelCase , lowerCAmelCase , deterministic=lowerCAmelCase ) output_states += (hidden_states,) if self.add_downsample: UpperCAmelCase_ = self.downsamplers_a(lowerCAmelCase ) output_states += (hidden_states,) return hidden_states, output_states class __UpperCamelCase ( nn.Module ): SCREAMING_SNAKE_CASE__ = 42 SCREAMING_SNAKE_CASE__ = 42 SCREAMING_SNAKE_CASE__ = 42 SCREAMING_SNAKE_CASE__ = 0.0 SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = jnp.floataa def __A ( self : Any ): '''simple docstring''' UpperCAmelCase_ = [] UpperCAmelCase_ = [] for i in range(self.num_layers ): UpperCAmelCase_ = self.in_channels if (i == self.num_layers - 1) else self.out_channels UpperCAmelCase_ = self.prev_output_channel if i == 0 else self.out_channels UpperCAmelCase_ = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(lowerCAmelCase ) UpperCAmelCase_ = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(lowerCAmelCase ) UpperCAmelCase_ = resnets UpperCAmelCase_ = attentions if self.add_upsample: UpperCAmelCase_ = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : List[Any] , lowerCAmelCase : List[str] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : int , lowerCAmelCase : Any=True ): '''simple docstring''' for resnet, attn in zip(self.resnets , self.attentions ): # pop res hidden states UpperCAmelCase_ = res_hidden_states_tuple[-1] UpperCAmelCase_ = res_hidden_states_tuple[:-1] UpperCAmelCase_ = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) UpperCAmelCase_ = resnet(lowerCAmelCase , lowerCAmelCase , deterministic=lowerCAmelCase ) UpperCAmelCase_ = attn(lowerCAmelCase , lowerCAmelCase , deterministic=lowerCAmelCase ) if self.add_upsample: UpperCAmelCase_ = self.upsamplers_a(lowerCAmelCase ) return hidden_states class __UpperCamelCase ( nn.Module ): SCREAMING_SNAKE_CASE__ = 42 SCREAMING_SNAKE_CASE__ = 42 SCREAMING_SNAKE_CASE__ = 42 SCREAMING_SNAKE_CASE__ = 0.0 SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = jnp.floataa def __A ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ = [] for i in range(self.num_layers ): UpperCAmelCase_ = self.in_channels if (i == self.num_layers - 1) else self.out_channels UpperCAmelCase_ = self.prev_output_channel if i == 0 else self.out_channels UpperCAmelCase_ = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(lowerCAmelCase ) UpperCAmelCase_ = resnets if self.add_upsample: UpperCAmelCase_ = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Dict , lowerCAmelCase : List[Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[Any]=True ): '''simple docstring''' for resnet in self.resnets: # pop res hidden states UpperCAmelCase_ = res_hidden_states_tuple[-1] UpperCAmelCase_ = res_hidden_states_tuple[:-1] UpperCAmelCase_ = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) UpperCAmelCase_ = resnet(lowerCAmelCase , lowerCAmelCase , deterministic=lowerCAmelCase ) if self.add_upsample: UpperCAmelCase_ = self.upsamplers_a(lowerCAmelCase ) return hidden_states class __UpperCamelCase ( nn.Module ): SCREAMING_SNAKE_CASE__ = 42 SCREAMING_SNAKE_CASE__ = 0.0 SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = jnp.floataa def __A ( self : int ): '''simple docstring''' UpperCAmelCase_ = [ FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) ] UpperCAmelCase_ = [] for _ in range(self.num_layers ): UpperCAmelCase_ = FlaxTransformeraDModel( in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(lowerCAmelCase ) UpperCAmelCase_ = FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(lowerCAmelCase ) UpperCAmelCase_ = resnets UpperCAmelCase_ = attentions def __call__( self : List[Any] , lowerCAmelCase : Dict , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Tuple , lowerCAmelCase : Union[str, Any]=True ): '''simple docstring''' UpperCAmelCase_ = self.resnets[0](lowerCAmelCase , lowerCAmelCase ) for attn, resnet in zip(self.attentions , self.resnets[1:] ): UpperCAmelCase_ = attn(lowerCAmelCase , lowerCAmelCase , deterministic=lowerCAmelCase ) UpperCAmelCase_ = resnet(lowerCAmelCase , lowerCAmelCase , deterministic=lowerCAmelCase ) return hidden_states
268
from .imports import is_tqdm_available if is_tqdm_available(): from tqdm.auto import tqdm as _tqdm from ..state import PartialState def __lowerCAmelCase ( A = True , *A , **A ): if not is_tqdm_available(): raise ImportError("Accelerate's `tqdm` module requires `tqdm` to be installed. Please run `pip install tqdm`." ) UpperCAmelCase_ = False if main_process_only: UpperCAmelCase_ = PartialState().local_process_index == 0 return _tqdm(*A , **A , disable=A )
268
1
def UpperCamelCase__( )->list[list[int]]: return [list(range(10_00 - i , -10_00 - i , -1 ) ) for i in range(10_00 )] a__: Optional[int] = generate_large_matrix() a__: Any = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def UpperCamelCase__( UpperCamelCase__ : list[list[int]] )->None: assert all(row == sorted(UpperCamelCase__ , reverse=UpperCamelCase__ ) for row in grid ) assert all(list(UpperCamelCase__ ) == sorted(UpperCamelCase__ , reverse=UpperCamelCase__ ) for col in zip(*UpperCamelCase__ ) ) def UpperCamelCase__( UpperCamelCase__ : list[int] )->int: A__ = 0 A__ = len(UpperCamelCase__ ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: A__ = (left + right) // 2 A__ = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: A__ = mid + 1 else: A__ = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(UpperCamelCase__ ) def UpperCamelCase__( UpperCamelCase__ : list[list[int]] )->int: A__ = 0 A__ = len(grid[0] ) for i in range(len(UpperCamelCase__ ) ): A__ = find_negative_index(grid[i][:bound] ) total += bound return (len(UpperCamelCase__ ) * len(grid[0] )) - total def UpperCamelCase__( UpperCamelCase__ : list[list[int]] )->int: return len([number for row in grid for number in row if number < 0] ) def UpperCamelCase__( UpperCamelCase__ : list[list[int]] )->int: A__ = 0 for row in grid: for i, number in enumerate(UpperCamelCase__ ): if number < 0: total += len(UpperCamelCase__ ) - i break return total def UpperCamelCase__( )->None: from timeit import timeit print('''Running benchmarks''' ) A__ = ( '''from __main__ import count_negatives_binary_search, ''' '''count_negatives_brute_force, count_negatives_brute_force_with_break, grid''' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): A__ = timeit(f"{func}(grid=grid)" , setup=UpperCamelCase__ , number=5_00 ) print(f"{func}() took {time:0.4f} seconds" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
190
def UpperCamelCase__( UpperCamelCase__ : str = "The quick brown fox jumps over the lazy dog" , )->bool: A__ = set() # Replace all the whitespace in our sentence A__ = input_str.replace(''' ''' , '''''' ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(UpperCamelCase__ ) == 26 def UpperCamelCase__( UpperCamelCase__ : str = "The quick brown fox jumps over the lazy dog" , )->bool: A__ = [False] * 26 for char in input_str: if char.islower(): A__ = True elif char.isupper(): A__ = True return all(UpperCamelCase__ ) def UpperCamelCase__( UpperCamelCase__ : str = "The quick brown fox jumps over the lazy dog" , )->bool: return len({char for char in input_str.lower() if char.isalpha()} ) == 26 def UpperCamelCase__( )->None: from timeit import timeit A__ = '''from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest''' print(timeit('''is_pangram()''' , setup=UpperCamelCase__ ) ) print(timeit('''is_pangram_faster()''' , setup=UpperCamelCase__ ) ) print(timeit('''is_pangram_fastest()''' , setup=UpperCamelCase__ ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
190
1
'''simple docstring''' def __snake_case ( _UpperCAmelCase : int = 10, _UpperCAmelCase : int = 1000, _UpperCAmelCase : bool = True): assert ( isinstance(_UpperCAmelCase, _UpperCAmelCase) and isinstance(_UpperCAmelCase, _UpperCAmelCase) and isinstance(_UpperCAmelCase, _UpperCAmelCase) ), "Invalid type of value(s) specified to function!" if min_val > max_val: raise ValueError('''Invalid value for min_val or max_val (min_value < max_value)''') return min_val if option else max_val def __snake_case ( _UpperCAmelCase : int, _UpperCAmelCase : int): return int((number_a + number_a) / 2) def __snake_case ( _UpperCAmelCase : int, _UpperCAmelCase : int, _UpperCAmelCase : int): assert ( isinstance(_UpperCAmelCase, _UpperCAmelCase) and isinstance(_UpperCAmelCase, _UpperCAmelCase) and isinstance(_UpperCAmelCase, _UpperCAmelCase) ), 'argument values must be type of "int"' if lower > higher: raise ValueError('''argument value for lower and higher must be(lower > higher)''') if not lower < to_guess < higher: raise ValueError( '''guess value must be within the range of lower and higher value''') def answer(_UpperCAmelCase : int) -> str: if number > to_guess: return "high" elif number < to_guess: return "low" else: return "same" print('''started...''') UpperCamelCase = lower UpperCamelCase = higher UpperCamelCase = [] while True: UpperCamelCase = get_avg(_UpperCAmelCase, _UpperCAmelCase) last_numbers.append(_UpperCAmelCase) if answer(_UpperCAmelCase) == "low": UpperCamelCase = number elif answer(_UpperCAmelCase) == "high": UpperCamelCase = number else: break print(f'guess the number : {last_numbers[-1]}') print(f'details : {last_numbers!s}') def __snake_case ( ): UpperCamelCase = int(input('''Enter lower value : ''').strip()) UpperCamelCase = int(input('''Enter high value : ''').strip()) UpperCamelCase = int(input('''Enter value to guess : ''').strip()) guess_the_number(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase) if __name__ == "__main__": main()
350
'''simple docstring''' import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin snake_case_ : Tuple = get_tests_dir('fixtures/test_sentencepiece_no_bos.model') @require_sentencepiece @require_tokenizers class lowercase__ ( snake_case_, unittest.TestCase ): '''simple docstring''' _snake_case = PegasusTokenizer _snake_case = PegasusTokenizerFast _snake_case = True _snake_case = True def UpperCAmelCase ( self ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing UpperCamelCase = PegasusTokenizer(lowerCamelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def UpperCAmelCase ( self ): '''simple docstring''' return PegasusTokenizer.from_pretrained('''google/pegasus-large''' ) def UpperCAmelCase ( self , **lowerCamelCase__ ): '''simple docstring''' return PegasusTokenizer.from_pretrained(self.tmpdirname , **lowerCamelCase__ ) def UpperCAmelCase ( self , lowerCamelCase__ ): '''simple docstring''' return ("This is a test", "This is a test") def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = '''</s>''' UpperCamelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase__ ) , lowerCamelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase__ ) , lowerCamelCase__ ) def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<pad>''' ) self.assertEqual(vocab_keys[1] , '''</s>''' ) self.assertEqual(vocab_keys[-1] , '''v''' ) self.assertEqual(len(lowerCamelCase__ ) , 1_1_0_3 ) def UpperCAmelCase ( self ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1_1_0_3 ) def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) UpperCamelCase = self.tokenizer_class.from_pretrained(self.tmpdirname ) UpperCamelCase = ( '''Let\'s see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important''' ''' </s> <pad> <pad> <pad>''' ) UpperCamelCase = rust_tokenizer([raw_input_str] , return_tensors=lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ).input_ids[0] UpperCamelCase = py_tokenizer([raw_input_str] , return_tensors=lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ).input_ids[0] self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word UpperCamelCase = '''<mask_1> To ensure a <mask_2> flow of bank resolutions.''' UpperCamelCase = [2, 4_1_3, 6_1_5, 1_1_4, 3, 1_9_7_1, 1_1_3, 1_6_7_9, 1_0_7_1_0, 1_0_7, 1] UpperCamelCase = tokenizer([raw_input_str] , return_tensors=lowerCamelCase__ ).input_ids[0] self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_6_1_0_3 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 1_0_3 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 1_0_5 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1_0_2_4 UpperCamelCase = '''To ensure a smooth flow of bank resolutions.''' UpperCamelCase = [4_1_3, 6_1_5, 1_1_4, 2_2_9_1, 1_9_7_1, 1_1_3, 1_6_7_9, 1_0_7_1_0, 1_0_7, 1] UpperCamelCase = tokenizer([raw_input_str] , return_tensors=lowerCamelCase__ ).input_ids[0] self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = ['''This is going to be way too long.''' * 1_5_0, '''short example'''] UpperCamelCase = ['''not super long but more than 5 tokens''', '''tiny'''] UpperCamelCase = self._large_tokenizer(lowerCamelCase__ , padding=lowerCamelCase__ , truncation=lowerCamelCase__ , return_tensors='''pt''' ) UpperCamelCase = self._large_tokenizer( text_target=lowerCamelCase__ , max_length=5 , padding=lowerCamelCase__ , truncation=lowerCamelCase__ , return_tensors='''pt''' ) assert batch.input_ids.shape == (2, 1_0_2_4) assert batch.attention_mask.shape == (2, 1_0_2_4) assert targets["input_ids"].shape == (2, 5) assert len(lowerCamelCase__ ) == 2 # input_ids, attention_mask. @slow def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = {'''input_ids''': [[3_8_9_7_9, 1_4_3, 1_8_4_8_5, 6_0_6, 1_3_0, 2_6_6_6_9, 8_7_6_8_6, 1_2_1, 5_4_1_8_9, 1_1_2_9, 1_1_1, 2_6_6_6_9, 8_7_6_8_6, 1_2_1, 9_1_1_4, 1_4_7_8_7, 1_2_1, 1_3_2_4_9, 1_5_8, 5_9_2, 9_5_6, 1_2_1, 1_4_6_2_1, 3_1_5_7_6, 1_4_3, 6_2_6_1_3, 1_0_8, 9_6_8_8, 9_3_0, 4_3_4_3_0, 1_1_5_6_2, 6_2_6_1_3, 3_0_4, 1_0_8, 1_1_4_4_3, 8_9_7, 1_0_8, 9_3_1_4, 1_7_4_1_5, 6_3_3_9_9, 1_0_8, 1_1_4_4_3, 7_6_1_4, 1_8_3_1_6, 1_1_8, 4_2_8_4, 7_1_4_8, 1_2_4_3_0, 1_4_3, 1_4_0_0, 2_5_7_0_3, 1_5_8, 1_1_1, 4_2_8_4, 7_1_4_8, 1_1_7_7_2, 1_4_3, 2_1_2_9_7, 1_0_6_4, 1_5_8, 1_2_2, 2_0_4, 3_5_0_6, 1_7_5_4, 1_1_3_3, 1_4_7_8_7, 1_5_8_1, 1_1_5, 3_3_2_2_4, 4_4_8_2, 1_1_1, 1_3_5_5, 1_1_0, 2_9_1_7_3, 3_1_7, 5_0_8_3_3, 1_0_8, 2_0_1_4_7, 9_4_6_6_5, 1_1_1, 7_7_1_9_8, 1_0_7, 1], [1_1_0, 6_2_6_1_3, 1_1_7, 6_3_8, 1_1_2, 1_1_3_3, 1_2_1, 2_0_0_9_8, 1_3_5_5, 7_9_0_5_0, 1_3_8_7_2, 1_3_5, 1_5_9_6, 5_3_5_4_1, 1_3_5_2, 1_4_1, 1_3_0_3_9, 5_5_4_2, 1_2_4, 3_0_2, 5_1_8, 1_1_1, 2_6_8, 2_9_5_6, 1_1_5, 1_4_9, 4_4_2_7, 1_0_7, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1_3_9, 1_2_3_5, 2_7_9_9, 1_8_2_8_9, 1_7_7_8_0, 2_0_4, 1_0_9, 9_4_7_4, 1_2_9_6, 1_0_7, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase__ , model_name='''google/bigbird-pegasus-large-arxiv''' , revision='''ba85d0851d708441f91440d509690f1ab6353415''' , ) @require_sentencepiece @require_tokenizers class lowercase__ ( snake_case_, unittest.TestCase ): '''simple docstring''' _snake_case = PegasusTokenizer _snake_case = PegasusTokenizerFast _snake_case = True _snake_case = True def UpperCAmelCase ( self ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing UpperCamelCase = PegasusTokenizer(lowerCamelCase__ , offset=0 , mask_token_sent=lowerCamelCase__ , mask_token='''[MASK]''' ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def UpperCAmelCase ( self ): '''simple docstring''' return PegasusTokenizer.from_pretrained('''google/bigbird-pegasus-large-arxiv''' ) def UpperCAmelCase ( self , **lowerCamelCase__ ): '''simple docstring''' return PegasusTokenizer.from_pretrained(self.tmpdirname , **lowerCamelCase__ ) def UpperCAmelCase ( self , lowerCamelCase__ ): '''simple docstring''' return ("This is a test", "This is a test") def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) UpperCamelCase = self.tokenizer_class.from_pretrained(self.tmpdirname ) UpperCamelCase = ( '''Let\'s see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>''' ''' <pad> <pad> <pad>''' ) UpperCamelCase = rust_tokenizer([raw_input_str] , return_tensors=lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ).input_ids[0] UpperCamelCase = py_tokenizer([raw_input_str] , return_tensors=lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ).input_ids[0] self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) @require_torch def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = ['''This is going to be way too long.''' * 1_0_0_0, '''short example'''] UpperCamelCase = ['''not super long but more than 5 tokens''', '''tiny'''] UpperCamelCase = self._large_tokenizer(lowerCamelCase__ , padding=lowerCamelCase__ , truncation=lowerCamelCase__ , return_tensors='''pt''' ) UpperCamelCase = self._large_tokenizer( text_target=lowerCamelCase__ , max_length=5 , padding=lowerCamelCase__ , truncation=lowerCamelCase__ , return_tensors='''pt''' ) assert batch.input_ids.shape == (2, 4_0_9_6) assert batch.attention_mask.shape == (2, 4_0_9_6) assert targets["input_ids"].shape == (2, 5) assert len(lowerCamelCase__ ) == 2 # input_ids, attention_mask. def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = ( '''This is an example string that is used to test the original TF implementation against the HF''' ''' implementation''' ) UpperCamelCase = self._large_tokenizer(lowerCamelCase__ ).input_ids self.assertListEqual( lowerCamelCase__ , [1_8_2, 1_1_7, 1_4_2, 5_8_7, 4_2_1_1, 1_2_0, 1_1_7, 2_6_3, 1_1_2, 8_0_4, 1_0_9, 8_5_6, 2_5_0_1_6, 3_1_3_7, 4_6_4, 1_0_9, 2_6_9_5_5, 3_1_3_7, 1] , )
350
1
'''simple docstring''' import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device lowercase__ = False class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" pass @nightly @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def _lowercase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase ( self ): snake_case_ = VersatileDiffusionTextToImagePipeline.from_pretrained("shi-labs/versatile-diffusion" ) # remove text_unet pipe.remove_unused_weights() pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) snake_case_ = "A painting of a squirrel eating a burger " snake_case_ = torch.manual_seed(0 ) snake_case_ = pipe( prompt=UpperCAmelCase_ , generator=UpperCAmelCase_ , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(UpperCAmelCase_ ) snake_case_ = VersatileDiffusionTextToImagePipeline.from_pretrained(UpperCAmelCase_ ) pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) snake_case_ = generator.manual_seed(0 ) snake_case_ = pipe( prompt=UpperCAmelCase_ , generator=UpperCAmelCase_ , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def _lowercase ( self ): snake_case_ = VersatileDiffusionTextToImagePipeline.from_pretrained( "shi-labs/versatile-diffusion" , torch_dtype=torch.floataa ) pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) snake_case_ = "A painting of a squirrel eating a burger " snake_case_ = torch.manual_seed(0 ) snake_case_ = pipe( prompt=UpperCAmelCase_ , generator=UpperCAmelCase_ , guidance_scale=7.5 , num_inference_steps=50 , output_type="numpy" ).images snake_case_ = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) snake_case_ = np.array([0.3_367, 0.3_169, 0.2_656, 0.3_870, 0.4_790, 0.3_796, 0.4_009, 0.4_878, 0.4_778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
508
'''simple docstring''' def __snake_case ( lowercase : int ): snake_case_ = 1 for i in range(1 , num + 1 ): fact *= i return fact def __snake_case ( lowercase : int ): snake_case_ = 0 while number > 0: snake_case_ = number % 10 sum_of_digits += last_digit snake_case_ = number // 10 # Removing the last_digit from the given number return sum_of_digits def __snake_case ( lowercase : int = 100 ): snake_case_ = factorial(lowercase ) snake_case_ = split_and_add(lowercase ) return result if __name__ == "__main__": print(solution(int(input('''Enter the Number: ''').strip())))
508
1
'''simple docstring''' from functools import lru_cache def _a ( _SCREAMING_SNAKE_CASE : int ): _SCREAMING_SNAKE_CASE = 2 _SCREAMING_SNAKE_CASE = set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(_SCREAMING_SNAKE_CASE ) if n > 1: factors.add(_SCREAMING_SNAKE_CASE ) return factors @lru_cache def _a ( _SCREAMING_SNAKE_CASE : int ): return len(unique_prime_factors(_SCREAMING_SNAKE_CASE ) ) def _a ( _SCREAMING_SNAKE_CASE : list ): return len(set(_SCREAMING_SNAKE_CASE ) ) in (0, 1) def _a ( _SCREAMING_SNAKE_CASE : int ): _SCREAMING_SNAKE_CASE = 2 while True: # Increment each value of a generated range _SCREAMING_SNAKE_CASE = [base + i for i in range(_SCREAMING_SNAKE_CASE )] # Run elements through out unique_prime_factors function # Append our target number to the end. _SCREAMING_SNAKE_CASE = [upf_len(_SCREAMING_SNAKE_CASE ) for x in group] checker.append(_SCREAMING_SNAKE_CASE ) # If all numbers in the list are equal, return the group variable. if equality(_SCREAMING_SNAKE_CASE ): return group # Increment our base variable by 1 base += 1 def _a ( _SCREAMING_SNAKE_CASE : int = 4 ): _SCREAMING_SNAKE_CASE = run(_SCREAMING_SNAKE_CASE ) return results[0] if len(_SCREAMING_SNAKE_CASE ) else None if __name__ == "__main__": print(solution())
493
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): a : Optional[int] = KandinskyImgaImgPipeline a : Union[str, Any] = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image"""] a : Union[str, Any] = [ """prompt""", """negative_prompt""", """image_embeds""", """negative_image_embeds""", """image""", ] a : int = [ """generator""", """height""", """width""", """strength""", """guidance_scale""", """negative_prompt""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] a : Tuple = False @property def lowercase ( self ): return 32 @property def lowercase ( self ): return 32 @property def lowercase ( self ): return self.time_input_dim @property def lowercase ( self ): return self.time_input_dim * 4 @property def lowercase ( self ): return 100 @property def lowercase ( self ): _SCREAMING_SNAKE_CASE = XLMRobertaTokenizerFast.from_pretrained("YiYiXu/tiny-random-mclip-base" ) return tokenizer @property def lowercase ( self ): torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1_005 , ) _SCREAMING_SNAKE_CASE = MultilingualCLIP(UpperCamelCase ) _SCREAMING_SNAKE_CASE = text_encoder.eval() return text_encoder @property def lowercase ( self ): torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = { "in_channels": 4, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "text_image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "text_image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } _SCREAMING_SNAKE_CASE = UNetaDConditionModel(**UpperCamelCase ) return model @property def lowercase ( self ): return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowercase ( self ): torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = VQModel(**self.dummy_movq_kwargs ) return model def lowercase ( self ): _SCREAMING_SNAKE_CASE = self.dummy_text_encoder _SCREAMING_SNAKE_CASE = self.dummy_tokenizer _SCREAMING_SNAKE_CASE = self.dummy_unet _SCREAMING_SNAKE_CASE = self.dummy_movq _SCREAMING_SNAKE_CASE = { "num_train_timesteps": 1_000, "beta_schedule": "linear", "beta_start": 0.0_00_85, "beta_end": 0.0_12, "clip_sample": False, "set_alpha_to_one": False, "steps_offset": 0, "prediction_type": "epsilon", "thresholding": False, } _SCREAMING_SNAKE_CASE = DDIMScheduler(**UpperCamelCase ) _SCREAMING_SNAKE_CASE = { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "movq": movq, } return components def lowercase ( self , UpperCamelCase , UpperCamelCase=0 ): _SCREAMING_SNAKE_CASE = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(UpperCamelCase ) ).to(UpperCamelCase ) _SCREAMING_SNAKE_CASE = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(UpperCamelCase ) # create init_image _SCREAMING_SNAKE_CASE = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCamelCase ) ).to(UpperCamelCase ) _SCREAMING_SNAKE_CASE = image.cpu().permute(0 , 2 , 3 , 1 )[0] _SCREAMING_SNAKE_CASE = Image.fromarray(np.uinta(UpperCamelCase ) ).convert("RGB" ).resize((256, 256) ) if str(UpperCamelCase ).startswith("mps" ): _SCREAMING_SNAKE_CASE = torch.manual_seed(UpperCamelCase ) else: _SCREAMING_SNAKE_CASE = torch.Generator(device=UpperCamelCase ).manual_seed(UpperCamelCase ) _SCREAMING_SNAKE_CASE = { "prompt": "horse", "image": init_image, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 64, "width": 64, "num_inference_steps": 10, "guidance_scale": 7.0, "strength": 0.2, "output_type": "np", } return inputs def lowercase ( self ): _SCREAMING_SNAKE_CASE = "cpu" _SCREAMING_SNAKE_CASE = self.get_dummy_components() _SCREAMING_SNAKE_CASE = self.pipeline_class(**UpperCamelCase ) _SCREAMING_SNAKE_CASE = pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) _SCREAMING_SNAKE_CASE = pipe(**self.get_dummy_inputs(UpperCamelCase ) ) _SCREAMING_SNAKE_CASE = output.images _SCREAMING_SNAKE_CASE = pipe( **self.get_dummy_inputs(UpperCamelCase ) , return_dict=UpperCamelCase , )[0] _SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] _SCREAMING_SNAKE_CASE = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _SCREAMING_SNAKE_CASE = np.array( [0.61_47_49_43, 0.6_07_35_39, 0.43_30_85_44, 0.5_92_82_69, 0.47_49_35_95, 0.46_75_59_73, 0.4_61_38_38, 0.45_36_87_97, 0.50_11_92_33] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' @slow @require_torch_gpu class lowerCAmelCase ( unittest.TestCase ): def lowercase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase ( self ): _SCREAMING_SNAKE_CASE = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/kandinsky_img2img_frog.npy" ) _SCREAMING_SNAKE_CASE = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) _SCREAMING_SNAKE_CASE = "A red cartoon frog, 4k" _SCREAMING_SNAKE_CASE = KandinskyPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1-prior" , torch_dtype=torch.floataa ) pipe_prior.to(UpperCamelCase ) _SCREAMING_SNAKE_CASE = KandinskyImgaImgPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1" , torch_dtype=torch.floataa ) _SCREAMING_SNAKE_CASE = pipeline.to(UpperCamelCase ) pipeline.set_progress_bar_config(disable=UpperCamelCase ) _SCREAMING_SNAKE_CASE = torch.Generator(device="cpu" ).manual_seed(0 ) _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = pipe_prior( UpperCamelCase , generator=UpperCamelCase , num_inference_steps=5 , negative_prompt="" , ).to_tuple() _SCREAMING_SNAKE_CASE = pipeline( UpperCamelCase , image=UpperCamelCase , image_embeds=UpperCamelCase , negative_image_embeds=UpperCamelCase , generator=UpperCamelCase , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type="np" , ) _SCREAMING_SNAKE_CASE = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(UpperCamelCase , UpperCamelCase )
493
1
import inspect from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel, VQModel from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class A_ ( __lowercase ): '''simple docstring''' def __init__( self , _A , _A , _A) -> Dict: """simple docstring""" super().__init__() self.register_modules(vqvae=_A , unet=_A , scheduler=_A) @torch.no_grad() def __call__( self , _A = 1 , _A = None , _A = 0.0 , _A = 50 , _A = "pil" , _A = True , **_A , ) -> Union[Tuple, ImagePipelineOutput]: """simple docstring""" _UpperCAmelCase : int = randn_tensor( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=_A , ) _UpperCAmelCase : List[Any] = latents.to(self.device) # scale the initial noise by the standard deviation required by the scheduler _UpperCAmelCase : int = latents * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(_A) # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature _UpperCAmelCase : List[str] = '''eta''' in set(inspect.signature(self.scheduler.step).parameters.keys()) _UpperCAmelCase : Union[str, Any] = {} if accepts_eta: _UpperCAmelCase : str = eta for t in self.progress_bar(self.scheduler.timesteps): _UpperCAmelCase : List[str] = self.scheduler.scale_model_input(_A , _A) # predict the noise residual _UpperCAmelCase : int = self.unet(_A , _A).sample # compute the previous noisy sample x_t -> x_t-1 _UpperCAmelCase : Dict = self.scheduler.step(_A , _A , _A , **_A).prev_sample # decode the image latents with the VAE _UpperCAmelCase : Tuple = self.vqvae.decode(_A).sample _UpperCAmelCase : Dict = (image / 2 + 0.5).clamp(0 , 1) _UpperCAmelCase : str = image.cpu().permute(0 , 2 , 3 , 1).numpy() if output_type == "pil": _UpperCAmelCase : Dict = self.numpy_to_pil(_A) if not return_dict: return (image,) return ImagePipelineOutput(images=_A)
485
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionInstructPixaPixPipeline, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import floats_tensor, load_image, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class snake_case__ ( UpperCamelCase , UpperCamelCase , UpperCamelCase , unittest.TestCase): a_ = StableDiffusionInstructPixaPixPipeline a_ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width", "cross_attention_kwargs"} a_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS a_ = IMAGE_TO_IMAGE_IMAGE_PARAMS a_ = IMAGE_TO_IMAGE_IMAGE_PARAMS def A ( self : str ) -> Optional[Any]: torch.manual_seed(0 ) UpperCAmelCase_ : Tuple = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=8 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) UpperCAmelCase_ : Any = PNDMScheduler(skip_prk_steps=_A ) torch.manual_seed(0 ) UpperCAmelCase_ : int = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) UpperCAmelCase_ : Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) UpperCAmelCase_ : List[str] = CLIPTextModel(_A ) UpperCAmelCase_ : List[str] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) UpperCAmelCase_ : Union[str, Any] = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def A ( self : List[str] , _A : Tuple , _A : str=0 ) -> int: UpperCAmelCase_ : Tuple = floats_tensor((1, 3, 32, 32) , rng=random.Random(_A ) ).to(_A ) UpperCAmelCase_ : Dict = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase_ : Optional[Any] = Image.fromarray(np.uinta(_A ) ).convert('''RGB''' ) if str(_A ).startswith('''mps''' ): UpperCAmelCase_ : str = torch.manual_seed(_A ) else: UpperCAmelCase_ : Optional[Any] = torch.Generator(device=_A ).manual_seed(_A ) UpperCAmelCase_ : List[str] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''image_guidance_scale''': 1, '''output_type''': '''numpy''', } return inputs def A ( self : Tuple ) -> List[Any]: UpperCAmelCase_ : List[str] = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ : Any = self.get_dummy_components() UpperCAmelCase_ : int = StableDiffusionInstructPixaPixPipeline(**_A ) UpperCAmelCase_ : Tuple = sd_pipe.to(_A ) sd_pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : str = self.get_dummy_inputs(_A ) UpperCAmelCase_ : Union[str, Any] = sd_pipe(**_A ).images UpperCAmelCase_ : int = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCAmelCase_ : Union[str, Any] = np.array([0.7_526, 0.3_750, 0.4_547, 0.6_117, 0.5_866, 0.5_016, 0.4_327, 0.5_642, 0.4_815] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def A ( self : int ) -> str: UpperCAmelCase_ : List[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ : List[str] = self.get_dummy_components() UpperCAmelCase_ : Dict = StableDiffusionInstructPixaPixPipeline(**_A ) UpperCAmelCase_ : str = sd_pipe.to(_A ) sd_pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : Any = self.get_dummy_inputs(_A ) UpperCAmelCase_ : List[Any] = '''french fries''' UpperCAmelCase_ : Optional[Any] = sd_pipe(**_A , negative_prompt=_A ) UpperCAmelCase_ : Tuple = output.images UpperCAmelCase_ : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCAmelCase_ : Dict = np.array([0.7_511, 0.3_642, 0.4_553, 0.6_236, 0.5_797, 0.5_013, 0.4_343, 0.5_611, 0.4_831] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def A ( self : Dict ) -> str: UpperCAmelCase_ : List[str] = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ : List[Any] = self.get_dummy_components() UpperCAmelCase_ : Any = StableDiffusionInstructPixaPixPipeline(**_A ) UpperCAmelCase_ : int = sd_pipe.to(_A ) sd_pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : Any = self.get_dummy_inputs(_A ) UpperCAmelCase_ : Any = [inputs['''prompt''']] * 2 UpperCAmelCase_ : int = np.array(inputs['''image'''] ).astype(np.floataa ) / 255.0 UpperCAmelCase_ : int = torch.from_numpy(_A ).unsqueeze(0 ).to(_A ) UpperCAmelCase_ : List[str] = image / 2 + 0.5 UpperCAmelCase_ : str = image.permute(0 , 3 , 1 , 2 ) UpperCAmelCase_ : Any = image.repeat(2 , 1 , 1 , 1 ) UpperCAmelCase_ : List[Any] = sd_pipe(**_A ).images UpperCAmelCase_ : str = image[-1, -3:, -3:, -1] assert image.shape == (2, 32, 32, 3) UpperCAmelCase_ : Optional[Any] = np.array([0.5_812, 0.5_748, 0.5_222, 0.5_908, 0.5_695, 0.7_174, 0.6_804, 0.5_523, 0.5_579] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def A ( self : List[str] ) -> List[Any]: UpperCAmelCase_ : Union[str, Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ : Tuple = self.get_dummy_components() UpperCAmelCase_ : List[str] = EulerAncestralDiscreteScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' ) UpperCAmelCase_ : List[Any] = StableDiffusionInstructPixaPixPipeline(**_A ) UpperCAmelCase_ : Dict = sd_pipe.to(_A ) sd_pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : Tuple = self.get_dummy_inputs(_A ) UpperCAmelCase_ : str = sd_pipe(**_A ).images UpperCAmelCase_ : Dict = image[0, -3:, -3:, -1] UpperCAmelCase_ : Dict = [round(_A , 4 ) for x in image_slice.flatten().tolist()] print(''','''.join([str(_A ) for x in slice] ) ) assert image.shape == (1, 32, 32, 3) UpperCAmelCase_ : Any = np.array([0.7_417, 0.3_842, 0.4_732, 0.5_776, 0.5_891, 0.5_139, 0.4_052, 0.5_673, 0.4_986] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def A ( self : str ) -> List[str]: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def A ( self : List[Any] ) -> Optional[Any]: UpperCAmelCase_ : Tuple = self.get_dummy_components() UpperCAmelCase_ : Tuple = StableDiffusionInstructPixaPixPipeline(**_A ) UpperCAmelCase_ : Any = VaeImageProcessor(do_resize=_A , do_normalize=_A ) UpperCAmelCase_ : Union[str, Any] = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : int = pipe(**self.get_dummy_inputs_by_type(_A , input_image_type='''pt''' ) )[0] UpperCAmelCase_ : Union[str, Any] = components['''vae'''] UpperCAmelCase_ : Any = self.get_dummy_inputs_by_type(_A , input_image_type='''pt''' ) for image_param in self.image_latents_params: if image_param in inputs.keys(): UpperCAmelCase_ : int = vae.encode(inputs[image_param] ).latent_dist.mode() UpperCAmelCase_ : List[Any] = pipe(**_A )[0] UpperCAmelCase_ : int = np.abs(out - out_latents_inputs ).max() self.assertLess(_A , 1e-4 , '''passing latents as image input generate different result from passing image''' ) @slow @require_torch_gpu class snake_case__ ( unittest.TestCase): def A ( self : Any ) -> Optional[Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() def A ( self : List[str] , _A : Optional[Any]=0 ) -> List[Any]: UpperCAmelCase_ : Dict = torch.manual_seed(_A ) UpperCAmelCase_ : Union[str, Any] = load_image( '''https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg''' ) UpperCAmelCase_ : Optional[int] = { '''prompt''': '''turn him into a cyborg''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''image_guidance_scale''': 1.0, '''output_type''': '''numpy''', } return inputs def A ( self : Optional[int] ) -> Optional[Any]: UpperCAmelCase_ : List[Any] = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) pipe.enable_attention_slicing() UpperCAmelCase_ : List[str] = self.get_inputs() UpperCAmelCase_ : int = pipe(**_A ).images UpperCAmelCase_ : Dict = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 5_12, 3) UpperCAmelCase_ : Any = np.array([0.5_902, 0.6_015, 0.6_027, 0.5_983, 0.6_092, 0.6_061, 0.5_765, 0.5_785, 0.5_555] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def A ( self : Optional[Any] ) -> Optional[Any]: UpperCAmelCase_ : Optional[Any] = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=_A ) UpperCAmelCase_ : Dict = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) pipe.enable_attention_slicing() UpperCAmelCase_ : List[Any] = self.get_inputs() UpperCAmelCase_ : str = pipe(**_A ).images UpperCAmelCase_ : Optional[int] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 5_12, 3) UpperCAmelCase_ : List[str] = np.array([0.6_578, 0.6_817, 0.6_972, 0.6_761, 0.6_856, 0.6_916, 0.6_428, 0.6_516, 0.6_301] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def A ( self : List[str] ) -> Union[str, Any]: UpperCAmelCase_ : str = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=_A ) UpperCAmelCase_ : str = DDIMScheduler.from_config(pipe.scheduler.config ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) pipe.enable_attention_slicing() UpperCAmelCase_ : Any = self.get_inputs() UpperCAmelCase_ : Any = pipe(**_A ).images UpperCAmelCase_ : Optional[Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 5_12, 3) UpperCAmelCase_ : Dict = np.array([0.3_828, 0.3_834, 0.3_818, 0.3_792, 0.3_865, 0.3_752, 0.3_792, 0.3_847, 0.3_753] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def A ( self : Tuple ) -> List[Any]: UpperCAmelCase_ : List[str] = 0 def callback_fn(_A : int , _A : int , _A : torch.FloatTensor ) -> None: UpperCAmelCase_ : Tuple = True nonlocal number_of_steps number_of_steps += 1 if step == 1: UpperCAmelCase_ : List[str] = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) UpperCAmelCase_ : Optional[Any] = latents[0, -3:, -3:, -1] UpperCAmelCase_ : List[Any] = np.array([-0.2_463, -0.4_644, -0.9_756, 1.5_176, 1.4_414, 0.7_866, 0.9_897, 0.8_521, 0.7_983] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: UpperCAmelCase_ : Union[str, Any] = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) UpperCAmelCase_ : Dict = latents[0, -3:, -3:, -1] UpperCAmelCase_ : Tuple = np.array([-0.2_644, -0.4_626, -0.9_653, 1.5_176, 1.4_551, 0.7_686, 0.9_805, 0.8_452, 0.8_115] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 UpperCAmelCase_ : Dict = False UpperCAmelCase_ : Dict = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=_A , torch_dtype=torch.floataa ) UpperCAmelCase_ : Any = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) pipe.enable_attention_slicing() UpperCAmelCase_ : Dict = self.get_inputs() pipe(**_A , callback=_A , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def A ( self : int ) -> int: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() UpperCAmelCase_ : Union[str, Any] = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=_A , torch_dtype=torch.floataa ) UpperCAmelCase_ : Tuple = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() UpperCAmelCase_ : Dict = self.get_inputs() UpperCAmelCase_ : List[str] = pipe(**_A ) UpperCAmelCase_ : Dict = torch.cuda.max_memory_allocated() # make sure that less than 2.2 GB is allocated assert mem_bytes < 2.2 * 10**9 def A ( self : str ) -> int: UpperCAmelCase_ : List[Any] = self.get_inputs() # resize to resolution that is divisible by 8 but not 16 or 32 UpperCAmelCase_ : List[str] = inputs['''image'''].resize((5_04, 5_04) ) UpperCAmelCase_ : int = '''timbrooks/instruct-pix2pix''' UpperCAmelCase_ : Tuple = StableDiffusionInstructPixaPixPipeline.from_pretrained( _A , safety_checker=_A , ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) pipe.enable_attention_slicing() UpperCAmelCase_ : Optional[Any] = pipe(**_A ) UpperCAmelCase_ : Union[str, Any] = output.images[0] UpperCAmelCase_ : List[str] = image[2_55:2_58, 3_83:3_86, -1] assert image.shape == (5_04, 5_04, 3) UpperCAmelCase_ : List[str] = np.array([0.2_726, 0.2_529, 0.2_664, 0.2_655, 0.2_641, 0.2_642, 0.2_591, 0.2_649, 0.2_590] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3
541
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = 'microsoft/speecht5_tts' UpperCamelCase_ = ( 'This is a tool that reads an English text out loud. It takes an input named `text` which should contain the ' 'text to read (in English) and returns a waveform object containing the sound.' ) UpperCamelCase_ = 'text_reader' UpperCamelCase_ = SpeechTaProcessor UpperCamelCase_ = SpeechTaForTextToSpeech UpperCamelCase_ = SpeechTaHifiGan UpperCamelCase_ = ['text'] UpperCamelCase_ = ['audio'] def UpperCAmelCase_ ( self : Dict ) -> Any: '''simple docstring''' if self.post_processor is None: lowerCAmelCase_ : Any = "microsoft/speecht5_hifigan" super().setup() def UpperCAmelCase_ ( self : List[Any] ,lowerCAmelCase__ : Optional[int] ,lowerCAmelCase__ : Optional[int]=None ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Any = self.pre_processor(text=lowerCAmelCase__ ,return_tensors="pt" ,truncation=lowerCAmelCase__ ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError("Datasets needs to be installed if not passing speaker embeddings." ) lowerCAmelCase_ : str = load_dataset("Matthijs/cmu-arctic-xvectors" ,split="validation" ) lowerCAmelCase_ : List[Any] = torch.tensor(embeddings_dataset[73_05]["xvector"] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' with torch.no_grad(): return self.model.generate_speech(**lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : str ) -> Any: '''simple docstring''' with torch.no_grad(): return self.post_processor(lowerCAmelCase__ ).cpu().detach()
683
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = 'microsoft/speecht5_tts' UpperCamelCase_ = ( 'This is a tool that reads an English text out loud. It takes an input named `text` which should contain the ' 'text to read (in English) and returns a waveform object containing the sound.' ) UpperCamelCase_ = 'text_reader' UpperCamelCase_ = SpeechTaProcessor UpperCamelCase_ = SpeechTaForTextToSpeech UpperCamelCase_ = SpeechTaHifiGan UpperCamelCase_ = ['text'] UpperCamelCase_ = ['audio'] def UpperCAmelCase_ ( self : Dict ) -> Any: '''simple docstring''' if self.post_processor is None: lowerCAmelCase_ : Any = "microsoft/speecht5_hifigan" super().setup() def UpperCAmelCase_ ( self : List[Any] ,lowerCAmelCase__ : Optional[int] ,lowerCAmelCase__ : Optional[int]=None ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Any = self.pre_processor(text=lowerCAmelCase__ ,return_tensors="pt" ,truncation=lowerCAmelCase__ ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError("Datasets needs to be installed if not passing speaker embeddings." ) lowerCAmelCase_ : str = load_dataset("Matthijs/cmu-arctic-xvectors" ,split="validation" ) lowerCAmelCase_ : List[Any] = torch.tensor(embeddings_dataset[73_05]["xvector"] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' with torch.no_grad(): return self.model.generate_speech(**lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : str ) -> Any: '''simple docstring''' with torch.no_grad(): return self.post_processor(lowerCAmelCase__ ).cpu().detach()
683
1
'''simple docstring''' import argparse import gc import json import os import shutil import warnings import torch from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer try: from transformers import LlamaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( """The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion""" ) _lowercase = None _lowercase = { """7B""": 11008, """13B""": 13824, """30B""": 17920, """65B""": 22016, """70B""": 28672, } _lowercase = { """7B""": 1, """7Bf""": 1, """13B""": 2, """13Bf""": 2, """30B""": 4, """65B""": 8, """70B""": 8, """70Bf""": 8, } def A (__lowerCamelCase :int , __lowerCamelCase :Optional[Any]=1 , __lowerCamelCase :List[Any]=256 ): return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of) def A (__lowerCamelCase :Any ): with open(__lowerCamelCase , """r""" ) as f: return json.load(__lowerCamelCase ) def A (__lowerCamelCase :List[Any] , __lowerCamelCase :int ): with open(__lowerCamelCase , """w""" ) as f: json.dump(__lowerCamelCase , __lowerCamelCase ) def A (__lowerCamelCase :Optional[Any] , __lowerCamelCase :Tuple , __lowerCamelCase :Optional[Any] , __lowerCamelCase :Tuple=True ): os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) _lowerCAmelCase = os.path.join(__lowerCamelCase , """tmp""" ) os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) _lowerCAmelCase = read_json(os.path.join(__lowerCamelCase , """params.json""" ) ) _lowerCAmelCase = NUM_SHARDS[model_size] _lowerCAmelCase = params["""n_layers"""] _lowerCAmelCase = params["""n_heads"""] _lowerCAmelCase = n_heads // num_shards _lowerCAmelCase = params["""dim"""] _lowerCAmelCase = dim // n_heads _lowerCAmelCase = 10_000.0 _lowerCAmelCase = 1.0 / (base ** (torch.arange(0 , __lowerCamelCase , 2 ).float() / dims_per_head)) if "n_kv_heads" in params: _lowerCAmelCase = params["""n_kv_heads"""] # for GQA / MQA _lowerCAmelCase = n_heads_per_shard // num_key_value_heads _lowerCAmelCase = dim // num_key_value_heads else: # compatibility with other checkpoints _lowerCAmelCase = n_heads _lowerCAmelCase = n_heads_per_shard _lowerCAmelCase = dim # permute for sliced rotary def permute(__lowerCamelCase :Optional[int] , __lowerCamelCase :str=n_heads , __lowerCamelCase :str=dim , __lowerCamelCase :List[Any]=dim ): return w.view(__lowerCamelCase , dima // n_heads // 2 , 2 , __lowerCamelCase ).transpose(1 , 2 ).reshape(__lowerCamelCase , __lowerCamelCase ) print(f'Fetching all parameters from the checkpoint at {input_base_path}.' ) # Load weights if model_size == "7B": # Not sharded # (The sharded implementation would also work, but this is simpler.) _lowerCAmelCase = torch.load(os.path.join(__lowerCamelCase , """consolidated.00.pth""" ) , map_location="""cpu""" ) else: # Sharded _lowerCAmelCase = [ torch.load(os.path.join(__lowerCamelCase , f'consolidated.{i:02d}.pth' ) , map_location="""cpu""" ) for i in range(__lowerCamelCase ) ] _lowerCAmelCase = 0 _lowerCAmelCase = {"""weight_map""": {}} for layer_i in range(__lowerCamelCase ): _lowerCAmelCase = f'pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin' if model_size == "7B": # Unsharded _lowerCAmelCase = { f'model.layers.{layer_i}.self_attn.q_proj.weight': permute( loaded[f'layers.{layer_i}.attention.wq.weight'] ), f'model.layers.{layer_i}.self_attn.k_proj.weight': permute( loaded[f'layers.{layer_i}.attention.wk.weight'] ), f'model.layers.{layer_i}.self_attn.v_proj.weight': loaded[f'layers.{layer_i}.attention.wv.weight'], f'model.layers.{layer_i}.self_attn.o_proj.weight': loaded[f'layers.{layer_i}.attention.wo.weight'], f'model.layers.{layer_i}.mlp.gate_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w1.weight'], f'model.layers.{layer_i}.mlp.down_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w2.weight'], f'model.layers.{layer_i}.mlp.up_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w3.weight'], f'model.layers.{layer_i}.input_layernorm.weight': loaded[f'layers.{layer_i}.attention_norm.weight'], f'model.layers.{layer_i}.post_attention_layernorm.weight': loaded[f'layers.{layer_i}.ffn_norm.weight'], } else: # Sharded # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. _lowerCAmelCase = { f'model.layers.{layer_i}.input_layernorm.weight': loaded[0][ f'layers.{layer_i}.attention_norm.weight' ].clone(), f'model.layers.{layer_i}.post_attention_layernorm.weight': loaded[0][ f'layers.{layer_i}.ffn_norm.weight' ].clone(), } _lowerCAmelCase = permute( torch.cat( [ loaded[i][f'layers.{layer_i}.attention.wq.weight'].view(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) for i in range(__lowerCamelCase ) ] , dim=0 , ).reshape(__lowerCamelCase , __lowerCamelCase ) ) _lowerCAmelCase = permute( torch.cat( [ loaded[i][f'layers.{layer_i}.attention.wk.weight'].view( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) for i in range(__lowerCamelCase ) ] , dim=0 , ).reshape(__lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) _lowerCAmelCase = torch.cat( [ loaded[i][f'layers.{layer_i}.attention.wv.weight'].view( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) for i in range(__lowerCamelCase ) ] , dim=0 , ).reshape(__lowerCamelCase , __lowerCamelCase ) _lowerCAmelCase = torch.cat( [loaded[i][f'layers.{layer_i}.attention.wo.weight'] for i in range(__lowerCamelCase )] , dim=1 ) _lowerCAmelCase = torch.cat( [loaded[i][f'layers.{layer_i}.feed_forward.w1.weight'] for i in range(__lowerCamelCase )] , dim=0 ) _lowerCAmelCase = torch.cat( [loaded[i][f'layers.{layer_i}.feed_forward.w2.weight'] for i in range(__lowerCamelCase )] , dim=1 ) _lowerCAmelCase = torch.cat( [loaded[i][f'layers.{layer_i}.feed_forward.w3.weight'] for i in range(__lowerCamelCase )] , dim=0 ) _lowerCAmelCase = inv_freq for k, v in state_dict.items(): _lowerCAmelCase = filename param_count += v.numel() torch.save(__lowerCamelCase , os.path.join(__lowerCamelCase , __lowerCamelCase ) ) _lowerCAmelCase = f'pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin' if model_size == "7B": # Unsharded _lowerCAmelCase = { """model.embed_tokens.weight""": loaded["""tok_embeddings.weight"""], """model.norm.weight""": loaded["""norm.weight"""], """lm_head.weight""": loaded["""output.weight"""], } else: _lowerCAmelCase = { """model.norm.weight""": loaded[0]["""norm.weight"""], """model.embed_tokens.weight""": torch.cat( [loaded[i]["""tok_embeddings.weight"""] for i in range(__lowerCamelCase )] , dim=1 ), """lm_head.weight""": torch.cat([loaded[i]["""output.weight"""] for i in range(__lowerCamelCase )] , dim=0 ), } for k, v in state_dict.items(): _lowerCAmelCase = filename param_count += v.numel() torch.save(__lowerCamelCase , os.path.join(__lowerCamelCase , __lowerCamelCase ) ) # Write configs _lowerCAmelCase = {"""total_size""": param_count * 2} write_json(__lowerCamelCase , os.path.join(__lowerCamelCase , """pytorch_model.bin.index.json""" ) ) _lowerCAmelCase = params["""ffn_dim_multiplier"""] if """ffn_dim_multiplier""" in params else 1 _lowerCAmelCase = params["""multiple_of"""] if """multiple_of""" in params else 256 _lowerCAmelCase = LlamaConfig( hidden_size=__lowerCamelCase , intermediate_size=compute_intermediate_size(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) , num_attention_heads=params["""n_heads"""] , num_hidden_layers=params["""n_layers"""] , rms_norm_eps=params["""norm_eps"""] , num_key_value_heads=__lowerCamelCase , ) config.save_pretrained(__lowerCamelCase ) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() print("""Loading the checkpoint in a Llama model.""" ) _lowerCAmelCase = LlamaForCausalLM.from_pretrained(__lowerCamelCase , torch_dtype=torch.floataa , low_cpu_mem_usage=__lowerCamelCase ) # Avoid saving this as part of the config. del model.config._name_or_path print("""Saving in the Transformers format.""" ) model.save_pretrained(__lowerCamelCase , safe_serialization=__lowerCamelCase ) shutil.rmtree(__lowerCamelCase ) def A (__lowerCamelCase :Union[str, Any] , __lowerCamelCase :Union[str, Any] ): # Initialize the tokenizer based on the `spm` model _lowerCAmelCase = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast print(f'Saving a {tokenizer_class.__name__} to {tokenizer_path}.' ) _lowerCAmelCase = tokenizer_class(__lowerCamelCase ) tokenizer.save_pretrained(__lowerCamelCase ) def A (): _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( """--input_dir""" , help="""Location of LLaMA weights, which contains tokenizer.model and model folders""" , ) parser.add_argument( """--model_size""" , choices=["""7B""", """7Bf""", """13B""", """13Bf""", """30B""", """65B""", """70B""", """70Bf""", """tokenizer_only"""] , ) parser.add_argument( """--output_dir""" , help="""Location to write HF model and tokenizer""" , ) parser.add_argument("""--safe_serialization""" , type=__lowerCamelCase , help="""Whether or not to save using `safetensors`.""" ) _lowerCAmelCase = parser.parse_args() if args.model_size != "tokenizer_only": write_model( model_path=args.output_dir , input_base_path=os.path.join(args.input_dir , args.model_size ) , model_size=args.model_size , safe_serialization=args.safe_serialization , ) _lowerCAmelCase = os.path.join(args.input_dir , """tokenizer.model""" ) write_tokenizer(args.output_dir , __lowerCamelCase ) if __name__ == "__main__": main()
5
'''simple docstring''' _lowercase = """ # Transformers 설치 방법 ! pip install transformers datasets # 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요. # ! pip install git+https://github.com/huggingface/transformers.git """ _lowercase = [{"""type""": """code""", """content""": INSTALL_CONTENT}] _lowercase = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
5
1
'''simple docstring''' import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline __snake_case :List[str] = argparse.ArgumentParser('''Stable Diffusion script with intel optimization''', add_help=False) parser.add_argument('''--dpm''', action='''store_true''', help='''Enable DPMSolver or not''') parser.add_argument('''--steps''', default=None, type=int, help='''Num inference steps''') __snake_case :Any = parser.parse_args() __snake_case :Optional[int] = '''cpu''' __snake_case :List[str] = '''a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings''' __snake_case :Any = '''path-to-your-trained-model''' __snake_case :Tuple = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: __snake_case :Tuple = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) __snake_case :Tuple = pipe.to(device) # to channels last __snake_case :List[str] = pipe.unet.to(memory_format=torch.channels_last) __snake_case :Tuple = pipe.vae.to(memory_format=torch.channels_last) __snake_case :Tuple = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: __snake_case :Tuple = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex __snake_case :Any = torch.randn(2, 4, 64, 64) __snake_case :Union[str, Any] = torch.rand(1) * 999 __snake_case :str = torch.randn(2, 77, 768) __snake_case :Optional[Any] = (sample, timestep, encoder_hidden_status) try: __snake_case :Union[str, Any] = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: __snake_case :Tuple = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) __snake_case :Optional[int] = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) __snake_case :Tuple = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: __snake_case :Union[str, Any] = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute __snake_case :int = 666 __snake_case :Union[str, Any] = torch.Generator(device).manual_seed(seed) __snake_case :int = {'''generator''': generator} if args.steps is not None: __snake_case :Any = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): __snake_case :int = pipe(prompt, **generate_kwargs).images[0] # save image image.save('''generated.png''')
714
from collections.abc import Generator from math import sin def __snake_case ( _UpperCAmelCase ): if len(_UpperCAmelCase ) != 32: raise ValueError('''Input must be of length 32''' ) __a = b'''''' for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def __snake_case ( _UpperCAmelCase ): if i < 0: raise ValueError('''Input must be non-negative''' ) __a = format(_UpperCAmelCase , '''08x''' )[-8:] __a = b'''''' for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode('''utf-8''' ) return little_endian_hex def __snake_case ( _UpperCAmelCase ): __a = b'''''' for char in message: bit_string += format(_UpperCAmelCase , '''08b''' ).encode('''utf-8''' ) __a = format(len(_UpperCAmelCase ) , '''064b''' ).encode('''utf-8''' ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(_UpperCAmelCase ) % 512 != 448: bit_string += b"0" bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] ) return bit_string def __snake_case ( _UpperCAmelCase ): if len(_UpperCAmelCase ) % 512 != 0: raise ValueError('''Input must have length that\'s a multiple of 512''' ) for pos in range(0 , len(_UpperCAmelCase ) , 512 ): __a = bit_string[pos : pos + 512] __a = [] for i in range(0 , 512 , 32 ): block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) ) yield block_words def __snake_case ( _UpperCAmelCase ): if i < 0: raise ValueError('''Input must be non-negative''' ) __a = format(_UpperCAmelCase , '''032b''' ) __a = '''''' for c in i_str: new_str += "1" if c == "0" else "0" return int(_UpperCAmelCase , 2 ) def __snake_case ( _UpperCAmelCase , _UpperCAmelCase ): return (a + b) % 2**32 def __snake_case ( _UpperCAmelCase , _UpperCAmelCase ): if i < 0: raise ValueError('''Input must be non-negative''' ) if shift < 0: raise ValueError('''Shift must be non-negative''' ) return ((i << shift) ^ (i >> (32 - shift))) % 2**32 def __snake_case ( _UpperCAmelCase ): __a = preprocess(_UpperCAmelCase ) __a = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )] # Starting states __a = 0X67_452_301 __a = 0Xef_cda_b89 __a = 0X98_bad_cfe __a = 0X10_325_476 __a = [ 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(_UpperCAmelCase ): __a = aa __a = ba __a = ca __a = da # Hash current chunk for i in range(64 ): if i <= 15: # f = (b & c) | (not_32(b) & d) # Alternate definition for f __a = d ^ (b & (c ^ d)) __a = i elif i <= 31: # f = (d & b) | (not_32(d) & c) # Alternate definition for f __a = c ^ (d & (b ^ c)) __a = (5 * i + 1) % 16 elif i <= 47: __a = b ^ c ^ d __a = (3 * i + 5) % 16 else: __a = c ^ (b | not_aa(_UpperCAmelCase )) __a = (7 * i) % 16 __a = (f + a + added_consts[i] + block_words[g]) % 2**32 __a = d __a = c __a = b __a = sum_aa(_UpperCAmelCase , left_rotate_aa(_UpperCAmelCase , shift_amounts[i] ) ) # Add hashed chunk to running total __a = sum_aa(_UpperCAmelCase , _UpperCAmelCase ) __a = sum_aa(_UpperCAmelCase , _UpperCAmelCase ) __a = sum_aa(_UpperCAmelCase , _UpperCAmelCase ) __a = sum_aa(_UpperCAmelCase , _UpperCAmelCase ) __a = reformat_hex(_UpperCAmelCase ) + reformat_hex(_UpperCAmelCase ) + reformat_hex(_UpperCAmelCase ) + reformat_hex(_UpperCAmelCase ) return digest if __name__ == "__main__": import doctest doctest.testmod()
60
0
'''simple docstring''' import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print('Googling.....') UpperCamelCase : int = 'https://www.google.com/search?q=' + ' '.join(sys.argv[1:]) UpperCamelCase : List[str] = requests.get(url, headers={'UserAgent': UserAgent().random}) # res.raise_for_status() with open('project1a.html', 'wb') as out_file: # only for knowing the class for data in res.iter_content(1_00_00): out_file.write(data) UpperCamelCase : int = BeautifulSoup(res.text, 'html.parser') UpperCamelCase : Optional[Any] = list(soup.select('.eZt8xd'))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get('href')) else: webbrowser.open(F'https://google.com{link.get("href")}')
50
"""simple docstring""" from __future__ import annotations from collections.abc import Callable from typing import Generic, TypeVar UpperCAmelCase__ : Union[str, Any] = TypeVar('T') UpperCAmelCase__ : List[Any] = TypeVar('U') class lowerCAmelCase_ (Generic[T, U] ): """simple docstring""" def __init__(self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = key SCREAMING_SNAKE_CASE__ : Union[str, Any] = val SCREAMING_SNAKE_CASE__ : DoubleLinkedListNode[T, U] | None = None SCREAMING_SNAKE_CASE__ : DoubleLinkedListNode[T, U] | None = None def __repr__(self ) -> str: """simple docstring""" return ( F'''Node: key: {self.key}, val: {self.val}, ''' F'''has next: {bool(self.next )}, has prev: {bool(self.prev )}''' ) class lowerCAmelCase_ (Generic[T, U] ): """simple docstring""" def __init__(self ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE__ : DoubleLinkedListNode[T, U] = DoubleLinkedListNode(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : DoubleLinkedListNode[T, U] = DoubleLinkedListNode(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[Any] = self.rear, self.head def __repr__(self ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = ["""DoubleLinkedList"""] SCREAMING_SNAKE_CASE__ : Optional[Any] = self.head while node.next is not None: rep.append(str(SCREAMING_SNAKE_CASE__ ) ) SCREAMING_SNAKE_CASE__ : Optional[int] = node.next rep.append(str(self.rear ) ) return ",\n ".join(SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = self.rear.prev # All nodes other than self.head are guaranteed to have non-None previous assert previous is not None SCREAMING_SNAKE_CASE__ : int = node SCREAMING_SNAKE_CASE__ : Optional[Any] = previous SCREAMING_SNAKE_CASE__ : List[str] = node SCREAMING_SNAKE_CASE__ : List[Any] = self.rear def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> DoubleLinkedListNode[T, U] | None: """simple docstring""" if node.prev is None or node.next is None: return None SCREAMING_SNAKE_CASE__ : Optional[Any] = node.next SCREAMING_SNAKE_CASE__ : Optional[int] = node.prev SCREAMING_SNAKE_CASE__ : List[str] = None SCREAMING_SNAKE_CASE__ : List[str] = None return node class lowerCAmelCase_ (Generic[T, U] ): """simple docstring""" __UpperCamelCase : dict[Callable[[T], U], LRUCache[T, U]] = {} def __init__(self , SCREAMING_SNAKE_CASE__ ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : DoubleLinkedList[T, U] = DoubleLinkedList() SCREAMING_SNAKE_CASE__ : List[Any] = capacity SCREAMING_SNAKE_CASE__ : int = 0 SCREAMING_SNAKE_CASE__ : Optional[int] = 0 SCREAMING_SNAKE_CASE__ : Union[str, Any] = 0 SCREAMING_SNAKE_CASE__ : dict[T, DoubleLinkedListNode[T, U]] = {} def __repr__(self ) -> str: """simple docstring""" return ( F'''CacheInfo(hits={self.hits}, misses={self.miss}, ''' F'''capacity={self.capacity}, current size={self.num_keys})''' ) def __contains__(self , SCREAMING_SNAKE_CASE__ ) -> bool: """simple docstring""" return key in self.cache def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> U | None: """simple docstring""" if key in self.cache: self.hits += 1 SCREAMING_SNAKE_CASE__ : DoubleLinkedListNode[T, U] = self.cache[key] SCREAMING_SNAKE_CASE__ : Optional[Any] = self.list.remove(self.cache[key] ) assert node == value_node # node is guaranteed not None because it is in self.cache assert node is not None self.list.add(SCREAMING_SNAKE_CASE__ ) return node.val self.miss += 1 return None def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> None: """simple docstring""" if key not in self.cache: if self.num_keys >= self.capacity: # delete first node (oldest) when over capacity SCREAMING_SNAKE_CASE__ : Any = self.list.head.next # guaranteed to have a non-None first node when num_keys > 0 # explain to type checker via assertions assert first_node is not None assert first_node.key is not None assert ( self.list.remove(SCREAMING_SNAKE_CASE__ ) is not None ) # node guaranteed to be in list assert node.key is not None del self.cache[first_node.key] self.num_keys -= 1 SCREAMING_SNAKE_CASE__ : List[str] = DoubleLinkedListNode(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.list.add(self.cache[key] ) self.num_keys += 1 else: # bump node to the end of the list, update value SCREAMING_SNAKE_CASE__ : Optional[int] = self.list.remove(self.cache[key] ) assert node is not None # node guaranteed to be in list SCREAMING_SNAKE_CASE__ : Optional[Any] = value self.list.add(SCREAMING_SNAKE_CASE__ ) @classmethod def __magic_name__ (cls , SCREAMING_SNAKE_CASE__ = 1_28 ) -> Callable[[Callable[[T], U]], Callable[..., U]]: """simple docstring""" def cache_decorator_inner(SCREAMING_SNAKE_CASE__ ) -> Callable[..., U]: def cache_decorator_wrapper(*SCREAMING_SNAKE_CASE__ ) -> U: if func not in cls.decorator_function_to_instance_map: SCREAMING_SNAKE_CASE__ : List[str] = LRUCache(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : int = cls.decorator_function_to_instance_map[func].get(args[0] ) if result is None: SCREAMING_SNAKE_CASE__ : Tuple = func(*SCREAMING_SNAKE_CASE__ ) cls.decorator_function_to_instance_map[func].put(args[0] , SCREAMING_SNAKE_CASE__ ) return result def cache_info() -> LRUCache[T, U]: return cls.decorator_function_to_instance_map[func] setattr(SCREAMING_SNAKE_CASE__ , """cache_info""" , SCREAMING_SNAKE_CASE__ ) # noqa: B010 return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
223
0
'''simple docstring''' import copy import random from transformers import CLIPTokenizer class _lowerCAmelCase ( A__ ): """simple docstring""" def __init__( self : Tuple , *__snake_case : List[Any] , **__snake_case : List[Any] )-> List[str]: super().__init__(*__snake_case , **__snake_case ) snake_case = {} def lowerCAmelCase ( self : Union[str, Any] , __snake_case : Dict , *__snake_case : List[Any] , **__snake_case : int )-> Any: snake_case = super().add_tokens(__snake_case , *__snake_case , **__snake_case ) if num_added_tokens == 0: raise ValueError( f'''The tokenizer already contains the token {placeholder_token}. Please pass a different''' """ `placeholder_token` that is not already in the tokenizer.""" ) def lowerCAmelCase ( self : Optional[Any] , __snake_case : List[str] , *__snake_case : int , __snake_case : List[Any]=1 , **__snake_case : Any )-> Any: snake_case = [] if num_vec_per_token == 1: self.try_adding_tokens(__snake_case , *__snake_case , **__snake_case ) output.append(__snake_case ) else: snake_case = [] for i in range(__snake_case ): snake_case = placeholder_token + f'''_{i}''' self.try_adding_tokens(__snake_case , *__snake_case , **__snake_case ) output.append(__snake_case ) # handle cases where there is a new placeholder token that contains the current placeholder token but is larger for token in self.token_map: if token in placeholder_token: raise ValueError( f'''The tokenizer already has placeholder token {token} that can get confused with''' f''' {placeholder_token}keep placeholder tokens independent''' ) snake_case = output def lowerCAmelCase ( self : Optional[int] , __snake_case : Optional[Any] , __snake_case : Dict=False , __snake_case : int=1.0 )-> Dict: if isinstance(__snake_case , __snake_case ): snake_case = [] for i in range(len(__snake_case ) ): output.append(self.replace_placeholder_tokens_in_text(text[i] , vector_shuffle=__snake_case ) ) return output for placeholder_token in self.token_map: if placeholder_token in text: snake_case = self.token_map[placeholder_token] snake_case = tokens[: 1 + int(len(__snake_case ) * prop_tokens_to_load )] if vector_shuffle: snake_case = copy.copy(__snake_case ) random.shuffle(__snake_case ) snake_case = text.replace(__snake_case , """ """.join(__snake_case ) ) return text def __call__( self : List[str] , __snake_case : List[str] , *__snake_case : Dict , __snake_case : Dict=False , __snake_case : List[str]=1.0 , **__snake_case : Union[str, Any] )-> str: return super().__call__( self.replace_placeholder_tokens_in_text( __snake_case , vector_shuffle=__snake_case , prop_tokens_to_load=__snake_case ) , *__snake_case , **__snake_case , ) def lowerCAmelCase ( self : int , __snake_case : List[Any] , *__snake_case : str , __snake_case : Any=False , __snake_case : Optional[int]=1.0 , **__snake_case : Optional[int] )-> Dict: return super().encode( self.replace_placeholder_tokens_in_text( __snake_case , vector_shuffle=__snake_case , prop_tokens_to_load=__snake_case ) , *__snake_case , **__snake_case , )
517
'''simple docstring''' from __future__ import annotations import math _SCREAMING_SNAKE_CASE = "2020.9.26" _SCREAMING_SNAKE_CASE = "xcodz-dot, cclaus, dhruvmanila" def __lowerCamelCase ( __lowerCAmelCase : float , __lowerCAmelCase : float , __lowerCAmelCase : float , __lowerCAmelCase : float , __lowerCAmelCase : float ) -> tuple[float, float]: if not all(isinstance(__lowerCAmelCase , (float, int) ) for val in locals().values() ): snake_case = F'''Input values must either be float or int: {list(locals().values() )}''' raise TypeError(__lowerCAmelCase ) snake_case = ((x * distance) / (z + distance)) * scale snake_case = ((y * distance) / (z + distance)) * scale return projected_x, projected_y def __lowerCamelCase ( __lowerCAmelCase : float , __lowerCAmelCase : float , __lowerCAmelCase : float , __lowerCAmelCase : str , __lowerCAmelCase : float ) -> tuple[float, float, float]: if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError("""Axis must be a str""" ) snake_case = locals() del input_variables["axis"] if not all(isinstance(__lowerCAmelCase , (float, int) ) for val in input_variables.values() ): snake_case = ( """Input values except axis must either be float or int: """ F'''{list(input_variables.values() )}''' ) raise TypeError(__lowerCAmelCase ) snake_case = (angle % 3_60) / 4_50 * 1_80 / math.pi if axis == "z": snake_case = x * math.cos(__lowerCAmelCase ) - y * math.sin(__lowerCAmelCase ) snake_case = y * math.cos(__lowerCAmelCase ) + x * math.sin(__lowerCAmelCase ) snake_case = z elif axis == "x": snake_case = y * math.cos(__lowerCAmelCase ) - z * math.sin(__lowerCAmelCase ) snake_case = z * math.cos(__lowerCAmelCase ) + y * math.sin(__lowerCAmelCase ) snake_case = x elif axis == "y": snake_case = x * math.cos(__lowerCAmelCase ) - z * math.sin(__lowerCAmelCase ) snake_case = z * math.cos(__lowerCAmelCase ) + x * math.sin(__lowerCAmelCase ) snake_case = y else: raise ValueError("""not a valid axis, choose one of 'x', 'y', 'z'""" ) return new_x, new_y, new_z if __name__ == "__main__": import doctest doctest.testmod() print(F"""{convert_to_ad(1.0, 2.0, 3.0, 10.0, 10.0) = }""") print(F"""{rotate(1.0, 2.0, 3.0, 'y', 90.0) = }""")
517
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = """▁""" UpperCamelCase = {"""vocab_file""": """spiece.model"""} UpperCamelCase = { """vocab_file""": { """google/reformer-crime-and-punishment""": ( """https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model""" ) } } UpperCamelCase = { """google/reformer-crime-and-punishment""": 52_4288, } class _lowerCamelCase ( UpperCamelCase ): """simple docstring""" snake_case = VOCAB_FILES_NAMES snake_case = PRETRAINED_VOCAB_FILES_MAP snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case = ["input_ids", "attention_mask"] def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="</s>" , _SCREAMING_SNAKE_CASE="<unk>" , _SCREAMING_SNAKE_CASE=[] , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , )->None: '''simple docstring''' A_ : int = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , additional_special_tokens=_SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **_SCREAMING_SNAKE_CASE , ) A_ : Any = vocab_file A_ : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_SCREAMING_SNAKE_CASE ) @property def _snake_case ( self )->int: '''simple docstring''' return self.sp_model.get_piece_size() def _snake_case ( self )->Dict[str, int]: '''simple docstring''' A_ : Any = {self.convert_ids_to_tokens(_SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self )->Tuple: '''simple docstring''' A_ : Any = self.__dict__.copy() A_ : Dict = None return state def __setstate__( self , _SCREAMING_SNAKE_CASE )->Dict: '''simple docstring''' A_ : Dict = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): A_ : Any = {} A_ : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _snake_case ( self , _SCREAMING_SNAKE_CASE )->List[str]: '''simple docstring''' return self.sp_model.encode(_SCREAMING_SNAKE_CASE , out_type=_SCREAMING_SNAKE_CASE ) def _snake_case ( self , _SCREAMING_SNAKE_CASE )->Optional[Any]: '''simple docstring''' return self.sp_model.piece_to_id(_SCREAMING_SNAKE_CASE ) def _snake_case ( self , _SCREAMING_SNAKE_CASE )->Optional[int]: '''simple docstring''' if index < self.sp_model.get_piece_size(): A_ : List[Any] = self.sp_model.IdToPiece(_SCREAMING_SNAKE_CASE ) return token def _snake_case ( self , _SCREAMING_SNAKE_CASE )->Tuple: '''simple docstring''' A_ : Any = [] A_ : Optional[int] = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_SCREAMING_SNAKE_CASE ) + token A_ : Any = [] else: current_sub_tokens.append(_SCREAMING_SNAKE_CASE ) out_string += self.sp_model.decode(_SCREAMING_SNAKE_CASE ) return out_string.strip() def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None )->Tuple[str]: '''simple docstring''' if not os.path.isdir(_SCREAMING_SNAKE_CASE ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return A_ : List[str] = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(_SCREAMING_SNAKE_CASE , '''wb''' ) as fi: A_ : Tuple = self.sp_model.serialized_model_proto() fi.write(_SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
590
import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self )->Dict: '''simple docstring''' super().tearDown() gc.collect() def _snake_case ( self )->Optional[int]: '''simple docstring''' A_ , A_ : List[Any] = FlaxControlNetModel.from_pretrained( '''lllyasviel/sd-controlnet-canny''' , from_pt=_SCREAMING_SNAKE_CASE , dtype=jnp.bfloataa ) A_ , A_ : int = FlaxStableDiffusionControlNetPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , controlnet=_SCREAMING_SNAKE_CASE , from_pt=_SCREAMING_SNAKE_CASE , dtype=jnp.bfloataa ) A_ : int = controlnet_params A_ : Union[str, Any] = '''bird''' A_ : Any = jax.device_count() A_ : Optional[Any] = pipe.prepare_text_inputs([prompts] * num_samples ) A_ : Union[str, Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png''' ) A_ : Union[str, Any] = pipe.prepare_image_inputs([canny_image] * num_samples ) A_ : Dict = jax.random.PRNGKey(0 ) A_ : str = jax.random.split(_SCREAMING_SNAKE_CASE , jax.device_count() ) A_ : Optional[Any] = replicate(_SCREAMING_SNAKE_CASE ) A_ : List[Any] = shard(_SCREAMING_SNAKE_CASE ) A_ : Dict = shard(_SCREAMING_SNAKE_CASE ) A_ : Any = pipe( prompt_ids=_SCREAMING_SNAKE_CASE , image=_SCREAMING_SNAKE_CASE , params=_SCREAMING_SNAKE_CASE , prng_seed=_SCREAMING_SNAKE_CASE , num_inference_steps=50 , jit=_SCREAMING_SNAKE_CASE , ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) A_ : List[str] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) A_ : List[Any] = images[0, 253:256, 253:256, -1] A_ : Tuple = jnp.asarray(jax.device_get(image_slice.flatten() ) ) A_ : Union[str, Any] = jnp.array( [0.1_6_7_9_6_9, 0.1_1_6_6_9_9, 0.0_8_1_5_4_3, 0.1_5_4_2_9_7, 0.1_3_2_8_1_2, 0.1_0_8_8_8_7, 0.1_6_9_9_2_2, 0.1_6_9_9_2_2, 0.2_0_5_0_7_8] ) print(F'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2 def _snake_case ( self )->List[str]: '''simple docstring''' A_ , A_ : Optional[int] = FlaxControlNetModel.from_pretrained( '''lllyasviel/sd-controlnet-openpose''' , from_pt=_SCREAMING_SNAKE_CASE , dtype=jnp.bfloataa ) A_ , A_ : Optional[int] = FlaxStableDiffusionControlNetPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , controlnet=_SCREAMING_SNAKE_CASE , from_pt=_SCREAMING_SNAKE_CASE , dtype=jnp.bfloataa ) A_ : str = controlnet_params A_ : Tuple = '''Chef in the kitchen''' A_ : List[str] = jax.device_count() A_ : Tuple = pipe.prepare_text_inputs([prompts] * num_samples ) A_ : Tuple = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png''' ) A_ : List[Any] = pipe.prepare_image_inputs([pose_image] * num_samples ) A_ : List[str] = jax.random.PRNGKey(0 ) A_ : str = jax.random.split(_SCREAMING_SNAKE_CASE , jax.device_count() ) A_ : Dict = replicate(_SCREAMING_SNAKE_CASE ) A_ : List[Any] = shard(_SCREAMING_SNAKE_CASE ) A_ : Any = shard(_SCREAMING_SNAKE_CASE ) A_ : List[str] = pipe( prompt_ids=_SCREAMING_SNAKE_CASE , image=_SCREAMING_SNAKE_CASE , params=_SCREAMING_SNAKE_CASE , prng_seed=_SCREAMING_SNAKE_CASE , num_inference_steps=50 , jit=_SCREAMING_SNAKE_CASE , ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) A_ : Union[str, Any] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) A_ : int = images[0, 253:256, 253:256, -1] A_ : Any = jnp.asarray(jax.device_get(image_slice.flatten() ) ) A_ : Optional[Any] = jnp.array( [[0.2_7_1_4_8_4, 0.2_6_1_7_1_9, 0.2_7_5_3_9_1, 0.2_7_7_3_4_4, 0.2_7_9_2_9_7, 0.2_9_1_0_1_6, 0.2_9_4_9_2_2, 0.3_0_2_7_3_4, 0.3_0_2_7_3_4]] ) print(F'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
590
1
from typing import Dict from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, get_torch_dist_unique_port, require_torch_multi_gpu, require_torch_neuroncore, ) from transformers.training_args import ParallelMode from transformers.utils import logging _snake_case = logging.get_logger(__name__) if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset from transformers import Trainer class UpperCAmelCase_ ( UpperCamelCase ): '''simple docstring''' def __init__( self , __A = 101 ): """simple docstring""" lowerCamelCase : Dict = length def __len__( self ): """simple docstring""" return self.length def __getitem__( self , __A ): """simple docstring""" return i class UpperCAmelCase_ : '''simple docstring''' def __call__( self , __A ): """simple docstring""" return {"input_ids": torch.tensor(__A ), "labels": torch.tensor(__A )} class UpperCAmelCase_ ( nn.Module ): '''simple docstring''' def __init__( self ): """simple docstring""" super().__init__() # Add some (unused) params otherwise DDP will complain. lowerCamelCase : Optional[int] = nn.Linear(120 , 80 ) def _snake_case ( self , __A , __A=None ): """simple docstring""" if labels is not None: return torch.tensor(0.0 , device=input_ids.device ), input_ids else: return input_ids class UpperCAmelCase_ ( UpperCamelCase ): '''simple docstring''' @require_torch_neuroncore def _snake_case ( self ): """simple docstring""" lowerCamelCase : Union[str, Any] = F"""--nproc_per_node=2 --master_port={get_torch_dist_unique_port()} {self.test_file_dir}/test_trainer_distributed.py """.split() lowerCamelCase : Optional[Any] = self.get_auto_remove_tmp_dir() lowerCamelCase : Tuple = F"""--output_dir {output_dir}""".split() lowerCamelCase : Union[str, Any] = ["torchrun"] + distributed_args + args execute_subprocess_async(__A , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call class UpperCAmelCase_ ( UpperCamelCase ): '''simple docstring''' @require_torch_multi_gpu def _snake_case ( self ): """simple docstring""" lowerCamelCase : Union[str, Any] = F"""--nproc_per_node={torch.cuda.device_count()} --master_port={get_torch_dist_unique_port()} {self.test_file_dir}/test_trainer_distributed.py """.split() lowerCamelCase : Dict = self.get_auto_remove_tmp_dir() lowerCamelCase : int = F"""--output_dir {output_dir}""".split() lowerCamelCase : Any = ["torchrun"] + distributed_args + args execute_subprocess_async(__A , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call if __name__ == "__main__": # The script below is meant to be run under torch.distributed, on a machine with multiple GPUs: # # PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py _snake_case = HfArgumentParser((TrainingArguments,)) _snake_case = parser.parse_args_into_dataclasses()[0] logger.warning( f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, ''' f'''distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}''' ) # Essentially, what we want to verify in the distributed case is that we get all samples back, # in the right order. (this is crucial for prediction for instance) for dataset_length in [1_01, 40, 7]: _snake_case = DummyDataset(dataset_length) def lowercase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCamelCase : Optional[int] = list(range(len(SCREAMING_SNAKE_CASE_ ) ) ) lowerCamelCase : Optional[int] = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential if not success and training_args.local_rank == 0: logger.warning( "Predictions and/or labels do not match expected results:\n - predictions: " f"""{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}""" ) return {"success": success} _snake_case = Trainer( model=DummyModel(), args=training_args, data_collator=DummyDataCollator(), eval_dataset=dataset, compute_metrics=compute_metrics, ) _snake_case = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) _snake_case = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) _snake_case = 2 _snake_case = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) _snake_case = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) _snake_case = None
231
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType _snake_case = logging.get_logger(__name__) _snake_case = { '''openai/whisper-base''': '''https://huggingface.co/openai/whisper-base/resolve/main/config.json''', } # fmt: off _snake_case = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 3_57, 3_66, 4_38, 5_32, 6_85, 7_05, 7_96, 9_30, 10_58, 12_20, 12_67, 12_79, 13_03, 13_43, 13_77, 13_91, 16_35, 17_82, 18_75, 21_62, 23_61, 24_88, 34_67, 40_08, 42_11, 46_00, 48_08, 52_99, 58_55, 63_29, 72_03, 96_09, 99_59, 1_05_63, 1_07_86, 1_14_20, 1_17_09, 1_19_07, 1_31_63, 1_36_97, 1_37_00, 1_48_08, 1_53_06, 1_64_10, 1_67_91, 1_79_92, 1_92_03, 1_95_10, 2_07_24, 2_23_05, 2_29_35, 2_70_07, 3_01_09, 3_04_20, 3_34_09, 3_49_49, 4_02_83, 4_04_93, 4_05_49, 4_72_82, 4_91_46, 5_02_57, 5_03_59, 5_03_60, 5_03_61 ] _snake_case = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 3_59, 5_03, 5_22, 5_42, 8_73, 8_93, 9_02, 9_18, 9_22, 9_31, 13_50, 18_53, 19_82, 24_60, 26_27, 32_46, 32_53, 32_68, 35_36, 38_46, 39_61, 41_83, 46_67, 65_85, 66_47, 72_73, 90_61, 93_83, 1_04_28, 1_09_29, 1_19_38, 1_20_33, 1_23_31, 1_25_62, 1_37_93, 1_41_57, 1_46_35, 1_52_65, 1_56_18, 1_65_53, 1_66_04, 1_83_62, 1_89_56, 2_00_75, 2_16_75, 2_25_20, 2_61_30, 2_61_61, 2_64_35, 2_82_79, 2_94_64, 3_16_50, 3_23_02, 3_24_70, 3_68_65, 4_28_63, 4_74_25, 4_98_70, 5_02_54, 5_02_58, 5_03_60, 5_03_61, 5_03_62 ] class UpperCAmelCase_ ( UpperCamelCase ): '''simple docstring''' __A : Union[str, Any] = "whisper" __A : List[str] = ["past_key_values"] __A : str = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self , __A=5_1865 , __A=80 , __A=6 , __A=4 , __A=6 , __A=4 , __A=1536 , __A=1536 , __A=0.0 , __A=0.0 , __A=5_0257 , __A=True , __A=True , __A="gelu" , __A=256 , __A=0.0 , __A=0.0 , __A=0.0 , __A=0.02 , __A=False , __A=1500 , __A=448 , __A=5_0256 , __A=5_0256 , __A=5_0256 , __A=None , __A=[220, 5_0256] , __A=False , __A=256 , __A=False , __A=0.05 , __A=10 , __A=2 , __A=0.0 , __A=10 , __A=0 , __A=7 , **__A , ): """simple docstring""" lowerCamelCase : List[str] = vocab_size lowerCamelCase : Optional[Any] = num_mel_bins lowerCamelCase : List[Any] = d_model lowerCamelCase : List[Any] = encoder_layers lowerCamelCase : Optional[Any] = encoder_attention_heads lowerCamelCase : Optional[int] = decoder_layers lowerCamelCase : int = decoder_attention_heads lowerCamelCase : Any = decoder_ffn_dim lowerCamelCase : int = encoder_ffn_dim lowerCamelCase : Union[str, Any] = dropout lowerCamelCase : Dict = attention_dropout lowerCamelCase : Optional[Any] = activation_dropout lowerCamelCase : Optional[Any] = activation_function lowerCamelCase : Optional[Any] = init_std lowerCamelCase : List[Any] = encoder_layerdrop lowerCamelCase : str = decoder_layerdrop lowerCamelCase : Optional[Any] = use_cache lowerCamelCase : Tuple = encoder_layers lowerCamelCase : str = scale_embedding # scale factor will be sqrt(d_model) if True lowerCamelCase : str = max_source_positions lowerCamelCase : List[str] = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. lowerCamelCase : Optional[int] = classifier_proj_size lowerCamelCase : List[str] = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowerCamelCase : Optional[int] = apply_spec_augment lowerCamelCase : str = mask_time_prob lowerCamelCase : Union[str, Any] = mask_time_length lowerCamelCase : Union[str, Any] = mask_time_min_masks lowerCamelCase : Any = mask_feature_prob lowerCamelCase : Any = mask_feature_length lowerCamelCase : Dict = mask_feature_min_masks lowerCamelCase : List[str] = median_filter_width super().__init__( pad_token_id=__A , bos_token_id=__A , eos_token_id=__A , is_encoder_decoder=__A , decoder_start_token_id=__A , suppress_tokens=__A , begin_suppress_tokens=__A , **__A , ) class UpperCAmelCase_ ( UpperCamelCase ): '''simple docstring''' @property def _snake_case ( self ): """simple docstring""" lowerCamelCase : List[str] = OrderedDict( [ ("input_features", {0: "batch", 1: "feature_size", 2: "encoder_sequence"}), ] ) if self.use_past: lowerCamelCase : List[str] = {0: "batch"} else: lowerCamelCase : str = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(__A , direction="inputs" ) return common_inputs def _snake_case ( self , __A , __A = -1 , __A = -1 , __A = False , __A = None , __A = 2_2050 , __A = 5.0 , __A = 220 , ): """simple docstring""" lowerCamelCase : Any = OrderedDict() lowerCamelCase : List[str] = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=__A , framework=__A , sampling_rate=__A , time_duration=__A , frequency=__A , ) lowerCamelCase : Any = encoder_inputs["input_features"].shape[2] lowerCamelCase : Optional[Any] = encoder_sequence_length // 2 if self.use_past else seq_length lowerCamelCase : str = super().generate_dummy_inputs( preprocessor.tokenizer , __A , __A , __A , __A ) lowerCamelCase : List[Any] = encoder_inputs.pop("input_features" ) lowerCamelCase : Dict = decoder_inputs.pop("decoder_input_ids" ) if "past_key_values" in decoder_inputs: lowerCamelCase : List[str] = decoder_inputs.pop("past_key_values" ) return dummy_inputs @property def _snake_case ( self ): """simple docstring""" return 1e-3
231
1
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: __A = None __A = logging.get_logger(__name__) __A = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""} __A = { """vocab_file""": { """xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model""", """xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model""", }, """tokenizer_file""": { """xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json""", """xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json""", }, } __A = { """xlnet-base-cased""": None, """xlnet-large-cased""": None, } __A = """▁""" # Segments (not really needed) __A = 0 __A = 1 __A = 2 __A = 3 __A = 4 class _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowercase_ = VOCAB_FILES_NAMES lowercase_ = PRETRAINED_VOCAB_FILES_MAP lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ = "left" lowercase_ = XLNetTokenizer def __init__(self : Optional[Any] , UpperCAmelCase_ : str=None , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : Any=False , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : Optional[int]=False , UpperCAmelCase_ : Dict="<s>" , UpperCAmelCase_ : List[str]="</s>" , UpperCAmelCase_ : List[str]="<unk>" , UpperCAmelCase_ : Union[str, Any]="<sep>" , UpperCAmelCase_ : Tuple="<pad>" , UpperCAmelCase_ : Tuple="<cls>" , UpperCAmelCase_ : Tuple="<mask>" , UpperCAmelCase_ : Optional[int]=["<eop>", "<eod>"] , **UpperCAmelCase_ : List[str] , ) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: Optional[int] =AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__) if isinstance(lowerCamelCase__ , lowerCamelCase__) else mask_token super().__init__( vocab_file=lowerCamelCase__ , tokenizer_file=lowerCamelCase__ , do_lower_case=lowerCamelCase__ , remove_space=lowerCamelCase__ , keep_accents=lowerCamelCase__ , bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , unk_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , additional_special_tokens=lowerCamelCase__ , **lowerCamelCase__ , ) lowerCamelCase__: Any =3 lowerCamelCase__: Optional[Any] =do_lower_case lowerCamelCase__: Dict =remove_space lowerCamelCase__: Any =keep_accents lowerCamelCase__: str =vocab_file lowerCamelCase__: Any =False if not self.vocab_file else True def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int] = None) ->Any: '''simple docstring''' lowerCamelCase__: Tuple =[self.sep_token_id] lowerCamelCase__: int =[self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[Any] = None) ->Optional[int]: '''simple docstring''' lowerCamelCase__: List[Any] =[self.sep_token_id] lowerCamelCase__: Optional[Any] =[2] if token_ids_a is None: return len(token_ids_a + sep) * [0] + cls_segment_id return len(token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] + cls_segment_id def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any = None) ->Dict: '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer.") if not os.path.isdir(lowerCamelCase__): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""") return lowerCamelCase__: Optional[int] =os.path.join( lowerCamelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) if os.path.abspath(self.vocab_file) != os.path.abspath(lowerCamelCase__): copyfile(self.vocab_file , lowerCamelCase__) return (out_vocab_file,)
59
from __future__ import annotations SCREAMING_SNAKE_CASE_:Tuple = """#""" class SCREAMING_SNAKE_CASE__ : '''simple docstring''' def __init__( self ): A : dict = {} def _lowerCAmelCase ( self, lowerCamelCase__ ): A : List[Any] = self._trie for char in text: if char not in trie: A : str = {} A : str = trie[char] A : Optional[int] = True def _lowerCAmelCase ( self, lowerCamelCase__ ): A : Dict = self._trie for char in prefix: if char in trie: A : Optional[Any] = trie[char] else: return [] return self._elements(lowerCamelCase__ ) def _lowerCAmelCase ( self, lowerCamelCase__ ): A : int = [] for c, v in d.items(): A : List[Any] = [""" """] if c == END else [(c + s) for s in self._elements(lowerCamelCase__ )] result.extend(lowerCamelCase__ ) return tuple(lowerCamelCase__ ) SCREAMING_SNAKE_CASE_:Any = Trie() SCREAMING_SNAKE_CASE_:Tuple = ("""depart""", """detergent""", """daring""", """dog""", """deer""", """deal""") for word in words: trie.insert_word(word) def __UpperCamelCase ( _lowerCAmelCase ) -> tuple: """simple docstring""" A : List[str] = trie.find_word(_lowerCAmelCase ) return tuple(string + word for word in suffixes ) def __UpperCamelCase ( ) -> None: """simple docstring""" print(autocomplete_using_trie("""de""" ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
662
0
import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class snake_case : def __init__( self : List[Any] , a_ : List[Any] , a_ : Tuple=13 , a_ : int=32 , a_ : Optional[Any]=2 , a_ : List[Any]=3 , a_ : str=16 , a_ : List[Any]=[1, 2, 1] , a_ : List[str]=[2, 2, 4] , a_ : str=2 , a_ : str=2.0 , a_ : Any=True , a_ : Optional[int]=0.0 , a_ : Dict=0.0 , a_ : int=0.1 , a_ : Optional[Any]="gelu" , a_ : Tuple=False , a_ : Any=True , a_ : int=0.02 , a_ : List[str]=1e-5 , a_ : List[str]=True , a_ : Optional[Any]=None , a_ : str=True , a_ : Optional[Any]=10 , a_ : int=8 , )-> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = parent SCREAMING_SNAKE_CASE__ : Tuple = batch_size SCREAMING_SNAKE_CASE__ : Any = image_size SCREAMING_SNAKE_CASE__ : Any = patch_size SCREAMING_SNAKE_CASE__ : Any = num_channels SCREAMING_SNAKE_CASE__ : Any = embed_dim SCREAMING_SNAKE_CASE__ : List[Any] = depths SCREAMING_SNAKE_CASE__ : List[Any] = num_heads SCREAMING_SNAKE_CASE__ : Optional[int] = window_size SCREAMING_SNAKE_CASE__ : str = mlp_ratio SCREAMING_SNAKE_CASE__ : Tuple = qkv_bias SCREAMING_SNAKE_CASE__ : Tuple = hidden_dropout_prob SCREAMING_SNAKE_CASE__ : Optional[Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : List[str] = drop_path_rate SCREAMING_SNAKE_CASE__ : Union[str, Any] = hidden_act SCREAMING_SNAKE_CASE__ : Optional[Any] = use_absolute_embeddings SCREAMING_SNAKE_CASE__ : Optional[int] = patch_norm SCREAMING_SNAKE_CASE__ : Optional[int] = layer_norm_eps SCREAMING_SNAKE_CASE__ : str = initializer_range SCREAMING_SNAKE_CASE__ : Dict = is_training SCREAMING_SNAKE_CASE__ : str = scope SCREAMING_SNAKE_CASE__ : str = use_labels SCREAMING_SNAKE_CASE__ : Tuple = type_sequence_label_size SCREAMING_SNAKE_CASE__ : Any = encoder_stride def __lowercase( self : Any )-> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE__ : Any = None if self.use_labels: SCREAMING_SNAKE_CASE__ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE__ : Optional[int] = self.get_config() return config, pixel_values, labels def __lowercase( self : int )-> Union[str, Any]: """simple docstring""" return SwinvaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def __lowercase( self : List[str] , a_ : Optional[int] , a_ : List[Any] , a_ : List[Any] )-> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = SwinvaModel(config=a_ ) model.to(a_ ) model.eval() SCREAMING_SNAKE_CASE__ : List[Any] = model(a_ ) SCREAMING_SNAKE_CASE__ : Optional[int] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) SCREAMING_SNAKE_CASE__ : Union[str, Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def __lowercase( self : Optional[Any] , a_ : Optional[int] , a_ : Union[str, Any] , a_ : str )-> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = SwinvaForMaskedImageModeling(config=a_ ) model.to(a_ ) model.eval() SCREAMING_SNAKE_CASE__ : Tuple = model(a_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images SCREAMING_SNAKE_CASE__ : Dict = 1 SCREAMING_SNAKE_CASE__ : Dict = SwinvaForMaskedImageModeling(a_ ) model.to(a_ ) model.eval() SCREAMING_SNAKE_CASE__ : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = model(a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __lowercase( self : int , a_ : Union[str, Any] , a_ : Union[str, Any] , a_ : List[str] )-> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = self.type_sequence_label_size SCREAMING_SNAKE_CASE__ : int = SwinvaForImageClassification(a_ ) model.to(a_ ) model.eval() SCREAMING_SNAKE_CASE__ : int = model(a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __lowercase( self : List[Any] )-> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[Any] = config_and_inputs SCREAMING_SNAKE_CASE__ : Union[str, Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class snake_case ( UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): lowercase_ = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) lowercase_ = ( {'feature-extraction': SwinvaModel, 'image-classification': SwinvaForImageClassification} if is_torch_available() else {} ) lowercase_ = False lowercase_ = False lowercase_ = False lowercase_ = False def __lowercase( self : Optional[Any] )-> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = SwinvaModelTester(self ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = ConfigTester(self , config_class=a_ , embed_dim=37 ) def __lowercase( self : Optional[Any] )-> str: """simple docstring""" self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __lowercase( self : List[Any] )-> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a_ ) @unittest.skip(reason='Got `CUDA error: misaligned address` with PyTorch 2.0.0.' ) def __lowercase( self : Union[str, Any] )-> Optional[Any]: """simple docstring""" pass @unittest.skip(reason='Swinv2 does not use inputs_embeds' ) def __lowercase( self : str )-> List[str]: """simple docstring""" pass def __lowercase( self : Any )-> int: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : Dict = model_class(a_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) SCREAMING_SNAKE_CASE__ : Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a_ , nn.Linear ) ) def __lowercase( self : Tuple )-> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : List[Any] = model_class(a_ ) SCREAMING_SNAKE_CASE__ : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE__ : str = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE__ : Optional[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , a_ ) def __lowercase( self : Any )-> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : str = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE__ : str = True for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : str = True SCREAMING_SNAKE_CASE__ : Dict = False SCREAMING_SNAKE_CASE__ : int = True SCREAMING_SNAKE_CASE__ : Any = model_class(a_ ) model.to(a_ ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE__ : Tuple = model(**self._prepare_for_class(a_ , a_ ) ) SCREAMING_SNAKE_CASE__ : Optional[int] = outputs.attentions SCREAMING_SNAKE_CASE__ : Optional[int] = len(self.model_tester.depths ) self.assertEqual(len(a_ ) , a_ ) # check that output_attentions also work using config del inputs_dict["output_attentions"] SCREAMING_SNAKE_CASE__ : str = True SCREAMING_SNAKE_CASE__ : Tuple = config.window_size**2 SCREAMING_SNAKE_CASE__ : int = model_class(a_ ) model.to(a_ ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE__ : List[str] = model(**self._prepare_for_class(a_ , a_ ) ) SCREAMING_SNAKE_CASE__ : Tuple = outputs.attentions self.assertEqual(len(a_ ) , a_ ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) SCREAMING_SNAKE_CASE__ : str = len(a_ ) # Check attention is always last and order is fine SCREAMING_SNAKE_CASE__ : Optional[Any] = True SCREAMING_SNAKE_CASE__ : str = True SCREAMING_SNAKE_CASE__ : Any = model_class(a_ ) model.to(a_ ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE__ : int = model(**self._prepare_for_class(a_ , a_ ) ) if hasattr(self.model_tester , 'num_hidden_states_types' ): SCREAMING_SNAKE_CASE__ : Optional[int] = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states SCREAMING_SNAKE_CASE__ : Dict = 2 self.assertEqual(out_len + added_hidden_states , len(a_ ) ) SCREAMING_SNAKE_CASE__ : int = outputs.attentions self.assertEqual(len(a_ ) , a_ ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) def __lowercase( self : str , a_ : Tuple , a_ : List[str] , a_ : Dict , a_ : Optional[Any] )-> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = model_class(a_ ) model.to(a_ ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE__ : List[Any] = model(**self._prepare_for_class(a_ , a_ ) ) SCREAMING_SNAKE_CASE__ : Optional[Any] = outputs.hidden_states SCREAMING_SNAKE_CASE__ : List[Any] = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(a_ ) , a_ ) # Swinv2 has a different seq_length SCREAMING_SNAKE_CASE__ : Optional[int] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) SCREAMING_SNAKE_CASE__ : List[str] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) SCREAMING_SNAKE_CASE__ : Optional[Any] = outputs.reshaped_hidden_states self.assertEqual(len(a_ ) , a_ ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Tuple = reshaped_hidden_states[0].shape SCREAMING_SNAKE_CASE__ : List[Any] = ( reshaped_hidden_states[0].view(a_ , a_ , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def __lowercase( self : Tuple )-> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE__ : List[Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : Optional[int] = True self.check_hidden_states_output(a_ , a_ , a_ , a_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE__ : int = True self.check_hidden_states_output(a_ , a_ , a_ , a_ ) def __lowercase( self : str )-> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE__ : Optional[Any] = 3 SCREAMING_SNAKE_CASE__ : Dict = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) SCREAMING_SNAKE_CASE__ : Optional[int] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) SCREAMING_SNAKE_CASE__ : int = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) SCREAMING_SNAKE_CASE__ : Any = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : Any = True self.check_hidden_states_output(a_ , a_ , a_ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE__ : Optional[int] = True self.check_hidden_states_output(a_ , a_ , a_ , (padded_height, padded_width) ) def __lowercase( self : Dict )-> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*a_ ) def __lowercase( self : Dict )-> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a_ ) @slow def __lowercase( self : List[Any] )-> int: """simple docstring""" for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE__ : Union[str, Any] = SwinvaModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) def __lowercase( self : Dict )-> str: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : str = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE__ : Optional[int] = _config_zero_init(a_ ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : Optional[int] = model_class(config=a_ ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @require_vision @require_torch class snake_case ( unittest.TestCase ): @cached_property def __lowercase( self : Optional[int] )-> str: """simple docstring""" return ( AutoImageProcessor.from_pretrained('microsoft/swinv2-tiny-patch4-window8-256' ) if is_vision_available() else None ) @slow def __lowercase( self : Optional[Any] )-> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = SwinvaForImageClassification.from_pretrained('microsoft/swinv2-tiny-patch4-window8-256' ).to( a_ ) SCREAMING_SNAKE_CASE__ : int = self.default_image_processor SCREAMING_SNAKE_CASE__ : List[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) SCREAMING_SNAKE_CASE__ : Optional[int] = image_processor(images=a_ , return_tensors='pt' ).to(a_ ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE__ : Union[str, Any] = model(**a_ ) # verify the logits SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , a_ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.tensor([-0.3947, -0.4306, 0.0026] ).to(a_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , a_ , atol=1e-4 ) )
636
import math def _a ( lowercase__ : int ): '''simple docstring''' assert isinstance(lowercase__ , lowercase__ ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False SCREAMING_SNAKE_CASE__ : Tuple = range(3 , int(math.sqrt(lowercase__ ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def _a ( lowercase__ : List[str] , lowercase__ : Any=1 , **lowercase__ : Any ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = factor * value SCREAMING_SNAKE_CASE__ : Dict = value while not is_prime(lowercase__ ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **lowercase__ ) return value
636
1
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { '''google/pix2struct-textcaps-base''': ( '''https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json''' ), } class UpperCamelCase_ (__A ): __magic_name__ = '''pix2struct_text_model''' __magic_name__ = ['''past_key_values'''] __magic_name__ = { '''hidden_size''': '''hidden_size''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self : List[Any] , lowerCAmelCase_ : Tuple=50_244 , lowerCAmelCase_ : List[str]=768 , lowerCAmelCase_ : List[Any]=64 , lowerCAmelCase_ : Union[str, Any]=2_048 , lowerCAmelCase_ : List[str]=12 , lowerCAmelCase_ : List[Any]=12 , lowerCAmelCase_ : Dict=32 , lowerCAmelCase_ : Dict=128 , lowerCAmelCase_ : int=0.1 , lowerCAmelCase_ : Optional[int]=1e-6 , lowerCAmelCase_ : Any=1.0 , lowerCAmelCase_ : Union[str, Any]="gelu_new" , lowerCAmelCase_ : List[str]=0 , lowerCAmelCase_ : Union[str, Any]=False , lowerCAmelCase_ : Optional[int]=0 , lowerCAmelCase_ : Tuple=1 , lowerCAmelCase_ : Union[str, Any]=False , lowerCAmelCase_ : Optional[Any]=True , **lowerCAmelCase_ : Tuple , ) -> List[Any]: UpperCAmelCase_ : Dict = vocab_size UpperCAmelCase_ : List[str] = hidden_size UpperCAmelCase_ : Any = d_kv UpperCAmelCase_ : Union[str, Any] = d_ff UpperCAmelCase_ : Dict = num_layers UpperCAmelCase_ : List[str] = num_heads UpperCAmelCase_ : str = relative_attention_num_buckets UpperCAmelCase_ : Any = relative_attention_max_distance UpperCAmelCase_ : int = dropout_rate UpperCAmelCase_ : List[str] = layer_norm_epsilon UpperCAmelCase_ : int = initializer_factor UpperCAmelCase_ : Any = use_cache UpperCAmelCase_ : Tuple = eos_token_id UpperCAmelCase_ : List[str] = decoder_start_token_id # for backwards compatibility UpperCAmelCase_ : Any = dense_act_fn super().__init__( pad_token_id=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ , decoder_start_token_id=lowerCAmelCase_ , tie_word_embeddings=lowerCAmelCase_ , is_decoder=lowerCAmelCase_ , **lowerCAmelCase_ , ) @classmethod def _SCREAMING_SNAKE_CASE ( cls : str , lowerCAmelCase_ : Union[str, os.PathLike] , **lowerCAmelCase_ : int ) -> "PretrainedConfig": cls._set_token_in_kwargs(lowerCAmelCase_ ) UpperCAmelCase_ , UpperCAmelCase_ : Dict = cls.get_config_dict(lowerCAmelCase_ , **lowerCAmelCase_ ) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get("model_type" ) == "pix2struct": UpperCAmelCase_ : Optional[int] = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowerCAmelCase_ , **lowerCAmelCase_ ) class UpperCamelCase_ (__A ): __magic_name__ = '''pix2struct_vision_model''' def __init__( self : Tuple , lowerCAmelCase_ : int=768 , lowerCAmelCase_ : List[str]=768 , lowerCAmelCase_ : Optional[Any]=2_048 , lowerCAmelCase_ : Optional[Any]=64 , lowerCAmelCase_ : Dict=12 , lowerCAmelCase_ : Tuple=12 , lowerCAmelCase_ : Optional[int]="gelu_new" , lowerCAmelCase_ : Dict=1e-6 , lowerCAmelCase_ : Dict=0.0 , lowerCAmelCase_ : str=0.0 , lowerCAmelCase_ : Optional[int]=1e-10 , lowerCAmelCase_ : Dict=1.0 , lowerCAmelCase_ : Any=4_096 , lowerCAmelCase_ : Any=32 , lowerCAmelCase_ : Optional[int]=128 , **lowerCAmelCase_ : List[Any] , ) -> str: super().__init__(**lowerCAmelCase_ ) UpperCAmelCase_ : Dict = hidden_size UpperCAmelCase_ : Tuple = patch_embed_hidden_size UpperCAmelCase_ : int = d_ff UpperCAmelCase_ : int = dropout_rate UpperCAmelCase_ : Dict = num_hidden_layers UpperCAmelCase_ : Any = num_attention_heads UpperCAmelCase_ : List[Any] = initializer_range UpperCAmelCase_ : str = initializer_factor UpperCAmelCase_ : List[str] = attention_dropout UpperCAmelCase_ : Union[str, Any] = layer_norm_eps UpperCAmelCase_ : Dict = dense_act_fn UpperCAmelCase_ : Tuple = seq_len UpperCAmelCase_ : Optional[Any] = relative_attention_num_buckets UpperCAmelCase_ : Union[str, Any] = relative_attention_max_distance UpperCAmelCase_ : Optional[Any] = d_kv @classmethod def _SCREAMING_SNAKE_CASE ( cls : str , lowerCAmelCase_ : Union[str, os.PathLike] , **lowerCAmelCase_ : Optional[Any] ) -> "PretrainedConfig": cls._set_token_in_kwargs(lowerCAmelCase_ ) UpperCAmelCase_ , UpperCAmelCase_ : Tuple = cls.get_config_dict(lowerCAmelCase_ , **lowerCAmelCase_ ) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get("model_type" ) == "pix2struct": UpperCAmelCase_ : Dict = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowerCAmelCase_ , **lowerCAmelCase_ ) class UpperCamelCase_ (__A ): __magic_name__ = '''pix2struct''' __magic_name__ = True def __init__( self : str , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : Any=1.0 , lowerCAmelCase_ : Tuple=0.0_2 , lowerCAmelCase_ : Tuple=False , lowerCAmelCase_ : List[str]=False , lowerCAmelCase_ : str=True , **lowerCAmelCase_ : int , ) -> Any: super().__init__(tie_word_embeddings=lowerCAmelCase_ , is_encoder_decoder=lowerCAmelCase_ , **lowerCAmelCase_ ) if text_config is None: UpperCAmelCase_ : Union[str, Any] = {} logger.info("text_config is None. Initializing the Pix2StructTextConfig with default values." ) if vision_config is None: UpperCAmelCase_ : List[Any] = {} logger.info("vision_config is None. Initializing the Pix2StructVisionConfig with default values." ) UpperCAmelCase_ : str = PixaStructTextConfig(**lowerCAmelCase_ ) UpperCAmelCase_ : Any = PixaStructVisionConfig(**lowerCAmelCase_ ) UpperCAmelCase_ : List[str] = self.text_config.decoder_start_token_id UpperCAmelCase_ : Tuple = self.text_config.pad_token_id UpperCAmelCase_ : List[str] = self.text_config.eos_token_id UpperCAmelCase_ : Optional[Any] = initializer_factor UpperCAmelCase_ : Tuple = initializer_range UpperCAmelCase_ : List[str] = self.initializer_range UpperCAmelCase_ : Tuple = self.initializer_range UpperCAmelCase_ : Union[str, Any] = is_vqa @classmethod def _SCREAMING_SNAKE_CASE ( cls : Tuple , lowerCAmelCase_ : PixaStructTextConfig , lowerCAmelCase_ : PixaStructVisionConfig , **lowerCAmelCase_ : Union[str, Any] ) -> int: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Tuple: UpperCAmelCase_ : List[str] = copy.deepcopy(self.__dict__ ) UpperCAmelCase_ : Optional[int] = self.text_config.to_dict() UpperCAmelCase_ : Any = self.vision_config.to_dict() UpperCAmelCase_ : Optional[Any] = self.__class__.model_type return output
95
'''simple docstring''' from __future__ import annotations A_ : str = "Muhammad Umer Farooq" A_ : Optional[Any] = "MIT" A_ : int = "1.0.0" A_ : int = "Muhammad Umer Farooq" A_ : int = "[email protected]" A_ : Dict = "Alpha" import re from html.parser import HTMLParser from urllib import parse import requests class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE ): super().__init__() snake_case__ : list[str] = [] snake_case__ : List[Any] = domain def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): # Only parse the 'anchor' tag. if tag == "a": # Check the list of defined attributes. for name, value in attrs: # If href is defined, and not empty nor # print it. if name == "href" and value != "#" and value != "": # If not already in urls. if value not in self.urls: snake_case__ : str = parse.urljoin(self.domain , __SCREAMING_SNAKE_CASE ) self.urls.append(__SCREAMING_SNAKE_CASE ) def UpperCamelCase__ ( __magic_name__ : str ) -> str: '''simple docstring''' return ".".join(get_sub_domain_name(__magic_name__ ).split(""".""" )[-2:] ) def UpperCamelCase__ ( __magic_name__ : str ) -> str: '''simple docstring''' return parse.urlparse(__magic_name__ ).netloc def UpperCamelCase__ ( __magic_name__ : str = "https://github.com" ) -> list[str]: '''simple docstring''' snake_case__ : List[str] = get_domain_name(__magic_name__ ) # Initialize the parser snake_case__ : Optional[Any] = Parser(__magic_name__ ) try: # Open URL snake_case__ : Any = requests.get(__magic_name__ ) # pass the raw HTML to the parser to get links parser.feed(r.text ) # Get links and loop through snake_case__ : List[str] = set() for link in parser.urls: # open URL. # read = requests.get(link) try: snake_case__ : Tuple = requests.get(__magic_name__ ) # Get the valid email. snake_case__ : List[str] = re.findall("""[a-zA-Z0-9]+@""" + domain , read.text ) # If not in list then append it. for email in emails: valid_emails.add(__magic_name__ ) except ValueError: pass except ValueError: raise SystemExit(1 ) # Finally return a sorted list of email addresses with no duplicates. return sorted(__magic_name__ ) if __name__ == "__main__": A_ : str = emails_from_url("https://github.com") print(F'{len(emails)} emails found:') print("\n".join(sorted(emails)))
38
0
import logging import os import sys from pathlib import Path from unittest.mock import patch from parameterized import parameterized from run_eval import run_generate from run_eval_search import run_search from transformers.testing_utils import CaptureStdout, TestCasePlus, slow from utils import ROUGE_KEYS logging.basicConfig(level=logging.DEBUG) snake_case : int = logging.getLogger() def __lowercase ( __lowerCAmelCase : Path , __lowerCAmelCase : list ): a__ = "\n".join(SCREAMING_SNAKE_CASE_ ) Path(SCREAMING_SNAKE_CASE_ ).open('w' ).writelines(SCREAMING_SNAKE_CASE_ ) snake_case : int = '''patrickvonplaten/t5-tiny-random''' snake_case : str = '''sshleifer/bart-tiny-random''' snake_case : Optional[int] = '''sshleifer/tiny-mbart''' snake_case : Any = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks class snake_case_ (_UpperCAmelCase ): def lowerCamelCase__( self :Tuple ,__snake_case :int ) -> Dict: a__ = Path(self.get_auto_remove_tmp_dir() ) / "utest_input.source" a__ = input_file_name.parent / "utest_output.txt" assert not output_file_name.exists() a__ = [" New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County."] _dump_articles(lowercase__ ,lowercase__ ) a__ = str(Path(self.get_auto_remove_tmp_dir() ) / 'scores.json' ) a__ = "translation_en_to_de" if model == T5_TINY else "summarization" a__ = F'\n run_eval_search.py\n {model}\n {input_file_name}\n {output_file_name}\n --score_path {score_path}\n --task {task}\n --num_beams 2\n --length_penalty 2.0\n '.split() with patch.object(lowercase__ ,'argv' ,lowercase__ ): run_generate() assert Path(lowercase__ ).exists() # os.remove(Path(output_file_name)) def lowerCamelCase__( self :Optional[int] ) -> List[Any]: self.run_eval_tester(lowercase__ ) @parameterized.expand([BART_TINY, MBART_TINY] ) @slow def lowerCamelCase__( self :Optional[int] ,__snake_case :List[Any] ) -> Dict: self.run_eval_tester(lowercase__ ) @parameterized.expand([T5_TINY, MBART_TINY] ) @slow def lowerCamelCase__( self :str ,__snake_case :Union[str, Any] ) -> int: a__ = Path(self.get_auto_remove_tmp_dir() ) / "utest_input.source" a__ = input_file_name.parent / "utest_output.txt" assert not output_file_name.exists() a__ = { "en": ["Machine learning is great, isn't it?", "I like to eat bananas", "Tomorrow is another great day!"], "de": [ "Maschinelles Lernen ist großartig, oder?", "Ich esse gerne Bananen", "Morgen ist wieder ein toller Tag!", ], } a__ = Path(self.get_auto_remove_tmp_dir() ) a__ = str(tmp_dir / 'scores.json' ) a__ = str(tmp_dir / 'val.target' ) _dump_articles(lowercase__ ,text['en'] ) _dump_articles(lowercase__ ,text['de'] ) a__ = "translation_en_to_de" if model == T5_TINY else "summarization" a__ = F'\n run_eval_search.py\n {model}\n {str(lowercase__ )}\n {str(lowercase__ )}\n --score_path {score_path}\n --reference_path {reference_path}\n --task {task}\n '.split() testargs.extend(['--search', 'num_beams=1:2 length_penalty=0.9:1.0'] ) with patch.object(lowercase__ ,'argv' ,lowercase__ ): with CaptureStdout() as cs: run_search() a__ = [" num_beams | length_penalty", model, "Best score args"] a__ = ["Info"] if "translation" in task: expected_strings.append('bleu' ) else: expected_strings.extend(lowercase__ ) for w in expected_strings: assert w in cs.out for w in un_expected_strings: assert w not in cs.out assert Path(lowercase__ ).exists() os.remove(Path(lowercase__ ) )
702
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case : Optional[Any] = {'''configuration_focalnet''': ['''FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FocalNetConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Optional[int] = [ '''FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FocalNetForImageClassification''', '''FocalNetForMaskedImageModeling''', '''FocalNetBackbone''', '''FocalNetModel''', '''FocalNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys snake_case : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
657
0
from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Tuple: _lowercase : List[Any] = analyze_text(UpperCamelCase__ ) _lowercase : Tuple = list(' ' + ascii_lowercase ) # what is our total sum of probabilities. _lowercase : Optional[Any] = sum(single_char_strings.values() ) # one length string _lowercase : Optional[int] = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: _lowercase : Dict = single_char_strings[ch] _lowercase : Any = my_str / all_sum my_fir_sum += prob * math.loga(UpperCamelCase__ ) # entropy formula. # print entropy print(F"""{round(-1 * my_fir_sum ):.1f}""" ) # two len string _lowercase : str = sum(two_char_strings.values() ) _lowercase : Optional[int] = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: _lowercase : List[str] = cha + cha if sequence in two_char_strings: _lowercase : List[str] = two_char_strings[sequence] _lowercase : int = int(UpperCamelCase__ ) / all_sum my_sec_sum += prob * math.loga(UpperCamelCase__ ) # print second entropy print(F"""{round(-1 * my_sec_sum ):.1f}""" ) # print the difference between them print(F"""{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}""" ) def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> str: _lowercase : Any = Counter() # type: ignore _lowercase : Tuple = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 , len(UpperCamelCase__ ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def __magic_name__ ( ) -> List[Any]: import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
66
'''simple docstring''' # This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny vocab first, and then a tiny model - so the outcome is truly tiny - # all files ~60KB. As compared to taking a full-size model, reducing to the minimum its layers and # emb dimensions, but keeping the full vocab + merges files, leading to ~3MB in total for all files. # The latter is done by `fsmt-make-super-tiny-model.py`. # # It will be used then as "stas/tiny-wmt19-en-ru" from pathlib import Path import json import tempfile from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES a_ = 'tiny-wmt19-en-ru' # Build # borrowed from a test a_ = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'w</w>', 'r</w>', 't</w>', 'lo', 'low', 'er</w>', 'low</w>', 'lowest</w>', 'newer</w>', 'wider</w>', '<unk>', ] a_ = dict(zip(vocab, range(len(vocab)))) a_ = ['l o 123', 'lo w 1456', 'e r</w> 1789', ''] with tempfile.TemporaryDirectory() as tmpdirname: a_ = Path(tmpdirname) a_ = build_dir / VOCAB_FILES_NAMES['src_vocab_file'] a_ = build_dir / VOCAB_FILES_NAMES['tgt_vocab_file'] a_ = build_dir / VOCAB_FILES_NAMES['merges_file'] with open(src_vocab_file, 'w') as fp: fp.write(json.dumps(vocab_tokens)) with open(tgt_vocab_file, 'w') as fp: fp.write(json.dumps(vocab_tokens)) with open(merges_file, 'w') as fp: fp.write('\n'.join(merges)) a_ = FSMTTokenizer( langs=['en', 'ru'], src_vocab_size=len(vocab), tgt_vocab_size=len(vocab), src_vocab_file=src_vocab_file, tgt_vocab_file=tgt_vocab_file, merges_file=merges_file, ) a_ = FSMTConfig( langs=['ru', 'en'], src_vocab_size=1_0_0_0, tgt_vocab_size=1_0_0_0, d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) a_ = FSMTForConditionalGeneration(config) print(F'''num of params {tiny_model.num_parameters()}''') # Test a_ = tokenizer(['Making tiny model'], return_tensors='pt') a_ = tiny_model(**batch) print('test output:', len(outputs.logits[0])) # Save tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(F'''Generated {mname_tiny}''') # Upload # transformers-cli upload tiny-wmt19-en-ru
296
0
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_big_bird import BigBirdTokenizer else: snake_case__ : Optional[Any] = None snake_case__ : Union[str, Any] = logging.get_logger(__name__) snake_case__ : List[str] = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} snake_case__ : Any = { '''vocab_file''': { '''google/bigbird-roberta-base''': '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model''', '''google/bigbird-roberta-large''': ( '''https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model''' ), '''google/bigbird-base-trivia-itc''': ( '''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model''' ), }, '''tokenizer_file''': { '''google/bigbird-roberta-base''': ( '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/tokenizer.json''' ), '''google/bigbird-roberta-large''': ( '''https://huggingface.co/google/bigbird-roberta-large/resolve/main/tokenizer.json''' ), '''google/bigbird-base-trivia-itc''': ( '''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/tokenizer.json''' ), }, } snake_case__ : int = { '''google/bigbird-roberta-base''': 4_096, '''google/bigbird-roberta-large''': 4_096, '''google/bigbird-base-trivia-itc''': 4_096, } snake_case__ : Optional[Any] = '''▁''' class snake_case_( a__ ): __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = BigBirdTokenizer __UpperCamelCase = ['''input_ids''', '''attention_mask'''] __UpperCamelCase = [] def __init__( self : Union[str, Any] , UpperCamelCase_ : str=None , UpperCamelCase_ : Any=None , UpperCamelCase_ : str="<unk>" , UpperCamelCase_ : str="<s>" , UpperCamelCase_ : str="</s>" , UpperCamelCase_ : int="<pad>" , UpperCamelCase_ : List[Any]="[SEP]" , UpperCamelCase_ : Dict="[MASK]" , UpperCamelCase_ : Any="[CLS]" , **UpperCamelCase_ : Any , ): lowerCAmelCase : Tuple = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else bos_token lowerCAmelCase : int = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else eos_token lowerCAmelCase : List[Any] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else unk_token lowerCAmelCase : List[str] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else pad_token lowerCAmelCase : Any = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else cls_token lowerCAmelCase : Tuple = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else sep_token # Mask token behave like a normal word, i.e. include the space before it lowerCAmelCase : Optional[Any] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token super().__init__( UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , **UpperCamelCase_ , ) lowerCAmelCase : Optional[int] = vocab_file lowerCAmelCase : Optional[int] = False if not self.vocab_file else True def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None ): lowerCAmelCase : str = [self.sep_token_id] lowerCAmelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None , UpperCamelCase_ : bool = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase_ )) + [1] return [1] + ([0] * len(UpperCamelCase_ )) + [1] + ([0] * len(UpperCamelCase_ )) + [1] def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None ): lowerCAmelCase : Tuple = [self.sep_token_id] lowerCAmelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : str , UpperCamelCase_ : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(UpperCamelCase_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCAmelCase : Optional[int] = os.path.join( UpperCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase_ ): copyfile(self.vocab_file , UpperCamelCase_ ) return (out_vocab_file,)
709
"""simple docstring""" import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def _snake_case ( _snake_case : Tuple , _snake_case : Union[str, Any]=10 ): lowerCAmelCase : Dict = [] for _ in range(_snake_case ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def _snake_case ( _snake_case : Optional[int] , _snake_case : int=10 ): lowerCAmelCase : Optional[int] = [] for step in range(_snake_case ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase : List[str] = os.path.join(_snake_case , '''schedule.bin''' ) torch.save(scheduler.state_dict() , _snake_case ) lowerCAmelCase : List[Any] = torch.load(_snake_case ) scheduler.load_state_dict(_snake_case ) return lrs @require_torch class snake_case_( unittest.TestCase ): def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : str , UpperCamelCase_ : Any ): self.assertEqual(len(UpperCamelCase_ ) , len(UpperCamelCase_ ) ) for a, b in zip(UpperCamelCase_ , UpperCamelCase_ ): self.assertAlmostEqual(UpperCamelCase_ , UpperCamelCase_ , delta=UpperCamelCase_ ) def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : Any = torch.tensor([0.1, -0.2, -0.1] , requires_grad=UpperCamelCase_ ) lowerCAmelCase : List[str] = torch.tensor([0.4, 0.2, -0.5] ) lowerCAmelCase : List[Any] = nn.MSELoss() # No warmup, constant schedule, no gradient clipping lowerCAmelCase : Union[str, Any] = AdamW(params=[w] , lr=2E-1 , weight_decay=0.0 ) for _ in range(1_0_0 ): lowerCAmelCase : Union[str, Any] = criterion(UpperCamelCase_ , UpperCamelCase_ ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 ) def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase : Tuple = torch.tensor([0.1, -0.2, -0.1] , requires_grad=UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = torch.tensor([0.4, 0.2, -0.5] ) lowerCAmelCase : Optional[int] = nn.MSELoss() # No warmup, constant schedule, no gradient clipping lowerCAmelCase : Any = Adafactor( params=[w] , lr=1E-2 , eps=(1E-30, 1E-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=UpperCamelCase_ , weight_decay=0.0 , relative_step=UpperCamelCase_ , scale_parameter=UpperCamelCase_ , warmup_init=UpperCamelCase_ , ) for _ in range(1_0_0_0 ): lowerCAmelCase : List[Any] = criterion(UpperCamelCase_ , UpperCamelCase_ ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 ) @require_torch class snake_case_( unittest.TestCase ): __UpperCamelCase = nn.Linear(50 , 50 ) if is_torch_available() else None __UpperCamelCase = AdamW(m.parameters() , lr=10.0 ) if is_torch_available() else None __UpperCamelCase = 10 def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase_ : str , UpperCamelCase_ : str , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Union[str, Any]=None ): self.assertEqual(len(UpperCamelCase_ ) , len(UpperCamelCase_ ) ) for a, b in zip(UpperCamelCase_ , UpperCamelCase_ ): self.assertAlmostEqual(UpperCamelCase_ , UpperCamelCase_ , delta=UpperCamelCase_ , msg=UpperCamelCase_ ) def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase : Tuple = {'''num_warmup_steps''': 2, '''num_training_steps''': 1_0} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) lowerCAmelCase : Optional[Any] = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {'''num_warmup_steps''': 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, '''num_cycles''': 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, '''power''': 2.0, '''lr_end''': 1E-7}, [0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156], ), get_inverse_sqrt_schedule: ( {'''num_warmup_steps''': 2}, [0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714], ), } for scheduler_func, data in scheds.items(): lowerCAmelCase, lowerCAmelCase : Union[str, Any] = data lowerCAmelCase : List[Any] = scheduler_func(self.optimizer , **UpperCamelCase_ ) self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 ) lowerCAmelCase : str = unwrap_schedule(UpperCamelCase_ , self.num_steps ) self.assertListAlmostEqual( UpperCamelCase_ , UpperCamelCase_ , tol=1E-2 , msg=F'''failed for {scheduler_func} in normal scheduler''' , ) lowerCAmelCase : Optional[int] = scheduler_func(self.optimizer , **UpperCamelCase_ ) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(UpperCamelCase_ ) # wrap to test picklability of the schedule lowerCAmelCase : List[Any] = unwrap_and_save_reload_schedule(UpperCamelCase_ , self.num_steps ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ , msg=F'''failed for {scheduler_func} in save and reload''' ) class snake_case_: def __init__( self : List[Any] , UpperCamelCase_ : Any ): lowerCAmelCase : Tuple = fn def __call__( self : Union[str, Any] , *UpperCamelCase_ : Optional[Any] , **UpperCamelCase_ : List[Any] ): return self.fn(*UpperCamelCase_ , **UpperCamelCase_ ) @classmethod def lowerCamelCase__ ( self : Any , UpperCamelCase_ : Optional[int] ): lowerCAmelCase : Union[str, Any] = list(map(self , scheduler.lr_lambdas ) )
637
0
import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) lowerCamelCase__ : List[Any] = logging.getLogger() def UpperCamelCase ( ) -> int: '''simple docstring''' lowercase__ : str = argparse.ArgumentParser() parser.add_argument("""-f""" ) lowercase__ : str = parser.parse_args() return args.f class _snake_case ( UpperCAmelCase_ ): def lowercase__ ( self): '''simple docstring''' lowercase__ : Optional[Any] = logging.StreamHandler(sys.stdout) logger.addHandler(SCREAMING_SNAKE_CASE_) def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Dict = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0 , """run_glue_deebert.py""") with patch.object(SCREAMING_SNAKE_CASE_ , """argv""" , SCREAMING_SNAKE_CASE_): lowercase__ : Any = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(SCREAMING_SNAKE_CASE_ , 0.6_6_6) @slow @require_torch_non_multi_gpu def lowercase__ ( self): '''simple docstring''' lowercase__ : Dict = """ --model_type roberta --model_name_or_path roberta-base --task_name MRPC --do_train --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --max_seq_length 128 --per_gpu_eval_batch_size=1 --per_gpu_train_batch_size=8 --learning_rate 2e-4 --num_train_epochs 3 --overwrite_output_dir --seed 42 --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --save_steps 0 --overwrite_cache --eval_after_first_stage """.split() self.run_and_check(SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = """ --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --eval_each_highway --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 """.split() self.run_and_check(SCREAMING_SNAKE_CASE_) lowercase__ : Optional[int] = """ --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --early_exit_entropy 0.1 --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 """.split() self.run_and_check(SCREAMING_SNAKE_CASE_)
12
lowerCamelCase__ : dict[tuple[int, int, int], int] = {} def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> int: '''simple docstring''' if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on lowercase__ : Tuple = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one lowercase__ : Union[str, Any] = _calculate(days - 1 , lowercase_ , late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 lowercase__ : List[str] = _calculate(days - 1 , absent + 1 , 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter lowercase__ : Dict = _calculate(days - 1 , lowercase_ , 0 ) lowercase__ : List[str] = state_late + state_absent + state_ontime lowercase__ : List[Any] = prizestrings return prizestrings def UpperCamelCase ( lowercase_ = 30 ) -> int: '''simple docstring''' return _calculate(lowercase_ , absent=0 , late=0 ) if __name__ == "__main__": print(solution())
12
1
def __magic_name__ ( lowercase ) -> int: """simple docstring""" lowercase_ : Tuple = int(_lowercase ) if n_element < 1: lowercase_ : Dict = ValueError("""a should be a positive number""" ) raise my_error lowercase_ : Optional[int] = [1] lowercase_ : List[str] = (0, 0, 0) lowercase_ : int = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": UpperCAmelCase_ = input("""Enter the last number (nth term) of the Hamming Number Series: """) print("""Formula of Hamming Number Series => 2^i * 3^j * 5^k""") UpperCAmelCase_ = hamming(int(n)) print("""-----------------------------------------------------""") print(F'''The list with nth numbers is: {hamming_numbers}''') print("""-----------------------------------------------------""")
712
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { """xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/config.json""", """xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/config.json""", } class UpperCamelCase__ ( lowerCamelCase__ ): '''simple docstring''' __a : Optional[Any] = """xlnet""" __a : Union[str, Any] = ["""mems"""] __a : int = { """n_token""": """vocab_size""", # Backward compatibility """hidden_size""": """d_model""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self, snake_case__=3_20_00, snake_case__=10_24, snake_case__=24, snake_case__=16, snake_case__=40_96, snake_case__="gelu", snake_case__=True, snake_case__="bi", snake_case__=0.02, snake_case__=1E-12, snake_case__=0.1, snake_case__=5_12, snake_case__=None, snake_case__=True, snake_case__=False, snake_case__=False, snake_case__=-1, snake_case__=False, snake_case__="last", snake_case__=True, snake_case__="tanh", snake_case__=0.1, snake_case__=5, snake_case__=5, snake_case__=5, snake_case__=1, snake_case__=2, **snake_case__, ) -> Dict: """simple docstring""" lowercase_ : Tuple = vocab_size lowercase_ : List[Any] = d_model lowercase_ : Any = n_layer lowercase_ : Tuple = n_head if d_model % n_head != 0: raise ValueError(f"""'d_model % n_head' ({d_model % n_head}) should be equal to 0""" ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( f"""`d_head` ({kwargs["d_head"]}) should be equal to `d_model // n_head` ({d_model // n_head})""" ) lowercase_ : List[str] = d_model // n_head lowercase_ : List[str] = ff_activation lowercase_ : str = d_inner lowercase_ : Optional[Any] = untie_r lowercase_ : Optional[Any] = attn_type lowercase_ : str = initializer_range lowercase_ : Any = layer_norm_eps lowercase_ : int = dropout lowercase_ : Union[str, Any] = mem_len lowercase_ : List[str] = reuse_len lowercase_ : Dict = bi_data lowercase_ : Any = clamp_len lowercase_ : Tuple = same_length lowercase_ : Dict = summary_type lowercase_ : str = summary_use_proj lowercase_ : Union[str, Any] = summary_activation lowercase_ : Optional[Any] = summary_last_dropout lowercase_ : str = start_n_top lowercase_ : Dict = end_n_top lowercase_ : Any = bos_token_id lowercase_ : Optional[int] = pad_token_id lowercase_ : List[Any] = eos_token_id if "use_cache" in kwargs: warnings.warn( """The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`""" """ instead.""", snake_case__, ) lowercase_ : Optional[Any] = kwargs["""use_cache"""] lowercase_ : int = use_mems_eval lowercase_ : Union[str, Any] = use_mems_train super().__init__(pad_token_id=snake_case__, bos_token_id=snake_case__, eos_token_id=snake_case__, **snake_case__ ) @property def snake_case__ ( self ) -> Tuple: """simple docstring""" logger.info(f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" ) return -1 @max_position_embeddings.setter def snake_case__ ( self, snake_case__ ) -> List[str]: """simple docstring""" # Message copied from Transformer-XL documentation raise NotImplementedError( f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
436
0
'''simple docstring''' def lowerCamelCase__ ( a ): __snake_case = len(a ) while cur > 1: # Find the maximum number in arr __snake_case = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi __snake_case = arr[mi::-1] + arr[mi + 1 : len(a )] # Reverse whole list __snake_case = arr[cur - 1 :: -1] + arr[cur : len(a )] cur -= 1 return arr if __name__ == "__main__": _lowercase = input("""Enter numbers separated by a comma:\n""").strip() _lowercase = [int(item) for item in user_input.split(""",""")] print(pancake_sort(unsorted))
356
'''simple docstring''' def lowerCamelCase__ ( a ): if not all(x.isalpha() for x in string ): raise ValueError('String must only contain alphabetic characters.' ) __snake_case = sorted(string.lower() ) return len(a ) == len(set(a ) ) if __name__ == "__main__": _lowercase = input("""Enter a string """).strip() _lowercase = is_isogram(input_str) print(f'''{input_str} is {'an' if isogram else 'not an'} isogram.''')
356
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __lowercase : Union[str, Any] = { """configuration_swiftformer""": [ """SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SwiftFormerConfig""", """SwiftFormerOnnxConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Dict = [ """SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """SwiftFormerForImageClassification""", """SwiftFormerModel""", """SwiftFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys __lowercase : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
66
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowerCAmelCase ( a , unittest.TestCase ): """simple docstring""" __lowercase :Optional[int] = KandinskyVaaImgaImgPipeline __lowercase :Dict = ["image_embeds", "negative_image_embeds", "image"] __lowercase :Union[str, Any] = [ "image_embeds", "negative_image_embeds", "image", ] __lowercase :str = [ "generator", "height", "width", "strength", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] __lowercase :Union[str, Any] = False @property def _lowerCAmelCase ( self ) -> str: '''simple docstring''' return 32 @property def _lowerCAmelCase ( self ) -> List[str]: '''simple docstring''' return 32 @property def _lowerCAmelCase ( self ) -> List[str]: '''simple docstring''' return self.time_input_dim @property def _lowerCAmelCase ( self ) -> str: '''simple docstring''' return self.time_input_dim * 4 @property def _lowerCAmelCase ( self ) -> Tuple: '''simple docstring''' return 100 @property def _lowerCAmelCase ( self ) -> str: '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase_ = { '''in_channels''': 4, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } lowerCamelCase_ = UNetaDConditionModel(**UpperCamelCase__ ) return model @property def _lowerCAmelCase ( self ) -> List[str]: '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def _lowerCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase_ = VQModel(**self.dummy_movq_kwargs ) return model def _lowerCAmelCase ( self ) -> Any: '''simple docstring''' lowerCamelCase_ = self.dummy_unet lowerCamelCase_ = self.dummy_movq lowerCamelCase_ = { '''num_train_timesteps''': 1_000, '''beta_schedule''': '''linear''', '''beta_start''': 0.00_085, '''beta_end''': 0.012, '''clip_sample''': False, '''set_alpha_to_one''': False, '''steps_offset''': 0, '''prediction_type''': '''epsilon''', '''thresholding''': False, } lowerCamelCase_ = DDIMScheduler(**UpperCamelCase__ ) lowerCamelCase_ = { '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def _lowerCAmelCase ( self , UpperCamelCase__ , UpperCamelCase__=0 ) -> Any: '''simple docstring''' lowerCamelCase_ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ ) lowerCamelCase_ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( UpperCamelCase__ ) # create init_image lowerCamelCase_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ ) lowerCamelCase_ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCamelCase_ = Image.fromarray(np.uinta(UpperCamelCase__ ) ).convert('''RGB''' ).resize((256, 256) ) if str(UpperCamelCase__ ).startswith('''mps''' ): lowerCamelCase_ = torch.manual_seed(UpperCamelCase__ ) else: lowerCamelCase_ = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) lowerCamelCase_ = { '''image''': init_image, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 10, '''guidance_scale''': 7.0, '''strength''': 0.2, '''output_type''': '''np''', } return inputs def _lowerCAmelCase ( self ) -> Optional[int]: '''simple docstring''' lowerCamelCase_ = '''cpu''' lowerCamelCase_ = self.get_dummy_components() lowerCamelCase_ = self.pipeline_class(**UpperCamelCase__ ) lowerCamelCase_ = pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowerCamelCase_ = pipe(**self.get_dummy_inputs(UpperCamelCase__ ) ) lowerCamelCase_ = output.images lowerCamelCase_ = pipe( **self.get_dummy_inputs(UpperCamelCase__ ) , return_dict=UpperCamelCase__ , )[0] lowerCamelCase_ = image[0, -3:, -3:, -1] lowerCamelCase_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCamelCase_ = np.array( [0.6_199_778, 0.63_984_406, 0.46_145_785, 0.62_944_984, 0.5_622_215, 0.47_306_132, 0.47_441_456, 0.4_607_606, 0.48_719_263] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self ) -> Dict: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCAmelCase ( self ) -> List[Any]: '''simple docstring''' lowerCamelCase_ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_img2img_frog.npy''' ) lowerCamelCase_ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) lowerCamelCase_ = '''A red cartoon frog, 4k''' lowerCamelCase_ = KandinskyVaaPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(UpperCamelCase__ ) lowerCamelCase_ = KandinskyVaaImgaImgPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-decoder''' , torch_dtype=torch.floataa ) lowerCamelCase_ = pipeline.to(UpperCamelCase__ ) pipeline.set_progress_bar_config(disable=UpperCamelCase__ ) lowerCamelCase_ = torch.Generator(device='''cpu''' ).manual_seed(0 ) lowerCamelCase_ , lowerCamelCase_ = pipe_prior( UpperCamelCase__ , generator=UpperCamelCase__ , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() lowerCamelCase_ = pipeline( image=UpperCamelCase__ , image_embeds=UpperCamelCase__ , negative_image_embeds=UpperCamelCase__ , generator=UpperCamelCase__ , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type='''np''' , ) lowerCamelCase_ = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(UpperCamelCase__ , UpperCamelCase__ )
66
1
"""simple docstring""" import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def lowerCamelCase_ (UpperCamelCase__ : List[str] ): _UpperCAmelCase : int = [] for line in lines: _UpperCAmelCase : str = re.sub(r'''#.*''' , '''''' , UpperCamelCase__ ) # remove comments if line: filtered_lines.append(UpperCamelCase__ ) _UpperCAmelCase : Optional[Any] = '''\n'''.join(UpperCamelCase__ ) # Make a hash from all this code _UpperCAmelCase : Optional[Any] = full_str.encode('''utf-8''' ) return shaaaa(UpperCamelCase__ ).hexdigest() # get importable module names and hash for caching _lowerCAmelCase :Optional[Any] = { 'csv': (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), 'json': (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), 'pandas': (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), 'parquet': (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), 'arrow': (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), 'text': (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), 'imagefolder': (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), 'audiofolder': (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions _lowerCAmelCase :str = { '.csv': ('csv', {}), '.tsv': ('csv', {'sep': '\t'}), '.json': ('json', {}), '.jsonl': ('json', {}), '.parquet': ('parquet', {}), '.arrow': ('arrow', {}), '.txt': ('text', {}), } _EXTENSION_TO_MODULE.update({ext: ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _lowerCAmelCase :Optional[int] = {'imagefolder', 'audiofolder'} # Used to filter data files based on extensions given a module name _lowerCAmelCase :Dict[str, List[str]] = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append('.zip') _MODULE_TO_EXTENSIONS["audiofolder"].append('.zip')
506
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=a ) class _UpperCAmelCase ( a ): '''simple docstring''' a__ =field(default='''automatic-speech-recognition''' ,metadata={'''include_in_asdict_even_if_is_default''': True} ) a__ =Features({'''audio''': Audio()} ) a__ =Features({'''transcription''': Value('''string''' )} ) a__ ="audio" a__ ="transcription" def __lowerCAmelCase ( self , A ) -> List[str]: if self.audio_column not in features: raise ValueError(f'Column {self.audio_column} is not present in features.' ) if not isinstance(features[self.audio_column] , A ): raise ValueError(f'Column {self.audio_column} is not an Audio type.' ) _UpperCAmelCase : Dict = copy.deepcopy(self ) _UpperCAmelCase : Union[str, Any] = self.input_schema.copy() _UpperCAmelCase : Dict = features[self.audio_column] _UpperCAmelCase : Optional[int] = input_schema return task_template @property def __lowerCAmelCase ( self ) -> Dict[str, str]: return {self.audio_column: "audio", self.transcription_column: "transcription"}
506
1
'''simple docstring''' def __a ( A__ ): if length <= 0 or not isinstance(A__ , A__ ): raise ValueError("Length must be a positive integer." ) return [n * (2 * n - 1) for n in range(A__ )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=1_0))
720
'''simple docstring''' import argparse import math import os from copy import deepcopy import torch from audio_diffusion.models import DiffusionAttnUnetaD from diffusion import sampling from torch import nn from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel lowercase : Tuple = { 'gwf-440k': { 'url': 'https://model-server.zqevans2.workers.dev/gwf-440k.ckpt', 'sample_rate': 4_8_0_0_0, 'sample_size': 6_5_5_3_6, }, 'jmann-small-190k': { 'url': 'https://model-server.zqevans2.workers.dev/jmann-small-190k.ckpt', 'sample_rate': 4_8_0_0_0, 'sample_size': 6_5_5_3_6, }, 'jmann-large-580k': { 'url': 'https://model-server.zqevans2.workers.dev/jmann-large-580k.ckpt', 'sample_rate': 4_8_0_0_0, 'sample_size': 1_3_1_0_7_2, }, 'maestro-uncond-150k': { 'url': 'https://model-server.zqevans2.workers.dev/maestro-uncond-150k.ckpt', 'sample_rate': 1_6_0_0_0, 'sample_size': 6_5_5_3_6, }, 'unlocked-uncond-250k': { 'url': 'https://model-server.zqevans2.workers.dev/unlocked-uncond-250k.ckpt', 'sample_rate': 1_6_0_0_0, 'sample_size': 6_5_5_3_6, }, 'honk-140k': { 'url': 'https://model-server.zqevans2.workers.dev/honk-140k.ckpt', 'sample_rate': 1_6_0_0_0, 'sample_size': 6_5_5_3_6, }, } def __a ( A__ , A__ ) -> Optional[Any]: return torch.atana(A__ , A__ ) / math.pi * 2 def __a ( A__ ) -> List[str]: lowerCAmelCase = torch.sin(t * math.pi / 2 ) ** 2 lowerCAmelCase = (1 - sigma**2) ** 0.5 return alpha_sigma_to_t(A__ , A__ ) class _lowerCAmelCase ( UpperCamelCase_ ): """simple docstring""" pass class _lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE : List[Any] ) -> Dict: """simple docstring""" super().__init__() lowerCAmelCase = DiffusionAttnUnetaD(SCREAMING_SNAKE_CASE , n_attn_layers=4 ) lowerCAmelCase = deepcopy(self.diffusion ) lowerCAmelCase = torch.quasirandom.SobolEngine(1 , scramble=SCREAMING_SNAKE_CASE ) def __a ( A__ ) -> Dict: lowerCAmelCase = MODELS_MAP[model_name]["url"] os.system(f"wget {url} ./" ) return f"./{model_name}.ckpt" lowercase : List[Any] = { '1': 'resnets.0', '2': 'attentions.0', '3': 'resnets.1', '4': 'attentions.1', '5': 'resnets.2', '6': 'attentions.2', } lowercase : int = { '8': 'resnets.0', '9': 'attentions.0', '10': 'resnets.1', '11': 'attentions.1', '12': 'resnets.2', '13': 'attentions.2', } lowercase : Optional[Any] = { '1': 'resnets.0', '2': 'attentions.0', '3': 'resnets.1', '4': 'attentions.1', '5': 'resnets.2', '6': 'attentions.2', '8': 'resnets.3', '9': 'attentions.3', '10': 'resnets.4', '11': 'attentions.4', '12': 'resnets.5', '13': 'attentions.5', } lowercase : List[Any] = { '0': 'resnets.0', '1': 'resnets.1', '2': 'resnets.2', '4': 'resnets.0', '5': 'resnets.1', '6': 'resnets.2', } lowercase : Optional[Any] = { 'skip': 'conv_skip', 'main.0': 'conv_1', 'main.1': 'group_norm_1', 'main.3': 'conv_2', 'main.4': 'group_norm_2', } lowercase : Union[str, Any] = { 'norm': 'group_norm', 'qkv_proj': ['query', 'key', 'value'], 'out_proj': ['proj_attn'], } def __a ( A__ ) -> str: if name.startswith("skip" ): return name.replace("skip" , RES_CONV_MAP["skip"] ) # name has to be of format main.{digit} if not name.startswith("main." ): raise ValueError(f"ResConvBlock error with {name}" ) return name.replace(name[:6] , RES_CONV_MAP[name[:6]] ) def __a ( A__ ) -> List[Any]: for key, value in ATTN_MAP.items(): if name.startswith(A__ ) and not isinstance(A__ , A__ ): return name.replace(A__ , A__ ) elif name.startswith(A__ ): return [name.replace(A__ , A__ ) for v in value] raise ValueError(f"Attn error with {name}" ) def __a ( A__ , A__=13 ) -> str: lowerCAmelCase = input_string if string.split("." )[0] == "timestep_embed": return string.replace("timestep_embed" , "time_proj" ) lowerCAmelCase = 0 if string.startswith("net.3." ): depth += 1 lowerCAmelCase = string[6:] elif string.startswith("net." ): lowerCAmelCase = string[4:] while string.startswith("main.7." ): depth += 1 lowerCAmelCase = string[7:] if string.startswith("main." ): lowerCAmelCase = string[5:] # mid block if string[:2].isdigit(): lowerCAmelCase = string[:2] lowerCAmelCase = string[2:] else: lowerCAmelCase = string[0] lowerCAmelCase = string[1:] if depth == max_depth: lowerCAmelCase = MID_NUM_TO_LAYER[layer_num] lowerCAmelCase = "mid_block" elif depth > 0 and int(A__ ) < 7: lowerCAmelCase = DOWN_NUM_TO_LAYER[layer_num] lowerCAmelCase = f"down_blocks.{depth}" elif depth > 0 and int(A__ ) > 7: lowerCAmelCase = UP_NUM_TO_LAYER[layer_num] lowerCAmelCase = f"up_blocks.{max_depth - depth - 1}" elif depth == 0: lowerCAmelCase = DEPTH_0_TO_LAYER[layer_num] lowerCAmelCase = f"up_blocks.{max_depth - 1}" if int(A__ ) > 3 else "down_blocks.0" if not string_left.startswith("." ): raise ValueError(f"Naming error with {input_string} and string_left: {string_left}." ) lowerCAmelCase = string_left[1:] if "resnets" in new_layer: lowerCAmelCase = convert_resconv_naming(A__ ) elif "attentions" in new_layer: lowerCAmelCase = convert_attn_naming(A__ ) lowerCAmelCase = new_string_left if not isinstance(A__ , A__ ): lowerCAmelCase = prefix + "." + new_layer + "." + string_left else: lowerCAmelCase = [prefix + "." + new_layer + "." + s for s in string_left] return new_string def __a ( A__ ) -> str: lowerCAmelCase = {} for k, v in state_dict.items(): if k.endswith("kernel" ): # up- and downsample layers, don't have trainable weights continue lowerCAmelCase = rename(A__ ) # check if we need to transform from Conv => Linear for attention if isinstance(A__ , A__ ): lowerCAmelCase = transform_conv_attns(A__ , A__ , A__ ) else: lowerCAmelCase = v return new_state_dict def __a ( A__ , A__ , A__ ) -> Any: if len(A__ ) == 1: if len(v.shape ) == 3: # weight lowerCAmelCase = v[:, :, 0] else: # bias lowerCAmelCase = v else: # qkv matrices lowerCAmelCase = v.shape[0] lowerCAmelCase = trippled_shape // 3 for i in range(3 ): if len(v.shape ) == 3: lowerCAmelCase = v[i * single_shape : (i + 1) * single_shape, :, 0] else: lowerCAmelCase = v[i * single_shape : (i + 1) * single_shape] return new_state_dict def __a ( A__ ) -> Dict: lowerCAmelCase = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) lowerCAmelCase = args.model_path.split("/" )[-1].split("." )[0] if not os.path.isfile(args.model_path ): assert ( model_name == args.model_path ), f"Make sure to provide one of the official model names {MODELS_MAP.keys()}" lowerCAmelCase = download(A__ ) lowerCAmelCase = MODELS_MAP[model_name]["sample_rate"] lowerCAmelCase = MODELS_MAP[model_name]["sample_size"] lowerCAmelCase = Object() lowerCAmelCase = sample_size lowerCAmelCase = sample_rate lowerCAmelCase = 0 lowerCAmelCase = UNetaDModel(sample_size=A__ , sample_rate=A__ ) lowerCAmelCase = diffusers_model.state_dict() lowerCAmelCase = DiffusionUncond(A__ ) orig_model.load_state_dict(torch.load(args.model_path , map_location=A__ )["state_dict"] ) lowerCAmelCase = orig_model.diffusion_ema.eval() lowerCAmelCase = orig_model.state_dict() lowerCAmelCase = rename_orig_weights(A__ ) lowerCAmelCase = set(renamed_state_dict.keys() ) - set(diffusers_state_dict.keys() ) lowerCAmelCase = set(diffusers_state_dict.keys() ) - set(renamed_state_dict.keys() ) assert len(A__ ) == 0, f"Problem with {renamed_minus_diffusers}" assert all(k.endswith("kernel" ) for k in list(A__ ) ), f"Problem with {diffusers_minus_renamed}" for key, value in renamed_state_dict.items(): assert ( diffusers_state_dict[key].squeeze().shape == value.squeeze().shape ), f"Shape for {key} doesn't match. Diffusers: {diffusers_state_dict[key].shape} vs. {value.shape}" if key == "time_proj.weight": lowerCAmelCase = value.squeeze() lowerCAmelCase = value diffusers_model.load_state_dict(A__ ) lowerCAmelCase = 100 lowerCAmelCase = 33 lowerCAmelCase = IPNDMScheduler(num_train_timesteps=A__ ) lowerCAmelCase = torch.manual_seed(A__ ) lowerCAmelCase = torch.randn([1, 2, config.sample_size] , generator=A__ ).to(A__ ) lowerCAmelCase = torch.linspace(1 , 0 , steps + 1 , device=A__ )[:-1] lowerCAmelCase = get_crash_schedule(A__ ) lowerCAmelCase = DanceDiffusionPipeline(unet=A__ , scheduler=A__ ) lowerCAmelCase = torch.manual_seed(33 ) lowerCAmelCase = pipe(num_inference_steps=A__ , generator=A__ ).audios lowerCAmelCase = sampling.iplms_sample(A__ , A__ , A__ , {} ) lowerCAmelCase = generated.clamp(-1 , 1 ) lowerCAmelCase = (generated - audio).abs().sum() lowerCAmelCase = (generated - audio).abs().max() if args.save: pipe.save_pretrained(args.checkpoint_path ) print("Diff sum" , A__ ) print("Diff max" , A__ ) assert diff_max < 1e-3, f"Diff max: {diff_max} is too much :-/" print(f"Conversion for {model_name} successful!" ) if __name__ == "__main__": lowercase : List[Any] = argparse.ArgumentParser() parser.add_argument('--model_path', default=None, type=str, required=True, help='Path to the model to convert.') parser.add_argument( '--save', default=True, type=bool, required=False, help='Whether to save the converted model or not.' ) parser.add_argument('--checkpoint_path', default=None, type=str, required=True, help='Path to the output model.') lowercase : Tuple = parser.parse_args() main(args)
159
0
from __future__ import annotations import bisect def lowercase__ ( A_: list[int] , A_: int , A_: int = 0 , A_: int = -1 ) -> int: """simple docstring""" if hi < 0: __UpperCAmelCase =len(A_ ) while lo < hi: __UpperCAmelCase =lo + (hi - lo) // 2 if sorted_collection[mid] < item: __UpperCAmelCase =mid + 1 else: __UpperCAmelCase =mid return lo def lowercase__ ( A_: list[int] , A_: int , A_: int = 0 , A_: int = -1 ) -> int: """simple docstring""" if hi < 0: __UpperCAmelCase =len(A_ ) while lo < hi: __UpperCAmelCase =lo + (hi - lo) // 2 if sorted_collection[mid] <= item: __UpperCAmelCase =mid + 1 else: __UpperCAmelCase =mid return lo def lowercase__ ( A_: list[int] , A_: int , A_: int = 0 , A_: int = -1 ) -> None: """simple docstring""" sorted_collection.insert(bisect_left(A_ , A_ , A_ , A_ ) , A_ ) def lowercase__ ( A_: list[int] , A_: int , A_: int = 0 , A_: int = -1 ) -> None: """simple docstring""" sorted_collection.insert(bisect_right(A_ , A_ , A_ , A_ ) , A_ ) def lowercase__ ( A_: list[int] , A_: int ) -> int | None: """simple docstring""" __UpperCAmelCase =0 __UpperCAmelCase =len(A_ ) - 1 while left <= right: __UpperCAmelCase =left + (right - left) // 2 __UpperCAmelCase =sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: __UpperCAmelCase =midpoint - 1 else: __UpperCAmelCase =midpoint + 1 return None def lowercase__ ( A_: list[int] , A_: int ) -> int | None: """simple docstring""" __UpperCAmelCase =bisect.bisect_left(A_ , A_ ) if index != len(A_ ) and sorted_collection[index] == item: return index return None def lowercase__ ( A_: list[int] , A_: int , A_: int , A_: int ) -> int | None: """simple docstring""" if right < left: return None __UpperCAmelCase =left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(A_ , A_ , A_ , midpoint - 1 ) else: return binary_search_by_recursion(A_ , A_ , midpoint + 1 , A_ ) if __name__ == "__main__": __A = input("Enter numbers separated by comma:\n").strip() __A = sorted(int(item) for item in user_input.split(",")) __A = int(input("Enter a single number to be found in the list:\n")) __A = binary_search(collection, target) if result is None: print(F"""{target} was not found in {collection}.""") else: print(F"""{target} was found at position {result} in {collection}.""")
68
import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() __A = logging.get_logger(__name__) __A = [ ["attention", "attn"], ["encoder_attention", "encoder_attn"], ["q_lin", "q_proj"], ["k_lin", "k_proj"], ["v_lin", "v_proj"], ["out_lin", "out_proj"], ["norm_embeddings", "layernorm_embedding"], ["position_embeddings", "embed_positions"], ["embeddings", "embed_tokens"], ["ffn.lin", "fc"], ] def lowercase__ ( A_: Optional[Any] ) -> Union[str, Any]: """simple docstring""" if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: __UpperCAmelCase =k.replace(A_ , A_ ) if k.startswith("""encoder""" ): __UpperCAmelCase =k.replace(""".attn""" , """.self_attn""" ) __UpperCAmelCase =k.replace("""norm1""" , """self_attn_layer_norm""" ) __UpperCAmelCase =k.replace("""norm2""" , """final_layer_norm""" ) elif k.startswith("""decoder""" ): __UpperCAmelCase =k.replace("""norm1""" , """self_attn_layer_norm""" ) __UpperCAmelCase =k.replace("""norm2""" , """encoder_attn_layer_norm""" ) __UpperCAmelCase =k.replace("""norm3""" , """final_layer_norm""" ) return k def lowercase__ ( A_: Tuple ) -> str: """simple docstring""" __UpperCAmelCase =[ """model.encoder.layernorm_embedding.weight""", """model.encoder.layernorm_embedding.bias""", """model.decoder.layernorm_embedding.weight""", """model.decoder.layernorm_embedding.bias""", ] for k in keys: __UpperCAmelCase =sd.pop(A_ ) __UpperCAmelCase =k.replace("""layernorm_embedding""" , """layer_norm""" ) assert new_k not in sd __UpperCAmelCase =v __A = ["START"] @torch.no_grad() def lowercase__ ( A_: List[Any] , A_: str , A_: int ) -> Optional[int]: """simple docstring""" __UpperCAmelCase =torch.load(A_ , map_location="""cpu""" ) __UpperCAmelCase =model["""model"""] __UpperCAmelCase =BlenderbotConfig.from_json_file(A_ ) __UpperCAmelCase =BlenderbotForConditionalGeneration(A_ ) __UpperCAmelCase =m.model.state_dict().keys() __UpperCAmelCase =[] __UpperCAmelCase ={} for k, v in sd.items(): if k in IGNORE_KEYS: continue __UpperCAmelCase =rename_state_dict_key(A_ ) if new_k not in valid_keys: failures.append([k, new_k] ) else: __UpperCAmelCase =v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(A_ ) m.model.load_state_dict(A_ , strict=A_ ) m.half() m.save_pretrained(A_ ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument("--src_path", type=str, help="like blenderbot-model.bin") parser.add_argument("--save_dir", default="hf_blenderbot", type=str, help="Where to save converted model.") parser.add_argument( "--hf_config_json", default="blenderbot-3b-config.json", type=str, help="Path to config to use" ) __A = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
68
1
"""simple docstring""" from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) # General docstring SCREAMING_SNAKE_CASE__ = "RegNetConfig" # Base docstring SCREAMING_SNAKE_CASE__ = "facebook/regnet-y-040" SCREAMING_SNAKE_CASE__ = [1, 1_088, 7, 7] # Image classification docstring SCREAMING_SNAKE_CASE__ = "facebook/regnet-y-040" SCREAMING_SNAKE_CASE__ = "tabby, tabby cat" SCREAMING_SNAKE_CASE__ = [ "facebook/regnet-y-040", # See all regnet models at https://huggingface.co/models?filter=regnet ] class lowerCAmelCase_ ( nn.Module ): """simple docstring""" def __init__( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = 3 , lowerCAmelCase = 1 , lowerCAmelCase = 1 , lowerCAmelCase = "relu" , ): """simple docstring""" super().__init__() snake_case = nn.Convad( lowerCAmelCase , lowerCAmelCase , kernel_size=lowerCAmelCase , stride=lowerCAmelCase , padding=kernel_size // 2 , groups=lowerCAmelCase , bias=lowerCAmelCase , ) snake_case = nn.BatchNormad(lowerCAmelCase ) snake_case = ACTaFN[activation] if activation is not None else nn.Identity() def snake_case ( self , lowerCAmelCase ): """simple docstring""" snake_case = self.convolution(lowerCAmelCase ) snake_case = self.normalization(lowerCAmelCase ) snake_case = self.activation(lowerCAmelCase ) return hidden_state class lowerCAmelCase_ ( nn.Module ): """simple docstring""" def __init__( self , lowerCAmelCase ): """simple docstring""" super().__init__() snake_case = RegNetConvLayer( config.num_channels , config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act ) snake_case = config.num_channels def snake_case ( self , lowerCAmelCase ): """simple docstring""" snake_case = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( 'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' ) snake_case = self.embedder(lowerCAmelCase ) return hidden_state class lowerCAmelCase_ ( nn.Module ): """simple docstring""" def __init__( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = 2 ): """simple docstring""" super().__init__() snake_case = nn.Convad(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , stride=lowerCAmelCase , bias=lowerCAmelCase ) snake_case = nn.BatchNormad(lowerCAmelCase ) def snake_case ( self , lowerCAmelCase ): """simple docstring""" snake_case = self.convolution(lowerCAmelCase ) snake_case = self.normalization(lowerCAmelCase ) return hidden_state class lowerCAmelCase_ ( nn.Module ): """simple docstring""" def __init__( self , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" super().__init__() snake_case = nn.AdaptiveAvgPoolad((1, 1) ) snake_case = nn.Sequential( nn.Convad(lowerCAmelCase , lowerCAmelCase , kernel_size=1 ) , nn.ReLU() , nn.Convad(lowerCAmelCase , lowerCAmelCase , kernel_size=1 ) , nn.Sigmoid() , ) def snake_case ( self , lowerCAmelCase ): """simple docstring""" snake_case = self.pooler(lowerCAmelCase ) snake_case = self.attention(lowerCAmelCase ) snake_case = hidden_state * attention return hidden_state class lowerCAmelCase_ ( nn.Module ): """simple docstring""" def __init__( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = 1 ): """simple docstring""" super().__init__() snake_case = in_channels != out_channels or stride != 1 snake_case = max(1 , out_channels // config.groups_width ) snake_case = ( RegNetShortCut(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase ) if should_apply_shortcut else nn.Identity() ) snake_case = nn.Sequential( RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase , groups=lowerCAmelCase , activation=config.hidden_act ) , RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , activation=lowerCAmelCase ) , ) snake_case = ACTaFN[config.hidden_act] def snake_case ( self , lowerCAmelCase ): """simple docstring""" snake_case = hidden_state snake_case = self.layer(lowerCAmelCase ) snake_case = self.shortcut(lowerCAmelCase ) hidden_state += residual snake_case = self.activation(lowerCAmelCase ) return hidden_state class lowerCAmelCase_ ( nn.Module ): """simple docstring""" def __init__( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = 1 ): """simple docstring""" super().__init__() snake_case = in_channels != out_channels or stride != 1 snake_case = max(1 , out_channels // config.groups_width ) snake_case = ( RegNetShortCut(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase ) if should_apply_shortcut else nn.Identity() ) snake_case = nn.Sequential( RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase , groups=lowerCAmelCase , activation=config.hidden_act ) , RegNetSELayer(lowerCAmelCase , reduced_channels=int(round(in_channels / 4 ) ) ) , RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , activation=lowerCAmelCase ) , ) snake_case = ACTaFN[config.hidden_act] def snake_case ( self , lowerCAmelCase ): """simple docstring""" snake_case = hidden_state snake_case = self.layer(lowerCAmelCase ) snake_case = self.shortcut(lowerCAmelCase ) hidden_state += residual snake_case = self.activation(lowerCAmelCase ) return hidden_state class lowerCAmelCase_ ( nn.Module ): """simple docstring""" def __init__( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = 2 , lowerCAmelCase = 2 , ): """simple docstring""" super().__init__() snake_case = RegNetXLayer if config.layer_type == 'x' else RegNetYLayer snake_case = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase , ) , *[layer(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) for _ in range(depth - 1 )] , ) def snake_case ( self , lowerCAmelCase ): """simple docstring""" snake_case = self.layers(lowerCAmelCase ) return hidden_state class lowerCAmelCase_ ( nn.Module ): """simple docstring""" def __init__( self , lowerCAmelCase ): """simple docstring""" super().__init__() snake_case = nn.ModuleList([] ) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( lowerCAmelCase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) snake_case = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(lowerCAmelCase , config.depths[1:] ): self.stages.append(RegNetStage(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , depth=lowerCAmelCase ) ) def snake_case ( self , lowerCAmelCase , lowerCAmelCase = False , lowerCAmelCase = True ): """simple docstring""" snake_case = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: snake_case = hidden_states + (hidden_state,) snake_case = stage_module(lowerCAmelCase ) if output_hidden_states: snake_case = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=lowerCAmelCase , hidden_states=lowerCAmelCase ) class lowerCAmelCase_ ( lowerCAmelCase ): """simple docstring""" _lowerCAmelCase : List[str] = RegNetConfig _lowerCAmelCase : str = """regnet""" _lowerCAmelCase : Any = """pixel_values""" _lowerCAmelCase : Tuple = True def snake_case ( self , lowerCAmelCase ): """simple docstring""" if isinstance(lowerCAmelCase , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode='fan_out' , nonlinearity='relu' ) elif isinstance(lowerCAmelCase , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def snake_case ( self , lowerCAmelCase , lowerCAmelCase=False ): """simple docstring""" if isinstance(lowerCAmelCase , lowerCAmelCase ): snake_case = value SCREAMING_SNAKE_CASE__ = R"\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n" SCREAMING_SNAKE_CASE__ = R"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( """The bare RegNet model outputting raw features without any specific head on top.""" , lowerCAmelCase , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class lowerCAmelCase_ ( lowerCAmelCase ): """simple docstring""" def __init__( self , lowerCAmelCase ): """simple docstring""" super().__init__(lowerCAmelCase ) snake_case = config snake_case = RegNetEmbeddings(lowerCAmelCase ) snake_case = RegNetEncoder(lowerCAmelCase ) snake_case = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCAmelCase , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def snake_case ( self , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = None ): """simple docstring""" snake_case = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) snake_case = return_dict if return_dict is not None else self.config.use_return_dict snake_case = self.embedder(lowerCAmelCase ) snake_case = self.encoder( lowerCAmelCase , output_hidden_states=lowerCAmelCase , return_dict=lowerCAmelCase ) snake_case = encoder_outputs[0] snake_case = self.pooler(lowerCAmelCase ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowerCAmelCase , pooler_output=lowerCAmelCase , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( """ RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """ , lowerCAmelCase , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class lowerCAmelCase_ ( lowerCAmelCase ): """simple docstring""" def __init__( self , lowerCAmelCase ): """simple docstring""" super().__init__(lowerCAmelCase ) snake_case = config.num_labels snake_case = RegNetModel(lowerCAmelCase ) # classification head snake_case = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCAmelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def snake_case ( self , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , ): """simple docstring""" snake_case = return_dict if return_dict is not None else self.config.use_return_dict snake_case = self.regnet(lowerCAmelCase , output_hidden_states=lowerCAmelCase , return_dict=lowerCAmelCase ) snake_case = outputs.pooler_output if return_dict else outputs[1] snake_case = self.classifier(lowerCAmelCase ) snake_case = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: snake_case = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): snake_case = 'single_label_classification' else: snake_case = 'multi_label_classification' if self.config.problem_type == "regression": snake_case = MSELoss() if self.num_labels == 1: snake_case = loss_fct(logits.squeeze() , labels.squeeze() ) else: snake_case = loss_fct(lowerCAmelCase , lowerCAmelCase ) elif self.config.problem_type == "single_label_classification": snake_case = CrossEntropyLoss() snake_case = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": snake_case = BCEWithLogitsLoss() snake_case = loss_fct(lowerCAmelCase , lowerCAmelCase ) if not return_dict: snake_case = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=lowerCAmelCase , logits=lowerCAmelCase , hidden_states=outputs.hidden_states )
104
"""simple docstring""" import numpy as np from PIL import Image def lowerCAmelCase__ ( _UpperCamelCase : np.ndarray , _UpperCamelCase : int , _UpperCamelCase : int ) -> np.ndarray: """simple docstring""" snake_case = np.array(_UpperCamelCase ) if arr.shape[0] != arr.shape[1]: raise ValueError('The input array is not a square matrix' ) snake_case = 0 snake_case = 0 snake_case = 0 snake_case = 0 # compute the shape of the output matrix snake_case = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape snake_case = np.zeros((maxpool_shape, maxpool_shape) ) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix snake_case = np.max(arr[i : i + size, j : j + size] ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 snake_case = 0 snake_case = 0 return updated_arr def lowerCAmelCase__ ( _UpperCamelCase : np.ndarray , _UpperCamelCase : int , _UpperCamelCase : int ) -> np.ndarray: """simple docstring""" snake_case = np.array(_UpperCamelCase ) if arr.shape[0] != arr.shape[1]: raise ValueError('The input array is not a square matrix' ) snake_case = 0 snake_case = 0 snake_case = 0 snake_case = 0 # compute the shape of the output matrix snake_case = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape snake_case = np.zeros((avgpool_shape, avgpool_shape) ) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix snake_case = int(np.average(arr[i : i + size, j : j + size] ) ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 snake_case = 0 snake_case = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name="avgpooling", verbose=True) # Loading the image SCREAMING_SNAKE_CASE__ = Image.open("path_to_image") # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
104
1
'''simple docstring''' import os def __snake_case ( ) -> Tuple: """simple docstring""" with open(os.path.dirname(SCREAMING_SNAKE_CASE_ ) + '''/p022_names.txt''' ) as file: UpperCAmelCase = str(file.readlines()[0] ) UpperCAmelCase = names.replace('''"''' , '''''' ).split(''',''' ) names.sort() UpperCAmelCase = 0 UpperCAmelCase = 0 for i, name in enumerate(SCREAMING_SNAKE_CASE_ ): for letter in name: name_score += ord(SCREAMING_SNAKE_CASE_ ) - 64 total_score += (i + 1) * name_score UpperCAmelCase = 0 return total_score if __name__ == "__main__": print(solution())
51
from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class lowercase__ ( __SCREAMING_SNAKE_CASE ): A__= 42 A__= 42 def __init__( self : Tuple , _lowercase : UNetaDModel , _lowercase : ScoreSdeVeScheduler ): """simple docstring""" super().__init__() self.register_modules(unet=_lowercase , scheduler=_lowercase ) @torch.no_grad() def __call__( self : Dict , _lowercase : int = 1 , _lowercase : int = 20_00 , _lowercase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _lowercase : Optional[str] = "pil" , _lowercase : bool = True , **_lowercase : Any , ): """simple docstring""" UpperCAmelCase__ = self.unet.config.sample_size UpperCAmelCase__ = (batch_size, 3, img_size, img_size) UpperCAmelCase__ = self.unet UpperCAmelCase__ = randn_tensor(_lowercase , generator=_lowercase ) * self.scheduler.init_noise_sigma UpperCAmelCase__ = sample.to(self.device ) self.scheduler.set_timesteps(_lowercase ) self.scheduler.set_sigmas(_lowercase ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): UpperCAmelCase__ = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): UpperCAmelCase__ = self.unet(_lowercase , _lowercase ).sample UpperCAmelCase__ = self.scheduler.step_correct(_lowercase , _lowercase , generator=_lowercase ).prev_sample # prediction step UpperCAmelCase__ = model(_lowercase , _lowercase ).sample UpperCAmelCase__ = self.scheduler.step_pred(_lowercase , _lowercase , _lowercase , generator=_lowercase ) UpperCAmelCase__ , UpperCAmelCase__ = output.prev_sample, output.prev_sample_mean UpperCAmelCase__ = sample_mean.clamp(0 , 1 ) UpperCAmelCase__ = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCAmelCase__ = self.numpy_to_pil(_lowercase ) if not return_dict: return (sample,) return ImagePipelineOutput(images=_lowercase )
475
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCamelCase : Any = logging.get_logger(__name__) __lowerCamelCase : List[Any] = { '''facebook/xlm-roberta-xl''': '''https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json''', '''facebook/xlm-roberta-xxl''': '''https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json''', # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class A_ (a_ ): """simple docstring""" a__ = '''xlm-roberta-xl''' def __init__( self :int , lowerCAmelCase__ :str=250_880 , lowerCAmelCase__ :Any=2_560 , lowerCAmelCase__ :Any=36 , lowerCAmelCase__ :Optional[Any]=32 , lowerCAmelCase__ :Optional[int]=10_240 , lowerCAmelCase__ :int="gelu" , lowerCAmelCase__ :List[Any]=0.1 , lowerCAmelCase__ :int=0.1 , lowerCAmelCase__ :Optional[Any]=514 , lowerCAmelCase__ :Tuple=1 , lowerCAmelCase__ :Union[str, Any]=0.0_2 , lowerCAmelCase__ :Any=1E-0_5 , lowerCAmelCase__ :Union[str, Any]=1 , lowerCAmelCase__ :List[Any]=0 , lowerCAmelCase__ :Tuple=2 , lowerCAmelCase__ :Union[str, Any]="absolute" , lowerCAmelCase__ :List[Any]=True , lowerCAmelCase__ :Dict=None , **lowerCAmelCase__ :Union[str, Any] , ) -> Tuple: '''simple docstring''' super().__init__(pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) snake_case_ : Tuple = vocab_size snake_case_ : Any = hidden_size snake_case_ : List[str] = num_hidden_layers snake_case_ : Dict = num_attention_heads snake_case_ : Tuple = hidden_act snake_case_ : int = intermediate_size snake_case_ : Optional[Any] = hidden_dropout_prob snake_case_ : Optional[Any] = attention_probs_dropout_prob snake_case_ : Union[str, Any] = max_position_embeddings snake_case_ : Dict = type_vocab_size snake_case_ : Any = initializer_range snake_case_ : str = layer_norm_eps snake_case_ : Optional[Any] = position_embedding_type snake_case_ : Optional[Any] = use_cache snake_case_ : List[str] = classifier_dropout class A_ (a_ ): """simple docstring""" @property def _A ( self :int ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": snake_case_ : Optional[Any] = {0: "batch", 1: "choice", 2: "sequence"} else: snake_case_ : Optional[Any] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
717
'''simple docstring''' import fire from utils import calculate_rouge, save_json def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__=None ,**__magic_name__ )-> Optional[Any]: """simple docstring""" snake_case_ : int = [x.strip() for x in open(__magic_name__ ).readlines()] snake_case_ : Optional[int] = [x.strip() for x in open(__magic_name__ ).readlines()][: len(__magic_name__ )] snake_case_ : List[Any] = calculate_rouge(__magic_name__ ,__magic_name__ ,**__magic_name__ ) if save_path is not None: save_json(__magic_name__ ,__magic_name__ ,indent=__magic_name__ ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
656
0
from torch import nn def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Any: """simple docstring""" if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(f"""Unsupported activation function: {act_fn}""" )
87
'''simple docstring''' import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def _SCREAMING_SNAKE_CASE ( UpperCamelCase__ : List[str] , UpperCamelCase__ : List[str] ): """simple docstring""" if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer a_ : Optional[int] = flax_key_tuple[:-1] + ("""weight""",) a_ : Optional[int] = torch.permute(UpperCamelCase__ , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(UpperCamelCase__ ): # linear layer a_ : Any = flax_key_tuple[:-1] + ("""weight""",) a_ : Optional[int] = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: a_ : Any = flax_key_tuple[:-1] + ("""weight""",) return flax_key_tuple, flax_tensor def _SCREAMING_SNAKE_CASE ( UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : str , UpperCamelCase__ : Any ): """simple docstring""" if "metadata" in layer: a_ : Optional[Any] = layer.split("""metadata""" ) a_ : List[str] = """""".join(split_layer[0] )[:-1] a_ : List[str] = [tuple(("""metadata""" + split_layer[1]).split("""/""" ) )] elif "kvstore" in layer: a_ : Union[str, Any] = layer.split("""kvstore""" ) a_ : Tuple = """""".join(split_layer[0] )[:-1] a_ : Union[str, Any] = [tuple(("""kvstore""" + split_layer[1]).split("""/""" ) )] else: a_ : List[str] = layer.split("""/""" ) a_ : Union[str, Any] = """/""".join(split_layer[:-1] ) a_ : Union[str, Any] = (split_layer[-1],) if "kvstore/path" in layer: a_ : Any = F"{switch_checkpoint_path}/{checkpoint_info[layer]}" elif "kvstore/driver" in layer: a_ : Optional[int] = """file""" else: a_ : str = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def _SCREAMING_SNAKE_CASE ( UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Any ): """simple docstring""" a_ : int = rename_keys(UpperCamelCase__ ) a_ : Any = {} for k, v in current_block.items(): a_ : Union[str, Any] = v a_ : List[str] = new_current_block torch.save(UpperCamelCase__ , UpperCamelCase__ ) def _SCREAMING_SNAKE_CASE ( UpperCamelCase__ : List[Any] , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[str] , UpperCamelCase__ : str = WEIGHTS_NAME ): """simple docstring""" a_ : str = convert_file_size_to_int(UpperCamelCase__ ) a_ : str = [] a_ : Optional[int] = {} a_ : Optional[int] = 0 a_ : Any = 0 os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ ) with gfile.GFile(switch_checkpoint_path + """/checkpoint""" , """rb""" ) as fp: a_ : str = serialization.msgpack_restore(fp.read() )["""optimizer"""]["""target"""] a_ : List[str] = flatten_dict(UpperCamelCase__ , sep="""/""" ) a_ : Dict = {} for layer in checkpoint_info.keys(): a_ , a_ , a_ : List[Any] = get_key_and_tensorstore_dict( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if curr_real_layer_name in all_layers: a_ : int = content else: a_ : Tuple = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file a_ : List[str] = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() a_ : List[Any] = torch.tensor(UpperCamelCase__ ) a_ : Dict = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts a_ , a_ : Tuple = rename_base_flax_keys(tuple(key.split("""/""" ) ) , UpperCamelCase__ ) a_ : Dict = """/""".join(UpperCamelCase__ ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: a_ : Any = os.path.join( UpperCamelCase__ , weights_name.replace(""".bin""" , F"-{len(UpperCamelCase__ )+1:05d}-of-???.bin" ) ) rename_and_save_block(UpperCamelCase__ , UpperCamelCase__ ) sharded_state_dicts.append(current_block.keys() ) del current_block a_ : Optional[int] = {} a_ : Union[str, Any] = 0 a_ : List[str] = raw_weights.to(getattr(UpperCamelCase__ , UpperCamelCase__ ) ) current_block_size += weight_size total_size += weight_size # Add the last block a_ : Any = os.path.join(UpperCamelCase__ , weights_name.replace(""".bin""" , F"-{len(UpperCamelCase__ )+1:05d}-of-???.bin" ) ) rename_and_save_block(UpperCamelCase__ , UpperCamelCase__ ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(UpperCamelCase__ ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index a_ : Tuple = {} a_ : List[Any] = {} for idx, shard in enumerate(UpperCamelCase__ ): a_ : str = weights_name.replace( """.bin""" , F"-{idx+1:05d}-of-{len(UpperCamelCase__ ):05d}.bin" ) # len(sharded_state_dicts):05d} a_ : Union[str, Any] = os.path.join(UpperCamelCase__ , weights_name.replace(""".bin""" , F"-{idx+1:05d}-of-???.bin" ) ) os.rename(UpperCamelCase__ , os.path.join(UpperCamelCase__ , UpperCamelCase__ ) ) a_ : str = shard for key in shard: a_ : Union[str, Any] = shard_file # Add the metadata a_ : List[str] = {"""total_size""": total_size} a_ : str = {"""metadata""": metadata, """weight_map""": weight_map} with open(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , """w""" , encoding="""utf-8""" ) as f: a_ : Any = json.dumps(UpperCamelCase__ , indent=2 , sort_keys=UpperCamelCase__ ) + """\n""" f.write(UpperCamelCase__ ) return metadata, index if __name__ == "__main__": lowerCAmelCase_ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--switch_t5x_checkpoint_path', default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600', type=str, required=False, help='Path to a directory containing a folder per layer. Follows the original Google format.', ) parser.add_argument('--max_shard_size', default='10GB', required=False, help='Max shard size') parser.add_argument('--dtype', default='bfloat16', type=str, required=False, help='dtype of the saved model') parser.add_argument( '--pytorch_dump_folder_path', default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted', type=str, required=False, help='Path to the output pytorch model.', ) lowerCAmelCase_ : List[Any] = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def _SCREAMING_SNAKE_CASE ( ): """simple docstring""" from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer a_ : Union[str, Any] = SwitchTransformersConfig.from_pretrained("""google/switch-base-8""" ) config.save_pretrained("""/home/arthur_huggingface_co/transformers/switch_converted""" ) a_ : List[Any] = SwitchTransformersForConditionalGeneration.from_pretrained( """/home/arthur_huggingface_co/transformers/switch_converted""" , device_map="""auto""" ) a_ : Union[str, Any] = TaTokenizer.from_pretrained("""t5-small""" ) a_ : Optional[Any] = """A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.""" a_ : List[Any] = tokenizer(UpperCamelCase__ , return_tensors="""pt""" ).input_ids a_ : str = model.generate(UpperCamelCase__ , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
442
0
import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor _UpperCamelCase = logging.get_logger(__name__) class __lowercase (_UpperCAmelCase ): def __init__( self , *A_ , **A_ ) ->None: '''simple docstring''' warnings.warn( '''The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use GLPNImageProcessor instead.''' , A_ , ) super().__init__(*A_ , **A_ )
583
import os import tempfile import unittest from transformers import NezhaConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, ) from transformers.models.nezha.modeling_nezha import NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST class __lowercase : def __init__( self , A_ , A_=13 , A_=7 , A_=True , A_=True , A_=True , A_=True , A_=99 , A_=32 , A_=5 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=128 , A_=32 , A_=16 , A_=2 , A_=0.02 , A_=3 , A_=4 , A_=None , ) ->List[Any]: '''simple docstring''' __lowerCAmelCase : Union[str, Any] = parent __lowerCAmelCase : Tuple = batch_size __lowerCAmelCase : List[Any] = seq_length __lowerCAmelCase : Union[str, Any] = is_training __lowerCAmelCase : List[str] = use_input_mask __lowerCAmelCase : List[str] = use_token_type_ids __lowerCAmelCase : List[Any] = use_labels __lowerCAmelCase : Optional[int] = vocab_size __lowerCAmelCase : Any = hidden_size __lowerCAmelCase : Optional[Any] = num_hidden_layers __lowerCAmelCase : str = num_attention_heads __lowerCAmelCase : Union[str, Any] = intermediate_size __lowerCAmelCase : int = hidden_act __lowerCAmelCase : Union[str, Any] = hidden_dropout_prob __lowerCAmelCase : Union[str, Any] = attention_probs_dropout_prob __lowerCAmelCase : str = max_position_embeddings __lowerCAmelCase : Optional[int] = type_vocab_size __lowerCAmelCase : Dict = type_sequence_label_size __lowerCAmelCase : List[Any] = initializer_range __lowerCAmelCase : Optional[int] = num_labels __lowerCAmelCase : int = num_choices __lowerCAmelCase : Tuple = scope def UpperCamelCase__ ( self ) ->Tuple: '''simple docstring''' __lowerCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase : Dict = None if self.use_input_mask: __lowerCAmelCase : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCAmelCase : Any = None if self.use_token_type_ids: __lowerCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCAmelCase : List[Any] = None __lowerCAmelCase : Optional[Any] = None __lowerCAmelCase : Union[str, Any] = None if self.use_labels: __lowerCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) __lowerCAmelCase : Union[str, Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase__ ( self ) ->Optional[int]: '''simple docstring''' return NezhaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A_ , initializer_range=self.initializer_range , ) def UpperCamelCase__ ( self ) ->List[Any]: '''simple docstring''' ( ( __lowerCAmelCase ), ( __lowerCAmelCase ), ( __lowerCAmelCase ), ( __lowerCAmelCase ), ( __lowerCAmelCase ), ( __lowerCAmelCase ), ( __lowerCAmelCase ), ) : str = self.prepare_config_and_inputs() __lowerCAmelCase : Tuple = True __lowerCAmelCase : Dict = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def UpperCamelCase__ ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) ->int: '''simple docstring''' __lowerCAmelCase : Tuple = NezhaModel(config=A_ ) model.to(A_ ) model.eval() __lowerCAmelCase : Tuple = model(A_ , attention_mask=A_ , token_type_ids=A_ ) __lowerCAmelCase : Optional[int] = model(A_ , token_type_ids=A_ ) __lowerCAmelCase : Tuple = model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase__ ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) ->List[str]: '''simple docstring''' __lowerCAmelCase : Union[str, Any] = True __lowerCAmelCase : Dict = NezhaModel(A_ ) model.to(A_ ) model.eval() __lowerCAmelCase : Union[str, Any] = model( A_ , attention_mask=A_ , token_type_ids=A_ , encoder_hidden_states=A_ , encoder_attention_mask=A_ , ) __lowerCAmelCase : List[Any] = model( A_ , attention_mask=A_ , token_type_ids=A_ , encoder_hidden_states=A_ , ) __lowerCAmelCase : int = model(A_ , attention_mask=A_ , token_type_ids=A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase__ ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) ->Any: '''simple docstring''' __lowerCAmelCase : Optional[Any] = NezhaForMaskedLM(config=A_ ) model.to(A_ ) model.eval() __lowerCAmelCase : Optional[Any] = model(A_ , attention_mask=A_ , token_type_ids=A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) ->Optional[Any]: '''simple docstring''' __lowerCAmelCase : Any = NezhaForNextSentencePrediction(config=A_ ) model.to(A_ ) model.eval() __lowerCAmelCase : str = model( A_ , attention_mask=A_ , token_type_ids=A_ , labels=A_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def UpperCamelCase__ ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) ->Optional[Any]: '''simple docstring''' __lowerCAmelCase : Tuple = NezhaForPreTraining(config=A_ ) model.to(A_ ) model.eval() __lowerCAmelCase : List[str] = model( A_ , attention_mask=A_ , token_type_ids=A_ , labels=A_ , next_sentence_label=A_ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def UpperCamelCase__ ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) ->Any: '''simple docstring''' __lowerCAmelCase : int = NezhaForQuestionAnswering(config=A_ ) model.to(A_ ) model.eval() __lowerCAmelCase : Union[str, Any] = model( A_ , attention_mask=A_ , token_type_ids=A_ , start_positions=A_ , end_positions=A_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase__ ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) ->List[Any]: '''simple docstring''' __lowerCAmelCase : Any = self.num_labels __lowerCAmelCase : Optional[int] = NezhaForSequenceClassification(A_ ) model.to(A_ ) model.eval() __lowerCAmelCase : int = model(A_ , attention_mask=A_ , token_type_ids=A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase__ ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) ->int: '''simple docstring''' __lowerCAmelCase : Dict = self.num_labels __lowerCAmelCase : int = NezhaForTokenClassification(config=A_ ) model.to(A_ ) model.eval() __lowerCAmelCase : Dict = model(A_ , attention_mask=A_ , token_type_ids=A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase__ ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) ->Tuple: '''simple docstring''' __lowerCAmelCase : Optional[Any] = self.num_choices __lowerCAmelCase : int = NezhaForMultipleChoice(config=A_ ) model.to(A_ ) model.eval() __lowerCAmelCase : Union[str, Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase : Optional[int] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase : List[str] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase : Optional[int] = model( A_ , attention_mask=A_ , token_type_ids=A_ , labels=A_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase__ ( self ) ->Optional[int]: '''simple docstring''' __lowerCAmelCase : Any = self.prepare_config_and_inputs() ( ( __lowerCAmelCase ), ( __lowerCAmelCase ), ( __lowerCAmelCase ), ( __lowerCAmelCase ), ( __lowerCAmelCase ), ( __lowerCAmelCase ), ( __lowerCAmelCase ), ) : Optional[int] = config_and_inputs __lowerCAmelCase : Any = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __lowercase (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): _UpperCamelCase = ( ( NezhaModel, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, ) if is_torch_available() else () ) _UpperCamelCase = ( { """feature-extraction""": NezhaModel, """fill-mask""": NezhaForMaskedLM, """question-answering""": NezhaForQuestionAnswering, """text-classification""": NezhaForSequenceClassification, """token-classification""": NezhaForTokenClassification, """zero-shot""": NezhaForSequenceClassification, } if is_torch_available() else {} ) _UpperCamelCase = True def UpperCamelCase__ ( self , A_ , A_ , A_=False ) ->List[str]: '''simple docstring''' __lowerCAmelCase : Union[str, Any] = super()._prepare_for_class(A_ , A_ , return_labels=A_ ) if return_labels: if model_class in get_values(A_ ): __lowerCAmelCase : Dict = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=A_ ) __lowerCAmelCase : str = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=A_ ) return inputs_dict def UpperCamelCase__ ( self ) ->Union[str, Any]: '''simple docstring''' __lowerCAmelCase : Dict = NezhaModelTester(self ) __lowerCAmelCase : Optional[int] = ConfigTester(self , config_class=A_ , hidden_size=37 ) def UpperCamelCase__ ( self ) ->Optional[int]: '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase__ ( self ) ->Tuple: '''simple docstring''' __lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def UpperCamelCase__ ( self ) ->List[str]: '''simple docstring''' __lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*A_ ) def UpperCamelCase__ ( self ) ->Optional[Any]: '''simple docstring''' ( ( __lowerCAmelCase ), ( __lowerCAmelCase ), ( __lowerCAmelCase ), ( __lowerCAmelCase ), ( __lowerCAmelCase ), ( __lowerCAmelCase ), ( __lowerCAmelCase ), ( __lowerCAmelCase ), ( __lowerCAmelCase ), ) : Optional[int] = self.model_tester.prepare_config_and_inputs_for_decoder() __lowerCAmelCase : Tuple = None self.model_tester.create_and_check_model_as_decoder( A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) def UpperCamelCase__ ( self ) ->Tuple: '''simple docstring''' __lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A_ ) def UpperCamelCase__ ( self ) ->Optional[Any]: '''simple docstring''' __lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*A_ ) def UpperCamelCase__ ( self ) ->Any: '''simple docstring''' __lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_next_sequence_prediction(*A_ ) def UpperCamelCase__ ( self ) ->Tuple: '''simple docstring''' __lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*A_ ) def UpperCamelCase__ ( self ) ->Optional[int]: '''simple docstring''' __lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A_ ) def UpperCamelCase__ ( self ) ->Optional[Any]: '''simple docstring''' __lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A_ ) def UpperCamelCase__ ( self ) ->Tuple: '''simple docstring''' __lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A_ ) @slow def UpperCamelCase__ ( self ) ->List[Any]: '''simple docstring''' for model_name in NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase : List[Any] = NezhaModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) @slow @require_torch_gpu def UpperCamelCase__ ( self ) ->Tuple: '''simple docstring''' __lowerCAmelCase, __lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # NezhaForMultipleChoice behaves incorrectly in JIT environments. if model_class == NezhaForMultipleChoice: return __lowerCAmelCase : Optional[int] = True __lowerCAmelCase : Union[str, Any] = model_class(config=A_ ) __lowerCAmelCase : List[Any] = self._prepare_for_class(A_ , A_ ) __lowerCAmelCase : Tuple = torch.jit.trace( A_ , (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(A_ , os.path.join(A_ , '''bert.pt''' ) ) __lowerCAmelCase : Optional[int] = torch.jit.load(os.path.join(A_ , '''bert.pt''' ) , map_location=A_ ) loaded(inputs_dict['''input_ids'''].to(A_ ) , inputs_dict['''attention_mask'''].to(A_ ) ) @require_torch class __lowercase (unittest.TestCase ): @slow def UpperCamelCase__ ( self ) ->List[str]: '''simple docstring''' __lowerCAmelCase : Dict = NezhaModel.from_pretrained('''sijunhe/nezha-cn-base''' ) __lowerCAmelCase : List[Any] = torch.tensor([[0, 1, 2, 3, 4, 5]] ) __lowerCAmelCase : Tuple = torch.tensor([[0, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __lowerCAmelCase : List[Any] = model(A_ , attention_mask=A_ )[0] __lowerCAmelCase : Union[str, Any] = torch.Size((1, 6, 768) ) self.assertEqual(output.shape , A_ ) __lowerCAmelCase : Union[str, Any] = torch.tensor([[[0.0_685, 0.2_441, 0.1_102], [0.0_600, 0.1_906, 0.1_349], [0.0_221, 0.0_819, 0.0_586]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , A_ , atol=1e-4 ) ) @slow def UpperCamelCase__ ( self ) ->List[Any]: '''simple docstring''' __lowerCAmelCase : int = NezhaForMaskedLM.from_pretrained('''sijunhe/nezha-cn-base''' ) __lowerCAmelCase : Optional[int] = torch.tensor([[0, 1, 2, 3, 4, 5]] ) __lowerCAmelCase : List[Any] = torch.tensor([[1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __lowerCAmelCase : List[str] = model(A_ , attention_mask=A_ )[0] __lowerCAmelCase : Union[str, Any] = torch.Size((1, 6, 2_1128) ) self.assertEqual(output.shape , A_ ) __lowerCAmelCase : str = torch.tensor( [[-2.7_939, -1.7_902, -2.2_189], [-2.8_585, -1.8_908, -2.3_723], [-2.6_499, -1.7_750, -2.2_558]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , A_ , atol=1e-4 ) )
583
1
import numpy as np import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModelWithProjection, PreTrainedModel from ...utils import logging _lowerCamelCase =logging.get_logger(__name__) class A__ ( a_): _UpperCAmelCase : List[str] = CLIPConfig _UpperCAmelCase : int = ["CLIPEncoderLayer"] def __init__( self , __magic_name__ ): super().__init__(__magic_name__ ) lowerCamelCase : Tuple = CLIPVisionModelWithProjection(config.vision_config ) lowerCamelCase : Optional[Any] = nn.Linear(config.vision_config.projection_dim , 1 ) lowerCamelCase : Tuple = nn.Linear(config.vision_config.projection_dim , 1 ) @torch.no_grad() def UpperCamelCase__ ( self , __magic_name__ , __magic_name__ , __magic_name__=0.5 , __magic_name__=0.5 ): lowerCamelCase : Optional[Any] = self.vision_model(__magic_name__ )[0] lowerCamelCase : Union[str, Any] = self.p_head(__magic_name__ ) lowerCamelCase : Tuple = nsfw_detected.flatten() lowerCamelCase : Union[str, Any] = nsfw_detected > p_threshold lowerCamelCase : List[str] = nsfw_detected.tolist() if any(__magic_name__ ): logger.warning( """Potential NSFW content was detected in one or more images. A black image will be returned instead.""" """ Try again with a different prompt and/or seed.""" ) for idx, nsfw_detected_ in enumerate(__magic_name__ ): if nsfw_detected_: lowerCamelCase : str = np.zeros(images[idx].shape ) lowerCamelCase : Union[str, Any] = self.w_head(__magic_name__ ) lowerCamelCase : Optional[Any] = watermark_detected.flatten() lowerCamelCase : str = watermark_detected > w_threshold lowerCamelCase : str = watermark_detected.tolist() if any(__magic_name__ ): logger.warning( """Potential watermarked content was detected in one or more images. A black image will be returned instead.""" """ Try again with a different prompt and/or seed.""" ) for idx, watermark_detected_ in enumerate(__magic_name__ ): if watermark_detected_: lowerCamelCase : Optional[int] = np.zeros(images[idx].shape ) return images, nsfw_detected, watermark_detected
681
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase : Tuple = { "configuration_blenderbot_small": [ "BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlenderbotSmallConfig", "BlenderbotSmallOnnxConfig", ], "tokenization_blenderbot_small": ["BlenderbotSmallTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : List[Any] = ["BlenderbotSmallTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : List[str] = [ "BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST", "BlenderbotSmallForCausalLM", "BlenderbotSmallForConditionalGeneration", "BlenderbotSmallModel", "BlenderbotSmallPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Any = [ "TFBlenderbotSmallForConditionalGeneration", "TFBlenderbotSmallModel", "TFBlenderbotSmallPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : List[Any] = [ "FlaxBlenderbotSmallForConditionalGeneration", "FlaxBlenderbotSmallModel", "FlaxBlenderbotSmallPreTrainedModel", ] if TYPE_CHECKING: from .configuration_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotSmallConfig, BlenderbotSmallOnnxConfig, ) from .tokenization_blenderbot_small import BlenderbotSmallTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_small_fast import BlenderbotSmallTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotSmallForCausalLM, BlenderbotSmallForConditionalGeneration, BlenderbotSmallModel, BlenderbotSmallPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot_small import ( TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel, TFBlenderbotSmallPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, FlaxBlenderbotSmallPreTrainedModel, ) else: import sys UpperCAmelCase : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
457
0
'''simple docstring''' from collections.abc import Callable class a : """simple docstring""" def __init__( self : Any , snake_case_ : Callable | None = None ): '''simple docstring''' snake_case__ : list = [] # Stores indexes of each item for supporting updates and deletion. snake_case__ : dict = {} # Stores current size of heap. snake_case__ : int = 0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. snake_case__ : Optional[int] = key or (lambda snake_case_ : x) def __magic_name__ ( self : Optional[Any] , snake_case_ : int ): '''simple docstring''' return int((i - 1) / 2 ) if i > 0 else None def __magic_name__ ( self : Optional[Any] , snake_case_ : int ): '''simple docstring''' snake_case__ : Optional[int] = int(2 * i + 1 ) return left if 0 < left < self.size else None def __magic_name__ ( self : Dict , snake_case_ : int ): '''simple docstring''' snake_case__ : List[Any] = int(2 * i + 2 ) return right if 0 < right < self.size else None def __magic_name__ ( self : Optional[Any] , snake_case_ : int , snake_case_ : int ): '''simple docstring''' snake_case__ , snake_case__ : Any = ( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. snake_case__ , snake_case__ : Tuple = self.arr[j], self.arr[i] def __magic_name__ ( self : int , snake_case_ : int , snake_case_ : int ): '''simple docstring''' return self.arr[i][1] < self.arr[j][1] def __magic_name__ ( self : Union[str, Any] , snake_case_ : int ): '''simple docstring''' snake_case__ : List[str] = self._left(snake_case_ ) snake_case__ : int = self._right(snake_case_ ) snake_case__ : str = i if left is not None and not self._cmp(snake_case_ , snake_case_ ): snake_case__ : int = left if right is not None and not self._cmp(snake_case_ , snake_case_ ): snake_case__ : Tuple = right return valid_parent def __magic_name__ ( self : Dict , snake_case_ : int ): '''simple docstring''' snake_case__ : Tuple = self._parent(snake_case_ ) while parent is not None and not self._cmp(snake_case_ , snake_case_ ): self._swap(snake_case_ , snake_case_ ) snake_case__ , snake_case__ : Optional[Any] = parent, self._parent(snake_case_ ) def __magic_name__ ( self : int , snake_case_ : int ): '''simple docstring''' snake_case__ : Tuple = self._get_valid_parent(snake_case_ ) while valid_parent != index: self._swap(snake_case_ , snake_case_ ) snake_case__ , snake_case__ : Optional[Any] = valid_parent, self._get_valid_parent(snake_case_ ) def __magic_name__ ( self : List[Any] , snake_case_ : int , snake_case_ : int ): '''simple docstring''' if item not in self.pos_map: return snake_case__ : Any = self.pos_map[item] snake_case__ : Optional[int] = [item, self.key(snake_case_ )] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(snake_case_ ) self._heapify_down(snake_case_ ) def __magic_name__ ( self : List[Any] , snake_case_ : int ): '''simple docstring''' if item not in self.pos_map: return snake_case__ : Optional[Any] = self.pos_map[item] del self.pos_map[item] snake_case__ : List[str] = self.arr[self.size - 1] snake_case__ : Dict = index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(snake_case_ ) self._heapify_down(snake_case_ ) def __magic_name__ ( self : Any , snake_case_ : int , snake_case_ : int ): '''simple docstring''' snake_case__ : Dict = len(self.arr ) if arr_len == self.size: self.arr.append([item, self.key(snake_case_ )] ) else: snake_case__ : Any = [item, self.key(snake_case_ )] snake_case__ : Dict = self.size self.size += 1 self._heapify_up(self.size - 1 ) def __magic_name__ ( self : int ): '''simple docstring''' return self.arr[0] if self.size else None def __magic_name__ ( self : Any ): '''simple docstring''' snake_case__ : Any = self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0] ) return top_item_tuple def _a ( ): """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
502
'''simple docstring''' # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file lowerCAmelCase__ : List[Any] = """Run commands across TPU VMs for initial setup before running `accelerate launch`.""" def _a ( __lowerCAmelCase : Any=None ): """simple docstring""" if subparsers is not None: snake_case__ : Tuple = subparsers.add_parser('''tpu-config''' , description=_description ) else: snake_case__ : str = argparse.ArgumentParser('''Accelerate tpu-config command''' , description=_description ) # Core arguments snake_case__ : Any = parser.add_argument_group( '''Config Arguments''' , '''Arguments that can be configured through `accelerate config`.''' ) config_args.add_argument( '''--config_file''' , type=__lowerCAmelCase , default=__lowerCAmelCase , help='''Path to the config file to use for accelerate.''' , ) config_args.add_argument( '''--tpu_name''' , default=__lowerCAmelCase , help='''The name of the TPU to use. If not specified, will use the TPU specified in the config file.''' , ) config_args.add_argument( '''--tpu_zone''' , default=__lowerCAmelCase , help='''The zone of the TPU to use. If not specified, will use the zone specified in the config file.''' , ) snake_case__ : Optional[Any] = parser.add_argument_group('''TPU Arguments''' , '''Arguments for options ran inside the TPU.''' ) pod_args.add_argument( '''--use_alpha''' , action='''store_true''' , help='''Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.''' , ) pod_args.add_argument( '''--command_file''' , default=__lowerCAmelCase , help='''The path to the file containing the commands to run on the pod on startup.''' , ) pod_args.add_argument( '''--command''' , action='''append''' , nargs='''+''' , help='''A command to run on the pod. Can be passed multiple times.''' , ) pod_args.add_argument( '''--install_accelerate''' , action='''store_true''' , help='''Whether to install accelerate on the pod. Defaults to False.''' , ) pod_args.add_argument( '''--accelerate_version''' , default='''latest''' , help='''The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify \'dev\' to install from GitHub.''' , ) pod_args.add_argument( '''--debug''' , action='''store_true''' , help='''If set, will print the command that would be run instead of running it.''' ) if subparsers is not None: parser.set_defaults(func=__lowerCAmelCase ) return parser def _a ( __lowerCAmelCase : Optional[Any] ): """simple docstring""" snake_case__ : Optional[int] = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(__lowerCAmelCase ): snake_case__ : Tuple = load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: snake_case__ : Optional[int] = defaults.command_file if not args.command and defaults.commands is not None: snake_case__ : Union[str, Any] = defaults.commands if not args.tpu_name: snake_case__ : Union[str, Any] = defaults.tpu_name if not args.tpu_zone: snake_case__ : Optional[Any] = defaults.tpu_zone if args.accelerate_version == "dev": snake_case__ : Tuple = '''git+https://github.com/huggingface/accelerate.git''' elif args.accelerate_version == "latest": snake_case__ : Union[str, Any] = '''accelerate -U''' elif isinstance(parse(args.accelerate_version ) , __lowerCAmelCase ): snake_case__ : Any = F"""accelerate=={args.accelerate_version}""" if not args.command_file and not args.command: raise ValueError('''You must specify either a command file or a command to run on the pod.''' ) if args.command_file: with open(args.command_file , '''r''' ) as f: snake_case__ : str = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , __lowerCAmelCase ): snake_case__ : List[Any] = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate snake_case__ : Optional[int] = ['''cd /usr/share'''] if args.install_accelerate: new_cmd += [F"""pip install {args.accelerate_version}"""] new_cmd += args.command snake_case__ : Tuple = '''; '''.join(__lowerCAmelCase ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess snake_case__ : str = ['''gcloud'''] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(F"""Running {' '.join(__lowerCAmelCase )}""" ) return subprocess.run(__lowerCAmelCase ) print('''Successfully setup pod.''' ) def _a ( ): """simple docstring""" snake_case__ : Dict = tpu_command_parser() snake_case__ : Dict = parser.parse_args() tpu_command_launcher(__lowerCAmelCase )
502
1
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_torch_available from ...utils import OptionalDependencyNotAvailable A_ : Union[str, Any] ={ """configuration_gpt_neox_japanese""": ["""GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTNeoXJapaneseConfig"""], """tokenization_gpt_neox_japanese""": ["""GPTNeoXJapaneseTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[Any] =[ """GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTNeoXJapaneseForCausalLM""", """GPTNeoXJapaneseLayer""", """GPTNeoXJapaneseModel""", """GPTNeoXJapanesePreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_neox_japanese import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXJapaneseConfig from .tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox_japanese import ( GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseLayer, GPTNeoXJapaneseModel, GPTNeoXJapanesePreTrainedModel, ) else: import sys A_ : str =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
483
import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class lowercase_ ( unittest.TestCase): """simple docstring""" def lowercase__ ( self ): """simple docstring""" a_ = torch.nn.Linear(10 , 10 ) a_ = torch.optim.SGD(model.parameters() , 0.1 ) a_ = Accelerator() a_ = accelerator.prepare(_UpperCAmelCase ) try: pickle.loads(pickle.dumps(_UpperCAmelCase ) ) except Exception as e: self.fail(f"Accelerated optimizer pickling failed with {e}" ) AcceleratorState._reset_state()
483
1
from collections import defaultdict from math import ceil, sqrt def __UpperCAmelCase( lowercase_ = 1_00_00_00 , lowercase_ = 10 ): _lowerCamelCase : defaultdict = defaultdict(lowercase_ ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: _lowerCamelCase : Tuple = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: _lowerCamelCase : Optional[int] = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(lowercase_ , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(F'''{solution() = }''')
613
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) _lowerCamelCase = { 'configuration_layoutlmv3': [ 'LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LayoutLMv3Config', 'LayoutLMv3OnnxConfig', ], 'processing_layoutlmv3': ['LayoutLMv3Processor'], 'tokenization_layoutlmv3': ['LayoutLMv3Tokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = ['LayoutLMv3TokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = [ 'LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST', 'LayoutLMv3ForQuestionAnswering', 'LayoutLMv3ForSequenceClassification', 'LayoutLMv3ForTokenClassification', 'LayoutLMv3Model', 'LayoutLMv3PreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = [ 'TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFLayoutLMv3ForQuestionAnswering', 'TFLayoutLMv3ForSequenceClassification', 'TFLayoutLMv3ForTokenClassification', 'TFLayoutLMv3Model', 'TFLayoutLMv3PreTrainedModel', ] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = ['LayoutLMv3FeatureExtractor'] _lowerCamelCase = ['LayoutLMv3ImageProcessor'] if TYPE_CHECKING: from .configuration_layoutlmva import ( LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig, LayoutLMvaOnnxConfig, ) from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_layoutlmva import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, TFLayoutLMvaPreTrainedModel, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor from .image_processing_layoutlmva import LayoutLMvaImageProcessor else: import sys _lowerCamelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
613
1
from __future__ import annotations def _a ( lowerCamelCase, lowerCamelCase, lowerCamelCase ): lowerCamelCase : Optional[Any] = list(range(len(__lowerCAmelCase ) ) ) lowerCamelCase : List[Any] = [v / w for v, w in zip(__lowerCAmelCase, __lowerCAmelCase )] index.sort(key=lambda lowerCamelCase : ratio[i], reverse=__lowerCAmelCase ) lowerCamelCase : Any = 0 lowerCamelCase : Union[str, Any] = [0] * len(__lowerCAmelCase ) for i in index: if weight[i] <= capacity: lowerCamelCase : List[str] = 1 max_value += value[i] capacity -= weight[i] else: lowerCamelCase : str = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
681
from functools import reduce _A = ( "73167176531330624919225119674426574742355349194934" "96983520312774506326239578318016984801869478851843" "85861560789112949495459501737958331952853208805511" "12540698747158523863050715693290963295227443043557" "66896648950445244523161731856403098711121722383113" "62229893423380308135336276614282806444486645238749" "30358907296290491560440772390713810515859307960866" "70172427121883998797908792274921901699720888093776" "65727333001053367881220235421809751254540594752243" "52584907711670556013604839586446706324415722155397" "53697817977846174064955149290862569321978468622482" "83972241375657056057490261407972968652414535100474" "82166370484403199890008895243450658541227588666881" "16427171479924442928230863465674813919123162824586" "17866458359124566529476545682848912883142607690042" "24219022671055626321111109370544217506941658960408" "07198403850962455444362981230987879927244284909188" "84580156166097919133875499200524063689912560717606" "05886116467109405077541002256983155200055935729725" "71636269561882670428252483600823257530420752963450" ) def lowerCamelCase__ ( __lowerCAmelCase : str = N ): """simple docstring""" return max( # mypy cannot properly interpret reduce int(reduce(lambda __lowerCAmelCase , __lowerCAmelCase : str(int(__lowerCAmelCase ) * int(__lowerCAmelCase ) ) , n[i : i + 13] ) ) for i in range(len(__lowerCAmelCase ) - 12 ) ) if __name__ == "__main__": print(f"""{solution() = }""")
290
0
import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope="""session""" ) def snake_case_ ( ): '''simple docstring''' _lowerCAmelCase =10 _lowerCAmelCase =datasets.Features( { """tokens""": datasets.Sequence(datasets.Value("""string""" ) ), """labels""": datasets.Sequence(datasets.ClassLabel(names=["""negative""", """positive"""] ) ), """answers""": datasets.Sequence( { """text""": datasets.Value("""string""" ), """answer_start""": datasets.Value("""int32""" ), } ), """id""": datasets.Value("""int64""" ), } ) _lowerCAmelCase =datasets.Dataset.from_dict( { """tokens""": [["""foo"""] * 5] * n, """labels""": [[1] * 5] * n, """answers""": [{"""answer_start""": [97], """text""": ["""1976"""]}] * 10, """id""": list(range(lowercase__ ) ), } , features=lowercase__ , ) return dataset @pytest.fixture(scope="""session""" ) def snake_case_ ( lowercase__ : Dict , lowercase__ : Optional[int] ): '''simple docstring''' _lowerCAmelCase =str(tmp_path_factory.mktemp("""data""" ) / """file.arrow""" ) dataset.map(cache_file_name=lowercase__ ) return filename # FILE_CONTENT + files __SCREAMING_SNAKE_CASE : Optional[Any] = '''\ Text data. Second line of data.''' @pytest.fixture(scope="""session""" ) def snake_case_ ( lowercase__ : int ): '''simple docstring''' _lowerCAmelCase =tmp_path_factory.mktemp("""data""" ) / """file.txt""" _lowerCAmelCase =FILE_CONTENT with open(lowercase__ , """w""" ) as f: f.write(lowercase__ ) return filename @pytest.fixture(scope="""session""" ) def snake_case_ ( lowercase__ : Any ): '''simple docstring''' import bza _lowerCAmelCase =tmp_path_factory.mktemp("""data""" ) / """file.txt.bz2""" _lowerCAmelCase =bytes(lowercase__ , """utf-8""" ) with bza.open(lowercase__ , """wb""" ) as f: f.write(lowercase__ ) return path @pytest.fixture(scope="""session""" ) def snake_case_ ( lowercase__ : int ): '''simple docstring''' import gzip _lowerCAmelCase =str(tmp_path_factory.mktemp("""data""" ) / """file.txt.gz""" ) _lowerCAmelCase =bytes(lowercase__ , """utf-8""" ) with gzip.open(lowercase__ , """wb""" ) as f: f.write(lowercase__ ) return path @pytest.fixture(scope="""session""" ) def snake_case_ ( lowercase__ : Optional[Any] ): '''simple docstring''' if datasets.config.LZ4_AVAILABLE: import lza.frame _lowerCAmelCase =tmp_path_factory.mktemp("""data""" ) / """file.txt.lz4""" _lowerCAmelCase =bytes(lowercase__ , """utf-8""" ) with lza.frame.open(lowercase__ , """wb""" ) as f: f.write(lowercase__ ) return path @pytest.fixture(scope="""session""" ) def snake_case_ ( lowercase__ : Any , lowercase__ : Union[str, Any] ): '''simple docstring''' if datasets.config.PY7ZR_AVAILABLE: import pyazr _lowerCAmelCase =tmp_path_factory.mktemp("""data""" ) / """file.txt.7z""" with pyazr.SevenZipFile(lowercase__ , """w""" ) as archive: archive.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) return path @pytest.fixture(scope="""session""" ) def snake_case_ ( lowercase__ : Any , lowercase__ : Optional[int] ): '''simple docstring''' import tarfile _lowerCAmelCase =tmp_path_factory.mktemp("""data""" ) / """file.txt.tar""" with tarfile.TarFile(lowercase__ , """w""" ) as f: f.add(lowercase__ , arcname=os.path.basename(lowercase__ ) ) return path @pytest.fixture(scope="""session""" ) def snake_case_ ( lowercase__ : Tuple ): '''simple docstring''' import lzma _lowerCAmelCase =tmp_path_factory.mktemp("""data""" ) / """file.txt.xz""" _lowerCAmelCase =bytes(lowercase__ , """utf-8""" ) with lzma.open(lowercase__ , """wb""" ) as f: f.write(lowercase__ ) return path @pytest.fixture(scope="""session""" ) def snake_case_ ( lowercase__ : Union[str, Any] , lowercase__ : Optional[Any] ): '''simple docstring''' import zipfile _lowerCAmelCase =tmp_path_factory.mktemp("""data""" ) / """file.txt.zip""" with zipfile.ZipFile(lowercase__ , """w""" ) as f: f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) return path @pytest.fixture(scope="""session""" ) def snake_case_ ( lowercase__ : str ): '''simple docstring''' if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd _lowerCAmelCase =tmp_path_factory.mktemp("""data""" ) / """file.txt.zst""" _lowerCAmelCase =bytes(lowercase__ , """utf-8""" ) with zstd.open(lowercase__ , """wb""" ) as f: f.write(lowercase__ ) return path @pytest.fixture(scope="""session""" ) def snake_case_ ( lowercase__ : Tuple ): '''simple docstring''' _lowerCAmelCase =tmp_path_factory.mktemp("""data""" ) / """file.xml""" _lowerCAmelCase =textwrap.dedent( """\ <?xml version=\"1.0\" encoding=\"UTF-8\" ?> <tmx version=\"1.4\"> <header segtype=\"sentence\" srclang=\"ca\" /> <body> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 1</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 1</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 2</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 2</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 3</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 3</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 4</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 4</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 5</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 5</seg></tuv> </tu> </body> </tmx>""" ) with open(lowercase__ , """w""" ) as f: f.write(lowercase__ ) return filename __SCREAMING_SNAKE_CASE : str = [ {'''col_1''': '''0''', '''col_2''': 0, '''col_3''': 0.0}, {'''col_1''': '''1''', '''col_2''': 1, '''col_3''': 1.0}, {'''col_1''': '''2''', '''col_2''': 2, '''col_3''': 2.0}, {'''col_1''': '''3''', '''col_2''': 3, '''col_3''': 3.0}, ] __SCREAMING_SNAKE_CASE : int = [ {'''col_1''': '''4''', '''col_2''': 4, '''col_3''': 4.0}, {'''col_1''': '''5''', '''col_2''': 5, '''col_3''': 5.0}, ] __SCREAMING_SNAKE_CASE : str = { '''col_1''': ['''0''', '''1''', '''2''', '''3'''], '''col_2''': [0, 1, 2, 3], '''col_3''': [0.0, 1.0, 2.0, 3.0], } __SCREAMING_SNAKE_CASE : Any = [ {'''col_3''': 0.0, '''col_1''': '''0''', '''col_2''': 0}, {'''col_3''': 1.0, '''col_1''': '''1''', '''col_2''': 1}, ] __SCREAMING_SNAKE_CASE : Dict = [ {'''col_1''': '''s0''', '''col_2''': 0, '''col_3''': 0.0}, {'''col_1''': '''s1''', '''col_2''': 1, '''col_3''': 1.0}, {'''col_1''': '''s2''', '''col_2''': 2, '''col_3''': 2.0}, {'''col_1''': '''s3''', '''col_2''': 3, '''col_3''': 3.0}, ] @pytest.fixture(scope="""session""" ) def snake_case_ ( ): '''simple docstring''' return DATA_DICT_OF_LISTS @pytest.fixture(scope="""session""" ) def snake_case_ ( lowercase__ : Dict ): '''simple docstring''' _lowerCAmelCase =datasets.Dataset.from_dict(lowercase__ ) _lowerCAmelCase =str(tmp_path_factory.mktemp("""data""" ) / """dataset.arrow""" ) dataset.map(cache_file_name=lowercase__ ) return path @pytest.fixture(scope="""session""" ) def snake_case_ ( lowercase__ : List[Any] ): '''simple docstring''' _lowerCAmelCase =str(tmp_path_factory.mktemp("""data""" ) / """dataset.sqlite""" ) with contextlib.closing(sqlitea.connect(lowercase__ ) ) as con: _lowerCAmelCase =con.cursor() cur.execute("""CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)""" ) for item in DATA: cur.execute("""INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)""" , tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope="""session""" ) def snake_case_ ( lowercase__ : Any ): '''simple docstring''' _lowerCAmelCase =str(tmp_path_factory.mktemp("""data""" ) / """dataset.csv""" ) with open(lowercase__ , """w""" , newline="""""" ) as f: _lowerCAmelCase =csv.DictWriter(lowercase__ , fieldnames=["""col_1""", """col_2""", """col_3"""] ) writer.writeheader() for item in DATA: writer.writerow(lowercase__ ) return path @pytest.fixture(scope="""session""" ) def snake_case_ ( lowercase__ : List[str] ): '''simple docstring''' _lowerCAmelCase =str(tmp_path_factory.mktemp("""data""" ) / """dataset2.csv""" ) with open(lowercase__ , """w""" , newline="""""" ) as f: _lowerCAmelCase =csv.DictWriter(lowercase__ , fieldnames=["""col_1""", """col_2""", """col_3"""] ) writer.writeheader() for item in DATA: writer.writerow(lowercase__ ) return path @pytest.fixture(scope="""session""" ) def snake_case_ ( lowercase__ : List[str] , lowercase__ : List[str] ): '''simple docstring''' import bza _lowerCAmelCase =tmp_path_factory.mktemp("""data""" ) / """dataset.csv.bz2""" with open(lowercase__ , """rb""" ) as f: _lowerCAmelCase =f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(lowercase__ , """wb""" ) as f: f.write(lowercase__ ) return path @pytest.fixture(scope="""session""" ) def snake_case_ ( lowercase__ : str , lowercase__ : Dict , lowercase__ : Optional[int] ): '''simple docstring''' _lowerCAmelCase =tmp_path_factory.mktemp("""data""" ) / """dataset.csv.zip""" with zipfile.ZipFile(lowercase__ , """w""" ) as f: f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) return path @pytest.fixture(scope="""session""" ) def snake_case_ ( lowercase__ : Union[str, Any] , lowercase__ : Any , lowercase__ : Any ): '''simple docstring''' _lowerCAmelCase =tmp_path_factory.mktemp("""data""" ) / """dataset.csv.zip""" with zipfile.ZipFile(lowercase__ , """w""" ) as f: f.write(lowercase__ , arcname=os.path.basename(csv_path.replace(""".csv""" , """.CSV""" ) ) ) f.write(lowercase__ , arcname=os.path.basename(csva_path.replace(""".csv""" , """.CSV""" ) ) ) return path @pytest.fixture(scope="""session""" ) def snake_case_ ( lowercase__ : List[Any] , lowercase__ : List[str] , lowercase__ : int ): '''simple docstring''' _lowerCAmelCase =tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.csv.zip""" with zipfile.ZipFile(lowercase__ , """w""" ) as f: f.write(lowercase__ , arcname=os.path.join("""main_dir""" , os.path.basename(lowercase__ ) ) ) f.write(lowercase__ , arcname=os.path.join("""main_dir""" , os.path.basename(lowercase__ ) ) ) return path @pytest.fixture(scope="""session""" ) def snake_case_ ( lowercase__ : Tuple ): '''simple docstring''' _lowerCAmelCase =str(tmp_path_factory.mktemp("""data""" ) / """dataset.parquet""" ) _lowerCAmelCase =pa.schema( { """col_1""": pa.string(), """col_2""": pa.intaa(), """col_3""": pa.floataa(), } ) with open(lowercase__ , """wb""" ) as f: _lowerCAmelCase =pq.ParquetWriter(lowercase__ , schema=lowercase__ ) _lowerCAmelCase =pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(lowercase__ ) )] for k in DATA[0]} , schema=lowercase__ ) writer.write_table(lowercase__ ) writer.close() return path @pytest.fixture(scope="""session""" ) def snake_case_ ( lowercase__ : Optional[int] ): '''simple docstring''' _lowerCAmelCase =str(tmp_path_factory.mktemp("""data""" ) / """dataset.json""" ) _lowerCAmelCase ={"""data""": DATA} with open(lowercase__ , """w""" ) as f: json.dump(lowercase__ , lowercase__ ) return path @pytest.fixture(scope="""session""" ) def snake_case_ ( lowercase__ : List[str] ): '''simple docstring''' _lowerCAmelCase =str(tmp_path_factory.mktemp("""data""" ) / """dataset.json""" ) _lowerCAmelCase ={"""data""": DATA_DICT_OF_LISTS} with open(lowercase__ , """w""" ) as f: json.dump(lowercase__ , lowercase__ ) return path @pytest.fixture(scope="""session""" ) def snake_case_ ( lowercase__ : int ): '''simple docstring''' _lowerCAmelCase =str(tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl""" ) with open(lowercase__ , """w""" ) as f: for item in DATA: f.write(json.dumps(lowercase__ ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def snake_case_ ( lowercase__ : Any ): '''simple docstring''' _lowerCAmelCase =str(tmp_path_factory.mktemp("""data""" ) / """dataset2.jsonl""" ) with open(lowercase__ , """w""" ) as f: for item in DATA: f.write(json.dumps(lowercase__ ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def snake_case_ ( lowercase__ : Optional[int] ): '''simple docstring''' _lowerCAmelCase =str(tmp_path_factory.mktemp("""data""" ) / """dataset_312.jsonl""" ) with open(lowercase__ , """w""" ) as f: for item in DATA_312: f.write(json.dumps(lowercase__ ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def snake_case_ ( lowercase__ : int ): '''simple docstring''' _lowerCAmelCase =str(tmp_path_factory.mktemp("""data""" ) / """dataset-str.jsonl""" ) with open(lowercase__ , """w""" ) as f: for item in DATA_STR: f.write(json.dumps(lowercase__ ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def snake_case_ ( lowercase__ : int , lowercase__ : Any ): '''simple docstring''' import gzip _lowerCAmelCase =str(tmp_path_factory.mktemp("""data""" ) / """dataset.txt.gz""" ) with open(lowercase__ , """rb""" ) as orig_file: with gzip.open(lowercase__ , """wb""" ) as zipped_file: zipped_file.writelines(lowercase__ ) return path @pytest.fixture(scope="""session""" ) def snake_case_ ( lowercase__ : Optional[int] , lowercase__ : Optional[int] ): '''simple docstring''' import gzip _lowerCAmelCase =str(tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.gz""" ) with open(lowercase__ , """rb""" ) as orig_file: with gzip.open(lowercase__ , """wb""" ) as zipped_file: zipped_file.writelines(lowercase__ ) return path @pytest.fixture(scope="""session""" ) def snake_case_ ( lowercase__ : Tuple , lowercase__ : Union[str, Any] , lowercase__ : Optional[Any] ): '''simple docstring''' _lowerCAmelCase =tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.zip""" with zipfile.ZipFile(lowercase__ , """w""" ) as f: f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) return path @pytest.fixture(scope="""session""" ) def snake_case_ ( lowercase__ : str , lowercase__ : Union[str, Any] , lowercase__ : Union[str, Any] , lowercase__ : Union[str, Any] ): '''simple docstring''' _lowerCAmelCase =tmp_path_factory.mktemp("""data""" ) / """dataset_nested.jsonl.zip""" with zipfile.ZipFile(lowercase__ , """w""" ) as f: f.write(lowercase__ , arcname=os.path.join("""nested""" , os.path.basename(lowercase__ ) ) ) return path @pytest.fixture(scope="""session""" ) def snake_case_ ( lowercase__ : List[Any] , lowercase__ : List[Any] , lowercase__ : List[Any] ): '''simple docstring''' _lowerCAmelCase =tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.jsonl.zip""" with zipfile.ZipFile(lowercase__ , """w""" ) as f: f.write(lowercase__ , arcname=os.path.join("""main_dir""" , os.path.basename(lowercase__ ) ) ) f.write(lowercase__ , arcname=os.path.join("""main_dir""" , os.path.basename(lowercase__ ) ) ) return path @pytest.fixture(scope="""session""" ) def snake_case_ ( lowercase__ : Union[str, Any] , lowercase__ : List[str] , lowercase__ : str ): '''simple docstring''' _lowerCAmelCase =tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.tar""" with tarfile.TarFile(lowercase__ , """w""" ) as f: f.add(lowercase__ , arcname=os.path.basename(lowercase__ ) ) f.add(lowercase__ , arcname=os.path.basename(lowercase__ ) ) return path @pytest.fixture(scope="""session""" ) def snake_case_ ( lowercase__ : Optional[Any] , lowercase__ : Optional[int] , lowercase__ : List[Any] , lowercase__ : Union[str, Any] ): '''simple docstring''' _lowerCAmelCase =tmp_path_factory.mktemp("""data""" ) / """dataset_nested.jsonl.tar""" with tarfile.TarFile(lowercase__ , """w""" ) as f: f.add(lowercase__ , arcname=os.path.join("""nested""" , os.path.basename(lowercase__ ) ) ) return path @pytest.fixture(scope="""session""" ) def snake_case_ ( lowercase__ : str ): '''simple docstring''' _lowerCAmelCase =["""0""", """1""", """2""", """3"""] _lowerCAmelCase =str(tmp_path_factory.mktemp("""data""" ) / """dataset.txt""" ) with open(lowercase__ , """w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def snake_case_ ( lowercase__ : Tuple ): '''simple docstring''' _lowerCAmelCase =["""0""", """1""", """2""", """3"""] _lowerCAmelCase =str(tmp_path_factory.mktemp("""data""" ) / """dataset2.txt""" ) with open(lowercase__ , """w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def snake_case_ ( lowercase__ : str ): '''simple docstring''' _lowerCAmelCase =["""0""", """1""", """2""", """3"""] _lowerCAmelCase =tmp_path_factory.mktemp("""data""" ) / """dataset.abc""" with open(lowercase__ , """w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def snake_case_ ( lowercase__ : Optional[int] , lowercase__ : Union[str, Any] , lowercase__ : Optional[Any] ): '''simple docstring''' _lowerCAmelCase =tmp_path_factory.mktemp("""data""" ) / """dataset.text.zip""" with zipfile.ZipFile(lowercase__ , """w""" ) as f: f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) return path @pytest.fixture(scope="""session""" ) def snake_case_ ( lowercase__ : Tuple , lowercase__ : str , lowercase__ : int ): '''simple docstring''' _lowerCAmelCase =tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.text.zip""" with zipfile.ZipFile(lowercase__ , """w""" ) as f: f.write(lowercase__ , arcname=os.path.join("""main_dir""" , os.path.basename(lowercase__ ) ) ) f.write(lowercase__ , arcname=os.path.join("""main_dir""" , os.path.basename(lowercase__ ) ) ) return path @pytest.fixture(scope="""session""" ) def snake_case_ ( lowercase__ : Optional[int] , lowercase__ : Tuple , lowercase__ : List[str] ): '''simple docstring''' _lowerCAmelCase =tmp_path_factory.mktemp("""data""" ) / """dataset.ext.zip""" with zipfile.ZipFile(lowercase__ , """w""" ) as f: f.write(lowercase__ , arcname=os.path.basename("""unsupported.ext""" ) ) f.write(lowercase__ , arcname=os.path.basename("""unsupported_2.ext""" ) ) return path @pytest.fixture(scope="""session""" ) def snake_case_ ( lowercase__ : Union[str, Any] ): '''simple docstring''' _lowerCAmelCase ="""\n""".join(["""First""", """Second\u2029with Unicode new line""", """Third"""] ) _lowerCAmelCase =str(tmp_path_factory.mktemp("""data""" ) / """dataset_with_unicode_new_lines.txt""" ) with open(lowercase__ , """w""" , encoding="""utf-8""" ) as f: f.write(lowercase__ ) return path @pytest.fixture(scope="""session""" ) def snake_case_ ( ): '''simple docstring''' return os.path.join("""tests""" , """features""" , """data""" , """test_image_rgb.jpg""" ) @pytest.fixture(scope="""session""" ) def snake_case_ ( ): '''simple docstring''' return os.path.join("""tests""" , """features""" , """data""" , """test_audio_44100.wav""" ) @pytest.fixture(scope="""session""" ) def snake_case_ ( lowercase__ : Optional[Any] , lowercase__ : Union[str, Any] ): '''simple docstring''' _lowerCAmelCase =tmp_path_factory.mktemp("""data""" ) / """dataset.img.zip""" with zipfile.ZipFile(lowercase__ , """w""" ) as f: f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) f.write(lowercase__ , arcname=os.path.basename(lowercase__ ).replace(""".jpg""" , """2.jpg""" ) ) return path @pytest.fixture(scope="""session""" ) def snake_case_ ( lowercase__ : Tuple ): '''simple docstring''' _lowerCAmelCase =tmp_path_factory.mktemp("""data_dir""" ) (data_dir / "subdir").mkdir() with open(data_dir / """subdir""" / """train.txt""" , """w""" ) as f: f.write("""foo\n""" * 10 ) with open(data_dir / """subdir""" / """test.txt""" , """w""" ) as f: f.write("""bar\n""" * 10 ) # hidden file with open(data_dir / """subdir""" / """.test.txt""" , """w""" ) as f: f.write("""bar\n""" * 10 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / """.subdir""" / """train.txt""" , """w""" ) as f: f.write("""foo\n""" * 10 ) with open(data_dir / """.subdir""" / """test.txt""" , """w""" ) as f: f.write("""bar\n""" * 10 ) return data_dir
702
def snake_case_ ( lowercase__ : list[int] ): '''simple docstring''' _lowerCAmelCase =[] if len(lowercase__ ) == 1: return [nums.copy()] for _ in range(len(lowercase__ ) ): _lowerCAmelCase =nums.pop(0 ) _lowerCAmelCase =permute(lowercase__ ) for perm in permutations: perm.append(lowercase__ ) result.extend(lowercase__ ) nums.append(lowercase__ ) return result def snake_case_ ( lowercase__ : Optional[Any] ): '''simple docstring''' def backtrack(lowercase__ : List[Any] ): if start == len(lowercase__ ) - 1: output.append(nums[:] ) else: for i in range(lowercase__ , len(lowercase__ ) ): _lowerCAmelCase , _lowerCAmelCase =nums[i], nums[start] backtrack(start + 1 ) _lowerCAmelCase , _lowerCAmelCase =nums[i], nums[start] # backtrack _lowerCAmelCase =[] backtrack(0 ) return output if __name__ == "__main__": import doctest # use res to print the data in permute2 function __SCREAMING_SNAKE_CASE : Any = permutea([1, 2, 3]) print(res) doctest.testmod()
149
0
'''simple docstring''' import json import os from typing import Optional import numpy as np from ...feature_extraction_utils import BatchFeature from ...processing_utils import ProcessorMixin from ...utils import logging from ...utils.hub import get_file_from_repo from ..auto import AutoTokenizer __SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__) class lowerCamelCase_ (snake_case__ ): '''simple docstring''' __UpperCamelCase: List[str] = "AutoTokenizer" __UpperCamelCase: Optional[Any] = ["tokenizer"] __UpperCamelCase: Union[str, Any] = { "semantic_prompt": 1, "coarse_prompt": 2, "fine_prompt": 2, } def __init__( self : List[str] , A : List[str] , A : int=None ): super().__init__(A ) _UpperCAmelCase : Optional[Any] = speaker_embeddings @classmethod def _A ( cls : Optional[Any] , A : Tuple , A : int="speaker_embeddings_path.json" , **A : Tuple ): if speaker_embeddings_dict_path is not None: _UpperCAmelCase : int = get_file_from_repo( A , A , subfolder=kwargs.pop("subfolder" , A ) , cache_dir=kwargs.pop("cache_dir" , A ) , force_download=kwargs.pop("force_download" , A ) , proxies=kwargs.pop("proxies" , A ) , resume_download=kwargs.pop("resume_download" , A ) , local_files_only=kwargs.pop("local_files_only" , A ) , use_auth_token=kwargs.pop("use_auth_token" , A ) , revision=kwargs.pop("revision" , A ) , ) if speaker_embeddings_path is None: logger.warning( F"""`{os.path.join(A , A )}` does not exists , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`.""" ) _UpperCAmelCase : List[str] = None else: with open(A ) as speaker_embeddings_json: _UpperCAmelCase : List[str] = json.load(A ) else: _UpperCAmelCase : List[str] = None _UpperCAmelCase : List[str] = AutoTokenizer.from_pretrained(A , **A ) return cls(tokenizer=A , speaker_embeddings=A ) def _A ( self : Dict , A : int , A : str="speaker_embeddings_path.json" , A : Any="speaker_embeddings" , A : bool = False , **A : Tuple , ): if self.speaker_embeddings is not None: os.makedirs(os.path.join(A , A , "v2" ) , exist_ok=A ) _UpperCAmelCase : List[str] = {} _UpperCAmelCase : Optional[int] = save_directory for prompt_key in self.speaker_embeddings: if prompt_key != "repo_or_path": _UpperCAmelCase : Optional[Any] = self._load_voice_preset(A ) _UpperCAmelCase : List[str] = {} for key in self.speaker_embeddings[prompt_key]: np.save( os.path.join( embeddings_dict["repo_or_path"] , A , F"""{prompt_key}_{key}""" ) , voice_preset[key] , allow_pickle=A , ) _UpperCAmelCase : Optional[int] = os.path.join(A , F"""{prompt_key}_{key}.npy""" ) _UpperCAmelCase : str = tmp_dict with open(os.path.join(A , A ) , "w" ) as fp: json.dump(A , A ) super().save_pretrained(A , A , **A ) def _A ( self : Union[str, Any] , A : str = None , **A : Tuple ): _UpperCAmelCase : int = self.speaker_embeddings[voice_preset] _UpperCAmelCase : List[str] = {} for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset_paths: raise ValueError( F"""Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}].""" ) _UpperCAmelCase : int = get_file_from_repo( self.speaker_embeddings.get("repo_or_path" , "/" ) , voice_preset_paths[key] , subfolder=kwargs.pop("subfolder" , A ) , cache_dir=kwargs.pop("cache_dir" , A ) , force_download=kwargs.pop("force_download" , A ) , proxies=kwargs.pop("proxies" , A ) , resume_download=kwargs.pop("resume_download" , A ) , local_files_only=kwargs.pop("local_files_only" , A ) , use_auth_token=kwargs.pop("use_auth_token" , A ) , revision=kwargs.pop("revision" , A ) , ) if path is None: raise ValueError( F"""`{os.path.join(self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] )}` does not exists , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset} embeddings.""" ) _UpperCAmelCase : List[str] = np.load(A ) return voice_preset_dict def _A ( self : Optional[int] , A : Optional[dict] = None ): for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset: raise ValueError(F"""Voice preset unrecognized, missing {key} as a key.""" ) if not isinstance(voice_preset[key] , np.ndarray ): raise ValueError(F"""{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.""" ) if len(voice_preset[key].shape ) != self.preset_shape[key]: raise ValueError(F"""{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.""" ) def __call__( self : Optional[Any] , A : Optional[Any]=None , A : Optional[Any]=None , A : List[Any]="pt" , A : Any=256 , A : Union[str, Any]=False , A : Tuple=True , A : int=False , **A : List[str] , ): if voice_preset is not None and not isinstance(A , A ): if ( isinstance(A , A ) and self.speaker_embeddings is not None and voice_preset in self.speaker_embeddings ): _UpperCAmelCase : str = self._load_voice_preset(A ) else: if isinstance(A , A ) and not voice_preset.endswith(".npz" ): _UpperCAmelCase : str = voice_preset + ".npz" _UpperCAmelCase : Optional[Any] = np.load(A ) if voice_preset is not None: self._validate_voice_preset_dict(A , **A ) _UpperCAmelCase : Any = BatchFeature(data=A , tensor_type=A ) _UpperCAmelCase : List[str] = self.tokenizer( A , return_tensors=A , padding="max_length" , max_length=A , return_attention_mask=A , return_token_type_ids=A , add_special_tokens=A , **A , ) if voice_preset is not None: _UpperCAmelCase : Optional[int] = voice_preset return encoded_text
244
'''simple docstring''' from ..utils import DummyObject, requires_backends class lowerCamelCase_ (metaclass=snake_case__ ): '''simple docstring''' __UpperCamelCase: Any = ["torch"] def __init__( self : Tuple , *A : Any , **A : Any ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : Tuple , *A : List[Any] , **A : str ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : Union[str, Any] , *A : Optional[Any] , **A : Optional[Any] ): requires_backends(cls , ["torch"] ) class lowerCamelCase_ (metaclass=snake_case__ ): '''simple docstring''' __UpperCamelCase: List[Any] = ["torch"] def __init__( self : List[str] , *A : List[str] , **A : Any ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : Tuple , *A : List[str] , **A : Dict ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : int , *A : Optional[int] , **A : Dict ): requires_backends(cls , ["torch"] ) class lowerCamelCase_ (metaclass=snake_case__ ): '''simple docstring''' __UpperCamelCase: Any = ["torch"] def __init__( self : List[str] , *A : int , **A : Dict ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : int , *A : Optional[Any] , **A : Union[str, Any] ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : Optional[int] , *A : List[str] , **A : str ): requires_backends(cls , ["torch"] ) class lowerCamelCase_ (metaclass=snake_case__ ): '''simple docstring''' __UpperCamelCase: Union[str, Any] = ["torch"] def __init__( self : Optional[Any] , *A : Optional[Any] , **A : Union[str, Any] ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : Optional[Any] , *A : Optional[int] , **A : List[Any] ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : List[str] , *A : Optional[int] , **A : Dict ): requires_backends(cls , ["torch"] ) class lowerCamelCase_ (metaclass=snake_case__ ): '''simple docstring''' __UpperCamelCase: List[str] = ["torch"] def __init__( self : Optional[Any] , *A : int , **A : Union[str, Any] ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : List[str] , *A : Optional[Any] , **A : Any ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : List[Any] , *A : Optional[Any] , **A : Optional[int] ): requires_backends(cls , ["torch"] ) class lowerCamelCase_ (metaclass=snake_case__ ): '''simple docstring''' __UpperCamelCase: List[str] = ["torch"] def __init__( self : int , *A : Optional[Any] , **A : Dict ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : List[Any] , *A : Tuple , **A : List[str] ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : int , *A : Tuple , **A : int ): requires_backends(cls , ["torch"] ) class lowerCamelCase_ (metaclass=snake_case__ ): '''simple docstring''' __UpperCamelCase: Dict = ["torch"] def __init__( self : Tuple , *A : str , **A : Union[str, Any] ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : List[str] , *A : List[str] , **A : List[Any] ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : List[str] , *A : Any , **A : List[str] ): requires_backends(cls , ["torch"] ) class lowerCamelCase_ (metaclass=snake_case__ ): '''simple docstring''' __UpperCamelCase: str = ["torch"] def __init__( self : Optional[int] , *A : Any , **A : List[Any] ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : str , *A : List[str] , **A : Any ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : List[str] , *A : List[str] , **A : List[Any] ): requires_backends(cls , ["torch"] ) class lowerCamelCase_ (metaclass=snake_case__ ): '''simple docstring''' __UpperCamelCase: Optional[int] = ["torch"] def __init__( self : Dict , *A : Any , **A : Dict ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : str , *A : List[str] , **A : Tuple ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : int , *A : Optional[int] , **A : Any ): requires_backends(cls , ["torch"] ) class lowerCamelCase_ (metaclass=snake_case__ ): '''simple docstring''' __UpperCamelCase: Optional[Any] = ["torch"] def __init__( self : int , *A : int , **A : Any ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : List[str] , *A : Optional[int] , **A : Union[str, Any] ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : Tuple , *A : Optional[Any] , **A : List[Any] ): requires_backends(cls , ["torch"] ) class lowerCamelCase_ (metaclass=snake_case__ ): '''simple docstring''' __UpperCamelCase: Dict = ["torch"] def __init__( self : Any , *A : Union[str, Any] , **A : Tuple ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : str , *A : List[Any] , **A : str ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : Dict , *A : int , **A : Any ): requires_backends(cls , ["torch"] ) def UpperCamelCase_ ( *_UpperCAmelCase : Tuple , **_UpperCAmelCase : str ) -> Optional[Any]: """simple docstring""" requires_backends(_UpperCAmelCase , ["torch"] ) def UpperCamelCase_ ( *_UpperCAmelCase : List[str] , **_UpperCAmelCase : Optional[int] ) -> int: """simple docstring""" requires_backends(_UpperCAmelCase , ["torch"] ) def UpperCamelCase_ ( *_UpperCAmelCase : Tuple , **_UpperCAmelCase : List[str] ) -> List[Any]: """simple docstring""" requires_backends(_UpperCAmelCase , ["torch"] ) def UpperCamelCase_ ( *_UpperCAmelCase : List[str] , **_UpperCAmelCase : Any ) -> Optional[int]: """simple docstring""" requires_backends(_UpperCAmelCase , ["torch"] ) def UpperCamelCase_ ( *_UpperCAmelCase : Tuple , **_UpperCAmelCase : Tuple ) -> int: """simple docstring""" requires_backends(_UpperCAmelCase , ["torch"] ) def UpperCamelCase_ ( *_UpperCAmelCase : int , **_UpperCAmelCase : Any ) -> Optional[int]: """simple docstring""" requires_backends(_UpperCAmelCase , ["torch"] ) def UpperCamelCase_ ( *_UpperCAmelCase : Union[str, Any] , **_UpperCAmelCase : List[Any] ) -> Union[str, Any]: """simple docstring""" requires_backends(_UpperCAmelCase , ["torch"] ) class lowerCamelCase_ (metaclass=snake_case__ ): '''simple docstring''' __UpperCamelCase: Union[str, Any] = ["torch"] def __init__( self : Optional[int] , *A : Tuple , **A : int ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : Optional[Any] , *A : List[str] , **A : Union[str, Any] ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : int , *A : Optional[int] , **A : Optional[Any] ): requires_backends(cls , ["torch"] ) class lowerCamelCase_ (metaclass=snake_case__ ): '''simple docstring''' __UpperCamelCase: Optional[int] = ["torch"] def __init__( self : Dict , *A : List[str] , **A : str ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : Optional[int] , *A : Optional[Any] , **A : Optional[Any] ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : Optional[Any] , *A : Any , **A : Dict ): requires_backends(cls , ["torch"] ) class lowerCamelCase_ (metaclass=snake_case__ ): '''simple docstring''' __UpperCamelCase: List[str] = ["torch"] def __init__( self : List[Any] , *A : int , **A : List[str] ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : str , *A : List[str] , **A : List[Any] ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : Union[str, Any] , *A : Optional[int] , **A : Optional[Any] ): requires_backends(cls , ["torch"] ) class lowerCamelCase_ (metaclass=snake_case__ ): '''simple docstring''' __UpperCamelCase: Union[str, Any] = ["torch"] def __init__( self : Optional[int] , *A : List[Any] , **A : str ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : Dict , *A : str , **A : Any ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : Dict , *A : Optional[int] , **A : Optional[int] ): requires_backends(cls , ["torch"] ) class lowerCamelCase_ (metaclass=snake_case__ ): '''simple docstring''' __UpperCamelCase: Any = ["torch"] def __init__( self : List[str] , *A : List[Any] , **A : List[Any] ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : List[str] , *A : str , **A : Tuple ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : Optional[Any] , *A : Tuple , **A : List[Any] ): requires_backends(cls , ["torch"] ) class lowerCamelCase_ (metaclass=snake_case__ ): '''simple docstring''' __UpperCamelCase: Optional[Any] = ["torch"] def __init__( self : Dict , *A : Optional[int] , **A : List[Any] ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : Optional[int] , *A : Any , **A : List[str] ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : Optional[Any] , *A : Optional[int] , **A : List[str] ): requires_backends(cls , ["torch"] ) class lowerCamelCase_ (metaclass=snake_case__ ): '''simple docstring''' __UpperCamelCase: int = ["torch"] def __init__( self : Union[str, Any] , *A : int , **A : Optional[Any] ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : Dict , *A : List[str] , **A : Tuple ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : str , *A : List[Any] , **A : List[str] ): requires_backends(cls , ["torch"] ) class lowerCamelCase_ (metaclass=snake_case__ ): '''simple docstring''' __UpperCamelCase: Union[str, Any] = ["torch"] def __init__( self : Union[str, Any] , *A : List[str] , **A : Any ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : Tuple , *A : Optional[Any] , **A : Dict ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : Tuple , *A : List[Any] , **A : Dict ): requires_backends(cls , ["torch"] ) class lowerCamelCase_ (metaclass=snake_case__ ): '''simple docstring''' __UpperCamelCase: List[str] = ["torch"] def __init__( self : List[str] , *A : Union[str, Any] , **A : Optional[int] ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : Optional[Any] , *A : Tuple , **A : str ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : int , *A : Tuple , **A : List[str] ): requires_backends(cls , ["torch"] ) class lowerCamelCase_ (metaclass=snake_case__ ): '''simple docstring''' __UpperCamelCase: Dict = ["torch"] def __init__( self : Any , *A : Union[str, Any] , **A : Dict ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : List[Any] , *A : Dict , **A : int ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : Union[str, Any] , *A : Any , **A : Optional[int] ): requires_backends(cls , ["torch"] ) class lowerCamelCase_ (metaclass=snake_case__ ): '''simple docstring''' __UpperCamelCase: str = ["torch"] def __init__( self : Optional[Any] , *A : Union[str, Any] , **A : Optional[int] ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : List[str] , *A : int , **A : Optional[Any] ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : Optional[int] , *A : str , **A : Union[str, Any] ): requires_backends(cls , ["torch"] ) class lowerCamelCase_ (metaclass=snake_case__ ): '''simple docstring''' __UpperCamelCase: List[str] = ["torch"] def __init__( self : Optional[Any] , *A : Tuple , **A : Dict ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : Dict , *A : Optional[Any] , **A : int ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : str , *A : List[Any] , **A : str ): requires_backends(cls , ["torch"] ) class lowerCamelCase_ (metaclass=snake_case__ ): '''simple docstring''' __UpperCamelCase: str = ["torch"] def __init__( self : str , *A : Dict , **A : Any ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : Tuple , *A : List[str] , **A : Dict ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : Union[str, Any] , *A : Any , **A : Union[str, Any] ): requires_backends(cls , ["torch"] ) class lowerCamelCase_ (metaclass=snake_case__ ): '''simple docstring''' __UpperCamelCase: Optional[Any] = ["torch"] def __init__( self : Any , *A : List[str] , **A : Optional[int] ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : Union[str, Any] , *A : Dict , **A : Union[str, Any] ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : List[Any] , *A : Optional[Any] , **A : Any ): requires_backends(cls , ["torch"] ) class lowerCamelCase_ (metaclass=snake_case__ ): '''simple docstring''' __UpperCamelCase: str = ["torch"] def __init__( self : Any , *A : List[str] , **A : Dict ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : Dict , *A : Dict , **A : int ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : Any , *A : Any , **A : Dict ): requires_backends(cls , ["torch"] ) class lowerCamelCase_ (metaclass=snake_case__ ): '''simple docstring''' __UpperCamelCase: str = ["torch"] def __init__( self : Union[str, Any] , *A : List[Any] , **A : str ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : List[str] , *A : str , **A : str ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : Dict , *A : Dict , **A : Optional[Any] ): requires_backends(cls , ["torch"] ) class lowerCamelCase_ (metaclass=snake_case__ ): '''simple docstring''' __UpperCamelCase: Dict = ["torch"] def __init__( self : Optional[int] , *A : Dict , **A : int ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : Optional[Any] , *A : Dict , **A : Optional[Any] ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : Optional[Any] , *A : List[str] , **A : List[Any] ): requires_backends(cls , ["torch"] ) class lowerCamelCase_ (metaclass=snake_case__ ): '''simple docstring''' __UpperCamelCase: Any = ["torch"] def __init__( self : int , *A : int , **A : str ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : Dict , *A : Tuple , **A : int ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : List[str] , *A : List[Any] , **A : Optional[Any] ): requires_backends(cls , ["torch"] ) class lowerCamelCase_ (metaclass=snake_case__ ): '''simple docstring''' __UpperCamelCase: Union[str, Any] = ["torch"] def __init__( self : Dict , *A : List[Any] , **A : str ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : str , *A : Tuple , **A : Union[str, Any] ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : Tuple , *A : str , **A : List[str] ): requires_backends(cls , ["torch"] ) class lowerCamelCase_ (metaclass=snake_case__ ): '''simple docstring''' __UpperCamelCase: int = ["torch"] def __init__( self : Tuple , *A : List[Any] , **A : int ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : Optional[int] , *A : str , **A : Tuple ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : Optional[int] , *A : List[Any] , **A : Union[str, Any] ): requires_backends(cls , ["torch"] ) class lowerCamelCase_ (metaclass=snake_case__ ): '''simple docstring''' __UpperCamelCase: List[Any] = ["torch"] def __init__( self : Union[str, Any] , *A : Any , **A : int ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : Optional[Any] , *A : Optional[Any] , **A : Optional[Any] ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : List[str] , *A : int , **A : Optional[int] ): requires_backends(cls , ["torch"] ) class lowerCamelCase_ (metaclass=snake_case__ ): '''simple docstring''' __UpperCamelCase: Optional[int] = ["torch"] def __init__( self : Tuple , *A : List[Any] , **A : Tuple ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : Any , *A : Any , **A : List[Any] ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : List[str] , *A : int , **A : str ): requires_backends(cls , ["torch"] ) class lowerCamelCase_ (metaclass=snake_case__ ): '''simple docstring''' __UpperCamelCase: List[Any] = ["torch"] def __init__( self : int , *A : List[str] , **A : Optional[Any] ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : Optional[int] , *A : Optional[int] , **A : Tuple ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : Optional[Any] , *A : Optional[Any] , **A : Dict ): requires_backends(cls , ["torch"] ) class lowerCamelCase_ (metaclass=snake_case__ ): '''simple docstring''' __UpperCamelCase: Dict = ["torch"] def __init__( self : Any , *A : Optional[Any] , **A : Union[str, Any] ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : Optional[Any] , *A : int , **A : Optional[Any] ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : str , *A : Union[str, Any] , **A : int ): requires_backends(cls , ["torch"] ) class lowerCamelCase_ (metaclass=snake_case__ ): '''simple docstring''' __UpperCamelCase: List[str] = ["torch"] def __init__( self : Dict , *A : Any , **A : Tuple ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : int , *A : Optional[int] , **A : Dict ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : Dict , *A : Optional[int] , **A : Optional[int] ): requires_backends(cls , ["torch"] ) class lowerCamelCase_ (metaclass=snake_case__ ): '''simple docstring''' __UpperCamelCase: Optional[int] = ["torch"] def __init__( self : Union[str, Any] , *A : Dict , **A : List[str] ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : Union[str, Any] , *A : List[Any] , **A : List[Any] ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : Tuple , *A : int , **A : str ): requires_backends(cls , ["torch"] ) class lowerCamelCase_ (metaclass=snake_case__ ): '''simple docstring''' __UpperCamelCase: List[Any] = ["torch"] def __init__( self : Optional[Any] , *A : Optional[int] , **A : int ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : str , *A : Tuple , **A : Optional[Any] ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : Tuple , *A : Tuple , **A : List[str] ): requires_backends(cls , ["torch"] ) class lowerCamelCase_ (metaclass=snake_case__ ): '''simple docstring''' __UpperCamelCase: str = ["torch"] def __init__( self : Tuple , *A : Any , **A : Dict ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : Union[str, Any] , *A : Dict , **A : List[Any] ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : Any , *A : Tuple , **A : Union[str, Any] ): requires_backends(cls , ["torch"] ) class lowerCamelCase_ (metaclass=snake_case__ ): '''simple docstring''' __UpperCamelCase: List[str] = ["torch"] def __init__( self : List[str] , *A : int , **A : str ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : int , *A : Dict , **A : Optional[Any] ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : Optional[int] , *A : List[str] , **A : Tuple ): requires_backends(cls , ["torch"] ) class lowerCamelCase_ (metaclass=snake_case__ ): '''simple docstring''' __UpperCamelCase: Optional[int] = ["torch"] def __init__( self : Optional[Any] , *A : Dict , **A : int ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : List[Any] , *A : Optional[Any] , **A : Dict ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : Optional[int] , *A : Any , **A : Union[str, Any] ): requires_backends(cls , ["torch"] ) class lowerCamelCase_ (metaclass=snake_case__ ): '''simple docstring''' __UpperCamelCase: Tuple = ["torch"] def __init__( self : Any , *A : Any , **A : int ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : str , *A : Optional[int] , **A : List[str] ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : List[str] , *A : Tuple , **A : Optional[int] ): requires_backends(cls , ["torch"] ) class lowerCamelCase_ (metaclass=snake_case__ ): '''simple docstring''' __UpperCamelCase: List[Any] = ["torch"] def __init__( self : int , *A : str , **A : Union[str, Any] ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : List[str] , *A : Union[str, Any] , **A : Any ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : int , *A : Optional[Any] , **A : List[str] ): requires_backends(cls , ["torch"] ) class lowerCamelCase_ (metaclass=snake_case__ ): '''simple docstring''' __UpperCamelCase: int = ["torch"] def __init__( self : List[str] , *A : Any , **A : Union[str, Any] ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : int , *A : List[Any] , **A : Tuple ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : str , *A : Union[str, Any] , **A : Tuple ): requires_backends(cls , ["torch"] ) class lowerCamelCase_ (metaclass=snake_case__ ): '''simple docstring''' __UpperCamelCase: List[Any] = ["torch"] def __init__( self : str , *A : Any , **A : int ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : Optional[int] , *A : Tuple , **A : Tuple ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : Union[str, Any] , *A : Optional[int] , **A : List[Any] ): requires_backends(cls , ["torch"] ) class lowerCamelCase_ (metaclass=snake_case__ ): '''simple docstring''' __UpperCamelCase: Dict = ["torch"] def __init__( self : Any , *A : Optional[int] , **A : Union[str, Any] ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : Dict , *A : int , **A : int ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : Dict , *A : str , **A : Union[str, Any] ): requires_backends(cls , ["torch"] ) class lowerCamelCase_ (metaclass=snake_case__ ): '''simple docstring''' __UpperCamelCase: Dict = ["torch"] def __init__( self : Optional[Any] , *A : Optional[Any] , **A : str ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : Optional[Any] , *A : List[str] , **A : int ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : Optional[int] , *A : List[str] , **A : Tuple ): requires_backends(cls , ["torch"] ) class lowerCamelCase_ (metaclass=snake_case__ ): '''simple docstring''' __UpperCamelCase: Any = ["torch"] def __init__( self : List[str] , *A : Optional[Any] , **A : List[Any] ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : Optional[Any] , *A : str , **A : Optional[int] ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : int , *A : List[Any] , **A : Tuple ): requires_backends(cls , ["torch"] ) class lowerCamelCase_ (metaclass=snake_case__ ): '''simple docstring''' __UpperCamelCase: Tuple = ["torch"] def __init__( self : Optional[int] , *A : Union[str, Any] , **A : Tuple ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : Tuple , *A : Any , **A : Dict ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : Dict , *A : List[Any] , **A : Optional[int] ): requires_backends(cls , ["torch"] ) class lowerCamelCase_ (metaclass=snake_case__ ): '''simple docstring''' __UpperCamelCase: str = ["torch"] def __init__( self : Union[str, Any] , *A : List[str] , **A : Optional[int] ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : Dict , *A : List[Any] , **A : Any ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : int , *A : Optional[int] , **A : Optional[Any] ): requires_backends(cls , ["torch"] )
244
1
import os import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers.models.realm.configuration_realm import RealmConfig from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer class lowerCAmelCase__ ( __magic_name__ ): '''simple docstring''' def __UpperCamelCase ( self ): '''simple docstring''' __A =tempfile.mkdtemp() __A =5 # Realm tok __A =[ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''test''', '''question''', '''this''', '''is''', '''the''', '''first''', '''second''', '''third''', '''fourth''', '''fifth''', '''record''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] __A =os.path.join(self.tmpdirname , '''realm_tokenizer''' ) os.makedirs(lowercase__ , exist_ok=lowercase__ ) __A =os.path.join(lowercase__ , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) __A =os.path.join(self.tmpdirname , '''realm_block_records''' ) os.makedirs(lowercase__ , exist_ok=lowercase__ ) def __UpperCamelCase ( self ): '''simple docstring''' return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''realm_tokenizer''' ) ) def __UpperCamelCase ( self ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def __UpperCamelCase ( self ): '''simple docstring''' __A =RealmConfig(num_block_records=self.num_block_records ) return config def __UpperCamelCase ( self ): '''simple docstring''' __A =Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''question''': ['''foo''', '''bar'''], '''answers''': [['''Foo''', '''Bar'''], ['''Bar''']], } ) return dataset def __UpperCamelCase ( self ): '''simple docstring''' __A =np.array( [ b'''This is the first record''', b'''This is the second record''', b'''This is the third record''', b'''This is the fourth record''', b'''This is the fifth record''', b'''This is a longer longer longer record''', ] , dtype=lowercase__ , ) return block_records def __UpperCamelCase ( self ): '''simple docstring''' __A =RealmRetriever( block_records=self.get_dummy_block_records() , tokenizer=self.get_tokenizer() , ) return retriever def __UpperCamelCase ( self ): '''simple docstring''' __A =self.get_config() __A =self.get_dummy_retriever() __A =retriever.tokenizer __A =np.array([0, 3] , dtype='''long''' ) __A =tokenizer(['''Test question'''] ).input_ids __A =tokenizer( ['''the fourth'''] , add_special_tokens=lowercase__ , return_token_type_ids=lowercase__ , return_attention_mask=lowercase__ , ).input_ids __A =config.reader_seq_len __A , __A , __A , __A =retriever( lowercase__ , lowercase__ , answer_ids=lowercase__ , max_length=lowercase__ , return_tensors='''np''' ) self.assertEqual(len(lowercase__ ) , 2 ) self.assertEqual(len(lowercase__ ) , 2 ) self.assertEqual(len(lowercase__ ) , 2 ) self.assertEqual(concat_inputs.input_ids.shape , (2, 1_0) ) self.assertEqual(concat_inputs.attention_mask.shape , (2, 1_0) ) self.assertEqual(concat_inputs.token_type_ids.shape , (2, 1_0) ) self.assertEqual(concat_inputs.special_tokens_mask.shape , (2, 1_0) ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0] ) , ['''[CLS]''', '''test''', '''question''', '''[SEP]''', '''this''', '''is''', '''the''', '''first''', '''record''', '''[SEP]'''] , ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1] ) , ['''[CLS]''', '''test''', '''question''', '''[SEP]''', '''this''', '''is''', '''the''', '''fourth''', '''record''', '''[SEP]'''] , ) def __UpperCamelCase ( self ): '''simple docstring''' __A =self.get_config() __A =self.get_dummy_retriever() __A =retriever.tokenizer __A =np.array([0, 3, 5] , dtype='''long''' ) __A =tokenizer(['''Test question'''] ).input_ids __A =tokenizer( ['''the fourth''', '''longer longer'''] , add_special_tokens=lowercase__ , return_token_type_ids=lowercase__ , return_attention_mask=lowercase__ , ).input_ids __A =config.reader_seq_len __A , __A , __A , __A =retriever( lowercase__ , lowercase__ , answer_ids=lowercase__ , max_length=lowercase__ , return_tensors='''np''' ) self.assertEqual([False, True, True] , lowercase__ ) self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] , lowercase__ ) self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] , lowercase__ ) def __UpperCamelCase ( self ): '''simple docstring''' __A =self.get_dummy_retriever() retriever.save_pretrained(os.path.join(self.tmpdirname , '''realm_block_records''' ) ) # Test local path __A =retriever.from_pretrained(os.path.join(self.tmpdirname , '''realm_block_records''' ) ) self.assertEqual(retriever.block_records[0] , b'''This is the first record''' ) # Test mocked remote path with patch('''transformers.models.realm.retrieval_realm.hf_hub_download''' ) as mock_hf_hub_download: __A =os.path.join( os.path.join(self.tmpdirname , '''realm_block_records''' ) , _REALM_BLOCK_RECORDS_FILENAME ) __A =RealmRetriever.from_pretrained('''google/realm-cc-news-pretrained-openqa''' ) self.assertEqual(retriever.block_records[0] , b'''This is the first record''' )
516
import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor _lowerCamelCase : Optional[Any] = logging.get_logger(__name__) class lowerCAmelCase__ ( __magic_name__ ): '''simple docstring''' def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' warnings.warn( '''The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use DPTImageProcessor instead.''' , lowercase__ , ) super().__init__(*lowercase__ , **lowercase__ )
516
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __magic_name__ : Any = logging.get_logger(__name__) __magic_name__ : Tuple = { """microsoft/resnet-50""": """https://huggingface.co/microsoft/resnet-50/blob/main/config.json""", } class lowercase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" __lowerCAmelCase : List[str] = """resnet""" __lowerCAmelCase : List[Any] = ["""basic""", """bottleneck"""] def __init__( self , _A=3 , _A=6_4 , _A=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , _A=[3, 4, 6, 3] , _A="bottleneck" , _A="relu" , _A=False , _A=None , _A=None , **_A , ): '''simple docstring''' super().__init__(**_A ) if layer_type not in self.layer_types: raise ValueError(f"""layer_type={layer_type} is not one of {",".join(self.layer_types )}""" ) UpperCamelCase : List[Any] = num_channels UpperCamelCase : str = embedding_size UpperCamelCase : List[Any] = hidden_sizes UpperCamelCase : str = depths UpperCamelCase : Tuple = layer_type UpperCamelCase : Tuple = hidden_act UpperCamelCase : str = downsample_in_first_stage UpperCamelCase : str = ["""stem"""] + [f"""stage{idx}""" for idx in range(1 , len(_A ) + 1 )] UpperCamelCase , UpperCamelCase : Union[str, Any] = get_aligned_output_features_output_indices( out_features=_A , out_indices=_A , stage_names=self.stage_names ) class lowercase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" __lowerCAmelCase : Any = version.parse("""1.11""" ) @property def _a ( self ): '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def _a ( self ): '''simple docstring''' return 1e-3
102
'''simple docstring''' import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ )-> Dict: """simple docstring""" snake_case_ : Tuple = ("dense.weight", "attention.self.query", "attention.self.key", "attention.self.value") snake_case_ : Union[str, Any] = ( ("layer.", "layer_"), ("word_embeddings.weight", "word_embeddings"), ("position_embeddings.weight", "position_embeddings"), ("token_type_embeddings.weight", "token_type_embeddings"), (".", "/"), ("LayerNorm/weight", "LayerNorm/gamma"), ("LayerNorm/bias", "LayerNorm/beta"), ("weight", "kernel"), ) if not os.path.isdir(__magic_name__ ): os.makedirs(__magic_name__ ) snake_case_ : str = model.state_dict() def to_tf_var_name(__magic_name__ ): for patt, repl in iter(__magic_name__ ): snake_case_ : List[str] = name.replace(__magic_name__ ,__magic_name__ ) return F'''bert/{name}''' def create_tf_var(__magic_name__ ,__magic_name__ ,__magic_name__ ): snake_case_ : List[Any] = tf.dtypes.as_dtype(tensor.dtype ) snake_case_ : Union[str, Any] = tf.get_variable(dtype=__magic_name__ ,shape=tensor.shape ,name=__magic_name__ ,initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(__magic_name__ ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: snake_case_ : Optional[int] = to_tf_var_name(__magic_name__ ) snake_case_ : Dict = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): snake_case_ : List[Any] = torch_tensor.T snake_case_ : Union[str, Any] = create_tf_var(tensor=__magic_name__ ,name=__magic_name__ ,session=__magic_name__ ) tf.keras.backend.set_value(__magic_name__ ,__magic_name__ ) snake_case_ : List[str] = session.run(__magic_name__ ) print(F'''Successfully created {tf_name}: {np.allclose(__magic_name__ ,__magic_name__ )}''' ) snake_case_ : Any = tf.train.Saver(tf.trainable_variables() ) saver.save(__magic_name__ ,os.path.join(__magic_name__ ,model_name.replace("-" ,"_" ) + ".ckpt" ) ) def __UpperCAmelCase ( __magic_name__=None )-> Optional[Any]: """simple docstring""" snake_case_ : Any = argparse.ArgumentParser() parser.add_argument("--model_name" ,type=__magic_name__ ,required=__magic_name__ ,help="model name e.g. bert-base-uncased" ) parser.add_argument( "--cache_dir" ,type=__magic_name__ ,default=__magic_name__ ,required=__magic_name__ ,help="Directory containing pytorch model" ) parser.add_argument("--pytorch_model_path" ,type=__magic_name__ ,required=__magic_name__ ,help="/path/to/<pytorch-model-name>.bin" ) parser.add_argument("--tf_cache_dir" ,type=__magic_name__ ,required=__magic_name__ ,help="Directory in which to save tensorflow model" ) snake_case_ : Optional[int] = parser.parse_args(__magic_name__ ) snake_case_ : Optional[int] = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name ,state_dict=torch.load(args.pytorch_model_path ) ,cache_dir=args.cache_dir ,) convert_pytorch_checkpoint_to_tf(model=__magic_name__ ,ckpt_dir=args.tf_cache_dir ,model_name=args.model_name ) if __name__ == "__main__": main()
653
0
'''simple docstring''' import unittest from datasets import load_dataset from transformers.pipelines import pipeline from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow @is_pipeline_test @require_torch class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @require_torch def __magic_name__ ( self : str): '''simple docstring''' snake_case__ = pipeline( task="""zero-shot-audio-classification""" , model="""hf-internal-testing/tiny-clap-htsat-unfused""") snake_case__ = load_dataset("""ashraq/esc50""") snake_case__ = dataset["""train"""]["""audio"""][-1]["""array"""] snake_case__ = audio_classifier(UpperCamelCase__ , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""]) self.assertEqual( nested_simplify(UpperCamelCase__) , [{"""score""": 0.5_01, """label""": """Sound of a dog"""}, {"""score""": 0.4_99, """label""": """Sound of vaccum cleaner"""}] , ) @unittest.skip("""No models are available in TF""") def __magic_name__ ( self : Optional[Any]): '''simple docstring''' pass @slow @require_torch def __magic_name__ ( self : List[str]): '''simple docstring''' snake_case__ = pipeline( task="""zero-shot-audio-classification""" , model="""laion/clap-htsat-unfused""" , ) # This is an audio of a dog snake_case__ = load_dataset("""ashraq/esc50""") snake_case__ = dataset["""train"""]["""audio"""][-1]["""array"""] snake_case__ = audio_classifier(UpperCamelCase__ , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""]) self.assertEqual( nested_simplify(UpperCamelCase__) , [ {"""score""": 0.9_99, """label""": """Sound of a dog"""}, {"""score""": 0.0_01, """label""": """Sound of vaccum cleaner"""}, ] , ) snake_case__ = audio_classifier([audio] * 5 , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""]) self.assertEqual( nested_simplify(UpperCamelCase__) , [ [ {"""score""": 0.9_99, """label""": """Sound of a dog"""}, {"""score""": 0.0_01, """label""": """Sound of vaccum cleaner"""}, ], ] * 5 , ) snake_case__ = audio_classifier( [audio] * 5 , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] , batch_size=5) self.assertEqual( nested_simplify(UpperCamelCase__) , [ [ {"""score""": 0.9_99, """label""": """Sound of a dog"""}, {"""score""": 0.0_01, """label""": """Sound of vaccum cleaner"""}, ], ] * 5 , ) @unittest.skip("""No models are available in TF""") def __magic_name__ ( self : List[str]): '''simple docstring''' pass
720
import random from typing import Any def _UpperCAmelCase ( a : list ): for _ in range(len(a ) ): snake_case__ = random.randint(0 , len(a ) - 1 ) snake_case__ = random.randint(0 , len(a ) - 1 ) snake_case__ , snake_case__ = data[b], data[a] return data if __name__ == "__main__": a__ = [0, 1, 2, 3, 4, 5, 6, 7] a__ = ["""python""", """says""", """hello""", """!"""] print("""Fisher-Yates Shuffle:""") print("""List""", integers, strings) print("""FY Shuffle""", fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
99
0